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Abstract

Cancer, the multifactorial disease, resulting in uncontrolled growth of malignant

cells, is the second most frequent cause of death worldwide. Despite enor-

mous growth in knowledge on cancer pathology, efficient medication still re-

mains elusive. In recent years, global profiling approaches are increasingly impor-

tant tools to study complex biological problems, such as cancer. One emerging

profiling technology is proteomics, the continuously growing research branch of

(bio)analytical chemistry that studies the entire set of proteins in a biological sys-

tem, their modifications and interactions. However, a variety of computational

and technological challenges in proteomics are still limiting the broad application

of the technology in cancer research.

This thesis contributes in three major topics to new methodological approaches

for the analysis of proteomics data and to novel insights of the effects of thera-

peutical treatment in cancer cells. In the first research part, a new method to

analyze 2D-Polyacrylamid Gel Electrophoresis (PAGE) proteomics data is intro-

duced. Although the DIGE (Difference Gel Eletrophoresis) technology greatly

influenced the quality of 2D-PAGE experiments through the fluorescent labeling

of different samples and their common separation in the same 2D gel, the tech-

nology is still accompanied with major challenges. In this thesis we provide a

solution to one of the major problems, the accurate and automated mapping of

protein spots from different DIGE gels. We implemented a novel scoring method

and applied a graph-theoretical approach to solve the assignment problem and

to ultimately find the protein spots with reproducible regulation on different gels.
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0. ABSTRACT

The second research section presents a new method for the integration of sev-

eral database search engines for improved peptide identification. Database search

for peptide identification belongs to the cornerstones in the processing of shotgun

proteomics data. The underlying algorithms from different search engines pro-

duce results that overlap in parts and disagree in others. Here we present a new

computational framework that combines results from several search algorithms

and thereby shows significant gain in peptide identification rates. Our method

relies on the normalization of single engine scores and on a weighted, average-like

method to combine the identification results from different engines to a common

consensus score. This new approach to peptide identification yields up to 63%

more identifications as the single engines alone.

In the last research section we present the application of quantitative shotgun

proteomics to an important aspect of cancer research, the study of the influence

of kinase inhibitors to the global protein expression. Dynamic quantitation of

protein expression after kinase inhibitor treatment using SILAC (Stable Isotope

Labeling by Amino Acids in Cell culture) opened new insights to the quantitative

and dynamic effects of the two multi-kinase inhibitors, sorafenib and LY294002,

on the whole proteome. In these experiments, we were able to identify and quan-

tify more than 5,400 proteins and to investigate the protein expression levels at

five different time points, revealing unprecedented insights to the kinetic behavior

of the proteome as a function of length of treatment. We could show that for

both inhibitors several clusters of proteins show similar regulation following in-

hibitor treatment. We confirm the known regulation of the mTor pathway by the

LY294003 inhibitor and we speculate about the influence of LY294002 to DNA

replication. Furthermore, the investigations on the kinetic effects of sorafenib

treatment revealed known mechanisms, such as the influence to the Rho and Ras

mediated cell cycle progression, but opened also new and interesting hypothesis,

such as sorafenib’s contribution to autophagy induction. Large scale proteomics

datasets provide a wealth of information and new ways to study biological systems

on a system-wide level.
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Zusammenfassung

Krebs, die multifaktorielle Krankheit bei der sich pathologisch veränderte Zellen

unkontrolliert teilen, ist weltweit die zweithäufigste Todesursache. Trotz des enor-

men Zuwachses an Wissen über die Entstehung von Krebs, bleiben effiziente

Therapiemethoden bislang aus. Globale Profilierungsmethoden haben sich als

sehr vielversprechende Ansätze für die Untersuchung von komplexen biologis-

chen Problemen, wie Krebs, erwiesen. Eine dieser neuen Methoden ist die Pro-

teomik, der stetig wachsenden Zweig der (bio)analytischen Chemie, welcher die

Gesamtheit der Proteine eines biologischen Systems, sowie ihre Modifikationen

und Interaktionen erforscht. Eine Vielzahl von bioinformatischen und technolo-

gischen Herausforderungen in der Proteomik verhindern jedoch immer noch den

breiten Einsatz dieser Technologie in der Krebsforschung. Im Rahmen dieser

Dissertation tragen wir zu drei wichtigen Themengebiete der Proteomik und

ihrer Anwendung in der Krebsforschung bei. Wir entwickelten neue methodische

Ansätze für die Analyse von proteomischen Daten und wendeten proteomische

Methoden an, um ein besseres Verständnis zum Mechanismus von therapeutis-

chen Substanzen in Tumorzellen zu gewinnen.

In dem ersten Teil der Forschungsarbeiten stellen wir eine neue Methode für die

Analyse von 2D Gel basierten Daten vor. Obwohl die DIGE Technologie durch die

Floureszenzmarkierung von verschiedenen Proben und deren gemeinsame Tren-

nung auf einem Gel, einen erheblichen Beitrag zur Verbesserung der Qualität

von 2D Gel Experimenten gemacht hat, gibt es nach wie vor noch erhebliche

Herausforderungen in der DIGE basierten Proteomanalytik. Diese Dissertation

präsentiert eine neue Lösung für eines der größten Probleme der DIGE basierten
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0. ZUSAMMENFASSUNG

Proteomik, der akkurate und automatisierte Abgleich von Proteinspots auf ver-

schiedenen DIGE Gelen. Die Implementierung einer neuen Scoring-Methode

und die Anwendung von graph-theoretischen Ansätzen zur Lösung des Zuord-

nungsproblems erlauben das schnelle Finden von Proteinspots, welche auf ver-

schiedenen Gelen reproduzierbar reguliert sind.

Das zweite Kapitel der Forschungsarbeiten behandelt eine neue Methode zur In-

tegration von mehreren Datenbanksuchmaschinen zur Verbesserung von Peptidi-

dentifizierungsraten. Datenbanksuchen zur Identifizierung von Peptiden gehören

zu den Eckpfeilern der Datenprozessierung in der Massenspektrometrie-basierten

Proteomik. Die verschiedenen Algorithmen, die den unterschiedlichen Such-

maschinen zu Grunde liegen, annotieren einen Teil der Spektren mit den gleichen

Sequenzen, aber schlagen oft unterschiedliche Peptide für einen anderen Teil der

Spektren vor. Hier präsentieren wir einen neuen algorithmischen Ansatz, der die

Ergebnisse verschiedener Suchmaschinen integriert und dabei einen signifikanten

Zuwachs an identifizierten Peptiden erzielt. Unsere Methode beruht auf der Nor-

malisierung der Suchresultate der einzelnen Suchmaschinen und wendet dann ein

neues, gewichtetes, dem Durchschnitt ähnliches Maß an, um die verschiedenen

Suchresultate zu einem gemeinsamen Konsensus-Score zu verbinden. Dabei kon-

nten wir im Vergleich zu den einzelnen Suchmaschinen bis zu 63 % mehr Peptide

identifizieren.

In dem folgenden Kapitel präsentieren wir eine Anwendung von Methoden der

Massenspektrometrie-basierten Proteomik zu einer wichtigen Fragestellungen in

der Krebsforschung. Hierbei wurde die dynamische Veränderung der Proteinex-

pression in Tumorzellen nach Behandlung mit Kinase-Inhibitoren analysiert. Mit

Hilfe der SILAC-Methode wurde die Wirkung der zwei Multi-Kinase-Inhibitoren

Sorafenib und LY294002 in humanen Melanomzellen untersucht. In diesen Exper-

imenten gelang es mehr als 5400 Proteine zu identifizieren und zu quantifizieren.

Mit unseren experimentellen Untersuchungen in fünf verschiedenen Zeitpunkten

erzielten wir eine bisher noch nie dargelegte Einsicht in die Proteinexpressions-

dynamik als Funktion der Inhibitionsdauer. Mit Methoden der Clusteranalyse

konnten wir zeigen, dass beide Inhibitoren verschiedene Cluster von Proteinen
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bilden, die in gleicher Weise reguliert sind. Für die Behandlung mit LY294002

konnten wir die bekannte m-Tor Inhibition bestätigen und neue Hypothesen über

den Einfluß des Inhibitors auf die DNA Replikation formulieren. In ähnlicher

Weise konnten wir durch die Untersuchungen zur Expressionskinetik nach der

Behandlung mit Sorafenib bekannte Mechanismen, wie den Einfluß auf die Ras

vermittelte Proliferation betätigen, aber unser Datensatz erlaubt auch neue Hy-

pothesen und ermöglicht neue Einblicke, wie den Einfluß von Sorafenib auf die

Induktion der Autophagie.

Umfassende proteomische Datensätze bieten eine Fülle an Informationen und

neue Wege ein biologisches System als Ganzes zu verstehen.
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Chapter 1

Introduction

Solving computational and technological problems accompanied with proteomics

will be an important step towards the availability of proteomics technologies to

non-specialized research groups. The generic setup of a proteomics experiment

can potentially open a new and fundamentally different view to a biological sys-

tem. In contrast to gene-centric, reductionist approaches that arose from the

advent of molecular biology, proteomic technologies are not necessarily limited

to hypothesis-driven investigations of target molecules, but allow to assess most,

if not all proteins in a cellular biological system. This is uniquely important for

biological questions facing mechanisms that can not easily be reduced to single

cellular players. One such systemic and by far not understood mechanism is the

pathology of cancer.

Different forms of cancer belong to the major causes of death worldwide. Decades

of cancer research contributed to detailed molecular insights into cancer cells, but

the current knowledge did so far not allow to cure the disease.

Drugs that are used to treat cancer patients can be assigned to various categories.

Among many other ways of treatment, approaches in cancer therapy include the

treatment with monoclonal antibodies or small molecular weight kinase inhibitors.

Monoclonal antibodies have mono-specificity to antigens on cancer cells and al-

low the patient’s immune system to recognize and to destroy the cancer cells.

Kinase inhibitors in contrast, are used to inhibit major signaling proteins that

are known to be involved in the progression of cancer. Kinase inhibitors have

had remarkable successes (e.g., imatinib [Gleevec] in the management of chronic
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1. INTRODUCTION

myeloid leukemia), but these drugs do also come with a variety of side effects and

they are usually only effective in a subclass of patients. Current cancer drugs

and small molecular weight kinase inhibitors in particular, interact with compa-

rably large set of target molecules. Although it seems theoretically attractive to

approach tumors in several ways, this promiscuity makes it hard to know the full

spectrum of activity (Branca, 2005) and to predict therapeutical benefit.

It becomes more and more evident that the understanding of the entire com-

plexity of multiplex diseases, such as cancer and the potential of drugs against

these diseases need global analyses (Hwang et al., 2009). A global view of all

components in a biological system should allow to integrate known mechanisms

with new ideas and hypotheses. Research areas such as drug development and

evaluation of drug treatment are especially suited for system-wide approaches,

as many influences of drug-target interactions remain unseen by more classical

approaches. The emergence of system-wide technologies as tools for global in-

vestigations in human cells or tissues was mainly initiated by the sequencing

of the human genome (Lander et al., 2001; Venter et al., 2001). The human

genome sequence revealed approximately three billion base pairs. Large parts of

this collection of information remains to be understood. According to the latest

information from the Swissprot database (Release 2010 10 of 05-Oct-10), the hu-

man genome contains 20,258 protein-coding genes. Large parts of the non-coding

regions are occupied by putative RNA genes and pseudogenes. Pseudogenes are

deoxyribonucleic acid (DNA) regions that are structured as genes, but are not

found to be expressed. Although the definite number of genes is still uncertain,

the human genome enables various directions of functional research, the study of

genetic disorders, the identification of SNPs (single nucleotide polymorphisms),

ribonucleic acid (RNA) and protein expression analysis. The sequence of the

genome enables studies on the processes and mechanisms in living organisms and

more precisely how they arise from the constituent parts (fundamentally atoms

and molecules) that make up an organism (Welsh et al., 2006). Genes are tran-

scribed to messenger ribonucleic acid (mRNA) molecules and mRNA molecules

may be translated to proteins. This information flow from DNA to protein is

known as the central dogma of molecular biology. The dogma reflects a linear re-

lationship between gene activity, mRNA and protein and is still broadly accepted

2



and taught in basic biological courses. However, the scientific literature accumu-

lates evidence that this linear relationship does not allow to entirely explain the

phenotype of an organism with its underlying genome. In fact, completely dis-

connected expression levels of mRNA and protein molecules have been recently

found in Escherichia coli (E. coli) by Taniguchi et al. (2010). Based on single

cell assays, Taniguchi et al. (2010) found that large fluctuations in low-abundance

proteins, as well as a common extrinsic noise in high-abundance proteins might

be responsible for uncorrelated expression levels of mRNA and protein of the

same gene. Immediately after a protein is translated by the ribosome, post-

translational modifications can be added to the proteins, resulting in a variety

of different proteins, which contribute to a high increase in complexity compared

to the set of all genes. Counting all different isoforms of proteins originating

from the same gene, it is estimated that their might be more than one million

different proteins in a human cell (Jensen, 2006). The increased number of pro-

teins compared to the number of genes is due to the events that can occur during

protein expression (transcription + translation), such as alternative splicing or

post translational modifications. The number of genes that are expressed as pro-

teins at a given time was determined in studies using budding yeast (de Godoy

et al., 2008), where whole proteome measurements were confirmed by the anal-

ysis of tagged proteins. Such studies allow to estimate the number of expressed

proteins in other organisms. According to Cox and Mann (2007), the number

of different genes that are expressed to proteins in humans at a given time is

approximately 10,000. The entire protein content of a biological system defines

networks of protein-protein interactions and these networks enable intracellular

communication, gene expression, structure, metabolism, etc. Fraser and Plotkin

(2007) suggested to use information on protein-protein interactions to predict

cellular phenotypes. Assuming the cell is predominantly defined by its protein

content, observed changes in the phenotype need to be reflected in the proteome.

These changes may be triggered by different protein expression levels or modu-

lated post-translational modifications of proteins. In general, proteins, as well as

their modifications and interactions, most accurately reflect gene function.

In 1994, the term proteome was introduced for the first time by the Australian

scientist Marc Wilkins at a congress in Siena, Italy. The word proteome is a

3



1. INTRODUCTION

blend of genome and protein and refers to all proteins expressed from a given

genome at a particular time in a given cell, tissue, species, etc. In 1997, the

term ’proteomics’ was coined (James, 1997). Proteomics was initially defined as

the general study of the proteome and later expanded as the study of the whole

set of proteins, protein isoforms and their modifications, as well as the interac-

tions between them, the structural description of proteins and their higher-order

complexes, and almost everything ’post-genomic’ related to proteins (Tyers and

Mann, 2003). Most proteomics approaches rely on the availability of gene and

genome sequences, making proteomics a post-genomic branch of the biological

sciences.

Traditionally, proteomics has been based on two-dimensional separation of pro-

teins prior to their identification via mass spectrometry (MS). Two-dimensional

polyacrylamide gel electrophoresis (2D-PAGE) can theoretically resolve several

thousands of proteins and provides the great advantage of permitting the analysis

of protein isoforms. Thus the technique has a great potential for in-depth func-

tional analysis of differential mechanisms on the protein level. However, since the

invention of 2D-PAGE in 1975 (Klose, 1975; O’Farrell, 1975), researchers were

struggling with the enormous work load and technical skills that were necessary

to achieve satisfactory results. More recently, 2D-PAGE-based proteomics was

facilitated by the introduction of Difference Gel Electrophoresis (DIGE), where

different proteomes are labeled with fluorescent tags and several proteomes can

be quantified on one gel.

Because of some inherent limitations of the 2D-PAGE technology, gel-free meth-

ods for peptide or protein separation have gained popularity (Monteoliva and

Albar, 2004). Gel-free methods may include fractionation approaches such as iso-

electric focusing to reduce sample complexity. After fractionation and enzymatic

digestion, the process that uses enzymes to cut proteins to smaller peptides, the

complex peptide mixture is subjected to liquid chromatography (LC)-MS analy-

sis. In combination with stable isotopic labeling, such as stable isotope labeling

with amino acids in cell culture (SILAC) or more recently also without labels,

gel-free approaches can also be performed in a quantitative manner.

Both DIGE and SILAC-based quantitative proteomics experiments were previ-

ously demonstrated to be powerful technologies to get quantitative information

4



on global protein expression. Both techniques offer generic workflows that can

be applied to interesting questions in biological and biomedical research.

Proteome-wide studies are faced with a high dynamic range in protein expres-

sion and need to be able to resolve the enormous complexity. The cope with

this analytical challenge, new experimental methods are continuously developed.

Whereas the challenges in 2D-PAGE-based proteomics are mostly related to the

reproducibility of protein separation on a gel and the matching between gels, the

difficulties that are accompanied with gel-free approaches are of a different na-

ture. Extremely complex peptide mixtures are measured in single LC-MS runs,

resulting in thousands of peptide and peptide fragment mass spectra. These

mass spectra are then mapped to their corresponding peptides and thereby iden-

tify their proteins of origin. This mapping is done by database search algorithms

that compare experimental to theoretically calculated candidate spectra. Be-

sides the peptide sequencing (identification), mass spectra can also be used to

differentially quantify proteins by comparing peptide intensities. In contrast to

the 2D-PAGE approach, the identification and quantification using gel-free ap-

proaches can be highly automated.

The field that involves computers for the interpretation of raw MS data, is called

computational proteomics. Computational proteomics has become an indispens-

able part in every proteomics experiment. Typically an LC-MS experiment pro-

duces large amounts of raw data (up to several hundred gigabytes per experiment)

that need to be stored, processed and analyzed. After the analytical steps a suc-

cessful proteomics experiment requires thorough computational data analysis.

Important steps and challenges in LC-MS data analysis include:

• Peptide identification. Peptide sequences are assigned to tandem spec-

tra, either without using previous knowledge (de novo) or via database

search algorithms. Peptide assignment remains a difficult problem. As

shown later, the tools available for the peptide assignment have different

underlying algorithms and sometimes produce only partly overlapping re-

sults.

• Feature detection and quantitation. A feature in this context corre-

sponds to all mass spectrometric information that can be assigned to one
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peptide. This feature information is compared from sample to sample for

relative quantitation and it is compared to internal standards to retrieve

absolute quantities. Relative quantitation relies either on stable isotopes

that allow a comparison within the same experiment or on label-free com-

parison of features detected in different experiments. The latter approach

requires an accurate map alignment.

• Map alignment. If several samples are compared without label, they need

to be measured in separate experiments. The different experiments need

to be mapped to each other in order to compare quantities of the peptide

features. The problem of map alignment emerged in proteomics with the

introduction of 2D gel electrophoresis in the 1970ths, where protein fea-

tures, in this case protein spots, from different gels have to be aligned.

Computational proteomics has become indispensable to generate global protein

expression profiles. The development in the area of proteomics is by far not

finished. Continuously new mass spectrometric instrumentation is launched, per-

mitting a rapidly growing set of biological problems to be addressed. We need re-

liable, generic, standardized and especially automatable methods for the analysis,

storage and interpretation of proteomics data. Algorithms for peptide identifica-

tion represent one of the most fundamental parts of the whole analysis. Correct

peptide identifications are crucial for both protein identification and quantitation.

The importance of peptide identification in complex LC-MS data is reflected in

the still growing number of available database search algorithms in the scientific

literature. Depending on the protein database and the resolution of the mass

spectrometer, the number of candidate sequences might be very high. Highly

complex samples may result in noisy spectra and low abundant peptide features.

This makes the unambiguous assignment of peptide sequences to peptide fragmen-

tation spectra very difficult. Yet it is known that different algorithmic approaches

have different advantages and drawbacks. In short, it has become evident that

different search engines overlap in parts, but disagree in other parts.

In this thesis, we developed a novel method for the automated analysis of DIGE
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gels by implementing a new scoring function that relates differentially regulated

protein spots from a DIGE gel to intra-gel landmark spots and uses graph-

theoretical methods for matching spots on different gels. With this new method

we can significantly improve the quality of the alignment of multiple DIGE gels.

The new method can be highly automated, thereby it diminishes subjectivity and

reduces the analysis time in DIGE-based proteomics.

Furthermore, we present a method for improved peptide identification based on

several search engines. Computational peptide identification via database com-

parison is one of the most important steps in shotgun proteomics. The newly

developed method aims on the combination of different known algorithms for

peptide identification and uses a similarity measure to account for missing anno-

tations in a subset of search engine results. With this method peptide identifica-

tion rates can be increased by up to 63 %.

In the experimental sections, we applied those and other methods to an important

aspect in cancer research, the global effect of kinase inhibition. The global in-

fluences of the multi-kinase inhibitors sorafenib and LY294002 were investigated

using DIGE and SILAC in combination with high accuracy mass spectrometry in

malignant melanoma cells. The results of these investigations strongly support

the promiscuity of the inhibitors. We found a comparably large set of biologically

important mechanisms that are modulated upon treatment. These experiments

confirm known aspects, such as sorafenib’s influence to Ras and Rho mediated cell

cycle progression, but open also novel, unprecedented hypotheses to sorafenib’s

mechanism. One aspect that is suggested by our data is the influence to au-

tophagy induction. The great asset, gained from time resolved quantitative data,

is demonstrated by our LY294002 dataset. We can show that metabolic activity

is an early response to the inhibition of major signaling pathways by LY294002,

whereas expression levels of proteins involved in metabolic activity to normalize

to the initial values at later time points. Integrating results from both inhibitors,

we can further speculate about the common influence of sorafenib and LY294002

to oxidative phosphorylation in the mitochondrion.

This following part of this thesis is divided into five section. The adjacent back-

ground section will provide the relevant information on cancer pathology, mass

7



1. INTRODUCTION

spectrometry and it will also discuss methods and techniques relevant to quantita-

tive proteomics and, computational methods for the analysis mass spectrometric

data. The following three parts provide the major lines of research, performed

throughout the thesis, namely the novel graph-theoretical approach in DIGE-

based proteomics, the new method for consensus peptide identification, and the

quantitative shotgun proteomics profiling of inhibitor treatment in malignant

melanoma. They all follow the same structure: starting with an introduction

and presentation of the main ideas and motivation, then the technical aspects,

methods and materials are described, followed by a presentation of the results

and each Chapters closes by a detailed discussion of the results. The last Chapter

provides a general conclusion of the work and perspectives for open problems in

computational and experimental proteomics.
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Chapter 2

Background

2.1 Cancer

Cancer is the second most frequent cause of death, after to cardiovascular dis-

eases, in western societies. Despite decades of cancer research, a clear under-

standing of disease pathology and progression is still missing. Molecular biology

has contributed extensively to the discovery of aberrant molecular mechanisms

associated with various types of cancer. In a normal (healthy) cell, homeostasis

and signal propagation are well coordinated and the cell fate is a well-defined bal-

ance between proliferation, survival and apoptosis (the programmed cell death).

In tumor cells, however, this fate is shifted in favor of proliferation and survival,

whereas apoptosis is impaired.

All these information on cancer pathology formed the understanding of cancer

as a multiplex disease involving several complex anomalies. Hanahan and Wein-

berg (2000) defined six hallmarks of cancer (Fig. 2.1): self-sufficiency in growth

signals, insensitivity to growth inhibitory signals, evasion of apoptosis, limitless

replicative potential, tissue invasion and metastasis, and sustained angiogenesis

(Hanahan and Weinberg, 2000). Along these lines, cancer can not be assigned

to a single impairment, but is based on multiple abnormalities. These multiple

abnormalities sum up to an enormous complexity that makes cancer research and

cancer therapy very challenging.
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2. BACKGROUND

Figure 2.1: Six aberrant cellular mechanisms in cancer 1.

Self-sufficiency in growth signals is an important property of cancer cells.

Normal cells require growth signals to proliferate. Cancer cells, however, have

acquired the capability to proliferate without those signals. Growth signals are

polypeptides that are transmitted from cell to cell. Well-known examples are

polypeptides from the FGF family (fibroblast growth factor), the TGF family

(transforming growth factor) or PDGF (platelet-derived growth factor). Growth

signals are transmitted via transmembrane receptors, through the cytosol to the

nucleus where they activate their target genes. Tumor cells can mimic these

signals by generating their own growth signals, such as PDGF in glioblastoma

(Nistér et al., 1986). In other tumors the expression of transmembrane receptors

is up-regulated, which results in hypersensitivity to rather low levels of growth

factors (Slamon et al., 1987). An even more complex mechanism, leading to

growth factor autonomy, is the modulated expression of proteins that are part of

signaling cascades downstream of the receptor, such as the MAPK pathway. For

1Reprinted from Hanahan and Weinberg (2000), with permission from Elsevier.
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example, the Ras protein, a member of this pathway, has an altered structure in

about 25 % of all human tumors (Hanahan and Weinberg, 2000).

Besides the independence of growth signals, cancer cells are frequently also in-

sensitive to anti-growth signals. Cellular homeostasis is regulated by a fine

interplay between signals promoting growth and their inhibitory counterparts.

Theses anti-growth signals are either soluble inhibitors or inhibitors embedded

in the extracellular matrix (Hanahan and Weinberg, 2000). A commonly known

mechanism of action of anti-growth signals is the transition of cells from a prolif-

erative state in the quiescent G0 cell cycle state. Anti-growth signals are known

to interact with the retinoblastoma protein (pRb). Differentially phosphorylated

versions of pRb can alter the function of the E2F transcription factor that is

essential for the expression of genes involved in cell cycle progression. If pRb is

non-functioning, E2F is released and proliferation is triggered (Weinberg, 1995).

Another prominent candidate is the TGF-β protein that coordinates pRb phos-

phorylation by blocking cyclin:cyclin-dependent kinase (CDK) complexes (Datto

et al., 1997).The independence of growth signals and the resistance to inhibitory

signals are strong factors for increased life time of cells.

It has been shown that the underlying molecular constituents of cancer cells al-

low to evade apoptosis. The mechanism of apoptosis involves the disruption

of cellular membranes, the destruction of intracellular skeletons, the degradation

of chromosomes, and the fragmentation of the nucleus (Wyllie et al., 1980). The

mitochondrion, where many of the intracellular signals converge, is at the core

of this process. Important members of the mitochondrial apoptotic pathway in-

clude members of the B-cell lymphoma-2 (BCL-2) family, most prominently the

BCL-2-associated X protein (BAX). BAX stimulates the release of cytochrome c

from the mitochondrion. The released cytochome c can then activate caspases,

triggering cell death.

In contrast to a non pathogenic system, cancer cells have an unlimited replica-

tive potential, which is for example expressed by impaired senescence - the loss

of the ability to divide. Non-functional pBb and other tumor suppressors, such

as p53, can prevent senescence and enable replication.

The two last properties according to Hanahan and Weinberg (2000) concern an-

giogenesis and tissue invasion. Angiogenesis is the process of growing new
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2. BACKGROUND

blood vessels (Weinberg, 2007). Blood vessels are important to support the in-

vading cancer tissue with nutrients and oxygen. Thus formation of new cancer

tissue relies on newly formed blood vessels for nutrient and oxygen supply.

2.1.1 Kinase inhibitors for cancer therapy

Many of the deregulated mechanisms described above can be assigned to ab-

normal activities of kinases, which result in differentially phosphorylated target

molecules. These uncontrolled mechanisms will result in dys-regulated gene ex-

pression and ultimately in cellular transformation to the cancer phenotype. In

2009, eight kinase inhibitors had been approved for clinical application in the

Unites States (Ghoreschi et al., 2009). Examples of FDA-approved kinase in-

hibitors are sunitinib, sorafenib, imatinib, desatinib, erlotinib, gefitinib and la-

patinib. Selectivity has initially been a major attribute for the production of

kinase inhibitors. However, recent studies showed that the target spectrum of an

ideal kinase inhibitor should include a broad and clearly defined set of kinases

(Ghoreschi et al., 2009). This highly demanding task to design the inhibitors in

a way that they have an ideal target spectrum is barely fulfilled with current in-

hibitors. It could be shown that most kinase inhibitors have multiple and widely

spread targets (Karaman et al., 2008). Eukaryotic protein kinases change the

activity state of their target proteins by adding phosphate groups to serine, thre-

onine, or tyrosine residues. The human genome sequence revealed 518 different

protein kinases (Manning et al., 2002). Kinases have a conserved kinase domain,

which consists of a five-stranded β-sheet and a single α-helix on the N-terminal

lobe connected to a larger C-terminal lobe by a hinge region. The phosphoryla-

tion reaction takes place when the kinase binds the protein substrate to a groove

formed by the α helical C-lobe. This binding enables the formation of an ATP-

binding pocket, where phosphate groups from an ATP molecule are transferred

to the hydroxyl groups on the target residues. All kinases share strong structural

similarities in these pockets, as they all bind ATP. Kinase inhibitors are designed

as competitive antagonists to ATP.
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Figure 2.2: (A) p38 kinase with bound Sorafenib, (B) Pim-1 kinase with

bound LY294002.
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The interactions of sorafenib with p38 kinase and the interaction of LY294002

with Pim-1 kinase are shown in Fig. 2.2. p38 is also known as a mitogen-activated

kinase. Within both structures the N-terminal β strand and the α helix form the

ATP binding pocket, which is now occupied by the inhibitors.

Sorafenib:

Although sorafenib is widely known as a Raf-kinase inhibitor, it has become evi-

dent that sorafenib is a promiscuous inhibitor. Besides the inhibition of different

isoforms of the Raf kinase, sorafenib is known to inhibit tyrosine kinase receptors,

such as EGFR or PDGFR, Flt-3 and c-KIT. Sorafenib, a bi-aryl urea derivative,

was shown to interact with Raf-1 (residue 305-648), wtBRAF (residue 409 - 765),

V599E-BRAF (residue 409 - 765) in cell-based and biochemical assays (Wilhelm

et al., 2004). Sorafenib shows highest affinities to Raf-1 and least to V599E-

BRAF (IC50: 6 nM, wt BRAF (22 nM), V599E BRAF (38 nM)). In biochemical

assays it inhibits MEK-1 (full length) activity, murine (m)VEGFR-2 (residue

785 - 1367), human VEGFR-2 (KDR kinase domain), mPDGFR-β (residue 560-

1098), mVEGFR-3 (residue 818-1363), EGFR (669-1210), Her2/neu (691 - 1255),

FGFR-1 (398 - 882) and it has been shown to interact with purified proteins, such

as Flt-3 and c-KIT. Wilhelm et al. (2004) also showed that Sorafenib does not

influence the activity of IGFR-1, VEGFR-2, c-MET, cdk-1/cyclin B, activated

PKB, PKA, LCK, activated c-yes, and pim-1. They also could not observe sig-

nificant inhibition of MEK-1 and ERK-1 activity. In the work, published by

Wilhelm et al. (2004), all experiments were performed at a maximum sorafenib

concentration of 10 µM.

