
Structural and Relational

Data Mining

for Systems Biology Applications

Dissertation

der Fakultät für Informations- und Kognitionswissenschaften

der Eberhard-Karls-Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Dipl.-Bioinf. Elisabeth Georgii

aus Bielefeld

Tübingen

2010

Tag der mündlichen Qualifikation: 15.12.2010

Dekan: Prof. Dr.-Ing. Oliver Kohlbacher

1. Berichterstatter: Prof. Dr. Daniel Huson

2. Berichterstatter: PD Dr. Peer Kröger

A self does not amount to much, but no self is an island; each exists in a fabric of

relations [...].

Jean-François Lyotard

Abstract

Due to the enormous accumulation of experimental data and the increasing need for

combining heterogeneous data sources, the field of systems biology yields novel and

very interesting problems in data analysis.

The development of high-throughput technologies has opened the possibility to

study the behavior of many cellular components simultaneously. Therefore, there is

an increasing interest and effort in not only understanding the functions of single

isolated components, but also revealing the interactions and functional relationships

between different components. Often, the outcome of large-scale measurements is

conveniently represented in a structured form; prominent examples are protein-

protein interaction networks, coexpression networks for genes, and bipartite graphs

of associations between experimental conditions and regulated genes. This thesis

presents different methods that aim at finding interesting patterns in such data.

The main contributions are as follows.

First, an exact enumerative approach to dense cluster detection is proposed.

Given a weighted interaction network and a default weight for missing edges, the

density of a node set is defined as the average pairwise interaction weight. The

described method finds all patterns that satisfy a user-defined minimum density

threshold. Conceptually, this task is a generalization of clique search; however, the

standard techniques to solve that problem are not appropriate for the generalized

question. Fortunately, an efficient enumeration strategy can be achieved by adopting

the reverse search paradigm. Remarkably, the same algorithmic framework is appli-

cable to discover cluster patterns in other types of structured data, like asymmetric

binary relations and multipartite graphs, as well as hypergraphs, n-ary relations,

and tensors.

Second, our approach integrates additional constraints in order to focus the

search on clusters that are relevant for the specific application at hand. For example,

if each node in a network has an annotation profile attached to it, we can identify

dense clusters where the nodes share a common subprofile. The principal idea is

that the user provides the datasets of interest and defines desired properties of

vi

patterns with respect to them, and the method yields all solutions that match these

criteria. This allows to jointly explore network data and background information in

a systematic way.

Third, we devise dense cluster detection approaches that sacrifice completeness

of the solution set in favor of efficiency. Here, two different directions are pur-

sued. On the one hand, we use the search strategy of the enumeration methods

and introduce heuristic pruning rules to speed up the procedure. On the other

hand, we propose generalizations of agglomerative hierarchical clustering for bipar-

tite data. They detect dense clusters by successive “greedy” merging of instance

sets. Consequently, this strategy and the complete enumeration approach can be

seen as opposite extremes of dense cluster detection algorithms for structured data.

However, both methods are very transparent with respect to the properties of the

discovered set of patterns and thereby facilitate the interpretation of results.

The presented algorithmic approaches are illustrated with a number of real-

world applications in systems biology. They involve multiple types of genomic

datasets and relate to different representative organisms, primarily yeast, human,

and the plant A. thaliana. One scenario is protein complex prediction from experi-

mental interaction data, with optional constraints from background data; the latter

allow to discover context-dependent variants of complexes. Another application is

the joint analysis of multiple biological networks that describe different kinds of

relationships between genes, in our case transcriptional coregulation under different

cellular conditions. Beyond that, we consider the detection of bicluster patterns

from gene expression measurements. Finally, we show a small-scale case study on

discovering associations between genomic sequence variation and transcription of

genes.

Zusammenfassung

Aufgrund der enormen Fülle an experimentellen Daten und des steigenden Bedarfs

an Methoden, die heterogene Datenquellen integrieren, stellt die Systembiologie-

Forschung das Gebiet der Datenanalyse vor neue und sehr interessante Aufgaben.

Die Entwicklung von Hochdurchsatz-Messmethoden hat die Möglichkeit eröff-

net, das Verhalten zahlreicher zellulärer Komponenten gleichzeitig zu analysieren.

Neben der Aufklärung der Funktion einzelner isolierter Komponenten gilt daher auch

den Interaktionen und funktionellen Beziehungen zwischen verschiedenen Kompo-

nenten wachsendes Interesse. Zur zusammenfassenden Darstellung von experimen-

tellen Daten großen Maßstabs sind Graphstrukturen oftmals sehr geeignet, beispiels-

weise Interaktionsnetzwerke für Proteine, Coexpressionsnetzwerke für Gene und bi-

partite Graphen von Assoziationen zwischen experimentellen Bedingungen und re-

gulierten Genen. Diese Arbeit stellt verschiedene Methoden vor, die darauf abzielen,

interessante Muster in solchen Daten zu finden. Die wesentlichen Beiträge sind im

Folgenden zusammengefasst.

Zunächst wird ein exakter enumerativer Ansatz zum Auffinden von dichten

Clustern vorgeschlagen. Für ein gegebenes gewichtetes Interaktionsnetzwerk und

ein Standardgewicht für fehlende Kanten definieren wir die Dichte einer Knoten-

menge als das durchschnittliche paarweise Interaktionsgewicht. Die beschriebene

Methode zählt alle Muster auf, die einen benutzerdefinierten Dichte-Schwellwert

überschreiten. Konzeptionell kann man dieses Problem als eine Verallgemeinerung

der Cliquen-Suche betrachten; entsprechende Standardtechniken eignen sich aller-

dings nicht zur Lösung der allgemeineren Fragestellung. Jedoch kann man durch

Anwendung des Paradigmas der reversen Suche eine effiziente Enumerationsstrate-

gie erhalten. Bemerkenswerterweise lässt sich dasselbe algorithmische Framework

auch zur Clustersuche in anderen Formen strukturierter Daten anwenden; Beispiele

dafür sind asymmetrische binäre Relationen und multipartite Graphen sowie Hy-

pergraphen, n-äre Relationen und Tensoren.

Zum zweiten integriert unser Ansatz zusätzliche Constraints, um die Suche auf

Clusterstrukturen zu beschränken, die für die spezifische vorliegende Anwendung

viii

relevant sind. Falls zum Beispiel jeder Knoten eines Netzwerks mit einem Annota-

tionsprofil versehen ist, können wir dichte Cluster identifizieren, deren Knoten hin-

sichtlich eines Teilprofils übereinstimmen. Die grundsätzliche Idee dabei ist, dass

der Benutzer die Datensätze von Interesse vorgibt und gewünschte Mustereigen-

schaften in Bezug auf die einzelnen Datensätze festlegt; die Methode liefert dann alle

Lösungen, die diese Kriterien erfüllen. Dieser Ansatz ermöglicht es dem Benutzer,

Netzwerkdaten und Hintergrundinformation gemeinsam und auf systematische Art

und Weise zu untersuchen.

Drittens werden Methoden zum Auffinden von dichten Clustern ausgearbeitet,

die zugunsten der Effizienz auf die Vollständigkeit der Lösungsmenge verzichten.

Hierbei werden zwei unterschiedliche Richtungen verfolgt. Einerseits verwenden wir

die enumerative Strategie und führen zusätzlich heuristische Pruningregeln ein, um

die Suche zu beschleunigen. Andererseits schlagen wir Verallgemeinerungen des

agglomerativen hierarchischen Clusterings in bipartiten Daten vor, welche durch

fortgesetztes “greedy” Verschmelzen von Instanzmengen dichte Muster entdecken.

Letzterer Ansatz und die vollständige Musteraufzählung stellen gewissermaßen ent-

gegengesetzte Extreme für Algorithmen zur Clustersuche dar. Jedoch sind beide Me-

thoden äußerst transparent im Hinblick auf die Eigenschaften der zurückgegebenen

Mustermenge und erleichtern somit die Interpretation der Ergebnisse.

Die vorgestellten algorithmischen Ansätze werden anhand einer Reihe von prak-

tischen Anwendungen aus dem Bereich der Systembiologie illustriert. Diese be-

inhalten unterschiedliche Arten von genomischen Datensätzen und beziehen sich auf

verschiedene repräsentative Organismen, in erster Linie auf Hefe, Mensch und die

Pflanze A. thaliana. Ein Szenario ist die Vorhersage von Proteinkomplexen auf der

Basis von experimentellen Interaktionsdaten, mit optionalen Constraints bezüglich

verschiedener Arten von Hintergrundinformation; letztere ermöglichen die Entde-

ckung kontextabhängiger Komplexvarianten. Eine weitere Anwendung ist die ge-

meinsame Analyse mehrerer biologischer Netzwerke, welche unterschiedliche Arten

von Beziehungen zwischen Genen beschreiben, in unserem Fall transkriptionelle Co-

regulation unter verschiedenen zellulären Bedingungen. Darüber hinaus betrachten

wir die Suche nach Bicluster-Mustern in Genexpressionsdaten. Schließlich zeigen

wir eine kleine Fallstudie, die Assoziationen zwischen der Variation genomischer

Sequenzen und der Transkription von Genen untersucht.

Acknowledgements

I would like to express my deep gratitude to everyone who supported my scientific

and personal development during the past years, even if I can only list a few names

here.

First of all, I would like to give my sincere thanks to my first advisor Dr. Koji

Tsuda, who guided this work with his experience and open-mindedness; he always

encouraged me and broadened my horizon in our numerous discussions. I am also

very grateful to my second advisor Dr. Gunnar Rätsch, who gave invaluable advice

and supported my work and scientific education in many ways.

Furthermore, I would like to thank Prof. Dr. Bernhard Schölkopf for providing

an inspiring working environment and for taking an interest in my research. I have

also benefited a lot from discussions with Dr. Karsten Borgwardt, for which I would

like to thank him.

I am very grateful to Prof. Dr. Daniel Huson for his interest in my work; he

willingly took part in my PhD committee and acts as the first referee. I would also

like to thank PD Dr. Peer Kröger, who kindly agreed to examine the thesis as the

second referee.

With gratefulness, I would also like to mention the many other people who had

an impact on my scientific development, to name in particular Prof. Dr. Thomas

Hofmann and Prof. Dr. Stefan Kramer as well as their research groups. I would

like to thank Prof. Dr. Samuel Kaski and Dr. Jarkko Salojärvi for their patience,

encouragement, and support while I was finalizing work related to this thesis.

The main part of this work was performed under a PhD grant by the Max

Planck Institute for Biological Cybernetics and the Friedrich Miescher Laboratory

of the Max Planck Society; furthermore, it was supported by funding from TEKES

(Project 40141/07) and the IST Programme of the European Community, under the

PASCAL2 Network of Excellence, IST-2007-216886.

Many aspects of this work have been initiated and inspired by insightful dis-

cussions with our collaborators. I am particularly grateful to Dr. Sabine Diet-

mann, Prof. Dr. Takeaki Uno, Prof. Dr. Bertram Müller-Myhsok, Michael Specht,

Dr. Philipp Pagel, Prof. Dr. Sridhar Hannenhalli, and Dr. Mitch Levesque.

Finally, I cordially thank my colleagues, my friends, and my family for helping

me, supporting me, and making my life a happy one.

Contents

I INTRODUCTION 1

1 Motivation for Structured Data Mining 3

1.1 Data Mining . 3

1.2 Systems Biology . 4

1.3 Challenges . 5

1.4 Outline of the Thesis . 6

2 Common Systems Biology Resources 9

2.1 Protein Interaction Data . 9

2.2 Gene Expression Data . 11

2.3 Gene Ontology . 12

3 Structured Data Representations and Formalisms 15

3.1 Graphs and Networks . 15

3.2 Relations . 17

4 Review on Unsupervised Analysis of Structured Data 19

4.1 Graph Mining . 19

4.2 Optimal Subgraph Search . 20

4.3 Graph Clustering . 21

4.4 Constrained Cluster Detection and Data Integration 22

4.5 Bicluster Analysis . 22

4.6 Itemset Mining . 24

4.7 Relational Data Mining and Higher-Order Analysis 25

xii Contents

II SET ENUMERATION BASED ON INTERACTION DENSITY –

A REVERSE SEARCH APPROACH 27

5 Module Mining in Weighted Interaction Networks 29

5.1 Motivation . 29

5.2 Definitions . 32

5.3 Enumeration Algorithm . 33

5.3.1 Search Space . 33

5.3.2 Reduction Scheme . 36

5.3.3 Search Procedure . 38

5.3.4 Implementation Details . 39

5.3.5 Complexity . 41

5.3.6 Excursus: Reverse Search Applications 43

5.4 Output Representation . 43

5.4.1 Locally Maximal Modules and Leaf Modules 45

5.4.2 Module Ranking . 46

5.5 Degree-Based Module Criteria . 48

5.5.1 Minimum Degree Criterion . 48

5.5.2 Minimum Relative Degree and Quasi-Cliques 49

5.5.3 Previous Work on Quasi-Clique Mining 51

5.5.4 Discussion . 52

5.6 Integration of Node Weights . 53

5.6.1 Definitions . 53

5.6.2 Algorithm . 54

5.6.3 Remarks . 55

5.7 Constraint Integration . 56

5.7.1 Constraints from External Data Sources 56

5.7.2 Connectivity Constraints . 59

5.7.3 Cardinality and Branching Restrictions 60

6 Multi-Way Cluster Mining in Higher-Order Association Data 63

6.1 Motivation . 63

6.2 Problem Definition . 66

6.3 Enumeration Approach . 68

6.3.1 Global Index Representation 68

6.3.2 Search Space . 69

6.3.3 Reduction Scheme . 69

6.3.4 Search Algorithm . 72

Contents xiii

6.3.5 Implementation Details . 73

6.3.6 Complexity . 75

6.4 Extensions . 76

6.4.1 Output Filtering and Balance Criteria 76

6.4.2 Cluster Ranking . 77

6.4.3 Isolation-Based Pruning . 77

6.4.4 Other Restrictions . 78

6.5 Symmetry Adaptations . 79

6.5.1 Motivation . 79

6.5.2 Definitions . 80

6.5.3 Reduction Scheme . 81

6.5.4 Details . 82

6.6 Experimental Studies . 83

6.6.1 Scalability . 84

6.6.2 Performance of Branching-Restricted Search 86

6.6.3 Efficiency of Reverse Search 89

6.6.4 Email Traffic Analysis . 92

6.7 Discussion . 93

III HIERARCHICAL DETECTION OF ASSOCIATION PATTERNS 95

7 Hierarchical Biclustering 97

7.1 Motivation . 97

7.2 Review of Hierarchical Clustering . 98

7.3 Agglomerative Biclustering Algorithm 101

7.3.1 General Scheme . 101

7.3.2 Correctness . 103

7.3.3 Complexity . 104

8 Extensions of Hierarchical Biclustering 107

8.1 Alternative Association Criteria . 107

8.2 Alternative Clusterings . 108

8.3 Hierarchical Higher-Order Clustering 109

xiv Contents

IV BIOLOGICAL APPLICATIONS 111

9 Module Discovery in Protein Interaction Networks 113

9.1 Data Collection and Preprocessing 114

9.2 Comparative Analysis on the Yeast Interaction Network 115

9.2.1 Precision-Recall Analysis . 116

9.2.2 Further Result Statistics . 117

9.3 Comparative Analysis on the Human Interaction Network 120

9.4 Phenotype-Associated Modules in Yeast 123

9.5 Evolutionary Conserved Modules in Yeast 124

9.6 Tissue-Specific Modules in Human 126

9.7 Disease-Related Module Analysis . 128

9.8 Discussion and Outlook . 129

10 Module Detection from Multiple Coexpression Networks 131

10.1 Data . 131

10.2 Related Approaches . 132

10.3 Experimental Set-Up . 132

10.4 Evaluation Measures . 133

10.5 Results . 135

11 Biclustering of Gene Expression Data 137

11.1 Data . 137

11.2 Sample-Based Evaluation . 139

11.3 Gene Function Analysis . 141

12 SNP-Transcript Association Discovery 145

12.1 Motivation . 145

12.2 Data and Preprocessing . 147

12.3 Experimental Approach . 147

12.4 Results . 148

V CONCLUSION 153

13 Summary 155

14 Discussion and Future Work 157

Contents xv

Bibliography 161

List of Figures 177

List of Tables 179

List of Algorithms 181

Publications 185

Curriculum Vitae (English) 187

Lebenslauf (German) 189

Part I

Introduction

1 Motivation for Structured Data Mining

Due to the enormous advances in high-throughput measurement techniques and

the accumulation of functional annotation for genes and their products, computer-

assisted data analysis has become crucial in molecular systems biology studies. In

this chapter, we introduce basic concepts of data mining in systems biology and

outline the contents of this thesis.

1.1 Data Mining

Data mining is a discipline that comprises various kinds of methods for the auto-

mated extraction of patterns from a data collection [54, 78, 79, 84]. By that, it

contributes to gaining novel insights about concepts and principles underlying the

observations, a process that is commonly referred to as knowledge discovery [58].

Traditionally, one distinguishes two main subfields of data mining:

• Descriptive methods aim at revealing inherent properties of the data by search-

ing for underlying distributions, similarity relationships between data objects,

dependencies between variables, or characteristic patterns. Many approaches

build global models of the whole data space, whereas others discover local

patterns that describe only parts of the data. The most prominent descriptive

data mining tasks are cluster analysis (i.e., identification of groups in the data)

and frequent pattern mining.

• Predictive methods focus on the task of predicting the values of specific target

variables, which are typically discrete labels or continuous values. In the former

case, we obtain a classification problem, in the latter case a regression problem.

The target values are available for a subset of data instances, and the goal is

to exploit this information to make predictions for other data instances. As

the methods know the desired outcome for the given training examples, this

field is also called supervised learning.

4 1 Motivation for Structured Data Mining

Beyond that, many additional aspects play a role in data mining. For instance,

visualization of high-dimensional datasets is an important tool for exploratory data

analysis. Furthermore, retrieval settings become increasingly popular; there, the

basic task is to find objects in a database that are similar to a given query object

(e.g., a text document or an image). Other interesting data mining applications are

outlier detection and the analysis of dynamic (i.e., time-dependent) behavior. Today,

activities regarding data acquisition, storage, and analysis are crucial in almost

every field and influence scientific, economic, and sociological decision processes.

Therefore, data mining technology has to face widening and constantly changing

demands and has to deal with more and more complex data types as well as with

ever-growing databases. One area where this development can be clearly observed

is molecular systems biology.

1.2 Systems Biology

We first give a very brief introduction to molecular biology. For more information,

we refer to standard textbooks on that topic (e.g., [7, 138, 147]). Living organisms

consist of cells. The genetic information of a cell is stored on large DNA molecules,

which are called chromosomes. Before a cell divides, the DNA is replicated so

that each daughter cell obtains a copy of the full genetic information. Genes are

DNA segments that encode basic functional units of the cell; they essentially can be

represented as a sequence of four different types of nucleotides, the building blocks

of a DNA molecule. According to the central dogma of molecular biology (Francis

Crick, 1958), the information flow from DNA to functional molecules consists of the

following steps:

• DNA is transcribed into RNA, which also consists of four nucleotides. In

eucaryotic cells, the primary RNA transcript is further processed and the re-

sulting messenger RNA (mRNA) is transported from the nucleus to the cy-

toplasm; by a process called alternative splicing, one gene transcript may be

transformed into different types of mRNAs; in prokaryotic cells, which do not

have a nucleus, the primary RNA transcript directly acts as mRNA.

• The mRNA is translated into a protein. The amino acid sequence of the protein

is uniquely determined by the mRNA sequence. One mRNA molecule can be

used multiple times as a template for protein synthesis. Proteins are the main

macromolecules to carry out cellular functions; they act for instance as enzymes

1.3 Challenges 5

for metabolic reactions, as transporter or signal transduction molecule, or as

regulator of the gene transcription process.

There are many possibilities to control the availability of proteins in the cell. First

of all, each substep in the described process of information transfer is regulated sep-

arately, starting from the transcription initiation – via mRNA synthesis, processing,

export, localization, and degradation – to the initiation of translation and protein

degradation. Beyond that, the activity of proteins can be tuned by their subcellular

localization and by post-translational modifications.

Yet, a living cell is much more than the sum of its proteins. Proteins (and

other functional molecules) are involved in a complex network of inter-relation-

ships, and most cellular processes depend on functional modules rather than isolated

components [83]. The field of systems biology aims at understanding how properties

of living systems emerge from the functional interplay of molecules [6, 146]. This

may refer to different levels of biological organization, ranging from the analysis

of protein complexes in a single cell to the characterization of cell ensembles and

tissues, or even models regarding the behavior of a whole organism, e.g., with respect

to certain diseases and therapies.

1.3 Challenges

Systems biology is a highly interdisciplinary field. The biological problems under

study can also involve aspects from chemistry, physics, mathematical modeling, and

data analysis. Here, we point out some of the major data mining challenges that

arise in systems biology [87]:

• Large-scale and high-throughput experiments produce enormous amounts of

data; public data repositories grow rapidly.

• Measurements are noisy, and the number of samples is much smaller than

the number of genes or proteins, rendering many tools of classical statistics

inapplicable.

• Integrative analysis of heterogeneous datasets is very often required. Poten-

tially relevant types of information are for instance genomic sequences and their

variation (e.g., single nucleotide polymorphisms (SNPs) or copy number vari-

ations), transcriptomic and proteomic measurements, functional annotation,

6 1 Motivation for Structured Data Mining

metabolic pathway information, and interactomics data, also across multiple

species.

• Structured and relational data representations become more and more preva-

lent, therefore methods dealing with data embeddings in Euclidean space are

not sufficient anymore.

• Interpretability of data mining results is crucial for the generation of biological

hypotheses, which then can be tested experimentally.

This work focuses on unsupervised methods for structured data analysis and data

integration, also touching aspects of interpretability and scalability.

1.4 Outline of the Thesis

Graph-structured data are ubiquitous. For instance, graphs offer a convenient way to

represent pairwise similarity relationships between objects. Beyond that, graph rep-

resentations can formalize a multitude of associative relationships, such as physical

interaction, spatial proximity, coocurrence, communication, and regulation. One of

the central topics in unsupervised data mining with graphs is the detection of groups

of related objects, also called clusters. This thesis presents an enumerative mining

approach to find clusters of densely interacting nodes in large graphs. The search

is based on an explicitly defined density threshold for solution patterns and allows

to integrate additional constraints, also properties with respect to external data

sources. Beside ordinary graphs, we look at asymmetric and multi-partite struc-

tures as well as higher-order associations involving more than two objects at the

same time. Furthermore, to deal with large bipartite datasets, the exact enumera-

tive pattern mining approach is complemented with a hierarchical cluster detection

approach. Although the proposed methods are suitable for general use, we mainly

show applications in systems biology. The remaining content of this thesis is orga-

nized as follows.

• Chapter 2 introduces the major systems biology data types that will be used in

our experiments, in particular protein interactions, gene expression measure-

ments, and Gene Ontology annotation.

• Chapter 3 describes structured data representations, ranging from graphs and

networks to multi-relational and higher-order settings.

1.4 Outline of the Thesis 7

• Chapter 4 gives a survey of related work on analyzing structured and relational

data. This includes graph mining, optimal subgraph search, graph clustering,

integrative and constrained clustering, biclustering, itemset mining as well as

relational data mining and higher-order data analysis. Biological applications

are mentioned where appropriate.

Part II deals with the enumerative density-based cluster detection approach for

structured data. It is based on a general algorithmic framework called reverse search.

• Chapter 5 considers the basic case where the data are represented as a weighted

interaction network. After explaining the enumeration algorithm, various ex-

tensions are discussed.

• Chapter 6 addresses the generalization of the method to multi-way associa-

tion data. Again, several variants of the basic scheme are proposed, and the

behavior of the algorithm is demonstrated in empirical studies.

Part III presents agglomerative hierarchical clustering strategies for structured

data.

• Chapter 7 first reviews the classical agglomerative hierarchical clustering, which

can also be used for cluster detection in networks. Then it describes a gener-

alized approach performing direct hierarchical biclustering of bipartite data.

• Chapter 8 discusses several extensions including higher-order analysis.

Part IV shows results from systems biology applications using the described meth-

ods. All of the studies aim at uncovering functional relationships between different

molecular components of a biological cell, based on experimental data and compu-

tational analysis.

• Chapter 9 treats the problem of protein complex prediction from protein in-

teraction networks.

• Chapter 10 considers the joint analysis of multiple coexpression networks.

• Chapter 11 handles an example of bicluster analysis in gene expression data.

• Chapter 12 illustrates the use of bicluster detection in the context of SNP

association studies.

8 1 Motivation for Structured Data Mining

Part V concludes the thesis.

• Chapter 13 summarizes the different parts.

• Chapter 14 discusses merits and limitations of the proposed approaches and

gives some hints for future work.

2 Common Systems Biology Resources

In this chapter, we give some background information on the major systems biology

resources used in this work, including protein interaction and gene expression data

as well as Gene Ontology annotation. Additional data types will be introduced in

the experimental sections (Part IV) where appropriate.

2.1 Protein Interaction Data

Proteins specifically interact with each other in cellular processes. The linear amino

acid chain of a protein folds into a particular three-dimensional structure consisting

of one or several domains, and several proteins with identical or different amino acid

sequences can physically aggregate to build so-called complexes. In the last decade,

a number of experimental techniques to identify such protein interactions have been

developed [194], some of which are suitable for high-throughput application.

The yeast two-hybrid method (Y2H) is very popular for large-scale in-vivo inter-

action measurements. The principal idea of the approach is to split a transcription

activator (most often Gal4) into its two domains, the DNA-binding domain (BD)

and the activation domain (AD). In order to activate transcription, both domains

must be physically associated; either of them alone is not sufficient for activation.

The BD and AD sequences are fused with a protein-coding gene, respectively, and

then inserted into separate plasmids, which are transfected into yeast cells. If the

expressed proteins interact with each other, they bring the BD and AD domains in

close proximity and thereby activate the transcription of a specific reporter gene;

many experimental systems use for that a gene encoding an enzyme that turns a

certain substrate into a dye. To analyze the entire interactome of an organism,

one can either systematically test all pairs of proteins (by mating two yeast strains

containing the corresponding plasmids) or screen particular strains agains undefined

libraries, which are sequenced in case of success. Problems of the Y2H method are

false positives arising from unspecific interactions as well as potential disruption or

changes of protein folding by the fusion constructs. Also, the processes of protein

10 2 Common Systems Biology Resources

folding and post-translational modification in yeast can differ from other organisms.

Another well-established method is TAP-MS, tandem affinity purification with

subsequent mass spectrometry analysis. It investigates protein interactions in vitro

and is based on a sensitive multi-step purification process that preserves protein

complexes, which are characterized using polyacrylamide gel electrophoresis and

mass spectrometry. First, a gene of interest is fused with the so-called TAP-tag and

expressed, e.g., in yeast; then, cellular extracts are analyzed for complexes containing

the protein of interest; the purification is greatly facilitated by the specific structure

of the expressed TAP-tag, which is composed as follows:

(Target protein) – CBP – TEV site – Protein A

Protein A binds tightly to an IgG matrix, which is used in the first purification step.

After washing away unbound proteins, the TEV (tobacco etch virus) protease cleaves

the tag at the TEV site; the eluted material is exposed to calmodulin-coated beads,

which bind CBP (calmodulin binding peptide), together with the target protein and

the potentially associated protein complex. To identify the complex components, the

purified material is separated by SDS polyacrylamide gel electrophoresis and further

analyzed by mass spectrometry. In contrast to Y2H, TAP-MS has the advantage

that it looks directly at protein complexes, i.e., higher-order interactions. However,

being an in-vitro technique, it might miss transient interactions. As in the Y2H

method, the tag construct might interfere with protein folding or complex formation,

thereby producing false negatives as well as false positives. The quality of protein

interaction predictions from high-throughput experiments is considerably improved

by taking evidence from multiple data sources into account.

Other approaches that are suitable for high-throughput usage are protein mi-

croarrays and phage display. Beyond that, indirect methods can be used to screen

for potential protein interactions, e.g., gene expression measurements, which are

described in the next section. For a more detailed characterization of specific pro-

tein interactions, various experimental methods are available, for instance chemical

cross-linking, calorimetry, ultracentrifugation, fluorescence resonance energy trans-

fer (FRET), surface plasmon resonance, and atomic force microscopy; to reach an

atomic-level resolution of protein structures and protein complexes, X-ray crystal-

lography or NMR spectroscopy is required, both of which are extremely laborious.

Experimentally determined pairwise interactions and complexes of proteins

are stored in huge public databases. The most widely used data repositories are

DIP [230], BIND [15], MPact/MIPS [76], MINT [35], IntAct [85], BioGRID [26],

2.2 Gene Expression Data 11

and HPRD [174]. Also, computational prediction of protein interactions becomes

an important source of information; the STRING database [102] exploits for in-

stance homology relationships to transfer protein interactions across species and

currently covers more than two million proteins from 630 organisms. In addition,

interactions can be predicted de novo based on genomic context, phylogenetic pro-

files, domain fusion, and sequence coevolution [195]. So far, protein interactions are

most commonly represented as static networks. However, it is widely recognized

that interaction and complex formation in the living cell are context-specific and

highly dynamic [8, 118].

2.2 Gene Expression Data

A very popular tool to study the function of genes is gene expression analysis [70, 147,

202], often referred to as transcriptomics. The experimental part essentially consists

in measurements of the mRNA abundance for all genes under varying conditions.

This can be achieved by several different techniques, among which microarray tech-

nologies constitute the most common approach. They are based on the principle of

hybridization, which works as follows. A set of gene probes is immobilized on a solid

surface (the “chip”). Each probe is a single DNA strand that is complementary to

the mRNA of a certain gene (or to some part of the mRNA); here, complementarity

means that the two nucleic acid strands can pair with each other by hydrogen bonds

between corresponding nucleotides; DNA that is generated as a complementary copy

of mRNA is called cDNA. Then, an mRNA sample is taken from a cell population

of interest and the mRNA molecules or corresponding cDNA molecules are labeled

with a fluorescent dye. The labeled sample is put onto the array for hybridization,

and fluorescence of bound material is detected with a laser. Each spot of the mi-

croarray contains many identical probes, so the intensity of the signal at the spot

depends on the amount of a particular mRNA in the sample.

There exist two main types of microarrays: cDNA microarrays and oligonu-

cleotide arrays. For cDNA microarrays, preamplified cDNAs are attached to the

chip; the hybridization experiment is done with a pair of differently labeled sam-

ples, which competitively bind to the probes; this results in ratio data that describe

the differential expression between the two samples. In contrast, oligonucleotide ar-

rays (e.g., Affymetrix) can be used to measure intensity values for a single sample;

the probes are short sequences of about 25 nucleotides length, which are synthesized

directly on the slide.

12 2 Common Systems Biology Resources

Each microarray experiment yields measurements for thousands of genes si-

multaneously. A set of measurements taken under different conditions or cellular

perturbations can be used to monitor changes in the transcriptional behavior of

genes; the comparison of the resulting expression profiles can reveal relationships

between conditions as well as relationships between genes. The outcome of a partic-

ular study is typically represented in the form of a data matrix, with genes as rows

and conditions as columns; the matrix cells contain condition-specific expression

levels of specific genes, which are often given relative to a reference sample. This is

the starting point for data analysis methods, with the aim to reach conclusions for

specific biological questions. Inferring gene relationships from the data is non-trivial

and complicated by the fact that the number of genes typically exceeds by far the

number of samples. In addition, special care has to be taken with respect to data

normalization in order to achieve comparability between different experiments and

genes [93, 228].

Beside using hybridization-based microarrays, gene expression can be quantified

by sequencing approaches like SAGE (serial analysis of gene expression) and the

recently introduced and rapidly developing RNA-Seq methods, which are based on

next-generation sequencing technologies [223].

2.3 Gene Ontology

Functional genomics studies do not have to start from scratch. Over the past

decades, a multitude of genes have been functionally characterized; with the ad-

vent of the World Wide Web, this information is made conveniently accessible to

the whole research community. In an effort to systematize functional annotation

of genes, also across multiple species, different categorization schemes have been

developed. Nowadays, very popular resources are Gene Ontology (GO) [13] and

Functional Catalogue (FunCat) [183], both of which provide hierarchical classifica-

tion systems to describe the function of genes and proteins. Another very frequently

used database is the Kyoto Encyclopedia of Genes and Genomes (KEGG) [164],

which contains biochemical pathway descriptions.

These sources of information can either be used to evaluate methods for data-

driven prediction of functional gene groups or they can be exploited to restrict the

analysis and focus on new biological findings. In this work, we often use GO to assess

the biological significance of predicted gene clusters; therefore, we briefly introduce

its main concepts. The notion of function is quite vague and can have many different

2.3 Gene Ontology 13

meanings, depending on the context. For this reason, GO offers three independent

ontologies:

• Biological process describes the cellular function by a defined biological objec-

tive, for instance “translation”.

• Molecular function refers to the biochemical activity of gene products, without

considering in which biological context the corresponding reaction takes place.

A prominent example are enzyme classes.

• Cellular component specifies in which compartment or location of an eukaryotic

cell the active gene product can be found.

Each ontology consists of a hierarchy of defined terms; a single term may have

multiple parent terms, so the hierarchical structure is technically not a tree, but a

directed acyclic graph (see next chapter). Each term comprises a set of genes, which

can be further divided into functional subcategories represented by own terms. The

other way round, a specific gene is assigned to multiple terms from different hierarchy

levels; terms at the bottom of the hierarchy are more specialized than terms at the

top. The terms provide a unifying framework for functional classification of genes

across different organisms.

One common usage of GO is functional enrichment analysis for computationally

predicted gene sets. Given a predicted gene set S, the enrichment with respect to a

GO term corresponding to a gene set T is typically computed using a p-value based

on the hypergeometric distribution [179]:

1−
|S∩T |−1∑

i=0

[(
|T |
i

)(
n− |T |
|S| − i

)/(
n

|S|

)]
(2.1)

Here, n is the total number of genes, and |S∩T | denotes the number of genes in the

overlap. The expression corresponds to the probability of obtaining by chance an

overlap of at least that size. Very low values indicate that S is significantly enriched

with genes that share a certain function.

3 Structured Data Representations and

Formalisms

Biological data are often represented in an abstract form as networks or relations.

Here, we describe common structural representations and some basic properties.

3.1 Graphs and Networks

A graph or network consists of a set of nodes (vertices) with pairwise connections

called edges [44, 161]. Figure 3.1 (a) shows an example graph with four nodes. If

the edges are labeled with weights (as in the example), we say that the graph is

weighted, and unweighted otherwise. Nodes that are connected by an edge are called

adjacent (“neighboring”). An induced subgraph is defined as the restricted graph

we obtain by considering a specific subset of nodes and the edges connecting them

with each other. The size of a subgraph corresponds to the number of its nodes; to

explicitly indicate the size of a subgraph, often the notation “k-node subgraph” is

used. The number of edges connecting a node-induced subgraph with the remainder

of the graph (or, in weighted graphs, the sum of the corresponding edge weights)

are referred to as the cut. A graph can alternatively be represented in form of

an adjacency matrix for node pairs that contains 0-entries for missing edges (see

Figure 3.1 (b)). Here, the matrix is symmetric because the edges are undirected. In

the case of directed edges, there can be different weights for forward and backward

connections.

A tree is a special type of a directed graph where the nodes are organized in a

hierarchy such that there is one node at the top (the root node) and each other node

has a unique parent node and an arbitrary number of child nodes;1 see Figure 3.2 for

an example. Parent and child nodes are connected by edges that are oriented along

the hierarchy, typically pointing from parents to children. Nodes without children

1This definition of tree refers to the typical usage in data mining; in graph theory, the concept is more
general.

16 3 Structured Data Representations and Formalisms

(a) Graph representation (b) Matrix representation

1

2

 0.1

4

 0.9

3

 1.0

 0.5 0.9

1 2 3 4
1 0 0.1 1.0 0.9
2 0.1 0 0.5 0
3 1.0 0.5 0 0.9
4 0.9 0 0.9 0

Figure 3.1: A weighted graph with four nodes.

are called leaf nodes. A path is a sequence of nodes such that subsequent nodes are

connected by an edge; the length of a path is defined as the corresponding number

of edges. Any non-root node in the tree is reachable by a specific path from the

root. By definition, trees are acyclic, that means, there does not exist a path that

starts and ends with the same node.

An edge that connects a node with itself is called loop. Throughout this thesis,

we only consider simple graphs, which have the following properties: a) they do not

contain loops; b) there cannot be more than one edge pointing from one particular

node to another specific node. Both nodes and edges can carry labels, which are

either discrete categories or numerical weights. In most parts of this work, we will

consider undirected graphs with edge weights; furthermore, we will assume that each

node is labeled with a unique identifier (such as a gene or protein name). If the node

set can be split into disjoint subsets such that edges exist only between subsets and

not within them, we say that the graph is multipartite. The case of two partitions

occurs quite frequently; such graphs are called bipartite.

If there exists a path between each pair of nodes, the graph is said to be con-

nected. Otherwise, it consists of several connected components, which can be de-

termined by graph traversal algorithms starting from specific nodes. Two common

traversal strategies are depth-first search and breadth-first search. In breadth-first

search, first the neighbors of the current node are visited, and then each of them

is further investigated (in the same way, but ignoring already visited nodes). In

contrast, depth-first search recursively explores all descendants of the first neighbor

before going to the next neighbor. Performing a depth-first search through the tree

shown in Figure 3.2, starting from the root node, would yield the nodes in their

numbered order.

3.2 Relations 17

1

2 5 6

3 4 7

Figure 3.2: A tree structure.

(a) Graph relation (b) Node annotation relation

First Second Weight
entity entity

1 2 0.1
2 1 0.1
1 3 1.0
3 1 1.0
1 4 0.9
4 1 0.9
2 3 0.5
3 2 0.5
3 4 0.9
4 3 0.9

Entity Description Expression Cancer-
in colon related

1 Protein1 3.5 Yes
2 Protein2 1.1 No
3 Protein3 2.7 Yes
4 Protein4 3.8 Unknown

Figure 3.3: Example relations; (a) is an equivalent representation of the graph in Figure 3.1 (a).

3.2 Relations

Graphs can be viewed as special cases of relational data [51, 54]. Mathematically, a

relation R is a subset of the cartesian product of a set of domains D1, . . . , Dk:

R ⊂ D1 × . . .×Dk (3.1)

The domain tuple (D1, . . . , Dk) is called relation schema. According to the above

definition, a relation R consists of a set of k-tuple observations (d1, . . . , dk), di ∈ Di

for i = 1, . . . , k, which can be conveniently represented in a table with k columns

(also called attributes). The minimal set of attributes that is needed to uniquely

identify any possible tuple is called the key of the relation schema. Figure 3.3 (a)

shows an example of a relation; the key of the corresponding schema consists of the

first two attributes. In this case, both attribute domains correspond to the same

entity set (i.e., a set of distinct objects or instances, here represented by numeric

18 3 Structured Data Representations and Formalisms

identifiers), and the third attribute domain is the set of real numbers from 0 to

1. The relation is equivalent to the graph in Figure 3.1 (a). However, the tabular

representation immediately allows to describe more general types of data.

For instance, by adding more columns, one could consider higher-order relations,

where each observation tuple associates not only two different entities (nodes), but

n of them. Again, the tuples can contain additional information, such as a weight of

the association or discrete labels, although most higher-order relational data mining

approaches do not consider this case [31, 100, 103]. We refer to this kind of table

as an n-ary relation, emphasizing the number of key attributes rather than the

total number of columns in the table. From a graph-theoretic perspective, an n-ary

relation corresponds to a hypergraph where each edge involves n different nodes. In

analogy to the matrix representation of graphs shown in Figure 3.1, the adjacency

structure of this hypergraph can be represented as an n-dimensional array, also

known as tensor. In the absence of edge weights, the array is binary-valued, i.e.,

entries representing observed tuples of the relation are marked with 1’s, and all other

entries are 0. More details about n-ary relations will be given in Section 4.7 and

Chapter 6.

Moreover, multiple relations can be regarded simultaneously in data analy-

ses, provided that they share some set of attributes. This is illustrated with a

table in Figure 3.3 (b), which yields auxiliary information for the entities in Fig-

ure 3.3 (a). Another very common scenario are star-structured arrangements of

relation schemata [60, 148, 205], where one central entity type connects relations

that otherwise have disjoint attribute sets; essentially, this yields a multipartite

graph of relationships between entities of different types.

4 Review on Unsupervised Analysis of

Structured Data

Unsupervised data mining in the context of structural and relational data is a very

broad and active field of research. In this chapter, we review central approaches

that are related to our work. This includes mining for interesting subgraph pat-

terns (Section 4.1), search for optimal subgraphs (Section 4.2), and graph clustering

(Section 4.3). Furthermore, we describe the tasks of integrative cluster detection

(Section 4.4) and biclustering (Section 4.5), both of which are heavily driven by

computational biology applications. Finally, we survey important topics in itemset

mining (Section 4.6) and relational data mining (Section 4.7).

4.1 Graph Mining

Graph mining refers to the search for subgraph patterns with predefined character-

istics, in a database of one or multiple graphs. In many cases, it is possible to design

algorithms that yield the complete set of solutions; such approaches are called enu-

merative. In the following presentation, we focus on the most common tasks. We

start with the classical problem of frequent subgraph mining [78, 133, 225, 233, 234].

Definition 1 (Frequent Subgraph Mining from Multiple Graphs). Let D be a

database of labeled graphs G1, . . . , Gl. Find all connected subgraphs that occur in

at least m graphs, where m is a positive integer referred to as the minimum support

threshold.

Regarding the generation of subgraph patterns, there exist two main strategies:

depth-first search [233] and breadth-first or level-wise search [133]. As the same

node label may appear multiple times in each graph of the database (e.g., atom

names in a database of molecule graphs [129]), these methods generally have to

deal with the problem of subgraph isomorphism. In biological networks considering

gene or protein relationships, the node labels within a graph are typically unique.

20 4 Review on Unsupervised Analysis of Structured Data

However, as the graphs are large, the frequency criterion is typically combined with

other criteria like interaction density or cut thresholds, in order to restrict the size

of the output [91, 236].

Other mining approaches search for substructure patterns in a single graph.

While a subgraph frequency criterion can be applied to graphs with non-unique

node labeling [106, 134], a popular analysis tool for uniquely labeled graphs is clique

finding [5]:

Definition 2 (Clique). Given a graph G with node set V , a clique is defined as a

subset of nodes U ⊂ V that induces a complete subgraph, i.e., all pairs of nodes are

connected by an edge. A clique is maximal if it is not contained in any other clique.

Only for specific classes of graphs (e.g., chordal graphs), all maximal cliques can

be discovered in polynomial time; in general, clique search is NP-complete [25, 110,

168]. Nevertheless, it is frequently used in practical applications [166, 198]. Also, less

strict pattern definitions have been considered, e.g., quasi-cliques [104, 145, 172, 242]

and pseudo-cliques [214], which will be discussed in more detail in Chapter 5. They

correspond to dense subgraphs rather than complete subgraphs.

4.2 Optimal Subgraph Search

In addition to subgraph enumeration algorithms, there exist multiple approaches

to search for (approximately) optimal subgraphs. With respect to the criterion of

subgraph density, a number of problems have been studied. First of all, it has

been shown that finding a k-node subgraph with the maximum number of edges is

NP-hard [11]. Tight approximation bounds have been derived for a simple greedy

optimization scheme [12]; the same approximation scheme has been used for directed

graphs [34]. Equivalently, the problem of finding a k-node subgraph with the maxi-

mum average number of edges per node is NP-hard [59, 114]. On the other hand, a

subgraph with the maximum average number of edges per node (i.e., without a size

constraint) can be found in polynomial time by flow-based techniques [59, 65].

