
Coordinated Path Following Control

and Formation Control of

Mobile Robots

Dissertation

der Fakultät für Informations- und Kognitionswissenschaften

der Eberhard-Karls-Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

M.Sc. Kiattisin Kanjanawanishkul
aus Trang, Thailand

Tübingen

2010

Tag der mündlichen Qualifikation: 23.07.2010

Dekan: Prof. Dr.-Ing. Oliver Kohlbacher

1. Berichterstatter: Prof. Dr. Andreas Zell

2. Berichterstatter: Prof. Dr.-Ing. Frank Allgöwer

Abstract

Rapid advances in sensing, computing and communication technologies have led to con-

siderably increased research activities in multi-robot systems over the last decade. Top-

ics include multi-robot motion planning, cooperative manipulation, aerial applications

involving cooperative exploration of the unknown environment, automated highway sys-

tems, software architectures for multi-robot systems, and formation control. Multi-robot

systems have been proven to offer additional advantages in terms of flexibility in operat-

ing a group of robots and failure tolerance due to redundancy in available mobile robots.

However, the benefits of using multi-robot teams do not come without cost. Coordinating

teams of autonomous robots is much more challenging than maneuvering a single robot.

This dissertation addresses formation control problems, which are among the most ac-

tive research topics in multi-robot systems. Over the last two decades, there have been

a large number of publications on this field, and it is still growing. Recently, this re-

search has been extended to some related research areas, e.g., consensus problems and

distributed control systems, imposing new challenges on formation control problems.

In general, formation control subproblems addressed in the literature can be classified

as formation shape generation, formation reconfiguration/selection, formation tracking,

and role assignment in formation. The main purpose of this dissertation is to address

two important and correlated subproblems in formation control: formation tracking and

role assignment in formation. The goal of the former is that a team of mobile robots is

required to maintain a geometric formation while tracking a reference or a set of refer-

ences. The latter arises when a mobile robot in the team must decide what role to take

on in a desired formation configuration.

In particular, we study coordinated path following control of omnidirectional mobile

robots and unicycle mobile robots. This problem can be seen as a subtask of formation

tracking. Path following is one of the three basic motion control tasks in mobile robot

research. The others are trajectory tracking and point stabilization. Even though less

attention is drawn to this problem in the literature, it offers some advantages over tra-

jectory tracking in some cases. The objective of path following control is to be on the

path rather than at a certain point at a particular time. To solve this problem, we employ

a model predictive control (MPC) technique to generate a sequence of optimal veloci-

ties of a so-called virtual vehicle which is followed by a real robot. This approach can

eliminate stringent initial condition constraints because the velocity of a virtual vehicle

is controlled explicitly. Using this technique, we can gain some benefits over other avail-

able control schemes, e.g., the ability to incorporate generic models, linear and nonlinear,

and constraints in the optimal control problem and the ability to use future values of ref-

iii

erences when they are available, allowing to improve system performance. However,

the main drawback is significant computational burden associated with solving a set of

nonlinear differential equations and a nonlinear dynamic optimization problem online.

Then, we extend path following control to coordinated path following control. A

group of mobile robots not only follow a reference path but also maintain a geometric

formation shape. The main challenge is to design a decentralized control law using only

local information to achieve a formation tracking objective. In this study, we propose

two solutions. In the first solution, the MPC framework for path following control is

extended to the coordinated path following control problem. In spite of great theoretical

properties of such MPC controllers, the stability and feasibility of decentralized schemes

are rather conservative. The second solution is computationally simple so that it may be

suitable for low-computational systems when the advantages of MPC schemes including

constraint handling are not a dominating factor. Its controller design is based on a Lya-

punov technique and a second-order consensus protocol with a reference velocity. It is

worth noting that the path variable has been used as a coupling variable synchronizing

each member in formation in both solutions.

In the second formation control subproblem, we study role assignment in formation.

This problem becomes more challenging when robots in the team do not have complete

information and they do not know the number of robots participating in the formation

tasks. With the assumption that the formation graph is connected and bidirectional, we

propose an online and distributed role assignment. This approach is proven by extensive

simulation and experimental results.

iv

Acknowledgments

I would first like to acknowledge my advisor, Prof. Dr. Andreas Zell, for giving me an

opportunity to do my research work on a team of mobile robots and for his continuing

support and guidance throughout my years at the University of Tübingen. I would also

like to thank the dissertation committee member, Prof. Dr.-Ing. Frank Allgöwer, for his

constructive advice and efforts in reading and commenting on my dissertation.

I am thankful to the Attempto Tübingen Robot Soccer team members for developing

the RobocCup robots which I have used for validating my control algorithms. I owe

special thanks to Dr. Xiang Li for helping me use the RoboCup software framework and

control the RoboCup robots during my first year and for introducing me to path following

control problems and model predictive control.

I would like to thank all colleagues at the Department of Computer Architecture for an

excellent working atmosphere. I appreciate the help from Matthias Müller (from the In-

stitute for Systems Theory and Automatic Control of the University of Stuttgart), Philipp

Vorst, Marius Hofmeister, Philippe Komma, and Karl E. Wenzel for their proofreading

of this dissertation and many valuable suggestions. I am especially indebted to my of-

fice mate, Philipp Vorst, for always willing to give me suggestions and assistance, the

interesting discussions, and for answering all my programming and Linux questions. I

gratefully acknowledge his help and support all the time. Furthermore, I am very thank-

ful to Marius Hofmeister for helping me during my first year lectures, and for his support

in experiments. Last but not least I would like to thank Dr. Christian Weiss and Karsten

Bohlmann for their help.

Additionally, I would like to thank Vita Serbakova for doing a great job as our depart-

ment’s secretary. Many thanks go to Klaus Beyreuther who is always helpful with all

computer problems.

Most importantly, I profoundly thank my parents and my sisters for their love, their

encouragement and constant support throughout the years.

This dissertation was made possible by a Thai government scholarship. I am grateful

to the Thai government for the scholarship which enabled me to undertake a PhD study

at the University of Tübingen.

v

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Dissertation Organization . 3

2 Background Control Theory 5

2.1 Nonlinear System Theory . 5

2.1.1 Lipschitz Functions . 5

2.1.2 Lyapunov Stability . 6

2.1.3 The Invariance Principle . 8

2.1.4 Nonautonomous Systems . 8

2.1.5 Barbalat’s Lemma and Stability of Time-varying Systems . . . 10

2.1.6 Boundedness . 11

2.2 Model Predictive Control (MPC) . 11

2.2.1 Principles and Formulation . 12

2.2.2 Issues on Nonlinear MPC . 15

2.2.3 Optimization Solvers . 18

2.2.4 Centralized MPC vs. Decentralized MPC 21

2.3 Consensus Protocols . 22

2.4 Summary . 24

3 Robot Systems 25

3.1 System Architectures . 25

3.1.1 Heterogeneity vs. Homogeneity 25

3.1.2 Communication Structures . 26

3.1.3 Centralization vs. Decentralization 27

3.2 Robot Hardware . 28

3.2.1 Omnidirectional Mobile Robots 28

3.2.2 Unicycle Mobile Robots . 32

3.3 Software Frameworks . 34

3.4 Summary . 35

4 Path Following Control 37

4.1 Related Work on Motion Control Using MPC 39

4.2 Path Following Control of an Omnidirectional Robot 40

vii

Contents

4.2.1 Problem Formulation . 40

4.2.2 Controller Design . 42

4.2.3 Experimental Results . 44

4.3 Linearized Path Following Control of an Omnidirectional Robot 46

4.3.1 Problem Formulation . 46

4.3.2 Controller Design . 50

4.3.3 Experimental Results . 53

4.4 Smooth Reference Tracking of a Unicycle Mobile Robot 53

4.4.1 Problem Formulation . 55

4.4.2 Controller Design . 56

4.4.3 Simulation Results . 58

4.4.4 Experimental Results . 59

4.5 Discussions and Summary . 61

5 Coordinated Path Following Control 63

5.1 Review on Formation Control Strategies 63

5.1.1 Behavior-based Approach . 64

5.1.2 Leader-following Approach 65

5.1.3 Virtual-structure Approach . 66

5.1.4 Other Control Strategies . 67

5.2 Related Work on Coordinated Path Following Control 69

5.3 Nonlinear MPC Using the Leader-following Strategy 70

5.3.1 Problem Formulation . 70

5.3.2 Controller Design . 73

5.3.3 Experimental Results . 74

5.4 Distributed MPC for Omnidirectional Mobile Robots 76

5.4.1 Problem Formulation . 77

5.4.2 Controller Design . 79

5.4.3 Experimental Results . 86

5.5 Coordinated Path Following for Unicycle Mobile Robots 90

5.5.1 Problem Formulation . 92

5.5.2 Controller Design . 92

5.5.3 Simulation Results . 95

5.5.4 Experimental Results . 96

5.5.5 Cooperation in Heterogeneous Robot Teams 97

5.6 Discussions and Summary . 99

6 Role Assignment and Formation Switching 101

6.1 Related Work . 101

6.1.1 Formation Selection and Formation Switching 102

6.1.2 Role Assignment in Formation 103

6.2 Proposed Algorithms . 104

viii

Contents

6.2.1 Problem Formulation . 105

6.2.2 Distributed Role Assignment 106

6.2.3 Simulation Results . 111

6.2.4 Experimental Results . 113

6.3 Discussions and Summary . 116

7 Conclusions and Future Work 117

7.1 Dissertation Summary . 117

7.2 Future Research Directions . 118

7.2.1 A Unified Path Following Control Framework 118

7.2.2 Communication Structures . 119

7.2.3 Formation Control Subproblems 119

7.2.4 A Real-time MPC Framework 120

A Velocity Derivations of Offset-varying Curves 123

Bibliography 127

ix

Chapter 1

Introduction

Robots have become of increasingly more importance in human daily lives in the last

decade and apparently the number of robots will increase and get more involved in the

human society in the near future [28]. Real-world applications employing robots have al-

ready shown the effectiveness and usefulness of robots, especially in industry. However,

many unsolved problems still exist in many robotic research areas.

1.1 Motivation

In recent years, multi-robot systems (MRS) have been the object of widespread research

interest in the scientific community (see [13, 34, 172] for surveys on this topic), given

their application in different fields of robotics, such as service, military, or educational

robotics. The interest in using MRS is due to their characteristics of redundancy and

flexibility of mission execution, and tolerance to possible robot faults. Moreover, MRS

have been realized with different types of autonomous vehicles such as ground mobile

robots [36], underwater vehicles [159], unmanned aerial vehicles [215], aircraft [133],

space craft [11], and marine surface vessels [208]. The research in MRS has matured

to the point where systems with hundreds of robots [97, 183] or teams of heterogeneous

robots [30] are proposed.

In this dissertation, formation control, which has been an important issue in coordi-

nated control for a group of autonomous robots for decades [42], is studied. The for-

mation problem is defined as the coordination of a group of robots to get into and to

maintain a formation with a certain shape. Current application areas of formation con-

trol include search and rescue operations, security patrols, landmine removal, remote

terrain and space exploration, control of arrays of satellites and UAVs, area coverage

and reconnaissance in military missions. There are a large number of publications in

the fields of motion coordination and formation control. The motivations that draw the

attention of researchers to this problem are as follows:

• Biological inspirations: researchers have observed the remarkable group-level char-

acteristics that are exhibited as emergent properties from individual-level behav-

iors, such as flocking and schooling. Rule-based distributed group motion control

1

Chapter 1 Introduction

and their emergent behavior was first identified in 1986 by Reynolds [198] when

he showed homogeneous animal motion can be created using computer graphic

models based on the behavior of schooling fish and flocking bird. Using elemen-

tary control rules of various animals (e.g., ants, bees, birds, and fishes) and trying

to imitate their group behavior (e.g., foraging, flocking, homing, and dispersing)

became the key principle in cooperative behaviors [155].

• Challenging control problems: design of control algorithms for decentralized co-

ordinated systems presents a number of challenges not present in single vehicles

or centralized systems. Some of these challenges are due to high system dimen-

sionality, complex interactions, inherent parallelism, incomplete information, and

uncertainties.

• Demands of multi-robot systems: in many applications, a given task is too complex

to be achieved by a single robot acting alone, or a given task cannot physically be

executable at all by a single robot, or multiple robots can achieve the same mission

of a single robot while reducing the execution time and increasing the performance.

In general, basic tasks in robotic research are mapping, controlling, planning and lo-

calizing [171]. Usually, a robot creates a map of the environment. Using this map, it can

localize itself. Then it plans the reference if it wants to travel. The controller is designed

to control it to move to the target. However, to accomplish those missions is not an easy

task. The problem focused on in this dissertation is control, particularly coordinated path

following control and formation control of wheeled mobile robots (WMR). Path follow-

ing is one of three generic problems of motion control of a vehicle [171]. The main

characteristics of these three basic motions are as follows:

1. point stabilization, where the objective is to stabilize a vehicle at a desired robot

posture,

2. trajectory tracking, where the vehicle is required to track a time-parameterized

reference, and

3. path following, where the vehicle is required to converge to and follow a desired

path-parameterized reference, without any temporal specifications.

Typically, in path following controllers smoother convergence to a path is achieved com-

pared to trajectory tracking controllers, and the control signals are less likely pushed to

saturation. Many solutions of this problem have been proposed and applied in a wide

range of applications. For example, Samson [200] described a path following problem

for a car pulling several trailers. In [9], Altafini addressed a path following controller

for an n trailer vehicle. Path following in an urban electric vehicle and a car-like vehicle

were studied in [223] and [212], respectively. Furthermore, path following controllers

for aircraft and marine vehicles were reported in [6] and [68], respectively. This problem

2

1.2 Dissertation Organization

becomes more difficult if a group of mobile robots are required to follow a path and to

maintain a desired formation at the same time. The coordination among team members

poses significant theoretical and practical challenges. Each member has to communicate

with its neighbors in order to achieve a coordinated path following mission using only

local information.

In this study, we first develop a framework for controlling a single mobile robot to

follow a reference path, and we then extend this framework to coordinated path following

and formation control of a group of mobile robots through two approaches. One is based

on nonlinear model predictive control (NMPC), and the other is based on a Lyapunov

function and a second-order consensus protocol with a reference velocity. In this first

approach, we employ two strategies, i.e., a leader-following strategy and a distributed

MPC strategy. We also further investigate distributed role assignment in formation and

formation switching. This problem arises when a mobile robot in the team must decide

what role to take on in a desired formation configuration.

1.2 Dissertation Organization

The remainder of this dissertation is structured as follows:

Chaper 2: Background Control Theory

This chapter gives a brief review on nonlinear system theory, model predictive con-

trol, and consensus protocols. These theoretical aspects have been greatly employed in

the dissertation. Since robot motions are classified as a nonlinear control system, basic

principles in nonlinear control are explained in this chapter. Our solutions of coordinated

path following and formation control are based on model predictive control, which is one

of the most popular control techniques, and consensus protocols, which have been very

active research in multi-robot systems for a decade.

Chapter 3: Robot Systems

This chapter describes system architectures, robot hardware, and software frame-

works. System structures provide the infrastructure upon which multi-robot systems

are implemented. They can be categorized as centralized control vs. decentralized con-

trol, communication structures, and heterogeneity vs. homogeneity. Robot hardware,

on which our proposed approaches have been evaluated, include omnidirectional mobile

robots and unicycle mobile robots, while robot software systems are the RoboCup frame-

work and the CARMEN framework.

Chapter 4: Path Following Control

A path following control problem for an omnidirectional mobile robot and a unicycle

mobile robot is studied in this chapter. The proposed algorithms based on model pre-

dictive control (MPC) are presented. It is shown that the optimal velocity of a so-called

3

Chapter 1 Introduction

virtual vehicle can be obtained explicitly by using MPC algorithms. We validate our

proposed solutions on physical mobile robots. We also give a comparison between tra-

jectory tracking and path following, and between nonlinear model predictive control and

linear model predictive control using a linearized model.

Chapter 5: Coordinated Path Following Control

We extend the results from Chapter 4 to multi-robot systems. Current literature on

formation control strategies, distributed MPC, and coordinated path following control

are briefly reviewed in this chapter. Two solutions are proposed. In the first solution,

the nonlinear MPC framework is tailored to coordinated path control problems using

two alternative choices, a leader-following approach and a distributed approach. MPC

formulations are discussed and real-world experiments are presented. The other solution

is based on a Lyapunov function and a consensus protocol. The cooperative strategies

between an omnidirectional mobile robot and unicycle mobile robots are also developed

in this chapter.

Chapter 6: Role Assignment and Formation Switching

Finally, contributions to role assignment in the role formation and formation switch-

ing are given. Two examples using a team of physical nonholonomic mobile robots are

provided. First, robots reconfigure themselves from one formation to another. Second,

formation switching happens, while each robot is following a reference path.

Chapter 7: Conclusions and Future Work

This chapter summarizes the contributions of this dissertation and outlines possible

directions of future research.

4

Chapter 2

Background Control Theory

This chapter provides basic knowledge of nonlinear control systems and theories con-

cerning model predictive control and consensus protocols, which are mainly employed

to achieve our goal in coordinated path following control and formation control. We also

introduce relevant literature and background material on these topics. Major issues on

nonlinear model predictive control are discussed and nonlinear optimization solvers are

reviewed in Subsection 2.2.2 and Subsection 2.2.3, respectively. This is followed by a

discussion of the literature on decentralized MPC algorithms and their advantages over

centralized ones. Section 2.3 is devoted to consensus problems, in which a variety of

algorithms have been proposed over the past few years, such that a group of robots can

agree upon certain quantities of interest, such as direction, position, and decision, with

only local information.

2.1 Nonlinear System Theory

In order to be self-contained, some fundamental control theory about stability of equi-

librium points of autonomous and nonautonomous nonlinear systems are recalled. The

theorems and definitions are mainly borrowed from [123]. However, the proofs are not

reported here.

2.1.1 Lipschitz Functions

To ensure the existence and the uniqueness of the solution of the initial-value problem

ẋ = f (t,x), x(to) = x0

a key constraint is the Lipschitz condition, whereby f (t,x) satisfies the inequality

‖ f (t,x)− f (t,y)‖ ≤ L‖x− y‖ (2.1)

for all (t,x) and (t,y) in some neighborhood of (t0,x0).
A function satisfying the inequality (2.1) is said to be Lipschitz in x, and the positive

constant L is called a Lipschitz constant.

5

Chapter 2 Background Control Theory

Definition 1. A function f (t,x) is said to be

• locally Lipschitz in x on [a,b]×D⊂R×R
n if each point x∈D has a neighborhood

D0 such that f satisfies (2.1) on [a,b]×D0 with some Lipschitz constant L0.

• Lipschitz in x on [a,b]×W if it satisfies (2.1) for all t ∈ [a,b] and all points in W

with the same Lipschitz constant L.

• globally Lipschitz in x if it is Lipschitz in x on [a,b]×R
n ⊂ R×R

n.

The Lipschitz property of a function is stronger than continuity and, as stated in the

following lemmas, weaker than continuous differentiability.

Lemma 1. If f (t,x) and [∂ f/∂x](t,x) are continuous on [a,b]×D, for some domain

D⊂ R
n, then f is locally Lipschitz in x on [a,b]×D.

Lemma 2. If f (t,x) and [∂ f/∂x](t,x) are continuous on [a,b]×R
n, then f is globally

Lipschitz in x on [a,b]×R
n if and only if [∂ f/∂x] is uniformly bounded on [a,b]×R

n.

2.1.2 Lyapunov Stability

Consider the autonomous system

ẋ = f (x) (2.2)

where f : D→ R
n is a locally Lipschitz map from a domain D ⊂ R

n into R
n. Suppose

this system has an equilibrium point at the origin of Rn, that is, f (0) = 0. There is no

loss of generality in doing so because any equilibrium point can be shifted to the origin

via a change of variables.

Definition 2. The equilibrium point x = 0 of (2.2) is

• stable, if, for each ε > 0, there is a δ = δ (ε)> 0 such that

‖x(0)‖< δ ⇒‖x(t)‖< ε, ∀t ≥ 0.

• unstable, if it is not stable.

• asymptotically stable, if it is stable and δ can be chosen such that

‖x(0)‖< δ ⇒ lim
t→∞

x(t) = 0.

In order to demonstrate that the origin is a stable equilibrium point, for each selected

value of ε one must produce a value of δ , possibly dependent on ε , such that a trajectory

starting in a δ neighborhood of the origin will never leave the ε neighborhood. It is pos-

sible to determine the stability by examining the derivatives of some particular functions,

without having to know explicitly the solution of (2.2).

6

2.1 Nonlinear System Theory

Theorem 1. (Lyapunov’s stability theorem) Let x = 0 be an equilibrium point for (2.2)

and D⊂R
n be a domain containing x= 0. Let V : D→R be a continuously differentiable

function such that

V (0) = 0 and V (x)> 0 in D−{0} (2.3)

V̇ (x)≤ 0 in D . (2.4)

Then, x = 0 is stable. Moreover, if

V̇ (x)< 0 in D−{0} (2.5)

then x = 0 is asymptotically stable.

A continuously differentiable function V (x) satisfying (2.3) and (2.4) is called a Lya-

punov function, after the Russian mathematician who laid the foundation of this theory.

A function V (x) satisfying condition (2.3) is said to be positive definite. If it satisfies

the weaker condition V (x)≥ 0 for x 6= 0 it is said to be positive semidefinite. A function

V (x) is said to be negative definite or negative semidefinite if−V (x) is positive defnite or

positive semidefinite, respectively. With this terminology, we can rephrase Lyapunov’s

theorem to say that the origin is stable if there is a continuously differentiable positive

definite function V (x) so that V̇ (x) is negative semidefinite, and it is asymptotically stable

if V̇ (x) is negative definite.

When the origin x = 0 is asymptotically stable, we are often interested in determining

how far from the origin the trajectory can be and still converge to the origin as t → ∞.

This gives rise to the definition of the region of attraction. Let φ(t;x) be the solution of

(2.2) that starts at initial state x at time t = 0. Then, the region of attraction is defined

as the set of all points x such that φ(t;x) is defined for all t ≥ 0 and limt→∞ φ(t;x) = 0.

Furthermore, it will be the case if we can show that for any initial state x, the trajectory

φ(t;x) approaches the origin as t → ∞, no matter how large ‖x‖ is. If an asymptotically

stable equilibrium point at the origin has this property, it is said to be globally asymptot-

ically stable.

Theorem 2. Let x= 0 be an equilibrium point for (2.2). Let V :Rn→R be a continuously

differentiable function such that

V (0) = 0 and V (x)> 0, ∀x 6= 0 (2.6)

‖x‖→ ∞ ⇒ V (x)→ ∞ (2.7)

V̇ (x)< 0, ∀x 6= 0 (2.8)

then x = 0 is globally asymptotically stable.

A function satisfying condition (2.7) is said to be radially unbounded.

7

Chapter 2 Background Control Theory

2.1.3 The Invariance Principle

The stability theorems of subsection 2.1.2 require to find a Lyapunov function whose

time derivative is negative definite. If in a domain around the origin, however, a Lya-

punov function can be found whose derivative along the trajectories of the system is only

negative semidefinite, asymptotic stability of the origin might still be proved, provided

that no trajectory can stay identically at the points where V̇ (x) = 0, except at the origin.

This idea follows from LaSalle’s invariance principle.

Definition 3. A set M is called invariant set for an autonomous system if every trajectory

starting from a point in M will remain in the set for all future time.

Definition 4. A set M is said to be a positively invariant set if

x(0) ∈M ⇒ x(t) ∈M, ∀t ≥ 0. (2.9)

Theorem 3. (LaSalle’s theorem) Let Ω⊂ D be a compact set that is positively invariant

with respect to ẋ = f (x). Let V : D→ R be a continuously differentiable function such

that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in Ω where V̇ (x) = 0. Let M be the

largest invariant set in E. Then every solution starting in Ω approaches M as t→ ∞.

When we want to show that x(t)→ 0 as t → ∞, we need to establish that the largest

invariant set in E is the origin. Specializing Theorem 3 to this case and taking V (x) to be

positive definite, we obtain the following two corollaries:

Corollary 4. Let x = 0 be as an equilibrium point for (2.2). Let V : D→R be a continu-

ously differentiable positive definite function on a domain D containing the origin x = 0,

such that V̇ (x)≤ 0 in D. Let S = {x∈D|V̇ (x) = 0} and suppose that no solution can stay

identically in S, other than the trivial solution x(t)≡ 0. Then, the origin is asymptotically

stable.

Corollary 5. Let x = 0 be as an equilibrium point for (2.2). Let V :Rn→R be a continu-

ously differentiable, radially unbounded, positive definite function such that V̇ (x)≤ 0 for

all x ∈ R
n. Let S = {x ∈ R

n|V̇ (x) = 0} and suppose that no solution can stay identically

in S, other than the trivial solution x(t) ≡ 0. Then, the origin is globally asymptotically

stable.

2.1.4 Nonautonomous Systems

The notions of stability and asymptotic stability of equilibrium points of nonautonomous

systems are very similar to those introduced in Definition (2.2) for autonomous systems.

The difference is that while the solution of an autonomous system depends only on (t−
t0), the solution of the nonautonomous system

ẋ = f (t,x), x(t0) = x0 (2.10)

8

2.1 Nonlinear System Theory

depends on both t and t0. To cope with this new situation, the definitions of stability and

asymptotic stability need to be redefined so that they hold uniformly in the initial time

t0. The origin is an equilibrium point of (2.10) at t = 0 if

f (t,0) = 0, ∀t ≥ 0.

Again, there is no loss of generality since an equilibrium point at the origin could be a

translation of a nonzero equilibrium point.

Definition 5. The equilibrium point x = 0 of (2.10) is

• stable, if, for each ε > 0, there is δ = δ (ε, t0)> 0 such that

‖x(t0)‖< δ ⇒‖x(t)‖< ε, ∀t ≥ t0 ≥ 0.

• uniformly stable, if, for each ε > 0, there is δ = δ (ε)> 0, independent of t0, such

that (2.10) is satisfied.

• unstable, if it is not stable.

• asymptotically stable, if it is stable and there is a positive constant c = c(t0) such

that x(t)→ 0 as t→ ∞, for all ‖x(t0)‖< c.

• uniformly asymptotically stable, if it is uniformly stable and there is a positive

constant c, independent of t0, such that for all ‖x(t0)‖ < c, x(t)→ 0 as t → ∞,

uniformly in t0; that is, for each η > 0, there is T = T (η)> 0 such that

‖x(t)‖< η , ∀t ≥ t0 +T (η), ∀‖x(t0)‖< c.

• globally uniformly asymptotically stable, if it is uniformly stable, δ (ε) can be

chosen to satisfy limε→∞ δ (ε) = ∞, and, for each pair of positive numbers η and

c, there is T = T (η ,c)> 0 such that

‖x(t)‖< η , ∀t ≥ t0 +T (η ,c), ∀‖x(t0)‖< c.

Equivalent definitions can be given using two comparison functions, known as class

K and KL functions.

Definition 6. A continuous function α : [0,a)→ [0,∞) is said to belong to class K if it is

strictly increasingly and α(0) = 0. It is said to belong to class K∞ if a = ∞ and α(r)→∞
as r→ ∞.

Definition 7. A continuous function β : [0,a)× [0,∞)→ [0,∞) is said to belong to class

KL if, for each fixed s, the mapping β (r,s) belongs to class K with respect to r and, for

each fixed r, the mapping β (r,s) is decreasing with respect to s and β (r,s)→ 0 as s→∞.

9

Chapter 2 Background Control Theory

The next lemma redefines uniform stability and uniform asymptotic stability using

class K and class KL functions.

Lemma 3. The equilibrium point x = 0 of (2.10) is

• uniformly stable, if and only if there exist a class K function α and a positive

constant c, indepedent of t0, such that

‖x(t)‖< α(‖x(t0)‖), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖< c. (2.11)

• uniformly asymptotically stable, if and only if there exist a class KL function β
and a positive constant c, independent of t0, such that

‖x(t)‖< β (‖x(t0)‖, t− t0), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖< c. (2.12)

• globally uniformly asymptotically stable, if and only if inequality (2.12) is satisfied

for any initial state x(t0).

A special case of uniform asymptotic stability arises when the class KL function β in

(2.12) takes the form β (r,s) = kre−λ s.

Definition 8. The equilibrium point x = 0 of (2.10) is exponentially stable if there exist

positive constants c, k and λ such that

‖x(t)‖ ≤ k‖x(t0)‖e−λ (t−t0), ∀‖x(t0)‖< c (2.13)

and globally exponentially stable if (2.13) is satisfied for any initial state x(t0).

The Lyapunov theory for autonomous systems extended to nonautonomous systems is

given in [123].

2.1.5 Barbalat’s Lemma and Stability of Time-varying Systems

In the case of autonomous systems, LaSalle’s invariance theorem (Theorem 3) shows

that the trajectory of the system approaches the largest invariant set in E, where E is the

set of all points in Ω where V̇ (x) = 0. In the case of nonautonomous systems, it may not

even be clear how to define a set E, since V̇ (t,x) is a function of both t and x. This is

where Barbalat’s lemma comes into picture. It says

Lemma 4. (Barbalat’s Lemma) If V (t,x) satisfies the following conditions

1. V (t,x) is lower bounded,

2. V̇ (t,x) is negative semidefinite, and

3. V̇ (t,x) is uniformly continuous in time (satisfied if V̈ is finite)

then V̇ (t,x)→ 0 as t→ ∞.

10

2.2 Model Predictive Control (MPC)

2.1.6 Boundedness

Lyapunov analysis can be used to show boundedness of the solution of the state equation,

even when there is no equilibrium point at the origin.

Definition 9. The solution of

ẋ = f (t,x) (2.14)

where f : [0,∞)×D→ R
n is piecewise continuous in t and locally Lipschitz in x on

[0,∞)×D, and D⊂ R
n is a domain that contains the origin, is

• uniformly bounded, if there exists a positive constant c, independent of t0 ≥ 0, and

for every a ∈ (0,c), there is β = β (a)> 0, independent of t0, such that

‖x(t0)‖ ≤ a⇒‖x(t)‖ ≤ β , ∀t ≥ t0. (2.15)

• globally uniformly bounded, if (2.15) holds for arbitrarily large a.

• uniformly ultimately bounded with ultimate bound b if there exist positive con-

stants b and c, independent of t0≥ 0, and for every a∈ (0,c), there is T = T (a,b)≥
0, independent of t0, such that

‖x(t0)‖ ≤ a⇒‖x(t)‖ ≤ b, ∀t ≥ t0 +T. (2.16)

• globally uniformly ultimately bounded if (2.16) holds for arbitrarily large a.

In the case of autonomous systems, we may drop the word “uniformly” since the

solution depends only on t− t0.

2.2 Model Predictive Control (MPC)

Model predictive control (MPC), also referred to as receding horizon control (RHC) and

moving horizon optimal control, has been widely adopted in process control industry

because the control objectives and operating constraints can be integrated explicitly in the

optimization problem that is solved at each instant. Many successful MPC applications

have been reported in the last three decades [169, 192].

Although it is traditionally applied to plants with dynamics slow enough to permit

computations between samples, recently, due to the combination of advanced research

results and the advent of faster computers, it has become possible to extend the imple-

mentation of MPC design to systems governed by faster dynamics. Examples of such

applications to systems other than process control problems have begun to emerge, in-

cluding neural network based MPC applied to an underwater vehicle [126], mobile robots

[180], wind-tunnel experiments [204], helicopter experiments [229, 206], thrust-vectored

flight control [165], and aircraft gas turbine engines [29].

11

Chapter 2 Background Control Theory

2.2.1 Principles and Formulation

The conceptual structure of MPC is illustrated in Figure 2.1. As its name suggests, an

MPC algorithm employs an explicit model of the plant to be controlled which is used

to predict the future output behavior. This prediction capability allows computing a se-

quence of manipulated variable adjustments in order to solve optimal control problems

online, where the future behavior of a plant, e.g., tracking error, namely, the difference

between the predicted output and the desired reference, is optimized or minimized over

a future horizon, possibly subject to constraints on the manipulated inputs and outputs

[8, 22, 157]. The result of the optimization is applied according to a receding horizon

philosophy: At time t only the first input of the optimal command sequence is actually

applied to the plant. The remaining optimal inputs are discarded, and a new optimal

control problem is solved at time t + δ , where δ is the sampling period. As new mea-

surements are collected from the plant at each time t, the receding horizon mechanism

provides the controller with the desired feedback characteristics.

When the model is linear, the optimization problem is a strictly convex quadratic pro-

gramming problem if the performance index is expressed through the l2-norm, or a linear

programming problem if expressed through the l1/l∞-norm. It has a unique, global min-

imum which can be quickly and reliably computed numerically in a constrained case.

In an unconstrained case the solution can be computed analytically as a linear feedback

control law. Two most popular linear MPC algorithms using input-output type process

models include dynamic matrix control (DMC) [50] and generalized predictive control

(GPC) [45, 46]. If the process model is in the form of a discrete step response, DMC can

be obtained, whereas if it is in the form of a discrete transfer function or equivalently the

Figure 2.1: Principle of model predictive control [8].

12

2.2 Model Predictive Control (MPC)

difference equation (ARX-type model), GPC can be derived. By now, important issues

of linear MPC theory (e.g., online computation, modeling/identification, and stability)

are well addressed [130, 169]. However, many systems are inherently nonlinear and lin-

ear MPC is inadequate for highly nonlinear systems. Therefore, nonlinear models must

be used [8]. However, the optimization problem is certainly not linear or quadratic, it is

generally a nonconvex and even multi-modal one when the model is nonlinear. For such

problems, there are no sufficiently fast and reliable numerical optimization procedures,

i.e., procedures yielding always an optimal point and within predefined time limit as is

required in online control applications. Therefore, many attempts have been made to

construct simplified (and generally suboptimal) nonlinear MPC algorithms avoiding full

online nonlinear optimization. One possibility is to use model linearization or multiple

linear models, in which only a QP problem is solved online [169]. There are also many

designs of predictive algorithms based on nonlinear optimization and also using artificial

neural network (ANN) techniques [5, 38, 137, 188, 221].

In general, nonlinear model predictive control (NMPC) refers to MPC schemes that

are based on nonlinear models and/or consider non-quadratic cost functionals and general

nonlinear constraints on the states and inputs. A nonlinear system is normally described

by the following nonlinear differential equation:

ẋ(t) = f(x(t),u(t))
subject to: x(t) ∈ X, u(t) ∈ U, ∀t ≥ 0

(2.17)

where x(t) ∈ R
n, u(t) ∈ R

m are the n dimensional state vector and the m dimensional

input vector of the system, respectively. X ⊆ R
n and U ⊆ R

m denote the set of feasible

states and inputs of the system, respectively. In NMPC, the input applied to the system

is usually given by the solution of the following finite horizon open-loop optimal control

problem (FHOCP), which is solved at every sampling instant:

min
ū(·)

∫ t+Tp

t
F(x̄(τ), ū(τ))dτ +V (x̄(t +Tp)) (2.18)

subject to: ˙̄x(τ) = f(x̄(τ), ū(τ))

ū(τ) ∈ U ∀τ ∈ [t, t +Tc]

x̄(τ) ∈ X ∀τ ∈ [t, t +Tp]

x̄(t +Tp) ∈Ω

(2.19)

where F(x̄, ū) = x̄T Qx̄ + ūT Rū. The bar denotes an internal controller variable. Tp

represents the length of the prediction horizon or output horizon, and Tc denotes the

length of the control horizon or input horizon (Tc ≤ Tp). When Tp = ∞, we refer to

this as the infinite horizon problem, and similarly, when Tp is finite, as a finite horizon

problem. V (x̄(t+Tp)) is the terminal penalty and Ω is the terminal region. The deviation

from the desired values is weighted by the positive definite matrices Q and R. Note that

13

Chapter 2 Background Control Theory

in our implementation, the control horizon Tc is set to be equal to the prediction horizon

Tp.

A standard MPC scheme works as follows [8]:

1. Obtain measurements/estimates of the states of the system at time instant t.

2. Calculate an optimal input series ū(t, t +Tc) by minimizing the desired cost func-

tion over the predictive horizon in the future using the system model, the generated

predictive state sequence x̄(t, t +Tp) from ū(t, t +Tc) should contain the terminal

state x̄(t +Tp) that falls in the required terminal state region.

3. Implement the first part of the optimal input series u = ū until the new measure-

ment/estimates of the states are available.

4. Continue with 1. at the next time instant t = t +δ .

The most significant tuning parameters of the NMPC include the sampling period δ ,

the control horizon Tc, prediction horizon Tp, and the penalty weight matrices Q, R.

To ensure good closed-loop performance, the sampling period should be small enough

to capture the process dynamics. Using a small sampling period generally improves

performance but requires a longer prediction horizon to adequately capture the process

dynamics which means an increase in online computation time. For a fixed prediction

horizon, a smaller control horizon yields more sluggish output response and more con-

servative input moves. Large control horizons have the opposite effect on performance.

In addition, large values of a control horizon lead to an increase of online computation as

the control horizon is linearly related to the number of decision variables in the nonlinear

programming (NLP) problem. In practice, the control horizon often must be chosen to

provide a balance between performance and computation. The prediction horizon has

similar effects as the control horizon. In fact, nominal stability is strongly affected by

the prediction horizon length. However, the advantages of longer prediction horizons are

outweighed by the increase in computation time and result in more aggressive control.

The weighting matrices Q, R, can be the most difficult tuning parameters to select be-

cause their values depend both on the scaling of the problem and the relative importance

of the variables.

The main advantages of using the nonlinear version of MPC include

• its ability to incorporate generic models, linear and nonlinear, and constraints in

the optimal control problem;

• its formulation that can be extended to handle multiple-variable, nonlinear, time-

varying plants in a single control formulation;

• its ability to redefine cost functions and constraints as needed to reflect changes in

the system and/or the environment;

14

2.2 Model Predictive Control (MPC)

• its ability to use future values of references when they are available, allowing MPC

to improve the performance in navigation such as waypoint trajectory tracking;

• its ability to tune parameters that are directly related to a cost function.

Until now, nearly all aspects regarding the NMPC theory (e.g., stability, performance,

nonlinearity, and robustness) are well developed, see [22, 151, 157, 169]. In the next sub-

section, we review some important system theoretic issues, while the issue of real-time

optimization is addressed in Subsection 2.2.3. Finally, the literature on decentralized

MPC schemes is discussed in Subsection 2.2.4.

2.2.2 Issues on Nonlinear MPC

In this subsection, we review two important issues, i.e., feasibility and stability.

Feasibility of the optimization problem at each time t must be ensured. Typically

one assumes feasibility at time t = 0 and chooses the cost function and the stability

constraints such that feasibility is preserved at the following time steps. This can be done,

for example, by ensuring that the shifted optimal sequence {ū(t + δ), ..., ū(t + δTp),0}
is feasible at time t + δ . Furthermore, typically the constraints in (2.19) which involve

state components are treated as soft constraints, for instance by adding the slack variable

ε , while pure input constraints in (2.19) are maintained as hard because they stem from

actuator saturation and/or physical, safety or economical requirements. Relaxing the

state constraints removes the feasibility problem at least for stable systems. Keeping the

state constraints tight does not make sense from a practical point of view because of the

presence of noise, disturbances, and numerical errors.

The next major concern in the use of a predictive control horizon is that whether

such an open-loop control can guarantee system stability. It is shown that an infinite

predictive control horizon can guarantee stability of a system, but the infinite predictive

horizon may not be feasible for a nonlinear system in practice [8]. Mayne et al. [157]

have presented the essential principles for the stability of model predictive control of

constrained dynamical systems. Different approaches to attain closed-loop stability using

finite horizon lengths exist. We review some of the popular techniques proposed in the

literature to enforce stability. For reasons of a simple presentation, no detailed proofs are

given.

The first result of proving continuous MPC with a terminal equality constraint, i.e.,

x̄(t + Tp) = 0, was done by Chen and Shaw [40] in 1982 for nonlinear time-invariant

systems. Another original work by Keerthi and Gilbert [120] in 1988 employed a termi-

nal equality constraint on the state for time-varying, constrained, nonlinear, discrete-time

systems. In this variant V (x) = 0 in (2.18) and Ω = {0} in (2.19), Mayne and Michalska

[156] showed that the finite horizon constrained optimal control problem can be posed as

minimizing a standard quadratic objective subject to an additional terminal state equality

constraint, i.e., x̄(t +Tp) = 0. The main drawback of using terminal equality constraints

15

Chapter 2 Background Control Theory

is that the control effort required to steer the state to the origin can be large, especially

for short Tp, and therefore feasibility is more critical. The domain of attraction of the

closed-loop system is limited to the set of initial state x0 that can be steered to 0 in Tp

time-unit. Also, performance can be negatively affected because of the artificial terminal

constraint. Thus, researchers looked for relaxations that would still guarantee stability.