In most cell lines, Sorafenib inhibits phosphorylation of ERK1/2, although bio-

chemically it does not interact with ERK. These results suggest that Sorafenib

interrupts the MAPK pathway via potent inhibition of RAF. Despite the inhibi-

tion of RAF, in some cell lines (e.g., colon cancer cell lines) ERK is still phospho-

rylated. Suggesting that there are other pathways that lead to ERK phosphory-

lation as the commonly known Ras-Raf-Mek-Erk pathway (as sorafenib usually

inhibits Raf activity).

Sorafenib’s affinity to receptor tyrosine kinases is even stronger than the activity

to intracellular proteins. EGFR and PDGFR were inhibited at much lower con-

centrations (20 to 100 nM) compared to the inhibition of the MAPK pathway
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(90 to 4000 nM).

LY294002:

LY294002 is known as a potent inhibitor of phosphoinositide 3-kinases. In 1994,

it was shown that LY294002 specifically inhibits PI3-kinases (Brunn et al., 1996;

Vlahos et al., 1994). The initial paper claimed very high specificity of this in-

hibitor. However, more recent evidence shows that LY294002 also inhibits the

activity of other molecules, such as mTOR (mammalian target of rapamycin)

and DNA-PK (DNA-dependent protein kinase 2) (Brunn et al., 1996), CK2 (ca-

sein kinase 2) and Pim-1 (Davies et al., 2000). Besides the inhibition of kinases,

LY294002 is also involved other mechanisms, such as Ca2+ signaling (Tolloczko

et al., 2004) or the inhibition of NF-κB activation (Kim et al., 2005). In a chem-

ical proteomics study it was found that the number of interacting proteins for

LY294002 is much higher than assumed. 99 proteins were found as interacting

partners of LY294002. These include mainly proteins involved in PI kinase ac-

tivity, such as the PI4 kinases, binding acetylated histones, transferase activity,

catalytic activity, binding and kinase activity. LY294002 was shown to influ-

ence the expression of metabolite kinases, such as the fructosamine-3 kinase or

the phoshofructokinase. Furthermore it was also shown that LY294002 inhibits

bromodomain containing proteins (BRDs). BRDs are known to be involved in

transcription and LY294002 on the other hand is known for its inhibitory effect

on transcription (Gharbi et al., 2007). For cell-based assays previous studies used

concentrations ranging from 10 µM to 50 µM of LY294002 for their assays.

2.1.2 Proteome-wide analysis of cancer

The literature on cancer is continuously growing. Integration of data from litera-

ture databases is a widely-used strategy for systems biological analyses that aim

at capturing the dynamics in cancer cells. However, literature may yield contra-

dictory data on biological systems, which makes data integration very difficult.

To cope with the enormous complexity of a living system, molecular biology was
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for decades focused on single genes and pathways in well-established model sys-

tems (cell lines or organisms). With the onset of powerful genomic technologies,

this hypothesis-driven approach is being rapidly replaced by global screens of

cancer-affected cells or tissues at the genome and proteome level. These data-

driven approaches provide an unbiased way of looking at the processes underlying

cancer at a global scale. Especially the proteome analysis has proved important in

cancer research, as aberrant post-translational modifications (PTMs) of proteins

cannot be studied at the genome level. Recent advances in quantitative mass

spectrometry have enabled to study global changes in both, protein and PTMs,

in space and time. Using proteome wide techniques, protein expression, being a

very dynamic process, can be mapped at different time points. This information

can be used to interpolate protein expression in parallel for thousands of proteins.

This dynamic behavior of biological systems carries important information and

needs to be addressed in order to fully understand a biological system.
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2.2 Proteomics

2.2 Proteomics

2.2.1 General workflows in proteomics

Proteomics is a branch of (bio)analytical chemistry that studies a biological sys-

tem at the level of gene products (proteins). Two cornerstones of every proteomics

experiment are protein identification and protein quantification, which is mainly

performed by mass spectrometry. Starting from the biological sample, all pro-

teins need to be extracted and separated from the other content of the cells. A

list of three major workflows, accompanied with a more detailed comparison of

the two workflows used in this thesis are illustrated in Fig. 2.3.

2D-PAGE-based proteomics is the oldest of the methods presented here. Over

30 years ago 2D gel electrophoresis was used the first time to resolve complex

mixtures of proteins (Klose, 1975; O’Farrell, 1975). In 2D-PAGE, proteins are

separated according to their pI value and their molecular weight. After sepa-

ration, the gels are stained and their patterns are compared to patterns from

different conditions. After staining and visual inspection of the protein patterns,

interesting protein spots are excised, digested and subjected to a tandem mass

spectrometer, where a similar identification workflow as described below for shot-

gun proteomics, leads to the sequence information of the peptides and protein.

Top-down proteomics, in contrast, refers to an approach where short intact

proteins are ionized and the m/z values of the entire protein is recorded, as well

as fragment masses that result from the fragmentation of the whole protein ion.

The major limitation of the top-down approache is the maximal molecular weight

of the analytes. Usually only proteins up to 50 kDa can be measured in this way

(McLafferty et al., 2007). However, the top-down technology has the potential

to analyze multiply modified protein isoforms more accurately as the bottom-up

method, as proteolytic digest destroys the mass information of the entire protein.

Shotgun proteomics is named after the shotgun approach for DNA sequenc-

ing. In shotgun DNA sequencing long DNA sequences are computationally recon-

structed from many short sequencing reads (Marcotte, 2007). Shotgun proteomics

identifies proteins from their shorter fragments: peptides. Bottom-up and shot-
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Figure 2.3: The three most commonly used workflows in proteomics. IEF

abbreviates isoelectric focusing.
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gun proteomics are often used to describe the same workflow. A main step in the

sample preparation for shotgun proteomics experiments is the use of proteases to

digest proteins to peptides. These proteases usually follow specific cutting rules

(motifs or residues), where they cut the protein. In this way, complex mixtures

of thousands of proteins are digested to hundreds of thousands of different pep-

tides. These even more complex peptide mixtures are then separated according

to physicochemical properties and subjected to mass spectrometry. In the mass

spectrometer peptide ions are isolated and fragmented and the mass spectra are

recorded. Following the mass spectrometric experiment, all mass spectra are

computationally compared to a given database of proteins and the best matching

sequence is assigned to each spectrum.

2.2.2 2D-PAGE

Traditionally large scale protein analysis has been performed on the basis of two-

dimensional gel electrophoresis (2D-PAGE). This method has a high resolution

power for intact proteins. Gauss et al. (1999) showed that the method allows

resolving almost 9,000 spots at a time. In the first dimension proteins are sepa-

rated according to their isoelectric point. The isoelectric point of a protein is the

pH-value where the net charge of the protein is zero. In the second dimension

the proteins are separated with respect to their molecular weight, according to

the method described by Laemmli (1970). In 1975, it was independently shown

by O’Farrell (1975) and Klose (1975) that isoelectric focusing can be used to

separate intact proteins, which was the birth of 2D-PAGE-based protein analyt-

ics. To date 2D-PAGE is very well established in many laboratories. Despite

the technical development in the field (e.g., immobilized pH gradients), there are

several remaining drawbacks in 2D-PAGE, such as low reproducibility, limited

dynamic range, high sensitivity to contaminants and most importantly a lack of

automation methods. Nearly all steps of this workflow and especially the analysis

of the 2D images require skilled user interventions. Due to this strong need for
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Figure 2.4: (a) Amino acid abundance in the human proteome, (b) Number

of tryptic peptides per protein in the human proteome.

manual handling, the acquisition of reproducible results by 2D gel electrophoresis

is a very demanding task.
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2.2.3 Shotgun proteomics

In shotgun proteomics the proteins are immediately digested to peptides by a

protease. Two-dimensional gels and top-down approaches quantify intact pro-

teins. While 2D-PAGE is still frequently used, inherent analytical problems of

this technique made shotgun proteomics the method of choice, especially for

system-wide global analyses. In shotgun proteomics the mixture of proteins is

typically cleaved by proteases. The most commonly used protease is trypsin.

Trypsin cuts after K (lysine) and R (arginine), except if the following amino acid

is P (proline). Fig. 2.4 shows the result of an in silico tryptic digestion of the

human IPI database (Kersey et al., 2004), in version 3.64. The average length

of a tryptic peptide from this database is 9.14 amino acids. Considering only

peptides with at least six amino acids, which would correspond to the minimal

peptide length that is considered to provide specific protein identification, the

average length increases to 15.2 amino acids. (A) shows the abundance of the 20

amino acids in all sequences of the human proteome and (B) shows the distribu-

tion of the human proteins as a function of their theoretically calculated number

of tryptic peptides. These data show that lysine and arginine are moderately

abundant amino acids. 5.6 % of all amino acids are lysine residues and 5.7 %

of all amino acids are ariginine residues. In fact the trypsin cutting definition

leads to a high number of specific peptides that match only one protein. The

human IPI database, in version 3.64, contains 84,295 protein entries. Even in

this database with a lot of isoform information tryptic peptides from 74,925 pro-

teins can be found that fit only to one protein. Besides trypsin, Lys-C (cuts C

terminal of lysine) or Asp-N (cuts N-terminal of aspartic acid) are other examples

for frequently used proteases in proteomics.

2.2.4 Chromatographic separation

Chromatographic separation is the most commonly used method to reduce the

complexity of peptide mixtures. The term high performance liquid chromatogra-

phy (HPLC) refers to a liquid chromatography (LC) experiment with relatively

high pressures. During liquid chromatography, peptides are subjected to a col-

umn and the separation is based on different physicochemical properties of the
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linear amino acid chains. The stationary phase of an LC separation consists of

particles which interact with the analytes (peptides) and the mobile phase can

be an aqueous solution that is usually a mixture of water and organic solvent,

such as acetonitrile (ACN). After loading the peptide mixture onto the column,

the analytes are eluted from the column in an increasing concentration gradient

of the mobile phase. The mobile phase has different physicochemical properties

as the stationary phase and by changing the concentration fraction of the mobile

phase, due to their hydrophobicity properties, different peptides will have differ-

ent affinities to either the mobile or the stationary phase and thus they will elute

at different times. Liquid chromatography can be done in various ways. The most

important methods for proteomics approaches are ion exchange chromatography

and reversed-phase chromatography. In reversed-phase chromatography the sta-

tionary phase usually consists of linear unpolar carbon chains, such as C18H37

(C18) chains. During an LC run the composition of the mobile phase is contin-

uously changed by increasing the percentage of organic solvent. With this setup

hydrophilic peptides will elute earlier than the more hydrophobic peptides.

2.2.5 Ionization

The analysis of biomolecules by mass spectrometric methods had only become

possible through the invention of soft ionization methods. MALDI (Matrix-

Assisted-Laser-Desorption-Ionization) (Karas and Hillenkamp, 1988; Tanaka et al.,

1988) and ESI (electrospray ionization)(Whitehouse et al., 1985) are the ma-

jor ionization methods for biomolecules. Both technologies were awarded Nobel

prizes in 2002: John Fenn was honored for his work on electrospray ionization

and Koichi Tanaka was given the prize for the invention of MALDI. The principle

of MALDI relies on a laser beam that triggers the ionization of analytes when

fired onto a solid matrix of small organic molecules wherein the analytes are em-

bedded. In ESI, the analytes in aqueous phase are ionized by pushing through a

very small charged metal capillary at atmospheric pressure. The metal capillary

points to the orifice of the mass spectrometer. A high voltage between the end of

the thin capillary and the orifice of the mass spectrometer induces the formation

of charged droplets (carrying analyte molecules) and a high orifice temperature
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induces extensive solvent evaporation. Thereby ions are formed through charge-

charge repulsion of the droplets that emerge from the capillary. This repulsion

takes place when the droplet reaches its Rayleigh limit - the maximal number of

equally oriented charges that can be carried by a droplet. This process, called

Coulomb fission, continues until analyte ions are free of solvent. The charged ions

are then accelerated towards the onset of the mass spectrometer. Fig. 2.5 shows

the principle of electrospray ionization.
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Figure 2.5: Electrospray ionization (ESI) process.

2.2.6 Mass spectrometry

A mass spectrometer measures the mass-to-charge (m/z) ratio of ions in the gas

phase. This analysis can be performed by various mass analyzers. Although the

principles of operation can be very different, all mass spectrometers consist of

an ion source, a mass analyzer and a detector. The most commonly used mass

analyzers in proteomics are time-of-flight (TOF), quadrupole and since recently
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also orbitrap analyzers. TOF instruments measure the time an ion takes to fly

until it reaches the detector. Quadrupole mass analyzers use oscillating electrical

fields to analyze ion trajectories. Other mass spectrometers have sector field,

Fourier transform ion cyclotron or orbitrap mass analyzers. In early times of MS

based proteomics, m/z values of peptides, detected by single MS measurements,

were used to identify proteins. This approach is called peptide mass fingerprint-

ing (PMF). However, some peptides, may have the same molecular weight while

having different sequences. The emergence of tandem MS (MS/MS) enabled the

accurate identification of peptides and proteins. This is usually performed by

tandem mass spectrometers. Tandem mass spectrometry can be performed in

time, using the same mass analyzer to record the peptide masses (precursor ions)

as well as the fragment masses from the peptides after fragmentation in the col-

lision cell or in space, if one mass analyzers detects the precursor ions and a

second mass analyzer detects the fragment masses. If two mass analyzers are

used and they are based on different types of analyzers (e.g., linear ion trap and

orbitrap), the setup is called hybrid mass spectrometer. There are various types

of mass analyzers that may be combined to hybrid MS instruments and used

for tandem MS. In this thesis mainly the LTQ-Orbitrap mass spectrometer was

used. We will now discuss details of tandem mass spectrometry at the example

of the LTQ-Orbitrap. The LTQ-Orbitrap is a hybrid mass spectrometer, consist-

ing of a linear ion trap (LTQ), a radio frequency (RF)-only (curved) C-trap and

an orbitrap mass analyzer. The principle of tandem mass spectrometry in the

LTQ-Orbitrap starts with the collection of ions in the linear ion trap, followed by

axial injection of the ions into the C-trap. From the C-trap the ions are injected

into the orbitrap, where an electro static potential allows accumulating ions while

they are axial oscillating and rotating around a central electrode. A scheme of

the LTQ-Orbitrap is shown in Fig. 2.6

Linear ion trap

Ions, generated by the electrospray ionization (ESI) source are transferred through

the ion transfer capillary and injected into the first ion guide, consisting of a

square quadrupole. Therefore, all ions have to pass the skimmer, which acts as a

vacuum baffle. An RF voltage applied to the rods of the quadrupole pushes the
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Figure 2.6: Schematic overview of an LTQ-Orbitrap XL mass spectrometer.

Zoom-in illustration of an ion trajectory in the orbitrap analyzer.

25



2. BACKGROUND

ions along the axis of the quadrupole. The kinetic energy of the ions is regulated

by an offset voltage applied from ground to the quadrupole (LTQ-Manual, 2006).

The next ion guide consists of the second square quadrupole, which serves as a

further guidance of the ions. The last ion guide before the mass analyzer consists

of an octopole with similar functions as the previous quadrupoles. After the main

ion guide the ions are injected into the center section of the linear ion trap, which

is surrounded by the front and back lenses. The front and back lenses mainly

serve as conductance limits. Specific potentials are applied in the center section

for ion storage. Helium is injected into the center section through a gap between

the quadrupole rods. During collision-induced-dissociation (CID), the kinetic en-

ergy of ions is increased and through the higher-energy collisions of parent ions

they will dissociate to one or more product ions. To detect the ions stored in

the linear ion trap electron multipliers are used. An electron multiplier consists

of a cathode and an anode. The anode collects the electrons produced by the

cathode and the electron flow can be measured. This current is proportional to

the number of ions ejected from the center section.

C-trap

On the way from the linear ion trap to the orbitrap, ions move through the ni-

trogen filled curved linear trap (C-trap). The nitrogen is used for lowering the

kinetic energy of the ions injected from the linear ion trap. From the C-trap ions

are rapidly pulsed into the orbitrap. This rapid pulsing results in very low time

gaps (10−7 s) between ions with the same m/z values.

Orbitrap mass analyzer

The main principles of the orbitrap analyzers can be based on technical details

concerning the Kingdon trap and the Fourier transform ion cyclotron measure-

ment (Hu et al., 2005). The Kingdom trap has a simple architecture consisting

of a thin-wire central electrode (inner electrode) that is surrounded a by coaxial

cylindrical (outer) electrode. The modified outer electrode of the Kingdon trap

(modified by Knight (1981)) leads to a symmetric potential with an electrostatic
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potential Φ given by

Φ = A

(
z2 − r2

2
+B ln(r)

)
Where r and z are cylindrical coordinates andA andB correspond to constants re-

lated to the electrode geometry and the applied voltages. This new configuration

corresponds to the orbitrap analyzer, as now the m/z values can be converted

from the frequency of harmonic ion oscillations along the z-axis (Perry et al.,

2008), similar to the transformation calculated for ion cyclotron measurements.

The precise definition of the potential Φ for orbitrap mass analyzers is given by

Φ(r, z) =
k

2
(z2 − r2

2
) +

k

2
(Rm)2ln

[
r

Rm

]
+ C

Here C is a constant, k the field curvature and Rm is the characteristic radius.

The shape of these axially symmetrical electrodes is given by the cylindrical

coordinate z.

z1,2(r) =

√
r2

2
−
R2

1,2

2
+ (Rm)2ln

[
R1,2

r

]
z1 is this case would correspond to central electrode and z2 denotes the outer

electrode. z = 0 is the plane of symmetry and R1,2 are the maximum radii of

the corresponding electrodes (Makarov, 2000). By calculating ion trajectories for

ions with mass m and charge q and by defining energy characteristics for the ion

motion in the z-axis as outlined in Makarov (2000), the equation of motion along

z can be explained by the harmonic oscillator

z(t) = z0cos(ωt) +

√
2Ez
k
sin(ωt)

With

ω =

√(
k q

m

)
this allows to determine the mass to charge ratio, here m/q.

2.2.7 Peptide fragmentation

Peptide fragmentation is one of the most fundamental principles in proteomics,

as all subsequent analyses rely on the peptide fragment spectra. Various types of
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fragmentation methods have been implemented in recent years. Electron capture

dissociation (ECD), electron transfer dissociation (ETD) and collision-induced-

dissociation (CID) are the most frequently used methods. ETD and ECD rely

both on the reduction of peptide ions, which reduces the charge of the posi-

tively charged ions and induces fragmentation of the unstable radical ions. These

methods do not work on singly charged ions, as the electron reduces the charge

by one. In both methods, peptides tend to fragment at the Cα-NH bond, result-

ing predominately in c and z ions. ETD of ECD are often used in the analysis

of post-translational modification (PTM), as the PTM remains attached to the

peptide ion (Zubarev, 2004). In contrast to ETD or ECD, CID fragmentation

is based on collisions of the peptide ions with inert gases (e.g., helium or nitro-

gen) at very low energies (eV range). The cleavage of the peptide at the peptide

bond, generating b and y ions, makes CID fragment spectra comparable easy to

interpret. The upper part of Fig. 2.7 shows the different types of ions that can be

generated by fragmentation methods and the lower part shows b and y ions that

are predominately produced by CID. Ri symbolizes the amino acids side chain

residues.

2.2.8 Identification of tandem mass spectra

An essential step in proteomics is the identification of peptides from their tandem

mass spectra. Computational analysis of tandem MS spectra relies on the pres-

ence of distinct ion series. Since the experimental part of this thesis employs CID

fragmentation only, we will only discuss CID spectra in this section. CID spectra

are dominated by b and y ions. The lower part of Fig. 2.7 shows typical product

ions of CID fragmentation. Tandem spectra contain series of masses that help to

assign the peptide sequence. Proteomics datasets usually contain thousands of

tandem spectra and in most of the cases the spectra are not easy to identify due

to noise and interferences with other masses. Manual evaluation of all spectra

recorded in a large scale experiment is thus not feasible. Research efforts for the

identification of tandem spectra are far-ranging. Two main areas are de novo

methods for the assignment of sequences and database retrieval algorithms.
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Figure 2.7: Fragment ion nomenclature in tandem mass spectrometry.

De novo sequencing

De novo in this case refers to calculations that make predictions on the sequence

without extrinsic data. De novo methods are of particular interest if the task is

to find novel proteins, amino acid mutations, and studying the proteome before

the genome. Among de novo algorithms there are several different approaches.

Graph-based methods are very popular in the de novo-approach. The peaks

from a tandem spectrum are considered nodes on a directed graph, nodes are

connected by edges if the mass difference between them equals the mass of any

amino acid (DiMaggio and Floudas, 2007). A peptide sequence corresponds to

a path through this graph. De novo methods, however, rely on very clean and

complete spectra. Experimental spectra often have missing peaks or contain a lot

of noise, which makes de novo assignments unreliable. Furthermore de novo iden-

tification relies on high mass accuracy, as the ambiguity for amino acid masses in

low accuracy data complicates the identification.
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Database retrieval algorithms

Alternative methods that do not assign sequences de novo, but rely on knowledge

about the protein that is expected to be expressed are summarized as database

retrieval algorithms. Common to all database retrieval algorithms is the com-

parison of experimental to theoretically calculated spectra, as outlined in the

general schema for database search in Fig. 2.8. This comparison is performed

Figure 2.8: A general workflow of database search approaches.

by various tools, so-called search engines. The most frequently used search en-

gines are the commercial tools Phenyx (Colinge et al., 2003), Sequest (Eng et al.,

1994), and Mascot (Perkins et al., 1999). Popular non-commercial solutions in-

clude X!Tandem (Craig and Beavis, 2004), OMSSA (Geer et al., 2004) or InsPect

(Tanner et al., 2005). The methods used by these algorithms are very diverse,

but rely fundamentally on the comparison of the experimental spectrum to a set

of candidate spectra that are calculated from a database. The size of this set

of candidates has a strong influence on the performance of the particular algo-

rithms. An important parameter for the calculation of the list of candidates is

the mass error window. Novel mass spectrometers allow measuring very accurate
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masses, with mass errors at 1 ppm (parts per million) or lower. With such high

accuracy the number of peptides from a given proteome that have masses that

fall in such a window is rather low. With low accuracy instruments this win-

dow is comparatively big. The great asset of high accuracy mass spectrometry

is visualized in Fig. 2.9. At a low mass tolerance the number of candidates in

the search space is significantly reduced, which implies a decreased likelihood for

false positive peptide identifications. For all peptides that fall in such a window

the theoretical tandem spectra are calculated. Fig. 2.10 shows an example of

an experimental spectrum annotated with the corresponding ion ladder and the

theoretically calculated spectrum. Mascot, X!Tandem and OMSSA are the three

search engines relevant to the remainder of this thesis. We will thus discuss the

algorithms underlying these search engines in more detail.

X!Tandem

The algorithmic procedure underlying the X!Tandem approach is a dot product

of the experimental and the theoretical spectra (Fenyo and Beavis, 2003). A

theoretical tandem mass spectrum is encoded as an n-dimensional vector t. The

set of all theoretical candidate spectra is given by K and defines the search space.

t ∈ K contains n entries ti of either 1 or 0. n is the parent ion mass divided

by the accuracy of the mass spectrometer. Thus n corresponds to all technically

distinguishable peaks. If the mass i can occur for the peptide in consideration,

then pi = 1, otherwise pi = 0. The theoretical spectrum t is thus given by

t = (t0, ..., tn)

The experimental spectrum is encoded in the same way as the theoretical spec-

trum, using an n-dimensional vector e.

e = (e0, ..., en) with 0 ≤ ei ≤ 100 ∀ i

The values ei are normalized product ion intensities. e is now compared to a all

theoretical candidates t ∈ K and a correlation score x is calculated for each
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Figure 2.9: The number of candidates in the search space as a function of

mass tolerance. Calculation were performed on a 12,804 entries database from

B. subtilis.

comparison of a theoretical spectrum to the experimental spectrum.

x(e, t) = 〈e, t〉 =
n∑
i=0

eiti (2.1)
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I G Y A L A V A T T E N
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Figure 2.10: Experimental spectrum (top) with the corresponding theoretical

spectrum (down). The peptide sequence is LMNETTAVALAYGIYK, a peptide

from an HSP70 (heat-shock-protein 70) isoform.

The X!Tandem hyperscore is calculated on the basis of the dot product.

h(e, t) =

(
n∑
i=0

eiti

)
Nb!Ny! (2.2)

Where Nb and Ny correspond to number of assigned b and y ions, respectively.

The hyperscore assumes an underlying hypergeometric distribution for the num-

ber of matches Nb and Ny. Due to the additional factors, the usage of the

hyperscore accounts more strongly for matchings with an increased number of
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mapping product ions, compared to the simple dot product. The peptide with

the top hyperscore is now assigned to the spectrum. In addition to the hyperscore

X!Tandem also assigns on E-value to each score. The E-value for a given peptide

hit simply indicates the probability that any hyperscore equal or higher might be

assigned by chance.

The implementation of X!Tandem (Craig and Beavis, 2004) routinely uses an

additional refinement function. The refinement is a secondary run that auto-

matically can identify peptides with various modifications, missed cleavages and

even polymorphisms. This special feature is realized by consecutive identification

runs. X!Tandem is designed in a way that it initially identifies peptides with a

small user-defined set of parameters and enzymatic specificities with the algorith-

mic approach as outlined above. As a next step a new database is constructed.

This new database only consists of proteins that were significantly identified (E-

value ≤ 0.1). Although this search strategy seemingly provides a high advantage

compared to other approaches, there are a lot of unresolved statistical issues ac-

companied with the X!Tandem’s refinement function, for example X!Tandem does

not construct decoy hits in the refined database, which prohibits the assessment

of the target-decoy-based false discovery rate.

Mascot

Mascot uses a probability-based search algorithm (Perkins et al., 1999), however,

the authors never published details on their algorithm. The Mascot score is based

on the Mowse score, which was an early algorithm for peptide mass fingerprinting

(Pappin et al., 1993).

As in most scoring algorithms, the first step of the Mowse score calculates peptide

masses for all theoretically possible peptide candidates. This calculation allows

defining the search space. With the information on all theoretical peptide masses

a matrix F is created. Each row in F corresponds to a bin of 100 Da in peptide

mass and the columns correspond to bins of 10 kDa of intact protein mass. Every

measured mass entry can now be assigned to elements in F. After column-

wise normalization steps by the largest entry per column, F is transformed into

the Mowse factor matrix M. M allows assigning a score to each experimental

precursor mass and serves thus as an experimental mass list pre-processing. The
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principle of the Mowse score is incorporated in the Mascot tandem MS search

algorithm. The final Mascot score involves the selection of two fragment ion

types, where most fragment matches are observed, and a probability-based score

is computed on the basis of these two fragment types only (Colinge and Bennett,

2007). It is calculated as −10 × log10(P ), where P corresponds to the absolute

probability of the observed match to be a random event. An additional parameter

reported by Mascot is the E-value. The E-value for a hit can be considered as a

score. It indicates the expected number of random hits that might be assigned to

the spectrum with probabilities as good or better than the given hit. An E-value

of 1.0 is interpreted in a way that one peptide sequence with a score equal to or

better than the hit being scored can be seen simply by chance.

OMSSA

The OMSSA (Open Mass Spectrometry Search Algorithm) algorithm (Geer et al.,

2004) calculates an E-value based on the information on how many product ions,

calculated from peptides in the search space, can randomly hit the tandem spec-

trum. The OMSSA scoring is based on the consideration of random matches

to m/z values. The distribution of those random matches allows assigning sig-

nificance values (probabilities) of hits for a given spectrum. The probability of

the hit being random is calculated, where a low probability implies a significant

hit. The overlap of fragment ions for each candidate in the search window is

calculated separately for the different charge states. Starting with charge state

1+ as follows: Let s be the smallest measured product ion mass and let h be the

highest measured product ion mass, then there can theoretically be h−s
2t

possible

matches, if the mass tolerance is given by t. Furthermore, if the precursor weight

is given by m, then there can be k(h−s)
m

calculated product ions, if k is the total

number of calculated m/z values. This number of calculated m/z values needs

to be matched to e experimental product ions. The OMSSA algorithm assumes

a Poisson process for the distribution of the number of matches, which is fur-

ther supported by Sadygov and Yates (2003). Poisson distributions are used in

random processes where the average number of success is much lower than the
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possible number (Geer et al., 2004). These assumptions lead to the mean

µ1 = (
2t

h− s
)(
k(h− s)

m
)e =

2tke

m

for the Poisson distribution given by

P (x, µ) =
µx

x!
e−µ

where x is the number of matches. µ is separately calculated for the different

charge states. With the assumption of the Poisson distribution of the number of

matches, OMSSA calculates an E-value, according which the hits are ranked. If a

theoretical spectrum is compared to a calculated spectrum, then the probability

that this matching is not random is given by

y−1∑
x=0

P (x, µ)

where y is the number of product ion matches. Then the probability that the

search against N theoretical spectra is random, is obviously given by

1− (

y−1∑
x=0

P (x, µ))N

and the E-value is calculated by

E(y, µ) = N(1− (

y−1∑
x=0

P (x, µ))N)

The interpretation of the OMSSA E-values is identical to that of X!Tandem and

Mascot E-values.