Moreover, local search approaches have been used to discover dense subgraphs

around seed cliques [16, 55]. Recently, linear integer programming has been suc-

cessfully applied for finding connected subgraphs with the maximum sum of node

weights, an NP-complete problem [49]. Yet another concept of a subgraph pattern

is the so-called connection subgraph or reliable subgraph [56, 86, 126]. There, the

4.3 Graph Clustering 21

aim is to maximize the connectivity between a set of given nodes while removing a

large portion of the graph.

4.3 Graph Clustering

Graph clustering is the task of assigning the nodes of a graph into distinct groups

(“clusters”) such that there are many edges within a group and few edges between

different groups. This topic has been studied extensively, see [186] for a review.

One seminal work in this area is the Kernighan-Lin algorithm [113], which is a

heuristic strategy to divide a graph into components with fixed maximum size. If

neither the (maximum) size nor the number of partitions is known beforehand, a

popular choice are hierarchical clustering methods, which yield a hierarchy of clusters

instead of a single partitioning. Hierarchical methods can be divided into two classes:

agglomerative and divisive. Agglomerative strategies build the hierarchy bottom-

up, starting from single-node clusters and iteratively merging the “closest” pair into

a common cluster, e.g., see [41, 90, 180, 231]. For that purpose, one has to define a

distance measure between the nodes in a graph; a simple choice would be the length

of the shortest path [180]; another possibility are diffusion kernels [125].

Divisive hierarchical strategies, in contrast, work in a top-down manner, start-

ing with the entire graph and iteratively dividing it into smaller parts. An obvious

splitting criterion are graph cuts [82]. Girvan and Newman [71] use the so-called

edge betweenness measure, which is the number of node pairs with the shortest path

passing through a specific edge; edges bridging between clusters are expected to have

large betweenness values, so edges are removed from the graph in decreasing order

of betweenness; the same technique has also been applied to weighted graphs [37].

Luo et al. combine this method with an agglomerative approach [149]; furthermore,

some variants of the betweenness measure have been investigated [175]. As an alter-

native measure to assess bipartitionings of graphs, the modularity criterion has been

introduced [160]; it compares the actual number of edges within the two parts with

the expected connectivity in a random network. Finally, for the sake of efficiency,

divisive clustering has been integrated with graph coarsening procedures [111].

Other methods directly partition the graph into a set of clusters, without using

hierarchical decomposition steps. The most basic approach is to extract the con-

nected components [153]. An increasingly popular method is spectral clustering;

a tutorial on that topic can be found in [150]. Technically, it is based on eigen-

decomposition of graph Laplacians, and has interpretations related to graph cuts

22 4 Review on Unsupervised Analysis of Structured Data

and random walks. Markov clustering [53, 173, 216] is also motivated by random

walks; it performs two alternating matrix operations; thus, in contrast to spectral

clustering, one does not fix the number of clusters beforehand, but has to choose

the parameters of the matrix operations. Furthermore, probabilistic latent variable

models have been used for graph clustering [189], which often also allow cluster

overlaps, i.e., the same node may belong to different clusters [39, 170].

4.4 Constrained Cluster Detection and Data Integration

In many bioinformatics applications, graph clustering and dense subgraph mining

methods are augmented by integrating multiple data sources, the most common

scenario being the combination of protein-protein interactions and gene expression

data. One straightforward strategy is to build a new network where protein interac-

tion links and coexpression links are simply pooled [170], or where the edge weights

are determined as a function of multiple data sources [80]. Tanay et al. [205] also

create one single network to analyze multiple genomic data at once; however, they

use a bipartite network where each edge corresponds to one data type only. In both

cases, edge weights of different datasets have to be normalized appropriately in order

to be comparable in the integrated setting.

In contrast to that, other approaches keep the data sources separate and define

individual constraints for each of them. Consequently, arbitrarily many datasets

can be jointly analyzed without the need to take care of appropriate scaling or

normalization. Within this class of approaches, there exist two main strategies to

deal with profile data like gene expression measurements. In the first case, global

similarity of profiles is considered. For that purpose, one possibility is to transform

the profile information into a gene similarity network, where the strength of a link

between two genes represents the profile similarity [172, 212, 213]; another approach

is to learn cluster-specific models of gene expression profiles [170, 189]. In the second

case, the cluster analysis is based on local profile similarities, i.e., context-specific

patterns can be revealed [92, 95, 235].

4.5 Bicluster Analysis

In addition to homogeneous interaction graphs like protein interaction networks, bi-

partite graphs occur very frequently in biological data analysis. Similarly as in the

4.5 Bicluster Analysis 23

previous sections, one central problem arising in that context is dense subgraph de-

tection. A pattern of interest would then consist of a pair of node subsets, one from

each partition, such that each node is connected to a large fraction of nodes from the

other set. This can be seen as a special instance of the biclustering problem, which

is very prominent in gene expression analysis [139, 151, 176, 207], but has also appli-

cations in text mining [47] and collaborative filtering [89]: given a data matrix (e.g.,

the adjacency weights of a bipartite graph), the goal is to extract subsets of rows

that are similar with respect to subsets of columns; a particular pair of a row subset

and a column subset (defining a submatrix) is called bicluster. This framework,

which is also known as co-clustering or two-mode clustering [217], contrasts with

traditional clustering approaches, which cluster either the rows according to their

similarity across all columns, or the columns according to their similarity across all

rows [105].

A multitude of bicluster detection methods has been developed during the last

decade, and they can be grouped into similar categories as the subgraph discovery

approaches described in Sections 4.1 to 4.3. First of all, one basic idea is to partition

the bipartite graph that corresponds to the data matrix into distinct biclusters; using

spectral clustering [150], this essentially amounts to singular value decomposition

of the matrix, resulting in a set of block-diagonal patterns [47]. Kluger et al. [120]

also use singular value decomposition, but treat rows and columns separately in the

postprocessing, proposing a checkerboard structure of the matrix. Other approaches

allow for a more flexible arrangement of biclusters, including bicluster overlap, while

still optimizing a global objective function taking the whole matrix into account [135,

222, 227].

In contrast, enumerative approaches use local criteria based solely on individual

biclusters. Many of them are motivated by the (weighted) bipartite graph formalism

and refer to some density property of the subgraph. The widely used SAMBA

method [205, 206] finds around each node the k heaviest subgraphs under additional

connectivity restrictions. Sim and coauthors [196] fix the maximum number of

missing edges tolerated per node as well as minimum size constraints. In [232],

all maximal bicliques are detected and then further extended. Another work [22]

searches for all bicluster patterns that satisfy homogeneity constraints with respect

to the weight entries. Moreover, various other methods define specific bicluster

criteria and solve the problem in a non-exhaustive way, by greedy strategies or

approximation techniques, e.g., [28, 38, 88, 92, 127, 140, 151, 156, 239].

24 4 Review on Unsupervised Analysis of Structured Data

A related field is subspace clustering (introduced in [3]), see [130] for a recent

review on that topic. Rather than looking at subgraph or submatrix patterns, these

approaches are motivated by spatial considerations; that is, the rows of the data

matrix are represented as data points in the feature space defined by the columns,

typically Euclidean space. The goal is to extract axis-parallel subspaces with clusters

in the form of dense clouds of data points; this resembles homogeneity criteria for

biclusters, but it usually allows more flexibility in the spatial appearance (shape) of

the clusters. Furthermore, the concept has been generalized to cluster detection in

arbitrarily oriented subspaces. There also exist subspace clustering approaches for

categorical data, e.g., [241]. These can be seen as variants of relational data mining,

which will be discussed in Section 4.7. The next section describes a fundamental

subtype of relational data mining.

4.6 Itemset Mining

For binary-valued data matrices, the simplest bicluster pattern of interest is a subma-

trix that purely consists of 1-entries. Such patterns can be exhaustively enumerated

using itemset mining. This approach has been developed in the context of market

basket analysis [4]. There, the data represent a set of transactions, where each trans-

action consists in a list of products (called items) that were purchased together. The

task of frequent itemset mining is to find all sets of items that cooccur in more than

m transactions. The frequent itemsets can be used to derive association rules of the

following kind: “if a customer bought products A and B, he or she will also buy

product C.” This information can, for instance, assist in improving shop layouts.

Itemset mining has also been applied in the biological domain, e.g., gene expression

analysis [45, 167].

The principal algorithmic idea behind itemset mining methods is based on the

observation that any subset of a frequent itemset is frequent as well. The originally

proposed Apriori algorithm [4] implements this in a level-wise search strategy, where

the frequent sets on one level determine the candidate sets on the next level. Since

then, there has been quite active research on improving the efficiency by introduc-

ing additional pruning rules and investigating alternative strategies to traverse the

search space [215].

4.7 Relational Data Mining and Higher-Order Analysis 25

4.7 Relational Data Mining and Higher-Order Analysis

Itemset mining is only suitable for analyzing binary relations like the transaction-

item association data described in the previous section. A natural extension is to

consider higher-order relations, which involve more than two (key) attributes. For

example, one could consider relations between purchased items, regions, and weeks

of customer transactions. The generalized mining task can be formulated as follows

[31, 32, 100, 103]:

Definition 3 (Relational Set Mining). Given an n-ary relation R ⊂ D1× . . .×Dn,

find all n-set patterns (S1, . . . , Sn) such that Si ⊂ Di for all i = 1, . . . , n and S1 ×
. . .× Sn ⊂ R.

Generalizing the frequency criterion from itemset mining (see previous section),

one can specify minimum size thresholds for S1, . . . , Sn. In the above definition, all

domains Di are assumed to be finite (i.e., categorical); their cardinality is denoted

by |Di|. An equivalent representation for such data is a |D1| × . . . × |Dn| array

A (also called data cube or tensor), where A(d1, . . . , dn) = 1 if (d1, . . . , dn) ∈ R,

and A(d1, . . . , dn) = 0 otherwise (di ∈ {1, . . . , |Di|}, i = 1, . . . , n). Then, an n-set

corresponds to a subarray that contains only 1-entries.

More generally, one can drop the constraint of binary values and consider ten-

sors with arbitrary weight entries. Such higher-order datasets occur in different

application fields like sales analysis [31], web mining [2, 100, 123], neuroscience [20],

and computational biology [1, 18, 103, 243]. Therefore, methods that deal with

multi-way arrays receive increasing attention in the data mining community. One

of the most prominent topics is tensor decomposition (see [122] for a review), which

can serve as a basis for clustering or anomaly detection [124]; furthermore, decom-

position approaches can assist in analyzing dynamic changes in tensors [203].

The goal of tensor clustering is to partition each dimension of the tensor into

a predefined number of clusters such that the resulting multi-way clusters are as

homogeneous as possible [17]. This can be approximated by combining the results

from clustering individual dimensions separately [101]. Zhao and Zaki [243] also

mine for homogeneous clusters, but instead of specifying the number of clusters, they

fix thresholds regarding the homogeneity of values along each dimension and detect

overlapping cluster patterns (in the three-way case). Relational models [112] focus

on binary-valued tensors, aiming at partitioning them into blocks that contain either

mostly ones or mostly zeros. Finally, there exist approaches that deal with multiple

26 4 Review on Unsupervised Analysis of Structured Data

relations or tensors at the same time, searching for clusters (communities) [17, 143]

or association rules [51].

Part II

Set Enumeration based on

Interaction Density –

a Reverse Search Approach

5 Module Mining in Weighted Interaction

Networks

This chapter presents an enumerative approach to identify cluster patterns in the

most basic type of structured data, namely graphs or networks. As described in

Section 3.1, a network consists of a set of nodes and a set of pairwise interactions

represented by edges. Here, we focus on undirected interactions, but allow for in-

teraction weights. In this context, a cluster is defined as a set of densely interacting

nodes. After motivating the concept of enumeration in cluster detection tasks [66],

we describe an algorithm to extract clusters from a given input network. It fol-

lows a general framework called reverse search, which has been introduced by Avis

and Fukuda [14]. Several extensions are proposed, in particular the integration of

constraints from other data sources, which are exploited using ideas from itemset

mining (Section 4.6). The most central technical results of this chapter are covered

in an earlier publication by the author [67].

5.1 Motivation

The problem of identifying clusters (also called modules or communities) in large

graphs has been extensively studied, see [186] for a survey. One fundamental ap-

proach is clique discovery, i.e., the enumeration of fully connected subgraphs from an

unweighted input graph (e.g., see [198]). As real-world datasets are usually incom-

plete, various methods relax this criterion by tolerating missing edges to a certain

extent [81, 166, 214, 242]. In our approach, we relax the search criterion even further

by explicitly considering edge weights. This allows for a more fine-tuned cluster anal-

ysis than a threshold-based preselection of edges [57, 166]. Edge weights naturally

arise in systems biology tasks. For instance, in the context of protein interaction

networks, they are often used to indicate the experimental evidence for a specific

interaction [99], which helps to reduce false positive predictions in the analysis.

Beside these enumerative approaches to cluster detection, there exist a number

30 5 Module Mining in Weighted Interaction Networks

(a) Partitioning approach (b) Enumeration approach

Figure 5.1: Different cluster finding concepts: graph partitioning versus cluster enumeration. While
partitioning methods return one clustering of the graph, enumeration methods discover all clusters
that satisfy a certain density criterion.

of methods that employ local search techniques starting from a set of seed clus-

ters [16, 55]. Finally, the most commonly used class of methods is based on graph

partitioning [37, 160, 186, 216]. In contrast to the other approaches, which re-

spect explicit criteria regarding individual clusters, partitioning methods consider

global characteristics of the graph in order to divide it into a set of mutually exclu-

sive clusters.1 Figure 5.1 illustrates the conceptual difference between partitioning

and enumerative strategies. The partitioning approach is very suitable to obtain an

overview of the structure in the data; nodes are grouped into clusters, and by replac-

ing each cluster with a representative node, one can get a condensed representation

of the input graph. However, cluster overlaps cannot be captured, and true clusters

might be hidden by a large number of “satellite” nodes that are assigned to the same

partition. These problems are avoided by enumeration techniques, which directly

control the properties of clusters via user-defined parameters and do not miss any

solution that satisfies these properties; in particular, these methods naturally allow

for overlapping clusters. On the other hand, the number of solutions can get very

large; furthermore, it might be difficult to come up with universal requirements for

clusters, because the characteristics of true clusters can vary quite much. But this

kind of problem arises in any cluster detection approach: a specific choice of criteria

results in a certain trade-off between the reliability of predicted clusters and the

coverage of true clusters.

From a biological point of view, an enumerative cluster finding approach is

appealing because it naturally allows for cluster overlaps and a systematic consider-

ation of cluster constraints. For motivation, let us consider the problem of predicting

protein complexes from interaction networks. There are two typical overlap scenar-

1Some methods, e.g., Markov Clustering [216], allow marginal overlaps between different partitions.
However, this usually concerns only negligibly few nodes in total, compared with the overlaps produced
by enumerative methods.

5.1 Motivation 31

(a) Different complexes with shared component (b) Different variants of a complex

A

B C

D E

A

B C

Z E

A

B C

D E

M N

O P

A L
A

B C

D E

A

B C

Z E

A

B C

D E

M N

O P

A L
Figure 5.2: Schematic view of typical overlap scenarios in protein complex analysis: (a) the same
protein can appear in different functional complexes, and (b) one complex can appear in different
variants that share the same core, but have different extensions.

A

B

Partitioning EnumerationDMEPartitioning

positive

negative

B
A

C
D
E

L
K

M
N
O
P

PPI Network

A

B C

D E

M N

O P

K L

A

B C

D E

A

B C

D E

A

B C

D E

A

B C

D E

M N

O P

K L

M N

O P

K L

M N

O P

K L

M N

O P

K L

Conditions

S
p
e
c
if
ic

N
o
n
-S

p
e
c
if
ic

N
o
n
-C
o
n
s
is
te
n
t

C
o
n
s
is
te
n
t

...

Figure 5.3: Integration of profile data. The combination of protein-protein interaction (PPI)
and external profile data for proteins across different conditions allows to focus on clusters with
consistent behavior of all nodes in a subset of conditions.

ios. First, it is a known fact that the same component may belong to different

functional complexes [83] (Figure 5.2 (a)). Second, one complex can appear in sev-

eral slightly different variants that share the same core part (Figure 5.2 (b)). In

particular, the composition of complexes can change in dependence of the organ-

ism, the cell type, the environmental conditions, and the developmental stage [63].

Therefore, it is promising to integrate additional data sources during the network

analysis, such as gene expression profiles, evolutionary conservation, subcellular lo-

calization, or phenotypic properties. This information helps to focus the search on

clusters that are biologically relevant. For illustration, let us consider binary-valued

profile data, indicating the state of each protein (e.g., present or absent) across mul-

tiple conditions. Then, dense modules are more likely to appear as a complex in

the living cell if all member proteins consistently have the same state in a subset of

conditions (see Figure 5.3). Moreover, context-specific changes can be revealed.

Our method allows to search for modules in the protein interaction network that

32 5 Module Mining in Weighted Interaction Networks

have consistent profiles with respect to a subset of conditions. In contrast to previous

integrative network mining methods (Section 4.4), it systematically identifies all

modules satisfying a density criterion and optional consistency constraints. Before

we describe the algorithmic framework, we introduce some definitions to formalize

the problem of dense module enumeration.

5.2 Definitions

Let us consider an undirected weighted graph with node set V . For notational

convenience, we assume that V is a set of consecutive indices starting from 1, i.e.,

V = {1, . . . , I} , (5.1)

where I is a positive natural number. Further, we denote by |V | the size or car-

dinality of the node set, i.e., the number of nodes (here, |V | = I). The |V | × |V |
interaction weight matrix is written as

W = (wij)i,j∈V . (5.2)

It contains for each pair of nodes an entry, which corresponds to the weight of the

connecting edge, if existent, and has a default value of zero otherwise.2 In the

following, we assume that the weights are given relative to their maximum possible

value, so the normalized weights are bounded by 1:

wij ≤ 1 (5.3)

Negative weights are generally possible, but non-negative input matrices allow for

additional speed-up techniques during the search and facilitate the elimination of

redundant results (see Sections 5.3.4 and 5.4). Unweighted input graphs are trans-

lated into binary weight matrices with 1-entries for existing edges and 0-entries for

missing edges.

A cluster or module is defined as a non-empty subset of nodes U ⊂ V , |U | ≥ 1.

The induced subgraph corresponding to a specific module U is represented by the

following interaction matrix:

W |U = (wij)i,j∈U . (5.4)

2Other default values may be specified as well.

5.3 Enumeration Algorithm 33

The average pairwise interaction weight within a module is referred to as the module

density:

Definition 4 (Module Density). For a node set V with interaction weight matrix

W and a module U ⊂ V , the density of U with respect to W is defined as

ρW (U) =

∑
i,j∈U,i<j

wij

|U |(|U | − 1)/2
. (5.5)

Here, self-interactions of nodes are not taken into account.3 Because of the

weight normalization, the largest possible density value is 1, conveniently expressed

as 100%. For |U | ≤ 1, we define ρW (U) =100%.

Now we formulate the module mining problem we are interested in.

Definition 5 (Dense Module Enumeration). Given a graph with node set V and

interaction weight matrix W , and a minimum density threshold θ > 0, find all

modules U ⊂ V such that ρW (U) ≥ θ.

The next section introduces an exact method to solve this problem. For un-

weighted input graphs, the problem is equivalent to pseudo-clique enumeration [214]

(for θ < 100%) or clique search [110] (for θ = 100%).

5.3 Enumeration Algorithm

The problem of dense module enumeration can be solved efficiently by reverse search,

a general algorithmic framework that has been published by Avis and Fukuda [14].

In the following, we first describe the basic search strategy of the dense module

enumeration algorithm, which generalizes the unweighted graph approach described

in [214]. The section continues with details regarding the implementation and is

concluded with a complexity analysis.

5.3.1 Search Space

The heart of any enumeration algorithm is the definition of a search space structure

that allows for efficient traversal and pruning. A canonical search scheme for set

3However, they can be integrated in a similar way as node weights (see Section 5.6).

34 5 Module Mining in Weighted Interaction Networks

(a) Example input graph (b) Corresponding weight matrix

1

2

 0.1

4

 0.9

3

 1.0

 0.5 0.9

1 2 3 4
1 0 0.1 1.0 0.9
2 0.1 0 0.5 0
3 1.0 0.5 0 0.9
4 0.9 0 0.9 0

(c) Graph-shaped search space (d) Lexicographical tree
{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

(e) Densities of example modules (f) Reverse search tree

Module Density
{1,2} 0.10
{1,2,3} 0.53
{1,2,4} 0.33
{1,3} 1.00
{1,3,4} 0.93

{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

Figure 5.4: Motivating example for module enumeration strategy. While a lexicographical traver-
sal of the search space does not yield density guarantees, the module density is monotonically
decreasing along each path of the reverse search tree.

enumeration tasks is to start with the empty set and then iteratively form larger

sets by adding one element at a time. This defines a search space that is organized

in multiple levels, having the empty set as its root; each time one moves a level

downwards, the set obtains an additional member, i.e., the set cardinality increases

by 1. Figure 5.4 (c) illustrates the search space of node sets for the example input

graph with four nodes shown in Figure 5.4 (a). For an efficient search, it is crucial

to avoid recomputations, i.e., the same set should not be visited several times. This

is usually achieved by defining a tree structure that spans the original graph-shaped

5.3 Enumeration Algorithm 35

search space. In pattern mining approaches it is very common to use lexicographical

set enumeration trees [19, 184, 240]. That means, a predefined order on the elements

is exploited such that a set can only be extended by elements that are greater than

any of the current member elements (see Figure 5.4 (d) for an example).

As the size of the complete set enumeration tree is exponential in the number of

input elements, the practical applicability of a search procedure strongly depends on

the definition of effective pruning rules, which prevent the exploration of irrelevant

subtrees. To motivate our search algorithm for the dense module enumeration task,

let us first consider the special problem of clique finding. In that case, the pruning is

straightforward: if the current module is not a clique, we know that all supersets are

non-cliques as well. More generally, this property is described as downward closure

or anti-monotonicity [4]:

Definition 6 (Anti-monotonicity). A function f : 2V → R is anti-monotonic if

f(U ′) ≥ f(U) for all U ′ and U with U ′ ⊂ U ⊂ V .

Here, 2V denotes the power set of V , so the function f assigns a score to any

subset of nodes in the input graph. For clique search, we define f(U) = 1 if U

is a clique, and f(U) = 0 otherwise. If the current module has a score of 0, all

descendants will have that score; hence, we can prune the search tree as soon as the

clique criterion is violated.

While the lexicographical search tree can be used for clique search, it is not

suitable for solving the general dense module enumeration problem because the

density criterion is in general not anti-monotonic. For instance, while the density

decreases when we go from {1, 3} to {1, 3, 4}, it increases when stepping from {1, 2}
to {1, 2, 3} (see Figure 5.4 (e)). Thus, the lexicographical structure does not provide

guarantees regarding the maximum module density in subtrees, which makes it

impossible to define effective pruning rules. The key idea for our dense module

enumeration approach consists in the definition of a specific search tree where the

density is monotonically decreasing on each path from the root to a leaf. We call

this structure an anti-monotonic set enumeration tree.

Definition 7 (Anti-monotonic Set Enumeration Tree). A set enumeration tree is

anti-monotonic with respect to a function f : 2V → R if f(U ′) ≥ f(U) for all U ′

and U such that U ′ ⊂ U is the parent of U .

Note that in this definition, the anti-monotonicity depends on a specific parent-

child relationship between sets, whereas Definition 6 considers general subset-superset

36 5 Module Mining in Weighted Interaction Networks

relations. Figure 5.4 (f) shows a search tree that is anti-monotonic with respect

to the module density (for the weighted example graph given in Figure 5.4 (a)).

Regarding the clique criterion, both this search tree and the lexicographical tree

(Figure 5.4 (d)) are anti-monotonic because the anti-monotonicity holds for any

subset-superset relation.

5.3.2 Reduction Scheme

Next, we explain how to construct a module search tree that enforces anti-mono-

tonicity of the module density. For that purpose, we need the definition of degree in

weighted graphs.

Definition 8 (Degree). Given a node u ∈ U ⊂ V , the (weighted) degree of u with

respect to the module U is defined as

degU(u) =
∑

j∈U,j 6=u

wuj . (5.6)

The degree obviously depends on the given weight matrix W . As W remains

fixed during the whole algorithm, we omit an explicit reference to W in the notation.

The following lemma states a fundamental property of the module density.

Lemma 1. Let v ∈ U be a node with minimum degree in U , i.e., for all u ∈ U :

degU(u) ≥ degU(v). Then, ρW (U \ {v}) ≥ ρW (U).

Proof. Using the formulae for module density and degree from Definition 4 and

Definition 8, respectively, we can rewrite the following expression:

ρW (U \ {v})− ρW (U)

=

∑
i,j∈U\{v},i<j

wij

(|U | − 1)(|U | − 2)/2
−

∑
i,j∈U,i<j

wij

|U |(|U | − 1)/2

=

(∑
i,j∈U,i<j

wij

)
−
(∑

j∈U

wvj

)
(|U | − 1)(|U | − 2)/2

−

∑
i,j∈U,i<j

wij

|U |(|U | − 1)/2

5.3 Enumeration Algorithm 37

=

(∑
i,j∈U,i<j

wij

)(
1− |U | − 2

|U |

)
− degU(v)

(|U | − 1)(|U | − 2)/2

=

(
1
2

∑
u∈U

degU(u)
) 2

|U |
− degU(v)

(|U | − 1)(|U | − 2)/2

=

1
|U |

∑
u∈U

degU(u)− degU(v)

(|U | − 1)(|U | − 2)/2

≥ 0

The inequality holds because of the assumption that v is a minimum degree

node in U . In summary, it follows that ρ(U \ {v}) ≥ ρ(U).

For unweighted graphs, this property is also known as “weak anti-monoton-

icity” and has for instance been exploited as auxiliary pruning criterion in graph

pattern mining [245]. Furthermore, iterative removal of minimum degree instances

has been used to approximate dense subgraphs [12].

In the context of dense module enumeration, the lemma yields the key for

defining an anti-monotonic search tree, similarly to the pseudo-clique enumeration

approach in [214]. Namely, we define the parent of a certain module as the module

that is obtained by removing a minimum degree node. If there exist several minimum

degree nodes, we apply an arbitrary predefined rule to select one among them, in

order to ensure the uniqueness of the parent. For that purpose, we exploit a specific

order on the nodes; as the nodes are represented by a set of indices (see Equation 5.1),

we here simply use the order of natural numbers. With this, we define the parent-

child relationship between modules as follows.

Definition 9 (Module Parent). Given a module U , let v ∈ U be the node with the

smallest index among the minimum degree nodes, i.e.,

∀u ∈ U \ {v} : [degU(v) < degU(u)] ∨ [degU(v) = degU(u) ∧ v < u] .

Then, U \ {v} is the parent of U .

As the parent is a subset of the original module, this parent construction rule

38 5 Module Mining in Weighted Interaction Networks

is also called reduction scheme. It defines a tree structure on the search space of

modules, which has two important properties: anti-monotonicity and completeness

(module reachability). Lemma 1 implies that parents have at least the same den-

sity as their children, so the tree is guaranteed to be anti-monotonic. The second

property refers to the fact that the tree covers the whole search space: by iterative

application of the reduction scheme, any module is transformed into the empty set,

hence it is reachable on a path from the root.

5.3.3 Search Procedure

Given these properties, the enumeration procedure is quite straightforward. We

traverse the module tree by depth-first search, starting from the empty set and re-

cursively generating children on demand as long as the density threshold is satisfied.

However, there remains one difficulty: while the reduction scheme allows to go from

a child to its parent (i.e., bottom-up), it is not possible to directly derive the children

of a given module in a top-down search. Therefore, we have to generate all direct

supersets of the current module and check whether they belong to this parent or

not. This paradigm is known as reverse search principle [14]. For the sake of clar-

ity, we reformulate the conditions of the parent-child relationship from a top-down

perspective, i.e., as it is used during the search process.

Definition 10 (Module Child). Let U be a module and v ∈ V \ U . The extended

module U∗ := U ∪ {v} is a child of U if and only if

∀u ∈ U : [degU∗(v) < degU∗(u)] ∨ [degU∗(v) = degU∗(u) ∧ v < u] .

With this, the dense module enumeration method boils down to the simple

pseudocode shown in Algorithm 1. In the beginning, the module U is set to the

empty set. In each iteration of the algorithm, we build an extended module can-

didate with every node that is not yet contained in U . If it satisfies the density

criterion and is indeed a child of U , the search is continued recursively. The correct-

ness of this algorithm follows directly from the anti-monotonicity and completeness

properties discussed above; i.e., it finds all modules that satisfy the given density

threshold.

Aside from the presented algorithm, several variants of the search scheme are

conceivable. For instance, we can traverse the search tree in a breadth-first manner.

That means, we first visit all solutions of a certain cardinality n before we go to the

next level, which corresponds to cardinality n+1. In many applications, a depth-first

5.3 Enumeration Algorithm 39

Algorithm 1 Dense module enumeration (DME) for node set V , interaction weight matrix
W , and minimum density threshold θ. U represents the current module; in the initial
method call, U is the empty set.
1: DME (V,W, θ, U) :
2: for each v ∈ V \ U do
3: if ρW (U ∪ {v}) ≥ θ and U ∪ {v} is child of U then
4: DME (V,W, θ, U ∪ {v})
5: end if
6: end for
7: output U

traversal is preferable to the breadth-first search because it requires only the storage

of the current path through the search tree4, whereas the latter has to keep track of

all the solutions in the previous level. Another option is to perform a top-k search:

instead of defining a density threshold, one specifies the desired number of solutions,

k, and the method yields a set of k solutions with the largest density values. For

this, we maintain a module list that is sorted according to the density criterion.

In each step, the top module is expanded into its children, and the list is updated

accordingly. This approach is particularly useful in conjunction with minimum size

constraints (Section 5.7.3). Beyond that, it is possible to split the search into several

phases with step-wise decreasing density thresholds. This works as follows: in the

beginning, we set a stringent density threshold and perform the usual dense module

enumeration algorithm; now, if we keep track of the border in the search tree where

pruning has taken place, we can later resume the search at those sites to find modules

with respect to a lower density threshold. This stop-and-continue strategy can be

repeated as often as desired. Finally, one could in principle design search schemes

that start from the full set instead of the empty set, and iteratively build candidate

modules of reduced set size rather than letting the modules grow. However, we

do not further pursue this idea because in our application scenarios, the expected

module size is small in comparison with the total network size.

5.3.4 Implementation Details

The central step of a reverse search algorithm is the generation of children for the

current solution. Therefore, engineering of this process is important for the efficiency

of the method. Here, we describe some additional details for the implementation of

the dense module enumeration approach.

4In fact, it would even be sufficient to store the previous solution and the current candidate, as the
ancestor solutions and their next candidates can be recomputed.

40 5 Module Mining in Weighted Interaction Networks

First of all, the density of a module candidate and the degree values of its nodes

can be calculated incrementally. For that purpose, we maintain an array d of length

|V | where we store the degree of each node with respect to the current module U ;

more precisely, it contains for the nodes in U the degree value with respect to U ,

and for all nodes v ∈ V \ U the degree value looking one potential extension step

ahead, i.e.,

dU(v) =

degU(v) if v ∈ U ,

degU∪{v}(v) if v ∈ V \ U .
(5.7)

In addition, we keep track of the total weight of the current module, which is equiv-

alent to the following expressions:

totalWeight(U) =
∑

i,j∈U,i<j

wij = ρW (U) |U |(|U | − 1)/2 = 1
2

∑
u∈U

degU(u) (5.8)

This allows to check in constant time whether the candidate U ∪ {v} satisfies the

density criterion:

ρW (U ∪ {v}) ≥ θ ⇐⇒ totalWeight(U) + dU(v) ≥ θ |U |(|U |+ 1)/2 (5.9)

For each successful candidate U ∪{v} we further investigate whether it actually is a

child of the module U . For this, we have to test the conditions given in Definition 10,

which requires O(|U |) operations (assuming constant access to the entries in W):

we have to determine the values of degU∪{v}(u) = dU(u) + wuv for all u ∈ U and

compare them with degU∪{v}(v) = dU(v). In several cases, however, it is possible to

skip these computations and decide in constant time whether U ∪ {v} is a child or

not. The following two lemmata describe such speed-up rules.

Lemma 2. Given a module U with respect to the interaction weight matrix W , let

u∗ ∈ U be the previously added node. Let us consider a node v ∈ V \ U . If W is

non-negative, the following rule holds:

[dU(v) < dU(u∗)] ∨ [dU(v) = dU(u∗) ∧ v < u∗] =⇒ U ∪ {v} is a child of U

Proof. By definition, u∗ is the smallest among the minimum degree nodes in U . As

W contains only non-negative entries, we obtain for u ∈ U degU∪{v}(u) = dU(u) +

wuv ≥ dU(u) ≥ dU(u∗). Further, degU∪{v}(v) is equal to dU(v) by definition. In the

case of dU(v) < dU(u∗), it follows that degU∪{v}(v) = dU(v) < dU(u∗) ≤ degU∪{v}(u)

for u ∈ U , so v is the unique node with minimum degree in U ∪ {v}. In the second

case, an analogous derivation shows that v is the node with smallest index in the

5.3 Enumeration Algorithm 41

set of minimum degree nodes in U ∪ {v}.

Lemma 3. Given a (normalized) weight matrix W and a cluster U , let u∗ ∈ U be

the previously added node. For v ∈ V \ U , the following rule holds:

[dU(v) > dU(u∗) + 1] ∨ [dU(v) = dU(u∗) + 1 ∧ v > u∗]

=⇒ U ∪ {v} is not a child of U

Proof. By assumption, wij ≤ 1 for all i, j ∈ V , so degU∪{v}(u
∗) = dU(u∗) + wu∗v ≤

dU(u∗) + 1. If dU(v) > dU(u∗) + 1, it follows directly that degU∪{v}(v) = dU(v) >

degU∪{v}(u
∗), so v cannot be a minimum degree node. For the case that dU(v) =

dU(u∗) + 1 ∧ v > u∗, a similar argumentation shows that U ∪ {v} cannot be a

child.

In the case of binary-valued interaction matrices, further efficiency improve-

ments are possible (see [214]). In particular, it has been proposed to organize the

set of remaining candidate nodes (i.e., V \ U) into buckets, according to their (in-

teger) degree values with respect to the current module. This allows to process the

module candidates in the order of decreasing density, and buckets can be totally

ignored if the corresponding degree value is too low to satisfy the density thresh-

old. Similarly, we could maintain for weighted interaction matrices a priority queue

where the candidate nodes are sorted by decreasing degree. This can be particularly

useful in sparse data, where each module extension step requires only few updates

of the data structure. For simplicity, we stick in our analysis to the implementation

based on degree arrays.

Whenever a candidate U ∪ {v} turns out to be a true child, we have to update

the total weight and the degree array before we can search for its own children:

totalWeight(U ∪ {v}) = totalWeight(U) + dU(v)

dU∪{v}(j) = dU(j) + wvj for all j ∈ V , j 6= v

This requires O(1) and O(|V |) operations, respectively.

5.3.5 Complexity

In combinatorial enumeration problems, the output size (i.e., the number of solution

patterns) can be exponential in the input size. As an extreme example, a fully

42 5 Module Mining in Weighted Interaction Networks

connected input graph with node set V contains 2|V | cliques; in other words, each

subset of nodes appears in the output. Therefore, rather than the total running time,

a conventional complexity measure for enumeration methods is the time between two

consecutive solution patterns, which is called delay [72, 73, 178]. In the following, we

show that the reverse search algorithm for dense module enumeration has polynomial

delay.

Using the degree array implementation described in the previous section, each

recursion step of Algorithm 1 needs O(|V | + |V \ U | · |U |) operations, for updat-

ing the degree array and generating the children of the current module U . In the

worst case, we perform for each candidate node a temporary update for the degree

values of the nodes in U and compare them to its own degree value. However, in

practice, the number of operations is typically much smaller because many candi-

dates already fail at the density check, and the rules from Lemma 2 and Lemma 3

often allow to circumvent the temporary update step. To estimate the delay to the

subsequent solution pattern, we consider a small modification of the algorithm: if

the recursion depth is odd, we output the module before the recursive calls, and

otherwise afterwards. Thereby, any three consecutive iterations of the code yield

at least one output.5 This computational trick is known as the odd-even output

method [158, 214]. For illustration, we show in Figure 5.5 an example execution

of the algorithm. Now, the delay has the same complexity as the execution of one

recursion step, i.e., O(|V | + |V \ U | · |U |), where U is the current solution. More

generally, let the Umax be the largest solution pattern; then, the delay is bounded

by O(|V | · |Umax|), so it is at most quadratic in the number of nodes in the network

(in practice |Umax| � |V |). We summarize our (worst-case) analysis in the following

theorem.

Theorem 1. The dense module enumeration problem can be solved by a reverse

search algorithm with polynomial delay. In particular, for an input graph with node

set V , the delay has a complexity of O(|V |2).

In contrast to that, straightforward branch-and-bound strategies might need

exponential time between two outputs because they have to solve an NP-complete

problem in each recursive step [214]. Moreover, it is worth mentioning that the

reverse search approach is directly compatible with distributed computation because

different branches of the search tree can be investigated in parallel. Finally, the

memory requirements of the recursive implementation are also polynomial in the

5Note that without this modification, the algorithm would output solutions only after having reached leaf
modules of the search tree (i.e., after a sequence of recursive calls).

5.4 Output Representation 43

input size. For each recursive call, we store the current module U and the degree

array of length |V |. Hence, the space complexity depends on the maximum recursion

depth, |Umax|, and is given by O(|Umax| · |V |) plus the space needed for the input

matrix. Using a simple implementation with a full matrix representation, the total

space complexity of the algorithm amounts to O(|V |2), but improvements for sparse

settings are conceivable. Note that it is not necessary to keep all previous solutions

in memory.

5.3.6 Excursus: Reverse Search Applications

The technique of reverse search provides a feasible solution strategy for various

types of enumeration problems. To define a reverse search method for a particular

application, one has to specify

• a multi-level search space and

• a reduction scheme that guarantees anti-monotonicity and completeness.

The most prominent application field of reverse search are graph-related enumeration

problems. Beside the problem of dense module enumeration discussed above, the

framework can be used to enumerate all spanning trees and all connected modules of

a graph as well as to derive all topological orderings of a directed acyclic graph [14].

For instance, in the case of connected module enumeration, the search space is the

same as for dense module enumeration; one possible reduction scheme is to select the

node with the smallest index among all nodes that are not articulation points, where

an articulation point or cut vertex is a node that is essential for the connectivity of

the induced subgraph (i.e., removal of an articulation point produces a disconnected

module). Also, string problems can be solved using the reverse search paradigm,

e.g., enumeration of maximal motifs in a sequence [9, 10]. Finally, reverse search

is very useful in computational geometry applications. Example tasks are vertex

enumeration in a convex polyhedron, cell enumeration in a hyperplane arrangement,

and enumeration of triangulations of a set of points in the plane [14].

5.4 Output Representation

As enumerative approaches potentially return a large solution set, we discuss in this

section how to obtain a user-friendly representation of the dense module enumera-

tion output. In particular, direct submodules of other solutions can be efficiently

44 5 Module Mining in Weighted Interaction Networks

(a) (b)

0

1

2

3

4

...

{3}

Output

0

1

2

3

4

...

{3}

Output

(c) (d)

0

1

2

3

4

...

{3}

Output

0

1

2

3

4

...

{3}

{1,3,4}

Output

(e) (f)

0

1

2

3

4

...

{3}

{1,3,4}

Output

0

1

2

3

4

...

{3}

{1,3,4}

{1,3}

Output

Figure 5.5: Illustration of reverse search with the odd-even output method. Sequence of traversal
steps for a subtree of the example in Figure 5.4. The boxes indicate the module that is currently
investigated. The green, solid boxes correspond to solution modules; the red, dashed boxes cor-
respond to candidates that are pruned. For that, we assume a minimum density threshold of 0.9.
Note that each solution module gives rise to a new recursive call. The numbered lines indicate the
levels of recursion depth. After three recursive calls, two of which are completely executed ({1, 3}
and ({1, 3, 4}), the output contains three solution patterns.

5.4 Output Representation 45

eliminated, and the remaining modules are ranked according to their statistical sig-

nificance.

5.4.1 Locally Maximal Modules and Leaf Modules

Usually, the user is not so much interested in modules that are subsets of other

module solutions; rather, the most comprehensive modules are most relevant for

further analyses. Therefore, the concept of maximality is widely used in pattern

mining approaches [5, 19, 74, 77, 141]. In the context of dense module mining, it

can be formulated as follows.

Definition 11 (Maximal Dense Module). A dense module is called maximal if it is

not contained in any other dense module.

A straightforward approach to obtain the set of maximal solutions would be

to go for each newly detected module through all previous solutions, checking for

inclusions. However, the structure of our reverse search algorithm allows us to reduce

the number of solutions in the output in a meaningful way without any additional

costs. We simply set a flag that indicates whether there exists a direct supermodule

(i.e., a module with one additional node) that also satisfies the minimum density

threshold (see Algorithm 2). If that is the case, we do not output the current module,

otherwise we do. This yields us the set of all locally maximal dense modules.

Definition 12 (Locally Maximal Dense Module). A dense module U is called locally

maximal if for all v ∈ V \U , U∪{v} does not satisfy the minimum density threshold.

As this definition looks only one step ahead, a module with this property can in

principle violate the (stricter) maximality criterion. However, in practice the local

maximality criterion successfully eliminates most non-maximal modules. If the den-

sity threshold θ is equal to 1, a locally maximal module is always maximal. Looking

several extension steps ahead is in our search procedure only possible with respect

to the own descendants. Alternatively to listing locally maximal modules, we could

report all modules that do not have any dense descendants, i.e., all leaf nodes of the

pruned search tree. A pseudocode for this is shown in Algorithm 3. It is easy to

see that the set of leaf modules includes the set of locally maximal modules: by the

definition of local maximality, any local maximal module cannot have descendants

that are solutions. The other way round, a leaf module is not necessarily locally

maximal. Therefore, we usually prefer the local maximality criterion to achieve a

more compact result set. But if additional module filtering criteria are applied, the

46 5 Module Mining in Weighted Interaction Networks

Algorithm 2 Enumeration of locally maximal dense modules for node set V , interaction
weight matrix W , and minimum density threshold θ. U represents the current module; in
the initial method call, U is the empty set.
1: DME lmax (V,W, θ, U) :
2: locallyMaximal = true
3: for each v ∈ V \ U do
4: if ρW (U ∪ {v}) ≥ θ then
5: locallyMaximal = false
6: if U ∪ {v} is child of U then
7: DME lmax (V,W, θ, U ∪ {v})
8: end if
9: end if

10: end for
11: if locallyMaximal then
12: output U
13: end if

Algorithm 3 Enumeration of dense leaf modules for node set V , interaction weight
matrix W , and minimum density threshold θ. U represents the current module; in the
initial method call, U is the empty set.
1: DME leaf (V,W, θ, U) :
2: isLeaf = true
3: for each v ∈ V \ U do
4: if ρW (U ∪ {v}) ≥ θ and U ∪ {v} is child of U then
5: isLeaf = false
6: DME leaf (V,W, θ, U ∪ {v})
7: end if
8: end for
9: if isLeaf then

10: output U
11: end if

leaf criterion can sometimes be checked much more efficiently than the local maxi-

mality, as we discuss in Section 5.5. In any case, one could perform a straightforward

postprocessing step to remove all non-maximal modules or select results according

to other criteria of interest, but this is greatly facilitated if as many non-informative

modules as possible are already discarded during the search.

