
Description and Specialization of
Coarse-grained Reconfigurable

Architectures

Dissertation
der Fakultät für Informations- und Kognitionswissenschaften

der Eberhard-Karls-Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
M.Sc. Julio Alexandrino de Oliveira Filho

aus Recife, Brasilien

Tübingen
2010

Tag de mündlichen Qualifikation: 10.02.2010
Dekan: Prof. Dr.-Ing. Oliver Kohlbacher
1. Berichterstatter: Prof. Dr. Wolfgang Rosenstiel
2. Berichterstatter: Prof. Dr. Edna Natividade da Silva Barros,

UFPE, Brazil

Danksagung

Ich möchte an dieser Stelle allen herzlich danken, die mich während dieser Zeit auf vielfältiger
Weise unterstützt und die zum Gelingen dieser Arbeit beigetragen haben.

Mein besonderer Dank gilt Herrn Prof. Dr. Wolfgang Rosenstiel für die wertvolle wis-
senschaftliche Betreuung, die Bereitstellung einer exzellenten Arbeitsumgebung, sowie die Über-
nahme der Betreuung dieser Dissertation. Mit seiner Aufgeschlossenheit gegenüber neuen Ideen,
seiner Bereitschaft für internationale Kooperationen und seiner wertvollen Kritik hat zu dieser Ar-
beit wesentlich beigetragen.

Frau Prof. Dr. Edna Natividade da Silva Barros danke ich für die Übernahme des Referats
dieser Dissertation und ihre sorgfältige Begutachtung der Arbeit.

Diese Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter im Arbeits-
bereich "Technische Informatik" am Wilhelm-Schickard-Institut für Informatik an der Universität
Tübingen und ich möchte mich zunächst bei allen Kolleginnen und Kollegen an dieser Universität
bedanken. Ganz besonders Dank vor allem dem CRC-Team: Thomas Schweizer, Sven Eisen-
hardt und Tobias Oppold, die durch zahlreiche Gespräche und Diskussionen hilfreiche Hinweise
und Anregungen beigesteuert haben. Für die fruchtbare Zusammenarbeit danke ich noch den Stu-
denten Stephan Masekowsky und Anja Küster. Für die aktive Revision und Korrektur dieses
Dokuments danke ich noch Herrn Dr. Tommy Kuhn und Andreas Bernauer.

Für die finanzielle Unterstützung, bedanke ich mich bei dem Alßan Program - European Union
Programme of High Level Scholarships for Latin America (E04D045457BR) und der Deutschen
Forschungsgemeinschaft - Priority Programm 1148 on Reconfigurable Computing Systems (RO
1030/13-X). Ein weiterer Dank gilt Frau Margot Reimold für die administrative Unterstützung
hinter den Kulissen.

Mein herzlichster Dank gilt meiner Frau Suzanne Oliveira-Martens, die durch sorgfältige Ko-
rrekturen und wertvolle Hinweise die Qualität dieses Dokuments deutlich erhöht hat. Ihr noch
herzlichen Dank für die ausdauernde Unterstützung und das Verständnis während der arbeitsinten-
siven Phasen meiner Promotion.

Schließlich danke ich meinen Eltern, Julio Oliveira und Selma Tavares, die mich während
meiner gesamten Studienzeit stets darin bestärkt und unterstützt haben, meinen Weg zu gehen.

Tübingen, January 2009

Julio A. Oliveira Filho

i

Contents

1. Introduction 1
1.1. Motivation . 2
1.2. Objectives and proposed solutions . 3

1.2.1. Description of coarse grained reconfigurable architectures 3
1.2.2. Specialization of coarse grained reconfigurable architectures 4

1.3. Workflow and organization of this document . 5

2. Basics 9
2.1. Architecture . 9

2.1.1. The CRC Model . 10
2.1.2. The CRC Template . 12
2.1.3. The CRC Instance . 14
2.1.4. The Processing Element . 15
2.1.5. The Functional Units . 17

2.2. Application . 18
2.2.1. Application representation . 18
2.2.2. Application mapping . 21

3. State of the Art 27
3.1. Coarse grained reconfigurable architectures . 27

3.1.1. NEC — DRP . 27
3.1.2. Silicon Hive — ULIW . 29
3.1.3. IMEC — ADRES . 31
3.1.4. Weakly Programmable Processor Arrays 34

3.2. Other Work . 36
3.2.1. KressArray . 37
3.2.2. Morphosys . 37
3.2.3. Rapport’s Kilocore (Piperench) . 38
3.2.4. Summary . 38

3.3. Evaluation of the state of the art . 38
3.3.1. Description of CGRAs . 38
3.3.2. Design and specialization of coarse grained architectures 42

3.4. Summary: analogy with the design of application specific processors 44

4. Description of Coarse Grained Arrays 47
4.1. Motivation and contributions of CGADL . 47
4.2. CGADL - Semantics and Syntax . 48

iii

Contents

4.2.1. The PARAMETER section . 51
4.2.2. The PE section . 52
4.2.3. The ARCH section . 62

4.3. Estimation of hardware costs . 71
4.3.1. Estimation flow . 72
4.3.2. Library of circuit models . 73
4.3.3. Composition analysis . 75
4.3.4. The hardware complexity estimation tool 76

5. Design of Custom Instructions for Coarse Grained Architectures 81
5.1. Instruction Pattern Identification and Custom Instruction Composition 83

5.1.1. Extraction of operation clusters . 84
5.1.2. Instruction pattern selection . 89
5.1.3. Custom Instruction Composition . 96

5.2. Custom Instructions for Coarse Grained Architectures 101
5.2.1. Description of custom instructions in CGADL 101
5.2.2. Integration of custom instructions in the application description 102
5.2.3. Integration of custom processing elements in the architecture 103

5.3. INSTPATT - A software tool for extraction of instruction patterns 105
5.3.1. The InstPatt flow . 106

6. Experiments and Results 111
6.1. A CGADL-based software tool: estimation of hardware costs 111

6.1.1. Experimental set up . 112
6.1.2. Analysis of PE datapath composition . 113
6.1.3. Scalability of the model . 117
6.1.4. Comparison of implementation area . 117
6.1.5. Discussion on the hardware costs estimation 120

6.2. The impact of custom instruction sets on CGRAs 121
6.2.1. Custom architecture for scalable OFDMA based systems 123
6.2.2. Computer vision for automotive applications 133

7. Conclusions 145

A. Appendix A 149
A.1. CGADL keywords and symbols . 149
A.2. CGADL grammar production rules - EBNF . 149
A.3. Circuit models and hardware complexity estimation costs 152

A.3.1. Multiplexer Block . 152
A.3.2. Finite state machine block . 152
A.3.3. Context memory block . 154

iv

List of Figures

1.1. Design flow proposed in this work for the development of CGRAs. 6

2.1. General design flow for coarse-grained reconfigurable architectures. 10
2.2. CRC architecture model - basic concept. 10
2.3. Reconfiguration in the CRC model. A context defines the functionality of each PE

and the flow of data between PEs. Reconfiguration takes place by choosing another
context in the context memory. 11

2.4. Parameterization in the CRC model. n and m determine the number of rows and
the number of columns in the array; d determines the datapath width; c, the number
of entries in the context memory; r corresponds to the number of registers in the
register bank; and t indicates the number of states available in the finite state machine. 13

2.5. Examples of architecture instances for the CRC model: (a) Line architecture with
3 PEs connected with a 0-1-hop network; (b) 2x2 array of PEs connected with the
nearest neighbor; (c) 3x2 array with different PE types. 14

2.6. The basic CRC processing element. (1) output ports; (2) input ports; (3,5,9) mul-
tiplexers; (4) context memory; (6) functional unit; (7,8) registers; (10) finite state
machine; . 15

2.7. A basic functional unit. During the execution of an instruction, the control unit ac-
tivates exactly the necessary operation module to carry out the desired data trans-
formation. Control units also control the multiplexers to select the result(s) that
will be presented in the output port(s). 17

2.8. Data flow graph example. 21
2.9. Transformation of if-else structures in a pure data flow. Both branches are

executed producing data. Then a select operation chooses the data to be used
further as b considering the computed condition. 22

2.10. Scheduling examples. 23
2.11. Examples of binding states: (a) long network distance between nodes v4 and v3;

(b) shorter network distance after displacement of v4 to the middle PE; (c) binding
state with minimal network obtained after successive improvements. 24

2.12. Multi-context, pipeline, and multi-context pipeline 25
2.13. Example for the execution of the multi-context pipeline. 26