Statistical assessment of identification results

A very common method to estimate the statistical significance for tandem MS

search results is the calculation of false discovery rates. The false discovery rates

(FDR) in a general setup is defined as the expected ratio of the number of false

positive (FP ) instances to the number of all positive (P ) instances that have a

score s above any given threshold t.

FDR =
FPt
Pt

=
FPt

FPt + TPt
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Whereas TP corresponds to the number of true positives. Usually it is impossible

to calculate this ratio, as false and true positives cannot be discriminated easily.

To estimate appropriate values for the FDR, the target-decoy database search

strategy has become a best practice for the statistical assessment of database

search results (Elias and Gygi, 2007). Peptides are searched against a concate-

nated database, consisting of the usual forward database and a reversed (ran-

domized or shuffled) version of the original database. For the estimation of the

denominator all peptide spectrum matches (PSMs) with s > t are counted. The

enumerator counts all PSMs that are given a sequence from a decoy protein Since

the FDR can be smaller for an instance i with score s(i) as for an instance j with

score s(j), despite the fact that s(i) < s(j), the notion of q-values was intro-

duced by Storey and Tibshirani (2003). A q-value for instance i is the minimum

FDR that would be necessary to accept this instance as a true positive, given the

acceptance threshold t.

q(i) = min
t<s(i)

(FDR(t))

The application of the q-value measure to tandem MS search results was first

introduced by Käll et al. (2008a). The q-value of a PSM simply corresponds to

the smallest PSM at which the peptide would be accepted. Peptides accepted at

FDR α refers to all peptides that were identified with q-values ≤ α.

2.3 Quantitative proteomics

Mass spectrometry-based proteomics has so far been described as a powerful tool

for the qualitative assessment of huge sets of proteins. In most biological ques-

tions, however, it is essential to not only have the information of what protein is

expressed, but also to what extent it is expressed. The field of quantitative pro-

teomics can fill this gap. Quantitative in this context can either mean absolute or

relative quantitation. Absolute quantitation requires the calibration with samples

of known concentration. Relative quantitation can be achieved by direct compar-

ison of protein signals from two consecutive experiments or by the comparison of

differentially labeled peptides that are analyzed in the same experiment.
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2.3.1 Gel-based quantitation

Gel-based quantitation relies on the 2D separation with respect to the isoelec-

tric point and the molecular weight of the proteins. After the separation of the

proteins on a 2D gel, the gels are stained, scanned and software tools are used

to detect the protein spots. These spots are then matched across different gels

in the experiment and the different intensities of the protein spots are used for

the quantitative comparison. Due to various drawbacks in conventional 2D gel

electrophoresis, such as spot detection and spot matching, the gel-based quan-

titation remains difficult. Recent advances in 2D-PAGE include Difference Gel

Electrophoresis (DIGE) (Unlü et al., 1997). The DIGE method allows accurate

quantitation of relative protein abundances on one gel, since up to three samples

can be separated on the same gel (2.11(b)). For this purpose CyDyes are used

to label the protein samples previous to their mixed separation on a 2D-PAGE.

In the DIGE setup three different CyDyes are used, Cy3 and Cy5 are predom-

inately used to label the protein samples, and in most experiments Cy2 is used

as an internal standard. The internal standard can consist of all samples that

are used in the experiments. In this way the normalization procedure of ratios

is facilitated. All CyDyes have an NHS ester reactive group and can covalently

attach to the ε group of lysine; this reaction requires accurate pH adjustment to

8.5, as shown in 2.11(a). After the separation of the proteins in the two dimen-

sion the gels are scanned with specific filters that allow the separated detection

of the different CyDyes. The images are then overlaid and as the same proteins

from the different samples migrated exactly to the same point, the matching of

those DIGE maps is trivial. However, this great advantage of CyDye labeling

of different protein samples diminishes of the biological experiments consists of

more than three samples. If the sample size increases, protein samples have to

separated on different gels and for comparison, images from different gels have to

be matched, which is still a challenging task (Faergestad et al., 2007).

2.3.2 Gel-free quantitation

Gel-free quantitation has some distinct advantages over 2D gel-based quantita-

tion. 2D gel-based analyses in general are biased towards high-abundance proteins
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Figure 2.11: (a)CyDye labeling takes place on the ε of lysine residues. (b)

The DIGE workflow allows to mix samples previous to separation.

and it is barely possible to resolve membrane proteins, due to their biochemical

properties. There are two fundamentally different approaches to quantitation in

the mass spectrometer, methods using peptide labeling as well as label-free meth-

ods. Both methods rely on the quantitative nature of signal detection in the mass

spectrometer. Fig. 2.12 illustrates the most commonly used methods for gel-free

quantitative proteomics. The very left column on Fig. 2.12 shows the stage of

the proteomics experiment. The workflow starts with the cells or tissue and is

followed by the extraction of the sub-proteomes, the proteolytic digestion, the

mass spectrometric measurement, and finally the data analysis as the last step.

Metabolic labeling

The earliest possible state where samples can be combined is before the extraction

of proteins. Metabolically labeled proteins are produced in conditions where cells

have been grown on media that contained only specific isotopes for some amino

acid or media that contain only specific isoforms of atoms (e.g. 15N labeling).

The procedure that uses stable isotopes of amino acids has first been published by

Ong et al. (2002) and is known as stable isotope labeling with amino acids in cell
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Figure 2.12: Comparison of different quantitative mass spectrometric work-

flows.

culture (SILAC). The SILAC strategy has major advantages over other quanti-

tation methods. The method allows combining the samples at a very early stage

and early mixing of samples avoids any systematic error during sample prepara-

tion on one sample only. In theory, every amino acid could be used as a SILAC

label. However, most commonly Arg and Lys are used, as those labels allow the

quantitation of every tryptic peptide. Lys4 (2H4), Lys8 (13C15
6 N2), Arg6 (13C6)

and Arg10 (13C15
6 N4) are common examples for stable isotopes of Arg and Lys.

Combinations of those labels allow a routine comparison of three different sam-

ples and theoretically the comparison of five samples is possible (Molina et al.,

2009).
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Chemical labeling

Chemical labeling summarizes methods where either the whole protein is labeled

by chemical reactions or the labeling is introduced on the peptide level. In 1999,

Isotope-Coded Affinity Tags (ICAT) (Gygi et al., 1999) were introduced as the

first quantitative labeling methods in MS-based proteomics. In an ICAT exper-

iment two different mass tags, differing by eight Da, are used. The ICAT tags

covalently bind to cysteines in peptides. Cysteine affinity purification is used to

extract the ICAT-labeled peptides from whole cell lysates. Following this purifi-

cation, every peptide is labeled with tags on their cysteines and mass difference

of the ICAT tags allows a relative quantitation of peptides.

Another approach for chemical labeling is the iTRAQ method (Ross et al., 2004).

iTRAQ labeling is also a labeling method that is done on the peptide basis. In a

single MS mode the differentially labelled versions of a peptide are indistinguish-

able. However, in tandem MS mode (in which peptides are isolated and frag-

mented) each tag generates a unique reporter ion. Protein quantitation is then

achieved by comparing the intensities of the four reporter ions in the MS/MS

spectra (Shadforth et al., 2005). Using 4-plex iTRAQ, four reporter masses of

114.1, 115.1, 116.1 and 117.1 Da are used. The reporter ions accompanied with

four different balancer masses, result in a total mass of 145 Da for all iTRAQ

labels. The labels are covalently bound to the N-terminus of different peptide

populations and after fragmentation the reporter ion intensities allow to differen-

tially quantify up to four different samples in a single MS run.

AQUA

The AQUA (absolute quantification) strategy was introduced in 2003 by Gerber

et al. (2003). AQUA peptides are synthesized heavy isoforms of peptides in the

complex sample. By spiking these AQUA peptides in known amounts to the

sample, absolute peptide concentrations can be derived in an MS experiment for

a selective set of peptides. The quantitation of the detected peptide pairs is done

in the same way as for metabolic labeling strategies. A calibration line, drawn
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from different experiments, allows the determination of absolute quantities.

Label-free quantitation

Label-free methods have recently gained popularity due to advances computa-

tional proteomics (Grossmann et al., 2010; Schulz-Trieglaff et al., 2007). In such

experiments, signal intensities of the same peptide features are directly compared

in different LC-MS runs. This comparison relies on the accurate determination of

the peptide signal intensities, as well as on the accurate mapping of those signals

across maps. The success of a label-free quantitation relies on the alignment of

several complex LC-MS maps.

2.4 Computational proteomics

In every proteomics experiments the goal is to identify and possibly to quantify

all proteins in a biological systems. As already introduced, a variety of mass

spectrometric methods can be used to acquire the qualitative and and quantita-

tive information on the proteome sample. The analysis of these data is logically

divided in two parts. The first, here defined as data pre-processing, comprises

all steps that are necessary to annotate the mass spectra with peptide sequence

information and optionally with relative expression rates or absolute concentra-

tions. This pre-processing leads to interpretable data and is the basis for the

next analysis step, where these data are subjected to statistical analysis and

to automated biological interpretation. The second step has often been termed

downstream analysis, (Kumar and Mann, 2009).

2.4.1 Data pre-processing

MS-based proteomics produces highly complex and large data sets. This sheer

amount of data requires elaborate computational analysis methods. To this end,

we used mainly two platforms. For the analysis and implementation in the Con-

sensusID project, the C++ software framework OpenMS was used and in the

more experimentally orientated SILAC project the MaxQuant software suite (Cox
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and Mann, 2008) was used for data pre-processing.

OpenMS

The OpenMS project was initiated in 2003 by the Division for Simulation of

Biological Systems of Tübingen University and the Algorithmic Bioinformatics

group at the Freie Universität Berlin. OpenMS has originally been designed as

a framework of data structures and algorithms for the development of software

tools that can be used for the analysis of complex LC-MS data. Due to the

library concept of OpenMS (Sturm et al., 2008), it allows rapid development

of new algorithmic approaches. Besides the infrastructure for software develop-

ment, OpenMS also provides a modular structured collection of tools, the TOPP

tools (Kohlbacher et al., 2007). These tools can easily be combined into analysis

pipelines. All identifications for the ConsensusID project were performed with

the search engine adapters from the OpenMS TOPP tool collection and the Con-

sensusID implementation was also realized in the OpenMS library.

MaxQuant

In contrast to OpenMS, the MaxQuant (Cox and Mann, 2008) software is a

’ready to use’ platform for the analysis of high-accuracy mass spectrometric data.

MaxQuant is especially well suited for the quantitation of SILAC pairs. It uses

Mascot for database identification of the peptide spectra and a decoy database

for the assignment of false discovery rates.

2.4.2 Downstream analysis

Data normalization

Data normalization is an important procedure in the comparison of different

experiments. Peptide ratios that were recorded in separate LC-MS runs need to

be comparable. This is essential to get a time profile over all time points. A well-

known and very simple method for data normalization is the Z transformation.
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Z transformation has previously been applied to transcriptomics data (Cheadle

et al., 2003), as well as to proteomics data (Olsen et al., 2006). The raw peptide

or protein SILAC ratio is log-transformed (with the natural logarithm). The

log ratios are then used for the calculation of Z scores. Z scores are calculated

by subtracting the average ratio for every protein across all time points from

the actual ratio at a given time point, and dividing that result by the standard

deviation of all measured ratios for the given time point across all time points.

The Z score for any ratio r in an experiment is calculated as follows:

Zscore(ri) =
ri − µ
σ

where µ is the mean ratio, calculated from all time points for a given pep-

tide/protein and σ is the standard deviation for this peptide/protein, respectively.

Fuzzy c-means clustering

The fuzzy c-means algorithm is an unsupervised clustering method. It is widely

used for pattern recognition in multivariate datasets. The term fuzzy implies that

objects are assigned to several clusters. An important read-out of this algorithm

is the membership degree, which corresponds to the probability that a given

object is assigned to a given cluster (Bezdek, 1981). In the following uik will be

the membership degree of the object xi for the cluster ck. The algorithm aims to

maximize the objective function J(U,K).

J(U, V ) =
C∑
i=1

N∑
k=1

umikd
2
ik

where d2ik corresponds to the squared Euclidean distance between the points xi

and the center of the clusters vi and is defined as follows,

d2ik = (xk − vi)T (xk − vi)

The partition matrix M corresponds to all membership degrees for all clusters.

The parameter m > 1 is called fuzzification parameter. Note that

uik →
1

C
for m→ ∞ ∀ i, k
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and

uik →

{
0

1
for m→ 1 ∀ i, k

where C is the number of clusters. The objects xi will be assigned equally well

to each cluster, if m is chosen too large and the objects xi will be assigned to

one cluster only, if m = 1. The general idea of the fuzzy c-means clustering aims

to assign data points to clusters in a way that d2ik is minimal with the following

constraints.

(i)
C∑
i=1

uik = 1 , ∀ k

The sum of the cluster membership is 1 for every object xi and

(ii)
N∑
k=1

uik > 0 , ∀ i

And the clusters have to be non-empty. The Langrangian function is used to find

the minima of the objective function.

J(U, V, λ) =
C∑
i=1

N∑
k=1

umikd
2
ik −

N∑
z=1

λz

C∑
i=1

uik − 1

GO and KEGG databases

The Gene Ontology (GO) (Ashburner, 2000) database is a hierarchical database

containing annotations for the biological process, molecular function and the cel-

lular compartment of a large set of known proteins. The hierarchical structure of

the database assigns several annotations to a protein, starting from global prop-

erties, such as metabolic process, to more detailed descriptions, such as catabolic

processes of amino acids. The consistency of the annotations is controlled by us-

ing a controlled vocabulary (CV) of terms. The Kyoto encyclopedia of genes and

genomes (KEGG) (Kanehisa and Goto, 2000) is structured in a similar way as the

GO database and assigns pathway information to every known protein from the

human genome. The KEGG database collects information for every annotated

gene that allows the description of higher-order systemic behaviors of the cell and

the organism from these information. As all proteins in these databases are anno-

tated with a CV of terms, a given dataset (e.g., a experimentally determined set
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of differentially expressed proteins) can be tested for the enrichment of database

annotations, using the background of all annotated proteins (reference set).

Statistical testing

To determine the significance of the enriched categories an hypergeometric test

(Rivals et al., 2007) and the Benjamini-Hochberg false discovery rate correction

(Benjamini and Hochberg, 1995) were used. In the example below (Tbl. 2.1) GO

category denotes the number of proteins that carry a given GO annotation. We

assume there are n proteins grouped in a cluster and the total number of proteins

in the reference dataset (e.g., the GO database) is N . Furthermore, among the N

proteins in the reference set there are m proteins that belong to the GO category.

In the given cluster there are k proteins associated with the GO category. We

Table 2.1: We hypothesize that the proportion of proteins with the GO

annotation ’GO category’ is higher in the set of proteins that clustered together

than in the reference proteome.

cluster reference

∈ GO category k m

/∈ GO category n− k N −m
total n N

further assume the distribution of k follows a hypergeometric distribution. The

hypergeometric distribution indicates the exact probability p of observing this

k proteins with the GO annotation ’GO category’ in the experimental set of n

proteins.

f(k;N,m, n) =

(
m
k

)(
N−m
n−k

)(
N
n

)
The hypergeometric test calculates the probability to observe exactly k or more

proteins.

F (X ≥ k) =
m∑
i=k

(
m
i

)(
N−m
n−i

)(
N
n

)
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Enrichment analysis

Cytoscape (Shannon et al., 2003) and the plugin ClueGo (Bindea et al., 2009)

were used to determine significantly enriched categories of biological processes

and KEGG pathways. For the visualization of the enrichment results the cy-

toscape network representation was used.

Cytoscape representation

The GO categories are represented as nodes in the enrichment graph. Two nodes

are connected if they share proteins. The connection between two nodes is derived

by applying κ statistics and a κ value threshold of 0.3 to accept interconnectivity

(Bindea et al., 2009). The κ value is expressed by the strength of the connecting

line. If three or more nodes are connected they are assigned to groups and the

node with the most significant p-value determines the name of the group. For the

overall representation it was required that the corrected group p-value is equal or

smaller to 0.05. Fig. 2.13 shows a typical graph-based representation of enriched

Proteomic 
Pro�ling of 
Anti Cancer 

Drugs

Sven Nahnsen

-30/01/2008 -

GO:03

GO:11

GO:01

GO:04

Not grouped: pro n, ..., pro (n+k)

Group 1: pro 1, pro 2, … , pro i, pro (i+1) 
Group 2: pro i, pro (i+1), … , pro n

GO:02

Figure 2.13: Network based visualization of enriched biological processes.

GO categories. GO:01 and GO:11 are GO categories that contain either the same

set of proteins or at least a subset of proteins from each other. GO:03 contains

only proteins proi+2, ..., pron and GO:02 contains proteins proi and proi+1. The

group name for group one and group two will be given by the single categories

with the most significant p-value for each group separately. GO:04 contains none
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of the proteins that are contained in the categories GO:01 - GO:03, therefore it

is not grouped with any of the other categories.
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Chapter 3

Analysis of protein expression

dynamics using 2D-DIGE

Proteins that are differentially expressed between two cellular states are of partic-

ular interest for the analysis in every proteomics experiment, since these proteins

allow to draw conclusions about the perturbation that has been introduced to

one of the states. Two-dimensional Difference Gel Electrophoresis (DIGE) is a

valuable tool for such comparative analyses. The technology involves the labeling

of lysine residues in the different cellular protein extractions with one of three

different fluorescent dyes, Cy2, Cy3 and Cy5 (CyDyes). The differentially labeled

protein samples are then mixed and separated on the same gel. The CyDye labels

have similar weights and pI values, resulting in the same migration position of

the proteins separated on the same gel. Images, taken from the different Cy-

Dye labels, allow a direct comparison of the fluorescence intensities. However,

for thorough statistical analysis, replicate analyses on different gels have to be

performed. Fig. 3.1 shows a suitable experimental setup of an DIGE analysis,

involving only two different PAGEs (PolyAcrylamide Gel Electrophoresis). As

demonstrated in this sketch, the matching of the images acquired from the same

gel is trivial, due to identical protein spot coordinates. However, the migration

differences for samples, run on different gels, confront the researcher with the

same matching problem as for classical 2D-PAGE without CyDye labels. To

date, there are no experimental solution to cope with distortions due to protein
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migration in different PAGEs. For that reason DIGE-based proteomics needs

accurate software solutions for the alignment of multiple DIGE maps.

Cy2 

Cy3 

Cy5 

Cy2 

Cy3 

Cy5 

PAGE 1 PAGE 2

Trivial matching; 
the same PAGE

distorsion, 
noise,  

different 
PAGEs

Trivial matching; 
the same PAGE

Trivial matching; 
the same PAGE

Trivial matching; 
the same PAGE

Figure 3.1: This experiments involves six different proteome samples that

are separated on two different DIGE gels.

3.1 DIGE map alignment

Methods from graph theory offer generic frameworks that can be used to model

a variety of problems. Those methods have been applied to various fields of

bioinformatics, such as modeling of metabolic networks or biochemical pathways

(Sirava et al., 2002), analysis and visualization of expression data (Gentleman

et al., 2004; Shannon et al., 2003). Matching approaches for maps generated by

2D-PAGE include pixel-based-warping methods as implemented in the Progenesis

SameSpots software (Faergestad et al., 2007) and spot-based warping methods
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as implemented in the Proteomweaver software (Bio-Rad, CA, USA). Recently a

graph theoretical framework was also applied to the analysis of 2D-PAGE (two-

dimensional gel electrophoresis) (Peres et al., 2008). In the following sections, we

will introduce a novel algorithm, called GBD (Graph Based Dewarping). This

algorithm implements a geometric matching using a solution to the maximum

weight matching problem in complete bipartite graphs. In contrast to previous

algorithms, the GBD method reduces the complexity of the alignment problem by

aligning only the differentially regulated protein spots, making use of the unique

advantage of the DIGE method, which allows easy selection of differentially reg-

ulated protein spots on every DIGE gel. The gel positions of the differentially

regulated protein spots are normalized to a set of landmarks on the each gel.

The identity of theses landmarks on the different gels is always validated by MS

identifications. This intra-gel normalization method corrects the distortion that

is one of the main problems in comparing several 2D gel maps. The reduction of

the matching problem to differentially regulated proteins accompanied with the

intra-gel normalization outperforms other methods, such as pixel- or spot-based-

dewarping in terms of accuracy and run time.

3.1.1 General idea

A graph G = (V,E) is a collection of vertices V and edges E. G is bipartite if there

exist partitions V = X ∪ Y with X ∩ Y = ∅ and E ⊆ X × Y and G is complete

if every pair of vertices (vi, vj) ∈ V is connected. G is called a complete bipartite

graph if every vertex from X is connected to every vertex from Y. Fig. 3.2 shows

a bipartite and a complete bipartite graph.

A matching of G is a subset M ⊆ E. |M | is the number of edges in M . M is a

maximum matching ⇔ @M ′ with |M ′| > |M | (Cormen et al., 2001). A bipartite

graph is called weighted⇔ each edge (i, j) has a weight ω(i, j). ω(M) = Σe∈Eω(e)

is called the weight of the matching M (Cormen et al., 2001).

The Hungarian algorithm

Let G = (X ∪ Y,E) be a complete weighted bipartite graph, where partitions
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X Y X Y

Figure 3.2: A bipartite (left) and a complete bipartite graph (right).

X and Y correspond to the differentially regulated spots on DIGE maps from

two different biological replicates. Each vertex x ∈ X (differentially regulated

proteins on DIGE map X) has an edge to each vertex y ∈ Y . To calculate

weights for these edges, a two-step procedure is necessary. First, an n-dimensional

vector is assigned to each differentially regulated protein (this is done on each

map separately). This vector contains the absolute distances to n landmarks.

An example for n = 3 is shown in Fig. 3.3. l1, ..., l3 are landmarks and S1 is a

differentially regulated protein spot. For each pair of landmarks we can calculate

the distance y1,i,j to S1, e.g. ~d(S1, l1, l2) = y1,1,2 and ~d(S1, l2, l3) = y1,2,3. Using n

landmarks to determine the intra-gel position of m regulated protein spots results

in the matrix Gk for gel k.

Gk = (
n−1∑
i=1

i×m) =

 y1,1,S1 ... y1,1,Sm
... ... ...

yn,n−1,S1 ... yn,n−1,Sm


Second the complete bipartite graph Bk,l = Gk×Gl is constructed by considering

two matrices, Gk and Gl. The weights of the edges are calculated as follows.

ωi,j = ~d(P1,i, P2,j) = min
r,q
|yr,q,1 − yr,q,2| (3.1)
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Figure 3.3: Exemplified construction of intra-gel distances.

This results in the bipartite graph Bk,l = Gk ×Gl

Bk,l = Gk ×Gl =

ω1,1 ... ω1,j

... ... ...
ωi,1 ... ωi,j


The assignment problem is to find a min-weight matching (find the pairs of ver-

tices that have the smallest distance) in Bk,l. This matching results in pairs

of protein spots that are reproducibly regulated in both maps. The Hungarian

algorithm solves this problem in polynomial time (Kuhn, 2005). Since the theo-

retical investigations on the performance of the Hungarian algorithm in 1957 by

James Munkres (Munkres, 1957), it is also known as the Munkres algorithm. The

Munkres algorithm consists of the following six steps:

• STEP 1: For each row of Bk,l, find the smallest element and subtract it

from every element in its row. Go to Step 2.
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• STEP 2: Find a zero (Z) in the resulting matrix. If there is no starred

zero in its row or column, star Z. Repeat for each element in the matrix.

Go to Step 3.

• STEP 3: Cover each column containing a starred zero. If K columns are

covered, the starred zeros describe a complete set of unique assignments. In

this case, go to DONE, otherwise, go to Step 4.

• STEP 4: Find a non covered zero and prime it. If there is no starred zero

in the row containing this primed zero, go to Step 5. Otherwise, cover this

row and uncover the column containing the starred zero. Continue in this

manner until there are no uncovered zeros left. Save the smallest uncovered

value and go to Step 6.

• STEP 5: Construct a series of alternating primed and starred zeros as

follows. Let Z0 represent the uncovered primed zero found in Step 4. Let

Z1 denote the starred zero in the column of Z0 (if any). Let Z2 denote the

primed zero in the row of Z1 (there will always be one). Continue until the

series terminates at a primed zero that has no starred zero in its column.

Unstar each starred zero of the series, star each primed zero of the series,

erase all primes and uncover every line in the matrix. Return to Step 3.

• STEP 6: Add the value found in Step 4 to every element of each covered

row, and subtract it from every element of each uncovered column. Return

to Step 4 without altering any stars, primes, or covered lines.

• DONE: Assignment pairs are indicated by the positions of the starred zeros

in the cost matrix. If C(i,j) is a starred zero, then the element associated

with row i is assigned to the element associated with column j.

This pair-wise procedure is done for each pair of DIGE maps. The next step is

a simple comparison of all pairs in an experiment. If a protein spot is always

assigned to the same corresponding spot on different maps, this protein is differ-

entially regulated. This procedures is outlined in Fig. 3.4. For n experiments the

assignment problem is solved n(n+1)
2

times.
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Figure 3.4: For each pair of DIGE gels the assignment is solved separately

and the following deconvolution of the assignment network finds the same spots

on all gels.

3.1.2 Results

GBD: A novel algorithm for DIGE map alignment

In a subset of gels we thoroughly evaluated the GBD performance in comparison

to other software solutions:

To identify the protein spots that are reproducibly regulated we performed DIGE

analysis from three experiments with independent biological material. Addition-

ally, the whole DIGE data analysis was performed using two different commercial

software solutions. Proteomweaver (Biorad) and SameSpots (Progenesis) were
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used as common commercial tools. We usually used the spot detection algorithms

from the Proteomweaver software. Our matching procedure allows to handle large

numbers of incorrectly detected spots, since only the reproducibly differentially

regulated spots are further analyzed. For both commercial tools automatic inter-

gel spot matching was not possible. Repeatedly spots needed to be matched

between gels by the user. This very time-consuming and highly subjective step

could be overcome by our approach. The advantages of the GBD workflow in

comparison to the Proteomweaver matching is shown in Fig. 3.5. Using the au-

tomated pipeline provided by the commercial tools, such as Proteomweaver, the

matched maps contain many regions where the matching did not work, as shown

in the zoom regions of Fig. 3.5. Regions where spots are not matched result in

singleton signals, unless they are curated manually. Next, we evaluated the time

needed for the analysis of the three replicated experiments. For the commercial

software tools these values are averaged estimates, as this task highly depends

on the expertise of the user. In Tbl. 3.1 we compare the estimated time that is

needed to perform the analysis with Proteomweaver, SameSpots or GBD. tdetect

corresponds to the averaged time the user needs to adjust spot detection param-

eters. tintra is the time needed for the intra-gel matching of different images from

the same gel. tinter is the matching of biological replicates that are separated

on different gels. Note that GBD does not perform spot detection, however the

Table 3.1: Different processing times for DIGE gel analysis.

Proteomweaver SameSpots GBD

tdetect 60 min 30 min 5 min

tintra 5 min 5 min 5 min

tinter 60 min 90 min 5 min

spot detection parameters for the individual software do not have to be opti-

mized. We used the default settings from the Proteomweaver software for spot

detection. Incorrectly detected spots will be eliminated in the GBD workflow,

as they will not be biologically reproducible. As shown in Tbl. 3.1 the analysis

time is strongly reduced by our method. Time for spot detection is significantly
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reduced. The time for intra-gel matching is not influenced, whereas we can of-

fer tremendous improvements for the time necessary for inter-gel matching. For

the comparative analysis we used five landmarks. Using Proteomweaver without

any manual intervention less than 20 % of the proteins, assigned as differentially

regulated, were correctly matched across experiments. The same analysis with

SameSpots revealed that approximately 40 % of the regulated protein spots were

correctly matched between gels and we found that 95 % of the protein spots that

were assigned by GBD were found to be truly regulated in all experiments. Each

matching result has been manually validated. The results obtained for differ-

GBD

Manual adjustment

Figure 3.5: Automated matching performed by the Proteomweaver software

(left) and the GBD workflow (right).

57



3. ANALYSIS OF PROTEIN EXPRESSION DYNAMICS USING
2D-DIGE

entially regulated proteins after three hours of treatment with the multi-kinase

inhibitor sorafenib are shown in Fig. 3.5. Analyzing a single experiment usually

leads to high numbers of singleton spots (Fig. 3.6 A). Two experiments of the

same system with independent biological material reduces the number of single-

ton spots by more than 43 %. The third replication experiment introduces further

reduction in the number of singleton spots by 75 %. The right part of figure 4

shows the final results. We observed 23 proteins as singletons in the controls

(0) following sorafenib treatment, the expression of two proteins is switched on

(unique in treated) (1), one is up-regulated (+) and three proteins are down-

regulated (-). We accepted a protein spot to be regulated, if the fold changes

were greater than two.

Figure 3.6: A: GBD analysis. B: Regulated protein spots.

3.1.3 Discussion

We present a method that enables high-throughput and improves sensitivity in

DIGE-based proteomics. Our method is based on the assignment of geometri-

cal distances of each differentially regulated protein spot to a set of landmarks.

These intra-gel characteristics are highly reproducible and can thus serve to for-

mulate the assignment problem for a maximum weight matching. This problem

is well-known in theoretical computer science and can be efficiently solved by
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the Hungarian algorithm. The analysis of DIGE-based proteomics experiments

starts with the spot detection and the assignment of expression ratios for the

proteomes that have been separated in one gel. Spot detection is the first crucial

part in the classical workflow for the analysis of DIGE gels. Stringent parameters

for spot detection, allowing only the detection of clearly defined regions, tend to

lose a lot of important protein spots, whereas less stringent parameters collect

highly noisy data, that might not correspond to protein spots. If spot detection

is followed by GBD analysis, the spot detection parameters can be chosen less

stringent and consequently the spot detection software can detect higher num-

bers of protein spots. The use of replication experiments serves as a filter to

distinguish noise from real protein data. As finding the appropriate spot detec-

tion parameters is a time consuming task for classical matching methods, GBD

allows reducing subjectivity and increases the throughput by simply collecting

as many candidate spots as possible. The time for intra-gel matching does not

improve, as the intra-gel-matching is simply an overlay between images. In our

case study we could significantly reduce the number of singleton spots per gel.