5.4.2 Module Ranking

Even after filtering the results for local maximality or other predefined criteria, the

solution set might be large. Therefore, it is important to provide a meaningful

ranking criterion for the discovered modules. A widely used concept to measure the

5.4 Output Representation 47

uncommonness or statistical significance of patterns are p-values. In general, the

p-value of a certain pattern is defined as the probability that a randomly selected

pattern of equal size is at least as “good” as the given pattern [21]. In our case,

the statistics to measure the quality of an outcome is its density. Regarding the

mechanism for random selection, different choices are conceivable. Given a module

U , we here simply assume that a set of |U | different nodes is randomly selected from

the network at hand. The probability that this produces a module with at least the

same density as the given pattern U is calculated by the following expression:

pW (U) =
∣∣{U ′ ⊂ V : |U ′| = |U | ∧ ρW (U ′) ≥ ρW (U)}

∣∣/(|V |
|U |

)
(5.10)

The completeness of our dense module enumeration approach enables us to deter-

mine the numerator exactly, i.e., we can compute for each detected module an exact

p-value [21]. For that purpose, we have to keep track of the densities and the sizes

of all solutions we encounter during the search. If we maintain for each module

size a sorted list of densities, one pass is sufficient to obtain the p-values for all

output module of that size. Lower p-values indicate more remarkable or surprising

patterns, so the results are sorted according to their p-values in increasing order.

This ranking scheme captures the intuition that the importance of a module should

increase with its size and density; still, from a theoretical point of view, it is more

principled than the ranking criterion used in [16], which is the product of size and

density. Furthermore, it specifically refers to the network at hand, in contrast to

significance measures that are based on reference network models [128]. This can

be advantageous because real networks might violate the assumptions of network

models.

Other module finding approaches calculate p-values by assessing the number

of interactions within the module relative to the number of interactions between

module nodes and the remaining network [137]; in that case, interaction weights are

ignored. Finally, it is very common to estimate empirical p-values by generating

multiple random networks with the same degree distribution as the given input

network [191]. Note that the (exact) p-value criterion formulated above does not

take the degree into account. More sophisticated approaches are conceivable; for

instance, one could consider random modules that do not only have the same size as

the pattern of interest, but also satisfy some constraints regarding the node degrees

with respect to the whole network. This refined analysis could reveal significance

differences among modules with similar size and similar density.

48 5 Module Mining in Weighted Interaction Networks

5.5 Degree-Based Module Criteria

So far, our primary criterion of interest has been the density of interactions across

the whole module. Here, we discuss more specific criteria that refer to individual

module nodes.

5.5.1 Minimum Degree Criterion

The module density criterion is very flexible, allowing for missing or weak edges to a

certain extent; in particular, for a fix density threshold, the flexibility increases with

growing module size. While this property is advantageous in many situations (e.g.,

for finding modules supported by a large number of weak edges as well as modules

containing few, but very strong edges), there can also occur undesired artifacts: a

large dense module might tolerate the addition of several loosely connected nodes

without violating the density threshold. This effect can blow up the number of so-

lutions considerably, even after selection for (local) maximality, because the same

core module can appear in many different variants, each time augmented by a few

loosely attached, possibly irrelevant nodes. Of course, an obvious remedy would be

to choose a stricter density threshold, but this could lead to the loss of other inter-

esting solutions. Therefore, we introduce an optional filtering criterion for modules,

which fixes a minimum degree threshold for module nodes.

Definition 13 (Minimum Degree Threshold). A module U satisfies the minimum

degree threshold t if degU(u) > t for all u ∈ U .

By default, we set t = 0, i.e., modules containing isolated nodes or nodes with

negative degree are not considered as solutions. If the interaction matrix W contains

only non-negative entries, it is easy to search for modules that are locally maximal

with respect to the new combined criterion, consisting of a minimum density thresh-

old and a minimum degree threshold; here, a solution module U is locally maximal

if and only if ∀v ∈ V \ U : ρW (U ∪ {v}) < θ ∨ minu∈U∪{v} degU∪{v}(u) ≤ 0. For

this, we replace line 5 in Algorithm 2 with the following statement: if dU(v) >

t then locallyMaximal = false endif. Here, dU(·) denotes the corresponding entry

of the degree array for the current module U (see Section 5.3.4). The node v is

not necessarily a minimum degree node with respect to U ∪ {v}; thus, the module

U ∪{v} might still violate the minimum degree criterion. However, in that case the

module U does not satisfy it either (because of the non-negativity of W , the degree

values can only grow by the addition of v), so this check does not discard any true

5.5 Degree-Based Module Criteria 49

solution. To ensure that the output contains only valid solutions, we further have

to add in line 11 a condition that checks the minimum degree criterion. We can

either store with each module U the result of the check preceding its generation as

a child or check again the degree value of the previously added node u∗ (which is by

definition a minimum degree node): dU(u∗) > t.

For mixed-sign input data, the situation is more complicated because the degree

values do not monotonically increase with the extension of the module. So it can

happen that U is a valid pattern, but U ∪ {v} not, although dU(v) is above the

threshold. As an example, let us consider the following three-node graph: V =

{v1, v2, v3}, wv1v2 = 0.5, wv1v3 = 1, wv2v3 = −0.6. For θ = 0.3 and t = 0, {v1, v2}
is a solution and {v1, v2, v3} not; however, ρW ({v1, v2, v3}) ≥ θ and d{v1,v2}(v3) > t.

So we need a different strategy to determine local maximality. One solution is to

check the degree values of all nodes for each module candidate U ∪{v} that satisfies

the density criterion, which requires a temporary update of the degree array (see

Section 5.3.4). In that case, we cannot make use of the speed-up rule described in

Lemma 3. Another possibility of output filtering is to keep all solutions where no

descendant satisfies both the density and the minimum degree criterion, i.e., the

leaf solutions. As the minimum degree is not anti-monotonic, we have to adjust

Algorithm 3 such that it returns the existence of solutions from (multiple) recursive

calls to the outer procedure and prevents it from producing an output (multi-step

look-ahead). This strategy is more efficient because the minimum degree criterion

must only be checked for true children, which are updated anyway, not for all dense

candidates. In contrast to the setting where we consider only the module density

criterion, here it is not clear a priori which strategy will reduce the output set more

effectively.

5.5.2 Minimum Relative Degree and Quasi-Cliques

A drawback of the minimum degree criterion is that it specifies the threshold irre-

spective of the module size. That means, for low thresholds we will get undesired

weakly connected extensions of large modules, as described above, whereas high

thresholds a priori exclude small modules. Therefore, it seems to be promising to

replace the combination of density and minimum degree criteria by the following

minimum relative degree criterion.

Definition 14 (Minimum Relative Degree Threshold). The minimum relative degree

threshold γ is satisfied for a module U if degU(u)/(|U | − 1) ≥ γ for all u ∈ U .

50 5 Module Mining in Weighted Interaction Networks

(a) (b) (c)

B C

D E

F

A

B C

D E

F

A

B C

D E

F

A

Figure 5.6: Minimum relative degree versus density. While the modules (a)-(c) all have the same
density (3/5), the minimum relative degree varies: (a) 3/5, (b) 1/5, (c) 0.

This condition considers the density with respect to each individual module

node and thereby guarantees a certain balance in the distribution of the weight

among the nodes in a module, which is a reasonable requirement in many applica-

tions. For unweighted graphs, this kind of pattern is known as γ-quasi-clique [104,

145, 172, 242]:

Definition 15 (γ-Quasi-Clique). A node set U is a γ-quasi-clique if each node has

edges to at least dγ(|U | − 1)e other nodes in U .

It is easy to verify that a module satisfying the minimum relative degree thresh-

old γ has a density of at least γ. On the other hand, for a module with density ≥ γ

the minimum relative degree is not necessarily greater than or equal to γ. Fig-

ure 5.6 illustrates this relationship between module density and minimum relative

degree. Unfortunately, we cannot mine directly for modules that satisfy the min-

imum relative degree criterion. The reason is that it is inherently impossible to

define an anti-monotonic reduction scheme. For instance, let us consider the mod-

ule in Figure 5.6 (a). The minimum relative degree is 3/5. However, no matter

which node we remove, the resulting module will have a minimum relative degree

of 2/4. Therefore, we have to use a more general criterion during the search and

perform a filtering step to select the actual solutions. One possible approach is to

enumerate by reverse search all modules with density ≥ γ and use similar strategies

as with minimum degree thresholds for mixed-sign data to filter the modules. For

unweighted input graphs, alternative approaches have been developed, which are

described in the following section.

5.5 Degree-Based Module Criteria 51

5.5.3 Previous Work on Quasi-Clique Mining

We briefly review the major techniques for γ-quasi-clique enumeration used in ex-

isting work [104, 145, 172, 242]. The basic search strategy is depth-first search in

a lexicographical set enumeration tree. As it lacks an anti-monotonicity property

with respect to the quasi-clique criterion, the pruning is based on other character-

istics. The first rule is connected with the diameter of γ-quasi-cliques. In general,

the diameter of a subgraph is defined as the maximum shortest path length between

any pair of nodes. For example, the graph in Figure 5.6 (a) has diameter 2. It turns

out that the diameter of a γ-quasi-clique U can be bounded in dependence of the

minimum relative degree threshold γ and the number of nodes |U |:

Lemma 4. Let U be a γ-quasi-clique (|U | > 1). Further, let diam(U) denote the

diameter of U . Then,

diam(U)

= 1 if 1 ≥ γ > |U |−2
|U |−1

≤ 2 if |U |−2
|U |−1

≥ γ ≥ 1
2

.

Proof. In the first case, each node is directly connected to more than |U | − 2 other

nodes in U , hence U is a clique. In the second case, each node u ∈ U has edges

to at least d(|U | − 1)/2e other nodes in U (according to the definition of γ-quasi-

clique). We call these nodes the neighbor set of u with respect to the node set U ,

denoted by NU(u). Now let us consider a pair of nodes u1, u2. If there exists an

edge between u1 and u2, the corresponding shortest path length is 1. Otherwise,

|NU(u1)∪NU(u2)| ≤ |U |−2 because u1 and u2 are excluded and there are |U | nodes

in total. Further, it follows from the assumption that |NU(u1)|+ |NU(u2)| ≥ |U |−1.

Putting both statements together, we obtain |NU(u1)∩NU(u2)| ≥ 1, i.e., u1 and u2

have at least one common neighbor. Consequently, there exists a path of length 2

from u1 to u2.

For upper bounds of the diameter for smaller γ, we refer to [104]. With this

lemma, we can restrict the set of candidate nodes for extending a given set of nodes:

Lemma 5. Let U ⊂ V be the current set of nodes and u ∈ U . Further, we denote

by N b
V (u) the b-step neighborhood of u with respect to V , i.e., all nodes in V that

are reachable from u by a path of length ≤ b. If there exists a γ-quasi-clique Q with

U ⊂ Q ⊂ V , each node v ∈ Q \ U satisfies

v ∈
⋂
u∈U

N b
V (u) ,

52 5 Module Mining in Weighted Interaction Networks

where b is the upper bound of the diameter of a γ-quasi-clique.

Consequently, we can discard candidate nodes that are not included in the

intersection of the b-neighborhoods of the current nodes. Moreover, one can derive

degree-based pruning rules. Given a minimum size threshold m for γ-quasi-cliques,

one can a priori remove all nodes v with degV (v) < dγ · (m − 1)e. Further degree-

related pruning is possible during the search. If

degU(v) + degV \U(v) <
⌈
γ · (|U |+ degV \U(v))

⌉
for a node set U and a node v ∈ V \ U , then v can be excluded from the extension

candidates, because v does not satisfy the minimum relative degree criterion for

any superset of U ∪ {v} [242]. As the exclusion of one node can influence the

degrees of other nodes, this pruning procedure is performed iteratively. Beyond

that, many additional refinements of γ-quasi-clique mining have been proposed,

including degree-dependent bounds, look-ahead strategies, and candidate sorting

(see [104, 145, 242] for details).

5.5.4 Discussion

One problem of the existing quasi-clique mining approaches is that the underlying

search tree is not anti-monotonic. Consequently, indirect criteria have to be used

to decide where pruning is possible. Often, one single criterion is not sufficient to

achieve an efficient search. For instance, the diameter-based pruning is problematic

for input graphs that contain highly connected nodes (“hubs”) because the b-step

neighborhoods of nodes and their intersection can be very large. Similarly, degree-

based pruning techniques fail if there are too many nodes for which the degree

exceeds a critical threshold. Therefore, it is crucial for the feasibility of the approach

to combine several such criteria, as suggested in the literature [104, 145, 172, 242].

As the module density criterion is a direct generalization of the γ-quasi-clique

criterion and allows to construct an anti-monotonic search tree, an interesting alter-

native would be to exploit the dense module enumeration strategy for quasi-clique

mining. This is particularly promising considering the fact that the pruning rules

from previous quasi-clique mining methods can also be integrated into the frame-

work, thereby combining the advantageous properties of both approaches to achieve

a high pruning potential. Furthermore, it would be interesting to extend the quasi-

clique pruning concepts to the minimum relative degree criterion for weighted input

graphs. Finally, a combination of topology-based and weight-based criteria could

5.6 Integration of Node Weights 53

also be fruitful for cluster detection in weighted graphs. Here, we focused on search

criteria that consider exclusively the interactions within a module. However, de-

pending on the application scenario it can be desirable to take outgoing edges into

account as well. In the literature, a number of different approaches to combine these

two aspects have been studied (see, e.g., [149, 160, 162, 181]).

5.6 Integration of Node Weights

So far, the density criterion for modules takes only interaction weights into ac-

count. However, node weights play a role in many biological applications; they are

commonly used to indicate the (measured or estimated) relevance of a node for the

biological problem at hand. In this section, we discuss how to integrate node weights

into the module mining process. In contrast to module finding approaches that use

node weights to preprocess the input graph (i.e., remove low-weight nodes) [191],

we directly incorporate them into the search criterion.

5.6.1 Definitions

Let us consider again an input network with node set V . We assume that each node

i ∈ V has an assigned node weight, denoted by oi. With this, we define the node

density of a module.

Definition 16 (Node Density). Given a module U ⊂ V and node weights o =

(oi)i∈V , the node density is defined as

ρo(U) =
1

|U |
∑
i∈U

oi . (5.11)

That means, the node density corresponds to the average node weight within a

module. For clarity, we use the term interaction density to refer to the previous def-

inition of module density, the average pairwise interaction weight (see Definition 4).

Now we introduce a combined density criterion, which includes interaction weights,

node weights, and a calibration parameter α.

Definition 17 (Combined Density). Given a module U ⊂ V , the combined density

is defined as

ρα,W,o(U) = 1
1+α

(ρW (U) + α ρo(U)) , (5.12)

where α ≥ 0.

54 5 Module Mining in Weighted Interaction Networks

In words, the combined density is a weighted sum of the interaction density

and the node density, where the node contribution obtains the α-fold weight of

the interaction contribution. For convenience, interaction weights and node weights

are normalized independently such that the maximum value is 1, respectively; i.e.,

oi ≤ 1 for all i ∈ V and wij ≤ 1 for all i, j ∈ V , i 6= j. Thus, both the maximum

interaction density and the maximum node density are 1. Then, the maximum

combined density is 1, since the scaling factors in the weighted sum in (5.12) are

non-negative and sum up to 1.

By the definition of the combined density criterion, we can formulate the fol-

lowing generalized dense module enumeration problem.

Definition 18 (Generalized Dense Module Enumeration). Given a set of nodes V ,

an interaction weight matrix W , a node weight vector o, a calibration parameter α ≥
0, and a density threshold θ > 0, find all modules U ⊂ V such that ρα,W,o(U) ≥ θ.

5.6.2 Algorithm

Remarkably, the generalized dense module enumeration problem can be reduced

to the basic problem involving only interaction weights. More precisely, using the

formulae of interaction density (5.5) and node density (5.11), we can rewrite the

combined density (5.12) as follows:

ρα,W,o(U) =
1

1 + α

∑

i,j∈U, i<j

wij

|U |(|U | − 1)/2
+ α

∑
i∈U

oi

|U |

=

∑
i,j∈U, i<j

1
1+α

(
wij + α

(oi + oj)

2

)
|U |(|U | − 1)/2

This directly suggests the following enumeration procedure:

1. Construct a transformed interaction weight matrix W new:

wnew
ij = 1

1+α

(
wij + α

(oi+oj)

2

)
(5.13)

5.6 Integration of Node Weights 55

2. Use the standard DME algorithm to enumerate all modules U that satisfy the

following criterion:

ρWnew(U) ≥ θ (5.14)

By the transformation, most interactions that formerly had a weight of zero

obtain non-zero values, so the transformed interaction weight matrix is usually non-

sparse.

5.6.3 Remarks

The previous sections explained how to enumerate modules with respect to a cri-

terion that combines interaction density and node density. The user may specify

a minimum threshold for the combined density as well as a parameter α to cali-

brate the two components. Another possible setting would be to consider individual

thresholds θW and θo for interaction density and node density, respectively. Clearly,

one can formulate independent module finding tasks for the two criteria. Each of

them can be solved with an anti-monotonic search tree. For the task that exclusively

considers the node density, this is simply achieved by the following definition of par-

ent: the node set that is obtained by the removal of one minimum weight node. As

the node weights do not depend on the other nodes in a module, we do not need

the framework of reverse search, but can directly generate children by respecting a

weight-based ordering of nodes.

For a given module, there does not necessarily exist a parent such that the

anti-monotonicity is satisfied with respect to both criteria. Consequently, it is not

possible to construct a combined search tree or to perform cross-tree pruning, i.e.,

if a module fails to satisfy one criterion, one still has to consider its descendants

with respect to the other criterion. A straightforward solution strategy, which has

been used in [181] for a similar problem, is to perform the search with respect to one

density criterion, and filter the results with respect to the other one. Alternatively,

we can search with the combined density criterion from Definition 17, setting the

minimum density threshold to 1
1+α

(θW + α θo). If the individual density criteria

are satisfied, the combined density exceeds the threshold, so we do not miss any

solution. However, note that the interaction density and the node density might

balance each other; therefore, the solutions still have to be checked with respect to

the interaction density and node density, respectively. The parameter α allows to

trade off the importance of the two criteria a priori. In particular, if one criterion

is much more likely to be satisfied, it is recommendable to focus on the stricter one

56 5 Module Mining in Weighted Interaction Networks

during the search.

5.7 Constraint Integration

Often, it is desirable to restrict the dense module search by some additional criteria.

Our enumeration framework allows to incorporate and systematically exploit various

types of constraints defining further module characteristics or involving external

datasets. In the following subsections, we exemplarily present some constraints that

actively contribute to pruning during the search; constraint-based output filtering

has been discussed in Section 5.5.

5.7.1 Constraints from External Data Sources

In many systems biology applications, the integration of background knowledge or

other data sources is crucial to enhance the biological relevance of patterns. One

useful criterion are consistency constraints with respect to external profile data,

as illustrated in Figure 5.3. Given a discrete-valued profile for each node, we call

a module consistent if all its nodes share a common subprofile. In the context

of protein interaction data, we could for instance consider subcellular localization

profiles, which indicate presence of proteins in each cellular compartment. With

such data, the search for consistent patterns aims at the discovery of modules that

are “realizable” in the living cell and therefore more plausible than a module without

protein cooccurrence. Formally, we define the concept of consistency as follows.

Definition 19 (Consistency). Let V be the node set of the input network and U ⊂ V

a module. Let X = (xij)i∈V,j∈C be an auxiliary profile matrix, where C denotes the

set of columns (representing different conditions) and the entries xij take values

from a set of discrete states S. Given a state s ∈ S, a particular column c ∈ C is

said to be s-consistent with respect to U if

xuc = s for all u ∈ U .

The number of s-consistent columns with respect to U is denoted by fs(U). The

module U is consistent with respect to s if

fs(U) ≥ ns ,

where ns is a prespecified (non-negative) integer.

5.7 Constraint Integration 57

To control the consistency of module profiles, we fix minimum thresholds ns

for the frequencies fs(U) of the different states s. Then, we can formulate the

constrained dense module enumeration task:

Definition 20 (Dense Module Enumeration with Consistency Constraints). Given

a graph with node set V and weight matrix W , a density threshold θ > 0, an auxiliary

profile matrix (xij)i∈V,j∈C with xij ∈ S, and integers ns for all s ∈ S, find all modules

U ⊂ V such that ρW (U) ≥ θ and fs(U) ≥ ns for all s ∈ S.

If we are only interested in consistency with respect to one specific state, the

thresholds for the other states are simply set to 0. For example, one might look

for protein modules with consistent presence in a cellular compartment, ignoring

patterns of coordinated absence. The consistency constraints help to concentrate

on patterns that are of interest for the study at hand. In addition, they can lead to

a considerable speed-up of the search procedure. Namely, we can exploit pruning

techniques from traditional frequent itemset mining [4], based on the observation of

anti-monotonicity (see Definition 6).

Lemma 6. The consistency criterion satisfies the anti-monotonicity property, i.e.,

U ′ ⊂ U =⇒ fs(U
′) ≥ fs(U) .

Proof. Each column that is s-consistent with respect to U is also s-consistent with

respect to U ′.

In other words, module extension cannot increase the frequency of consis-

tent columns, see Figure 5.7 for illustration. When adding node F to the module

{A,B,C,D,E}, the number of consistent 1-columns shrinks, whereas the number of

consistent 0-columns is left unchanged. To determine the frequencies of consistent

columns for {A,B,C,D,E,F}, only the columns that are consistent with respect to

{A,B,C,D,E} need to be considered. The lemma implies that if a module itself does

not satisfy the frequency requirements, no extension can satisfy them. Thus, they

can be directly used as additional pruning criteria and thereby avoid that irrelevant

parts of the search space are visited. That means, we simply check one further

condition before doing the recursive call in line 4 of Algorithm 1. To perform local

maximality filtering in the context of consistency constraints, we just have to make

sure that the consistency is checked before the child conditions. More precisely,

we add the consistency conditions to line 4 in Algorithm 2. These are then auto-

matically taken into account when checking for local maximality. Alternatively, the

58 5 Module Mining in Weighted Interaction Networks

Module U f1(U) f0(U)
{A,B,C,D,E} 2 2
{A,B,C,D,E,F} 1 2

Constraint Integration

Differential expression constraint: e1(U) ≥ n1, and e0(U) ≥ n0

Monotonicity property: e1 and e0 decrease with extension of U

Module f1 f0
ABCDE 2 2
ABCDEF 1 2

A

expressed

non-expressed

B
C
D
E

L

K

M

N

O

P

F

Easy integration: use as additional pruning criterion

Elisabeth Georgii (SCS ’07) Mining Expression-Dependent Modules July 21st, 2007 10 / 16

Figure 3: Frequency of consistent columns before and after module exten-
sion (f1 is the frequency of consistently green columns, f0 the frequency of
consistently black columns).

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

DME

Clique

Figure 4: Precision-recall curves for overlapping interactions.

15

Figure 5.7: Anti-monotonicity of consistency constraints. Given the example profile on the right,
the table shows the frequencies of consistent columns for the 1-state (green) and for the 0-state
(black) before and after module extension.

output can be summarized according to the concept of closed patterns [171, 221].

There, the idea is to exclude subsets of other solutions only if they are supported

by exactly the same set of consistent columns. The motivation behind this is that

subsets of other solutions can still be informative if they have a different specificity

profile (i.e., a larger set of consistent columns).

The described framework can be applied to incorporate any kind of anti-mono-

tonic constraints. Furthermore, one can use arbitrarily many of those constraints

at the same time, so it is possible to coanalyze several data sources, defining indi-

vidual constraints for each of them. Beside profile consistency constraints, another

prominent example for anti-monotonic constraints on external data are node pair

constraints. Assume we have an additional weight matrix containing an entry for

each pair of nodes. This could be a similarity or distance matrix that is based on

another criterion or comes from another experiment. Then, constraints that define

minimum or maximum weight thresholds for all node pairs in a module are anti-

monotonic: if a module contains a pair that violates the threshold, all its supermod-

ules will not satisfy the constraint. Finally, not all constraints that are potentially

interesting have the anti-monotonicity property. For instance, the requirement that

a certain percentage of module nodes fulfills some criterion is inherently non-anti-

monotonic. Sometimes it might be possible to derive anti-monotonic bounds even

if the criterion is not anti-monotonic. Otherwise, one can handle these constraints

simply by output filtering (see Section 5.5), in which case they do not contribute to

accelerating the search.

5.7 Constraint Integration 59

5.7.2 Connectivity Constraints

The density criterion for modules does not necessarily guarantee the connectivity

of the corresponding subgraph. A subgraph is connected if every node is reach-

able from every other node via a path, i.e., a series of (non-zero) edges. Strictly

speaking, it should even be a path of positively weighted edges, as negative edge

weights usually indicate negative associations, so the corresponding nodes would be

interpreted as antagonists rather than as members of the same group or commu-

nity. For simplicity, we focus in the following discussion on interaction matrices

with non-negative weights, although extensions to mixed-sign weights are possible.

As already mentioned in Section 5.5, a module might tolerate a certain fraction of

weakly connected or even disconnected nodes; also, it might fall apart into separate

components. These problems arise in particular for large modules or low density

thresholds.

However, in many applications it is meaningful to consider only connected mod-

ules as results. Unfortunately, we nevertheless have to visit disconnected modules

during the search because the connectivity property is not anti-monotonic with re-

spect to the density-based reverse search tree; i.e., connected modules may descend

from disconnected ones, as the example in Figure 5.8 shows. In fact, there exists

a reverse search tree that is anti-monotonic with respect to the connectivity crite-

rion, as described in Section 5.3.6. But it is different from the density-based reverse

search tree, and the combination of two search trees is difficult (see Section 5.6).

Again, we could traverse the search tree for the density criterion and filter the results

with respect to the connectivity criterion; an easy way to check whether a module

is connected is a depth-first search traversal of the induced subgraph. However, the

connectivity criterion can also contribute to the pruning of the density-based search

tree:

Definition 21 (Isolated Node). Given a module U , a node u ∈ U is called isolated

if degU(u) = 0.

Lemma 7. Let W = (wij)i,j∈V be a weight matrix representing the input network

such that wij > 0 if the nodes i and j are connected by an edge, and wij = 0 other-

wise. Then, a module with two isolated nodes cannot have any connected descendant.

Proof. Let us consider a connected module, on which we iteratively apply the re-

duction scheme, i.e., in each step we transform the current module into its direct

ancestor in the search tree (Definition 9). During this process, we might encounter

modules that include an isolated node (see Figure 5.8). Whenever this happens,

60 5 Module Mining in Weighted Interaction Networks

(a) (b) (c) (d)

A

B C

E

F G

D

A

B C

E

F G B C

E

F G C

E

F G

Figure 5.8: Example reduction of a module. It shows that a connected module (a) can have dis-
connected ancestors (b-d). In particular, one ancestor has an isolated node (d). For the uniqueness
of parents, a lexicographical order on the nodes is assumed.

the isolated node(s) will be removed in the next reduction step(s) because they are

the minimum degree nodes; as removals of isolated instances leave the degrees of

other nodes unchanged, they cannot produce new isolated nodes. Hence, isolated

nodes cannot be accumulated during the reduction. It remains to show that a single

reduction step on a module without isolated nodes cannot produce two or more

isolated nodes. Let us assume this would be possible. We denote by U the original

module, i.e., degU(u) > 0 for all u ∈ U . Further, let u∗ ∈ U be the node that is

removed, and let u1, u2 ∈ U \ {u∗} be the isolated nodes in the resulting module,

i.e., degU\{u∗}(u1) = degU\{u∗}(u2) = 0. As degU(u1) > 0 and degU(u2) > 0, there

have to exist edges {u1, u
∗} and {u2, u

∗} with wu1u∗ > 0 and wu2u∗ > 0. This implies

degU(u∗) ≥ wu1u∗+wu2u∗ > wu1u∗ = degU(u1) and analogously degU(u∗) > degU(u2),

which is a contradiction to U \ {u∗} being the parent of U .

This implies that we can refrain from extending modules that have two isolated

nodes. By additionally activating the minimum degree filtering step explained in

Section 5.5, we can make sure that any modules with isolated nodes are eliminated

from the output. This strategy does not guarantee yet that the modules are indeed

connected, but in conjunction with an adjustment of the minimum degree threshold

it is often sufficient in practice. Also, more sophisticated pruning rules exploiting

the density threshold and size constraints are conceivable.

5.7.3 Cardinality and Branching Restrictions

Sometimes it is possible to specify in advance a size range for the modules of inter-

est. As our search strategy extends the modules by exactly one node in each step,

it can naturally respect thresholds for the maximum number of nodes in a module.

Minimum cardinality constraints, on the contrary, are a popular means to eliminate

5.7 Constraint Integration 61

insignificant results. Being non-anti-monotonic, they do not explicitly contribute

to speed up the search procedure. However, in the case of additional minimum

(relative) degree constraints (Section 5.5), we can exploit minimum cardinality con-

straints to a priori remove low-degree nodes from consideration.

Due to the completeness of the dense module enumeration, the method might

visit a large number of overlapping modules, in particular it will consider all dense

submodules of a large solution module. A simple way to control the generation of

similar modules are maximum branching constraints. While maximum cardinality

thresholds constrain the depth of a search tree, branching criteria constrain the

width of subtrees by restricting the maximum number of children per module to

k. Consequently, the number of modules sharing the same ancestor is limited, and

it decreases with increasing cardinality of the ancestor. Of course, this heuristic

strategy leads to the loss of the completeness guarantee. That means, in contrast

to the other constraints mentioned in this section, branching constraints do not al-

low to provide a declarative description of the result set; in particular, we cannot

determine anymore exact, analytical p-values (Section 5.4.2). But if we select the

most “promising” children in each step, the method is likely to find a substantial

fraction of the most significant solutions. This idea is related to the concept of beam

search [23]. The success of the approach depends on the selection of children. We

propose the following procedure for that purpose: among all nodes v that produce

children U ∪ {v} of the current module U , we choose the k nodes with the largest

degree within U ∪ {v} (leading to child modules with the largest density). The mo-

tivation behind this is that they are most likely to have dense descendants. Among

nodes with equal degree, we prefer those with the largest indices because according

to our reduction scheme, they are the last to be removed. In other words, we use an

ordering of candidate nodes that is reverse to the ordering defined for the reduction

scheme (Definition 9).

6 Multi-Way Cluster Mining in Higher-Order

Association Data

Now we generalize the dense module enumeration approach from the previous chap-

ter to structured input data of higher order, i.e., each associative relationship in-

volves n partners, where n can be greater than 2. In essential parts, this work is

published in [69]; an extended article will appear in [68].

6.1 Motivation

So far, we have been considering undirected weighted graphs as input data, which

can be represented by symmetric weight matrices. A dense module is a subset of

nodes that corresponds to a symmetric submatrix with large average weight (ig-

noring diagonal entries). In Figure 6.1, we illustrate this basic setting and possible

generalizations. As a first extension, we consider two-way weight matrices, where we

have different entity sets in the two dimensions, like genes and experimental condi-

tions from gene expression data, for example. Given a two-way matrix, we can look

for subsets of rows that are associated with certain subsets of columns. Such sub-

matrix patterns are called biclusters (or bi-sets) (see Section 4.5). There exist many

approaches to detect biclusters, and various criteria have been used in the literature

to assess the interestingness of bicluster patterns [151]. For instance, some methods

consider the homogeneity of values within a bicluster [22]. In contrast, other ap-

proaches focus on the strength or density of the association [156, 205, 206, 232]. In

analogy to our module finding approach described in Chapter 5, we use the average

weight value within a bicluster to determine valid solutions. This approach to bi-

clustering can also be seen as extracting dense subgraphs from a weighted bipartite

graph (see Figure 6.1).

Taking this idea one step further, we look at higher-order input data, which

can be represented as n-way weight arrays, also known as tensors. A higher-order

or n-way cluster is then a subtensor described by specifying a non-empty subset of

64 6 Multi-Way Cluster Mining in Higher-Order Association Data

Module mining Bicluster mining Higher-order mining
Data Symmetric Two-way Multi-way

weight matrix: weight matrix: weight tensor:
V × V → R, V1 × V2 → R V1 × . . .× Vn → R
(u, v) = (v, u)

Cluster U (U1, U2) (U1, . . . , Un)
definition U ⊂ V Ui ⊂ Vi Ui ⊂ Vi

Array re-
presentation

V

 V
U

 U

V
2

 V
1

U
2

 U
1 U

1

U
2

U
3

 V
1

V
2

V
3

Graph re-
presentation

V

U

...

V
1

V
2

...

U
1

U
2

...

...

V
1

V
3

V
2

U
2

U
1

U
3

V

U

...

V
1

V
2

...

U
1

U
2

...

...

V
1

V
3

V
2

U
2

U
1

U
3

V

U

...

V
1

V
2

...

U
1

U
2

...

...

V
1

V
3

V
2

U
2

U
1

U
3

Figure 6.1: Generalization of module mining to two-way and higher-order data. For visualization
purposes, the sets U and Ui are shown as coherent blocks; however, they can be arbitrary subsets.

6.1 Motivation 65

indices in each dimension. From a graph-theoretic point of view, an n-way tensor

corresponds to a weighted n-partite hypergraph, where each hyperedge connects n

nodes, exactly one node from each partition. A popular approach to investigate

such higher-order data is relational data mining (see Section 4.7). There, the focus

is on binary-valued multi-way relationships, also called n-ary relations. They can

be represented as an n-way tensor where an entry is 1 if the corresponding n-way

relationship has been observed, and 0 otherwise. In that framework, relational

mining is equivalent to extracting subtensors (clusters) that contain only 1-entries;

different clusters may overlap. In the relational data mining terminology, these

patterns are called n-sets, as a generalization of the concept of itemsets [4].

Our approach to higher-order cluster detection extends the definition of n-set

to numerical data, that means, the tensor is not restricted to binary values, but may

contain arbitrary weights. We consider a cluster or n-set pattern as a solution if the

average value of the entries in the corresponding subtensor exceeds a given threshold;

in particular, 0-entries are tolerated to a certain extent, whereas relational mining

approaches require that all entries are 1 (see Figure 6.2). Our generalization can

be advantageous in applications where data are sparse (i.e., it is likely that some

observations are missing) or where observations have different weights (e.g., because

their reliability or significance are subject to variation). Consequently, we can detect

strong associations between sets of instances in noisy data; such higher-level patterns

strengthen individual observations and can assist in making reliable predictions of

missing values. There exist several previous methods for cluster discovery in multi-

way weight tensors (see Section 4.7). Our approach differs from them in considering

the association strength within a cluster instead of the homogeneity of weights. In

fact, our average weight constraint can be seen as homogeneity criterion in the sense

that most values in the cluster should be close to the maximum weight. However, we

introduce an asymmetry in the problem, as blocks with homogeneous values close to

zero are not considered as solutions (in analogy to relational n-set approaches). Also,

note that our method detects overlapping clusters, while most previous techniques

are based on partitioning.

Moreover, we treat cases where multi-way data contain inherent symmetries

with respect to a subset of dimensions. For instance, multiple undirected networks,

each represented by a symmetric weight matrix, can be stacked into a three-way

tensor that is symmetric with respect to two dimensions. The coanalysis of mul-

tiple networks or graphs has received much attention, in particular in the context

of computational biology and chemistry. While many approaches focus on the de-

tection of frequently occurring subgraphs in large databases of small graphs [233],

66 6 Multi-Way Cluster Mining in Higher-Order Association Data

Example of an n-set for n = 3: ({a1, a2}, {b1, b2}, {c1, c2, c3})

(a) Relational approach (b) Our approach

Association Value
(a1, b1, c1) 1
(a1, b1, c2) 1
(a1, b1, c3) 1
(a1, b2, c1) 1
(a1, b2, c2) 1
(a1, b2, c3) 1
(a2, b1, c1) 1
(a2, b1, c2) 1
(a2, b1, c3) 1
(a2, b2, c1) 1
(a2, b2, c2) 1
(a2, b2, c3) 1

average =1

Association Value
(a1, b1, c1) 0.9
(a1, b1, c2) 1
(a1, b1, c3) 1
(a1, b2, c1) 0.8
(a1, b2, c2) 0.9
(a1, b2, c3) 1
(a2, b1, c1) 0.7
(a2, b1, c2) 1
(a2, b1, c3) 0.9
(a2, b2, c1) 1
(a2, b2, c2) 0
(a2, b2, c3) 0.9

average ≥ θ

Figure 6.2: Illustration of the n-set definition in the relational approach and in our dense cluster
approach (here, n = 3). While the relational approach is based on binary values and requires that
all associations within the n-set have value 1, we allow for arbitrary weights and require that the
overall average across the n-set associations is larger than a threshold θ.

methods for larger networks often use density criteria combined with additional

constraints [91, 104, 181, 236, 242]. Our approach extends the latter class of meth-

ods: it provides a dense pattern detection framework that allows to analyze tensor

data with an arbitrary number of dimensions, can deal with binary and weighted

values, and optionally includes symmetry constraints for one or several subsets of

dimensions.

After formalizing the problem, we will present a multi-way extension of the

dense module enumeration algorithm from the previous chapter.

6.2 Problem Definition

Our goal is to extract all dense clusters from a multi-dimensional data array (ten-

sor). To formalize the problem, we first introduce some notation, generalizing the

definitions from Section 5.2. Let n > 0 be the number of dimensions in the given

data array (also called ways or modes). Then, we write the input in the following

form:

W = (wk1,...,kn)ki∈Vi, i=1,...,n (6.1)

6.2 Problem Definition 67

The index ki is used to access the i-th dimension and takes values from a finite index

set Vi = {1, . . . Ii}, where Ii is a natural number that can differ from dimension to

dimension. Vi is also called the instance set or range for the i-th dimension; the

cardinality of the set is denoted by |Vi| and equals Ii. The elements (entries) of W

are real-valued weights indicating the association strength between the n instances.

For convenience, we again normalize the array such that

wk1,...,kn ≤ 1 ∀ ki ∈ Vi, i = 1, . . . , n . (6.2)

An n-way cluster U is defined by specifying for each dimension a non-empty subset

of the corresponding index set,

U = (U1, . . . , Un), Ui ⊂ Vi, |Ui| ≥ 1 ∀i = 1, . . . , n . (6.3)

The induced subarray is given by

W |U = (wk1,...,kn)ki∈Ui, i=1,...,n. (6.4)

Let us define the cardinality of a cluster as the sum of the cardinalities of the index

subsets in all n dimensions, i.e., the total number of instances included in the cluster:

card(U) =
n∑

i=1

|Ui|. (6.5)

This is not to be confused with the cluster size, which corresponds to the number

of entries in the induced subarray,

size(U) =
n∏

i=1

|Ui|. (6.6)

Our cluster definition implies that size(U) ≥ 1. The density of the cluster U is

defined as the average value of the weight entries in the induced subarray:

Definition 22 (Cluster Density). The density of an n-way cluster U with respect

to the n-dimensional weight array W is given by

ρW (U) =
1

size(U)

∑
ki∈Ui

wk1,...,kn . (6.7)

Due to our normalization of the data array W , the largest possible cluster

density is 1. Using the above definitions, we state the problem of dense cluster

enumeration as follows.

68 6 Multi-Way Cluster Mining in Higher-Order Association Data

Definition 23 (Dense Cluster Enumeration). Given a weight-normalized n-dimensional

data array W and a minimum density threshold θ with 0 < θ ≤ 1, find all n-way

clusters U such that ρW (U) ≥ θ.

Note that different clusters are allowed to overlap. For θ = 1, the problem is

equivalent to n-set or hyperclique enumeration [31, 32, 100, 103].

6.3 Enumeration Approach

In order to solve the dense cluster enumeration problem, we again use a reverse

search algorithm. In the following, we explain how we extend the module enumer-

ation strategy from Chapter 5 to deal with this task. For that purpose, we first in-

troduce an index mapping scheme that facilitates the algorithmic description; then,

we specify the level-wise search space, establish a reduction scheme, and present

the overall search procedure. Finally, we consider some implementation details and

analyze the complexity of the method.

6.3.1 Global Index Representation

As defined in Equation (6.1), an n-way array is represented using dimension-specific

index sets V1, . . . , Vn; each of them consists of successive indices starting from 1.

Now we build a global index set across all dimensions:

V = {1, . . . ,
n∑

i=1

|Vi|} . (6.8)

The conversion of an element v ∈ Vi to a global index is carried out according to

the following scheme:

C(v, i) = v +
i−1∑
j=1

|Vj| (6.9)

For i = 1, the summation term is zero, i.e., C(v, 1) = v. Accordingly, we determine

the array dimension to which an element v ∈ V belongs as

dim(v) = max{i = 1, . . . , n :
i−1∑
j=1

|Vj| < v} . (6.10)

6.3 Enumeration Approach 69

Then a cluster U = (U1, . . . , Un) can also be represented as a subset of V ,

U =
n⋃

i=1

⋃
u∈Ui

{C(u, i)} . (6.11)

Note that U and U are alternative representations of a uniquely determined cluster

and can easily be transformed into each other. In the following, we will use the

representation that is more convenient in the particular context.

6.3.2 Search Space

The search space for the dense cluster enumeration problem is the set of all possible

n-way clusters. As in the module enumeration setting, it can be organized in the

form of a lattice, i.e., in multiple levels. Here, the root level consists of all trivial

clusters:

Definition 24 (Trivial Cluster). A cluster U = (U1, . . . , Un) is called trivial if

|Ui| = 1 for i = 1, . . . , n. Consequently, size(U) = 1 and card(U) = n for each

trivial cluster U .

A trivial cluster corresponds to exactly one entry of the multi-dimensional array.

By adding exactly one index to one particular set Ui, we obtain the clusters on

the subsequent level of the search lattice. In this way, the clusters are iteratively

expanded from level to level; at each level, the cluster index set U grows by one

element and the cluster cardinality increases by 1. To traverse the search lattice in

an efficient way, we define a search tree for each trivial cluster such that the resulting

set of trees is a spanning forest of the search space. The next section describes a

reduction scheme to construct search trees that allow for effective pruning based on

the density criterion.

6.3.3 Reduction Scheme

The core component of a reverse search algorithm is the definition of a reduction

scheme (i.e., the rule for parent construction) that guarantees anti-monotonicity

(downward closure) and completeness of the search. For the reduction of dense

multi-way clusters, we extend the parent definition for modules (Definition 9). First,

we define the degree of an instance in a multi-dimensional array.

70 6 Multi-Way Cluster Mining in Higher-Order Association Data

!"#!

"$!
"%!

!&!

Figure 6.3: Visualization of a three-way cluster. In each reduction step, we remove one slice of the
cluster, specified by a particular index element v.

Definition 25 (Degree). Given a cluster U , the degree of v ∈ Uj with respect to U

is defined as

degU(v, j) =
∑

ki∈Ui,i6=j

wk1,...,kj−1,v,kj+1,...,kn . (6.12)

In the global index representation, there is no ambiguity for instances of different

dimensions, so we simply write degU(v) for v ∈ U . Furthermore, W is not included

as an explicit parameter of deg because our method deals with one given data array

at a time.

With that, we specify the following reduction scheme.

Definition 26 (Reduction Scheme). Let U be a cluster. If v is the instance with the

smallest index among the minimum degree elements in U , the parent of U is given

by U \ {v}.

Reducing the cluster U by one instance corresponds to removing a slice of the re-

spective subarray, namely all entries involving the specified instance (see Figure 6.3).

Here, we select an instance such that the sum of the entries in the corresponding slice

(i.e., the degree) is minimal. It remains to show that this parent-child relationship

satisfies the cluster reachability and anti-monotonicity requirements.

Lemma 8. Let U be a non-trivial cluster and ρW (U) > 0. Then, for all v ∈ U with

minimum degree, i.e.,

v ∈ argmin
u∈U

degU(u),

the following properties hold:

1. size(U \ {v}) ≥ 1.

6.3 Enumeration Approach 71

2. ρW (U \ {v}) ≥ ρW (U).

Proof. We consider the case where the minimum degree instance belongs to the

j-th dimension. For convenience, we use the subarray representation of clusters,

U = (U1, . . . , Un), and denote by v the corresponding element in Uj. First, we

show that (U1, . . . , Uj−1, Uj \{v}, Uj+1, . . . , Un) is a valid cluster where all index sets

are non-empty. For that purpose, let us assume that |Uj| = 1. Then, Uj = {v}
and degU(v, j) =

∑
ki∈Ui

wk1,...,kn =: T , that means the degree of v is equal to the

sum of all elements in the subtensor induced by U . Furthermore, T is positive

because ρW (U) > 0. As U is non-trivial, there exists a j′ ∈ {1, . . . , n}, j′ 6= j,

such that |Uj′| > 1. Let u′ be an instance of minimum degree in Uj′ , i.e., u′ ∈
argmin

u∈Uj′

degU(u, j′). Then, T > degU(u′, j′):

• For degU(u′, j′) > 0: T =
∑

u∈Uj′

degU(u, j′) ≥ |Uj′| · degU(u′, j′) > degU(u′, j′)

• For degU(u′, j′) ≤ 0: obvious because T > 0.