3.1. Array organization and PE circuit in NEC’s DRP. Source [84]. 28
3.2. Block diagram of the ULIW architecture from Silicon Hive. The number of pro-

cessing and storage elements(PSEs), registers, FUs, and data memory is config-
urable during the design phase. Source [51]. 30

v

List of Figures

3.3. Design flow used by costumers of Silicon Hive. The starting point of the design
flow is the proprietary language TIM. From this description a Processor simulator,
VHDL (or Verilog) code, and a compiler are automatically generated. Source [51]. 31

3.4. Instance of the ADRES architecture template. The ADRES couples a VLIW pro-
cessor with a reconfigurable array. Source [75]. 32

3.5. ADRES software-tool flow: an extensive CAD support for the design phase, which
includes compiler, simulator, and synthesis. Source [15]. 33

3.6. Possible configurations for the ADRES interconnection network, disposition of
different functional units, and organization of register files. Many more are avail-
able in the ADRES template library. Source [75]. 35

3.7. MAML’s polytope domains representation. In MAML, the designer can assign
positions in a 2D space to the PEs. Later, PEs can be referred to by using this
positioning system. Source [68]. 37

4.1. UML diagram for the semantic model of CGADL. 49
4.2. Starting syntax diagram for a CGADL description. This diagram corresponds to

the production of the start symbol in a EBNF notation. To read syntax diagrams,
follow the arrows from left to right. Branches are possible divergent paths and only
one of them should be followed at a time. A non-terminal symbol (rectangular box)
represents a production rule by itself. A terminal symbol (rounded box) represents
a language keyword oder a symbol. 50

4.3. Structure of a CGADL description file. 51
4.4. Syntax diagram for a PARAMETER section. 52
4.5. Example of a PARAMETER section. 52
4.6. Syntax diagram of the PE section. 53
4.7. Syntax diagram of the declaration section. 54
4.8. Generic schema for the connections of a CGADL element. 55
4.9. Model of a multiplexer (MUX) in CGADL. 56
4.10. Example of a multiplexer declaration and connection. 57
4.11. Semantic model of a register set (REG) in CGADL. 58
4.12. Semantic model of a finite state machine (FSM) in CGADL. 58
4.13. Semantic model of a context memory (CONTEXTMEMORY) in CGADL. 59
4.14. Semantic model of a functional unit (FU) in CGADL. 60
4.15. An example for the description of operation’s behavior. In this work, the program-

ming language C is used to describe the behavior of FU’s operations. 61
4.16. CGADL description and schematic diagram of the PE Bianca. 63
4.17. Positional model for the distribution of PEs in the architecture: an array-like struc-

ture. A 2×3 architecture instance is depicted on the grid; every position has exactly
one PE, which can be uniquely identified using the positioning system. 64

4.18. Syntax diagram of the ARCH section. 64
4.19. Composition of a regular array based on blocks. 66
4.20. Syntax diagram for the array declaration. 66

vi

List of Figures

4.21. Declaration of blocks and arrays in the ARCH section: examples. The aBlockArray
is a template, which can generate up to 4 different instances depending on the
values of width_param and height_param. 68

4.22. Description of the interconnection network topology based on a region. Regions
are groups of PEs that are connected in the same way. For example, all internal
PEs in this array are connected in the same way: internal PEs build up a region that
abide by the same interconnection rules. CGADL uses this concept to describe
the interconnection network. The design of an interconnection topology based on
regions and rules is an innovative feature introduced by this work. 69

4.23. Regions representing subsets of PEs in the array. The first example selects all PEs
in the fourth column. The second selects all PEs that are simultaneously in even
columns and even rows. Finally, the internal PEs of an array may be selected as
shown in the third example. 69

4.24. Syntax diagram of a connection rule. 70
4.25. Example of a CONNECTION-RULE section. 70
4.26. Workflow for the hardware complexity analysis method. 73
4.27. Circuit model for hardware cost estimation of a register set. 74
4.28. Workflow of the hardware cost estimation software tool. 77
4.29. Intermediate format generated by the CGADL parser. 78
4.30. Matlab scripts for hardware complexity estimation. The main figure shows the

file produced by the estimation tool. In detail, a pre-written estimation function
(C_RegSet) from the library of circuit models. Compare with value in table 4.3. . . 79

5.1. Trilinear Interpolation mapping on architectures with (a) standard and (b) cus-
tomized PEs. 82

5.2. DFGs can be seen as the description of a datapath: input operations ({v1, v2, v3, v4})
are mapped to input ports ({i1, i2, i3, i4}); output operations ({v8, v9}) correspond
to output ports ({o1, o2}); atomic operations ({v5, v6, v7}) represent operation mod-
ules ({m1,m2,m3}); and edges correspond to data transfer lines between modules
and/or ports. 83

5.3. Operation clusters in a DFG. S1 is the subgraph induced by {v1, v2}. It is con-
vex, consumes three input values (IN(S1) = 3) and produces one output value
(OUT(S1) = 1). Its estimated implementation cost is C(S1) = C(v1) + C(v2),
and its estimated execution delay is δ(S1) = δ(v1) + δ(v2). S2 is a non-convex
cluster induced by {v2, v4}. 85

5.4. Binary search tree for the extraction of feasible operation clusters of the depicted
DFG. Constraints are Nout = 1, Nin = 4, Cmax =∞, and δmax =∞. Each branch-
ing level k considers the exclusion (left branch) or the inclusion (right branch) of
the node numbered as k. Crossed boxes indicate operation clusters that violate
some constraint: node A© produces more than 2 output values; and nodes A©, B©,
C©, and D© are not convex. 87

5.5. Activity flow proposed to select which instruction patterns should be implemented
as custom instructions. 90

vii

List of Figures

5.6. Operation clusters with common operation vertices: only one cluster at a time may
be mapped to a custom instruction. 92

5.7. Building the conflict graph for the instruction pattern set set(IP) = {S1, S2, S3, S4, S5}:
Vertices vS1 , vS2 , vS3 , vS4 , and vS5 represent the operation clusters S1, S2, S3, S4,
and S5, respectively. vS1 and vS2 are connected because they have v2 as a common
vertex. vS2 , vS3 and vS4 are interconnected because there is a conflict in v3. Oper-
ation cluster S5 does not have a conflict with any other operation cluster, therefore
vS5 has no edges. 93

5.8. Calculating the cover of set(IP) = {S1, S2, S3, S4, S5}, for the example DFG de-
picted in Figure 5.7. This search tree is generated executing the Algorithm 2 to
the example conflict graph. The conflict graph is repeated here to ease the un-
derstanding. Each node is depicted as a tuple [{v1, v2, . . . , vk}, a∗w, a∗w + w(V ∗)],
representing the nodes not yet considered in the stable set, the actual accumulated
weight up to this node, and the upper bound to the weight that can be achieved by
the underlying subtree. 95

5.9. Simple custom instruction composition. Only one instruction pattern is considered. 97
5.10. Compound composition. 98
5.11. All possible similarities between edges of S1 and S2 in Figure 5.10. 99
5.12. Incompatibility graph for the edge mapping between S1 and S2 in the Figure 5.10.

Vertices shaded in dark are part of the maximal stable set extracted. 100
5.13. The graph Sc is used to describe the datapath of compound custom instructions

based in the operation clusters S1 and S2 in Figure 5.10. 101
5.14. Modifying the original DFG to incorporate nodes that represent a custom instruc-

tion: clusters of operations that match the instruction pattern of a custom instruc-
tion are identified and colapsed into one single atomic operation node. 103

5.15. Homogeneous arrays are composed with one PE type. If several PE types are avail-
able, they must be first combined into one PE type containing all the operations
supported by them. 104

5.16. Two different pattern arrays: custom on borders (a) and cluster (b). 106
5.17. Workflow of the software tool InstPatt. 107
5.18. Screenshot the software tool InstPatt. The project viewer on the left side lists

collections (sets) of operation clusters extracted from the application’s DFG. The
selected collection can be seen separately in the windows at the lower part. A log
viewer prints out error and warning messages. The area at the center depicts the
application’s DFG graph. In detail, one can see the dialog to adjust the settings for
the operation cluster extraction. 108

6.1. Generation flow of the data compared in this section. 112
6.2. Distribution of hardware costs for the PE Bianca when varying the datapath width.