The version of MPC utilizing a terminal inequality constraint provides some relaxation.

Michalska and Mayne [163] proposed terminal inequality constraints such that the states

are on the boundary of a terminal region at the end of a variable prediction horizon.

They suggested a dual-mode receding horizon control scheme with a local linear state

feedback controller inside the terminal region and a receding horizon controller outside

the terminal region. Closed-loop control with this scheme is implemented by switching

between these two controllers, depending on the states being inside or outside the ter-

minal region. However, the switching would result in unsmoothed control signals. It

was found later in multiple studies that there is a good reason to incorporate a terminal

cost. Specially, it is generally possible to set V (·) to be exactly or approximately equal

to the infinite horizon value function in a suitable neighborhood of the origin. Thus,

most recent MPC controllers use a terminal cost and enforce a terminal constraint set.

The following stability theorem given in [8] provides a way to find the suitable terminal

penalty and constraints.

Theorem 6. Suppose

1. U⊂R
m is compact, X⊆R

n is connected and the origin is contained in the interior

of U×X.

2. The vector field f : Rn×R
m→R

n is continuous in u and locally Lipschitz in x and

satisfies f (0,0) = 0.

3. F : Rn×U→ R is continuous in all arguments with F(0,0) = 0 and F(x,u) >
0, ∀(x,u) ∈ R

n×U\{0,0}.

4. The terminal penalty V : Ω→R is continuous with V (0) = 0 and that the terminal

region Ω is given by Ω := {x ∈ X | V (x)≤ e1} for some e1 > 0 such that Ω⊂ X.

5. There exists a continuous local control law u = k(x) such that k(x) ∈ U for all

x ∈Ω and

∂V
∂x

f (x,k(x))+F(x,k(x))≤ 0, ∀x ∈Ω. (2.20)

6. The NMPC open-loop optimal control problem (2.18) has a feasible solution for

t = 0.

Then for any sampling time 0 < δ ≤ Tp the nominal closed-loop system is asymptot-

ically stable and the region of attraction R is given by the set of states for which the

open-loop optimal control problem has a feasible solution.

16

2.2 Model Predictive Control (MPC)

The terminal cost V is, basically, assumed to be an F-conform control Lyapunov func-

tion for the system in the terminal region Ω, enforcing a decrease in the value function.

The terminal region constraint enforces feasibility at the next sampling instants and al-

lows to show that the value function is strictly decreasing. Thus, stability can be estab-

lished [8]. Many NMPC schemes follow this theorem to guarantee stability. Generally,

they differ in how the terminal region and terminal penalty terms are obtained. For ex-

ample, Chen and Allgöwer [41] proposed a quasi-infinite horizon NMPC scheme, where

the terminal state penalty term approximates the infinite horizon cost of the nonlinear

system starting from the terminal region and controlled by the local linear state feedback

controller. The terminal region is calculated around the origin that can be stabilized by

a linear control law. However, the local state feedback control is never implemented.

In this case, instead of requiring the final states to be at the origin, the final states will

be in the region Ω. Kothare and Morari [128] addressed nonlinear constrained MPC for

continuous-time systems by employing an additional state constraint called a contractive

constraint. For full state information and in the absence of disturbances, the contractive

constraint is defined as a Lyapunov function that is used to prove exponential stability of

the closed-loop system. MPC with no state or control constraints is dealt with by [187]

(discrete time) and [101] (continuous time). Both studies employ a local stabilizing con-

trol law, a local control Lyapunov function for V (·) and choose Ω to be a level set of V (·)
and to be positively invariant under a local controller. The terminal constraint is omitted

from the online optimization but it satisfied implicitly for all initial states in a level set

of the value function. Jadbabaie et al. [102] also showed that the region of attraction

for a finite horizon problem can be made larger by choosing a larger horizon. For the

horizon approaching ∞, this leads to the region of attraction of the infinite horizon prob-

lem. A mixture of enforced contraction and the control Lyapunov function approach is

considered by Primbs et al. [190].

To summarize, the main differences of all these approaches using the terminal region

constraint and/or a terminal penalty term in the cost function are feasibility, computa-

tional burden and performance. Basically, the terminal penalty and the terminal region

are determined off-line such that the cost function gives an upper bound on the infinite

horizon cost and guarantees a decrease in the value function as the horizon recedes in

time. Various ways to determine a suitable terminal penalty term and terminal region ex-

ist. Examples are the use of a control Lyapunov function as terminal penalty [102, 190]

for the system in the terminal region, enforcing a decrease in the value function, or the

use of a local nonlinear or linear control law to determine a suitable terminal penalty and

a terminal region [41, 150, 163]. The terminal region constraint is added to enforce that

if the open-loop optimal control problem is feasible once, that it will remain feasible, and

to allow establishing the decrease using the terminal penalty (see [41, 101, 157, 163] for

more details). In general, it is not necessary to find always an optimal solution in order

to guarantee stability [41, 102, 203]. Only a feasible solution resulting in a decrease in

the value function is necessary. This can be utilized to decrease the necessary online

solution time [8].

17

Chapter 2 Background Control Theory

2.2.3 Optimization Solvers

Although rigorous stability results for nonlinear MPC have been well-established, it is

not applicable in practical implementation. Since a constrained nonlinear optimization

problem has to be solved online, the heavy online computational burden causes two

important issues in implementation of nonlinear MPC [8]. One is the computational de-

lay. The other is the global optimization solution which cannot be guaranteed in each

optimization procedure since it is, in general, a non-convex, constrained nonlinear opti-

mization problem.

In practice, linear models are most often used and the resulting optimizations are lin-

ear or quadratic programs. In the nonlinear constrained optimization, the solution can

be obtained using either an indirect or a direct method. Indirect methods aim to solve

the multi-point boundary value problem (MPBVP). The solution of the MPBVP can be

very difficult even for small problems. Direct methods, on the other hand, optimize the

objective criterion directly by discretizing the original problem to finite dimensional ap-

proximation. Basically this is done by parameterizing the input (and possibly the states)

by a finite number of parameters and to solve/approximate the differential equations dur-

ing the optimization [8]. In principle, any parameterization of the input can be chosen,

i.e., the parameterized input is given by

ū(τ;q), τ ∈ [t, t + tp]

where q is the vector of parameterization parameters. The parameterized ū(τ;q) might,

for example, be given by a sum of basis functions such as a Fourier series or the input is

parameterized as piecewise constant [8]. The discretized version of the optimal control

problem (OCP) – a sparse NLP problem – can be solved with well known NLP algo-

rithms, such as sequence quadratic programming (SQP) [7, 19, 75, 222] or interior-point

(IP) methods [39]. To apply parameterization, there are mainly three strategies [8]:

1. Sequential approach or feasible path approach: the control is finitely parameter-

ized in the form ū(τ;q) and the state trajectories are eliminated by numerically

integrating the differential equation and cost. Only the control parameterization

parameters remain as degree of freedom in a standard mathematical program. For

each evaluation of the cost J({ū1, ...ūN},x(t); t, t +Tp) in the solution of the math-

ematical program the differential equation and the cost function are numerically

integrated using the current guess of the input parameterization parameters of the

optimizer. Thus the name sequential or feasible path approach, since the optimiza-

tion steps and the simulation are performed sequentially leading to a valid/feasible

state trajectory [136].

2. Simultaneous approach: the solution to the differential equation and the optimiza-

tion is obtained simultaneously. For this purpose, the differential equations are

discretized and then treated as additional constraints in the optimization problem.

18

2.2 Model Predictive Control (MPC)

Typical simultaneous approaches use collocation methods to discretize the differ-

ential equations. The resulting nonlinear programming problem is very large but

also very sparse. The sparseness can be exploited to achieve an efficient solution.

3. Direct multiple shooting approach: the optimization horizon of interest is divided

into a number of sub-intervals with local control parameterizations. The differen-

tial equations and cost on these intervals are integrated independently during each

optimization iteration based on the current guess of the control. The continuity/-

consistency of the final state trajectory at the end of the optimization is enforced

by adding consistency constraints to the nonlinear programming problem. The re-

sulting nonlinear program takes a special sparse structure which can be utilized for

an efficient solution.

These strategies have different advantages and disadvantages [8]. For example, the in-

troduction of initial states as optimization variables in simultaneous approaches result in

a sparse structure of the underlying QP problem. This structure leads to a fast solution

strategy. In comparison, the matrices for the sequential approach are often dense and

thus the solution is expensive to obtain. A drawback of the simultaneous approach and

multiple shooting approach is that only at the end of the iteration a valid state trajec-

tory for the system is available. Thus, if the immediate answer for early termination is

needed, a single shooting approach is more favored.

To solve NLP problems, the following key points need to be considered:

• Interior point vs. active set to handle bounds and inequality constraints in gener-

ating search directions: classical active set methods are iterative processes that try

to guess at each iteration which are the active constraints. They usually consider

active constraints one at a time, inducing a computation time directly related to

the number of active constraints. Unfortunately, they are non-polynomial, i.e., the

worst-case number of performed steps increases faster than any polynomial with

the number of inequality constraints. On the other hand, we have interior-point

methods with a polynomial bound of computational complexity. The computa-

tion time of modern interior point methods is relatively constant, regardless of the

number of active constraints. Interior point algorithms are based on the idea of

identifying active inequality constraints numerically, with the help of a nonlinear

barrier function. The resulting nonlinear equation system is then solved using a

Newton method. Interior point methods show excellent numerical properties for

large-scale QP problems. In comparing these approaches, both methods possess

clear trade-offs [19, 26, 193]. If there are few inequality constraints (particularly in

case of small and medium problems) or an active set is known (from a good start-

ing guess, or the warm-start QP solution from a previous iteration) then the active

set method is favored. On the other hand, for problems with many inequality con-

straints, interior point methods are often faster as they avoid the combinatorial

problem of selecting the active set.

19

Chapter 2 Background Control Theory

• Primal vs. dual: primal strategies ensure that all the constraints are satisfied at

every iteration. The iterative process can be interrupted and still produce a feasible

motion at any moment, satisfying all the constraints, if there is a limit on computa-

tion time. One limitation of primal strategies is that they require an initial value for

the variable ū which already satisfies all the constraints. For a general QP, comput-

ing such an initial value can take as much time as solving the QP afterwards. This

is why dual methods are usually preferred, they satisfy all the constraints only at

the last iteration but they do not require such an initial value.

• Null space vs. range space algebra: there exist mainly two ways of making com-

putations with the linear constraints, either considering the null space of the matrix

orthogonal to the constraints, or the range space of this matrix, parallel to the con-

straints.

• First and second derivatives: there are a number of modeling and simulation plat-

forms with accurate first and second derivatives that can be accessed for optimiza-

tion. An exact or approximated (such as forward finite differences and centered

finite difference) first derivative is used to compute the objective function gradient

and constraint gradient. If the second derivative is not available, positive defi-

nite quasi-Newton approximations to the reduced Hessian (such as quasi-Newton

BFGS, quasi-Newton SR1, and limited-memory quasi-Newton BFGS) are quite

successful.

• Line search vs. trust region methods to enforce global convergence of the SQP

iterations: these two methods are commonly used for the search directions calcu-

lated from the above QP subproblems. In a trust region approach, the constraint is

added to the QP. The step is taken if there is sufficient reduction of a merit func-

tion (e.g., the objective function weighted with some measure of the constraint

violations). Popular merit functions for SQP methods include the augmented La-

grangian function or exact penalty functions. On the other hand, line search meth-

ods can be more efficient on problems with reasonably good starting points and

well-conditioned QP subproblems.

In this work, we have employed two free optimization solver packages. One is the

DONLP2 software package written by P. Spellucci [214] for solving NLP problems. The

other is the OOQP package written by E. M. Gertz and S. J. Wrightis [81] for solv-

ing convex quadratic programming problems. DONLP2 is a set of C subroutines for

minimizing a smooth function subject to constraints, which may include simple bounds

on the variable, linear constraints and smooth nonlinear constraints. A user provides

subroutines to define the objective and constraint functions and (optionally) their first

derivatives. DONLP2 uses a sequential quadratic programming (SQP) algorithm with an

active set technique, in which each search direction is the solution of a QP subproblem.

Bounds, linear constraints and nonlinear constraints are treated separately. It also has

20

2.2 Model Predictive Control (MPC)

a built-in feature for finding a gradient numerically if an analytic gradient is not given.

In general, the SQP method has a two-level structure of iterations [75]. At each major

iteration, a QP subproblem is obtained from the nonlinear program through a quadratic

approximation of the Hessian of the Lagrangian function and a linear approximation of

the constraints. This leads to a search direction and a line-search step size, which deter-

mines the next iterate [85]. In minor iterations we simply iterate the solution of the QP

problem.

The OOQP package is used in Section 4.3, where a linear MPC controller with a

linearized model is obtained. In this QP problem, the objective is a convex quadratic

function and the constraints are linear functions of a vector of real variables. In OOQP,

object-oriented quadratic programming techniques are used to implement a primal-dual,

interior-point algorithm.

2.2.4 Centralized MPC vs. Decentralized MPC

MPC is usually implemented in a centralized fashion. One controller has the full knowl-

edge about the entire system and computes all the control inputs for the entire system. In

large-scale interconnected systems, such as water distribution systems, traffic systems,

power systems, manufacturing systems, economic systems such a centralized-control,

non-convex optimization scheme may be too complex or not even possible for techni-

cal or commercial reasons [207]. Thus, with the rapid development of communication

networks, centralized control has been gradually replaced by distributed control, such

as formation control [65, 121], applications in the manufacturing and process industry

where multiple units cooperatively produce a product [1], and large-scale power systems

[32, 90, 95]. In distributed or decentralized control schemes, the local control inputs

are computed using local measurements and reduced-order models of the local dynamics

[207]. The main challenge is to formulate simpler decentralized problems which result

in a behavior similar to what is obtained with a centralized approach.

In general, stability and feasibility of decentralized schemes are very difficult to prove

and/or too conservative [121]. Even if we assume Tp to be infinite, the decentralized

MPC approach does not guarantee that solutions computed locally are globally feasible

and stable. The decentralization of the control is further complicated when disturbances

act on the subsystems making the prediction of future behavior uncertain. The key point

to guarantee feasibility and stability is that when decisions are made in a decentralized

fashion, the actions of each subsystem must be consistent with those of the other sub-

systems [199]. Thus, decisions taken independently do not lead to a violation of the

coupling constraints. For example, to provide some information about anticipated ef-

fects of interactions between subsystems, a wide variety of approaches include exchange

of predicted state trajectories [65], robustness to the actions of others [32, 107, 106],

penalty functions [206], and partial grouping of computations [121]. The ways, in which

a decentralized system model and the coupling between subsystems is formed, can be

found in [173].

21

Chapter 2 Background Control Theory

To summarize, approaches to decentralized control design differ from each other in

the assumptions they make on [122]

• the kind of interaction between different systems or different components of the

same system (dynamics, constraints, objective),

• the model of the system (linear, nonlinear, constrained, continuous-time, discrete-

time),

• the model of information exchange between the systems,

• the control design technique used.

For instance, decoupled nonlinear dynamics and constraints and coupling in a quadratic

cost function is presented by Dunbar and Murray [65]. Dynamically coupled subsystems

are given by Venket [226], though it requires that subsystems be linear, time-invariant

and coupled solely through the control inputs. In [32], Camponogara et al. proposed a

scheme with stability guarantees for dynamically coupled systems, with information ex-

change between nodes and contractive stability constraints in the distributed MPC sub-

problems.

2.3 Consensus Protocols

Information consensus has been the center of much attention recently since advances

in computation and communication technology over the past few years have provided

efficient and inexpensive ways to share and compute information. A variety of algorithms

have been proposed such that a group of robots can agree upon certain quantities of

interest, such as direction and position with only local information (see [72, 178, 197]

and a myriad of references for details on consensus algorithms).

One avenue of the research in consensus protocols relies on algebraic graph theory, in

which graph topologies are connected with the algebraic properties of the corresponding

graph matrices. Communication links among agents are described by Laplacian matri-

ces. Each agent is treated as a vertex and the communication links between agents are

treated as edges. It is defined as G = (V,E), where V = {1, ...,N} is the set of agents

and E⊂ VxV is the set of relative vectors between agents. Two agents i and j are called

neighbors if (i, j) ∈ E, and the set of neighbors of agent i is denoted by Ni ⊆ V. Graphs

considered can be either undirected or directed. When the graph is undirected and con-

nected, the Laplacian matrix L, constructed from L = D−A, where the adjacency matrix

A = (ai j) and the diagonal degree matrix D, is symmetric positive semi-definite. It has a

simple zero eigenvalue and all the other eigenvalues are positive if and only if the graph

is connected [72].

22

2.3 Consensus Protocols

We first show a simple formulation given by Fax and Murray [72] and Olfati-Saber

and Murray [177]. A solution to the consensus problem is to let the behavior of each

linear system/agent be governed by the first order differential equation

ẋi =−
1

|Ni|
|Ni|
∑
j=1

(xi− x j) (2.21)

where xi ∈ R is the internal state of the agent. For this system, one can show that if the

information flow is bidirectional (if agent i is a neighbor of agent j, then j is a neighbor

of i), the states of the individual vehicles asymptotically converge to the average of the

initial state values for any connected graph G.

If G is not bidirectional (so that there are asymmetries in the information available to

each agent), then the interaction above does not necessarily lead to average consensus.

We define a graph to be balanced if the in-degree and out-degree of all nodes are equal.

In the case of balanced graphs, one can once again show that any connected graph solves

the average consensus problem using the interaction rules above [177]. Furthermore,

even if the connections are changing as a function of time, it can be shown that the

average consensus is still reached.

We intentionally do not collect all published contribution to consensus-based approaches.

Some work reported on the consensus problem in the literature are as follows.

Jadbabaie et al. [103] gave a theoretical explanation for consensus of the heading

angles of a group of agents using nearest neighbor rules under undirected switching in-

formation exchange topologies. The stability of the consensus algorithms were analyzed

with the aid of results from graph theory. It is shown that consensus is achieved asymptot-

ically if the union of the information exchange graphs for the team is connected most of

the time as the system evolves. Lin et al. [145] extended the consensus algorithms to the

case where the information exchange graphs were directed. In [146], Lin et al. derived

general conditions on the network topology stabilizing a group of unicycle robots. It was

also shown how to make a group of robots converge to a line or general geometric form

by solving the consensus problem. Lafferriere et al. [131] investigated the connection

between the spectral graph theory and the control problem in vehicle formations. The

vehicles exchange information according to a pre-specified undirected communication

graph. A state-space approach was developed to stabilize the formation. It is proven that

a linear stabilizing feedback law always exists provided that the communication graph

is connected. The rate of convergence to formation is governed by the size of the small-

est positive eigenvalue of the Laplacian of the communication graph. Fax and Murray

[72] studied information exchange techniques to improve stability margins and formation

performance for vehicle formations. In [195], Ren and Beard considered the problem of

information consensus among multiple agents in the presence of limited and unreliable

information exchange with dynamically switching topologies. Updated algorithms were

proposed for information consensus in both discrete and continuous cases. The consen-

sus problem for networks of dynamic agents with fixed and switching topologies was

23

Chapter 2 Background Control Theory

discussed by Olfati-Saber and Murray [177]. They proposed two consensus protocols

for networks with and without time-delays. Olfati-Saber et al. [178] investigated con-

sensus algorithms with emphasis on robustness, time-delays and performance guarantee.

In [220], Tanner et al. proposed a decentralized controller which is stable under arbitrary

changes in the connected network.

In contrast to the algebraic graph approach, some other researchers make use of non-

linear mathematical tools to study consensus problems. In [170], Moreau used a set-

valued Lyapunov approach to study the stability of the consensus problems with unidi-

rectional time-dependent communication links. Necessary and/or sufficient conditions

for the convergence of the state of each individual agent to a consensus vector were

presented with the aid of graph theory and convexity. In [44], Chung and Slotine used

nonlinear contraction theory to study synchronization, which are related to the consensus

problem.

Optimality issues related to consensus problems are also studied in the literature. Xiao

and Boyd [236] addressed the fastest distributed linear averaging (FDLA) problems in

the context of consensus seeking among multiple autonomous agents. On asynchronous

communication networks, a distributed iterative procedure under the eventual update

assumption was developed by Mehyar et al. [160] for calculating average consensus.

The asynchronous consensus problem with zero time delay was studied by Cao at al. in

[33] where the union of the communication graphs is assumed to have a common root

spanning tree.

2.4 Summary

This chapter provided the basic knowledge in nonlinear control systems, model predic-

tive control (MPC), and consensus protocols. In Section 2.2, an overview of the theo-

retical and computational aspects of nonlinear MPC has shown some of the challenging

issues, including stability, feasibility, nonlinear optimization problems, and decentralized

implementation. Although MPC is suitable for low-process systems, such as chemical

factories, with new optimization solvers, more powerful computers and more advanced

MPC frameworks, MPC can be implemented in real-time applications, as seen in our

experimental results in Chapter 4 and Chapter 5. In Section 2.3, consensus protocols,

which have proven to be effective tools for performing network-wide distributed compu-

tation tasks, are reviewed. Their usefulness and effectiveness to coordinated motions are

shown in Section 5.5 and Chapter 6.

24

Chapter 3

Robot Systems

To illustrate the usefulness of our proposed algorithms, both simulation and physical

robot experiments have been conducted in this dissertation. The control framework has

been evaluated on omnidirectional mobile robots and unicycle mobile robots. The om-

nidirectional mobile robots were originated from the Attempto Tübingen Robot Soccer

team [93]. They have been rebuilt and used for supporting the service robot research

(see Figure 3.5, compared to the old structure in Figure 3.1). The unicycle mobile robots,

called c’t-Bots, were originated from the German c’t magazine, and further developed by

M. Hofmeister [96]. Both types of robots have differences in sensors, models, software

structures, and computational power.

The first section in this chapter reviews system architectures, i.e., what infrastructure

is behind the multi-robot system implementation. Next, robot hardware of the omni-

directional mobile robots and unicycle mobile robots are described in detail. Software

frameworks are then given in Section 3.3.

3.1 System Architectures

The system architectures provide the infrastructure upon which the multi-robot systems

are implemented. They furthermore determine the capabilities and limitations of the

system. Although not comprehensive, the criteria given here demonstrate some of the

key features that must be addressed in solving coordinated path following and formation

control problems. We here briefly discuss some of the key architectural features of multi-

robot systems. The reader is referred to [13, 34, 64] for more details.

3.1.1 Heterogeneity vs. Homogeneity

In general, team composition can be divided in two main classes, heterogeneous and

homogeneous teams. Homogeneous teams are composed of team members that have

the same hardware and control software, while in heterogeneous teams the robots differ

either in the hardware or in the software control procedures. Heterogeneity generally

introduces complexity since task assignment becomes more difficult and robots have a

25

Chapter 3 Robot Systems

need to model other individuals in the group. Using homogeneous robots makes the

system robust because no single robot is critical to the mission.

Using heterogeneous robots in MRS tasks may be necessary in some applications.

For instance, the formation can involve different kinds of robots equipped with different

sensors: vision, sonars, lasers, and GPS. Only few robots may possess all the sensors and

thus could serve as leader of the whole team, providing higher level information, such as

mapping or exploration.

3.1.2 Communication Structures

Clearly, the usage of communication among the robots can improve team performance,

allowing the robots to acquire more information and to self-organize in a more reliable

way. The communication may take place directly via an explicit communication chan-

nel or indirectly through one robot sensing a change of other robots in its environment.

Communication configuration can be further categorized as follows (see [64] for details):

• Communication range: the maximum distance between two robots of the team

such that communication is still possible. We list three key classes for this dimen-

sion: (i) no direct communication: robots cannot communicate with other robots

directly, but it is possible for robots to communicate with each other indirectly by

observing their presence, absence or behavior, (ii) local communication: robots

can only communicate with other robots which are sufficiently nearby, and (iii)

global communication: robots can communicate with any other robot. This is

a classical assumption, which is probably impractical if the number of robots is

large.

• Communication topology: it captures physical interconnections among team mem-

bers. Robots may not be able to communicate with an arbitrary individual of the

team regardless of its proximity. Individual robots may have names and messages

may be sent to them directly, or messages may be broadcasted to all robots. The

topology can be represented as a tree, in which robots only communicate through

this hierarchy or as a graph. A graph is a more general connectivity scheme than a

tree and is more robust since redundant links can prevent the entire group from be-

coming disconnected. Moreover, the topology can be either static if the topology is

fixed, or dynamic if the relationship of members of the team can change arbitrarily.

The interconnection structure can also be either bidirectional or unidirectional.

• Communication bandwidth: it indicates the amount of data a communication link

can transmit in a given period of time.

Studies that require global information or broadcast communication may suffer from lack

of scalability or high costs of the physical setup but allow more accurate coordination of

26

3.1 System Architectures

multi-robot tasks. On the other hand, studies using only local communication and sen-

sor data tend to be more scalable, more robust, and easier to build; but their cooperative

tasks may be limited. Currently, a lot of work in the literature has dealt with achiev-

ing robustness and fault tolerance in multi-robot communication, such as setting up and

maintaining distributed communication networks and ensuring reliability in multi-robot

communication.

3.1.3 Centralization vs. Decentralization

Centralized controllers deal with systems in that a single controller processes all the

information needed to achieve the desired control objectives (including stability and per-

formance requirements). However, in many applications, because of the nature of the

inter-robot communication network and due to the highly distributed nature of robots’

sensing and actuation modules, it is impossible to tackle the problems in the centralized

control framework. For these reasons, there have been a lot of activities in the area of

multi-agent networks over the past few years. It is widely claimed that decentralized sys-

tems under local sensing, control, and interactions among robots and environments have

several inherent advantages, including robustness/fault tolerance against single robot fail-

ures, natural exploitation of parallelism, and scalability [34].

In formation control problems, centralized control laws can ideally yield superior per-

formance and optimal decisions for both the individual members and the formation as a

whole. For example, the control scheme uses a single controller that oversees the deci-

sion process for the whole group, generates collision free trajectories in the workspace,

and plans the motion of the group members. The motion of each member is then trans-

mitted to the robot controller via a communication channel. Although this guarantees

a complete solution, centralized algorithms require high computational power, massive

communication flow of information (e.g., state measurements, sensory information, and

guidance signals), and are not robust because of heavy dependence on a single controller.

Such requirements are not feasible for numerous applications. On the other hand, in de-

centralized control, each formation member has its own controller and is completely

autonomous in the decision process. This can significantly reduce the number of signals

being communicated, is more flexible, and robust, requires less computational effort, and

is more scalable. Furthermore each robot can quickly respond to problems occurring in

its environment.

Nevertheless, there is also the need to provide some degree of centralization with an

interface to human operators for programming, tasking, and monitoring of the system.

There are also some hybrid centralized/decentralized architectures wherein there is a

central planner that exerts high-level control over mostly autonomous robots.

27

Chapter 3 Robot Systems

3.2 Robot Hardware

In this section, two different robot structures, i.e., a unicycle mobile robot and an omni-

directional mobile robot and their basic motion control are examined in detail. Motion

control approaches of mobile robots can, in general, be designed based on the robots’

dynamic or kinematic models. To design a control law, the kinematic model is simpler

than the dynamic one. In particular, it does not involve a certain number of matrix-valued

functions whose precise determination relies on the knowledge of numerous parameters

associated with the vehicle and its actuators (geometry of bodies, masses, moments of

inertia, coefficients of reduction in the transmission of torques produced by the motors,

etc.) [171]. For many applications, it is not necessary to know all these terms precisely.

Moreover, most commercial available robots do not allow the direct control of forces

or torques. Instead, they incorporate motor controllers that allow the specification of

translation and rotation, which we treat as control inputs. In this case, for the low-level

velocity control loop, a simple PID controller can be used to stabilize the motor angu-

lar velocity. If the regulation loop is efficient, the difference between the desired and

actual velocities remains small, even when the desired velocity and the motor load vary

continuously. However, in case that decoupling the kinematics from the dynamics of the

vehicle is not present, we can design them by using the information of the terms involved

in the dynamic equation. The reader is referred to [31, 171] for more details in the struc-

tural properties and classification of kinematic and dynamic models of wheeled mobile

robots. In this dissertation, it is assumed that the plane of each wheel is perpendicular

to the ground and that the contact between the wheels and the ground is pure rolling and

non-slipping. Thus, kinematic models can be used in our controller design. We neglect

actuator dynamics by assuming that the low-level velocity control loop is much faster

than the desired closed loop system dynamics.

3.2.1 Omnidirectional Mobile Robots

Omnidirectional mobile robots are becoming increasingly popular in mobile robot ap-

plications, since they have some distinct advantages over nonholonomic mobile robots.

They have a full omnidirectionality with simultaneously and independently controlled

rotational and translational motion capabilities, which means that they can move at each

instant in any direction without reorientation [31]. The middle-size league of the annual

RoboCup competition wherein teams of autonomous mobile robots compete in the game

of soccer, is an example of a highly dynamic environment where omnidirectional vehicles

have been employed successfully (see RoboCup Official Site: http://www.robocup.org).

The omnidirectional motion is enabled via special wheels used in the mobile robot

designs [189]. One of the most popular arrangements utilizes so-called Swedish wheels,

shown in Figure 3.4, mounted on the periphery of the chassis, thus allowing freedom

of motion without the necessity of reconfiguring its internal state. A Swedish wheel

differs from a common wheel in the fact that rollers are mounted on its perimeter (see

28

3.2 Robot Hardware

Figure 3.3). If all the rollers are parallel to each other and misaligned with respect to

the wheel hub axis, they will provide an extra degree of mobility with respect to a tra-

ditional perfectly rolling wheel. The kinematics analysis of Swedish wheel robots has

been addressed in several papers [15, 124, 148, 189, 213], while dynamic models of om-

nidirectional mobile robots equipped with Swedish wheels are discussed in [109, 191].

We validate our control algorithms by using physical omnidirectional mobile robots,

shown in Figure 3.1, later rebuilt, shown in Figure 3.5. The architecture utilizes a

Pentium-M 2 GHz onboard PC with 1 GB RAM for the main processing unit. There

are three Swedish wheels placed in such orientation that their axes of rotation point to-

wards the center of the robot and there is an angle of 120◦ between them. Each wheel

is driven by a 24-Volt Maxon DC motor of 60 Watt each with 18:1 gear ratio, and has

the same distance Lw from its center to the robot’s center of mass (point R in Figure 3.2).

Figure 3.3 shows a photograph of the real hardware with the top view of the general

three-wheeled omnidirectional mobile robot model. Optical encoders are mounted on

each motor shaft to provide feedback for the motor speed controller. The control sys-

tem consists of two loops: the outer loop is an external kinematic loop, while the inner

loop is the low-level actuator velocity servo loops. In particular, the low-level motor

speed feedback control is realized by a three-channel digital PID board (the TMC200

designed and built at AiS - Fraunhofer Autonomous Intelligent Systems Institute) with

pulse-width modulation (PWM) output. The TMC200 board is interfaced through a se-

rial RS232 link with an onboard PC. In the old structure designated for the RoboCup

competition, there was an omnidirectional camera as a sole sensor, which was used for

self localization within the RoboCup field, developed by Heinemann et al. [94]. This

self-localization algorithm was based on probabilistic Monte-Carlo localization (MCL).

The vision system consisting of a Marlin F-046C camera and a hyperbolic mirror em-

ployed on the mobile robot platform provides a 360◦ field of view. The Marlin F-046C

has a resolution of 780x580 pixels and is able to capture and transmit 50 fps at a reduced

resolution of 580x580 pixels in the 16 bit YUV4:2:2 format via the IEEE 1394a FireWire

bus [93]. In the new structure designated for robot service purposes, the sensory systems

consist of six sonar sensors, one laser scanner, and one vision system. The overall system

uses 24-Volt NiMH batteries.

As a first step to develop a model-based robot controller, the equations of robot motion

need to be derived. The kinematic model of an omnidirectional mobile robot can be

easily obtained by considering the geometric representation. The basic architecture of

the wheeled platform is illustrated in Figure 3.2, where there are two coordinate frames

used in the modeling: the body frame (Xm,Ym) and the world frame (Xw,Yw). The body

frame is fixed on the moving robot with the origin at its center of mass, whereas the

world frame is fixed at the ground. We assume that the center of mass for the robot

is located at the center of the robot chassis, which is the origin of (Xm,Ym). With the

assumption that no slip in all the three wheels occurs, sensors have high accuracy and

ground is sufficiently planar, the velocity component with respect to the world frame is

obtained by

29

Chapter 3 Robot Systems

Figure 3.1: The old structure of the omnidi-

rectional mobile robot.

Figure 3.2: Coordinate frames of the omni-

directional mobile robot.

Figure 3.3: Real base of the omnidirectional

mobile robot. Figure 3.4: A Swedish wheel.

Figure 3.5: The new structure of omnidirectional mobile robots.

30

3.2 Robot Hardware

ẋ(t) = f(x(t),u(t)), x(0) = x0





ẋ

ẏ

θ̇



=





cosθ −sinθ 0

sinθ cosθ 0

0 0 1









u

v

ω





(3.1)

where the point (x,y) is the position of the center of the robot on the axes (Xw,Yw) and θ
is the angular position with respect to the axis Xw. The input signals are given by u, v, ω
with u, v being two orthogonal velocity vectors, where u is aligned with the reference

axis of the robot. ω corresponds to the rotational velocity of the robot. Angle θt denotes

the robot’s moving direction in the world frame. From Figure 3.2, where we defined that

wheel 1, wheel 2, and wheel 3 are front right wheel, front left wheel, and real wheel,

respectively, it is easy to see that the wheel velocities are related to the components over

the axis (Xm,Ym) and the rotational velocity as





q̇1

q̇2

q̇3



=





cosδ sinδ Lw

−cosδ sinδ Lw

0 −1 Lw









u

v

ω



 (3.2)

where q̇(t) = [q̇1, q̇2, q̇3]
T is the vector of wheel velocities, which is equal to the wheel’s

radius multiplied by the wheel’s angular velocity. Lw gives the distance between each

wheel and the center of the robot (point R in Figure 3.2) and δ refers to the wheel ori-

entation in the body frame. As the motor’s voltage and current are magnitude-limited,

the maximum wheel velocity is limited by q̇max, i.e., |q̇i| ≤ q̇max, where i = 1,2,3. It is

worth noting that the transformation matrices in the above kinematic models are all full

rank, which denotes that the translation and rotation of the omnidirectional mobile robot

are decoupled, and guarantees the separate control of these two movements [31].

Related work on motion control of omnidirectional mobile robots is reviewed as fol-

lows. Oubbati et al. [184] replaced the PID controllers for the motors with a recurrent

neural network to convert the desired wheel velocities to PWM commands. Purwin and

D’Andrea [191] presented a trajectory generation algorithm, which computes the mini-

mum time trajectory from a given initial state to a given final state while taking limited

friction and weight transfer into account. Watanabe [230] reviewed the omnidirectional

mobile robot using a variety of mechanisms. The use of resolved acceleration control

method, PID method, fuzzy model method, and stochastic fuzzy servo method have been

highlighted. Liu et al. [147] implemented a method called trajectory linearization con-

trol, which is based on linearization along the desired trajectory and inversion of the

dynamics. Kalmar-Nagy et al. [109] developed a trajectory generation algorithm which

computes a minimum time path based on the dynamics of the vehicle and the motor

characteristics. Velasco-Villa et al. [225] addressed the path-tracking problem on an om-

nidirectional mobile robot subject to transport delays. Xiang and Zell [142] proposed a

control method based on the inverse input-output linearized kinematic model. Recently,

31

Chapter 3 Robot Systems

a general kinematic model of an N Swedish wheeled vehicle was derived and analyzed

by Indiveri [100]. He addressed the trajectory tracking motion control problem in the

presence of actuator velocity saturation. Furthermore, some researchers [59, 217, 233]

have considered slipping motion between the wheels and motion surface and included it

into a dynamic model.

3.2.2 Unicycle Mobile Robots

The unicycle robot, shown in Figure 3.6(a), has two identical parallel rear wheels, which

are controlled by two independent motors on the same axle and one caster wheel. It

is assumed that the center of mass of the mobile robot is located in the middle of the

axis connecting the rear wheels. A robot with this kind of wheel configuration has an

underlying nonholonomic property that restricts the mobility of the robot in the sideways

direction. This adds to the complexity of the motion control problem.

A simple kinematic model of a unicycle mobile robot is the following:





ẋ

ẏ

θ̇



=





vcosθ
vsinθ

ω



 (3.3)

where (x,y) indicates the position of the robot center in the world frame (Xw,Yw) and θ is

the heading angle of the robot (angle between the Xw-axis and the axis of the robot Xm).

v and ω stand for the linear and angular velocities, respectively. The wheel velocities can

be derived by vr = v+ bω, vl = v− bω , where vr and vl are the velocities of right and

left wheels, whose unit is m/s, respectively, and b is the length of the axis from the robot

center to the wheel.

The robot controller is an ATMEGA644 microprocessor with 64 KB flash program

memory, 16 MHz clock frequency, and 4 KB SRAM. The robot orientation is measured

(a) (b)

Figure 3.6: (a) A unicycle mobile robot (12 cm diameter), and (b) coordinate frames of

a unicycle mobile robot.

32

3.2 Robot Hardware

by a Devantech CMPS03 compass. The robot is identified by a colored circle placed

on the top of its platform. Using omnidirectional images from a camera looking down

upon the robot’s workplace, the robot position can be estimated through color segmenta-

tion and a Kalman filter. This tracking software was implemented based on the OpenCV

library [48]. Figure 3.7 shows images from the robot detection and tracking software.

White regions in Figure 3.7(b) involve the colored circle segmented from an omnidirec-

tional image. This position information is incorportated into the motion control structure

(see Figure 3.8), used in our real-world experiments.

Motion control of this kind of robots has been, and still is, the subject of numerous

research studies. In particular, nonholonomy constraints associated with these systems

have motivated the development of highly nonlinear control techniques. Nonholonomic

constraints mean the perfect rolling constraints without longitudinal or lateral slipping of

(a) (b)

Figure 3.7: Robot detection and tracking software: (a) an original omnidirectional image

(b) blobs of color-segemented robots.

Figure 3.8: Block diagram illustrates the control structure of the unicycle mobile robot.

33

Chapter 3 Robot Systems

the wheels. In other words, they are the constraints on the velocity of the system which

cannot be integrated into position constraints. Brockett’s theorem [27] states that non-

holonomic systems cannot be stabilized via smooth time-invariant state feedback. The

asymptotic stabilization of fixed points is mainly achieved via discontinuous feedback

and/or continuous time-varying feedback. This has given rise recently to an abundant

literature dealing with the derivation of planning and control algorithms especially dedi-

cated to either kinematic or dynamic models of unicycle, trailer-like, or car-like wheeled

mobile robots. Usually, they are also classified as underactuated systems because of less

control inputs than system states. Many nonlinear techniques have been proposed in

the literature to solve these basic motion problems, e.g., dynamic feedback linearization

[181], sliding mode control [212], backstepping techniques [2, 211], intelligent control

[73], optimal control [88], passivity based approaches [108], etc., to name some. An

extensive review of nonholonomic control problems can be found in [127].

3.3 Software Frameworks

In this section, we present two software architectures. The first one was designed for the

Attempto Tübingen Robot Soccer Team [93] to play robot soccer in RoboCup tourna-

ments. The framework was divided into several functional processes that provide data

to other processes according to a client/server architecture. Figure 3.9 [93] gives an

overview of the data flow in the software framework. The framework can be divided

into three functional layers, the low-level data layer containing all processes that pro-

vide the low-level access to sensor systems and serve basic sensor data, the intermediate

layer with processes that pre-process the basic sensor data and extract features like land-

marks and obstacles, and finally the high-level layer that includes the collection of the

pre-processed data in a model of the environment and the high-level control of the robot.

Details of each layer are given in [93], including graphical user interface and tools.