Singleton spots are spots that are only found in one of the proteomes that are

separated on one DIGE gel. As the complete down-regulation of a protein has

strong consequences for the respective biological system, this needs careful in-

vestigation. The analysis of replication experiments showed that most of these

singleton spots do not reflect true biological regulation, but indicate a lack of re-

producibility in the single experiment. Our suggested method serves as a platform

for high-throughput analysis of DIGE gels and we could show that the method

allows a faster analysis of an DIGE-based proteomics experiment and significantly

reduces the need for manual intervention. An additional research direction could

include the automated selection of the landmark spots and thereby allowing the

complete analysis without manual intervention. Alternatively, the experimental

setup can be designed in a way that a set of proteins that separate well on a the

2D map is spiked into the protein mix previous to the separation on the 2D gel.

By knowing the exact position of the spiked proteins, theses can automatically

be used as accurate landmarks, without the need of MS confirmation on every gel.
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3.2 Proteomic profiling of signaling cascade in-

hibitors using DIGE

The following section describes an application of DIGE-based proteomics pro-

filing of global protein expression in melanoma cells following treatment with

sorafenib. For the sorafenib treatment three time points were used. The results

will be presented and discussed. A similar approach with an orthogonal, gel-free,

proteomics platform will be described in Chapter 5.

3.2.1 Material and Methods

Cell lysis and protein extraction

Before lysis the cell pellets were washed twice with with ice-cold PBS by cen-

trifuging at 12,000 g for 4 min at 4◦C. The washing steps were crucial to avoid

culture medium in the samples. Then the cell pellet was resuspended in lysis

buffer (30 mM Tris, 7 M urea, 2 M thiourea, 4 % (w/v) CHAPS at pH 8.5). The

cells are incubated with the lysis buffer on ice for 30 min. To separate cell debris

from the protein solution the cell lysate is centrifuged at 4◦C for 20 min. The

supernatant contains the extracted proteins. At this point the pH of the protein

solution is still greater than 8.0. Protein concentration was determined using the

Bradford method (Bradford, 1976).

Preparation of CyDye labeling

The protein samples are labeled using the fluorescent Cy-Dyes, the N-hydroxysuccinimidyl

ester forms of Cy2, Cy3 and Cy5. For each gel one protein sample (50 µg total

protein) is labeled with either Cy3 or Cy5. Label swap was performed in or-

der to avoid dye specific labeling artifacts. Cy2 was used to label 50 µg of the

pooled standard, which consisted of equal proportions of all samples used in the

analysis. 50 µg protein extract is labeled with 400 pmol of CyDye dissolved in

DMF (Dimethylformamide). For the labeling reaction samples are incubated for

30 min on ice in the dark. 1 mM lysine in water was used to stop the reaction.
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Protein separation

After the proteins have been CyDye labeled an equal amount of buffer solution

(8 M urea, 4 % CHAPS (w/v), 130 mM DTT, 2 % (v/v) pharmalyteT̂M 3-10 )

is added and the solution is incubated on ice for 10 minutes. All protein samples

are combined and separated on one gel. The total volume of the sample is now

adjusted to 450 µl with rehydration buffer (8 M urea, 4 % (w/v) CHAPS, 1 %

(v/v) pharmalyte 3-10). The whole sample is loaded onto a 24 cm immobolized

pH gradient (IPG) strip with a pH gradient ranging from pH 4 to pH 7 (the IPG

strips were purchased from Biorad).

• Isoelectric focusing on 24 cm strips with immobilized pH gradient from 4 to

7

The isoelectric focusing was performed in the dark using a Biorad Protean

IEF Cell with the following steps (Tbl. 3.2):

Table 3.2: Isoelectric focusing steps used for all 2D gel analyses.

Step Voltage (V) Time

1 0-100 1 min

2 100 120 min

3 100-1,000 20 min

4 1,000 30 min

5 1,000-4,000 60 min

6 4,000 30 min

7 4,000-10,000 60 min

8 10,000 70,000 Vh

• Reduction and alkylation After the first dimension separation, the pH strips

are incubated for 15 min in 10 mg/ml DTT (dissolved in 10 ml 6 M urea, 4

% SDS, 0.05 M Tris pH 8,8, 30 % glycerol), followed by a 15 min incubation

in 40 mg/ml iodoacetamide (IAA).

• Polyacrylamide gel electrophoresis

The second dimension separation was a 12 % SDS-PAGE in the dark with

the following steps (Tbl. 3.3):

61



3. ANALYSIS OF PROTEIN EXPRESSION DYNAMICS USING
2D-DIGE

Table 3.3: Running conditions for PAGE used for all 2D gel analyses.

Step Voltage (V) Current (mA) Time

1 300 25 12 - 20 h

2 300 2 up to 20 h

Scanning of gel images

The gels are scanned three times on a FLA-5100 fluorescent scanner (FujiFilm).

Three different wavelengths are required for scanning of the different labels. The

Cy2 images are scanned with a wavelength of 488 nm (emission filter settings:

520 nm BP 40), 532 nm (emission filter settings: 580 nm BP 30) is used for the

Cy3 label and the 635 nm (emission filter settings: 670 nm BP 30) is necessary for

Cy5. After scanning, the gels are post-stained with silver to enable spot picking.

Silver post-staining

• Fixation of proteins: Proteins are fixed using a fixation solution (40 %

EtOH, 10 % acedic acid. This step is necessary to remove all substances

on the gel that show high affinity to silver (e.g., Tris, SDS) (Poland et al.,

2005). The gel is incubated in this solution for 30 min.

• Sensitization of proteins: To enhance the silver binding to the proteins,

the gels are incubated for 30 min in the sensitization solution (0.66 % Na-

thiosulfate, 22.6 % Na-acetat disolved in 100 % ethanol).

• The gel is washed 3 times for 5 min in ddH2O.

• Staining: The gel is stained with silver staining solution (0.5 % silver nitrate

in ddH2O) for 30 min.

• The gel is washed for 5 min in ddH2O.

• Development. The gel is incubated in the development solution (2.5 % Na-

carbonate, 0.05 % formaldehyde (37 %), 0.025 % of freshly prepared 10

%-Na-thiosulate solution, in ddH2O) until protein spots get visible.
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• Sopping: The reaction stopped by adding a 0.5 % glycine solution.

• Storing: After washing with ddH2O the gel can be stored.

Image analysis

The gel images are analyzed with the ProteomWeaver software and the GBD

method as described above.

Spot peaking

The spots of interest are excised form the gels and in-gel digested by trypsin,

following the protocol as described by Resch et al. (2006).

Mass spectrometric analysis

Proteins of interest were analyzed on a QSTAR instrument, as described by Resch

et al. (2006).

STRING database

The STRING database contains known interactions between proteins (Snel et al.,

2000). The information embedded in this database includes different sources, such

as genomic context, data from high throughput experiments, co-expression and

previous knowledge from literature databases. This information can be used to

find interacting partners in a dataset.

3.2.2 Results

We used DIGE in combination with the GBD analysis method to profile the

differential protein expression in the human melanoma cell line 451Lu. For this

experiment the cells were treated with either DMSO or 13 µM sorafenib for three,

six and twelve hours. For one DIGE experiment either the control (DMSO) or

the treated extract was labeled with Cy3 or Cy5 respectively. The Cy2 label

was used to label the pool of extracts from all samples. For each time point

and treatment three independent biological samples were used. A typical DIGE

map that was stained with silver after the CyDye images were taken is shown

in Fig. 3.5. For the GBD analysis five unambiguous protein spots were selected

63



3. ANALYSIS OF PROTEIN EXPRESSION DYNAMICS USING
2D-DIGE

66 kDa

97 kDa

220 kDa

55.6 kDa

36.5 kDa

29 kDa

14 kDa

pH 4 ~pH 5.5 pH 7

Figure 3.7: Whole proteome separation of 451Lu cells.

manually as landmarks (Tbl. 3.4).

Table 3.4: Landmarks for GBD analysis. These proteins were found to be

unambiguously found in all maps. The protein ID was confirmed by tandem

mass spectrometry.

Landmark Protein ID MW (in kDa)

1 PSME3 HUMAN 29,506

2 TIM50 HUMAN 39,646

3 KGP2 HUMAN 87,432

4 UAP1 HUMAN 58,769

5 IMMT HUMAN 40,491

Differential regulation

For every experiment 83 protein spots were quantified. These 83 protein spots

resulted in 116 protein identification. Not all proteins could be unambiguously

identified by our identification method. A heat map of the protein ratios across

all time points is shown in Fig. 3.8. Heat maps can be used for the graphi-
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cal representation of large-scale expression data. Values from any input matrix

are represented by colors. The color index from green to red in this heat map

corresponds to log2 ratios calculated from the CyDye intensities. The color in-

dex on the left to the heat map indicates which spots contained more than one

protein. In spot 16 four different proteins were found: FZD6, OBSCN, NPHP3

and FBXL18. These proteins are marked in yellow. The heat map analysis

revealed mainly three sets of proteins. Proteins that are not regulated at any

time point after sorafenib treatment, proteins that are up-regulated or proteins

that are down-regulated. The ratio of non regulated proteins to up-regulated

proteins to down-regulated proteins is approximately 36:39:25. With the help of

the STRING database (Snel et al., 2000), known interactions of the differentially

regulated proteins were examined. The circles in Fig. 3.9 correspond to proteins,

found as regulated. Red color symbolizes up and green color down-regulation.

This analysis revealed three distinct interaction maps of proteins. The edges

in between the protein nodes in Fig. 3.9 are known interactions, whereas the

magenta edges are the most reliable interactions, as they are confirmed by ex-

periments. In Fig. 3.9 Annexin V (ANXA5) is connected via a magenta edge to

γ-actin (ACTG1). This interaction has been confirmed by (Tzima et al., 2000).

In this study it was shown that annexin V specifically binds to γ-actin and not

to other actin isoforms, as β-actin. This interaction analysis reveals that proteins

found to be regulated form an interaction map that can be assigned to apoptosis

and cellular localization, as well as network of interacting proteins that can be

assigned to RNA splicing, translation, and the proteasome.

Differentially regulated isoforms of β-actin and vimentin

Two important areas of the DIGE map are highlighted in Fig. 3.10. The zoom

area on the left shows four different isoforms of vimentin. The isoforms of vi-

mentin are not only shifted with respect to their isoelectric point, but also in

their molecular weight. The analysis revealed four different isoforms of vimentin

with different sensitivities to different lengths of sorafenib treatment. The more

acidic and shorter isoforms are regulated stronger as the less acidic and longer

isoforms. A similar observation was made for the actin isoforms. In contrast to
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Figure 3.8: This heat map shows up- and down-regulated proteins. The heat

map colors indicate the expression ratios, whereas the colors in lower right

corner group proteins the are unambiguously assigned to several protein spots.

vimentin, only isoforms with equal molecular weights are observed. The shift is

only observed in the isoelectric point of the proteins. The ratios of the more basic

isoforms are higher, the longer the cells are treated with the inhibitor.

3.2.3 Discussion

Differential regulation

2D-PAGE in combination with the DIGE labeling method offers several advan-

tages over conventional 2D-PAGE. Differential labeling before protein separation

allows separating multiple proteomes in one 2D gel, resulting in a perfect match-

ing for those proteome images and the inclusion of internal standards allows a

better statistical assessment, since all ratios can be normalized to this standard.
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Figure 3.9: Regulated proteins that have known interactions. This analysis

was performed using the STRING database.

Using our new map alignment method we identified 83 protein spots across three

different time points and at least three independent biological replicates for each

time point. Due to the complexity of the proteome it was not always possible

to assign proteins unambiguously to the protein spots. The complexity of the

proteome is by far higher than the proteins detected by scanning the 2D images.

Proteins might hide under the spots that were actually detected and only the

LC-MS analysis of the excised region allows finding those proteins. This phe-

nomenon is even more significant if 2D gels are run on broader pH ranges. The

separation in the first dimension can also be done on a pH range from 3 to 10.

Using broad pH windows results worse resolution of the protein spots. For this

and other reasons the pH range pH 4 to pH 7 was chosen for this study. It can

be seen in Fig. 3.7 that the protein spot density is reduced below pH 4.5. The

resolution of very basic proteins on a 2D map has traditionally been very difficult
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Figure 3.10: Detection of differentially regulated isoforms. The protein iden-

tification for every protein spot was done using tandem mass spectrometry.

(Yamaguchi and Pfeiffer, 1999). We found 64 protein spots to be differentially

regulated. Sorafenib is known to inhibit major signaling pathways, such as the

MAPK pathway. As most signaling events converge in the nucleus to regulate

gene expression, the number of differentially expressed proteins following the in-

hibition of signaling, should be much higher than this. 2D-PAGE is prone to

detect only the most abundant proteins, which might not be under regulation of

the inhibited kinases. Some of the proteins that were found to be differentially

expressed, were previously known as interaction partners. All annotations from

the STRING database were used to investigate proteins for their known interac-

tions among each other. If protein interactions can only be based on text mining

results, these interactions are not as reliable as interactions based on experimental

evidence. The STRING analysis revealed three functional units of proteins that

have annotated interactions. The cellular localization group includes cytoskeletal

proteins that are connected by edges that are based on experimental evidence.
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Furthermore the connected proteins were regulated in the same direction. These

results, in combination with sorafenib’s influence on β-actin and vimentin iso-

forms, suggest the modulation of cytoskeletal and/or filamentous proteins as a

contribution to the sorafenib-induced cell death.

Differentially regulated isoforms of β-actin and vimentin

The shift in the isoelectric point that is observed for the four actin isoforms might

be due to phosphorylation events. Similar shifts have been observed for phospho-

rylated isoforms of cofilin (Moriyama et al., 1996). The actin spots that are at a

higher pH range should correspond to less phosphorylated isoforms. The intensity

of these isoforms increases with the length of treatment, suggesting that sorafenib

has an influence on the phosphorylation of β-actin. It remains elusive whether

this influence is a direct interaction or it is mediated via intermediate kinases.

For vimentin similar observations were made. The acidic forms of vimentin may

correspond to phosphorylated isoforms. The intensities of these isoforms were

decreased as a function of treatment length. This also suggests that sorafenib

treatment not only influences β-actin, but also vimentin phosphorylation. Along

these lines, it is known that vimentin phosphorylation is strongly influenced by

the p21 activated kinase (PAK), which is downstream of the cell division con-

trol protein 42 (CDC42) and and RAC, two major Rho GTPases. PAK was

shown to phosphorylate vimentin on multiple serine residues (Goto et al., 2002).

Rho-kinases, in general, are putative regulators of vimentin filament organiza-

tion downstream of Rho, furthermore from Goto et al. (2002) it is known that

PAK, being downstream of Cdc42/Rac, may regulate vimentin filament reorga-

nization through vimentin phosphorylation. PAK and Rho-kinase were shown

to phosphorylate and activate LIM-kinase. This activation of LIM-kinase leads

to more stable filamentous actin structures through an inhibition of cofilin by

phosphorylation. Therefore, PAK and Rho-kinase may phosphorylate some com-

mon targets (LIM-kinase, vimentin, etc.), leading to cytoskeletal rearrangements,

such as actin filament stabilization and IF (intermediate filament) reorganization

(Goto et al., 2002). The destabilization of cytoskeletal rearrangements in contrast

might be correlated to the cell-death-inducing effects of sorafenib. The observed

vimentin spots were also shifted with respect to their molecular weight. It is
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consistently observed that the acidic isoforms have also undergone proteolytic

cleavage. Cleaved vimentin has been known as being accompanied with apop-

tosis. Vimentin is known to be cleaved by a caspase-3/7-like protease during

apoptosis and subsequently by caspase-6 at additional sites (Yang et al., 2005).

Furthermore, Yang et al. (2005) speculate that orchestrated cleavage of vimentin

can be an initiation process for dramatic reorganization of the cytoskeleton that

are characteristic for apoptotic cell death. This would imply essential roles of

vimentin in apoptosis and its regulation. The hypothesis of differential phospho-

rylation needs further confirmation. The tandem MS spectra from the excised

protein spot did not deliver a clear answer. Gel-free shotgun proteomics exper-

iments allow targeting of phosphopeptides. Such workflows would be promising

future projects to confirm these hypotheses.
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Chapter 4

Probabilistic consensus scoring

4.1 Introduction

Chapter 2 introduced different methods used for peptide assignment of tandem

MS spectra. Although the methods rely on the same underlying basic principle,

namely the fragmentation into defined parts (e.g. b- and y-ions), the imple-

mentations differ strongly. The methods used by these algorithms are diverse.

A detailed description of additional algorithms can be found in a recent review

(Nesvizhskii et al., 2007). Typically, all database search algorithms for spectral

assignments produce a list of peptides that are ranked according to their scores.

Due to shortcomings of the scoring, the first sequence in the list does not neces-

sarily correspond to the correct identification, but might be just a random hit.

In fact, there are many cases where the correct sequence is not even contained in

the result list of the search engine. In addition, there is a high variation of sug-

gested peptide candidates in the search results from different search engines (Kapp

et al., 2005). Scores produced by search engines are often difficult to interpret

and to compare. A common approach to normalize search engine scores, using

the target-decoy search strategy, has already been introduced in the background

chapter. Besides the q-value approach there have been several other approaches

for converting the search engine scores into more reliable numbers, e.g., prob-

abilities. Keller et al. (2002a) offered one of the first statistical approaches for

converting Sequest scores into probabilities. Their algorithm is based on maxi-

mum likelihood estimation of empirically assumed probability distributions and
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an Expectation Maximization (EM) (Dempster et al., 1977) framework to assess

optimal parameters for the mixture model deconvolution. The PeptideProphet

method has been widely accepted for statistical assessment and recently been ex-

tended to support not only Sequest but also Mascot and X!Tandem results (Choi

and Nesvizhskii, 2008). Essentially, the null hypothesis in the mixture model

approach is the same as in the target-decoy q-value approach. All peptide scores

that fall into the distribution described by the decoy results or into the first com-

ponent in the mixture model, respectively, are assigned to the null hypothesis,

random chance identification.

Despite all the effort put into the conversion of intransparent scores from search

engines into probabilities, or the assignment of false discovery rates (FDR) (Käll

et al., 2008a), the divergence of results from different engines remains largely

unused. According to Kapp et al. (2005), only one third of all peptides in an

experiment are identified by all engines. Simple consensus identification by vot-

ing can enhance the reliability of the identification, but at the cost of a lower

number of identified peptides. Combination of the results of search engines be-

comes difficult, however, if peptides are not scored by all search engines, i.e., if

the candidate sequence is not reported by all search engines.

4.1.1 Related work

There have been several approaches describing methods for the combination of

different search engine results. In 2008, Searle et al. (2008) suggested a combi-

nation method based on Mascot, X!Tandem and Sequest scores. This approach

is implemented in the commercial software Scaffold . Peptide probabilities are

individually estimated for the search engines. To combine the results from the

different search engines, an agreement score is used to account for differences

in the significance of the individual scores, if the same peptide was assigned by

several engines. Another search engine combiner is PepArML (Edwards et al.,

2009). PepArML uses unsupervised machine learning to account for both, the

statistical significance and the combination of the scores from the different en-

gines. This approach relies on an iterative process of a random forest learning
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method. A peptide is assigned a vector of 27 features, containing general informa-

tion, e.g., m/z and retention time values, and search engine specific information,

such as the raw engine score. Another machine learning based tool is iProphet

(Shteynberg et al., 2008), which is integrated in the Trans-Proteomic Pipeline

(TPP). PeptideProphet (Keller et al., 2002a) builds the basis of iProphet, which

performs additional EM estimation to derive a common probability for multiple

search runs.

Common to all approaches aiming at combining different tandem MS search runs

is the analysis of the results from the same search conducted in parallel using

different search engines. This is usually done under the general premise that

search engine agreement is correlated with the correctness of peptide identifica-

tions (Tharakan et al., 2010). All approaches show an improvement over the

single engines, but are in most cases designed for specific search engines and/or

instrument types. Furthermore the complex feature encodings for some of the al-

gorithms described above make it very hard to subsequently interpret the search

results. Another approach that has recently gained attention in the post pro-

cessing of tandem MS search results is the ’multi-pass analysis’, as introduced

by Tharakan et al. (2010). Multi-pass methods combine multiple searches from

one engine, by guiding the selection of spectra, parameters, and sequences in

subsequent searches based on previous search results. Compared to searches with

multiple search engines, multi-pass strategies have a reduced run time, as ad-

ditional search runs are usually performed on a subset of spectra or against a

reduced database. In Chapter 2 a commonly used multi-pass strategy has al-

ready been introduced at the example of X!Tandem. The refinement function

of X!Tandem automatically constructs a new database, using proteins that have

already been identified in a primary run. This database is then searched with

an increased number of potential modifications, allowing more missed cleavages

and semi-tryptic peptides (peptides where only one terminus corresponds to the

trypsin cleavage definition).
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4.1.2 General idea

Here, we describe a new method to integrate results from various search runs.

These runs can either originate from multiple search engines or they can be mul-

tiple runs with the same search engine. The algorithm consists of two parts:

First, mixture modeling is applied to convert search engine scores into proba-

bilities. This step is essentially used to normalize the scoring from the different

engines. Second, missing scores for peptide sequences in the search engine output

are estimated. This score estimation is based on sequence similarity. The mea-

sure of sequence similarity between two peptide candidates correlates with the

measure of fragment ion similarity. Applying both parts, probability scores are

obtained for all search engines and each peptide candidate. This enables a com-

bination of scores into a single consensus score. The performance of the method

is evaluated on mixtures of known proteins, that have been measured on different

instruments, as well as on a complex mixture, resulting from a whole Escherichia

coli proteome digest. Besides increased confidence in the peptide identifications,

using the novel consensus scoring, peptide identification rates can be significantly

improved. Using four test datasets, acquired on four different MS platforms, this

new method shows significant advantage compared to the performance of single

engines. The identification rates using the consensus scoring improved consis-

tently over the identification rates of the individual search engines at any q-value

cut-off on datasets using Orbitrap, FT Ultra, and LCQ instruments. The target-

decoy database approach is used as a significance measure of the final peptide

scores.

4.2 Methods

The overlap between search results from different engines is rather poor and a

large fraction of all peptides do not appear in the results from all search engines.

Therefore, combining different engines holds the promise to increase sensitivity

and specificity in peptide identification by tandem mass spectrometry. Further-

more, if spectra have been correctly identified by search engine k, but not by the

others, these spectra should at least be assigned to sequences with similarity to
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the correct peptide, if the spectral quality is good enough to trust the identifica-

tion by engine k.

The peptides that are correctly identified by a given search engine are most fre-

quently ranked in the first place by all three search engines (Fig. 4.1). the numbers

of additional peptides (add. peptides) that were identified by the different search

engines are also visualized in Fig. 4.1. Additional peptides (add. peptides) in

this context refer to identified peptides from target sequences (18 proteins), but

with unexpected modification or cleavages. For X!Tandem the add. peptides are

due to the refinement mode that was enables for this experiment and OMSSA/

Mascot allow the assignment of peptides from the N-terminus of proteins where

the N-terminal methionine is cleaved.

Our strategy for the combination of results from several search engines for pep-

tide identification via tandem mass spectrometry relies on the similarity of peptide

sequences. Peptide similarity scoring is applied in cases of sequences missing in

result lists of search engines. If sequence s that has been assigned to a spectrum

by at least one search engine is not contained in the list provided by search en-

gine k, the score for this sequence is imputed. Therefore all hits suggested by

search engine k are aligned with sequence s to find the sequence with highest

similarity to s. This sequence, accompanied with its similarity to s is used as a

substitute. For the global pairwise sequence alignment, the Needleman-Wunsch

algorithm is applied. With this approach and the weighted average-like (as de-

scribed later) combination method, the most similar hit is used as a replacement

sequence, but the method accounts for the uncertainty by multiplying its score

by the proportion of sequence similarity between the target sequence and the

replacement sequence. The influence of the score is thus reduced proportionally

to the sequence similarity. This method allows assigning scores to each peptide

sequence per search engine and ultimately to combine these scores to a consen-

sus score. The Needleman-Wunsch algorithm, like most alignment algorithms,

penalizes gaps that need to be introduced in the alignment. The penalization of

gaps is implemented with two parameters. δ is the cost for opening a gap and ε

is the extension penalty.

It is widely accepted to use mixture modeling for the conversion of search en-

gine scores into probabilities (Nesvizhskii et al., 2007). The mixture modeling
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Figure 4.1: Correct peptides on different ranks. This data is based on the 18

protein mix datasets.
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approach is implemented in OpenMS, our own C++ software framework. An

earlier version of the mixture model was implemented in the statistical software

R (R Development Core Team, 2008). Both implementations are freely available.

Scores for peptide sequences not appearing in one search engine result list, but in

the other are imputed by peptide similarity scoring. For the combination of the

search results the similarity-weighted average score is calculated for each peptide.

4.2.1 Mixture modeling and Expectation Maximization

Mixture models are applied in various areas that range from biology, over physics

to economics (Leisch, 2004). Usually such models are used to determine the group

affiliation of observations in large datasets. The Expectation Maximization (EM)

algorithm (Dempster et al., 1977) is a very popular framework for the estimation

of mixture models. In the following we will formally introduce finite mixture

models and the EM algorithm.

Given a set of observation {y1, ..., yn}. The set is divided into subpopulations and

each subpopulation i is assigned the probability density function fi.

fi(yj) = P (observation yj is observed in subpopulation i)

Weights πi are assigned to each subpopulation i.

Definition 1. Let Y = {y1, ..., yn} be a set of N independent observations. Y

consists of k different components with the weights πi. Each component i is as-

signed a probability distribution fi. Then

f(Y ) =
k∑
i=1

πifi (Y )

is called the probability mixture model of Y . f is a convex combination of the

probability distributions fi. If k is finite, then f is called finite mixture model.

In a finite mixture model, each component i is modeled by its own set of

parameters Θi. Mixture models provide a complex probability distribution that

can be used to cluster data (Bishop, 2007). An easy example for mixture models

is the mixture of Gaussian distributions

p(x) =
k∑
j=1

πj N
(
x|µj, σ2

j

)
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Definition 2. Given two jointly distributed random variables X and Z, the

marginal distribution of X, p(x) is the probability distribution P of X averag-

ing over information on Z.

p(X = x) =
∑
y

P (X = x, Z = z) =
∑
y

P (X = x|Z = z) P (Z = z)

The Corollary 1 in the appendix shows that the marginal distribution of x,

p(x) =
∑
z

p(x|z) =
k∑
j=1

πjN(x|µj, σ2
j )

is a mixture of Gaussian distributions with parameters µj and σj and ∀ xn ∃ zn.

zn is called the latent variable of x. For zk = 1 we can write

p(zk = 1|x) =
p(zk = 1) p(x|zk = 1)∑k
j=1 p(zj = 1) p(x|zj = 1)

⇔ p(zk = 1|x) =
πk N(x|µk, σ2

k)∑k
j=1 πj N(x|µj, σ2

j )
= γ(zk)

πk are called the prior probability for component k, whereas γ(zk) is called the

posterior probability for the latent variable zk. γ(zk) can also be interpreted as

the responsibility that the component k takes for explaining the observation x.

Using the Expectation Maximization algorithms, the E-step evaluates the respon-

sibilities for initial guesses of the paramters Θi, for each distribution. And the

M-step re-estimates the parameters to maximize the log-likelihood function.

Given the mixture model f(x), the parameters of the distribution are re-estimated

using the current reponsibilities γ(zk).

µnewk =
1

Nk

N∑
n=1

γ(znk)xn

σnewk =

√√√√ 1

Nk

N∑
n=1

γ(znk)(xn − µnewk )(xn − µnewk )T

πnewk =
Nk

N
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where

Nk =
N∑
n=1

γ(znk)

within a maximum likelihood framework the new parameters are used to re-

calculate the log-likelihood function.

ln p(X|π, µ, σ2) =
N∑
n=1

ln

K∑
j=1

πjN(xn|µj, σ2
j )

The E- and M-steps are repeated until there is no improvement for the log-

likelihood function anymore. The mixture modeling framework, as well as the

Expectation Maximization algorithm are applied to the conversion of intranspar-

ent search engine scores to error probability scores, indicating the probability that

a given score falls into the distribution of false identifications. For each search

engine, we consider n spectra. The scores from engine k

xk = (xk1 , . . . , xkn)

can be modeled as n independent and identically distributed (i.i.d.) random

variables. The distribution of these scores is modeled by a two-component mixture

model with the function f given by

f(x; Θ1; Θ2) = πf1(x,Θ1) + (1− π)f2(x,Θ2) (4.1)

where π corresponds to the prior probability of the scores being incorrect. Here,

incorrect means that the spectrum is assigned to an incorrect peptide sequence.