So we have found a cluster instance u′ with degU(u′, j′) < degU(v, j), which contra-

dicts the assumption of the lemma. Consequently, |Uj| > 1 and therefore |Uj\{v}| >
0. Thus, size(U) ≥ 1.

The second part of the lemma is shown by simple algebra resembling the proof

of Lemma 1:

ρW (U1, . . . , Uj−1, Uj \ {v}, Uj+1, . . . , Un)− ρW (U1, . . . , Un)

=

∑
u∈Uj\{v}

degU(u, j)

(|Uj| − 1) ·
n∏

i=1,i6=j

|Ui|
−

∑
u∈Uj

degU(u, j)

n∏
i=1

|Ui|

=

1
|Uj | ·

∑
u∈Uj

degU(u, j)− degU(v, j)

(|Uj| − 1) ·
n∏

i=1,i6=j

|Ui|

≥ 0

The inequality holds due to the choice of v and the first part of the proof, which

guarantees that the denominator is greater than zero.

72 6 Multi-Way Cluster Mining in Higher-Order Association Data

Algorithm 4 Pseudocode of DCE. W is the given n-dimensional data array with global
index set V (and corresponding mapping C), and θ denotes the minimum density threshold.
1: DCE (V, C,W, θ) :
2: for each (k1, . . . , kn) with wk1,...,kn ≥ θ do

3: DCE Rec(V,W, θ,

n⋃
i=1

{C(ki, i)})

4: end for

1: DCE Rec (V,W, θ,U) :
2: for each v ∈ V \ U do
3: if ρW (U ∪ {v}) ≥ θ then
4: if U ∪ {v} is child of U then
5: DCE Rec (V,W, θ,U ∪ {v})
6: end if
7: end if
8: end for
9: output U

The first statement of the lemma refers to the cluster reachability; it ensures

that, by iterative application of the reduction scheme in Definition 26, any cluster

with positive density shrinks to a trivial cluster, i.e., a root of the search space; that

means, there do not occur degenerate constructs where some dimensions-specific

instance sets are empty. The second statement implies anti-monotonicity, i.e., a

parent cluster is at least as dense as any child cluster.1 Note that these properties

hold for any minimum degree instance; however, to avoid duplicate investigation

of subspaces, each cluster should have a unique parent, i.e., the reduction map has

to specify which one of the minimum degree instances is selected (in our case, the

instance with the smallest index). The defined reduction scheme directly suggests

the following algorithm.

6.3.4 Search Algorithm

To enumerate all clusters in an n-dimensional data array W that satisfy a

minimum density threshold θ, we perform the procedure shown in Algorithm 4,

which is in the following referred to as DCE (dense cluster enumeration algorithm).

The first step consists in finding all entries in the array that are greater than or

equal to θ. These trivial clusters are then further expanded by a depth-first strategy

producing descendants of increasing cardinality, in a similar way as in the module

enumeration algorithm (Algorithm 1). That means, we generate in each step the

1However, the parent is not necessarily the densest subcluster of a given child cluster.

6.3 Enumeration Approach 73

set of all possible candidates extending the current cluster by one instance and then

select the actual children among those. According to the reduction scheme specified

in Definition 26, we can characterize the children of a cluster as follows:

Definition 27 (Cluster Child). Let U be a cluster and v ∈ V \ U . U∗ = U ∪ {v} is

a child of U if and only if

∀u ∈ U : [degU∗(v) < degU∗(u)] ∨ [(degU∗(v) = degU∗(u)) ∧ (v < u)] .

Only children that satisfy the density threshold are further investigated; oth-

erwise, the current search tree is pruned. The correctness of the algorithm follows

from Lemma 8 in the previous section. For efficiency reasons, the density condition

is checked before the child condition; further implementation details are given in the

next section.

6.3.5 Implementation Details

To be able to deal with an arbitrary number of dimensions, the input tensor is

represented in a sparse format. For each non-zero entry, we create a data object that

contains the n-dimensional index vector and the corresponding value. To facilitate

the access to entries during the search, we generate for each v ∈ V a list of pointers to

the objects containing v (also called adjacency list of v). In order to visit each data

entry exactly once, it is sufficient to traverse the first |V1| adjacency lists because

each entry has an index between 1 and |V1| in the first dimension. This procedure can

be used for determining the root clusters. For efficient density checks, we employ the

same strategy as in the module mining case (see Section 5.3.4), maintaining an array

that contains for each element v ∈ V its degree with respect to the current cluster U ,

i.e., dU(v) = degU(v) if v ∈ U , and dU(v) = degU∪{v}(v) otherwise. To initialize this

array for a trivial cluster U , we fill in for each v ∈ U the value of the corresponding

entry, whereas for each v ∈ V \ U , we fill in the value of the tensor element that

shares with U all indices except v. After the addition of a new instance v to the

current cluster, we traverse the adjacency list of v, filtering for entries containing at

most one instance that is not member of U ∪ {v}, and updating the degree array

accordingly. This requires at most O(lvn) operations, where lv denotes the length

of the adjacency list of v.

Again, this data structure for degree values allows for some shortcuts concerning

the check of the child criterion. They are stated in the following lemmata.

74 6 Multi-Way Cluster Mining in Higher-Order Association Data

Lemma 9. Let U be a cluster in a non-negative tensor W , and let dU be the degree

array with respect to U . Further, let u∗ the previously added instance, and v ∈ V \U .

Then the following rule holds:

[dU(v) < dU(u∗)] ∨ [dU(v) = dU(u∗) ∧ v < u∗] =⇒ U ∪ {v} is a child of U

Proof. Analogous to Lemma 2 in Section 5.3.4.

For the next lemma, we need the notion of v-slice; it simply refers to the set of

entries in the cluster subarray that include the instance v (see Figure 6.3).

Lemma 10. Let W be a weight-normalized tensor such that the maximum entry is

1. Further, let U be a cluster with degree array dU , and let u∗ be its most recently

added instance. For v ∈ V \ U , we denote by gU(u∗, v) the number of elements that

the u∗-slice of the cluster U gains by the addition of v. Then the following rule holds:

[dU(v) > dU(u∗) + gU(u∗, v)] ∨ [dU(v) = dU(u∗) + gU(u∗, v) ∧ v > u∗]

=⇒ U ∪ {v} is not a child of U

Proof. The quantity gU(u∗, v) is equivalent to the number of entries in the intersec-

tion of the u∗-slice and the v-slice of the cluster U ∪ {v}, which is easily computed

as follows:

gU(u∗, v) =

{
0 if dim(v) = dim(u∗)

size(U)
|Udim(v)|·|Udim(u∗)|

otherwise ,

where U = (U1, . . . , Un) is the subarray representation corresponding to U and

dim(v) is the dimension to which v belongs. Due to the normalization of W , gU(u∗, v)

corresponds to the maximum increase of the degree of u∗ after addition of v. With

that, the rule follows analogously to Lemma 2 in Section 5.3.4.

If neither of these rules applies, we traverse the adjacency list of v to determine

the values degU∪{v}(u) for u ∈ U , which are needed to check the child conditions

given in Definition 27.

6.3 Enumeration Approach 75

6.3.6 Complexity

Like the network module enumeration procedure described in Section 5.3, DCE is

a polynomial-delay algorithm. To see this, let us first consider a single iteration

of the subroutine DCE Rec (see Algorithm 4), which corresponds to finding the

children of a given cluster. Using the implementation outlined above, this needs

O(|V| · (l · n + |U|)) operations, where V is the global index set, l is the average

length of an adjacency list, n is the number of dimensions, and U is the current

cluster. In the worst case, we go for each v ∈ V \ U through the whole adjacency

list to determine the updated degree values for the members of U , and then check

all conditions in Definition 27. In practice, the density check will already discard

many candidates; furthermore, we can avoid the traversal of the adjacency list in

the cases where Lemma 9 or Lemma 10 can be applied. Finally, when going through

an adjacency list, only objects that are relevant for the update have to be fully

processed. For a complete input tensor V1 × . . . × Vn, the adjacency list for an

instance in dimension j has a length of (
∏n

i=1, i 6=j |Vi|), i.e., roughly O(|V|n−1); in

sparse settings, it can be considerably shorter. Assuming |U| � |V|, the traversal

of the adjacency list will dominate the |U| term, so the complexity of one iteration

can be expressed as O(|V| · l ·n), i.e., it is linear in the input size, which corresponds

to the adjacency list representation of the data array W .

Using data representations that allow for constant-time access to specific entries

of W , the complexity of one iteration is given by

O

(n∑
i=1

|Vi \ Ui|
n∏

j=1, j 6=i

|Uj|
)

= O

(n∏
i=1

|Vi|
)

,

which reflects the costs of traversing the entries of each slice that can be added to

the cluster; here, Vi and Ui denote dimension-specific instance sets as introduced in

Section 6.2. That means, also in this representation the complexity is linear in the

size of the input tensor.

As in Section 5.3.5, we can apply the odd-even method for outputs in recursive

calls. Then, the delay between two consecutive solutions within the same search tree

has the same complexity as one iteration of DCE Rec. Furthermore, the traversal

of irrelevant entries between two successful search trees (i.e., the time between two

calls of DCE Rec from the routine DCE in Algorithm 4) is bounded by the size of

the input tensor. Thus, we have the following theorem.

Theorem 2. The dense cluster enumeration problem for a given n-way tensor can

76 6 Multi-Way Cluster Mining in Higher-Order Association Data

be solved by a reverse search algorithm that has linear delay with respect to the input

size.

Empirical results on the runtime behavior of the algorithm will be shown in

Section 6.6. Again, the computation can be parallelized because different search

trees as well as different branches of the same search tree can be explored indepen-

dently of each other. The memory requirements of the algorithm mainly consist in

the storage space needed for the input; as discussed above, either sparse or full data

representations are conceivable. In addition to that, the implementation described

in the previous section uses O(|V|) space for each recursive step; the maximum re-

cursion depth is equal to |Umax| − n + 1, where Umax is the solution cluster with the

largest cardinality.

6.4 Extensions

To facilitate a carefully directed cluster analysis, we can employ similar techniques

as proposed for module enumeration in networks (Chapter 5). These include output

filtering steps as well as pruning strategies regarding additional criteria.

6.4.1 Output Filtering and Balance Criteria

As in the network module approach, we can define a local maximality criterion for

clusters, which can be checked during the enumeration procedure without additional

costs:

Definition 28 (Locally Maximal Dense Cluster). A dense cluster U is called locally

maximal if for all v ∈ V \ U , U ∪ {v} is not dense.

Also, we can take again minimum degree thresholds into account in order to

filter the results. For that, we can either use absolute or relative degree values; the

relative degree value for an instance is equivalent to the average of the entries in the

corresponding slice of the cluster (i.e., the density of the slice).

Definition 29 (Minimum Relative Degree Threshold). A cluster U = (U1, . . . , Un)

satisfies the minimum relative degree threshold γ if degU(u)/(size(U)/|Udim(u)|) ≥ γ

for all u ∈ U .

6.4 Extensions 77

Clusters that satisfy the minimum relative degree threshold are also called bal-

anced clusters later on. Beyond that, we can define balance constraints at finer gran-

ularity levels: if we consider fix indices not only for one, but for several dimensions,

we can also check the density of lower-order slices or fibers of the cluster. Clearly,

clusters that exceed a threshold γ for a density balance criterion also have a den-

sity greater than γ, whereas the other direction is not true. Different techniques to

search for clusters with balance constraints and to combine these requirements with

other criteria are discussed in Section 5.5; the strategies described for the reverse

search approach of module enumeration are directly transferable to the higher-order

setting.

6.4.2 Cluster Ranking

In analogy to the exact p-value criterion for module ranking introduced in Sec-

tion 5.4.2, we compute for each solution cluster U = (U1, . . . , Un) the exact proba-

bility of obtaining by chance a cluster with at least the same density from the input

tensor W = (wk1,...,kn)ki∈Vi ∀i=1,...,n:

|{U ′ = (U ′
1, . . . , U

′
n) : ρW (U ′) ≥ ρW (U) ∧ ∀i U ′

i ⊂ Vi ∧ |U ′
i | = |Ui| }|

n∏
i=1

(
|Vi|
|Ui|

) (6.13)

To determine the count in the numerator, the enumeration algorithm optionally

stores density and size characteristics for all solutions. This probability value yields

a simple, but well-defined criterion to rank the results. Moreover, it is conceivable

to generalize the alternative ranking criteria mentioned in Section 5.4.2.

6.4.3 Isolation-Based Pruning

A cluster instance that has a degree of zero is called an isolated instance. By default,

we only keep clusters without any isolated instance in the solution set. While this can

be achieved by output filtering, we can exploit the non-isolation criterion already

during the search for pruning. The following lemma generalizes the result from

Lemma 7 in Section 5.7.2.

Lemma 11. Let W be a tensor with non-negative entries. If a cluster contains

only non-isolated instances, its ancestors have at most one isolated instance per

dimension.

78 6 Multi-Way Cluster Mining in Higher-Order Association Data

Proof. Let U be a non-trivial cluster that contains only non-isolated instances.

Its ancestors are obtained by iterative reduction until a trivial cluster is reached.

First, we show that a single reduction step cannot turn U into a cluster with (at

least) two isolated instances in a dimension. Assume that this would be possi-

ble. Let u∗ ∈ U denote the instance that is removed in the reduction step; fur-

ther, let u1, u2 ∈ U \ {u∗} be the isolated instances in the resulting cluster, i.e.,

degU\{u∗}(u1) = degU\{u∗}(u2) = 0. The instances u1 and u2 belong to the same

dimension, u∗ belongs to a different dimension. Together with the non-negativity

assumption for tensor entries, it follows that degU(u∗) ≥ degU(u1) + degU(u2). By

the definition of U , degU(u1) > 0 and degU(u1) > 0. Thus, degU(u∗) > degU(u1)

and degU(u∗) > degU(u2), contradicting the fact that u∗ is a minimum degree node.

Second, following the argumentation in the proof of Lemma 7, isolated instances

cannot be accumulated during multiple reduction steps.

That means, a search tree can be pruned if the current cluster contains two

isolated instances u1 and u2, u1 6= u2, with dim(u1) = dim(u2). Similarly, one can

show that clusters with one zero-degree instance in each dimension cannot have

a descendant that contains only non-isolated instances. In practice, accumulation

of isolated instances can only occur for large clusters or low density thresholds;

therefore it would also be possible to define heuristic rules that stop such degenerated

extensions of clusters, at a very low risk of losing interesting solutions; in the worst

case, the algorithm would then fail to find some very loosely connected clusters, but

it still would yield their dense subclusters.

6.4.4 Other Restrictions

As in the case of module finding in networks, we can restrict the cluster cardinality

and size by predefining minimum or maximum thresholds for the number of instances

in individual dimensions. Also, it is possible to include constraints from external

data sources for some instance sets, as described in Section 5.7.1. Furthermore, if

there exists a natural order of instances in certain dimensions of the input tensor

(like consecutive time intervals), it might be useful for some applications to consider

only clusters with neighboring instances in specific dimensions, rather than exploring

the full combinatorial space. It is not trivial to exploit this criterion for pruning the

density-based reverse search tree because it is not anti-monotonic; i.e., the ancestors

of a cluster with consecutive instances might have gaps in the sequence of instances.

However, several approaches are possible if cardinality constraints have been speci-

fied with respect to that dimension. On the one hand, one can prune the search as

6.5 Symmetry Adaptations 79

soon as the index range (that is, the difference between the largest and the smallest

occurring index in the cluster) gets too large. On the other hand, one can consider

windows of a fixed size, and perform for each of them separately a reverse search

with respect to the other dimensions. Note that, by aggregating over the values in

the window, we can eliminate the corresponding dimension from the input tensor

and obtain a standard dense cluster enumeration problem for the lower-dimensional

tensor. Beyond these exact constraints, we can again heuristically control the com-

plexity of the search; for instance, branching constraints reduce the generation of

overlapping clusters; as in Section 5.7.3, we use the degree values to pick the k most

promising instances for extension. Further possibilities to restrict the search include

the selection of starting entries (i.e., roots of search trees) and the explicit control of

instance reusage in different clusters. Finally, symmetry structure in the data can

impose specific requirements on the cluster analysis, which are explained in detail

in the next section.

6.5 Symmetry Adaptations

So far, we considered multi-way data with distinct instance sets in each dimension.

Here, we discuss how to deal with partial symmetries in the input data and include

cluster symmetry constraints. This extension of the dense cluster enumeration for-

malism will restore the network module mining task from Chapter 5 as a special case.

As a motivating example for symmetries in the multi-way setting, let us consider a

set of weighted undirected networks that share the same set of nodes.

6.5.1 Motivation

In many systems biology studies, there are multiple networks available that represent

different kinds of relationships between the genes or proteins of a certain species.

Let us focus here on undirected relationships. To jointly analyze these networks for

dense patterns, they can be stacked into a three-way tensor where an entry wijk

corresponds to the weight of the edge between the i-th and the j-th node in the

k-th network. This tensor representation has the following characteristics: a) the

first two dimensions contain identical instance sets; b) as the networks are undi-

rected, the entries wijk and wjik are equivalent; we say that the tensor is symmetric

with respect to the first two dimensions; c) “diagonal” entries wiik correspond to

self-edges (loops). Now we are interested in finding subsets of nodes that induce

dense subgraphs in a subset of networks. We can tackle this problem in the tensor

80 6 Multi-Way Cluster Mining in Higher-Order Association Data

framework by extracting dense three-way clusters that have identical instance sets

in the first two dimensions; i.e., the clusters will be symmetric with respect to these

dimensions, and, in analogy to Chapter 5, we will ignore self-edges for the density

criterion. In the following section, we introduce definitions for multi-way cluster

enumeration that respect these symmetry requirements.

6.5.2 Definitions

Our dense cluster enumeration framework is suitable to handle arbitrary symme-

try relationships among dimensions; there may exist multiple symmetry groups of

different size. For instance, a six-way tensor could be symmetric with respect to

dimensions 1 and 2, and also symmetric with respect to dimensions 3, 4, and 6. To

keep the notation simple, we illustrate the main concepts for the case where we have

symmetry with respect to the first j dimensions (j ≤ n) and all other dimensions are

not involved in symmetry relationships. That means, given a tensor entry wk1,...,kn

with distinct indices k1, . . . , kj, all entries that can be obtained by permutation of

the first j indices are equivalent, so it is sufficient to store only one of the j! possi-

bilities. Then, a cluster U = (U1, . . . , Un) is called symmetric (with respect to the

first j dimensions) if U1 = . . . = Uj. Its size is given by

sizej(U) =

(
|U1|
j

)
n∏

i=j+1

|Ui| , (6.14)

and its density is calculated as follows:

ρW,j(U) =
1

sizej(U)

∑
ki∈Ui,k1<...<kj

wk1,...,kn (6.15)

Like in Section 5.2, we count equivalent entries only once and we do not take

self-relationships into account (i.e., we only consider entries with distinct indices

k1, . . . , kj). This leads us to a modified definition for the degree of an instance

v ∈ Ul:

degU(v, l) =

∑

ki∈Ui,kl=v,k1<...<kj

wk1,...,kn if l > j∑
ki∈Ui,v∈{k1,...,kj},k1<...<kj

wk1,...,kn if l ≤ j
(6.16)

In analogy to the setting without symmetry, we represent clusters as subsets of a

global index set V (see Section 6.3.1). However, identical instances from the different

dimensions involved in a symmetry relation correspond to one global index, i.e., an

6.5 Symmetry Adaptations 81

element v ∈ V may belong to several dimensions. For convenience, we define dim(v)

to be the first dimension among them (respecting the order of dimensions in the

input array); in our example case, assuming symmetry for the dimensions 1 to j, we

set dim(v) = 1 for the corresponding instances.

6.5.3 Reduction Scheme

With the new definition of degree, reduction is again performed by removing the

minimum degree instance that has the smallest global index. In analogy to Lemma 8,

it can be shown that this reduction map is valid, i.e., it yields anti-montonicity and

cluster reachability:

Lemma 12. Let U be a non-trivial cluster with ρW (U) > 0 that is symmetric with

respect to dimensions 1 to j. Then, for all v ∈ U with minimum degree, i.e.,

v ∈ argmin
u∈U

degU(u) ,

the following properties hold:

1. size(U \ {v}) ≥ 1.

2. ρ(U \ {v}) ≥ ρ(U).

Proof. Let U be the subtensor representation of U . Because of the symmetry as-

sumption we know that U1 = . . . = Uj. U is non-trivial, i.e., size(U) > 1. Now let

us assume that size(U \ {v}) < 1. This happens in the following cases:

1. dim(v) = 1 and |U1| = j

2. dim(v) = i and |Ui| = 1 for an i > j

In either case, degU(v) =
∑

ki∈Ui,k1<...<kj

wk1,...,kn =: T , that means each cluster element

contains v. Furthermore, T is positive because ρW (U) > 0. Due to the non-triviality

of U , there has to exist a j′ such that either j′ = 1 and |Uj′| > j (case A), or j′ > j

and Uj′ > 1 (case B). Let u′ be an instance of minimum degree in Uj′ . Then,

T > degU(u′, j′). For case A, this follows directly from the proof of Lemma 8. For

case B, we have

T =
1

j

∑
u∈U1

degU(u, 1) ≥ 1

j
|U1| · degU(u′, 1) > degU(u′, 1) ,

82 6 Multi-Way Cluster Mining in Higher-Order Association Data

provided that degU(u′, 1) > 0 (the case degU(u′, 1) ≤ 0 is obvious). This leads to a

contradiction, so the first statement of the lemma is true.

For the second part, we again distinguish two cases. If dim(v) = i and i > j,

the statement follows immediately from Lemma 8. Otherwise, i.e., if dim(v) = 1,

the proof is also straightforward:

ρW (U1 \ {v}, . . . , Uj \ {v}, Uj+1, . . . , Un)− ρW (U1, . . . , Un)

=

(
1
j

∑
u∈U1

degU(u, 1)

)
− degU(v, 1)(

|U1| − 1

j

)
n∏

i=j+1

|Ui|
−

1
j

∑
u∈U1

degU(u, 1)(
|U1|
j

)
n∏

i=j+1

|Ui|

=

1
|U1|

∑
u∈U1

degU(u, 1)− degU(v, 1)(
|U1| − 1

j

)
n∏

i=j+1

|Ui|

≥ 0

6.5.4 Details

To perform the dense cluster enumeration, we can use similar data structures and

speed-up rules as described in Section 6.3.5. However, as the instances may now

belong to multiple dimensions, the initialization and update procedures have to be

adapted. In particular, the first |V1| adjacency lists may contain duplicate entries,

and several tensor entries can be relevant for the initialization of one single entry in

the degree array. Moreover, we need to adjust the computation of gU(u∗, v), which

is the number of new entries in the u∗-slice of the cluster U after adding v, where

u∗, v ∈ V , u∗ 6= v. Here, we consider the general case, allowing for an arbitrary

number of symmetry groups among the n dimensions. Recall that dim(v) yields in

case of symmetry groups just one representative dimension. Further, let si denote

the total number of dimensions belonging to the same symmetry group as the i-th

dimension, i.e., si > 1 if the i-th dimension has a symmetry relationship with respect

to other dimensions, and si = 1 otherwise. Finally, size(U) is the number of distinct

cluster entries before adding v (i.e., entries that are equivalent due to symmetry are

6.6 Experimental Studies 83

counted only once). Then,

gU(u∗, v) = rU(u∗, v) · size(U), where rU(u∗, v) =

1
|Udim(v)|·|Udim(u∗)|

if dim(v) 6= dim(u∗) ∧ sdim(v) = 1 ∧ sdim(u∗) = 1

sdim(u∗)

|Udim(v)|·|Udim(u∗)|
if dim(v) 6= dim(u∗) ∧ sdim(v) = 1 ∧ sdim(u∗) > 1

sdim(v)

(|Udim(v)|−sdim(v)+1)|Udim(u∗)|
if dim(v) 6= dim(u∗) ∧ sdim(v) > 1 ∧ sdim(u∗) = 1

sdim(v)sdim(u∗)

(|Udim(v)|−sdim(v)+1)|Udim(u∗)|
if dim(v) 6= dim(u∗) ∧ sdim(v) > 1 ∧ sdim(u∗) > 1

sdim(v)(sdim(v)−1)

|Udim(v)|(|Udim(v)|−sdim(v)+1)
if dim(v) = dim(u∗) ∧ sdim(v) > 1

0 otherwise

These equations follow directly from the definition of gU(u∗, v), taking into account

that two of the n dimensions are fixed (to u∗ and v) and |Udim(v)| is increased

by 1. The extensions described in Section 6.4 are, with small modifications, also

applicable in the case of symmetry constraints; the difference is that dimensions

involved in symmetry relationships cannot be treated separately anymore, but have

to be considered simultaneously. This affects for instance the computation of the

ranking criterion and the isolation-based pruning rules.

In this section, we discussed how to extend our enumeration method to extract

partially symmetric clusters from partially symmetric data. Apart from that, other

application scenarios are conceivable, which can be solved similarly. For example,

searching for asymmetric clusters in symmetric tensors can be meaningful if there

exist groups of instances with strong inter-group connections, but not necessarily

strong inner-group connections. On the other hand, one might be interested in

clusters that contain the same set of instances in several dimensions although the

data are not symmetric.

6.6 Experimental Studies

To investigate the feasibility of dense cluster enumeration, we implemented our DCE

method (Algorithm 4) in C++2 and performed experiments on synthetic and real-

world datasets. The implementation uses the sparse representation via adjacency

lists described in Section 6.3.5, which allows to use the same code for input tensors

with an arbitrary number of dimensions. By default, we report locally maximal

2The implementation is available at http://www.kyb.tuebingen.mpg.de/∼georgii/dce.html.

http://www.kyb.tuebingen.mpg.de/~georgii/dce.html

84 6 Multi-Way Cluster Mining in Higher-Order Association Data

clusters that do not contain isolated instances (see Section 6.4.1 and Section 6.4.3).

In the following, we describe empirical analyses regarding efficiency, scalability, and

retrieval performance properties. For biological results, we refer to Chapters 9 and

10.

6.6.1 Scalability

First, we tested the runtime performance of the DCE method on artificial datasets.

For that purpose, we generated sparse tensors with hidden clusters. For simplicity,

we used binary values, i.e., each tensor entry is either 0 or 1. Let n be the number of

dimensions, and m the number of clusters. Furthermore, we assumed a hypercubic

model where each dimension has the same index set size d and each hidden cluster

contains exactly s instances in each dimension. The clusters were allowed to overlap

without any restriction. In addition, we imposed different levels of noise onto the

data. Here, the noise corresponds to random 0-1 flips. Initially, all tensor entries

within clusters were set to 1. Given a noise level p, we randomly selected p% of all

1-entries and the same number of 0-entries. Then the selected elements were flipped,

i.e., the 1-entries were set to 0 and vice versa.

Given this model for data generation, we investigated the scalability of DCE

with respect to the different model parameters d, n, m, and s. Our basic setting

was d = 100, n = 3, m = 20, and s = 3; this amounts to a total of 540 non-

zero associations (1-entries) among 300 different instances (from three dimensions).

Starting from that, we did four series of experiments, varying one of the parameters

while keeping the others fixed. The maximum number of 1-entries was 540, 810,

4860, and 2500, respectively. For each parameter configuration, we generated ten

random datasets and considered noise levels from 0% to 30%. The density threshold

for the DCE algorithm was chosen in dependence of the noise level, θ = (100− p)%.

Figure 6.4 shows the resulting DCE runtime curves for each parameter. In addition

to the total runtime, we report the delay, i.e., the runtime per solution. The values

are averages across the ten random datasets. All measurements were performed on

a 3.0 GHz machine.

DCE scales favorably with d, the number of instances per dimension (Fig-

ure 6.4 (a)). For noise levels from 0% to 20%, the runtime remains approximately

constant with increasing d, for 30% noise it increases linearly. In the 30% noise case,

the noise elements cover more instances and, due to the lowered density threshold,

there exist more cluster solutions; consequently, the curve depends much stronger

on d than the curves for lower noise levels. The delay shows a linear increase in

6.6 Experimental Studies 85

Total time (s) Delay (s)
(a) Array cardinality d (per dimension)

50 100 1500

0.2

0.4

0.6

0.8

50 100 1500.5

1

1.5x 10!5

50 100 150
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Set size

T
im

e
 i
n

 s
e

c
o

n
d

s

30% noise

20% noise

10% noise

w/o noise

(b) No. of clusters m

10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 15 20 25 308.5

9

9.5

10

10.5x 10!6

(c) No. of dimensions n

2 3 4 50

5

10

15

20

25

2 3 4 50.5

1

1.5

2

2.5x 10!5

(d) Cluster cardinality s (per dimension)

2 3 4 50

10

20

30

40

50

60

2 3 4 50

0.2

0.4

0.6

0.8

1

1.2

1.4x 10!5

Figure 6.4: DCE runtime measurements for artifical data in dependence of different parameters.
For each experiment, we report the total runtime and the delay. The x-axis contains the values of
the varied parameter, the y-axis shows the time in seconds.

86 6 Multi-Way Cluster Mining in Higher-Order Association Data

all cases. Regarding the number of hidden clusters, the total runtime increases lin-

early at all noise levels (Figure 6.4 (b)). The delay increases only very slightly; in

fact, the higher number of clusters makes cluster overlaps (in terms of instances)

more likely, so some instances may have longer adjacency lists, which can lead to

an increased computational effort per solution. Actually, one of the main reasons

for the 0% curve being on top is that the cluster instances have longer adjacency

lists than in the noisy cases. The number of subcluster solutions per hidden cluster

increases exponentially with the number of dimensions n, which is reflected by the

total runtime (Figure 6.4 (c)). In contrast, the increase of the delay is much more

moderate. Likewise, when increasing the number of instances per dimension in the

hidden clusters, the delay grows very slowly, although the total runtime of DCE in-

creases significantly (Figure 6.4 (d)). Again, this can be explained by the increased

number of subcluster solutions. Also, the effect is much stronger for higher noise

levels.

To conclude, DCE is appropriate for finding dense clusters in sparse settings;

however, the number of solutions may grow considerably with the dimensionality

and the cardinality of the clusters. Remarkably, the computational effort per so-

lution scales very well in the latter case, even though we use the adjacency list

representation of the tensor and therefore do not have constant-time access to ele-

ments. This indicates that our methods to speed up the search process are effective.

Furthermore, it encourages to combine the DCE search with heuristics that restrict

the generation of overlapping clusters while trying to catch the most significant ones,

which is investigated in the next section.

6.6.2 Performance of Branching-Restricted Search

In the following experiments, we used the search strategy proposed in Section 6.4.4.

The idea is to control the number of branches descending from a cluster. That

means, in each iteration of the algorithm, we select the k most promising children

(if available). Obviously, this restriction leads to a loss of the completeness prop-

erty. We analyzed the behavior of DCE for different values of k in the context of our

artificial datasets. Table 6.1 shows our results for varying dimension-wise cluster

cardinality s at noise levels 0% and 30%. We used the same datasets as for Fig-

ure 6.4 (d) and compared k-values from 1 to 4 with the unrestricted (complete) DCE

version. As can be seen, the overall runtime was drastically reduced by introducing

the branching restriction, in particular in the high noise case.

In order to evaluate the quality of the results, we used the following precision

6.6 Experimental Studies 87

and recall measures. The precision is given by the fraction of hidden cluster entries

among all DCE cluster entries, and the recall is given by the fraction of DCE cluster

entries among all hidden cluster entries. Formally, let D be the set of all tensor

entries that belong to clusters detected by DCE (excluding single-entry clusters),

and let H be the set of all tensor entries that belong to hidden clusters. Then, recall

and precision are defined as follows:

Recall =
|D ∩H|
|H|

Precision =
|D ∩H|
|D|

The averages across the r random datasets (here, r = 10) were determined as

Recallavg =

r∑
i=1

|Di ∩Hi|

r∑
i=1

|Hi|

Precisionavg =

r∑
i=1

|Di ∩Hi|

r∑
i=1

|Di|
,

where Di and Hi denote the entry sets of the detected and the hidden clusters

for the i-th dataset, respectively. Note that in our experiments, all hidden clusters

have the same number of entries (|Hi| = sn). Since we know the size of our hidden

clusters, we also evaluated recall and precision based on the predicted clusters that

have at least this size (i.e., at least s instances in each dimension); these clusters

are called size-restricted. In addition, we report recall and precision of the results

satisfying the balance criterion described in Section 6.4.1.

Trivially, DCE achieved perfect precision and recall for 0% noise (see Table 6.1).

This still held true if the branching was controled. But if we restricted the analysis

to results satisfying the size constraint, we lost recall in some cases. However, the

recall level was still quite high, and it was perfect for k = 4. Furthermore, at 0%

noise (density threshold 100%), any predicted cluster trivially satisfies the balance

criterion. In contrast, the balance constraint makes a big difference in the 30%

88 6 Multi-Way Cluster Mining in Higher-Order Association Data

Table 6.1: Performance analysis of DCE and its extensions for artificial data with varying
dimension-wise cluster cardinality s at 0% and 30% noise. For each setting, we took the aver-
age across ten random datasets. The parameter k refers to the optional branching restriction. For
noise level 0%, the clusters are trivially balanced. See text for details.

Noise level 0% Noise level 30%
s = 2 s = 3 s = 4 s = 5 s = 2 s = 3 s = 4 s = 5

Time (s) - 0.00 0.07 0.79 7.91 0.00 0.41 6.26 58.01
k = 4 0.00 0.07 0.74 6.83 0.00 0.06 0.63 5.08
k = 3 0.00 0.07 0.62 5.10 0.00 0.05 0.47 3.17
k = 2 0.00 0.05 0.36 2.22 0.00 0.04 0.24 1.17
k = 1 0.00 0.02 0.08 0.26 0.00 0.02 0.06 0.16

Recall (%) - 100.00 100.00 100.00 100.00 88.19 98.91 99.96 100.00
k = 4 100.00 100.00 100.00 100.00 88.19 98.89 99.94 100.00
k = 3 100.00 100.00 100.00 100.00 88.19 98.78 99.90 100.00
k = 2 100.00 100.00 100.00 100.00 88.19 98.28 99.80 100.00
k = 1 100.00 100.00 100.00 100.00 84.81 95.24 98.41 99.78

Precision (%) - 100.00 100.00 100.00 100.00 95.21 80.26 54.28 29.84
k = 4 100.00 100.00 100.00 100.00 95.21 82.02 58.37 34.45
k = 3 100.00 100.00 100.00 100.00 95.21 83.73 61.25 38.75
k = 2 100.00 100.00 100.00 100.00 95.53 86.60 69.69 51.47
k = 1 100.00 100.00 100.00 100.00 97.07 94.07 89.07 84.67

Recall for - 100.00 100.00 100.00 100.00 57.00 59.50 54.03 48.51
size-restricted k = 4 100.00 100.00 100.00 100.00 57.00 59.50 54.03 48.51
clusters (%) k = 3 100.00 100.00 99.50 100.00 57.00 59.50 53.53 48.51

k = 2 100.00 100.00 99.00 99.00 57.00 59.00 48.52 44.01
k = 1 100.00 99.52 97.50 98.00 56.50 39.01 22.01 10.50

Precision for - 100.00 100.00 100.00 100.00 99.35 99.72 100.00 100.00
size-restricted k = 4 100.00 100.00 100.00 100.00 99.35 99.72 100.00 100.00
clusters (%) k = 3 100.00 100.00 100.00 100.00 99.35 99.72 100.00 100.00

k = 2 100.00 100.00 100.00 100.00 99.35 99.72 100.00 100.00
k = 1 100.00 100.00 100.00 100.00 99.67 100.00 100.00 100.00

Recall for - see above 71.94 84.62 94.14 98.57
balanced k = 4 71.94 84.55 93.93 98.41
clusters (%) k = 3 71.94 84.49 93.70 98.15

k = 2 71.81 83.99 92.42 97.07
k = 1 69.87 78.42 84.43 89.02

Precision for - 98.38 96.72 94.31 91.58
balanced k = 4 98.38 96.72 94.32 91.61
clusters (%) k = 3 98.38 96.71 94.33 91.67

k = 2 98.37 96.72 94.38 91.73
k = 1 98.42 96.58 94.08 91.27

Recall for - 27.50 1.50 0.00 0.50
balanced k = 4 27.50 1.50 0.00 0.50
size-restricted k = 3 27.50 1.50 0.00 0.50
clusters (%) k = 2 27.50 1.50 0.00 0.50

k = 1 27.50 1.50 0.00 0.50

Precision for - 100.00 100.00 - 100.00
balanced k = 4 100.00 100.00 - 100.00
size-restricted k = 3 100.00 100.00 - 100.00
clusters (%) k = 2 100.00 100.00 - 100.00

k = 1 100.00 100.00 - 100.00

noise case. While we obtained 100% recall and approximately 29.84% precision for

s = 5 using the unconstrained DCE algorithm, the balanced DCE clusters achieved

98.57% recall and 91.58% precision. Larger hidden clusters (i.e., higher values of

6.6 Experimental Studies 89

s) generally lead to higher recall and lower precision in the noisy case because they

allow for more cluster variants. In conjunction with the minimum size constraint,

DCE produced 48.51% recall with 100% precision (in the configuration with s = 5

and 30% noise). Note that during data generation, we fixed the overall fraction of

flips across all clusters, not for each individual cluster, which explains the low recall

value. Only a small fraction of the hidden clusters satisfied both size and balance

constraints after adding 30% noise; the average recall was 0.5% for s = 5 and 27.5%

for s = 2.

Regarding the influence of the branching parameter k, our empirical results

suggest the following tendencies. Naturally, the recall increased for higher values

of k. Remarkably, for k = 3 or k = 4 the recall was in most cases very close or

equal to the recall obtained without branching constraints, although the runtime

was significantly reduced. Sometimes, the recall level was already reached with

k = 2. The precision of DCE clusters was higher for small k, which indicates that

the heuristics is indeed successful in focusing on significant solutions. With respect

to size or balance constraints, the precision remained approximately the same for

all k and the unrestricted branching. In summary, the branching restriction is an

effective technique to speed up the search procedure while maintaining the precision

and recall levels of the complete algorithm.

6.6.3 Efficiency of Reverse Search

To investigate the efficiency of the reverse search approach, we compared its perfor-

mance with other set enumeration strategies. For that purpose, we implemented

two straightforward set enumeration approaches, which we call BruteForce and

BruteNeigh. They use exactly the same data structures for tensor access and in-

cremental density calculation as DCE (see description in Section 6.3.5), the only

difference is in the traversal of the search space. BruteForce enumerates all possible

subset combinations with respect to all dimensions and checks the corresponding

cluster densities; the enumeration is done by nested loops, each of which constructs

subsets incrementally by the aid of a lexicographical search tree (Section 5.3.1).

BruteNeigh is a variant that is particularly suited for size-imbalanced and sparse

datasets. It first chooses the dimension with the smallest number of instances and

enumerates all its instance subsets in the same way as BruteForce; for each of these

subsets, it exploits the corresponding adjacency relationships to determine relevant

candidate instances (“neighbors”) of the other dimensions, for which then all subsets

are enumerated. This approach resembles mining approaches on bipartite graphs

90 6 Multi-Way Cluster Mining in Higher-Order Association Data

20406080100101

102

103

104

105

Density (%)

Ti
m

e
(s

)

2040608010010 2

10 1

100

101

Density (%)

Ti
m

e
(s

)

Mouse (max=2) Rat (max=2)

20406080100100

101

102

103

Density (%)

Ti
m

e
(s

)

20406080100101

102

103

104

105

Density (%)

Ti
m

e
(s

)

Rat (max=3) Rat (max=4)

2040608010010 2

10 1

100

101

102

Density (%)

Ti
m

e
(s

)

2040608010010 2

100

102

104

Density (%)

Ti
m

e
(s

)

Artificial (max=2) Artificial (max=3)

2040608010010 2

100

102

104

106

Density (%)

Ti
m

e
(s

)

Artificial (max=4)

Figure 6.5: Runtime comparison of DCE and other set enumeration strategies in dependence of
the minimum density threshold. The time axis is logarithmic. See text for details.

described in [206] and basically gains efficiency by eliminating isolated instances

from the search space (Section 6.4.3). In addition, we looked at a combined version,

6.6 Experimental Studies 91

BruteDCE, which enumerates all subsets in the smallest dimension and performs

for each of them a separate reverse search with respect to the remaining dimen-

sions, considering again only instances that are adjacent to the fixed instances of

the smallest dimension.

To make the BruteForce approach feasible, we restricted our studies to two-

dimensional data arrays and used maximum cardinality constraints for the dimension-

specific instance sets (Section 6.4.4). On the one hand, we downloaded gene signa-

tures for mouse and rat from GeneSigDB [46]; they contain a set of references to

biological experiments, each of which is associated with a list of genes. Combining

this information in a (binary-valued) data matrix allows to do a meta-analysis on

results from different biological publications. The size of the data is 122× 917 and

12 × 182 for mouse and rat, respectively; the densities of the whole datasets are

5% and 19%, respectively. On the other hand, we reused an artificial dataset from

Section 6.6.1, with a size of 100 × 100 (m = 20, s = 3, noise level 30%) and an

overall density of 2%.

The different search techniques were applied on the three datasets; the maxi-

mum cardinality (denoted as max) was set to the same value for both dimensions

and ranged from 2 to 4. Figure 6.5 shows the resulting time curves for different

density thresholds. The measurements were performed on a 2.8 GHz processor. We

observed some general trends across the experiments. First of all, the neighborhood-

based technique greatly payed off for straightforward set enumeration methods:

BruteNeigh improved the performance of BruteForce by approximately one order

of magnitude. Second, DCE showed an exponential runtime increase for decreasing

density thresholds, but in the upper threshold range from 100% to 60% density, it

outperformed BruteNeigh in most cases by a wide margin. Furthermore, consider-

ing fixed density thresholds, the performance gain of DCE increased with increasing

levels of (maximum) cardinality. For density thresholds close to the overall density

of the dataset, DCE was visibly worse than BruteForce (see rat plots); this is due

to the overhead of the child generation process in the reverse search, which has to

select the true children among all possible candidates (see Section 6.3.4).

Regarding the behavior of BruteDCE, there were major differences between the

datasets. While the combined enumeration strategy was beneficial for the highly

size-imbalanced rat dataset, consistently achieving lower runtimes than DCE, it

had mainly a negative effect for the artificial dataset, where the number of rows

equals the number of columns. For the mouse dataset, it outperformed DCE only

for medium and low density thresholds. Note that the shape of the BruteDCE curve

92 6 Multi-Way Cluster Mining in Higher-Order Association Data

differs heavily between rat and artificial experiments, resembling the DCE curve and

the BruteNeigh curve, respectively. This indicates that in the latter case, the brute

force enumeration part dominated the computation time of BruteDCE, whereas in

the former case the reverse search part played the main role. Overall, the empirical

results show that in comparison with straightforward search approaches, the reverse

search strategy considerably improves the efficiency of dense cluster enumeration.

6.6.4 Email Traffic Analysis

To illustrate higher-order cluster enumeration on real-world data, we applied DCE

to a subset of the ENRON email dataset [119], which we took from [24]. It records

information about the sender, the recipients, and the time stamp of emails. From

this, we generated a three-way tensor as follows. We mapped each time stamp to

the corresponding week and then determined the number of emails a certain sender

sent to a certain recipient in a certain week. This yielded a 120× 143× 123 tensor

with 6995 non-zero entries. We were interested in groups of persons that regularly

exchange many emails. The individual frequency values per week ranged from 1

to 202, however 81% of them were lower or equal to 10; we set entries with values

greater than 10 to 10, in order to avoid cluster results that are dominated by one

or very few outlier entries and consequently do not reliably describe associations

between sets of instances.3 After the preprocessing, we ran DCE with a density

threshold of 80%. That means, for a valid cluster solution, each sender sends in

each week on average at least 8 emails to each recipient, assuming a maximum

number of 10 emails.