Results from the CGADL-based estimation tool and synthesis of the Verilog de-
scription. Rows compare PEs with datapath width of 8, 16 and 32 bits (top to
bottom). Differences between the proposed estimation method and commercial
synthesis tools remain under 5%. 114

viii

List of Figures

6.3. Distribution of hardware costs of the PE Bianca when varying the number of reg-
isters in the register set. Results from the CGADL-based estimation tool and syn-
thesis of the Verilog description. Rows compare PEs with 12, 24 and 36 registers
in the register set (top to bottom). Differences between the proposed estimation
method and commercial synthesis tools remain under 5%. 115

6.4. Distribution of hardware costs for the FU when varying the datapath. Results from
the CGADL-based estimation tool and synthesis of the Verilog description. Rows
compare FUs with datapath width from 8 (upper row) to 32 bits(lower row). Dif-
ferences between the proposed estimation method and commercial synthesis tools
remain under 7%. 116

6.5. Hardware complexity of the multiplexer set (PE Bianca) described as a function
of the the register bank size. PE instances with 8, 16 and 32-bits datapath were
considered. Discrete markers indicate results obtained by the CGADL-based esti-
mation tool. Results from Verilog synthesis are presented as lines. 118

6.6. Hardware complexity of the PE Bianca described as a function of the register-
bank size. Results are depicted for PE instances with 8, 16 and 32-bits. Discrete
markers indicate results obtained by the CGADL-based estimation tool. Results
from Verilog synthesis are presented as lines. 118

6.7. Implementation area of different architecture instances (on the left): estimated and
synthesis results agree upon the ordering of the instances. Relative error between
estimation and synthesis results (on the right). Errors remained under 10%. 119

6.8. Design flow for the experiments presented in this section. The design of cus-
tom coarse grained arrays is conducted according to the methodology proposed
in Chapter 5. 122

6.9. Data flow graph of the multipoint FFT algorithm. 124
6.10. Initial architecture instance – or initial array – adopted as reference for comparison

results. 125
6.11. PEs used in the initial architecture instance. Context memory, finite state machine

and control signal lines are implemented as in the PE Bianca, presented in Figure
4.16. 126

6.12. Architecture instance composed with custom PEs Fiji. In detail: the PE type Fiji,
which embeds custom instructions based on the instruction patterns IP1 and IP2. . 128

6.13. Initial vs. Custom Array: estimations for silicon area (a), static power consumption
(b), and dynamic power consumption (c). The array using custom PEs Fiji can be
implemented in smaller area and consumes less power. 131

6.14. Hough transformation for a circle with known radiusR.The locus of (a, b) points in
the parameter space fall on a circle of radius R centered at (x, y). The true center
point will be common to all parameter circles, and can be found with a Hough
accumulation array. 135

6.15. Initial architecture, denoted initial array, for the computer vision experiment. This
instance is composed of 18 (3×6) PEs of the type Bianca. 136

6.16. Custom architecture, denoted custom array, for the computer vision experiment.
This instance is composed of 12 (4×3) PEs of the type Bianca, PEI , and PEII . . . 138

ix

List of Figures

6.17. Mapping of the Prewitt’s gradient calculation on the initial array and on the custom
array. This application uses 10 PEs of the initial array to implement a 3 stages
pipeline. The use of custom instructions allow the same application to be mapped
as a 2-stages pipeline that uses only 4 PEs(custom array). 141

6.18. The circle rasterization internal loop of the Hough transformation needs 5 contexts
if there are no custom instructions in the architecture. With custom instructions
based in the patterns IPA, IPB, and IPC , this application can be mapped onto 4
contexts only. 142

A.1. Schematic for the CRC-FSM block. 153
A.2. Schematic for the CRC context memory block. 155

x

List of Tables

2.1. Resource usage and performance for the example in Figure 2.12. 26

3.1. Configuration of two commercial versions of the ULIW architecture: the Avispa
and the Avispa+ devices. Source [51]. 30

3.2. Description languages used in the development of CGRAs. 41
3.3. Design guidelines for coarse grained reconfigurable architecture. 44

4.1. Summary of CGADL elements. 62
4.2. Hardware costs of basic logic gates. 74
4.3. Hardware costs of CGADL basic elements relative to an inverter gate. r is the

number of registers. n is the width of the datapath (number of bits in the data
word). c is the number of contexts. s and b are the number of states and branches
per state in the FSM, respectively. f is the number of decision flags in the FSM.
Detailed explanation for each equation term can be found in Appendix A.3. 75

5.1. Impact of instruction specialization . 82
5.2. Comparison between homogeneous, custom, and pattern arrays: possible solutions

to allocate and place PEs in the array during the design phase. 107

6.1. Comparison between CGADL-based estimation and synthesis-based hardware cost
analysis. 121

6.2. Feasible instruction patterns of the FFT’s DFG. The number of operations clusters,
represented by a given instruction pattern, and the cover of each instruction pat-
tern are indicated separately for field A and field B. The instruction patterns were
ordered according to their individual cover considering the entire FFT DFG(cover
in field A plus 8 times the cover of field B) . 127

6.3. FU composition and implementation area of the PEs Frida and Fiji. Fiji has the
same design as Frida, except for its FU and context memory. 129

6.4. Composition of the initial and custom arrays. 130
6.5. Efficiency of the area usage for the initial and custom arrays. Both instances can

execute up to 269 operations per context. 131
6.6. Comparison with state-of-art FFT designs . 132

xi

List of Tables

6.7. Instruction patterns for the computer vision application set. Extracted operation
clusters could, in each case, be grouped in a much smaller number of instruction
patterns. That reinforces the idea that, in many applications, it is possible to find
several groups of operations that have the same execution pattern. The individual
and combined cover of patterns IPA, IPB, IPC , and IPD is depicted for each appli-
cation. These patterns were chosen to compose custom instruction datapaths for
this experiment. 137

6.8. FU composition and implementation area of the PEs Bianca, PEI and PEII . Details
about the implementation of PE Bianca can be found in Section 4.3.1, Figure 4.16.
PEI and PEII have the same basic design as Bianca, except for its FU and context
memory. 139

6.9. Number and type of PEs used during the mapping of each application of the auto-
vision experiment: initial and custom arrays. PEs with custom instructions were
eventually used to execute simple operations, such as multiplication, when necessary.140

6.10. Impact of instruction specialization - autovision 140

A.1. CGADL specific keywords. 149

xii

List of Algorithms

1. Partitionate Ω into instruction pattern sets . 91
2. The weight of a maximum weight stable set - source [117] 94

xiii

1. Introduction

Computer systems left the realm of desktop PCs and became part of almost every day-to-day
device, such as cell phones, personal assistants, microwave ovens, automobiles, airplanes, medical
devices, musical instruments, and children toys, just to name a few. These so-called embedded
systems affect every aspect of modern life, from communication to transport, from entertainment
to surveillance. The broad applicability and the high-end nature of embedded systems make their
design an ever changing challenge, a struggle for portability, low power consumption, low heat
dissipation, low production cost, high performance, and flexibility after production.

To deal with these challenges, designers of embedded systems have available a large variety
of computing elements from general-purpose microprocessors to application-specific integrated
circuits (ASICs). Microprocessors have been the heart of personal computers and workstations for
decades, and their use in embedded systems increases everyday. They offer flexibility through their
versatile instruction sets, which allow users to ”program” the implementation of any computational
task. ASICs, on the other hand, are dedicated hardware circuits tailored to a specific task. For a
given task, dedicated circuits execute faster, are more reliable, require less area and costs, and are
more power efficient than general-purpose microprocessors.

In the last two decades, a new class of computing elements has emerged, which aims at com-
bining the flexibility of microprocessors and the efficiency of ASICs. These type of elements are
referred to as reconfigurable computing systems. The hardware of reconfigurable devices can be
adapted to an individual application (configured) after production. Reconfigurable devices are per
definition more flexible than ASICs, and at the same time, they can achieve a higher efficiency
than microprocessors [107][115]. The first technology for building reconfigurable systems was the
field-programmable gate array (FPGA) [17]. FPGAs consist of an array of logic and I/O blocks
surrounded by a mesh of routing channels that interconnects these blocks. Typically, FPGAs are
fine-grained architectures that operate on bit-wide data types and use look-up tables as computing
elements. Along the time, the family of reconfigurable computing systems diversified in terms of
granularity, execution models, and mechanisms to implement reconfiguration. Each member of the
family addresses specific needs in the trade-off between performance and flexibility.

Recent advances on reconfigurable computing systems led to the development of coarse-grained
dynamically reconfigurable architectures (CGRAs). CGRAs employ an array of processing ele-
ments that, contrary to the look-up table based logic blocks of FPGAs, operate on word-wide data
types. These devices have the following advantages in comparison to their fine-grained counter-
parts [55]:

• Coarse grained processing elements reduce the amount of configuration data. That allows
devices to reconfigure faster and reduces area and power consumption of circuits that control
reconfiguration.