The functions f1 and f2 are the densities for incorrectly and correctly assigned

sequences, respectively. The parameters Θ1 and Θ2 are used to specify the exact

shape of the densities. The function f1 is modeled as the density of a Gumbel

distribution. The use of extreme value distributions as a model for the func-

tion f1 has been introduced as a generic method for the statistical assessment

of peptide-spectrum matching scores (Fenyo and Beavis, 2003) and successfully

applied to X!Tandem and Mascot searches (Choi and Nesvizhskii, 2008; Searle

et al., 2008). An extreme value distribution is a natural candidate for modeling

maximized scores (tailing to the higher score regions) from incorrectly assigned
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4. PROBABILISTIC CONSENSUS SCORING

sequences. The function f2 is modeled as a Gaussian density. To perform the esti-

mation of the parameters, an EM framework was implemented. The Expectation

step (E-step) comprises the estimation of posterior probabilities, as formalized in

equation (4.2), using initial guesses for π̂, Θ̂1 and Θ̂2. This step is followed by

the Maximization step (M-step), where the estimated posterior probabilities are

used to refit the distributions fi. With this iteration, the log-likelihood function

(4.3) is maximized and the algorithm stops when there is no improvement of the

log likelihood function anymore.

p̂i(x) =
π̂ifi(x, Θ̂i)

π̂1f1(x, Θ̂1) + π̂2f2(x, Θ̂2)
, i ∈ {1, 2} (4.2)

logL =
n∑
i=1

log(π̂1f1(xi; Θ̂1) + (1− π̂1f2(xi; Θ̂2))) (4.3)

where Θ1 is the set of all parameters for the probability distribution f1. f1 corre-

sponds in our case to an extreme value distribution with the location parameter

α and the scale parameter β. Θ2 includes the parameters for the f2 function,

which are the mean µ and the variance σ2 for a Gaussian distribution. Initial

parameters for our model are found by employing an ordinary Gaussian mix-

ture model (two Gaussian distributions), as implemented in the flexmix function

(Leisch, 2004) to the scores for each search engine. This method allows accurate

conversion of search engine scores into probabilities. The input for the mixture

modeling is given by discriminate scores from the search engine output. For all

search engines the discriminant scores are the negative common logarithms of

the search engines’ E-values. To ensure a fair and comparable competition of all

search engines for the same set of peptides X!Tandem was used with and with-

out enabling the refinement function. X!Tandem searches with the refinement

function include modified peptide sequences or sequences that include polymor-

phisms. Those sequences cannot be expected from OMSSA and Mascot searches.

However the set of peptides that are identified by X!Tandem without refinement

is directly comparable to the results form the other searches.
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4.2.2 Consensus scoring

Different ways of calculating consensus scores for peptides candidates are evalu-

ated. A typical workflow for generating consensus scores on the basis of three sin-

gle search engines and the similarity-based consensus measures (peptide sequence

similarity or SPC) is described in Fig. 4.2. In the example shown in Fig. 4.2 Mas-

cot and X!Tandem suggest the same sequence as their top hit, whereas the same

sequence is only ranked forth by OMSSA. α and β denote the similarities between

sequences if not the same sequence is suggest by the different engines.

In the following the different combination methods will be discussed in detail.

Results will be evaluated based on peptide sequence similarity using different

scoring matrices, spectral counter, and average scoring methods.

Peptide sequence similarity scoring

Comparing search results from different engines, it can be observed that for some

spectra peptide sequences occur only in a subset of the search engine results.

The method presented here solves this problem by imputing missing scores based

on similarity. This method ensures that there is an (estimated) value for each

peptide occurring in any of the search engine lists. Tandem MS spectra charac-

terize peptide sequences based on their fragmentation patterns. Peptide search

engines use this information on peptide fragmentation, e.g., y and b ions for CID

(collision-induced dissociation) (Steen and Mann, 2004). Sequences that contain

isobaric amino acids, such as I and L, are not distinguishable based on their tan-

dem MS spectra. The chemical similarity of peptide sequences is thus used to

determine the probability that a missing peptide can be assigned to a spectrum.

The converted score of the peptide showing the highest degree of similarity is

multiplied by its similarity in order to assign values to the missing peptide. As

a similarity measure, global sequence alignments with the PAM substitution ma-

trix based on the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970).

The alignment score for two peptide sequences pi and pj is then normalized as

follows:

sim(pi, pj) = max

{
score(pi,pj)

min(score(pi,pi),score(pj ,pj))

0
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Mascot 

 

1 QRESTATDILQK               s1(p1)=0.92
2 EIEEDSLEGLKK                s1(p2)=0.96
 ...    ...
7 GIEDDLMDLIKK           s1(p7)=0.96      
 

 

1 QRESTATDILQK  0.27     3                              
 
 
 
  

  

1 AELASCVVGDLGAK         s2(p1)=0.94
2 ELM(Ox)SNGPGSIIGAK  s2(p2)=0.96
3 ISCAEGALEALKK          s2(p3)=0.97
4 QRESTATDILQK                s2(p4)=0.98 

    ....

OMSSA 

engine 3 

EGVSKDDAEALKK s3(p1)

                               
 
 
 
  

consensus hits 
 
 
 

peptide   consensus scores        (1 + α + β)                            

 

 
2 EIEEDSLEGLKK  0.48    2  
 
                               
 
 
 
  

                               
 
 
 
  

 

(1 + α + β)

s3(p1) + α * s2(pi) + β * s1(pj)

 

X!Tandem 
1 QRESTATDILQK                s3(p1)=0.54

2 

 
3 GIEDDLMDLIKK 0.73    1.33 
 
                               
 
 
 
  

 
 ... ...    ...    ... 
 
                               
 
 
 
  

 
10 GSDKALIEVDSQK 0.97    1 
 
                               
 
 
 
  

Figure 4.2: Three search engines assign peptide sequences to a given spec-

trum. This spectrum is taken from the E. coli dataset (measured on an LTQ-

Orbitrap) and corresponds to a doubly charged ion with RT: 2233.105 s and

MZ: 695.3646 Th. Mascot and X!Tandem list the same peptide sequence as

the top hit. The consensus score is calculated by the weighted combination of

the real and estimated scores for the given sequences.

The similarity-based consensus score is calculated as follows,

Similaritye(pi) =

se(pi) +
∑

k∈{E}\{e}

ŝk(pi)1 +
∑

k∈{E}\{e}

ŝ(k)

sk(pi)

2 (4.4)

with ŝk(pi) =

sk(pi), if sim(pi, pj) = 1

sk(pj) · sim(pi, pj), with pj = argmax
j ∈ list of engine k

sim(pi, pj), otherwise
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For a given spectrum all candidate peptide sequences pi are used. The consensus

scores for all peptide sequences are calculated for each search engine e separately.

E corresponds to the set of search engines in use. The consensus score for the

peptide sequence pi assigned by engine e for the spectrum S is calculated. The list

of candidates for spectrum S consists of a ranked list of all consensus results. As

shown later, the PAM30MS matrix was found to be the most suitable substitution

matrix. The PAM30MS was previously introduced and intended for cross-species

proteomics (Huang et al., 2001). This matrix is constructed and modified from the

PAM30 matrix to account for Ile/Leu and Gln/Lys ambiguities associated with

determination of peptide sequences using tandem mass spectrometry. Details on

the PAM30MS substitution matrix can be found in the appendix.

Spectral counter (SPC) scoring

As a comparable measure for peptide candidate similarity, the theoretical b and

y ion series of two sequences are compared. In a similar way as outlined above

for the sequence similarity, the SPC similarity measure calculates the ion series

similarity. At least two fragment masses are requested to be within a given mass

tolerance window, which was set to 0.5 Da. The normalized ion series similarity

is then calculated as follows:

spc(pi, pj) =
number of overlapping fragment ions (b and y ions)

2 * length of smallest sequence

The final consensus score is calculated in the same way as described for the

peptide sequence similarity. The SPC method used the number of overlapping

theoretical fragments as a measure of similarity.

SPCe(pi) =

se(pi) +
∑

k∈{E}\{e}

ŝk(pi)1 +
∑

k∈{E}\{e}

ŝ(k)

sk(pi)

2
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with ŝk(pi) =

sk(pi), if spc(pi, pj) = 1

sk(pj) · spc(pi, pj), with pj = argmax
j ∈ list of engine k

spc(pi, pj), otherwise

Note that for pi = pj we obtain for both similarity measures sim(pi, pj) =

spc(pi, pj) = 1.

Average scoring

The Average method calculates the average score, if the the same peptide is

suggested by several scores.

Averagee(pi) =


se(pi)+

∑
k∈{E}\{e}

sk(pi)

L

se(pi), if pi is only assigned by engine e

Datasets

To properly assess the performance of the method, different datasets of known

protein mixtures were used. The first dataset is the ISB dataset (Keller et al.,

2002b) (denoted as ISB1), which is a mixture of 18 proteins acquired on an LCQ

DECA XP instrument (ThermoFinnigan, San Jose, CA). Additionally, three data

sets from the newer ISB collection (denoted as ISB2) (Klimek et al., 2008) were

used. To capture a variety of instruments, high-accuracy FT instruments such

as the Orbitrap (Thermo Finnigan) and an FT Ultra (Thermo Finnigan) mass

spectrometer, were included. Both platforms record their tandem spectra in a

low resolution LTQ device. The fourth platform was an LCQ instrument, where

both precursor and fragment ions are recorded in low resolution ion trap mode.

Additionally, we used a complex dataset from a whole E. coli digest. This dataset

was generated in-house. The peptides were separated on an easyLC (Proxeon)

system, online coupled to an LTQ-Orbitrap. The peptide mixture was eluted

from the column with a 224-min segmented gradient from 5 % to 80 % HPLC

solvent B (80 % ACN in 0.5 % acetic acid) at a flow rate of 200 nL/min.

For the generation of peptide spectrum matches, Mascot, version 2.2, OMSSA,

version 2.1.4 and X!Tandem, version 2008.02.01.3, were used. The modification
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settings were carbamidomethylation of cysteine as fixed and oxidation of methio-

nine as variable modification. The peptide identification of our analysis was done

in a two-step process. First, the identifications were performed using a precursor

mass tolerance of 3.0 Da and a fragment mass tolerance of 0.5 Da. These numbers

are wide enough to cover also the needs from the low-resolution instruments and

appear to be the most appropriate settings to provide an instrument-independent

identification pipeline. After the first identification run, the optimal tolerance

values were estimated by using the peptide identifications to calculate the dis-

tribution of the errors of the precursor and fragment masses. Precursor masses

were compared to the m/z values contained in the precursor information of the

tandem MS spectra. Fragment mass errors were calculated using singly charged

b and y-ions derived from the peptide sequence and the nearest peak within the

mass tolerance (in our case 0.5 Da) in the experimental tandem mass spectra,

if available. To avoid wrong error distributions, only peptide spectrum matches

with an q-value (Käll et al., 2008b) of 0.01 or better were used, to estimate the

optimal tolerance settings. The final tolerances were estimated manually using

the error distributions. On high-resolution instruments, relative tolerances in

ppm were preferred over absolute tolerances. Except for OMSSA, the search en-

gines allow precursor settings in ppm. Fragment tolerances were always set in

Da, because all tested instruments record tandem mass spectra in low-resolution

mode. The error distributions observed for the Orbitrap data are shown in 4.3(a)

for the MS1 data and in 4.3(b) for the MS2 data, respectively. The tolerance

settings used in the final identification runs are listed in Tbl. 4.1. If relative

Table 4.1: Mass tolerance settings. These tolerance values were estimated

using pre-searches with large tolerance windows.

Orbitrap FT Ultra LCQ

Precursor tolerance 10 ppm 30 ppm 1.5 Da

Fragment tolerance 0.5 Da 0.5 Da 0.5 Da

tolerances in ppm were not accepted by any search engines, the following ab-

solute tolerances were set: 0.01 Da for 10 ppm and 0.03 Da for 30 ppm. The
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4. PROBABILISTIC CONSENSUS SCORING

data for the complex E. coli mixture was run on an LTQ-Orbitrap instrument

sequential to a four LC separation. The E. coli was searched against against two

different databases in order to evaluate the influence of the database size to the

performance of the consensus scoring. The first database contained all known E.

coli open reading frames (Riley et al., 2006), known contaminants and reversed

versions of all proteins. In total the E. coli database contained 8272 protein se-

quences. The second the database with the complete SwissProt database. The

concatenated (forward/reverse) version of this database contained 712,388 pro-

tein sequences For this dataset the same search engine specific parameter were

used as for the 18 protein mix LTQ-Orbitrap data. The whole ISB1 dataset con-

tained twenty-two LC-MS/MS runs (two sets of technical replicates), resulting in

18,999 spectra. The Orbitrap data set contained ten LC-MS/MS runs and four

LC-MS/MS runs were included from the FT Ultra dataset. In total there were

47,292 spectra for the Orbitrap data and 54,551 for the FT Ultra data. Search

engine runs were performed against a concatenated protein database containing

forward and reversed sequences of the 18 proteins, contaminants and a whole or-

ganism proteome database from the bacterium Sorangium cellulosum (Schneiker

et al., 2007). The contaminant proteins were trace-level contaminants, as listed

by Klimek et al. (2008) and additional keratin and trypsin sequences. All to-

gether the protein database contained 18,812 sequences. Peptide sequences were

considered correctly identified if the sequence was found as a subsequence in one

of the 18 proteins or a known contaminant. Trypsin was set as protease for all

the search engines. All identifications were conducted using the respective search

engine adapters available in TOPP (Kohlbacher et al., 2007).

4.3 Results

In Fig. 4.1 the number of true peptides with their corresponding ranks are visual-

ized for each individual search engine. It can be observed that if the three search

engines agree on a peptide identification (all three engines suggest the same se-

quence on rank one), approximately 94 % of those peptides are correct sequences.

However, this agreement only corresponds to approximately 8 % of all annotated

spectra in the data from the low-resolution instruments and to approximately 14
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% in the data from the FT instruments. Every dataset was searched with broad

initial search tolerances to assess the data quality. Fig. 4.3 shows the distributions

of mass errors resulting from the initial search runs. It can be seen that error in

the precursor masses were recorded with a slight shift to the left. The majority

of peptide masses was measured with −4 ppm deviation. The fragment masses

are distributed evenly around zero. In Fig. 4.4 the overlap of spectra that were

annotated by one, two, or all three engines is shown. Here, annotated means that

the search engine suggests any sequence for a given spectrum. A high number

of spectra are not annotated by Mascot. Interestingly the percentage of spectra

that are annotated by all engines decreases for high-accuracy FT instruments.

It can also be observed that the number of spectra that are only annotated by

one engine is high for OMSSA, but most peptides annotated by X!Tandem and

Mascot are also annotated by other engines. Accordingly, Tbl. 4.2 shows the

number of spectra that were annotated by the search engines, regardless of the

significance of the scores that were assigned to the sequences. The numbers of

peptides that were given a score that is high enough to accept the peptide as cor-

rectly identified within a q-value threshold of 0.01 are listed in Tbl. 4.3. For the

high-accuracy datasets, the number of correctly identified peptides by X!Tandem

were clearly larger than the numbers from the OMSSA and Mascot searches. For

the low-accuracy LCQ instrument OMSSA performed best. On the dataset from

the complex mixture X!Tandem did not perform as good as on the less complex

18 protein mix dataset.

Table 4.2: Number of spectra from the different data sets that were annotated

by the different search engines. All data is based on the 18 protein mix, except

the last column.

Orbitrap FT Ultra LCQ Orbitrap (E. coli)

Mascot 14,050 19,102 17,336 17,254

OMSSA 36,896 35,841 18,943 27,575

X!Tandem 23,035 32,024 18,011 27,218
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Figure 4.3: The relative mass error of precursor masses and the absolute

mass errors for fragment masses. Data based on the 18 protein mix acquired

on an LTQ-Orbittap and search by OMSSA.
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Figure 4.4: The venn diagrams show the number of spectra that were anno-

tated by the different search engines. Annotated means that the search engine

suggest a candidate sequence for the given spectrum, regardless of significance

of the assignment.

Table 4.3: From the number of annotated spectra only fraction reaches the

score threshold to be considered identified. All data is based on the 18 protein

mix, except the last column.

Orbitrap FT Ultra LCQ Orbitrap (E. coli)

Mascot 5,495 3,697 1,512 10,888

OMSSA 5,405 3,809 1,955 10,611

X!Tandem 5,744 5,099 1,990 9,611
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Sequence similarity

In those cases where search engines disagree on a spectrum, we frequently ob-

served that there was significant sequence similarity. The similarity is expressed

in partly overlapping sequences, which is reflected in overlapping fragment ion

masses. This observation can be observed in Fig. 4.5. For both boxplots the

data are averaged for peptides with length from eleven to fifteen amino acids. On

average there are about 50 sequences in the search space, while searching against

a human target-decoy database with a tolerance of 10 ppm. Peptide sequences in

these search spaces can have a high number of overlapping fragment ion masses,

as visualized in 4.5(b). Using the 18 protein mix measured on an LTQ-Orbitrap
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Figure 4.5: Search space characteristics of short peptides of ten to fifteen

amino acids.

Fig. 4.6 shows the similarity of top hit candidates to peptide sequences at lower

ranks. It was searched with OMSSA using parameters as described in the ex-

perimental procedures. It shows the percentage of sequence similarity of peptide

candidates that are suggested by OMSSA at different ranks. The sequence simi-

larity correlates very well with the percentage of overlapping fragment ion masses.

At higher ranks, the sequence similarity and the percentage of overlapping frag-

ment ions decreases. The percentage of identical amino acids does not decrease

at ranks latter than four for the OMSSA search engine results.
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Consensus scoring

We evaluated different methods for the combination of the scores. The results

for the comparison of different methods are shown in Fig. 4.7. Different scoring

matrices were used to calculate the consensus scores. In general we observed that

PAM matrices perform better compared to the Blosum matrices. We evaluated

different PAM and Blosum matrices. The results in Fig. 4.7 show a selection

of the best scoring matrices. In general, high penalization is more suitable for

these data. However on low accuracy datasets, lower penalization shows better

performance (data not shown). The spectral counter scoring (SPC) performs

almost equally well as the best matrix based methods. The performance of the

averaging methods is below the matrix based methods and comes even below

the best single engine. However all combination methods, except for the naive

averaging outperform the single engines.
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Figure 4.6: Different measures for peptide similarity.
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Figure 4.7: Different methods to combine single search engine results to a

common consensus score. This evaluation was done on the E.coli dataset.

Receiver operating characteristics (ROC)

ROC analysis was performed to compare the results of the single engines and

to visualize the benefit of consensus scoring. ROC curves help to visualize the

performance of classifiers (Fawcett, 2006). In most cases, the true positive rate is

plotted as a function of the false positive rate. A good classification is obtained if

the slope of this function is very steep for low false positive rates and if the area

under the curve comes close to one. For the purposes of this study the analysis was

adapted and the number of correctly identified spectra was plotted as a function

of the corresponding q-values. The results of this analysis are shown in Fig. 4.8-

Fig. 4.9. The consensus scoring method was significantly better than the single

engines for all datasets. We observed significant improvements at low error rates

for all datasets. For the Orbitrap data, the consensus scoring identified 19 % more

peptides compared to X!Tandem, 26 % more than OMSSA and 24 % more than

Mascot at 1 % FDR. For the FT Ultra dataset the improvements were even more

significant. X!Tandem was outperformed by 18%, OMSSA by 57 % and Mascot

by 63 %. On the LCQ data at 1 % FDR X!Tandem was outperformed by 17 %,

92



4.3 Results

Mascot by 54 % and OMSSA by 19 %. The E. coli was the most complex among

all datasets. This dataset was searched against the large SwissProt database that

contains a considerable number of homologous sequences. For these data, the

most significant improvement was in comparison to X!Tandem at a value of 27

%, Mascot at 13 % and OMSSA at 16 %. If more false positives are allowed

the improvements gained from the consensus scoring are more significant for all

datasets, compared to the 1% error rate.

Mass accuracy is known to be a crucial parameter for peptide identification. Ion

traps, such as the LTQ instrument, are low mass accuracy instruments, whereas

TOF instruments usually provide increased accuracy. FT instruments, such as

the Orbitrap, belong to the most accurate mass spectrometers. The design of

our scoring method includes the flexibility to adapt the scoring method to the

most commonly used instrument types. Different values for the two gap penalties

were evaluated. It was found that the performance tends to improve with the

stringency of penalization. Mixture modeling allows the conversion of arbitrary

search engine scores into probabilities and peptide similarity helps to assign scores

to peptide sequences that were originally not assigned by a given search engine.

For the combination of several single scores into a joint consensus score, various

approaches can be used.

The suggested methods combines the scores from the single engines by a weighted

average and that is further divided by the summed similarity (equation (4.4)).

Different methods are evaluated. All other approach were found to reveal results

inferior in terms of peptide identifications. Thus the similarity weighted average-

like score is the default method for combining single scores. The average is

proportional to the sum of the scores and can thus loosely be interpreted as the

accumulation of evidence obtained from the different single sources.
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Figure 4.8: Receiver operating characteristic (ROC) curves to visualize the

performance of the searches using LCQ and LTQ-FT data. Increased area

under the curve indicates indicates better performance.
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Figure 4.9: ROC curves to visualize the performance of the search methods

using LTQ-Orbitrap data from the 18 protein mix and the complex E. coli

sample.
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Our consensus scoring method was better than any single engine. A summary

of the results at 1 % FDR on all evaluated datasets is shown in Fig. 4.10.
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Figure 4.10: This plot summarizes the comparison of the different search

methods, along with the improvements that are gained by combining the search

methods. The y-axis corresponds to the number of identified spectra. The

number of spectra that were identified by the best method was set to 100

%. The x-axis shows the different search datasets; Mix corresponds to the 18

protein mix datasets. Regardless of the data quality and the data complexity

the ConsensusID approach always outperforms the single engines.

4.4 Discussion

Proteomics has traditionally been a dynamic area with a broad spectrum of ex-

perimental techniques and rapidly evolving instrumentation. This is accompanied
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by an accumulation of computational tools as an indispensable part in the anal-

ysis workflow. Our consensus scoring approach aims to take advantage of the

large diversity of commonly used peptide identification tools. Our approach is

designed to incorporate any number of different tandem MS search engines into

the consensus scoring. For each tool, the scores are converted into probabilities

in order to make them directly comparable. Missing values are estimated by our

sequence similarity approach and finally the scores combined by weighted aver-

aging.

Datasets, generated by a variety of MS instruments, were included in this study.

The instrumentation in laboratories is changing rapidly and new MS instruments

are continuously entering the market. More and more laboratories are equipped

with several mass spectrometers to enable high-throughput and to benefit from

special features available on specific instruments. This implies that software for

peptide identification needs to cope with this rapid evolution. The method pro-

posed in this work is very robust with respect to the origin of the data. Indepen-

dent of which individual search engine performs best on any given dataset, the

consensus approach always yields a superior performance in our tests. Previous

studies aiming at combining search engine scores only focused on low mass accu-

racy ion traps (Searle et al., 2008). The importance of more accurate and more

sensitive instruments is obvious. Furthermore, the suggested strategy allows easy

interpretation of the consensus results and does not rely on complex machine

learning methods that are hard to interpret. To our knowledge our consensus

scoring is the first approach that offers significant improvements in peptide iden-

tification on data generated by a variety of different mass spectrometry platforms.

By integrating the information gained by the other engines, the assigned peptide

probabilities become more accurate and in cases where specific peptides were

ranked best with poor scores, the information from the other engines helps to

improve this score and ultimately to bring it in a range where it is accepted as

correctly identified. Assuming a given mass spectrum has been recorded with-

out any major technical bias, then the likelihood that several search engines

assign the same wrong peptide to rank one is smaller than the likelihood that

a subset of engines fails for this spectrum. This putative failure is corrected by

integrating information from other engines via peptide similarity scoring. The
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similarity-corrected probabilities are then combined by a weighted average scor-

ing. Another alternative for the combination of these scores would be the product

of the individual probabilities. Using the product as a consensus score, one would

have to assume independent scoring of the individual search engines. However,

it is common sense that the ultimate prerequisite for database search algorithms

is the presence of fragmentation-specific product ions. Assuming independence is

thus not realistic. The average, in contrast to the product, accounts for this un-

derlying property. If X!Tandem’s refinement is used, the improvements of peptide

identification rates by X!Tandem increase the number of identified peptides by

Mascot and OMSSA. However due to unsolved question regarding the statistical

assessment of peptide identifications that result from multi-pass searches, such as

X!Tandem’s refinement, we did not enable this option for routine analyses. If the

precursor masses are recorded with high accuracy, significant improvements for

peptide identifications are observed. The imputation procedure for peptide se-

quences is based on a pairwise global alignment and uses the Needlemann-Wunsch

algorithm. This algorithm uses substitution matrices to score the peptide align-

ment. Those matrices, such as PAM matrices, are used in evolutionary biology

to determine similarity of proteins, based on mutation probabilities, thus sub-

stitution matrices are per se not constructed to account for spectral similarity.

However, we demonstrated that the sequence similarity of the different peptide

candidates strongly correlates with the similarity in the ion series of the different

sequences and we also showed that the usage of peptide similarity has slightly bet-

ter performance than the similarity based on fragment ion similarity. This might

be explained by less stringent penalization of the sequence similarity method, if

one engine failed. The Needlemann-Wunsch algorithm performs a global align-

ment of sequences and will not adequately account for peptides that show strong

local similarity. Local alignment algorithms might be useful alternatives, if the

spectra are searched against very large databases, where much more similar se-

quences can be expected. Such strategies might be further research topics espe-

cially in the field of proteogenomics where spectra are searched against six-frame

translations of the genome. If such searches are combined with the target-decoy

database concept, the number of candidates in the tolerance window is very high

and a lot of similar sequences will compete for spectra.
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Global alignments are, in general, used to align protein or nucleotide sequences

if they are expected to be similar and have roughly the same length. The lengths

of the peptide candidates should not differ greatly, since precursor masses are

recorded and used to restrict the search space of candidate hits. Nevertheless,

global sequence alignment methods are classically implemented using two differ-

ent parameters δ and ε to account for gaps that need to be introduced in the

alignment. The evaluation of different values for these penalty parameters re-

vealed that high mass accuracy instruments are not very sensitive, whereas the

data that resulted from the LCQ instrument revealed better identification rates

with decreased stringency in penalization. The quality of MS spectra strongly

correlates with the presence of all expected fragment masses. Missing masses or

imprecise precursor masses are reasons that contribute to incorrect assignments of

peptide sequences by search engines and are thus more frequently observed when

low mass accuracy instruments are used. With growing accuracy and sensitivity

in MS instrumentation, those inadequacies are diminishing, however, they are

still present to some extent. The alignment parameters are very suitable values

to adjust the scoring scheme to different instruments. In lists of putative candi-

date peptides, there are hardly any peptides that have very large gaps, however,

peptide sequences that miss amino acid masses can be found. Further develop-

ment in search strategies for tandem MS spectra will also have to account for

single nucleotide polymorphisms (SNPs), since SNPs are frequently observed in

genomics studies. Our ConsensusID approach is very well suited to cope with

search results that allow amino acid exchanges. Other improvements may in-

clude the adaption of the scoring matrix to account for isobaric di- or tripeptides.

Using our suggested consensus scoring method, the time needed to compute the

peptide identifications will be increased compared to the usage of a single engine.

If three engines are used, the time for search engine calculations is three times as

high and additionally the consensus scoring algorithm needs time to calculate the

consensus scores, which is comparably fast; 1-2 min for moderate size datasets

(0.5 - 1 GB). Using three search engines and the consensus scoring combination

method, the peptide identification pipeline is still at least five to ten times faster

as the acquisition of the tandem mass spectra and the gain in peptide identifica-

tion rates is clearly in favor of the consensus scoring.
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The proteomics community strongly relies on database search engines. Peptide

identification is both, the most fundamental and the most important step in an

MS-based proteomics study. In order to fulfill the high demands attributed to

proteomics, combining different strengths and reducing weaknesses of individual

peptide identification approaches is needed.
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Chapter 5

Quantitative shotgun proteomics

to analyze protein expression

dynamics

5.1 Introduction

The introduction of shotgun sequencing of genomes was a milestone of modern

biology. The human genome was published in two competitive papers. The hu-

man genome consortium, funded by public money used conventional methods

(Lander et al., 2001), whereas Craig Venter pioneered shotgun sequencing (Ven-

ter et al., 2001). Similar to shotgun sequencing of genomes, shotgun proteomics

refers to the sequencing of the entire protein complement of the genome. As

in DNA sequencing, shotgun sequencing aims at assembling small parts of pro-

teins, peptides, together to ideally build up the whole proteome. In contrast to

the genome, the proteome is highly dynamic. The abundance levels of proteins

change very rapidly in a biological system and the analysis of the proteome has

to cope with these quantitative changes over time. In this section we will refer

to shotgun proteomics, as a method to quantitatively profile the whole or large

parts of the expressed proteome, using gel-free mass spectrometric techniques.

The analysis of complex biological mechanisms, such as the effects of the in-

hibition of signaling in cancer cells, is analytically very demanding, since only
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little is known about the mechanisms of these inhibitors, yet they are considered

promising agents in the fight against cancer. In this section we investigate the

effects of sorafenib and LY294002, two well known kinase inhibitors in human

melanoma cells, using shotgun proteomics methods. In contrast to 2D-PAGE

experiments, as outlined in Chapter 3, shotgun proteomics can potentially offer

a much greater proteome coverage and more accurate quantitation. We chose to

use in vitro growing cancer cells as model organisms for this study. The great

advantage of cell lines is the compatibility with the SILAC labeling method. Us-

ing SILAC we can quantify the peptide ions directly after the mass spectrometric

analysis. In contrast to label-free analyses, this avoids the challenging direct-

comparison of multiple runs.

The adjacent section introduces all experimental and theoretical methods that

were used throughout this study. These techniques cover mainly sample prepara-

tion methods, sample fractionation to reduce the sample complexity and finally

LC-MS for peptide identification and quantitation. Following the experimen-

tal data acquisition, the data is processed and analyzed by statistical methods.

The computational analysis allows the formulation of hypotheses that might con-

tribute to fill gaps in the understanding of the mechanisms of action of the in-

hibitors. Our analysis allows to identify groups of proteins, so-called clusters that

are grouped together due to their similar protein expression profile as response to

inhibitor treatment. If these proteins are known to be involved in similar biolog-

ical processes or pathways, such clustering can ultimately hint to the biological

activities that are predominately affected by the inhibitor treatment. The time

course in addition, allows to estimate the time span needed to initiate, up- or

down-regulate the respective biological activity. This Chapter will present and

discuss the results from the proteome-wide profiling experiments, the subsequent

cluster analysis and the enrichment analysis for biological processes and path-

ways.

5.2 Global protein expression dynamics

Similar to the experiments that were described in Chapter 3 for the DIGE anal-

yses, this section describes an application of quantitative shotgun proteomics.
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Using SILAC labeling, the global protein expression in melanoma cells was pro-

filed following treatment with two distinct multiple kinase inhibitors, sorafenib

and LY294002. The SILAC setup allows recording of time course data, since

different SILAC labels are mixed in the same experiment.