Restricting the maximum number of instances per dimension for each cluster

to 4, we obtained approximately 3.5 · 107 clusters in total. This seems to be a large

number of clusters, but it is reasonably small compared to the number of cluster

candidates for the tensor at hand, which is 2.0 · 1022 for the given maximum size

constraint. Focusing on locally maximal patterns with at least two instances in each

dimension, the size of the result set shrinks to 240675, and among them, there are

only 142 clusters with at least three instances in each dimension. The top-ranking

cluster (density: 82%, p-value: 4.7 · 10−20) is shown in Figure 6.6. It contains three

senders, four recipients and four weeks. Senders and recipients are given by personal

identifiers. Two persons appear as both senders and recipients, one person appears

only as sender, and two persons only as recipients. The only zero entries of the

cluster are due to the absence of self-emails for the two persons in the overlap. This

3Other weighting schemes are possible, for instance binarization according to a predefined threshold.

6.7 Discussion 93

Senders: 155, 162, 169
Recipients: 114, 155, 165, 169
Weeks: 103, 108, 118, 120

Sender Recipient No. of emails in week
103 108 118 120

155 114 ≥10 ≥10 ≥10 ≥10
155 155 0 0 0 0
155 165 ≥10 ≥10 ≥10 8
155 169 ≥10 ≥10 ≥10 8
162 114 ≥10 ≥10 ≥10 ≥10
162 155 ≥10 ≥10 ≥10 ≥10
162 165 ≥10 ≥10 ≥10 ≥10
162 169 ≥10 ≥10 ≥10 ≥10
169 114 ≥10 ≥10 ≥10 ≥10
169 155 ≥10 ≥10 ≥10 ≥10
169 165 8 ≥10 ≥10 8
169 169 0 0 0 0

Figure 6.6: Top-ranking cluster for email traffic data.

cluster remains the top-ranking cluster even if we drop the maximum cardinality

constraints for senders and recipients, which means that there do not exist dense

clusters involving more people.

6.7 Discussion

We presented a general framework for the systematic extraction of dense patterns

from higher-order association data. It extends conventional relational set mining

approaches [31, 100, 103] and clique-related network analysis [104, 166, 242]. The

proposed reverse search algorithm allows for an effective pruning of the search space

without missing any solutions. Remarkably, the complexity of the delay between two

consecutive solutions is in the order of the input size. This property distinguishes the

reverse search approach from straightforward set enumeration algorithms and makes

it applicable in cases where the latter are infeasible. However, for large datasets or

low density thresholds, the number of solutions is prohibitive, even if only maximal

solutions are considered; consequently, the search method does not scale well.

There are several remedies for this problem. The first possibility is to maintain

the enumerative search, but add further constraints based on additional criteria,

prior knowledge, or external data. Often, it is possible to define anti-monoton-

ic constraints, which contribute actively to the pruning of the search space. Or,

if relevant subsets are prespecified for some dimensions (for instance, windows of

consecutive time intervals), reverse search with respect to the other dimensions

94 6 Multi-Way Cluster Mining in Higher-Order Association Data

can be performed for each of these subsets individually. It is an open research

question how minimum size or support constraints can be exploited most effectively

in the dense pattern detection framework. On the other hand, one can still use

the reverse search strategy, but apply heuristic criteria or sampling techniques to

control the number, overlap, and relevance of solutions; this allows to directly trade

off the runtime and the completeness of the solution set, which we illustrated in

the experiments with a simple branching heuristic; similarly, heuristic pruning rules

could be specified by appropriate thresholding of (relative) degree values. Even if

it is not used for exhaustive exploration, the definition of the anti-monotonic search

space has a value by itself, as solutions are visited with polynomial delay.

Finally, instead of applying the method to the whole dataset at once, it can

be combined with different strategies of prepartitioning or preaggregation of the

data [91, 122]. Furthermore, the reverse search strategy is compatible with dis-

tributed computation, and its efficiency can be further improved by adapting the

data structures and pruning techniques to the specific task at hand.

Part III

Hierarchical Detection

of Association Patterns

7 Hierarchical Biclustering

The enumerative approach to cluster detection discussed in the previous part is

suitable for a systematic and detailed analysis of structured datasets, including two-

way data. However, for large-scale applications it might be problematic due to the

potentially huge number of solutions, which affects both the computational efficiency

and the interpretability of the results. Here, we present a totally opposite approach,

which provides clusters in two-way association data without aiming at completeness

nor considering cluster overlaps. It extends the well-known paradigm of hierarchical

clustering to a biclustering framework.

7.1 Motivation

Hierarchical clustering [97] is a common method to explore similarity or distance

relationships between data instances; it is extremely popular in computational biol-

ogy [84]. There exist two main strategies: top-down methods (also called divisive)

iteratively split the set of instances into smaller sets, whereas bottom-up methods

(also called agglomerative) iteratively merge sets of instances to larger ones. Let us

focus on the latter case, which is the prevalent variant. It is computationally easier

because it considers in each step only similarities between instance sets given from

the previous step; this has, of course, the disadvantage that the obtained clusters

reflect locally optimal rather than globally optimal structure in the data.

The starting point is a weight matrix that contains pairwise similarity or asso-

ciation values between instances. Based on that, a dendogram is constructed where

the most similar instances are merged first (i.e., at the bottom), and less similar in-

stances or instance sets join later, in decreasing order of similarity (see Figure 7.1).

Common choices for similarity measures between instance sets and details of the

procedure are given in the following section. A horizontal cut through the dendo-

gram defines a specific set of instance clusters. In the generalized setting we are

interested in, our input data are represented by a two-way matrix, and we would

like to detect groups of related row instances as well as groups of related column

98 7 Hierarchical Biclustering

1

2

3

4

5

6

7

1 2 3 4
...

...

1 2 3 4 5 6 7

1 2 3 4
...

...

1

2

3

4

5

6

7

1

2

3

4

...

...
2 3

4

7

31

...

Figure 7.1: Schematic view of agglomerative clustering. Based on a pairwise association matrix, a
dendogram is constructed.

instances. The classical agglomerative way of tackling this problem is to compute

two similarity matrices for row instances and column instances, respectively, and

perform bottom-up clustering for each of them separately, see Figure 7.2 (a).

In contrast, we are aiming at a direct biclustering scheme, which builds a com-

mon dendogram for row and column instances directly from the data matrix, see

Figure 7.2 (b). The critical difference compared to the classical two-way approach is

that now grouping of row instances is no longer based on all columns, but only a sub-

set of them, and vice versa. This comes closer to the motivation of biclustering (see

Section 4.5), yielding direct assignments between row clusters and column clusters.

It resembles a concept called two-mode hierarchical clustering [29, 217]. However,

while these techniques employ a scoring criterion based on bicluster homogeneity,

our approach focuses on biclusters with strong association weights in the original

data matrix (see Section 4.5). Before we explain the algorithm in detail, we give

a brief review on traditional agglomerative clustering. However, unlike many other

presentations of that topic, we here merely start from an association matrix between

instances and do not consider instances as original data points in real space. This

allows us to deal with scenarios where we only know links or relationships between

instances (e.g., in form of a graph), without being provided with feature information.

In particular, we do not require metric properties for the distance measure between

instances; also, the input matrix may contain negative values.

7.2 Review of Hierarchical Clustering

Here, we briefly review the foundations of agglomerative hierarchical clustering [54,

152]. Let V be the set of instances and W = (wij)i,j∈V a symmetric weight ma-

7.2 Review of Hierarchical Clustering 99

(a) Independent two-way clustering

1

2

3

4

5

6

7

1 2 3 4
...

...

1 2 3 4 5 6 7

1 2 3 4
...

...

1

2

3

4

5

6

7

1

2

3

4

...

...
2 3

4

7

31

...

...

(b) Direct biclustering

Gene

Condition

1

2

3

4

5

6

7

1 2 3 4 ...

...

1

2

3

4

5

6

7

1 2 3 4 ...

...

2 3 4 5 2

...

Figure 7.2: Comparison of agglomerative clustering strategies in two-way data. While the classical
approach constructs for each dimension a similarity matrix and clusters them separately (a), our
approach operates directly on the two-way data and yields a joint dendogram for both entity types
(b).

trix indicating the pairwise similarity (or association) of instances. Initially, each

instance constitutes an individual cluster, and W represents the cluster association

values. Then, the clusters are iteratively merged to larger clusters. In each step, the

two clusters with the largest association are selected for merging, and the cluster

association matrix is updated accordingly. Regarding the definition of the associa-

tion a(S, U) between two clusters S ⊂ V and U ⊂ V , there are the following three

common variants:

a(S, U) = max
s∈S,u∈U

wsu [single linkage] (7.1)

100 7 Hierarchical Biclustering

 V
V

V

V

US

U

S
V1

V2

S2

S1

U1

U2

Note: PPT allows to apply 3D option on rectangles!

Figure 7.3: Two clusters S and U in a symmetric weight matrix. The dashed blocks indicate the
matrix entries that associate S with U .

a(S, U) = min
s∈S,u∈U

wsu [complete linkage] (7.2)

a(S, U) =

∑
s∈S,u∈U wsu

|S| · |U |
[average linkage] (7.3)

Complete linkage has the strictest requirement, not allowing for any outlier

values regarding the pairwise association between instances in a merged cluster;

single linkage, on the other hand, is prone to join heterogeneous clusters as long as

two instances from different clusters are closely associated; average linkage is a trade-

off between these two extremes and will be our default choice. By construction, the

different clusters are disjoint at each stage of the algorithm (i.e., S ∩ U = {} for all

pairs S, U of clusters). Figure 7.3 visualizes two clusters as well as the entries of

the weight matrix that determine their association. The iterative merging process

is stopped if the best cluster association value is below a user-defined threshold; the

current clusters are reported as the result. Alternatively, one can run the procedure

until there is only one cluster left (containing all instances) and show the whole

dendogram as a result.

As the procedure needs at most |V | − 1 merging steps to terminate, a naive

implementation would require O(|V |3) time, using O(|V |2) operations in each step

to update the between-cluster association values and search the maximum among

them. The complexity can be further improved by applying computational standard

techniques. On the one hand, the association values can be calculated incrementally,

i.e., they can be derived from the association values in the previous step. On the

other hand, appropriate data structures for accessing the association values can

assist in obtaining the maximum value and performing the updates in an efficient

way; typically, priority queues are used for that purpose (one for each cluster) [152].

With that, the overall complexity is reduced to O(|V |2 log |V |).

A common scheme of doing the incremental update in the case of average linkage

7.3 Agglomerative Biclustering Algorithm 101

is expressed by the following recurrence formula [155]:

a(S ∪ T, U) =
|S| · a(S, U) + |T | · a(T, U)

|S|+ |T |
(7.4)

To facilitate the generalization to the two-way setting, we slightly reformulate the

above equation. Let b(S, U) be the number of matrix entries that associate instances

of S with instances of U (between-cluster size, see Figure 7.3); here, symmetric entries

are counted only once, thus b(S, U) = |S|·|U |. Then Equation (7.4) can be rewritten

as indicated below:

a(S ∪ T, U) =
b(S, U) · a(S, U) + b(T, U) · a(T, U)

b(S, U) + b(T, U)
(7.5)

Further,

b(S ∪ T, U) = b(S, U) + b(T, U) . (7.6)

The initial values are set as follows:

a({s}, {u}) = wsu ∀s, u ∈ V (7.7)

b({s}, {u}) = 1 ∀s, u ∈ V (7.8)

It can be easily verified that the result of the recursive association calculation cor-

reponds to the direct expression obtained by Equation (7.3).

7.3 Agglomerative Biclustering Algorithm

Now we generalize the agglomerative clustering scheme to a biclustering scenario,

aiming at detecting patterns of strong association.

7.3.1 General Scheme

Let us first introduce some notation. The data consist in a bipartite instance set

V , with associations being only defined between instances of different type. We

denote by V1 and V2 the two distinct sets of input instances (i.e., V1 ∩V2 = {}), and

W = (wij)i∈V1,j∈V2 represents the corresponding association weights. Using matrix

terminology, we call V1 the row instances, and V2 the column instances. Our goal is

to extract bicluster patterns (S1, S2), S1 ⊂ V1 and S2 ⊂ V2, such that the average

association weight between instances of S1 and instances of S2 is large. That means,

102 7 Hierarchical Biclustering

equivalently to Chapter 6, a bicluster describes a submatrix of the association matrix

with a large average across its entries (density). This criterion is only well-defined

if the submatrix is non-empty, i.e., S1 ≥ 1 and S2 ≥ 1. Such biclusters are called

valid. A merge of two biclusters (S1, S2) and (U1, U2) is defined by taking the union

of the row instances and the union of the column instances, resulting in a larger

bicluster (S1 ∪ U1, S2 ∪ U2). For notational convenience, we represent a bicluster

(S1, S2) by the joint set S = S1 ∪ S2; as V1 ∩ V2 = {}, the sets S1 and S2 can

be easily reconstructed from S; accordingly, a merge of two biclusters S and U is

written as S ∪ U .

The method starts with a set of base biclusters, which correspond either to a

row instance or to a column instance: {v}, v ∈ V . Then, the number of biclusters

is successively reduced by merging in each step the bicluster pair with the largest

association. To define the association between two biclusters, we use a generalized

version of the average linkage measure (7.3):

a(S, U) =

∑
s∈S1,u∈U2

wsu +
∑

u∈U1,s∈S2
wus

|S1| · |U2|+ |U1| · |S2|
(7.9)

That means, the average association weight between instances from different bi-

clusters determines how beneficial a merge would be. The matrix-based intuition

of bicluster assocation is illustrated in Figure 7.4 (following immediately from Fig-

ure 7.3): the score corresponds to the average value of the matrix entries that would

be added when merging the biclusters. It can be computed incrementally using

the recurrence rules in Equations (7.5) and (7.6). However, we have to adapt the

initialization to the bicluster setting. While the initial associations between row

instances and column instances are given by W , base biclusters of the same kind

(i.e., two row instances or two colum instances) are not qualified for merging because

the resulting bicluster is not valid. This is indicated by setting the corresponding

between-bicluster size value b(., .) to 0 and the association value a(., .) to a value

that is lower than any entry in W :

a({s}, {u}) =

wsu if s ∈ V1 and u ∈ V2

wus if u ∈ V1 and s ∈ V2

min
i∈V1,j∈V2

wij − 1 otherwise

(7.10)

b({s}, {u}) =

1 if s ∈ V1 and u ∈ V2

1 if u ∈ V1 and s ∈ V2

0 otherwise

(7.11)

7.3 Agglomerative Biclustering Algorithm 103

 V
V

V

V

US

U

S
V1

V2

S2

S1

U1

U2

Note: PPT allows to apply 3D option on rectangles!

Figure 7.4: Two biclusters S and U . The dashed blocks indicate the matrix entries that are needed
to determine the association between S and U .

It is not necessary to store the a- and b-values for all invalid merges; one can just

use the defined default values if they are needed in the recurrence equation1 and

take care otherwise that only valid merges are considered; also, redundancy can be

avoided by exploiting the symmetry of both a and b. Furthermore, it is possible

to avoid an explicit storage of b by recording the set sizes of S1 and S2 for each

bicluster S and using the following update rule:

a(S ∪ T, U) =
(|S1| · |U2|+ |U1| · |S2|) · a(S, U) + (|T1| · |U2|+ |U1| · |T2|) · a(T, U)

(|S1| · |U2|+ |U1| · |S2|) + (|T1| · |U2|+ |U1| · |T2|)

In analogy to the basic approach explained in Section 7.2, the iterative merging

process can be stopped prematurely, based on the number of biclusters or the top

association score among the current bicluster pairs. At any point of the algorithm,

the biclusters are disjoint, so the result corresponds to a partitioning of the bipartite

association graph.

7.3.2 Correctness

To obtain a well-defined hierarchy, we must guarantee that the merge scores decrease

monotonically towards the top of the dendogram. That is, biclusters with larger

association to each other should be combined earlier in the process. Formally, this

is satisfied if – at each level of the hierarchy – all cluster association scores are

smaller than or equal to the score of the previous merge (i.e., the best association

score among the clusters in the previous level). Since only the association scores

involving the newly merged cluster are changed compared to the previous step, it

is sufficient to show the inequality for them. For standard agglomerative clustering

methods, this property is proven in [155]. Similarly, we can formalize the anti-

1In fact, the a-value does not matter in that case (as long as it is finite) because the corresponding b-value
equals 0.

104 7 Hierarchical Biclustering

monotonicity of our biclustering approach with the following lemma.

Lemma 13. Given biclusters S, T , and U , let (S, T) be the bicluster pair with the

maximum association score, i.e., a(S, T) ≥ a(S, U), a(S, T) ≥ a(T, U). Then,

a(S ∪ T, U) ≤ a(S, T) .

Proof. By construction, b(S, U) ≥ 0 and b(T, U) ≥ 0. Further, b(S, U)+ b(T, U) > 0

if S ∪ T is a valid bicluster (i.e., it contains row and column instances). Then, the

inequation follows from the assumption by simple algebra:

a(S ∪ T, U) =
b(S, U) · a(S, U) + b(T, U) · a(T, U)

b(S, U) + b(T, U)

≤ b(S, U) · a(S, T) + b(T, U) · a(S, T)

b(S, U) + b(T, U)

=
a(S, T) · (b(S, U) + b(T, U))

b(S, U) + b(T, U)

= a(S, T)

If S ∪ T is not a valid bicluster, the assumption implies that S ∪ U and T ∪ U are

also not valid. Consequently, (S∪T)∪U is not valid and a(S∪T, U) = a(S, T).

The proposed algorithm produces valid biclusters in all merging steps because

such merges are always possible and score better than merges yielding invalid bi-

clusters. Due to the lemma, merge scores of biclusters are at least as good as merge

scores of their parent bicluster in the hierarchy. As the merge score of a bicluster

is defined as the average association value between instances of the first child and

instances of the second child, this anti-monotonicity property also implies that the

bicluster density (i.e., the average association value between all bicluster instances)

monotonically decreases when going up the hierarchy.

7.3.3 Complexity

Now we analyze the time and space requirements of the hierarchical biclustering

algorithm. For better readability, we define m1 and m2 as the cardinalities of the

row instance set V1 and the column instance set V2, respectively. Without loss of

generality, m1 ≤ m2. In each step of the algorithm, two biclusters are merged,

so there are at most m1 + m2 − 1 steps. In a naive implementation, one would

maintain an array of association scores for all bicluster pairs, i.e., O((m1 + m2)
2)

7.3 Agglomerative Biclustering Algorithm 105

entries. However, as base biclusters of the same type are not eligible for merging,

the size can be reduced to O(m1m2). We suggest to use O(m1(m1 + m2)) space,

which allows for an easier bookkeeping, assigning each merged bicluster to exactly

one row index rather than having to reserve both one row index and one column

index for it. Similarly to the standard hierarchical clustering approach (Section 7.2),

we can store these bicluster association values in priority queues. Using m1 priority

queues of maximum length (m1+m2), each update step requires O(m1 log(m1+m2))

operations, for removing the former entries of the merged biclusters and inserting

the entries of the newly formed bicluster. So the time complexity of building a

complete dendogram amounts to O((m1 + m2)m1 log(m1 + m2)).

In contrast to that, the independent two-way clustering method (Figure 7.2 (a))

needs O((m1)
2m2) + O((m2)

2m1) time to compute the association matrices of row

instances and column instances, respectively, and O((m1)
2 log m1)+O((m2)

2 log m2)

to compute the two separate dendograms (see Section 7.2). The space complexity

for computing the the association matrices is O((m1 + m2)m1) + O((m1 + m2)m2).

Consequently, the proposed biclustering approach brings clear advantages in terms

of computational resources if the size of the dataset is highly imbalanced, i.e., m1 �
m2; in particular, it could be a practical alternative in cases where the calculation

of the m2 ×m2 association table is infeasible. However, like all partitioning-based

biclustering approaches, it carries the risk of missing relevant global relationships

in favor of local relationships, whereas two-way clustering only considers global

relationships.

8 Extensions of Hierarchical Biclustering

The hierarchical agglomerative biclustering scheme presented in the previous chapter

provides a simple and quick way to obtain some high-density biclusters in two-

way data. Here, we briefly mention some possible extensions of that approach,

namely alternative association criteria, generation of alternative clusterings, and

generalization to multi-way data analysis.

8.1 Alternative Association Criteria

Alternatively to the average linkage criterion proposed in Section 7.3, one can use

single linkage or complete linkage measures to associate biclusters, in analogy to

Equations 7.1 and 7.2. The corresponding recurrence formulae are straightforward,

as the sets of entries defining an association are equivalent to the average linkage

case (Figure 7.4), only the aggregation function changes. Beyond that, one can em-

ploy measures that additionally take the entries within biclusters into account. For

instance, one could consider the overall average of entries within the merged biclus-

ter as association criterion, equivalently to the bicluster density criterion defined in

the enumerative pattern mining approach (Section 6.2):

atotal(S, U) =

∑
s,u∈S∪U wsu

size(S ∪ U)
, (8.1)

where size(S) = |S1| · |S2| denotes the number of entries in the bicluster submatrix.

Then, the update rule looks as follows:

atotal(S ∪ T, U) =

[size(S ∪ T) · atotal(S, T) + size(S ∪ U) · atotal(S, U) + size(T ∪ U) · atotal(T, U)

− size(S) · atotal(S, S)− size(T) · atotal(T, T)− size(U) · atotal(U,U)]/

size(S ∪ T ∪ U)

108 8 Extensions of Hierarchical Biclustering

This criterion would also lead to a dendogram with monotonically decreasing merge

scores. However, considering the fact that the algorithm does not allow for over-

lapping biclusters, we prefer the average linkage criterion introduced in Section 7.3,

i.e., biclusters should only be merged if they are strongly interlinked. Using average

linkage, the overall bicluster density still decreases after each fusion step (due to

Lemma 13), but the resulting hierarchy can differ from the hierarchy built with the

density criterion. In addition, size specifications and constraints from other data

sources, e.g., profile consistency (Sections 5.7.1 and 6.4.4) can be used to prohibit or

restrict certain bicluster merges; however, due to the non-exhaustive nature of the

algorithm, one might fail to find bicluster solutions even if they exist in the data.

8.2 Alternative Clusterings

Agglomerative clustering approaches are greedy procedures, performing the best

possible merging step at each iteration. One obvious drawback is that decisions are

never revised, that means, once instances are joined they will remain forever in the

same bicluster. If there occurs a tie in determining the maximum pairwise bicluster

association and the options exclude each other (i.e., they cannot be executed one

after the other), one has to select one of them to continue the dendrogram. This in-

troduces some arbitrariness in the process, and it might be the case that a particular

choice harms the bicluster quality in all subsequent steps, while another choice would

have yielded more significant biclusters. The problem is exacerbated in the case of

binary-valued data. One possible solution is to construct multiple dendograms; this

is feasible due to the moderate time complexity of the method, in particular if early

stopping rules are applied. Each time a tie with mutually exclusive possibilities

occurs, one can systematically try all of them or randomly sample a subset; in that

way, different continuations of the current dendogram can be produced. In the end,

the most promising biclusters across all dendograms can be chosen based on size and

weight criteria. This results in a set of potentially overlapping biclusters. It is also

conceivable to generate overlapping biclusters in a single dendogram by heuristic

modifications of the algorithm scheme, e.g., by maintaining after each merge one of

the two former biclusters in addition to the new bicluster. While the complexity

per iteration remains the same as before, such an approach allows to reuse some

biclusters, avoiding at the same time reoccurrences of identical merges.

8.3 Hierarchical Higher-Order Clustering 109

8.3 Hierarchical Higher-Order Clustering

In section 7.3, we have shown how to generalize agglomerative hierarchical clus-

tering to bipartite (i.e., biclustering) settings. Here, we discuss the problem of

extending the framework to the multi-way scenario described in Chapter 6. More

precisely, we consider n sets of instances, V1 to Vn, and an n-way association weights

(wk1,...,kn)ki∈Vi
, which can be stored in an n-dimensional tensor. Again, we assume for

notational convenience that the sets V1 to Vn are disjoint and denote the union by V .

A multi-way cluster S consists of n subsets Si ⊂ Vi, and is denoted as S =
⋃n

i=1 Si.

The goal of the hierarchical clustering approach is to extract multi-way clusters

with large association between its instances. In analogy to the biclustering case,

the possible initial merging steps join n instances, one from each set Vi; the merge

score is given by the corresponding association weight. In later stages, the score is

given by averaging1 over the association weights between instances from different

multi-way clusters (i.e., the newly added entries when merging the multi-way clus-

ters). It would be natural to consider pairwise cluster merges whenever the resulting

cluster is valid, containing at least one tensor entry. However, it turns out that the

update scheme for merging scores is more complicated than in the bicluster setting.

Namely, after merging two n-way clusters S and T , the association between the

new cluster S ∪ T and another cluster U contains entries that are not contained in

pairwise associations between S and U and between T and U .

More precisely, let A(S, U) denote the set of tensor entries that will be added

when merging S and U ; we call it the association set of S and U . For the two-way

case,

A(S, U) = {(v1, v2) : v1 ∈ S1, v2 ∈ U2} ∪ {(v1, v2) : v1 ∈ U1, v2 ∈ S2}

(see Figure 7.4). In the general n-way case, A(S, U) equals

{(v1, . . . , vn) : vi ∈ Si ∪ Ui} \ ({(v1, . . . , vn) : vi ∈ Si} ∪ {(v1, . . . , vn) : vi ∈ Ui}) .

For n > 2,

A(S, U) ∪ A(T, U) (A(S ∪ T, U) ;

for instance, an entry (s1, t2, u3, . . . , un) with s1 ∈ S1, t2 ∈ T2, and ui ∈ Ui belongs to

A(S∪T, U), but it is neither a member of A(S, U) nor a member of A(T, U). Conse-

quently, an anti-monotonicity property of the merging process cannot be guaranteed

when focusing on pairwise merges. This makes it difficult to define stopping crite-

1Other aggregate functions are possible, e.g., maximum or minimum.

110 8 Extensions of Hierarchical Biclustering

ria and to interpret the results. One solution could be to additionally consider all

possible higher-order associations of clusters, corresponding to simultaneous merges

of more than two clusters. In a straightforward implementation, such an approach

would be computationally quite demanding; for a scalable multi-way analysis, a cru-

cial point is the exploitation of sparsity in the input data. It is a subject of future

work to develop a practicable agglomerative method for the detection of large-weight

multi-way clusters.

Part IV

Biological Applications

9 Module Discovery in Protein Interaction

Networks

Many cellular functions are performed by complexes that consist of multiple dif-

ferent proteins. The composition of these complexes may change according to the

cellular environment, and one protein may be involved in several different processes.

As there exist a number of experimental techniques to measure direct and indirect

protein interactions (see Section 2.1), a common approach is to extract putative pro-

tein complexes from these data. The results can assist in the functional annotation

of previously uncharacterized proteins as well as in revealing additional function-

ality of known proteins [193]. However, to perform this task, one has to face two

challenges: on the one hand, the data are incomplete, that means many true inter-

actions are missing (i.e., false negative), and on the other hand, the data are noisy,

i.e., there is a large fraction of false positives. In fact, the reliability of the measured

interactions strongly depends on the used experimental techniques, and it increases

if the interactions are detected by several independent measurements. Therefore, it

is meaningful to integrate all available interaction data into one network and assign

weights to the edges based on their experimental evidence [99]. The DME algo-

rithm presented in Section 5.3 uses a search criterion that naturally combines the

two aspects by taking the average interaction weight, where missing interactions

obtain a weight of zero. It can also incorporate additional information to guide the

search towards the module patterns of interest.1 Here, we show our DME results

on data from yeast and human, which have been published in [67]. Several possible

extensions are discussed at the end of the chapter.

1implementation available at http://www.kyb.tuebingen.mpg.de/∼georgii/dme.html

http://www.kyb.tuebingen.mpg.de/~georgii/dme.html

114 9 Module Discovery in Protein Interaction Networks

9.1 Data Collection and Preprocessing

For the analysis of yeast (more precisely, S. cerevisiae), we combined protein inter-

actions from DIP2 [230] and MPact3 [76] (which includes data from IntAct4 [85],

MINT5 [35], and BIND6 [15]), and interactions from the core datasets of the TAP

mass spectrometry experiments by Gavin et al. [62] and Krogan et al. [132]. The

human protein interactions were extracted from the IntAct, MINT, BIND, DIP, and

HPRD7 [174] databases.8 For the computation of interaction weights, we followed

the method in [99]. For that purpose, we first determined for each individual interac-

tion the set of supporting sources. The MPact database reports for each measured

interaction a corresponding set of experimental techniques. The IntAct, MINT,

DIP, and BIND databases also list experimental methods, according to the PSI-MI

standard. In these cases, we considered each experimental technique as separate

source. Further, the HPRD dataset and the Gavin [62] and Krogan [132] datasets

were labeled as individual sources.

For each combination of sources, we estimated a reliability score using gold

standard sets of correct and incorrect protein pairs. For the gold standard set of

positive examples, we collected protein pairs that share the same MIPS functional

category.9 These categories represent general functional relationships of proteins

and are therefore more comprehensive than the known protein complexes used for

evaluating the module predictions. The reason for this choice is to avoid overfitting

the interaction weights to the reference complexes. For the negative set, we used

protein pairs with different subcellular localization as given in the Gene Ontology

database10 [13]. Given these gold standard sets, a specific set of sources S was scored

as follows. Let IS be the set of interactions with evidence S, Ipos the set of positive

interactions, and Ineg the set of negative interactions. To determine the weight of

the interactions in IS, we took the ratio between the true positive rate and the false

positive rate:

wij ,{i,j}∈IS
=
|IS ∩ Ipos|/|Ipos|
|IS ∩ Ineg|/|Ineg|

(9.1)

2http://dip.doe-mbi.ucla.edu
3http://mips.gsf.de/genre/proj/mpact
4http://www.ebi.ac.uk/intact
5http://mint.bio.uniroma2.it
6http://bind.ca
7http://www.hprd.org
8For all datasets we used the versions available in May 2007.
9http://mips.gsf.de/projects/funcat

10http://www.geneontology.org/

http://dip.doe-mbi.ucla.edu
http://mips.gsf.de/genre/proj/mpact
http://www.ebi.ac.uk/intact
http://mint.bio.uniroma2.it
http://bind.ca
http://www.hprd.org
http://mips.gsf.de/projects/funcat
http://www.geneontology.org/

9.2 Comparative Analysis on the Yeast Interaction Network 115

Protein pairs without any support in the data received a default weight of zero

because an interaction is a priori unlikely; alternatively, one could predict interaction

weights based on additional information about the proteins. The raw ratio scores

can have a large variance due to some outlier values. This can distort the analysis by

undesired artifacts where modules with moderate density contain one node pair with

extremely high interaction weight and poor interaction weights otherwise; larger

density thresholds are only satisfied by two-node modules representing the most

extreme outlier interactions, so they suffer from very low recall. Therefore, as in

Section 6.6.4, we truncated the score distribution at a fixed value t and set all

larger weight values to t. For the experiments reported here, we used t = 2, i.e.,

all interactions with an at least two-fold larger true positive rate for the sources

of evidence received a top weight. To reduce the number of noisy interactions, we

considered only interactions with weights greater than or equal to 1/t = 0.5. For

convenience, the interaction weights were scaled such that the maximum is 1.11

The resulting interaction network for yeast consisted of 3559 nodes with 14 212

non-zero interactions having an average weight of 0.67. The human network con-

tained 9371 nodes and 32 048 non-zero interactions having an average weight of

0.47.

9.2 Comparative Analysis on the Yeast Interaction Network

First, we validated the performance of DME on the yeast interaction network in

comparison with four other methods: clique detection (Clique), the clique percola-

tion method (CPM) [166], a procedure for joining cliques of a certain size to larger

clusters, CPMw [57], an extension of CPM that includes an additional clique filter-

ing step, and Markov clustering (MCL) [53, 216], a popular graph clustering method

simulating random walks.12 As a reference set of confirmed protein complexes, we

used the manually curated yeast complexes provided by MIPS13 [75].

11Other scoring schemes are conceivable, e.g., log-transformation of ratio scores or discretization ap-
proaches; possible alternatives to the ratio score for indicating the confidence in an interaction are
information retrieval measures like precision. Empirically, the DME module analysis turned out to be
relatively robust in the sense that the top results of different weighting functions were similar; however,
the recall of modules generally depends on the skewness of the weight distribution.

12For Clique, CPM, and CPMw we used the implementation from http://www.cfinder.org; MCL was
downloaded from http://micans.org/mcl.

13http://mips.gsf.de/genre/proj/yeast

http://www.cfinder.org
http://micans.org/mcl
http://mips.gsf.de/genre/proj/yeast

116 9 Module Discovery in Protein Interaction Networks

9.2.1 Precision-Recall Analysis

To evaluate the results, we chose performance measures that are based on protein

pairs, in analogy to the measures introduced in Chapter 6.6 for the synthetic data

analysis. In contrast to module-based measures, they take overlapping submodules

only once into account. Defining the intersection of pairs from predicted modules

and pairs from known complexes as correctly predicted pairs, precision and recall

can be expressed as follows:

Precision =
No. of correctly predicted protein pairs

No. of protein pairs in predicted modules
(9.2)

Recall =
No. of correctly predicted protein pairs

No. of protein pairs in known complexes
(9.3)

To obtain precision-recall curves, we iteratively calculated the precision and recall

values, each time extending the set of considered modules by the next module in a

ranked order. As the other methods do not provide a module ranking and our p-value

criterion from Section 5.4.2 is only applicable to enumerative approaches, we used

the scoring scheme by Bader and Hogue [16], which is also mentioned in Section 5.4.2.

In fact, it produced for our DME results almost the same ranking as the p-value

criterion; the corresponding precision-recall curves were virtually equivalent. For

each method, we tested a wide range of parameters and selected the configuration

with the largest area under the precision-recall curve. For DME, we varied the

density threshold from 100% to 95.5% using decrements of 0.5. As the number

of solutions drastically increased between 96% and 95.5%, we further analyzed this

range using decrements of 0.1%. The best result was achieved at a density threshold

of 95.7%.

Instead of handling edge weights during the search, Clique and CPM preprocess

the data based on a minimum edge weight parameter: before computing the cliques

in the network, they remove all edges that violate the threshold. We varied this

threshold from 1 to 0.35, using decrements of 0.05 (optimum for Clique: 0.4). CPM

has in addition an integer parameter k to determine the size of the cliques that are

considered for joining; it was tested in the default range between 3 and the maximum

clique size in the network (optimum for CPM: edge selection threshold 0.9, k=9).

This parameter k also exists for CPMw, but instead of preselecting the edges that

may be used during the clique search, CPMw expects a threshold for the geometric

mean of the edge weights in a clique. Only cliques satisfying this threshold are

further processed. We tried the same thresholds as for DME; k was tested from 3 to

9.2 Comparative Analysis on the Yeast Interaction Network 117

7, as the filtering step gets very expensive for higher values. We obtained the best

results for k=6 and a clique selection threshold of 97%. For MCL, there exist two

main parameters affecting the cluster granularity: the inflation parameter, which

we varied from 1.5 to 8 using increments of 0.5, and the centering, varied between

1 and 5. Furthermore, we set the parameter to retain potentially generated cluster

overlaps. Here, we got the best result for inflation 3.0 and centering 2.

Figure 9.1 shows the best precision-recall curve for each approach. Overall,

the predictions of DME were competitive. Quite in the beginning, the curve shows

a sudden drop, which is due to a big module that is not annotated as a known

complex. Clique detected the same module, but it additionally found some other,

higher-ranked modules, so the drop happens later. For higher recall levels, Clique has

lower precision than DME; this indicates that for smaller modules (which appeared

later in the ranking) the interaction weights got important for the module quality.

The curves for MCL and CPM always stay below the DME curve. By explicitly using

the edge weights and tuning the density parameter, DME allows for more flexibility

than the two-stage procedure of CPM, first selecting edges and subsequently joining

together all cliques that satisfy an overlap criterion. CPMw refines CPM by joining

selected cliques only, but, in contrast to DME, it does not control the density of the

merged modules and might also miss some dense modules. In our analysis, CPMw

improved the result obtained by CPM, but was mostly inferior to Clique or DME.

One problem with the computational evaluation of module finding methods is

the incomplete ground truth. For instance, if we predict additional compounds for

a known complex, they are classified as wrong although they might be real. The

analysis is further complicated by the fact that a protein can participate in multiple

complexes. Also, the module characteristics differ from method to method as well

as within methods. Therefore, we show in the next section additional statistics for

comparing the results.

9.2.2 Further Result Statistics

Table 9.1 summarizes further statistics regarding the predicted modules of the dif-

ferent methods. As each of the enumerative methods (DME and Clique) produced

a large number of nearly identical modules, we additionally computed a set of dis-

tinct modules for better comparability with the other methods. For that purpose,

we grouped similar modules together and represented each group by its top-ranking

module. To decide whether two modules M1 and M2 match each other, we here

computed the overlap score proposed by Bader and Hogue [16]. It is defined as the

118 9 Module Discovery in Protein Interaction Networks

0 0.1 0.2 0.3 0.40.2

0.4

0.6

0.8

1

Recall

Pr
ec

isi
on

DME
Clique
CPM
CPMw
MCL

Figure 9.1: Comparative precision-recall analysis for yeast modules. To account for module overlap,
the measures are based on protein pairs, see text.

fraction of overlapping proteins with respect to the size of the first module multi-

plied by the fraction of overlapping proteins with respect to the size of the second

module:
|M1 ∩M2|2

|M1| · |M2|
(9.4)

For values of at least 0.5, the corresponding module pair was considered as a match.

The same criterion was used to determine matches between predicted modules and

known complexes. Note that the cutoff of 0.5 is relatively stringent [16]. All modules

that are reachable from each other via a path of matching modules are assembled

into one group. The distinct modules are given by the group representatives. They

can share common proteins, so “distinct” is not equivalent to “non-overlapping” in

that context. In fact, module overlaps happened in all methods.

While DME and Clique discovered a comparable number of distinct modules,

the DME modules match many more known complexes. Among these, we also find

small-sized complexes, so the overall average size of retrieved complexes is lower

than for Clique. In addition, we report the number of complexes from which at

least one protein pair was recovered (here called partially recovered complexes) as

well as the area under the precision-recall curve from the pairwise analysis in the

previous section. In both cases, DME was leading. Furthermore, we investigated

the enrichment of the distinct modules with respect to Gene Ontology (GO) terms.

For that, we applied the Expander tool [190] using the default setting with a p-

value threshold of 0.05 after correction for multiple testing. Beside the total number

of enriched modules, we also counted the number of enriched modules among the

top-50 distinct modules, showing that for each method that produced more than

50 modules, most of the high-ranking modules satisfy the enrichment criterion. For

small modules, the enrichment test failed even if they were totally pure.

Finally, we analyzed the properties of module overlaps in detail. Concerning the

9.2 Comparative Analysis on the Yeast Interaction Network 119

0 0.05 0.1 0.15 0.2 0.250

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

isi
on

DME
Clique

Figure 9.2: Precision-recall curves for overlapping interactions in yeast modules.

number of proteins or protein pairs that appear in more than one module, there is

large variation among the different methods. DME and Clique produced the largest

numbers of overlapping proteins and overlapping pairs. To evaluate the accuracy

of the interactions in module overlaps, we sorted them according to the number of

modules in which they occur (in descending order) and computed precision and re-

call values with respect to the MIPS protein complexes as before. Figure 9.2 shows

the resulting precision-recall curves. Remarkably, in the DME results the precision is

very high for the most frequently occuring interactions and monotonically decreases

with decreasing frequency. In the Clique results, however, the top interactions are

very unreliable, while the remaining curve has a similar shape as for DME. This

difference is also reflected by the corresponding AUC values (see Table 9.1). The

reason for the discrepancy in the behavior of DME and Clique is that DME respects

edge weights and tends to reuse dense core sets, whereas Clique modules are solely

based on the topology (after a preselection of edges). We also analyzed how many

overlaps between known complexes were rediscovered by predicted modules. For-

mally, we counted the cases of overlapping known complexes C1 and C2 where there

existed overlapping modules M1 and M2 such that the following conditions were

satisfied:

1. M1 ∩M2 contains at least one element of C1 ∩ C2.

2. M1 \M2 contains at least one element of C1 \ C2.

3. M2 \M1 contains at least one element of C2 \ C1.

The number of recovered overlaps was not significantly higher for DME.

120 9 Module Discovery in Protein Interaction Networks

Table 9.1: Module statistics of the comparative analysis for yeast (see text for details). The average
size of the raw modules can be larger than for the distinct modules because larger modules allow
for more variants. Time measurements were performed on a 2.66 GHz processor.

DME Clique CPM CPMw MCL

No. of distinct modules 1083 916 19 32 648
Average size of distinct modules 3 4 16 14 3
No. of raw modules 24803 1971 19 33 648
Average size of raw modules 10 6 16 14 3
No. of matched complexes 84 54 9 20 59
Average complex size 5 7 19 14 7
No. of partially recovered complexes 133 107 20 33 117
No. of predicted interactions 5970 7066 2756 3935 6108
Area under prec.-rec. curve (AUC) 0.183 0.166 0.107 0.153 0.148
No. of enriched distinct modules 112 131 18 32 69
No. of enriched among top-50 47 44 - - 45
No. of overlapping proteins 1010 1113 12 38 1
No. of overlapping interactions 3664 4340 24 114 0
AUC for overlapping interactions 0.152 0.082 0.000 0.001 -
No. of recovered complex overlaps 18 16 0 4 0
Time (s) 1167 4 4 267 4

9.3 Comparative Analysis on the Human Interaction Network

Similarly as for the yeast interaction network, we performed a comparative analysis

on human data, considering the same module detection methods as before: DME,

Clique, CPM, CPMw, and MCL. For validation, we used the reference set of human

complexes published in the CORUM database [182] and applied the same evaluation

measures as in the case of yeast. For DME, we checked density thresholds between

100% and 80% in decrements of 1%.14 The best precision-recall results were obtained

with 94%. The edge selection threshold of Clique and CPM was again varied from

1.0 to 0.35, and the clique size parameter k of CPM was checked in the whole range

between 3 and the maximum detected clique size. Clique was optimal for the edge

selection threshold 0.35, and CPM was optimal for the edge selection threshold 0.35

and k=6. In the case of CPMw, the clique selection threshold was set to the same

values as the DME density threshold and k was varied from 3 to 7. Here, the optimal

configuration was achieved for a clique selection threshold of 81% and k=6. Finally,

the MCL parameters were tested in the same range as for the yeast experiments,

14As the human data are less dense (i.e., the average interaction weight is lower), we checked a wider range
of density thresholds than for yeast.

9.3 Comparative Analysis on the Human Interaction Network 121

0 0.02 0.04 0.06 0.080.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

Pr
ec

isi
on

DME
Clique
CPM
CPMw
MCL

Figure 9.3: Comparative precision-recall analysis for human modules based on pair counts.

0 0.01 0.02 0.030

0.1

0.2

0.3

0.4

0.5

Recall

Pr
ec

isi
on

DME
Clique

Figure 9.4: Precision-recall curves for overlapping interactions in human modules.

the inflation parameter from 1.5 to 8 using increments of 0.5 (best value: 2.0) and

the centering parameter from 1 to 5 (best value: 3).