1

1. Introduction

• Routing channels transfer words, instead of bits. That reduces the need for control signals
and corresponding configuration storage.

• Computing elements and routing channels in CGRAs are more area-efficient than those in
FPGAs. Complex operators, such as ALUs, can be directly implemented in silicon, instead
of constructed with several logic blocks and look-up tables.

• Coarse granularity is better suited for application mapping from a high-level programming
language, such as C, since its computing elements correspond more closely to operations in
these languages.

CGRAs also allow an extremely fast, cycle-by-cycle reconfiguration mechanism. In CGRAs, con-
figuration data is stored in several contexts, and at any given time exactly one context is active.
During reconfiguration, contexts are switched, i.e., a previously inactive, stored context becomes
active. In CGRAs, frequent and fast reconfiguration is part of the regular execution: at each clock
cycle, the system instantiates and executes only that part of the circuit that is needed.

This work deals with the design of coarse grained reconfigurable architectures; in particular,
with the specialization of CGRAs towards a set of applications and with the description of CGRAs
during the design phase.

1.1. Motivation

After the underlying technology is fixed, designers of embedded systems must optimize their de-
signs; for example by specializing the underlying processor architecture. This approach applies
if the designer knows a priori the set of applications that will run in the system. Specialization
consists of modifying a generic instance of the architecture by:

• removing components that are not necessary for the target applications;

• changing the data type used in the system to provide more efficient or accurate computation;

• rerouting the communication channels between components to reflect the way the target
applications access, store, and exchange data;

• incorporating computing units, such as custom operations or dedicated hardware, that are
tailored for the execution of specific tasks.

This specialization retains the flexibility of the system for the considered set of applications while
improving the system performance, implementation area, and power consumpution.

During the last decade, incorporating custom operations and dedicated hardware became an
increasing trend in the design of several architecture types, such as FPGAs [56] and application-
specific instruction processors (ASIPs) [60]. FPGA systems were tightly coupled to instruction set
processors and gained fully dedicated circuits, such as hard-wired floating point multipliers. Con-
currently, designers of ASIPs started integrating dedicated operations, called custom instructions,
in the instruction sets of general-purpose processors [36][23][63]. This technique led to average

2

1.2. Objectives and proposed solutions

speed ups of 3.4× in the execution time, and 3.2× less power consumption [110]. The special-
ization of FPGAs and ASIPs is nowadays an established technique, investigated by academical
research, and supported by design methodologies and software tools. That is not the case for the
design of coarse grained reconfigurable architectures.

There is a lack of techniques, methodologies, algorithms, and tools to conduct the specialization
of CGRAs. Up to date, academic and commercial coarse grained architectures use a regular and
repetitive arrays of elements of the same type. The reason is that these simple arrays can be easily
scaled, and their functionality and costs can be simulated and estimated by existing commercial
tools. The few specialization approaches in the literature consist of an exploration of the design
space to find the correct size of the array, topology of the interconnection network, size of internal
memory, width of the data type, external memory architecture, and connection to the environment
around the array.

In particular, no academic or commercial CGRA platforms were proposed that consider custom
instructions in the instruction set of their processing elements. Also, evaluations to determine the
costs and benefits of applying custom instructions to the design of CGRAs are lacking.

Two factors can explain the hesitance of designers to specialize CGRAs with custom instruc-
tions: the need to modify the application mapping and the extra complexity introduced in the
design phase. Custom instructions modify the way the architecture will be used to execute ap-
plications. Application mapping tools, their techniques, and algorithms have to be modified to
recognize parts of the application that can benefit from the specialized hardware, and to map them
accordingly. In this sense, any proposal to specialize CGRAs, including those that use custom
instructions, must consider the concurrent development of architecture and compiler.

The specialization of CGRAs increases the complexity of the design phase because designers
have to frequently rewrite, verify, and evaluate processing elements and FUs. Moreover, dedi-
cated operations potentially induce arrays with different types of processing elements and irregular
interconnection networks. Describing these arrays and modifying their elements with descrip-
tion languages such as VHDL, Verilog, and SystemC are difficult and error prone tasks. These
languages were designed to describe ASICs and systems-on-chip, and cannot express specific con-
cepts used for the design of coarse grained arrays, such as instruction set, reconfigurability and
spatial arrangement of components. As CGRAs grow in complexity, their description demands the
use of higher abstraction levels.

1.2. Objectives and proposed solutions
This work aims at developing methods, techniques, algorithms, and tools to describe and specialize
coarse grained reconfigurable architectures during their design phase.

1.2.1. Description of coarse grained reconfigurable architectures
This work proposes a new approach to describe coarse grained architectures at a higher
level of abstraction.

A higher level of abstraction means the designer can describe concepts that are specific for
the design of CGRAs, such as coarse granularity, instruction-set based functional units, context-

3

1. Introduction

based reconfiguration, spatial distribution of components, and scalability of the array and of the
interconnection network. The ability to express efficiently these concepts makes the description of
CGRAs easier, clearer, and more concise. Moreover, the implementation of more efficient software
tools, such as simulators, estimators, and compilers, become easier. As a result, the designer can
describe, modify, verify, and evaluate the design in a fast and efficient way.

By adopting higher level of abstraction in the description, the designer prepares the grounds for
specialization. Higher level descriptions yields clearness and eases automation, and therefore, deal
with the increasing complexity introduced by specialization tasks.

As a solution, this work introduces the coarse grained architecture description language: CGADL.
CGADL has a clear semantic. Its innovative key features addresses specific concepts in the design
of CGRAs:

Coarse granularity of processing elements CGADL’s has keywords to describe explicitly
coarse grained components, such as multiplexers, register banks, memory modules, etc.

Instruction-set based functional units CGADL’s functional units are components with designer-
defined functionality. The designer describes functions as instructions that are controlled
and executed inside functional units. Complex behavior can therefore be described by as-
sembling coarse grained components as well as by instantiating functional units.

Spatial distribution of processing elements With CGADL, the designer can attribute rel-
ative positioning information to the components in the architecture. So, it is possible to
describe spatial relations, such as ”the processing element to the right”, or ”the processing
element at position (1,2) in the array”. This simplifies the design of arrays with different
types of processing elements, and the description of the interconnection network.

Scalability CGADL allows the description of parameterizable architecture templates, in which
aspects, such as the number of registers in the processing element, and the array geometry,
can be altered by changing a parameter setting.

Network interconnection Together with the spatial positioning system, this feature allows the
designer to describe in a fast and concise way complex network interconnections.

Multi-context reconfigurability CGADL has constructs to describe context memories: units
used to store the configuration information. The concept of reconfiguration is intrinsic to the
semantic of these constructs.

CGADL is suitable for the development of software tools. As an example, this works builds
a hardware complexity estimation tool that works with CGADL descriptions. This estimation
tool fulfills two goals: first, it demonstrates that CGADL-based software tools, such as estimators,
simulators, and compilers, can be implemented; second, it provides a fast and automated evaluation
of the architecture template, early at the design phase.

1.2.2. Specialization of coarse grained reconfigurable architectures
This work uses custom instructions to specialize coarse grained architectures towards
a set of applications.

4

1.3. Workflow and organization of this document

The specialization process consists of a refinement of the architecture design by using the knowl-
edge about a set of applications. So, for example, one may tailor functional units to execute
application-specific operations. As a result, specialized arrays are smaller, faster, and less power
consuming, when running applications from the targeted domain.

The specialization task requires some knowledge about the set of target applications. However,
that doesn’t mean that only specialists in the application field can carry out this task. Any method-
ology to specialize the architecture should state how this knowledge is extracted from the target
applications, and how it is used in the design.

The specialization task affects both the architecture and the application mapping phase. Ac-
cordingly, the specialization methodology introduced in this work considers the co-development
of architecture and compiler.

To achieve these objectives, this work proposes a design framework to integrate custom instruc-
tions in the instruction set of CGRAs’s functional units. This framework defines:

• Methods and algorithms to extract, evaluate, and select clusters of operations that emerge
regularly within the set of target applications. These clusters are selected based on the fre-
quency with which they can be found in the applications. These clusters correspond to the
knowledge acquired from the application domain.

• Software tools to automate the previously mentioned methods and algorithms.

• Techniques to transform theses clusters of operations in a datapath description of custom
instructions.

• Methods that modify the application mapping tools (compiler) to identify, transform, and
map clusters of operations to corresponding custom instructions.

• Techniques to modify the compiler process, such that, during the application mapping,
clusters of operations corresponding to custom instructions are correctly transformed and
mapped.