The second framework is the CARMEN [167, 168] toolkit, which is an open-source

software for mobile robot control. It offers a distributed collection of modules designed

to provide basic navigation primitives including: base and sensor control, logging, ob-

stacle avoidance, localization, path planning, and mapping. Modules communicate with

each other over an interprocess communication protocol (IPC). This software toolkit has

been adopted to our rebuilt omnidirectional mobile robots. Figure 3.10(a) shows the

robotgui module, in which the robot is displayed as a circle with a small line designing

the front and also laser information. This program provides a simple graphical interface

for the robot, allowing direct motion control and a display of current sensor information.

The navigatorgui module shown in Figure 3.10(b) provides a graphical interface which

shows the robot’s position and destination on the pre-built map and allows the setting

of the current position and orientation, and the selection of destinations. Our software

development including graphical user interface and tools to visualize and to control both

omnidirectional mobile robots and unicycle mobile robots is under construction.

34

3.4 Summary

Figure 3.9: Block diagram illustrates an overview of the RoboCup software framework

[93].

(a) (b)

Figure 3.10: CARMEN toolkit (a) robotgui module, and (b) navigatorgui module.

3.4 Summary

In this chapter, we described the infrastructure of our robot systems, in which our real-

world experiments are conducted. Decentralization and homogeneity are employed in the

control laws proposed in Section 5.3, 5.4, and 5.5, and in Chapter 6, while centralization

35

Chapter 3 Robot Systems

and heterogeneity are utilized in the control laws proposed in Subsection 5.5.5. Global

communication is implemented in Section 5.3 and Subsection 5.5.5, whereas local com-

munication with a connectivity assumption is carried out in Section 5.4, in Section 5.5,

and in Chapter 6.

Omnidirectional mobile robots are employed in Section 5.3 and in Section 5.4. Uni-

cycle mobile robots are used in Section 5.5 and Chapter 6. The cooperative strategy for

both kinds of robots is given in Subsection 5.5.5.

36

Chapter 4

Path Following Control

As mentioned in Chapter 1, the problem of motion control addressed in the literature can

be roughly classified into three groups, for which either kinematic or dynamic solutions

are derived: 1) point stabilization, which refers into the problem of steering a vehicle

to a final target point with a desired orientation, 2) trajectory tracking, which requires

a vehicle to track a time-parameterized reference curve, and 3) path following, which

aims at forcing a vehicle to converge to and to follow a desired spatial path without any

temporal specifications [171].

In this dissertation, we explore the path following problem of a single mobile robot

and of multiple mobile robots, where the objective is to be on the path rather than at a

certain point at a particular time. Even though less attention is drawn to this problem in

the literature, it offers some advantages over trajectory tracking in some cases.

Typically, trajectory tracking problems for autonomous vehicles are solved by design-

ing control laws that make the vehicles track predetermined feasible trajectories, i.e., tra-

jectories that specify the time evolution of the position, orientation (spatial dimension),

as well as the linear and angular velocities (temporal dimension) [3]. However, this ap-

proach suffers from the drawback that usually the vehicles’ dynamics exhibit complex

nonlinear terms and significant uncertainties, which make the task of computing a fea-

sible trajectory difficult. Also, in the presence of tracking errors, the controller attempts

to make the outputs catch up with the time-parameterized desired outputs. This may

lead to closed loop performance difficulties and too large control signals. One approach

to eliminate such problems is to use a path following controller instead of a tracking

controller.

Path following has recently been formulated to replace the standard trajectory tracking

as it is more suitable for certain applications. In particular, Aguiar et al. [3] highlighted a

fundamental difference between the path following and the standard trajectory tracking

by demonstrating that performance limitations due to unstable zero-dynamics can be

removed in the path following problem. As illustrated in [209], the path following control

also provides natural settings for many engineering applications. With path following,

the time-dependence of the problem is removed, smoother convergence to the path is

achieved, and the control signals are less likely pushed into saturation when compared to

trajectory tracking.

37

Chapter 4 Path Following Control

Path following problems [3] are primarily concerned with the design of control laws

that steer an object (robot arm, mobile robot, ship, aircraft, etc.) to reach and to fol-

low a geometric path, i.e., a manifold parameterized by a continuous scalar s (called a

geometric task), while a secondary goal is to force the object moving along the path to

satisfy some additional dynamic specifications (called a dynamic assignment task). This

dynamic behavior is further specified via time, speed, or acceleration assignments [209].

This setting is more general than the common trajectory tracking problem, in which the

path variable s is left as an extra degree of freedom for the secondary goal.

To determine the path variable s, Micaelli and Samson [161] used a numerical projec-

tion from the current state onto the path. This point plays the role of a virtual vehicle

that should be tracked by the real vehicle. The main problem of a numerical projection

is that singularities occur when the distance to a path is not well-defined. This problem

can be solved by controlling explicitly the timing law for s to be tracked along the path.

Usually, the choice of the timing law for the path variable s has the following desired

feature: When the path following error is large, the virtual vehicle will wait for the real

one, when the path error is small, the virtual vehicle will move along the path at the

speed close to the desired speed assignment. This feature is suitable in practice because

it avoids the use of a high gain control for large path error signals. Diaz del Rio et al.

[58] proposed a method, called error adaptive tracking, in which the tracking adapts to the

errors. They defined the function of ṡ as ṡ = g(e), where e is the distance error. They also

proposed ṡ = g(t,e) in order to preserve time determinism of trajectory tracking. In [4],

Aicardi et al. specified the target motion to be a continuous radial function centered on

the ellipsoidal domain, which attains its maximum value equal to the largest admissible

one in correspondence with the origin, and a null minimum value in correspondence

with the border of the ellipsoid itself. Soeanto et al. [211] controlled explicitly the rate

of progression of a virtual vehicle by modeling the kinematic equations of motion with

respect to the Frenet frame. A virtual vehicle concept was also employed by Egerstedt et

al. [67], whose control law ensures global stability by determining the dynamics of the

parameterized reference point ṡ. The motion of the virtual vehicle on the desired path is

governed by a differential equation containing error feedback.

Besides using the path parameterization strategy, various approaches have also been

proposed for path tracking, such as pure-pursuit [10], sliding-mode control [237], non-

linear proportional control [242], and vector pursuit [234]. Moreover, the control design

in vision-based path following allows a mobile robot equipped with a camera to track a

line on the ground using visual feedback [43, 49, 149].

In this work, we design an MPC controller to receive the reference point on the path

and to generate an optimal velocity of a virtual vehicle. This controller takes input con-

straints into account. In contrast, other control techniques are usually designed under

the assumption that there are no limitations on inputs or states. The main drawback

of nonlinear model predictive control (NMPC) schemes is related to its computational

burden. With the development of increasingly faster processors and efficient numerical

algorithms, however, the use of an NMPC controller in faster applications (e.g., wheeled

38

4.1 Related Work on Motion Control Using MPC

mobile robots) becomes possible.

Related work on motion control using MPC is first briefly reviewed in the next section

and three experimental scenarios are then presented. All of the proposed algorithms are

based on MPC schemes which differ in strategies and models. The first experiment shows

a comparison between trajectory tracking and path following for an omnidirectional mo-

bile robot using NMPC [144]. The path following control for a linearized model of an

omnidirectional mobile robot is carried out in the second experiment [113]. In this case,

a time varying convex quadratic optimization problem is formulated and solved at each

time step, leading to the reduction of the computational burden. The last experiment

compares trajectory tracking and path following of a unicycle mobile robot, including

obstacle avoidance and a time-parameterized penalty [117].

4.1 Related Work on Motion Control Using MPC

In the field of mobile robotics, MPC approaches to path tracking seem to be very promis-

ing because the reference path is known beforehand. In the literature, most MPC con-

trollers use a linear model of mobile robot kinematics to predict future system outputs.

Ollero and Amidi [179] used generalized predictive control (GPC) to solve the path fol-

lowing problem to obtain an appropriate steering angle taking into account the vehicle

velocity. A GPC approach with a Smith predictor was presented by Normey-Rico et

al. [174] to cope with an estimated system time delay. In [174, 179], it was assumed

that the control acts only in the angular velocity, while the linear velocity is constant.

Hence, an input-output linear model is used to compute the distance between the robot

and a reference path. Lages and Alves [132] used a successive linearization approach,

yielding a linear, time-varying description of the system that can be controlled through

linear MPC. Then, by considering the control inputs as the decision variables, it is pos-

sible to transform the optimization problem to be solved at each sampling time into a

QP problem. Since the latter is a convex problem, the QP problem can be easily solved

by numerically robust solvers, leading to global optimal solutions. Klančar and Škrjanc

[125] applied an MPC controller based on a linearized error dynamics model obtained

around the reference trajectory. The analytic control law is explicitly obtained without

using any optimization solver. Iterative model predictive control was used by Wen and

Sooyong [231]. Their approach is similar to nonlinear MPC but does not consider op-

timization or constraints explicitly; instead it uses a gradient based algorithm to reduce

the predicted state error after a fixed number of trajectory points. Vougioukas [228] pre-

sented a reactive trajectory tracking controller based on nonlinear MPC, along with an

iterative gradient descent algorithm for its real-time implementation. Seyr and Jakubek

[205] solved a nonholonomic control problem consisting of nonlinear predictive con-

trol in conjunction with linear state space control. Falcone et al. [70] implemented an

MPC-based approach for controlling an active front steering system in an autonomous

vehicle. They presented two approaches with different computational complexities. In

39

Chapter 4 Path Following Control

the first approach, the MPC problem is formulated by using a nonlinear vehicle model.

The second approach is based on successive online linearization of the vehicle model.

A suboptimal MPC controller based on successive online linearization of the nonlinear

vehicle model is designed for the resulting linear time-varying (LTV) system. Moreover,

the nonlinear version of MPC schemes for a trajectory tracking problem was proposed

by Gu and Hu [88] and by Hedjar et al. [92]. A neural network also helps to solve the

optimization problem. Yang et al. [237] solved the path following problem by using a

neural network to predict the future behavior of a car-like robot. The modeling errors

are corrected online with the neural network model. Essen and Nijmeijer [69] devel-

oped a nonlinear MPC algorithm in a state-space representation, which is applied to both

problems of point stabilization and trajectory tracking. A modified cost function to be

minimized was proposed. Gu and Hu [87] proposed the nonlinear predictive controller

scheme for a path-tracking problem, where the neural network is employed to model the

nonlinear kinematic behavior of a mobile robot. We can classify all these publications as

trajectory tracking [88, 92, 125, 132, 205] and path following [70, 87, 174, 179, 237].

The key points of our proposed algorithms based on MPC schemes include (i) in path

following control, we propose another possibility to obtain an optimal velocity of a vir-

tual vehicle to be followed along a path in order to overcome stringent initial condition

constraints [211], (ii) the comparison between path following and trajectory tracking on

both an omnidirectional mobile robot and a unicycle mobile robot is drawn, (iii) com-

pared to other path following controllers in the literature, input constraints are handled

straightforwardly in the optimization problem so that the robot can travel safely at a high

velocity, (iv) future information is utilized to improve the system performance because

the reference path is known beforehand, and (v) in case of a unicycle mobile robot, we

achieve smooth convergence towards the reference including time constraints and obsta-

cle avoidance.

4.2 Path Following Control of an Omnidirectional Robot

In this section, we address the path following control problem of an omnidirectional

mobile robot. We also compare the results with trajectory tracking. The comparison

illustrates the differences between these two fundamental motion control problems. We

first formulate error dynamic models, which represent the errors between the real robot

states and its desired states according to a reference path. We then analyze and design

NMPC controllers with guaranteed stability to drive the errors to zero, and we also show

the feasibility of applying NMPC to a physical omnidirectional mobile robot.

4.2.1 Problem Formulation

The path following and trajectory tracking problems are illustrated in Figure 4.1 and

Figure 4.2, respectively. Point Q is the desired reference point of the robot. In trajectory

40

4.2 Path Following Control of an Omnidirectional Robot

tracking, point Q is time-parameterized, whereas in path following, the motion of point

Q is controlled by the velocity of the virtual vehicle moving along the path, which is

parameterized by the path variable s.

We begin with the path following problem. The error state vector xe can be defined as

follows:

xe =





xe

ye

θe



=





cosθd sinθd 0

−sinθd cosθd 0

0 0 1









x− xd

y− yd

θ −θd



 (4.1)

where [x, y, θ]T is the robot state vector and [xd, yd, θd]
T is the reference state vector.

By using the error state and its kinematic model (3.1), the path following control problem

is converted into a regulation problem. The error state dynamic model with respect to

the rotated coordinate frame (4.1) can be derived as follows:

ẋe = yeκ(s)ṡ− ṡ+uR cosαe

ẏe =−xeκ(s)ṡ+uR sinαe

α̇e = θ̇t−κ(s)ṡ

(4.2)

where αe represents the angular error between the robot moving direction θt and the

path tangent direction θd . κ(s) denotes the path curvature at point Q. uR refers to the

translation velocity. It is noticed from (4.2) that uR is decoupled from ṡ and θ̇t , because

the errors can remain on the equilibrium (xe = 0) when ṡ approaches uR. Therefore, the

objective is to find suitable values of ṡ and θ̇t driving the errors xe to zero with uR to be

steered to track any desired velocity.

In trajectory tracking, the desired translational velocity of the robot cannot be cho-

sen freely, but it is determined by the reference trajectory parameterized through time t.

Therefore, the trajectory tracking problem requires the robot to track the specific position

and velocity defined at each given time step. If we control the robot orientation to track

the tangent direction of the reference trajectory, i.e., vd = 0, and use the robot coordi-

nate system as the reference frame, the following error dynamic model of the trajectory

Figure 4.1: Illustration of the path fol-

lowing problem.

Figure 4.2: Illustration of the trajectory

tracking problem.

41

Chapter 4 Path Following Control

tracking problem can be deduced as

ẋe = ωye−u+ud cosθe

ẏe =−ωxe− v+ud sinθe

θ̇e = ωd−ω

(4.3)

where the error vector xe is given with respect to the robot coordinate system and θe

represents the orientation error between the robot orientation θ and the trajectory tangent

direction θd . With respect to the error model (4.3), the objective of trajectory tracking is

to choose suitable robot inputs u, v and ω , such that the tracking error xe converges to

zero.

4.2.2 Controller Design

We first design the path following controller based on NMPC. As the translation and

rotation of an omnidirectional mobile robot are completely decoupled, the angular error

αe in (4.2) can be directly controlled. Therefore, the path following problem can be

solved by finding suitable ṡ and αe. The robot orientation can be seen as an additional

degree of freedom, i.e., we can drive the robot orientation θ to any desired orientation θd

at the same time. Defining the orientation error θe and a new vector ue = [u1, u2, u3]
T ,

we obtain the following error kinematic model whose equilibrium is reached if xe = 0

and ue = 0:

ẋe =





ẋe

ẏe

θ̇e



=





0 κ(s)ṡ 0

−κ(s)ṡ 0 0

0 0 0









xe

ye

θe



+





u1

u2

u3



 (4.4)

with

ue =





u1

u2

u3



=





−ṡ+uR cosαe

uR sinαe

ωd−ω



 (4.5)

where ωd denotes the desired rotation velocity.

As the errors are required to converge to zero, we select the following cost function

for (2.18):

F(xe,ue) = xT
e Qxe +uT

e Rue (4.6)

with positive weight matrices Q= diag(q11,q22,q33) and R= diag(r11,r22,r33). To guar-

antee the control stability, the following Lyapunov function can be chosen as the terminal

penalty:

V (xe(t +Tp)) =
1
2xe(t +Tp)

T xe(t +Tp) (4.7)

where xe(t +Tp) = [xeTp
, yeTp

, θeTp
]T denotes the terminal state.

If we choose the terminal feedback controller uL = [uL
1 , uL

2 , uL
3]

T as:

uL
1 =−αxeTp

uL
2 =−βyeTp

uL
3 =−γθeTp (4.8)

42

4.2 Path Following Control of an Omnidirectional Robot

with parameters α ≥ 0, β ≥ 0, and γ ≥ 0, the stability condition becomes

(V̇ +F)(xe,u
L) = xeTp

ẋeTp
+ yeTp

ẏeTp
+θeTp

θ̇eTp
+F(t +Tp)

= xeTp
uL

1 + yeTp
uL

2 +θeTp
uL

3 +F(t +Tp)

= xeTp
uL

1 + yeTp
uL

2 +θeTp
uL

3 +q11x2
eTp

+q22y2
eTp

+q33θ 2
eTp

+ r11uL2

1 + r22uL2

2 + r33uL2

3 ≤ 0

(4.9)

for all xe ∈Ω.

To satisfy the stability condition, the following requirements are necessary:

α−q11−α2r11 ≥ 0

β −q22−β 2r22 ≥ 0

γ−q33− γ2r33 ≥ 0

(4.10)

The requirements (4.10) are used to define the terminal region Ω. Furthermore, the

outputs of feedback control (4.8) have to satisfy the system constraints, which are the

bounded wheel velocities in our case. With the definitions of the input vector ue, the

terminal feedback controller uL, and the robot’s kinematic model given in (3.1) and (3.2),

we obtain the second part of terminal constraints as:

−





q̇max

q̇max

q̇max



≤





cos(θ +δ) sin(θ +δ) Lw

−cos(θ −δ) −sin(θ −δ) Lw

sinθ −cosθ Lw









−αxeTp
+ ṡ

−βyeTp

−γθeTp
+ωd



≤





q̇max

q̇max

q̇max





(4.11)

Now we move on to trajectory tracking, with the same idea of solving the path follow-

ing problem: We transfer the error kinematic model of the trajectory tracking problem

(4.3) by introducing the following control variables u1, u2, and u3:

ẋe =





ẋe

ẏe

θ̇e



=





0 ω 0

−ω 0 0

0 0 0









xe

ye

θe



+





u1

u2

u3



 (4.12)

where

ue =





u1

u2

u3



=





uR cosθe−u

uR sinθe− v

ωd−ω



 . (4.13)

When we select the cost function, the terminal penalty and the feedback controller with

the same forms as in (4.6), (4.7), and (4.8), respectively. The corresponding terminal

constraints can be deduced by following the same process.

43

Chapter 4 Path Following Control

4.2.3 Experimental Results

Two kinds of experiments were performed to test the above NMPC method: One was

the path following control with a constant desired velocity uR = 1.0 m/s. Here, the

desired robot orientation θd was the path tangent direction. The other was the trajectory

tracking control, where the desired robot orientation θd was changing with respect to

time t. An eight-shaped curve was adopted as the reference path and trajectory, because

its geometrical symmetry and sharp changes in curvature render the test challenging.

With respect to the world coordinate system, the coordinates of the reference path and

trajectory are given by

xd(φ) = 1.8sin(0.4φ), yd(φ) = 1.2sin(0.8φ), (4.14)

where φ = t in case of trajectory tracking, while this reference was numerically pa-

rameterized by the path variable s in case of the path following problem. The same

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

x (m)

y
 (

m
)

actual robot position

desired robot position

Figure 4.3: The reference trajectory and

the robot trajectory.

0 5 10 15 20 25 30

−2

0

2

translational velocity u

time (s)

u
 (

m
/s

)

0 5 10 15 20 25 30

−2

0

2

translational velocity v

time (s)

v
 (

m
/s

)

0 5 10 15 20 25 30

−2

0

2

rotational velocity w

time (s)

w
 (

ra
d

/s
)

Figure 4.4: Velocities with respect to

the robot frame.

0 5 10 15 20 25 30
−2

0

2
left wheel speed w1

time (s)

w
1

 (
m

/s
)

0 5 10 15 20 25 30
−2

0

2
right wheel speed w2

time (s)

w
2

 (
m

/s
)

0 5 10 15 20 25 30
−2

0

2
back wheel speed w3

time (s)

w
3

 (
m

/s
)

Figure 4.5: Wheel velocities.

0 5 10 15 20 25 30

−0.2

0

0.2

x error

time (s)

e
x
 (

m
)

0 5 10 15 20 25 30

−0.2

0

0.2

y error

time (s)

e
y
 (

m
)

0 5 10 15 20 25 30

−0.2

0

0.2

theta error

time (s)

e
o
 (

ra
d

)

Figure 4.6: Tracking errors.

44

4.2 Path Following Control of an Omnidirectional Robot

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

x (m)

y
 (

m
)

actual robot position

desired robot position

Figure 4.7: The reference path and the

robot path.

0 5 10 15 20 25
−2

0

2
translational velocity u

time (s)

u
 (

m
/s

)

0 5 10 15 20 25
−2

0

2
translational velocity v

time (s)

v
 (

m
/s

)

0 5 10 15 20 25
−4

−2

0

2

4
rotational velocity w

time (s)

w
 (

ra
d

/s
)

Figure 4.8: Velocities with respect to

the robot frame.

0 5 10 15 20 25
−2

0

2
left wheel speed w1

time (s)

w
1

 (
m

/s
)

0 5 10 15 20 25
−2

0

2
right wheel speed w2

time (s)

w
2

 (
m

/s
)

0 5 10 15 20 25
−2

0

2
back wheel speed w3

time (s)

w
3

 (
m

/s
)

Figure 4.9: Wheel velocities.

0 5 10 15 20 25
−0.5

0

0.5
x error

time (s)

e
x
 (

m
)

0 5 10 15 20 25
−0.5

0

0.5
y error

time (s)

e
y
 (

m
)

0 5 10 15 20 25
−0.5

0

0.5
theta error

time (s)

e
o
 (

ra
d

)

Figure 4.10: Following errors.

parameters for both experiments were chosen as follows: Q = diag(0.5,0.5,0.5), R =
diag(0.1,0.1,0.1), α = β = γ = 2, τ = 0.07 s, Np = Nc = 3 steps.

Figure 4.3 and Figure 4.7 illustrate the results of trajectory tracking and path follow-

ing experiments. Figure 4.4 and Figure 4.8 show that the desired translation velocity

is changing according to the trajectory’s curvature, but remaining constant in the path

following problem, which increases the difficulty in following the sharp turning part of

the given path. Figure 4.5 and Figure 4.9 show that the controller guarantees that the

required wheel velocities are under the boundaries. Figure 4.6 and Figure 4.10 show

that the NMPC solved these real-time motion control problems with good performance,

because at most time steps, the distance errors are less than 0.15 m and 0.3 m, the orien-

tation errors are less than 0.2 rad and 0.5 rad in the trajectory tracking and path following

tasks, respectively.

45

Chapter 4 Path Following Control

4.3 Linearized Path Following Control of an

Omnidirectional Robot

Since one possibility to reduce the computational time of solving nonlinear optimization

problems is to use linearization techniques, the linearized version of the path following

problem is considered in this section. With this linearized time-varying system, the op-

timization problem can be transformed into a QP problem. Since it turns into a convex

problem, solving the QP problem results in global optimal solutions. After solving the

QP problem at each time instant, an optimal velocity of a virtual vehicle can be obtained.

We also integrate input constraints into the QP problem so that we can steer the robot

safely with a high forward velocity. Furthermore, the velocity profile, which the robot’s

forward velocity will track, is shaped to comply with the robot and path constraints and

is employed along the prediction horizon of the MPC controller. Hence, the MPC con-

troller exploits future information to generate optimal control inputs at each time instant.

This linear MPC controller is computationally effective and can be easily used in fast

real-time implementations.

4.3.1 Problem Formulation

Since the constraints in a QP problem have to be linear, we need to decouple the maxi-

mum rotation from the maximum translation. First, we substitute (3.2) into (3.1) result-

ing in

ẋ(t) = P(θ)q̇(t) (4.15)

with

P(θ) = 2
3





cos(θ +δ) −cos(θ −δ) sinθ
sin(θ +δ) −sin(θ −δ) −cosθ

1
2Lw

1
2Lw

1
2Lw



 .

Since translations and rotations are coupled via θ in (4.15), we employ a similar method

proposed in [109] to decouple the θ -equation from those of the translational ones. For a

given θ , the linear transformation P(θ) maps the cube Q(t) = {q̇(t) | |q̇i(t)| ≤ q̇i,max}
into the tilted cuboid P(θ)Q(t). The matrix P(θ) can be decomposed into a product of a

rotation and a θ -independent linear transformation

P(θ) = Rz(θ)P(0) (4.16)

where

Rz(θ) =





cosθ −sinθ 0

sinθ cosθ 0

0 0 1





P(0) =





√
3/3 −

√
3/3 0

1/3 1/3 −2/3

1/(3Lw) 1/(3Lw) 1/(3Lw)





46

4.3 Linearized Path Following Control of an Omnidirectional Robot

with δ = π
6 rad.

The linear transformation P(0) maps the cube Q(t) (see Figure 4.11) into the tilted

cuboid P(0)Q(t) (see Figure 4.12) with a diagonal q̇3 ≤ 9.7436 rad/s, calculated by using

Lw = 0.195 m and |q̇i(t)| ≤ 1.9 m/s, along the ω axis. The transformation Rz(θ) then

rotates this cuboid about the ω axis. The problem is to find the solid of revolution that

is the intersection of all possible rotations R(θ)zP(0)Q(t) of the cuboid. This solid of

revolution is characterized by (see Figure 4.13 and [109] for details)

ẋ2(t)+ ẏ2(t)≤ r2(ω) (4.17)

where the radius is

r(ω) = 9.7436−|ω|
5.1283 . (4.18)

Equation (4.17) shows the relationship between translational and rotational velocities.

For example, in our experiments we set
√

ẋ2(t)+ ẏ2(t)≤ umax = 1.315 m/s as the max-

imum forward velocity and then the maximum allowable rotational velocity becomes

|ω| ≤ ωmax = 3 rad/s. When the desired rotational velocity is larger than this maximum

allowable value, the forward velocity needs to be decreased in order to achieve the ro-

tational velocity. Using this relationship, we ensure that the maximum wheel velocity

constraints will not be violated. These constraints on translational and rotational veloci-

ties can be either self-imposed due to desired behaviors and safety concerns or physical

due to actual limitations such as currents and voltages in the motors [16].

Figure 4.11: Illustration of the cube

defined by Q(t) =
{q̇(t) | |q̇i(t)| ≤ q̇i,max}.

Figure 4.12: Illustration of the tilted

cuboid P(0)Q(t).

47

Chapter 4 Path Following Control

Figure 4.13: Illustration of the solid of revolution that is defined as the intersection of all

possible rotations R(θ)zP(0)Q(t) of the cuboid.

To apply MPC schemes, we need to derive the system model. In this section, the

kinematic model of an omnidirectional mobile robot can be formulated with respect to

a Frenet frame moving along the reference path. This frame plays the role of the body

frame of a virtual vehicle that must be followed by the real vehicle. In our path following

problem shown in Figure 4.14, we let the forward velocity uR track a desired velocity

profile, while the velocity of a virtual vehicle ṡ converges to uR. The error state vector xe

between the robot state vector x and a virtual vehicle’s state vector xr = [xr,yr,θr,θb]
T ,

where θb is the desired orientation and θr is the tangent angle to the path, can be ex-

pressed in the frame of the path coordinate as follows:

xe =









xe

ye

αe

θe









=









cosθr sinθr 0 0

−sinθr cosθr 0 0

0 0 1 0

0 0 0 1

















x− xr

y− yr

θt−θr

θ −θb









(4.19)

Since translations and rotations of omnidirectional mobile robots can be controlled

separately, we can rewrite (3.1) by decoupling translation and rotation:









ẋ

ẏ

θ̇t

θ̇









=









uR cosθt

uR sinθt

ΦuR

ω









(4.20)

48

4.3 Linearized Path Following Control of an Omnidirectional Robot

Figure 4.14: Illustration of the path following problem.

where Φ is the curvature. The robot translational velocities can be determined by

[

u

v

]

=

[

uR cos(θt−θ)
uR sin(θt−θ)

]

. (4.21)

Using (4.20) and (4.21), the error state dynamic model chosen in the rotated coordinate

frame (4.19) is derived as follows:

ẋe = yeκr(s)ṡ− ṡ+uR cosαe

ẏe =−xeκr(s)ṡ+uR sinαe

α̇e = ΦuR−κr(s)ṡ

θ̇e = ω−ωb

(4.22)

where ωb = θ̇b, θ̇r = κr(s)ṡ, and κ(s) is the path curvature.

Linearizing the error dynamics (4.22) around the reference path xd = [xd,yd,θd]
T , we

obtain the following linear model:









ẋe

ẏe

α̇e

θ̇e









=









0 κduR 0 0

−κduR 0 uR 0

0 0 0 0

0 0 0 0

















xe

ye

αe

θe









+









1 0 0

0 0 0

0 1 0

0 0 1













u1

u2

u3



 (4.23)

where




u1

u2

u3



=





−ṡ+uR cosαe

ΦuR−κr(s)ṡ
ω−ωb



 . (4.24)

In [31], it is shown that the posture kinematic model of omnidirectional robots is com-

pletely controllable.

Besides converging the vehicle to a desired path, assigning a velocity profile to the

path is an additional task, in which the forward velocity is used as an extra degree of

freedom. For example, the forward velocity should be decreased as the vehicle rotates

49

Chapter 4 Path Following Control

around a sharp corner. This allows the integration of constraints by scaling the forward

velocity as proposed by Bak et al. [16]. Lapierre et al. [135] combined path following

with obstacle avoidance. The forward velocity has to be controlled when an obstacle

is detected. In this section, the velocity profile is generated by considering path and

robot constraints. Then, our proposed controller will steer the robot to follow that path

with a predefined velocity profile. In general, the paths are chosen to be C2 continuous,

so that they have continuous curvature and no cusps. The curvature κ of a continuous

curvature path is upper bounded by κmax. That is, the steering radius ρ ≥ ρmin = 1/κmax.

Additionally, there is an upper bound on the curvature derivative, κ̇ , since a robot must

reorient its moving direction with a finite steering velocity. In this section, we consider

the following velocity constraints:

• Maximum velocity constraints, u≤ umax

• Given the desired forward velocity uR and the desired rotational velocity ωb, we

can obtain the forward velocity by using

ud = min(uR, (4.18)) (4.25)

where ω in (4.18) is replaced by ωb.

• To prevent the robot slipping off the path, we have the following constraint

−
√

µg

|κ | ≤ u≤
√

µg

|κ | (4.26)

where µ is the friction coefficient, g is the acceleration due to gravity, and κ is the

curvature.

Thus, the velocity constraints can be given as

0≤ u≤min(umax,ud,
√

µg

|κ |) . (4.27)

The strategy for generating a velocity profile can be integrated into an online path

planner. The velocity can be monitored within some lookahead distance. The slower the

desired forward velocity uR, the shorter the lookahead distance can be considered. The

number of steps of a velocity profile must be at least equal to the prediction horizon N of

the MPC, detailed in the next subsection.

4.3.2 Controller Design

Equation (4.23) can be given in the state-space form ẋe = Acxe +Bcue. To design the

MPC controller for path following, the linearized system (4.23) will be written in a dis-

crete state space system as

xe(k+1) = Axe(k)+Bue(k) (4.28)

50

4.3 Linearized Path Following Control of an Omnidirectional Robot

where A ∈ R
n×R

n, n is the number of the state variables and B ∈ R
n×R

m, m is the

number of input variables. The discrete matrices A and B can be obtained as follows:

A = I +AcTs, B = BcTs (4.29)

where Ts is a sampling time.

It is possible to use MPC to control a state space model (4.28) of a system. The goal

is to find the control-variable values that minimize the quadratic objective function by

solving a quadratic program (QP). The quadratic objective function with a prediction

horizon N is given by

J(k) =
N

∑
j=1

{xT
e (k+ j|k)Qxe(k+ j|k)+uT

e (k+ j−1|k)Rue(k+ j−1|k)} (4.30)

where Q ∈R
n×R

n and R ∈R
m×R

m are the weighting matrices, with Q≥ 0 and R≥ 0.

The double subscript notation (k+ j|k) denotes the prediction made at time k of a value

at time k+ j.

First, the following matrices are defined in order to be able to write the problem in a

form, which a QP solver can solve. By introducing matrices such that all ue(·) and xe(·)
are conveniently stored, we obtain a more compact expression. Defining the prediction-

error vector

X(k) = [xT
e (k+1|k),xT

e (k+2|k), . . . ,xT
e (k+N|k)]T

where X ∈ R
n·N and the control error vector

U(k) = [uT
e (k|k),uT

e (k+1|k), . . . ,uT
e (k+N−1|k)]T

where U ∈ R
m·N .

It can be shown that

X(k) = G(k)xe(k|k)+S(k)U(k) (4.31)

where G(k) ∈ R
n·N×R

n·N and S(k) ∈ R
n·N×R

m·N are defined as follows

G(k) = [α(k+1,k),α(k+2,k), · · · ,α(k+N,k)]T

and

S(k) =











β11(k) 0 · · · 0

β21(k) β22(k) · · ·
...

...
...

. . .
...

βN1(k) βN2(k) · · · βNN(k)











with βi j and α(k, j) defined as:

βi j = α(k+ i,k+ j)B(k+ j−1)

α(k1,k0) =











I if k1 = k0
N−1

∏
i=0

A(k+ i) if k1 > k0

51

Chapter 4 Path Following Control

After defining Q̄ ∈R
n·N×R

n·N and R̄ ∈ R
m·N×R

m·N as block diagonal matrices con-

taining Q and R repeated N times, the objective function of the QP problem can be

rewritten

J(k) =
N

∑
j=1

{xT
e (k+ j|k)Qxe(k+ j|k)+uT

e (k+ j−1|k)Rue(k+ j−1|k)}

=XT Q̄X +UT R̄U

=(Gxe(k|k)+SU)T Q̄(Gxe(k|k)+SU)+UT R̄U.

(4.32)

After some algebraic manipulations, we can rewrite the objective function (4.30) in a

standard quadratic form:

J̄(k) = 1
2UT (k)H(k)U(k)+ fT (k)U(k) (4.33)

with

H(k) = 2(S(k)T Q̄S(k)+ R̄)

f(k) = 2S(k)T Q̄G(k)xe(k|k)

where H ∈ R
m·N ×R

m·N and f ∈ R
m·N . Since all constants, which do not contain the

variable U , do not affect the optimum, they have been excluded in (4.33). The matrix

H(k) is a Hessian matrix which is always positive definite. It describes the quadratic part

of the objective function, and the vector f(k) describes the linear part.

To handle the input constraints, we consider the existence of bounds in the amplitude

of the control variables:

umin ≤ u(k+ j|k)≤ umax (4.34)

where j ∈ [0, N−1], and umin and umax denote the lower and upper bounds, respectively.

In our path following problem, we consider the following constraints:

0 ≤ ṡ ≤ umax

−ωc−ωb ≤ ω ≤ ωc−ωb
(4.35)

with ωc = min(ωl,ωmax), where ωl is calculated by using (4.18), in which r(ω) is re-

placed by uR.

Thus, this standard expression is used in QP problems and the optimization problem

to be solved at each sampling time is stated as follows:

U? = arg min
ue

J̄(k)

subject to umin ≤ u(k+ j|k)≤ umax

(4.36)

After the QP problem at time tk is solved, an optimal control sequence is generated.

The velocity of a virtual vehicle ṡ, the steering angle θt , and the rotational velocity ω can

be calculated from the first element of this sequence and is then applied to the system.

52

4.4 Smooth Reference Tracking of a Unicycle Mobile Robot

4.3.3 Experimental Results

We validated our proposed control algorithm with a real omnidirectional mobile robot,

shown in Figure 3.1. An eight-shaped reference path and the user-defined parameters

were given as follows

xd(t) = 1.8sin(t), yd(t) = 1.2sin(2t),

θb = 0, ωb = 0, µ = 0.18, g = 9.81 m/s2, uR = 1 m/s,

umax = 1.315 m/s, ωmax = 3 rad/s.

The reference path was numerically parameterized by the curvilinear abscissa s. All tun-

able parameters used in our experiments are listed as follows: Q = diag(300,300,7,70),
R = diag(1,0.001,3), N = 3, Ts = 0.05 s.

In our experiments, the package OOQP [81] has been used to solve the QP problem.

The experimental results are shown in Figure 4.15. As seen from the experimental re-

sults, we achieve a real-time implementation of our control law. The forward velocity uR

was decreased in order to preserve the curvature radius when the robot made sharp turns,

while the velocity commands did not exceed the velocity constraints, as expected.

By using the MPC law, it is well known that the shorter the prediction horizon N, the

less costly the solution of the online optimization problem. Thus it is desirable from a

computational point of view to implement MPC schemes using short horizons. However,

this may lead to poor performance. In case of fast dynamic systems like our system, the

prediction horizon must be chosen in such a way that the computing time is smaller than

the sampling period. From our experiments, shown in Table 4.1, we have found that

N = 3−5 steps is a reasonable choice for the prediction horizon.

4.4 Smooth Reference Tracking of a Unicycle Mobile

Robot

In this section, the path following control and the trajectory tracking control of a unicycle

mobile robot are studied. Reference convergence in a path following problem and time

Table 4.1: Computing time depending on the prediction horizon.

Prediction Horizon Computing Time (ms)

1 0.54

3 1.12

5 2.19

10 9.74

15 29.62

53

Chapter 4 Path Following Control

(a)

0 5 10 15 20 25 30
0

0.5

1

1.5
forward speed

time (s)

(m
/s

)

0 5 10 15 20 25 30

−1

0

1

rotational speed

time (s)

ω
 (

ra
d

/s
)

(b)

0 5 10 15 20 25 30
−0.2

0

0.2
x error

time (s)

x
e
 (

m
)

0 5 10 15 20 25 30
−0.2

0

0.2
y error

time (s)

y
e
 (

m
)

0 5 10 15 20 25 30
−0.2

0

0.2
orientation error

time (s)

θ
e
 (

ra
d

)

(c)

Figure 4.15: The experimental results by using the linear MPC law: (a) the superimposed

snapshots, (b) the forward velocity and the rotational velocity, and (c) the

pose errors with respect to the path coordinate. S in (a) denotes the initial

position of the robot.

convergence in a trajectory tracking problem are considered in the cost function of the

NMPC framework. The advantage of the path following controller is that the path follow-

ing controller eliminates aggressiveness of the tracking controller by forcing convergence

to the desired path in a smooth way. Thus, we incorporate this benefit to the trajectory

tracking problem to achieve smooth convergence to the reference and to achieve time

convergence of trajectory tracking. This is accomplished by modifying the cost function

of the MPC framework through the addition of a time dependent penalty term. Based on

this concept, our controller is able to optimize the reference point between the virtual ve-

hicle (path-parameterized) and the trajectory point (time-parameterized). Furthermore,

54

4.4 Smooth Reference Tracking of a Unicycle Mobile Robot

input constraints and obstacle avoidance are taken into account. In the presence of ob-

stacles, the controller deviates from the reference by incorporating obstacle information

from range sensors into the optimization, while respecting motion constraints.

4.4.1 Problem Formulation

First, we derive control inputs ṡ and ω such that the robot follows a virtual vehicle with

position xd = [xd,yd,θd]
T . The kinematic model of a mobile robot can be formulated

with respect to a Frenet frame moving along the reference path. This frame plays the role

of the body frame of a virtual vehicle that must be followed by the real robot, together

with a spatial path Γ as depicted in Figure 4.16. In the path following problem, we

normally let the forward velocity v track a desired velocity profile vd , while the velocity

of a virtual vehicle ṡ converges to v. The error state vector xe between the robot state

vector x and a virtual vehicle’s state vector xd can be expressed in the frame of the path

coordinate as follows





xe

ye

θe



=





cosθd sinθd 0

−sinθd cosθd 0

0 0 1









x− xd

y− yd

θ −θd



 . (4.37)

Using (3.3) and (4.37), the error state dynamic model chosen in a rotated coordinate

frame becomes

ẋe = yeṡκ− ṡ+ vcosθe

ẏe =−xeṡκ + vsinθe

θ̇e = ω− ṡκ

(4.38)

where κ is the path curvature and ṡ is the velocity of a virtual vehicle, bounded by

0≤ ṡ≤ ṡmax.

However, the robot’s translation velocity v has to be controlled in order to achieve

trajectory tracking. Thus, we introduce an acceleration control input a, where a = v̇.

Figure 4.16: A graphical representation of a unicycle mobile robot and a reference path.

55

Chapter 4 Path Following Control

Then, we obtain

η̇e = a− v̇d (4.39)

where ηe = v− vd .