5.2.1 Material and Methods

Overview experimental setup

The experimental setup of the SILAC-based time course experiment is shown in

Fig. 5.1. For each biological experiment two LC-MS analyses were performed.

This setup allows profiling of five time points in parallel. In both triple SILAC

experiments, one SILAC label is used as a common time point. The common

time point is later used to normalize variations in intensities across the two runs.

Arg0 Lys0 Arg6 Lys4 Arg10 Lys8 Arg6 Lys4 Arg10 Lys8

O h 3 h 6 h 12 h 24 h

1

2

Figure 5.1: Five time points are profiled in parallel using triple SILAC LC-MS

analysis.

Cell culture

Metastatically growing 451Lu melanoma cells were kindly provided by Prof. Bir-
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git Schittek (Department for Dermatology, Tübingen). The 451Lu cell line was

originally derived from lung metastases of WM164 cells that were subcutaneously

injected into nude mice. The WM164 cell line is derived from a metastatic lymph

node melanoma. The 451Lu cells are highly invasive and exhibit spontaneous

metastasis to lung and liver (Herlyn et al., 1990). For all cell cultures, performed

in this thesis, the general conditions were 37 ◦C and 5 % CO2 at humidified at-

mosphere. The cells were cultured in RPMI medium, purchased form Invitrogen.

The medium was supplemented with 10 % fetal bovine serum (Invitrogen), 1

% (10 mg/ml) streptomycin / (10,000 U/ml) penicillin (Invitrogen) and 1 % L-

glutamine. Cells were usually split at 80 % confluency. The duration cycle for

cell replication is approximately 24 h.

For the SILAC experiments a custom-made medium was used. The commercial

custom-made medium was depleted for Arg and Lys. The SILAC medium was

then supplemented with three different isotopic variants of Arg and Lys. The

’heavy’ medium was supplemented with Arg10 (13C15
6 N4) and Lys8 (13C15

6 N2),

’medium heavy’ medium with Arg6 (13C6) and Lys4 (2H4), the ’light’ medium

contained Arg0 (12C14
6 N4) and Lys0 (12C14

6 N2) . The final concentration of Lys

in all media was set to 73 mg/l and the Arg concentration was set to 42 mg/l.

The cells were grown for at least two weeks in SILAC media. This is necessary

to reach sufficient incorporation rates.

Inhibitor treatment

Sorafenib was purchased as a powder from LC Laboratories (Woburn, USA).

LY294002 was purchased from Cell Signaling Technology (Danvers, USA). Both

inhibitors were dissolved in DMSO (dimethylsulfoxide) (Sigma, Germany) and 13

mM sorafenib and 50 mM LY294002 stock solutions were prepared. For each ex-

periment a freshly thawed aliquot was used. According to the experimental setup

cells were treated with 13 µM sorafenib, 50 µM LY294002 or the corresponding

amount of DMSO.

Cell lysis

Before harvesting, the cells were washed twice with 10 ml of ice-cold PBS (PAA,

Austria). The cells were lysed using 6 M urea (Sigma, Germany), 2 M thiourea
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(Sigma, Germany) in 10 mM Tris at pH 8( prepared from Tris, base, Sigma,

Germany and Tris, HCl,Merck, Germany). The Complete, EDTA-free protease

inhibitor cocktail (Roche, Germany) was used to avoid unspecific proteolytic

cleavage. This inhibitor cocktail inhibits serine and cysteine proteases, but not

metalloproteases. 500 µl of lysis buffer was added to a 10 cm dish. The lysed

cells were transfered into 1.5 ml reaction tube, followed by a incubation on ice for

30 min while briefly vortexing every 10 min. 1 µl benzonase (Merck, Germany)

was added to every tube to destroy remaining DNA or RNA molecules. Finally

the cell debris was pelleted by centrifuging at 13,000 g for 20 min at 4 ◦C. Pro-

tein concentration in the supernatant was determined by the Bradford method.

Absorbance was measured at 590 nm and equal amounts of protein from each

SILAC condition were mixed accordingly.

Proteolytic digestion of proteins

The proteins were reduced by incubating with 1 mM dithiothreitol (DTT) at

room temperature (RT) for 30 min, followed by an alkylation step with 5.5 mM

iodoacetamide for 30 min in the dark. The reduced and alkylated proteins were

digested for 4 h with the endoproteinase Lys-C (Wako, Japan) dissolved in 20

mM ammonium bicarbonate at a concentration of 1/100 (w/w). After dilut-

ing 4 times with 20 mM ammonium bicarbonate and adjusting the pH to 8.0,

sequencing-grade modified trypsin (Promega, Germany) dissolved in 20 mM am-

monium bicarbonate, was added at a concentration of 1/100 (w/w). After an

overnight incubation with trypsin at 37 ◦C the reaction was stopped by adding

trifluoroacetic acid (TFA) to a final concentration of 0.1 %.

Isoelectric focusing of peptides

For the isoelectric focusing of peptides an Agilent 3100 OFFGEL Fractionator

was used. Essentially, the experiment was performed, as described by Hubner

et al. (2008). After trypsin digestion the peptides were separated based on their

isoelectric points into twelve fractions. The starting material for the OFFGel

separation was set to 120 µg (40 µg from each SILAC condition). The peptide

sample volume was adjusted with water to 324 µl and 1.44 ml 6 % glycerol and 36

µl ampholytes (IPG-buffer pH 3-10, purchased from GE Healthcare, Germany)
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were added. The samples were loaded onto 12 well-Immobiline DryStrips pH 3-

10, purchased from GE Healthcare. Peptides were then focused for 20 kVh at

a maximum current of 50 µA and maximum power of 200 mW. Each peptide

fraction was mixed with 10 µl acidic solution containing 30 % ACN (Merck,

Germany), 5 % acetic acid and 10 % TFA, before loading onto stage tips for

desalting and storage.

Stage tipping of peptides

The procedure as published by Rappsilber et al. (2003) was followed for stage

tipping of peptides resulting from OFFGel fractionation. In brief, stage tips were

prepared using small discs of C18 material (Varian, Germany). The C18 material

was put into a 200 µl pipette tip, using a plastic syringe prepared in-house. The

columns were activated with methanol and equilibrated in 0.5 % acetic acid, 0.1

% TFA in water. Peptide samples were loaded onto the stage tips and washed

once with 0.5 % acetic acid, 0.1 % TFA in water. Directly before the LC-MS

measurement, peptides were eluted from the stage tips with 50 µl of 80 % ACN,

0.5 % acetic acid. The organic solvent was then evaporated by reducing in a

SpeedVac (Eppendorf, Germany) to approximately 5 µl. The final volume was

then adjusted to 10 µl with 0.5 % acetic acid, 0.1 % TFA and 2 % ACN in water

and 5 µl were used for one LC-MS analysis.

Liquid chromatography

After the OFFGel separation, the whole-cell lysate was split into twelve fractions.

For each OFFGel fraction a volume of 5µl, which approximately corresponds to 5

µg of peptides, was consecutively injected by a PAL autosampler (coupled to an

Eksigent nanoLC) or by the integrated autosampler from the Proxeon EASYLC

system. Samples were then injected to the a 15-cm-long 75-mm-inside-diameter

column (New Objective, Woburn, USA) packed in-house with 3-mm C18 Reprosil

reversed-phase beads (Dr. Maisch) with a flow rate of 500 nl/min for the first 20

min. The peptides were eluted with a linear gradient from 8 to 64 % acetonitrile

in 2 h at a flowrate of 200 nl/min. Solvent A was water with 0.5 % acidic acid

and solvent B was 80 % acetonitril in water with 0.5 % acidic acid. The typical
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gradient employed for peptide separation is shown Fig. 5.2. The increase to 80

% solvent B is used to wash the column.
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Figure 5.2: The gradient (A) and flow rates (B) used for the analysis of

OFFGel fractions.

Mass spectrometry

For all analyses an LTQ-Orbitrap mass spectrometer was used, which was op-

erated in positive ionization mode with an average ion spray voltage of 2.3 kV.

Data-dependent acquisition (DDA) mode was used to sample the five most abun-

dant ions per full scan. Full scans were recorded in the orbitrap analyzer and

the fragment ion scans in the LTQ analyzer, respectively. The mass accuracy of

precursor ions was routinely improved using the lock mass option. Only multiply

charged ions were fragmented. 106 ions had to be collected for full scan analysis

in the Orbitrap analyzer at a resolution 60,000 (at m/z 400). The time needed

for one full scan, a lock mass cycle and five subsequent MS/MS spectra was typ-

ically below four s (Olsen et al., 2005). The activation type for all analyses was

collision-induced dissociation (CID) with a normalized collision energy of 35 %,
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the isolation width for the precursor selection was set to two Thomson (Th).

The range of masses was limited 300-2,000 m/z. Collision-induced dissociation

fragmentation is induced after an accumulation of 5,000 ions. To avoid repeated

fragmentation of the same ions, a dynamic exclusion list was filled with up to 500

masses that have already been fragmented. Each mass remained on the exclusion

for 90 s.

Data processing

All raw MS spectra were combined and processed together using the MaxQuant

software suite (version 1.0.13.9) (Cox and Mann, 2008). The Mascot (Matrix Sci-

ence) search engine, version 2.2, was used to search the peak lists. The database

was a concatenated IPI human forward and reversed protein database version

3.64. The database contained 84,031 forward protein sequences and 263 contami-

nant protein sequences, resulting in a total of 168,588 entries. Carbamidomethy-

lation and either Lys0 and Arg0, Lys4 and Arg6 or Lys8 and Arg10 were set

as fixed modifications. Methionine oxidation was set as a variable modification.

Trypsin was defined as the protease and two missed cleavages were allowed. The

precursor mass tolerance was set to 7 ppm and 0.5 Da was the allowed deviation

at the fragment ion level. The identify module of MaxQuant was used to inter-

pret the search results. 1 % FDR threshold was used as a acceptance threshold

on the peptide and protein level. At least two quantitation events were required

for protein quantitation.

5.2.2 Results

This section lists the results gained from the SILAC-based proteomics experi-

ments. We shall start with a global overview of the results, allowing to assess

the overall technical performance and to judge the data quality. This is followed

by a thorough description of the results gained from clustering and enrichment

analyses.

Chromatographic separation

The chromatographic separation was monitored for each LC-MS run. A typical
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total ion count (TIC) chromatogram is shown in Fig. 5.3. The peptides are usu-

ally widely distributed along the gradient with increasing ACN concentration.

At the very end of the gradient (125 - 130 min) a peak with high intensity is

observed. This peak corresponds to components originating from sample prepa-

ration procedures. However, this peak does not interfere with the peptide signals,

most peptides elute at much lower ACN concentrations. Different chromatograms

from the twelve OFFGel fractions are shown in Fig. 5.4. In different OFFGel

fractions different peptide species are expected. The total ion count (TIC) in the

different OFFGel fractions is very similar across all twelve runs. Only fraction six

shows a TIC below 109 and fraction twelve is empty. To monitor the fractiona-

tion efficiency, all peptides that were identified in the different OFFGel fractions

were compared for their occurrence in different fractions. We observed that the

majority of peptides is only observed in one OFFGel fraction.

Figure 5.3: A typical TIC chromatogram for a 2 h LC gradient. All peak

intensities are normalized to the highest peak, which corresponds to 100 %.
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fraction 1

fraction 2

fraction 3

fraction 4

fraction 5

fraction 6

fraction 7

fraction 8

fraction 9

fraction 10

fraction 11

fraction 12

NL: 3.98E9

NL: 6.3E9

NL: 3.79E9

NL: 3.10E9

NL: 1.89E9

NL: 7.98E8

NL: 1.24E9

NL: 1.31E9

NL: 1.29E9

NL: 1.23E9

NL: 1.19E9

NL: 7.38E8

Figure 5.4: The different colors correspond to different OFFGel fractions.

The NL value on the right indicates the TIC. The Y-axis are intensities nor-

malized to 100 %.
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Global assessment of data quality

All raw data from the experiments for both inhibitors including replicates were

processed together. This final dataset included 240 LC-MS runs. On average

this dataset was measured with a calibrated average mass error of 0.34 ppm.

Tbl. 5.1 shows global results on the number of recorded spectra, identified spectra,

non-redundant peptides and protein groups. The number of proteins that were

found at all different time points for the sorafenib experiment is visualized in the

venn diagram in Fig. 5.5. 3,465 from a total of 5,408 proteins were observed in

all time points. The set of 3,465 proteins was used for the analysis of protein

expression dynamics. For the global analysis of regulation the whole dataset

was used. The significantly regulated proteins were determined as outlined in

the appendix. Proteins were accepted as significantly regulated, if the intensity

dependent significance p-value (significance B from Cox and Mann (2008)) was

below 0.05. Proteins with significantly modulated expression following DMSO

treatment were required to have regulation ratios at least twice as high following

inhibitor treatment compared to the DMSO ratio. A typical time course profile

is shown in Fig. 5.6. The five time point time course is generated from two

different experiments. The number of significantly regulated proteins at different

time points are shown in Fig. 5.7. Most notably the number of down-regulated

proteins at the late time points is increased compared to the number of up-

regulated proteins.

Table 5.1: The complete dataset set has been investigated for global result

parameters.

spectra recorded 2,254,115

spectra identified 759,286

non redundant peptides 45,086

protein groups 5,408

In some cases, the protein expression was regulated selectively at only some time
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3465

Searly

Dlate

Dearly Slate

Figure 5.5: Overlap between different time points. Searly refers to the SILAC

experiment with the early time points 3 h and 6 h of harvesting after Sorafenib

treatment. Slate refers to the harvesting after 12 h and 24 h, respectively. The

D corresponds to the control experiment with DMSO treatment.
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Figure 5.6: Triple SILAC based temporal profile. These spectra belong to

QDFSVPQLPHSSSHWLR, a unique peptide from GP100, a known melanoma

antigen.

points and in other cases the inhibitor treatment regulated the protein expression

for the whole time period. The number of significantly regulated proteins at

the different time points was analyzed in Fig. 5.8 for the sorafenib treatment

and in Fig. 5.9 for the LY29402 treatment, respectively. Most of the proteins

are significantly regulated at only one time point, however some proteins are

regulated in at least two, three or even four different time points.
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Figure 5.7: Number of significantly regulated proteins at different time

points.
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Figure 5.8: Number of proteins up-regulated by sorafenib (a) and number of

down-regulated proteins by sorafenib (b). Proteins are found to be regulated

in only one time point (1), in two (at least 2), three (at least 3) or four (at

least 4)
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Figure 5.9: Proteins up-regulated by LY294002 (a) and down-regulated by

LY294002 (b). Proteins are found to be regulated in only one time point (1),

in two (at least 2), three (at least 3) or four (at least 4)

If proteins are regulated in more than one time point they are more frequently

down-regulated than up-regulated for both inhibitors. The number of proteins

that are up-regulated in all four time points is very low for both treatments.

Sorafenib - cluster analysis

Fuzzy c-means clustering (Bezdek, 1981) was used to identify proteins with sim-

ilar time resolved protein expression patterns. The six clusters of proteins are

shown in Fig. 5.10. Clusters I, II, IV and VI show very strong memberships

across all associated proteins. Clusters III and V contain some proteins with

lower occupancy. The number of proteins per cluster varied between 109 and

228. In general it can be observed that if a cluster contains a high number of pro-

teins, the fraction of proteins with strong membership degrees is usually higher

in in clusters with less proteins.

The number of clusters was set to six for both, the sorafenib, and the LY294002

analysis. The fuzzification parameter was set to two. In general those numbers

produced the most homogeneous protein clusters. Cluster I includes 116 proteins

that are slightly down-regulated at the beginning of the time course and show

114



5.2 Global protein expression dynamics

●

●

●

●

●

0
5

10
15

20

−2−1012

S
or

af
en

ib
_r

eg
ul

at
ed

(1
16

)

(a
)

C
lu

st
er

I

●

●

●

●

●

0
5

10
15

20

−2−1012

S
or

af
en

ib
_r

eg
ul

at
ed

(2
28

)

(b
)

C
lu

st
er

II

●

●

●

●

●

0
5

10
15

20

−2−1012

S
or

af
en

ib
_r

eg
ul

at
ed

(1
16

)

(c
)

C
lu

st
er

II
I

●

●

●

●
●

0
5

10
15

20

−2−1012

S
or

af
en

ib
_r

eg
ul

at
ed

(1
23

)

(d
)

C
lu

st
er

IV

●
●

●

●

●

0
5

10
15

20

−2−1012

S
or

af
en

ib
_r

eg
ul

at
ed

(1
09

)

(e
)

C
lu

st
er

V

●
●

●

●

●

0
5

10
15

20

−2−1012

S
or

af
en

ib
_r

eg
ul

at
ed

(2
07

)

(f
)

C
lu

st
er

V
I

F
ig
u
re

5
.1
0
:

S
ix

cl
u

st
er

s
of

si
gn

ifi
ca

n
tl

y
re

gu
la

te
d

p
ro

te
in

s
u

p
on

so
ra

fe
n

ib
tr

ea
tm

en
t.

115



5. QUANTITATIVE SHOTGUN PROTEOMICS TO ANALYZE
PROTEIN EXPRESSION DYNAMICS

up-regulation at twelve h, while no difference in expression levels is observed after

24 h.

Cluster II shows strong and consistent down-regulation at the very late time point.

Most of the 226 proteins included in this cluster show a very high membership

degree. Strong membership degrees are assigned to proteins if the distance to the

average cluster center is small.

Cluster III includes proteins that show a consistent up-regulation. The 116 pro-

teins show more variability in the membership degrees.

Cluster IV appears to have an opposite profile compared to cluster I. Proteins

are not regulated at the beginning, while they are down-regulated after twelve h

and reach initial expression levels after 24 h.

The proteins in cluster V have rather weak cluster association. Cluster V is the

smallest cluster with only 106 members.

A fluctuating behavior of protein expression levels is observed in cluster VI. The

expression seems to be down-regulated after three to six h and after 24 h treat-

ment, while not modulated at 12 h.

GO enrichment analysis of sorafenib regulated proteins

Cytoscape (Shannon et al., 2003) and its Plug-in ClueGo (Bindea et al., 2009)

were used to analyze the large dataset, and to identify significantly over-represented

biological processes of the proteins that were assigned to a common cluster. Dur-

ing this enrichment analysis, all Gene Ontology (GO) annotations of proteins from

a cluster were compared with the annotations of the entire protein database. Hy-

pergeometric testing and the Benjamini and Hochberg - False Discovery Rate

correction (Benjamini and Hochberg, 1995) were performed to assign statistical

significance to over-represented processes (Bindea et al., 2009) as described in the

background Chapter.

In order to assess the main biological processes that are affected by the proteins

with common time profiles, enrichment analysis for biological processes was per-

formed for all clusters separately. Results of the enrichment analysis along with

the cytoscape network visualization can be found in Fig. 5.11 - Fig. 5.13. It can
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be observed that proteins, clustering in cluster II, regulate most biological pro-

cesses. Furthermore the network of regulated categories has a large number of

hubs. Hubs are nodes in a graph that are connected to many other nodes. In this

case proteins that significantly contribute to the enrichment of ’hub categories’

are assigned to several groups of biological processes.

Cluster I:

Enriched biological processes for proteins from cluster I are dominated by mito-

chondrial respiratory chain complex assembly, β-oxidation of fatty acids, peptide

cross linking, ribosome biogenesis and mRNA transport. Categories that could

not form groups are related to vesicle transport, insulin response and translation.

Cluster II:

The second cluster, showing the most complex network of regulated groups with

significant categories cellular respiration, mitochondria electron transport, metabolic

processes of oxygen and reactive oxygen species, generation of precursor metabo-

lites, interphase of mitotic cell cycle, cation transport, immunoglobulin transport,

nucleosome assembly, establishment of organelle localization and, as already seen

for cluster I, translation.

Cluster III:

In this cluster, proteins show increasing expression levels as a function of treat-

ment length, contains proteins, found to be enriched for RNA export from nu-

cleus, negative regulation of ligase activity, cellular respiration, various metabolic

processes, e.g. histone mRNAs and amino acids. NADPH regeneration is also

significantly enriched by proteins in cluster III.

Cluster IV:

The proteins grouped here are summarized by mRNA metabolic processes, nu-

cleus organization and maturation of SSU rRNA. GO categories that could not

be assigned to groups, but show still significant enrichment, are macromolecular

complex disassembly, Rho protein signaling, translation, translation elongation

and autophagy.

Cluster V:

The enrichment analysis of cluster V revealed no hubs, but seven distinct groups,

summarized as nucleosome assembly, RNA splicing, B cell differentiation, Vita-

min B6 and sphingolipid metabolic processes, synaptic vesicle endocytosis and
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Fatty acid β oxidation

Peptide cross linking

Ribosome biogenesis
mRNA transport

Mitochondrial respiratory chain

translation
Translation elongation
Exocytosis
Response to insulin stimulus
Synaptic vesicle transport

(a) Cluster I

Precursor metabolites
Mitotic cell cycle
Electron transport
Cellular respiration

Others

(b) Cluster II

Figure 5.11: Network analysis of groups of significantly enriched biological

processes upon sorafenib treatment in cluster I and II.
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NADPH regeneration
Aspartate metabolism
Histone mRNA metabolism
Cellular respiration

Ligase activity

(a) Cluster III

Autophagy
Rho signaling

Macromolecular complex disassembly

Maturation of SSU rRNA
translation

Nucleus organization

mRNA metabolism

(b) Cluster IV

Figure 5.12: Network analysis of groups of significantly enriched biological

processes upon sorafenib treatment in cluster III and IV.
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Sphingolipid metabolism
Vitamin B6 metabolism

RNA splicing

Ligase activity
Vesicle endocytosis

B-cell differentiation

Nucleosome assembly

(a) Cluster V

Receptor recycling

Protein targeting

Phosphoinositide biosynthesis

glycosylation

Mono carboxylic acid transport

Vesicle transport

Hemidesmosom assembly

Translation elongation

(b) Cluster VI

Figure 5.13: Network analysis of groups of significantly enriched biological

processes upon sorafenib treatment in cluster V and VI.
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positive regulation of ligase activity.

Cluster VI:

Cluster VI shows a more interconnected network of different enriched groups,

that can mainly by summarized as protein targeting, receptor recycling, mono

carboxylic acid transport, glycosylation, hemidesmosome assembly, phosphoinosi-

tide biosynthetic processes, ER to Golgi vesicle-mediated transport and transla-

tion elongation.

KEGG enrichment analysis of sorafenib regulated proteins

Cytoscape (Shannon et al., 2003), version 2.6.3 along with its plugin ClueGo

(Bindea et al., 2009) was used to check whether specific pathways are enriched

in clusters. Similar to the GO (Ashburner, 2000) analysis, a hypergeometric test

followed by a Benjamini-Hochberg (Benjamini and Hochberg, 1995) correction

was performed. KEGG (Kanehisa and Goto, 2000) categories were accepted if

the corrected p-value was smaller than 0.05. The results of the KEGG enrichment

analysis of all proteins in cluster II are shown in Fig. 5.14. These proteins are

significantly down-regulated at the late time points.

Oxidative phosphorylation was found as an enriched category in the results from

the KEGG enrichment of proteins from cluster II. Pathways from neurodegener-

ative diseases show very significant enrichment. The proteins that are associated

with the KEGG category oxidative phosphorylation are shown in Fig. 5.15, where

they are mapped to the original KEGG pathway oxidative phosphorylation. Pro-

teins from this pathway are also the main proteins in the pathways from the

neurodegenerative diseases. Results from the KEGG enrichment of the other

clusters can be found in the appendix. The main proteins that lead to the enrich-

ment of pathways from neurodegenerative diseases are ATPase related proteins,

proteins from the mitochondrial respiratory chain, such cytochrome c oxidase

or the ubiquinol-cytochrome c reductase. The proto-oncogene tyrosine-protein

kinase Fyn is down-regulated and grouped to cluster II. We also found the cy-

cline dependent kinase 4 (CDK4), the Ras-related C3 botulinum toxin substrate

1 (RAC1) and the small GTPase, Ras homolog gene family, member A (RhoA),
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Alzheimer's disease
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Metabolic pathways
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Electron Transport Reaction in Mitochondria
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Figure 5.14: KEGG enrichment analysis of sorafenib-regulated proteins from

cluster II.

as members of cluster II. These three proteins contribute to the significant en-

richment of the KEGG category ’Influence of Ras and Rho proteins on G1 to S

transition’.

Summary: GO and KEGG enrichment analysis - sorafenib treatment:

Interestingly translation or translation elongation seems to be affected at vari-

ous times of the treatment. Proteins involved in translation have been found in

all clusters and with very low p-values in clusters I, IV and VI. The mitochon-

drial respiratory chain complex was found as a significantly regulated category

in cluster I and VI, implying significant down-regulation in early time points and

also that this complex is influenced at different time points by the treatment.

The enrichment in cluster I relies on the regulation of the NADH dehydroge-

nase, iron-sulfur proteins 4 and 5. Finally the mitochondrial electron transport

and oxidative phosphorylation were found as down-regulated at the very last

time point in cluster II. The enrichment of mitochondrial electron transport and

oxidative phosphorylation in cluster II is due to seven down-regulated NADH
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Figure 5.15: Oxidative phosphorylation. In red are the significantly regulated

proteins. (Image taken from the KEGG database)
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dehydrogenases, seven proteins related to the ATP synthase and the mitochon-

drial cytochrome b-c1 complex subunit 1. Rho protein signaling in Cluster IV

was enriched due to regulation of Rho GTPase-activating protein 5 and the LIM

kinase 1. Autophagy, significantly enriched in cluster IV, is based on the regula-

tion of Sequestosome-1 and the WD repeat domain phosphoinositide-interacting

protein 1 (WIPI-1). Another autophagy protein, the autophagy marker LC-3

was found to be down-regulated after 12 h of sorafenib treatment. Although

down-regulated in both replicates, LC-3 was only detected as significantly (p <

0.05) down-regulated in one experiment. Another interesting observation is the

down-regulation of proteins involved in mitochondrial respiratory chain complex

assembly at early time points and proteins involved in cellular respiration were

found cluster II with a down-regulation at the very late time point. The KEGG

analysis mainly revealed oxidative phosphorylation and Ras and Rho signaling

as affected categories.

Ly294002 - cluster analysis

Fuzzy c-means clustering was used exactly as for the sorafenib dataset. We eval-

uated different parameters for the clustering and found that, as for the sorafenib

experiment, six clusters and fuzzification parameter of two led to most consistent

clusters (Fig. 5.16).

In average there were 130 proteins per cluster. Cluster I had the lowest number

of members (90 proteins). The protein expression levels in cluster I reach a max-

imum in the very early time point and no difference in expression in observed

thereafter. In general cluster I is rather sparse, meaning the average membership

degree is low compared to cluster II or III.

The 128 proteins in cluster II show a fluctuating expression level, going down at

three h, up at six h, down at twelve and finally up at the 24 h time point. Cluster

III shows down-regulation at time points twelve and 24 h.

Cluster III contains 163 and shows strong membership degrees.

Cluster IV is very sparse, including proteins with large distances to the cluster

center. It contains 117 proteins that peak around the twelve h time point.

Monotonous up-regulation is shown by proteins in cluster V. 136 proteins show

increasing expression levels as a function of treatment time.
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Proteins in cluster VI behave inversely to the previous cluster. A monotonous

down-regulation is observed for the 168 proteins in cluster VI.

GO enrichment analysis of LY204002 regulated proteins

All proteins that were quantified in all time points following the treatment with

LY294002 were subjected to cluster analysis and the biological process of the

proteins that were grouped in the same cluster were analyzed using Cytoscape.

This analysis was performed in the same way as for the sorafenib data. The en-

riched groups of GO categories and the resulting cytoscape networks are shown

in Fig. 5.17 - Fig. 5.19.

Cluster I:

Dominating groups of biological processes in cluster I are base pair excision repair,

DNA topology change, DNA packing, rRNA processing and various categories re-

lated to translation. The network analysis shows four disjoint groups. No hubs

have been found. Members of cluster I include proteins from the histone macro-

H2A family and transcription factors, such as the eukaryotic translation initiation

factor 5A-1.

Cluster II:

This cluster in contrast to the previous one, shows a more interconnected network.

Several hubs, proteins associated with several groups of biological processes, are

observed. The main groups in cluster II are grouped into oxidative phosphoryla-

tion, cell maturation, iron ion transport and various metabolic processes.

Cluster III:

The enrichment of biological processes that are affected by proteins in cluster III

are mainly summarized as the organization of mitochondria, substrate adhesion

and also different metabolic processes, which build most of the nodes in the net-

work.

Cluster IV:

The biggest group of regulated proteins in cluster IV is named regulation of trans-

porter activity that is connected to the nuclear division group. Further groups

include nucleotide metabolic processes, as well as glycolipid transport.

Cluster V:
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rRNA processing

Translation
Base pair repair

DNA topology change
DNA packing

Peroxisome organization

(a) Cluster I

Oxidative phosphorylation

Precursor metabolites
Acetyl-CoA metabolism

Cell maturation
Co-enzyme metabolism
Others

(b) Cluster II

Figure 5.17: Network analysis of groups of significantly enriched biological

processes upon LY294002 treatment in cluster I and II.
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Mitochondrion organization
Precursor metabolites

Organic acid catabolic process
Substrate adhesion

(a) Cluster III

Regulation of transporter activity

Glycolipid transport

Nucleoside metabolism
Nuclear division

(b) Cluster IV

Figure 5.18: Network analysis of groups of significantly enriched biological

processes upon LY294002 treatment in cluster III and IV.
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Regulation of protein complexes
Membrane lipid catabolic process

Actin filament movement

Nucleosome assembly

(a) Cluster V

Mitotic cell cycle
Microtubule polymerization

mRNA polymerization

Regulation of proteolysis

RNA metabolism

Cell junction assembly

Chromatin remodeling

Others

(b) Cluster VI

Figure 5.19: Network analysis of groups of significantly enriched biological

processes upon LY294002 treatment in cluster V and VI.
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The enriched categories in cluster V are dominated by a group labeled as mem-

brane lipid catabolic process and a much smaller group, containing six nodes,

labeled as nucleosome assembly. Categories that have not been grouped in this

cluster are actin filament based movement, regulation of protein polymerization

and regulation of protein complexes.

