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Abstract

The objective of this thesis is to find and analyse practical numerical algorithms for the
minimisation and gradient-flows of the Mumford-Shah and Mumford-Shah-Euler func-
tionals for unit vector fields.

The motivation for these questions is twofold: First, these are interesting model-
problems combining non-convex functionals with a non-convex constraint, as an extension
of existing works on harmonic maps to the sphere.

Second, bot functionals were originally introduced in image processing: The Mumford-
Shah functional for segmentation, and the Mumford-Shah-Euler functional for inpainting ;
and the sphere-constraint can be used to implement the chromaticity and brightness
colour model in this context.

In the first part of the thesis, two schemes for the minimisation of the Mumford-
Shah functional for unit-vector fields are presented and discretised using first-order finite
elements. The first scheme uses a projection approach to enforce the sphere-constraint.
It works well in simulations, but we only have partial convergence results. The second
scheme uses a penalisation approach, which only approximates the sphere-constraint, but
allows for a complete proof of convergence.

In the second part of the thesis, two schemes for the gradient-flow of the Mumford-
Shah-Euler functional for unit-vector fields are presented and discretised, again using
first-order finite elements. The first scheme is an extension of the penalisation approach
from part one, which again allows for a complete proof of convergence. The second scheme
uses a Lagrange multiplier to enforce the sphere constraint, and we can again only present
partial convergence results.

Both parts are concluded by simulations comparing the two corresponding algorithms
with each other and presenting comparisons between the chromaticity and brightness and
the conventional RGB colour model.
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Zusammenfassung

Ziel dieser Arbeit ist es, praktikable numerische Minimierungs- und Gradientenfluss-
Verfahren für das Mumford-Shah und das Mumford-Shah-Euler Funktional für Einheits-
vektorfelder zu finden und zu analysieren.

Die Motivation für diese Problemstellung ist zweifach: Zum einen sind dies interessante
Modellprobleme, die nichtkonvexe Funktionale mit einer nichtkonvexen Nebenbedingung
kombinieren und als Erweiterung bestehender Arbeiten über Harmonische Abbildungen
in die Sphäre gesehen werden können.

Zum anderen kommen beide Funktionale ursprünglich aus der Bildverarbeitung: Das
Mumford-Shah Funktional wurde zur Segmentierung, das Mumford-Shah-Euler Funktio-
nal zum Inpainting vorgeschlagen; und die Sphärenbedingung kann in diesem Zusammen-
hang eine Anwendung im Chromaticity and Brightness Farbmodell finden.

Im ersten Teil der Arbeit werden zwei Minimierungsverfahren für das Mumford-Shah
Funktional für Einheitsvektorfelder angegeben und mithilfe von finiten Elementen ers-
ter Ordnung ins Diskrete übertragen. Das erste Verfahren erhält die Sphärenbedingung
mithilfe eines Projektionsansatzes. Es liefert überzeugende Simulationen, zur Konvergenz
können aber nur Teilresultate präsentiert werden. Das zweite Verfahren verwendet einen
Penalisierungsansatz, der die Sphärenbedingung nur approximiert, dafür aber eine voll-
ständige Konvergenzanalyse zulässt.

Im zweiten Teil der Arbeit werden zwei Gradientenfluss-Verfahren für das Mumford-
Shah-Euler Funktional für Einheitsvektorfelder vorgestellt und wieder mithilfe finiter Ele-
mente erster Ordnung diskretisiert. Das erste Verfahren erweitert den aus dem ersten
Teil bekannten Penalisierungsansatz, der auch hier eine vollständige Konvergenzanalyse
erlaubt. Das zweite Verfahren verwendet einen Lagrange-Multiplikator, der eine exakte
Einhaltung der Sphärenbedingung garantiert, für den aber wieder nur Teilresultate zur
Konvergenz präsentiert werden können.

In Simulationen im Abschluss der beiden Teile werden jeweils die beiden vorgestellten
Algorithmen untereinander vergleichen, sowie Bildverarbeitungs-Vergleiche zwischen dem
Chromaticity and Brightness und dem herkömmlichen RGB Farbmodell angestellt.
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Chapter 1

Introduction

In this chapter, we give a short introduction into the workings of the human eye, the
basic concepts of colour models and image processing, as well as some background about
the two functionals studied throughout the rest of this thesis, namely the Mumford-Shah
and the Mumford-Shah-Euler functionals. General references are e.g. [60, 93, 34], in
particular for Subsections 1.1, 1.2, and 1.3, respectively.

1.1 The Human Eye

The human eye acts similarly to a camera. The cornea and the lens act like a camera’s
lens to focus images. Between them, the iris/pupil controls the amount of light passing
through, like the aperture in photography. Finally, the light is captured by the retina,
which acts like a camera’s film or image sensor.

The cornea is the the outer surface of the eye. It has no blood vessels and is there-
fore nurtured through marginal vessels and the fluids around it. The cornea’s index of
refraction is slightly higher than that of water, so that the change of index of refraction
between the cornea and the air outside is the most significant of the whole human eye.
Therefore many common defects of vision (myopia, hyperopia, or astigmatism) can be
attributed to variations in the cornea’s shape, and sometimes surgically corrected.

The lens is layered and flexible, with an index of refraction similar to the cornea’s. Its
shape is controlled through the ciliary muscles, and it allows the eye to accommodate; i.e.,
focus. The lens’ flexibility decreases with age so that typically, after an age of about 50,
it no longer allows to focus on near objects (presbyopia). The lens’ optical density also
increases with age, increasing the amount to which short-wavelength (blue and violet)
energy is absorbed and scattered (chromatic adaptation generally makes people unaware
of this, but it is apparent when doing colour matching tests).

The volume between the cornea an the lens is occupied by the aqueous humour, whose
viscosity and index of refraction are similar to water, while the space between the lens
an retina is occupied by the vitreous humour with similar index of refraction, but higher
viscosity (more like gelatin). Both fluids have somewhat higher than air pressure to keep
the flexible eyeball in shape.

The iris is the pigmented muscle controlling the pupil size. Eye colour is determined
by the concentration and distribution of melanin in the iris. The pupil size determines the
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2 CHAPTER 1. INTRODUCTION

amount of light that passes inside. The pupil’s diameter varies from approximately 3mm
to 7mm, which corresponds to an approximately fife-fold change in retina illumination
(which is not sufficient to explain human vision over illumination levels varying over 10
orders of magnitude).

The retina is a thin layer of cells at the back of the eye, which contains the photo-
sensitive cells responsible for gathering the image projected onto the retina by the optical
elements of the eye. These neurons, called rods and cones according to their typical
shape, transform the optical information into chemical and electrical signals that are
then processed by a network of cells (horizontal, bipolar, and amacrine cells), that sit on
top of the photoreceptors (towards the light, which is why they need to be transparent)
and led to the brain by the optic nerve. This network already acts as an image computer,
compressing, among other things, the information from 130 million photoreceptors to
signals in about one million ganglion cells. Rods are effective at much lower luminance
levels than cones. There is only one type of rod receptor with a peak sensitivity for light
of about 510 nm wavelength. On the other hand, there are three types of cones: L, M,
and S cones most sensitive to long (∼ 570 nm), medium (∼ 540 nm), and short (∼ 430
nm) wave lengths. These cones are also referred to as red, green, and blue, which is a bit
misleading, since their response curves are strongly overlapping. The relative populations
of cones are approximately 12:6:1 (L:M:S). In total, there are about 120 million rods and
about 7 million cones per retina. Usually, single cones feed into ganglion cell signals,
while cones are pooled over hundreds of receptors to increase sensitivity.

According to the modern theory of colour vision, the first stage of colour vision (the
receptors) is trichromatic (LMS). After this stage, the neurons of the retina encode these
three images into opponent signals: luminance (L+M +S), red-green (L−M +S), and
yellow-blue (L+M −S) signals are calculated, which decorrelate the colour information,
allowing more efficient transmission and reducing difficulties with noise. This opponent
colour nature of signal transmission is the reason why we never perceive a colour as
red-green or yellow-blue.

Visual experiments with stimuli that vary sinusoidally across space show that the
spatial contrast sensitivity of human vision is very different in luminance and chromati-
city: Luminance contrast sensitivity is zero at zero cycles per degree (the visual system
tends to be insensitive to uniform fields), has its peak at about five cycles per degree and
approaches zero again at about 60 cycles per degree (no detail can be resolved any more).
Blue-yellow and red-green contrast sensitivity, on the other hand, is low-pass in nature;
i.e., low frequencies can be detected, but contrast sensitivity approaches zero already at
or even before five cycles per degree. This is why substantial colour subsampling can be
effectively used to compress images, without much visible effect, see also below.

Behind the retina is the pigmented epithelium, a dark layer that absorbs light that
passes through the retina and prevents reflections.

The fovea is the area of highest spatial and colour resolution on the retina. This is
achieved by a very high density of cones, while rods are completely absent (which is why
dim stars can be more easily detected when not looking right at them: the rods outside
the fovea are more light sensitive). It covers a visual angle of about two degrees in the
central field of view. It is protected from intense short-wavelength energy by a yellow
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filter called macula, the density of whose pigment strongly varies from person to person
(and sometimes eye to eye), representing a major source of variability in colour vision.

The optic nerve consists of approximately 1.2 million retinal ganglion cell axons. The
area taken up by the optic nerve is not photo receptive and is called the blind spot.

1.2 Colour Models

Most real-world images are colour images, and even in greyscale images, e.g. from X-rays
or space probes, false colours are often used to encode additional information or to make
differences in shades of grey (of which humans can only detect about 20 to 30) more
visible through colours (of which we can distinguish hundreds).

In order to process colour images, one needs a mathematical representation of colours,
a so called colour model. This could e.g. be a description of how many units of any of
the three primary colours a painter needs to mix for a given colour, resulting in a colour
vector representing the values for red, yellow, and blue. If associated with a description
of how exactly to interpret the components of colour vectors, a colour model leads to a
colour space.

In digital cameras and computer screens, RGB is the most common colour model.
Here, brightness values of red, green, and blue signals are stored individually. This is to
some extent similar to the way the human eye detects colours through separate cones for
long, medium, and short wavelengths (LMS). However, there are significant differences:
The sensitivity of the different cones is strongly overlapping, while RGB channels are
not, and the eye additionally employs rods (which are much more sensitive in low light)
for brightness detection. In fact, RGB was not devised to work like the human eye, but
to be well-adapted to the way camera sensors and display phosphors work. RGB is an
additive colour model, meaning that mixing the RGB channels is like combining light
sources of different colours. So, combining red and green produces yellow, and combining
all three colours in equal amounts gives various shades of grey, zero red, green, and blue
giving black, full red, green, and blue giving white. RGB can be displayed as a cube
inside the three-dimensional Cartesian space, each axis representing one of the primary
colours red, green, and blue, while the diagonal between the origin (no red, green, and
blue) and full red, green, and blue represents all shades of grey. The most common
implementation of RGB is 24-bit, i.e. 8 bits or 256 discrete levels of colour are stored per
channel: R,G,B ∈ {0, . . . , 255}. Some professional uses require more (typically 16) bits
per channel, resulting in the same colour range but much higher density of colours (finer
shades of colours), and higher memory use.

CMY is the complementary colour model to RGB. This abbreviation stands for cyan,
magenta, and yellow, and this model is primarily used in print. It is a subtractive colour
model, which means that it works like paint: Adding cyan and yellow gives green. Adding
cyan, magenta, and yellow in equal amounts should give grey, if small amounts are taken,
and black for full amounts. In practice, however, the result usually turns out to be some
shade of brown. To make up for this, a black component is usually added, so CMY
becomes CMYK (cyan, magenta, yellow, and black). Another reason for the addition of
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black is that text is usually black, so black print is used a lot, whence using one unit of
black ink instead of three units of coloured ink makes sense.

The RGB and CMYK colour models are both hardware-oriented, and corresponding
colour spaces are device-dependent, and used in very different devices. Therefore there
is no simple, general, or exact conversion between the two. Colour management systems
employing device-dependent colour profiles are usually used for this conversion. Also, the
RGB and CMYK colour models are better adapted to screens and printers, respectively,
than to the human perception of colour.

One attempt at solving these issues are the HSV (hue, saturation, value), HSI (hue,
saturation, intensity), and HSL (hue, saturation, lightness, also called HLS ) colour mod-
els, which are very similar to each other. They all try to model the artist’s concepts of
tint, shade, and tone. Hue is the colour as defined by wavelength (red or yellow); satur-
ation is the amount of that colour that is present (red or pink); the third axis (lightness,
intensity, or value) represents the amount of light present (dark red or light red). These
three spaces can be plotted as a double cone, in which the central axis represents the
progression from black through all shades of grey to white. The distance from this axis
represents the saturation, while the direction is the hue.

These models have many advantages for processing and understanding images, be-
cause colour information is separated into components that to some extent correspond
to the human visual system’s perception, and because chromatic information and bright-
ness/luminance can be treated separately, which allows algorithms to give different weight
to them. This makes sense because the human visual system takes most geometric cues
from an images luminance, whence colour subsampling has a long tradition, e.g. in tele-
vision standards or still image compression. A further reason to separate chromatic and
luminance information is the fact that chromatic noise is usually much more prominent
and disturbing in images from digital cameras, which has to do with the sensor techno-
logy commonly employed (analogue film does not suffer from this effect): Photocells only
count photons, they cannot detect colour. Therefore filters need to be used — one filter
per pixels (picture element). A square of four pixels on a digital sensor usually has one
pixel sensitive to red, one sensitive to blue, and two sensitive to green (Bayer matrix ).
The remaining information needs to be interpolated.

Mathematically, however, the HSV / HSI / HSL colour models are rather awkward
(see also the conversions below): Hue cycles through the angles from 0◦ to 360◦, and then
wraps around; and because of the double cone shape, increasing intensity or luminance
can alter the saturation. A conversion from RGB can be done by defining

M = max{R,G,B},
m = min{R,G,B},
C = M −m.
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Then

H =



undefined if C = 0,

60◦
(
G−B

C
mod 6

)
if M = R,

60◦
(
B −R

C
+ 2

)
if M = G,

60◦
(
R−G

C
+ 4

)
if M = B,

I =
R +G+B

3
,

V = M ,

L =
M +m

2
,

SHSV =

0 if C = 0,
C

V
=
M −m

M
otherwise,

SHSI =

{
0 if C = 0,

1− m

I
otherwise,

SHSL =


0 if C = 0,
C

2L
=
M −m

M +m
if L ≤ 1

2
,

C

2− 2L
=

M −m

2− (M +m)
if L >

1

2
.

A geometrically preferable colour model with similar properties to HSV, which also
allows chromatic information and brightness to be treated separately, is the spherical
CIELAB, or L∗a∗b∗ model, defined in 1976 by the Commission Internationale d’Éclairage
(CIE). L∗ is the greyscale axis (luminance), and is usually identified with the vertical axis
in the unit ball. a∗ and b∗ are orthogonal axes defining colour and saturation. Here, +a∗

is red, −a∗ is green, +b∗ is yellow, and −b∗ is blue. This offers a compromise between the
simpler RGB and the more physiological HSI. CIELAB is considered to be perceptually
uniform; i.e., just-detectable visual differences should have a constant distance within the
space. It is derived from the CIE XYZ colour space from 1931, and can be obtained as
follows:

X = 0.412453R + 0.357580G+ 0.180423B

Y = 0.212671R + 0.715160G+ 0.072169B

Z = 0.019334R + 0.119193G+ 0.950227B.
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Then the L∗a∗b∗ values are

L∗ = 116f

(
Y

Yn

)
− 16

a∗ = 500

(
f

(
X

Xn

)
− f

(
Y

Yn

))
b∗ = 200

(
f

(
Y

Yn

)
− f

(
Z

Zn

))
,

where f is defined as

f(q) :=


q

1
3 if q >

(
6

29

)3

,

1

3

(
29

6

)2

q +
4

29
otherwise,

and Xn, Yn, Zn are calculated for a reference white point depending on the illumination
of the scene.

Finally, the CB colour model (Chromaticity and Brightness) separates colour into a
spherical chromaticity c (living on part of the surface of the unit ball) and a separate
scalar brightness component b. It is geometrically pleasing and easily obtained from RGB:

b =
√
R2 +G2 +B2,

c =
(R,G,B)

b
∈ S2 ⊂ R3.

(Note that here the chromaticity component does not cover the whole sphere, but merely
a spherical triangle spanned by the points where the Cartesian axes intersect with the unit
sphere centred in the origin.) While this chromaticity component is again less intuitive
than hue and saturation, it provides a coupling between these two which seems to be useful
in image processing: In [31] it is demonstrated, that this model is advantageous to RGB
and to HSV in colour image denoising (using total variation, see below for an explanation
of these terms). The reason seems the more natural coupling between dimensions in
the chromaticity component, as the authors achieve results similar to CB with HSV by
introducing a coupling between hue and saturation, while straightforward channel-wise
RGB application lags far behind.

To get a more “natural” representation of colours in the CB colour model, it was
proposed in [71] to apply a linear transformation to the XYZ-values obtained from RGB,
before doing the above conversion to CB:

R̃ = 0.922X − 0.853Y − 0.069Z

G̃ = 0.173X + 0.189Y − 0.036Z

B̃ = 0.344X + 0.346Y + 0.123Z.

(This also increases the area of the sphere covered by the chromaticity component.) This
is the model we are going to refer to as CB.
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1.3 Mathematical Image Processing

Image processing developed as a sub-field of electrical engineering, as a form of signal
processing, applying standard signal-processing techniques to an input that happened to
be an image. The term image processing is nowadays usually used synonymously with
digital image processing, which means the use of computer algorithms to process digital
images. This kind of image processing was developed in the 1960s at a few specialised
laboratories primarily in the United States (Bell Labs, MIT and others). Specialised and
very expensive hardware was used, for applications like satellite imagery and medical
imaging. With the advent of more powerful and cheaper personal computers, the use of
digital image processing proliferated, and has now indeed become the most common form
of image processing. Most of the more involved image processing tasks, like classification,
feature extraction, or pattern recognition, would not be possible by analogue means, but
the more elementary tasks also profit from the use of more complex algorithms, that
digital image processing allows.

Greyscale images can be thought of as maps g : Ω → R, where Ω ⊆ R2 is the image
domain, and 0 ≤ g(x) ≤ 1 for x ∈ Ω, 0 and 1 representing e.g. black and white,
respectively. Colour images, e.g. in the RGB model, can be represented as vector-valued
maps g : Ω → R3, with g(x) ∈ [0, 1]3 ⊆ R3 for x ∈ Ω, the three axes representing red,
green, and blue.

Mappings and vector spaces are the way we understand colours mathematically, but
since computers and other electronic devices have limited resources, we need to discretise
images in order to be able to perform actual computations on them. So the image domain
is represented by a discrete set of points (pixels), each of which is associated a colour or
greyscale value. These values, again, need to be discrete, e.g. integer numbers between 0
and 255, and are stored as matrix, or raster map.

Historically, greyscale images were the first to be electronically processed. And with
the advent of colour images, the most natural thing to do was to apply the well-established
algorithms for greyscale images to each colour-component (e.g. R,G, and B) separately.
But as stated above, some coupling between colours seems to be advantageous, as is
separation of brightness and colour, among other reasons because the image brightness
usually contains most of the geometrical information, while e.g. the most disturbing kind
of noise in digital images usually is chromatic in nature, and because the human visual
system apparently does something similar.

Let us mention some prominent tasks in digital image processing.

• Denoising tries to improve noisy images by smoothing regions which do not contain
important features, thereby removing insignificant information, sensor noise, etc.,
while hopefully preserving important features like edges.

• Compression, like denoising, simplifies images by neglecting less important features.
Here, however, the goal is to lose as little visual information as possible, while saving
as much storage space as possible.

• Segmentation tries to partition images into smooth regions, so that discontinuities
only remain between segments. This task is almost trivial to the human visual
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system, but remains one of the big problems in image processing. It is also a
task that bridges low-level image processing and higher-level tasks such as scene
recognition, image classification, image understanding, and artificial intelligence.

• Inpainting fills holes in images degraded e.g. by lossy transmission or age, or re-
moves unwanted objects from images (like tourists in front of monuments or func-
tionaries who have fallen from favour in official photographs). The word inpainting
is an artistic synonym for image interpolation and stems from traditional museum
image restoration. In fact, digital image inpainting has been used successfully to
help restore historic frescoes.

• Matching or registration assigns complementary information contained in different
images to one geometric reference model, e.g. in medical image processing, since
clinical diagnosis and therapy are often supported by several types of images of the
same patient.

It can sometimes make sense to perform several of these tasks at once, since e.g. seg-
menting a noisy image is difficult without denoising, while denoising first and segmenting
afterwards might result in a loss of valuable information that could be avoided by doing
both tasks simultaneously.

Some of the techniques of digital image processing are mentioned below (described for
greyscale images, for simplicity).

• Fourier Analysis is one of the favoured tools of classical signal processing, and
has been successfully applied to many image processing tasks; e.g. to compression
algorithms. An image g : (0, 1)2 → R (with periodic extension) can be encoded into
its Fourier coefficients

cn =

∫
Ω

g(x) exp(2πix · n)dx, n ∈ Z2,

which, in the case of a discretised image, becomes a discrete Fourier transform,
efficiently implementable through fast Fourier transform (FFT). However, the har-
monic basic functions used by the Fourier transform are not ideal for discontinuous
features like edges. Dirac’s delta function is an extreme example: The coefficients
|cn| never decrease, so that this simple image generates a huge amount of data in
the frequency domain.

• Wavelet Analysis (or more recently Ridgelet Analysis) solves this problem, basically
by using more localised (fast decaying) basis functions that can be purpose-built
for special applications.

• In Stochastic Modelling, in particular Bayesian modelling, a conditional a posteriori
probability p(F |Q) is maximised, Q denoting the observed image, F the “ideal
image” generating Q, and p a probability distribution describing the specific model
used.
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• Variational Methods minimise an a priori “energy” E, which in this case describes
the specific model in use, and which is related to the probability distribution above.
The Mumford-Shah and Mumford-Shah-Euler Functionals discussed below are ex-
amples of such energies.

• Partial Differential Equations (PDEs) allow techniques developed in classical math-
ematical physics to be applied to image processing. Through calculus of variations,
many variational problems can be formulated as PDEs, so that these approaches
are again closely related.

1.4 The Mumford-Shah Functional

As mentioned above, image processing through variational methods minimises an a priori
energy E encoding the model, so that the processed image u is given by

u = argmin
v

E(v).

E is supposed to assign small values to “good” images, and large values to “bad” images.
The Mumford-Shah Functional is one such energy, which was proposed in 1989 by

David Mumford and Jayant Shah in their paper [86]. For a given greyscale image g :
Ω → R, it addresses the problem of denoising and segmentation in a very natural way:

Maybe the simplest denoising energy is

E(u) :=

∫
Ω

|∇u|2dx.

This energy assigns large values to images with large gradients. Minimising it therefore
minimises gradients, and makes the image smooth, indeed, too smooth: All features are
smoothed indiscriminately. What we would like is to exempt an edge set K from the
smoothing, which then is also an unknown:

E(u,K) :=

∫
Ω\K

|∇u|2dx.

Of course, this energy does not need to have anything to do with the given image g. We
therefore add a fidelity term:

E(u,K) :=

∫
Ω\K

|∇u|2dx +

∫
Ω

(u− g)2dx.

Yet, the functional above still has a trivial minimiser: u = g, and K = Ω, meaning
the whole image is full of edges. To avoid this problem, we need to penalise edges, or
edge length (since we think of edges as lines). We do this by adding the one-dimensional
Hausdorff measure of K to the energy:

E(u,K) :=

∫
Ω\K

|∇u|2dx +

∫
Ω

(u− g)2dx +H1(K) .
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Finally, we add coefficients which will later allow us to balance the effects of these three
terms:

E(u,K) :=
γ

2

∫
Ω\K

|∇u|2dx +
λ

2

∫
Ω

(u− g)2dx + αH1(K) ,

which is to be minimised for all closed sets K ⊂ Ω, and functions u ∈ H1(Ω \K);
together with g ∈ L2(Ω) these are the minimum requirements that give meaning to the
above expression.

For this kind of problem, involving a functional depending on a variable set of discon-
tinuities (edges, in our case), the term free discontinuity problems was introduced by De
Giorgi in [43].

We remark that non-trivial images cannot be global Sobolev functions: Gradients of
non-trivial images cannot be square integrable over the whole domain, since edges are
jumps in image intensity, whence gradients of images with edges must be allowed to be
unbounded on a closed edge set K (therefore u ∈ H1(Ω \K) above). This concept can be
formalised in the framework of functions of bounded variation, which are functions whose
distributional derivative is a measure with bounded total variation, see Section 2.2.1 for
details.

Some results concerning existence of solutions and approximations to this functional
are collected in Section 2.1.

1.5 The Mumford-Shah-Euler Functional

In image inpainting, large chunks of data inside the inpainting domain are missing or
unreliable. For reasons of compatibility with other publications, we now call the edge set
Γ, the image domain R, and the inpainting domain K ⊂ R. We want to fill this part of
the image with data based on the information around it and based on our a priori model
of what a “good” image should look like. For this, we may not need the information of
the whole image, but only of a band B ⊂ R \ K around the inpainting domain. The
domain of computation could then be restricted to these two: Ω := K ∪B.

Obviously, since there is no reliable information inside the inpainting domain, the
fidelity term should only be regarded outside it; i.e., only inside B.

So if we apply the Mumford-Shah functional to this problem, it looks like this:

E(u,Γ) :=
γ

2

∫
Ω\Γ

|∇u|2dx +
λ

2

∫
B

(u− g)2dx + αH1(Γ) .

Since this energy always favours the shortest possible edges (everything else being equal),
a bar with a missing part in the middle, that is longer than the width of the bar, will be
completed as two bars with empty space between them, even though this does not seem
to be the most natural completion, see Figure 1.1.

Another example is a round cake with a piece missing: It will be completed with a
straight line instead of a round one, see Figure 1.2 (and Example 3.1 in Section 3.6).

Introducing an edge curvature term in addition to the existing edge length term should
solve this problem (the kinks in the boundaries of the two separate bars have very high
curvature and should therefore make this unnatural inpainting very “expensive”).
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Figure 1.1: Image of an incomplete bar, with a natural and not so natural inpainting.

Figure 1.2: Image of an incomplete cake, with a natural and not so natural inpainting.

The Mumford-Shah-Euler model, which was proposed in [57], is based on exactly this
idea (the name stems from Euler’s elastica curve model):

E(u,Γ) :=
γ

2

∫
Ω\Γ

|∇u|2dx +
λ

2

∫
B

(u− g)2dx +

∫
Γ

(
α + β|H|2

)
dH1(x) ,

with H denoting the (mean) curvature of Γ. This functional is to be minimised for all
Γ ⊂ Ω closed and C2, and u ∈ H1(Ω \ Γ). The new term (Euler term) with coefficient β
penalises the curvature of Γ, and it corresponds to the Willmore energy.

Adding an edge curvature term represents a fundamental change in the functional.
Edge length and curvature inside the inpainting domain now need to be balanced against
each other. Therefore, depending on the weights in front of these terms, there can now
be stable edge circles even in the absence of large gradients of the image u (as local
minima of the energy): decreasing the radius r would decrease edge length but increase
edge curvature (which behaves like 1/r), compare Section 3.6. With the Mumford-Shah
functional, less edges is always better, as long as the image u does not call for edges
through a large gradient.
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1.6 The Sphere Constraint

The two functionals introduced above, the Mumford-Shah, and the Mumford-Shah-Euler
functional, are both non-convex, which introduces major difficulties when trying to min-
imise them.

In order to process colour images in the chromaticity and brightness colour model, we
in addition have to introduce a non-convex constraint, namely the sphere-constraint (for
the chromaticity), in which we are also interested from a purely theoretical point of view:
The Mumford-Shah and Mumford-Shah-Euler functionals for sphere-valued functions are
an exciting extension of the problem of sphere-valued harmonic maps, which has been
intensely studied in the past.

For Ω ⊆ Rd, a map u ∈ H1(Ω,Rm) is called (weakly) harmonic, if it is stationary for
Dirichlet’s energy

1

2

∫
Ω

|∇u|2dx,

or equivalently, if it satisfies the Euler-Lagrange equation

−∆u = 0

(in the distributional sense). See [98] for a survey on the evolution of harmonic maps
in the more general setting of Riemannian manifolds. Other sources for the theory of
harmonic maps are in particular [94, 95], as well as [69, 58, 18, 77, 76, 95, 97, 68], and
the book [99].

If u ∈ H1(Ω,Rm) with |u| = 1 almost everywhere is a stationary point of Dirich-
let’s energy, then it is a harmonic map to the sphere. Such maps are a nice prototype
problem for harmonic maps to more general surfaces or manifolds, as well as being of
interest to applications in image processing, liquid crystal theory, and micromagnetism,
which explains why this special case has received much attention both analytically and
numerically (e.g. [95, 58, 77] and [37, 38, 78, 1, 10, 12, 11, 6], respectively).

For iterative algorithms approximating harmonic maps to the sphere, the sphere con-
straint is a major difficulty. Three simple strategies for solving it immediately come to
mind:

(1) Projection: Why not just solve the unconstrained problem an then project the
solution to the sphere? This simple idea often works in practice, but it can be
shown that in some cases Dirichlet’s energy may grow because of the projection.
However, variations of this idea have been successfully used in [37, 38, 78, 1, 10]. In
particular, [1] uses a nice modification of the projection idea, that ensures energy
decrease: Find an update w such that u − w is stationary for Dirichlet’s energy
under the much simpler, linear constraint u⊥w (i.e., u ·w = 0), and then project
u − w to the sphere. We shall apply this to the Mumford-Shah functional in
Chapter 2. This idea is specific to the sphere as a target.

(2) Penalisation: If we add a term of the form 1
ε

∫
Ω

(1− |u|2)2
dx to Dirichlet’s energy,

then the |u| will approximate 1 ever more closely for ε → 0. While this no longer
ensures an exact sphere constraint for actual calculations (where always ε > 0), the
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penalisation idea has the advantage of working for more general targets. Related
strategies have been considered in [52, 9, 8, 91, 80, 79], and we shall apply this idea
to both the Mumford-Shah and the Mumford-Shah-Euler functional in Chapters 2
and 3, respectively.

(3) Lagrange Multiplier : Instead of basing our scheme directly on Dirichlet’s energy,
why not use the Euler-Lagrange equation? Of course, we also have to incorporate
the sphere into the equation, which, for a harmonic map u : M → N between
Riemannian manifolds (N compact), can be expressed as ∆Mu⊥TuN , meaning
that the Laplace-Beltrami operator of u on M is orthogonal to the tangent space
of N at u. In our case, M = Rd, and N = Sm−1 = {x ∈ Rm : |x| = 1}, and for
something to be orthogonal to TuSm−1, it must be parallel to u itself; i.e.,

−∆u = λu, |u| = 1

where λ is the Lagrange multiplier for the sphere constraint, and can be worked
out to be λ = |∇u|2. This strategy has been used in [11, 6] for harmonic maps to
spheres of both constant and varying radii (it also works for more general targets),
and we are going to apply it to the Mumford-Shah-Euler functional in Chapter 3.

A version of this strategy that is specific to the sphere as a target was explored
in [12]: By the properties of the cross product, the Euler-Lagrange equation given
above is formally equivalent to

u× (u×∆u) = 0,

which can also be used as a starting point for iterative algorithms.

1.7 Approximations of both Functionals

To represent the edge set K in the Mumford-Shah functional, we use an elliptic phase field
functional suggested by Ambrosio and Tortorelli in [4, 5]. Let us repeat the Mumford-
Shah functional:

E(u,K) =
γ

2

∫
Ω\K

|∇u|2dx +
λ

2

∫
Ω

(u− g)2dx + αH1(K) .

The idea is to introduce a phase function s such that {s = 0} ≈ K. This is achieved by
modifying the first term like this:

γ

2

∫
Ω

s2|∇u|2dx,

so |s| is forced to be small whenever |∇u| is large. As suggested in [84], the last term can
be approximated in the sense of Γ-convergence (see Section 2.2.1 for details) by

α

∫
Ω

(
ε |∇s|2 +

1

4ε
(1− s)2

)
dx.
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Basically, the first part of this integral penalises phase transitions of s, while the second
part forces s to be 1 wherever possible (for ε→ 0). Finally, the first term can be modified
to lead to an elliptic functional. This then leads to the Ambrosio-Tortorelli functional:

Eε(u, s) :=
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx +

λ

2

∫
Ω

(u− g)2dx

+ α

∫
Ω

(
ε |∇s|2 +

1

4ε
(1− s)2

)
dx

for u, g ∈ H1(Ω), s ∈ H1(Ω, [0, 1]), 0 < ε, kε ¿ 1, and kε = o(ε). Ambrosio and Tortorelli
showed Γ-convergence of Eε(u, s) to a weak formulation of E(u,K) for ε→ 0.

Now, let us repeat the Mumford-Shah-Euler functional:

E(u,Γ) :=
γ

2

∫
Ω\Γ

|∇u|2dx +
λ

2

∫
B

(u− g)2dx +

∫
Γ

(
α + β|H|2

)
dH1(x) .

As conjectured in [44], and proved in [92], the last term can again be approximated in
the sense of Γ-convergence (up to a constant), leading to the functional

Eε(u, s) :=
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx +

λ

2

∫
B

(u− u0)
2 dx

+ α

∫
Ω

(
ε

2
|∇s|2 +

1

ε
ψ(s)

)
dx +

β

ε

∫
Ω

(
1

ε
ψ′(s)− ε∆s

)2

dx,

for u, u0 ∈ H1(Ω), 0 < ε, kε ¿ 1, kε = o(ε), s ∈ H2(Ω), and ψ(t) := (1− t2)
2
. So, the

edge length term with coefficient α now uses a different (double-well) potential than in
the Ambrosio-Tortorelli functional.

1.8 Functionals for Chromaticity and Brightness

In the next two chapters, we are mainly going to study the above approximations to the
Mumford-Shah and Mumford-Shah-Euler functionals for unit vector fields. However, in
order to actually process colour images, chromaticity and brightness need to be accounted
for, so the Mumford-Shah and Mumford-Shah-Euler functionals have to be extended. We
assume that chromaticity and brightness share a common edge set, but should otherwise
be allowed to evolve separately. This will mean, in particular, that we can apply more
smoothing to the chromaticity component or require more fidelity from the brightness
component, and the joint edge set will still prohibit “bleeding” of colour information
across edges, even if such edges are only discernible in the brightness component.