Similar to [88], we redefine the control signals

ue =





u1

u2

u3



=





−ṡ+ vcosθe

ω− ṡκ
a− v̇d



 . (4.40)

The control input vector ue is used as the control input in our NMPC framework. When

the open-loop optimal control problem is solved, the system control input signals ṡ, a, ω
can be obtained from (4.40).

Consequently, the error state dynamic model becomes

ẋe =









ẋe

ẏe

θ̇e

η̇e









=









0 ṡκ 0 0

−ṡκ 0 0 0

0 0 0 0

0 0 0 0

















xe

ye

θe

ηe









+









u1

vsinθe

u2

u3









. (4.41)

4.4.2 Controller Design

We select the following cost function for (2.18)

F(xe,ue) = xT
e Qxe +uT

e Rue (4.42)

with positive weight matrices Q = diag(q11,q22,q33,q44) and R = diag(r11,r22,r33). To

guarantee the control stability, the following Lyapunov function, similar to [88], can be

selected as the terminal penalty in (2.18)

V (xe(t +Tp)) =
1
2xe(t +Tp)

T Pxe(t +Tp) (4.43)

where P = diag(p11, p22, p33, p44) is a positive definite matrix, under the terminal-state

controller uL
e (t) such that the following condition is satisfied:

V̇ (xe(t))+F(t,xe(t),ue(t))≤ 0, ∀xe(t) ∈Ω (4.44)

The terminal state feedback controller uL
e = [uL

1 ,u
L
2 ,u

L
3]

T is defined as follows:

uL
1 =−αxeT uL

2 =−βθeT uL
3 =−γηeT (4.45)

where α, β , γ > 0, and xe(t +Tp) = [xeT ,yeT ,θeT ,ηeT]
T . The subscript T denotes the

terminal state. All weight parameters have to be selected such that (4.44) is satisfied.

56

4.4 Smooth Reference Tracking of a Unicycle Mobile Robot

Then, the stability condition becomes

(V̇ +F)(xe,u
L
e)

= p11xeT ẋeT + p22yeT ẏeT + p33θeT θ̇eT + p44ηeT η̇eT +F(t +Tp)

= p11xeT uL
1 + p22yeT vsinθeT + p33θeT uL

2 + p44ηeT uL
3 +F(t +Tp)

= p11xeT uL
1 + p22yeT vsinθeT + p33θeT uL

2 + p44ηeT uL
3 +q11x2

eT +q22y2
eT +q33θ 2

eT

+q44η2
eT + r11uL2

1 + r22uL2

2 + r33uL2

3 ≤ 0

(4.46)

for all xe ∈Ω.

Substituting the terminal state feedback controller (4.45) into (4.46), we obtain

V̇ (xe(t +Tp))+F(t +Tp) = x2
eT (−p11α +q11 +α2r11)+θ 2

eT (−p33β +q33 +β 2r22)

+η2
eT (−p44γ +q44 + γ2r33)+ p22yeT vsinθeT +q22y2

eT .

(4.47)

Similar to [88], the following conditions for the weight parameters are required to have

a negative derivative of the value function:

p11α−q11−α2r11 ≥ q22

p33β −q33−β 2r22 ≥ 0

p44γ−q44− γ2r33 ≥ 0

(4.48)

and the terminal-state region is defined as follows:

|xeT | ≥ |yeT |
p22yeT vθeT < 0

(4.49)

The terminal-state region is further bounded by the control signal region. From (4.40)

and (4.45), we have the following results at the terminal state:




uL
1

uL
2

uL
3



=





−αxeT

−βθeT

−γηeT



=





−ṡL + vL cosθeT

ωL− ṡLκ
aL− v̇d



 (4.50)

Then, the system control inputs ṡL, ωL, aL at the terminal state can be obtained by




ṡL

aL

ωL



=





αxeT + vcosθeT

βθeT + ṡκ
−γηeT + v̇d



 (4.51)

with the control input constraints
[

ωmin

amin

]

≤
[

ωL

aL

]

≤
[

ωmax

amax

]

. (4.52)

57

Chapter 4 Path Following Control

To achieve time convergence of trajectory tracking, we add an extra penalty. In the tra-

jectory tracking problem, the vehicle is required to track a time parameterized reference.

We normally feed a desired posture xd,t to a tracking controller. In this work, we wish

to combine trajectory tracking behaviors in a path following control law, thus achieving

smooth spatial convergence to the trajectory as well as time convergence. We penalize

the cost function with

Ft = (x(Tp)−xd,t(Tp))
T Kt(x(Tp)−xd,t(Tp)) (4.53)

where Kt is a positive definite matrix. This matrix weighs the relative importance of

convergence in time over spatial convergence to the path. If Kt = 0 is chosen, pure path

following is achieved.

To avoid obstacles, obstacle information has to be incorporated into the cost function,

so that the computed control follows the desired reference, while staying away from the

obstacles. Typically, the desired reference is generated by a planning algorithm based on

a map of the environment and this reference is assumed to be collision-free. During the

actual motions it is possible that obstacles appear in the vehicle’s path, which had not

been present in the planning phase. This may also happen because of the imprecise map,

or localization errors. In this work, we assume that the simulated sensors mimic infra-red

sensors placed in a ring around the robot, spaced by 30◦ and they have a distance range of

50 cm. The obstacle points detected by these sensors then contribute to the cost function

with a term which penalizes states as follows:

Fobs =
Np

∑
i=1

Ns

∑
j=1

Kobs

e−c1|θobs,i j|

ec2dobs,i j
(4.54)

where Kobs, c1, and c2 are positive constants. Ns is the number of range sensors. Np is the

number of predictive steps, given by Np = Tp/δ , where δ is the sampling time. θobs is

the angle of the obstacle with respect to the robot frame and dobs is the distance between

the robot and the obstacle. In case of moving obstacles, the information such as their

position and velocity can be used to predict the information over the next Tp horizon and

then the cost function can be computed. It has to be noted that we consider only convex

polygonal obstacles.

4.4.3 Simulation Results

Our NMPC controller was first implemented in Matlab. Numerous simulations were

performed to evaluate the performance of our system. All the elements of our NMPC

framework were set as follows:

Q = diag(0.2,2,0.01,0.01), R = diag(0.0001,0.0001,0.0001),
P = diag(1,1,0.015,0.015), Kt = diag(1,2,0.01,0.01),
Kobs = 1.5, c1 = 0.01, c2 = 10, Np = 3, Tc = Tp = 0.15 s,
δ = 0.05 s, s(0) = 0 m, α = 2.5, β = 1, γ = 1.

(4.55)

58

4.4 Smooth Reference Tracking of a Unicycle Mobile Robot

The circle reference was given as

xd(s(t)) = Rcos
s(t)
R

yd(s(t)) = Rsin
s(t)
R

where R = 1 m and the desired translation and rotation were vd = 0.5 m/s and ωd = 0.5
rad/s, respectively. The maximum and minimum control inputs were set to vmax = 2 m/s,

vmin =−2 m/s, ωmax = 2 rad/s, ωmin =−2 rad/s, amax = 2 m/s2 and amin =−2 m/s2.

The performance achieved with pure path following, pure trajectory tracking (see [88]

for details), and for combined trajectory tracking and path following is assessed. Fig-

ure 4.17(a) and Figure 4.17(b) show the simulation results of pure path following control

and pure trajectory tracking control, respectively, with four different initial postures. The

velocities and the posture errors of pure path following are depicted in Figure 4.18(a) and

Figure 4.19(a), respectively, while those of pure trajectory tracking are plotted in Fig-

ure 4.18(b) and Figure 4.19(b), respectively when the initial posture of both cases was

set to (1.5,−0.5,π). As seen from the results, in case of path following control, the robot

motions are less aggressive while the robot is approaching the reference path (see Fig-

ure 4.17(a)) and the control signals are less likely saturated. The reason is that the virtual

vehicle slows down when the robot is far from the virtual vehicle, and consequently the

predicted system states of the robot are able to easily reach the terminal region in finite

time. However, in case of trajectory tracking where the reference point depends on time,

the predicted system states are able to reach the terminal region in finite time with more

effort than in case of path following control (see Figure 4.17(b)) because the conditions

in (4.49), depending on time, need to be satisfied.

Figure 4.17(c) shows the simulation results of the combination of path following con-

trol and trajectory tracking control. The velocities and the posture errors are shown

in Figure 4.18(c) and Figure 4.19(c), respectively when the initial posture was set to

(1.5,−0.5,π). This controller was able to achieve both reference convergence and time

convergence with smooth motions. As seen in the results, the robot converges smoothly

to the desired path and then it reacts to achieve zero trajectory tracking error.

Next, a convex polygonal obstacle was introduced in a position which prohibited path

following. As it is shown in Figure 4.20, the controller deviated from the desired ref-

erence in order to safely avoid the obstacle and time convergence was still able to be

achieved. In Figure 4.21, two moving obstacles were present. The velocity of the first

obstacle was 0.2 m/s at −135◦, while the velocity of the second obstacle was 0.6 m/s

at 150◦. In the simulation results, the robot moved backward to avoid the collision and

waited until it was able to find a way to stay away from the obstacles and to follow the

reference.

4.4.4 Experimental Results

In this section, a unicycle mobile robot, shown in Figure 3.6(a) was used in real-world

experiments. The same reference used in simulation was employed in this experiment,

59

Chapter 4 Path Following Control

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

(1.5,−0.5,π)

(1.5,0.5,π)(0.5,0.5,0)

(0.5,−0.5,0)

x (m)

y
 (

m
)

(a)

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

(1.5,−0.5,π)

(1.5,0.5,π)(0.5,0.5,0)

(0.5,−0.5,0)

x (m)

y
 (

m
)

(b)

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

(1.5,−0.5,π)

(1.5,0.5,π)(0.5,0.5,0)

(0.5,−0.5,0)

x (m)

y
 (

m
)

(c)

Figure 4.17: The simulation results with four different initial postures: (a) pure path fol-

lowing, (b) pure trajectory tracking, and (c) the combination of path follow-

ing and trajectory tracking.

0 1 2 3 4 5 6 7 8
−2

−1

0

1

2
translation

time(s)

(m
/s

)

act. velocity

ref. velocity

0 1 2 3 4 5 6 7 8
−2

−1

0

1

2
rotation

time(s)

(r
a
d
/s

)

act. velocity

ref. velocity

(a)

0 1 2 3 4 5 6 7 8
−2

−1

0

1

2
translation

time(s)

(m
/s

)

act. velocity

ref. velocity

0 1 2 3 4 5 6 7 8
−2

−1

0

1

2
rotation

time(s)

(r
a
d
/s

)

act. velocity

ref. velocity

(b)

0 1 2 3 4 5 6 7 8
−2

−1

0

1

2
translation

time(s)

(m
/s

)

act. velocity

ref. velocity

0 1 2 3 4 5 6 7 8
−2

−1

0

1

2
rotation

time(s)

(r
a

d
/s

)

act. velocity

ref. velocity

(c)

Figure 4.18: The robot velocities when the initial posture was set to (1.5,−0.5,π): (a)

pure path following, (b) pure trajectory tracking, and (c) the combination of

path following and trajectory tracking.

0 1 2 3 4 5 6 7 8
−2

0

2
x error

time(s)

(m
)

0 1 2 3 4 5 6 7 8
−1

0

1
y error

time(s)

(m
)

0 1 2 3 4 5 6 7 8
0

1

2

θ error

time(s)

(r
a
d
)

(a)

0 1 2 3 4 5 6 7 8
−2

0

2
x error

time(s)

(m
)

0 1 2 3 4 5 6 7 8
−1

0

1
y error

time(s)

(m
)

0 1 2 3 4 5 6 7 8
0

1

2

θ error

time(s)

(r
a
d
)

(b)

0 1 2 3 4 5 6 7 8
−2

0

2
x error

time(s)

(m
)

0 1 2 3 4 5 6 7 8
−1

0

1
y error

time(s)

(m
)

0 1 2 3 4 5 6 7 8
0

1

2

θ error

time(s)

(r
a
d
)

(c)

Figure 4.19: The posture errors when the initial posture was set to (1.5,−0.5,π): (a)

pure path following, (b) pure trajectory tracking, and (c) the combination of

path following and trajectory tracking.

60

4.5 Discussions and Summary

Figure 4.20: The simulation results when a static polygonal obstacle was present.

Figure 4.21: The simulation results when two moving polygonal obstacles were present.

but with vd = 0.2 m/s, ωd = 0.2 rad/s and δ = 0.1 s. Incorporating the terminal penalty

and the terminal-state constraints degrades the performance because of the high com-

putational complexity. Therefore we did not include them in the cost function in the

real-world experiments. However, we still penalized the cost function with the time-

dependent penalty term in order to satisfy time constraints. Furthermore, obstacle avoid-

ance will be considered in our future work because of the high computational demand

under real-time constraints. The experimental results are shown in Figure 4.22.

4.5 Discussions and Summary

In this chapter, we presented the solutions based on MPC schemes for the problem of

path following control of both an omnidirectional mobile robot and a unicycle mobile

robot. The comparison between path following and trajectory tracking of both kinds of

mobile robots has been shown and discussed. The linear MPC version to solve the path

following problem of an omnidirectional mobile robot with consideration of robot and

path constraints has also been presented. The forward velocity assignment was investi-

gated in order that the robot was able to travel safely. However, it is important to point

61

Chapter 4 Path Following Control

−1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x (m)

y
 (

m
)

actual position

desired position

(a)

0 10 20 30 40 50 60
−0.2

0

0.2
x error

time (s)

(m
)

0 10 20 30 40 50 60
−0.2

0

0.2
y error

time (s)

(m
)

0 10 20 30 40 50 60
−0.4

−0.2

0

0.2

θ error

time (s)

(r
a
d
)

(b)

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4
Translation velocity

time (s)

(m
/s

)
act. velocity ref. velocity

0 10 20 30 40 50 60
−0.2

0

0.2

0.4

0.6
Rotation velocity

time (s)

(r
a
d
/s

)

act. velocity ref. velocity

(c)

Figure 4.22: The experimental results by using our NMPC law: (a) the robot positions

and its reference, (b) the posture errors, and (c) the robot’s velocities.

out that the linear MPC has the disadvantage that the linearized model is only valid for

points near the reference path. As the state and input deviate from the current operating

point, the model mismatch increases. This can generate large prediction errors with a

consequent instability of the closed-loop system.

Basically, in trajectory tracking when the robot is far from the reference trajectory, the

controllers are not suitable because of large control actions resulting from large error.

A possible solution in such a situation is to use so-called landing curves, which allow

the controller to drive the robot efficiently to the reference. However, in Section 4.4, we

have shown that we can eliminate those problems using the combination of trajectory

tracking and path following. Our approach can steer a unicycle mobile robot smoothly

to a reference path with time and control input constraints. The computation limits the

use of NMPC in real-time systems. The improvement of the computation efficiency and

the analysis of feasibility are the topics of future work.

62

Chapter 5

Coordinated Path Following Control

Coordinated path following, which can be seen as a subtask of formation tracking, is

investigated in this chapter. We first give a brief review on formation control strategies,

that is, how a group of robots can be controlled to get into and to maintain a forma-

tion. In Section 5.3, nonlinear model predictive control (NMPC) based on the leader-

following strategy is proposed for omnidirectional mobile robots, while the distributed

version without any leader is proposed in Section 5.4. A decentralized approach based

on a Lyapunov function and a second-order consensus protocol with a reference velocity

for unicycle mobile robots is described in Section 5.5.

5.1 Review on Formation Control Strategies

In the literature, there is a wide spectrum of strategies, ranging from simple, behavior-

based, purely local-communication ones to more involved ones relying, to varying ex-

tent, on global communication. The former category is characterized by minimalism and

robustness but a lack of guarantees that the desired formation will actually emerge; the

latter category is characterized by reliability and efficiency, but also a need for global

knowledge and computation [77]. In the literature, the approaches to solve forma-

tion control problems are roughly categorized into three strategies: leader-following,

behavior-based, and virtual-structure. Each approach has its own advantage and disad-

vantage, as discussed in the following subsections.

Before moving on to each strategy in detail, we point out some notable work concern-

ing formation stability. Swaroop and Hedrick [218] proposed the notion of string stability

for line formations and derived sufficient conditions for a formation to be string stable.

Pant et al. [185] generalized string stability to formations in a planar mesh, through the

concept of mesh stability. Tanner [219] concentrated on formations in acyclic graphs

and studied the effect of feedback and feed-forward on the input-to-state stability of the

formation. He also addressed issues related to safety and performance and investigated

tools that allow to quantify, bound, and estimate the error amplitudes in the worst cases

of different types of formation interconnection structures. Fax and Murray [72] ana-

lyzed the stability of formations in arbitrary graphs and proposed a Nyquist-like stability

criterion that can be derived from the spectral properties of the graph Laplacian.

63

Chapter 5 Coordinated Path Following Control

5.1.1 Behavior-based Approach

Behavior-based approaches start by designing simple and intuitive behaviors or motion

primitives for each individual robot, e.g., formation keeping, trajectory tracking, goal

seeking, and collision and obstacle avoidance. Then, more complex motion patterns can

be generated by using a weighted sum of the relative importance of the simple primitives

and the interaction of several robots. However, the group behavior cannot be explicitly

defined and the theoretical formalization and mathematical analysis of this approach

is difficult. Consequently, the convergence of the formation to a desired configuration

cannot be guaranteed.

As multiple behaviors are allowed to affect the system simultaneously, one way of

coordinating the different behaviors to achieve a satisfactory, global behavior is to use

an arbitration mechanism, where behaviors with higher priorities simply overrule other

behaviors or to determine the weights on each individual behavior in order to make the

overall robot system behave in a satisfactory way. For instance, in a formation control

mission, it is required that the robots maintain a given relative position while avoiding

obstacles. However, it may not always be desirable to let different behaviors affect the

system simultaneously. Obstacle-avoidance guarantees may no longer hold when this

behavior is combined with other behaviors.

Nevertheless, the advantage of behavior-based schemes is that the group dynamics

implicitly incorporates formation feedback by coupling the weights of the actions that

depend on the relative coordinates of neighboring robots. Behavior-based approaches

also give the system the autonomy to operate in unpredicted situations, using sensors to

obtain information about the environment; thus they are useful in guiding a multi-robot

system in an unknown or dynamically changing environment. Variations of this method

have been used by researchers to achieve different formation configurations for mobile

robots [12, 17], spacecraft [11], and underwater vehicles [159].

Balch and Arkin [17] followed motor scheme control. All the behaviors (i.e., goal

seeking, collision avoidance and formation keeping) are summed together through suit-

able weight coefficients which set the relative priority between them. Antonelli et al. [12]

proposed a decentralized scheme to solve the flocking problem by using the null-space-

based behavior control. Simple behaviors are defined for each robot, and these behaviors

are arranged in priority. Michaud et al. [164] employed a hybrid control architecture

that combines a behavioral level with global level deliberation over the overall states of

the group. All behaviors run in parallel and their resulting commands are prioritized and

managed through a finite state machine to generate the control actions of the robot. Fred-

slund and Matarić [77] achieved formation control using only local sensing and minimal

communication between robots. Their key idea is to have each robot keep another spe-

cific robot, called a friend, within its field of view using a panning camera. The robots

are always organized in a chain of friendships by the order of their IDs. One robot is

the conductor, who broadcasts a message indicating the current formation. However, the

possible formations are limited to chain-shaped ones that do not make a backward curve.

64

5.1 Review on Formation Control Strategies

5.1.2 Leader-following Approach

With the leader-following strategy, some robots are considered as leaders, while others

act as followers. The primary advantage of using such a strategy is that maneuvers can

be specified in terms of the leader’s motion and the formation can still be maintained

even if the leader is perturbed by some disturbances. This approach essentially reduces

to a tracking problem where stability of the tracking error is shown through standard

control-theoretic techniques: The leader is supposed to pursue some group objectives,

such as navigation in obstacle environments or tracking a reference trajectory, while

the following robots track transformed coordinates of the leader with some prescribed

offsets. The internal formation stability is induced by the individual robot’s control laws.

However, the disadvantage is that the leader’s motion is independent of the followers,

i.e., there exists no explicit feedback from the followers to the leader. Hence, if the

following robots are unable to maintain a small tracking error, the leader will not slow

down and the formation will break. In addition, the formation does not tolerate leader

faults.

The most common formation control strategies for leader-following are feedback lin-

earization [51, 56, 74], dynamic feedback linearization [153], backstepping [143], model

predictive control [89, 232], first-order sliding mode control [201], and second-order

sliding mode control [53], to name a few. Important work is presented by [51, 56, 74]

using a feedback linearization control method for the formation of nonholonomic mo-

bile robots. They proposed two controllers: Separation-bearing control and separation-

separation control. In separation-bearing control, robot j follows robot i at a desired sep-

aration ld
i j and desired relative bearing ψd

i j, while in separation-separation control, robot

k follows two leaders robot i and robot j at desired separations ld
ik and ld

jk respectively.

In the leader-following approach, the absolute velocity of the leader robot in the local

coordinates of the follower robot is treated as a necessary exogenous input for the forma-

tion tracking controller, i.e., the formation controllers require reliable estimation of the

linear velocity and angular velocity of the leader robot and relative orientation. In the

absence of communication, this becomes quite challenging from a sensing viewpoint,

because the motion of multiple moving objects needs to be estimated simultaneously.

Das et al. [51] used an omnidirectional vision system to provide the range and the angle

of the observed leader. This information is used by the velocity estimator that is based

on an extended Kalman filter. Vidal et al. [227] used omnidirectional image based visual

servoing in which motion segmentation techniques enable each follower to estimate the

image plane position and velocity of other robots in the formation. Orqueda and Fierro

[182] used a pan-controlled camera on each robot for decentralized stabilization of for-

mations. A leader-follower formation controller was proposed utilizing only the relative

positions of robots, in which the derivatives of the relative positions were estimated using

a high-gain observer. Mariottini et al. [153] proposed a method to observe the centroid

of the robot by feedback control via a dynamic extension. A monocular camera without

dependence on special markings on the leaders was employed by Min et al. [166]. The

65

Chapter 5 Coordinated Path Following Control

position and velocities of the leader and the pose of the follower were estimated by us-

ing an extended Kalman filter. However, the authors performed only line and diagonal

formations.

Most of the approaches mentioned above rely on nonlinear observers and image in-

formation, e.g., on an extended Kalman filter [152], an unscented Kalman filter [153],

or a high gain observer [182]. To use image information, either position-based visual

servoing [51, 152, 153, 182] or image-based visual servoing [227] is integrated within a

motion control loop. To eliminate the need for measurement or estimation of the absolute

velocity of the leader, Defoort et al. [53] used a second-order sliding mode formation

controller which is only based on the relative motion states is derived. Dierks and Jagan-

nathan [60] developed a neural network tracking controller that considers the dynamics

of the leader and the followers using backstepping with the robust integral of sign of the

error (RISE) feedback.

There exist some algorithms employing a variant of the leader-follower type strategy.

For instance, Consolini et al. [47] proposed a method that the position of the follow-

ers is not fixed with respect to the leader reference frame but varies in suitable cones,

and only these cones remain stable with respect to the leader reference frame. Their

approach generates smoother trajectories and allows a lower control effort, especially

for large distances between the leader and the followers. Gamage et al. [79] developed

high-level supervisory control of discrete event systems to take care of the coordination

of low level continuous feedback-linearized controllers including formation keeping, ob-

stacle avoidance, wall following, and goal navigation. The higher-level discrete event

system manages the dynamic interaction of the robots with the external environment.

Stipanovic et al. [215] employed a dynamic extension of the unmanned aerial vehicle

(UAV) model. By locally linearizing this model, the formation model can be treated as

an interconnect system of overlapping subsystems (the subsystems share common com-

ponents). Ögren and Leonard [175] combined a formation-keeping control scheme with

a dynamic window approach to obstacle avoidance in order to guarantee safety and sta-

bility of the formation as well as convergence to the goal position. In their approach, the

leader’s task is to determine which actions it can take and still be confident that none of

the followers will collide while attempting to maintain the formation.

5.1.3 Virtual-structure Approach

Virtual structures consider the entire formation as a rigid body. The control law for

a single vehicle is derived by defining the dynamics of the virtual structure and then

translates the motion of the virtual structure into the desired motion of each vehicle. The

main advantages of the virtual structure approach are that it is fairly easy to prescribe the

coordinated behavior for the group, and that the formation can be maintained very well

during the maneuvers, i.e., the virtual structure can evolve as a whole in a given direction

with some given orientation and maintain a rigid geometric relationship among multiple

vehicles. However, if the formation has to maintain the exact same virtual structure all

66

5.1 Review on Formation Control Strategies

the times, the potential applications are limited, especially when the formation shape

needs to be frequently reconfigured.

The virtual structure approach has been used for formation control of mobile robots

[66, 141], spacecraft [20, 196], and marine vehicles [98]. In [141], Lewis and Tan as-

sumed that all robots had global knowledge. Their algorithm iteratively fit the virtual

structure to the robots’ positions, displaced the virtual structure in some desired direc-

tion and updated the robots’ positions. Their method included formation feedback, but

they cannot guarantee that a formation converges to a final configuration. Beard et al.

[20] achieved virtual structures for spacecraft interferometry by having all members of

the formation track assigned nodes which move into a desired configuration with stabil-

ity guarantees, but do not include formation feedback. Egerstedt and Hu [66] defined the

formation through mathematical constraints that model the formation shape. The path

for a virtual leader, including formation feedback is computed as a reference point for

the robots to follow. Similarly, Young et al. [238] included a specific form of formation

feedback in the coordination variable evolution. The virtual structure will slow down and

stop as the robots get out of formation and it moves towards its final goal if the robots

are maintaining formation. Formation of marine craft was proposed by Ihle et al. in

[98], where the desired formation configuration is given as a set of constraint functions.

The functions are treated analytically and by using feedback from the imposed constraint

functions, constraint forces arise. These forces can be seen as control laws and they act

so that the constraint functions are satisfied in order to keep the formation assembled

during operation.

5.1.4 Other Control Strategies

Several methods have been identified to solve formation control problems using an opti-

mization based approach and a graph-theory based approach.

One way to approach the formation control problem is to formulate it as an optimiza-

tion problem. Model predictive control (MPC) is a well-known control strategy in which

the current control action is computed by solving a finite horizon optimal control prob-

lem online. In general, the centralized implementation is not practical since the size of

the state variables depends typically on the number of mobile robots. When the control

horizon becomes larger, the number of variables, of which the robot has to find the value,

increases rapidly. Also, the demands of computational power and memory are daunting

for the real-time solution of systems with a large control horizon and a large number of

mobile robots. Thus, the research has led to decomposing the centralized system into

smaller subsystems, which are independently controlled in the MPC framework.

Jia and Krogh [107] proposed an approach that each controller views the signals from

other subsystems as disturbance inputs in its local model. The distributed MPC con-

trollers exchange predictions on the bounds of their state trajectories and incorporate this

information into their local distributed MPC problems. They also impose their own pre-

dicted state bounds as constraints in subsequent distributed MPC iterations to guarantee

67

Chapter 5 Coordinated Path Following Control

their subsystem satisfies the bounds broadcast to the other controllers. Each controller

solves a local min-max problem on each iteration to optimize performance with respect

to worst-case disturbances. Richards and How [199] presented a decentralized algo-

rithm for systems with coupled constraints. Relevant plan data is exchanged between

subsystems to ensure that all decisions are consistent with satisfaction of the coupled

constraints, e.g., collision avoidance. The decentralized method employs at each time

step a sequential solution procedure, in which the subsystems solve their planning prob-

lems one after the other. Keviczky et al. [121] presented decentralized MPC schemes

for decoupled systems where cost function and constraints couple the dynamical behav-

ior of the systems. Each MPC controller is associated to a different node and computes

the local control inputs based only on its current states, its neighbors current states, its

terminal region, its neighbors terminal regions and models and constraints of its neigh-

bors. Based on such information each node computes its optimal input and its neighbors

optimal inputs. The input to the neighbors will only be used to predict their trajectories

and then discarded while the first component of its optimal input will be implemented.

In [32, 106], a distributed MPC algorithm for unconstrained, linear time-invariant (LTI)

systems in which the dynamics of the subsystems are influenced by the states of inter-

acting subsystems was described. A contractive state constraint is employed in the MPC

optimization of each subsystems and asymptotic stability is guaranteed if the systems

satisfies a matrix stability condition. Dunbar and Murray [65] used the exchange of the

most recent optimal control trajectory between coupled subsystems prior to each up-

date. The stability analysis is more difficult in this case. The asymptotic stability of a

multi-vehicle formation system without collision avoidance constraints is guaranteed by

requiring that each distributed optimal control does not deviate too far from the previous

optimal control.

There exist a large number of publications on formation control using the graph theory-

based approach. We intentionally do not collect all published contributions to this ap-

proach. A non-exhaustive list of relevant research includes: Flocking behavior, which

involves convergence of the velocity vectors and orientation of the agents to a common

value at steady state ([103, 176, 220]), the rendezvous problem, in which agents must

converge to the same point ([61, 131, 146]), decentralized formation tracking, where

agents have to maintain a desired formation while following or tracking a reference

([63, 71, 131, 138, 194]), synchronization phenomena arising in systems of coupled

nonlinear oscillators ([104, 186]), and cyclic pursuit ([154]). In particular, Ren [194] has

shown that many existing leader-follower, behavioral, and virtual structure/virtual leader

formation control approaches can be thought of as special cases of the consensus-based

strategies.

An alternative approach to this problem is a decentralized navigation function pro-

posed by DeGennaro and Jadbabaie [52]. This function is used to drive each agent of a

group toward a desired final configuration which is expressed in terms of distances be-

tween the connected agents. The formation can be reached anywhere in the space and

with any orientation.

68

5.2 Related Work on Coordinated Path Following Control

5.2 Related Work on Coordinated Path Following

Control

The difference between trajectory tracking and path following has already been explained

in Chapter 4. Now we move on to the formation control problem of path following, also

referred to as coordinated path following problem. The solution of this problem is di-

vided into two basic tasks [84]: The geometric task ensures that the individual mobile

robot converges to and stays at its designation in the formation. The dynamic task (also

called the coordination task) ensures that the formation maintains a speed along the path

according to the given speed assignment. Therefore, each member requires an individual

parameterized reference path so that when all paths’ parameters are synchronized each

member will be in formation. However, practical constraints arise from the characteris-

tics of the supporting inter-vehicle communication network. They have to exchange this

parameter to each other via communication only. Thus, the quality of communication

channels becomes a crucial part.

Ghabcheloo et al. [82] presented a solution to the problem of steering a group of

wheeled mobile robots along given spatial paths, while holding a desired inter-vehicle

formation pattern with bidirectional communication constraints. In [83], they focused

further on coordinated path following with an extension on communication problems on

autonomous underwater vehicles (AUVs), i.e., in the presence of communication losses

and time delays. Skjetne et al. [208] used vectorial backstepping to solve an individ-

ual maneuvering problem for each marine vessel with an extension of a synchronization

term in the resulting decentralized dynamic controllers to ensure that the vessels keep

assembled in the desired formation. Ihle et al. [99] showed a passivity property for

the path following control and then combined this with a passivity-based synchroniza-

tion algorithm developed in [14]. Their solution can tolerate a time-varying formation

configuration and allows communication dropouts.

In [66], Egerstedt and Hu proposed formation constraint functions to decouple the

coordination and following problems, while maintaining the stability of the formation.

Ghomman et al. [84] developed a control law based on the virtual structure approach

for coordination of a group of nonholonomic mobile robots. The derivative of the path

parameter is left as an additional control input to synchronize the formation motion.

However, they assumed that each robot has to broadcast its state and reference to the rest

of the team and it has to receive states and references from the other robots of the team.

Do [62] designed a cooperative controller to force a group of mobile robots with limited

sensing ranges to perform desired formation tracking, and to guarantee no collisions

between robots using potential functions. The physical dimensions and dynamics of

the robots are also considered. Recently, Xiang et al. [235] investigated decentralized

speed adaptation with minimum communication. They showed that all speeds can finally

converge to desired speed profiles using only exchange of the path’s parameter.

In this chapter, we introduce two solutions for coordinated path following problems.

69

Chapter 5 Coordinated Path Following Control

One employs nonlinear model predictive control (NMPC) approaches. The other is based

on a Lyapunov function and a second-order consensus protocol with a reference velocity.

We develop two strategies for the first solution: The leader-following strategy [111, 115]

and the distributed version [110, 112]. Both strategies are proposed for omnidirectional

mobile robots, given in Section 5.3 and Section 5.4, respectively. State variables and

constraints are decoupled, while each robot’s cost function is coupled with its neighbors.

Unlike most NMPC controllers which have been employed to solve a trajectory tracking

problem, our NMPC controller is used to solve a coordinated path following problem.

Three key advantages of using NMPC in this chapter are (i) integrating the velocity of

a virtual vehicle, ṡ, into the local cost function explicitly to solve the path following

problem, (ii) controlling robot motions with input constraints, and (iii) utilizing future

information of a reference path to produce an optimal predicted trajectory of a robot.

In Section 5.5, a coordinated path following controller for unicycle mobile robots is

developed. The idea of this solution is to synchronize the path derivative, based on

a Lyapunov function and a second-order consensus protocol with a reference velocity

[116].

5.3 Nonlinear MPC Using the Leader-following Strategy

The first solution to coordinated path following is based on the leader-following strategy,

where the leader robot follows a given path and each follower robot tracks a trajectory,

estimated by using the leader’s information. To solve the path following problem for the

leader robot, we propose to integrate the velocity of a virtual vehicle (ṡ) to be followed

along that path into the local cost function of NMPC. After the open-loop optimization

problem is solved, the optimal velocity at each time step in the future is obtained. This

information and the leader’s current state are broadcasted to all follower robots. With

respect to a desired formation configuration and a reference path, each follower robot

can estimate its own reference trajectory by using the leader’s information and its time

stamp. NMPC is also employed as a local control law to steer the follower robot to track

that reference path.

5.3.1 Problem Formulation

In this section, we solve two problems, i.e., the path following problem and the formation

keeping problem. In the path following problem, the path is parameterized by the path

length s, instead of time, which is normally used in a trajectory tracking problem. To

make a formation pattern, we employ an idea of formation configurations in a curvilin-

ear coordinate system, proposed in [18]. When the formation is turning, the formation’s

shape can be slightly modified. Follower robots on the outside speed up and follower

robots on the inside slow down, which allows the formation to be shape compliant on

route (see Figure 5.1). In our method, only the path which the leader follows is gen-

70

5.3 Nonlinear MPC Using the Leader-following Strategy

erated, while each individual follower robot Fi in the group has a pre-specified offset

(pi(s),qi(s)) in curvilinear coordinates relative to the reference point C, which the leader

robot follows, as shown in Figure 5.1.

In some situations, the collision-free path does not always guarantee the safety for the

whole formation. For example, the width of the path could be too narrow to allow for

more than one robot to pass. Thus, the formation must be changed to a column (see

Figure 5.2(b)). However, as stated in [18], the width of the formation (q-offset) can only

be changed if the second derivative d2q/ds2 exists, i.e., offset qi must be adequately

smooth with respect to the corresponding progenitor path during the transient from one

configuration to another. To solve this problem, we propose to use a fifth-order (quintic)

polynomial to join two path segments with different offsets so that the position, first and

second derivatives at the starting and end points, where two path segments are joined,

match. A quintic is the minimum order polynomial which is able to give sufficient de-

grees of freedom and comply with the constraints on the slope. The general form of a

quintic function is given by

q(s) =
5

∑
j=0

(a js
j
d) (5.1)

subject to constraints on the conditions of the starting and end points, and its slope:

q(sstart) = qstart , q(send) = qend

q′(s) = dq(s)
ds

, q′(sstart) = q′(send) = 0

q′′(s) = d2q(s)
ds2 , q′′(sstart) = q′′(send) = 0

(5.2)

a j are the coefficients of the function, (s,q) is the position on the offset curve at the

path length s, sd = s−sstart

send−sstart
, (sstart ,qstart) is the starting point of the quintic curve, and

(send,qend) is the end point of the quintic curve.

Figure 5.1: Graphical depiction of a mobile robot path and accompanying offset quanti-

ties [18] when the formation is turning. L denotes a leader robot and F1−F4

denote follower robots.

71

Chapter 5 Coordinated Path Following Control

(a) (b)

Figure 5.2: Graphical description of formation configurations: (a) a triangle, (b) a col-

umn. L, F1, and F2 denote the leader robot, the follower robot 1 and the

follower robot 2, respectively. Units are given in meter.

Applying (5.2) to (5.1) yields a0 = qstart ,a1 = a2 = 0,a3 = 10,a4 =−15, and a5 = 6.

The quintic function becomes:

q(s) = qstart +(qend−qstart)(6s5
d−15s4

d +10s3
d) (5.3)

Using a curvilinear coordinate system allows us not only to have the offset-varying

distance qi(s) but also to adjust the pi(s) coordinate. This is simply obtained by decreas-

ing or increasing the velocity of a follower robot i in an appropriate manner. However,

collision avoidance has to be taken into account. The timing of each follower robot has

to be evaluated in order to ensure that no collision occurs during transition.

Let uc be the translational velocity of point C, which the leader robot follows. In

other words, uc is the velocity of a virtual vehicle. Once the coordinates (pi(s),qi(s))
of a follower robot i have been determined, the path length of a follower robot si can be

obtained by si = sc + pi, where sc is the path length at point C. Then its velocity profile

can be obtained by1

ui = Hup (5.4)

ωi = kiui (5.5)

where

ki = sign(b)
√

a2+b2

H2 H =
√

(1− kpq)2 +(dq
ds
)2

a =−2kp
dq
ds
−q

dkp

ds
− (1− kpq) G

H2 b = kp− k2
pq+ d2q

ds2 − dq
ds

G
H2

G = (1− kpq)(−kp
dq
ds
−q

dkp

ds
)+ dq

ds
d2q

ds2

1The derivations can be found in Appendix A.

72

5.3 Nonlinear MPC Using the Leader-following Strategy

ui, ωi and ki are the translational velocity, the rotational velocity and the curvature of the

follower robot i, respectively, up is the translational velocity at si, which is usually equal

to uc. kp is the curvature at si on the reference path, and qi(s) is the offset at si.

5.3.2 Controller Design

We begin with the leader robot and path following control. The main tasks for the leader

robot are to steer itself to a given reference path, to produce an optimal predicted refer-

ence trajectory at each time instant, and to send out its information to all follower robots

via broadcast communication. The first two tasks are simply handled by NMPC.

The path following problem is illustrated in Figure 5.3. The error kinematic model

with respect to the path coordinate (4.4) is rewritten here

ẋe =





ẋe

ẏe

θ̇e



=





0 κ(s)ṡ 0

−κ(s)ṡ 0 0

0 0 0









xe

ye

θe



+ue (5.6)

where ue =





−ṡ+uR cosφ
uR sinφ
ω−ωb



 .

ωb = θ̇b,xe is the vector of the pose error with respect to the path coordinate, κ(s) is

the path curvature, and uR is the desired translational velocity along the reference path.

φ = θt −θd and θe = θ −θb, where θt is the angle of the moving direction of the robot

with respect to the world frame and θd is the orientation angle of the tangent to the

reference curve. In this section, the desired orientation θb is simply equal to θd .

To drive the error xe to zero, x and u in (2.18)-(2.20) are replaced by xe and ue,

respectively, and the terminal state feedback controller uL = [uL
1 ,u

L
2 ,u

L
3]

T is selected as

follows:

uL
1 =−αxeT uL

2 =−βyeT uL
3 =−γθeT (5.7)

Figure 5.3: Illustration of the path following problem.

73

Chapter 5 Coordinated Path Following Control

where xe(t+Tp) = [xeT ,yeT ,θeT]
T , α ≥ 0, β ≥ 0, and γ ≥ 0. All weight parameters have

to be selected such that (2.20) is satisfied (see (4.10) and (4.11)).

After the optimization problem at time tk is solved, the current reference state (sl,k), the

optimal rate of progression at each time step in the future (ṡl,k|k, ṡl,k+1|k, ..., ṡl,k+Tp−1|k),

and the sampling time δl,k are transmitted to all follower robots. Each data packet is

time-stamped so that the age of the information can be extracted at a follower controller.

Next, we consider the trajectory tracking control in follower robots. The task for

each follower robot is to track it own estimated reference trajectory, based on the leader

robot’s information, the predefined formation configuration, and the given reference path.