In this work, the design of a custom instruction corresponds to groups of operations that appear
frequently in the set of applications in the same kind of execution pattern. If a custom instruction
exists that implements this pattern, it can be used to map any group of operations with the same
structure. The design of custom instructions produces a hardware datapath and annotations for the
application mapping tool (compiler). The datapath description corresponds to the design of one
or more custom instructions. The annotations allow the compiler to identify, in any application,
groups of operations that correspond to these custom instructions.

1.3. Workflow and organization of this document

This dissertation starts, in Chapter 2, with a discussion about the established praxis for the design
of coarse grained reconfigurable architectures. This discussion details the structure of CGRAs
and their functionality, as well as that of their components. Basic concepts and terminology are
presented, that will be used along this document. The final part of Chapter 2 is dedicated to the

5

1. Introduction

description and mapping of applications onto coarse grained reconfigurable architectures, since
these activities are also affected by the proposals in this work.

Chapter 3 lists the most representative coarse grained architectures presented in the literature,
and some industrial instances that made their way to the market. The focus of this chapter, however,
is a review of the languages used to describe CGRAs, and of techniques to specialize these arrays
during the design phase. This review delineates the limitations of actual design methodologies in
these two aspects and points out the contributions in this work to overcome them.

The architecture description language CGADL and the design of custom instructions are dis-
cussed in the remaining chapters according to the role they assume in the design flow of coarse
grained architectures, as depicted in Figure 1.1. The design of CGRAs starts with a generic model
of the architecture and a set of target applications.

Architecture Compiler

Applications

Design of custom
instructions

Description of coarse
grained architectures:

CGADL

Architecture template:
Verilog

Synthesis

Area estimation Power estimation

Early estimation of
Implementation costs:

Area

Transformation

Chapter 4
Chapter 5

Architecture
Model

Compiler
Modification

Architecture
specialization:

custom
instructions

Area estimation
Hardware complexity

estimations
Chapter 6

Architecture template:
CGADL

Figure 1.1.: Design flow proposed in this work for the development of CGRAs.

6

1.3. Workflow and organization of this document

The generic model determines the basic structure of the architecture: an array of coarse grained
processing elements surrounded by an interconnection network and input/output resources. From
this model, the designer derives an architecture template: a detailed but flexible description of the
array and its processing elements. The set of applications is used to design custom instructions. The
designer uses these custom instructions to specialize the architecture and modify the compiler. At
this point, the hardware complexity of a CGADL template can be estimated by using the software
tool developed during this work.

The coarse grained architecture language CGADL, and the hardware complexity estimation tool
are introduced and discussed in Chapter4.

The design of custom instructions for coarse grained reconfigurable architectures is discussed in
Chapter5. The final parts of Chapters 4 and 5 present software tools developed with the ideas intro-
duced in this research work. The first software tool implements the estimation method proposed in
Chapter 4. The second tool captures parts of the specialization methodology presented in Chapter
5. These tools demonstrate the feasibility of techniques, methods and algorithms proposed here,
as well as allowed automated experiments and generation of results.

The (CGADL) architecture template is the central point of the workflow, where the architec-
ture specialization and the hardware cost estimation take place. After the template is described,
dimensioned, and specialized with custom instructions, it is transformed in an equivalent Verilog
description, which allows synthesis with commercial tools. This transformation is out of the scope
of this thesis, and will not be discussed here. Synthesis transforms the Verilog description into a
circuit netlist that implements the architecture array. Based on this netlist, the synthesis tool pro-
vides detailed and accurate estimates for silicon area and power consumption of the array and its
components.

Chapter 6 presents, in two sections, the experiments and results obtained in this work. Section
6.1 compares the estimates produced by the CGADL-based estimation tool with those produced
by a commercial synthesis tool. This comparison demonstrates that the evaluation of hardware
costs can be done directly from a CGADL description, much earlier in the design phase, and
without the need of synthesis. Section 6.2 uses the design flow in Figure 1.1 to specialize coarse
grained arrays towards two sets of applications: the scalable OFDMA modulation scheme of the
WiMax standard; and a set of applications used in automobile driving assistance systems. These
experiments demonstrate the feasibility and effectiveness of the specialization method proposed
here. Results provide a detailed evaluation for the impact of using custom instructions during the
specialization of CGRAs.

7

2. Basics

Design teams, from academy and industry, started to develop coarse grained reconfigurable archi-
tectures about 15 years ago. Along this time, they produced different instances of these architec-
tures, but their design workflow converged to a somehow similar methodology that starts with a
model of the architecture and refines it down to a concrete instance. This chapter discusses the
general lines of this methodology, and introduces, under this discussion, the basic concepts and
terminology used in this dissertation. Examples for coarse grained architectures and particularities
about their design phase will follow in Chapter 3.

This chapter is divided in two parts corresponding to the entry points in the design of coarse
grained architectures (see Figure 1.1): the architecture model and the set of target applications.
Section 2.1 explains the design of CGRAs, their structure, and functionality. Section 2.2 discusses
how appications are represented and how they are mapped into the architecture.

2.1. Architecture

The development of CGRAs follows three steps, as depicted in Figure 2.1. At the first step, the de-
signer conceives a generic model: an array of coarse grained processing elements (PEs) surrounded
by a network interconnection, input and output resources, and memory blocks. This model is called
architecture model. At the second step, the designer writes down the architecture model as a pa-
rameterizable description. This description is called architecture template. The template outlines
the granularity, type and disposition of PEs, the possible network interconnections, and the or-
ganization of the memory components. Templates are flexible descriptions because they can be
modified by adjusting the value of parameters. Parameters regulate certain characteristics of the
architecture, such as the number of lines and columns (width and height) of the array, the number
of available reconfiguration contexts, the number of internal registers within the PE, and the inter-
connection network. At the third step, an architecture instance is generated by fixing the value of
each template parameter. The architecture instance is a well defined description of an architecture,
which may be synthesized, evaluated, and/or simulated.

Following this design flow, Oppold presented a generic model for coarse grained arrays [94][96].
He wrote this model as a template in the hardware description language Verilog [97]. According
to this model, the template can be configured at design time by modifying the parameters of its
Verilog description, and processing elements can be reconfigured at execution time to perform dif-
ferent tasks. This feature of the model to be configured at design time and reconfigured at execution
time accounts for its name: Configurable Reconfigurable Core (CRC). The CRC model enables
simulation and synthesis; and thus, the evaluation of functionality, performance and implementa-
tion costs. The next subsections discuss the CRC model, the CRC template, and CRC instances in
more detail.

9

2. Basics

PE

Interconnect Network

M
em

or
y

PE

PE

PE

PE

PE

PE

PE PE PE

PEPE PE

PEPE

PEPE

PE

PE

Model Template Instance

PEPE PE

PEPE PE

PEPE PE

Figure 2.1.: General design flow for coarse-grained reconfigurable architectures.

2.1.1. The CRC Model
The CRC model is a generic base for the design and development of coarse grained arrays. It
fixes only a few characteristics common to the major part of the actual CGRAs: the architecture is
composed of processing elements (PEs) surrounded by an interconnection network, as depicted in
Figure 2.2. The spatial organization of these PEs follows an array-like structure. The interconnec-
tion network defines how data transfer between PEs occurs. The CRC model also establishes the
existence of input and output (I/O) resources in the array. Input resources transport data from the
external environment to some or all processing elements in the array. Output resources make the
data produced by PEs available to the external environment.

PE

Interconnect Network

M
em

or
y

PE

PE

PE

PE

PE

PE

PE PE PE

Input/Output Ports

Figure 2.2.: CRC architecture model - basic concept.

The CRC model fixes the array-like organization of the PEs, and the existence of interconnection
and I/O resources, but not their implementation. Instead, the designer configures the architecture
at design time by choosing one realization for each one of these components (PEs, interconnection

10

2.1. Architecture

network, etc.). For example, the designer determines the number of columns and lines in the array,
the type of each processing element, and how each PE is connected in the array. An array is said
to be homogeneous, if all PEs in the are of the same type. And it is said to be heterogeneous if
different types of PEs are used.

Beside the architecture structure, the CRC model defines one functional aspect for the archi-
tecture: the reconfiguration. In the CRC model, reconfiguration refers to the ability to change the
context of the architecture at execution time. The CRC model requires a context information at any
time point during the execution of an application. This context information describes which opera-
tion is carried out by each PE and how the data flows between PEs. Figure 2.3 helps understanding
this principle. Context 1 describes that PE11 and PE12 will read input ports and perform additions.
The data produced in both PEs is transferred to PE22, which subtracts the two values and makes the
result available at an output port. Context 2 determines that all PEs will perform multiplications
with locally stored data and store the result at internal registers. No data is transferred between
PEs.