So, we end up with the following modified Ambrosio-Tortorelli approximation to the
Mumford-Shah functional for chromaticity u ∈ H1(Ω,Sm−1) and brightness u ∈ H1(Ω):

Eε(u, u, s) :=
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx +

γ1

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx+

+
λ

2

∫
Ω

|u− g|2 dx +
λ1

2

∫
Ω

|u− g|2 dx

+ α

∫
Ω

(
ε |∇s|2 +

1

4ε
(1− s)2

)
dx,
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for u,g ∈ H1(Ω,Sm−1), u, g ∈ H1(Ω), s ∈ H1(Ω, [0, 1]), 0 < ε, kε ¿ 1, and kε = o(ε).
And a corresponding modified approximation to the Mumford-Shah-Euler functional

for chromaticity and brightness is

Eε(u, u, s) :=
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx +

γ1

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx

+
λ

2

∫
B

|u− u0|2 dx +
λ1

2

∫
B

(u− u0)
2 dx

+ α

∫
Ω

(
ε

2
|∇s|2 +

1

ε
ψ(s)

)
dx +

β

ε

∫
Ω

(
1

ε
ψ′(s)− ε∆s

)2

dx,

for u,u0 ∈ H1(Ω,Sm−1), u, u0 ∈ H1(Ω), s ∈ H2(Ω), 0 < ε, kε ¿ 1, and kε = o(ε).
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Chapter 2

The Mumford-Shah Functional

In this chapter, we propose, analyse, and compare two finite element based numerical ap-
proximation schemes for minimising the Mumford-Shah functional for unit vector fields,
both analytically and computationally. The first scheme uses a projection strategy, the
second a penalisation strategy, to enforce and approximate the sphere constraint, respect-
ively.

Both schemes are then applied to the segmentation of colour images using the chro-
maticity and brightness colour model.

Numerical results turn out to be more convincing with the projection strategy that
enforces the sphere constraint exactly, while the penalisation strategy, that only approx-
imates it, allows for a better convergence result.

2.1 Introduction

For Ω ⊂ Rd, and γ, α, λ positive constants, we are interested in numerically minimising
the following weak version of the Mumford-Shah energy functional:

G(u) :=
γ

2

∫
Ω

|∇u|2dx + αHd−1(Su) +
λ

2

∫
Ω

|u− g|2dx, (2.1.1)

with u,g ∈ GSBV (Ω,Rm), and |u|2 = 1 a.e. (see Section 2.2 for definitions). This is a
prototype problem for studying interesting effects with applications in image processing
(see e.g. [86, 88, 14, 20, 31, 101, 13]), and liquid crystal theory (see e.g. [75, 78, 38, 102,
1, 12, 26]). Below, we give a short overview over these two applications.

We are sometimes going to refer to functional (2.1.1) as the “Mumford-Shah” func-
tional. It is, in fact, a version (for sphere-valued functions) of a functional proposed
by De Giorgi, Carriero, and Leaci in [47] (for scalar functions) as a weak formulation
of the original functional proposed by Mumford and Shah in [86] for greyscale image
segmentation,

E(u,K) :=
γ

2

∫
Ω\K

|∇u|2dx + αHd−1(K) +
λ

2

∫
Ω

(u− g)2dx, (2.1.2)

with g ∈ L2(Ω), which is to be minimised for all closed sets K ⊂ Ω, and functions
u ∈ H1(Ω \K). It is shown in [47] that the two problems are essentially equivalent.

17
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The goal of image segmentation is to partition images into meaningful regions, which
is often done by finding the edges which bound these regions, and which are in our case
identified with the set K. The first term in (2.1.2) ensures smoothness of u outside of K,
the second one ensures that there are not too many edges, and the last term ensures that
the segmented image u does not deviate too much from the original one g.

A more concrete motivation for studying functional (2.1.1), therefore is colour image
segmentation in the Chromaticity and Brightness (CB) colour model, where the chro-
maticity (colour information) is represented by an Sm−1-valued function (usually m = 3)
on the image domain Ω. The brightness, represented by a function b : Ω → [0, 1], can be
separately treated just like a greyscale image. It has been proposed that this model is
well-suited for colour image processing, see also Chapter 1. Osher and Vese [88] studied
p-harmonic flows to the sphere (p ≥ 1, in particular p ∈ {1, 2}), and applied them to
image chromaticity, for example; other sources include [31, 101, 13] and references therein.

The name free discontinuity problems was introduced by De Giorgi in [43] for vari-
ational problems like (2.1.2), which consist of minimising a functional with volume and
surface terms, depending on a closed set K and a function u (usually smooth outside
K). Other early sources include [46, 45]. Weak formulations like (2.1.1) allow to prove
existence of solutions (see [47] for the scalar, and [27] for the sphere-valued case), but
still require the computation of geometric properties of the unknown set of discontinuity
boundaries.

Therefore, Ambrosio and Tortorelli introduced an elliptic approximation in [4, 5],
whose vectorial version, if defined for sphere-valued functions, is to minimise

Gε(u, s) :=
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx + α

∫
Ω

(
ε |∇s|2 +

1

4ε
(1− s)2

)
dx

+
λ

2

∫
Ω

|u− g|2 dx

(2.1.3)

for u,g ∈ H1(Ω, Sm−1), s ∈ H1(Ω, [0, 1]), 0 < ε, kε ¿ 1, and kε = o(ε). Here, s is a
phase function approximating 1−χK by penalisation of phase transitions. Ambrosio and
Tortorelli showed Γ-convergence of Gε(u, s) to G(u) in L2 in the scalar ([4, 5]), as well as
the Sm−1-valued case ([5]) for ε→ 0.

Bellettini and Coscia carried out a finite element approximation of the Mumford-
Shah functional in the scalar case, based on this elliptic approximation in [14]. They
showed that their approximation Gε,h : V h(Ω) × V h(Ω, [0, 1]) → R is Γ-convergent to
G : H1(Ω) × H1(Ω) → R provided that the mesh size fulfils h = o(kε), and that Su is
piecewise C2. Here, V h(Ω) is the continuous, piecewise affine finite element space. Using
the approximation result in [49], Bourdin in [20] showed that Su does not need to be
assumed piecewise C2; and he proposed an algorithm for actual computations — without
providing a proof for its convergence, though. The problem here is that the two variables
u and s appear strongly coupled in the energy and in the corresponding gradient flow.

As an alternative to the above phase-field approximation of the Mumford-Shah func-
tional, Braides and Dal Maso proposed a non-local approximation approach in [23], on
which Cortesani based a Γ-convergent, vector-valued finite element approximation in [40].

A different motivation for (2.1.3) comes from the theory of nematic liquid crystals. In
order to overcome mathematical difficulties in showing existence and regularity of energy
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minimising static configurations in the Oseen-Frank model, Lin in [75] adapts Ericksen’s
energy, which he simplifies to (see [75, equation (3.12)])∫

Ω

1

2
s2|∇n|2 + |∇s|2 +W0(s) dx

with variable degree of orientation s ∈ [−1/2, 1] (in experiments, often s ≥ 0), and
director n, |n| = 1 a.e. The strong similarities of this energy to functional (2.1.3) lets us
hope that our analysis may be of use to this application, too.

The overall goal of the present work is to construct and analyse convergent discret-
isations for a prototype problem with several non-convexities; namely, we consider a
non-convex functional (the Mumford-Shah functional) with a non-convex constraint (the
sphere constraint), as an extension to existing work on convex functionals (in particu-
lar harmonic maps) with non-convex constraints, which have been intensely studied (see
e.g. [1, 10, 12] and references therein). In particular, we deal with discretisations of the
sphere constraint, which we account for using a projection and a penalisation strategy.
The former turns out to deliver more convincing computational results, while the latter
is analytically more satisfactory.

Below, we give a short overview over the two methods for the approximation of (2.1.1)
that we shall present in Sections 3 – 7 of this paper, where we in particular discuss relevant
stability properties of computed approximations, such as

• energy decay property for splitting schemes related to (2.1.3),

• the validity of a discrete or penalised sphere constraint for approximations of u,
and

• non-negativity and upper bounds for approximations of the phase field function s.

2.1.1 Splitting & Projection Strategy

The problem of coupled variables is addressed through an iterative splitting strategy;
i.e., in every step of the iteration the energy is first minimised with respect to the first
variable while keeping the second variable fixed, and then minimised with respect to the
second variable while keeping the first one fixed. A special projection idea as proposed
by Alouges in [1] is used to enforce the sphere constraint. We propose a first-order finite
element discretisation, which preserves the sphere constraint exactly at nodal points.
The resulting discrete algorithm is simple, results in only linear equations to be solved in
every step of the iteration, and can be proved to be energy decreasing. Identifying limits,
however has to remain an open problem.

2.1.2 Penalisation & Splitting Strategy

This method again uses a splitting strategy, but the sphere constraint is now approximated
by penalisation; i.e., we add a Ginzburg-Landau term 1

4δε

∫
Ω

(|u|2 − 1)
2
dx (0 < δ ¿ 1)

to the energy (2.1.3). We show that for proper scales of δε in terms of ε, this does
not affect Γ-convergence. Furthermore, we propose a first-order finite element algorithm
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based on this splitting and penalisation strategy, and show its convergence for vanishing
discretisation parameters.

In Section 2.8, comparative computational experiments for the “Penalisation & Split-
ting” and the “Splitting & Projection”methods are presented, which address in particular

(1) the effect of perturbing the sphere constraint throughout minimisation, as well as
proper scalings of regularisation and numerical parameters;

(2) the accuracy of zero sets of s in the course of minimisation; and

(3) comparative numerical studies to relate the CB and RGB models in colour image
segmentation, for which we extend the functional (2.1.3) to accommodate both the
chromaticity and brightness components.

Finally, Section 2.9 contains a summarising conclusion.

2.2 Preliminaries

We shall use c and C as generic non-negative constants. Given x,y ∈ Rd, 〈x,y〉 or x · y
will denote their standard scalar product, and |x| the Euclidean norm of x. For a set S,
|S| or Ld(S) denotes its Lebesgue measure of dimension d, Hd(S) its Hausdorff measure.
The L2 scalar product and norm will be denoted by (·, ·) and ‖ · ‖, respectively, and Sm−1

will be the unit sphere in Rm. For a, b ∈ R, let a∧ b := min{a, b}, and a∨ b := max{a, b}.
By A : B for A,B ∈ Rm×m we shall denote the dyadic product; i.e., A : B :=∑m

i,j=1 aijbij for A = (aij), B = (bij). Let |A| denote the Frobenius norm of A; i.e.,

|A|2 :=
∑m

i,j=1 |aij|2. For two vectors a ∈ Rd, b ∈ Rm, let a⊗ b := M denote the matrix
with entries mij := aibj.

We use capital letters for finite element functions and boldface for vectors or vector-
valued functions.

2.2.1 Functions of Bounded Variation and Γ-Convergence

We summarise some definitions and results on functions of bounded variation and Γ-
convergence. Sources are e.g. [3, 66, 59, 42, 21, 22, 29].

2.2.1.1 BV, SBV, and GSBV Functions

Let Ω ⊂ Rd be a bounded open set, u : Ω → Rm a measurable function, S := Rm ∪ {∞},
and x ∈ Ω be fixed. We call z ∈ S the approximate limit of u at x, or z = ap− lim

y→x
u(y),

if for every neighbourhood U of z ∈ S we have

lim
%→∞

1

%n
|{y ∈ Ω : |y − x| < %,u(y) /∈ U}| = 0.

If z ∈ Rm, we call x a Lebesgue point of u, and we denote by Su the complement of the
set of Lebesgue points of u (approximate discontinuity set). Since |Su| is known to be
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zero, u = ũ a.e. for
ũ(x) := ap− lim

y→x
y∈Ω

u(y).

Let x ∈ Ω \ Su such that ũ(x) 6= ∞. If there exists L ∈ Rd×m such that

ap− lim
y→x
y∈Ω

|u(y)− ũ(x)− L(y − x)|
|y − x|

= 0,

we call u approximately differentiable in x, and ∇u(x) := L the (uniquely determined)
approximate gradient of u in x. A function u ∈ L1(Ω,Rm) is called a function of bounded
variation in Ω, or u ∈ BV (Ω,Rm), if its distributional derivative Du is representable by
a measure with finite total variation |Du| (Ω); i.e., if

m∑
α=1

∫
Ω

uαdiv (ϕα) dx = −
m∑

α=1

d∑
i=1

∫
Ω

ϕα
i dDiu

α ∀ϕ ∈ C1
c

(
Ω,Rm×d

)
,

with Du an Rd×m valued matrix of measures Diu
α, and u = (u1, . . . , um). Defining

‖u‖BV(Ω,Rm) := ‖u‖L1(Ω,Rm) + |Du|(Ω),

makes BV (Ω,Rm) a Banach space.
If {uj} ⊂ BV (Ω,Rm) with supj ‖uj‖BV(Ω,Rm) < +∞, then there exist a subsequence

{ujk
} and a function u ∈ BV (Ω,Rm) such that ujk

→ u in L1(Ω,Rm), and Dujk
→ Du

weakly-∗ in the sense of measures.
Also, for u ∈ BV (Ω,Rm), Su is countably Hd−1-rectifiable; i.e.,

Su = N ∪
⋃
i∈N

Ki,

where Hd−1(N) = 0, and each Ki is a compact subset of a C1 manifold. So, for Hd−1-a.e.
y ∈ Su we can define an exterior unit normal νννu and outer and inner traces of u on Su

by
u±(x) := ap− lim

y→x
y∈π±(x,νννu(x))

u(y),

with π±(x, νννu(x)) :=
{
y ∈ Rd : ±〈y − x, νννu(x)〉 > 0

}
. A point x ∈ Ω is called a jump

point of u, x ∈ Ju, if there exists ννν ∈ Sd−1, such that

ap− lim
y→x

y∈π−(x,ννν)

u(y) 6= ap− lim
y→x

y∈π+(x,ννν)

u(y).

It is known that Ju ⊆ Su, and Hd−1(Su \ Ju) = 0.
If we decompose Du into an absolutely continuous part Dau and a singular part Dsu,

both with respect to the Lebesgue measure Ld, Du = Dau + Dsu, the density of Dau
with respect to Ld coincides with the approximate gradient ∇u Ld-a.e. The restriction
Dju of Dsu to Su is called jump part of Du, the restriction Dcu of Dsu to Ω \ Su it
called Cantor part. So,

Du = Dau +Dju +Dcu.
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It is known that Dju = (u+ − u−)⊗ νννuHd−1bSu.
A function u ∈ BV (Ω,Rm) is called a special function of bounded variation in Ω,

u ∈ SBV (Ω,Rm), if Dcu = 0. We call u ∈ BV (Ω,Rm) a generalised special function
of bounded variation, u ∈ GSBV (Ω,Rm), if g(u) ∈ SBV (Ω,Rm) for every g ∈ C1(Rm)
such that ∇g has compact support. For 1 < p < +∞, let

(G)SBV p(Ω,Rm) :=
{
u ∈ (G)SBV (Ω,Rm) : Hd−1(Ju) < +∞, ∇u ∈ Lp

(
Ω,Rd×m

)}
.

We remark that W 1,1(Ω,Rm) ( BV (Ω,Rm), that u ∈ SBV (Ω, Rm) implies u ∈
W 1,1

(
Ω \ Su,Rm

)
, and that SBV (Ω,Rm) ∩ L∞(Ω,Rm) = GSBV (Ω,Rm) ∩ L∞(Ω,Rm).

2.2.1.2 Γ-Convergence

Let X be a separable Banach space with a topology τ and let Fε : X → R be a sequence
of functionals. We say Fε Γ-converges to F in the topology τ , or F = Γ − lim

ε→0
Fε, if the

following two conditions hold:

(1) For every x ∈ X and for every sequence {xε} ⊂ X τ -converging to x ∈ X,

F (x) ≤ lim inf
ε→0

Fε (xε) ,

(2) For every x ∈ X there exists a sequence {xε} ⊂ X (recovery sequence) τ -converging
to x ∈ X, such that

F (x) ≥ lim sup
ε→0

Fε (xε) .

Lemma 2.2.1. Let Fε, F : X → R, with Γ−lim
ε→0

Fε = F . Then

(1) F is lower semicontinuous on X.

(2) F +G = Γ− lim (Fε +G) for all continuous G : X → R.

(3) Let {uε} ⊂ X be such that

lim
ε→0+

(
Fε(uε)− inf

X
Fε

)
= 0,

then every cluster point u of {uε} minimises F over X, and

lim
ε→0+

inf
X
Fε = min

X
F = F (u).

Here are some connections between Γ-convergence and pointwise convergence:

• If Fε converges uniformly to F , then Fε Γ-converges to F .

• If Fε is decreasing and converges pointwise to F , then Fε Γ-converges to RF , the
lower semicontinuous envelope of F .
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2.3 Continuous Algorithm for Splitting & Projection

2.3.1 Algorithm

Let Ω ⊂ Rd be a bounded Lipschitz domain. For u,g ∈ H1(Ω,Sm−1), s ∈ H1(Ω, [0, 1]),
and 0 < ε, kε ¿ 1 we want to minimise the following vector valued Ambrosio-Tortorelli
energy:

ATε(u, s) :=
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx +

λ

2

∫
Ω

|u− g|2 dx

+α

∫
Ω

ε |∇s|2 +
1

4ε
(1− s)2dx.

(2.3.1)

In this section, we shall always assume γ, α, ε, kε to be fixed and positive, and λ ≥ 0.
Furthermore, let

Ku :=
{
w ∈ H1(Ω,Rm) : w · u = 0 a.e.

}
, and

ÃT ε(u, s) :=
1

2

∫
Ω

γ
(
s2 + kε

)
|∇u|2 + λ|u− g|2dx.

Algorithm 2.3.1. (1) Let (u0, s0) ∈ H1(Ω,Sm−1)×H1(Ω, [0, 1]) be given.

(2) For n = 0, . . . until convergence

(a) Minimise ÃT ε(un −w, sn) for all w ∈ Kun, and call the solution wn.

(b) Set un+1 := (un −wn) / |un −wn|.

(c) Minimise ATε(un+1, s) for all s ∈ H1(Ω), and call the solution sn+1.

Following Alouges in [1], we have transformed the nonlinear, non-convex constraint
|u|2 = 1 a.e. into a linear one, namely u ·w = 0 a.e.

2.3.2 Analysis

The next proposition ensures that the solution un −w found in each iteration n of Step
2a of Algorithm 2.3.1 has at least length 1. This is crucial for proving that the projection
in Step 2b, and ultimately the whole Algorithm 2.3.1, is energy decreasing, as we show
in Proposition 2.3.5.

Proposition 2.3.2. Let u ∈ H1(Ω, Sm−1). If for w ∈ Ku we set v := u−w, then

|v(x)|2 = |u(x)−w(x)|2 = 1 + |w(x)|2 ≥ 1 a.e.

Proposition 2.3.3. Given u,g ∈ H1(Ω,Sm−1), s ∈ H1(Ω), and parameters ε, kε > 0,
the problem

Minimise ÃT ε(u−w, s) for w ∈ Ku (2.3.2)

has a unique solution.



24 CHAPTER 2. THE MUMFORD-SHAH FUNCTIONAL

Proof. Ku is a non-empty subspace of H1(Ω,Rm). It is closed in the strong topology of
H1(Ω,Rm) and ATε(v, s) is uniformly elliptic in v. Therefore there is a unique solution
to our restricted optimisation problem.

Note: The mapping u 7→ w(u) is the projection of u onto Ku with respect to the
usual distance in H1(Ω,Rm). And since 0 ∈ Ku, we have ATε(u−w, s) ≤ ATε(u, s).

Lemma 2.3.4. The tuple (u, s) ∈ H1(Ω,Sm−1) × H1(Ω, [0, 1]) is a stationary point of
ATε(·, ·) if and only if

γ
((
s2 + kε

)
∇u,∇ϕϕϕ

)
= λ(g,ϕϕϕ) (2.3.3)

for all ϕϕϕ ∈ H1(Ω,Rm) such that ϕϕϕ(x) ∈ Tu(x)Sm−1 (the tangent space of Sm−1 at u(x)),
and

2αε(∇s,∇ϕ) +
((
γ|∇u|2 +

α

2ε

)
s, ϕ
)

=
( α

2ε
, ϕ
)

(2.3.4)

for all ϕ ∈ H1(Ω) ∩ L∞(Ω).

Proof. Note u ·ϕϕϕ = 0 a.e. and derive the first variation of (2.3.1) with respect to u and
s, c.f. [99] and [25, Proposition 1].

Most of the following Proposition is taken from [2].

Proposition 2.3.5. If v ∈ H1(Ω,Rm) verifies |v| ≥ 1 a.e., then v/|v| belongs to
H1(Ω,Sm−1) and ∣∣∣∣∇( v

|v|

)∣∣∣∣2 ≤ |∇v|2 a.e.,

which, for given s ∈ H1(Ω) and ε, kε > 0 as above, leads to

ATε

(
v

|v|
, s

)
≤ ATε(v, s) ,

and ÃT ε(v/|v|, s) ≤ ÃT ε(v, s).

Proof. By definition, v/|v| ∈ H1(Ω,Sm−1). And

|∇v|2 =

∣∣∣∣∇(|v| v

|v|

)∣∣∣∣2
=

∣∣∣∣(∇|v|)⊗ v

|v|
+ |v|∇

(
v

|v|

)∣∣∣∣2
= |∇|v||2 +

∣∣∣∣∇( v

|v|

)∣∣∣∣2 |v|2
≥

∣∣∣∣∇( v

|v|

)∣∣∣∣2 a.e.,

since |v| ≥ 1 a.e. and
∣∣∣ v
|v|

∣∣∣ = 1, which implies v
|v|∇

(
v
|v|

)
= 0.
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So, if we are mapping v 7→ v/|v|, the first term (smoothing term) of (2.3.1) does
not increase. The third term (edge-length term) obviously stays the same. And for the
second term (fidelity term), we have∣∣∣∣ v

|v|
− g

∣∣∣∣2 ≤ |v − g|2 ,

by a simple computation.

Proposition 2.3.6. There exists a unique s ∈ H1(Ω, [0, 1]), such that for all ϕ ∈ H1(Ω)

a (∇s,∇ϕ) + (bs, ϕ) = c (1, ϕ) , (2.3.5)

with a = 2αε, b(x) = γ|∇u(x)|2 + α
2ε

, and c = α
2ε

. Hence, Step 2c of Algorithm 2.3.1 is
solvable.

Proof. Existence and uniqueness of a solution are standard (by coercivity and convexity
of the energy in ∇s).

To show 0 ≤ s ≤ 1 a.e. we apply (2.3.5) to s and t := s−1 and test it with s− := −s∨0
and t+ := t ∨ 0, respectively, obtaining

0 ≤ a

∫
{−s≥0}

∇s∇(−s)dx +

∫
{−s≥0}

bs(−s)dx

= −a
∫
{−s≥0}

|∇s|2 dx−
∫
{−s≥0}

b |s|2 dx,

which can only be fulfilled if s ≥ 0 a.e. Analogously, we get

0 ≥ a

∫
{t≥0}

|∇t|2 dx +

∫
{t≥0}

b |t|2 dx,

which can only be true if t = s− 1 ≤ 0 a.e.

Remark 2.3.7. The fact that 0 ≤ s ≤ 1 in the proposition above could also be proved by
a simple energy argument, as observed in [20]. We use a similar argument in the discrete
case in Section 2.4.

Remark 2.3.8. Algorithm 2.3.1 is energy-decreasing, since for any applicable n it ensures

ATε(un+1, sn+1) ≤ ATε(un+1, sn)

= ATε

(
un −wn

|un −wn|
, sn

)
≤ ATε(un −wn, sn)

≤ ATε(un, sn) .

Lemma 2.3.9. Let n ≥ 0. Then

1

2

∫
Ω

γ
(
s2

n + kε

)
|∇wn|2 + λ |wn|2 dx ≤ ÃT ε(un, sn)− ÃT ε(un+1, sn+1) .
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Proof. By Proposition 2.3.5, we have

1

2
I := ÃT ε(un+1, sn+1)− ÃT ε(un, sn) ≤ ÃT ε(un −wn, sn)− ÃT ε(un, sn) .

Expanding the above, we get

I ≤ γ

∫
Ω

(
s2

n + kε

) (
|∇un|2 + |∇wn|2 − 2∇un : ∇wn

)
dx

+ λ

∫
Ω

|un|2 + |wn|2 + |g|2 − 2g · (un −wn)− 2un ·wndx

−
∫

Ω

γ
(
s2

n + kε

)
|∇un|2 + λ

(
|un|2 + |g|2 − 2g · un

)
dx

=

∫
Ω

γ
(
s2

n + kε

) (
|∇wn|2 − 2∇un : ∇wn

)
+ λ

(
|wn|2 + 2wn · (g − un)

)
dx.

(2.3.6)

Here we deliberately did not use un ·wn = 0 a.e. and |un|2 = 1 = |wn|2 a.e., so we can
use the same proof in the discrete case. The variational formulation of problem (2.3.2) is∫

Ω

γ
(
s2

n + kε

)
∇ (un −wn) : ∇ϕϕϕ+ λ (un −wn − g) ·ϕϕϕndx = 0 ∀ϕϕϕn ∈ Kun .

Setting ϕϕϕn := wn leads to∫
Ω

γ
(
s2

n + kε

)
∇un : ∇wndx =

∫
Ω

γ
(
s2

n + kε

)
|∇wn|2 + λ

(
|wn|2 + wn · (g − un)

)
dx.

So (2.3.6) becomes

I ≤ −
∫

Ω

γ
(
s2

n + kε

)
|∇wn|2 + λ |wn|2 dx,

as claimed.

Proposition 2.3.10. If ATε(u0, s0) is bounded, Algorithm 2.3.1 converges in the sense
that (un, sn) converges weakly (up to a subsequence) in H1(Ω,Rm) × H1(Ω) to some
(u, s) ∈ H1(Ω,Sm−1) × H1(Ω, [0, 1]). Furthermore, wn → 0 strongly in H1(Ω,Rm) (the
whole sequence).

Proof. Step 1: (un, sn) converges weakly (up to a subsequence) in H1(Ω,Rm) × H1(Ω)
to some (u, s) ∈ H1(Ω,Sm−1)×H1(Ω, [0, 1]).

By assumption and Remark 2.3.8, the L2 norms ‖∇un‖ , ‖un‖ , ‖∇sn‖, and ‖sn‖
remain uniformly bounded. Hence we can extract subsequences {un, sn} (not rela-
belled), that converge weakly in H1, strongly in L2, and a.e. to some (u, s). Since
‖|un| − |u|‖ ≤ ‖un − u‖ → 0, we have |u|2 = 1 a.e., so u still belongs to H1(Ω,Sm−1).

Finally, since H1(Ω) is a Hilbert space and {ϕ ∈ H1(Ω) : 0 ≤ ϕ ≤ 1 a.e} ⊂ H1(Ω) is
a closed, convex set, it is weakly closed. Therefore, by the weak convergence in H1 of
sn ⇀ s, we get 0 ≤ s ≤ 1.

Step 2: wn → 0 in H1(Ω,Rm).
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Let n ∈ N be fixed. By Lemma 2.3.9, we get

1

2

∫
Ω

γ
(
s2

n + kε

)
|∇wn|2 + λ |wn|2 dx ≤ ÃT ε(un, sn)− ÃT ε(un+1, sn+1) .

Summing this from 0 to N leads to

1

2

N∑
n=0

∫
Ω

γ
(
s2

n + kε

)
|∇wn|2 + λ |wn|2 dx ≤ ÃT ε(u0, s0)− ÃT ε(uN+1, sN+1)

≤ ÃT ε(u0, s0) < +∞;

i.e., the series
1

2

∑
n≥0

∫
Ω

γ
(
s2

n + kε

)
|∇wn|2 + λ |wn|2 dx

is convergent. Therefore, 0 ≤ γkε |∇wn|2 + λ |wn|2 ≤ γ (s2
n + kε) |∇wn|2 + λ |wn|2 → 0

a.e. And since γ, λ, kε > 0 are fixed, we get wn → 0 strongly in H1.

Remark 2.3.11. We cannot prove that (u, s) is a stationary point of ATε(·, ·). In par-
ticular, the variational formulation of Step 2c of Algorithm 2.3.1 is (c.f. Lemma 2.3.4)

2αε (∇sn,∇ϕ) + γ
(
|∇un+1|2 sn, ϕ

)
+
α

2ε
(sn, ϕ) =

α

2ε
(1, ϕ)

for all ϕ ∈ H1(Ω). Identifying limits on a term by term basis would require identifying
the limit

lim
n→+∞

(
|∇un+1|2 sn, ϕ

)
,

which so far we have to leave as an open problem.
What is missing for this identification of limits is strong convergence of ∇un in L2

(and higher regularity of sn would be helpful, too).
This missing strong convergence is a fundamental shortcoming also observed in [1,

10] for the simpler case of harmonic maps to the sphere. In fact, we are not aware
of any algorithm, even in the harmonic mapping case, that simultaneously gives strong
convergence of ∇un in L2 and assures the sphere constraint exactly.

However, the algorithm converges, decreases the energy, assures the sphere constraint
exactly and delivers very convincing computational results (indeed, it is faster and delivers
better results than the alternative algorithm described in the sequel, c.f. Section 2.8).
Therefore, the next section describes a discrete version of this algorithm with its analysis,
which has the same shortcoming (we use the continuous version to describe it, because it
is less cluttered).
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2.4 Discrete Algorithm for Splitting & Projection

2.4.1 Algorithm

Let Ω ⊂ Rd be a polyhedral Lipschitz domain, and Th be a quasi-uniform triangulation
of Ω with node set N and maximal mesh size h > 0 (c.f. [24]). The space of globally
continuous, piecewise affine finite element functions on Th is denoted by Vh(Ω) ⊆ H1(Ω).
The nodal basis functions are {ϕz : z ∈ N} ⊆ Vh(Ω). Let Vh(Ω,Rm) be the finite element
space of Rm-valued mappings with basis functions {ϕϕϕi

z : z ∈ N , 1 ≤ i ≤ m}, with ϕϕϕ1
z :=

(ϕz, 0, . . .)
T ∈ Vh(Ω,Rm), ϕϕϕ2

z := (0, ϕz, 0, . . .)
T ∈ Vh(Ω,Rm), and so forth. Let Ih(·) :

C0
(
Ω
)
→ Vh(Ω) be the Lagrange interpolation operator, and Rh(·) : H1(Ω) → Vh(Ω) the

Ritz projection, defined by

(∇ (Rh(ϕ)− ϕ) ,∇V ) + (Rh(ϕ)− ϕ, V ) = 0 ∀V ∈ Vh(Ω) ,

and rh(·) : L2(Ω) → Vh(Ω) the Clément operator [36] (IIIh(·), Rh(·), and rh(·) in the vector
valued case). The latter operator will be needed since it can be applied to non-continuous
functions.

The most natural approach to the discrete case would be to work with the original
functional ATε(·, ·), like in the continuous case. However, it is not clear how to get
an L∞ bound on iterates Sn (or, more specifically, 0 ≤ Sn ≤ 1) in this setting. The
straightforward remedy is to use mass lumping in all nonlinear terms; i.e., to use the
functional

γ

2

∫
Ω

(
Ih

(
S2
)

+ kε

)
|∇U|2 dx +

λ

2

∫
Ω

|U−G|2 dx

+α

∫
Ω

ε |∇S|2 +
1

4ε
Ih

(
(1− S)2

)
dx,

see e.g. [25]. This introduces additional error terms to take care of in the convergence
analysis, but it would work in our case, too. However, we attempt to avoid mass lumping
as far as possible, and we present some ideas to this end. So far, we still have to use
lumping in the last term, and our arguments only work for d ≤ 2 (the rest of the analysis
works for d ≤ 3), but we hope it will be possible to improve these results. So, for
G ∈ Vh(Ω,Rm), we define

Eh(U, S) :=
γ

2

∫
Ω

(
S2 + kε

)
|∇U|2 dx +

λ

2

∫
Ω

|U−G|2 dx

+α

∫
Ω

ε |∇S|2 +
1

4ε
Ih

(
(1− S)2

)
dx,

and

Ẽ(U, S) :=
γ

2

∫
Ω

(
S2 + kε

)
|∇U|2 dx +

λ

2

∫
Ω

|U−G|2 dx.

In this section, we shall always assume γ, α, ε, kε to be fixed and positive, λ ≥ 0, and
d ≤ 2.
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Functions V ∈ Vh(Ω,Rm) which satisfy the pointwise constraint |V| = 1 are neces-
sarily constant. So it is more reasonable to replace H1(Ω,Sm−1) by

H1
h(Th) :=

{
V ∈ Vh(Ω,Rm) : V(z) ∈ Sm−1 ∀ z ∈ N

}
.

We set
Kn

h := {W ∈ Vh(Ω,Rm) : W(z) ·Un(z) = 0 ∀ z ∈ N} ,

where Un ∈ H1
h(Th) will be the iterates of the fully discrete algorithm.

For calculating a solution, we are motivated by [1] and [10] to propose

Algorithm 2.4.1. Let a quasi-uniform triangulation Th of Ω, starting values U0, S0, and
parameters ε, kε, % > 0 be given. For n := 0, . . .

(1) Minimise Ẽ(Un −W, Sn) for W ∈ Kn
h ; i.e. solve

γ
((
S2

n + kε

)
∇ (Un −W) ,∇V

)
− λ (W + G,V) = 0, (2.4.1)

for all V ∈ Kn
h , and call the solution Wn.

(2) If ‖Wn‖H1(Ω;Rm) ≤ % set U := Un, W := Wn, S := Sn and stop.

(3) Set

Un+1 :=
∑
z∈N

Un(z)−Wn(z)

|Un(z)−Wn(z)|
ϕϕϕz.

(4) Minimise Eh(Un+1, S) for all S ∈ Vh(Ω); i.e. solve

2αε (∇S,∇W ) + γ
(
S |∇Un+1|2 ,W

)
+
α

2ε
(S − 1,W )h = 0 (2.4.2)

for all W ∈ Vh(Ω), and call the solution Sn+1.

Here (ϕ, ψ)h :=
∫

Ω
Ih(ϕψ) dx for ϕ, ψ ∈ C(Ω).

2.4.2 Analysis

Definition 2.4.2. Let Th be a quasi-uniform triangulation of Ω, and s ∈ H1(Ω) be fixed.
Th is said to satisfy an energy decreasing condition (ED) if

Eh(W, s) ≤ Eh(V, s)

for all V ∈ Vh(Ω,Rm) fulfilling |V(z)| ≥ 1 for z ∈ N , and |V(z)| = 1 for z ∈ N ∩ ∂Ω.
Here W ∈ Vh(Ω,Rm) is defined by

W :=
∑
z∈N

V(z)

|V(z)|
ϕz.

We quote two results from [10], which give sufficient conditions for (ED):
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Lemma 2.4.3. Let Th be a regular triangulation of Ω and
∫

Ω
∇ϕz · ∇ϕydx ≤ 0 for all

z ∈ N \ ∂Ω and y ∈ N \ {z}. Then Th satisfies (ED).