In practice, some problems may arise, e.g., the information time delay is not zero, the

sampling time of the follower robot can be different (asynchronous timing conditions)

from that of the leader robot or the data packet can be lost. To overcome these problems,

first we calculate the age of the received information and then estimate the robot’s own

reference trajectory with the velocity profiles, computed by using (5.4) and (5.5). In case

of packet loss, the missing information can be filled in by using the previous information

received from the leader robot.

The error kinematic model of each follower robot i with respect to the robot coordi-

nate, adapted from [88] to omnidirectional mobile robots, can be given as

ẋi,e =





ẋi,e

ẏi,e

θ̇i,e



=





0 ωi 0

−ωi 0 0

0 0 0









xi,e

yi,e

θi,e



+ui,e (5.8)

where ui,e =





ui,R cosθi,e−ui

ui,R sinθi,e− vi

ωi,R−ωi



 .

xi,e is the vector of the pose error with respect to the robot frame, [ui,vi,ωi]
T is the vector

of robot velocities. ui,R and ωi,R are the desired translational and rotational velocities,

respectively. Since xi,e is required to converge to zero, x and u in (2.18)-(2.20) are

replaced by xi,e and ui,e, respectively. We select the terminal penalty and the feedback

controller in the same way as we do for the leader robot.

5.3.3 Experimental Results

By our implementation, the internal clock of each robot has to be synchronized initially

using clock synchronization. Furthermore, the sampling time is calculated based on

the average past results [76]. Thus sampling time is varying. This leads us to work

with asynchronous agents with different sampling time. This strategy allows agents to

proceed at their own speed.

In this experiment, the leader robot was required to follow a lemniscate curve given

by

xd(t) =
2.3cos t

1+(sin t)2 yd(t) =
2.3sin t cos t
1+(sin t)2 . (5.9)

74

5.3 Nonlinear MPC Using the Leader-following Strategy

This curve was numerically parameterized by the path length s. All parameters used in

our experiments for all robots are as follows: Q = diag{1,1,1}, R = diag{0.1,0.1,0.1},
δ = 0.07 s, Np = Tp/δ = 3 steps, α = β = γ = 2, where δ is a sampling time.

Figure 5.5 shows the superimposed snapshots of three mobile robots keeping and

switching the formation, while the leader follows the reference path with the transla-

tional reference velocity uR of 0.4 m/s and the rotational reference velocity ωR of κRuR,

where κR is the curvature at the reference point. The formation is changed from a triangle

(see Figure 5.2(a)) to a column (see Figure 5.2(b)) and then switched back to the triangle.

The pose errors of the leader, of the follower 1, and of the follower 2 are shown in Fig-

ure 5.6(a), Figure 5.6(b), and Figure 5.6(c), respectively. The velocities of the leader, of

the follower 1, and of the follower 2, compared with their reference velocities, are shown

in Figure 5.7(a), Figure 5.7(b), and Figure 5.7(c), respectively. As seen in the results, the

leader robot can follow the reference path with the desired translational velocity and the

Figure 5.4: Omnidirectional mobile robots used in the formation control experiments.

Figure 5.5: The snapshots are taken at the following time: (a) original configuration (thin

line) at t = 0 s, (b) column configuration (thick line) at t = 15.4 s, (c) column

formation (thin line) obtained at t = 23.1 s, and (d) triangle formation (thick

line) obtained at t = 39.5 s. L denotes leader, F1 denotes the follower 1 and

F2 denotes the follower 2. × denotes the starting position.

75

Chapter 5 Coordinated Path Following Control

0 10 20 30 40 50 60
−0.2

0

0.2
x error

time (s)

x
e
 (

m
)

0 10 20 30 40 50 60
−0.2

0

0.2
y error

time (s)

y
e
 (

m
)

0 10 20 30 40 50 60
−0.2

0

0.2
orientation error

time (s)

θ
e
 (

ra
d
)

(a)

0 10 20 30 40 50 60
−0.2

0

0.2
x error

time (s)

x
e
 (

m
)

0 10 20 30 40 50 60
−0.2

0

0.2
y error

time (s)

y
e
 (

m
)

0 10 20 30 40 50 60
−0.2

0

0.2
orientation error

time (s)
θ

e
 (

ra
d
)

(b)

0 10 20 30 40 50 60
−0.2

0

0.2
x error

time (s)

x
e
 (

m
)

0 10 20 30 40 50 60
−0.2

0

0.2
y error

time (s)

y
e
 (

m
)

0 10 20 30 40 50 60
−0.2

0

0.2
orientation error

time (s)

θ
e
 (

ra
d
)

(c)

Figure 5.6: Pose errors of (a) the leader, (b) follower 1, and (c) follower 2.

0 10 20 30 40 50 60
0

0.5

translational velocity u

time (s)

u
 (

m
/s

)

0 10 20 30 40 50 60

−0.2

0

0.2

translational velocity v

time (s)

v
 (

m
/s

)

actual speed desired speed

0 10 20 30 40 50 60
−1

0

1

rotational velocity ω

time (s)

ω
 (

ra
d
/s

)

(a)

0 10 20 30 40 50 60
0

0.5

translational velocity u

time (s)

u
 (

m
/s

)

0 10 20 30 40 50 60

−0.2

0

0.2

translational velocity v

time (s)

v
 (

m
/s

)

actual speed desired speed

0 10 20 30 40 50 60
−1

0

1

rotational velocity ω

time (s)

ω
 (

ra
d
/s

)

(b)

0 10 20 30 40 50 60
0

0.5

1

translational velocity u

time (s)

u
 (

m
/s

)

0 10 20 30 40 50 60

−0.2

0

0.2

translational velocity v

time (s)
v
 (

m
/s

)

actual speed desired speed

0 10 20 30 40 50 60
−1

0

1

rotational velocity ω

time (s)

ω
 (

ra
d
/s

)

(c)

Figure 5.7: Velocities of (a) the leader, (b) follower 1, and (c) follower 2.

follower robots can track the reference trajectory based on the leader robot’s information.

Also they can maintain the desired formation at any time.

5.4 Distributed MPC for Omnidirectional Mobile Robots

The solution in this section utilizes the distributed MPC scheme to formulate dynamically

decoupled systems, in which the cost function of an optimization problem is coupled with

neighbors. We adapt the strategies proposed in [65] to our coordinated path following

problem. Each MPC controller associated with a different vehicle computes a solution to

its local problem and exchanges the most recent information with its neighbors. In this

case, there are two subproblems, i.e., (i) a path following problem: a robot is required to

converge to a reference path, and (ii) a formation/coordination control problem: a group

of robots is required to maintain a desired formation/coordination. To achieve these

goals, both pose errors and formation errors are included into a local objective function,

76

5.4 Distributed MPC for Omnidirectional Mobile Robots

which is minimized at each update time. In the formation control, the curvilinear abscissa

s is used as a coupling term with neighboring robots.

We validate our distributed MPC on two scenarios. First, we want a group of omnidi-

rectional mobile robots to move along only one reference path and also to keep a flexible

formation. The flexible formation in this sense means that when a group of robots makes

a turn an outer robot has to move faster while an inner robot has to move slower. Second,

each member of the group is required to exchange information in order to maintain coor-

dination, while following its own reference path. We formulate our problem according to

the first scenario and then adapt it to the second scenario, as shown in the experimental

results. Although very fast updates are currently not achieved with our implementation,

experimental results show that our formation control strategy is promising to be further

investigated.

5.4.1 Problem Formulation

We consider the problem of controlling N omnidirectional mobile robots, namely Ri

where i = 1, ...,N, to follow a reference path. In this work, only one reference path with

a desired forward velocity uo is prespecified. The reference path is parameterized by the

curvilinear abscissa s ∈R. The individual coordinate of robot i can be defined as (si,qi),
where qi is the offset distance perpendicular to si (see Figure 5.8). Thus, we can compute

the desired pose of robot i by using the following equations:

xi,r =





xi,r

yi,r

θi,r



=





xi,p−qi sinθi,p

yi,p +qi cosθi,p

θi,p



 (5.10)

where [xi,p, yi,p, θi,p] is the state vector at si and [xi,r, yi,r, θi,r] is the vector of the

reference pose at si with offset qi (see Figure 5.9). Also, we can calculate the desired

velocities by

ui,r = uo(1−κi,p(s)qi), ωi,r = κi(l)ui,r (5.11)

where

κi(l) =
κi,p(s)

1−qiκi,p(s)
(5.12)

Figure 5.8: Example of a formation following a given reference path.

77

Chapter 5 Coordinated Path Following Control

Figure 5.9: Illustration of the path following problem.

ui,r and ωi,r are the desired translational and rotational velocities of robot i, respectively.

κi(l) and κi,p(s) are the curvature of the robot’s path and of the reference path, respec-

tively. We locate a virtual vehicle at si, and ṡi is defined as the velocity of a virtual vehicle

moving along the reference path. However, in our case, robot i will follow this virtual

vehicle with offset qi. Then we have the relationship between the velocity of the virtual

vehicle and the velocity of the robot’s path as follows:

l̇i = ṡi(1−κi,p(s)qi) (5.13)

It has to be noted that (5.10), (5.11) and (5.13) are not valid if qi is not constant. Also,

cusp or singularity at the robot’s path is not considered in this work.

The formation graph is defined as G= (V,E), where V= {1, ...,N} is the set of robots

and E⊂ V×V is the set of relative vectors between robots. Two robots i and j are called

neighbors if (i, j) ∈ E, and the set of neighbors of robot i is denoted by Ni ⊆ V. All

graphs considered in this section are undirected and we assume that the undirected G is

connected. The desired distance between two neighbors i and j can be determined by

pi j(s), where si + pi j = s j and pi j = −p ji. The formation error vector E ∈ R
M, where

M is the number of edges, has components ei ∈ R defined as ei = si− s j + pi j. Let Ei

denote the vector of all components of E which have a coupled term with robot i. Then

we have E = Cs+p, where the vector p = [..., pi j, ...]
T , s = [...,si, ...]

T , and the matrix

C ∈ R
N×N is the incidence matrix [86].

This kinematic model can be formulated with respect to a Frenet frame moving along

the reference path. Robot i will follow this virtual vehicle with offset q. Given the error

state xe between the robot state vector and the reference state vector and the kinematic

model (3.1), the error state dynamic model expressed in the Frenet frame is derived as

follows:

ẋe = yeκ(l)l̇− l̇ +uR cosφ

ẏe =−xeκ(l)l̇ +uR sinφ

φ̇ = θ̇t−κ(l)l̇

(5.14)

where uR =
√

u2 + v2 is the forward speed, and ϕ = arctan v
u
= θt−θ is the angle of the

moving direction in the body frame.

Since translation and rotation of omnidirectional mobile robots can be controlled sep-

arately [31], we can drive the robot orientation θ to the desired orientation at the same

78

5.4 Distributed MPC for Omnidirectional Mobile Robots

time. In this section, the desired orientation is the angle of the tangent direction to

the reference path θr. The orientation error is defined as θe = θ − θr. Then we have

θ̇e = ω−ωr, where ω = θ̇ and ωr = θ̇r.

In the formation control problem, the forward speed of each robot has to be co-

ordinated with its neighbors. Thus, we introduce a new state variable η , defined as

η = uR−ur. Then we have η̇ = u̇R− u̇r. We define the control inputs of each robot as:

ue =









u1

u2

u3

u4









=









−l̇ +(η +ur)cosφ
θ̇t−κ(l)l̇

ω−ωr

u̇R− u̇r









(5.15)

Finally, the error state kinematic model becomes

ẋe =













ẋe

ẏe

φ̇
θ̇e

η̇













=













yeκi(l)l̇ +u1

−xeκ(l)l̇ +(η +ur)sinφ
u2

u3

u4













(5.16)

5.4.2 Controller Design

The distributed cost function for each robot is defined as

Li(xi,e,Ei,ui,e) = xT
i,eQixi,e +uT

i,eRiui,e + ∑
(i, j)∈E

(W (si− s j + pi j)
2)

(5.17)

where the term (si− s j + pi j) couples the states of neighboring robots and the deviation

from the desired values is weighted by the positive definite matrices Qi and Ri, and the

positive constant W . Since each cost function depends on the neighbors’ trajectories,

each robot has to exchange an assumed trajectory with its neighbors at each update.

Based on notations given in [65], over any prediction interval τ ∈ [tk, tk + Tp],k ∈ N,

associated with current time tk, for each robot we denote

s
p
i (τ; tk): the predicted trajectory,

s∗i (τ; tk): the optimal predicted trajectory,

ŝi(τ; tk): the assumed trajectory.

The corresponding robot state and control trajectories are denoted by x
p
i,e(τ; tk), x∗i,e(τ; tk),

x̂i,e(τ; tk) and u
p
i,e(τ; tk), u∗i,e(τ; tk), ûi,e(τ; tk), respectively. We concatenate the states and

inputs into vectors as xe = [x1,e, ...,xN,e]
T and ue = [u1,e, ...,uN,e]

T , respectively. The

problem is to find

J∗(xi,e(tk),Ei(tk)) = min
u

p
i

Ji(xi,e(tk),Ei(tk),u
p
i,e(·; tk)) (5.18)

79

Chapter 5 Coordinated Path Following Control

where

Ji(xi,e(tk),Ei(tk),u
p
i,e(·; tk)) = Vi(x

p
i,e(tk +Tp; tk))

+
∫ tk+Tp

tk

Li(x
p
i,e(γ; tk), Êi(γ; tk),u

p
i,e(γ; tk))dγ

subject to: ẋ
p
i,e(τ; tk) = fi(x

p
i,e(τ; tk),u

p
i,e(τ; tk))

˙̂xi,e(τ; tk) = fi(x̂i,e(τ; tk), ûi,e(τ; tk))

u
p
i,e(τ; tk) ∈ Ui ∀τ ∈ [tk, tk +Tc]

x
p
i,e(τ; tk) ∈ Xi ∀τ ∈ [tk, tk +Tp]

x̂i,e(τ; tk) ∈ Xi ∀τ ∈ [tk, tk +Tp]

x
p
i,e(tk +Tp; tk) ∈Ωi

x̂i,e(tk; tk) = x
p
i,e(tk; tk) = xi,e(tk)

|sp
i (τ; tk)− ŝi(τ; tk)| ≤ δ 2µ ∀τ ∈ [tk, tk +Tp]

Vi(x
p
i,e(tk +Tp)) is the decoupled terminal penalty and Ωi is the terminal region of robot

i, δ is the sampling time, and µ is a constant. Tc and Tp are the control horizon and the

prediction horizon, respectively, with Tc ≤ Tp. Xi ⊆ R
n and Ui ⊆ R

m denote the set of

feasible n dimensional states and m dimensional inputs of robot i, respectively.

The optimized trajectory s
p
i for robot i is constrained to be at most a distance of δ 2µ

from the assumed trajectory ŝi. The constraint is a means of enforcing a degree of con-

sistency between what a robot plans to do and what neighbors believe that robot will plan

to do. This constraint is called compatibility constraint proposed in [65]. Before giving

any analysis, the following assumptions need to be made:

Assumption 1. Let XΣ ⊂ R
(n+1)N denote the set of initial states (xe(t),s(t0)), which can

be steered to Ω by u
p
e (τ; t) ∈ U, τ ∈ [t0, t0 +Tp].

If Assumption 1 holds, the problem is feasible at initialization. The initial feasibility

of the implementation implies subsequent feasibility, following the standard arguments

in [41, 65, 163] by induction.

Assumption 2. There exists a constant ρmax ∈ (0,∞) such that ‖(x∗e(t; tk),s∗(t; tk))−
(xc

e,s
c)‖ ≤ ρmax and ‖(x̂e(t; tk), ŝ(t; tk))− (xc

e,s
c)‖ ≤ ρmax, ∀t ∈ [tk, tk + Tp], where

(xc
e,s

c) is the desired equilibrium state.

The symbol ‖ · ‖ denotes any vector norm in R
n, and dimension n follows from the

context. For any vector x ∈Rn, ‖x‖P denotes the P-weighted 2-norm, defined by ‖x‖2
P =

xT Px, and P is any positive-definite real symmetric matrix.

If Assumption 2 holds, the optimal and assumed state trajectories remain bounded.

Also, let umax be the positive scalar constant umax = {max‖v(t)‖ | v(t) ∈UN}. Then the

implementation of the control algorithm can be given by Algorithm 5.1.

We note that QΣ and WΣ, positive definite and symmetric, can be defined as follows:

QΣ = diag(Q1, ...,QN), WΣ = [WCTC], respectively. λmin(QΣ) and λmax(QΣ) denote the

80

5.4 Distributed MPC for Omnidirectional Mobile Robots

Algorithm 5.1 The distributed MPC controller for any robot

1: Over any interval [tk, tk+1), k ∈ N:

2: 1. Apply u∗i,e(τ, tk), τ ∈ [tk, tk+1).
3: 2. Compute ŝi(τ; tk+1) = ŝi(τ) as

ŝi(τ) =

{

s∗i (τ; tk), τ ∈ [tk+1, tk +Tp]
si,eT (τ), τ ∈ [tk +Tp, tk+1 +Tp]

4: where si,eT (τ) is the solution from the terminal feedback controllers.

5: 3. Transmit ŝi(·; tk+1) to every neighbor

6: 4. Receive ŝ j(τ; tk+1) from every neighbor j

7: At any time tk, k ∈ N:

8: 1. Measure the current state xi,e(tk)
9: 2. Solve (5.18), yielding u∗i,e(τ, tk), τ ∈ [tk, tk +Tp).

smallest and the largest eigenvalues of QΣ, respectively. Since we assume that our forma-

tion graph G is connected, the second smallest eigenvalue λ2 of WΣ (a weighted Laplacian

of graph G) is positive. The following characteristics of eigenvalues hold (see [86])

λ2 = min xTWΣx

xT x
λmax = max xTWΣx

xT x

for any vector x and xTWΣx = ∑
(i, j)∈E

W (xi− x j)
2.

Now we find the terminal penalty and terminal region, and then we will give the sta-

bility analysis of the distributed NMPC approach taken from [65] with slight adaptation

to our path following problem.

Decoupled Terminal Controllers

In this section, a Lyapunov function for the decoupled terminal-state penalty is defined

as follows:

V (xe(tk +Tp)) =
1
2xe(tk +Tp)

T Pxe(tk +Tp) (5.19)

where P = diag(P1, ...,PN) is a positive definite matrix. Under the terminal-state con-

troller uL
e (t), the following condition is satisfied:

V̇ (xe(t))+L(t,xe(t),ue(t))≤ 0 (5.20)

for any state xe(t) belonging to the terminal region Ω. Then, the stability condition of

each subsystem i becomes (from here in this subsection, we drop subscript i for conve-

81

Chapter 5 Coordinated Path Following Control

nience)

V̇ (xe(t)+L(t,xe(t),ue(t))
= p11xeT ẋeT + p22yeT ẏeT + p33ϕeT ϕ̇eT + p44θeT θ̇eT + p55ηeT η̇eT +L(t,xe(t),ue(t))
= p11xeT uL

1 + p22yeT (ηeT +ur)sinϕeT + p33ϕeT uL
2 + p44θeT uL

3 + p55ηeT uL
4 +q11x2

eT

+q22y2
eT +q33ϕ2

eT +q44θ 2
eT +q55η2

eT + r11uL2

1 + r22uL2

2 + r33uL2

3 + r44uL2

4

+wT (seT − sc)2 ≤ 0

where wT = λmax(WΣ). By construction, λmax(WΣ)In×n ≥WΣ. The terminal state feed-

back controller uL
e = [uL

1 ,u
L
2 ,u

L
3 ,u

L
4]

T can be selected as follows: uL
1 = −k1xeT , uL

2 =
−k2ϕeT , uL

3 =−k3θeT , uL
4 =−k4ηeT , where k1,k2,k3,k4 ≥ 0. The stability condition is

changed to

V̇ (xe(t))+L(t,xe(t),ue(t))
= x2

eT (−p11k1 +q11 + k2
1r11)+ yeT p22(ηeT +ur)sinϕeT +q22y2

eT

+ϕ2
eT (−p33k2 +q33 + k2

2r22)+θ 2
eT (−p44k3 +q44 + k2

3r33)
+η2

eT (−p55k4 +q55 + k2
4r44)+wT (seT − sc)2 ≤ 0.

All weight parameters have to be selected such that (5.20) is satisfied. To have a negative

derivative of the value function, the following requirement for the weight parameters is

required:

−p11k1 +q11 + k2
1r11 ≤ 0 − p33k2 +q33 + k2

2r22 ≤ 0

−p44k3 +q44 + k2
3r33 ≤ 0 − p55k4 +q55 + k2

4r44 ≤ 0
(5.21)

and the terminal-state region is defined as follows:

wT (seT − sc)2 + yeT p22(ηeT +ur)sinϕeT +q22y2
eT < 0 (5.22)

Stability Analysis

The main idea, taken from [65] with slight changes, is to show that by applying Algo-

rithm 5.1, the closed-loop state (xe,s) converges to a neighborhood of the equilibrium

state, with a sufficiently small upper bound on the update period δmax. At any time tk,

the sum of the optimal distributed value functions is denoted

J∗Σ(xe(tk),s(tk)) =
N

∑
i=1

J∗i (xi,e(tk),Ei(tk)). (5.23)

The following lemma gives a bounding result on the decrease in J∗Σ(·) from one update

to the next. The compatibility constraints are applied at each update times tk with k ≥ 1,

thus the result holds for k ∈ {1,2, ...}.
Lemma 5. (adapted from Lemma 4.3 of [65]) Suppose Assumptions 1 and 2 hold and

(xe(t0),s(t0)) ∈ XΣ. Then, by the implementation of Algorithm 5.1 with the constant ξ
defined by

ξ =W µ(4ρmax)2|E|Tp (5.24)

82

5.4 Distributed MPC for Omnidirectional Mobile Robots

the function J∗Σ(·) satisfies

J∗Σ(xe(tk+δ),s(tk+δ))−J∗Σ(xe(tk),s(tk))≤−
∫ tk+δ

tk

N

∑
i=1

Li(x
∗
i,e(γ; tk), Êi(γ; tk))dγ +δ 2ξ .

Proof. For any k ≥ 1,

J∗Σ(xe(tk),s(tk)) =V (x∗e(tk +Tp; tk))+
∫ tk+Tp

tk

N

∑
i=1

Li(x
∗
i,e(γ; tk), Êi(γ; tk),u

∗
i,e(γ; tk))dγ

The optimal control is applied for δ ∈ (0,Tp] seconds, then at time tk+1 = tk +δ , we get

a new state update xi,e and si. A feasible control for (5.18) at time tk+1 is u
p
e (·; tk+1) =

ûe(·; tk+1); therefore,

J∗Σ(xe(tk+1),s(tk+1))≤ V (x̂e(tk+1 +Tp; tk+1))

+
∫ tk+1+Tp

tk+1

L(x̂e(γ; tk+1), Ê(γ; tk+1), ûe(γ; tk+1))dγ

J∗Σ(xe(tk+1),s(tk+1))− J∗Σ(xe(tk),s(tk))≤

−
∫ tk+1

tk

N

∑
i=1

Li(x
∗
i,e(γ; tk), Êi(γ; tk),u

∗
i,e(γ; tk))dγ

+
∫ tk+Tp

tk+1

N

∑
i=1

Li(x̂i,e(γ; tk+1), Êi(γ; tk+1), ûi,e(γ; tk+1))dγ

−
∫ tk+Tp

tk+1

N

∑
i=1

Li(x
∗
i,e(γ; tk), Êi(γ; tk),u

∗
i,e(γ; tk))dγ

+
∫ tk+1+Tp

tk+Tp

N

∑
i=1

Li(x̂i,e(γ; tk+1), Êi(γ; tk+1), ûi,e(γ; tk+1))dγ

+V (x̂e(tk+1 +Tp; tk+1))−V (x∗e(tk +Tp; tk))

Because of x̂e(tk +Tp; tk+1) = x∗e(tk +Tp; tk), x̂e(τ; tk+1) obtained by the terminal feed-

back controllers for τ ∈ [tk +Tp, tk+1 +Tp], (5.19) and (5.20), the sum of the last three

terms in the inequality above is nonpositive, and thus the inequality holds after removing

these three terms. Because of Li(x
∗
i,e(γ; tk), Êi(γ; tk),u

∗
i,e(γ; tk)) ≥ Li(x

∗
i,e(γ; tk), Êi(γ; tk)),

the lemma has been proven if we can prove that

∫ tk+Tp

tk+1

N

∑
i=1

{Li(x̂i,e(γ; tk+1),Êi(γ; tk+1), ûi,e(γ; tk+1))

−Li(x
∗
i,e(γ; tk), Êi(γ; tk),u

∗
i,e(γ; tk))}dγ ≤ δ 2ξ .

Because of x̂i,e(γ; tk+1) = x∗i,e(γ; tk) and ûi,e(γ; tk+1) = u∗i,e(γ; tk), for γ ∈ [tk+1, tk+Tp] the

integrand above is equal to

N

∑
i=1

∑
j∈Ni

Wi{(s∗i (γ; tk)− s∗j(γ; tk)+ pi j)
2− (s∗i (γ; tk)− ŝ j(γ; tk)+ pi j)

2}

83

Chapter 5 Coordinated Path Following Control

Using some algebraic calculation, we have

(s∗i (γ; tk)− s∗j(γ; tk)+ pi j)
2− (s∗i (γ; tk)− ŝ j(γ; tk)+ pi j)

2

= (s∗j(γ; tk)− ŝ j(γ; tk))(−2(s∗i (γ; tk)+ pi j)+ s∗j(γ; tk)+ ŝ j(γ; tk))

≤ δ 2µ(4ρmax)

where we use pi j = sc
j− sc

i , Assumption 2, and the compatibility constraint. Then we

have

δ 2µW

∫ tk+Tp

tk+1

N

∑
i=1

∑
j∈Ni

(4ρmax)dγ ≤ δ 2ξ

with the total number of pairwise neighbors |E| = ∑N
i=1 ∑ j∈Ni

(1/2). This concludes the

proof. �

Now the result has been bounded by using Lemma 5. We still have to show that the

closed-loop state trajectory converges to a closed neighborhood of the objective state.

The neighborhood of convergence is a level set of the function J∗Σ(xe(t),s(t)). We firstly

define zi(t) = (xi,e(t),si(t)) and we then have ‖z− zc‖2
G, where

G =

[

QΣ 0

0 WΣ

]

(5.25)

and zc = (xc
e,s

c) is the desired equilibrium state.

According to [65], we define Ωβ = {z ∈ R
(n+1)N | J∗Σ(xe(t),s(t)) ≤ β} with constant

β ∈ (0,∞) as the compact level set. The set Ωβ is in the interior of XΣ if β > 0 is

sufficiently small. We can choose a constant r = r(β) ∈ (0,ρmax) with the following

properties:

B(zc;r)⊆Ωβ/2 and r2 ≤ 8β
λmin(QΣ)

(5.26)

where B(zc;r) denotes a closed ball in R
(n+1)N with center zc and radius r. We require

the following assumptions (see [65]).

Assumption 3. The following holds: (a) The update period is sufficiently small that the

following first-order Taylor series approximation is valid:

N

∑
i=1

Li(x
∗
i,e(γ; tk), Êi(γ; tk))≈ ‖z(tk)− zc‖2

G +2(γ− tk)(z(tk)− zc)T G f (z(tk),u
∗
e(tk; tk))

for all γ ∈ [tk, tk +δ] and any k ∈ N; (b) there exists a Lipschitz constant K ∈ [1,∞) such

that for any z,z′ ∈ XΣ,u,u
′ ∈ UN ,

‖ f (z,u)− f (z′,u′)‖ ≤K(‖z− z′‖+‖u−u′‖)

Assumption 4. The following holds:

λmin(QΣ)≤ λ2(WΣ)

λmax(QΣ)≤ λmax(WΣ)

84

5.4 Distributed MPC for Omnidirectional Mobile Robots

Then, the theorem taken from [65] with slight changes can now be given.

Theorem 7. (taken from Theorem 1 of [65]) Suppose Assumptions 1-4 hold, z(t0) ∈ XΣ

and for a given constant β ∈ (0,∞) with Ωβ ⊂ XΣ, the constant r = r(β) ∈ (0,ρmax) is

such that the properties in (5.26) are satisfied. Then by implementation of Algorithm 5.1

with

δmax =
(r/2)2λmin(QΣ)

ξ+Kρmax(ρmax+ue,max)λmax(WΣ)
(5.27)

and ξ given by (5.24), the closed-loop state trajectory enters B(zc;r) in finite time and

remains in Ωβ for all future time.

Proof. Substituting the Taylor series expressions to:

J∗Σ(xe(τ),s(τ))− J∗Σ(xe(tk),s(tk))≤
∫ τ

tk

N

∑
i=1

Li(x
∗
i (γ; tk), Êi(γ; tk))dγ +δ 2ξ

∀τ ∈ (tk, tk +δ], for any constant δ ∈ (0,δmax], we have

J∗Σ(xe(τ),s(τ))− J∗Σ(xe(tk),s(tk))≤−(τ− tk)‖z(tk)− zc‖2
G +(τ− tk)

2H

where H =−(z(tk)− zc)T G f (z(tk),u
∗
e(tk; tk)) has the upper bound

H ≤ ‖z(tk)− zc‖ ‖ f (z(tk),u
∗
e(tk; tk))‖λmax(WΣ)≤ ρmaxK(ρmax +umax)λmax(WΣ).

Because of τ− tk ≤ δ ≤ δmax, we have

J∗Σ(xe(τ),s(τ))− J∗Σ(xe(tk),s(tk))≤−(τ− tk)‖z(tk)− zc‖2
G +δδmax(H +ξ)

≤−(τ− tk)λmin(QΣ)‖z(tk)− zc‖2 +δδmax(H +ξ)

≤−λmin(QΣ){(τ− tk)‖z(tk)− zc‖2−δ (r/2)2}
≤ −δλmin(QΣ){‖z(tk)− zc‖2− (r/2)2}

with τ = tk + δ = tk+1. From this inequality, there exists a finite integer l ≥ 1 such that

z(tl) ∈ B(zc;r). If this were not the case, the inequality implies J∗Σ(xe(tk),s(tk))→−∞ as

k→ ∞. Since the cost functions are nonnegative, J∗Σ(xe(tk),s(tk))≥ 0 for any z(tk) ∈ XΣ.

Therefore, by contradiction, there exists a finite integer l ≥ 1 such that z(tl) ∈ B(zc;r)⊆
Ωβ/2. This verifies the first statement of the theorem. Now, there are two cases to be

proved that (xe(t),s(t)) ∈Ωβ for all time t ≥ tl. First, if (z(tk)) ∈Ωβ/2 \ B(zc;r/2), then

z(t) ∈ Ωβ for all time t ∈ [tk, tk+1] and z(tk+1) ∈ Ωβ/2. It is first shown that the upper

bound becomes

J∗Σ(xe(τ),s(τ))− J∗Σ(xe(tk),s(tk))≤ δmaxλmin(QΣ)(r/2)2

for all τ ∈ (tk, tk+1] and δmax < 1/4, since

δmax <
(r/2)2λmin(QΣ)

ρmaxK(ρmax+umax)λmax(WΣ)
≤ (r/2)2

ρ2
max

.

85

Chapter 5 Coordinated Path Following Control

Therefore, the bound on J∗Σ becomes

J∗Σ(xe(τ),s(τ))≤ J∗Σ(xe(tk),s(tk))+
λmin(QΣ)(r/2)2

4 ≤ β

for all τ ∈ (tk, tk+1], using J∗Σ(xe(tk),s(tk)) ≤ β/2 and (5.26). Likewise, z(tk) ∈ Ωβ/2

\ B(zc;r/2) and (5.26) imply that J∗Σ(xe(tk+1),s(tk+1))< J∗Σ(xe(tk),s(tk)) and so z(tk+1)∈
Ωβ/2. In the second case, if z(tk) ∈ B(zc;r/2), then z(t) ∈ B(zc;r) ⊆ Ωβ/2 for all time

t ∈ [tk, tk+1]. From the bounding argument, we have

‖z(t)− zc‖ ≤ ‖z(tk)− zc‖+‖
∫ t

tk

(f (z(γ),ue(γ)))dγ‖

≤ r/2+(t− tk)K(ρmax +umax)

≤ r/2+δmaxK(ρmax +umax)

for all time t ∈ [tk, tk+1], and δmaxK(ρmax+umax)≤ δmaxK(ρmax+umax)≤ (r/2)2λmin(QΣ)
ρmax(λmax(WΣ))

< r
2 . Combining two cases above, we have shown the following: There exists a finite

update time tl such that z(tl) ∈ B(zc;r) ⊂ Ωβ ; at any subsequent update time tk,k >
l,z(tk) ∈ Ωβ/2 ⊂ Ωβ ; finally, for any two subsequent update times tk and tk+1, with

k ≥ l, z(t) ∈Ωβ for all time t ∈ [tk, tk+1]. This concludes the proof. �

The theorem guarantees that, by implementation of Algorithm 5.1 with δmax given by

(5.27), the closed-loop state trajectory enters the closed ball B(zc;r) in finite time and

remains in the level set Ωβ for all future time [65].

5.4.3 Experimental Results

In the first experiment, three omnidirectional mobile robots, shown in Figure 5.4, were

required to follow an ellipse Γ : xp(t) = 1.5cos(t), yp(t) = 1.0sin(t) (it was rotated π/6

rad) with a desired forward speed uo = 0.4 m/s and to keep a flexible triangle formation

(see Figure 5.8). The formation error vector was given as p12 = p23 = −0.4 m, p21 =
p32 = 0.4 m. The offset distances from the reference path were defined by q1 =−0.4 m,

q2 = 0.4 m, and q3 =−0.4 m.

However, using hard constraints can make the numerical solution difficult. To avoid

this, we enforced the terminal constraints through the cost function as soft constraints.

The average sampling time δ was able to be achieved at approximately 0.12 s. All

parameters are listed as follows:

Qi = diag(0.05,0.05,0.0001,0.0001,0.05), Ri = diag(10−5,10−5,10−5,5 ·10−6),
Pi = diag(0.12,0.12,0.02,0.02,0.12), ki = diag(0.5,0.5,0.5,0.5),
Wi = 0.05, µ = 10, Tp = Tc = 3δ , νmin =−1.9 m/s, νmax = 1.9 m/s.

Figure 5.10 shows the superimposed snapshots of three omnidirectional mobile robots

following the reference and keeping the flexible triangle formation. As seen from the

results, the outer robot moves faster and the inner robot moves slower when the formation

86

5.4 Distributed MPC for Omnidirectional Mobile Robots

makes a turn. Figure 5.11 shows the formation error from the experiments. The pose

errors of all three robots are shown in Figure 5.12, while the velocities of all robots,

compared with their reference velocities, are shown in Figure 5.13.

In the second experiment, we have a set of N omnidirectional mobile robots and a set

of N spatial reference paths Γi, where i= 1, ...,N and require that robot Ri follows path Γi.

In order to maintain the motion coordination of the whole group, the speeds at which the

mobile robots are required to travel can be handled in many ways. We propose to employ

morphing. Morphing is a technique used to generate a sequence of configurations that

transform a source configuration into a target configuration. In our problem, we assume

that the reference path for each mobile robot is prespecified and collision avoidance is

taken into account in the phase of generating these reference paths. Then, we determine

the base reference path ΓB, which can be taken either from one of reference paths or from

a new developed reference path, and specify the base forward speed uB,d , which is the

base transition rate in the morphing technique. With the relation between the total length

of the base reference path P(ΓB) and the total length of the reference path of mobile

robot i, P(Γi), the desired forward speed of mobile robot i is defined by

ui,d =
P(Γi)

P(ΓB)
uB,d (5.28)

where ui,d is the desired forward speed of mobile robot i on the reference path Γi. Let ψi

and σi represent si and ui,d in the base reference coordinate, respectively. Both ψi and σi

can be computed as follows:

ψi =
P(ΓB)
P(Γi)

si σi =
P(ΓB)
P(Γi)

ui,d (5.29)

Figure 5.10: The snapshots are taken at the following time (i) initial position at t = 0 s,

(ii) the formation obtained at 8.4 s, and (iii) the formation still maintained

at t = 18.3 s. The solid-line ellipse is the given reference path and× denotes

the starting point.

87

Chapter 5 Coordinated Path Following Control

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

s
1
−s

2
+p

12

s
2
−s

3
+p

23

Figure 5.11: The formation errors of R1 and R2, and of R2 and R3.

0 10 20 30 40 50 60
−0.2

0

0.2
x error

time (s)

x
e
 (

m
)

0 10 20 30 40 50 60
−0.2

0

0.2
y error

time (s)

y
e
 (

m
)

0 10 20 30 40 50 60
−0.2

0

0.2
orientation error

time (s)

θ
e
 (

ra
d
)

(a)

0 10 20 30 40 50 60
−0.2

0

0.2
x error

time (s)

x
e
 (

m
)

0 10 20 30 40 50 60
−0.2

0

0.2
y error

time (s)

y
e
 (

m
)

0 10 20 30 40 50 60
−0.2

0

0.2
orientation error

time (s)

θ
e
 (

ra
d
)

(b)

0 10 20 30 40 50 60
−0.2

0

0.2
x error

time (s)

x
e
 (

m
)

0 10 20 30 40 50 60
−0.2

0

0.2
y error

time (s)

y
e
 (

m
)

0 10 20 30 40 50 60
−0.2

0

0.2
orientation error

time (s)

θ
e
 (

ra
d
)

(c)

Figure 5.12: Experiment 1: pose errors of (a) R1, (b) R2 and (c) R3.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

translational velocity

time (s)

(m
/s

)

0 10 20 30 40 50 60
0

0.5

1

rotational velocity ω

time (s)

ω
 (

ra
d
/s

)

(a)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

translational velocity

time (s)

(m
/s

)

0 10 20 30 40 50 60
0

0.5

1

rotational velocity ω

time (s)

ω
 (

ra
d
/s

)

(b)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

translational velocity

time (s)

(m
/s

)

0 10 20 30 40 50 60
0

0.5

1

rotational velocity ω

time (s)

ω
 (

ra
d
/s

)

(c)

Figure 5.13: Experiment 1: velocities of (a) R1, (b) R2, and (c) R3.

88

5.4 Distributed MPC for Omnidirectional Mobile Robots

If σi is equal to σB, where i = 1, ...,N, then the desired formation can be kept. Indeed,

the base transition rate σB is not necessarily constant at each intermediate configuration.

However, if it is kept constant, the path following problem increases the difficulty in fol-

lowing a sharp turning curve. Figure 5.14 illustrates superimposed snapshots, in which

two omnidirectional mobile robots are required to follow their reference paths and also

to keep inter-vehicle coordination. P(Γi), specified as the total length of the ith reference

path from the source configuration to the target configuration or as the path length cor-

responding to the path length of one period of the base reference path, can be computed

by either using an analytical method or a numerical integration. Alternatively, paths ΓB

and Γi can be reparameterized so that ∂ si

∂ψi
can be obtained. The desired distance between

two neighbors i and j can be determined by pi j(ψ), where ψi+ pi j = ψ j and pi j =−p ji.

Then, an unweighted adjacency matrix A of graph G is used to describe the formation

configuration.

In the experiment, three omnidirectional mobile robots were required to follow their

own reference paths and to spend the same amount of time in each period. The reference

paths were given by

Γ1 : x1,r(s1) = 1.5cos(s1), y1,r(s1) = 1.0sin(s1) (5.30)

Γ2 : x2,r(s2) = 1.5cos(s2), y2,r(s2) = 1.0sin(s2) (5.31)

Γ3 : x3,r(s3) = 1.0cos(s3), y3,r(s3) = 1.0sin(s3) (5.32)

The reference paths in (5.30), (5.31), and (5.32) were rotated π/6, −π/6, and π/2 rad,

respectively. Γ3 was selected as the base reference path ΓB with the desired forward

speed σB of 0.4 m/s. Adjacency Matrix A was set to p12 = p21 = p23 = p32 = 0. Fig-

ure 5.15 shows the superimposed snapshots of three omnidirectional mobile robots. Fig-

ure 5.16(a) shows the distance between two neighbors, expressed in the base reference

Figure 5.14: An example illustrates the transition from a source configuration to a target

configuration of two omnidirectional mobile robots.