PE+ +

PE -

PE× ×

PE× ×

Context 1 Context 2

Reconfiguration
Time

Figure 2.3.: Reconfiguration in the CRC model. A context defines the functionality of each PE
and the flow of data between PEs. Reconfiguration takes place by choosing another
context in the context memory.

Nothing is fixed in the CRC model about the time when the reconfiguration takes place. Several
options are available to the designer: the reconfiguration can take place at the beginning of the
execution and retain the context during the rest of the time (static reconfiguration), or it may occur
one or more times during the execution (dynamic reconfiguration). Reconfiguration can affect all
elements in the architecture (total reconfiguration) or only some of them (partial reconfiguration).
At the remainder of this work, a dynamic and total reconfiguration may take place cycle-by-cycle;
that is, a new context may be selected at each clock cycle. Many newly developed CGRA devices
such as ADRES [77], DRP [84], and DPGA [27] use this extremely fast reconfiguration scheme.
Frequent reconfiguration as part of the regular execution constitutes a new principle and is referred
to as processor-like reconfiguration [93][96]. Processor-like reconfiguration allows it to instantiate
and to execute, within one clock cycle, exactly that part of a circuit that is needed in this cycle. Such
fast reconfiguration scheme was shown to increase performance when the architecture is targeted

11

2. Basics

to an application domain such as computer vision [92], and to introduce new power optimization
possibilities [104].

In the CRC model, contexts are stored in a memory element called context memory. Each entry
in the context memory contains the information that completely describes one context. When one
entry is selected, the context memory outputs a control signal that activates processing elements
and the interconnection network. In Figure 2.3, the entry corresponding to context 1 is selected
initially. At a given time point, a reconfiguration takes place by selecting the entry in the context
memory that corresponds to context 2.

We say the context memory is centralized if each entry contains the context information for the
whole array. It is also possible to use several context memory units; each unit stores the context
information for a group of PEs and part of the interconnection network. In this case, it is possible
to reconfigure only part of the architecture. At the remainder of this work, one context memory
unit is available in each processing element and the part of the interconnection network related to
it. Also, the term context is used interchangeably to designate the information stored in one entry
of context memory and the context information for all the array. Individual context memories in
each PE and the processor-like reconfiguration principle allows to reconfigure each PE individually
at each clock cycle.

A Verilog description of the CRC model, called CRC Template, captures the array-like structure
and the processor-like reconfiguration mechanism discussed previously.

2.1.2. The CRC Template

The CRC template is a base description for a family of coarse grained reconfigurable architectures
that abides by the CRC model. Its development was based on large number of commercial devices
such as NEC’s DRP [85], PicoChip’s PicoArray [30][99], PACT XPP [98], and Quicksilver’s ACM
[100], and in academic research work such as DPGA [27], MATRIX [81], and Morphosys [71].
For example, DRP, DPGA and MATRIX strongly influenced how context based reconfiguration is
implemented in the CRC template. The CRC template is not the only possible description of the
model, but it is representative to the actual state of the art.

The CRC template is a structural description at register transfer level using Verilog. At its higher
structural level, the template describes an array of processing elements and a point to point connec-
tion between the input and output ports of distinct PEs. It also describes modules to load context
information in the context memories; however, these modules are not important for this work and
will be ignored here. At a lower structural level, the template details the internal composition of
processing elements. Each PE comprises one or more functional units, data register banks (used
as local memory), I/O ports, control units, and a context memory. Multiplexers implement flex-
ible interconnection mechanisms between these components. At its lowest structural level, the
template describes the internal composition of each PE component. A detailed discussion for the
composition of functional units and context memories is presented in sections 2.1.4 and 2.1.5.

The CRC template was made flexible and easy to modify, such that it represents a large number
of different coarse grained architectures. Flexibility is achieved by means of parameterization.
Parameters are variables in the Verilog description to which the designer assigns a specific value
at design time. Changing the value of a parameter modifies one specific structural or functional
aspect of the architecture, as depicted in Figure 2.4. Values are assigned using a definition file, and

12

2.1. Architecture

this procedure does not require modifying the Verilog description. The CRC template foresees that
the following characteristics may be changed using parameters:

Geometry of the array (n,m): PEs in the CRC template are spatially distributed in an array-
like formation; n is the number of lines, and m the number of columns of this array. Both n
and m are parameters in the CRC template.

Datapath width (d): The datapath width determines the number of signal lines for one data
word. It directly affects size of the interconnection network and of the PE internal routing,
the size of each register in the register bank, and the size of multiplexers used for routing
data. Typical datapaths use 8, 12, 16, 24, 32, 64, or 128 bits.

Number of PE registers (r): The parameter r adjusts the number of registers available in the
local register bank of each PE.

Number of entries in the context memory (c): The parameter c determines how many con-
texts may be stored locally in the context memory of each PE. The number of contexts for
the complete array is c(n×m), which is obtained combining all possible local contexts.

Type of the control unit (t): The control unit within each PE is modeled like a finite state ma-
chine (FSM). The parameter t defines whether the FSM is of Mealy [74], Moore [83], or
Medvedev type.

d
PEPE PE

PEPE

PEPE

PE

PE

FSM

m

n

d

d

d

rt

c

Figure 2.4.: Parameterization in the CRC model. n and m determine the number of rows and the
number of columns in the array; d determines the datapath width; c, the number of
entries in the context memory; r corresponds to the number of registers in the register
bank; and t indicates the number of states available in the finite state machine.

Parameters are allowed to vary within predefined values; for instance, the number of columns or
lines in an array must be an integer larger than 1. The use of parameters is limited to the character-
istics listed previously; for other cases, parameters cannot be used and a direct modification of the
Verilog description is necessary. Two of the architecture characteristics that cannot be regulated by

13

2. Basics

using parameters are of special interest in this work: new connection lines between PEs and new
functional elements describing custom instructions.

New connection lines are often necessary when modifying the interconnection network topol-
ogy. It requires the designer to explicitly declare new multiplexers and I/O ports inside the PE
description, and to declare explicitly the point to point connections at array level. Both tasks are
cumbersome and error prone, and may slow down the design phase. In Chapter 4, we argue that
the problem relies on the description language and propose solutions for that.

New custom instructions requires PEs and their functional units to be modified. The designer
must insert the datapath that executes the custom instruction in the datapath of one functional unit.
Then, the designer must integrate the modified component in the PE description, adjusting the
interconnection among elements within the PE. The context memory structure must be modified to
allocate the signals that control the newly inserted custom instruction. The procedure to incorporate
custom instructions in the PEs of the CRC template is discussed in details in Section 5.2.

2.1.3. The CRC Instance

If values are assigned to each template parameter, the resulting description corresponds to a fully
defined architecture, and is called an architecture instance or CRC instance. Figure 2.5 depicts
examples of architecture instances that can be configured using the CRC template. The CRC

PEPE PE PEPE

PEPE PE

PEPE PE

PEPE1 PE3

PEPE1 PE2

PEPE2 PE3

Figure 2.5.: Examples of architecture instances for the CRC model: (a) Line architecture with 3
PEs connected with a 0-1-hop network; (b) 2x2 array of PEs connected with the nearest
neighbor; (c) 3x2 array with different PE types.

instance is valuable because it allows synthesis and simulation. Synthesis transforms the instance
into a circuit netlist at gate level. This netlist allows an accurate estimation of implementation
costs, such as the necessary silicon area, static power consumption, and maximal circuit operation
frequency. Additionally, the designer can map applications onto the CRC instance by programming
their context memory. Simulation of the application-instance pair allows to verify the functionality
and to evaluate performance criteria such as throughput, latency, and execution delay.

In the next two sections, the PE and the functional unit internal structure are discussed.

14

2.1. Architecture

1 2

4
3

5

6

8

7

910

Figure 2.6.: The basic CRC processing element. (1) output ports; (2) input ports; (3,5,9) multiplex-
ers; (4) context memory; (6) functional unit; (7,8) registers; (10) finite state machine;

2.1.4. The Processing Element

The base processing element considered in this work is depicted in Figure 2.6. For sake of sim-
plicity, not all connection channels are depicted. Modules that process datawords are depicted by
dashed areas, whereas modules that process flag information are depicted by blank areas. The PE
consists of two main parts: a control path and a data processing path. The control path part pro-
vides hardware circuits that implement the processor-like reconfiguration model. It controls the
sequence in which the entries in a context memory are executed, and activates, for each execution
cycle, the signals that control modules in the data processing path. According to these control
signals, the data processing path retrieves data from input ports and/or local memory, processes it
in functional units, and writes back the result into output ports and/or local memory.