Corollary 2.4.4. (1) Let d = 2. Given neighbouring nodes z ∈ N\∂Ω and y ∈ N\{z},
let T1, T2 ∈ Th be such that T1 ∩ T2 equals the interior edge connecting z and y. Let
α1

zy, α
2
zy be the angles of T1 and T2, respectively, opposite to the edge connecting z

and y. Then α1
zy + α2

zy ≤ π is sufficient for (ED).

(2) Let d = 3, and z ∈ N \ ∂Ω and y ∈ N \ {z} be nodes of the same Element T ⊂ Th.
Given any T ∈ Th such that z,y ∈ T , let αzyT be the angle between the two faces
F 1

zy, F
2
zy ⊂ ∂T , which do not contain both z and y. Then αzyT ≤ π/2 for all

T 3 z,y is sufficient for (ED).

In particular, for d ≤ 3 (ED) is fulfilled if every angle in Th is ≤ π/2.

Lemma 2.4.5. Let U ∈ Vh(Ω,Rm) be given, and d ≤ 2. If S ∈ Vh(Ω) minimises
Eh(U, ·), then −1 ≤ S ≤ 1.

Proof. For a ∈ R define a := −1 ∨ a ∧ 1. Note that for this result it is crucial that we
have piecewise affine finite element functions.

Step 1: If a, b ∈ R, then
(
a+ b

)2 ≤ (a+ b)2 and
(
a− b

)2 ≤ (a− b)2.

A case differentiation gives

• a, b ∈ [−1, 1] is trivial.

• a, b > 1 or a, b < −1 =⇒
(
a+ b

)2
= 22 ≤ (a+ b)2.

• a > 1, b < −1 =⇒
(
a+ b

)2
= 0 ≤ (a+ b)2,

and b > 1, a < −1 is symmetrical.

• a /∈ [−1, 1], b ∈ [−1, 1] =⇒ 0 ≤ 1 + sign(ab)|b| ≤ |a|+ sign(ab)|b|,
=⇒

(
a+ b

)2
= (1 + sign(ab)|b|)2 ≤ (|a|+ sign(ab)|b|)2 = (a+ b)2,

and b /∈ [−1, 1], a ∈ [−1, 1] is symmetrical.

Therefore
(
a+ b

)2 ≤ (a+ b)2, and
(
a− b

)2 ≤ (a− b)2 follows by symmetry.

Step 2: We have −1 ≤ S ≤ 1.

In case −1 ≤ S ≤ 1 should not be true, we replace S(x) =
∑

z∈N S(z)ϕz(x) by

S(x) :=
∑
z∈N

(−1 ∨ S(z) ∧ 1)ϕz(x) = Ih(−1 ∨ S ∧ 1) ,

for which clearly −1 ≤ S ≤ 1. We shall prove Eh

(
U, S

)
≤ Eh(U, S), by showing energy-

decrease for every term involving S, on every triangle T ∈ Th. Since ∇U is constant on
every T , the terms we have to look at are

∫
T
S2dx,

∫
T
|∇S|2 dx, and

∫
T
Ih((1− S)2) dx.

Let the values of S at the nodal points of T be S0, . . . , Sd, let S0, . . . , Sd be the cor-
responding values of S, let ϕ0, . . . , ϕd be the corresponding nodal basis functions, and
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x := (x1, . . . , xd). By a simple transformation argument, we can restrict ourselves to the
standard simplex, which we shall still call T . Then

S(x)|T = S0 +
d∑

i=1

(Si − S0)xi,

and
∇S(x)|T = (S1 − S0, . . . , Sd − S0) ,

For the first term, a calculation yields∫
T

S2dx =
2

(d+ 2)!

d∑
i=0

Si

d∑
j=i

Sj. (2.4.3)

If d = 1, then, by Step 1,∫
T

S
2
dx =

1

3

(
S

2

0 + S0S1 + S
2

1

)
=

1

6

((
S0 + S1

)2
+ S

2

0 + S
2

1

)
≤ 1

6

(
(S0 + S1)

2 + S2
0 + S2

1

)
=

∫
T

S2dx.

Similarly, if d = 2,∫
T

S
2
dx =

1

12

(
S

2

0 + S
2

1 + S
2

2 + S0S1 + S0S2 + S1S2

)
=

1

24

((
S0 + S1

)2
+
(
S0 + S2

)2
+
(
S1 + S2

)2)
≤ 1

24

(
(S0 + S1)

2 + (S0 + S2)
2 + (S1 + S2)

2)
=

∫
T

S2dx.

Note: Both arguments break down for d ≥ 3; in fact, counter-examples are easy to find,
c.f. Remark 2.4.6.

The second term gives, by Step 1 and symmetry,∫
T

|∇S|2dx =

∫
T

(
S1 − S0, . . . , Sd − S0

)2
dx

=
1

d!

((
S1 − S0

)2
+ · · ·+

(
Sd − S0

)2)
≤ 1

d!

(
(S1 − S0)

2 + · · ·+ (Sd − S0)
2)

=

∫
T

|∇S|2.
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As for the last term, again by Step 1,∫
T

Ih

(
(1− S)2

)
dx =

d+1∑
i=1

(
1− Si

)2 ∫
T

ϕidx

≤
d+1∑
i=1

(1− Si)
2

∫
T

ϕidx =

∫
T

Ih

(
(1− S)2

)
dx.

Remark 2.4.6. For d = 3, Step 2 in the above proof is wrong: Let S0 := S1 := S2 := 1,
and S3 := −3/2. Then, by (2.4.3),∫

T

S
2
dx =

1

60

d∑
i=0

Si

d∑
j=i

Sj =
1

15
,

while ∫
T

S2dx =
1

60

d∑
i=0

Si

d∑
j=i

Sj =
1

16
.

We suspect that there exist dimension-dependent constants cd, at which one could crop
|S|, so that the energy is still decreasing (also replacing (1− s)2 by (cd − s)2).

Lemma 2.4.7. Let Th be a quasi-uniform triangulation of Ω satisfying (ED), % > 0 fixed,
S0 ∈ Vh(Ω), and U0 ∈ H1

h(Th). Then Algorithm 2.4.1 terminates within a finite number
of iterations with output (U, S) ∈ H1

h(Th)× Vh(Ω, [−1, 1]) and W ∈ Vh(Ω,Rm) such that
‖∇W‖ ≤ %, and Eh(U, S) ≤ Eh(U0, S0).

Proof. We proceed by induction. Suppose that for some n ≥ 0 we have (Un, Sn) ∈
H1

h(Th) × Vh(Ω). The set Kn
h is a subspace of Vh(Ω,Rm). Therefore, by Lax-Milgram,

there is a unique Wn ∈ Kn
h such that (2.4.1) is fulfilled. Since Wn(z) ·Un(z) = 0 and

|Un(z)| = 1, we have |Un(z)−Wn(z)| ≥ 1 for z ∈ N ; i.e., Un+1 is well-defined and in
H1

h(Th). And since 0 ∈ Kn
h and Th fulfils (ED), we get

Eh(Un+1, Sn) ≤ Eh(Un −Wn, Sn) .

Step 4 of Algorithm 2.4.1 has a solution Sn+1 by convexity and coercivity of the functional.
So

Eh(Un+1, Sn+1) ≤ Eh(Un+1, Sn) ≤ Eh(Un −Wn, Sn) ≤ Eh(Un, Sn) .

In fact, Eh(Un+1, Sn+1) ≤ Eh(Un+1,W ) for all W ∈ Vh(Ω). Therefore, by Lemma 2.4.5,
we can assume −1 ≤ Sn+1 ≤ 1.

Recycling the proof of Lemma 2.3.9 we have

0 ≤ 1

2

∫
Ω

γ
(
S2

n + kε

)
|∇Wn|2 + λ |Wn|2 dx ≤ Ẽ(Un, Sn)− Ẽ(Un+1, Sn+1) .

This implies, just like in the continuous case (see proof of Proposition 2.3.10), that
‖Wn‖H1(Ω;Rm) ≤ % for n large enough.
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Theorem 2.4.8. Let {Thl
} be a sequence of quasi-uniform triangulations satisfying (ED)

with maximal mesh size hl → 0 for l→ +∞, %l → 0 for l→ +∞, and Ehl
(U0, S0) ≤ C0 <

+∞ independently of hl. Let {Ul, Sl} be the output of Algorithm 2.4.1 (after termination)
from input (U0

l , S
0
l , %l). Then the sequence {Ul, Sl} converges weakly in H1(Ω,Rm) ×

H1(Ω) (up to subsequences, not relabelled) for l→ +∞ to a point (u, s) ∈ H1(Ω,Sm−1)×
H1(Ω, [−1, 1]), with ATε(u, s) ≤ lim inf l ATε(Ul, Sl) ≤ lim inf l ATε(U

0
l , S

0
l ).

Proof. By assumption and Lemma 2.4.7, we have

Ehl
(Ul, Sl) ≤ Ehl

(
U0

l , S
0
l

)
≤ C0,

and −1 ≤ Sl ≤ 1. This implies, like in the proof of Proposition 2.3.10, uniform bounded-
ness ofH1-norms of iterates Ul and Sl. Hence we can extract a subsequence that converges
weakly in H1 ×H1 to some map (u, s). Poincaré’s inequality (elementwise), |Ul(z)| = 1
for all z ∈ Nhl

, and |Ul| ≤ 1 a.e. imply∥∥|Ul|2 − 1
∥∥ ≤ Chl

∥∥2UT
l ∇Ul

∥∥ ≤ Chl.

So Ul → u a.e. leads to |u| = 1 a.e.
Since H1(Ω) is a Hilbert space and {ϕ ∈ H1(Ω) : 0 ≤ ϕ ≤ 1 a.e} ⊂ H1(Ω) is a closed,

convex set, it is weakly closed. Therefore, by the weak convergence in H1 of Sl ⇀ s, we
get −1 ≤ s ≤ 1.

Finally, by weak lower semicontinuity of ATε(·, ·),

ATε(u, s) ≤ lim inf
l

ATε(Ul, Sl)

≤ lim inf
l

(
Ehl

(Ul, Sl) + c
∥∥Ih

(
(1− Sl)

2)− (1− Sl)
2
∥∥

L1(Ω)

)
≤ lim inf

l

(
Ehl

(
U0

l , S
0
l

)
+ chl ‖Sl‖L2(Ω) ‖∇Sl‖L2(Ω)

)
≤ lim inf

l
Ehl

(
U0

l , S
0
l

)
≤ lim inf

l

(
ATε

(
U0

l , S
0
l

)
+ chl

∥∥S0
l

∥∥
L2(Ω)

∥∥∇S0
l

∥∥
L2(Ω)

)
≤ lim inf

l
ATε

(
U0

l , S
0
l

)
.

Remark 2.4.9. We have essentially the same problem as in the continuous case (c.f.
Remark 2.3.11); i.e., we cannot show that (u, s) is a stationary point.
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2.5 Γ-Convergence for Penalisation & Splitting

In order to resolve the problems with passing to the limit, we now use a penalisation
approach instead of projection. This requires adding a term to the Ambrosio-Tortorelli
energy, which penalises the sphere constraint. In this section, we show that this addition
does not affect Γ-convergence to the Mumford-Shah functional, if the penalisation term
is properly scaled.

Let Ω ⊂ Rd, γ, α, λ be fixed positive constants, ε, δε > 0, kε ≥ 0, g ∈ L∞(Ω,Sm−1),
and Gε, G : L2(Ω,Rm)× L2(Ω) → [0,+∞] be defined by

Gε(u, s) :=



γ

2

∫
Ω

(
s2 + kε

)
|∇u|2dx +

λ

2

∫
Ω

|u− g|2dx if u ∈ H1(Ω,Rm) ,

+α

∫
Ω

(
ε|∇s|2 +

(1− s)2

4ε

)
dx s ∈ H1(Ω, [0, 1]),

+
1

4δε

∫
Ω

(
|u|2 − 1

)2
dx

+∞, otherwise,

and

G(u, s) :=


γ

2

∫
Ω

|∇u|2dx + αHd−1(Su) +
λ

2

∫
Ω

|u− g|2dx if u ∈ GSBV (Ω,Sm−1)

and s = 1 a.e.

+∞, otherwise.

Theorem 2.5.1. If Ω ⊂ Rd is open and bounded with Lipschitz boundary, δε −→
ε→0

0,

kε = o(ε), and kε = o(δε), then Gε
Γ−→

ε→0
G in L2(Ω,Rm)× L2(Ω).

Moreover, there exists a solution {uε, sε} to the minimum problem

mε = inf
u∈H1(Ω,Rm),
s∈H1(Ω,[0,1])

Gε(u, s)

with ‖uε‖L∞ ≤ C, and every cluster point of {uε} is a solution to the minimum problem

m = inf
u∈GSBV(Ω,Sm−1)

G(u, 1),

and mε → m as ε→ 0+.

For the lim inf inequality we can apply the work of Focardi ([62, Lemma 3.3]). For
the lim sup inequality we use the same construction as Ambrosio and Tortorelli in [4], so
it is enough to verify that the penalisation term we added vanishes for ε → 0+. This is
explained in more detail below.

Proof. For notational convenience, we first localise the functionals above, denoting by
Gε(u, s, A) and G(u, s, A) the same functionals with integration over A ⊆ Ω instead of
Ω, and Hd−1(Su) replaced by Hd−1(Su ∩ A).
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Step 1: The Liminf Inequality.
Let ε→ 0+, and (uε, sε) → (u, s) in L2(Ω,Rm)× L2(Ω). Up to subsequences, we can

suppose that (uε, sε) → (u, s) a.e., and that limε→0+ Gε (uε, sε) exists and is finite. We
can further assume s = 1 a.e., since otherwise

∫
Ω

(1− sε)
2 dx 9 0, and Gε (uε, sε) →∞.

Similarly, we get |u|2 = 1 a.e.
We now have to show

lim inf
ε→0+

Gε (uε, sε) ≥ G(u, s).

Since it is clear that
∫

Ω
|uε − g|2 dx →

∫
Ω
|u− g|2 dx, and that the penalisation term

is non-negative, it is sufficient to prove that u ∈ GSBV (Ω,Rm), and

lim inf
ε→0+

∫
Ω

(
s2

ε + kε

)
|∇uε|2 dx + 2

∫
Ω

(
ε |∇sε|2 +

(1− sε)
2

4ε

)
dx

≥
∫

Ω

|∇u|2dx + 2Hd−1(Su) .

This was shown for a more general situation in [62, Lemma 3.3] (see also [63]).

Step 2: The Limsup Inequality.
It suffices to consider the case u ∈ SBV (Ω,Rm) ∩ L∞(Ω,Rm). We can also assume

∇u ∈ L2
(
Ω,Rd×m

)
, |u|2 = 1 a.e., and (see [63, Theorem 2.7.14]) that Su is essentially

closed in Ω; i.e., Hd−1
(
Ω ∩

(
Su \ Su

))
= 0. Setting d(x) := dist(x, Su), we define the

Minkowski content of Su

Md−1(Su) := lim
δ→0+

Md−1
δ (Su) := lim

δ→0+

|{x ∈ Ω : d(x) < δ}|
2δ

.

It is well-known that for Su essentially closed,

lim
δ→0+

Md−1
δ (Su) = Hd−1(Su) (2.5.1)

(see [61, Theorem 3.2.39]). So, there exists a sequence wε → 0+, such that

|{x ∈ Ω : d(x) < δ}| ≤ 2δ
(
Hd−1(Su) + wε

)
, (2.5.2)

for every δ ≥ 0 small enough.
Given such functions u, and s = 1 a.e., we have to construct {uε, sε} that converge

in L2(Ω,Rm)× L2(Ω) to (u, s), such that

lim sup
ε→0+

Gε (uε, sε) ≤ G(u, s)

for any positive sequence ε converging to zero.
It is natural to require sε ≡ 0 in some ε-dependent neighbourhood of Su, sε converging

to 1 everywhere outside a larger neighbourhood of Su, and smooth in between, as well as
uε ≡ u everywhere outside some neighbourhood of Su.

To this end, we use the same construction as in the paper [4] by Ambrosio and
Tortorelli: Choose a positive sequence bε, such that bε = o(ε), bε = o(δε), and kε = o(bε).
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For any b > 0, set Sb := {x ∈ Ω : d(x) < b}. Thanks to (2.5.2), |Sb| = O(b). For t ≥ bε,
let

σε(t) := 1− exp

(
−t− bε

2ε

)
, so that

σ′ε(t) =
1

2ε
exp

(
−t− bε

2ε

)
.

We now set (c.f. Figure 2.1)

sε(x) :=


0 if x ∈ Sbε ,

σε(d(x)) if x ∈ Sbε+2ε ln 1
ε
\ Sbε ,

1− ε if x ∈ Ω \ Sbε+2ε ln 1
ε
,

(2.5.3)

and

uε(x) := u(x) min

{
d(x)

bε
, 1

}
.

Note that 0 < 2ε ln 1
ε
→ 0+, and ε = o

(
2ε ln 1

ε

)
.

Figure 2.1: Sketch of sε(x) in the case Su = {0}, and d = 1.

By construction, (uε, sε) → (u, 1) in L2(Ω,Rm)× L2(Ω), as ε→ 0+.
Therefore, we have for the term penalising the sphere constraint,

1

4δε

∫
Ω

(
|uε|2 − 1

)2
dx ≤ c

|Sbε|
δε

≤ c
bε
δε
→ 0. (2.5.4)

So this term does not contribute to the lim sup. This calculation motivates why we
cannot expect good experimental results for δε too small (compared to bε, which in turn
is between ε and kε); i.e., we have to sacrifice something in terms of the sphere constraint,
c.f. our experiments in Section 2.8.4.

The other terms are just like in the original paper [4]. We repeat the corresponding
calculations for the convenience of the reader.

By construction,

∇uε(x) =

{
d(x)/bε∇u(x) + u(x)⊗∇d(x)/bε if x ∈ Sbε ,

∇u(x) otherwise.
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And since |∇d| = 1 a.e. (see e.g. [61, Proof of Lemma 3.2.34]), |∇uε(x)| ≤ |∇u(x)| +
‖u‖L∞/bε. So we get

∫
Ω

(
s2

ε + kε

)
|∇uε|2 dx ≤

[∫
Ω\Sbε

+

∫
Sbε

] (
s2

ε + kε

)
|∇uε|2 dx

≤ (1 + kε)

∫
Ω\Sbε

|∇u|2 dx

+Ckε

(∫
Sbε

|∇u|2 dx +
|Sbε| ‖u‖

2
L∞

b2ε

)
.

Since |Sbε| = O(bε), and kε = o(bε),

lim sup
ε→0+

γ

2

∫
Ω

(
s2

ε + kε

)
|∇uε|2 dx ≤ γ

2

∫
Ω

|∇u|2dx. (2.5.5)

The next term gives

∫
Ω

(
ε|∇sε|2 +

(1− sε)
2

4ε

)
dx

=

[∫
Sbε

+

∫
S

bε+2ε ln 1
ε
\Sbε

+

∫
Ω\S

bε+2ε ln 1
ε

](
ε |∇sε|2 +

(1− sε)
2

4ε

)
dx

=: Iε + IIε + IIIε.

We shall show that Iε and IIIε vanish. But first, set g(t) := |{x ∈ Ω : d(x) < t}|, which is
a primitive of Hd−1({x ∈ Ω : d(x) = t}). Using the coarea formula (see e.g. [3, Theorem
2.93]) and |∇d| = 1 a.e., we get

IIε =

∫ bε+2ε ln 1
ε

bε

∫
{y∈Ω:d(y)=t}

(
ε |∇sε(y)|2 +

(1− sε(y))2

4ε

)
|∇d(y)|−1 dHd−1(y) dt

≤
∫ bε+2ε ln 1

ε

bε

(
ε (σ′ε(t))

2
+

(1− σε(t))
2

4ε

)
Hd−1({y ∈ Ω : d(y) = t}) dt

=

∫ bε+2ε ln 1
ε

bε

(
ε (σ′ε(t))

2
+

(1− σε(t))
2

4ε

)
g′(t)dt

=
1

2ε

∫ bε+2ε ln 1
ε

bε

exp

(
−t− bε

ε

)
g′(t)dt.
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Using integration by parts, (2.5.2), and integration by parts again,

IIε ≤ 1

2ε

(
ε2g

(
bε + 2ε ln

1

ε

)
− g(bε) +

1

ε

∫ bε+2ε ln 1
ε

bε

exp

(
−t− bε

ε

)
g(t)dt

)

≤ Hd−1(Su) + wε

ε

(
ε2

(
bε + 2ε ln

1

ε

)
+

1

ε

∫ bε+2ε ln 1
ε

bε

exp

(
−t− bε

ε

)
tdt

)

≤ C

ε

(
ε2

(
bε + 2ε ln

1

ε

)
− ε2

(
bε + 2ε ln

1

ε

)
+ bε

)
+
Hd−1(Su) + wε

ε

∫ bε+2ε ln 1
ε

bε

exp

(
−t− bε

ε

)
dt

= C
bε
ε

+
(
Hd−1(Su) + wε

) (
1− ε2

)
,

so,
lim sup

ε→0+

IIε ≤ Hd−1(Su) ,

and what is left to show is Iε, IIIε → 0. Indeed, by the construction of sε, |Sbε| = O(bε),
and bε = o(ε),

Iε ≤
∫

Sbε

1

4ε
dx ≤ C

bε
ε
→ 0.

And similarly,

IIIε =

∫
Ω\S

bε+2ε ln 1
ε

ε2

4ε
dx → 0,

so, indeed,

lim sup
ε→0+

∫
Ω

(
ε |∇sε|2 +

(1− sε)
2

4ε

)
dx ≤ Hd−1(Su) , (2.5.6)

Inequalities (2.5.5), (2.5.6), and (2.5.4) together prove the lim sup inequality.

Step 3: Convergence of Minimisers.
The functional Gε is coercive and lower semicontinuous in L2. So for every ε > 0

there exists a minimising pair (uε, sε) of Gε. By a simple truncation argument, ‖uε‖L∞ ≤
C. As above, we can assume that (uε, sε) ∈ SBV (Ω,Rm) × SBV (Ω) ∩ L∞(Ω,Rm) ×
L∞(Ω). By the SBV Closure and Compactness Theorems [3, Theorems 4.7 and 4.8],
there exists a subsequence

{
uεj

, sεj

}
converging to some (u, 1) in L2(Ω,Rm) × L2(Ω),

with u ∈ SBV (Ω,Rm). Thus, the stability of minimising sequences under Γ-convergence
(Lemma 2.2.1(3)) concludes the proof.
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2.6 Algorithm for Penalisation & Splitting

2.6.1 Algorithm

Let Ω ⊂ Rd, be a polyhedral Lipschitz domain, and let g : Ω → Sm−1 be the chromaticity
component of a given image. For u,g ∈ H1(Ω,Rm), s ∈ H1(Ω, [0, 1]), and 0 < ε, kε, δε ¿
1, we want to minimise the following vector valued Ambrosio-Tortorelli-Ginzburg-Landau
energy using a splitting strategy:

Gε(u, s) =
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx +

λ

2

∫
Ω

|u− g|2 dx

+α

∫
Ω

ε |∇s|2 +
1

4ε
(1− s)2dx +

1

4δε

∫
Ω

(
|u|2 − 1

)2
dx.

(2.6.1)

In this section, we shall always assume γ, α, ε, kε, δε to be fixed and positive, λ ≥ 0, and
d ≤ 2 (the last assumption is again only used to show that iterates Sn ∈ [−1, 1], and that
their weak limit s ∈ [0, 1]).

Definition 2.6.1. A tuple (u, s) ∈ H1(Ω,Rm) × H1(Ω, [0, 1]) is called a weak solution
to the problem inf Gε, if and only if

γ
((
s2 + kε

)
∇u,∇ϕϕϕ

)
+ λ (u− g,ϕϕϕ) +

1

δε

((
|u|2 − 1

)
u,ϕϕϕ

)
= 0 (2.6.2)

for all ϕϕϕ ∈ H1(Ω,Rm), and

2αε (∇s,∇ϕ) + γ
(
|∇u|2s, ϕ

)
+
α

2ε
(s− 1, ϕ) = 0 (2.6.3)

for all ϕ ∈ H1(Ω) ∩ L∞(Ω).

We use the same finite element setting as in Section 2.4, in particular, we shall
always assume the triangulation Th to be quasi-uniform. For U,G ∈ Vh(Ω,Rm) and
S ∈ Vh(Ω, [−1, 1]), let

Gε,h(U, S) =
γ

2

∫
Ω

(
S2 + kε

)
|∇U|2 dx +

λ

2

∫
Ω

|U−G|2 dx

+α

∫
Ω

ε |∇S|2 +
1

4ε
Ih

(
(1− S)2

)
dx +

1

4δε

∫
Ω

(
|U|2 − 1

)2
dx.

(2.6.4)

In the algorithm below we use G := rh(g) ∈ Vh(Ω,Rm), i.e., the Clément interpolation
of g. This allows the use of non-smooth g. If g ∈ C0(Ω,Rm), the Lagrange interpolation
would do as well.

Algorithm 2.6.2. Let U0,G ∈ Vh(Ω,Rm) and S0 ∈ Vh(Ω) be given. For n = 1, . . . until
convergence do

(1) Compute Un ∈ Vh(Ω,Rm) such that

γ
((
S2

n−1 + kε

)
∇Un,∇W

)
+λ (Un −G,W)+

1

δε

((
|Un|2 − 1

)
Un,W

)
= 0 (2.6.5)

for all W ∈ Vh(Ω,Rm).



40 CHAPTER 2. THE MUMFORD-SHAH FUNCTIONAL

(2) Compute Sn ∈ Vh(Ω) such that

2αε (∇Sn,∇W ) + γ
(
Sn |∇Un|2 ,W

)
+
α

2ε
(Sn − 1,W )h = 0 (2.6.6)

for all W ∈ Vh(Ω).

2.6.2 Analysis

We start with a discussion of relevant stability properties of iterates from Algorithm 2.6.2.

Lemma 2.6.3. Algorithm 2.6.2 decreases Gε,h with respect to n ∈ N.

Proof. For any n ∈ N fixed, Algorithm 2.6.2 ensures, that

Gε,h(Un+1, Sn+1) ≤ Gε,h(Un+1, Sn) ≤ Gε,h(Un, Sn) .

The following existence and uniqueness result follows by standard coercivity and con-
vexity arguments for Gε,h (see e.g. [64, Section 8.4]). The fact −1 ≤ S ≤ 1 follows from
Lemma 2.4.5.

Proposition 2.6.4. There exists a function U ∈ Vh(Ω,Rm), such that equation (2.6.5)
holds for all W ∈ Vh(Ω,Rm), and a unique function S ∈ Vh(Ω, [−1, 1]), such that equation
(2.6.6) holds for all W ∈ Vh(Ω).

Main convergence properties of iterates from Algorithm 2.6.2 are given in the following

Theorem 2.6.5. Let {Thl
} be a sequence of quasi-uniform triangulations with maximal

mesh size hl → 0 for l→ +∞, and Gε,hl

(
Ul

0, S
l
0

)
≤ C0 < +∞ independently of hl. Then

the sequences
{
Ul

m, S
l
m

}
m,l

, constructed by Algorithm 2.6.2 from inputs
(
Ul

0, S
l
0

)
have a

(diagonal) subsequence called {Un, Sn}n, such that Un converges strongly in H1(Ω,Rm),
and Sn converges weakly in H1(Ω) to some (u, s) ∈ H1(Ω,Rm) × H1(Ω, [0, 1]), which is
a weak solution as in Definition 2.6.1.

For identifying limits in the proof of Theorem 2.6.5, it will be crucial to prove strong
L2 convergence of ∇Un to ∇u, for which we use a strategy derived from [25, Proof
of Theorem 2], where the authors show convergence of two adaptive, stationary finite
element approximations for the minimisation of the unconstrained Ambrosio-Tortorelli
energy: In Step 2 we show that u fulfils equation (2.6.2), then we use equations (2.6.2)
and (2.6.5) and dominated convergence (c.f. Lemma 2.6.6, also derived from [25]) to show
strong L2 convergence of ∇Un to ∇u in Step 3, and finally we use this to show that s
fulfils equation (2.6.3) in Step 4.

Lemma 2.6.6. Let pn, p ∈ H1(Ω) ∩ L∞(Ω), such that ‖pn‖L∞(Ω) , ‖p‖L∞(Ω) ≤ C < +∞
a.e., independently of n, and pn → p in L2(Ω). Then

lim
n

(
|pn − p| , |∇ϕϕϕ|2

)
= 0 ∀ϕϕϕ ∈ H1(Ω,Rm) .
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Proof. Let ϕϕϕ ∈ H1(Ω,Rm) be fixed. Choose a subsequence
{
pnj

}
j

of {pn}n such that

lim
j

(∣∣pnj
− p
∣∣ , |∇ϕϕϕ|2) = lim sup

n

(
|pn − p| , |∇ϕϕϕ|2

)
, and

lim
j
pnj

= p a.e.

Then
∣∣pnj

− p
∣∣ |∇ϕϕϕ|2 ≤ 2C |∇ϕϕϕ|2 a.e., by assumption. Therefore, by Lebesgue’s Domin-

ated Convergence Theorem,

lim sup
n

(
|pn − p| , |∇ϕϕϕ|2

)
= lim

j

(∣∣pnj
− p
∣∣ , |∇ϕϕϕ|2)

=

(
lim

j

∣∣pnj
− p
∣∣ , |∇ϕϕϕ|2) = 0.

Proof of Theorem 2.6.5. Step 1: For m, l → ∞, there is a subsequence {Un, Sn}, con-
verging weakly in H1(Ω,Rm)×H1(Ω) to some (u, s) ∈ H1(Ω,Rm)×H1(Ω, [−1, 1]).

For every m, l ∈ N, Proposition 2.6.4 gives existence of
(
Ul

m, S
l
m

)
and ensures that

−1 ≤ Sl
m ≤ 1 a.e. By Lemma 2.6.3 and by assumption,

Gε,hl

(
Ul

m, S
l
m

)
≤ Gε,hl

(
Ul

0, S
l
0

)
≤ C0,

independently of l,m. In particular, Gε,hn(Un
n, S

n
n) ≤ C0. So, by the definition of Gε,hn ,

the H1-norms of Un
n and Sn

n are bounded independently of n. Therefore, since H1 is a
Hilbert space, there exist subsequences, called {Un} and {Sn}, which converge weakly in
H1 to some (u, s) ∈ H1(Ω,Rm)×H1(Ω).

Finally, since H1(Ω) is a Hilbert space and {ϕ ∈ H1(Ω) : −1 ≤ ϕ ≤ 1 a.e} ⊂ H1(Ω)
is a closed, convex set, it is weakly closed. Therefore, by the weak convergence in H1 of
Sn ⇀ s, we get −1 ≤ s ≤ 1.

Below, we shall use the abbreviation h for hn.

Step 2: u solves equation (2.6.2).
Let ϕϕϕ ∈ C∞(Ω,Rm) be fixed, n ∈ N, and h > 0. Consider

γ
((
s2 + kε

)
∇u,∇ϕϕϕ

)
+ λ (u− g,ϕϕϕ) +

1

δε

((
|u|2 − 1

)
u,ϕϕϕ

)
=: γT1 + λT2 +

1

δε
T3.

Since H1 is compactly embedded in Lp for p < 6, as long as the space dimension d ≤ 3,
we have Un → u in Lp(Ω,Rm) for p < 6.

We compute

T1 =
((
S2

n−1 + kε

)
∇Un,∇IIIh(ϕϕϕ)

)
+
((
s2 − S2

n−1

)
∇Un,∇ϕϕϕ

)
+
((
s2 + kε

)
∇ (u−Un) ,∇ϕϕϕ

)
+
((
S2

n−1 + kε

)
∇Un,∇ (ϕϕϕ−IIIh(ϕϕϕ))

)
=: T n

11 + T n
12 + T n

13 + T n
14.

Note that ‖ϕϕϕ−IIIh(ϕϕϕ)‖Hr(Ω,Rm) ≤ ch2−r ‖∇2ϕϕϕ‖L2(Ω,Rm) for 0 ≤ r ≤ 2.
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Since −1 ≤ Sn−1, s ≤ 1, we have
∣∣S2

n−1 − s2
∣∣ ≤ C |Sn−1 − s| ≤ C |Sn−1 − s|1/2,

whence, by Lemma 2.6.6,

T n
12 =

((
s2 − S2

n−1

)
∇Un,∇ϕϕϕ

)
≤ C

(
|s− Sn−1| , |∇ϕϕϕ|2

)1/2 ‖∇Un‖L2(Ω,Rm×d)
h→0−→

n→+∞
0.

Since s ≤ 1, we know that (s2 + kε)∇ϕϕϕ ∈ L2
(
Ω,Rd×m

)
, so

T n
13 =

(
∇ (u−Un) ,

(
s2 + kε

)
∇ϕϕϕ
) h→0−→

n→+∞
0,

by the very definition of weak convergence. And since ‖ϕϕϕ−IIIh(ϕϕϕ)‖H1(Ω,Rm) → 0, we get

T n
14 ≤

∥∥S2
n−1 + kε

∥∥
L∞(Ω)

‖∇Un‖L2(Ω,Rm×d) ‖∇ (ϕϕϕ−IIIh(ϕϕϕ))‖L2(Ω,Rm×d)
h→0−→

n→+∞
0.

Furthermore

T2 = (Un −G,IIIh(ϕϕϕ)) + (Un −G,ϕϕϕ−IIIh(ϕϕϕ))

+ (rh(g)− g,ϕϕϕ) + (u−Un,ϕϕϕ)

=: T n
21 + T n

22 + T n
23 + T n

24,

with

T n
22 ≤ ‖Un −G‖L2(Ω,Rm) ‖ϕϕϕ−IIIh(ϕϕϕ)‖L2(Ω,Rm) → 0,

T n
23 ≤ ‖rh(g)− g‖L2(Ω,Rm) ‖ϕϕϕ‖L2(Ω,Rm) → 0, and

T n
24 ≤ ‖u−Un‖L2(Ω,Rm) ‖ϕϕϕ‖L2(Ω,Rm) → 0.

For the last term, we get

T3 =
((
|Un|2 − 1

)
Un,IIIh(ϕϕϕ)

)
+
((
|Un|2 − 1

)
Un,ϕϕϕ−IIIh(ϕϕϕ)

)
+
((
|u|2 − 1

)
u−

(
|Un|2 − 1

)
Un,ϕϕϕ

)
=: T n

31 + T n
32 + T n

33,

with
T n

32 ≤
∥∥(|Un|2 − 1

)
Un

∥∥
L2(Ω,Rm)

‖ϕϕϕ−IIIh(ϕϕϕ)‖L2(Ω,Rm)

h→0−→
n→+∞

0,

and

T n
33 ≤

∥∥|u|2 + u ·Un + |Un|2 − 1
∥∥

L2(Ω,Rm)
‖u−Un‖L4(Ω,Rm) ‖ϕϕϕ‖L4(Ω,Rm)

h→0−→
n→+∞

0.