89

Chapter 5 Coordinated Path Following Control

(a) (b)

Figure 5.15: The snapshots of the intermediate configurations are taken at the follow-

ing time: (a) thin-line robots obtained at t = 0 s, thick-line robots obtained

at 15.4 s, and (b) thick-line robots obtained at t = 22.8 s, thin-line robots

obtained at t = 31.7 s. × denotes the starting point.

coordinate and Figure 5.16(b) shows the coordination error, where the neighbor of R1 is

R2, the neighbors of R2 are R1 and R3, and the neighbor of R3 is R2. The pose errors of

three mobile robots are shown in Figure 5.17, while their forward speeds and rotational

speeds, compared with their reference speeds, are shown in Figure 5.18.

As seen from the results of both experiments, all team members were able to maintain

motion coordination during following reference paths. The position errors were less

than 0.15 m, while the orientation errors were less than 0.1 rad. To achieve the desired

formation, the path variable was used as a coupling term between neighboring robots

and the path derivative was explicitly controlled through the distributed MPC framework.

The coordination errors were less than±0.1 m as seen in Figure 5.11 and Figure 5.16(b).

5.5 Coordinated Path Following for Unicycle Mobile

Robots

In this section, we develop a control law based on a virtual vehicle approach for coordi-

nated path following of a group of N unicycle mobile robots. The controller is designed

in such a way that the derivative of the path parameter is used as an additional control

input to synchronize the formation motion. This coordinated path-following problem

can be divided into two subproblems, i.e., the path following control problem and the

coordination problem. In this work, we derive our control law based on a Lyapunov

function candidate and a consensus algorithm for a kinematic model of mobile robots.

90

5.5 Coordinated Path Following for Unicycle Mobile Robots

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

time (s)

(m
)

ξ
1

ξ
2

ξ
3

(a)

0 5 10 15 20 25 30 35 40
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time (s)

(m
)

ξ

1
−ξ

2
+p

12

ξ
2
−ξ

3
+p

23

(b)

Figure 5.16: (a) the distances between two neighbors expressed in the base reference

coordinate system and (b) the coordination errors of R1 and R2 and of R2

and R3 expressed in the base reference coordinate system.

0 5 10 15 20 25 30 35
−0.2

0

0.2
x error

time (s)

e
x
 (

m
)

0 5 10 15 20 25 30 35
−0.2

0

0.2
y error

time (s)

e
y
 (

m
)

0 5 10 15 20 25 30 35
−0.2

0

0.2
orientation error

time (s)

e
o
 (

ra
d

)

(a)

0 10 20 30 40
−0.2

0

0.2
x error

time (s)

e
x
 (

m
)

0 10 20 30 40
−0.2

0

0.2
y error

time (s)

e
y
 (

m
)

0 10 20 30 40
−0.2

0

0.2
orientation error

time (s)

e
o
 (

ra
d

)

(b)

0 10 20 30 40
−0.2

0

0.2
x error

time (s)

e
x
 (

m
)

0 10 20 30 40
−0.2

0

0.2
y error

time (s)

e
y
 (

m
)

0 10 20 30 40
−0.2

0

0.2
orientation error

time (s)

e
o
 (

ra
d

)

(c)

Figure 5.17: Experiment 2: pose errors of (a) R1, (b) R2 and (c) R3.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

forward speed u
1

time (s)

(m
/s

)

0 5 10 15 20 25 30 35
0

0.5

1

rotational speed ω
1

time (s)

ω
 (

ra
d

/s
)

(a)

0 10 20 30 40
0

0.2

0.4

0.6

forward speed u
2

time (s)

(m
/s

)

0 10 20 30 40
0

0.5

1

rotational speed ω
2

time (s)

ω
 (

ra
d

/s
)

(b)

0 10 20 30 40
0

0.2

0.4

0.6

forward speed u
3

time (s)

(m
/s

)

0 10 20 30 40
0

0.5

1

rotational speed ω
3

time (s)

ω
 (

ra
d

/s
)

(c)

Figure 5.18: Experiment 2: velocities of (a) R1, (b) R2, and (c) R3.

91

Chapter 5 Coordinated Path Following Control

Both path errors and coordination errors are considered in the Lyapunov function and

the path parameter is used to synchronize coordination motions via a second-order con-

sensus protocol with a reference velocity under undirected information exchange with

connectivity assumption.

5.5.1 Problem Formulation

We consider a group of N mobile robots, each of which has the kinematic equations

given by (3.3). We first consider path following for each mobile robot in the formation,

i.e., we wish to find control law vi and ωi of robot i such that the robot follows a virtual

vehicle with position xdi = [xdi,ydi,θdi]
T and inputs vdi and ωdi. A unicycle-type mobile

robot is depicted in Figure 5.19, together with a spatial path Γi to be followed. The path

error with respect to the robot frame is given by




xei

yei

θei



=





cosθi sinθi 0

−sinθi cosθi 0

0 0 1









xdi− xi

ydi− yi

θdi−θi



 . (5.33)

Then, the error dynamics are

ẋei = yeiωi− vi + ṡi cosθei

ẏei =−xeiωi + ṡi sinθei

θ̇ei = κiṡi−ωi

(5.34)

where κi is the path curvature and ṡi is the velocity of a virtual vehicle. It is bounded by

0≤ ṡi ≤ ṡi,max.

Next, we consider the coordination problem. To maintain the motion coordination

of the whole group, each robot requires an individual parameterized path so that when

all path parameters are synchronized, all robots will be in formation. The velocities at

which the mobile robots are required to travel can be handled in many ways. In this

section, there are three velocities to be synchronized, i.e., the velocity v0 (or vdi in the

robot frame), specifying how fast the whole group of robots should move, the velocity

ṡi, denoting how fast an individual virtual vehicle moves along the path, and the velocity

vi, determining how fast an individual real mobile robot travels (see Figure 5.20).

5.5.2 Controller Design

Define the following variable
˙̃si = ṡi− vdi (5.35)

where ˙̃si represents the formation speed tracking error of robot i. Let us choose

V =
1

2

N

∑
i=1

[

x2
ei + y2

ei +
1

k1
(θei−δi(yei,v))

2 + ˙̃s2
i + k2s̄2

i

]

(5.36)

92

5.5 Coordinated Path Following for Unicycle Mobile Robots

Figure 5.19: A graphical representation

of a unicycle mobile robot

and a path.

Figure 5.20: A graphical representa-

tion of coordinated path

following.

as a candidate Lyapunov function, where k1 and k2 are positive gains. s̄i = ∑ j∈Ni
(si−

s j − sdi j) is the coordination error of robot i and sdi j is the desired distance between

two neighbors i and j. The function δi(yei,v) can be interpreted as the desired value for

the orientation θei during transients [161]. It is assumed that limt→∞ v(t) 6= 0, δi(0,v) =
0, and yeivsin(δi) ≤ 0,∀yei∀v. The function δi(yei,v) taken from [211] is δi(yei,v) =
−sign(vdi)θa tanhyei with θa =

π
4 .

The derivative of V can be computed to give

V̇ =
N

∑
i=1

[

xeiẋei + yeiẏei +
1

k1
(θei−δi)

(

θ̇ei− δ̇i

)

+ ˙̃si ¨̃si + k2s̄i ˙̄si

]

. (5.37)

We first design a controller to stabilize the xei, yei, and θei dynamics. Substituting (5.35)

into (5.34), adding yeivdi sinδi− yeivdi sinδi to (5.37), the time derivative along the solu-

tions of (5.34) yields

V̇ =
N

∑
i=1

[

xei

(

yeiωi− vi +(˙̃si + vdi)cosθei

)

+ yei

(

−xeiωi +(˙̃si + vdi)sinθei

)

+
1

k1
(θei−δi)

(

θ̇ei− δ̇i

)

+ yeivdi sinδi− yeivdi sinδi + ˙̃si ¨̃si + k2s̄i ˙̄si

]

. (5.38)

Let the control laws for vi and ωi be defined as

vi =k4xei + vdi cosθei (5.39)

ωi =k5(θei−δi)+ωdi− δ̇i + k1yeivdi

[

sinθei− sinδi

θei−δi

]

(5.40)

93

Chapter 5 Coordinated Path Following Control

where k4 and k5 are positive gains, and ωdi = κivdi. Then

V̇ =
N

∑
i=1

[

− k4x2
ei−

k5

k1
(θei−δi)

2 + xei ˙̃si cosθei + yei ˙̃si sinθei

+
1

k1
(θei−δi)κi ˙̃si + yeivdi sinδi + ˙̃si ¨̃si + k2s̄i ˙̄si

]

. (5.41)

To make the derivative of the Lyapunov function V negative, we choose the following

consensus controller with a reference velocity

s̈i =v̇di− k6 (ṡi− vdi)− xei cosθei− yei sinθei−
1

k1
(θei−δi)κi

−2k2 ∑
j∈Ni

(si− s j− sdi j)− k3 ∑
j∈Ni

(ṡi− ṡ j) (5.42)

where k3,k6 > 0. Then we can achieve

V̇ =
N

∑
i=1

[

−k4x2
ei−

k5

k1
(θei−δi)

2− k6(ṡi− vdi)
2 + yeivdi sinδi

]

− k3ṡT Lṡ≤ 0 (5.43)

where ṡ ∈ R
N is the stack vector of the robots’ path derivative. We now state the main

result of the coordinated path-following control for the mobile robots.

Theorem 8. Assume that the undirected formation graph is connected. The control in-

puts vi, ωi, and s̈i given in (5.39), (5.40), and (5.42), respectively, for robot i solve the

coordinated path-following objective.

Proof. From (5.43), we have that V̇ ≤ 0, which means that

V (t)≤V (t0), ∀t ≥ t0. (5.44)

From the definition of V , the right hand side of (5.44) is bounded by a positive constant

depending on the initial conditions. Since the left hand side of (5.44) is bounded, it im-

plies the boundedness of xei, yei, (θei− δi), ˙̃si and s̄i for all t ≥ t0 ≥ 0. We also assume

boundedness of ṡi and vdi, implying the boundedness of the overall closed-loop coordi-

nation system on the maximal interval of definition [0,T). This rules out finite escape

time so that T =+∞.

From the above argument on the boundedness of xei, yei, (θei−δi), ˙̃si and s̄i, applying

Barbalat’s lemma [123] to (5.43) results in

lim
t→∞

(xei,θei−δi, ˙̃si, ˙̄si) = 0. (5.45)

To satisfy path-following tasks, we have to show that yei converges to zero as t→ ∞. In

the closed loop of the θei dynamics

θ̇ei =κi ˙̃si− k5(θei−δi)+ δ̇i− k1yeivdi

[

sinθei− sinδi

θei−δi

]

94

5.5 Coordinated Path Following for Unicycle Mobile Robots

we can conclude that limt→∞(yei) = 0 since limt→∞(θei− δi, ˙̃si) = 0 and vdi does not

converge to zero.

Since the Laplacian matrix L is positive semidefinite, it follows that Lṡ = 0. L has a

single zero eigenvalue with corresponding eigenvector
−→
1 . It follows that ṡ belongs to

span{−→1 }. Hence ṡi = ṡ j,∀i, j ∈ N, and ṡi converges to vdi, which in turn, implies that

s̈i = v̇di. From this fact, we can get

lim
t→∞

(si− s j− sdi j) = 0. (5.46)

Define sdi j = sdi− sd j, where sdi and sd j are the path’s desired parameters of robot i and

robot j, respectively. We then have si−s j−sdi j = si−s j−(sdi−sd j) = (si−sdi)−(s j−
sd j) = ŝi− ŝ j. Then we obtain Ls+ sd = 0⇒ Lŝ = 0. Thus, all ŝi are equal to a common

value, i.e., si− s j = sdi j, j ∈ Ni,∀i, j. We conclude that the robots converge to the desired

configuration. �

5.5.3 Simulation Results

Before testing on real robots, some simulations were carried out to evaluate the proposed

controller as established in the previous subsection. Simulation allows to observe the

controller behavior while varying some parameters, although it does not consider the

team dynamics. Regarding more realistic situations in robot motions, we took into ac-

count the maximum velocities: |vi| ≤ 0.5 m/s, |ωi| ≤ 1.0 rad/s. We performed a velocity

scaling given in [181] so as to preserve the curvature radius corresponding to the nominal

velocities. The control gains were set to k1 = 5.0, k2 = 0.5, k3 = 0.2, k4 = 0.25, k5 = 1.0,

k6 = 0.2, and the desired speed for the whole group of robots was v0 = 0.2 m/s.

Figure 5.21: Simulation: the superim-

posed snapshots.

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6
Coordination errors

Time (s)

(m
)

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8
Velocities of virtual vehicles

Time (s)

(m
/s

)

Figure 5.22: Simulation: the coordina-

tion errors and the veloci-

ties of virtual vehicles.

95

Chapter 5 Coordinated Path Following Control

In this simulation, six mobile robots were required to follow a lemniscate curve given

by

xd(t) =
2.3cosθd(t)

1+sin2 θd(t)
yd(t) =

2.3sinθd(t)cosθd(t)

1+sin2 θd(t)

and to maintain a desired formation described by the following elements of the adjacency

matrix: a14 = a13 = a36 = a56 = a25 = 1. The superimposed snapshots are shown in

Figure 5.21. The coordination errors converging to zero can be seen in Figure 5.22. The

velocity tracking errors and the path errors of each robot also converge to zero, satisfying

the path-following objective.

5.5.4 Experimental Results

In real-world experiments, the mobile robots shown in Figure 5.23 were used in this

section. The lemniscate curve similar to the path in the simulation was employed in the

first experiment. Each robot was required to maintain a column formation described by

sd12 = sd23 = 75 cm. The elements a12 = a21 = 1, a23 = a32 = 1 in the adjacency matrix

Figure 5.23: Three unicycle mo-

bile robots used in

experiments.

Figure 5.24: Exp. 1: the superimposed

snapshots at t = 0 s, t =

10.4 s, and t = 20.8 s.

0 5 10 15 20 25 30

−0.2

−0.1

0

0.1

0.2

0.3
Coordination errors

Time (s)

(m
)

s1 − s2 s2 − s3

0 5 10 15 20 25 30
0

0.1

0.2

0.3
Velocities of virtual vehicles

Time (s)

(m
/s

)

ṡ1 ṡ2 ṡ3

Figure 5.25: Exp. 1: the coordination

errors and the velocities of

virtual vehicles.

0 5 10 15 20 25 30
−0.2

0

0.2
x error: Robot 1

Time (s)

(m
)

0 5 10 15 20 25 30
−0.2

0

0.2
y error: Robot 1

Time (s)

(m
)

0 5 10 15 20 25 30

−0.2

0

0.2

θ error: Robot 1

Time (s)

(r
a
d
)

Figure 5.26: Exp. 1: the position errors

of robot 1.

96

5.5 Coordinated Path Following for Unicycle Mobile Robots

represented the information exchange in the formation graph. The experimental results

are plotted in Figure 5.24. As seen in Figure 5.25, the coordination tasks are achieved.

The coordination errors are less than 10 cm and the virtual vehicle of each robot can

travel at the desired speed v0 = 0.2 m/s. Likewise, the path-following tasks are attained

as seen in Figure 5.26.

In the second experiment, each robot followed its own path, i.e., a sinusoidal curve for

robot 1 and robot 3, and a straight line for robot 2. sdi j was set to 0 and the elements of

the adjacency matrix were set to a12 = a21 = 1, a23 = a32 = 1. The results are depicted in

Figure 5.27. The coordination errors and the velocity of each virtual vehicle can be seen

in Figure 5.28. The experimental results show the effectiveness of our proposed control

law: the group of robots can travel at the desired speed v0 while keeping a desired for-

mation. The main sources of disturbances during experiments include sensor distortion,

vision-system delays, and communication delays.

5.5.5 Cooperation in Heterogeneous Robot Teams

This subsection presents a cooperative strategy for mobile robots based on nonlinear con-

trol techniques and omnidirectional vision. Such a strategy will be applied to a mobile

robot team formed by small robots with a simple microcontroller and modest sensors

such as wheel encodes, and a bigger leader robot with more computational power. The

leader is responsible for group navigation and controls team formation. It has an omni-

directional camera and sees the other robots. Color segmentation and a Kalman filter is

used to obtain the positions of the followers, related to the leader, while the orientation

measured by a compass sensor is sent to the leader robot. The omnidirectional visual

feedback has the advantage of allowing the leader to localize all the followers around

itself by taking just one image. Those poses are then used for controlling team formation

Figure 5.27: Exp. 2: the superimposed

snapshots at t = 0 s, t = 5.2

s, t = 10.6 s, t = 16.2 s, and

t = 21.6 s.

0 2 4 6 8 10 12 14 16 18 20

−0.2

−0.1

0

0.1

Time (s)

(m
)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3
Velocities of virtual vehicles

Time (s)

(m
/s

)

ṡ1 ṡ2 ṡ3

Figure 5.28: Exp. 2: the coordination

errors and the velocities

of virtual vehicles (v0 =
0.15 m/s).

97

Chapter 5 Coordinated Path Following Control

through a nonlinear controller that defines the followers’ linear and angular velocities to

keep the desired formation.

In our implementation, each robot executes a formation control law in its own thread

on the leader robot, which has greater computational power and owns the omnidirec-

tional system. Although the formation control is centralized on the leader, the followers’

velocity control is done in a decentralized manner. Once the followers receive their

motor commands sent by the leader, they have their own controller for performing the

linear and angular velocities. To make a mobile robot team (formed by one leader and

n followers) navigate in an environment keeping a specific formation, we employ the

navigator module from the CARMEN framework [167, 168] to generate collision-free

way-points. The experiments were carried out with one omnidirectional mobile robot as

the leader, and two unicycle mobile robots as the followers. The solid line in the middle

in Figure 5.29 indicates the path of the leader. The distance sd between the leader R1

to the first follower R2 was equal to 0.8 m, while the distance sd between two follow-

ers, R2 and R3, was set to 0.5 m. The offset distances of R2 and R3 were 0.2 m and

−0.2 m, respectively. The leader moved with linear velocity of 0.2 m/s. The dotted lines

represent the actual trajectories for each robot. The filled circle and rectangle indicate

the starting point and the end point, respectively. As seen in the results, the followers

achieve their desired positions and successfully keep the formation. However, it is worth

noting that collision avoidance is not included in this experiment and the restriction of

this cooperative strategy is to maintain line-of-sight constraints.

Figure 5.29: The superimposed snapshots of cooperative experiments. R1 denotes a big

omnidirectional mobile robot, while R2 and R3 represent small unicycle

mobile robots.

98

5.6 Discussions and Summary

5.6 Discussions and Summary

In this study, controllers were implemented in a distributed fashion within network envi-

ronments. These robots can cooperate and communicate with each other to achieve the

objective of coordinated path following control. Two kinds of control laws have been

proposed, i.e., one realized the attractive feature of NMPC based on two strategies: A

leader-following strategy in Section 5.3 and a distributed version in Section 5.4. The

other solution was to use a Lyapunov function and consensus protocols in Section 5.5.

The NMPC controller is an interesting control method as not only it can handle the

state and input constraints but also utilize future information to generate a trajectory of

optimal control input at each time step. However, the major disadvantages of NMPC

are a control stability problem and high computational load. By our implementation, we

have shown that NMPC is a promising control approach, applied to real-time applications

of mobile robots as seen in our experimental results.

In Section 5.3, the two key points, which are employed to solve the path following

problem and formation keeping problem, are that (i) the velocity of a virtual vehicle is

integrated into the local cost function of the leader robot, and (ii) each follower robot

computes its own reference trajectory with velocity profiles, estimated by using the

leader’s information, a given path, and a desired formation pattern. Velocity profiles

for each follower robot can be computed by using (5.4) and (5.5) when (pi(s),qi(s)) co-

ordinates have been determined. To guarantee stability of a local NMPC law, we employ

a Lyapunov function for the terminal-state penalty and terminal constraints.

In Section 5.4, we presented the solution for the formation control and coordinated

path following control using the distributed MPC, whose cost function is coupled with

neighbors. Two experiments have been conducted. In the first experiment, a group of

omnidirectional mobile robots was required to follow one reference path while keeping

a desired formation in time. In the second one, each robot was required to follow its own

predetermined reference path while maintaining a desired coordination with its neigh-

bors in time. As stated in [65], the key requirements for stability are that each subsystem

does not deviate too far from the previous open-loop state trajectory, and that the pre-

diction horizon updates happen sufficiently fast. Even though very fast updates cannot

be achieved, experimental results show the efficiency of our control algorithm. The less

conservative method for stability proof should be further investigated.

In Section 5.5, we developed a new control law for coordinated path following of uni-

cycle mobile robots. Each mobile robot was steered along a set of given spatial paths,

while keeping a desired inter-vehicle coordination pattern. The solution adopted for

coordinated path following built on Lyapunov function techniques and consensus algo-

rithms. The desired formation pattern was achieved by controlling the path derivative

such that the coordination error converges to zero.

99

Chapter 5 Coordinated Path Following Control

100

Chapter 6

Role Assignment and Formation

Switching

In this chapter, we study the problem of distributed role assignment and formation switch-

ing. This problem arises when a mobile robot in the team must decide what role to take

on in a desired formation configuration. In some applications, in which the center and

orientation of a desired formation are not predetermined, the rotation and translation

of the formation can be computed by using average consensus protocols. However, a

conflict arises when the same role is assigned to more than one robot. This problem is

resolved by using a negotiation strategy, while each assigned robot is traveling to the

target position. Furthermore, dynamic consensus is used to measure the degree of task

completion in this work. Once the consensus reaches a preset threshold, this implies that

robots should abandon the current task and start the next one.

First, we review some related work on these topics. Then our proposed algorithms are

presented. We verify our proposed framework through real-world experiments on a team

of nonholonomic mobile robots performing distributed formation switching.

6.1 Related Work

In this section, we review some methods concerning formation selection, role assign-

ment, and formation switching. A good example on these topics is the RoboCup soccer

domain [37, 216], in which a coordination protocol can be used by robots in order to

select an appropriate formation according to the environment conditions and to make a

decision on the roles assumed by the robots in the formation based on the concept of

utility functions or rules. Since each robot’s status does not necessarily coincide with

those of the others, the robots may choose different formations. Therefore the formation

selection algorithm is based on a voting scheme that allows for changing the formation

only in presence of the absolute majority of votes.

101

Chapter 6 Role Assignment and Formation Switching

6.1.1 Formation Selection and Formation Switching

In many applications, it is sometimes necessary to change the formation due to either a

change in coordinated task specifications or a change in environmental conditions, e.g.,

the presence of uncertainty, adversarial vehicles, and narrow corridors. The questions on

these research areas are: “Which formation should robots choose if they have a set of

formations?”, “Who or what mechanism decides the formation shape to be formed?”, “Is

there an optimal way for performing formation changes?”, and “Under what conditions,

switching between formation should occur?”

Switching between different rigid formations was studied by Das et al. [51], where

the switching between simple decentralized controllers on follower robots allows for-

mation switching, while follower robots are following a leader or performing a specific

task. Desai [55] proposed a graph-theoretic approach for coordinating transitions be-

tween two formations. He also presented examples to demonstrate the general approach

and showed how a team of robots can automatically change the shape of the formation

and/or its control graph in order to circumvent obstacles. Fierro et al. [74] split the prob-

lem using a hybrid approach. They designed the continuous-state control algorithms

based on input-output feedback linearization. Each robot can maintain a prescribed sep-

aration and bearing from its adjacent neighbors, while discrete-state formation control

is used to achieve a desired formation by sequential composition of basic maneuvers.

They used the sensor constraints and the presence of obstacles to determine the switch-

ing sequence in a finite state machine. However, the problem with the control strategies

in [51, 55, 74] is that the control problems get more complicated as the number of robots

in the formation increases.

The behavior-based formation switch proposed by Michaud et al. [164] involves the

assignation of a new leader, which is influenced by the situation experienced by the

robot, while in a method proposed by Fredslund and Matarić [77], special cases must be

programmed to keep robots organized according to their ID numbers and switching must

preserve the ordering of the robots based on their ID.

McClintock and Fierro [158] investigated when formation changes should occur. The

robots change between formations in a given set by choosing the one which can operate

in the current environment with minimum formation error. The path planner searches for

an optimal path based on trade-offs between the total distance traveled and the distance

traveled in less desirable formations. Zelinski et al. [241] implemented an optimized

hybrid system approach on an aerial robot platform. They focused on determining a

nominal state and input trajectory for each vehicle such that the group can start from a

given initial configuration and reach its given final configuration at a specified time while

satisfying a set of given inter- and intra-vehicle constraints.

The problem of selecting a suitable formation shape possibly depending on a dynam-

ical context (e.g., environment modifications and dynamical tasks) has not been deeply

investigated in the literature [91]. There is still no underlying theory that governs this

problem. Haque and Egerstedt [91] modeled the bottlenose dolphins behavior: Agents

102

6.1 Related Work

in hunting phase have to choose their layout between small or large circles using a hybrid

control strategy and decentralized networked control in order to capture a prey. Recently,

Di Rocco et al. [57] proposed an approach to select an optimal formation shape using the

online selection of the optimal shape of the formation that maximizes some performance

indices related to the task and to the environment.

6.1.2 Role Assignment in Formation

In general, an explicit assignment of the robots in a formation might be desired, however,

for indistinguishable robots, this is not always easy. This problem can be seen as the

combinatorial optimization, where n persons are optimally divided among n objects. It

is also referred to as the assignment problem, or the minimum weight perfect matching

problem in bipartite graphs. In 1955, Kuhn [129] developed the Hungarian method – the

first polynomial solution for the assignment problem. Another approach is the auction

algorithm [24, 25]. This problem might also be related to the multi-robot task allocation

(MRTA) architecture [80], in which the question is encountered: “Which robot should

execute which task?”

In a centralized fashion, a reasonable strategy would be to minimize the sum of the

distances traveled by each robot to arrive at its target. However, with distributed decision-

making and limited communication, the problem of deploying robots to form arbitrary

target configurations is still open.

In [140], each robot builds a visibility table of all the robots within its sensing range

and these tables are then cross-populated and shared among the group members. Af-

ter initializing the table, each robot assigns itself as being the conductor of the desired

formation and then searches the tree using a bounded depth-first search with pruning al-

gorithm to find the best assignment of positions for other robots in the group. The best

result obtained by each robot is broadcasted to the others, and the one with the minimum

cost is selected as the conductor of the formation, with positions assigned accordingly

to the other robots. Smith and Bullo [210] allowed the group of agents to divide the

targets among themselves under limited communication. Their assignment-based algo-

rithm has the following features: Initial assignments and robot motions follow greedy

rules, and distributed refinement of the assignment exploits an implicit circular ordering

of the targets. Lee et al. [139] considered a spacecraft formation configuration problem.

They used a coupled combinatorial and continuous optimization framework, in which

the inner loop consists of computing the costs associated with a particular assignment by

using a discrete optimal control method. In the outer optimization loop, combinatorial

techniques are used to determine the optimal assignments based on the costs computed

in the inner loop.

Ji et al. [105] were interested in determining the rotation and translation of the tar-

get formation and in finding an appropriate permutation that assigns target positions to

agents. They showed how the simultaneous rotation, translation, and assignment opti-

mization problem can be casted as a parameterized assignment problem. However, the

103

Chapter 6 Role Assignment and Formation Switching

solution results in a centralized off-line algorithm in the sense that the computation of

the solutions requires complete information about all agents in the team. This algorithm

has to be done before the team is deployed. Derenick and Spletzer [54] employed a for-

mal definition from shape analysis for formation representation and used second-order

cone programming techniques to find optimal solutions by minimizing either the total

distance or the minimax distance the robots must travel. Their formation shape is invari-

ant under the Euclidean similarity transformations of translation, rotation, and scaling.

A distributed auction-based approach for a rotational and translational invariant config-

uration was proposed by Zavlanos and Pappas [240]. Distributed consensus algorithms

are employed to guarantee that all agents agree on the rotation and translation of the final

configuration, and then local market-based coordination protocols dynamically deter-

mine a permutation of the agent in the formation, while artificial potential fields are used

to drive the group of agents to the desired formation. Michael et al. [162] extended this

solution to the dynamic task allocation problem where the assignment of robots to tasks

may need to be continuously adjusted depending on changes in the task environment or

group performance.

6.2 Proposed Algorithms

In this chapter, we propose a novel distributed and online solution to the role assignment

problem by using consensus protocols and negotiation algorithms. This problem be-

comes more challenging when the robots do not have complete information about other

robots in the team and the number of roles may be more or less than the number of robots.

This section is based on own work published in [118].

Given a team of N mobile robots, whose positions are xi ∈R2, i = 1, ...,N, and the tar-

get formation represented by the target positions xd
k ∈R

2, k = 1, ...,M, assuming that all

robots have knowledge of the target formation, we need to find an appropriate mapping

p : {1, ...,N} → {1, ...,M} that assigns robot i, located at xi to target position xd
k . Fur-

thermore, we are also interested in how to determine the rotation angle θ f and translation

v f ∈R2 of the target formation in order to minimize the displacement of the whole group

from the initial configuration to the target configuration. Thus, our proposed algorithm

can be divided into three parts, i.e., determining the translation and the rotation of the

target formation, conflict resolution, and navigating control with a collision-avoidance

capability. In the first part, distributed consensus algorithms are employed to guarantee

that all robots agree on the rotation and translation of the target formation. Then, local

coordination protocols dynamically determine the role in the target formation. After the

initial role is chosen, the robot will be driven to the target position. In addition, all robots

can reconfigure themselves from one formation to another using dynamic consensus to

detect the completeness of the current task.

104

6.2 Proposed Algorithms

6.2.1 Problem Formulation

The solution of the problem mentioned above greatly depends on notions from graph

theory. Given a system of robots, we can define a dynamic graph G(t) as follows [162]:

Definition 10. (Dynamic Graph): We call G(t) = (V,E(t)) a dynamic graph consisting

of a set of vertices V= {1, ...,N}, indexed by the set of robots and a time varying set of

links E(t) = {(i, j)∈V×V| ‖xi−x j‖2 < r}, meaning that edges are established between

robots i and j, if and only if the robots are within distance r of each other.

Dynamic graphs G(t) such that (i, j) ∈ E(t) if and only if (j, i) ∈ E(t) are called undi-

rected. Moreover, for any pair of vertices i and j such that (i, j) ∈ E(t) we say that

vertices i and j are adjacent, or neighbors, at time t and the set of neighbors of robot i

is denoted by Ni ⊆ V. A path between vertices (i, j) is a sequence of distinct vertices

such that consecutive vertices are adjacent. A topological invariant of graphs that is of

particular interest for the purposes of this work is graph connectivity.

Definition 11. (Graph Connectivity): We say that a dynamic graph G(t) is connected at

time t if there exists a path between any two vertices in G(t).

Given any collection of m distinct instances of G(t), i.e., {G(t1), ...,G(tm)}, we say

that the collection {G(t1), ...,G(tm)} is jointly connected if the union of its members is

a connected graph [103]. All graphs considered in this section are undirected and a

connectivity on the underlying communication network is assumed.

Let N ∈N be the number of the robots, which is unknown to any robot in the team, and

M ∈ N be the number of the tasks (or the positions) in the formation. The assignment

of the robots to the targets is described by p ∈ PN , where PN is the set of all possible

permutations over N elements. As defined in [105], the centralized role assignment is

given as follows:

∑c(x,x
d) : min

(v f ,θ f ,p)∈R2×[0,2π)×PN

Jc(x,x
d,v f ,θ f , p) (6.1)

where Jc(x,x
d,v f ,θ f , p) is the cost

Jc(x,x
d,v f ,θ f , p) =

N

∑
i=1

c(xi,R(θ f)(x
d
p(i)+ v f)) (6.2)

and R(θ f) in (6.2) is the rotation matrix, i.e.,

R(θ f) =

[

cosθ f sinθ f

−sinθ f cosθ f

]

(6.3)

and c is a performance measure. The interpretation is that c : R2×R
2→R gives the cost

of assigning the robot i at xi to the target located at R(θ f)(x
d
p(i)+ v f).

105

Chapter 6 Role Assignment and Formation Switching

If c is the square of the l2-norm (Euclidean norm) of the difference between xi and

R(θ f)(x
d
p(i)+ v f), we get

∑l2
2
(x,xd) : min

(v f ,θ f ,p)∈R2×[0,2π)×PN

Jl2
2
(x,xd,v f ,θ f , p) (6.4)

where

Jl2
2
(x,xd,v f ,θ f , p) =

N

∑
i=1

‖xi−R(θ f)(x
d
p(i)+ v f)‖2

2. (6.5)

When θ f and v f are provided, the optimal assignment satisfies

p∗ = argmin
p∈PN

Jl2
2
(x,xd,v f ,θ f , p). (6.6)

Moreover, the problem

min
p∈PN

Jl2
2
(x,xd,v f ,θ f , p) (6.7)

corresponds to the well-known linear assignment problem. p∗ is easily computed by

using the Hungarian method, which is a polynomial time algorithm whose computational

complexity is O(N3) [129]. In [54, 105], the authors are interested in determining the

rotation and translation of the target formation and finding an appropriate permutation

that assigns target positions to robots. However, the solution results in a centralized off-

line algorithm in the sense that the computation of the solutions will require complete

information about all robots in the team. This algorithm has to be done before the team

is deployed. When computation and information are distributed among multiple robots

and the number of robots in the team is unknown, the need for a fully distributed control

framework to solve the role assignment problem becomes vital. We propose a distributed

solution to this problem using consensus protocols and negotiation algorithms. It has to

be noted that although no global cost is optimized in this work, robots can always achieve

the role assignment task, as shown in our experimental results.

6.2.2 Distributed Role Assignment

The goal of this section is to develop a distributed control framework that is able to drive

the robots to the target formation which is transformed through the common translation

vector v f and rotation matrix R(θ f). The permutation P is determined dynamically by

means of distributed negotiation strategies, using only local information. In some ap-

plications, in which the center and the orientation are not given, we employ consensus

protocols to obtain v f and θ f that are agreed by all robots in the team. To drive the robots

to the target positions safely, we integrate the navigating control law with the artificial

potential field.

106

6.2 Proposed Algorithms

Consensus on the Rotation and Translation

To minimize the displacement of the whole group from the initial positions to the target

positions, we extract the first principal components analysis (PCA) axis from the robot

locations and use it as a rotation variable. This line goes through the centroid and also

minimizes the square of the distance of each point to that line.

Inspired by [202], we estimate the eigenvectors of the covariance matrix of distributed

positions in a decentralized fashion. The algorithm proposed in [202] is based on a com-

bination of the so-called power method, that is used to compute the eigenvectors, and the

average consensus protocol, that is utilized to structure the information exchange into an

agreement protocol. The data covariance matrix encloses a linear representation of the

data involved in its so-called principal components, that are the largest eigenvectors of

the data covariance. The problem we are interested in is to extract the largest eigenvector

in a decentralized fashion, assuming that the positions are measured by the localization

module and the communication links are locally connected. The idea is based on the

decomposition of the power method into a decentralized iterative protocol. The eigen-

vectors of the covariance matrix Ĉ can be derived by using a power method as follows

q(n+1) = Ĉq(n)

‖Ĉq(n)‖ (6.8)

where Ĉ = (xi− x̄)(xi− x̄)T , i = 1, ...,N and q(0) is an initial random vector. x̄, the

centroid, can also be computed by using the average consensus protocol. This method

converges to the maximum eigenvector of Ĉ as long as the maximum eigenvalue of Ĉ is

strictly greater than the other eigenvalues and the vector q(0) has a non-zero component

in the direction of the eigenvector associated to the largest eigenvalue [202].

For simplicity, let us assume that x̄ = 0. The recursive equation (6.8) can be expanded

as follows:

q1(n+1) =
Ĉq1(n)

‖Ĉq1(n)‖

=
∑N

i=1 xi(xi ·q1(n))

‖∑N
i=1 xi(xi ·q1(n))‖

=
x(x ·q1(n))

‖x(x ·q1(n))‖

(6.9)

Subscript 1 of q1(n) denotes the first eigenvector. Unlike [202], we perform the average

consensus protocols for xi(xi ·q1(n)), i = 1, ...,N, instead of only the inner products and,

in our algorithm, each robot does not need to know the number of robots in the team.

Finally, we can obtain the estimate of q1. Algorithm 6.1 shows the derivation of the first

eigenvector. The function AC implements the average consensus algorithm and ε is a

small constant.

107

Chapter 6 Role Assignment and Formation Switching

Algorithm 6.1 First eigenvector estimation (algorithm performed at robot i)

1: x̄← AC(x j), j = 1, ...,N
2: x j← x j− x̄, j = 1, ...,N
3: Initial random vector: q1,i(0)
4: n← 0

5: repeat

6: n← n+1

7: q1,i(n)← AC(x j(x j ·q1, j(n−1))), j = 1, ...,N
8: q1,i← q1,i/‖q1,i‖ {normalization}
9: until ‖q1,i(n)−q1,i(n−1)‖ ≤ ε

Negotiation Strategies

The notations borrowed from [162] are as follows. Let I0 = 1, ...,M denote the index

set of all available positions in a formation. We say that a position k ∈ I0 is being taken

if there is at least one robot i such that p(i) = k. Let Ia(t) denote the index set of all

positions that are available, i.e., not taken at time t and It(t) = I0 \ Ia(t) denote the

index set of all taken positions. Similarly, let Ia
i and It

i denote the index sets of available

and taken positions from the perspective of robot i, respectively.

At first, robot i exchanges the position information with its neighbor j, where (i, j) ∈
E(t) and then each robot starts locally the Hungarian algorithm to obtain its favorite

position. However, in case that N > M, the robot may not get any favorite position

from the Hungarian algorithm. In this situation, we assign the nearest position to this

robot in order to ensure that every robot receives one assigned position. Each robot

then updates Ia
i and It

i. All assigned robots start moving to the target position using the

navigating controller that is described in the next subsection. At each time step, every

robot exchanges the information with its neighbors in order to update Ia
i and It

i. If two

robots realize that they are assigned to the same position, they stop and each robot will

add the index of the other into its queue. Then, the robot with the higher index starts the

pairwise negotiation strategy, given in Algorithm 6.2, to resolve the conflict. Note that di

of robot i is the Euclidean norm of the difference between xi and its target position.

Correctness of the proposed algorithm depends on the assumption that every robot

requesting to be assigned to a formation role will eventually be able to communicate and

negotiate with all other robots requesting to be assigned to the same role. Only one robot

will take the role when that conflict is resolved. The robots that do not get that position

will choose the new position from Ia(t) in such a way that it is the nearest position and

connectivity is still maintained.

In case that the number of robots is more than the number of roles, i.e., N > M, the

unassigned robots have to perform the task of maintaining connectivity, e.g., [239] in

order to keep the connectivity assumption satisfied, and they also have to move away

from the taken positions. In this work, we simply apply artificial attractive and repulsive

108

6.2 Proposed Algorithms

Algorithm 6.2 Negotiation strategies for robot i

Require: Ia
i , It

i, p(i), the descending index set of robots assigned to the same position,

i.e., Ai = { j ∈ Ni | p(j) = p(i)}.
1: Ia

i ← Ia
i \ (∪ j∈Ni

It
j) {exchange lists with neighbors}

2: It
i← It

i ∪ (∪ j∈Ni
It

j) {exchange lists with neighbors}
3: while Ai 6= NULL do

4: k←Ai.dequeue

5: if di ≤ dk then

6: robot i wins and robot k chooses a new position from Ia
k

7: update Ia
i , It

i, I
a
k , It

k

8: dequeue robot k from Ai and empty Ak

9: robot k starts moving to the new assigned position

10: else

11: robot k wins and robot i chooses a new position from Ia
i

12: update Ia
i , It

i, I
a
k , It

k

13: dequeue robot i from Ak and empty Ai

14: robot i starts moving to the new assigned position

15: end if

16: end while

forces to meet these requirements. However, connectivity may be lost in case that N <
M. This issue, solved by simultaneously maintaining connectivity and performing role

assignment, is left to the future.

Navigating Control with Collision Avoidance

In fact, any controller with the capability to avoid inter-robot collisions and to navigate

through waypoints can be used. In this work, we employed the controller from [35].