Cluster VI:

This cluster contains proteins showing monotonous down-regulation. As observed

for the similar cluster of the sorafenib treatment (cluster II from the sorafenib

experiment), this cluster revealed most enriched categories with a highly intercon-

nected network. The most prominent categories include regulation of proteolysis,

mitotic cell cycle, negative regulation of microtubule polymerization, nucleoside

and bioribunucleoside biosynthetic processes. Interestingly, the group labeled as

regulation of proteolysis, contains the category ’Ras protein signal transduction’

and the hub that connects ’Ras signal transduction’ to ’Rho signal transduction’.

Apolipoprotein E and LIM kinase I are shared between the two categories.

KEGG enrichment analysis of LY204002-regulated proteins

The KEGG enrichment was done separately for the proteins grouped in differ-

ent clusters. The KEGG enrichment results for cluster III and VI are shown in

Fig. 5.20 - Fig. 5.21. Cluster III:

Interestingly, the KEGG categories found for cluster III contain different tumor

pathways, Ras signaling, ’Erk and PI3 kinases in collagen binding’. Proteins re-

lated to the influence of PI3 kinase subunit p85 in actin polymerization. As seen

for other clusters, this cluster reveals numerous categories related to metabolism.

As for the sorafenib treatment, pathways related to oxidative phosphorylation

are also enriched.

Cluster VI:

This cluster contains proteins that are continuously down-regulated and the

KEGG analysis revealed among others the mTor pathway and DNA replication

as significantly enriched categories. DNA replication was found with the most

significant p-value.
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Figure 5.20: KEGG enrichment for LY294002-regulated proteins in cluster

III.
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DNA replication

Internal Ribosome entry pathway

mTOR Signaling Pathway

Mismatch repair

Pyrimidine metabolism

Citrate cycle (TCA cycle)

Alanine, aspartate and glutamate metabolism

Base excision repair

Regulation of eIF4e and p70 S6 Kinase

Role of MAL in Rho−Mediated Activation of SRF

−log(corrected p−value)
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Figure 5.21: KEGG enrichment for LY294002-regulated proteins in cluster

VI.

The KEGG enrichment of clusters I, IV and V can be found in the appendix.

Summary: Enrichment analysis - LY294002 treatment:

According to the GO enrichment analysis LY294002 the strongest influence of

the inhibitor in observed in mechanisms related to DNA replication and transla-

tion. The cluster analysis revealed a set of clusters that contain strong members

(proteins with high membership degrees), but have fluctuating protein expres-

sion profile. The expression levels of proteins that are involved in polymerization

increase over time, whereas Ras and Rho signaling was observed to be down-

regulated. Interestingly, the KEGG analysis revealed down-regulated pathway

that involve PI3K, and mTOR, the known targets of LY294002.

Regulation of autophagy related proteins

The cluster analysis of the sorafenib experiment revealed that sorafenib treat-
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ment has an impact on the expression levels of Sequestosome-1 and the WD

repeat domain phosphoinositide-interacting protein 1 (WIPI-1). Proteins related

to autophagy were not found to be regulated upon LY294002 treatment.

5.2.3 Discussion

This study presents the first unbiased system wide study on the dynamic effects

of the signal cascade inhibitors sorafenib and LY294002 in malignant melanoma

cells. 5,408 protein groups were identified and 3,465 (approximately two thirds)

could be identified and quantified in all experiments. OFFGel peptide fraction-

ation with twelve fractions per experiment was used and at least two biological

replicates were performed for each time point and treatment. The TIC chro-

matograms from the different OFFGel fraction show very different patterns. This

suggests that different fractions contain different peptide species and allows con-

cluding that the fractionation worked well. The analysis of peptide identifications,

gained from different OFFGel fractions, revealed that peptides did not spread in

more than two additional fractions. We decided to use twelve fractions in the OF-

FGel step. The peptide fractionation methodology theoretically allows separation

of up to 24 fractions, which should theoretically lead to even further reduction of

complexity, however, since each fraction was analyzed with a two h LC gradient,

followed by tandem MS. Additional fractions would increase the analysis time by

two h per fraction. It has been shown that using 24 fractions, the gain in protein

identification rate is only at 20 % compared to twelve fractions (Hubner et al.,

2008).

Fuzzy c-means clustering

Protein expression is a very dynamic process, as the cell needs to be able to

quickly adapt its protein content to external stimuli or stress situations. Ki-

nase inhibitors are strong stress factors for cells, because main functional units

(signal cascades) are inhibited. The complex influence of kinase inhibitors to

essential cellular processes can not be accurately described by picking just one

time point. In this study the global and dynamic influence of kinase inhibitors
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was analyzed using the fuzzy c-means clustering methods. A variety of differ-

ent clustering methods for high-throughput data have been suggested in recent

years. In contrast to hierarchical clustering (Meunier et al., 2007) or probabilistic

and Bayesian methods (Bensmail et al., 2005), the fuzzy c-means approach offers

some advantages compared to other methods; proteins can be assigned to several

clusters by calculating probability-like membership values. If a cluster consis-

tently contains proteins with high membership degrees, the likelihood that the

proteins in this cluster are truly co-regulated is increased compared to a cluster

that contains only proteins with low membership degrees. However a drawback

of the method is that the optimal selection of the cluster numbers is not trivial.

Six clusters were chosen, as this choice results in comparable numbers of proteins

in all clusters with strong membership degrees. Recently, Schwämmle and Jensen

(2010) introduced a method for the estimation of parameters for fuzzy c-means

clustering. Integrating those concepts for the analysis of large-scale, time-resolved

proteomics data, the application of fuzzy c-means clustering will be facilitated,

since the parameters optimization can be done automatically.

Sorafenib treatment

Cluster IV from the sorafenib cluster analysis revealed biological processes such as

the organization and maturation of rRNAs involved in ribosome activity. It also

contains the categories autophagy and Rho signaling. This enrichment is due to

proteins that are strongly down-regulated at the late time points, especially after

twelve h. These findings suggest that translational activity is reduced at late time

points, Rho GTPases and main players in the autophagy pathway are reduced

in their expression. Autophagy, the process that degrades the cell’s own com-

ponents has crucial roles in cellular homeostasis. Autophagy might significantly

contribute to cell death introduced by sorafenib. It has been found previously

that WIPI expression is dys-regulated in cancer (Proikas-Cezanne et al., 2004).

Furthermore, the expression of LC-3 is down-regulated at late time points. LC-3

expression ratios were consistently below one, however significance could only be

assigned in one experiment. This is due to the way significance is calculated.

Peptides of very low abundance need higher ratios to be accepted as significantly

regulated. The role of sorafenib in the regulation of autophagy is still unclear.
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These results suggest functional follow-up experiments, investigating the differ-

ent LC-3 isoforms that are used as an indicator of autophagy induction (Tanida

et al., 2005). It has been shown in prostate cancer cell lines that sorafenib can

induce autophagy. Ullen et al. (2010) used sorafenib at concentrations up to 25

µM and treated the cells for 72 h. These conditions are more intense compared

to the sorafenib concentrations of 13 µM and the maximum of 24 h treatment

used in this study. Furthermore the influence of sorafenib to the induction of

autophagy can not be directly compared, as different cell lines will have different

sensitivities to sorafenib treatment.

The GO term enrichment analysis of proteins showing common time-resolved

expression patterns revealed translation as an affected category in several clus-

ters. Translation was significantly regulated in clusters IV and VI. As reduced

translation is directly linked to reduced proliferation this observation can be asso-

ciated with the cell-death-inducing effects of sorafenib. Another main biological

process is the assembly of the mitochondrial respiratory chain, which is enriched

in cluster I. Cluster II is dominated by proteins that are involved in oxidative

phoshorylation and electron transport chain. The regulation of these proteins

might hint to the mitochondrial apoptotic pathway. In fact, especially the down-

regulation of proteins like cytochrome-c oxidase can suggest that the cells reduce

their respiratory activity and start to die. Recently sorafenib has been shown to

induce mitochondria-dependent oxidative stress that results in cell death. Chiou

et al. (2009) showed in their study for the first time in a hepatocellular carcinoma

cell line that sorafenib can provoke an alternative pathway for apoptosis induction

through a mitochondria-dependent oxidative stress mechanism. The involvement

of sorafenib in the mitochondrial activity was also suggested by the enrichment

analysis of KEGG categories. KEGG analysis was done for all clustered proteins

separately. Oxidative phosphorylation was the most significant KEGG pathway

among the significantly enriched pathways. Interestingly the KEGG analysis also

revealed enriched pathways for neurodegenerative diseases, such as Huntington’s,

Alzheimer’s and Parkinson’s disease. Fyn kinase was found to be down-regulated

and grouped to cluster II. This kinase is known to be involved in Parkinson’s dis-

ease (Dunah et al., 2004). The apolipoprotein E is another candidate in cluster II
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and this protein is known to be involved in Alzheimer’s disease (Wolk et al., 2010).

The KEGG analysis of cluster II also suggests the ’influence of Ras and Rho pro-

teins on G1 to S transition’ as an enriched category. CDK4, RAC1 and RHOA

are members of cluster II. In hematopoietic cells it has been shown that activated

Raf can increase CK4 expression (Chang and McCubrey, 2001). This observa-

tion can be brought forward by these data, since the decreased activity of the Raf

kinase by sorafenib treatment is known and has been confirmed by others in the

same cell line (Lasithiotakis et al., 2008). Furthermore, this findings can easily be

integrated with the hypotheses, generated from the DIGE experiments. We have

shown that the treatment with sorafenib revealed several differentially regulated

isoforms of actin and vimentin. Although not yet confirmed, the DIGE analy-

sis suggests that these isoforms might correspond to different phospho-isoforms

of those proteins. Rho kinases have previously been suggested to phosphorylate

filamentous proteins, such as vimentin. In our dataset we found Rho kinases

to be down-regulated following sorafenib treatment. These findings support the

hypotheses formulated in Chapter 3.

LY294002 treatment

The cluster analysis of the proteins regulated by LY294002 revealed six signifi-

cant clusters of co-regulated proteins. Proteins in cluster II, III, V and VI show

strong membership degrees. Proteins in clusters I and especially V show more

variations around the center of the cluster. Both clusters I and V include com-

parable low numbers of proteins and there is no clear trend of regulation. The

expression of their members appears to be rather fluctuating. This might be ex-

plained by unspecific regulation. Although all proteins included in the clustering

analysis show corrected significance ratios below the threshold of 0.05, there is

still the probability that this regulation might be independent of the treatment.

Cluster VI contains proteins involved in relevant signaling pathways, such as the

Ras or Rho signaling pathway. Crosstalk of the MAPK and PI3k-Akt path-

way has previously been investigated in the same cellular model. Lasithiotakis

et al. (2008) showed that LY294002 significantly inhibits Akt phosphorylation,
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but does not have any influence on Erk phosphorylation, suggesting no interfer-

ence of LY294002 in the Ras-Raf-Mek-Erk pathway. These data show a significant

enrichment of the Ras signaling pathway within proteins that show monotonous

reduction in expression as a function of treatment length. These findings further

suggest an indirect influence of LY294002 to the Ras pathway by down-regulating

the expression of apolipoprotein E and LIM kinase I. Apolipoprotein E has been

shown to be involved in the proliferation and survival in apoE-expressing ovarian

cancer cells (Chen et al., 2005). Although the clear mechanism is still miss-

ing, non affected Erk activity in combination with down-regulated expression

of proteins in the Ras pathway allows hypothesizing for crosstalk between the

two pathways. Intriguingly proteins that are up-regulated at early time points

followed by down-regulation at late time points, three or six h are frequently as-

sociated with metabolism and translation (especially proteins grouped in cluster

I). Whereas transcription factors are known to be immediate early genes, genes

involved in metabolism are per se not associated with early responses to pertur-

bation. However it is known that the induction of genes for the generation of

precursor metabolites, such as phosphofructokinase-1 (PFK-1), glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) and L-pyruvate kinase (L-PK) can be in-

duced very rapidly following stimulation with glucose (Roche et al., 1997). It

was found that mRNA of glycolytic enzymes can be increased by up to seven

fold as early as 30 min after stimulation. Also not commonly known as imme-

diate early genes, these results suggest that the induction of metabolic activity

as an early response to the inhibition of major signaling pathways might be of

biological relevance for the cancer cell. This mechanism might be associated with

first unspecific gene expression as a reaction to perturbation. Proteins involved

in metabolic processes are not enriched in clusters showing no or moderate regu-

lation at early time point (clusters IV to VI). Although less pronounced, similar

observations are made for the sorafenib treatment. In cluster V, the only cluster

where sorafenib regulated proteins peak at early time points, metabolic process

are enriched. In contrast to the LY29402 experiment, metabolic processes were

found to be enriched in the cluster with monotonous up-regulation (cluster II).

Some proteins were found to be equally regulated in both treatments. Prominent
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examples are the apolipoprotein E and the LIM 1 kinase. Furthermore cate-

gories related the oxidative phosphorylation and translation were also found to

be affected by both inhibitors. Although it can not be pinpointed whether the

regulation of the expression of these proteins is a direct influence of the multiple

inhibition of major signaling cascades, the disruption of the cellular homeostasis

may impact on a variety of mechanisms. Mao et al. (2007) introduced the notion

of ’balancer’ proteins. Balancer proteins are defined as proteins that buffer or

cushion a system and can therefore oppose multiple system disturbances. The

proteomic response to stimuli or perturbations results in many cases in large

numbers of regulated proteins. Mao et al. (2007) hypothesized that the observed

protein changes might partially be explained by a proteomic network response

and that mainly the modulated expression of ’balancer’ proteins can be used to

explain this response. In most quantitative proteomics experiments the protein

samples are mixed equally according the protein content. Yet if proteins appear

to be regulated by any stimulus, other proteins have to be regulated in the oppo-

site direction to balance the ’weight-loss’. Interesting future research directions

might be to investigate, if specific sets of balancing effects might be correlated to

specific perturbations of a biological system. Mao et al. (2007) based their results

on work using 2D-PAGE; using shotgun proteomics datasets, insights towards the

effects of balancer proteins can be founded on more reliable statistics and on a

much greater proteome coverage.
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Chapter 6

Conclusions and perspectives

In this thesis we developed novel methods for the analysis of proteomics experi-

ments, a map alignment method for DIGE-based proteomics and a probabilistic

method for the integration of different tandem MS search engine results. Pro-

teomics methods were applied to an important topic in cancer research, the pro-

filing of modulated protein expression following treatment with small molecular

weight kinase inhibitors. Proteomics has classically been done by using 2D-PAGE

to separate proteins before the mass spectrometric identification. In recent years

shotgun methods have gained popularity as methods for whole proteome anal-

ysis. In this last chapter the results gained from gel-based approaches will be

compared to those gained from SILAC-based shotgun analyses. Future research

directions will be indicated accordingly. Furthermore we will speculate about the

future impact of proteomics and high-throughput biology to cancer research.

The innovation of difference gel electrophoresis (DIGE) was a great asset for

2D-PAGE based proteomics. The technology allows separating up to three pro-

teomes on one gel. Before the invention of the CyDye labeling every sample had

to be separated on different 2D gels. The use of CyDye labels for 2D-PAGE allows

separating several samples on one gel. This results in a perfect matching of sam-

ples separated on the same gel. However, in most experiments it is not enough to

run one DIGE gel, as more samples are necessary for statistical analysis. Running

several DIGE gels, the matching problem is essentially the same as in classical

2D-PAGE without CyDye labeling. Protein spots need to be matched across gels.
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Although the graph-based method that was developed in this thesis facilitates this

task, the technology has other drawbacks. The whole analysis workflow is very

labor-intensive, because all steps need manual intervention. The main advantage

of 2D gel analysis is the analysis of protein isoforms. Proteins are separated ac-

cording to their isoelectric point and their molecular mass. These properties allow

separating most isoforms, such as phosphorylated isoforms or cleaved proteins.

In Chapter 3 we have shown that the cytoskeleton proteins β-actin and vimentin

occur in different isoforms that are differentially regulated. Shotgun proteomics

experiments, in contrast, investigate peptides, the smaller fragments of proteins,

and do not analyze intact proteins. The detection of isoforms is by far not as

easy as on a 2D PAGE. Identified peptides can originate from various isoforms of

the same gene product. To account for proteins that are indistinguishable based

their identified peptides the term protein group is frequently used in shotgun

proteomics. A protein group refers to all proteins that originate from the same

gene. Approaches to overcome this drawback of shotgun proteomics are special-

ized workflows, designed for the enrichment of specific isoforms of proteins, such

as phosphorylated (Olsen et al., 2006), acetylated (Basu et al., 2009) or ubiqui-

tinated (Peng et al., 2003) forms of proteins. Although such dedicated protocols

increase the workload, the gain of information is high. One important advantage

of gel-free proteomics is the potential for high automation. Using state of the art

auto sampling injectors in combination with liquid chromatography systems that

are online coupled to a mass spectrometer, the whole experimental workflow from

the tryptic peptide to the raw LC-MS data can be automated. Running the ex-

periment with calibrated instruments and defined methods, complete automation

of the data analysis process is possible. In contrast to the 2D-PAGE approach,

the automation in shotgun workflows reduces the degree of subjectivity tremen-

dously. In conclusion, the main advantage of gel-based proteomics, the resolution

of isoforms, might be important to specialized questions; however, the depth of

the proteome, phosphoproteome or the acetylome that is be covered by shotgun

proteomics, is very suitable for global system-wide analyses. It is foreseeable

that the importance of gel-free approaches in proteomics will increase further.

Future research directions in proteomics should focus on proteome-wide profiling

of multiple modifications in parallel. This demanding task, if accompanied by
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protein expression analysis, will allow to assess the stoichiometry of modification

site occupancy. Such data might yield unprecedented insights to the biological

system.

The second major result of this thesis is the development of a computational

framework for the integration of multiple search engines. We showed that this new

approach significantly increases the peptide identification rates in shotgun pro-

teomics. Although methods for the combination of search engines have been sug-

gested before, the consensus scoring method, presented here, is the first method

that considers peptide similarity if search engines do not agree on their suggested

peptide-spectrum match. The comparison of different algorithms, that are widely

used for peptide identification also showed that the performance of single engines

can vary in different datasets. Taken together, this suggests that multiple search

engines should be applied in high-throughput studies. It has been shown that

this technique is highly beneficial, even for high-accuracy datasets, where high

precision mass measurements facilitate the annotation of tandem MS spectra. Fu-

ture research directions in the post-processing of database search results can be

the integration of multi-pass methodologies and especially the statistical assess-

ment of results gained from multi-pass strategies. Multi-pass strategies perform

several runs of the search engine by integrating information from the previous

run. A common multi-pass search strategy selects a subset of proteins, which

have been reliably identified by an initial search, and constructs a new database

with only those proteins that have already been found. This strategy relies on

the assumption that if peptides from a protein have already been found, there

is a high change that the unidentified spectra correspond to the other peptides

from the same proteins. Additional search runs are then performed with different

modification settings, allowing more missed cleavages or polymorphisms. Cur-

rent multi-pass solutions (e.g., X!Tandem’s refinement function) do not properly

provide solutions to assess the significance of results gained by repeated searches

against a smaller database. Besides the development of strategies for scoring with

multiple engines, the construction of spectral libraries is a strategy that will gain

importance in the future. It has become evident that a relatively large fraction of

peptides is rediscovered in every proteomics experiment. This might be avoided
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by intelligent design of libraries based on retention time and accurate mass of

the precursor ions combined with algorithms for on the fly decision if a precursor

needs to be subjected to tandem mass spectrometry analysis or not. The de-

velopment of novel computational and mass spectrometric methods that enable

such workflows might become a further direction of proteomics research.

Throughout the thesis, proteomics technology has been applied to open questions

in cancer research. All experiments, investigating the effects of kinase inhibitors

to global protein expression, were done using cancer cell lines. Such cancer cell

lines are very appropriate models to study the disease in the laboratory. For

quantitative proteomics, cell line models can easily be SILAC-labeled, allowing

accurate proteome-wide quantitation of protein expression. However, important

aspects for clinical applications are neglected by looking only at cell culture mod-

els. Genetic variability, tissue environment and different life conditions are play-

ing important roles in the development of cancers in eukaryotic organisms and

especially in humans. These factors can only be addressed by looking at clinical

samples. The analysis of the latter will become more important in future direc-

tions of proteomics-based cancer research. The decreased sample amount and the

inability for stable isotope labeling may be reasons why proteomics was so far not

successful with clinical samples. The ultimate goal for high-throughput platforms

in clinical applications is the discovery of drug targets or biomarker molecules.

Biomarkers are disease-related molecules that function as monitors for disease

progression, status or therapy effectiveness. Drug targets are key molecules in-

volved in a particular metabolic or signaling pathway that is specific to a disease

condition or pathology, or to the infectivity or survival of a microbial pathogen

(Kaplan, 2007). The future of proteomics applications in clinical research, how-

ever, is promising. Mass spectrometric technology has reached a level where very

sensitive and reproducible assays can be brought to clinical application. Accom-

panied by further development in computational proteomics, as discussed above,

high-throughput analyses of different tissues from patients will become possible.

The general advantage of proteomics methods over more classical, hypothesis-

driven methods for protein identification and quantitation, such as western blot-
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ting, is the ability to profile large parts of the expressed proteome in parallel. In

this way high-throughput proteomics experiments will create large datasets that

are very valuable for molecular biology and especially for the emerging field of sys-

tems biology. Proteomics being just one example of a high-throughput platform,

future investigations on complex questions should employ global analyses on dif-

ferent biological levels, such as the genome, transcriptome and the metabolome.

All these data need to be integrated in the right way to mine this information.

The community will need better methods for data processing and data mining to

allow rapid queries of such system-wide comprehensive datasets. Only properly

measured and analyzed high-throughput data will allow mathematical model-

ing. Theoretical models of cellular mechanisms can significantly contribute to

discover aspects in this mechanisms that can not be seen, by a purely qualitative

assessment of the data.
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Appendix

A.1 PAM30MS substitution matrix

PAM (point accepted mutation) matrices belong to the first amino acid substitu-

tion matrices. In 1970, The concept of PAM matrices was developed by Dayhoff

et al. (1978). The entries in the PAM matrices are calculated on the basis of

closely related proteins. The PAM1 matrix indicates the rate of expected amino

acid substitutions, if 1 % of the amino acids would be changed. In this case the

proteins would have 99 % sequence identity. The PAM1 matrix is used as the

basis for calculating other matrices by assuming that repeated mutations would

follow the same pattern as those in the PAM1 matrix, and multiple substitutions

can occur at the same site (Fulekar, 2009). The PAM30 matrix is one of the

most commonly used matrix. In the PAM30MS, a similarity based on tandem

MS peptide spectra is added integrated into the PAM similarity concept. The

substitution probabilities in a PAM matrices are multiplied by 1,000.

145



A. APPENDIX
T
a
b
le

A
.1
:

T
h

e
P

A
M

30
M

S
su

b
st

it
u

ti
on

m
at

ri
x
.

te
st

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

B
Z

X
*

A
6

-7
-4

-3
-6

-4
-2

-2
-7

-5
-6

-7
-5

-8
-2

0
-1

-1
3

-8
-2

-7
-6

0
-1

7

R
-7

8
-6

-1
0

-8
-2

-9
-9

-2
-5

-7
0

-4
-9

-4
-3

-6
-2

-1
0

-8
5

-1
0

-1
7

N
-4

-6
8

2
-1

1
-3

-2
-3

0
-5

-6
-1

-9
-9

-6
0

-2
-8

-4
-8

-4
-2

0
-1

7

D
-3

-1
0

2
8

-1
4

-2
2

-3
-4

-7
-1

0
-4

-1
1

-1
5

-8
-4

-5
-1

5
-1

1
-8

-7
-3

0
-1

7

C
-6

-8
-1

1
-1

4
1
0

-1
4

-1
4

-9
-7

-6
-1

1
-1

4
-1

3
-1

3
-8

-3
-8

-1
5

-4
-6

-1
1

-1
4

0
-1

7

Q
-4

-2
-3

-2
-1

4
8

1
-7

1
-8

-7
-3

-4
-1

3
-3

-5
-5

-1
3

-1
2

-7
-3

4
0

-1
7

E
-2

-9
-2

2
-1

4
1

8
-4

-5
-5

-7
-4

-7
-1

4
-5

-4
-6

-1
7

-8
-6

-7
-2

0
-1

7

G
-2

-9
-3

-3
-9

-7
-4

6
-9

-1
1

-1
1

-7
-8

-9
-6

-2
-6

-1
5

-1
4

-5
-8

-7
0

-1
7

H
-7

-2
0

-4
-7

1
-5

-9
9

-9
-8

-6
-1

0
-6

-4
-6

-7
-7

-3
-6

-4
-3

0
-1

7

I
-5

-5
-5

-7
-6

-8
-5

-1
1

-9
8

5
-6

-1
-2

-8
-7

-2
-1

4
-6

2
-6

-7
0

-1
7

L
-6

-7
-6

-1
0

-1
1

-7
-7

-1
1

-8
5

5
-7

0
-3

-8
-8

-5
-1

0
-7

0
-7

-7
0

-1
7

K
-7

0
-1

-4
-1

4
-3

-4
-7

-6
-6

-7
7

-2
-1

4
-6

-4
-3

-1
2

-9
-9

5
4

0
-1

7

M
-5

-4
-9

-1
1

-1
3

-4
-7

-8
-1

0
-1

0
-2

1
1

-4
-8

-5
-4

-1
3

-1
1

-1
-3

-3
0

-1
7

F
-8

-9
-9

-1
5

-1
3

-1
3

-1
4

-9
-6

-2
-3

-1
4

-4
9

-1
0

-6
-9

-4
2

-8
-1

2
-1

4
0

-1
7

P
-2

-4
-6

-8
-8

-3
-5

-6
-4

-8
-8

-6
-8

-1
0

8
-2

-4
-1

4
-1

3
-6

-5
-5

0
-1

7

S
0

-3
0

-4
-3

-5
-4

-2
-6

-7
-8

-4
-5

-6
-2

6
0

-5
-7

-6
-4

-5
0

-1
7

T
-1

-6
-2

-5
-8

-5
-6

-6
-7

-2
-5

-3
-4

-9
-4

0
7

-1
3

-6
-3

-5
-4

0
-1

7

W
-1

3
-2

-8
-1

5
-1

5
-1

3
-1

7
-1

5
-7

-1
4

-1
0

-1
2

-1
3

-4
-1

4
-5

-1
3

1
3

-5
-1

5
-7

-1
3

0
-1

7

Y
-8

-1
0

-4
-1

1
-4

-1
2

-8
-1

4
-3

-6
-7

-9
-1

1
2

-1
3

-7
-6

-5
1
0

-7
-1

0
-1

1
0

-1
7

V
-2

-8
-8

-8
-6

-7
-6

-5
-6

2
0

-9
-1

-8
-6

-6
-3

-1
5

-7
7

-9
-8

0
-1

7

B
-7

5
-4

-7
-1

1
-3

-7
-8

-4
-6

-7
5

-3
-1

2
-5

-4
-5

-7
-1

0
-9

5
1

0
-1

7

Z
-6

-1
-2

-3
-1

4
4

-2
-7

-3
-7

-7
4

-3
-1

4
-5

-5
-4

-1
3

-1
1

-8
1

4
0

-1
7

X
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-1
7

*
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
-1

7
1

146



A.2 Marginal distribution

A.2 Marginal distribution

Lemma 1. The marginal distribution of x is a mixture of Gaussian distributions

p(x) =
K∑
k=1

πkN(x|µk, σk)

Proof. In Chapter 2 the general mixture model and the marginal distribution were

introduced. Let us introduce z = {z1, ..., zk}, a k-dimensional, binary random

variable with

∃ i with zi = 1 and ∀ j 6= i : zj = 0.

This is formulated as: zj ∈ {0; 1}∀j and
∑k

j=1 zj = 1. For the joint distribution

p(x, z) := p(z) p(x|z)

we can denote

p(zk = 1) = πk

with the πi satisfying the criteria introduced above

0 ≤ πi ≤ 1;
∑
i

πi = 1

In that sense πi are valid probabilities and p(z) can thus be written as

p(z) =
k∏
j=1

π
zj
j

In a similar way, we can write the conditional distribution of x for a given value

of z as a Gaussian

p(x|zk = 1) = N(x|µk, σk)

which equals

p(x|z) =
K∏
k=1

N(x|µk, σk)zk
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For the joint distribution of p(z)p(x|z) we get

p(x) =
∑
z

p(z)p(x|z) =
K∑
k=1

πkN(x|µk, σk)

A.3 Determination of significance of SILAC ra-

tios

The significance of a differentially regulated protein was determined as follows

(these calculations are based on the significance A and significance B formulas

described by (Cox and Mann, 2008)). We assume a normal distribution (µ=0 and

σ=1) of the natural logarithms of all ratios. r−1, r0 and r1 respectively correspond

to the 15.87, 50, and 84.13 percentiles of all ratios. z is defined as the significance

measure for a ratio r.

z =

{
r−r0
r1−r0 , for r > r0
r0−r
r0−r−1

, for r < r0

Given a ratio r ∈ R, the probability that any ratio (random variable)X ∈ N(µ, σ2)

takes a value less or equal to r is given by

P {X ≤ r} =

∫ r

−∞
f(x)dx =

∫ r

−∞

1

σ
e−

(x−µ)2

2σ2 dx

The Gaussian error function is defined as,

erf(x) =
1√
2π

∫ x

0

e
−y2
2

with x = r−µ
σ

, which corresponds the z-transformation of the ratio r, we get

P {X ≤ r} =

{
0.5− erf(µ−r

σ
), for r ≤ µ

0.5 + erf( r−µ
σ

), for r ≥ µ

The probability that any measurement X is in [−r, r] is

P {X ≤ r} − P {X ≤ −r} = 0.5 + erf(
µ− r
σ

)− (0.5− erf(
r − µ
σ

))
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⇔ erf(
r − µ
σ

) + erf(
µ− r
σ

)

⇔ 2erf(
r − µ
σ

)

⇔ erf(
r − µ
σ
√

2
)

The probability that any measurement X is not in [−r, r] is thus,

P {X ≥ r} = 1− erf(
r − µ
σ
√

2
) = erfc(

r − µ
σ
√

2
)

with the percentiles as defined above, we have

erfc(
r − µ
σ
√

2
) = erfc(

r − r0
(r1 − r0)

√
2

)

⇔ erfc(
z√
2

)

with z ≥ 0 ∀ r ∈ <
P {X ≥ r} =

1

2
erfc(

z√
2

)

To account for the intensity dependence of the ratio, all proteins are binned in

intensity bins. One intensity bin contains at least 300 proteins (Cox and Mann,

2008). All calculations above are done in each intensity bin separately. A protein

with ratio r was set to be differentially regulated if the significance was 5 % or

smaller. This 5 % significance is the likelihood to observe proteins with a ratio

significance measure z that high or higher. This can loosely by interpreted as a 5

% probability that the null hypothesis, differentially expressed protein, is wrong.