So, putting all of the above together, we have for n ∈ N and h > 0 fixed,

γ
((
s2 + kε

)
∇u,∇ϕϕϕ

)
+ λ (u− g,ϕϕϕ) +

1

δε

((
|u|2 − 1

)
u,ϕϕϕ

)
=: γT n

13 + λT n
21 +

1

δε
T n

31 + T n,

where γT n
13 + λT n

21 + 1
δε
T n

31 = 0 by construction. Now, letting n → +∞ and h → 0, we
have T n → 0, as shown above. And by a density argument, the above is true for general
ϕϕϕ ∈ H1(Ω,Rm).

Step 3: ∇Un → ∇u strongly in L2
(
Ω,Rm×d

)
, as n→ +∞ and h→ 0.
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Let n ∈ N and h > 0. Then

γkε ‖∇ (u−Un)‖2
L2

≤ γ
((
S2

n−1 + kε

)
∇ (u−Un) ,∇ (Rh(u)−Un) +∇ (u−Rh(u))

)
= γ

((
S2

n−1 + kε

)
∇u,∇ (Rh(u)−Un)

)
−γ
((
S2

n−1 + kε

)
∇Un,∇ (Rh(u)−Un)

)
−λ (Un −G,Rh(u)−Un)− 1

δε

((
|Un|2 − 1

)
Un,Rh(u)−Un

)
+λ (Un −G,Rh(u)−Un) +

1

δε

((
|Un|2 − 1

)
Un,Rh(u)−Un

)
+γ
((
S2

n−1 + kε

)
∇ (u−Un) ,∇ (u−Rh(u))

)
=: T n

1 + . . .+ T n
7 .

By construction (equation (2.6.5) with W := Rh(u)−Un), the expression T n
2 + T n

3 + T n
4

is zero.

T n
1 = γ

((
S2

n−1 + kε

)
∇u,∇ (Rh(u)−Un)

)
= γ

((
S2

n−1 − s2
)
∇u,∇ (Rh(u)−Un)

)
+ γ

((
s2 + kε

)
∇u,∇ (Rh(u)−Un)

)
+λ (u− g,Rh(u)−Un) +

1

δε

((
|u|2 − 1

)
u,Rh(u)−Un

)
−λ (u− g,Rh(u)−Un)− 1

δε

((
|u|2 − 1

)
u,Rh(u)−Un

)
=: T n

11 + . . .+ T n
16.

By Step 2, T n
12 + T n

13 + T n
14 = 0. Therefore

γkε ‖∇ (u−Un)‖2
L2 ≤ T n

11 + T n
15 + T n

16 + T n
5 + T n

6 + T n
7 .

All of the above is true for any n ∈ N. Now, consider the limit n→ +∞ and h→ 0.
Note that, by a density-argument,

‖Rh(u)−Un‖X ≤ ‖Rh(u)− u‖X + ‖u−Un‖X

h→0−→
n→+∞

0,

for X = H1 and, by embedding, X = Lp (p < 6). Therefore we have, similarly to Step 2,

T n
5 = λ (Un − g,Rh(u)−Un) ≤ ‖Un − g‖L2(Ω,Rm) ‖Rh(u)−Un‖L2(Ω,Rm)

h→0−→
n→+∞

0,

and

T n
6 =

1

δε

((
|Un|2 − 1

)
Un,Rh(u)−Un

)
≤ 1

δε

∥∥(|Un|2 − 1
)
Un

∥∥
L4/3(Ω,Rm)

‖Rh(u)−Un‖L4(Ω,Rm)

h→0−→
n→+∞

0,

and the same is true for T n
15 and T n

16. Furthermore

T n
7 = γ

((
S2

n−1 + kε

)
∇ (u−Un) ,∇ (u−Rh(u))

)
≤ C

∥∥S2
n−1 + kε

∥∥
L∞(Ω)

‖∇ (u−Un)‖L2(Ω,Rm) ‖∇ (u−Rh(u))‖L2(Ω,Rm)

h→0−→
n→+∞

0,
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and finally,

T n
11 = γ

∥∥(S2
n−1 − s2

)
∇u
∥∥

L2(Ω,Rm)
‖∇ (Rh(u)−Un)‖L2(Ω,Rm)

h→0−→
n→+∞

0,

by Lemma 2.6.6, as in Step 2.

Step 4: s solves equation (2.6.3), and 0 ≤ s ≤ 1.
Let ϕ ∈ C∞(Ω) be fixed, n ∈ N, and h > 0. Set

2αε (∇s,∇ϕ) + γ
(
|∇u|2s, ϕ

)
+
α

2ε
(s− 1, ϕ) := 2αεT1 + γT2 +

α

2ε
T3.

We have

T1 = (∇Sn,∇Ih(ϕ)) + (∇Sn,∇ (ϕ− Ih(ϕ))) + (∇ (s− Sn) ,∇ϕ)

=: T n
11 + T n

12 + T n
13,

with T n
12, T

n
13 → 0 by the strong H1 convergence of Ih(·) and the weak H1 convergence of

Sn, respectively, like in Step 2.
Also,

T2 =
(
|∇Un|2 Sn, Ih(ϕ)

)
+
(
|∇Un|2 Sn, ϕ− Ih(ϕ)

)
+
((
|∇u|2 − |∇Un|2

)
Sn, ϕ

)
+
(
|∇u|2 (s− Sn) , ϕ

)
=: T n

11 + T n
12 + T n

13 + T n
14.

Since ϕ ∈ C∞(Ω), we have Ih(ϕ) → ϕ in L∞(Ω) for h→ 0, leading to

T n
12 ≤ ‖∇Un‖2

L2(Ω,Rm×d) ‖Sn‖L∞(Ω) ‖ϕ− Ih(ϕ)‖L∞(Ω)

h→0−→
n→+∞

0,

By Step 3, we conclude

T n
13 ≤ C ‖∇u +∇Un‖L2(Ω,Rm×d) ‖∇u−∇Un‖L2(Ω,Rm×d) ‖Sn‖L∞(Ω) ‖ϕ‖L2(Ω)

h→0−→
n→+∞

0,

and

T n
14 ≤ C

(
|s− Sn|, |∇u|2

)
‖ϕ‖L∞(Ω)

h→0−→
n→+∞

0,

by Lemma 2.6.6, like in Step 2.
Finally

T3 = (Sn − 1, Ih(ϕ))h + (Sn − 1, Ih(ϕ))− (Sn − 1, Ih(ϕ))h

+ (Sn − 1, ϕ− Ih(ϕ)) + (s− Sn, ϕ)

=: T n
31 + . . .+ T n

35,

with |T n
32 − T n

33| ≤ Ch ‖∇Sn‖L2(Ω) ‖Ih(ϕ)‖L2(Ω) → 0, and T n
34, T

n
35 → 0 by the strong Lp

convergence of Ih(·) and Sn, respectively.
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So, putting all of the above together, we have for n ∈ N and h > 0 fixed,

2αε (∇s,∇ϕ) + γ
(
|∇u|2s, ϕ

)
+
α

2ε
(s− 1, ϕ) =: 2αεT n

13 + γT n
21 +

α

2ε
T n

31 + T n,

where 2αεT n
13 + γT n

21 + α
2ε
T n

31 = 0 by construction. Now, letting n→ +∞ and h→ 0, we
get T n → 0, as shown above.

So we have shown that s solves equation (2.6.3) for test functions ϕ ∈ C∞(Ω). By a
density argument, this is also true for general ϕ ∈ H1(Ω). Therefore s is a critical point
of Gε. And since replacing s pointwise by 0∨ s∧1 would only decrease every term of this
energy, 0 ≤ s ≤ 1 follows.

This concludes the proof.

Remark 2.6.7. For d ≤ 2, one can also get ∇Sn → ∇s strongly in L2(Ω; Rm), with
an argument similar to Step 3, using the equations for Sn and s and a test function
Rh(s) − Sn. It breaks down for d ≥ 3 because of the lack of L∞-stability of the Ritz
projection.

2.7 Detour: Regularised Penalisation & Splitting

Before being made aware of the preprint [25], we lacked the idea of using Dominated Con-
vergence (Lemma 2.6.6) — obvious though this idea looks in hindsight —, and therefore
couldn’t get strong convergence for ∇un in L2. We therefore added another regular-
ising term ηε

p

∫
Ω
|∆s|pdx. This does allow identification of limits and does not destroy

Γ-convergence if ηε is properly scaled with respect to ε, and we give an abbreviated ac-
count of this approach in this section, because we believe it contains some interesting
mathematics. However, the practical disadvantages of this approach are obvious: The
need for a Hermite finite element space Vh(Ω) ⊂ W 2,p(Ω) (or a mixed formulation which
further complicates the analysis) and no maximum principle for s.

2.7.1 Γ-Convergence

Let Ω ⊂ Rd, γ, α, λ be fixed positive constants, ε, δε > 0, kε, ηε ≥ 0, g ∈ L∞(Ω,Sm−1),
1 < p < +∞, and Gε, G : L2(Ω,Rm)× L2(Ω) → [0,+∞] be defined by

Gε(u, s) :=



γ

2

∫
Ω

(
s2 + kε

)
|∇u|2dx +

λ

2

∫
Ω

|u− g|2dx if u ∈ H1(Ω,Rm) ,

+α

∫
Ω

(
ε|∇s|2 +

(1− s)2

4ε

)
dx s ∈ W 2,p(Ω, [0, 1]),

+
1

δε

∫
Ω

(
|u|2 − 1

)2
dx +

ηε

p

∫
Ω

|∆s|pdx

+∞, otherwise,

and

G(u, s) :=


γ

2

∫
Ω

|∇u|2dx + αHd−1(Su) +
λ

2

∫
Ω

|u− g|2dx if u ∈ GSBV (Ω,Sm−1)

and s = 1 a.e.

+∞, otherwise.
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We shall use the following assumption on account of the term involving second derivatives.
In the case of the original Ambrosio-Tortorelli energy, no such assumption is necessary,
and we expect that even in our case a density result like [39, 41] and a diagonal argument
should allow to overcome this restriction. But we do not address this problem here.

Assumption 2.7.1. Let Su consists of a finite number of disjoint C2 manifolds of di-
mension (d− 1).

Theorem 2.7.2. If Ω ⊂ Rd is open and bounded with Lipschitz boundary, δε −→
ε→0

0,

kε = o(ε), kε = o(δε), ηε = o(kp−1
ε εp), and Su fulfils Assumption 2.7.1, then Gε

Γ−→
ε→0

G in

L2(Ω,Rm)× L2(Ω).
Moreover, there exists a solution {uε, sε} of the minimum problem

mε = inf
u∈H1(Ω,Rm),

s∈W 2,p(Ω,[0,1])

Gε(u, s)

with ‖uε‖L∞ ≤ C, and every cluster point of {uε} is a solution of the minimum problem

m = inf
u∈GSBV (Ω,Sm−1)

G(u, 1),

and mε → m as ε→ 0+.

Sketch of Proof. The lim inf inequality follows like in Section 2.5
For the limsup inequality, let u ∈ SBV (Ω,Rm)∩L∞(Ω,Rm) with ∇u ∈ L2

(
Ω,Rd×m

)
,

|u|2 = 1 a.e., Su essentially closed in Ω, and s = 1 a.e. We then have to construct (uε, sε)
that converge in L2(Ω,Rm)× L2(Ω) to (u, s), such that

lim sup
ε→0+

Gε (uε, sε) ≤ G(u, s)

for any positive sequence ε converging to zero.
To this end, we use a smoothed version of the profile used in Section 2.5, to ensure

sε ∈ W 2,p(Ω): Choose a positive sequence bε, such that bε = o(ε), bε = o(δε), and
kε = o(bε). For any b > 0, set Sb := {x ∈ Ω : d(x) < b}. Thanks to (2.5.2), |Sb| = O(b).
For t ≥ 2bε, let

σε(t) := 1− exp

(
−t− 2bε

2ε

)
, so that

σ′ε(t) =
1

2ε
exp

(
−t− 2bε

2ε

)
, and

σ′′ε (t) = − 1

4ε2
exp

(
−t− 2bε

2ε

)
.

We would now like to set (c.f. Figure 2.2, left)

sε(x) :=


0 if x ∈ S2bε ,

σε(d(x)) if x ∈ S2bε+2ε ln 1
ε
\ S2bε ,

1− cε if x ∈ Ω \ S2bε+2ε ln 1
ε
.

(2.7.1)
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Note that 0 < 2ε ln 1
ε
→ 0+, and ε = o

(
2ε ln 1

ε

)
. Unfortunately, for this choice, sε /∈

W 2,p(Ω). So we have to smooth out the two kinks in sε. This can be done by ex-
tending/replacing σε in t ∈ [bε, 3bε] and t ∈

[
bε + 2ε ln 1

ε
, 3bε + 2ε ln 1

ε

]
with polynomials

pε, qε of degree 3 such that pε(bε) = p′ε(bε) = qε
(
3bε + 2ε ln 1

ε

)
= q′ε

(
3bε + 2ε ln 1

ε

)
= 0,

pε(3bε) = σε(3bε), p
′
ε(3bε) = σ′ε(3bε), qε

(
bε + 2ε ln 1

ε

)
= σε

(
bε + 2ε ln 1

ε

)
, q′ε
(
bε + 2ε ln 1

ε

)
=

σ′ε
(
bε + 2ε ln 1

ε

)
. A simple calculation shows that this is possible while keeping

pε, qε = O(1) , p′ε, q
′
ε = O

(
1

ε

)
, p′′ε , q

′′
ε = O

(
1

εbε

)
. (2.7.2)

Now, set (c.f. Figure 2.2, right)

sε(x) :=



0 if x ∈ Sbε ,

pε(d(x)) if x ∈ S3bε \ bε,
σε(d(x)) if x ∈ Sbε+2ε ln 1

ε
\ S3bε ,

qε(d(x)) if x ∈ S3bε+2ε ln 1
ε
\ Sbε+2ε ln 1

ε
,

1− cε if x ∈ Ω \ S3bε+2ε ln 1
ε
,

(2.7.3)

and

uε(x) := u(x) min

{
d(x)

bε
, 1

}
.

By the above, indeed sε ∈ W 2,p(Ω).

Figure 2.2: Sketch of sε(x) in the case Su = {0}, and d = 1; original (left) and two crops
of the smoothed version (right).

The calculations are now the same as in Section 2.5, except for the terms with coeffi-
cients α and ηε

p
in the energy. For the first of these, we have∫

Ω

(
ε|∇sε|2 +

(1− sε)
2

4ε

)
dx

=

[∫
S3bε

+

∫
S

bε+2ε ln 1
ε
\S3bε

+

∫
Ω\S

bε+2ε ln 1
ε

](
ε |∇sε|2 +

(1− sε)
2

4ε

)
dx

=: Iε + IIε + IIIε.



48 CHAPTER 2. THE MUMFORD-SHAH FUNCTIONAL

Apart from the obvious changes, the calculations for the term IIε are again the same as
in Section 2.5. What is left to show is Iε, IIIε → 0. Indeed, by the construction of sε,
|Sbε| = O(bε), bε = o(ε), and (2.7.2),

Iε ≤
∫

Sbε

1

4ε
dx +

∫
S3bε\Sbε

(
ε (p′ε(x))

2
+

(1− pε(x))2

4ε

)
dx

≤ C
bε
ε
→ 0.

And similarly,

IIIε =

∫
S

bε+2ε ln 1
ε
\S

3bε+2ε ln 1
ε

(
ε (q′ε(x))

2
+

(1− qε(x))2

4ε

)
dx +

∫
Ω\S

3bε+2ε ln 1
ε

ε2

4ε
dx

≤ C

(
bε
ε

+
ε2

ε

)
→ 0,

so, indeed,

lim sup
ε→0+

∫
Ω

(
ε |∇sε|2 +

(1− sε)
2

4ε

)
dx ≤ Hd−1(Su) , (2.7.4)

And for the term with coefficient ηε

p
, by construction,

|∆sε(x)| =


|p′′ε(d(x))| |∇d(x)|2 + |p′ε(d(x))| |∆d(x)| if x ∈ S3bε \ bε,
|σ′′ε (d(x))| |∇d(x)|2 + |σ′ε(d(x))| |∆d(x)| if x ∈ Sbε+2ε ln 1

ε
\ S3bε ,

|q′′ε (d(x))| |∇d(x)|2 + |q′ε(d(x))| |∆d(x)| if x ∈ S3bε+2ε ln 1
ε
\ Sbε+2ε ln 1

ε
,

0 otherwise.

We know that |∇d(x)| = 1 a.e. and Su consists of a finite number of disjoint C2 manifolds
of dimension d − 1. So for ε small enough no two of the

(
3bε + 2ε ln 1

ε

)
neighbourhoods

of the disjoint components of Su intersect, and |∆d(x)| = O(d−1(x)) = O(bε) = o(kε).
Therefore,

ηε

p

∫
Ω

|∆sε|p dx

≤ Cηε

(
bε

(εbε)
p +

∫ 2bε+2ε ln 1
ε

2bε

(
1

ε2p
+

1

tpεp

)
exp

(
−pt− 2bε

2ε

)
dt

)

≤ Cηε

(
1

εpbp−1
ε

+
1

εp

∫ 2bε+2ε ln 1
ε

2bε

1

tp
dt

)
≤ C

ηε

εpbp−1
ε

≤ C
ηε

εpkp−1
ε

→ 0.

(2.7.5)

Putting this together proves the lim sup inequality.
Finally, convergence of minimisers again follows like in Section 2.5.
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2.7.2 Continuous Algorithm and Analysis

Let Ω ⊂ Rd be a convex, bounded Lipschitz domain, g : Ω → Sm−1 the chromaticity
component of a given image, and 1 < p < +∞ (p > d will later be required to get the
right Sobolev embeddings). For u,g ∈ H1(Ω,Rm), s ∈ W 2,p(Ω), and 0 < ε, kε, δε, ηε ¿ 1,
we want to minimise the following vector valued Ambrosio-Tortorelli-Ginzburg-Landau
energy using a splitting strategy

Gε(u, s) =
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx +

λ

2

∫
Ω

|u− g|2 dx +
ηε

p

∫
Ω

|∆s|p dx

+α

∫
Ω

ε |∇s|2 +
1

4ε
(1− s)2dx +

1

δε

∫
Ω

(
|u|2 − 1

)2
dx.

(2.7.6)

We shall always assume γ, α, λ to be fixed and positive. The reason for the term
ηε

p

∫
Ω
|∆s|p dx is that for p > d it allows us, by embedding, to bound the C0,1 norm

of iterates s2
n−1, independently of n. Since div

((
s2

n−1 + kε

)
∇un

)
is the highest order

term in (2.7.9) (weak formulation), this, together with a standard elliptic regularity res-
ult, allows us to bound the H2(Ω,Rm) norm of u by the initial energy. With this we can
then pass to the limit (n→∞) in the term

(
|∇un|2 sn,ϕϕϕ

)
.

Definition 2.7.3. A tuple (u, s) ∈ H1(Ω,Rm)×W 2,p(Ω) is called a weak solution of the
problem inf Gε, if and only if

(1) for all ϕϕϕ ∈ H1(Ω,Rm), there holds

γ
((
s2 + kε

)
∇u,∇ϕϕϕ

)
+ λ (u− g,ϕϕϕ) +

4

δε

((
|u|2 − 1

)
u,ϕϕϕ

)
= 0, and (2.7.7)

(2) for all ϕ ∈ W 2,p(Ω), there holds

2αε (∇s,∇ϕ) + γ
(
|∇u|2s, ϕ

)
+
α

2ε
(s− 1, ϕ) + ηε

(
|∆s|p−2∆s,∆ϕ

)
= 0. (2.7.8)

Algorithm 2.7.4. Let g and 0 < ε, kε, δε, ηε be given, and choose initial values u0 ∈
H1 (Ω,Rm), and s0 ∈ C0,1(Ω) (typically, u0 := g and s0 ≡ c for some constant 0 ≤ c ≤ 1).
For n = 1, . . . until convergence, do

(1) Minimise Gε(u, sn−1) for u ∈ H1(Ω,Rm), and call the solution un, i.e., for all
ϕϕϕ ∈ H1(Ω,Rm) solve

γ
((
s2

n−1 + kε

)
∇un,∇ϕϕϕ

)
+ λ (un − g,ϕϕϕ) +

4

δε

((
|un|2 − 1

)
un,ϕϕϕ

)
= 0. (2.7.9)

(2) Minimise Gε(un, s) for s ∈ W 2,p(Ω) and call the solution sn, i.e., for all ϕ ∈
W 2,p(Ω) solve

2αε (∇sn,∇ϕ) + γ
(
|∇un|2 sn, ϕ

)
+
α

2ε
(sn − 1, ϕ)

+ηε

(
|∆sn|p−2 ∆sn,∆ϕ

)
= 0.

(2.7.10)
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Remark 2.7.5. Algorithm 2.7.4 is energy-decreasing, since for any n ≥ 0 it ensures

Gε(un+1, sn+1) ≤ Gε(un+1, sn) ≤ Gε(un, sn) .

The following result follows by standard coercivity and convexity arguments for Gε,
and elliptic regularity theory (see e.g. [64, Section 8.4]).

Proposition 2.7.6. Let kε, δε, γ > 0. Then there exists u ∈ H1(Ω,Rm), such that
equation (2.7.7) holds for all ϕϕϕ ∈ H1(Ω,Rm).

If either Ω ⊂ R2 is a bounded, convex polygon, or Ω ⊂ Rd (d > 2) is C1,1, and
s ∈ C0,1(Ω), then u ∈ H2 (Ω,Rm). Moreover, there exists a constant C > 0, such that

‖u‖H2 ≤ C

(
‖u‖H1 +

∥∥∥λ(u− g) +
4

δε

(
|u|2 − 1

)
u
∥∥∥) ,

where C = C
(
∂Ω, ‖s2‖C0,1(Ω) , kε, γ

)
> 0.

The following technical results are well-known.

Lemma 2.7.7. Let p ∈ (1,∞). For γ ≥ 0, there exist positive constants C1, C2, such
that for all ζζζ,ηηη ∈ Rd there holds

(i)
∣∣∣|ζζζ|p−2ζζζ − |ηηη|p−2ηηη

∣∣∣ ≤ C1

(
|ζζζ|+ |ηηη|

)p−2+γ|ζζζ − ηηη|1−γ ,

(ii)
〈
|ζζζ|p−2ζζζ − |ηηη|p−2ηηη, ζζζ − ηηη

〉
≥ C2

(
|ζζζ|+ |ηηη|

)p−2−γ|ζζζ − ηηη|2+γ .

Browder and Minty’s Theorem (using Lemma 2.7.7(ii)), together with strict convexity
of the functional with respect to second derivatives of s, ensures the following proposition.

Proposition 2.7.8. Let u ∈ H2(Ω,Rm), p ∈ (1,∞), and ε, ηε > 0. Then there exists a
unique s ∈ W 2,p(Ω) such that for all ϕ ∈ W 2,p(Ω), equation (2.7.8) holds.

Theorem 2.7.9. Let either Ω ⊂ R2 be a bounded, convex polygon, or Ω ⊂ Rd (d > 2) be
in C1,1. Let furthermore Gε(u0, s0) ≤ C0 < +∞ and d < p < +∞. Then the sequence
{un, sn} constructed by Algorithm 2.7.4 converges weakly (up to subsequences in u) in
H2(Ω,Rm) ×W 2,p(Ω) to some (u, s) ∈ H2(Ω,Rm) ×W 2,p(Ω), which is a weak solution
as in Definition 2.7.3.

Proof. Step 1: For n → ∞, {un, sn} converges weakly (up to subsequences in u) in
H2(Ω,Rm)×W 2,p(Ω) to some (u, s) ∈ H2(Ω,Rm)×W 2,p(Ω)

Thanks to Proposition 2.7.8, we know that sn−1 ∈ W 2,p(Ω), which is compactly em-
bedded in C1

(
Ω
)

(for Ω Lipschitz and p > d), so together with Proposition 2.7.6 we have
that Algorithm 2.7.4 makes sense. Furthermore,

‖un‖H2 ≤ C

(
‖un‖H1 +

∥∥∥λ(un − g) +
4

δε

(
|un|2 − 1

)
un

∥∥∥) , (2.7.11)

with C = C
(
∂Ω,

∥∥s2
n−1

∥∥
C0,1(Ω) , kε, γ

)
> 0. And since p > d, there is a constant C̃ ≥ 0,

such that ∥∥s2
n−1

∥∥
C0,1(Ω) ≤ C̃ ‖sn−1‖p

W 2,p ,
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which in turn is bounded by the initial energy (by Remark 2.7.5). So, all of the right
hand side of (2.7.11) is bounded by some constant depending only on the initial data.
Hence we can extract a subsequence, which by the above embedding has the following
convergence properties for n→∞,

(un, sn) ⇀ (u, s) in H2(Ω,Rm)×W 2,p(Ω),

(un, sn) → (u, s) in C0
(
Ω,Rm

)
× C1

(
Ω
)
,

un → u in W 1,q(Ω,Rm) if

{
1 < q <∞ for d = 2,

1 < q < 2d
d−2

for d > 2,

|∆sn|p−2 ∆sn ⇀ b in L
p

p−1 (Ω) for some b ∈ L
p

p−1 (Ω).

(2.7.12)

In particular, sn → s (strongly) in L∞(Ω), by embedding. Also, un → u (strongly) in
H1(Ω,Rm), which is actually enough to pass to the limit (we do not need weak H2(Ω,Rm)
convergence and indeed do not have it in the discrete case).

Step 2: (u, s) is a weak solution of the problem inf Gε(·, ·)
For equation (2.7.9), we want to show that the following expression vanishes for n→

∞

γ
( (
s2

n + kε

)
∇un−

(
s2 + kε

)
∇u,∇ϕϕϕ

)
+

4

δε

((
|un|2 − 1

)
un −

(
|u|2 − 1

)
u,ϕϕϕ

)
=: γI+

4

δε
II,

the fidelity term λ (un − g − (u− g)) being trivial. We can assume ϕϕϕ ∈ C∞(Ω,Rm) and
then have

I = kε

((
∇ (un − u)

)
,∇ϕϕϕ

)
+
(
s2

n∇un − s2∇u,∇ϕϕϕ
)

≤ C ‖∇ (un − u)‖ ‖∇ϕϕϕ‖+ C
∥∥s2

n∇un − s2∇u
∥∥

L1 ‖∇ϕϕϕ‖L∞

≤ C ‖un − u‖H1 ‖∇ϕϕϕ‖+ C
∥∥(s2

n − s2
)
∇un + s2∇ (un − u)

∥∥
L1 ‖∇ϕϕϕ‖L∞

≤ C ‖un − u‖H1 ‖∇ϕϕϕ‖+ C ‖sn − s‖L∞ ‖sn + s‖L∞ ‖∇un‖L1 ‖∇ϕϕϕ‖L∞

+C ‖s‖2
L∞ ‖∇ (un − u)‖L1 ‖∇ϕϕϕ‖L∞ ,

every single term of which tends to zero by (2.7.12). Furthermore, again by (2.7.12),

II =
((
|un|2 − |u|2

)
un,ϕϕϕ

)
+
(

(un − u) |u|2,ϕϕϕ
)

+ (u− un,ϕϕϕ)

≤ C‖ϕϕϕ‖
(
‖un − u‖L6 ‖un + u‖L6 ‖un‖L6 + ‖un − u‖L6 ‖u‖2

L6 + ‖un − u‖
)
,

every single term of which again tends to zero.
For equation (2.7.10) we easily see that limn→∞ |(∇ (sn − s) ,∇ϕ)|+ |(sn − s, ϕ)| = 0.

For the first of the remaining terms, we get, again assuming ϕ ∈ C∞(Ω),

γ
(
|∇un|2 sn − |∇u|2s, ϕ

)
= γ

((
|∇un|2 − |∇u|2

)
sn, ϕ

)
+ γ

(
|∇u|2 (sn − s) , ϕ

)
=: γI + γII.

We compute
I ≤ C ‖∇un −∇u‖L2 ‖∇un +∇u‖L2 ‖sn‖L∞ ‖ϕ‖L∞ ,
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and
II ≤ ‖∇u‖2

L2 ‖sn − s‖L∞ ‖ϕ‖L∞ ,

which both tend to zero by (2.7.12). In order to identify b in (2.7.12)4, we use Minty’s
trick. By Lemma 2.7.7(ii),(

|∆sn|p−2 ∆sn − |∆t|p−2 ∆t,∆sn −∆t
)
≥ 0

for all n ∈ N and all t ∈ W 2,p(Ω). Using equation (2.7.10), we get

−2αε

ηε

(∇sn,∇sn)− γ

ηε

(
|∇un|2 sn, sn

)
− α

2εηε

(sn − 1, sn)

−
(
|∆sn|p−2 ∆sn,∆t

)
−
(
|∆t|p−2 ∆t,∆sn −∆t

)
≥ 0

Using (2.7.12), we can pass to the limit, getting

−2αε

ηε

(∇s,∇s)− γ

ηε

(
|∇u|2 s, s

)
− α

2εηε

(s− 1, s)

− (b,∆t)−
(
|∆t|p−2 ∆t,∆s−∆t

)
≥ 0,

which, using equation (2.7.8), can be rewritten as(
b− |∆t|p−2 ∆t,∆s−∆t

)
≥ 0

for all t ∈ W 2,p(Ω). Fixing ϕ ∈ W 2,p(Ω) and setting t := s− λϕ for λ ≥ 0, we obtain(
b− |∆s− λ∆ϕ|p−2 (∆s− λ∆ϕ),∆ϕ

)
≥ 0,

which, for λ→ 0, gives (
b− |∆s|p−2 ∆s,∆ϕ

)
≥ 0,

for all ϕ ∈ W 2,p(Ω). And replacing ϕ by −ϕ, we see that equality holds, so

(b,∆ϕ) =
(
|∆s|p−2 ∆s,∆ϕ

)
for all ϕ ∈ W 2,p(Ω), which identifies the limit.

2.8 Computational Studies

2.8.1 Implementation of the Penalisation & Splitting Algorithm

To implement Algorithm 2.6.2, we use a simple fixed-point strategy for the Ginzburg-
Landau term. So the actual algorithm looks like this,

Algorithm 2.8.1. Let U0,G ∈ Vh(Ω,Rm) , S0 ∈ Vh(Ω), and 0 < ε, kε, δε, ϑ¿ 1 be given.
For n = 1, . . . do

(1) Set Un,0 := Un−1, Sn,0 := Sn−1

(2) For l = 0, . . . , ϑ do
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(a) Compute Un,l+1 ∈ Vh(Ω,Rm) such that for all W ∈ Vh(Ω,Rm) it holds that

γ
(((

Sn−1
)2

+ kε

)
∇Un,l+1,∇W

)
+ λ

(
Un,l+1 −G,W

)
+

1

δε

((∣∣Un,l
∣∣2 − 1

)
Un,l+1,W

)
= 0.

(b) Compute Sn,l+1 ∈ Vh(Ω) such that for all W ∈ Vh(Ω) it holds that

2αε
(
∇Sn,l+1,∇W

)
+ γ

(∣∣∇Un−1
∣∣2 Sn,l+1,W

)
+
α

2ε

(
Sn,l+1 − 1,W

)
h

= 0.

(3) Set Un := Un,l+1.

For the subsequent computations, we choose ϑ = 3.

2.8.2 Algorithm for Chromaticity and Brightness

So far, our algorithms can only process the chromaticity component of a given image.
To process real images, a suitable scheme for the brightness component has to be im-
plemented. We suggest to amend Ambrosio and Tortorelli’s energy to ATε(u, v, s) :
H1(Ω,Sm−1)×H1(Ω)×H1(Ω) → [0,+∞]

ATε(u, v, s) :=
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2dx +

λ

2

∫
Ω

|u− g|2dx

+
γ1

2

∫
Ω

(
s2 + kε

)
|∇v|2dx +

λ1

2

∫
Ω

|v − b|2dx

+α

∫
Ω

ε|∇s|2 +
1

4ε
(1− s)2dx,

(2.8.1)

with γ, γ1, α, λ, λ1 positive constants and b, v ∈ L∞(Ω)∩H1(Ω) the brightness component
of the original and the processed image, respectively (normalised to lie in [0, 1]). So, we
add a smoothing and a fidelity term for the brightness component in the second line
of (2.8.1). The idea here is that the smoothing term for the chromaticity component
forces |s| to be small whenever |∇u| is large, while the smoothing term for the brightness
component does the same whenever |∇v| is large. So we expect {s ≈ 0} to approximate
the union of the essential jump sets of the chromaticity and the brightness component.

This necessitates the adaptation of the optimisation problem for s as well as the
solution of a third optimisation problem, which we place between the two existing ones.

If we process an image with more noise in the chromaticity as in the brightness, as is
usually the case with images from digital cameras, we can therefore choose to give more
weight to the information of the brightness component, and the chromaticity component
will profit from the better information of the brightness component through the joint
edge set, as illustrated in Example 2.6.

Remark 2.8.2. In [73], Kawohl finds a connection between two different models in im-
age processing: the variational Mumford-Shah approach and the anisotropic diffusion
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approach by Perona and Malik [90]. He shows that formally applying several simplific-
ations to the former leads to a version of latter. Below, we apply the same procedures
to our new model (2.8.1), which we slightly modify for convenience to give ÃT ε(u, v, s) :
H1(Ω,Sm−1)×H1(Ω)×H1(Ω) → [0,+∞]

ÃT ε(u, v, s) := γ

∫
Ω

(
s2 + kε

)
|∇u|2dx + λ

∫
Ω

|u− g|2dx

+γ1

∫
Ω

(
s2 + kε

)
|∇v|2dx + λ1

∫
Ω

|v − b|2dx

+

∫
Ω

ε|∇s|2 +
1

4ε
(1− s)2dx,

(2.8.2)

Variation of this modified functional ÃT ε(u, v, s) with respect to s gives the optimality
condition

γs|∇u|2 + γ1s|∇v|2 − ε∆s+
1

4ε
(s− 1) = 0.