The control architecture combines two feedback loops: a motion control loop and a new-

target control loop. The latter loop provides a modification of the target position when

an obstacle appears on the path of the mobile robot. By representing the robot position in

polar coordinates, and considering the error vector e, as well as by letting α = φ −θ be

the angle measured between the distance vector e and the main robot axis, the kinematic

equations (3.3) can be rewritten as

ė =−vcosα , α̇ =−ω + v
sinα

e
. (6.10)

Then, the control laws for v and ω are given by

v = γ tanhecosα

ω = kcα + γ
tanhe

e
sinα cosα with kc > 0

(6.11)

109

Chapter 6 Role Assignment and Formation Switching

where γ = |vmax| and |ωmax| = kcπ + γ/2. Since we do not have the prescribing orien-

tation of the target position, these control laws can drive the distance vector e and α to

zero asymptotically and θ becomes constant when t→ ∞.

To avoid obstacles, the concept of attractive and repulsive forces is applied to mod-

ify the target position when an obstacle suddenly appears on the path during navigating

towards a target position. Similar to the method proposed by [224], we define the ampli-

tude of the repulsive force as follows

F = kr

(

1
Rr
− 1

Rmax

)

1
R2

r
with kr > 0 (6.12)

where Rr is the distance between the current robot position and the obstacle position and

Rmax represents a potential field’s distance limit of influence. The projections of force F

on the x and y axes are

Fx = |F cosβ | Fy = |F sinβ | (6.13)

where β denotes the angle of the repulsive force direction. The coordinates of the vector

of the repulsive force are

x f = x+ sign(x− xo)Fx

y f = y+ sign(y− yo)Fy

(6.14)

where [xo,yo]
T is the location of the obstacle. The resulting vector, which determines

the new target position of the robot, is obtained as a sum of the vectors of repulsive and

attractive forces. The new target coordinates of the robot are

xn = x f +(xd− x)

yn = y f +(yd− y)
(6.15)

where [xd,yd]
T is the target position. To avoid a possible standstill which may arise if

the robot, the obstacle and the target are aligned, we simply change the target position in

order to be able to drive the robot out of this situation.

Task Sequencing

The mission of this work is that a team of robots can reconfigure themselves from one

formation to another. Global communication can simplify this problem because robots

can communicate with all robots in the team. Once a robot detects the completion of

the current task, it can broadcast this to the rest of the team in order to synchronize the

whole system’s transition to the next task. However, when global communication is not

available or impossible, robots must measure the degree of consensus in their team. Once

the consensus reaches a preset threshold, meaning that some proportion of the teammates

agree that the current task is completed, they should induce their team to abandon the

110

6.2 Proposed Algorithms

current task and start the next one. This threshold highly depends on task requirements.

If it is too high, the probability of a robot making an error and prematurely activating the

switch to the next task may increase.

To attain this goal, we introduce a new state, zi(t) for robot i, to measure the degree of

task completion of the current task. It becomes zero when all robots agree that the current

task is completed. The following proportional-integral consensus estimator, based on

[78], is used in this work:

ż =−Lz+ kz(w− z)+Lη

η̇ =−Lz
(6.16)

where L is the Laplacian matrix and η is an integrator variable. wi(t) is a dynamic input.

It becomes 0, if robot i detects the completion of its current task, and 1, otherwise. kz is

the forgetting factor. Large values of kz mean that we get rid of old information quickly.

We initialize zi(0) = wi(0) for each robot. Unlike static consensus, in which all robots

must converge to the average of their initial states (i.e., 1
N ∑N

i zi), wi(t) can be seen as a

dynamic input in dynamic consensus. All robots must track the time-varying average of

the wi terms, i.e., they have to reach w̄ = 1
N ∑N

i wi. Therefore, zi can be considered to be

a time-varying estimate of the instantaneous average value w̄. We use zi to measure the

degree of task completion. When zi reaches a preset threshold, this implies that robot i

should abandon the current task and start the next one.

6.2.3 Simulation Results

Simulation results given in this subsection are based on own work in [114]. We consid-

ered a navigation task in R
2, where N = 16 robots were required to reach the desired

formation configurations. They started from randomly chosen initial configurations but

they satisfied the connectivity assumption. We evaluated our algorithms with three ex-

amples, i.e., formation switching (reconfiguration in sequence, as shown in Figure 6.1),

a circle formation, where N > M, and a lattice formation, where N < M. All param-

eters used in simulations were set as follows: kc = 1, γ = |umax| = 0.5 m/s, kr = 0.2,

Rmax = 0.4 m, and the communication range r was 1.5 m. In consensus-based task se-

quencing, the threshold of the state z was 0.1 and the forgetting factor was 0.2.

Figure 6.1: Five desired formation configurations: R O B O T. Squares represent the

target positions in the formation. The number of positions M are equal to 16,

12, 16, 12, and 10, respectively.

111

Chapter 6 Role Assignment and Formation Switching

As shown in Figure 6.2, all robots were able to successfully complete the formation

switching task, in which the orientation of the target formation was predetermined. They

first used the average consensus protocol to obtain an agreement on the translation and

then they started negotiation to get the role, if a conflict arose. They were able to move

to the target position without any collision. In case that M < N (see Figure 6.2(c), Fig-

ure 6.2(e), and Figure 6.2(f)), some unassigned robots had to move around in order to

maintain connectivity. Furthermore, robot 2 in Figure 6.2(c) and robot 7 in Figure 6.2(f)

were uninformed that the position they were assigned to, had already been taken. Thus,

they moved towards the target position and then they realized that those positions were

no longer available. However, when the orientation of the target formation is not given,

we can use the average consensus protocol to obtain an agreement on both translation and

rotation. In this case, the translation and rotation may be changed from one formation to

another, as seen in Figure 6.3, because there are some unassigned robots moving around.

Moreover, our proposed framework can achieve the distributed role assignment in case

that N > M and N < M, as illustrated in Figure 6.4(a) and Figure 6.4(b), respectively.

0 0.5 1 1.5 2 2.5 3 3.5

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

r=1

r=2

r=3

r=4

r=5

r=6

r=7

r=8

r=9

r=10

r=11

r=12

r=13

r=14

r=15

r=16

x (m)

y
 (

m
)

(a)

0 0.5 1 1.5 2 2.5 3 3.5

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

r=1

r=2

r=3

r=4

r=5

r=6

r=7

r=8

r=9

r=10

r=11

r=12

r=13

r=14

r=15

r=16

x (m)

y
 (

m
)

(b)

0 0.5 1 1.5 2 2.5 3 3.5

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

r=1

r=2

r=3

r=4

r=5

r=6

r=7 r=8

r=9

r=10

r=11

r=12

r=13

r=14

r=15

r=16

x (m)

y
 (

m
)

(c)

0 0.5 1 1.5 2 2.5 3 3.5

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

r=1

r=2

r=3

r=4

r=5

r=6

r=7

r=8

r=9

r=10

r=11

r=12

r=13

r=14

r=15

r=16

x (m)

y
 (

m
)

(d)

0 0.5 1 1.5 2 2.5 3 3.5

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

r=1

r=2

r=3

r=4

r=5

r=6

r=7

r=8

r=9

r=10

r=11

r=12

r=13

r=14

r=15

r=16

x (m)

y
 (

m
)

(e)

0 0.5 1 1.5 2 2.5 3 3.5

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

r=1

r=2

r=3

r=4

r=5

r=6

r=7

r=8

r=9

r=10

r=11

r=12

r=13

r=14

r=15

r=16

x (m)

y
 (

m
)

(f)

Figure 6.2: The simulation results on formation switching (a) each robot starts at a differ-

ent random position, (b) each robot obtains an agreement on the translation

and then moves to the target position - the letter R, (c) - (f) the robots can

successfully reconfigure themselves without any collision.

112

6.2 Proposed Algorithms

−0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

3.5

4

r=1
r=2

r=3

r=4

r=5

r=6

r=7

r=8

r=9

r=10

r=11

r=12

r=13

r=14

r=15

r=16

x (m)

y
 (

m
)

(a)

0 0.5 1 1.5 2 2.5 3 3.5

−0.5

0

0.5

1

1.5

2

2.5

3

3.5 r=1
r=2

r=3 r=4

r=5

r=6

r=7

r=8

r=9

r=10

r=11

r=12

r=13

r=14

r=15 r=16

x (m)
y
 (

m
)

(b)

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

3

3.5

4

r=1
r=2

r=3

r=4

r=5

r=6

r=7

r=8

r=9

r=10

r=11

r=12

r=13

r=14

r=15

r=16

x (m)

y
 (

m
)

(c)

Figure 6.3: The simulation results in case that consensus on rotation and translation is

executed every time before role assignment is performed (a) - (c) the transla-

tion and the rotation are changed, compared to Figure 6.2(b), Figure 6.2(c),

and Figure 6.2(d), respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

r=1

r=2

r=3

r=4

r=5

r=6

r=7

r=8

r=9

r=10

r=11

r=12

r=13

r=14

r=15

r=16

x (m)

y
 (

m
)

(a)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

1.5

2

2.5

3

3.5

r=1

r=2

r=3

r=4

r=5

r=6

r=7

r=8

r=9

r=10

r=11

r=12

r=13

r=14

r=15

r=16

x (m)

y
 (

m
)

(b)

Figure 6.4: The simulation results: (a) performing a circle formation where N > M and

(b) performing a lattice formation, where N < M.

6.2.4 Experimental Results

We evaluated our proposed framework through two experiments on a team of physical

nonholonomic mobile robots shown in Figure 6.5: (i) the robots reconfigured themselves

from one formation to another, and (ii) formation switching happened, while each robot

was following a reference path. It is worth noting that selecting a particular formation

shape, in general, relies on a dynamical context, e.g., environments and tasks. There is

still no underlying theory that handles this problem. However, in this study, we assume

to have such a mechanism that can choose a suitable formation (e.g., [57]).

The goal of the first experiment was to drive the robots to the target formation trans-

formed through the common translation vector v f and rotation matrix R(θ f), while the

113

Chapter 6 Role Assignment and Formation Switching

Figure 6.5: The unicycle mobile robots used in our experiments (see Chapter 3).

permutation P is determined dynamically by means of distributed negotiation strategies,

using only local information. In some applications, in which the center and the orienta-

tion of the target formation are not given, we employ consensus protocols to obtain v f

and θ f that are agreed by all robots in the team.

In the first experiment, we validated our algorithms with three different formations as

shown in Figure 6.6. Six robots had to switch from one formation to another in sequence.

The communication range r was set to 1.2 m. In task sequencing, the threshold of the

state z was equal to 0.1 and the forgetting factor was 0.5.

Since the center and the orientation of the target formation were not predefined, all

robots had to use the average consensus protocol to obtain an agreement on the transla-

tion as well as the rotation of the target formation. As depicted in Figure 6.7, all robots

were able to successfully complete the formation switching task without any collision.

Even though a conflict arises when at least two robots are assigned to the same role, the

negotiation strategies were able to efficiently resolve this conflict. It is worth noting that

the translation and rotation may be changed from one formation to another if there are

some unassigned robots.

In the second experiment, the control strategy for coordinated path following in Sec-

tion 5.5 is used to show the effectiveness of our framework. The C2 reference path and

the initial positions of three robots are plotted in Figure 6.9(a). The robots had to switch

from one formation to another, see Figure 6.8. We assume that they have a mechanism

that can make a decision on which formation they want to select according to the envi-

ronment. To avoid collisions, the concept of attractive and repulsive forces was applied

to modify the reference position. As seen in Figure 6.9(b) and Figure 6.9(c), the robots

(a) Triangle (b) X shape (c) Circle

Figure 6.6: Illustration of three different formation configurations. Squares represent the

target positions in the formation. These formations must satisfy the connec-

tivity assumption.

114

6.2 Proposed Algorithms

0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

x (m)

y
 (

m
)

R1

R2
R3

R4
R5

R6

t=0 s

(a) Start

0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

x (m)

y
 (

m
)

R1

R2
R3

R4

R5

R6

t=11.5 s

(b)

0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

x (m)

y
 (

m
)

R1

R2 R3

R4

R5

R6

t=22.95 s

(c) Triangle

0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

x (m)

y
 (

m
)

R1

R2

R3

R4

R5

R6

t=39.81 s

(d)

0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

x (m)

y
 (

m
)

R1

R2

R3

R4

R5

R6

t=46.45 s

(e) X shape

0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

x (m)

y
 (

m
)

R1

R2

R3

R4

R5

R6

t=104.5 s

(f)

0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

x (m)

y
 (

m
)

R1

R2

R3

R4

R5

R6

t=108.11 s

(g)

0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

x (m)

y
 (

m
)

R1

R2

R3

R4

R5

R6

t=115.31 s

(h) Circle

Figure 6.7: The experimental results on formation switching. (a) each robot starts at a

different random position, (c),(e) and (h) are the snapshots when the forma-

tion task is completed, corresponding to Figure 6.6(a), (b), and (c), respec-

tively. Note that robot R4 in (e) is an unassigned robot because in the X shape

formation the number of roles is less than the number of robots.

maintain a line formation, illustrated in Figure 6.8(a), while following a reference path.

Figure 6.9(d) and Figure 6.9(e) show the snapshots where robots switch to a column for-

mation, shown in Figure 6.8(b), and the robots then switch to a triangular formation, as

depicted in Figure 6.9(i) and Figure 6.9(j). We can conclude that these robots can keep a

desired formation, switch formations, and follow a reference successfully.

(a) Line (b) Column (c) Triangle

Figure 6.8: Illustration of three different formation configurations. Squares represent the

target positions in the formation. These formations must satisfy the connec-

tivity assumption.

115

Chapter 6 Role Assignment and Formation Switching

0 0.5 1 1.5 2 2.5 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x (m)

y
 (

m
)

R1
R2

R3

t=0 s

(a) Start

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x (m)

y
 (

m
)

R1R2R3

t=7.4 s

(b) Line

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x (m)

y
 (

m
)

R1R2R3

t=14.9 s

(c)

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x (m)

y
 (

m
)

R1

R2

R3

t=22 s

(d) Switch

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x (m)

y
 (

m
)

R1

R2 R3 t=29 s

(e)

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x (m)

y
 (

m
)

R1

R2

R3 t=36 s

(f) Column

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x (m)

y
 (

m
)

R1

R2

R3

t=50.1 s

(g)

0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

2

x (m)

y
 (

m
)

R1

R2R3

t=64.1 s

(h)

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x (m)

y
 (

m
)

R1

R2

R3

t=71.1 s

(i) Switch

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x (m)

y
 (

m
)

R1

R2

R3

t=80 s

(j) Triangle

Figure 6.9: The experimental results on coordinated path following and formation

switching.

6.3 Discussions and Summary

In this chapter, we focused on formation control tasks that show what capabilities forma-

tion control can have. We presented a novel solution for the distributed role assignment in

formation switching tasks. Our framework is mainly based on average consensus proto-

cols and negotiation strategies. From the results of the first experiment, we can conclude

that each robot was able to reconfigure itself from one formation to another successfully.

It was also able to detect the completion of each task and automatically move onto the

next task in its queue. In the second experiment, we were able to achieve coordinated

path following and formation switching, i.e., each robot was able to be steered along a

set of given spatial paths and to switch formations, while keeping a desired inter-vehicle

coordination pattern.

Since no global cost is optimized in this work, the computational complexity and the

theoretical proof need to be further investigated.

116

Chapter 7

Conclusions and Future Work

In conclusion, the focus of this dissertation was to develop control schemes that are

suitable for path following control, coordinated path following control, and formation

control of wheeled mobile robots including omnidirectional mobile robots and unicycle

mobile robots. Successful real-time motion control of a group of mobile robots has been

shown in our experimental results. In Chapter 4 and Chapter 5, the path variable and the

path derivative played a major role through the MPC framework in the problem of path

following control, while graph-theory consensus protocols were employed in Section 5.5

and Chapter 6. In the following section, the main contributions of this dissertation are

summarized and suggestions for possible future work are provided.

7.1 Dissertation Summary

In Chapter 4, the main contribution to solve path following problems is to integrate the

path derivative, also referred to as the velocity of a so-called virtual vehicle, into the local

cost function of MPC schemes. This approach can overcome stringent initial condition

constraints [211] in path following problems and it can take into account actuator sat-

uration straightforwardly in optimization problems so that a robot can travel safely at a

desired velocity. Furthermore, in Section 4.4, we achieved smooth convergence to the

reference path with time constraints and also took into consideration obstacle avoidance.

The proposed control law offers some advantages over other available trajectory tracking

control laws. For example, it eliminates aggressiveness by forcing convergence to the de-

sired path in a smooth way and its control signals are less likely pushed into saturation,

while time constraints are satisfied.

In Chapter 5, we investigated coordinated path following problems. A challenge is

the design of decentralized controllers, instead of centralized approaches. In this setting,

each robot has only partial information about the state of other neighboring robots. To

solve this problem, we provided two solutions. In the first solution, we incorporated the

concept of a so-called virtual vehicle into the MPC framework. We proposed two strate-

gies under this MPC framework, i.e., the leader-following method and the distributed

method. Robots are presumed to have decoupled dynamics, modeled by nonlinear or-

dinary differential equations. In the distributed method, since the path’s parameter was

117

Chapter 7 Conclusions and Future Work

used as a coupling variable between robots, it was included in a quadratic cost function

of a local optimal control law. This coupling variable is the local information exchanged

between neighboring robots to achieve formation keeping tasks. As stated in [65], the

key requirements for stability are that each subsystem must not deviate too far from the

previous open-loop state trajectory, and that the prediction horizon updates happen suf-

ficiently fast. Even though very fast updates are currently not achieved in our study,

experimental results show efficiency of our proposed algorithm. The second controller

given in Section 5.5 under the assumption that the formation graph is bidirectional and

connected is based on a Lyapunov function and consensus protocols. This solution has

been shown to be computationally simple.

Based on these two proposed solutions, if the advantages of MPC schemes including

constraint handling are not a dominating factor, the second solution might be more fa-

vored because of less computational demand. However, improvement of MPC schemes

should be further carried out because a MPC controller is a promising control approach.

For example, in some applications, a cooperative objective of multi-robot systems can

be hard to mold into the framework of many other control approaches, even when con-

straints are not a dominating factor. MPC schemes can govern this problem easily.

In Chapter 6, we presented a novel algorithm for distributed role assignment in for-

mation and formation switching. Consensus based protocols have been extensively used

to obtain the common translation and rotation of the target formation and to detect the

completion of formation tasks. Moreover, the number of robots participating in forma-

tion tasks need not to be known by team members. As shown in our experimental results,

the proposed algorithms are completely distributed under the assumption that formation

graphs are bidirectional and connected.

7.2 Future Research Directions

The following subsection outlines some possible extensions and future directions of the

work in this dissertation.

7.2.1 A Unified Path Following Control Framework

This framework might be an extension to path following control in Chapter 4. It should

provide a general algorithm for path following control in a dynamic environment, i.e., an

environment characterized by moving obstacles. Thus, an interesting problem would be

an integration of path following control, global path planning, velocity assignment, and

obstacle avoidance so that a mobile robot can travel safely and effectively in a partially-

known or unknown environment. Our preliminary results on this unified framework can

be found in [119].

A common approach to obstacle avoidance is either to modify the entire pre-planned

path at the navigation system level based on current range-sensor data [134] or to use

118

7.2 Future Research Directions

a reactive controller. The path replanning strategy requires the system to design a safe

path that ensures the robot avoids obstacles and reaches a desired goal. Then control

objective is just to follow this safe path. The advantage of this method is that, under

the assumption that an accurate map of the environment is available, it designs a global

solution that guarantees the system reaches the goal, if this solution exists. The drawback

is the necessary computational time. On the other hand, the reactive path following

controller, which acts directly at the control level, is generally considered as a behavior-

based approach. Several behaviors are defined (avoid-obstacle, move-to-goal, etc.) and

a switching scheme is designed to switch between these behaviors.

Besides steering the robot to the desired path, assigning a velocity profile to the robot

can be a task, in which the forward velocity is used as an extra degree of freedom. The

velocity profile should be shaped to comply with robot and environment constraints while

the robot is following a path. For example, in case of sharp turns, the linear and angular

robot velocities, must be constrained such that the turn is appropriately restrained and

smooth. A large heading velocity together with a large angular velocity will jeopardize

the stability and safety of the robot or cause saturation in the motors which will cause

overshooting and long settling time. Thus, a method to generate an optimal velocity

profile satisfying constraints has to be studied.

7.2.2 Communication Structures

Since communication networks play an important role in multi-robot systems, commu-

nication problems including quality, reliability and capability, have to be carefully con-

sidered in the controller design phase. For example, communication topologies between

robots can be either static or switching with time, communication may introduce time

delays in signal propagation among members, and data packets may be lost if communi-

cation capabilities are limited.

In this dissertation, information graphs were assumed to be bidirectional and con-

nected. The problem of designing formation control systems becomes more challenging

when connectivity has to be maintained over time and only unidirectional information

exchange is allowed instead of bidirectional information exchange. This will be impor-

tant in applications where bidirectional communication or sensing are not available. To

handle asynchronous implementation problems is also an interesting topic in the future

research.

7.2.3 Formation Control Subproblems

Formation control subproblems consist of formation shape generation, formation recon-

figuration, formation tracking, and role assignment in formation. Most published contri-

butions have been devoted to the area of formation tracking. Thus, we should pay more

attention to the other subproblems in formation control. In particular, it would be inter-

119

Chapter 7 Conclusions and Future Work

esting to study an optimal way for formation reconfiguration, a mechanism of selecting

a suitable formation, and optimization issues of role assignment.

Furthermore, to unify the formation control framework, which combines control the-

ory, communication networks, and computer science, research in hybrid systems might

be a step in the right direction since a logic-based supervisor at high level and continuous

motion control at low level can be blended into one control structure.

For example, a set of formation shapes are generated at the beginning. Each robot

then uses a decision making mechanism to select a suitable formation. They maintain a

formation and avoid obstacles while navigating to the goal. If they are under the situa-

tion that a reconfiguration is required, they have to agree upon which formation will be

selected and they have to generate an optimal way to reconfigure themselves.

7.2.4 A Real-time MPC Framework

Although there has been a considerable progress in the area of NMPC over the recent

decades, there are still many problems that must be overcome in practice. Examples

are the efficient and reliable online implementation, the development of robust NMPC

approaches, the compensation of delays, and the design of output-feedback NMPC ap-

proaches [8].

As shown in our experimental results, the MPC framework can be used beyond pro-

cess control. However, the main obstacle in applying the MPC technology in real-time

applications such as wheeled mobile robots is that the optimization problem is computa-

tionally quite demanding, especially for nonlinear systems. In order to reduce the online

computational requirements, there are a number of directions in which future research on

this problem can proceed. The first direction is to apply function approximations, such as

artificial neural networks, which can be trained off-line to represent the optimal control

law. Second, explicit MPC techniques, such as multi-parametric quadratic programming

(mp-QP) approaches, may be employed since they can handle constrained MIMO linear

models as well as constrained MIMO piecewise linear models [23], where part of the

computations are performed off-line.

An explicit MPC scheme is formulated and solved as mixed-integer linear programs

(MILPs) which can be translated into equivalent piecewise affine state-feedback con-

trollers requiring significantly lower computational effort that enables real-time imple-

mentation. Particularly, using the mp-QP solver from the Hybrid toolbox [21], we can

obtain a representation of the MPC controller as a set of (possibly overlapping) piecewise

affine controllers. During the online operation, at each step for each controller the value

function is evaluated, and the input corresponding to the minimum cost is applied.

Furthermore, any relationship which can be expressed as proportional logic can be

translated into this hybrid framework. In the area of control, by including integer vari-

ables representing logic propositions, it is possible to combine logic based control deci-

sions within the MPC framework. This allows innovative control strategies which can

be capable of prioritizing constraints as well as altering the control objective depend-

120

7.2 Future Research Directions

ing upon the positions of control inputs. By implementing such a strategy, controller

performance can be improved. For example, for multi-variable systems wherein satura-

tion of one of the manipulated variables prevents all objectives from being met, integer

constraints can be used to improve performance and prioritize the objectives.

The third direction to reduce the online computational requirements relates to open-

loop optimization solvers. We should improve and test several nonlinear optimization

algorithms which can enlarge the range of conditions for which a nonlinear MPC con-

troller becomes real-time implementable.

In the case of decentralized MPC, there are many open problems. For example, less

conservative methods for stability and feasibility should be addressed. Reliable strategies

for handling possible disruptions and delays in the communication of input trajectories

among subsystems are required. To implement cooperative decentralized MPC for sys-

tems with fast sampling rates, one may require techniques that allow a quick evaluation of

the MPC optimization problem. The possibility of employing explicit MPC techniques

for decentralized MPC should be investigated.

121

Chapter 7 Conclusions and Future Work

122

Appendix A

Velocity Derivations of Offset-varying

Curves

In this Appendix, we provide the derivations of (5.4) and (5.5) in Chapter 5.

Let the curve be parameterized by path length s : r = r(s) and let l be the path length

parameter of the offset-varying curve o(s) = r(s)+n(s)q(s), see Figure A.1. Let tc(s)
denote the unit tangent vector of the progenitor curve: tc(s) = dr/ds and the formulas of

Frenet are given as follows:

dt

ds
= kn,

dn

ds
=−kt (A.1)

where t is a unit vector tangent to the curve, n is a unit normal vector such that (t,n)
forms the counter-clockwise oriented frame, k is the curvature at a point measuring the

rate of curving as the point moves along the curve with unit speed.

Figure A.1: The offset-varying curve with its progenitor curve.

123

Appendix A Velocity Derivations of Offset-varying Curves

Using the Frenet formulas we get (we omit ‘s’ in order to make them easier to read):

d

ds
o =

d

ds
(r+nq)

= tc +(nc
dq

ds
+q

dnc

ds
)

= tc +nc
dq

ds
+q(−kctc)

= (1− kcq)tc +
dq

ds
nc

Let ti be a unit vector tangent to the offset-varying curve, i.e.,

ti =
(1− kcq)tc +

dq
ds

nc

H
(A.2)

where H =
√

(1− kcq)2 +(dq
ds
)2.

Then, we get

d

ds
o =

√

(1− kcq)2 +(
dq

ds
)2 ti. (A.3)

This means

dl

ds
=

√

(1− kcq)2 +(
dq

ds
)2. (A.4)

Based on the definition of the curvature: dt
ds

= kn, that means we have to calculate dti

dl

in order to get kini. First we have to find dti

ds
and then apply the chain rule: dti

dl
= dti

ds
ds
dl

.

dti

ds
=

d

ds
(
(1− kcq)tc +

dq
ds

nc

H
)

=
H d

ds
((1− kcq)tc +

dq
ds

nc)− ((1− kcq)tc +
dq
ds

nc)
dH
ds

H2

=
−kc

dq
ds

tc−qdkc

ds
tc +(1− kcq)(kcnc)+nc

d2q

ds2 +
dq
ds
(−kctc)

H

−
((1− kcq)tc +

dq
ds

nc)((1− kcq)(−kc
dq
ds
−qdkc

ds
)+ dq

ds
d2q

ds2)

H3

Let G = (1− kcq)(−kc
dq
ds
−qdkc

ds
)+ dq

ds
d2q

ds2), we get

dti

ds
=

1

H
(−2kc

dq

ds
−q

dkc

ds
− (1− kcq)

G

H2
)tc +

1

H
(kc− k2

cq+
d2q

ds2
− dq

ds

G

H2
)nc. (A.5)

124

Since dti

dl
= dti

ds
ds
dl

= kini, using (A.4) and (A.5), finally we obtain

ki = sign(b)

√
a2 +b2

H2
(A.6)

where

a = (−2kc
dq

ds
−q

dkc

ds
− (1− kcq)

G

H2
)

b = (kc− k2
cq+

d2q

ds2
− dq

ds

G

H2
).

To calculate the translational velocity of the follower (ui), the point on the offset-

varying curve can be specified as o(t) = r(t)+n(t)q(t). The time derivative of point o(t)
is obtained by

d

dt
o(t) =

d

dt
(r(t)+nc(t)q(t))

=
d

dt
r(t)+

d

dt
(nc(t)q(t))

=
ds

dt
tc +(nc(t)

dq

ds

ds

dt
+q(t)

dnc(t)

dt
)

=
ds

dt
tc +nc(t)

dq

ds

ds

dt
+q(t)(−kctc)

ds

dt

=
ds

dt
((1− kcq(t))tc +

dq

ds
nc(t))

Let ds
dt

= uc(t) and ti be a unit vector tangent to the offset-varying curve, i.e.,

ti =
(1− kcq)tc +

dq
ds

nc

H
(A.7)

where H =
√

(1− kcq)2 +(dq
ds
)2. Then we get

ui(t)ti = uc(t)

√

(1− kcq(t))2 +(
dq

ds
)2 ti

ui(t) = Huc(t).

In summary, when we know the curvature and the translational velocity at the point on

the reference path, we can calculate the velocity profiles at the point on the offset curve

using the following equations:

ui = Huc (A.8)

ωi = kiui (A.9)

125

Appendix A Velocity Derivations of Offset-varying Curves

ki = sign(b)

√
a2 +b2

H2
(A.10)

However, from (A.10), if q(s) = 1/kc(s) and dq(s)/ds = 0, then the offset-varying

curve is not smooth; a singularity (so called cusp) appears. When the offset value in-

creases, the singularities (cusps) might be developed.

In general, the curvature of the path is limited so we have additional constraints:

| kc |≤ kc,max | ki |≤ ki,max (A.11)

126

Bibliography

[1] L. Acar. Some examples for the decentralized receding horizon control. In Pro-

ceedings of the IEEE Conference on Decision and Control, pages 1356–1359,

Tucson, AZ, December 1992.

[2] A. P. Aguiar, A. N. Atassi, and A. Pascoal. Regulation of a nonholonomic dynamic

wheeled mobile robot with parametric modeling uncertainty using Lyapunov func-

tions. In Proceedings of the IEEE Conference on Decision and Control, pages

2995–3000, Sydney, Australia, December 2000.

[3] A. P. Aguiar, D. B. Dačić, J. P. Hespanha, and P. Kokotović. Path-following or

reference-tracking? An answer relaxing the limits to performance. In Proceed-

ings of the IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon,

Portugal, July 2004.

[4] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino. Closed loop steering of

unicycle-like vehicles via Lyapunov techniques. IEEE Robotics and Automation

Magazine, 2(1):27–35, March 1995.

[5] B. M. Åkesson and H. T. Toivonen. A neural network model predictive controller.

Journal of Process Control, 16:937–946, 2006.

[6] S. A. Al-Hiddabi and N. H. McClamroch. Tracking and maneuver regulation

control for nonlinear non-minimum phase systems: application to flight control.

IEEE Transactions on Control Systems Technology, 10(6):780–792, 2002.

[7] J. Albuquerque, V. Gopal, G. Staus, L. Biegler, and E. Ydstie. Interior point SQP

strategies for large-scale, structured process optimization problems. Computers &

Chemical Engineering, 23(4):543–554, May 1999.

[8] F. Allgöwer, R. Findeisen, and Z. K. Nagy. Nonlinear model predictive control:

from theory to application. Journal of Chinese Institute of Chemical Engineers,

35(3):299–315, 2004.

[9] C. Altafini. Following a path of varying curvature as an output regulation problem.

IEEE Transactions on Automatic Control, 47(9):1551–1556, September 2002.

[10] O. Amidi. Integrated mobile robot control. Master’s thesis, Dept. of Electrical

and Computer Engineering, CMU, Pittsburgh, PA, 1990.

127

Bibliography

[11] M. R. Anderson and A. C. Robbins. Formation flight as a cooperative game. In

Proceedings of the AIAA Guidance, Navigation and Control Conference, pages

244–251, Boston, MA, August 1998.

[12] G. Antonelli, F. Arrichiello, and S. Chiaverini. Flocking for multi-robot systems

via the null-space-based behavioral control. In Proceedings of the IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pages 1409–1414, Nice,

France, September 2008.

[13] T. Arai, E. Pagello, and L. E. Parker. Guest editorial: Advances in multi-robot

systems. IEEE Transactions on Robotics and Automation, 18(5):655–661, 2002.

[14] M. Arcak. Passivity as a design tool for group coordination. IEEE Transactions

on Automatic Control, 52(8):1380–1390, August 2007.

[15] H. Asama, M. Sato, L. Bogoni, H. Kaetsu, A. Mitsumoto, and I. Endo. Devel-

opment of an omni-directional mobile robot with 3 DOF decoupling drive mech-

anism. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 1925–1930, Nagoya, Japan, May 1995.

[16] M. Bak, N. K. Poulsen, and O. Ravn. Path following mobile robot in the presence

of velocity constraints. Technical report, Informatics and Mathematical Modeling,

Technical University of Denmark, 2001.

[17] T. Balch and R. C. Arkin. Behavior-based formation control for multirobot teams.

IEEE Transactions on Robotics and Automation, 14(6):1–15, 1998.

[18] T. D. Barfoot and C. M. Clark. Motion planning for formations of mobile robots.

Robotics and Autonomous Systems, 46(2):65–78, 2004.

[19] R. A. Bartlett, A. Wächter, and L. T. Biegler. Active set vs. interior point strategies

for model predictive control. In Proceedings of the American Control Conference,

pages 4229–4233, Chicago, IL, June 2000.

[20] R. W. Beard, J. Lawton, and F. Y. Hadaegh. A coordination architecture for space-

craft formation control. IEEE Transactions on Control Systems Technology, 9(6):

777–790, November 2001.

[21] A. Bemporad. Hybrid toolbox - user’s guide, February 2010.

http://www.dii.unisi.it/hybrid/toolbox.

[22] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and

constraints. Automatica, 35(3):407–427, March 1999.

[23] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit linear

quadratic regulator for constrained systems. Automatica, 38:3–20, 2002.

128

Bibliography

[24] D. P. Bertsekas. Auction algorithms for network flow problems: A tutorial intro-

duction. Computational Optimization and Applications, 1:7–66, 1992.

[25] D. P. Bertsekas and D. A. Castañón. Parallel synchronous and asynchronous im-

plementation of the auction algorithm. Parallel Computing, 17:707–732, 1991.

[26] L. T. Biegler and I. E. Grossmann. Retrospective on optimization. Computers &

Chemical Engineering, 28(8):1169–1192, 2004.

[27] R. W. Brockett. Differential Geometric Control Theory, chapter Asymptotic sta-

bility and feedback stabilization, pages 181–191. Birkhauser, Boston, 1983.

[28] M. Broxvall, B. S. Seo, and W. Y. Kwon. The PEIS kernel: A middleware for ubiq-

uitous robotics. In Proceedings of the IROS-07 Workshop on Ubiquitous Robotics

Space Design and Applications, San Diego, CA, October 2007.

[29] B. J. Brunell, R. R. Bitmead, and A. J. Connolly. Nonlinear model predictive

control of an aircraft gas turbine engine. In Proceedings of the IEEE Conference

on Decision and Control, pages 4649–4651, Las Vegas, Nevada, December 2002.

[30] W. Burgard, M. Moors, C. Stachniss, and F. Schneider. Coordinated multi-robot

exploration. IEEE Transactions on Robotics, 21(3):376–386, June 2005.

[31] G. Campion, G. Bastin, and B. D’Andréa-Novel. Structural properties and classi-

fication of kinematic and dynamic models of wheeled mobile robots. IEEE Trans-

actions on Robotics and Automation, 12(1):47–62, February 1996.

[32] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar. Distributed model predictive

control. IEEE Control Systems Magazine, 22(1):44–52, February 2002.

[33] M. Cao, A. S. Morse, and B. D. O. Anderson. Coordination of an asynchronous

multi-agent system via average. In Proceedings of the IFAC world Congress,

Prague, Czech Republic, July 2005.

[34] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng. Cooperative mobile robotics: an-

tecedents and directions. Autonomous Robots, 4(1):7–27, 1997.

[35] R. Carelli, H. Secchi, and V. Mut. Algorithms for stable control of mobile robots

with obstacle avoidance. Latin American Applied Research, 29(3/4):191–196,

1999.

[36] S. Carpin and L. Parker. Cooperative motion coordination amidst dynamic ob-

stacles. In Proceedings of the Symposium on Distributed Autonomous Robotic

Systems, pages 145–154, Fukuoka, Japan, 2002.

129

Bibliography

[37] C. Castelpietra, L. Iocchi, D. Nardi, M. Piaggio, A. Scalzo, and A. Sgorbissa.

Coordination among heterogeneous robotic soccer players. In Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

1385–1390, Takamatsu, Japan, October 2000.

[38] L. Cavagnari, L. Magni, and R. Scattolini. Neural network implementation of

nonlinear receding-horizon control. Neural Computing & Applications, 8(1):86–

92, 1999.

[39] A. Cervantes, A. Wachter, R. Tutuncu, and L. Biegler. A reduced space interior

point strategy for optimization of differential algebraic systems. Computers &

Chemical Engineering, 24(1):39–51, April 2000.

[40] C. C. Chen and L. Shaw. On receding horizon feedback control. Automatica, 18:

349–352, 1982.

[41] H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive

control scheme with guaranteed stability. Automatica, 34(10):1205–1218, 1998.

[42] Y. Q. Chen and Z. M. Wang. Formation control: a review and a new consideration.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 3181–3186, Edmonton, Canada, August 2005.

[43] A. Cherubini, F. Chaumette, and G. Oriolo. A position-based visual servoing

scheme for following paths with nonholonomic mobile robots. In Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

1648–1654, Nice, France, September 2008.

[44] S.-J. Chung and J. J. E. Slotine. Cooperative robot control and concurrent synchro-

nization of Lagrangian systems. IEEE Transactions on Robotics, 25(3):686–700,

June 2009.

[45] D. W. Clarke, C. Mohtadi, and P. S. Tuffs. Generalized predictive control, Part I:

The basic algorithm. Automatica, 23(2):137–148, 1987.

[46] D. W. Clarke, C. Mohtadi, and P. S. Tuffs. Generalized predictive control, Part II:

Extension and interpretations. Automatica, 23(2):149–160, 1987.

[47] L. Consolini, F. Morbidi, D. Prattichizzo, and M. Tosques. A geometric char-

acterization of leader-follower formation control. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 2397–2402, Roma,

Italy, April 2007.

[48] Intel Corporation. Opencv, February 2010.

http://opencv.willowgarage.com/wiki/.

130

Bibliography

[49] J. B. Coulaud, G. Campion, G. Bastin, and M. De Wan. Stability analysis of a

vision-based control design for an autonomous mobile robot. IEEE Transactions

on Robotics, 22(5):1062–1069, October 2006.

[50] C.R. Cutler and B.L. Ramaker. Dynamic matrix control - A computer control algo-

rithm. In Proceedings of the Joint Automatic Control Conference, San Francisco,

CA, 1980.

[51] A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and C. J. Taylor. A

vision-based formation control framework. IEEE Transactions on Robotics and

Automation, 18(5):813–825, October 2002.

[52] M. C. De Gennaro and A. Jadbabaie. Formation control for a cooperative multi-

agent system using decentralized navigation functions. In Proceedings of the

American Control Conference, pages 1346–1351, Minneapolis, MN, June 2006.

[53] M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti. Sliding-mode formation

control for cooperative autonomous mobile robots. IEEE Transactions on Indus-

trial Electronics, 55(11):3944–3953, November 2008.

[54] J. C. Derenick and J. R. Spletzer. Convex optimization strategies for coordinating

large-scale robot formations. IEEE Transactions on Robotics, 23(6):1252–1259,

December 2007.

[55] J. P. Desai. A graph theoretic approach for modeling mobile robot team forma-

tions. Journal of Robotic Systems, 19(11):511–525, June 2002.

[56] J. P. Desai, J. P. Ostrowski, and V. Kumar. Modeling and control of formations

of nonholonomic mobile robots. IEEE Transactions on Robotics and Automation,

17(6):905–908, December 2001.

[57] M. Di Rocco, S. Panzieri, and A. Priolo. Formation control through environment

pattern recognition for a multi-robot architecture. In Proceedings of the Euro-

pean Conference on Mobile Robots, pages 241–246, Mlini/Dubrovnik, Croatia,

September 2009.

[58] F. Diaz del Rio, G. J. Moreno, J. L. S. Ramos, C. A. A. Rodriguez, and A. A. C.

Balcells. A new method for tracking memorized paths: application to unicycle

robots. In Proceedings of the 10th IEEE Mediterranean Conference on Control

and Automation, Lisbon, Portugal, July 2002.

[59] S. L. Dickerson and B. D. Lapin. Control of an omni-directional robotic vehicle

with Mecanum wheels. In Proceedings of the National Telesystems Conference,

pages 323–328, Atlanta, USA, March 1991.