Figure 9.3 shows for each module detection method the precision-recall curve

with the largest AUC. In general, the performance is much worse than on the yeast

data (Figure 9.1), irrespective of the chosen method. This can be explained by

the fact that the human data are sparser and, consequently, true complexes are

harder to distinguish from noise by the density criterion. DME has a high peak

in the beginning, but for medium recall, its precision is comparable to CPM and

CPMw. Interestingly, CPM and CPMw achieved this by producing few large mod-

ules, whereas DME detected many small modules and therefore captured more di-

verse known complexes (see Table 9.2). The DME curve is above the Clique curve,

but for higher recall values, DME is significantly outperformed by MCL, which also

yields the largest area under the curve (see Table 9.2). Again, this might be an effect

of the data sparseness: as one cannot gain very much accuracy by explicitly consid-

ering the module density, partitioning methods, which take the global connectivity

structure of the network into account, are advantageous.

122 9 Module Discovery in Protein Interaction Networks

Table 9.2: Module statistics of the comparative analysis on the human network.

DME Clique CPM CPMw MCL

No. of distinct modules 2321 2982 9 3 2092
Average size of distinct modules 2 3 12 19 3
No. of raw modules 3005 3420 9 3 2093
Average size of raw modules 3 3 12 19 3
No. of matched complexes 136 133 18 1 113
Average complex size 3 4 11 32 4
No. of partially recovered complexes 378 403 77 32 387
No. of predicted interactions 3925 7055 1131 1026 6616
Area under prec.-rec. curve (AUC) 0.025 0.021 0.019 0.015 0.030
No. of enriched distinct modules 24 58 8 3 64
No. of enriched modules among top-50 23 25 - - 21
No. of overlapping proteins 970 1225 3 0 103
No. of overlapping interactions 428 2405 3 0 7
AUC for overlapping interactions 0.0046 0.0055 0.0002 - 0.0000
No. of recovered complex overlaps 942 1618 6 0 0
Time (s) 6 1 1 7 84

In Table 9.2, we collected various statistics for the results of the different meth-

ods, like in the yeast analysis. MCL required the longest computation time. DME

matched the largest number of known complexes, closely followed by Clique. With

respect to partially recovered complexes, Clique was leading, followed by MCL and

DME. The number of GO-enriched modules was generally very low: CPM and

CPMw produced only few modules, and the other methods predicted mainly mod-

ules that are too small to satisfy the enrichment p-value threshold, irrespective of

their purity. Among the top-50 distinct modules, approximately one half is enriched.

Regarding the number of protein pairs in the overlaps between different modules,

the results are negligible for all methods except DME and Clique. Although the

number is much higher for Clique, the area under the precision-recall curve is not

very different, which means that overlapping interactions of DME are on average

more accurate (see Figure 9.4). However, the accuracy is generally not higher than

for the total set of predicted interactions (at comparable recall levels); a reason for

that could be the small overlap sizes. Also, there is no clear dependency on the

occurrence frequency, as the shapes of the curves reveal. Finally, the overlapping

modules of Clique and DME also recovered a large number of overlaps between

known complexes.

9.4 Phenotype-Associated Modules in Yeast 123

Table 9.3: Results of DME experiments with constraints.

Phenotype Conservation Expression
(yeast) (yeast) (human)

No. of distinct modules 137 1067 460
Average size of distinct modules 3 3 2
No. of raw modules 160 1816 736
Average size of raw modules 4 5 3
No. of matched complexes 14 49 52
Average complex size 4 4 4
No. of partially recovered complexes 30 103 217
Time (s) 13 3 2

9.4 Phenotype-Associated Modules in Yeast

An additional feature of DME is the possibility to directly integrate constraints

from external data sources (see Section 5.7.1). As an example application, we in-

vestigated the yeast interaction network in the context of knockout phenotypes, in

order to identify essential parts of protein complexes. For that purpose, we took

the phenotype profiles for yeast knockout mutants under 21 experimental conditions

from [50], considering three different phenotypic states: enhanced growth, normal

growth, and growth defect. We then applied DME with a phenotype consistency

constraint, requiring for each module at least one condition that is associated with

growth defect for all members. To get a set of modules that covers a large number of

proteins, but is at the same time as reliable as possible, we tested density thresholds

between 95% and 80% using decrements of 1% and selected the one with the largest

area under the precision-recall curve, namely 83%.

The results are summarized in Table 9.3. Each of the 13 top-ranking modules

covers a considerable part of the mitochondrial ribosomal large subunit as annotated

by MIPS. In addition, our output list contained one further module that overlaps

with the complex. Figure 9.5 (a) shows the superposition of these 14 modules.

Mrpl16 and Img2 appear in all, many other proteins in almost all of those modules,

so they can be considered as the core of the complex. Knockout of any of the shown

proteins caused growth defects with glycerol as carbon source. Several module

members belong to other MIPS complexes, as depicted by the ellipses. In particular,

there is a strong connection to the small subunit of the mitochondrial ribosome and

to the mitochondrial translation complex. Furthermore, our results suggest that the

124 9 Module Discovery in Protein Interaction Networks

(a) (b)

Vps8

Vps16

Pep3

Vam6

Vps41

Mrpl1

Mrpl24

Mhr1

Rml2
Mrpl51

Mrpl25

Mrpl22

Mrpl6

Mrps28

Mrp21

Rsm7

Mrpl8

Mrpl17
Mrp20

Img2
Mrpl16

Mrpl9

Mrpl4
Mrpl35

Mrpl13 Mrpl20

Mrpl27

Mrpl7

Irc3

Mrpl40

Aep1

Rsm24

Mrpl10

Nip100

Mrm1

1

2-5

12-13

14

Frequency:

Mitochondrial Ribosomal Large Subunit

Mitochondrial Ribosomal Small Subunit

Dynactin

Mitochondrial Translation
Vacuolar Assembly

Class C Vps

Vps8

Vps16

Pep3

Vam6

Vps41

Mrpl1

Mrpl24

Mhr1

Rml2
Mrpl51

Mrpl25

Mrpl22

Mrpl6

Mrps28

Mrp21

Rsm7

Mrpl8

Mrpl17
Mrp20

Img2
Mrpl16

Mrpl9

Mrpl4
Mrpl35

Mrpl13 Mrpl20

Mrpl27

Mrpl7

Irc3

Mrpl40

Aep1

Rsm24

Mrpl10

Nip100

Mrm1

1

2-5

12-13

14

Frequency:

Mitochondrial Ribosomal Large Subunit

Mitochondrial Ribosomal Small Subunit

Dynactin

Mitochondrial Translation
Vacuolar Assembly

Class C Vps

Figure 9.5: Phenotype-associated yeast modules. (a) Superposition of all 14 modules overlapping
with the large subunit of the mitochondrial ribosome (node size depends on the number of modules
in which the protein occurs). (b) Module linking two complexes. The ellipses mark protein sets
belonging to known complexes. For module visualization, we used the Osprey tool [27].

mitochondrial ribosome is associated with Mhr1, a protein involved in homologous

recombination of the mitochondrial genome [144].

Some modules that are not related to MIPS complexes nevertheless represent

known complexes. For instance, we exactly recovered the nucleoplasmic THO com-

plex (Hpr1, Mft1, Rlr1, Thp2), which is known to affect transcription elongation and

hyper-recombination [36]. Interestingly, the corresponding mutants exhibit growth

defects under the stress condition of adding ethanol to the medium. Finally, in

Figure 9.5 (b) we show the highest ranking module that covers at least 50% of two

different MIPS complexes. The corresponding proteins are associated with growth

defects under addition of the aminoglycoside hygromycin B. The module links the

vacuolar assembly complex with the class C Vps complex. The latter is a specific

subgroup of proteins involved in vacuolar protein sorting. Indeed, it has been shown

that this complex associates with Vam6 and Vps41 to trigger nucleotide exchange

of a rab GTPase regulating the fusion of vesicles to the vacuole [229].

9.5 Evolutionary Conserved Modules in Yeast

Next, we used the evolutionary conservation of proteins as a side constraint for

DME. For that purpose, we extracted from the InParanoid database [163]15 infor-

15http://inparanoid.sbc.su.se

http://inparanoid.sbc.su.se

9.5 Evolutionary Conserved Modules in Yeast 125

TFIIIC

Pyruvate dehydrogenase

mitochondrial ribosomal small subunit

Post-replication complex (Origin recognition complex=ORC)
Anaphase promoting complex (APC)

other DNA repair complexes

Signal recognition particle (SRP)

RNase MRP

RNase P
SNF1 complex

eIF2B

pre mRNA 3́ -end processing factor CFI

Exocyst complex

Exosome complex

Kornberg´s mediator (SRB) complex

Gim complexesArp2p-Arp3p complex

RNA polymerase I

SAGA complex
NOT complex

SWI-SNF transcription activator complex

TAFIIs

Golgi transport complexeEF1

COPI
TRAPP (Transport Protein Particle) complex

NUP84 complex
19-22S regulator

Sister chromatid cohesion complex

RSC complex (Remodel the structure of chromatin)

20S proteasome

Replication initiation complex

Replication factor C complex

full overlap

no overlap

Density:

Overlap:

0-49%

50-74%

75-99%

100%

Figure 9.6: Yeast complexes retrieved by DME and their overlap with conserved DME modules.
Only complexes with size ≥5 are shown. The node size corresponds to the density of the confirmed
complex, and the pie chart indicates to which degree the complex is covered by a conserved mod-
ule. Nodes are connected if there exist interactions between the corresponding sets of matching
modules.

mation about orthologs of S. cerevisiae genes with respect to ten other represen-

tative eukaryotic species: S. pombe, D. discoideum, C. elegans, D. melanogaster,

T. rubripes, X. tropicalis, M. musculus, H. sapiens, O. sativa, and A. thaliana. For

each S. cerevisiae gene, we created a profile indicating which of the other species

have an ortholog with a full InParanoid score. Based on that, we searched for mod-

ules in the yeast interaction network such that there exist orthologs for all member

proteins in at least three other species; the density threshold was determined using

the same procedure as before and reached the optimum at 94%. For a summary of

the resulting set of conserved (dense) modules, see Table 9.3. Note that the orthol-

ogy constraint drastically reduced the running time compared to the unconstrained

case (see Table 9.1); although the density threshold was lower, DME was now more

than 400 times faster. Among the 103 at least partially recovered complexes, 49 were

well matched.16 In comparison, the unconstrained module enumeration partially re-

trieved 133 complexes, including 84 matches. The number of distinct modules was

very similar (1083 for the unconstrained experiment, and 1067 for the constrained

experiment).

Figure 9.6 shows an overview of the larger MIPS complexes that were recovered

by DME. It includes matches from unconstrained and conserved modules. Appar-

16To define matches between complexes and predicted modules, we used the same criterion as in Section 9.2.

126 9 Module Discovery in Protein Interaction Networks

ently, it could identify some low-density complexes by discovering their dense core

parts, for example the translation elongation factor complex eEF1 and the pre-

mRNA 3’-end processing factor CFI. In black, we indicate the percentage of the

known complex that is covered by a conserved module (in terms of shared proteins).

From the total set of 33 retrieved complexes containing at least five proteins (see

Figure 9.6), 19 complexes are hit to an extent of at least 50%; most of these (15

in total) are also matches of conserved modules according to the definition intro-

duced in Section 9.2; among them, we find the 20S proteasome and its cap as well

as the translation initiation factor eIF2B complex. The remaining complexes have

rather small overlaps with conserved modules, even though they are quite accurately

matched by their unconstrained counterparts. Our conserved module predictions re-

veal putative core parts of complexes that are conserved across several species. As

an example, we consider the SNF1 complex, an essential element of the glucose re-

sponse pathway consisting of six proteins. Indeed, while the components Snf1, Snf4,

and Sip2 are strongly conserved in all eukaryotes and are covered by a conserved

module, Sip1 and the transcription factor Sip4 do not have orthologs in other species,

and the Gal83 component has orthologs in two species only [218]. Our approach

predicted one additional conserved component of the complex, Sak1. This is biolog-

ically meaningful, as it functions as an activating kinase of the SNF1 complex [52].

The unconstrained module contained Sak1 and all SNF1 components except Sip4.

9.6 Tissue-Specific Modules in Human

Finally, we were interested in tissue-specific modules of the human interaction net-

work. As side information, we downloaded the gene expression profiles by [202],

containing measurements in 79 different human tissues that are classified into three

states: present, absent, or marginal. For our purposes, we considered a gene to

be expressed in a given tissue only if it was annotated as present in both of the

duplicated measurements. To find complexes that are present in several, but not all

tissues, we applied DME with the constraint that modules should be consistently

expressed in at least three tissues and consistently absent in at least ten tissues. We

used again the same procedure for selecting the density parameter and ended up

with a threshold of 81%, which yielded 460 distinct modules (see Table 9.3).

The two top-ranking modules, shown in Figure 9.7 (a), cover the MCM complex,

which is a hexameric protein complex required for the initiation and regulation of

eukaryotic DNA replication. The DME modules contain two additional proteins,

9.6 Tissue-Specific Modules in Human 127

(a) (b)
 MCM Complex Ubiquitin Ligase Complex

Mcm4

Mcm5 Mcm7

Ssrp1

Mcm6

Orc6l

Mcm3 Mcm2

 Cul1

Fbxw2

Rbx1

Fbxw7

Fbxw5

b lymphoblasts

bm cd105

bm cd34

b lymphoblasts

bm cd105

bm cd34

bm cd71

bdca4 dendritic

bm cd71

brain amygdala

cd4 t-cells

cd56 nk-cells

cd8 t-cells

fetal brain

hypothalamus

occipital lobe

olfactory bulb

placenta

prefrontal cortex

whole brain

cd19 b-cells

cd56 nk-cells

testis

bdca4 dendritic

bm cd33 myeloid

brain amygdala

cd19 b-cells

cd4 t-cells

cd56 nk-cells

cd8 t-cells

hypothalamus

prostate

testis

whole brain

bdca4 dendritic

bm cd33 myeloid

bm cd71

brain amygdala

cd4 t-cells

cd56 nk-cells

cd8 t-cells

cerebellum peduncles

fetal brain

medulla oblongata

occipital lobe

prefrontal cortex

subthalamic nucleus

whole brain

bdca4 dendritic

bm cd33 myeloid

bm cd71

brain amygdala

cd19 b-cells

cd4 t-cells

cd56 nk-cells

cd8 t-cells

fetal brain

hypothalamus

placenta

prefrontal cortex

uterus

Cand1

Skp1

Fbx25

Mcm2

Mcm7

 MCM Complex Ubiquitin Ligase Complex

Mcm4

Mcm5 Mcm7

Ssrp1

Mcm6

Orc6l

Mcm3 Mcm2

 Cul1

Fbxw2

Rbx1

Fbxw7

Fbxw5

b lymphoblasts

bm cd105

bm cd34

b lymphoblasts

bm cd105

bm cd34

bm cd71

bdca4 dendritic

bm cd71

brain amygdala

cd4 t-cells

cd56 nk-cells

cd8 t-cells

fetal brain

hypothalamus

occipital lobe

olfactory bulb

placenta

prefrontal cortex

whole brain

cd19 b-cells

cd56 nk-cells

testis

bdca4 dendritic

bm cd33 myeloid

brain amygdala

cd19 b-cells

cd4 t-cells

cd56 nk-cells

cd8 t-cells

hypothalamus

prostate

testis

whole brain

bdca4 dendritic

bm cd33 myeloid

bm cd71

brain amygdala

cd4 t-cells

cd56 nk-cells

cd8 t-cells

cerebellum peduncles

fetal brain

medulla oblongata

occipital lobe

prefrontal cortex

subthalamic nucleus

whole brain

bdca4 dendritic

bm cd33 myeloid

bm cd71

brain amygdala

cd19 b-cells

cd4 t-cells

cd56 nk-cells

cd8 t-cells

fetal brain

hypothalamus

placenta

prefrontal cortex

uterus

Cand1

Skp1

Fbx25

Mcm2

Mcm7

Figure 9.7: Tissue-specific modules in human. (a) The two top-ranking modules, covering the MCM
complex. Known complexes are indicated as solid ellipses, modules as dashed ellipses. (b) Top-five
modules around the SCF ubiquitin ligase complex, revealing its tissue-specific organization. Boxes
show the tissues of consistent positive expression for the respective module. Tissues associated
with all modules are marked in bold, uniquely appearing tissues in italics.

Ssrp1 and Orc6l. Orc6l is a member of the origin recognition complex (ORC),

which plays a central role in replication initiation; in fact, the MCM and ORC

complexes form the key components of the pre-replication complex [136]. This is

nicely reflected by the large interaction density as well as the common expression

profiles of the proteins: the module is completely expressed in three different types of

bone marrow cells and completely missing in 42 tissues like brain, liver, and kidney,

for example, where cells are differentiated and divide rarely. Ssrp1 is a member of

the FACT complex, which is involved in chromatin reorganization [165].

Moreover, our analysis yields some insights about the tissue-specific organiza-

tion of the SCF E3 ubiquitin ligase complex, which marks proteins for degradation.

Figure 9.7 (b) depicts the five top-ranking modules that cover the complex (beyond

these, there were three other modules covering only a single protein of the complex).

One module contains as an additional component Cand1, a regulatory protein that

inhibits the interaction of Cul1 with Skp1 [244]. The four other peripheral pro-

teins are F-box proteins, which serve as substrate recognition particles for the SCF

complex. Interestingly, the corresponding modules show different tissue specificities,

indicating that the target proteins of SCF are selected in a tissue-dependent manner.

This finding is in accordance with experimental studies [30, 117, 121]. On the one

hand, it has been shown that in human cells multiple variants of the SCF complex

128 9 Module Discovery in Protein Interaction Networks

exist, each one containing a different F-box protein for substrate recognition. On

the other hand, brain and blood cells have been identified as tissues of major ex-

pression for some F-box components, and expression variation of F-box components

has been observed in several tissues such as testis, prostate, and placenta. In our

results, all detected module variants are active in natural killer (nk) cells, a spe-

cific type of white blood cell that plays an important role in immune response [98],

whereas placenta, prostate, testis, uterus, or certain brain regions contain only one

or two variants. As illustrated by the above examples, DME integrated with profile

data can be a powerful tool to reveal functional and condition-dependent variants

of protein complexes.

9.7 Disease-Related Module Analysis

Furthermore, DME predictions of a larger scale were performed on the human in-

teraction network, with the goal to offer a comprehensive set of modules for disease-

related analyses [48]. As an increased coverage of proteins generally reduces the

module accuracy, module sets at different levels of granularity were made available.

For that, we started with the total set of human interactions collected from the

databases mentioned in Section 9.1, with assigned weights as described there. Then,

we chose different quantiles of the weight distribution as cutoff thresholds to remove

interactions with lower weight, and computed modules for different density thresh-

olds on the remaining network (ignoring the edge weights). The results of three

different settings are stored in a public web repository called DICS17, augmented

with additional information like orthology [163] and expression profiles [202], dis-

ease annotation according to HGMD [42], as well as references to the CORUM [182],

DrugBank [226], KEGG [164], and Reactome [107] databases. The default module

set covers 40% of the disease genes listed in the HGMD database [199], whereas the

reference complexes of the CORUM database [182] contain only 11% of them.18

In addition, the DICS server allows for interactive exploration of gene lists

derived from high-throughput experiments. Given a set of genes as query, it returns

significantly enriched modules and known complexes, thereby providing information

about putative or confirmed functional relationships among the gene products. For

example, the analysis of genes that are differentially expressed in toxic oil syndrome

patients [177] revealed potential links to other diseases, see [48] for details.

17http://mips.helmholtz-muenchen.de/proj/dics/
18state of November 2008

http://mips.helmholtz-muenchen.de/proj/dics/

9.8 Discussion and Outlook 129

9.8 Discussion and Outlook

The dense module enumeration algorithm can assist in the systematic analysis of

weighted interaction networks. By explicitly considering the module density as a

search criterion and returning all solutions that satisfy this criterion, it is a comple-

mentary approach to the widely used graph partitioning methods [186]. Beside the

completeness guarantee, a strength of the method lies in the possibility of transpar-

ent data integration, which is of crucial importance in systems biology applications.

We illustrated some application scenarios in the context of protein complex pre-

diction. While many known functional complexes were successfully reproduced,

there is a lot of potential for further improvements. For instance, carefully designed

probabilistic models for the edge weights would increase the attractiveness of enu-

meration-based module results. Moreover, as discussed in Section 5.5, we can choose

stricter module criteria to make the approach more robust against noisy extensions

of dense core modules.

Also, the consistency requirements (Section 5.7.1) are sensitive to noise in the

data. According to our definition, they do not allow for exceptions, that means,

the whole set of module proteins has to fulfill the specified conditions. This has the

advantage of easy interpretability, e.g., one obtains only the part of a complex that

is conserved in several species (with respect to a given orthology profile); on the

other hand, some true complex members might be missed because of incomplete or

incorrect profiles. As a possible extension, one could allow to include proteins that

have unknown values for some of the shared profile conditions or consider inexact

matches of subprofiles. In the case of continuous values, our current approach uses

predefined thresholds for discretization; while this again facilitates the interpretation

of the results, inappropriate choices can mislead the analysis; more flexible criteria

that directly look at similarities of real-valued profiles are conceivable (see also

Section 5.7.1).

So far, the consistency constraints consider profile information on the nodes.

For example, in the case of orthology profiles, we take the evolutionary conservation

of proteins into account while searching for densely interacting protein sets in a

species. However, although it is sometimes possible to infer interactions based on

sequence homology [33], the existence of orthologs does not guarantee that also the

interactions between them are maintained in other species. Therefore, if interaction

data are available for multiple species of interest, it is useful to coanalyze them. That

means, rather than node conservation profiles, conservation profiles of interactions

or densely interacting modules are considered. Recently, comparative interactomics

130 9 Module Discovery in Protein Interaction Networks

has become a very active research field [33, 115, 142, 169, 238]. The STRING

database [220] provides protein-protein interactions for several hundred organisms;

it collects and ranks information from different sources, including high-throughput

experiments, literature mining, and automatic predictions. One major challenge

with multi-species interactomics approaches is that there does not necessarily exist

a one-to-one correspondence between proteins of different species; rather, it can

be a many-to-many relationship, which can be defined based on BLAST sequence

similarity scores [191]. A valuable resource in that area is the COGs database

(Clusters of Orthologous Groups of proteins) [208, 209], which contains orthology

mappings for multiple species.

Given the orthologous relationships between proteins of different species, there

are several ways to exploit them for the module search in comparative interactomics.

The first option is to build a so-called network alignment graph [191, 192], where

each node contains a set of orthologous proteins, one from each species; interaction

weights are derived by integrating the interaction contributions of the individual

species; then, conserved modules are identified as dense subgraphs. It is potentially

promising to apply the DME algorithm for this task, replacing the heuristic search

approach that was proposed originally. However, preliminary studies on interaction

data from S. cerevisiae and H. pylori (the same species as considered in [191]) re-

vealed that the heuristic method successfully detected the most relevant patterns;

modules unique to DME were either very small or partly overlapped with other

modules. More extensive comparisons of the different approaches would be desir-

able for future work. If the number of considered species increases, the network

alignment approach becomes intractable because of the combinatorial explosion re-

garding the nodes in the graph. However, additional constraints from the phylogeny

and an appropriate graph representation can help to solve this problem [108]. Alter-

natively, one can coarsen the analysis by introducing only one node for each group

of orthologous proteins (COG). To define the interaction weight between two COG

nodes with respect to a certain species, one could take for instance the maximum

or average interaction weight across all protein pairs of the respective species where

the first protein belongs to the first COG and the second protein belongs to the

second COG.

Remarkably, our multi-way cluster detection approach (see Chapter 6) offers

the opportunity to coanalyze interaction data from multiple species without sum-

marizing the interaction weights beforehand. This allows to detect module patterns

that cooccur in a subset of species. An example application of this algorithm using

multiple networks of one species is presented in the next section.

10 Module Detection from Multiple

Coexpression Networks

Integration of multiple data sources is of great importance in systems biology studies.

Here, we consider the special task of coanalyzing multiple networks. In the following

case study, we searched for common modules in gene coexpression networks stem-

ming from different experiments. For that purpose, we used a data collection of

yeast gene expression measurements. As all measurements refer to the same set of

gene probes, the node mapping between different networks is trivial. The results

described here are published in [68, 69].

10.1 Data

We took the gene expression dataset from [61] and preprocessed it in a similar

way as described in [91]: after selecting the experiments with at least 6 individual

measurements, we calculated for each of them the pairwise correlation coefficients

regarding the expression profiles of all genes; if the correlation was positive and had

a p-value below 10−5, we connected the corresponding genes by an edge (of weight

1).1 This resulted in 17 different coexpression networks on the same set of genes,

each of which contained 9237 edges on average. These data can be represented

as a three-dimensional tensor with the genes in the first two dimensions and the

identifier of the experiment (the network) in the third dimension. As the networks

are undirected, the tensor is symmetric with respect to the first two dimensions.

Our goal was to analyze the set of networks for cooccurring dense substructures.

For that purpose, we applied the DCE algorithm explained in Chapter 6.

1Correlation coefficients and p-values were calculated using the corrcoef function of MATLAB; the
p-values are based on a t-statistic.

132 10 Module Detection from Multiple Coexpression Networks

10.2 Related Approaches

There exist several competitive approaches to solve this task. The Cocain method

(COC) [242] detects all frequent closed γ-quasi-cliques. A quasi-clique is a set of

nodes U such that each of them has edges to at least dγ(|U | − 1)e other nodes in U

(see Section 5.5). A set of nodes U is a frequent γ-quasi-clique if it is a γ-quasi-clique

in at least minsup networks, where minsup is a natural number. This criterion is

stricter than our cluster density criterion (Definition 23), even if we require balance

constraints (Section 6.4.1); in fact, each frequent quasi-clique is a balanced dense

cluster, but not vice versa. Like our local maximality criterion defined in Section 5.4,

the closeness requirement aims at reducing redundancy in the results; it discards

quasi-cliques if they are included in another solution with at least the same support

among the networks.

Another approach to coanalyze multiple networks is the Codense algorithm

(COD) [91]. It aims at detecting dense subnetworks where the edges have similar

occurrence profiles across the whole set of networks. That means, in contrast to DCE

and COC, it does not only require a (local) cooccurrence of dense subnetworks in a

subset of the given networks, but a global correlation of the participating edges. For

this, it first compiles edges with frequency ≥ minsup into a summary network, from

which dense subgraphs are extracted; these subgraphs are then further analyzed

with respect to the correlation of edges across all given networks. The dense cluster

detection is based on a non-enumerative network partitioning strategy. The density

criterion is the same as for DCE, but it is applied on the summary network. However,

each dense subtensor consisting of frequent edges has a corresponding dense cluster

in the summary network.

Finally, relational data mining approaches [103] are equivalent to DCE with

density threshold 100%, so we do not consider them separately in our evaluation.

Also note that the local maximality criterion (Section 6.4.1) yields in that case the

set of maximal clusters, because any subcluster of a solution satisfies the density

threshold.

10.3 Experimental Set-Up

We compared the different approaches on the coexpression networks described above.

We obtained the COC code from the original authors [242], and COD was down-

loaded from http://zhoulab.usc.edu/CODENSE/. The minimum edge frequency

http://zhoulab.usc.edu/CODENSE/

10.4 Evaluation Measures 133

threshold in COD was set to 3. This yielded a summary network with 1444 edges

involving 411 nodes. For comparison purposes, we restricted the 17 individual net-

works considered in DCE and COC to the same set of edges, and set the minimum

network support of clusters (i.e., the minimum number of instances in the third

dimension) to 3. Furthermore, COD requires a p-value threshold for the similarity

of occurrence profiles, which was set to 0.01. The minimum number of genes per

cluster was set to 6 in all approaches.

10.4 Evaluation Measures

To evaluate clusters of genes, we performed a functional enrichment analysis with

respect to the Gene Ontology annotation [13], using the Expander tool [190] with

default parameters; this yielded functional categories that were significantly over-

represented in a predicted cluster, having p-values below 0.05 after correction for

multiple testing. In addition to the number of functionally enriched clusters, we

report the average genewise reliability, the average pairwise reliability, as well as the

overall precision and recall. These measures were determined as follows. Given a

cluster with one or several significantly enriched functional categories, genes that

belong to the same enriched category are called homogeneous. Let hgi be the size of

the largest group of homogeneous genes in cluster i, and let gi be the total number

of genes in the cluster. Then, the genewise reliability of the cluster is given by

hgi

gi

. (10.1)

Further, let hgpi be the number of homogeneous gene pairs and gpi the total number

of gene pairs. The pairwise reliability of the cluster is defined as

hgpi

gpi

. (10.2)

Compared to the genewise reliability, this measure takes into account all different

enriched categories of a cluster. It can be seen as the probability that an arbitrary

gene pair taken from the cluster is homogeneous. For each of the two reliability

measures, we determine the average across all clusters, weighted by the cluster

size. Finally, the precision and recall measures refer to unique (homogeneous) gene

pairs across all clusters. That means, each gene pair is only counted once even

if it occurs in more than one predicted cluster. Note that all methods applied in

this comparison predict overlapping clusters. In analogy to Section 9.2, precision

134 10 Module Detection from Multiple Coexpression Networks

Table 10.1: Comparative evaluation on coexpression data. Abbreviations: max. (maximum), avg.
(average), rel. (reliability), bal. (balanced). The parameter k refers to the optional branching
restriction of DCE. See text for details.

Den- No. of No. of Max. Avg. Gene- Pair- Pre- No. of Time
sity clusters enriched no. of no. of wise wise cision recalled (s)
(%) clusters genes genes rel. rel. (%) pairs

(%) (%)

DCE 100 53 52 9 6.7 95.2 92.6 84.3 215 2.9
95 239 238 11 7.8 95.9 93.1 84.2 388 5.4
90 1057 1048 13 8.6 95.6 92.9 81.7 642 25.7
85 3269 3240 16 10.7 96.3 94.1 82.6 1041 179.2
80 16982 n/a 18 11.8 n/a n/a n/a n/a 2245.0
75 95869 n/a 20 13.9 n/a n/a n/a n/a 30011.2

DCE 100 53 52 9 6.7 95.2 92.6 84.3 215 2.9
(bal.) 95 425 416 9 6.5 96.3 94.9 83.3 219 5.4

90 1288 1277 11 6.6 97.5 96.0 81.9 303 25.6
85 3705 3684 11 7.0 98.0 96.9 82.6 409 179.7
80 10697 n/a 13 7.2 n/a n/a n/a n/a 2271.8
75 24200 n/a 14 8.3 n/a n/a n/a n/a 29968.1

DCE 100 17 16 9 6.7 92.1 90.4 83.6 117 0.6
(bal., 95 17 16 9 6.8 91.4 88.8 82.5 118 0.6
k = 1) 90 28 27 11 6.8 92.1 88.6 81.4 162 0.7

85 38 37 11 7.0 94.0 91.4 82.9 194 0.7
80 66 64 12 7.1 93.8 91.0 80.9 284 0.9
75 71 69 14 8.0 94.9 92.9 82.2 332 1.0

DCE 100 133 130 9 6.7 95.7 94.0 83.0 176 1.1
(bal., 95 136 133 9 6.8 95.8 94.2 83.3 185 1.4
k = 2) 90 296 291 11 6.9 95.9 94.1 83.9 260 2.3

85 590 584 11 7.4 97.3 96.1 82.6 338 4.2
80 1247 1237 13 7.7 97.1 95.4 81.9 456 9.8
75 2198 2192 14 8.9 97.7 96.0 82.8 521 23.5

COC 100 53 52 9 6.7 95.2 92.6 84.3 215 1.3
95 53 52 9 6.7 95.2 92.6 84.3 215 1.3
90 53 52 9 6.7 95.2 92.6 84.3 215 2.3
85 109 108 10 8.2 97.2 95.4 85.0 260 7.2
80 200 199 12 7.6 96.3 93.4 83.3 329 14.0
75 520 512 13 8.2 95.7 93.2 82.9 474 54.2

COD 100 0 - - - - - - - 0.2
95 3 3 11 9.7 100.0 100.0 100.0 80 1.6
90 10 9 11 7.5 90.7 91.7 83.6 107 1.5
85 9 8 10 7.9 84.5 81.3 76.1 140 1.6
80 10 9 18 8.9 85.4 82.8 79.0 245 2.0
75 8 7 21 11.2 85.6 84.3 80.9 314 1.6

is given by the number of homogeneous pairs relative to the number of all within-

cluster pairs; the recall values given in the table correspond to absolute numbers of

homogeneous pairs.

10.5 Results 135

10.5 Results

Table 10.1 summarizes the results of DCE, COC, and COD for different density

thresholds. For DCE, we also list the results with balance constraints (bal.) and

with branching restrictions (k = 1, 2) (see Section 6.4.4). For these constrained

DCE versions, the local maximality of clusters cannot be checked efficiently, due to

similar reasons as discussed in Section 5.5 in the context of the DME algorithm.

Instead, they return all clusters at leaf nodes of the search trees, which can increase

the number of clusters compared with the unconstrained DCE runs.

For 100% density, DCE, DCE (bal.), and COC are all equivalent to the re-

lational data mining setting and therefore yielded the same results. However, for

lower density values DCE and DCE (bal.) are more flexible than the quasi-clique

approach used by COC, so they achieved much higher recall, while precision and

reliability remained in a comparable range. Interestingly, both for DCE and COC,

the average cluster reliability with density threshold 85% was larger than with den-

sity threshold 100%. This can be explained by the fact that, at sufficiently high

density levels, larger clusters are more likely to be biologically significant than small

ones (note that the average number of genes per cluster increased). On the other

hand, a decreasing density threshold allows the clusters to include genes that are

less related. Therefore, the overall pairwise precision of DCE was slightly reduced

when going from 100% to 85% density. In contrast, COC, which applies the more

rigid quasi-clique criterion, kept the precision level. The edge correlation criterion

required by COD is quite restrictive and its search method is not exhaustive, so

the recall was lower for COD. However, while the precision and reliability values

were perfect for a density threshold of 95%, they were considerably below the other

approaches at 85% density.

For density thresholds below 85%, the number of solutions returned by DCE

increased drastically, which came along with an exponential increase of the runtime

(the measurements were performed on a 2.8 GHz processor). The reason for that is

the increasing flexibility of patterns, which leads to strongly overlapping solutions.

The generation of disconnected modules played only a minor role: the runtime and

the total number of solutions dropped by about 10% when introducing a heuristic

rule that prunes at the first occurrence of an isolated instance, which completely

avoids the generation of disconnected modules and might in addition lead to the loss

of connected solutions (Section 6.4.3). The balance criterion reduced the number

and size of modules, but still the result set was much too large to be suitable for

human inspection (also, the Expander tool for enrichment analysis failed); therefore,

136 10 Module Detection from Multiple Coexpression Networks

further criteria to restrict the search are needed. For comparison purposes, we again

used the heuristic branching restriction introduced in Section 6.4.4 with values 1 and

2. With this, the performance was competitive with COC and COD. The branching

restriction produced lower recall than the complete search (considering balanced

clusters in both cases), but it could still compete with the recall values achieved by

COC and COD. Furthermore, although our cluster criterion is less restrictive than

the criteria for COC or COD, the clusters were biologically meaningful, achieving

similar levels of reliability and precision. Beside that, DCE is applicable to more

general settings, namely data with an arbitrary number of dimensions, binary or

weighted values, including symmetries or not. As discussed in Sections 5.5 and 6.4.1,

an interesting question for future research would be whether some techniques from

quasi-clique mining can be generalized to these settings and how to combine ideas

from DCE and quasi-clique mining to achieve the most efficient search strategies for

enumerative pattern discovery in different types of data.

11 Biclustering of Gene Expression Data

Gene expression data are very helpful in analyzing relationships between genes, for

instance in the form of coexpression links as described in the previous chapter. On

the other hand, they can reveal similarities between different samples and cellular

conditions. One common approach is to investigate groups of genes and groups

of samples simultaneously, by applying biclustering techniques. The motivation

behind this is that samples might exhibit local similarity with respect to a subset

of genes and vice versa. In Section 6.6, we used a small-scale biclustering task with

discrete gene signatures derived from multiple gene expression experiments to study

the runtime behavior of different enumeration strategies. Here, we analyze a large

gene expression dataset using the hierarchical biclustering approach described in

Chapter 7.3.

11.1 Data

We downloaded the microarray data by Schmid et al. [187]1, which contain large-

scale gene expression measurements for the plant Arabidopsis thaliana, covering

22 746 gene probes for 237 samples. The samples represent 79 different conditions,

each of them being measured by three replicates. The conditions are labeled ac-

cording to 8 major tissues, see Table 11.1. As the ground expression level may vary

between different genes, we normalized the expression profiles for each gene by the

median across all samples and then transformed the values by log10; this yielded

relative expression changes in the range from -3.34 to 3.76.

1Available at http://www.weigelworld.org/resources/microarray/AtGenExpress/.

http://www.weigelworld.org/resources/microarray/AtGenExpress/

138 11 Biclustering of Gene Expression Data

Table 11.1: Major tissues and their frequency among the 79 experiments.

Stem 3
Root 7
Seeds 8
Floral organs 10
Apex 11
Whole plant 11
Flowers 12
Leaf 17

Table 11.2: Biclustering versus global sample clustering results for different numbers of sample
clusters c using average linkage (avg.) or complete linkage (compl.). See text for details.

Biclustering approach c = 50 c = 20 c = 10 c = 8
avg. compl. avg. compl. avg. compl. avg. compl.

Adjusted Rand index 0.38 0.41 0.53 0.34 0.57 0.28 0.47 0.25

Statistics for non-base clusters:
No. of clusters 25 26 20 20 10 10 8 8
Maximum no. of samples 44 38 75 71 84 90 84 98
Minimum no. of samples 1 1 1 2 3 3 3 6
Average no. of samples 8 8 12 12 24 24 30 30

Statistics for larger clusters:
No. of clusters 6 2 13 11 9 9 7 8
Average no. of samples 12 12 17 19 26 26 33 30
Average purity (%) 92 88 78 65 88 60 76 59
No. of 100% pure clusters 4 1 6 5 3 1 3 0
Average completeness (%) 92 100 96 83 100 84 100 86
No. of 100% complete clusters 5 2 11 5 9 3 7 3

Global approach c = 50 c = 20 c = 10 c = 8
avg. compl. avg. compl. avg. compl. avg. compl.

Adjusted Rand index 0.33 0.32 0.58 0.47 0.53 0.50 0.53 0.57

Statistics for non-base clusters:
No. of clusters 50 50 20 20 10 10 8 8
Maximum no. of samples 27 27 51 33 66 39 66 60
Minimum no. of samples 1 3 3 3 3 9 9 9
Average no. of samples 5 5 12 12 24 24 30 30

Statistics for larger clusters:
No. of clusters 13 15 15 17 8 10 8 8
Average no. of samples 10 9 15 13 29 24 30 30
Average purity (%) 98 100 89 86 69 75 67 75
No. of 100% pure clusters 12 15 10 9 2 1 1 0
Average completeness (%) 98 100 100 100 100 100 100 100
No. of 100% complete clusters 12 15 15 17 8 10 8 8

11.2 Sample-Based Evaluation 139

11.2 Sample-Based Evaluation

The preprocessed data were analyzed with the hierarchical biclustering approach

from Chapter 7.3, stopping at different numbers of clusters; in all cases, the total

computation with our C++ implementation took between 7 and 8 seconds on a

2.67 GHz processor. To define the stopping criterion more precisely, let the term

“sample clusters” refer to biclusters that contain sample indices. The process is

halted when the next merge would reduce the number of sample clusters such that

it falls below a predefined value, i.e., base biclusters that contain only gene indices

may still be added to other biclusters even if the critical threshold of sample clus-

ters is already reached. The thus obtained clustering of samples was compared to

the tissue-based partitioning of samples (cf. Table 11.1) using the adjusted Rand

index [94], a very common evaluation measure (e.g., [185, 237]). It is defined by

determining for each partitioning of instances the instance pairs in the same cluster

and the instance pairs in different clusters and computing the overlaps of these sets

between the two partitionings; the measure is adjusted such that perfectly matching

partitionings obtain the maximum value of 1 and the expected value under the hy-

pergeometric distribution is 0. Formally, the adjusted Rand index can be expressed

as follows [224]:
2(AD −BC)

(A + B)(B + D) + (A + C)(C + D)
(11.1)

Here, A, B, C, and D denote numbers of pairs according to the following contingency

table:

Second partition

Pair in the Pair in

First partition same cluster different clusters

Pair in the same cluster A B

Pair in different clusters C D

The upper part of Table 11.2 shows the adjusted Rand index for different num-

bers of sample clusters. The ground truth contains 8 clusters (Table 11.1). In

addition to the average linkage criterion, we tried the very strict complete linkage

criterion to compute bicluster associations. In all cases, the adjusted Rand index was

much greater than 0, indicating that the found clusters at least partly matched the

tissue-based structure of the data. However, for cluster numbers below 50, complete

linkage performed considerably worse than average linkage. One possible reason for

that is the increased probability of outlier values when the clusters grow; the com-

plete linkage criterion will prefer merges with the least extreme outliers, whereas

140 11 Biclustering of Gene Expression Data

average linkage will focus on merges with the greatest average. Application of the

single linkage approach is generally considered to be problematic because a large

association value of a single instance pair is sufficient to merge two clusters, which

can cause chaining effects [152]; here, it led to degenerate clusterings composed of

one large cluster and a set of singleton clusters.

For comparison, we computed sample partitionings via conventional hierarchical

clustering. The similarities between samples were determined as the correlation of

the profiles across all gene probes; this contrasts with our approach, where clustering

of samples emerges through shared sets of upregulated genes. Again, we reported

the results for certain numbers of sample clusters obtained by average linkage or

complete linkage, see Table 11.2 (lower part). The adjusted Rand index was similar

for both linkage types, so the outlier problem described above is less severe in the

global similarity approach than in our local similarity approach. Regarding average

linkage, the two approaches had similar performances across the considered settings:

each of them won twice (once for a large cluster number c, and once for a small c),

and their adjusted Rand index values differed by at most 0.06. The table lists some

further statistics to describe the results. Base biclusters were only present for c = 50;

otherwise, all samples were covered by true biclusters with non-empty sets in both

dimensions of the matrix. The maximum number of samples per cluster was more

moderate in the global approach, i.e., the cluster sizes had smaller variance than in

the biclustering approach.

Furthermore, we evaluated the purity of individual sample clusters with re-

spect to the tissue label as well as their completeness, which corresponds to the

relative number of different conditions that occur with all three replicates in the

cluster. As small clusters are likely to contain just the replicates of one condition,

which have trivially the same tissue label, we restricted this analysis to clusters

with at least four samples; biclusters were additionally required to include at least

four genes. Averages of purity and completeness were computed across all selected

clusters, weighting the individual terms according to the number of samples. In ad-

dition, the table shows the number of 100% pure and the number of 100% complete

clusters. Again, we focus our discussion on the average linkage results. While the

global sample clustering produced better purity values for large values of the cluster

number c, our method achieved higher purity for small values of c (which produce

larger clusters). Both approaches tended to include sample replicates in the same

cluster, which is a sanity check for their usefulness. We also applied another biclus-

tering method, SAMBA [206], which is commonly used in gene expression analysis.

It does not allow to specify the number of clusters; instead, it has a parameter h

11.3 Gene Function Analysis 141

Table 11.3: Sample-based evaluation of SAMBA biclustering results. See text for details.

SAMBA approach h = 3 h = 4 h = 5 h = 6 h = 7
Statistics for non-base clusters:
No. of clusters 108 30 26 25 23
Maximum no. of samples 19 25 27 37 29
Minimum no. of samples 3 4 5 6 6
Average no. of samples 3 9 10 11 11

Statistics for larger clusters:
No. of clusters 8 30 26 25 23
Average no. of samples 7 9 10 11 11
Average purity (%) 93 79 81 80 78
No. of 100% pure clusters 6 9 8 7 6
Average completeness (%) 3 13 18 21 18
No. of 100% complete clusters 0 0 0 0 0

that specifies sizes of sample sets considered for identifying seed biclusters. The

implementation of SAMBA is available as a part of the Expander tool [190]; it

takes only values up to 7 for h because the employed sample subset enumeration

is costly. SAMBA discovers overlapping biclusters, so it does not produce a unique

partitioning of samples. The average purity of larger clusters was similar to the

hierarchical approaches, but replicates of the same condition were often separated,

which is probably partly caused by the fact that the sample clusters are smaller on

average (see Table 11.3).