If proteins were found to be differentially regulated following DMSO and inhibitor

treatment, the regulation in the inhibitor experiment had to be twice as high as

in the DMSO treatment to accept this differential regulation.

A.4 KEGG categories

Sorafenib-regulated proteins grouped in cluster I and III did not reveal any signif-

icant KEGG enrichment results. The results from the KEGG enrichment analysis

of the proteins, grouped in clusters IV, V and VI are shown in Fig. A.1. KEGG

enrichment results for the LY294002-regulated proteins grouped in clusters I, II,

IV and V are shown in Fig. A.2.
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Figure A.1: KEGG enrichment for sorafenib-regulated proteins in clusters

IV, V and VI.

A.5 Reproducibility in shotgun proteomics

A.5.1 Reproducibility of SILAC ratios

In the scientific literature there has always been a discussion on the reproducibil-

ity in shotgun proteomics. Issues on the reproducibility in shotgun proteomics

have been systematically investigated by Tabb et al. (2010). Cultivation of mam-

malian cells produces the protein material that is used in many proteomics re-
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Figure A.2: KEGG enrichment for LY294002-regulated proteins in clusters

I, II, IV and V.

search projects. The assess the biological reproducibility of the results obtained

by quantitative shotgun proteomics, different analyses have to be performed. For

each analysis new biological material is used. These independent assays can ei-

ther be based on parallel or consecutive cell culture experiments.

Parallel cell culture

In a parallel cultivation all cells originate from the same split population. The
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cells that are subsequently used to evaluate the biological reproducibility of the

experiment are grown at the same time in the same incubator. The cells are split

at the same time.

Consecutive cell culture

In contrast to parallel cultivation, cells can be grown in consecutive cultivation.

This means that the experiment is repeated at a different times and the initial

cells are not split populations from the some culture dish. In the studies for

this thesis, for both inhibitors two consecutive cell culture experiments were per-

formed. The time gap between the two experiments is in the range of six months.

Biological and technical reproducibility were investigated.

The following plots show the reproducibility of SILAC ratios. The SILAC ra-

tios correspond to the quotients 12 hours DMSO / t0 for the parallel cultivation,

and 12 hours sorafenib / t0 and 12 hours Ly294002 / t0, respectively for the

consecutive cultivation. t0 denotes the time point zero without any treatment.

Reproducibility of consecutive cultivation was investigated with 451Lu cells that

were grown in April 2009 (run1) and in November 2009 (run2). Reproducibility

of parallel cultivation is based on the cultivation from November 2009. The com-

parison of cell populations that were grown in parallel are shown in Fig. A.3. In

run1 and run2 two different dishes of cells grown on M medium were treated with

DMSO for 12 hours. Protein extracts from both cell populations were compared

to cells grown on L medium in separate LC-MS runs. The red bars correspond

to ratios from experiment one and the blue bars are ratios from experiment two.

Green bars show proteins with common regulation in both experiments. Dark

green shows significant regulation. Most of the proteins had common regulation

in both experiments. Approximately 20 % of all proteins show different direc-

tions of expression. These proteins are shown in the middle of the block with red

(run1) and blue (run2) colors. The rest of the proteins show the same direction

of expression. In dark green the plot highlights proteins whose expression has

significant p-values in either of the experiments and the same direction in both

experiments. A contaminant protein was found as the only identified protein

with significant regulation in different directions during the parallel experiments
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(Tbl. A.2). All non contaminant proteins with significant regulation are regulated

in the same direction.

 ratios

pr
ot

ei
ns

−4 −2 0 2 4−4 −2 0 2 4−4 −2 0 2 4−4 −2 0 2 4

Run1 and Run2
p<0.05
Run1
Run2:

Figure A.3: Parallel culture and DMSO treatment. The x-axis corresponds

to log2 ratios of the two parallel experiments. The bars correspond to different

proteins.

The comparison of consecutive LY294002 treatments is shown in Fig. A.4.

For this comparison the cells were grown on M medium and treated with LY for

12 hours. The expression was compared to untreated cells grown on L medium.

The number of proteins with different directions in their log scaled ratios is sig-

nificantly increased compared to the DMSO treatment in parallel culture. The

proteins that are significantly regulated in different directions can be found in

Tbl. A.3. Interestingly 67 % of the proteins whose regulation is significant in dif-
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Table A.2: Biological reproducibility of DMSO treatment in Parallel cultiva-

tion. One contaminant protein with significant regulation in opposite directions

in two consecutive experiments.

Protein names log2 ratio run1 log2 ratio run2

1 Keratin, type II cytoskeletal 6A 2.42 -3.14

ferent direction, are mitochondrial proteins. The other 35 % cannot be grouped

by common properties.
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 ratios

pr
ot

ei
ns

−4 −2 0 2 4−4 −2 0 2 4−4 −2 0 2 4−4 −2 0 2 4

Run1 and Run2
p<0.05
Run1
Run2:

Figure A.4: Consecutive culture and Ly294002 treatment. Both runs from

12 h treatment. The red bars correspond to ratios from experiment one/

treatment of 12 h and the blue bars are ratios from experiment two/ treatment

12 h. Green bars show proteins with common regulation in both experiments.

Dark green shows significant regulation.

155



A. APPENDIX
T
a
b
le

A
.3
:

B
io

lo
gi

ca
l

re
p

ro
d

u
ci

b
il

it
y

of
so

ra
fe

n
ib

tr
ea

tm
en

t
in

co
n

se
cu

ti
ve

cu
lt

iv
at

io
n

.
P

ro
te

in
s

w
it

h
si

g
n

ifi
ca

n
t

re
gu

la
ti

on
in

op
p

os
it

e
d

ir
ec

ti
on

s
in

tw
o

co
n

se
cu

ti
ve

ex
p

er
im

en
ts

.

ID
s

P
ro

te
in

n
a
m

e
s

ru
n

1
ru

n
2

1
S
er

in
e

h
y
d
ro

x
y
m

et
h
y
lt

ra
n
sf

er
as

e,
m

it
o
ch

on
d
ri

al
0.

55
-0

.4
9

2
N

A
D

H
d
eh

y
d
ro

ge
n
as

e
[u

b
iq

u
in

on
e]

1
al

p
h
a

su
b

co
m

p
le

x
su

b
u
n
it

9,
m

it
o
ch

on
d
ri

al
0.

61
-1

.0
8

3
E

le
ct

ro
n

tr
an

sf
er

fl
av

op
ro

te
in

su
b
u
n
it

b
et

a
0.

57
-0

.5
2

4
L

on
p
ro

te
as

e
h
om

ol
og

,
m

it
o
ch

on
d
ri

al
0.

75
-0

.6
7

5
S
tr

es
s-

70
p
ro

te
in

,
m

it
o
ch

on
d
ri

al
0.

47
-0

.6
7

6
S
o
d
iu

m
/p

ot
as

si
u
m

-t
ra

n
sp

or
ti

n
g

A
T

P
as

e
su

b
u
n
it

b
et

a-
3

0.
81

-0
.7

7
E

le
ct

ro
n

tr
an

sf
er

fl
av

op
ro

te
in

su
b
u
n
it

al
p
h
a,

m
it

o
ch

on
d
ri

al
0.

72
-0

.4
2

8
N

A
D

-d
ep

en
d
en

t
m

al
ic

en
zy

m
e,

m
it

o
ch

on
d
ri

al
0.

68
-0

.7
1

9
C

y
to

ch
ro

m
e

b
-c

1
co

m
p
le

x
su

b
u
n
it

1,
m

it
o
ch

on
d
ri

al
0.

53
-0

.5
2

10
A

co
n
it

as
e

2,
m

it
o
ch

on
d
ri

al
0.

47
-0

.5
8

11
28

S
ri

b
os

om
al

p
ro

te
in

S
29

,
m

it
o
ch

on
d
ri

al
0.

87
-0

.9
1

12
T

ra
n
sm

em
b
ra

n
e

p
ro

te
in

11
1

0.
48

-0
.8

9
13

T
ra

n
sm

em
b
ra

n
e

em
p
24

d
om

ai
n
-c

on
ta

in
in

g
p
ro

te
in

9
0.

38
-0

.5
2

14
P

u
ta

ti
ve

R
N

A
-b

in
d
in

g
p
ro

te
in

3
-0

.3
8

0.
7

15
N

A
D

H
d
eh

y
d
ro

ge
n
as

e
[u

b
iq

u
in

on
e]

ir
on

-s
u
lf

u
r

p
ro

te
in

2,
m

it
o
ch

on
d
ri

al
0.

6
-1

.1
16

C
it

ra
te

sy
n
th

as
e,

m
it

o
ch

on
d
ri

al
0.

67
-0

.7
9

17
C

er
oi

d
-l

ip
of

u
sc

in
os

is
n
eu

ro
n
al

p
ro

te
in

5
-0

.6
0.

45
18

S
u
cc

in
y
l-

C
oA

:3
-k

et
oa

ci
d
-c

o
en

zy
m

e
A

tr
an

sf
er

as
e

1,
m

it
o
ch

on
d
ri

al
0.

59
-0

.8
5

19
E

lo
n
ga

ti
on

fa
ct

or
T

u
,

m
it

o
ch

on
d
ri

al
0.

64
-0

.6
1

20
cD

N
A

F
L

J
56

42
5,

m
it

o
ch

on
d
ri

al
(E

C
1.

3.
99

.-
)

0.
77

-0
.5

21
G

rp
E

p
ro

te
in

h
om

ol
og

1,
m

it
o
ch

on
d
ri

al
0.

75
-0

.6
4

22
H

ea
t

sh
o
ck

p
ro

te
in

75
k
D

a,
m

it
o
ch

on
d
ri

al
0.

61
-0

.5
1

23
T

ri
fu

n
ct

io
n
al

en
zy

m
e

su
b
u
n
it

al
p
h
a,

m
it

o
ch

on
d
ri

al
0.

4
-0

.7
2

C
on

ti
n
u
ed

on
n
ex

t
p
ag

e

156



A.5 Reproducibility in shotgun proteomics
T

a
b
le

A
.3

–
co

n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

ID
s

P
ro

te
in

n
a
m

e
s

ru
n

1
ru

n
2

24
28

S
ri

b
os

om
al

p
ro

te
in

S
35

,
m

it
o
ch

on
d
ri

al
0.

64
-0

.7
6

25
P

ro
b
ab

le
as

p
ar

ag
in

y
l-

tR
N

A
sy

n
th

et
as

e,
m

it
o
ch

on
d
ri

al
0.

75
-0

.8
2

26
A

ld
eh

y
d
e

d
eh

y
d
ro

ge
n
as

e
X

,
m

it
o
ch

on
d
ri

al
0.

73
-0

.6
27

U
n
ch

ar
ac

te
ri

ze
d

p
ro

te
in

K
IA

A
20

13
0.

48
-1

.5
28

S
D

H
A

p
ro

te
in

0.
44

-0
.7

2
29

D
el

ta
-1

-p
y
rr

ol
in

e-
5-

ca
rb

ox
y
la

te
d
eh

y
d
ro

ge
n
as

e,
m

it
o
ch

on
d
ri

al
0.

63
-1

.3
6

30
A

n
n
ex

in
A

1
0.

58
-0

.5
7

31
G

lu
ta

m
in

as
e

k
id

n
ey

is
of

or
m

,
m

it
o
ch

on
d
ri

al
0.

36
-0

.6
3

32
A

T
P

sy
n
th

as
e

su
b
u
n
it

b
et

a,
m

it
o
ch

on
d
ri

al
0.

65
-0

.4
4

33
M

it
o
ch

on
d
ri

al
im

p
or

t
in

n
er

m
em

b
ra

n
e

tr
an

sl
o
ca

se
su

b
u
n
it

T
IM

44
0.

71
-0

.9
6

34
cD

N
A

F
L

J
56

15
3,

tr
an

sc
ri

p
t

va
ri

an
t

1
0.

57
-0

.7
9

35
S
to

m
at

in
-l

ik
e

p
ro

te
in

2
0.

89
-0

.7
1

36
M

it
o
ch

on
d
ri

al
ca

rr
ie

r
h
om

ol
og

1
0.

76
-1

.0
6

37
P

y
rr

ol
in

e-
5-

ca
rb

ox
y
la

te
re

d
u
ct

as
e

2
0.

61
-0

.8
38

T
ra

n
sf

or
m

in
g

p
ro

te
in

R
h
oA

0.
4

-0
.5

5
39

P
y
rr

ol
in

e-
5-

ca
rb

ox
y
la

te
re

d
u
ct

as
e

0.
78

-0
.8

1
40

C
oi

le
d
-c

oi
l

an
d

C
2

d
om

ai
n
-c

on
ta

in
in

g
p
ro

te
in

1B
-1

.8
3

5.
9

41
L

eu
ci

n
e-

ri
ch

P
P

R
m

ot
if

-c
on

ta
in

in
g

p
ro

te
in

,
m

it
o
ch

on
d
ri

al
0.

48
-0

.7
4

42
60

k
D

a
h
ea

t
sh

o
ck

p
ro

te
in

,
m

it
o
ch

on
d
ri

al
0.

49
-0

.7
3

157



A. APPENDIX

The results from the same analysis with sorafenib treated cells can be found

in Fig. A.5. Two consecutive cultivation experiments were performed. 12 hours

sorafenib treatment was compared to t0. The percentage of proteins that show

different signs in the log2 ratios is comparable to the observations from the LY

experiment (Fig. A.4), however the number of proteins with opposite significant

regulation is below to one observed above. 20 % of the proteins with different

regulation are again mitochondrial proteins and another 20 % are found to be

ribosomal proteins. Another significant part of those proteins ( 25 %) are associ-

ated with the cytoskeleton.
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A.5 Reproducibility in shotgun proteomics

Table A.4: Biological reproducibility of LY294002 treatment in consecutive

cultivation. Proteins with significant regulation in opposite directions in two

consecutive experiments.

Protein names log2 ratio run1 log2 ratio run2

1 Keratin, type I cytoskeletal 10 0.39 -5.41

2 Protein transport protein Sec61 subunit gamma 0.35 -0.86

3 PRA1 family protein 3 0.52 -0.45

4 28S ribosomal protein S21, mitochondrial 0.45 -0.82

5 Putative RNA-binding protein 3 -0.35 0.66

6 Lamina-associated polypeptide 2, isoforms beta/gamma 0.52 -1.11

7 Long-chain-fatty-acid–CoA ligase 3 0.27 -0.32

8 Growth arrest-specific protein 7 -0.55 0.31

9 Elongation factor G 2, mitochondrial 1.25 -3.72

10 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 0.35 -0.36

11 60S ribosomal protein L3-like 6.06 -4.99

12 Adipophilin 0.53 -1.36

13 28S ribosomal protein S31, mitochondrial 0.54 -1.44

14 DNA-dependent protein kinase catalytic subunit 0.26 -0.7

15 Heat shock 70 kDa protein 1 0.25 -0.43

16 Fibronectin type-III domain-containing protein 3a -0.38 0.46

17 NADH-ubiquinone oxidoreductase 75 kDa subunit 0.59 -0.43

18 Coiled-coil and C2 domain-containing protein 1B -1.79 5.8

19 Sterol O-acyltransferase 1 0.54 -0.57

20 60 kDa heat shock protein, mitochondrial 0.78 -0.29
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A. APPENDIX

 ratios

pr
ot

ei
ns

−4 −2 0 2 4−4 −2 0 2 4−4 −2 0 2 4−4 −2 0 2 4

Run1 and Run2
p<0.05
Run1
Run2:

Figure A.5: Consecutive culture and sorafenib treatment. Both runs from

12 h treatment. The red bars correspond to ratios from experiment one/

treatment of 12 h and the blue bars are ratios from experiment two/ treatment

12 h. Green bars show proteins with common regulation in both experiments.

Dark green shows significant regulation.
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Appendix B

Curriculum vitae

Education

12/2006 - 12/2010
PhD Eberhard-Karls University Tübingen, Joint

PhD thesis, Proteome Center, Tübingen (Prof.
Boris Macek/ Prof. Alfred Nordheim) and Cen-
ter for Bioinformatics (Prof. Oliver Kohlbacher),
Germany.

01/2006 - 11/2006
Master thesis University of Cambridge, UK.

09/2003 - 09/2006
Diplôme d’Ingnieur
en Biotechnologie

Ecole Supérieure de Biotechnologie de
Strasbourg, France.

09/2001 - 09/2003
Vordiplom
Biomathematics

University of Greifswald, Germany.

161



B. CURRICULUM VITAE

Scientific work experience

11/2009 to present
Team leader Or-
bitrap mass spec-
trometry

Eberhard-Karls University Tübingen, Pro-
teome Center, Tübingen, Germany.

01/2007 to 01/2010
Teaching assistant
in course work in
systems biology, sys-
tems immunology and
bioinformatics II

Eberhard-Karls University Tübingen, Center
for Bioinformatics, Germany.

01/2007 to 01/2010
Teaching assistant
in course and lab work
in proteomics

Eberhard-Karls University Tübingen, Pro-
teome Center Tübingen, Germany.

10/2007 - present
Software develop-
ment as part of the
OpenMS team

Eberhard-Karls University Tübingen, Center
for Bioinformatics, Germany.

10/2005 - 11/2005
Internship student
Bioinformatics

IGBMC Strasbourg, Bioinformatics Core Facil-
ity, France.

6/2005 - 7/2005
Internship student
Molecular biology

Tumorbiology Research Center, Freiburg,
Germany.

6/2004 - 7/2004
Internship student
Biomathematics

Politecnico di Torino, Turin, Italy.
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Publications

Peer reviewed papers

• K. Krug, S. Nahnsen and B. Macek. Mass spectrometry at the interface of

proteomics and genomics. 2010. Mol Biosyst. 2010 Oct 21. Epub ahead of

print.

• E. Schwarz, P. Whitfield, S. Nahnsen, L. Wang, H. Major, F. M. Leweke,

D. Koethe, P. Lio, S. Bahn. Alterations of primary fatty acid amides in

serum of patients with severe mental illness. 2010. In press: Frontiers in

Bioscience.

• S. Nahnsen, A. Bertsch, J. Rahnenfürer, A. Nordheim and O. Kohlbacher.

Probabilistic consensus scoring improves tandem mass spectrometry pep-

tide identification. 2010. Submitted to J Proteome Res.: in revision.

• T. Sinnberg, M. Menzel, S. Kaesler, T. Biedermann, B. Sauer, S. Nahnsen,

M. Schwarz, C. Garbe and B. Schittek . Suppression of Casein Kinase

1α in Tumor Cells Induces a Switch in β-Catenin Signaling to Promote

Metastasis. 2010. Cancer Res. 2010 Sep 1;70(17):6999-7009. Epub 2010

Aug 10.

• A. Bertsch, S. Jung, A. Zerck, N. Pfeifer, S. Nahnsen, C. Henneges, A.

Nordheim and O. Kohlbacher. Optimal selection and scheduling of MRM

transitions for rapid quantitation assay development. 2010. J Proteome

Res. 2010 May 7;9(5):2696-704.

• S. Nahnsen, A. Nordheim and O. Kohlbacher. A geometric matching ap-

proach improves throughput and accurary in DIGE based proteomics. 2009.

In Proceedings of the 6th international workshop for computational systems

biology.
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Manuscripts in preparation

• S. Nahnsen, S. Freiberger, T. Proikas-Cezanne, O. Kohlbacher, B. Macek,

A. Nordheim. Global protein expression dynamics in tumor cells following

pharmacological intervention.
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Diploma thesis

• S. Nahnsen High Throughput Metabolomics Profiling of Disease and Medi-

cation Effects in Schizophrenia. Diploma thesis, Ecole Suprieure de biotech-

nology de Strasbourg, Strasbourg, France, 2006.

Poster Publications

• S. Nahnsen, O. Kohlbacher, A. Nordheim and B. Macek. Global protein

expression dynamics in human tumor cells upon treatment with the Raf

inhibitor sorafenib. In: Proceedings of the 58th Conference of the ASMS,

Salt Lake City 2010, Poster abstract.

• S. Nahnsen, A. Bertsch, J. Rahnenfürer, A. Nordheim and O. Kohlbacher.

Probabilistic consensus scoring improves tandem mass spectrometry pep-

tide identification. In: Proceedings of the 57th Conference of the ASMS,

Philadelphia 2009, Poster abstract.

• S. Nahnsen, S.H. Rho, A. Bertsch, O. Kohlbacher, A. Nordheim. Integrative

transcriptomic and proteomic profiling of tumor cells upon pharmacological

intervention In: Proceedings of the 9th International Conference of Systems

Biology, Gothenborg 2008, Poster abstract.

• E. Schwarz, S. Nahnsen, M. Leweke, D. Koethe, S. Gross, H. Major, S.

Bahn. Metabolic profiling of serum from patients suffering from schizophre-

nia and affective disorder In: Proceedings of the 55th Conference of the

ASMS, Indianapolis 2007, Poster abstract.

• S. Nahnsen, E. Schwarz, S. Bahn. Multivariate profiling of psychotropic

drug action In: Perspectives of Metabolomics and Proteomics Investigations

in Clinical Science, Rome 2006, Poster abstract.

• H. Major, T. McKenna, C. Hughes, J. Vissers, J. Huang, S. Nahnsen, S.

Bahn, E. Schwarz. Metabolic and proteomic profiling of cerebrospinal fluid

and serum for schizophrenia In: Proceedings of the 54th Conference of the

ASMS, Washington 2006, Poster abstract.
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Talks

• S. Nahnsen. A geometric matching approach improves throughput and

accuracy in DIGE based proteomics. Presented: 6th international workshop

for computational systems biology, Aarhus, Denmark, June 10-12, 2009.

• S. Nahnsen. Proteomic Profiling of tumor cells upon pharmacological in-

tervention. Presented at: 3rd graduate school network meeting, Rothenburg

ob der Tauber,Germany, July 6 - 8, 2008.

• S. Nahnsen. Quantitative Profiling of tumor cell HLA ligandome, pro-

teome and phospho-proteome after pharmacological intervention. Presented

at: 2nd Baden-Württemberg-Shanghai Workshop on Systems Biology and

Biosystems Engineering, Lake Constance, Germany, April 22 - 24, 2007.
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Eugene A Kapp, Frédéric Schütz, Lisa M Connolly, John A Chakel, Jose E Meza,

Christine A Miller, David Fenyo, Jimmy K Eng, Joshua N Adkins, Gilbert S

Omenn, and Richard J Simpson. An evaluation, comparison, and accurate

benchmarking of several publicly available ms/ms search algorithms: sensitivity

and specificity analysis. Proteomics, 5(13):3475–3490, Aug 2005. 71, 72

173



REFERENCES

Mazen W Karaman, Sanna Herrgard, Daniel K Treiber, Paul Gallant, Corey E

Atteridge, Brian T Campbell, Katrina W Chan, Pietro Ciceri, Mindy I Davis,

Philip T Edeen, Raffaella Faraoni, Mark Floyd, Jeremy P Hunt, Daniel J Lock-

hart, Zdravko V Milanov, Michael J Morrison, Gabriel Pallares, Hitesh K Patel,

Stephanie Pritchard, Lisa M Wodicka, and Patrick P Zarrinkar. A quantita-

tive analysis of kinase inhibitor selectivity. Nat Biotechnol, 26(1):127–132, Jan

2008. 12

Michael Karas and Franz Hillenkamp. Laser desorption ionization of proteins

with molecular masses exceeding 10,000 daltons. Analytical Chemistry, 60(20):

2299–2301, 1988. 22

Andrew Keller, Alexey I Nesvizhskii, Eugene Kolker, and Ruedi Aebersold. Em-

pirical statistical model to estimate the accuracy of peptide identifications made

by ms/ms and database search. Anal Chem, 74(20):5383–5392, Oct 2002a. 71,

73

Andrew Keller, Samuel Purvine, Alexey I Nesvizhskii, Sergey Stolyar, David R

Goodlett, and Eugene Kolker. Experimental protein mixture for validating

tandem mass spectral analysis. OMICS, 6(2):207–212, 2002b. 84

Paul J Kersey, Jorge Duarte, Allyson Williams, Youla Karavidopoulou, Ewan

Birney, and Rolf Apweiler. The international protein index: an integrated

database for proteomics experiments. Proteomics, 4(7):1985–1988, Jul 2004.

21

Young Ho Kim, Kwang-Hae Choi, Jong-Wook Park, and Taeg Kyu Kwon.

Ly294002 inhibits lps-induced no production through a inhibition of nf-kappab

activation: independent mechanism of phosphatidylinositol 3-kinase. Immunol

Lett, 99(1):45–50, Jun 2005. 15

John Klimek, James S. Eddes, Laura Hohmann, Jennifer Jackson, Amelia Pe-

terson, Simon Letarte, Philip R. Gafken, Jonathan E Katz, Parag Mallick,

Hookeun Lee, Alexander Schmidt, Reto Ossola, Jimmy K. Eng, Ruedi Aeber-

sold, and Daniel B Martin. The standard protein mix database: A diverse data

174



REFERENCES

set to assist in the production of improved peptide and protein identification

software tools. J. Proteome Res., ,7:96 – 103, 2008. 84, 86

J. Klose. Protein mapping by combined isoelectric focusing and electrophoresis

of mouse tissues. a novel approach to testing for induced point mutations in

mammals. Humangenetik, 26(3):231–243, 1975. 4, 17, 19

R D Knight. Storage of ions from laser-produced plasmas. Appl Phys Lett, 38:

221–222, 1981. 26

Oliver Kohlbacher, Knut Reinert, Clemens Gröpl, Eva Lange, Nico Pfeifer, Ole
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M. Unlü, M. E. Morgan, and J. S. Minden. Difference gel electrophoresis: a single

gel method for detecting changes in protein extracts. Electrophoresis, 18(11):

2071–2077, Oct 1997. 38

J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton,

H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne, P. Ama-

natides, R. M. Ballew, D. H. Huson, J. R. Wortman, Q. Zhang, C. D. Kodira,

X. H. Zheng, L. Chen, M. Skupski, G. Subramanian, P. D. Thomas, J. Zhang,

G. L. Gabor Miklos, C. Nelson, S. Broder, A. G. Clark, J. Nadeau, V. A.

McKusick, N. Zinder, A. J. Levine, R. J. Roberts, M. Simon, C. Slayman,

184



REFERENCES

M. Hunkapiller, R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. Flo-

rea, A. Halpern, S. Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert,

K. Remington, J. Abu-Threideh, E. Beasley, K. Biddick, V. Bonazzi, R. Bran-

don, M. Cargill, I. Chandramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng,

V. Di Francesco, P. Dunn, K. Eilbeck, C. Evangelista, A. E. Gabrielian,

W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T. J. Heiman, M. E. Higgins,

R. R. Ji, Z. Ke, K. A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang, X. Lin,

F. Lu, G. V. Merkulov, N. Milshina, H. M. Moore, A. K. Naik, V. A. Narayan,

B. Neelam, D. Nusskern, D. B. Rusch, S. Salzberg, W. Shao, B. Shue, J. Sun,

Z. Wang, A. Wang, X. Wang, J. Wang, M. Wei, R. Wides, C. Xiao, C. Yan,

A. Yao, J. Ye, M. Zhan, W. Zhang, H. Zhang, Q. Zhao, L. Zheng, F. Zhong,

W. Zhong, S. Zhu, S. Zhao, D. Gilbert, S. Baumhueter, G. Spier, C. Carter,

A. Cravchik, T. Woodage, F. Ali, H. An, A. Awe, D. Baldwin, H. Baden,

M. Barnstead, I. Barrow, K. Beeson, D. Busam, A. Carver, A. Center, M. L.

Cheng, L. Curry, S. Danaher, L. Davenport, R. Desilets, S. Dietz, K. Dodson,

L. Doup, S. Ferriera, N. Garg, A. Gluecksmann, B. Hart, J. Haynes, C. Haynes,

C. Heiner, S. Hladun, D. Hostin, J. Houck, T. Howland, C. Ibegwam, J. John-

son, F. Kalush, L. Kline, S. Koduru, A. Love, F. Mann, D. May, S. Mc-

Cawley, T. McIntosh, I. McMullen, M. Moy, L. Moy, B. Murphy, K. Nelson,

C. Pfannkoch, E. Pratts, V. Puri, H. Qureshi, M. Reardon, R. Rodriguez, Y. H.

Rogers, D. Romblad, B. Ruhfel, R. Scott, C. Sitter, M. Smallwood, E. Stew-

art, R. Strong, E. Suh, R. Thomas, N. N. Tint, S. Tse, C. Vech, G. Wang,

J. Wetter, S. Williams, M. Williams, S. Windsor, E. Winn-Deen, K. Wolfe,

J. Zaveri, K. Zaveri, J. F. Abril, R. Guigó, M. J. Campbell, K. V. Sjolan-
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