131

Bibliography

[60] T. Dierks and S. Jagannathan. Neural network control of mobile robot formations

using RISE feedback. IEEE Transactions on Systems, Man, and Cybernetics -

Part B: Cybernetics, 39(2):332–347, April 2009.

[61] D. V. Dimarogonas and K. J. Kyriakopoulos. On the rendezvous problems for

multiple nonholonomic agents. IEEE Transactions on Automatic Control, 52(5):

916–922, May 2007.

[62] K. D. Do. Formation tracking control of unicycle-type mobile robots. In Proceed-

ings of the IEEE International Conference on Robotics and Automation, pages

2391–2396, Roma, Italy, April 2007.

[63] W. Dong and J. A. Farrell. Consensus of multiple nonholonomic systems. In

Proceedings of the IEEE Conference on Decision and Control, pages 2270–2275,

Cancun, Mexico, December 2008.

[64] G. Dudek, M. R. M. Jenkin, and D. Wilkes. A taxonomy for multi-agent robotics.

Autonomous Robots, 3:375–397, 1996.

[65] W. B. Dunbar and R. M. Murray. Distributed receding horizon control for multi-

vehicle formation stabilization. Automatica, 42(4):549–558, 2006.

[66] M. Egerstedt and X. Hu. Formation constrained multi-agent control. IEEE Trans-

actions on Robotics and Automation, 17(6):947–951, December 2001.

[67] M. Egerstedt, X. Hu, and A. Stotsky. Control of mobile platforms using a virtual

vehicle approach. IEEE Transactions on Automatic Control, 46(11):1777–1782,

November 2001.

[68] P. Encarnação and A. Pascoal. 3D path following for autonomous underwater

vehicle. In Proceedings of the IEEE Conference on Decision and Control, pages

2977–2982, Sydney, Australia, December 2000.

[69] H. V. Essen and H. Nijmeijer. Non-linear model predictive control of constrained

mobile robots. In Proceedings of the European Control Conference, pages 1157–

1162, Porto, Portugal, September 2001.

[70] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat. Predictive active

steering control for autonomous vehicle systems. IEEE Transactions on Control

Systems Technology, 15(3):566–580, 2007.

[71] L. Fang and P. J. Antsaklis. Decentralized formation tracking of multi-vehicle sys-

tems with nonlinear dynamics. In Proceedings of the Mediterranean Conference

on Control and Automation, Ancona, Italy, June 2006.

132

Bibliography

[72] J. A. Fax and R. M. Murray. Information flow and cooperative control of vehicle

formations. IEEE Transactions on Automatic Control, 49(9):1465–1476, Septem-

ber 2004.

[73] R. Fierro and F. L. Lewis. Control of a nonholonomic mobile robot using neural

networks. IEEE Transactions on Neural Networks, 9(4):689–600, July 1998.

[74] R. Fierro, A. K. Das, V. Kumar, and J. P. Ostrowski. Hybrid control of formations

of robots. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 21–26, Seoul, Korea, May 2001.

[75] R. Fletcher. Practical methods of optimization, volume 2nd ed. John Wiley &

Sons Inc., 1987.

[76] R. Franz, M. Milam, and J. Hauser. Applied receding horizon control of the Cal-

teth ducted fan. In Proceedings of the American Control Conference, pages 3735–

3740, Anchorage AK, May 2002.

[77] J. Fredslund and M. Matarić. A general algorithm for robot formations using

local sensing and minimal communication. IEEE Transactions on Robotics and

Automation, 18(5):837–846, 2002.

[78] R. A. Freeman, P. Yang, and K. M. Lynch. Distributed estimation and control of

swarm formation statistics. In Proceedings of the American Control Conference,

Minneapolis, MN, June 2006.

[79] G. W. Gamage, G. K. I. Mann, and R. G. Gosine. Discrete event systems based

formation control framework to coordinate multiple nonholonomic mobile robots.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 4831–4836, St. Louis, USA, October 2009.

[80] B. P. Gerkey and M. Matarić. A framework for studying multi-robot task alloca-

tion. In Proceedings of the International Workshop on Multi-Robot Systems: From

Swarms to Intelligent Automata, pages 15–26, Washinton, DC, May 2003.

[81] E. M. Gertz and S. J. Wright. Object-oriented software for quadratic program-

ming. ACM Transactions on Mathematical Software, 29(1):58–81, 2003.

[82] R. Ghabcheloo, A. Pascoal, C. Silvestre, and D. Carvalho. Coordinated motion

control of multiple autonomous underwater vehicles. In Proceedings of the Inter-

national Workshop on Underwater Robotics, pages 41–50, Genoa, Italy, Novem-

ber 2005.

[83] R. Ghabcheloo, A. Aguiar, A. Pascoal, C. Silvestre, I. Kaminer, and J. Hespanha.

Coordinated path-following in the presence of communication losses and time

delays. SIAM - Journal on Control and Optimization, 48(1):234–265, 2009.

133

Bibliography

[84] J. Ghomman, M. Saad, and F. Mnif. Formation path following control of unicycle-

type mobile robots. In Proceedings of the IEEE Conference on Robotics and

Automation, pages 1966–1972, Pasadena, CA, May 2008.

[85] P. Gill, W. Murray, and M. Saunders. SNOPT: An SQP algorithm for large-scale

constrained optimization. SIAM Journal on Optimization, 12:979–1006, 1997.

[86] C. Godsil and G. Royle. Algebraic Graph Theory, volume 207. Springer-Verlag,

New York, 2001.

[87] D. Gu and H. Hu. Neural predictive control for a car-like mobile robot. Robotics

and Autonomous Systems, 39(2):73–86, 2002.

[88] D. Gu and H. Hu. Receding horizon tracking control of wheeled mobile robots.

IEEE Transactions on Control Systems Technology, 14(4):743–749, July 2006.

[89] D. Gu and H. Hu. A model predictive controller for robots to follow a virtual

leader. Robotica, 27(6):905–913, October 2009.

[90] Y. Guo, D. Hill, and Y. Wang. Nonlinear decentralized control of large-scale

power systems. Technical Report EE-98020, Electrical and Information Engi-

neering School, University of Sydney, 2006.

[91] M. A. Haque and M. Egerstedt. Decentralized formation selection mechanisms

inspired by foraging bottlenose dolphins. In Proceedings of the Mathematical

Theory of Networks and Systems, Blacksburg, VA, July 2008.

[92] R. Hedjar, R. Toumi, P. Boucher, and D. Dumur. Finite horizon nonlinear predic-

tive control by the Taylor approximation: application to robot tracking trajectory.

International Journal of Applied Mathematics and Computer Science, 15(4):527–

540, 2005.

[93] P. Heinemann. Cooperative Multi-Robot Soccer in a Highly Dynamic Environ-

ment. PhD dissertation, University of Tübingen, Faculty of Information and Cog-

nition Science, 2007.

[94] P. Heinemann, J. Haase, and A. Zell. A combined Monte-Carlo localization and

tracking algorithm for RoboCup. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 1535–1540, Beijing, China,

October 2006.

[95] P. Hines, D. Jia, and S. Talukdar. Distributed model predictive control for electric

grids. In Proceedings of the Carnegie Mellon Transmission Conference, Pitts-

burgh, 2004.

134

Bibliography

[96] M. Hofmeister, M. Liebsch, and A. Zell. Visual self-localization for small mo-

bile robots with weighted gradient orientation histograms. In Proceedings of the

40th International Symposium on Robotics (ISR), pages 87–91, Barcelona, Spain,

March 2009.

[97] A. Howard, L. E. Parker, and G. S. Sukhatme. Experiments with a large het-

erogeneous mobile robot team: Exploration, mapping, deployment and detection.

International Journal Robotics Research, 25(5-6):431–447, 2006.

[98] I.-A. F. Ihle, J. Jouffroy, and T. I. Fossen. Formation control of marine craft using

constraint functions. In Proceedings of the MTS/IEEE OCEANS, pages 1023–

1028, Washington D.C., September 2005.

[99] I.-A. F. Ihle, M. Arcak, and T. I. Fossen. Passivity-based designs for synchronized

path-following. Automatica, 43(9):1508–1518, 2007.

[100] G. Indiveri. Swedish wheeled omnidirectional mobile robots: Kinematics analysis

and control. IEEE Transactions on Robotics, 25(1):164–171, February 2009.

[101] A. Jadbabaie, J. Yu, and J. Hauser. Stabilizing receding horizon control of non-

linear systems: A control Lyapunov function approach. In Proceedings of the

American Control Conference, pages 1535–1539, San Diego, CA, June 1999.

[102] A. Jadbabaie, J. Yu, and J. Hauser. Unconstrained receding horizon control of non-

linear systems. IEEE Transactions on Automatic Control, 46(5):776–783, 2001.

[103] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic

Control, 48:988–1001, June 2003.

[104] A. Jadbabaie, N. Motee, and M. Barahona. On the stability of the Kuramoto

model of coupled nonlinear oscillators. In Proceedings of the American Control

Conference, pages 4296–4301, Boston, MA, June 2004.

[105] M. Ji, S. Azuma, and M. Egerstedt. Role assignment in multi-agent coordination.

International Journal of Assistive Robotics and Mechatronics, 7(1):32–40, March

2006.

[106] D. Jia and B. Krogh. Distributed model predictive control. In Proceedings of the

American Control Conference, pages 2767–2772, Arlington, VA, June 2001.

[107] D. Jia and B. Krogh. Min-max feedback model predictive control for distributed

control with communication. In Proceedings of the American Control Conference,

pages 4507–4512, Anchorage, Alaska, May 2002.

135

Bibliography

[108] Z.-P. Jiang, E. Lefeber, and H. Nijmeijer. Saturated stabilization and track control

of a nonholonomic mobile robot. Systems and Control Letters, 42:327–332, 2001.

[109] T. Kalmár-Nagy, R. D’Andrea, and P. Ganguly. Near-optimal dynamic trajectory

generation and control of an omnidirectional vehicle. Robotics and Autonomous

Systems, 46(1):47–64, January 2004.

[110] K. Kanjanawanishkul. Formation control of omnidirectional mobile robot using

distributed model predictive control. In Proceedings of the 2nd International Con-

ference on Robot Communication and Coordination (ROBOCOMM), pages 1–7,

Odense, Denmark, March 2009.

[111] K. Kanjanawanishkul and A. Zell. A model-predictive approach to formation

control of omnidirectional mobile robots. In Proceedings of the 2008 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2008), pages

2771–2776, Nice, France, September 2008.

[112] K. Kanjanawanishkul and A. Zell. Distributed model predictive control for coor-

dinated path following control of omnidirectional mobile robots. In Proceedings

of the IEEE International Conference on Systems, Man, and Cybernetics (SMC

2008), pages 3120–3125, Singapore, October 2008.

[113] K. Kanjanawanishkul and A. Zell. Path following for an omnidirectional mobile

robot based on model predictive control. In Proceedings of the 2009 IEEE In-

ternational Conference on Robotics and Automation (ICRA 2009), pages 3341 –

3346, Kobe, Japan, May 2009.

[114] K. Kanjanawanishkul and A. Zell. Distributed role assignment in multi-robot

formation. Proceedings of the 7th Symposium on Intelligent Autonomous Vehicles

(IAV), September 2010. Accepted for publication.

[115] K. Kanjanawanishkul, X. Li, and A. Zell. Nonlinear model predictive control of

omnidirectional mobile robot formations. In Proceedings of the 10th International

Conference on Intelligent Autonomous Systems (IAS 2008), pages 41–48, Baden-

Baden, Germany, July 2008.

[116] K. Kanjanawanishkul, M. Hofmeister, and A. Zell. Coordinated path following

for mobile robots. In Proceedings of Fachgespraech Autonome Mobile Systeme

(AMS2009), pages 185–192, Karlsruhe, Germany, December 2009.

[117] K. Kanjanawanishkul, M. Hofmeister, and A. Zell. Smooth reference tracking

of a mobile robot using nonlinear model predictive control. In Proceedings of

the 4th European Conference on Mobile Robots (ECMR), pages 161–166, Mlini/-

Dubrovnik, Croatia, September 2009.

136

Bibliography

[118] K. Kanjanawanishkul, M. Hofmeister, and A. Zell. Experiments on formation

switching for mobile robots. In Proceedings of the 2010 IEEE/ASME Interna-

tional Conference on Advanced Intelligent Mechatronics (AIM2010), Montreal,

Canada, July 2010. Accepted for publication.

[119] K. Kanjanawanishkul, M. Hofmeister, and A. Zell. Path following with an optimal

forward velocity for a mobile robot. Proceedings of the 7th Symposium on Intelli-

gent Autonomous Vehicles (IAV), September 2010. Accepted for publication.

[120] S. S. Keerthi and E. G. Gilbert. Optimal, infinite horizon feedback laws for a

general class of constrained discrete time systems: Stability and moving-horizon

approximations. Journal of Optimization Theory and Application, 57:256–293,

1988.

[121] T. Keviczky, F. Borrelli, and G. J. Balas. A study on decentralized receding hori-

zon control for decoupled systems. In Proceedings of the American Control Con-

ference, pages 4921–4926, Boston, Massachusetts, June 2004.

[122] T. Keviczky, F. Borrelli, and G. J. Balas. Stability analysis of decentralized RHC

for decoupled systems. In Proceedings of the IEEE Conference on Decision and

Control and European Control Conference, pages 1689–1694, Seville, Spain, De-

cember 2005.

[123] H. K. Khalil. Nonlinear Systems. Prentice Hall, 2002.

[124] W. K. Kim, B.-J. Yi, and D. J. Lim. Kinematic modeling of mobile robots by trans-

fer method of augmented generalized coordinates. Journal of Robotic Systems, 21

(6):275–300, 2004.

[125] G. Klančar and I. Škrjanc. Tracking-error model-based predictive control for mo-

bile robots in real time. Robotics and Autonomous Systems, 55(6):460–469, 2007.

[126] V. S. Kodogiannis, P. J. G. Lisboa, and J. Lucas. Neural network modeling and

control for underwater vehicles. Artificial Intelligence in Engineering, 10(3):203–

212, 1996.

[127] I. Kolmanovsky and N. H. McClamroch. Developments in nonholonomic control

problems. IEEE Control Systems Magazine, 15(6):20–36, December 1995.

[128] S. L. D. Kothare and M. Morari. Contractive model predictive control for con-

strained nonlinear systems. IEEE Transactions on Automatic Control, 45(6):

1053–1071, June 2000.

[129] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research

Logistics, 2(1):83–97, 1955.

137

Bibliography

[130] W. H. Kwon and S. Han. Receding Horizon Control: Model Predictive Control

for State Models. Springer-Verlag, London, 2005.

[131] G. Lafferriere, A. Williams, J. Caughman, and J. J. P. Veerman. Decentralized con-

trol of vehicle formations. Systems and Control Letters, 54(9):899–910, Septem-

ber 2005.

[132] W. F. Lages and J. A. V. Alves. Real-time control of a mobile robot using lin-

earized model predictive control. In Proceedings of the 4th IFAC Symposium on

Mechatronic Systems, pages 968–973, Heidelberg, Germany, September 2006.

[133] E. Lalish, K. A. Morgansen, and T. Tsukamaki. Formation tracking control using

virtual structures and deconfliction. In Proceedings of the IEEE Conference on

Decision and Control, pages 5699–5705, San Diego, CA, December 2006.

[134] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path deformation for non-

holonomic mobile robots. IEEE Transactions on Robotics, 20(6):967–977, 2004.

[135] L. Lapierre, R. Zapata, and P. Lepinay. Combined path-following and obstacle

avoidance control of a wheeled robot. International Journal of Robotics Research,

26(4):361–376, 2007.

[136] C. T. Lawrence and A. L. Tits. A computationally efficient feasible sequential

quadratic programming algorithm. SIAM Journal on Optimization, 11:1092–1118,

2001.

[137] M. Lawrynczuk. A family of model predictive control algorithms with artificial

neural networks. International Journal of Applied Mathematics and Computer

Science, 17(2):217–232, 2007.

[138] J. Lawton, R. W. Beard, and B. Young. A decentralized approach to formation ma-

neuvers. IEEE Transactions on Robotics and Automation, 19:933–941, December

2003.

[139] T. Lee, M. Leok, and N. H. McClamroch. A combinatorial optimal control prob-

lem for spacecraft formation reconfiguration. In Proceedings of the IEEE Con-

ference on Decision and Control, pages 5370–5375, New Orleans, LA, December

2007.

[140] M. Lemay, F. Michaud, D. Letourneau, and J.-M. Valin. Autonomous initializa-

tion of robot formation. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 3018–3023, New Orleans, LA, May 2004.

[141] M. A. Lewis and K. H. Tan. High precision formation control of mobile robots

using virtual structures. Autonomous Robots, 4(4):387–403, 1997.

138

Bibliography

[142] X. Li and A. Zell. Motion control of an omnidirectional mobile robot. In Proceed-

ings of the 4th International Conference on Informatics in Control, Automation

and Robotics, pages 125–132, Angers, France, May 2007.

[143] X. Li, J. Xiao, and Z. Cai. Backstepping based multiple mobile robots formation

control. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 887– 892, Alberto, Canada, August 2005.

[144] X. Li, K. Kanjanawanishkul, and A. Zell. Nonlinear model predictive control of

an omnidirectional mobile robot. In Proceedings of the 10th International Confer-

ence on Intelligent Autonomous Systems (IAS 2008), pages 92–99, Baden-Baden,

Germany, July 2008.

[145] Z. Lin, M. Broucke, and B. Francis. Local control strategies for groups of mobile

autonomous agents. IEEE Transactions on Automatic Control, 49:622–629, 2004.

[146] Z. Lin, B. Francis, and M. Maggiore. Necessary and sufficient graphical condi-

tions for formation control of unicycles. IEEE Transactions on Automatic Control,

50(1):121–127, January 2005.

[147] Y. Liu, X. Wu, J. Jim Zhu, and J. Lew. Omni-directional mobile robot controller

design by trajectory linearization. In Proceedings of the American Control Con-

ference, pages 3423–3428, Denver, Colorado, June 2003.

[148] W. K. Loh, K. H. Low, and Y. P. Leow. Mechatronics design and kinematic mod-

elling of a singularityless omni-directional wheeled mobile robot. In Proceedings

of the IEEE International Conference on Robotics and Automation, pages 3237–

3242, Tapei, Taiwan, Sep. 2003.

[149] Y. Ma, J. Kosecka, and S. Sastry. Vision guided navigation for a nonholonomic

mobile robot. IEEE Transactions on Robotics and Automation, 15(3):521–536,

1999.

[150] L. Magni and R. Scattolini. State-feedback MPC with piecewise constant control

for continuous-time systems. In Proceedings of the IEEE Conference on Decision

and Control, pages 4625–4630, Las Vegas, USA, December 2002.

[151] L. Magni, D. M. Raimondo, and F. Allgöwer, editors. Nonlinear Model Predictive

Control – Towards New Challenging Applications. Lecture Notes in Control and

Information Sciences. Springer-Verlag, Berlin, 2009.

[152] G. L. Mariottini, G. J. Pappas, D. Prattichizzo, and K. Daniilidis. Vision-based

localization of leader-follower formations. In Proceedings of the IEEE Conference

on Decision and Control, pages 635–640, Seville, Spain, December 2005.

139

Bibliography

[153] G. L. Mariottini, G. Oriolo, and D. Prattichizzo. Image-based visual servoing

for nonholonomic mobile robots using epipolar geometry. IEEE Transactions on

Robotics, 23(1):87–100, 2007.

[154] J. A. Marshall, M. E. Broucke, and B. A. Francis. Formations of vehicles in cyclic

pursuit. IEEE Transactions on Automatic Control, 49(11):1964–1974, 2004.

[155] M. Matarić. Issues and approaches in the design of collective autonomous agents.

Robotics and Autonomous Systems, 16:321–331, December 1995.

[156] D. Q. Mayne and H. Michalska. Receding horizon control of nonlinear systems.

IEEE Transactions on Automatic Control, 35(7):814–824, 1990.

[157] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained model

predictive control: stability and optimality. Automatica, 36:789–814, 2000.

[158] J. McClintock and R. Fierro. A hybrid system approach to formation reconfigura-

tion in clutter environments. In Proceedings of the Mediterranean Conference on

Control and Automation, pages 83–88, Ajaccio, France, June 2008.

[159] P. McDowell, J. Chen, and B. Bourgeois. UUV teams, control from a biologi-

cal perspective. In Proceedings of the Oceans 2002 Conference, pages 331–337,

Mississippi, MS, October 2002.

[160] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray. Asyn-

chronous distributed averaging on communication networks. IEEE/ACM Trans-

actions on Networking, 15(3):512–520, June 2007.

[161] A. Micaelli and C. Samson. Trajectory-tracking for unicycle-type and two-

steering-wheels mobile robots. Technical Report 2097, INRIA Sophia-Antipolis,

November 1993.

[162] N. Michael, M. Zavlanos, V. Kumar, and G. J. Pappas. Distributed multi-robot task

assignment and formation control. In Proceedings of the International Conference

on Robotics and Automation, pages 128–133, Pasadena, CA, May 2008.

[163] H. Michalska and D. Q. Mayne. Robust receding horizon control of constrained

nonlinear systems. IEEE Transactions on Automatic Control, 38(11):1623–1633,

Nov: 1993.

[164] F. Michaud, D. Letourneau, M. Guilbert, and J.-M. Valin. Dynamic robot forma-

tions using directional visual perception. In Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 2740–2745, Lausanne,

Switzerland, October 2002.

140

Bibliography

[165] M. B. Milam, R. Franz, J. E. Hauser, and R. M. Murray. Receding horizon con-

trol of a vectored thrust flight experiment. IEE Proceedings Control Theory and

Applications, 152(3):340–348, May 2003.

[166] H. J. Min, A. Drenner, and N. Papanikolopoulos. Vision-based leader-follower

formations with limited information. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 351–356, Kobe, Japan, May 2009.

[167] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on standardization in mo-

bile robot programming: The carnegie mellon navigation (CARMEN) toolkit. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 2436–2441, Las Vegas, NV, October 2003.

[168] M. Montemerlo, N. Roy, and S. Thrun. CARMEN, Carnegie Mellon Robot Navi-

gation Toolkit, February 2010. http://carmen.sourceforge.net.

[169] M. Morari and J. Lee. Model predictive control: Past, present, and future. Com-

puters and Chemical Engineering, 23(4/5):667–682, 1999.

[170] L. Moreau. Stability of multiagent systems with time-dependent communication

links. IEEE Transactions on Automatic Control, 50(12):169–182, 2005.

[171] P. Morin and C. Samson. Springer Handbook of Robotics, chapter 34. Motion

control of wheeled mobile robot, pages 799–826. Springer Berlin Heidelberg,

2008.

[172] R. M. Murray. Recent research in cooperative-control of multivehicle systems.

Journal of Dynamics, Systems, Measurement and Control, 129(5):571–583, 2007.

[173] R. R. Negenborn, B. De Schutter, and J. Hellendoorn. Multi-agent model predic-

tive control: A survey. Technical Report 04-010, Delft Center for Systems and

Control, Delft University of Technology, December 2004.

[174] J. E. Normey-Rico, J. Gomez-Ortega, and E. F. Camacho. A Smith-predictor-

based generalized predictive controller for mobile robot path-tracking. Control

Engineering Practice, 7(6):729–740, 1999.

[175] P. Ögren and N. E. Leonard. Obstacle avoidance in formation. In Proceedings

of the IEEE International Conference on Robotics and Automation, pages 2492–

2497, Taipei, Taiwan, September 2003.

[176] R. Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and the-

ory. IEEE Transactions on Automatic Control, 51(3):401–420, March 2006.

141

Bibliography

[177] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with

switching topology and time-delays. IEEE Transactions on Automatic Control, 49

(9):1520–1533, September 2004.

[178] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in

networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, January

2007.

[179] A. Ollero and O. Amidi. Predictive path tracking of mobile robots: Application

to the CMU Navlab. In Proceedings of the International Conference on Advanced

Robotics, pages 1081–1086, Pisa, Italy, June 1991.

[180] A. Ollero, A. Garciacerezo, and J. L. Martinez. Fuzzy supervisory path tracking

of mobile robots. Control Engineering Practice, 2(2):313–319, 1994.

[181] G. Oriolo, A. De Luca, and M. Vendittelli. WMR control via dynamic feedback

linearization: design, implementation and experimental validation. IEEE Trans-

actions on Control Systems Technology, 10(6):835–852, 2002.

[182] O. A. Orqueda and R. Fierro. Robust vision-based nonlinear formation control. In

Proceedings of the American Control Conference, pages 1422–1427, Minneapolis,

MN, June 2006.

[183] C. Ortiz, K. Konolige, R. Vincent, B. Morisset, A. Agno, M. Eriksen, D. Fox,

B. Limketkai, J. Ko, B. Steward, and D. Schulz. Centibots: very large scale

distributed robotic teams. In Proceedings of the National Conference on Artificial

Intelligence (AAAI’04), pages 1022–1023, San Jose, California, 2004. AAAI Press

/ The MIT Press.

[184] M. Oubbati, M. Schanz, T. Buchheim, and P. Levi. Velocity control of an omnidi-

rectional RoboCup player with recurrent neural networks. In Proceedings of the

International Symposium on RoboCup, pages 691–701, Osaka,Japan, July 2005.

[185] A. Pant, P. Seiler, and K. Hedrick. Mesh stability of look-ahead interconnected

systems. IEEE Transactions on Automatic Control, 47:403–407, February 2002.

[186] A. Papachristodoulou and A. Jadbabaie. Synchronization in oscillator networks:

Switching topologies and non-homogeneous delays. In Proceedings of the IEEE

Conference on Decision and Control and European Control Conference, pages

5692–5697, Seville, Spain, December 2005.

[187] T. Parisini and R. Zoppoli. A receding horizon regulator for nonlinear systems

and a neural approximation. Automatica, 31:1443–1451, 1995.

142

Bibliography

[188] T. Parisini and R. Zoppoli. Neural approxinations for multistage optimal control

of nonlinear stochastic systems. IEEE Transactions on Automatic Control, 41(6):

889–895, 1996.

[189] F. G. Pin and S. M. Killough. A family of omni-directional and holonomic

wheeled platforms for mobile robots. IEEE Transactions on Robotics and Au-

tomation, 10(4):480–489, 1994.

[190] J. A. Primbs, V. Nevistic, and J. C. Doyle. A receding horizon generalization of

pointwise min-norm controllers. IEEE Transactions on Automatic Control, 45(5):

898–909, May 2000.

[191] O. Purwin and R. D’Andrea. Trajectory generation and control for four wheeled

omnidirectional vehicles. Robotics and Autonomous Systems, 54(1):13–32, Jan-

uary 2006.

[192] S. J. Qin and T. Badgwell. A survey of industrial model predictive control tech-

nology. Control Engineering Practice, 11(7):733–764, July 2003.

[193] C. V. Rao, S. J. Wright, and J. B. Rawlings. Application of interior-point methods

to model predictive control. Journal of Optimization Theory and Applications, 99

():723–757, 1998.

[194] W. Ren. Consensus strategies for cooperative control of vehicle formations. IET

Control Theory & Applications, 1(2):505–512, 2007.

[195] W. Ren and R. Beard. Consensus seeking in multi-agent systems under dynami-

cally changing interaction topologies. IEEE Transactions on Automatic Control,

50(5):655–661, May 2005.

[196] W. Ren and R. W. Beard. A decentralized scheme for spacecraft formation flying

via the virtual structure approach. Journal of Guidance, Control, and Dynamics,

27(1):73–82, January 2004.

[197] W. Ren, R. W. Beard, and E. M. Atkins. Information consensus in multivehicle

cooperative control. IEEE Control Systems Magazine, 27(2):71–82, April 2007.

[198] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. In

Proceedings of the Computer Graphics SIGGRAPH, pages 25–34, Anaheim, CA,

July 1987.

[199] A. G. Richards and J. P. How. A decentralized algorithm for robust constrained

model predictive control. In Proceedings of the American Control Conference,

pages 4261–4266, Boston, Massachusetts, June 2004.

143

Bibliography

[200] C. Samson. Control of chained systems: Application to path-following and time-

varying point stabilization of mobile robots. IEEE Transactions on Automatic

Control, 40(1):64–77, January 1995.

[201] J. Sanchez and R. Fierro. Sliding mode control for robot formations. In Proceed-

ings of the IEEE International Symposium on Intelligent Control, pages 438–443,

Houston TX, October 2003.

[202] A. Scaglione, R. Pagliari, and H. Krim. The decentralized estimation of the sample

covariance. In Proceedings of the IEEE Asilomar Conference on Signals, Systems,

and Computers, pages 1722–1726, Pacific Grove, CA, October 2008.

[203] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings. Suboptimal model predictive

control (feasibility implies stability). IEEE Transactions on Automatic Control, 44

(3):648–654, 1999.

[204] R. C. Scott and L. E. Pado. Active control of wind-tunnel model aeroelastic re-

sponse using neural networks. Journal of Guidance, Control, and Dynamics, 23

(6):1100–1108, 2000.

[205] M. Seyr and S. Jakubek. Mobile robot predictive trajectory tracking. In Proceed-

ings of the International Conference on Informatics in Control, pages 112–119,

Barcelona, Spain, September 2005.

[206] D. H. Shim, H. J. Kim, and S. Sastry. Decentralized nonlinear model predictive

control of multiple flying robots in dynamic environments. In Proceedings of

the IEEE Conference on Decision and Control, pages 3621–3626, Maui, Hawaii,

December 2003.

[207] D. Siljak. Decentralized control and computations: status and prospects. Annual

Reviews in Control, 20:131–141, 1996.

[208] R. Skjetne, I.-A. F. Ihle, and T. I. Fossen. Control by synchronizing multiple

maneuvering systems. In Proceedings of the IFAC Conference on Maneuvering

and Control of Marine Crafts, pages 280–285, Girona, Spain, September 2003.

[209] R. Skjetne, T.I. Fossen, and P. V. Kokotović. Robust output maneuvering for a

class of nonlinear systems. Automatica, 40(3):373–383, 2004.

[210] S. L. Smith and F. Bullo. Target assignment for robotic networks: Asymptotic per-

formance under limited communication. In Proceedings of the American Control

Conference, pages 1155–1160, New York, July 2007.

[211] D. Soeanto, L. Lapierre, and A. Pascoal. Adaptive non-singular path-following,

control of dynamic wheeled robots. In Proceedings of the International Confer-

ence on Advanced Robotics, pages 1387–1392, Coimbra, Portugal, June 2003.

144

Bibliography

[212] R. Solea and U. Nunes. Trajectory planning with velocity planner for fully-

automated passenger vehicles. In Proceedings of the IEEE Intelligent Transporta-

tion Systems Conference, pages 474–480, Toronto, Canada, September 2006.

[213] J.-B. Song and K.-S. Byun. Design and control of a four-wheeled omnidirectional

mobile robot with steerable omnidirectional wheels. Journal of Robotic Systems,

21(4):193–208, 2004.

[214] P. Spellucci. An SQP method for general nonlinear programs using only equality

constrained subproblems. Mathematical Programming, 82(3):413–448, 1998.

[215] D. M. Stipanovic, G. Inalhan, R. Teo, and C. J. Tomlin. Decentralized overlapping

control of a formation of unmanned aerial vehicles. Automatica, 40(8):1285–

1296, August 2004.

[216] P. Stone and M. Veloso. Task decomposition, dynamic role assignment, and

low-bandwidth communication for real-time strategic teamwork. Artificial In-

telligence, 110(2):241–273, June 1999.

[217] D. Stonier, S.-H. Cho, S.-L. Choi, N. S. Kuppuswamy, and J.-H. Kim. Nonlinear

slip dynamics for an omnidirectional mobile robot platform. In Proceedings of the

IEEE International Conference on Robotics and Automation, pages 2367–2372,

Roma, Italy, April 2007.

[218] D. Swaroop and J. K. Hedrick. String stability of interconnected systems. IEEE

Transactions on Automatic Control, 41(3):349–357, 1996.

[219] H. G. Tanner, G. J. Pappas, and V. Kumar. Leader-to-formation stability. IEEE

Transactions on Robotics and Automation, 20(3):443–454, June 2004.

[220] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Flocking in fixed and switching

networks. IEEE Transactions on Automatic Control, 52(5):863–868, May 2007.

[221] P. Tatjewski and M. Lawrynczuk. Soft computing in model-based predictive con-

trol. International Journal of Applied Mathematics and Computer Science, 16(1):

7–26, 2006.

[222] M. Tenny, S. Wright, and J. Rawlings. Nonlinear model predictive control via

feasibility-perturbed sequential quadratic programming. Computational Opti-

mization and Applications, 28(1):87–121, April 2004.

[223] B. Thuilot, J. Bom, F. Marmoiton, and P. Martinet. Accurate automatic guidance

of an urban electric vehicle relying on a kinematic gps sensor. In Proceedings of

the 5th IFAC Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal,

July 2004.

145

Bibliography

[224] J. Velagic, B. Lacevica, and B. Perunicica. A 3-level autonomous mobile robot

navigation system designed by using reasoning/search approaches. Robotics and

Autonomous Systems, 54(12):989–1004, December 2006.

[225] M. Velasco-Villa, B. del Muro-Cuellar, and A. Alvarez-Aguirre. Smith-predictor

compensator for a delayed omnidirectional mobile robot. In Proceedings of

the Mediterranean Conference on Control and Automation, pages 1–6, Athens,

Greece, July 2007.

[226] A. N. Venkat, J. B. Rawlings, and S. J. Wright. Stability and optimality of dis-

tributed model predictive control. In Proceedings of the IEEE Conference on De-

cision and Control and European Control Conference, pages 6680–6685, Seville,

Spain, December 2005.

[227] R. Vidal, O. Shakernia, and S. Sastry. Formation control of nonholonomic mo-

bile robots with omnidirectional visual servoing and motion segmentation. In

Proceedings of the IEEE International Conference on Robotics and Automation,

pages 584–589, Taipei, Taiwan, September 2003.

[228] S. G. Vougioukas. Reactive trajectory tracking for mobile robots based on non

linear model predictive control. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation, pages 3074–3079, Roma, Italy, April 2007.

[229] E. A. Wan and A. A. Bogdanov. Model predictive neural control with application

to a 6 dof helicopter model. In Proceedings of the American Control Conference,

pages 488–493, Arlington, VA, June 2001.

[230] K. Watanabe. Control of omnidirectional mobile robot. In Proceedings of the In-

ternational Conference on Knowledge-based Intelligent Electronic Systems, pages

51–60, Adelaide, Australia, April 1998.

[231] J. Wen and J. Sooyong. Nonlinear model predictive control based on predicted

state error convergence. In Proceedings of the American Control Conference,

pages 2227–2232, Boston, MA, June 2004.

[232] K. Wesselowski and R. Fierro. A dual-mode model predictive controller for robot

formations. In Proceedings of the IEEE Conference on Decision and Control,

pages 3615– 3620, Maui, Hawaii, December 2003.

[233] R. L. Williams II, B. E. Carter, P. Gallina, and G. Rosati. Dynamic model with

slip for wheeled omni-directional robots. IEEE Transactions on Robotics and

Automation, 18(3):285–293, June 2002.

[234] J. Witt, C. D. III Crane, and D. Armstrong. Autonomous ground vehicle path

tracking. Journal of Robotic Systems, 21(8):439–449, 2004.

146

Bibliography

[235] X. Xiang, L. Lapierre, B. Jouvencel, and O. Parodi. Coordinated path following

control of multiple wheeled mobile robots through decentralized speed adaptation.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 4547–4552, St. Louis, USA, October 2009.

[236] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Systems and

Control Letters, 53:65–78, 2004.

[237] X. Yang, K. He, M. Guo, and B. Zhang. An intelligent predictive control approach

to path tracking problem of autonomous mobile robot. In Proceedings of the IEEE

International Conference on Systems, Man, and Cybernetics, pages 3301–3306,

San Diego, CA, October 1998.

[238] B. Young, R. W. Beard, and J. Kelsey. A control scheme for improving multive-

hicle formation maneuvers. In Proceedings of the American Control Conference,

pages 704–709, Arlington, VA, June 2001.

[239] M. Zavlanos and G. J. Pappas. Potential fields for maintaining connectivity of

mobile networks. IEEE Transactions on Robotics, 23(4):812–816, August 2007.

[240] M. Zavlanos and G. J. Pappas. Distributed formation control with permutation

symmetries. In Proceedings of the IEEE Conference on Decision and Control,

pages 2894–2899, New Orleans, LA, December 2007.

[241] S. Zelinski, T. J. Koo, and S. Sastry. Hybrid system design for formations of

autonomous vehicles. In Proceedings of the IEEE Conference on Decision and

Control, pages 1–6, Maui, Hawaii, December 2003.

[242] Y. Zhang, S. Velinsky, and X. Feng. On the tracking control of differentially

steered wheeled mobile robots. Journal of Dynamic Systems, Measurement, and

Control, 119(3):455–466, September 1997.

147

	1 Introduction
	1.1 Motivation
	1.2 Dissertation Organization

	2 Background Control Theory
	2.1 Nonlinear System Theory
	2.1.1 Lipschitz Functions
	2.1.2 Lyapunov Stability
	2.1.3 The Invariance Principle
	2.1.4 Nonautonomous Systems
	2.1.5 Barbalat's Lemma and Stability of Time-varying Systems
	2.1.6 Boundedness

	2.2 Model Predictive Control (MPC)
	2.2.1 Principles and Formulation
	2.2.2 Issues on Nonlinear MPC
	2.2.3 Optimization Solvers
	2.2.4 Centralized MPC vs. Decentralized MPC

	2.3 Consensus Protocols
	2.4 Summary

	3 Robot Systems
	3.1 System Architectures
	3.1.1 Heterogeneity vs. Homogeneity
	3.1.2 Communication Structures
	3.1.3 Centralization vs. Decentralization

	3.2 Robot Hardware
	3.2.1 Omnidirectional Mobile Robots
	3.2.2 Unicycle Mobile Robots

	3.3 Software Frameworks
	3.4 Summary

	4 Path Following Control
	4.1 Related Work on Motion Control Using MPC
	4.2 Path Following Control of an Omnidirectional Robot
	4.2.1 Problem Formulation
	4.2.2 Controller Design
	4.2.3 Experimental Results

	4.3 Linearized Path Following Control of an Omnidirectional Robot
	4.3.1 Problem Formulation
	4.3.2 Controller Design
	4.3.3 Experimental Results

	4.4 Smooth Reference Tracking of a Unicycle Mobile Robot
	4.4.1 Problem Formulation
	4.4.2 Controller Design
	4.4.3 Simulation Results
	4.4.4 Experimental Results

	4.5 Discussions and Summary

	5 Coordinated Path Following Control
	5.1 Review on Formation Control Strategies
	5.1.1 Behavior-based Approach
	5.1.2 Leader-following Approach
	5.1.3 Virtual-structure Approach
	5.1.4 Other Control Strategies

	5.2 Related Work on Coordinated Path Following Control
	5.3 Nonlinear MPC Using the Leader-following Strategy
	5.3.1 Problem Formulation
	5.3.2 Controller Design
	5.3.3 Experimental Results

	5.4 Distributed MPC for Omnidirectional Mobile Robots
	5.4.1 Problem Formulation
	5.4.2 Controller Design
	5.4.3 Experimental Results

	5.5 Coordinated Path Following for Unicycle Mobile Robots
	5.5.1 Problem Formulation
	5.5.2 Controller Design
	5.5.3 Simulation Results
	5.5.4 Experimental Results
	5.5.5 Cooperation in Heterogeneous Robot Teams

	5.6 Discussions and Summary

	6 Role Assignment and Formation Switching
	6.1 Related Work
	6.1.1 Formation Selection and Formation Switching
	6.1.2 Role Assignment in Formation

	6.2 Proposed Algorithms
	6.2.1 Problem Formulation
	6.2.2 Distributed Role Assignment
	6.2.3 Simulation Results
	6.2.4 Experimental Results

	6.3 Discussions and Summary

	7 Conclusions and Future Work
	7.1 Dissertation Summary
	7.2 Future Research Directions
	7.2.1 A Unified Path Following Control Framework
	7.2.2 Communication Structures
	7.2.3 Formation Control Subproblems
	7.2.4 A Real-time MPC Framework

	A Velocity Derivations of Offset-varying Curves
	Bibliography