Upon choosing ε = o(h2), we can neglect the term ε∆s, since on a discrete level, ∆s =
O(h2). (This is supposed to serve as a motivation only — in light of our Γ-convergence
analysis, this choice of ε makes little sense). This motivates the choice of

s :=
(
1 + 4ε

(
γ|∇u|2 + γ1|∇v|2

))−1
,

which can be plugged into (2.8.2), leading, upon neglecting
∫

Ω
ε|∇s|2 as above and setting

kε := 0, to the functional∫
Ω

γ|∇u|2 + γ1|∇v|2

1 + 4ε (γ|∇u|2 + γ1|∇v|2)
dx + λ

∫
Ω

|u− g|2dx + λ1

∫
Ω

|v − b|2dx,

with |u| = 1 a.e. This leads to the Euler equations

γdiv

(
∇u

(1 + 4ε (γ|∇u|2 + γ1|∇v|2))2

)
= λ(u− g) + µu,

|u|2 = 1 a.e.,

γ1div

(
∇v

(1 + 4ε (γ|∇u|2 + γ1|∇v|2))2

)
= λ1(v − b),

for a Lagrange multiplier µ : Ω → R. This suggests the following modified Perona-Malik
approach for colour images using the CB colour model (in the Perona-Malik context, there
is usually no fidelity term):

ut − div
(
g1

(
|∇u|2 , |∇v|2

)
∇u
)

= µu,

|u| = 1 a.e.,

vt − div
(
g2

(
|∇u|2 , |∇v|2

)
∇v
)

= 0,

(2.8.3)

with no-flux boundary conditions and gi positive and tending to zero for |∇u| , |∇v| →
+∞. The idea is, of course, to have very little diffusion at edges and much more else-
where. According to the above formal derivation, the natural choice for gi would be
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gi

(
|∇u|2 , |∇v|2

)
:=
(
1 + γ |∇u|2 + γ1 |∇v|2

)−2
for i ∈ {1, 2}. Like with the Mumford-

Shah functional, this means that chromaticity and brightness share a common edge set.
In fact, for either |∇u| or |∇v| large enough, backward diffusion has to be expected, which
steepens profiles (enhances edges), according to results on the standard Perona-Malik ap-
proach, assuming classical solutions.

Using Graßmann’s identity a× (b× c) = b(a · c)− c(a · b) for a,b, c ∈ Rm, (2.8.3)1

and (2.8.3)2 can be recast into

ut − u× (u×DG(u)) = 0,

with (DG(u),ϕϕϕ) :=
∫

Ω
g1

(
|∇u|2 , |∇v|2

)
∇u · ∇ϕϕϕdx for all ϕϕϕ ∈ H1(Ω,Rm), a type of

problem which was numerically treated in [13].

2.8.3 Academic Images, Splitting & Projection

All arrows below are scaled in length to fit the plots. Since Algorithm 2.4.1 ensures the
sphere constraint exactly at nodal points, any appearance of changing length is due to
perspective. Note that what we call h below is in fact the length of the two shorter
sides of the rectangular triangles in our triangulations; i.e., it is shorter than the actual
diameter of the triangles (by a factor of

√
2).

Example 2.1. Let Ω := (0, 1)2 and G as in the left plot in Figure 2.3. The right picture
shows a section along x = 0.5, where the z-values of the two regions are the closest.
We use a triangulation consisting of 22∗8 halved squares (along the direction (1, 1)); i.e.,
131072 triangles, with 66049 nodes, and h = 2−8 ≈ 4 ∗ 10−3. The initial values for U
and S are U0 ≡ G and S0 ≡ 0.5, respectively. We choose γ = 1.2, α = 0.5, λ = 2 ∗ 103,
ε = 6 ∗ 10−4, and kε = 10−6 (parameters chosen by experiment).
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Figure 2.3: Example 2.1: Original image (left) and z-values of a vertical section through
it (x = 0.5, right).

Figure 2.3 shows the initial values, Figure 2.4 the result after 10 iterations of our
proposed algorithm. Figure 2.5 shows the detected edge set and Figure 2.6 the Ambrosio-
Tortorelli energy over time.
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Figure 2.4: Example 2.1: Image and section after 10 iterations.
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Figure 2.5: Example 2.1: Edge set (left) and horizontal section through it (y = 0.375,
right) after 10 iterations.
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Figure 2.6: Example 2.1: Ambrosio-Tortorelli Energy (10 iterations, logarithmic plot).
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The next example numerically studies simultaneous blowup behaviour for the W 1,∞-
norm of iterates {Un, Sn}.

Example 2.2. Let Ω, S0, and G be as above. However, U0 is chosen to be U0 ≡ (0, 0, 1).
We first use a triangulation consisting of 22∗r, r = 8 halved squares as above, and later
use coarser ones (r ∈ {5, . . . , 8}) for comparison. Parameters are as above, except for
ε = h/6 = 2−r/6.
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Figure 2.7: Example 2.2: Ambrosio-Tortorelli energy, 10 steps, for r = 8 (left) and
r ∈ {5, . . . , 8} (right), y-logarithmic plots.
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Figure 2.8: Example 2.2: W 1,∞-norm of U and S for r ∈ {5, . . . , 8}.

Results for r = 8 turn out to be almost identical to those in the first example.
Figure 2.7 shows the total Ambrosio-Tortorelli energy for r ∈ {5, . . . , 8} (which are very
close for all r). Finally, Figure 2.8 shows the W 1,∞-norm of U and S for r ∈ {5, . . . , 8}.

We experience blowup behaviour for {Un} and {Sn}, apparently driven by the fidelity
term; and {Sn} appears to be one iteration ahead of {Un} in terms of blowup behaviour.

The next example numerically studies blowup behaviour for the W 1,∞-norm of iterates
{Un, Sn} in the absence of a fidelity term; i.e., λ = 0. This is motivated by blowup results
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for harmonic maps (to the sphere), see e.g. [95, 97, 98, 99, 68, 12]. In particular, it is
known that for d = 2, singularities only appear for large initial energy. And any harmonic
map (for general d) is smooth outside a set whose (d− 2)-dimensional Hausdorff measure
is zero, see [94, 95, 69, 58, 18, 77, 76].

Example 2.3. We use the same domain and triangulation as in Example 2.2 with r ∈
{5, . . . , 8}. Let γ = 1 = α, λ = 0, ε = h/6, and kε = 10−6. We use two sets of initial
data for U and S, which are shown in Figures 2.9 and 2.12 (leftmost column). In both
cases, U0 is constantly (0, 0, 1) in the periphery of the image, (0, 0,−1) at the centre, and
varying continuously inside a circle around the centre. In the first case, we choose S = 0
at the centre, S = 1 in the periphery, and smoothly varying in between; in the second
case, we choose S = 1 at the centre, S = 0 in the periphery, and smoothly varying in
between.
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Figure 2.9: Example 2.3: Un (top), detail of Un (middle), and full image of Sn (bottom)
for n ∈ {0, 3, 5}.

Figure 2.9 shows iterates n ∈ {0, 3, 5} for r = 8, and crops of iterates Un, Figure 2.10
shows the total energy for r ∈ {5, . . . , 8}, while Figure 2.11 shows the W 1,∞-norms of Un

and Sn for r ∈ {5, . . . , 8}, which both show blowup behaviour. This time it is Un which
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Figure 2.10: Example 2.3: Ambrosio-Tortorelli energy, 10 steps, for r = 8 (left) and
r ∈ {5, . . . , 8} (right), y-logarithmic plots.
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Figure 2.11: Example 2.3: W 1,∞-norm of U and S for r ∈ {5, . . . , 8}.

appears one step ahead of Sn with respect to blowup behaviour. Depending somewhat on
r, the system matrices become close to singular after 6–7 iterations, so after this point,
the results can no longer be expected to be reliable. The arrow at the centre of U at
this point still points down, while the rest of U points up. The variable S, on the other
hand, becomes 1 everywhere, except for the centre, where it stays 0. After breakdown,
the arrows move erratically, but perfectly synchronised with one another.

The next example uses the same setting and the same initial data for U, but avoids
blowup behaviour through a different choice of initial data for S.

Example 2.4. Except for the initial data for S we use exactly the same setting as in
Example 2.3. This time, we choose S = 1 at the centre, S = 0 in the periphery, and
smoothly varying in between.

Figure 2.12 shows iterates n ∈ {0, 3, 6} for r = 8, and crops of iterates Un, Figure 2.13
shows the total energy for r ∈ {5, . . . , 8}, while Figure 2.14 shows the W 1,∞-norms of
Un and Sn for r ∈ {5, . . . , 8}, which this time stay finite. The arrows of U all point
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Figure 2.12: Example 2.3: Un (top), detail of Un (middle), and Sn (bottom) for n ∈
{0, 3, 6}.
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Figure 2.13: Example 2.3: Ambrosio-Tortorelli energy, 10 steps, for r = 8 (left) and
r ∈ {5, . . . , 8} (right), y-logarithmic plots.
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Figure 2.14: Example 2.3: W 1,∞-norm of U and S for r ∈ {5, . . . , 8}.

down at the end, while S is 1 everywhere. After 6 iterations, the system matrices again
become close to singular; in this case, however, iterates do not change dramatically after
this point, if at all.

2.8.4 Academic Images, Penalisation & Splitting

The next example studies the same setting as Example 2.1, this time with Algorithm
2.6.2; i.e., the sphere constraint is enforced by penalisation instead of projection. Again,
all arrows are scaled in length to fit the plots.
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Figure 2.15: Example 2.1: Image and section after 10 iterations.

Example 2.5. The setting is as in Example 2.1. Parameters are γ = 1.2, α = 0.5,
λ = 2 ∗ 103, ε = 10−3, kε = 10−6, and δε = 0.1 (chosen by experiment).
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Figure 2.16: Example 2.5: Edge set (left) and horizontal section through it (y = 0.375,
right) after 10 iterations.
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Figure 2.17: Example 2.5: min and max of |U| (left), and Ambrosio-Tortorelli Energy
(right) for 10 iterations.

Figure 2.15 shows the result after 10 iterations, Figure 2.16 shows the detected edge
set after 10 iterations, while Figure 2.17 shows the global minimum and maximum of |U|
and the Ambrosio-Tortorelli energy over time.

For δε between about 5∗10−3 and at least 102, the results are qualitatively very similar
to the ones in Example 2.1, but the detected edge set is less exact, and |U| can be quite
a bit shorter than 1. For δε smaller than 5 ∗ 10−3 (which would be advantageous for
the accuracy of |U|), the results break down, which is in accordance with our theoretical
results.
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2.8.5 Real Image, Splitting & Projection

Example 2.6. We try our algorithm on a small photograph (399× 299 pixels), as shown
in Figure 2.18. We choose Ω := (0, 399/299)× (0, 1), whence h = 1/298 ≈ 3 ∗ 10−3, the
pixels are used as nodes, each square of 4 pixels giving rise to two triangles. We further
choose S0 ≡ 1 and add two different kinds of noise to the image:

(1) RGB noise: R = R0 + 0.3 ∗ randn, and G and B analogously, where randn are
pseudo-random values drawn from the standard normal distribution. After this op-
eration, we crop R, G, and B to lie in [0, 1] (where R0, G0, B0 were scaled to lie).
This is shown in Figure 2.18.

(2) CB noise, mainly in the chromaticity component: C = C0 + 0.5 ∗ randn ∗ C0 ×
[1, 1, 1] ∈ S2, and B = B0 + 0.01 ∗ randn. After this operation, C is projected onto
the sphere, and B is cropped to lie in [0, 1]. This is shown in Figure 2.22.

Our CB algorithm was in both cases compared to a channelwise RGB computation for
the same image, with all channels sharing the same edge set. Parameters were chosen as
follows (by experiment):

(1) RGB computation: α = 0.3, β = 10−2, γ = 103, ε = 10−4, and kε = 10−7.
CB computation: α = α1 = 0.5, β = 8 ∗ 10−3, γ = γ1 = 103, ε = 10−4, and
kε = 10−7.

(2) RGB computation: α = 0.5, β = 5 ∗ 10−3, γ = 50, ε = 10−4, and kε = 10−7.
CB computation: α = α1 = 0.3, β = 5 ∗ 10−2, γ = 102, γ1 = 5 ∗ 105, ε = 10−4, and
kε = 10−7.

Figure 2.18: Example 2.6.1: Original image (left) and image with RGB noise (right).

First, let us look at the computations with RGB noise: Figure 2.18 shows the noisy
initial image, and Figure 2.19 the result after 10 iterations. Figure 2.20 shows the detected
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Figure 2.19: Example 2.6.1: Image after 10 iterations, RGB (left) and CB (right).
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Figure 2.20: Example 2.6.1: Edge set; top: RGB, full image (left) and section (right);
bottom: CB, full image (left) and section (right).

edge set, as well as a section through it, and Figure 2.21 the expanded Ambrosio-Tortorelli
energy over time. The energy terms labelled “. . . C” belong to the chromaticity compon-
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Figure 2.21: Example 2.6.1: Expanded Ambrosio-Tortorelli Energy (10 iterations, y-
logarithmic plots), RGB (left) and CB (right).

Figure 2.22: Example 2.6.2: Original image and image with CB noise (top), as well as
noisy chromaticity (bottom left) and brightness (bottom right) components.
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Figure 2.23: Example 2.6.2: Image after 10 iterations, RGB (left) and CB (right).
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Figure 2.24: Example 2.6.2: Edge set; top: RGB, full image (left) and section (right);
bottom: CB, full image (left) and section (right).

ent, those labelled “. . . B” to the brightness. The channelwise RGB algorithm has the
advantage here.
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Figure 2.25: Example 2.6.2: Expanded Ambrosio-Tortorelli Energy (10 iterations, y-
logarithmic plots), RGB (left) and CB (right).

Next, let us look at the image with CB noise: Figure 2.22 shows the noisy initial
image, and Figure 2.23 the result after 10 iterations. Figure 2.24 shows the detected edge
set, as well as a section through it, and Figure 2.25 the expanded Ambrosio-Tortorelli
energy over time. The CB algorithm has a very clear advantage here.

How realistic any of these cases are is an interesting question that is beyond the scope
of this thesis.

2.9 Conclusion

In this chapter, we proposed two splitting strategies based on first-order finite elements,
for minimising the Mumford-Shah functional for unit vector fields u : Ω ⊂ Rd →
Sm−1. Both strategies use elliptic approximations to the original functional, based on
the Ambrosio-Tortorelli functional.

The first strategy uses a projection idea that enforces the sphere constraint exactly on
nodal points, for every iterate Un. For acute triangulations, every step of the resulting
iteration is energy-decreasing, and the algorithm converges weakly (up to subsequences)
in H1 × H1 to a tuple (u, s) ∈ H1(Ω,Sm−1) × H1(Ω). For d = 2 we can show that s
and iterates Sn fulfil Sn, s ∈ [−1, 1]. However, we cannot show that (u, s) is a stationary
point of the Ambrosio-Tortorelli energy for unit vector fields.

The second strategy uses a penalisation approach, adding a Ginzburg-Landau term to
the Ambrosio-Tortorelli functional; so iterates Un only approximate the sphere constraint.
The resulting algorithm converges weakly (up to subsequences) in H1 × H1 to a tuple
(u, s) ∈ H1(Ω,Rm) ×H1(Ω), without any mesh-constraint. For d = 2 we can also show
that Sn, s ∈ [−1, 1]. This allows to get strong convergence (up to subsequences) of iterates
Un in H1, which in turn allows to pass to the limit and show that (u, s) is a stationary
point of the Ambrosio-Tortorelli-Ginzburg-Landau energy, and that s ≥ 0. However, we
now have to solve a nonlinear equation in every iteration.
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Chapter 3

The Mumford-Shah-Euler Functional

In this chapter, we propose, analyse and compare two fully discrete finite element based
algorithms for the L2 gradient flow of the Mumford-Shah-Euler functional for unit vector
fields. A special interest in this setup is the curvature term that was added compared
to the standard Mumford-Shah functional. The first scheme uses a penalisation strategy,
the second uses a Lagrange multiplier, to approximate and enforce the sphere constraint,
respectively.

Both schemes are then applied to colour image inpainting in the chromaticity and
brightness colour model, and also compared to inpainting with the standard Mumford-
Shah functional and channelwise RGB inpainting with the Mumford-Shah-Euler func-
tional.

We again observe that the strategy that only approximates the sphere constraint
allows for a better convergence result.

3.1 Introduction

Our interest in this chapter lies in numerics of an energy functional involving a curvature
term. One motivation for this choice of topic is analytical interest in studying effects
of corresponding flows acting on nontrivial initial data. Another motivation is numer-
ical image processing, in particular image inpainting. The term image inpainting was
introduced into digital image processing in [17]; it is an artistic synonym for image inter-
polation and stems from traditional image restoration. In [57], it was demonstrated that
for large-scale inpainting problems (i.e., problems with large areas of missing data), it
is necessary to introduce curvature information in order to faithfully reconstruct images.
One way of doing this is using Euler’s elastica curvature model, which was first introduced
into computer vision in [85], see also [19]. It was studied for inpainting in [83, 32, 57], see
also the surveys [35, 33].

3.1.1 Colour Models

Colour images are commonly represented by functions u : Ω → R3, where the three
dimensions correspond to the primary colours red, green, and blue. However, in many
applications it is desirable to treat colour and brightness information separately, e.g.

69
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because of the way images are often recorded (Bayer sensors), and because the human eye
treats colour and brightness through different receptors, c.f. Chapter 1. A mathematically
appealing way to achieve this separation is the Chromaticity and Brightness (CB) colour
model, where the chromaticity (colour information) is represented by a function c :=
u/|u| : Ω → S2, while the brightness is represented by b := |u| : Ω → R, usually scaled
to lie in [0, 1].

In [31], it is demonstrated, that this model is advantageous to RGB and to the
straightforward HSV (Hue, Saturation, Value) model in colour image denoising and en-
hancement. In [67] and Chapter 2, we use this model for colour image segmentation
and denoising using the Mumford-Shah functional for sphere-valued functions, and again
show its advantages in the presence of certain types of colour noise. Other sources include
[96, 89, 100, 30, 101, 74, 88, 28, 13, 72] and references therein.

3.1.2 The Mumford-Shah-Euler Functional

Let R ⊂ Rd be a polyhedral Lipschitz domain. Given an image g : R → Rm, let
K ⊂ R be the inpainting domain (the part of the image where information is missing),
B ⊂ R \ K a narrow band around it (whose information will be propagated into the
inpainting domain), and Ω := K ∪B.

The Mumford-Shah-Euler model is based on minimising a functional proposed in [57],
based on ideas from the seminal book [87], see also [85]. A curvature term (Euler term)
is added to the (second order) Mumford-Shah functional, that was originally proposed in
[86] for greyscale image segmentation.

The Mumford-Shah-Euler functional for unit vector fields is

E(u,Γ) :=
γ

2

∫
Ω\Γ

|∇u|2dx +
λ

2

∫
B

|u− u0|2 dx + σ

∫
Γ

(
α + β|H|2

)
dHd−1(x) ,

with H denoting the (mean) curvature of Γ, u0 ∈ L∞(Ω,Sm−1), ψ(t) := (1− t2)
2
, and

σ :=
∫ 1

−1

√
2ψ(t)dt. Note that ψ′(t) = −4t (1− t2), and ψ′′(t) = 12t2−4. This functional

is to be minimised for all Γ ⊂ Ω closed and C2, and u ∈ H1(Ω \ Γ, Sm−1). In this energy,
the first term (smoothing term) penalises high gradients outside the edge set Γ, the second
term (fidelity term) penalises deviations from the original unit vector field u0 inside the
band B, and the last term (Euler term) penalises length and curvature of Γ. The Euler
term corresponds to the Willmore energy, a generalisation of which was also used in the
context of image denoising and segmentation in [50].

Note that given the non-convex nature of the functional above (even without the
sphere constraint), uniqueness of minimisers cannot be expected. Indeed, unlike in the
context of image segmentation, where a global fidelity term confines minimisers to a
small L2-neighbourhood of the initial image, the absence of a fidelity term inside the
inpainting domain K explains the appearance of “spurious edges” in some computations,
see Section 3.6. This is also noted in [57], where two numerical realisations of this model
for greyscale image inpainting are proposed, one based on the level-set method, and one
based on an L2 flow of an approximation in the Γ-convergence context, like the one we
are going to use.
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Since treatment of the highest order term (Willmore term) in this energy is particularly
challenging, prior works on the L2 Willmore flow are an important source of inspiration for
this work. In particular, we would like to mention the papers [55, 48], where a stable and
consistent spatially discrete finite element scheme for the L2 Willmore flow of a surface,
based on its parametric representation, is presented. In [51], a level set formulation
for Willmore flow together with spatial and temporal discretisations are proposed. The
paper [54] (and others by the same authors) is even closer related to our work. In
it, a phase-field approximation is used, and a spatial discretisation of the equilibrium
problem and in particular a time-discretisation of the L2 flow with additional surface and
volume constraints is presented, motivated by vesicle membrane deformation models. Our
discretisation of the Willmore term employs the same techniques, but is fully discrete.
Sources for Willmore flow of curves and its numerical treatment are e.g. [7, 56].

In [4, 5], Ambrosio and Tortorelli introduced a Γ-convergent, elliptic phase-field ap-
proximation of the Mumford-Shah functional. For the Mumford-Shah-Euler functional,
an analogous approximation for sphere-valued functions is

Eε(u, s) :=
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx +

λ

2

∫
B

|u− u0|2 dx

+ α

∫
Ω

(
ε

2
|∇s|2 +

1

ε
ψ(s)

)
dx +

β

ε

∫
Ω

(
1

ε
ψ′(s)− ε∆s

)2

dx,

(3.1.1)

for u ∈ H1(Ω,Sm−1), u0 ∈ L∞(Ω,Sm−1), 0 < ε, kε ¿ 1, kε = o(ε), and s ∈ H2(Ω). Here,
s is a phase function approximating 1− χΓ by penalisation of phase transitions.

A Γ-convergence result for the curvature and length terms in this functional was
conjectured by De Giorgi in [44]. In [16], a proof for the lim sup inequality was given,
and in [92] the lim inf inequality, which in this case turns out to be the hard part, could
be proved (for the L1 topology). We are not aware of any corresponding results for
the full functional with a sphere-constraint. In [81], the L2 gradient flow corresponding
to the length and curvature terms was studied, and convergence for ε → 0 was proved
using formal asymptotic expansions. Numerical studies for this model (for real-valued
functions) were done in [81, 82, 32, 15].

After some preliminaries in Section 3.2, we give the following two numerical algorithms
for the L2 gradient flow of (3.1.1):

3.1.3 Sphere Constraint using Penalisation

In Sections 3.3 and 3.4, a fully discrete, first-order finite element algorithm based on
a penalisation of the sphere-constraint using a Ginzburg-Landau term is proposed and
analysed; i.e., the L2 flow of the following energy is considered:

Eε(u, s) :=
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx +

λ

2

∫
B

|u− u0|2 dx +
1

4δε

∫
Ω

(
|u|2 − 1

)2
dx

+ α

∫
Ω

(
ε

2
|∇s|2 +

1

ε
ψ(s)

)
dx +

β

ε

∫
Ω

(
1

ε
ψ′(s)− ε∆s

)2

dx,

for u ∈ H1(Ω,Rm), u0 ∈ L∞(Ω,Rm), 0 < ε, δε, kε ¿ 1, kε = o(ε), and s ∈ H2(Ω).
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This leads to the following system of equations (formally):

ut − γdiv
((
s2 + kε

)
∇u
)

+ λχB (u− u0) +
1

δε

(
|u|2 − 1

)
u = 0,

st + γ|∇u|2s+
α

ε
ψ′(s)− αεw

+2β

(
1

ε3
ψ′′(s)ψ′(s)− 1

ε
∆ψ′(s)− 1

ε2
ψ′′(s)w + ∆w

)
= 0,

ε∆s− w = 0,

with appropriate initial and boundary conditions.

The motivation for this is our experience in [67] and Chapter 2, that penalisation of the
sphere-constraint makes it possible to get strong convergence of iterates∇un of a splitting
scheme of the above system in L2, while enforcing the sphere-constraint exactly seems
to make this impossible. And again this strong convergence proves crucial in identifying
limits; i.e., showing that this algorithm actually converges to a weak solution of the L2

flow.

3.1.4 Sphere Constraint using a Lagrange Multiplier

In Section 3.5, a fully discrete, first-order finite element algorithm using a discrete Lag-
range multiplier is proposed and analysed; i.e., the system of equations to be solved looks
like this:

ut − γdiv
((
s2 + kε

)
∇u
)

+ λχB (u− u0) = µu,

st + γ|∇u|2s+
α

ε
ψ′(s)− αεw

+2β

(
1

ε3
ψ′′(s)ψ′(s)− 1

ε
∆ψ′(s)− 1

ε2
ψ′′(s)w + ∆w

)
= 0,

−ε∆s+ w = 0,

|u| = 1,

where µ : ΩT → R is the Lagrange multiplier for the sphere constraint:

µ = γ
(
s2 + kε

)
|∇u|2 + λχB (1− u0 · u) .

This approach exactly enforces the sphere constraint. We can show existence of solu-
tions in each step of a discrete splitting scheme, and an energy principle, but we do not
get strong convergence of iterates ∇un in L2 and therefore cannot identify limits.

Finally, numerical studies are provided in Section 3.6, comparing these two algorithms
with each other, with the Mumford-Shah model for inpainting, and with a straightforward
channelwise RGB implementation of the Mumford-Shah-Euler model for inpainting.
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3.2 Preliminaries

3.2.1 General Notation

We shall use c and C as a generic non-negative constants. Given x,y ∈ Rd, 〈x,y〉 or x ·y
will denote their standard scalar product, and |x| the Euclidian norm of x. For a set S,
|S| denotes its Lebesgue measure of dimension d. The L2 scalar product and norm will
be denoted by (·, ·) and ‖ · ‖, respectively, and Sm−1 will be the unit sphere in Rm.

By A : B for A,B ∈ Rm×m we shall denote the dyadic product, i.e., A : B :=∑m
i,j=1 aijbij for A = (aij), B = (bij). |A| will denote the Frobenius norm of A, i.e.,

|A|2 :=
∑m

i,j=1 |aij|2. For two vectors a ∈ Rd, b ∈ Rm, let a⊗ b := M denote the matrix
with entries mij := aibj.

We use capital letters for finite element functions and boldface for vectors or vector-
valued functions.

3.2.2 Finite Element Space

We shall always assume Ω ⊂ Rd to be a polyhedral Lipschitz domain, ΩT := Ω× [0, T ] for
T ∈ R>0, and Th to be a quasi-uniform triangulation of Ω with node set Nh and maximal
mesh size h > 0 (c.f. [24]). The space of globally continuous, piecewise affine finite
element functions on Th is denoted by Vh(Ω) ⊆ H1(Ω). The nodal basis functions are
{ϕz : z ∈ Nh} ⊆ Vh(Ω). Let Vh(Ω,Rm) be the finite element space of Rm-valued mappings
with basis functions {ϕϕϕi

z : z ∈ Nh, 1 ≤ i ≤ m}, withϕϕϕ1
z := (ϕz, 0, . . .)

T ∈ Vh(Ω,Rm), ϕϕϕ2
z :=

(0, ϕz, 0, . . .)
T ∈ Vh(Ω,Rm), and so forth. Let Ih(·) : C0

(
Ω
)
→ Vh(Ω) be the Lagrange

interpolation operator, and Rh(·) : H1(Ω) → Vh(Ω) the Ritz projection, defined by

(∇ (Rh(ϕ)− ϕ) ,∇V ) + (Rh(ϕ)− ϕ, V ) = 0 ∀V ∈ Vh(Ω) , (3.2.1)

and let IIIh(·) and Rh(·) be their vector-valued counterparts. Furthermore, set (ϕ, ψ)h :=∫
Ω
Ih(ϕψ) dx and ‖ϕ‖2

h := (ϕ, ϕ)h, and define the discrete Laplace operator ∆̃h : Vh(Ω) →
Vh(Ω) by

−
(
∆̃hW,V

)
h

= (∇W,∇V ) ∀V ∈ Vh(Ω) . (3.2.2)

We remark that

‖V ‖ ≤ ‖V ‖h ≤ (d+ 2)1/2‖V ‖, and

|(V,W )h − (V,W )| ≤ Ch‖V ‖‖∇W‖ ∀V,W ∈ Vh(Ω) .
(3.2.3)

Also note the following discrete version of Hölder’s inequality: For ϕ, ψ ∈ C
(
Ω
)
, 1 ≤

p, q ≤ +∞, 1
p

+ 1
q

= 1, and βz :=
∫

Ω
ϕzdx,

(ϕ, ψ)h =
∑
z∈Nh

βzϕ(z) · ψ(z) ≤

(∑
z∈Nh

βz|ϕ(z)|p
)1/p(∑

z∈Nh

βz|ψ(z)|q
)1/q

≤
∥∥|ϕ|p/2

∥∥2/p

h

∥∥|ψ|q/2
∥∥2/q

h
.
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3.2.3 Time-Discretisation

Given a uniform time-discretisation with time-step size k > 0, and a sequence {ϕj} in
some Banach space X, we set dtϕj+1 := k−1 {ϕj+1 − ϕj} and ϕj+1/2 := (ϕj + ϕj+1) /2

for j ≥ 0. Note that (dtϕj+1, ϕj+1) = 1
2
dt |ϕj+1|2 + k

2
|dtϕj+1|2, if X is a Hilbert space.

Piecewise constant interpolations of {ϕj} are defined for t ∈ [jk, (j + 1)k), and 0 ≤ j ≤
J − 1 by

ϕ+(t) := ϕj+1, ϕ−(t) := ϕj, ϕ := ϕj+1/2,

and a piecewise affine interpolation on [jk, (j + 1)k) is defined by

ϕ(t) :=
t− tj
k

ϕj+1 +
tj+1 − t

k
ϕj.

Note that ∂tϕ(t) = 1
k

(ϕj+1 − ϕj) = dtϕj+1 on [tj, tj+1), and that∥∥ϕ+ − ϕ
∥∥

X
+ ‖ϕ− ϕ‖X ≤ 2k ‖dtϕ‖X . (3.2.4)

3.3 Continuous Mumford-Shah-Euler with Sphere

Penalisation

In this section, we add a Ginzburg-Landau term penalising the sphere constraint to the
functional (3.1.1), so the energy now looks like this:

Eε(u, s) :=
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx +

λ

2

∫
B

|u− u0|2 dx +
1

4δε

∫
Ω

(
|u|2 − 1

)2
dx

+ α

∫
Ω

(
ε

2
|∇s|2 +

1

ε
ψ(s)

)
dx +

β

ε

∫
Ω

(
1

ε
ψ′(s)− ε∆s

)2

dx,

(3.3.1)

for u ∈ H1(Ω,Rm), u0 ∈ L∞(Ω,Rm), 0 < ε, δε, kε ¿ 1, kε = o(ε), and s ∈ H2(Ω).
We shall always assume ε, kε, δε, α, β, γ > 0, and λ ≥ 0 to be fixed.

3.3.1 System of Equations

In order to minimise (3.3.1), we want to formally solve the following system of equations:

ut − γdiv
((
s2 + kε

)
∇u
)

+ λχB (u− u0) +
1

δε

(
|u|2 − 1

)
u = 0 in ΩT ,

st + γ|∇u|2s+
α

ε
ψ′(s)− αεw

+2β

(
1

ε3
ψ′′(s)ψ′(s)− 1

ε
∆ψ′(s)− 1

ε2
ψ′′(s)w + ∆w

)
= 0 in ΩT ,

ε∆s− w = 0 in ΩT ,

∂nu = ∂nw = ∂ns = 0 on ∂Ω, and

u(0, ·) = u0, s(0, ·) = s0.

(3.3.2)

The canonical choice would be w = −1/εψ′(s) + ε∆s, but the choice above makes
the proof of existence in the discrete setting more manageable (see Step 4 in the proof of
Theorem 3.4.2).
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3.3.2 Weak Solution

Definition 3.3.1. Given (u0, s0) ∈ H1(Ω,Rm)×H1(Ω), a tuple (u, s, w) is called a weak
solution of (3.3.2), if for all T > 0 it holds that

(1) (u, s, w) ∈ L2(0, T ;H1(Ω,Rm)) × L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω)), with u(0, ·) =
u0(·), and s(0, ·) = s0(·) in the sense of traces, and

(2) for all ϕϕϕ ∈ C∞(ΩT ,Rm), ϕ ∈ C∞([0, T );C∞
0 (Ω)), and ζ ∈ C∞(ΩT ),

0 =

∫ T

0

(∂tu,ϕϕϕ) dt+ γ

∫ T

0

((
s2 + kε

)
∇u,∇ϕϕϕ

)
dt

+ λ

∫ T

0

(χB (u− u0) ,ϕϕϕ) dt+
1

δε

∫ T

0

((
|u|2 − 1

)
u,ϕϕϕ

)
dt,

0 =

∫ T

0

(∂ts, ϕ) dt+ γ

∫ T

0

(
|∇u|2s, ϕ

)
dt

+
4α

ε

∫ T

0

((
s2 − 1

)
s, ϕ
)
dt+ αε

∫ T

0

(∇s,∇ϕ) dt

+
2β

ε3

∫ T

0

(ψ′′(s)ψ′(s), ϕ) dt+
2β

ε

∫ T

0

(∇ψ′(s),∇ϕ) dt,

− 2β

ε2

∫ T

0

(ψ′′(s)w,ϕ) dt+ 2β

∫ T

0

(w,∆ϕ) dt,

0 = ε

∫ T

0

(∇s,∇ζ) dt+

∫ T

0

(w, ζ) dt.

(3.3.3)

3.3.3 Energy Principle

We proceed formally, by testing (3.3.2)1 with ut, and (3.3.2)2,3 with st. We add the two
first equations in (3.3.2), and integrate over [0, T ]:

0 = ‖ut‖2
L2(0,T ;L2) + ‖st‖2

L2(0,T ;L2) +
γ

2

∫ T

0

∫
Ω

∂t

((
s2 + kε

)
|∇u|2

)
dxdt

+
λ

2

∫ T

0

∫
B

∂t |u− u0|2 dxdt+
1

4δε

∫ T

0

∫
Ω

∂t

(
|u|2 − 1

)2
dxdt

+
α

ε

∫ T

0

∫
Ω

∂tψ(s)dxdt+
αε

2

∫ T

0

∫
Ω

∂t|∇s|2dxdt

+
β

ε3

∫ T

0

∫
Ω

∂t |ψ′(s)|2 dxdt

+
2β

ε

∫ T

0

(∇ (ψ′′(s)st) ,∇s) + (∇ψ′(s),∇st) dt

+βε

∫ T

0

∫
Ω

∂t |∆s|2 dxdt.

Integration by parts in both terms in the next to last line gives

2β

ε

∫ T

0

(∇ (ψ′′(s)st) ,∇s) + (∇ψ′(s),∇st) dt = −2β

ε

∫ T

0

∫
Ω

∂t (ψ′(s)∆s) dxdt,
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leading to the following energy law:

Eε(u(T, ·), s(T, ·)) + ‖ut‖2
L2(0,T ;L2) + ‖st‖2

L2(0,T ;L2) = Eε(u(0, ·), s(0, ·)) .