11.3 Gene Function Analysis

Compared with hierarchical sample clustering, the main conceptual advantage of

biclustering is that it yields for each sample cluster a set of characteristic genes. To

evaluate the predicted biclusters with respect to genes, we performed a functional

enrichment analysis using the Expander tool [190]; the results are summarized in

Table 11.4. In particular, we determined for each setting the number of clusters

that were enriched with at least one GO term; furthermore, we computed the gene-

based reliability of individual clusters (i.e., the largest occurrence frequency of an

enriched term among all cluster genes, see Section 10.4), as well as the number of

enriched terms, and took the average across all clusters; as in the previous section,

we considered only biclusters with at least four samples and at least four genes.

To define the set of enriched GO terms, we tried three common cutoffs for the

empirical p-values. However, the results were quite robust regarding the choice of

the threshold.

142 11 Biclustering of Gene Expression Data

Table 11.4: Gene function evaluation of biclusters obtained with our approach and with SAMBA.
Hierarchical biclustering c = 50 c = 20 c = 10 c = 8

avg. compl. avg. compl. avg. compl. avg. compl.
No. of non-base biclusters 25 26 20 20 10 10 8 8
Maximum no. of genes 288 267 987 6476 5363 6476 5983 6792
Minimum no. genes 1 1 5 9 483 136 604 1115
Average no. of genes 26 20 163 1140 1894 2281 2639 2851

Statistics for larger clusters:
No. of clusters 6 2 13 11 9 9 7 8
Average no. of genes 25 19 212 465 2051 1815 2930 2851
No. of enriched clusters (p = 0.001) 1 1 5 5 9 7 7 7
No. of enriched clusters (p = 0.01) 1 1 9 8 9 9 7 8
No. of enriched clusters (p = 0.05) 2 1 10 8 9 9 7 8
Average reliability (%) (p = 0.001) 15 12 12 16 14 16 13 16
Average reliability (%) (p = 0.01) 15 18 14 15 14 16 14 13
Average reliability (%) (p = 0.05) 15 18 14 16 14 16 14 13
Average no. of terms (p = 0.001) 3 1 7 8 19 24 24 25
Average no. of terms (p = 0.01) 3 3 10 9 21 36 29 27
Average no. of terms (p = 0.05) 3 3 12 11 25 42 33 32

SAMBA biclustering h = 3 h = 4 h = 5 h = 6 h = 7
No. of non-base biclusters 108 30 26 25 23
Maximum no. of genes 1627 1987 1834 1517 1474
Minimum no. genes 713 240 703 601 467
Average no. of genes 1144 1145 1131 1052 991

Statistics for larger clusters:
No. of clusters 8 30 26 25 23
Average no. of genes 1223 1145 1131 1052 991
No. of enriched clusters (p = 0.001) 8 28 26 25 23
No. of enriched clusters (p = 0.01) 8 29 26 25 23
No. of enriched clusters (p = 0.05) 8 30 26 25 23
Average reliability (%) (p = 0.001) 19 18 18 15 15
Average reliability (%) (p = 0.01) 19 18 18 16 16
Average reliability (%) (p = 0.05) 19 17 18 16 16
Average no. of terms (p = 0.001) 18 16 12 13 10
Average no. of terms (p = 0.01) 19 19 19 19 17
Average no. of terms (p = 0.05) 22 20 21 22 20

11.3 Gene Function Analysis 143

Most biclusters containing large gene sets were significantly enriched with at

least one function; in particular, all predicted biclusters for c = 10 and c = 8 in the

hierarchical approach and all biclusters from the SAMBA approach were enriched; in

all cases, the number of genes was greater than 100. In both approaches, the gene-

based reliability never exceeded 20%, and a bicluster contained on average a few

tens of enriched functional categories; this indicates that each bicluster represents

a set of active biological processes rather than one specific biological process. To

investigate whether the assigned functional categories match the tissue annotation

of the biclusters, we examined the biclusters that were 100% pure with respect

to the tissue label. Table 11.5 lists the most significant GO categories for three

pure biclusters generated by average linkage for c = 20 (this setting produced the

largest number of pure biclusters, see Table 11.2; the shown biclusters have the best

enrichment p-values, namely below 0.001). For a bicluster of seed samples, we got

GO terms related to embryonic and organismal development; a floral organ bicluster

was enriched with membrane transport and enzyme activity functions; finally, a

bicluster composed of stem samples yielded cell wall biogenesis and secondary cell-

wall biogenesis as overrepresented categories.

To conclude, our hierarchical biclustering method returned biologically mean-

ingful results despite employing a very simple procedure. Being computationally

cheap, it is suitable for analyzing large datasets. The obtained biclusters can serve

as a basis for further data exploration; for instance, it would be interesting to search

for motifs in the promoter regions of the discovered gene sets in order to reveal

tissue-specific gene regulation mechanisms.

144 11 Biclustering of Gene Expression Data

Table 11.5: Enriched GO terms for 100% pure tissue clusters (p = 0.001). For each term, we show
the number of cluster genes belonging to that category.

Seeds (samples: 15) genes: 438

Seed development - GO:0048316 28
Multicellular organismal development - GO:0007275 49
Embryonic development - GO:0009790 24

Floral organs (samples: 6) genes: 987

Protein amino acid phosphorylation - GO:0006468 82
Transport - GO:0006810 117
Kinase activity - GO:0016301 100
Intrinsic to membrane - GO:0031224 65
Active transmembrane transporter activity - GO:0022804 49
Substrate-specific transporter activity - GO:0022892 66
Transmembrane transporter activity - GO:0022857 70
Secondary active transmembrane transporter activity - GO:0015291 32
Hydrolase activity hydrolyzing O-glycosyl compounds - GO:0004553 38

Stem (samples: 6) genes: 116

Cellulose and pectin-containing secondary cell wall biogenesis - GO:0009834 10
Cell wall organization and biogenesis - GO:0007047 14

12 SNP-Transcript Association Discovery

Beside the classical application field of gene expression analysis, biclustering ap-

proaches are useful in various tasks related to systems biology. In this chapter, we

consider bicluster discovery in a context where information on sequence variation is

brought together with gene expression data from human brain. The goal was to find

groups of single nucleotide polymorphisms that are associated with the expression

behavior of a set of genes; on the side of the polymorphisms, additional constraints

have to be taken into account. To tackle this problem, we applied both biclustering

approaches presented in this work: the enumerative approach from Chapter 6 and

the hierarchical approach from Chapter 7. The results were evaluated with respect

to functional annotation of SNPs.

12.1 Motivation

One source of genomic variation in the human population are single nucleotide poly-

morphisms (SNPs), i.e., single positions in the DNA sequence where at least one

percent of the population exhibit an alternative nucleotide. While large-scale SNP

genotyping of individuals has recently become possible and yields profiles with mil-

lions of SNPs [210], the functional roles of most SNPs are still unknown. An ap-

proach to close this gap are association studies [131, 157, 200, 201]. By determining

both genotypic and phenotypic properties of a large set of individuals, they create

a basis to statistically infer relationships between these properties; one common

scenario is to compute associations between SNPs and transcript abundance (i.e.,

expression levels of genes). This is depicted schematically in Figure 12.1. The nu-

cleotide variants of a SNP are called alleles; typically, there exist two alternative

nucleotides; the one that occurs more frequently in the population is called major

allele (denoted by A), the other one minor allele (denoted by a). As human cells

contain two complete genome sequences, one from the mother and one from the

father, the genotype at the SNP locus (genome position) is given by a pair of alleles;

the alleles cannot be traced back regarding their genomic sequence membership, so

146 12 SNP-Transcript Association Discovery

SNPs

Transcripts

AA

Aa

aa

low

low

high

Expression Levels:

Figure 12.1: Illustration of a SNP-transcript association.

we distinguish three possible genotype states: “AA”, “Aa”, and “aa” The individu-

als can be grouped according to their genotype, and by comparing the three groups

with respect to the expression levels of a certain gene, we can measure to what ex-

tent the transcript abundance is influenced by the genotype. Such an analysis can

assist in deciphering potential functions of SNPs. The problem is computationally

challenging because regulatory relationships can even exist between distant parts of

the genome [157].

The goal of this study was to detect significant association patterns involving

several SNPs and genes at the same time. More precisely, we searched for biclus-

ter patterns in the SNP-transcript association matrix, following the basic workflow

applied in [131] for the analysis of expression regulation in breast cancer. As the

focus lies on effects that are shared across several SNPs or transcripts, the bicluster

analysis is a useful extension of pairwise association analysis for deciphering SNP

functions. In particular, it can also reveal relationships among SNPs and among

genes, and individually weak associations might become significant if they are sup-

ported by several genes and several SNPs. However, artifacts may arise from SNP

loci that are in linkage disequilibrium (LD). Such SNPs tend to be inherited to-

gether, for example due to genetic linkage hindering recombination or due to the

population structure. Consequently, SNPs that are in LD do not add evidence to

a certain association pattern because they behave similarly irrespective of the ex-

istence of functional relationships. To deal with this, we introduced a constraint

forbidding that SNPs with large LD appear together in a pattern, i.e., we set a

threshold for the maximum LD of SNP pairs within a bicluster. Alternatively, one

could cluster the SNPs beforehand according to their pairwise LD values and choose

one representative SNP out of each cluster to perform the further analysis. However,

this leads to a loss of information, whereas in our approach all SNPs are kept so

that the most appropriate SNP can be selected for each association pattern.

12.2 Data and Preprocessing 147

12.2 Data and Preprocessing

For our experiments, we used a subset of the compendium by Myers et al. [157],

which contains SNP profiles and brain expression data of 193 human individuals.

To focus the analysis, we obtained a selection of brain-related genes and SNPs

located in the corresponding genomic regions by personal communication from M.

Specht (Max Planck Institute of Psychiatry, D-80804 Munich); in total, there were

1521 SNPs, and 216 genes that were covered in the expression dataset. From those,

we removed SNPs and genes having more than 5% missing values among the 193

samples. Then, we eliminated extreme outlier values from the gene expression matrix

by considering each gene separately and iteratively applying the Shapiro test (in R);

it computes the probability that the data (here, the expression values across the

individuals) come from a normal distribution. As long as the p-value was below a

threshold of 0.0001, we recursively selected the most extreme value and set it to

NA. This data cleaning step was necessary because otherwise the outliers distorted

the association analysis; typically, they were also strongly linked to some covariate

(e.g., the source of the data samples), thereby obscuring biological effects.

As in [131], we computed a SNP-gene association matrix. For that, we cal-

culated ANOVA-based association p-values between each SNP and each gene; this

was done using the WG-Permer software by S. Ripke (Max Planck Institute of Psy-

chiatry, D-80804 Munich), which is available at http://www.wg-permer.org; the

parameters were set to standard values: minimum SNP call rate 0.1, threshold for

Hardy-Weinberg equilibrium test 10−5, minor allele frequency 0.05. Among the con-

sidered SNPs, 1074 turned out to have association p-values below 0.05 to at least

one of the 134 selected genes. We took the -log10 values of those as entries in the

association matrix; the remaining entries were set to zero. To smooth the distribu-

tion of non-zero entries, we calculated the 0.95-quantile q and set entries above q to

q, i.e., strong outliers were set to the maximum of the remaining entries. Finally,

pairwise LD correlation coefficients for SNPs were determined using the R genetics

package.

12.3 Experimental Approach

To analyze the SNP-gene association matrix, we applied two different techniques for

bicluster detection. First, we used the enumerative strategy explained in Chapter 6,

which finds all submatrices where the average value exceeds a threshold θ · wmax,

http://www.wg-permer.org

148 12 SNP-Transcript Association Discovery

where wmax is the maximum entry in the SNP-gene association matrix. To exclude

undesired artifacts arising from LD, only SNPs with a pairwise LD correlation below

0.5 were permitted to belong to the same bicluster. The integration of this constraint

into the enumeration scheme was done as described in Section 5.7. For the threshold

θ, we tried the values {1.00, 0.98, . . . , 0.90}. As the number of solutions increased

drastically in the last setting, we chose the results with θ = 0.92 for further analysis;

only biclusters including at least two SNPs and at least two genes were reported. As

a second method, we employed the average linkage hierarchical biclustering approach

from Chapter 7, which iteratively combines biclusters to larger ones. To account for

the pairwise LD constraint, we deleted after a merge some newly added SNPs from

the bicluster if the maximum threshold of 0.5 was violated. The hierarchical process

was stopped when the best linkage value sank below r · wmax. We tested r in the

range from 0.9 to 0.3 using decrements of 0.1. For r = 0.5, the biclusters covered a

similar number of SNPs as the enumerative approach (again focusing on biclusters

with at least two SNPs and at least two genes); therefore, we used this setting in

our comparative evaluation.

12.4 Results

We were interested in whether bicluster analysis helps to detect SNPs that have

functional roles. There are many possible ways to define functional SNPs, and it

is difficult to create gold standard sets. In our evaluation, we considered a SNP to

be functional if it lies in a functional genomic region. Such regions are for instance

exons (i.e., the parts of a gene that appear in the mature mRNA, in contrast to

introns, which are removed from the primary transcript by splicing) or sequences

of functional RNAs. For that purpose, we downloaded the exon annotation from

the UCSC Genome Browser [109] and several annotation tracks from the UCSC

Genome Browser for Functional RNA [116], more specifically RNAdb, NONCODE,

partially intronic RNAs (pin RNAs), and totally intronic RNAs (tin RNAs); in

addition, we included ultraconserved regions, transposon-free regions (transp. free),

and indel-conserved regions with p < 0.001 because strong conservation of a region

is an indicator for functional relevance.1

Figure 12.2 shows the number of functional SNPs plotted against the total num-

ber of SNPs ranked according to their occurrence in biclusters. For the enumerative

approach (Enum. Bicl.), the biclusters were sorted by their count-based p-values

1The datasets were downloaded in February 2008.

12.4 Results 149

0 20 40 60 80 100 120 140
0

5

10

15

20

25

No. of SNPs

N
o.

 o
f f

un
ct

io
na

l S
N

Ps

Hier. Bicl.
Enum. Bicl.
Simple
Expected

Figure 12.2: Comparative evaluation of different strategies to discover functional SNPs.

(Section 6.4.2); then, the SNPs were ranked in the order of their first appearance

in the biclusters; SNPs of the same bicluster appeared in the order of descending

association strength (summed across all genes of the bicluster). In the hierarchi-

cal approach (Hier. Bicl.), ranking was done analogously, except for the sorting of

the different biclusters; as the p-values from Section 6.4.2 require enumeration of

solutions, we used here a simple heuristic criterion inspired by the measure in [16]:

the total weight of the bicluster divided by its cardinality (i.e., the number of its

SNPs and its genes). For comparison, we applied a simple entry-wise analysis of the

association matrix, ranking the SNPs according to the strongest association value

they exhibit. As one can see from the figure, the bicluster approaches performed

better than the simple approach, the hierarchical approach being on top. However,

both bicluster curves are still quite close to the expected number of functional SNPs

when randomly selecting a subset of SNPs, so inferring functional importance of

SNPs from association data is a hard task; furthermore, the data selection and the

limited amount of confirmed functional annotation might bias the evaluation.

In Table 12.1 and Table 12.2, we list the functional hits for the enumerative

bicluster approach and the hierarchical bicluster approach, respectively. Five SNPs

appear in both lists (marked in bold), indicating their significance. They are either

annotated as exons or as totally intronic RNAs, which may act as regulators of

cellular expression patterns [159]. Another interesting question is whether the SNPs

in a bicluster show a specific kind of interaction, meaning that they have a much

stronger effect on the expression if they occur together than can be explained by

their individual contributions. This phenomenon is also called epistasis [43] and

150 12 SNP-Transcript Association Discovery

SNP Rank Functional Annotation
rs6776501 6 indel conserved
rs434082 32 tin RNA
rs1570492 33 transp. free
rs3772069 37 transp. free
rs1047187 40 tin RNA
rs3796504 42 exon
rs2789417 47 transp. free, indel conserved, exon
rs4895642 48 indel conserved, exon
rs4841294 50 tin RNA
rs1051756 56 exon
rs164288 57 indel conserved, exon
rs2817178 58 transp. free
rs369487 61 tin RNA
rs3811888 70 exon
rs3740199 82 transp. free, exon
rs3088365 88 exon
rs3097830 90 tin RNA
rs1051219 107 indel conserved, exon
rs1042113 108 exon
rs739496 115 transp. free, exon
rs1919460 116 rnadb mrna
rs3772479 127 tin RNA, exon

Table 12.1: Enumerative bicluster SNPs with functional annotation. Bold text indicates SNPs
that also occur in hierarchical biclusters (Table 12.2).

could be an indicator for an underlying biological relationship between the genetic

markers. To investigate that, we systematically computed interaction p-values of

SNP marker combinations with respect to the genes of the same bicluster. However,

after correction for multiple testing, the p-values were not significant enough to

comply with standard thresholds. In fact, the bicluster criterion only requires that

the SNPs are associated with the same set of genes, it does not especially favor

interacting SNPs against independent regulatory factors.

Still, a more comprehensive bicluster analysis of association data might reveal

interesting relationships between SNPs, which is a promising direction because direct

approaches to detect SNP interactions are infeasible, in particular with regard to

higher-order relationships. Due to its relatively low complexity, the hierarchical

biclustering approach is suitable to be applied on large-scale datasets.

12.4 Results 151

SNP Rank Functional Annotation
rs3796504 12 exon
rs164288 13 indel conserved, exon
rs1689512 14 transp. free, pin RNA
rs2298193 15 indel conserved
rs2228315 20 exon
rs10798 26 transp. free, exon
rs2789417 30 transp. free, indel conserved, exon
rs3097830 33 tin RNA
rs716615 36 transp. free
rs3735803 47 indel conserved, exon
rs1044729 50 exon
rs7128926 51 tin RNA
rs1124595 60 tin RNA
rs2230862 67 transp. free, indel conserved, exon
rs4841294 68 tin RNA
rs1891787 74 transp. free
rs2279587 80 exon
rs716417 90 indel conserved
rs12594 99 exon
rs6459166 101 transp. free, indel conserved, exon

Table 12.2: Hierarchical bicluster SNPs with functional annotation. Bold text indicates SNPs that
also occur in enumerative biclusters (Table 12.1).

Part V

Conclusion

13 Summary

Structured data arise in many different application fields. One prominent example

is computational systems biology, where networks represent multiple kinds of rela-

tionships involving genes or gene products. Our cluster detection methods provide

novel approaches to systematically discover interesting patterns in such data.

The main focus of the thesis lies on an enumerative approach to extract dense

clusters from structured data (Part II). In a nutshell, given a set of pairwise or higher-

order relationships between objects as the input, the output consists of all subset

patterns where the relative number or strength of relationships between objects

exceeds a user-defined threshold. While classical set enumeration strategies from

data mining turn out to be inappropriate for this task because they lack effective

pruning rules, the reverse search paradigm provides an elegant way to define an anti-

monotonic search procedure; with that, the time complexity for computing a single

solution is in the order of the input size. In theory, the methodological framework

can deal with a broad class of problems, including pattern mining in graphs or

higher-order tensors with undirected or directed relationships, having weights or

not. In practice, however, the number of solutions can grow prohibitively if there

exist strongly overlapping patterns. Often, external data sources are available and

can help to further restrict the search. We exemplarily discussed possibilities for a

transparent integration of constraints from background information. Furthermore,

alternative search criteria and practical speed-up techniques were presented.

We contrasted the enumerative cluster finding approach with a generalized vari-

ant of hierarchical clustering (Part III). While the enumerative method guarantees

to yield all patterns that satisfy the prespecified interaction density criterion, the

hierarchical method produces sets of disjoint clusters built in a hierarchical way. It

also considers an interaction criterion, by successively merging the clusters with the

largest strength of inter-cluster relationships. We extended this merging strategy

to the bicluster scenario. Also, application to higher-order relations is conceivable;

in this case, however, obtaining well-defined dendogram structures is challenging.

As a biclustering procedure, the approach is very efficient because it constructs

156 13 Summary

non-overlapping biclusters based on a local optimality criterion. In that sense, the

enumerative and the hierarchical approach are opposite extremes in the spectrum of

cluster detection methods. Both of them behave in a very transparent way, which

facilitates the interpretation of their results. Most other methods produce results

between those two extremes, making some (often implicit) trade-off between com-

pleteness and efficiency. Our complete enumeration method offers the opportunity to

make this trade-off explicit by pushing some constraints into the search framework.

Both cluster detection methods were tested in real-world systems biology tasks

(Part IV). The enumerative approach proved to be useful in discovering functional

protein complexes based on experimental protein-protein interaction data. We ap-

plied it on data collections from two different organisms, yeast and human, and

compared it with several competitive approaches. The potential of integrative data

analysis was demonstrated by coanalyzing the interaction data of yeast with profiles

of evolutionary conservation and phenotypic properties; as an interesting scenario

for human data analysis, we showed predictions for tissue-specific variants of pro-

tein complexes. Furthermore, we considered the task of revealing functional modules

that are shared across several coexpression networks of yeast genes. Practically, this

was done by representing the input information as a three-way data cube from which

dense patterns were extracted. By that, we successfully retrieved groups of function-

ally related genes; the results were competitive with those of alternative methods.

Third, a large gene expression compendium of the plant Arabidopsis thaliana was an-

alyzed with the proposed hierarchical biclustering approach. In spite of the greedy

nature inherent to the agglomerative clustering paradigm, it detected meaningful

biological structure. In another bicluster analysis problem, we applied both the

hierarchical and the enumerative approach. The goal was to detect functional as-

sociations between single nucleotide polymorphisms in the genomic sequence and

the expression of certain genes. The results differed between the methods, but the

overlap consisted exclusively of polymorphisms in functionally confirmed regions.

Overall, the enumerative cluster mining method is valuable for a systematic

analysis of structured data. The hierarchical biclustering, although simple in con-

cept, can detect interesting patterns in large-scale data and thereby complements

the enumerative method.

14 Discussion and Future Work

We conclude by discussing important aspects of this work and pointing out future di-

rections. First of all, let us emphasize that the proposed approaches are generic and

as such applicable in a large variety of usage scenarios beyond the ones described

in the previous chapters. Staying in the field of biological data analysis, further

use cases could be, for example, the discovery of sequence families based on se-

quence alignment scores [53] and the search for structural subunits of proteins [64].

Higher-order structure mining becomes necessary in gene expression experiments

with additional dimensions like developmental stages, tissues, different populations

etc. [243].

Often, predicted cluster patterns serve as input for further computational anal-

yses. Gene or protein modules, for instance, are typically used for function predic-

tion [193, 197]. Moreover, they can assist in elucidating transcriptional regulatory

networks [154] or in comparing expression states of different cellular conditions [188].

Recently, module-based analysis of biological networks has been exploited to study

the molecular basis of diseases as well as relationships between diseases [204]; fea-

tures derived from network modules can also help to improve the classification ac-

curacy in disease prediction [40]; see [96] for a review on using protein networks to

understand disease. Furthermore, module prediction is an important step in net-

work alignment [211]. In all these studies one should keep in mind that living cells

cannot be described by one static set of modules; rather, there exist multiple levels

of organization [166], and modules change dynamically [8].

Regarding the multitude of module discovery methods, what is the specific

contribution of our approach in these applications? A clear advantage of our enu-

merative method is that it allows for a systematic discovery of dense substructures,

providing the guarantee that no valid solution is missed. This is particularly promis-

ing in studies where multiple data sources need to be combined. The enumerative

framework can integrate arbitrarily many auxiliary datasets, respecting individual

constraints for each of them. From a biological perspective, it is crucial to use as

many data sources as possible to analyze a certain phenomenon. By that, it is

158 14 Discussion and Future Work

possible to draw more robust conclusions, detect context-specific peculiarities, or

focus on new findings. In method development, however, some background knowl-

edge (e.g., Gene Ontology classification) is intentionally left out to use it later for

evaluation. An ideal workflow would start with that, and once a suitable method

has been selected, one would integrate all available knowledge into the analysis and

make new predictions, the most significant of which should be validated by biological

experiments.

Technically, it is important that the predefined characteristics of patterns are

exploited as early as possible during the search in order to avoid the generation

of non-interesting patterns. For the auxiliary data, we introduced some classes of

constraints where this can be easily done. And regarding our main criterion, the

within-cluster interaction density, the method is designed such that pruning is effec-

tive; as we have shown, this framework even works for higher-order cluster analysis.

However, while the density criterion is intuitive and widely used in cluster predic-

tion (e.g., [16, 166]), it has some drawbacks. Namely, for many larger networks

the task of clique finding is intractable because the number of solutions explodes.

As our approach employs a more flexible pattern definition including cliques as a

special case, the problem is exacerbated, in particular for low density thresholds or

higher-order settings. The situation naturally improves if side constraints restrict

the search space. Furthermore, one can introduce probabilistic or heuristic rules to

explore only a subset of solutions; in particular, one important topic for future work

is how to systematically exploit cluster overlap constraints. The hierarchical biclus-

tering approach we presented yields dense clusters that are totally disjoint, but due

to the agglomerative strategy, they might not be the most significant ones. Quasi-

cliques [145, 172] constitute a compromise between the strict clique criterion and the

flexible dense cluster criterion. It is an open question how to search most efficiently

for quasi-cliques in higer-order or weighted data. Possibly, hybrid approaches of

reverse search and neighborhood-based pruning can be developed. Moreover, one

should further investigate the efficient integration of density and connectivity re-

quirements.

Also from a biological point of view, the cluster criterion is open to debate. An

alternative criterion that is often used is the homogeneity of the values within the

subarray corresponding to a cluster [243]. This is a meaningful requirement in some

applications, but it should be noted that in many systems biology scenarios clusters

consisting of entries with low absolute values are not interesting, because low entries

merely indicate the absence of an effect (i.e., such information is biologically rather

unspecific); this introduces some asymmetry into the problem, which should be

159

sox9b

snai1b

msxb

hand2

twist1bmp4

mef2c

runx2actbp2

zfhx1

n/a

ctbp1

sur

drap1

Figure 14.1: Connection subgraph discovered in a protein interaction network of zebrafish provided
by the STRING database (version 7.1) [219], using the method by Koren et al. [126]. The query
nodes are marked as shaded ellipses.

taken into account during the search. Other approaches look for patterns of coherent

evolution [151], i.e., correlated up- and down-behavior in subarrays. In contrast, our

criterion focuses either on strongly positive patterns, or on strongly negative patterns

(in practice, the latter can be achieved by flipping the sign of all data values during

the search). This makes sense in settings where the weight reflects the significance of

an observation or the confidence of a prediction. While we used in our experiments

a default value of zero for missing entries, our method is compatible to be combined

with data modeling approaches that predict missing values in a preprocessing step.

Finally, biologists are most frequently interested in deciphering a small subnetwork

of gene relationships for a specific biological phenomenon, rather than in analyzing

a whole genome network. The area of focus is typically defined by a set of genes that

are known to be key players in a cellular process of interest. There already exist a few

approaches to extract local subnetworks directed by query nodes [56, 86, 126]. An

illustrative example from real-world data is given in Figure 14.1. One interesting

extension would be to find the local module structure around such a connection

subgraph, i.e., its embedding in the global network.

To conclude, the methods presented in this work provide novel ways of pattern

discovery in structured data, which are potentially useful in various systems biology

applications, complementing other approaches. However, systems biology is still in

its infancy and needs further progress in both data acquisition and analysis methods.

It remains an exciting and challenging task to investigate and infer relations between

molecular components and understand how patterns of interaction translate into

cellular functions.

Bibliography

[1] E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and B. Yener. Multiway analysis of epilepsy tensors.

Bioinformatics, 23(13):i10–i18, 2007.

[2] E. Acar, S. Çamtepe, and B. Yener. Collective sampling and analysis of high order tensors for

chatroom communications. In Intelligence and Security Informatics, pages 213–224. Springer, 2006.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high

dimensional data for data mining applications. In SIGMOD ’98: Proceedings of the 1998 ACM

SIGMOD International Conference on Management of Data, pages 94–105. ACM, 1998.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In

VLDB ’94: Proceedings of the 20th International Conference on Very Large Data Bases, pages 487–

499. Morgan Kaufmann, 1994.

[5] E. A. Akkoyunlu. The enumeration of maximal cliques of large graphs. SIAM J. Comput., 2(1):1–6,

1973.

[6] L. Alberghina and H. Westerhoff. Systems Biology: Definitions and Perspectives. Topics in Current

Genetics 13. Springer, 2005.

[7] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell.

Garland Science, fifth edition, 2007.

[8] R. P. Alexander, P. M. Kim, T. Emonet, and M. B. Gerstein. Understanding modularity in molecular

networks requires dynamics. Sci. Signal., 2(81):pe44, 2009.

[9] H. Arimura and T. Uno. An efficient polynomial space and polynomial delay algorithm for enu-

meration of maximal motifs in a sequence. Journal of Combinatorial Optimization, 13(3):243–262,

2007.

[10] H. Arimura and T. Uno. Mining maximal flexible patterns in a sequence. In New Frontiers in

Artificial Intelligence, volume 4914 of Lecture Notes in Computer Science, pages 307–317. Springer,

2008.

[11] Y. Asahiro, R. Hassin, and K. Iwama. Complexity of finding dense subgraphs. Discrete Appl. Math.,

121(1-3):15–26, 2002.

[12] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense subgraph. J.

Algorithms, 34(2):203–221, 2000.

[13] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski,

S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C.

Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. Gene Ontology: tool for the

unification of biology. the Gene Ontology consortium. Nat. Genet., 25(1):25–29, 2000.

162 Bibliography

[14] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Appl. Math., 65:21–46, 1996.

[15] G. D. Bader, D. Betel, and C. W. V. Hogue. BIND: the Biomolecular Interaction Network Database.

Nucl. Acids Res., 31(1):248–250, 2003.

[16] G. D. Bader and C. W. Hogue. An automated method for finding molecular complexes in large

protein interaction networks. BMC Bioinformatics, 4:2, 2003.

[17] A. Banerjee, S. Basu, and S. Merugu. Multi-way clustering on relation graphs. In SDM ’07: Pro-

ceedings of the 7th SIAM International Conference on Data Mining, 2007.

[18] S. E. Baranzini, P. Mousavi, J. Rio, S. J. Caillier, A. Stillman, P. Villoslada, M. M. Wyatt, M. Coma-

bella, L. D. Greller, R. Somogyi, X. Montalban, and J. R. Oksenberg. Transcription-based prediction

of response to IFNβ using supervised computational methods. PLoS Biol., 3(1):e2, 2004.

[19] R. J. Bayardo, Jr. Efficiently mining long patterns from databases. In SIGMOD ’98: Proceedings

of the 1998 ACM SIGMOD International Conference on Management of Data, pages 85–93. ACM,

1998.

[20] C. F. Beckmann and S. M. Smith. Tensorial extensions of independent component analysis for

multisubject FMRI analysis. Neuroimage, 25(1):294–311, 2005.

[21] G. Bejerano, N. Friedman, and N. Tishby. Efficient exact p-value computation for small sample,

sparse, and surprising categorical data. J. Comput. Biol., 11(5):867–886, 2004.

[22] J. Besson, C. Robardet, L. De Raedt, and J.-F. Boulicaut. Mining bi-sets in numerical data. In

KDID ’06: Knowledge Discovery in Inductive Databases, 5th International Workshop, volume 4747

of Lecture Notes in Computer Science, pages 11–23. Springer, 2006.

[23] R. Bisiani. Beam search. In Encyclopedia of Articial Intelligence, pages 56–58. Wiley, 1987.

[24] K. M. Borgwardt, H.-P. Kriegel, and P. Wackersreuther. Pattern mining in frequent dynamic sub-

graphs. In ICDM ’06: Proceedings of the 6th International Conference on Data Mining, pages

818–822. IEEE Computer Society, 2006.

[25] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM Monographs on

Discrete Mathematics and Applications. SIAM, 1987.

[26] B.-J. Breitkreutz, C. Stark, T. Reguly, L. Boucher, A. Breitkreutz, M. Livstone, R. Oughtred, D. H.

Lackner, J. Bahler, V. Wood, K. Dolinski, and M. Tyers. The BioGRID interaction database: 2008

update. Nucl. Acids Res., 36(suppl 1):D637–D640, 2008.

[27] B.-J. Breitkreutz, C. Stark, and M. Tyers. Osprey: a network visualization system. Genome Biology,

4(3):R22, 2003.

[28] K. Bryan and P. Cunningham. Bottom-up biclustering of expression data. In Proceedings of the 2006

IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pages

232–239. IEEE Computer Society, 2006.

[29] W. Castillo and J. Trejos. Recurrence properties in two-mode hierarchical clustering. In Classification

and information processing at the turn of the millennium, pages 68–73, 2000.

[30] C. Cenciarelli, D. Chiaur, D. Guardavaccaro, W. Parks, M. Vidal, and M. Pagano. Identification of

a family of human F-box proteins. Curr. Biol., 9:1177–1179, 1999.

Bibliography 163

[31] L. Cerf, J. Besson, C. Robardet, and J.-F. Boulicaut. Data Peeler: Contraint-based closed pattern

mining in n-ary relations. In SDM ’08: Proceedings of the 8th SIAM International Conference on

Data Mining, pages 37–48, 2008.

[32] L. Cerf, J. Besson, C. Robardet, and J.-F. Boulicaut. Closed patterns meet n-ary relations. ACM

Trans. Knowl. Discov. Data, 3(1):1–36, 2009.

[33] G. Cesareni, A. Ceol, C. Gavrila, L. M. Palazzi, M. Persico, and M. V. Schneider. Comparative

interactomics. FEBS Lett., 579(8):1828–1833, 2005.

[34] M. Charikar. Greedy approximation algorithms for finding dense components in a graph. In APPROX

’00: Proceedings of the 3rd International Workshop on Approximation Algorithms for Combinatorial

Optimization, pages 84–95. Springer, 2000.

[35] A. Chatr-aryamontri, A. Ceol, L. M. Palazzi, G. Nardelli, M. V. Schneider, L. Castagnoli, and

G. Cesareni. MINT: the Molecular INTeraction database. Nucl. Acids Res., 35(suppl 1):D572–D574,

2007.

[36] S. Chavez, T. Beilharz, A. G. Rondon, H. Erdjument-Bromage, P. Tempst, J. Q. Svejstrup, T. Lith-

gow, and A. Aguilera. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2,

connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO

J., 19(21):5824–5834, 2000.

[37] J. Chen and B. Yuan. Detecting functional modules in the yeast protein-protein interaction network.

Bioinformatics, 22(18):2283–2290, 2006.

[38] Y. Cheng and G. M. Church. Biclustering of expression data. Proceedings of the 8th International

Conference on Intelligent Systems for Molecular Biology, 8:93–103, 2000.

[39] W. Chu, Z. Ghahramani, R. Krause, and D. L. Wild. Identifying protein complexes in high-

throughput protein interaction screens using an infinite latent feature model. In Proceedings of

the Pacific Symposium on Biocomputing, pages 231–242, 2006.

[40] H. Y. Chuang, E. Lee, Y. T. Liu, D. Lee, and T. Ideker. Network-based classification of breast cancer

metastasis. Mol. Syst. Biol., 3:140, 2007.

[41] A. Clauset, M. E. J. Newman, , and C. Moore. Finding community structure in very large networks.

Phys. Rev. E, 70(6):066111, 2004.

[42] D. N. Cooper, E. V. Ball, and M. Krawczak. The human gene mutation database. Nucleic Acids

Res., 26(1):285–287, 1998.

[43] H. J. Cordell. Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it

in humans. Hum. Mol. Genet., 11(20):2463–2468, 2002.

[44] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT

Press, third edition, 2009.

[45] C. Creighton and S. Hanash. Mining gene expression databases for association rules. Bioinformatics,

19(1):79–86, 2003.

[46] A. C. Culhane, T. Schwarzl, R. Sultana, K. C. Picard, S. C. Picard, T. H. Lu, K. R. Franklin, S. J.

French, G. Papenhausen, M. Correll, and J. Quackenbush. GeneSigDB – a curated database of gene

expression signatures. Nucl. Acids Res., 38(suppl 1):D716–D725, 2010.

164 Bibliography

[47] I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In

KDD ’01: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 269–274. ACM, 2001.

[48] S. Dietmann, E. Georgii, A. Antonov, K. Tsuda, and H.-W. Mewes. The DICS repository: module-

assisted analysis of disease-related gene lists. Bioinformatics, 25(6):830–831, 2009.

[49] M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, and T. Müller. Identifying functional

modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics,

24(13):i223–i231, 2008.

[50] A. M. Dudley, D. M. Janse, A. Tanay, R. Shamir, and G. M. Church. A global view of pleiotropy

and phenotypically derived gene function in yeast. Mol. Syst. Biol., 1:2005.0001, 2005.

[51] S. Džeroski. Multi-relational data mining: an introduction. SIGKDD Explor. Newsl., 5(1):1–16,

2003.

[52] K. Elbing, R. R. McCartney, and M. C. Schmidt. Purification and characterization of the three

Snf1-activating kinases of Saccharomyces cerevisiae. Biochem. J., 393(3):797–805, 2006.

[53] A. J. Enright, S. van Dongen, and C. A. Ouzounis. An efficient algorithm for large-scale detection

of protein families. Nucleic Acids Res., 30(7):1575–1584, 2002.

[54] M. Ester and J. Sander. Knowledge discovery in databases. Springer, 2000.

[55] L. Everett, L. S. Wang, and S. Hannenhalli. Dense subgraph computation via stochastic search:

application to detect transcriptional modules. Bioinformatics, 22(14):e117–e123, 2006.

[56] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery of connection subgraphs. In KDD

’04: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 118–127. ACM, 2004.

[57] I. J. Farkas, D. Abel, G. Palla, and T. Vicsek. Weighted network modules. New J. Phys., 9(180),

2007.

[58] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discovery and data mining: Towards

a unifying framework. In KDD ’96: Proceedings of the 2nd International Conference on Knowledge

Discovery and Data Mining, pages 82–88. AAAI Press, 1996.

[59] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica, 29(3):59–78,

2001.

[60] B. Gao, T.-Y. Liu, and W.-Y. Ma. Star-structured high-order heterogeneous data co-clustering based

on consistent information theory. In ICDM ’06: Proceedings of the Sixth International Conference

on Data Mining, pages 880–884. IEEE Computer Society, 2006.

[61] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D. Botstein, and

P. O. Brown. Genomic expression programs in the response of yeast cells to environmental changes.

Mol. Biol. Cell, 11(12):4241–4257, 2000.

[62] A. C. Gavin, P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch, C. Rau, L. J. Jensen, S. Bas-

tuck, B. Dumpelfeld, A. Edelmann, M. A. Heurtier, V. Hoffman, C. Hoefert, K. Klein, M. Hudak,

A. M. Michon, M. Schelder, M. Schirle, M. Remor, T. Rudi, S. Hooper, A. Bauer, T. Bouwmeester,

Bibliography 165

G. Casari, G. Drewes, G. Neubauer, J. M. Rick, B. Kuster, P. Bork, R. B. Russell, and G. Superti-

Furga. Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084):631–636,

2006.

[63] A. C. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick,

A. M. Michon, C. M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner,

A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse,

C. Leutwein, M. A. Heurtier, R. R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes,

M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga.

Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature,

415(6868):141–147, 2002.

[64] J.-C. Gelly, A. G. De Brevern, and S. Hazout. ‘Protein Peeling’: an approach for splitting a 3D

protein structure into compact fragments. Bioinformatics, 22(2):129–133, 2006.

[65] G. F. Georgakopoulos and K. Politopoulos. MAX-DENSITY revisited: a generalization and a more

efficient algorithm. The Computer Journal, 50(3):348–356, 2007.

[66] E. Georgii, S. Dietmann, T. Uno, P. Pagel, and K. Tsuda. Mining expression-dependent modules in

the human interaction network. BMC Bioinformatics, 8(Suppl. 8):S4, 2007.

[67] E. Georgii, S. Dietmann, T. Uno, P. Pagel, and K. Tsuda. Enumeration of condition-dependent

dense modules in protein interaction networks. Bioinformatics, 25(7):933–940, 2009.

[68] E. Georgii, K. Tsuda, and B. Schölkopf. Multi-way set enumeration in weight tensors. Mach. Learn.,

Special issue on Mining and Learning with Graphs and Relations. To appear.

[69] E. Georgii, K. Tsuda, and B. Schölkopf. Multi-way set enumeration in real-valued tensors. In

DMMT ’09: Proceedings of the 2nd Workshop on Data Mining using Matrices and Tensors, pages

32–41 (Article No. 4). ACM, 2009.

[70] G. Gibson. Microarray analysis. PLoS Biol., 1(1):e15, 10 2003.

[71] M. Girvan and M. E. Newman. Community structure in social and biological networks. Proc. Natl.

Acad. Sci. USA, 99(12):7821–7826, 2002.

[72] L. A. Goldberg. Efficient algorithms for listing unlabeled graphs. J. Algorithms, 13(1):128–143, 1992.

[73] L. A. Goldberg. Polynomial space polynomial delay algorithms for listing families of graphs. In STOC

’93: Proceedings of the 25th annual ACM Symposium on Theory of Computing, pages 218–225. ACM,

1993.

[74] K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In ICDM ’01: Proceedings

of the IEEE International Conference on Data Mining, pages 163–170. IEEE Computer Society,

2001.

[75] U. Güldener, M. Münsterkötter, G. Kastenmüller, N. Strack, J. van Helden, C. Lemer, J. Richelles,

S. J. Wodak, J. Garcia-Martinez, J. E. Perez-Ortin, H. Michael, A. Kaps, E. Talla, B. Dujon,

B. Andre, J. L. Souciet, J. De Montigny, E. Bon, C. Gaillardin, and H. W. Mewes. CYGD: the

Comprehensive Yeast Genome Database. Nucl. Acids Res., 33(suppl 1):D364–D368, 2005.

[76] U. Güldener, M. Münsterkötter, M. Oesterheld, P. Pagel, A. Ruepp, H. W. Mewes, and V. Stümpflen.

MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res., 34(Database

issue):D436–D441, 2006.

166 Bibliography

[77] D. Gunopulos, H. Mannila, and S. Saluja. Discovering all most specific sentences by randomized

algorithms. In ICDT ’97: Proceedings of the 6th International Conference on Database Theory, pages

215–229. Springer, 1997.

[78] J. Han and M. Kamber. Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in

Data Management Systems. Morgan Kaufmann, second edition, 2006.

[79] D. J. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. The MIT Press, 2001.

[80] D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer. Co-clustering of biological networks and gene

expression data. Bioinformatics, 18(suppl 1):S145–S154, 2002.

[81] M. Haraguchi and Y. Okubo. A method for pinpoint clustering of web pages with pseudo-clique

search. In Federation over the Web, volume 3847 of Lecture Notes in Computer Science, pages

59–78. Springer, 2006.

[82] E. Hartuv and R. Shamir. A clustering algorithm based on graph connectivity. Information Pro-

cessing Letters, 76:175–181, 1999.

[83] L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray. From molecular to modular cell biology.

Nature, 402(6761 Suppl):C47–C52, 1999.

[84] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, second

edition, 2009.

[85] H. Hermjakob, L. Montecchi-Palazzi, C. Lewington, S. Mudali, S. Kerrien, S. Orchard, M. Vin-

gron, B. Roechert, P. Roepstorff, A. Valencia, H. Margalit, J. Armstrong, A. Bairoch, G. Cesareni,

D. Sherman, and R. Apweiler. IntAct: an open source molecular interaction database. Nucl. Acids

Res., 32(suppl 1):D452–D455, 2004.

[86] P. Hintsanen and H. Toivonen. Finding reliable subgraphs from large probabilistic graphs. Data

Min. Knowl. Discov., 17(1):3–23, 2008.