The control path comprises a programmable finite state machine 10©1 (FSM) and a context mem-
ory 4©. The finite state machine is a programmable hardware module that stores states and rules
for transitions among these states. Such rules are based in input signals that come from the data
processing path or from the context memory. For example, one possible rule is: if the FSM’s actual
state is 1 and a divide-by-zero flag becomes is active, the FSM changes to state 4 — otherwise, it
remains in state 1. In the programming phase, each state is associated with one entry in the context

1Circled numbers correspond to units depicted in Figure 2.6.

15

2. Basics

memory. When one state is active, it selects this associated entry. The context memory is also a
programmable module. Its program describes, for each entry, the signaling information to control
the modules in the data processing path. Additional modules to program the FSM and the context
memory are also part of the PE; however, they are not relevant in this work and details about their
construction will not be discussed here.

The data processing path comprises input ports 2©, multiplexers 3© 5©, functional units 6©, in-
ternal memory blocks 7© 8© 9©, and ouput ports 1©. Input ports transfer data from interconnection
network to modules inside the PE. Multiplexers implement the internal connection among PE mod-
ules. They select where the data to be processed come from and to where the results go. Functional
units are compound hardware blocks containing modules to process data. Local memory blocks
are register banks that provide fast acess to temporary data and constants. Finally, output ports
transfer data stored or produced within one PE to the interconnection network (array). Each output
multiplexer has as input the signals coming from the remaining three (input) ports and the signals
coming from the register set (one per register in the set). Data from other ports may be selected
to route information from one PE to another. Data routed through the PE does not occupy the
functional unit, so it is possible to execute an operation in the FU and route data between ports
simultaneously

A complete execution cycle for the PE can be described by the following steps:

1. At each positive transition of the clock signal, the finite state machine 10© and the register
set 7© 8© are activated. The finite state machine goes to its next state according to flag
multiplexer signals and its internal program. This new state selects a new entry in the context
memory 4©. Simultaneously, the register set stores the result of the last operation.

2. The information for the selected context is passed to the context memory, which outputs
accordingly all the control signals to each element in the PE datapath. These control signals
reconfigure the datapath.

3. After this control information reaches each PE element, the datapath is executed as follows:

• operand multiplexers 3© 5© select the data/flag lines that will be processed by the FU
6©. These lines come from the register set (one per register in the set) and from the

input ports 2© (one per input port);

• the FU receives an instruction code signal that determines which operation is to be
executed;

• the data/flag register set is addressed to the place where the result should be stored (see
step 1);

• flag lines (from the FU output and input ports) are sent to the flag multiplexer 9©. One
of these signals will be used to select the next state of the finite state machine;

• and output multiplexers 1© select the data/flag lines that go to the array interconnection
network.

4. When the computation within one PE is finished, the system waits for the next clock cycle
and restarts the process.

16

2.1. Architecture

m2 m3m1 m4 m5

ADDER/
SUBTRACTOR

COMPARATOR MULTIPLIERSHIFTER
LOGIC

OPERATIONS

0 1
Control

Unit

Figure 2.7.: A basic functional unit. During the execution of an instruction, the control unit ac-
tivates exactly the necessary operation module to carry out the desired data transfor-
mation. Control units also control the multiplexers to select the result(s) that will be
presented in the output port(s).

Each one of these modules — input and output multiplexers, finite state machine, register sets,
and context memory — were individually planned and made available as library components in the
Verilog description of the CRC template. They are assembled together to compose an structural
description of the PE. The only exception is the functional unit. The functional unit is a complex
module composed of other several operation modules. In the next subsection, the FU is outlined in
detail.

2.1.5. The Functional Units

Functional units (FUs) are modules in the CRC template that effectively transform or process
data. The structure of a functional unit determines a datapath between their input and output ports
passing through operation modules. Operation modules are hardware units responsible to carry out
a specific transformation of the data; accordingly, we say each operation module carries out one
specific operation. Examples of operation modules are adders/subtractors, shifters, multipliers,
logic arithmetic units, and bit-manipulation units.

In this work, an instruction is a chain of operation modules in the datapath of a functional unit
that performs a specific data processing task. When the datapath processes the data in a given way,
we say the FU executes one instruction. The set of all possible instructions that can be executed by
an FU is its instruction set.

A base model for the functional unit is depicted in Figure 2.7. The datapath in this FU can
execute instructions corresponding to the operators of the programming language C, except for the
modulo (/) and division (%) operations. This functional unit has two input ports and one output
port.

In general, functional units have an internal control unit. The control unit is responsible for
the activation and coordination of the operation modules that are necessary for one instruction.
Suppose one multiplication is to be executed with the FU in Figure 2.7. The control unit activates

17

2. Basics

the multiplier, deactivates other operation modules, and controls the ouput multiplexer to forward
its input port corresponding to the multiplier output data. The control unit receives an instruction
code from the context memory and modifies the datapath accordingly.

The datapath of an FU can be modified to include new operation modules or to enable other
combinations of the existing operation modules. In this case, new instructions are added to the
instruction set of the FU. This set of new instructions is referred to as an instruction set expansion.
The term custom instruction refers to one instruction that was designed to meet specific demands
or to provide advantage in the execution of a specific application or application group. A custom
instruction set expansion is a set of new custom instructions.

2.2. Application

According to the WebOpedia: ”A computer program (software) is an organized list of instruc-
tions that, when executed, causes the computer to behave in a predetermined manner [WebOpedia,
2009, s.v. ’program’, online, [122]]”. Programs can be simple, written on a few instructions, or
very complex, composed of thousands of intercommunicating parts. Applications are computer
programs that execute a specific subtask within a larger system. Applications support their users,
or their container system, to get part of the job done. For example, a noise filter is an application in
a telecommunication system. A group of different systems that solve similar or related problems
often reuse the same applications; they are called an application domain. The more an application
can be reused inside an application domain, the more representative it is to this domain.

The instructions inside a program must not necessarily be executed sequentially. Some instruc-
tions are independent from each other; they can be executed in any order or even in parallel.
Modern computer architectures use this parallelism to improve performance. Coarse grained re-
configurable arrays may execute tens to hundreds of instructions at a time; therefore, this work
focus on applications with a high instruction parallelism degree. Examples of these applications
are vectorizable algorithms, computing intensive internal loops, and programs to process streaming
data.

There are several ways to represent an application; for instance, using a programming language,
an algorithm description, or a mathematical formulation. In some representations, such as data
flow graphs (DFGs), instruction parallelism is expressed more clearly than in others, which eases
its exploitation. DFGs are discussed in Section 2.2.1.

Whatever the application representation is, it must be transformed to a machine-near format,
such that a processor can understand and execute it. This transformation process is called appli-
cation mapping and frequently comprises several complex and architecture dependent tasks. A
software that carries out the application mapping process is called compiler; in this work, the term
compiler and application mapping are used interchangeably. Section 2.2.2 discusses the tasks and
techniques for mapping applications onto coarse-grained reconfigurable architectures.

2.2.1. Application representation

Data flow graphs (DFGs) are a formal, graph based representation used to capture programs in
an application set. This section introduces the notation and several basic graph theory concepts

18

2.2. Application

related to DFGs and used throughout this work. The definitions following are based on Golumbic
[43] and Valiente [117].

Definition 2.1 A directed graph G(V,E) consists of a finite non-empty set V of vertices and an
irreflexive binary relation between two elements of V . The binary relation is represented by a
collection of ordered pairs E ⊆ V × V . The element (vi, vj) ∈ E is called an edge from vi to
vj . Additionally, if V ′ is a subset of V , G(V ′) denotes the subgraph G(V ′, E ′) such that E ′ =
{(vi, vj) ∈ E|vi, vj ∈ V ′}.

In the remainder of this work, the term graph is used interchangeably with directed graph.
A graph G(V,E) has a cycle if there is a sequence of vertices [v0, v1, v2, . . . , vl, v0] such that
(vi−1, vi) ∈ E for i = 1, 2, . . . , l, and (vl, v0) ∈ E. A directed acyclic graph is a directed graph
without cycles. Directed acyclic graphs are extensively used in computer science, as for example,
to represent parse trees or dependencies between instructions of a program.

It is common to assign labels to the vertices of the DFG. These labels indicate attributes or
information represented by the vertices, such as their color or weight. A labeling function is a
function that maps each vertex in graph G(V,E) to an element of a given set A. The label of
v ∈ V is the outcome of a labeling function applied to the vertex v. A graph with one or more
associated labeling functions is referred as a labeled graph.