In the next section, we shall propose a discrete algorithm for the approximate solution
of (3.3.2). It will be crucial to ensure an energy principle analogous to the above for this
discrete algorithm.

3.4 Discrete Mumford-Shah-Euler with Penalisation

In this section, we shall always assume ε, kε, δε, α, β, γ > 0, and λ ≥ 0 to be fixed. In the
context of finite element functions, the energy functional we look at (instead of (3.3.1)),
is

Eh,ε(U, S) :=
γ

2

∫
Ω

(
S2 + kε

)
|∇U|2 dx +

λ

2

∫
B

|U−U0|2 dx

+
1

4δε

∫
Ω

(
|U|2 − 1

)2
dx + α

∫
Ω

(
ε

2
|∇S|2 +

1

ε
ψ(S)

)
dx

+
β

ε

∫
Ω

Ih

((
1

ε
ψ′(S)− ε∆̃hS

)2
)

dx,

(3.4.1)

for U,U0 ∈ Vh(Ω,Rm), and S ∈ Vh(Ω). Reduced integration in the last term will help us
achieve a discrete analog to the energy principle.

3.4.1 Algorithm

In order to get a discrete analog of the energy principle, we use a strategy similar to [54],
where a non-stationary time-discretisation of a phase-field approximation to the Willmore
flow with surface area and volume constraint is considered.

Algorithm 3.4.1. Let U0 ∈ Vh(Ω,Rm) and S0 ∈ Vh(Ω) be given.

(1) Compute W0 ∈ Vh(Ω), such that (W0, Z)h = −ε (∇S0,∇Z) for all Z ∈ Vh(Ω).
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(2) For n = 0, . . ., compute Sn+1,Wn+1 ∈ Vh(Ω), and Un+1 ∈ Vh(Ω,Rm), such that for
all Y, Z ∈ Vh(Ω) and X ∈ Vh(Ω,Rm) the following equations hold:

(dtUn+1,X) +
γ

2

((
S2

n+1 + S2
n + 2kε

)
∇Un+1/2,∇X

)
+λ
(
χB

(
Un+1/2 −U0

)
,X
)

+
1

2δε

((
|Un+1|2 + |Un|2 − 2

)
Un+1/2,X

)
= 0,

(dtSn+1, Y ) +
γ

2

((
|∇Un+1|2 + |∇Un|2

)
Sn+1/2, Y

)
+

2α

ε

((
S2

n+1 + S2
n − 2

)
Sn+1/2, Y

)
+ αε

(
∇Sn+1/2,∇Y

)
+

16β

ε3

((
S2

n+1 + Sn+1Sn + S2
n − 1

) ( (
S2

n+1 − 1
)
Sn+1

+
(
S2

n − 1
)
Sn

)
, Y
)

h

+
4β

ε

(
∇Ih

((
S2

n+1 − 1
)
Sn+1 +

(
S2

n − 1
)
Sn

)
,∇Y

)
−8β

ε2

((
S2

n+1 + Sn+1Sn + S2
n − 1

)
Wn+1/2, Y

)
h
− 2β

(
∇Wn+1/2,∇Y

)
= 0,

ε (∇Sn+1,∇Z) + (Wn+1, Z)h = 0.

(3.4.2)

We use reduced integration and Lagrange projection in some terms above in order
to be able to use non finite element “test functions” in the arguments leading to the
energy principle (Step 2 in the proof of Theorem 3.4.2). To solve the above system of
equations, we use a simple fixed-point iteration to deal with the coupling of variables and
nonlinearities.

3.4.2 Analysis

Theorem 3.4.2. Let Eh,ε(U0, S0) ≤ C, independently of h, as well as β > 0, d ≤ 3,

and k ≤ C̃ε−1h4 for sufficiently small C̃ ≡ C̃(Ω, Th) > 0 independent of k, h > 0. Then
Algorithm 3.4.1 converges (up to subsequences) to a weak solution as in Definition 3.3.1.

We assume β > 0 for simplicity. The only problematic part with β = 0 is getting an
L∞ bound on iterates S in space and time, which could e.g. be tackled through additional
mass lumping, as described in Section 2.4.

The coupling between time and space discretisation parameters (k ≤ C̃ε−1h4) is only
needed in the proof of existence of discrete solutions. It arises due to inverse estimates
used to control the term

(
∇Ih

((
S2

n+1 − 1
)
Sn+1 + (S2

n − 1)Sn

)
,∇Y

)
, and we assume it

can be further improved. For the convergence part of the proof, k = o(h) is sufficient.

In practice, the condition k ≤ C̃ε−1h4 is not quite as bad as it looks: While we
theoretically assume ε > 0 to be fixed, ε corresponds to the “width” of the interfaces, and
we can in practice choose ε = ch, with larger ε making the interfaces more diffuse, but
the dynamics more forgiving. In our calculations in Section 3.6, we choose ε = 10h, so
ε−1h4 is practically as good as h3.
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In our simulations, we actually observe that results are reliable (but slow) for k = h3

and unpredictable for k = h2. We therefore use a dynamic time step, described in more
detail in Section 3.6.1, that in our examples results in k ≈ 2h2 on average, but with much
smaller time-steps in the initial phases of the flow.

For identifying limits in the following proof it will be crucial to prove strong L2 conver-
gence of ∇U to ∇u in space and time, for which we use a strategy derived from [25, Proof
of Theorem 2], where the authors show convergence of two adaptive, stationary finite
element approximations for the minimisation of the unconstrained Ambrosio-Tortorelli
energy: In Step 6 we show that u fulfils equation (3.3.3)1, then we use equations (3.3.3)1

and (3.4.2)1 and dominated convergence (c.f. Step 1) to show strong L2(0, T ;L2(Ω,Rm))
convergence of ∇U to ∇u in Step 7, and finally we use this to show that s fulfils equation
(3.3.3)2 in Step 8.

Proof. Step 1: Preliminary Convergence Result.
Let pn, p ∈ L∞(0, T ;L∞(Ω)), such that ‖pn‖L∞(0,T ;L∞) , ‖p‖L∞(0,T ;L∞) ≤ c < +∞ a.e.,

independently of n, and pn → p in L2(0, T ;L2(Ω)). Then

lim
n

∥∥∥|pn − p|1/2 |∇ϕϕϕ|
∥∥∥

L2(0,T ;L2)
= 0 ∀ϕϕϕ ∈ L∞

(
0, T ;H1(Ω,Rm)

)
.

Proof. Let ϕϕϕ ∈ L∞(0, T ;H1(Ω,Rm)) be fixed. Choose a subsequence
{
pnj

}
j

of {pn}n

such that

lim
j

∥∥∥∣∣pnj
− p
∣∣1/2 |∇ϕϕϕ|

∥∥∥
L2(0,T ;L2)

= lim sup
n

∥∥∥|pn − p|1/2 |∇ϕϕϕ|
∥∥∥

L2(0,T ;L2)
, and

lim
j
pnj

= p a.e. in ΩT .

Then we have
∣∣pnj

− p
∣∣ |∇ϕϕϕ|2 ≤ 2c |∇ϕϕϕ|2 a.e. in ΩT , by assumption, which leads to∥∥∥∣∣pnj

− p
∣∣1/2 |∇ϕϕϕ|

∥∥∥2

L2(Ω)
≤ c ‖∇ϕϕϕ‖2

L2(Ω) for a.e. t ∈ [0, T ). Therefore, using Lebesgue’s

Dominated Convergence Theorem twice,

lim sup
n

∥∥∥|pn − p|1/2 |∇ϕϕϕ|
∥∥∥2

L2(0,T ;L2)
= lim

j

∫ T

0

∥∥∥∣∣pnj
− p
∣∣1/2 |∇ϕϕϕ|

∥∥∥2

L2(Ω)
dt

=

∫ T

0

lim
j

∥∥∥∣∣pnj
− p
∣∣1/2 |∇ϕϕϕ|

∥∥∥2

L2(Ω)
dt

=

∫ T

0

∫
Ω

lim
j

∣∣pnj
− p
∣∣ |∇ϕϕϕ|2 dxdt = 0.

Step 2: Energy principle.
Let n ≥ 0, set X = dtUn+1 and Y = dtSn+1 in equations (3.4.2)1 and (3.4.2)2,

respectively, and multiply both equations with k. For (3.4.2)1, this leads to

0 = k ‖dtUn+1‖2
L2(Ω) +

γ

4

(
S2

n+1 + S2
n + 2kε, |∇Un+1|2 − |∇Un|2

)
+
λ

2
(χB (Un+1 + Un − 2U0) ,Un+1 −Un)

+
1

4δε

(
|Un+1|2 + |Un|2 − 2, |Un+1|2 − |Un|2

)
=: T1 + T2 + T3 + T4

(3.4.3)
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while (3.4.2)2 becomes

0 = k ‖dtSn+1‖2
L2(Ω) +

γ

4

(
|∇Un+1|2 + |∇Un|2, S2

n+1 − S2
n

)
+
α

ε

(
S2

n+1 + S2
n − 2, S2

n+1 − S2
n

)
+
αε

2
(∇ (Sn+1 + Sn) ,∇ (Sn+1 − Sn))

+
16β

ε3

((
S2

n+1 + Sn+1Sn + S2
n − 1

) ( (
S2

n+1 − 1
)
Sn+1

+
(
S2

n − 1
)
Sn

)
, Sn+1 − Sn

)
h

+
4β

ε

(
∇Ih

((
S2

n+1 − 1
)
Sn+1 +

(
S2

n − 1
)
Sn

)
,∇ (Sn+1 − Sn)

)
− 4β

ε2

((
S2

n+1 + Sn+1Sn + S2
n − 1

)
(Wn+1 +Wn) , Sn+1 − Sn

)
h

− β (∇ (Wn+1 +Wn) ,∇ (Sn+1 − Sn)) =: T5 + . . .+ T12.

(3.4.4)

Thanks to the interpolations introduced in the last four terms, we can now substitute
(3.4.2)3, so the last four terms can be rewritten as

β−1 (T9 + T10 + T11 + T12)

=
16

ε3

((
S2

n+1 + Sn+1Sn + S2
n − 1

) ((
S2

n+1 − 1
)
Sn+1 +

(
S2

n − 1
)
Sn

)
, Sn+1 − Sn

)
h

+
4

ε

(
Ih

((
1− S2

n+1

)
Sn+1 +

(
1− S2

n

)
Sn

)
, ∆̃h (Sn+1 − Sn)

)
h

−4

ε

((
S2

n+1 + Sn+1Sn + S2
n − 1

)
(Sn+1 − Sn) , ∆̃h (Sn+1 + Sn)

)
h

+ε

(∥∥∥∆̃hSn+1

∥∥∥2

h
−
∥∥∥∆̃hSn

∥∥∥2

h

)
=

16

ε3

(((
1− S2

n+1

)2
, S2

n+1

)
h
−
((

1− S2
n

)2
, S2

n

)
h

)
+

4

ε

((
1− S2

n+1

)
Sn+1 +

(
1− S2

n

)
Sn, ∆̃h (Sn+1 − Sn)

)
h

+
4

ε

((
1− S2

n+1

)
Sn+1 −

(
1− S2

n

)
Sn, ∆̃h (Sn+1 + Sn)

)
h

+ε

(∥∥∥∆̃hSn+1

∥∥∥2

h
−
∥∥∥∆̃hSn

∥∥∥2

h

)
=

1

ε

∫
Ω

Ih

((
4

ε

(
1− S2

n+1

)
Sn+1 + ε∆̃hSn+1

)2

−
(

4

ε

(
1− S2

n

)
Sn + ε∆̃hSn

)2
)

dx,

where we used(
a2 + ab+ b2 − 1

)
(a− b) =

((
a2 − 1

)
+
(
b2 − 1

))
(a− b) + b

(
a2 − 1

)
− a

(
b2 − 1

)
= a

(
a2 − 1

)
− b

(
b2 − 1

)
.

Furthermore

T7 + T8 =
α

ε

∫
Ω

((
S2

n+1 − 1
)2 − (S2

n − 1
)2)

dx +
αε

2

∫
Ω

(
|∇Sn+1|2 − |∇Sn|2

)
dx,
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where we used

(a+ b− 2) (a− b) = ((a− 1) + (b− 1)) ((a− 1)− (b− 1))

= (a− 1)2 − (b− 1)2 .

Similarly

T2 + T6 =
γ

4

∫
Ω

(
S2

n+1 + S2
n + 2kε

) (
|∇Un+1|2 − |∇Un|2

)
dx

+
γ

4

∫
Ω

(
S2

n+1 − S2
n

) (
|∇Un+1|2 + |∇Un|2

)
dx

=
γ

2

∫
Ω

((
S2

n+1 + kε

)
|∇Un+1|2 −

(
S2

n + kε

)
|∇Un|2

)
dx,

and

T4 =
1

4δε

∫
Ω

((
|Un+1|2 − 1

)2 − (|Un|2 − 1
)2)

dx,

and

T3 =
λ

2

∫
Ω

(
|Un+1 −U0|2 − |Un −U0|2

)
dx.

Adding equations (3.4.3) and (3.4.4) therefore leads to

Eh,ε(Un+1, Sn+1)− Eh,ε(Un, Sn) = −1

k
‖Sn+1 − Sn‖2

L2(Ω) −
1

k
‖Un+1 −Un‖2

L2(Ω) , (3.4.5)

for any n ≥ 0.

Step 3: Uniform boundedness of iterates.
Thanks to (3.4.5),

Eh,ε(UN , SN) + k
N−1∑
n=0

‖dtUn+1‖2 + k
N−1∑
n=0

‖dtSn+1‖2 = Eh,ε(U0, S0) . (3.4.6)

Therefore, using the notation of Section 3.2.3, we immediately get uniform bounds on
U,U,U+,U− in L∞(0, T ;H1(Ω,Rm)), on ∂tU in L2(0, T ;L2(Ω,Rm)), on S, S, S+, S−
in L∞(0, T ;H1(Ω)), and on ∂tS in L2(0, T ;L2(Ω)). In particular, for d ≤ 3, we have
by embedding uniform bounds on U,U,U+,U− in L∞(0, T, L6(Ω,Rm)), as well as on
S, S, S+, S− in L∞(0, T, L6(Ω)).

So, by (3.4.6) and Lp-stability of the Lagrange interpolation,∥∥∥∆̃hSN

∥∥∥2

L2(Ω)
≤
∥∥∥∆̃hSN

∥∥∥2

h
=

1

ε2

∫
Ω

Ih

((
1

ε
ψ′(SN)− ε∆̃hSN −

1

ε
ψ′(SN)

)2
)

dx

≤ c

ε2

∫
Ω

Ih

((
1

ε
ψ′(SN)− ε∆̃hSN

)2

+
1

ε2
(ψ′(SN))

2

)
dx

≤ c

ε
Eh,ε(U0, S0) +

c

ε4

∥∥SN

(
1− S2

N

)∥∥2

L2(Ω)
.



3.4. DISCRETE MUMFORD-SHAH-EULER WITH PENALISATION 81

Let us now define a discrete Laplace operator without mass-lumping, namely ∆h :
Vh(Ω) → Vh(Ω), with

− (∆hW,V ) = (∇W,∇V ) ∀V ∈ Vh(Ω) .

Let V ∈ Vh(Ω). Then

∥∥∥∆hV − ∆̃hV
∥∥∥2

L2(Ω)
=

(
∆hV − ∆̃hV,∆hV − ∆̃hV

)
=

(
∆hV,∆hV − ∆̃hV

)
−
(
∆̃hV,∆hV − ∆̃hV

)
h

+
(
∆̃hV,∆hV − ∆̃hV

)
h
−
(
∆̃hV,∆hV − ∆̃hV

)
≤ −

(
∇V,∇

(
∆hV − ∆̃hV

))
+
(
∇V,∇

(
∆hV − ∆̃hV

))
+ch

∥∥∥∇∆̃hV
∥∥∥

L2(Ω)

∥∥∥∆hV − ∆̃hV
∥∥∥

L2(Ω)

≤ c
∥∥∥∆̃hV

∥∥∥
L2(Ω)

∥∥∥∆hV − ∆̃hV
∥∥∥

L2(Ω)
,

whence

‖∆hV ‖L2(Ω) ≤
∥∥∥∆hV − ∆̃hV

∥∥∥
L2(Ω)

+
∥∥∥∆̃hV

∥∥∥
L2(Ω)

≤ c
∥∥∥∆̃hV

∥∥∥
L2(Ω)

.

Therefore, using the discrete Sobolev inequalities from [70, Lemma 4.4] and (3.2.3),

‖∇SN‖L6(Ω) ≤ c

(∥∥∥∆̃hSN

∥∥∥
L2(Ω)

+ ‖∇SN‖L2(Ω)

)
, and

‖SN‖L∞(Ω) + ‖∇SN‖L3(Ω) ≤ c ‖∇SN‖1/2

L2(Ω)

(∥∥∥∆̃hSN

∥∥∥1/2

L2(Ω)
+ ‖∇SN‖1/2

L2(Ω)

)
,

which ensures uniform bounds on ∇S,∇S,∇S+,∇S− in L∞(0, T ;L6(Ω)), as well as
S, S, S+, S− in L∞(0, T ;L∞(Ω)).

We also have

‖WN‖2
L2(Ω) ≤ ‖WN‖2

h =
∥∥∥ε∆̃hSN

∥∥∥2

h

≤ cεEh,ε(U0, S0) +
c

ε2
,

which ensures uniform bounds on W,W,W+,W− in L∞(0, T ;L2(Ω)).

Furthermore, testing (3.4.2)2 with Y := Wn+1/2, we can get a better control of∥∥∇Wn+1/2

∥∥
L2(Ω)

than just by inverse estimate, which will be helpful for identifying limits
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in the last term of (3.4.2)2:

2β
∥∥∇Wn+1/2

∥∥2

L2(Ω)

=
(
dtSn+1,Wn+1/2

)
+
γ

2

((
|∇Un+1|2 + |∇Un|2

)
Sn+1/2,Wn+1/2

)
+

2α

ε

((
S2

n+1 + S2
n − 2

)
Sn+1/2,Wn+1/2

)
+ αε

(
∇Sn+1/2,∇Wn+1/2

)
+

16β

ε3

((
S2

n+1 + Sn+1Sn + S2
n − 1

) ( (
S2

n+1 − 1
)
Sn+1

+
(
S2

n − 1
)
Sn

)
,Wn+1/2

)
h

+
4β

ε

(
∇Ih

((
S2

n+1 − 1
)
Sn+1 +

(
S2

n − 1
)
Sn

)
,∇Wn+1/2

)
− 8β

ε2

((
S2

n+1 + Sn+1Sn + S2
n − 1

)
,W 2

n+1/2

)
h

≤ c ‖dtSn+1‖L2(Ω)

∥∥Wn+1/2

∥∥
L2(Ω)

+ c
(
‖∇Un+1‖2

L12/5(Ω) + ‖∇Un‖2
L12/5(Ω)

)∥∥Sn+1/2

∥∥
L∞(Ω)

∥∥Wn+1/2

∥∥
L6(Ω)

+
c

ε

∥∥S2
n+1 + S2

n − 2
∥∥

L2(Ω)

∥∥Sn+1/2

∥∥
L∞(Ω)

∥∥Wn+1/2

∥∥
L2(Ω)

+ cε
∥∥∇Sn+1/2

∥∥
L2(Ω)

∥∥∇Wn+1/2

∥∥
L2(Ω)

+
c

ε3

(∥∥S5
n+1

∥∥
L∞(Ω)

+
∥∥S5

n

∥∥
L∞(Ω)

+ 1
)∥∥Wn+1/2

∥∥
L2(Ω)

+
c

ε

(∥∥S2
n+1

∥∥
L∞(Ω)

‖∇Sn+1‖L2(Ω) +
∥∥S2

n

∥∥
L∞(Ω)

‖∇Sn‖L2(Ω)

)∥∥∇Wn+1/2

∥∥
L2(Ω)

+
c

ε2

(
‖Sn+1‖2

L∞(Ω) + ‖Sn‖2
L∞(Ω) + 1

)∥∥Wn+1/2

∥∥2

L2(Ω)

≤ c+
c

h4d/12

(
‖∇Un+1‖4

L2(Ω) + ‖∇Un‖4
L2(Ω)

)∥∥Sn+1/2

∥∥2

L∞(Ω)
+
β

2

∥∥∇Wn+1/2

∥∥2

L2(Ω)

+ cε2
∥∥∇Sn+1/2

∥∥2

L2(Ω)
+
β

2

∥∥∇Wn+1/2

∥∥2

L2(Ω)

+
c

ε2

(∥∥S2
n+1

∥∥2

L∞(Ω)
‖∇Sn+1‖2

L2(Ω) +
∥∥S2

n

∥∥2

L∞(Ω)
‖∇Sn‖2

L2(Ω)

)
+
β

2

∥∥∇Wn+1/2

∥∥2

L2(Ω)
,

since ε > 0 constant, using Hölder’s and Young’s inequalities, Sobolev embedding, the
bounds already proved in this step, and the properties of the Lagrange interpolation.
Therefore, since d ≤ 3, ∥∥∇Wn+1/2

∥∥2

L2(0,T ;L2)
≤ ch−1, (3.4.7)

independently of k, h > 0.

Step 4: Existence of a solution.
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We define a continuous mapping F : Vh(Ω,Rm) × Vh(Ω) × Vh(Ω) → Vh(Ω,Rm) ×
Vh(Ω)× Vh(Ω) by

(F(ΦΦΦ,Θ,Ξ) , (X, Y, Z))

:=
2

k
(ΦΦΦ−Un,X) +

γ

2

((
(2Θ− Sn)2 + S2

n + 2kε

)
∇ΦΦΦ,∇X

)
+λ (χB (ΦΦΦ−U0) ,X)

+
1

2δε

((
|2ΦΦΦ−Un|2 + |Un|2 − 2

)
ΦΦΦ,X

)
+

2

k
(Θ− Sn, Y ) +

γ

2

((
|∇ (2ΦΦΦ−Un)|2 + |∇Un|2

)
Θ, Y

)
+

2α

ε

((
(2Θ− Sn)2 + S2

n − 2
)
Θ, Y

)
+ αε (∇Θ,∇Y )

+
16β

ε3

( (
(2Θ− Sn)2 + (2Θ− Sn) · Sn + S2

n − 1
) (

(2Θ− Sn)2 − 1
)
(2Θ− Sn)

+
(
S2

n − 1
)
Sn, Y

)
h

+
4β

ε

(
∇Ih

((
(2Θ− Sn)2 − 1

)
(2Θ− Sn) +

(
S2

n − 1
)
Sn

)
,∇Y

)
−8β

ε2

((
(2Θ− Sn)2 + (2Θ− Sn) · Sn + S2

n − 1
)
Ξ, Y

)
h
− 2β (∇Ξ,∇Y )

+2β (∇Θ,∇Z) +
2β

ε
(Ξ, Z)h

=: T1 + . . .+ T14.

Now let (X, Y, Z) := (ΦΦΦ,Θ,Ξ). In the following, we repeatedly use Young’s and Hölder’s
inequalities, and standard inverse estimates, see e.g. [24, Section 4.5]. Furthermore, we
use the fact that by Step 3 ‖∇Un‖2

L2 ≤ c0k
−1
ε = c(Eh,ε(U0, S0)) k

−1
ε , ‖∇Sn‖2

L2 ≤ c0ε
−1,

as well as ‖Sn‖L∞ ≤ c0ε
−5/2, ‖∇Sn‖L6 ≤ c0ε

−4, and ‖Wn‖2
L2 ≤ c0ε.

Note that the cumbersome terms are exactly the ones coming from the curvature term
in the energy (terms with coefficient β). Without it, existence would be straightforward.

We now calculate

T1 + T3 =
2

k
(ΦΦΦ−Un,ΦΦΦ) + λ (χB (ΦΦΦ−U0) ,ΦΦΦ)

≥ 2

k

(
‖ΦΦΦ‖2

L2(Ω) − ‖Un‖L2(Ω) ‖ΦΦΦ‖L2

)
+ λ

(
‖ΦΦΦ‖2

L2(B) − ‖ΦΦΦ‖L2(B) ‖U0‖L2(B)

)
≥ 1

k

(
‖ΦΦΦ‖2

L2(Ω) − ‖Un‖2
L2(Ω)

)
− λ

4
‖U0‖2

L2(B)

≥ 0,

if ‖ΦΦΦ‖L2 ≥ %1

(
‖Un‖L2 , λ, ‖U0‖L2(B)

)
, and

T2 =
γ

2

((
(2Θ− Sn)2 + S2

n + 2kε

)
∇ΦΦΦ,∇ΦΦΦ

)
≥ γkε ‖∇ΦΦΦ‖2

L2 ≥ 0.
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And the next term gives

T4 =
1

2δε

((
|2ΦΦΦ−Un|2 + |Un|2 − 2

)
ΦΦΦ,ΦΦΦ

)
=

1

2δε

((
4|ΦΦΦ|2 − 4ΦΦΦ ·Un + 2 |Un|2 − 2

)
ΦΦΦ,ΦΦΦ

)
≥ 1

δε

(
|ΦΦΦ|2 − 1, |ΦΦΦ|2

)
> 0,

if ‖ΦΦΦ‖L2 ≥ %2(|Ω|).
If we take ‖Θ‖L2 ≥ %3(‖Sn‖L2), and in particular ‖Θ‖2

L2 ≥ 2 ‖Sn‖2
L2 , then the terms

coming from the equation for S give

T5 =
2

k
(Θ− Sn,Θ) ≥ 1

k

(
‖Θ‖2

L2(Ω) − ‖Sn‖2
L2(Ω)

)
≥ 1

2k
‖Θ‖2

L2(Ω) > 0,

which we are going to use below, together with the assumption k ≤ C̃ε−1h4. Next

T6 =
γ

2

(
|∇ (2ΦΦΦ−Un)|2 + |∇Un|2, |Θ|2

)
≥ 0,

T7 =
2α

ε

((
(2Θ− Sn)2 + S2

n − 2
)
, |Θ|2

)
≥ 4α

ε

(
|Θ|2 − 1, |Θ|2

)
≥ 0,

if ‖Θ‖L2 ≥ %4(|Ω|), and
T8 = αε ‖∇Θ‖2

L2(Ω) ≥ 0.

And now for the cumbersome terms, the calculations for which we restrict to the
leading terms for clarity:

ε

2β
(T9 + T10 + T11 + T12 + T13 + T14)

=
8

ε2

( (
(2Θ− Sn)2 + (2Θ− Sn) · Sn + S2

n − 1
) (

(2Θ− Sn)2 − 1
)
(2Θ− Sn)

+
(
S2

n − 1
)
Sn,Θ

)
h

+2
(
∇Ih

((
(2Θ− Sn)2 − 1

)
(2Θ− Sn) +

(
S2

n − 1
)
Sn

)
,∇Θ

)
−4

ε

((
(2Θ− Sn)2 + (2Θ− Sn) · Sn + S2

n − 1
)
Ξ,Θ

)
h

+ ‖Ξ‖2
h

≥ 3

ε2

∥∥(2Θ)3
∥∥2

h
− c

h2

∥∥(2Θ)3
∥∥

h
‖Θ‖L2(Ω) −

2

ε

∥∥(2Θ)3
∥∥

h
‖Ξ‖h + ‖Ξ‖2

h

≥ 3

ε2

∥∥(2Θ)3
∥∥2

h
− 1

ε2

∥∥(2Θ)3
∥∥2

h
− cε2

h4
‖Θ‖2

L2(Ω) −
1

ε2

∥∥(2Θ)3
∥∥2

h
− ‖Ξ‖2

h + ‖Ξ‖2
h

≥ 1

ε2

∥∥(2Θ)3
∥∥2

h
− cε2

h4
‖Θ‖2

L2(Ω) .

Therefore, a term −cε−1h4 ‖Θ‖2
L2(Ω) needs to be compensated by T5, which can be done

since k ≤ C̃ε−1h4. So, if ‖ΦΦΦ‖L2(Ω,Rm) ≥ max {%1, %2} and ‖Θ‖L2(Ω) ≥ max {%3, %4} large
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enough, then (F(ΦΦΦ,Θ,Ξ) , (ΦΦΦ,Θ,Ξ)) ≥ 0. By a corollary to Brouwer’s fixed-point theorem
(c.f. [65, p. 279]), there exists a tuple (Un+1, Sn+1,Wn+1) ∈ Vh(Ω,Rm)× Vh(Ω)× Vh(Ω),
such that F(Un+1, Sn+1,Wn+1) = 0, which makes it a solution to (3.4.2).

Step 5: Convergences {U, S,W}k,h → (u, s, w).

By Steps 3 and 4, there exist subsequences of {U}k,h ,
{
U
}

k,h
, {U+}k,h , {U−}k,h,

and {S}k,h ,
{
S
}

k,h
, {S+}k,h , {S−}k,h, and

{
W
}

k,h
, and mappings u : ΩT → Rm, and

s, w : ΩT → R, such that for (k, h) → 0,

U+,U−,U,U
∗
⇀ u in L∞

(
0, T ;L2(Ω,Rm)

)
,

U
∗
⇀ u in L∞

(
0, T ;H1(Ω,Rm)

)
,

∂tU ⇀ ∂tu in L2
(
0, T ;L2(Ω,Rm)

)
,

S+, S−, S, S
∗
⇀ s in L∞

(
0, T ;L2(Ω)

)
,

∇S ∗
⇀ ∇s in L∞

(
0, T ;L6

(
Ω,Rd

))
,

∂tS ⇀ ∂ts in L2
(
0, T ;L2(Ω)

)
,

W
∗
⇀ w in L∞

(
0, T ;L2(Ω)

)
.

(3.4.8)

We use (3.2.4) and (3.4.6) to conclude that the different sequences converge to the same
limits u and s:

‖U∗ −U‖2
L2(0,T ;L2) +

∥∥U−U
∥∥2

L2(0,T ;L2)
≤ ck2 ‖∂tU‖2

L2(0,T ;L2) ≤ ck2 k→0−→
h→0

0

and

‖S∗ − S‖2
L2(0,T ;L2) +

∥∥S − S
∥∥2

L2(0,T ;L2)
≤ ck2 ‖∂tS‖2

L2(0,T ;L2) ≤ ck2 k→0−→
h→0

0,

for ∗ ∈ {+,−}. By an inverse estimate, we get the same for gradients of iterates, if we
assume k = o(h), which we shall need in Step 8 below.

Using Aubin-Lions’ Lemma, for any 1 < q < +∞ and any r < 6 (d ≤ 3),

U → u in Lq(0, T ;Lr(Ω,Rm)) ,

S → s in Lq
(
0, T ;W 1,r(Ω)

)
,

(3.4.9)

Step 6: u is part of a weak solution as in Definition 3.3.1.

Let ϕϕϕ ∈ C∞(ΩT ,Rm) and ϕϕϕh := IIIh(ϕϕϕ), and assume u0 = U0 for simplicity. We
rewrite equation (3.4.2)1 as

0 = (∂tU,ϕϕϕh) +
γ

2

((
S2

+ + S2
− + 2kε

)
∇U,∇ϕϕϕh

)
+ λ

(
χB

(
U−U0

)
,ϕϕϕh

)
+

1

2δε

((
|U+|2 + |U−|2 − 2

)
U,ϕϕϕh

)
=:A1 +

γ

2
A2 + λA3 +

1

2δε
A4

(3.4.10)
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for almost all t ∈ [0, T ). We shall show

0 =

∫ T

0

(∂tu,ϕϕϕ) dt+ γ

∫ T

0

((
s2 + kε

)
∇u,∇ϕϕϕ

)
dt+ λ

∫ T

0

(χB (u− u0) ,ϕϕϕ) dt

+
1

δε

∫ T

0

((
|u|2 − 1

)
u,ϕϕϕ

)
dt

=:

∫ T

0

(
B1 +

γ

2
B2 + λB3 +

1

2δε
B4

)
dt,

(3.4.11)

for which we proceed term by term:

∣∣∣∣∫ T

0

B1dt−
∫ T

0

A1dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

(∂t(u−U),ϕϕϕ) dt

∣∣∣∣+ ∣∣∣∣∫ T

0

(∂tU,ϕϕϕ−ϕϕϕh) dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

(∂t(u−U),ϕϕϕ) dt

∣∣∣∣+ c ‖∂tU‖L2(0,T ;L2) ‖ϕϕϕ−ϕϕϕh‖L2(0,T ;L2)

k→0−→
h→0

0,

by (3.4.8) and the properties of the Lagrange interpolation.

Next,

∣∣∣∣∫ T

0

B2dt−
∫ T

0

A2dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

((
2
(
s2 − S2

)
+ 2S2 − S2

+ − S2
−
)
∇U,∇ϕϕϕ

)
dt

∣∣∣∣
+

∣∣∣∣∫ T

0

(
2
(
s2 + kε

)
∇
(
u−U

)
,∇ϕϕϕ

)
dt

∣∣∣∣
+

∣∣∣∣∫ T

0

((
S2

+ + S2
− + 2kε

)
∇U,∇ (ϕϕϕ−ϕϕϕh)

)
dt

∣∣∣∣
≤ c ‖s− S‖L2(0,T ;L2)

∥∥∇U
∥∥

L2(0,T ;L2)
‖∇ϕϕϕ‖L∞(0,T ;L∞)

+ck ‖∂tS‖L2(0,T ;L2)

∥∥∇U
∥∥

L2(0,T ;L2)
‖∇ϕϕϕ‖L∞(0,T ;L∞)

+2

∣∣∣∣∫ T

0

(
∇
(
u−U

)
,
(
s2 + kε

)
∇ϕϕϕ
)
dt

∣∣∣∣
+c
∥∥∇U

∥∥
L2(0,T ;L2)

‖∇ (ϕϕϕ−ϕϕϕh)‖L2(0,T ;L2)

k→0−→
h→0

0,

by (3.4.8), the uniform boundedness of s and its iterates in L∞ in space and time, and
the properties of the Lagrange interpolation.
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Next,∣∣∣∣∫ T

0

B3dt−
∫ T

0

A3dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

(
χB

(
U−U0

)
,ϕϕϕ−ϕϕϕh

)
dt

∣∣∣∣+ ∣∣∣∣∫ T

0

(
χB

(
u−U

)
,ϕϕϕ
)
dt

∣∣∣∣
≤ c

∥∥U−U0

∥∥
L2(0,T ;L2)

‖ϕϕϕ−ϕϕϕh‖L2(0,T ;L2) +

∣∣∣∣∫ T

0

(
χB

(
u−U

)
,ϕϕϕ
)
dt

∣∣∣∣ k→0−→
h→0

0,

by (3.4.8) and the properties of the Lagrange interpolation.