[87] H. Hirsh. Data mining research: Current status and future opportunities. Stat. Anal. Data Min.,

1(2):104–107, 2008.

[88] D. Hochbaum. Approximating clique and biclique problems. Journal of Algorithms, 29:174–200,

1998.

[89] T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In IJCAI ’99: Proceedings

of the 16th International Joint Conference on Artificial Intelligence, pages 668–693, 1999.

[90] J. Hopcroft, O. Khan, B. Kulis, and B. Selman. Natural communities in large linked networks. In

KDD ’03: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 541–546. ACM, 2003.

[91] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou. Mining coherent dense subgraphs across massive

biological networks for functional discovery. Bioinformatics, 21(suppl 1):i213–i221, 2005.

[92] Y. Huang, H. Li, H. Hu, X. Yan, M. S. Waterman, H. Huang, and X. J. Zhou. Systematic discovery

of functional modules and context-specific functional annotation of human genome. Bioinformatics,

23(13):i222–i229, 2007.

Bibliography 167

[93] W. Huber, A. von Heydebreck, H. Sultmann, A. Poustka, and M. Vingron. Variance stabilization

applied to microarray data calibration and to the quantification of differential expression. Bioinfor-

matics, 18(suppl 1):S96–S104, 2002.

[94] L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193–218, 1985.

[95] T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel. Discovering regulatory and signalling circuits

in molecular interaction networks. Bioinformatics, 18(suppl 1):S233–S240, 2002.

[96] T. Ideker and R. Sharan. Protein networks in disease. Genome Res., 18(4):644–652, 2008.

[97] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall, 1988.

[98] C. Janeway, P. Travers, M. Walport, and M. Shlomchik. Immunobiology: Immune System in Health

and Disease. Garland Science, sixth edition, 2005.

[99] R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. J. Krogan, S. Chung, A. Emili, M. Snyder, J. F.

Greenblatt, and M. Gerstein. A Bayesian networks approach for predicting protein-protein interac-

tions from genomic data. Science, 302(5644):449–453, 2003.

[100] R. Jäschke, A. Hotho, C. Schmitz, B. Ganter, and G. Stumme. TRIAS – an algorithm for mining

iceberg tri-lattices. In ICDM ’06: Proceedings of the 6th International Conference on Data Mining,

pages 907–911. IEEE Computer Society, 2006.

[101] S. Jegelka, S. Sra, and A. Banerjee. Approximation algorithms for tensor clustering. In Algorithmic

Learning Theory, pages 368–383, 2009.

[102] L. J. Jensen, M. Kuhn, M. Stark, S. Chaffron, C. Creevey, J. Müller, T. Doerks, P. Julien, A. Roth,

M. Simonovic, P. Bork, and C. von Mering. STRING 8 – a global view on proteins and their

functional interactions in 630 organisms. Nucl. Acids Res., 37(suppl 1):D412–D416, 2009.

[103] L. Ji, K.-L. Tan, and A. K. H. Tung. Mining frequent closed cubes in 3D datasets. In VLDB ’06:

Proceedings of the 32nd International Conference on Very Large Data Bases, pages 811–822. VLDB

Endowment, 2006.

[104] D. Jiang and J. Pei. Mining frequent cross-graph quasi-cliques. ACM Trans. Knowl. Discov. Data,

2(4):1–42, 2009.

[105] D. Jiang, C. Tang, and A. Zhang. Cluster analysis for gene expression data: A survey. IEEE Trans.

on Knowl. and Data Eng., 16(11):1370–1386, 2004.

[106] X. Jiang, H. Xiong, C. Wang, and A.-H. Tan. Mining globally distributed frequent subgraphs in a

single labeled graph. Data Knowl. Eng., 68(10):1034–1058, 2009.

[107] G. Joshi-Tope, M. Gillespie, I. Vastrik, P. D’Eustachio, E. Schmidt, B. de Bono, B. Jassal, G. R.

Gopinath, G. R. Wu, L. Matthews, S. Lewis, E. Birney, and L. Stein. Reactome: a knowledgebase

of biological pathways. Nucleic Acids Res., 33(Database issue):D428–D432, 2005.

[108] M. Kalaev, V. Bafna, and R. Sharan. Fast and accurate alignment of multiple protein networks. In

RECOMB ’08: Proceedings of the 12th Annual International Conference on Research in Computa-

tional Molecular Biology, pages 246–256, 2008.

168 Bibliography

[109] D. Karolchik, R. M. Kuhn, R. Baertsch, G. P. Barber, H. Clawson, M. Diekhans, B. Giardine,

R. A. Harte, A. S. Hinrichs, F. Hsu, K. M. Kober, W. Miller, J. S. Pedersen, A. Pohl, B. J. Raney,

B. Rhead, K. R. Rosenbloom, K. E. Smith, M. Stanke, A. Thakkapallayil, H. Trumbower, T. Wang,

A. S. Zweig, D. Haussler, and W. J. Kent. The UCSC Genome Browser Database: 2008 update.

Nucleic Acids Res., 36(Database issue):D773–D779, 2008.

[110] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations,

pages 85–103. Plenum Press, 1972.

[111] G. Karypis, V. Kumar, and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs.

Journal of Parallel and Distributed Computing, 48:96–129, 1998.

[112] C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N. Ueda. Learning systems of concepts

with an infinite relational model. In AAAI ’06: Proceedings of the 21st National Conference on

Artificial Intelligence, pages 381–388. AAAI Press, 2006.

[113] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell

system technical journal, 49(1):291–307, 1970.

[114] S. Khuller and B. Saha. On finding dense subgraphs. In ICALP ’09: Proceedings of the 36th

International Colloquium on Automata, Languages and Programming, pages 597–608. Springer, 2009.

[115] L. Kiemer and G. Cesareni. Comparative interactomics: comparing apples and pears? Trends

Biotechnol., 25(10):448–454, 2007.

[116] T. Kin, K. Yamada, G. Terai, H. Okida, Y. Yoshinari, Y. Ono, A. Kojima, Y. Kimura, T. Komori,

and K. Asai. fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding

RNA sequences. Nucleic Acids Res., 35(Database issue):D145–D148, 2007.

[117] E. Kipreos and M. Pagano. The F-box protein family. Genome Biology, 1(5):reviews3002.1–

reviews3002.7, 2000.

[118] H. Kitano. Systems Biology: A Brief Overview. Science, 295(5560):1662–1664, 2002.

[119] B. Klimt and Y. Yang. The Enron Corpus: A new dataset for email classification research. In ECML

’04: Proceedings of the 15th European Conference on Machine Learning, pages 217–226. Springer,

2004.

[120] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein. Spectral biclustering of microarray data: Co-

clustering genes and conditions. Genome Res., 13(4):703–716, 2003.

[121] D. M. Koepp, L. K. Schaefer, X. Ye, K. Keyomarsi, C. Chu, J. W. Harper, and S. J. Elledge.

Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science,

294(5540):173–177, 2001.

[122] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. Technical Report SAND2007-

6702, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, November 2007.

[123] T. G. Kolda, B. W. Bader, and J. P. Kenny. Higher-order web link analysis using multilinear algebra.

In ICDM ’05: Proceedings of the 5th IEEE International Conference on Data Mining, pages 242–249.

IEEE Computer Society, 2005.

[124] T. G. Kolda and J. Sun. Scalable tensor decompositions for multi-aspect data mining. In ICDM,

2008.

Bibliography 169

[125] R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In ICML

02: Proceedings of the 19th International Conference on Machine Learning, pages 315–322. Morgan

Kaufmann, 2002.

[126] Y. Koren, S. C. North, and C. Volinsky. Measuring and extracting proximity in networks. In KDD

’06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 245–255. ACM, 2006.

[127] M. Koyutürk, W. Szpankowski, and A. Grama. Biclustering gene-feature matrices for statistically

significant patterns. In CSB ’04: Proceedings of the 2004 IEEE Computational Systems Bioinfor-

matics Conference, pages 480–483. IEEE Computer Society, 2004.

[128] M. Koyutürk, W. Szpankowski, and A. Grama. Assessing significance of connectivity and conserva-

tion in protein interaction networks. J. Comput. Biol., 14(6):747–764, 2007.

[129] S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in HIV data. In KDD ’01:

Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 136–143. ACM, 2001.

[130] H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey on subspace

clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data,

3(1):1–58, 2009.

[131] V. N. Kristensen, H. Edvardsen, A. Tsalenko, S. H. Nordgard, T. Sørlie, R. Sharan, A. Vailaya,

A. Ben-Dor, P. E. Lønning, S. Lien, S. Omholt, A.-C. Syvänen, Z. Yakhini, and A.-L. Børresen-

Dale. Genetic variation in putative regulatory loci controlling gene expression in breast cancer.

Proc. Natl. Acad. Sci. USA, 103(20):7735–7740, 2006.

[132] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta,

A. P. Tikuisis, T. Punna, J. M. Peregrin-Alvarez, M. Shales, X. Zhang, M. Davey, M. D. Robinson,

A. Paccanaro, J. E. Bray, A. Sheung, B. Beattie, D. P. Richards, V. Canadien, A. Lalev, F. Mena,

P. Wong, A. Starostine, M. M. Canete, J. Vlasblom, S. Wu, C. Orsi, S. R. Collins, S. Chandran,

R. Haw, J. J. Rilstone, K. Gandi, N. J. Thompson, G. Musso, P. St Onge, S. Ghanny, M. H. Lam,

G. Butland, A. M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O’Shea, J. S. Weissman, C. J. Ingles, T. R.

Hughes, J. Parkinson, M. Gerstein, S. J. Wodak, A. Emili, and J. F. Greenblatt. Global landscape

of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440(7084):637–643, 2006.

[133] M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent subgraphs. IEEE

Trans. on Knowl. and Data Eng., 16(9):1038–1051, 2004.

[134] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. Data Min. Knowl.

Discov., 11(3):243–271, 2005.

[135] L. Lazzeroni and A. Owen. Plaid models for gene expression data. Statistica Sinica, 12(1):61–86,

2002.

[136] M. Lei and B. K. Tye. Initiating DNA synthesis: from recruiting to activating the MCM complex.

J. Cell. Sci., 114(8):1447–1454, 2001.

[137] H. C. M. Leung, Q. Xiang, S. M. Yiu, and F. Y. L. Chin. Predicting protein complexes from PPI

data: a core-attachment approach. J Comput. Biol., 16(2):133–144, 2009.

[138] B. Lewin. Genes IX. Jones and Bartlett, ninth edition, 2007.

170 Bibliography

[139] G. Li, Q. Ma, H. Tang, A. H. Paterson, and Y. Xu. QUBIC: a qualitative biclustering algorithm for

analyses of gene expression data. Nucl. Acids Res., 37(15):e101, 2009.

[140] T. Li. A general model for clustering binary data. In KDD ’05: Proceedings of the 11th ACM

SIGKDD International Conference on Knowledge Discovery in Data Mining, pages 188–197. ACM,

2005.

[141] D.-I. Lin and Z. M. Kedem. Pincer search: a new algorithm for discovering the maximum fre-

quent sets. In EDBT ’98: Proceedings of the 6th International Conference on Extending Database

Technology, pages 105–119. Springer, 1998.

[142] J. Lin and J. Qian. Systems biology approach to integrative comparative genomics. Expert Rev.

Proteomics, 4(1):107–119, 2007.

[143] Y.-R. Lin, J. Sun, P. Castro, R. Konuru, H. Sundaram, and A. Kelliher. MetaFac: community dis-

covery via relational hypergraph factorization. In KDD ’09: Proceedings of the 15th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 527–536. ACM, 2009.

[144] F. Ling, H. Morioka, E. Ohtsuka, and T. Shibata. A role for MHR1, a gene required for mitochondrial

genetic recombination, in the repair of damage spontaneously introduced in yeast mtDNA. Nucl.

Acids Res., 28(24):4956–4963, 2000.

[145] G. Liu and L. Wong. Effective pruning techniques for mining quasi-cliques. In ECML PKDD ’08:

Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases

– Part II, pages 33–49. Springer, 2008.

[146] H. M. Lodhi and S. H. Muggleton. Elements of Computational Systems Biology. Wiley, 2010.

[147] H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, M. P. Scott, A. Bretscher, H. Ploegh, and P. Matsu-

daira. Molecular Cell Biology. Freeman, sixth edition, 2007.

[148] B. Long, Z. M. Zhang, X. Wú, and P. S. Yu. Spectral clustering for multi-type relational data. In

ICML ’06: Proceedings of the 23rd International Conference on Machine Learning, pages 585–592.

ACM, 2006.

[149] F. Luo, Y. Yang, C.-F. Chen, R. Chang, J. Zhou, and R. H. Scheuermann. Modular organization of

protein interaction networks. Bioinformatics, 23(2):207–214, 2007.

[150] U. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416, 2007.

[151] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: A survey.

IEEE/ACM Trans. Comput. Biol. Bioinformatics, 1(1):24–45, 2004.

[152] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge

University Press, 2008.

[153] D. Medini, A. Covacci, and C. Donati. Protein homology network families reveal step-wise diversi-

fication of type III and type IV secretion systems. PLoS Comput. Biol., 2(12), 2006.

[154] T. Michoel, R. De Smet, A. Joshi, Y. Van de Peer, and K. Marchal. Comparative analysis of module-

based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Sys-

tems Biology, 3(1):49, 2009.

[155] G. W. Milligan. Ultrametric hierarchical clustering algorithms. Psychometrika, 44(3):343–346, 1979.

Bibliography 171

[156] N. Mishra, D. Ron, and R. Swaminathan. A new conceptual clustering framework. Mach. Learn.,

56(1-3):115–151, 2004.

[157] A. J. Myers, J. R. Gibbs, J. A. Webster, K. Rohrer, A. Zhao, L. Marlowe, M. Kaleem, D. Leung,

L. Bryden, P. Nath, V. L. Zismann, K. Joshipura, M. J. Huentelman, D. Hu-Lince, K. D. Coon,

D. W. Craig, J. V. Pearson, P. Holmans, C. B. Heward, E. M. Reiman, D. Stephan, and J. Hardy.

A survey of genetic human cortical gene expression. Nat. Genet., 39(12):1494–1499, 2007.

[158] S.-I. Nakano and T. Uno. Constant time generation of trees with specified diameter. In Graph-

Theoretic Concepts in Computer Science, 30th International Workshop, volume 3353 of Lecture

Notes in Computer Science, pages 33–45. Springer, 2004.

[159] H. I. Nakaya, P. P. Amaral, R. Louro, A. Lopes, A. A. Fachel, Y. B. Moreira, T. A. El-Jundi, A. M.

da Silva, E. M. Reis, and S. Verjovski-Almeida. Genome mapping and expression analyses of human

intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation

of transcription. Genome Biol., 8(3):R43, 2007.

[160] M. E. Newman. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA,

103(23):8577–8582, 2006.

[161] M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167–256,

2003.

[162] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys.

Rev. E, 69(2):026113, 2004.

[163] K. P. O’Brien, M. Remm, and E. L. L. Sonnhammer. Inparanoid: a comprehensive database of

eukaryotic orthologs. Nucl. Acids Res., 33(suppl 1):D476–D480, 2005.

[164] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa. KEGG: Kyoto encyclopedia

of genes and genomes. Nucleic Acids Res., 27(1):29–34, 1999.

[165] G. Orphanides, W.-H. Wu, W. S. Lane, M. Hampsey, and D. Reinberg. The chromatin-specific

transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature,

400(6741):284–288, 1999.

[166] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of

complex networks in nature and society. Nature, 435(7043):814–818, 2005.

[167] G. Pandey, G. Atluri, M. Steinbach, C. L. Myers, and V. Kumar. An association analysis approach

to biclustering. In KDD ’09: Proceedings of the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 677–686. ACM, 2009.

[168] P. M. Pardalos and J. Xue. The maximum clique problem. Journal of Global Optimization, 4(3):301–

328, 1994.

[169] D. Park, S. Lee, D. Bolser, M. Schroeder, M. Lappe, D. Oh, and J. Bhak. Comparative interactomics

analysis of protein family interaction networks using PSIMAP (protein structural interactome map).

Bioinformatics, 21(15):3234–3240, 2005.

[170] J. A. Parkkinen and S. Kaski. Searching for functional gene modules with interaction component

models. BMC Syst. Biol., 4:4, 2010.

172 Bibliography

[171] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association

rules. In ICDT ’99: Proceedings of the 7th International Conference on Database Theory, pages 398–

416. Springer, 1999.

[172] J. Pei, D. Jiang, and A. Zhang. Mining cross-graph quasi-cliques in gene expression and protein

interaction data. In ICDE ’05: Proceedings of the 21st International Conference on Data Engineering,

pages 353–354. IEEE Computer Society, 2005.

[173] J. B. Pereira-Leal, A. J. Enright, and C. A. Ouzounis. Detection of functional modules from protein

interaction networks. Proteins, 54(1):49–57, 2004.

[174] S. Peri, J. D. Navarro, T. Z. Kristiansen, R. Amanchy, V. Surendranath, B. Muthusamy, T. K. B.

Gandhi, K. N. Chandrika, N. Deshpande, S. Suresh, B. P. Rashmi, K. Shanker, N. Padma, V. Ni-

ranjan, H. C. Harsha, N. Talreja, B. M. Vrushabendra, M. A. Ramya, A. J. Yatish, M. Joy, H. N.

Shivashankar, M. P. Kavitha, M. Menezes, D. R. Choudhury, N. Ghosh, R. Saravana, S. Chan-

dran, S. Mohan, C. K. Jonnalagadda, C. K. Prasad, C. Kumar-Sinha, K. S. Deshpande, and

A. Pandey. Human protein reference database as a discovery resource for proteomics. Nucl. Acids

Res., 32(suppl 1):D497–D501, 2004.

[175] J. Pinney and D. Westhead. Betweenness-based decomposition methods for social and biological net-

works. In Interdisciplinary Statistics and Bioinformatics, pages 87–90, Leeds, 2006. Leeds University

Press.

[176] A. Prelić, S. Bleuler, P. Zimmermann, A. Wille, P. Buhlmann, W. Gruissem, L. Hennig, L. Thiele,

and E. Zitzler. A systematic comparison and evaluation of biclustering methods for gene expression

data. Bioinformatics, 22(9):1122–1129, 2006.

[177] C. Quero, N. Colomé, M. R. Prieto, M. Carrascal, M. Posada, E. Gelṕı, and J. Abian. Determination

of protein markers in human serum: Analysis of protein expression in toxic oil syndrome studies.

Proteomics, 4(2):303–315, 2004.

[178] J. Ramon and S. Nijssen. Polynomial-delay enumeration of monotonic graph classes. J. Mach. Learn.

Res., 10:907–929, 2009.

[179] I. Rivals, L. Personnaz, L. Taing, and M.-C. Potier. Enrichment or depletion of a GO category

within a class of genes: which test? Bioinformatics, 23(4):401–407, 2007.

[180] A. W. Rives and T. Galitski. Modular organization of cellular networks. Proc. Natl. Acad. Sci. USA,

100(3):1128–1133, 2003.

[181] C. Robardet. Constraint-based pattern mining in dynamic graphs. In ICDM ’09: Proceedings of the

9th IEEE International Conference on Data Mining, pages 950–955. IEEE Computer Society, 2009.

[182] A. Ruepp, B. Brauner, I. Dunger-Kaltenbach, G. Frishman, C. Montrone, M. Stransky, B. Waegele,

T. Schmidt, O. N. Doudieu, V. Stümpflen, and H. W. Mewes. CORUM: the comprehensive resource

of mammalian protein complexes. Nucl. Acids Res., 36(suppl 1):D646–D650, 2008.

[183] A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko, U. Güldener,

G. Mannhaupt, M. Münsterkötter, and H. W. Mewes. The FunCat, a functional annotation scheme

for systematic classification of proteins from whole genomes. Nucl. Acids Res., 32(18):5539–5545,

2004.

Bibliography 173

[184] R. Rymon. Search through systematic set enumeration. In Proceedings of the 3rd International

Conference on Principles of Knowledge Representation and Reasoning, pages 539–550, 1992.

[185] J. M. Santos and M. Embrechts. On the use of the adjusted Rand index as a metric for evaluat-

ing supervised classification. In ICANN ’09: Proceedings of the 19th International Conference on

Artificial Neural Networks, pages 175–184. Springer, 2009.

[186] S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

[187] M. Schmid, T. S. Davison, S. R. Henz, U. J. Pape, M. Demar, M. Vingron, B. Schölkopf, D. Weigel,

and J. U. Lohmann. A gene expression map of arabidopsis thaliana development. Nat. Genet.,

37(5):501–506, 2005.

[188] E. Segal, N. Friedman, D. Koller, and A. Regev. A module map showing conditional activity of

expression modules in cancer. Nat. Genet., 36(10):1090–1098, 2004.

[189] E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein interaction and

gene expression data. Bioinformatics, 19(suppl 1):i264–i271, 2003.

[190] R. Shamir, A. Maron-Katz, A. Tanay, C. Linhart, I. Steinfeld, R. Sharan, Y. Shiloh, and R. Elkon.

EXPANDER – an integrative program suite for microarray data analysis. BMC Bioinformatics,

6(1):232, 2005.

[191] R. Sharan, T. Ideker, B. Kelley, R. Shamir, and R. M. Karp. Identification of protein complexes by

comparative analysis of yeast and bacterial protein interaction data. J. Comput. Biol., 12(6):835–846,

2005.

[192] R. Sharan, S. Suthram, R. M. Kelley, T. Kuhn, S. McCuine, P. Uetz, T. Sittler, R. M. Karp, and

T. Ideker. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA,

102(6):1974–1979, 2005.

[193] R. Sharan, I. Ulitsky, and R. Shamir. Network-based prediction of protein function. Mol. Syst. Biol.,

3:88, 2007.

[194] B. A. Shoemaker and A. R. Panchenko. Deciphering protein-protein interactions. part I. experimental

techniques and databases. PLoS Comput. Biol., 3(3):e42, 2007.

[195] B. A. Shoemaker and A. R. Panchenko. Deciphering protein-protein interactions. part II. computa-

tional methods to predict protein and domain interaction partners. PLoS Comput. Biol., 3(4):e43,

2007.

[196] K. Sim, J. Li, V. Gopalkrishnan, and G. Liu. Mining maximal quasi-bicliques to co-cluster stocks and

financial ratios for value investment. In ICDM ’06: Proceedings of the 6th International Conference

on Data Mining, pages 1059–1063, 2006.

[197] J. Song and M. Singh. How and when should interactome-derived clusters be used to predict func-

tional modules and protein function? Bioinformatics, 25(23):3143–3150, 2009.

[198] V. Spirin and L. A. Mirny. Protein complexes and functional modules in molecular networks. Proc.

Natl. Acad. Sci. USA, 100(21):12123–12128, 2003.

[199] P. D. Stenson, E. V. Ball, M. Mort, A. D. Phillips, J. A. Shiel, N. S. T. Thomas, S. Abeysinghe,

M. Krawczak, and D. N. Cooper. Human Gene Mutation Database (HGMD): 2003 update. Hum.

Mutat., 21(6):577–581, 2003.

174 Bibliography

[200] B. E. Stranger, M. S. Forrest, A. G. Clark, M. J. Minichiello, S. Deutsch, R. Lyle, S. Hunt, B. Kahl,

S. E. Antonarakis, S. Tavar, P. Deloukas, and E. T. Dermitzakis. Genome-wide associations of gene

expression variation in humans. PLoS Genet., 1(6):e78, 2005.

[201] B. E. Stranger, M. S. Forrest, M. Dunning, C. E. Ingle, C. Beazley, N. Thorne, R. Redon, C. P.

Bird, A. de Grassi, C. Lee, C. Tyler-Smith, N. Carter, S. W. Scherer, S. Tavar, P. Deloukas, M. E.

Hurles, and E. T. Dermitzakis. Relative impact of nucleotide and copy number variation on gene

expression phenotypes. Science, 315(5813):848–853, 2007.

[202] A. I. Su, T. Wiltshire, S. Batalov, H. Lapp, K. A. Ching, D. Block, J. Zhang, R. Soden, M. Hayakawa,

G. Kreiman, M. P. Cooke, J. R. Walker, and J. B. Hogenesch. A gene atlas of the mouse and human

protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA, 101(16):6062–6067, 2004.

[203] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: dynamic tensor analysis. In KDD

’06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 374–383. ACM, 2006.

[204] S. Suthram, J. T. Dudley, A. P. Chiang, R. Chen, T. J. Hastie, and A. J. Butte. Network-based

elucidation of human disease similarities reveals common functional modules enriched for pluripotent

drug targets. PLoS Comput Biol, 6(2):e1000662, 2010.

[205] A. Tanay, R. Sharan, M. Kupiec, and R. Shamir. Revealing modularity and organization in the

yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc.

Natl. Acad. Sci. USA, 101(9):2981–2986, 2004.

[206] A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in gene expression

data. Bioinformatics, 18(suppl 1):S136–S144, 2002.

[207] A. Tanay, R. Sharan, and R. Shamir. Biclustering algorithms: A survey. In Handbook of Computa-

tional Molecular Biology. Chapman and Hall, 2005.

[208] R. L. Tatusov, N. D. Fedorova, J. D. Jackson, A. R. Jacobs, B. Kiryutin, E. V. Koonin, D. M.

Krylov, R. Mazumder, S. L. Mekhedov, A. N. Nikolskaya, B. S. Rao, S. Smirnov, A. V. Sverdlov,

S. Vasudevan, Y. I. Wolf, J. J. Yin, and D. A. Natale. The COG database: an updated version

includes eukaryotes. BMC Bioinformatics, 4:41, 2003.

[209] R. L. Tatusov, E. V. Koonin, and D. J. Lipman. A genomic perspective on protein families. Science,

278(5338):631–637, 1997.

[210] The International HapMap Consortium. A second generation human haplotype map of over 3.1

million SNPs. Nature, 449(7164):851–861, 2007.

[211] F. Towfic, M. H. W. Greenlee, and V. Honavar. Aligning biomolecular networks using modular graph

kernels. In Algorithms in Bioinformatics, 9th International Workshop, WABI 2009, Proceedings,

pages 345–361, 2009.

[212] I. Ulitsky and R. Shamir. Identification of functional modules using network topology and high-

throughput data. BMC Syst. Biol., 1:8, 2007.

[213] I. Ulitsky and R. Shamir. Identifying functional modules using expression profiles and confidence-

scored protein interactions. Bioinformatics, 25(9):1158–1164, 2009.

[214] T. Uno. An efficient algorithm for enumerating pseudo cliques. In Algorithms and Computation,

18th International Symposium (ISAAC 2007), Proceedings, pages 402–414, 2007.

Bibliography 175

[215] T. Uno, M. Kiyomi, and H. Arimura. LCM ver. 2: Efficient mining algorithms for fre-

quent/closed/maximal itemsets. In FIMI ’04, Proceedings of the IEEE ICDM Workshop on Frequent

Itemset Mining Implementations, 2004.

[216] S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, 2000.

[217] I. Van Mechelen, H. H. Bock, and P. D. Boeck. Two-mode clustering methods: a structured overview.

Stat. Methods Med. Res., 13(5):363–394, 2004.

[218] O. Vincent and M. Carlson. Gal83 mediates the interaction of the Snf1 kinase complex with the

transcription activator Sip4. EMBO J., 18(23):6672–6681, 1999.

[219] C. von Mering, L. J. Jensen, M. Kuhn, S. Chaffron, T. Doerks, B. Kruger, B. Snel, and P. Bork.

STRING 7 – recent developments in the integration and prediction of protein interactions. Nucl.

Acids Res., 35(suppl 1):D358–D362, 2007.

[220] C. von Mering, L. J. Jensen, B. Snel, S. D. Hooper, M. Krupp, M. Foglierini, N. Jouffre, M. A.

Huynen, and P. Bork. STRING: known and predicted protein-protein associations, integrated and

transferred across organisms. Nucl. Acids Res., 33(suppl 1):D433–D437, 2005.

[221] J. Wang, J. Han, and J. Pei. CLOSET+: searching for the best strategies for mining frequent closed

itemsets. In KDD ’03: Proceedings of the9th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 236–245. ACM, 2003.

[222] P. Wang, C. Domeniconi, and K. B. Laskey. Latent dirichlet bayesian co-clustering. In ECML

PKDD ’09: Proceedings of the European Conference on Machine Learning and Knowledge Discovery

in Databases, pages 522–537. Springer, 2009.

[223] Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: a revolutionary tool for transcriptomics. Nat.

Rev. Genet., 10(1):57–63, 2009.

[224] M. J. Warrens. On the equivalence of cohen’s kappa and the hubert-arabie adjusted rand index.

Journal of Classification, 25(2):177–183, 2008.

[225] T. Washio and H. Motoda. State of the art of graph-based data mining. SIGKDD Explor. Newsl.,

5(1):59–68, 2003.

[226] D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, Z. Chang, and

J. Woolsey. DrugBank: a comprehensive resource for in silico drug discovery and exploration.

Nucleic Acids Res., 34(Database issue):D668–D672, 2006.

[227] T. Wolf, B. Brors, T. Hofmann, and E. Georgii. Global biclustering of microarray data. In ICDMW

’06: Proceedings of the 6th IEEE International Conference on Data Mining – Workshops, pages

125–129. IEEE Computer Society, 2006.

[228] Z. Wu, R. A. Irizarry, R. Gentleman, F. Martinez-Murillo, and F. Spencer. A model-based back-

ground adjustment for oligonucleotide expression arrays. Journal of the American Statistical Asso-

ciation, 99(468):909–917, 2004.

[229] A. E. Wurmser, T. K. Sato, and S. D. Emr. New component of the vacuolar class C-Vps complex

couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion. J. Cell

Biol., 151(3):551–562, 2000.

176 Bibliography

[230] I. Xenarios, D. W. Rice, L. Salwinski, M. K. Baron, E. M. Marcotte, and D. Eisenberg. DIP: the

database of interacting proteins. Nucleic Acids Res., 28(1):289–291, 2000.

[231] T. Yamada, M. Kanehisa, and S. Goto. Extraction of phylogenetic network modules from the

metabolic network. BMC Bioinformatics, 7:130, 2006.

[232] C. Yan, J. G. Burleigh, and O. Eulenstein. Identifying optimal incomplete phylogenetic data sets

from sequence databases. Mol. Phylogenet. Evol., 35(3):528–535, 2005.

[233] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In ICDM ’02: Proceedings of

the 2nd IEEE International Conference on Data Mining, pages 721–724. IEEE Computer Society,

2002.

[234] X. Yan and J. Han. CloseGraph: mining closed frequent graph patterns. In KDD ’03: Proceedings of

the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

286–295. ACM, 2003.

[235] X. Yan, M. R. Mehan, Y. Huang, M. S. Waterman, P. S. Yu, and X. J. Zhou. A graph-based

approach to systematically reconstruct human transcriptional regulatory modules. Bioinformatics,

23(13):i577–i586, 2007.

[236] X. Yan, X. J. Zhou, and J. Han. Mining closed relational graphs with connectivity constraints. In

KDD ’05: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 324–333. ACM, 2005.

[237] K. Y. Yeung and W. L. Ruzzo. Principal component analysis for clustering gene expression data.

Bioinformatics, 17(9):763–774, 2001.

[238] K. Y. Yip, H. Yu, P. M. Kim, M. Schultz, and M. Gerstein. The tYNA platform for comparative

interactomics: a web tool for managing, comparing and mining multiple networks. Bioinformatics,

22(23):2968–2970, 2006.

[239] N. Yosef, Z. Yakhini, A. Tsalenko, V. Kristensen, A.-L. Børresen-Dale, E. Ruppin, and R. Sharan.

A supervised approach for identifying discriminating genotype patterns and its application to breast

cancer data. Bioinformatics, 23(2):e91–e98, 2007.

[240] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association

rules. In KDD ’97: Proceedings of the 3rd International Conference on Knowledge Discovery and

Data Mining, pages 283–286. AAAI Press, 1997.

[241] M. J. Zaki, M. Peters, I. Assent, and T. Seidl. Clicks: An effective algorithm for mining subspace

clusters in categorical datasets. Data Knowl. Eng., 60(1):51–70, 2007.

[242] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent closed quasi-clique discovery from large dense

graph databases. In KDD ’06: Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 797–802. ACM, 2006.

[243] L. Zhao and M. J. Zaki. TRICLUSTER: an effective algorithm for mining coherent clusters in 3D

microarray data. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD International Conference

on Management of Data, pages 694–705. ACM, 2005.

[244] J. Zheng, X. Yang, J. M. Harrell, S. Ryzhikov, E. H. Shim, K. Lykke-Andersen, N. Wei, H. Sun,

R. Kobayashi, and H. Zhang. CAND1 binds to unneddylated CUL1 and regulates the formation of

SCF ubiquitin E3 ligase complex. Mol. Cell, 10(6):1519–1526, 2002.

[245] F. Zhu, X. Yan, J. Han, and P. S. Yu. gPrune: A constraint pushing framework for graph pattern

mining. In PAKDD ’07: Proceedings of the 11th Pacific-Asia Conference on Advances in Knowledge

Discovery and Data Mining, pages 388–400. Springer, 2007.

List of Figures

3.1 A weighted graph with four nodes. 16

3.2 A tree structure. 17

3.3 Example relations. 17

5.1 Different cluster finding concepts: graph partitioning versus cluster enumeration. 30

5.2 Schematic view of typical overlap scenarios in protein complex analysis. 31

5.3 Integration of profile data into protein interaction analysis. 31

5.4 Motivating example for module enumeration strategy. 34

5.5 Illustration of reverse search with the odd-even output method. 44

5.6 Minimum relative degree versus density. 50

5.7 Anti-monotonicity of consistency constraints. 58

5.8 Example reduction of a module leading to disconnected ancestor modules. 60

6.1 Generalization of module mining to two-way and higher-order data. 64

6.2 Illustration of the n-set definition in the relational approach and in our dense cluster approach. 66

6.3 Visualization of a three-way cluster. 70

6.4 DCE runtime measurements for artifical data in dependence of different parameters. 85

6.5 Runtime comparison of DCE and other set enumeration strategies. 90

6.6 Top-ranking cluster for email traffic data. 93

7.1 Schematic view of agglomerative clustering. 98

7.2 Comparison of agglomerative clustering strategies in two-way data. 99

7.3 Classical symmetric scenario for hierarchical clustering. 100

7.4 Hierarchical biclustering scenario. 103

9.1 Comparative precision-recall analysis for yeast modules. 118

9.2 Precision-recall curves for overlapping interactions in yeast modules. 119

9.3 Comparative precision-recall analysis for human modules. 121

9.4 Precision-recall curves for overlapping interactions in human modules. 121

9.5 Phenotype-associated yeast modules. 124

9.6 Yeast complexes retrieved by DME and their overlap with conserved DME modules. 125

9.7 Tissue-specific modules in human. 127

12.1 Illustration of a SNP-transcript association. 146

12.2 Comparative evaluation of different strategies to discover functional SNPs. 149

14.1 Connection subgraph discovered in a protein interaction network of zebrafish. 159

List of Tables

6.1 Performance analysis of DCE and its extensions. 88

9.1 Module statistics of the comparative analysis for yeast. 120

9.2 Module statistics of the comparative analysis on the human network. 122

9.3 Results of DME experiments with constraints. 123

10.1 Comparative evaluation on coexpression data. 134

11.1 Major tissues and their frequency among the 79 experiments in the A. thaliana data. 138

11.2 Comparative analysis of biclustering and global sample clustering. 138

11.3 Sample-based evaluation of SAMBA biclustering results. 141

11.4 Gene function evaluation of biclusters. 142

11.5 Enriched GO terms for pure tissue clusters. 144

12.1 Enumerative bicluster SNPs with functional annotation. 150

12.2 Hierarchical bicluster SNPs with functional annotation. 151

List of Algorithms

1 Dense module enumeration. 39

2 Enumeration of locally maximal dense modules. 46

3 Enumeration of dense leaf modules. 46

4 Pseudocode of general dense cluster enumeration. 72

Publications

Publications related to this thesis are marked with •.

Journal Articles

• E. Georgii, K. Tsuda, and B. Schölkopf. Multi-way set enumeration in weight tensors. Machine

Learning, Special issue on Mining and Learning with Graphs and Relations. To appear.

• E. Georgii, S. Dietmann, T. Uno, P. Pagel, and K. Tsuda. Enumeration of condition-dependent dense

modules in protein interaction networks. Bioinformatics, 25(7):933–940, 2009.

• S. Dietmann, E. Georgii, A. Antonov, K. Tsuda, and H.-W. Mewes. The DICS repository: module-

assisted analysis of disease-related gene lists. Bioinformatics, 25(6):830–831, 2009.

E. Georgii, L. Richter, U. Rückert, and S. Kramer. Analyzing microarray data using quantitative

association rules. Bioinformatics, 21(Suppl. 2):ii123–ii129, 2005.

Papers at International Workshops

• E. Georgii, K. Tsuda, and B. Schölkopf. Multi-way set enumeration in real-valued tensors. DMMT

’09: Proceedings of the KDD ’09 Workshop on Data Mining using Matrices and Tensors, pp. 32–41, ACM,

2009.

T. Wolf, B. Brors, T. Hofmann, and E. Georgii. Global biclustering of microarray data. ICDMW ’06:

Proceedings of the 6th IEEE International Conference on Data Mining – Workshops, pp. 125–129, IEEE

Computer Society, 2006.

Abstracts

• E. Georgii, S. Dietmann, T. Uno, P. Pagel, and K. Tsuda. Mining expression-dependent modules in

the human interaction network. BMC Bioinformatics 8(Suppl. 8):S4, 2007. [Oral presentation and best

poster award at the 3rd ISCB Student Council Symposium jointly held with ISMB ’07.]

Curriculum Vitae

Personal Information

Name Elisabeth Georgii

Date of birth May 17, 1980

Place of birth Bielefeld, Germany

Citizenship German

Email elisabeth.georgii@tkk.fi

Education and Employment

09/1990 - 06/1999 Graf-Rasso-Gymnasium Fürstenfeldbruck, Germany (secondary school)

06/1999 Abitur

10/1999 - 09/2000 Basic studies in Computer Science at Ludwig-Maximilians-Universität

München, Germany

10/2000 - 05/2002 Basic studies in Bioinformatics at Ludwig-Maximilians-Universität

München and Technische Universität München, Germany

05/2002 Intermediate diploma in Bioinformatics

05/2002 - 03/2005 Advanced studies in Bioinformatics at Ludwig-Maximilians-Universität

München and Technische Universität München

03/2005 Diploma in Bioinformatics; Diploma thesis: “Quantitative association

rules”, supervised by Prof. Dr. Stefan Kramer, Technische Universität

München

08/2005 - 06/2006 Research associate at Technische Universität Darmstadt, Germany, su-

pervised by Prof. Dr. Thomas Hofmann

07/2006 - 12/2009 PhD student at Max Planck Campus Tübingen, Germany, supervised

by Dr. Koji Tsuda, Max Planck Institute for Biological Cybernetics, and

Dr. Gunnar Rätsch, Friedrich Miescher Laboratory of the Max Planck

Society

since 01/2010 Researcher at Aalto University, School of Science and Technology, Fin-

land

Lebenslauf

Persönliche Daten

Name Elisabeth Georgii

Geburtstag 17. Mai 1980

Geburtsort Bielefeld

Staatsangehörigkeit deutsch

E-mail elisabeth.georgii@tkk.fi

Ausbildung und Beruf

09/1990 - 06/1999 Graf-Rasso-Gymnasium Fürstenfeldbruck

06/1999 Abitur

10/1999 - 09/2000 Informatik-Grundstudium an der Ludwig-Maximilians-Universität

München

10/2000 - 05/2002 Bioinformatik-Grundstudium an der Ludwig-Maximilians-Universität

München und der Technischen Universität München

05/2002 Vordiplom in Bioinformatik

05/2002 - 03/2005 Bioinformatik-Hauptstudium an der Ludwig-Maximilians-Universität

München und der Technischen Universität München

03/2005 Diplom in Bioinformatik; Diplomarbeit “Quantitative association rules”

bei Prof. Dr. Stefan Kramer, Technische Universität München

08/2005 - 06/2006 Wissenschaftliche Mitarbeiterin an der Technischen Universität Darm-

stadt bei Prof. Dr. Thomas Hofmann

07/2006 - 12/2009 Doktorandin am Max-Planck-Campus Tübingen bei Dr. Koji Tsuda,

Max-Planck-Institut für Biologische Kybernetik, und Dr. Gunnar Rätsch,

Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft

seit 01/2010 Angestellte an der Aalto University, School of Science and Technology,

Finnland

	INTRODUCTION
	Motivation for Structured Data Mining
	Data Mining
	Systems Biology
	Challenges
	Outline of the Thesis

	Common Systems Biology Resources
	Protein Interaction Data
	Gene Expression Data
	Gene Ontology

	Structured Data Representations and Formalisms
	Graphs and Networks
	Relations

	Review on Unsupervised Analysis of Structured Data
	Graph Mining
	Optimal Subgraph Search
	Graph Clustering
	Constrained Cluster Detection and Data Integration
	Bicluster Analysis
	Itemset Mining
	Relational Data Mining and Higher-Order Analysis

	SET ENUMERATION BASED ON INTERACTION DENSITY -- A REVERSE SEARCH APPROACH
	Module Mining in Weighted Interaction Networks
	Motivation
	Definitions
	Enumeration Algorithm
	Search Space
	Reduction Scheme
	Search Procedure
	Implementation Details
	Complexity
	Excursus: Reverse Search Applications

	Output Representation
	Locally Maximal Modules and Leaf Modules
	Module Ranking

	Degree-Based Module Criteria
	Minimum Degree Criterion
	Minimum Relative Degree and Quasi-Cliques
	Previous Work on Quasi-Clique Mining
	Discussion

	Integration of Node Weights
	Definitions
	Algorithm
	Remarks

	Constraint Integration
	Constraints from External Data Sources
	Connectivity Constraints
	Cardinality and Branching Restrictions

	Multi-Way Cluster Mining in Higher-Order Association Data
	Motivation
	Problem Definition
	Enumeration Approach
	Global Index Representation
	Search Space
	Reduction Scheme
	Search Algorithm
	Implementation Details
	Complexity

	Extensions
	Output Filtering and Balance Criteria
	Cluster Ranking
	Isolation-Based Pruning
	Other Restrictions

	Symmetry Adaptations
	Motivation
	Definitions
	Reduction Scheme
	Details

	Experimental Studies
	Scalability
	Performance of Branching-Restricted Search
	Efficiency of Reverse Search
	Email Traffic Analysis

	Discussion

	HIERARCHICAL DETECTION OF ASSOCIATION PATTERNS
	Hierarchical Biclustering
	Motivation
	Review of Hierarchical Clustering
	Agglomerative Biclustering Algorithm
	General Scheme
	Correctness
	Complexity

	Extensions of Hierarchical Biclustering
	Alternative Association Criteria
	Alternative Clusterings
	Hierarchical Higher-Order Clustering

	BIOLOGICAL APPLICATIONS
	Module Discovery in Protein Interaction Networks
	Data Collection and Preprocessing
	Comparative Analysis on the Yeast Interaction Network
	Precision-Recall Analysis
	Further Result Statistics

	Comparative Analysis on the Human Interaction Network
	Phenotype-Associated Modules in Yeast
	Evolutionary Conserved Modules in Yeast
	Tissue-Specific Modules in Human
	Disease-Related Module Analysis
	Discussion and Outlook

	Module Detection from Multiple Coexpression Networks
	Data
	Related Approaches
	Experimental Set-Up
	Evaluation Measures
	Results

	Biclustering of Gene Expression Data
	Data
	Sample-Based Evaluation
	Gene Function Analysis

	SNP-Transcript Association Discovery
	Motivation
	Data and Preprocessing
	Experimental Approach
	Results

	CONCLUSION
	Summary
	Discussion and Future Work
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Publications
	Curriculum Vitae (English)
	Lebenslauf (German)