Next, ∣∣∣∣∫ T

0

B4 −
∫ T

0

A4dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

((
|U+|2 + |U−|2 − 2

)
U,ϕϕϕ−ϕϕϕh

)
dt

∣∣∣∣
+

∣∣∣∣∫ T

0

(
2
(
|u|2 − 1

)
u−

(
|U+|2 + |U−|2 − 2

)
U,ϕϕϕ

)
dt

∣∣∣∣
≤ c

(
‖U+‖2

L4(0,T ;L4) + 1
)∥∥U∥∥

L4(0,T ;L4)
‖ϕϕϕ−ϕϕϕh‖L4(0,T ;L4)

+c
(
‖U−‖2

L4(0,T ;L4) + 1
)∥∥U∥∥

L4(0,T ;L4)
‖ϕϕϕ−ϕϕϕh‖L4(0,T ;L4)

+

∣∣∣∣∫ T

0

(
2
(
|u|2 − 1

) (
u−U + U−U

)
,ϕϕϕ
)
dt

∣∣∣∣
+

∣∣∣∣∫ T

0

((
2
(
|u|2 − |U|2

)
+ 2|U|2 − |U+|2 − |U−|2

)
U,ϕϕϕ

)
dt

∣∣∣∣
≤ c

(
‖U+‖2

L4(0,T ;L4) + 1
)∥∥U∥∥

L4(0,T ;L4)
‖ϕϕϕ−ϕϕϕh‖L4(0,T ;L4)

+c
(
‖U−‖2

L4(0,T ;L4) + 1
)∥∥U∥∥

L4(0,T ;L4)
‖ϕϕϕ−ϕϕϕh‖L4(0,T ;L4)

+c
(
‖u‖2

L4(0,T ;L4) + 1
)
‖u−U‖L2(0,T ;L2) ‖ϕϕϕ‖L∞(0,T ;L∞)

+c
(
‖u‖2

L4(0,T ;L4) + 1
)
k ‖∂tU‖L2(0,T ;L2) ‖ϕϕϕ‖L∞(0,T ;L∞)

+c ‖u−U‖L2(0,T ;L2) ‖u + U‖L2(0,T ;L2)

∥∥U∥∥
L2(0,T ;L2)

‖ϕϕϕ‖L2(0,T ;L2)

+ck ‖∂tU‖L2(0,T ;L2) ‖U + U+‖L2(0,T ;L2)

∥∥U∥∥
L2(0,T ;L2)

‖ϕϕϕ‖L2(0,T ;L2)

+ck ‖∂tU‖L2(0,T ;L2) ‖U + U−‖L2(0,T ;L2)

∥∥U∥∥
L2(0,T ;L2)

‖ϕϕϕ‖L2(0,T ;L2)

k→0−→
h→0

0,

by (3.2.4), (3.4.8), (3.4.9), and the properties of the Lagrange interpolation.

This concludes the proof of (3.4.11).

Step 7 : ∇U → ∇u strongly in L2
(
0, T ;L2

(
Ω,Rm×d

))
.
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Let uh := Rh(u) and put ϕϕϕ := ϕϕϕh := U− uh into (3.4.10) and (3.4.11). Subtracting
the former from the latter, we get

γ

2

∫ T

0

((
S2

+ + S2
− + 2kε

)
∇
(
U− u

)
,∇
(
U− uh

))
dt

=
γ

2

∫ T

0

((
2s2 − S2

+ − S2
−
)
∇u,∇

(
U− uh

))
dt

+

∫ T

0

(
∂t (u−U) ,U− uh

)
dt+ λ

∫ T

0

(
χB

(
u−U

)
,U− uh

)
dt

+
1

2δε

∫ T

0

(
2
(
|u|2 − 1

)
u−

(
|U+|2 + |U−|2 − 2

)
U,U− uh

)
dt.

We therefore calculate

γkε

∥∥∇ (U− u
)∥∥2

L2(0,T ;L2)

≤ γ

2

∫ T

0

((
S2

+ + S2
− + 2kε

)
∇
(
U− u

)
,∇
(
U− uh

))
dt

+
γ

2

∫ T

0

((
S2

+ + S2
− + 2kε

)
∇
(
U− u

)
,∇ (uh − u)

)
dt

=
γ

2

∫ T

0

((
S2

+ + S2
− + 2kε

)
∇
(
U− u

)
,∇ (uh − u)

)
dt

+
γ

2

∫ T

0

((
2s2 − S2

+ − S2
−
)
∇u,∇

(
U− uh

))
dt

+

∫ T

0

(
∂t (u−U) ,U− uh

)
dt+ λ

∫ T

0

(
χB

(
u−U

)
,U− uh

)
dt

+
1

2δε

∫ T

0

(
2
(
|u|2 − 1

)
u−

(
|U+|2 + |U−|2 − 2

)
U,U− uh

)
dt

=:
γ

2
T1 +

γ

2
T2 + T3 + λT4 +

1

2δε
T5.

We now show that in the limit (k, h) → 0, each of these terms vanishes, noting first that
∇ (uh − u) and U− uh converge strongly in L2(0, T ;L2):

‖∇ (uh − u)‖L2(0,T ;L2) = ‖∇ (Rh(u)− u)‖L2(0,T ;L2)

k→0−→
h→0

0, (3.4.12)

by a density argument, and∥∥U− uh

∥∥
L2(0,T ;L2)

≤
∥∥U− u

∥∥
L2(0,T ;L2)

+ ‖u− uh‖L2(0,T ;L2)

k→0−→
h→0

0,

by (3.4.8), (3.4.9), and (3.4.12). Therefore,

T1 ≤ c
∥∥S2

+ + S2
− + 2kε

∥∥
L∞(0,T ;L∞)

∥∥∇ (U− u
)∥∥

L2(0,T ;L2)
‖∇ (uh − u)‖L2(0,T ;L2)

≤ c ‖∇ (uh − u)‖L2(0,T ;L2)

k→0−→
h→0

0,
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and

T2 ≤ γ

2

∫ T

0

((
2s2 − S2

+ − S2
−
)
∇u,∇

(
U− uh

))
dt

≤ c
∥∥∥|s− S∗|1/2 |∇u|

∥∥∥
L2(0,T ;L2)

∥∥∇ (U− uh

)∥∥
L2(0,T ;L2)

k→0−→
h→0

0,

by the uniform boundedness of s and its iterates in L∞ in space and time, and Step 1;
where we sum over ∗ ∈ {+,−}. Furthermore,

T3 ≤ c ‖∂t (u−U)‖L2(0,T ;L2)

∥∥U− uh

∥∥
L2(0,T ;L2)

k→0−→
h→0

0,

and

T4 ≤ c
∥∥u−U

∥∥
L2(0,T ;L2)

∥∥U− uh

∥∥
L2(0,T ;L2)

k→0−→
h→0

0.

Finally, the penalty term tends to zero for (k, h) → 0 since

T5 ≤ c
∥∥2 (|u|2 − 1

)
u−

(
|U+|2 + |U−|2 − 2

)
U
∥∥

L2(0,T ;L2)

∥∥U− uh

∥∥
L2(0,T ;L2)

≤ c
(
‖u‖3

L6(0,T ;L6) + ‖u‖L2(0,T ;L2)

)∥∥U− uh

∥∥
L2(0,T ;L2)

+c
(
‖U+‖2

L6(0,T ;L6) + ‖U−‖2
L6(0,T ;L6) + 2

)∥∥U∥∥
L6(0,T ;L6)

∥∥U− uh

∥∥
L2(0,T ;L2)

≤ c
∥∥U− uh

∥∥
L2(0,T ;L2)

k→0−→
h→0

0,

as claimed.

Step 8: s is part of a weak solution as in Definition 3.3.1.
Let ϕ ∈ C∞

0 (ΩT ), ϕh := Ih(ϕ), and ψ ∈ C∞(ΩT ), ψh := Ih(ψ).
We rewrite equations (3.4.2)2,3 (adding up two consecutive versions of (3.4.2)3): For

almost all t ∈ [0, T ) it holds that

0 = (∂tS, ϕh) +
γ

2

((
|∇U+|2 + |∇U−|2

)
S, ϕh

)
+

2α

ε

((
S2

+ + S2
− − 2

)
S, ϕh

)
+ αε

(
∇S,∇ϕh

)
+

16β

ε3

((
S2

+ + S+S− + S2
− − 1

) ((
S2

+ − 1
)
S+ +

(
S2
− − 1

)
S−
)
, ϕh

)
h

+
4β

ε

(
∇Ih

((
S2

+ − 1
)
S+ +

(
S2
− − 1

)
S−
)
,∇ϕh

)
− 8β

ε2

((
S2

+ + S+S− + S2
− − 1

)
W,ϕh

)
h

+ 2β
(
W, ∆̃hϕh

)
h

=: A1 +
γ

2
A2 +

2α

ε
A3 + αεA4 +

16β

ε3
A5 +

4β

ε
A6 +

8β

ε2
A7 + 2βA8, and

0 = ε
(
∇S,∇ψh

)
+
(
W,ψh

)
h

=: εA9 + A10.

(3.4.13)
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We need to prove the following two equations:

0 =

∫ T

0

(∂ts, ϕ) dt+ γ

∫ T

0

(
|∇u|2s, ϕ

)
dt

+
4α

ε

∫ T

0

((
s2 − 1

)
s, ϕ
)
dt+ αε

∫ T

0

(∇s,∇ϕ) dt

+
2β

ε3

∫ T

0

(ψ′′(s)ψ′(s), ϕ) dt+
2β

ε

∫ T

0

(∇ψ′(s),∇ϕ) dt

− 2β

ε2

∫ T

0

(ψ′′(s)w,ϕ) dt+ 2β

∫ T

0

(w,∆ϕ) dt

=:

∫ T

0

(
B1 +

γ

2
B2 +

2α

ε
B3 + αεB4

)
dt

+

∫ T

0

(
16β

ε3
B5 +

4β

ε
B6 +

8β

ε2
B7 + 2βB8

)
dt, and

0 = ε

∫ T

0

(∇s,∇ψ) dt+

∫ T

0

(w,ψ) dt

=:

∫ T

0

(εB9 +B10) dt,

(3.4.14)

for which we proceed term by term:

∣∣∣∣∫ T

0

B1dt−
∫ T

0

A1dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

(∂tS, ϕ− ϕh) dt

∣∣∣∣+ ∣∣∣∣∫ T

0

(∂t(s− S), ϕ) dt

∣∣∣∣
≤ c ‖∂tS‖L2(0,T ;L2) ‖ϕ− ϕh‖L2(0,T ;L2) +

∣∣∣∣∫ T

0

(∂t(s− S), ϕ) dt

∣∣∣∣
k→0−→
h→0

0,

by (3.4.8) and the properties of the Lagrange interpolation.
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∣∣∣∣∫ T

0

B2 −
∫ T

0

A2dt

∣∣∣∣ dt
≤
∣∣∣∣∫ T

0

((
|∇U+|2 + |∇U−|2

)
S, ϕ− ϕh

)
dt

∣∣∣∣
+

∣∣∣∣∫ T

0

(
|∇u|2s− |∇U+|2 S, ϕ

)
dt

∣∣∣∣+ ∣∣∣∣∫ T

0

(
|∇u|2s− |∇U−|2 S, ϕ

)
dt

∣∣∣∣
≤ c

∥∥|∇U+|2 + |∇U−|2
∥∥

L1(0,T ;L1)

∥∥S∥∥
L∞(0,T ;L∞)

‖ϕ− ϕh‖L∞(0,T ;L∞)

+

∣∣∣∣∫ T

0

((
|∇u|2 − |∇U+|2

)
S, ϕ

)
dt

∣∣∣∣+ ∣∣∣∣∫ T

0

((
|∇u|2 − |∇U−|2

)
S, ϕ

)
dt

∣∣∣∣
+

∣∣∣∣∫ T

0

(
2|∇u|2

(
s− S

)
, ϕ
)
dt

∣∣∣∣
≤ c

∥∥|∇U+|2 + |∇U−|2
∥∥

L1(0,T ;L1)

∥∥S∥∥
L∞(0,T ;L∞)

‖ϕ− ϕh‖L∞(0,T ;L∞)

+c ‖∇U∗ −∇u‖L2(0,T ;L2) ‖∇U∗ +∇u‖L2(0,T ;L2)

∥∥S∥∥
L∞(0,T ;L∞)

‖ϕ‖L∞(0,T ;L∞)

+c
∥∥(s− S

)
|∇u|2

∥∥
L1(0,T ;L1)

‖ϕ‖L∞(0,T ;L∞)

k→0−→
h→0

0,

where we sum over ∗ ∈ {+,−} and use

‖U∗ −U‖H1(Ω) +
∥∥U−U

∥∥
H1(Ω)

≤ c
k

h
‖∂tU‖L2(Ω) ≤ c

k

h

k→0−→
h→0

0

— by k = o(h) and an inverse estimate —, as well as (3.4.8), Step 1, and the properties
of the Lagrange interpolation.

Next,∣∣∣∣∫ T

0

B3dt−
∫ T

0

A3dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

((
S2

+ + S2
− − 2

)
S, ϕ− ϕh

)
dt

∣∣∣∣
+

∣∣∣∣∫ T

0

((
s2 − 1

)
s−

(
S2

+ − 1
)
S, ϕ

)
dt

∣∣∣∣+ ∣∣∣∣∫ T

0

((
s2 − 1

)
s−

(
S2
− − 1

)
S, ϕ

)
dt

∣∣∣∣
≤
∥∥S2

+ + S2
− − 2

∥∥2

L4(0,T ;L4)

∥∥S∥∥
L2(0,T ;L2)

‖ϕ− ϕh‖L∞(0,T ;L∞)

+c ‖s− S∗‖L2(0,T ;L2) ‖s+ S∗‖L∞(0,T ;L∞) ‖s‖L∞(0,T ;L∞) ‖ϕ‖L2(0,T ;L2)

+c
∥∥S2

∗ − 1
∥∥

L∞(0,T ;L∞)

∥∥s− S
∥∥

L2(0,T ;L2)
‖ϕ‖L2(0,T ;L2)

k→0−→
h→0

0,

by (3.4.8) and the properties of the Lagrange interpolation; where we sum over ∗ ∈
{+,−}.
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Next,

∣∣∣∣∫ T

0

B4dt−
∫ T

0

A4dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

(
∇S,∇ϕh

)
dt

∣∣∣∣+ ∣∣∣∣∫ T

0

(
∇S,∇ (ϕ− ϕh)

)
dt

∣∣∣∣
+

∣∣∣∣∫ T

0

(
∇
(
s− S

)
,∇ϕ

)
dt

∣∣∣∣
≤ c

∥∥∇S∥∥
L2(0,T ;L2)

‖∇ (ϕ− ϕh)‖L2(0,T ;L2) +

∣∣∣∣∫ T

0

(
∇
(
s− S

)
,∇ϕ

)
dt

∣∣∣∣
k→0−→
h→0

0,

by (3.4.8) and the properties of the Lagrange interpolation.

For convenience, we now introduce the following notation:

F := S2
+ + S+S− + S2

− − 1,

f := 3s2 − 1,

G1 :=
(
S2

+ − 1
)
S+,

G2 :=
(
S2
− − 1

)
S−,

g :=
(
s2 − 1

)
s,

all of which are uniformly bounded in L∞(0, T ;L∞(Ω)) and L∞(0, T ;W 1,6(Ω)). Now note
that, always summing over ∗ ∈ {+,−},

‖S∗ − S‖H1(Ω) +
∥∥S − S

∥∥
H1(Ω)

≤ c
k

h
‖∂tS‖2

L2(Ω) ≤ c
k

h

k→0−→
h→0

0, (3.4.15)

by k = o(h) and an inverse estimate, whence, with ‖S∗ − s‖H1(Ω) → 0,

‖f − F‖L2(0,T ;H1) ≤ c ‖s− S∗‖L4(0,T ;L4) ‖s+ S∗‖L∞(0,T ;L∞) ‖∇S∗‖L4(0,T ;L4)

+ c ‖s− S∗‖L2(0,T ;H1)

∥∥s2
∥∥

L∞(0,T ;L∞)

k→0−→
h→0

0,
(3.4.16)

and analogously,

‖2g − (G1 +G2)‖L2(0,T ;H1)

k→0−→
h→0

0. (3.4.17)
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Therefore the next term gives

∣∣∣∣∫ T

0

B5dt−
∫ T

0

A5dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

(f (2g − (G1 +G2)) , ϕ) dt

∣∣∣∣+ ∣∣∣∣∫ T

0

((G1 +G2) (f − F ) , ϕ) dt

∣∣∣∣
+

∣∣∣∣∫ T

0

((G1 +G2)F, ϕ− ϕh) dt

∣∣∣∣
+

∣∣∣∣∫ T

0

((G1 +G2)F −Rh((G1 +G2)F ) , ϕh) dt

∣∣∣∣
+

∣∣∣∣∫ T

0

(Rh((G1 +G2)F ) , ϕh)− (Rh((G1 +G2)F ) , ϕh)h dt

∣∣∣∣
≤ c ‖f‖L∞(0,T ;L∞) ‖2g − (G1 +G2)‖L1(0,T ;L1) ‖ϕ‖L∞(0,T ;L∞)

+c ‖G1 +G2‖L∞(0,T ;L∞) ‖f − F‖L1(0,T ;L1) ‖ϕ‖L∞(0,T ;L∞)

+c ‖G1 +G2‖L∞(0,T ;L∞) ‖F‖L∞(0,T ;L∞) ‖ϕ− ϕh‖L1(0,T ;L1)

+ch ‖ϕh‖L∞(0,T ;L∞) ‖∇ (G1 +G2)‖L2(0,T ;L2) ‖F‖L2(0,T ;L2)

+ch ‖ϕh‖L∞(0,T ;L∞) ‖∇F‖L2(0,T ;L2) ‖G1 +G2‖L2(0,T ;L2)

k→0−→
h→0

0,

by (3.4.8), (3.2.3), (3.4.16), (3.4.17), and the properties of the Ritz projection and the
Lagrange interpolation.

Next,

∣∣∣∣∫ T

0

B6dt−
∫ T

0

A6dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

(∇ (2g − Ih(G1 +G2)) ,∇ϕ) dt

∣∣∣∣+ ∣∣∣∣∫ T

0

(∇Ih(G1 +G2) ,∇ (ϕ− ϕh)) dt

∣∣∣∣
≤ c ‖2g − (G1 +G2)‖L2(0,T ;L2) ‖ϕ‖L2(0,T ;H2)

+c ‖(G1 +G2)− Ih(G1 +G2)‖L2(0,T ;L2) ‖ϕ‖L2(0,T ;H2)

+c ‖G1 +G2‖L2(0,T ;H1) ‖ϕ− ϕh‖L2(0,T ;H1)

k→0−→
h→0

0,

by (3.4.8), (3.4.16), (3.4.17), and the properties of the Lagrange interpolation.
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Next, ∣∣∣∣∫ T

0

B7dt−
∫ T

0

A7dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

(
w −W, fϕ

)
dt

∣∣∣∣+ ∣∣∣∣∫ T

0

(
W (f − F ) , ϕ

)
dt

∣∣∣∣
+

∣∣∣∣∫ T

0

(
WF,ϕ− ϕh

)
dt

∣∣∣∣+ ∣∣∣∣∫ T

0

(
ϕhF −Rh(ϕhF ) ,W

)
dt

∣∣∣∣
+

∣∣∣∣∫ T

0

(
Rh(ϕhF ) ,W

)
−
(
Rh(ϕhF ) ,W

)
h
dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

(
w −W, fϕ

)
dt

∣∣∣∣
+
∥∥W∥∥

L2(0,T ;L2)
‖f − F‖L2(0,T ;L2) ‖ϕ‖L∞(0,T ;L∞)

+
∥∥W∥∥

L2(0,T ;L2)
‖F‖L∞(0,T ;L∞) ‖ϕ− ϕh‖L2(0,T ;L2)

+ch
∥∥W∥∥

L2(0,T ;L2)
‖ϕh‖L2(0,T ;H1) ‖F‖L∞(0,T ;L∞)

+ch
∥∥W∥∥

L2(0,T ;L2)
‖F‖L2(0,T ;H1) ‖ϕh‖L∞(0,T ;L∞)

k→0−→
h→0

0,

by (3.4.8), (3.2.3), (3.4.16), (3.4.17), and the properties of the Ritz projection and the
Lagrange interpolation.

Integrating by parts, the next term gives∣∣∣∣∫ T

0

B8dt−
∫ T

0

A8dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

(
w −W,∆ϕ

)
dt

∣∣∣∣+ ∣∣∣∣∫ T

0

(
∇W,∇ (ϕh − ϕ)

)
dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

(
w −W,∆ϕ

)
dt

∣∣∣∣+ c
∥∥∇W∥∥

L2(0,T ;L2)
‖ϕ− ϕh‖L2(0,T ;H1)

≤
∣∣∣∣∫ T

0

(
w −W,∆ϕ

)
dt

∣∣∣∣+ ch1/2 ‖ϕ‖L2(0,T ;H2)

k→0−→
h→0

0,

by (3.4.8), an inverse estimate, the properties of the Lagrange interpolation, and (3.4.7).
Next,∣∣∣∣∫ T

0

B9dt−
∫ T

0

A9dt

∣∣∣∣
≤ c ‖∇s‖L2(0,T ;L2) ‖∇ (ψ − ψh)‖L2(0,T ;L2) + c

∥∥∇ (s− S
)∥∥

L2(0,T ;L2)
‖∇ψh‖L2(0,T ;L2)

k→0−→
h→0

0,
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by (3.4.8) and the properties of the Lagrange interpolation.

And finally,

∣∣∣∣∫ T

0

B10dt−
∫ T

0

A10dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

(
W,ψ − ψh

)
dt

∣∣∣∣+ ∣∣∣∣∫ T

0

(
w −W,ψ

)
dt

∣∣∣∣
+

∣∣∣∣∫ T

0

(
W,ψh

)
−
(
W,ϕh

)
h
dt

∣∣∣∣
≤ c

∥∥W∥∥
L2(0,T ;L2)

‖ψ − ψh‖L2(0,T ;L2) +

∣∣∣∣∫ T

0

(
w −W,ψ

)
dt

∣∣∣∣
+ch

∥∥W∥∥
L2(0,T ;L2)

‖∇ψh‖L2(0,T ;L2)

k→0−→
h→0

0.

This concludes the proof.

3.5 Mumford-Shah-Euler with Lagrange Multiplier

The system (3.3.2) penalises the sphere constraint |u| = 1 by a Ginzburg-Landau term
that is scaled by δ ≡ δε > 0. According to Section 3.4, weak solutions (uδ, sδ) of (3.3.2)
may be constructed as proper limits of iterates {Uδ

n, S
δ
n}n which solve the implementable

space-time discretisation (3.4.2).

Passing to the limit for δ → 0 should be done simultaneously with ε in the context
of Γ-convergence of the functional (3.3.1) (i.e., the related minimisation problem), which
we do not study here. We would expect a moderate condition on δ converging to zero
not too fast compared to ε, similar to the one in [67] and Chapter 2, compare also the
computational studies in Section 3.6.

Passing to the limit for δ → 0 in equation (3.3.2), on the other hand, seems non-trivial:
Although sufficient compactness properties are provided by the energy law for suitably
relabelled sequences {(uδ, sδ)}δ to accomplish this goal in (3.3.2)1, strong convergence
∇uδ → ∇u in L2(ΩT ) (δ → 0) may not be expected in general; c.f. [98, p. 283ff.]. This
property, however, is needed to conclude for the second term in (3.3.2)2 that |∇uδ|2sδ ⇀
|∇u|2s in L2(ΩT ) (δ → 0). It is this term that controls the interplay of the sphere-valued
heat flow harmonic map with the phase-field evolution. We also refer to Step 7 in the
proof of Theorem 3.4.2, which is crucial for proving (sub-) convergence of iterates of
Algorithm 3.4.1 to weak solutions of (3.3.2) for (k, h) → 0.
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In this section, we propose a consistent discretisation of the Mumford-Shah-Euler flow
without penalisation:

ut − γdiv
((
s2 + kε

)
∇u
)

+ λχB (u− u0) = µu,

st + γ|∇u|2s+
α

ε
ψ′(s)− αεw

+2β

(
1

ε3
ψ′′(s)ψ′(s)− 1

ε
∆ψ′(s)− 1

ε2
ψ′′(s)w + ∆w

)
= 0,

−ε∆s+ w = 0,

|u| = 1,

(3.5.1)

with appropriate initial and boundary conditions, where µ : ΩT → R is the Lagrange
multiplier for the sphere constraint |u| = 1. By scalar multiplication of (3.5.1)1 with u,
noting (3.5.1)4, we easily compute

µ = γ
(
s2 + kε

)
|∇u|2 + λχB (1− u0 · u) . (3.5.2)

Moreover, multiplication of (3.5.1)1 with ut, and (3.5.1)2 with st, integration of over
ΩT , and summation formally gives

Eε(u(T, ·), s(T, ·)) + ‖ut‖2
L2(0,T ;L2) + ‖st‖2

L2(0,T ;L2) = Eε(u(0, ·), s(0, ·)) , (3.5.3)

where Eε is now defined as

Eε(u, s) :=
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx +

λ

2

∫
B

|u− u0|2 dx

+ α

∫
Ω

(
ε

2
|∇s|2 +

1

ε
ψ(s)

)
dx +

β

ε

∫
Ω

(
1

ε
ψ′(s)− ε∆s

)2

dx,

for u ∈ H1(Ω,Sm−1), u0 ∈ L∞(Ω,Sm−1), and s ∈ H2(Ω).

3.5.1 Algorithm

We combine the results from Section 3.4 and [11] to construct an implementable space-
time discretisation of (3.5.1) where the sphere constraint is preserved at each node z ∈ Nh,
and a discrete version of (3.5.3) is valid. The discrete energy that we consider in this
section is

Eh,ε(U, S) :=
γ

2

∫
Ω

(
S2 + kε

)
|∇U|2 dx +

λ

2

∫
B

|U−U0|2 dx

+ α

∫
Ω

(
ε

2
|∇S|2 +

1

ε
ψ(S)

)
dx +

β

ε

∫
Ω

Ih

((
1

ε
ψ′(S)− ε∆̃hS

)2
)

dx,

for U,U0 ∈ Vh(Ω,Rm), and S ∈ Vh(Ω) (only the last term has changed from Eε above).

Algorithm 3.5.1. Let U0 ∈ Vh(Ω, Sm−1), and S0 ∈ Vh(Ω) be given.

(1) Compute W0 ∈ Vh(Ω), such that (W0, Z) = −ε (∇S0,∇Z) for all Z ∈ Vh(Ω).
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(2) For n = 0, . . . compute Sn+1,Wn+1 ∈ Vh(Ω), and Un+1 ∈ Vh(Ω,Rm) such that for
all Y, Z ∈ Vh(Ω) and X ∈ Vh(Ω,Rm) the following equations hold:

(dtUn+1,X)h +
γ

2

((
S2

n+1 + S2
n + 2kε

)
∇Un+1/2,∇X

)
+λ
(
χB

(
Un+1/2 −U0

)
,X
)
−
(
µn+1Un+1/2,X

)
h

= 0,

(dtSn+1, Y ) +
γ

2

((
|∇Un+1|2 + |∇Un|2

)
Sn+1/2, Y

)
+

2α

ε

((
S2

n+1 + S2
n − 2

)
Sn+1/2, Y

)
+ αε

(
∇Sn+1/2,∇Y

)
+

16β

ε3

((
S2

n+1 + Sn+1Sn + S2
n − 1

) ( (
S2

n+1 − 1
)
Sn+1

+
(
S2

n − 1
)
Sn

)
, Y
)

h

+
4β

ε

(
∇Ih

((
S2

n+1 − 1
)
Sn+1 +

(
S2

n − 1
)
Sn

)
,∇Y

)
−8β

ε2

((
S2

n+1 + Sn+1Sn + S2
n − 1

)
Wn+1/2, Y

)
h
− 2β

(
∇Wn+1/2,∇Y

)
= 0,

ε (∇Sn+1,∇Z) + (Wn+1, Z)h = 0.

(3.5.4)

Here, µn+1 ∈ Vh(Ω) is the approximate discrete Lagrange multiplier to establish the
discrete sphere constraint, for which we also have to use reduced integration in the first
term. An an explicit formula for µn+1 is (for z ∈ Nh)

µn+1(z) =


0 if Un+1/2(z) = 0,
γ
2 ((S2

n+1+S2
n+2kε)∇Un+1/2,Un+1/2(z)⊗∇ϕz)

βz|Un+1/2(z)|2

+
λχB(z)

“
|Un+1/2(z)|2−U0(z)·Un+1/2(z)

”
|Un+1/2(z)|2 otherwise.

(3.5.5)

This formula can be easily found using X = Un+1/2(z)ϕz, with the properties of (·, ·)h.
We remark that the non-local character of (3.5.5) as opposed to its continuous analog
(3.5.2) is due to space-time discretisation.

3.5.2 Analysis

The following proposition asserts existence of solutions {(Un+1, Sn+1)}n of (3.5.4)1−3,
(3.5.5), which avoids a mixed formulation for quantities {(Un+1, µn+1, Sn+1)}n in Al-
gorithm 3.5.1 for every n ≥ 0. This reduction of the original problem requires a mesh
constraint to hold, to exclude the case Un+1/2(z) = 0 in (3.5.5).

Proposition 3.5.2. Let Th be a quasi-uniform triangulation of Ω ⊂ Rd, U0 ∈ Vh(Ω,Rm)

such that |U0(z)| = 1 for all z ∈ Nh, and d ≤ 3. For sufficiently small C̃ ≡ C̃(Ω, Th) >

0 independent of k, h > 0 such that k ≤ C̃max
{
hd+2, ε−1h4

}
, there exists a tuple

{Un+1, Sn+1}N
n≥0 ⊂ Vh(Ω,Rm) × Vh(Ω) that satisfies (3.5.4)1−3, (3.5.5), |Un+1(z)| = 1

for all z ∈ Nh, and (1 ≤ n ≤ N)

Eh,ε

(
Un+1, Sn+1

)
+ k

n∑
`=0

(
‖dtU`+1‖2

L2 +
∥∥dtS

`+1
∥∥2

L2

)
= Eh,ε(U0, S0) .
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In passing we remark that for m = 3, the heat flow harmonic map to S2 which weakly
solves vt −∆v = |∇v|2v a.e. in ΩT also satisfies vt + v × (v ×∆v) = 0 in ΩT .

This cross-product formulation was studied in [12] to get another convergent discret-
isation of the heat flow harmonic map equation to the sphere S2. But such a strategy
is not useful in our case, where a discretisation of (3.5.1) that satisfies a discrete energy
law requires a proper balancing of corresponding terms in (3.5.1)1 and (3.5.1)2: In order
to obtain the energy law for the cross-product formulation, we have to multiply by −∆u
rather than ut before integration in space and time,

1

2
‖∇u(T, ·)‖2 +

∫
ΩT

|u×∆u|2 dxdt =
1

2
‖∇u(0, ·)‖2 .

Hence, a corresponding reformulation of (3.5.1)1 requires a test function different from
ut, which conflicts with the necessary choice of st in (3.5.1)2 to eventually establish an
energy law for (3.5.1).

The following proof per induction of Proposition 3.5.2 adopts arguments from [11] to
(3.5.4)1−3, (3.5.5):

In a first step, we modify the discrete Lagrange multiplier in (3.5.5) to exclude ‘division
by zero’, control the interplay of phase field and harmonic map evolution in the coupling
term, and obtain existence of corresponding solutions by Brouwer’s fixed point theorem.

A bootstrapping argument afterwards validates that Un+1/2(z) = 0 for any z ∈ Nh

is excluded once k ≤ C̃hd+2 is valid, so in this case, the mesh constraint stems from the
discrete Lagrange multiplier.

Proof. Step 1: Solvability of an auxiliary problem.

Fix n ≥ 0. For every 0 < κ ≤ 1
4
, define the continuous mapping

Fκ : Vh(Ω,Rm)× Vh(Ω)× Vh(Ω) → Vh(Ω,Rm)× Vh(Ω)× Vh(Ω)
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via

(Fκ(ΦΦΦ,Θ,Ξ), (X, Y, Z))

:=
2

k
(ΦΦΦ−Un,X)h +

γ

2

((
(2Θ− Sn)2 + S2

n + 2kε

)
∇ΦΦΦ,∇X

)
−
∑
z∈Nh

(
λ

(
χB(z)

|ΦΦΦ(z)|2 −U0(z) ·ΦΦΦ(z)

max
{
|ΦΦΦ(z)|2 , κ

} ϕzΦΦΦ,X

)
h

+
γ

2

(((
min

{
(2Θ− Sn)2 , κ−1

}
+ S2

n + kε

)
∇ΦΦΦ,ΦΦΦ(z)⊗∇ϕz

)
βz max

{
|ΦΦΦ(z)|2 , κ

} ϕzΦΦΦ,X

)
h

)
+

2

k
(Θ− Sn, Y ) +

γ

2

((
|∇ (2ΦΦΦ−Un)|2 + |∇Un|2

)
Θ, Y

)
+

2α

ε

((
(2Θ− Sn)2 + S2

n − 2
)
Θ, Y

)
+ αε (∇Θ,∇Y )

− 16β

ε3

((
(2Θ− Sn)2 + 2Θ · Sn − 1

) ((
1− (2Θ− Sn)2) (2Θ− Sn) +

(
1− S2

n

)
Sn

)
, Y
)

h

+
4β

ε

(
∇Ih

((
(2Θ− Sn)2 − 1

)
(2Θ− Sn) +

(
S2

n − 1
)
Sn

)
,∇Y

)
− 8β

ε2

((
(2Θ− Sn)2 + (2Θ− Sn)Sn + S2

n − 1
)
Ξ, Y

)
h
− 2β (∇Ξ,∇Y )

+ 2β(∇Θ,∇Z
)

+ 2
β

ε
(Ξ, Z)h.

Setting (X, Y, Z) = (ΦΦΦ,Θ,Ξ) leads to terms I1, . . . I14, where for some finite % > 0

14∑
i=5

Ii ≥ 0 ∀Θ ∈ Vh : ‖Θ‖L∞ ≥ %

as in Step 4 in the proof of Theorem 3.4.2.

An upper bound for I3 :=
∑

z∈Nh
I3(z) uses |U0(z)| = 1 to conclude that

|I3(z)| ≤ λχB(z)βz
|ΦΦΦ(z)|3 (|ΦΦΦ(z)|+ |U0(z)|)

max
{
|ΦΦΦ(z)|2 , κ

}
≤ CχB(z)βz |ΦΦΦ(z)| (1 + |ΦΦΦ(z)|) ,

and hence I3 ≤ C ‖ΦΦΦ‖2
h.

We compute for I4 :=
∑

z∈Nh
I4(z),

|I4(z)|

≤ γ

2

(
min

{
(2Θ(z)− Sn(z))2 , κ−1

}
+ ‖Sn‖2

L∞ + 2kε

)
|ΦΦΦ(z)|2

max
{
|ΦΦΦ(z)|2 , κ

} (|∇ΦΦΦ| , |ΦΦΦ(z)⊗∇ϕz|)

≤ Cγ
(
min

{
(2Θ(z)− Sn(z))2 , κ−1

}
+ ‖Sn‖2

L∞ + 2kε

)
(|∇ΦΦΦ| , |∇ (ΦΦΦ(z)ϕz)|)supp(∇ϕz)

≤ Ch−1
(
κ−1 + ‖Sn‖2

L∞ + 2kε

)
(γ |∇ΦΦΦ| , |ΦΦΦ(z)|)supp(∇ϕz)

.
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For all ΦΦΦ ∈ Vh

(
Ω,R3

)
such that

‖ΦΦΦ‖h ≥ %1 := max
{
‖Un‖h , ‖Sn‖4

L∞ , κ
−2
}

,

and values k ≤ C̃h2 for some existing 0 < C̃ ≡ C̃(Ω), on using Young’s inequality,
and the fact that the number of nodes z ∈ Nh such that (∇ϕy,∇ϕz) 6= 0 is bounded
independently of h > 0,

I1 + . . .+ I4 ≥ 2

k
(ΦΦΦ−Un,ΦΦΦ)h +

γ

2

∥∥∥∥∇ΦΦΦ

√
(2Θ− Sn)2 + S2

n + 2kε

∥∥∥∥2

L2

−C ‖ΦΦΦ‖2
h − Ch−2k−1

ε

(
κ−2 + ‖Sn‖4

L∞

)
‖ΦΦΦ‖2

L2 − γkε ‖∇ΦΦΦ‖2
L2

≥ 2

k
‖ΦΦΦ‖h

((
1− Ck

kεκ2h2

)
‖ΦΦΦ‖h − ‖Un‖h

)
,

Putting things together gives (Fκ(ΦΦΦ,Θ,Ξ) , (ΦΦΦ,Θ,Ξ)) ≥ 0 for all (ΦΦΦ,Θ,Ξ) suffi-
ciently large. A corollary to Brouwer’s fixed-point theorem [65, p. 279] then implies
existence of a tuple

(
Un+1/2, Sn+1/2,Wn+1/2

)
∈ Vh(Ω,Rm) × Vh(Ω) × Vh(Ω) such that

Fκ

(
Un+1/2, Sn+1/2,Wn+1/2

)
= 0.

Step 2: Show that
(
Un+1/2, Sn+1/2,Wn+1/2

)
solves (3.5.4) for k ≤ C̃hd+2.

We proceed by induction to show that the root
(
Un+1/2, Sn+1/2,Wn+1/2

)
of Fκ solves

F0

(
Un+1/2, Sn+1/2,Wn+1/2

)
= 0, if k ≤ C̃hd+2. Let n ≥ 1. For all 0 ≤ ` ≤ n, suppose

that
(
Un+1/2, Sn+1/2,Wn+1/2

)
∈ Vh(Ω,Rm)× Vh(Ω)× Vh(Ω) satisfies

|U`(z)| = 1 ∀ z ∈ Nh,

Eh,ε(U`, S`) +
k

2

`−1∑
j=0

(
‖dtUj‖2

h + ‖dtSj‖2
L2

)
= Eh,ε(U0, S0) .

(3.5.6)

We now want to show that, if k ≤ C̃hd+2 for some C̃ ≥ 0, then

‖Sn+1‖L∞(Ω) ≤ h−d/2C, for some C ≥ 0 independent of n, and∣∣Un+1/2(z)
∣∣ > 0.

(3.5.7)

For (3.5.7)1, we use arguments similar to the ones in the proof of Theorem 3.4.2, Step 4
(the energy principle): From Step 1 above we know that Fκ

(
Un+1/2, Sn+1/2,Wn+1/2

)
= 0.

Now consider

0 =
(
Fκ

(
Un+1/2, Sn+1/2,Wn+1/2

)
,
(
0, Sn+1/2,Wn+1/2

))
=: T1 + . . .+ T14.

We can assume that

‖Sn+1‖L2(Ω) ≥ %2

(
‖Sn‖L2(Ω) , |Ω|

)
,

since otherwise, by inverse estimate and (3.5.6)2,

‖Sn+1‖L∞(Ω) ≤ Ch−d/2 ‖Sn+1‖L2(Ω) ≤ Ch−d/2 ‖Sn‖L2(Ω) ≤ Ch−d/2,
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and we would be done.
In the following, we repeatedly use Young’s and Hölder’s inequalities, and standard

inverse estimates, see e.g. [24, Section 4.5]. Furthermore, we use the fact that by (3.5.6),
‖∇Un‖2

L2 ≤ c0k
−1
ε = c(Eh,ε(U0, S0)) k

−1
ε , ‖∇Sn‖2

L2 ≤ c0ε
−1, as well as ‖Sn‖L∞ ≤ c0ε

−5/2,
‖∇Sn‖L6 ≤ c0ε

−4, and ‖Wn‖2
L2 ≤ c0ε.

By the choice of the test function,
∑4

i=1 Ti = 0, and

T5 =
1

k
‖Sn+1‖2

L2(Ω) −
1

k
‖Sn‖2

L2(Ω) .

Like in the proof of Theorem 3.4.2, Step 4,

T6 =
γ

2

(
|∇Un+1|2 + |∇Un|2,

∣∣Sn+1/2

∣∣2) ≥ 0,

T7 =
2α

ε

((
S2

n+1 + S2
n − 2

)
,
∣∣Sn+1/2

∣∣2) ≥ 0,

if ‖Sn+1‖L2 ≥ %2

(
‖Sn‖L2(Ω) , |Ω|

)
; and

T8 = αε
∥∥∇Sn+1/2

∥∥2

L2(Ω)
≥ 0.

By the same calculations as in the proof of Theorem 3.4.2, Step 4,

ε

2β
(T9 + T10 + T11 + T12 + T13 + T14)

≥ 1

ε2

∥∥∥∣∣2Sn+1/2

∣∣3∥∥∥2

h
− cε2

h4

∥∥Sn+1/2

∥∥2

L2(Ω)
,

and this remainder can be compensated by T5, by the coupling between k and h.
Therefore, by an inverse estimate,

‖Sn+1‖L∞(Ω) ≤ Ch−d/2 ‖Sn+1‖L2(Ω) ≤ Ch−d/2 ‖Sn‖L2(Ω) ≤ Ch−d/2.

For (3.5.7)2, by parallelogram identity and triangle inequality, it suffices to show∣∣Un+1/2(z)
∣∣2 ≥ 1− k

2
|dtUn+1(z)|2

!
>

1

2
∀ z ∈ Nh. (3.5.8)

By the definition of Fκ, the iterate Un+1 = 2Un+1/2−Un satisfies for all X ∈ Vh(Ω,Rm),

(dtUn+1,X)h +
γ

2

((
S2

n+1 + S2
n + 2kε

)
∇Un+1/2,∇X

)
= λ

∑
z∈Nh

(
χB(z)

∣∣Un+1/2(z)
∣∣2 −U0(z) ·Un+1/2(z)

max{
∣∣Un+1/2(z)

∣∣2 , κ} ϕzUn+1/2,X

)
h

+
∑
z∈Nh

(
γ
((

min
{
S2

n+1, κ
−1
}

+ S2
n + 2kε

)
∇Un+1/2,Un+1/2(z)⊗∇ϕz

)
2βz max{|Un+1/2(z)|2, κ}

ϕzU
n+1/2,X

)
h

.
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We put X = dtUn+1(z
∗)ϕz∗ for z∗ = argmaxy∈Nh

|dtU
n+1(y)|, and use properties of

reduced integration, an inverse estimate, inequality (3.5.7)1, and ‖∇ϕz∗‖L1 ≤ Cβz∗h
−1,

to obtain

βz∗ |dtUn+1(z
∗)|2

≤ c
∣∣((S2

n+1 + S2
n + 2kε

)
∇Un+1/2, dtUn+1(z

∗)∇ϕz∗
)∣∣

+ c
(∣∣Un+1/2(z)

∣∣+ |U0(z)|
)
‖ϕz∗‖L1 |dtUn+1(z

∗)|
+ c
∥∥S2

n+1 + S2
n + 2kε

∥∥
L∞

∥∥∇Un+1/2

∥∥
L∞
‖∇ϕz∗‖L1 |dtUn+1(z

∗)|

≤ ch−d

(
k

2
‖∇dtUn+1‖L∞ + ‖∇Un‖L∞

)
‖∇ϕz∗‖L1 |dtUn+1(z

∗)|

≤ cβz∗h
−(d+2)

(
k

2
|dtUn+1(z

∗)|+ ‖Un‖L∞

)
|dtUn+1(z

∗)| .

By assumption (3.5.6) for all 0 ≤ ` ≤ n, we then arrive at(
1− ck

hd+2

)
|dtUn+1(z

∗)| ≤ c̃h−(d+2),

for some c̃ ≡ c̃(Ω) > 0. Hence, assertion (3.5.8) is valid for values k ≤ c̃hd+2. Con-
sequently, the parameter κ > 0 which was needed a priori to exclude division by zero and
unboundedness of iterates ‖Sn+1‖L∞(Ω) in the Lagrange multiplier, really has no effect

for k small enough; i.e., F0

(
Un+1/2, Sn+1/2,Wn+1/2

)
= 0. Therefore, testing (3.5.1) with

X = Un+1/2ϕz and using the definition of µn+1, we verify that |Un+1(z)| = 1 for all
z ∈ Nh.

Moreover, the energy bound (3.5.6)2 holds for all 0 ≤ ` ≤ n + 1, which follows like
in the proof of Theorem 3.4.2, Step 2: Test (3.5.4) with X := dtUn+1, Y := dtSn+1,
and observe that that

(
Un+1/2, dtUn+1

)
h

= 1
2k

∑
z βz

(
|Un+1(z)|2 − |Un(z)|2

)
= 0, by

(3.5.6)1.

3.6 Computational Studies

3.6.1 Implementation of Algorithms 3.4.1 and 3.5.1

For both algorithms, we use a simple fixed-point iteration to deal with the nonlinearities,
and a dynamic time-stepping strategy, adjusted to the number of fixed point iterations,
which are in turn adjusted to changes in the highest-order term of the energy, similarly to
[53]. In order to process the brightness component, we introduce the variable V ∈ Vh(Ω).
So, the actual implementation of Algorithm 3.4.1 looks like this:

Algorithm 3.6.1. Let U0 ∈ Vh(Ω,Rm), S0, V0 ∈ Vh(Ω), and TOL > 0 be given. Set
n := 0 and T := 0.
Compute W0 ∈ Vh(Ω), such that (W0, Z)h = −ε (∇S0,∇Z) for all Z ∈ Vh(Ω).
While T < 1 do

(1) Set Un,0 := Un−1, Vn,0 := Vn−1, Sn,0 := Sn−1, Wn,0 := Wn−1, and θ := 1.
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(2) While θ > TOL AND l < 5:

(a) Let l := l + 1.

(b) Compute Vn,l+1 ∈ Vh(Ω), such that for all X ∈ Vh(Ω)

(dtVn+1, X) +
γ1

4

((
S2

n,l+1 + S2
n + 2kε

)
∇ (Vn,l+1 + Vn) ,∇X

)
+
λ1

2
(χB (Vn,l+1 + Vn − 2V0) , X) = 0.

(c) Compute Un,l+1 ∈ Vh(Ω,Rm), such that for all X ∈ Vh(Ω,Rm)

(dtUn,l+1,X) +
γ

4

((
S2

n,l+1 + S2
n + 2kε

)
∇ (Un,l+1 + Un) ,∇X

)
+
λ

2
(χB (Un,l+1 + Un − 2U0) ,X)

+
1

4δε

((
|Un,l+1|2 + |Un|2 − 2

)
(Un,l+1 + Un) ,X

)
= 0.

(d) Compute Sn,l+1,Wn,l+1 ∈ Vh(Ω), such that for all Y, Z ∈ Vh(Ω)

(dtSn+1, Y ) +
γ

4

((
|∇Un,l+1|2 + |∇Un|2

)
(Sn,l+1 + Sn) , Y

)
+
α

ε

((
S2

n,l+1 + S2
n − 2

)
(Sn,l+1 + Sn) , Y

)
+
αε

2
(∇ (Sn,l+1 + Sn) ,∇Y )

+
16β

ε3

((
S2

n,l+1 + Sn,l+1Sn + S2
n − 1

) ( (
S2

n,l+1 − 1
)
Sn,l+1

+
(
S2

n − 1
)
Sn

)
, Y
)

h

+
4β

ε

(
∇Ih

((
S2

n,l+1 − 1
)
Sn,l+1 +

(
S2

n − 1
)
Sn

)
,∇Y

)
−4β

ε2

((
S2

n,l+1 + Sn,l+1Sn + S2
n − 1

)
(Wn,l+1 +Wn) , Y

)
h

−β (∇ (Wn,l+1 +Wn) ,∇Y ) = 0,

ε (∇ (Sn,l+1 + Sn) ,∇Z) + (Wn,l+1 +Wn, Z)h = 0.

(3) Let θ := ‖Wn,l+1 −Wn,l‖2
L2(Ω).

(4) If θ > TOL, let k := k
2

and go to (2).

(5) Else if l < 4, let k := 2k.

(6) Let n := n + 1, Vn := Vn,l+1, Un := Un,l+1, Sn := Sn,l+1, Wn := Wn,l+1, and
T := T + k.

Algorithm 3.5.1 is implemented in the same fashion. Since experiments show that the
sphere-constraint usually improves beyond the first five fixed-point iterations, we change
the first line of (2) to
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While θ + σ/10 > TOL AND l < 10,
where σ is the Euclidian norm over all nodes of 1 − |Un,l+1|. However, since dynamics
are still primarily driven by the highest-order term, the time-step is still controlled by
the number of fixed-point iterations necessary to reach ‖Wn,l+1 −Wn,l‖2

L2(Ω) < TOL.

All parameters in the following simulations are chosen by experiment. The parameter
ε, which corresponds to the “width” of the interfaces, can usually be set to several dia-
meters of discretisation triangles, with larger values making the interfaces more diffuse,
but the dynamics more forgiving. In our simulations, we usually took ε = 10h, where
what we call h is in fact the length of the two shorter sides of the rectangular triangles in
our triangulations; i.e., it is shorter than the actual diameter of the triangles (by a factor
of
√

2).

3.6.2 Inpainting with Penalisation, with and without Curvature

This example compares inpainting with Algorithm 3.4.1 (penalisation) with β = 0 (no
curvature penalisation) versus β > 0.

Example 3.1. Let Ω := (0, 1)2 and U0, V0 as in the right plot in Figure 3.1, and S0 ≡ 1.
The inpainting domain is filled with random data. Let h = 1/100, ε = 10 ∗ h, and
kε = ε ∗ 10−3. We compare the following sets of parameters:

(1) Let γ = γ1 = 100, α = 15, β = 0.2, λ = λ1 = 5 ∗ 105, δε = 0.05, and k0 =
h3 (the initial time step; the following steps are chosen dynamically according to
Section 3.6.1), and TOL = 10−2.

(2) Let γ = 150, γ1 = 130, α = 10, β = 0, λ = λ1 = 106, δε = 0.1, and k = 10−4

(constant time-step, always 3 fixed-point iterations).

Figure 3.1: Example 3.1: Image; intact and degraded.

This example clearly shows that in some cases a curvature term is necessary to give
natural inpainting results.

Figure 3.1 shows the intact image as well as the image we use as a starting point for
inpainting. Figure 3.2 shows iterates, edge sets (black means S = 0), phase functions
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Figure 3.2: Example 3.1: β = 0.2; image (row 1), |S| (row 2), S (row 3), and |U| (row 4)
at times t = 0.004, 0.03, 1.

S, and the length of U at times t = 0.004, 0.03, 1 for inpainting with curvature, while
Figure 3.3 shows the same at times t = 0.009, 0.015, 1 for inpainting without curvature
term. For inpainting with curvature term we see that mainly two edges are created, one
passing inside and one outside the inpainting domain. The inner one tries to disappear
but apparently gets stuck in a local energy well (local minimum) and does not seem to
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Figure 3.3: Example 3.1: β = 0; image (row 1), |S| (row 2), S (row 3), and |U| (row 4)
at times t = 0.009, 0.015, 1.

disappear even for times greater than 1. Indeed, the little circle we see in the lower right
corner does not seem to be a computational artifact, but a stable radius r: The Euler
term gives (for the full circle)

2πr

(
α +

β

r2

)
,
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Figure 3.4: Example 3.1: min and max of |U| (x-logarithmic plots); β = 0.2 (left) and
β = 0 (right).
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Figure 3.5: Example 3.1: Energy; β = 0.2 (left) and β = 0 (right), y-logarithmic plots.
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Figure 3.6: Example 3.1: β = 0.2; dynamic time-step (logarithmic plot).
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whose derivative should be zero at minima, whence

r =

√
β

α
= 75−1/2 ≈ 0.12,

which should be approximately the radius of that little circle. Changing the ratio between
β and α by decreasing β or increasing α would make it smaller, but would also result in
a less round reconstruction of the big circle, see Example 3.2.

Figure 3.4 shows the minimum and maximum of |U| over time for both cases. Inter-
estingly, further decreasing δε in the case of β > 0 moved |U| closer to 1, while there
was almost no change in the case of β = 0. Figure 3.5 shows the energies for both cases
(“Smoothing Term C” means the smoothing term of the chromaticity variable, while
“Smoothing Term B” means the same for the brightness variable, etc.). The energy for
β = 0.2 slightly oscillates, probably due to the oscillating dynamic time-step. Finally,
Figure 3.6 shows the dynamic time-step, that results from our algorithm (for β = 0.2); in
total, it took 5772 iterations to reach time 1. So, the average time step was approximately
2h2. But if we choose k so large from the beginning, the results turn out unpredictable
and often chaotic.

3.6.3 Inpainting with Lagrange Multiplier, with and without
Curvature

This example studies the same situation as Example 3.1, this time with Algorithm 3.5.1
(Lagrange multiplier).

Example 3.2. Let Ω := (0, 1)2 and U0, V0 as in the right plot in Figure 3.1, and S0 ≡ 1.
The inpainting domain is filled with random data. Let h = 1/100, ε = 10 ∗ h, and
kε = ε ∗ 10−3. We compare the following sets of parameters:

(1) Let γ = 50, γ1 = 100, α = 3, β = 0.02, λ = λ1 = 5 ∗ 105, and k0 = h3 (the initial
time step; the following steps are chosen dynamically according to Section 3.6.1),
and TOL = 5 ∗ 10−4.

(2) Let γ = 50, γ1 = 100, α = 5, β = 0, λ = λ1 = 106, and k0 = h3, TOL = 10−3

(dynamic time-step as above).

This example again shows that in some cases a curvature term is necessary to give
natural inpainting results. As was to be expected, by lowering β much more than α, the
reconstruction for β > 0 is not as round as in Example 3.1, but the spurious edge becomes
much smaller. However, the dynamics take beyond time t = 1 to reach a stable state (for
β > 0). The sphere-constraint is better preserved than with the penalisation algorithm,
which qualitatively delivers the same dynamics when used with these same parameters.

Figure 3.7 shows iterates, edge sets (black means S = 0), phase functions S, and |U|
at times t = 0.17, 1, 2 for inpainting with curvature, while Figure 3.8 shows the same at
times t = 0.0005, 0.08, 1 for inpainting without curvature term (nothing changes beyond
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Figure 3.7: Example 3.2: β = 0.02; image (row 1), |S| (row 2), S (row 3), and |U| (row
4) at times t = 0.17, 1, 2.

time 1). We see deviations from |U| = 1 because of the fixed-point iteration and the
discrete (i.e., approximate) Lagrange multiplier.

Figure 3.9 shows the minimum and maximum of |U| over time. We observe that
the sphere-constraint is very well preserved, but errors seem to slightly “accumulate”
over time. Figure 3.10 shows the energies, and Figure 3.11 shows the dynamic time-
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Figure 3.8: Example 3.2: β = 0; image (row 1), |S| (row 2), S (row 3), and |U| (row 4)
at times t = 0.0005, 0.08, 1.

step. It took only 1913 iterations to reach time t = 2, while for β = 0, it took 992
iterations to reach time t = 1 (even though the curvature term is zero when β = 0, we
still observed better results with the dynamic time-step). The average time step was
therefore approximately 10h2 (but the number of fixed-point iterations was 10 in most
iterations).
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Figure 3.9: Example 3.2: min and max of |U|; β = 0.2 (left) and β = 0 (right), x-
logarithmic plots.
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Figure 3.10: Example 3.2: Energy; β = 0.02 (left) and β = 0 (right), y-logarithmic plots.
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Figure 3.11: Example 3.2: Dynamic time-step; β = 0.02 (left) and β = 0 (right), logar-
ithmic plots.
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3.6.4 Inpainting with Penalisation, RGB vs CB

This example compares Algorithm 3.4.1 for CB and RGB for an initial image with CB
noise.

Example 3.3. Let Ω := (0, 1)2 and use an initial image with CB noise, mainly in the
chromaticity component: C = C0 +0.5∗ randn∗C0× [1, 1, 1], and B = B0 +0.01∗ randn,
where C is projected to the sphere, B is cropped to lie in [0, 1], and randn are pseudo-
random values drawn from the standard normal distribution. This is shown in Figure 3.12
(the even noisier square is again the inpainting domain). Choose S0 ≡ 1, h = 1/100,
ε = 10 ∗ h, and kε = ε ∗ 10−3. We compare the following sets of parameters:

(1) Let γ = γ1 = 90, α = 15, β = .2, λ = 5 ∗ 102, λ1 = 5 ∗ 105, δε = 10−4, and k0 = h3,
and TOL = 10−1.

(2) Let γ = 100, α = 20, β = .1, λ = 2e1, and k0 = h3, and TOL = 10−2.

Figure 3.12: Example 3.3: Intact and degraded image (top left and right); degraded
chromaticity and brightness (bottom left and right).

This example shows that with CB noise, RGB calculations cannot distinguish features
from noise any more, while CB calculations can cope very well.

Figure 3.12 shows the intact image as well as the image we use as a starting point for
inpainting.
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Figure 3.13: Example 3.3: CB; image (row 1), |S| (row 2), S (row 3), and |U| (row 4) at
times t = 0.002, 0.05, 1.

Figure 3.13 shows iterates, edge sets (black means S = 0), phase functions S, and |U|
at times t = 0.002, 0.05, 1 for CB inpainting, and Figure 3.14 shows the minimum and
maximum of |U| over time. The CB inpainting algorithm can reconstruct the image very
well, noise notwithstanding, and the sphere constraint is still well preserved for the very
small δε we chose.
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Figure 3.14: Example 3.3: min and max of |U| (CB, x-logarithmic plot).
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Figure 3.15: Example 3.3: Energy; CB (left) and RGB (right), y-logarithmic plots.
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Figure 3.16: Example 3.3: dynamic time-step; CB (left) and RGB (right).
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Figure 3.17: Example 3.3: RGB; image (row 1), |S| (row 2), and S (row 3) at times
t = 0.009, 0.1, 1.

Figure 3.15 shows the energies, with the energy for CB again showing slight oscillations
due to the oscillating dynamic time step, which is shown in Figure 3.16. In total, it took
5064 iterations for the CB, and 4144 iterations for the RGB computations to reach time
1, so the average time step was again approximately 2h2.

Figure 3.17 shows iterates, edge sets, and phase functions S at times t = 0.009, 0.1, 1
for RGB inpainting. The reconstruction in this case has little to do with the original
image. And taking a larger fidelity-parameter does not help either: In that case the noise
just does not disappear.

3.6.5 Academic Example

In the following example, we only look at the vector-field U. We are particularly in-
terested in extreme situations like blow-up, so this section is not primarily about image
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processing, and we work without a fidelity term (i.e., λ = 0), since it often blocks interest-
ing dynamics. It will be interesting to compare the penalisation and Lagrange multiplier
algorithm in this context.

Example 3.4. Let Ω := (0, 1)2. Choose U0 and S0 according to Figure 3.18; i.e., arrows
in the middle of U0 point down, while peripheral arrows point upwards, with smooth
transitions between the two extremes, and S0 equals the z-component of U0. Let α = 10,
β = 0.2, γ = 100, ε = 10 ∗ h, kε = ε ∗ 10−3, and TOL = 10−3.

We first use h = 1/100 and compare results from the penalisation algorithm for δ = 0.1
with those from the Lagrange multiplier algorithm (with the maximum number of allowable
fixed-point iterations increased from 10 to 20).

Then, we compare results from the penalisation algorithm for h = 1/100 and δ = 10−i,
i ∈ {1, . . . , 5}.

And finally, we compare results from the Lagrange multiplier algorithm for spatial
discretisation h ∈ {0.01, 0.0125, 0.015, 0.02}.
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Figure 3.18: Example 3.4: U0, S0 (which equals the z-component of U0), and |S0| (left
to right).

This example shows that for highly nontrivial initial data, there can be considerable
differences between the results returned from penalisation and Lagrange multipliers, de-
pending on the choice of the penalisation parameter. Results for the algorithm using
Lagrange multipliers appear more reliable.

Figure 3.18 shows the initial data, with a slight crop for U for better visibility.
The next five figures show the dynamics with the penalisation algorithm for h =

1/100 and δ = 0.1: Figure 3.19 shows U, Uz, and |U| at times t = 0.001, 0.015, 1,
and Figure 3.20 shows S and |S| at the same points in time. Iterates U initially show
steepening of gradients, but then move to a constant vector field fairly quickly, even
though it might be expected that S = 0 at places of high gradients of U should allow
the central vectors of U to keep pointing in the opposite direction of its peripheral peers.
The reason for this is revealed in the bottom row of Figure 3.19: Because the sphere-
constraint is only slightly penalised, “tunnelling” happens; i.e., the vectors, particularly
in the centre, get shorter until they can flip directions without too much cost, see also
Figure 3.21, which shows the minimum and maximum of |U| over time. What remains
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Figure 3.19: Example 3.4: Penalisation, δ = 0.1; U, Uz, and |U| at times t =
0.001, 0.015, 1.

at the end, is a set of interfaces S = 0 with a stable radius (which happens when the
length and curvature term reach a balance — without a curvature term, there would be
no such thing, and all interfaces would vanish). Figure 3.22 shows W 1,∞(U), in a linear
plot (left) and an x-logarithmic one, in order to show the effect of the initial steepening
of gradients. And finally, Figure 3.23 shows the energy and the dynamic time-step k (the
total number of steps is 6253).

The following seven figures show the dynamics with the Lagrange multiplier algorithm
for h = 1/100 with many images, due to the complexity of the dynamics. For this example,
we increase the maximum number of allowable fixed-point iterations from 10 to 20, due
to the complexity of the data. This results in the sphere-constraint being extremely well
preserved; indeed the global in time and space minimum and maximum of |U| are 0.9997
and 1.0017, respectively, see Figure 3.28 (left). We therefore omit the spatial plots of |U|.
Note that increasing the number of fixed-point iterations for the penalised algorithm
would not change much, since the sphere-constraint is the critical point here, observance
of which does not improve with the number of fixed-point iterations in the penalised case.

Figure 3.24 shows U, and Figure 3.25 shows the z-component of U, both at times
t = 0.003, 0.05, 0.26, 0.62, 0.63, 1, while Figures 3.26 and 3.27 show S and |S| at the same
points in time. In image one in Figures 3.24 and 3.25, we again see a steepening of
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Figure 3.20: Example 3.4: Penalisation, δ = 0.1; S and |S| at times t = 0.001, 0.015, 1.
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Figure 3.21: Example 3.4: Penalisation, δ = 0.1; min and max of |U| over time.

gradients compared to the initial data of Figure 3.18, which corresponds to an increase
in W 1,∞(U) (Figure 3.28, right). In image two we see that a first ring of arrows flips
half-way, corresponding to a double-ring in S (image one and two in Figures 3.26 and
3.27) and a sharp decline in W 1,∞(U). Then, this first row of arrows flips completely,
resulting in maximally sharp interfaces (image three in Figures 3.24 and 3.25) and max-
imal W 1,∞(U) = 2/h, which is kept until t ≈ 0.6, when suddenly all remaining arrows
in the centre flip (this is probably a result of numerical imprecisions), accompanied by a
sudden decrease in W 1,∞(U) and in the energy (Figure 3.29, left). Now, the interfaces S
are no longer constrained by jumps in ∇U and therefore move to a stable radius. Finally,
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Figure 3.22: Example 3.4: Penalisation, δ = 0.1; W 1,∞(U), linear and x-logarithmic plot.
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Figure 3.23: Example 3.4: Penalisation, δ = 0.1; energy and dynamic time-step k (y-
logarithmic and fully logarithmic plot, respectively).

the right image in Figure 3.29 again shows the dynamic time-step k (the total number of
steps is 7596).

For both the penalisation and the Lagrange multiplier algorithm, W 1,∞(S) (not shown
here) behaves similarly: It starts with a value of about 10 and increases to about 14 (which
it reaches around t = 0.15 for the Lagrange multiplier algorithm, and somewhat sooner
for the penalisation). After that it does not change significantly any more. Also, W 1,∞(S)
changes only slightly with h in the studies below.

Then, Figures 3.30 and 3.31 compare results from the penalisation algorithm with
δ = 10−i for i ∈ {1, . . . , 5}. The left plot of Figure 3.30 shows min{|U|}, displaying
strong signs of tunnelling for δ = 0.1, 0.01 and even 0.001, and oscillations for δ = 10−5;
only in the case of δ = 10−4 is |U| reasonably well preserved. The right plot shows the
dynamic time-step k, which becomes very small for δ = 10−5. Figure 3.31 shows W 1,∞(U)
and the energy. Both seem far off for δ = 0.1 and δ = 0.01. In the case of δ = 10−3

and δ = 10−4, the plots look reasonable, with δ = 10−4 looking very similar to what the
Lagrange multiplier algorithm delivered (c.f. Figures 3.28 and 3.29), while δ = 10−5 leads
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Figure 3.24: Example 3.4: Lagrange multiplier; U at times t =
0.003, 0.05, 0.26, 0.62, 0.63, 1.

Figure 3.25: Example 3.4: Lagrange multiplier; Uz at times t =
0.003, 0.05, 0.26, 0.62, 0.63, 1.

to very strong oscillations. Indeed, the dynamics of U and S are close to those from the
Lagrange multiplier algorithm only for δ = 10−4 (not shown here).

The last two figures, namely Figures 3.32 and 3.33, show W 1,∞(U), energy and dy-
namic time-step for the Lagrange multiplier algorithm for various spatial discretisations
h ∈ {0.01, 0.0125, 0.015, 0.02}. The dynamics are qualitatively similar for different h, but
the finer h, the longer it takes for the “flipping” to take place. Figure 3.32 confirms that,
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Figure 3.26: Example 3.4: Lagrange multiplier; S at times t =
0.003, 0.05, 0.26, 0.62, 0.63, 1.

Figure 3.27: Example 3.4: Lagrange multiplier; |S| at times t =
0.003, 0.05, 0.26, 0.62, 0.63, 1.



122 CHAPTER 3. THE MUMFORD-SHAH-EULER FUNCTIONAL

10
−6

10
−4

10
−2

10
0

0.9995

1

1.0005

1.001

1.0015

1.002
Min and Max of |u|

 

 

min(|u|)
max(|u|)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250
W1,max(u)

Figure 3.28: Example 3.4: Lagrange multiplier; min and max of |U| (x-logarithmic) and
W 1,∞(U) over time.

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

Energy

 

 

Smoothing Term
Edge−Length Term
Edge−Curvature Term
Total Energy

10
−6

10
−4

10
−2

10
0

10
−6

10
−5

10
−4

10
−3

k

# Iterations

k

Figure 3.29: Example 3.4: Lagrange multiplier; energy and dynamic time-step k (y-
logarithmic and fully logarithmic plot, respectively).

10
−6

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Min(|u|)

 

 

delta=1e−5
delta=1e−4
delta=1e−3
delta=1e−2
delta=1e−1

10
−4

10
−2

10
0

10
−6

10
−5

10
−4

10
−3

# Iterations

k

k

 

 

delta=1e−5
delta=1e−4
delta=1e−3
delta=1e−2
delta=1e−1

Figure 3.30: Example 3.4: Penalisation; min{|U|} and dynamic time-step k for δ = 10−i,
i ∈ {1, . . . , 5} (x-logarithmic and fully logarithmic, respectively).
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Figure 3.31: Example 3.4: Penalisation; W 1,∞(U) and energy for δ = 10−i, i ∈ {1, . . . , 5}
(y-logarithmic for the energy).
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Figure 3.32: Example 3.4: Lagrange multiplier; W 1,∞(U) and energy for h ∈
{0.01, 0.0125, 0.015, 0.02} (y-logarithmic for the energy).
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Figure 3.33: Example 3.4: Lagrange multiplier; Dynamic time-step k for h ∈
{0.01, 0.0125, 0.015, 0.02}, logarithmic plot.
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indeed, W 1,∞(U) in the case of our Lagrange multiplier algorithm is bounded by 2/h,
and thus motivates blow-up behaviour (W 1,∞(U0) ≈ 10 for all h).

3.7 Conclusion

In this chapter, we proposed two strategies for the L2 Mumford-Shah-Euler flow for unit
vector fields u : Ω ⊂ Rd → Sm−1, based on first-order finite elements. Both strategies
use elliptic approximations to the original functional, based on the Ambrosio-Tortorelli
functional with modified length and added curvature term, corresponding to the De Giorgi
approximation of the Willmore energy.

The first strategy uses a penalisation approach, adding a Ginzburg-Landau term to the
energy; so iterates U only approximate the sphere constraint. For the resulting Algorithm
3.4.1, we can show existence of solutions, an energy principle, and strong convergence of
iterates ∇U in L2, as well as weak convergence of iterates ∆̃hS in L2, both in space and
time. This allows us to show that iterates indeed converge to a weak solution (u, s) as
in Definition 3.3.1. We only need a weak coupling k = o(h) for this convergence, but a
stronger coupling k ≤ Cε−1h4 for existence of discrete solutions.

The second strategy uses a discrete Lagrange multiplier that enforces the sphere con-
straint exactly in the continuous case. The necessity to approximate the Lagrange mul-
tiplier in the discrete setting, and to solve the resulting nonlinear equation through a
fixed-point iteration, again slightly distorts |U|. For the resulting Algorithm 3.5.1, we

need a strong coupling k ≤ C̃max
{
hd+2, ε−1h4

}
to show existence of solutions, an energy

principle, and weak L2 convergence of iterates ∇U and ∆̃hS. Identifying the limit (u, s)
as a weak solution as in Definition 3.3.1 is still an open problem.

We observe that the sphere-consistent algorithm gives results that appear somewhat
more reliable and better preserve the sphere constraint, especially for complicated initial
data.
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