In order to represent one application, a common type of directed acyclic graph is used: the data
flow graph (DFG) [28][112].

Definition 2.2 A data flow graph (DFG) is a labeled directed acyclic graph G(V,E) where the
set of vertices V represents operations and the set of edges E denotes the set of data dependencies
(precedence constraint) between these operations. A labeling function Op maps each vertex to an
operation type, which is available in a predefined set;Op(v) denotes the operation type represented
by v.

DFGs define a partial order to the execution of the operations of a program, based on the data de-
pendency. If there are data dependencies between any two operations vi, vj ∈ V , these operations
must be executed sequentially because vj needs data that are produced by executing the operation
vi. Operations that do not have any data dependency may be executed in any order or in parallel.
DFGs are a base for scheduling and parallelism extraction methods. They are widely applied in
the area of high level synthesis because they expose the parallelism between operations, which is
a potential source of optimizations.

We assume that any operation can be classified into one of the following categories:

Atomic operation The term atomic refers to the fact that, after an operation starts its execution,
it will continue without interference until it produces the output data. Examples of atomic
operations are logic or arithmetic operations like addition, subtraction, arithmetic shift, and
store/load operations. Atomic operations must have at least one incoming edge and at least
one outcoming edge. That means atomic operations always depend on another operation that
provides their input data, and they always produce a data that is used later by another opera-
tion. The label Op(v) indicates the specific type of atomic operation. Atomic operations can
be complex, and may consume and produce several data values each time they are executed.

19

2. Basics

Input operation Corresponds to data inputs ports and constants of the data flow graph. These
operations do not have any incoming edge because they do not consume data. If v ∈ V is
an input operation, the label Op(v) can be Input port, for data input ports, or Constant, for
constant values.

Ouput operation Corresponds to data outputs ports of the flow. These operations do not have
any outcome edge because they only consume data. If v ∈ V is an output operation, the
label Op(v) is always Output port.

To illustrate how DFGs represent one application, consider the trilinear interpolation algorithm
[29], depicted in Figure 2.8. The operations and their data dependency are obtained from a C
code and modeled as the data flow graph . Twenty eight atomic operations are used to compute
the algorithm, but they can be grouped in 3 types: subtraction, multiplication and arithmetic shift.
These operations consume data produced by other atomic operations, input ports or constants. In
all these cases, an edge is used to connect the producer and the consumer of the data.

Vertices representing input variables are depicted as triangles with outgoing edges, whereas
constants are represented by rectangles. This eases the understanding of the elements in the graph.
Both vertex types are input operations. Atomic operations are depicted as circles. The type of a
given atomic operation is indicated inside the circle. Output operations are depicted as triangles
with incoming edges. When necessary, an index (e.g., vi) is placed beside the circle to indicate that
specific operation node.

The definition presented for a DFG does not consider the representation of control flow within
the application. It represents the program’s behavior only within a basic block. A basic block is a
sequence of program code with only one entry and only one exit point. If the application contains
a control flow, we use techniques to transform the control flow into a pure data flow. The technique
to be applied depends on if the control flow is a loop or a conditional branch.

To eliminate for and while loops that have a small number of operations, or to which the
number of iterations is known a priori, Loop unrolling [86] [1] is applied. Loop unrolling replaces
the body of the loop by several copies of the body and adjusts the loop control code accordingly.
Compilers use loop unrolling to reduce the overhead of executing the indexed loop and to improve
the effectiveness of other optimizations such as common-subexpression elimination, instruction
scheduling, and software pipelining. Loop unrolling exposes parallelism at instruction level, and
thus it increases the number of operations that can be combined to form new custom instructions. If
loop unrolling cannot be applied, for and while loops are represented only by their internal basic
block; the control information is simply ignored. This information does not affect the extraction of
instruction patterns or the composition of custom instruction. The control information, however, is
again considered when mapping the application in the architecture.

To eliminate conditional branches, such as if-else control structures, a similar approach to
speculative execution [86] is used. During an speculative execution, all the branches are exe-
cuted, but the results of only one of them is used later depending on the evaluation of a condition.
Figure 2.9 exemplifies how to describe the conditional branch as a pure data flow. All branches
are executed, as well as the computation of the conditional value. The data produced in each
branch is used to feed a select operation. The select operation uses the conditional value to choose
which incoming data is propagated. This procedure transforms the control dependency between the

20

2.2. Application

Input variable

Constant

-

×
»

24

-

×
»

24

-

-

×
»
-

24

-

-

×
»
-

24

-

×
»
-

24

-

×
»
-

24

-

×
»
-

24

Atomic Operation

Output variable

Figure 2.8.: Data flow graph example.

branches into data dependency. This technique increases parallelism at instruction level because
both branches may be executed at the same time.

2.2.2. Application mapping

Application mapping refers to a sequence of tasks that determines how one application runs within
a target system. The application mapping process receives the following three inputs:

The application description lists the operations to be executed and their dependencies, which
defines the operation execution order. This description is a data flow graph, discussed previ-
ously in this section.

21

2. Basics

if (c < 10) {
b = a + 1;

} else {
b = a - 1;

}

c 10

+ -

1

sel

<

a

b

Figure 2.9.: Transformation of if-else structures in a pure data flow. Both branches are exe-
cuted producing data. Then a select operation chooses the data to be used further as b
considering the computed condition.

The architecture of the target system describes which resources (FUs, memory, etc.) are
available to accomplish the application task, and how these resources are interconnected. In
this work, an architecture is completely defined by a CRC instance, as discussed in Section
2.1.1. Additional information about the architecture includes usage costs for each resource,
such as execution delay and power consumption. This information is obtained through syn-
thesis and evaluation of the CRC instance.

Constraints establish requirements for the execution of the application, such as minimal through-
put, maximal power consumption, and maximal area or resource usage. The type of require-
ment to be used highly depends on the application.

The application mapping phase is usually an automatic process carried on by a compiler. In this
work, both compiler and application mapping refer to a process that transforms the application
description into an executable format, which can be processed by the target architecture. The
sequence of tasks that compose the application mapping phase resembles that of the behavioral or
high-level synthesis [35]. It comprises three central tasks: scheduling, functional unit binding, and
routing or interconnection binding.

Scheduling

Scheduling is a central task in behavioral synthesis. The scheduling task partitions the design
behavior into time steps (also called control step) such that all operations in a time step execute in
the same clock cycle [121]. There are several scheduling strategies, but in the remainder of this
work, only the resource constrained scheduling variant is used. The goal of resource constrained
scheduling is to minimize the number of time steps given the type and the maximal number for
each functional unit available.

During the scheduling phase, each operation in the DFG can be executed at a certain time step
only if all its predecessors have been executed at previous time steps. Thus, an operation executes
only after all its dependencies are resolved. Additionally, operations can be added to a time step

22

2.2. Application

as long as there are processing elements available to execute them. The schedule for the DFGs,
depicted in Figure 2.10, may clarify this. In the DFG on the left, only two PEs are available in the
architecture. If operations v1 and v2 are executed at time step 1, operation v3 can be executed only
at time step 2; there are no other PEs available to execute it. Consequently, v4 must be executed at
time step 3 because it must come in a later control step as its predecessors (v1, v2 and v3). In the
DFG on the right, 4 PEs are available in the architecture. As a result, operations v1, v2 and v3 can
be executed simultaneously in time step 1; the execution of v4 follows at time step 2.

+

-

sel

<

Time step 2

Time step 1

Time step 3

Maximum : 2 PEs per context

+ -

sel

<

Maximum : 4 PEs per context

v3 v2

v1

v4

v3 v1 v2

v4

Figure 2.10.: Scheduling examples.

Binding

The binding task assigns each operation within a given time step to the processing element (func-
tional unit) that will execute the operation. A feasible mapping between operations and PEs is
called a binding state. Figure 2.11 depicts examples of some possible binding states for the DFG
of Figure 2.9. The quality of a binding state can be evaluated according to different criteria; for
example, the area usage, the total data transfer delay, or the network distance between communicat-
ing operations. The network distance takes into account the data dependency between operations:
the shorter the distance between two communicating operations, the better is the binding quality.
One way to define network distance it to consider the semi-perimeter of the smallest rectangle that
inscribe all network nodes. The network distance measured for a binding state is called binding
state energy.

It is possible to achieve a good quality binding state (low binding state energy) through succes-
sive improvements of an initial binding state. For example, moving the node v4 in Figure 2.11a
to the central PE leads to the configuration in Figure 2.11b, which has a smaller overall network
distance. The binding state depicted in Figure 2.11c has an optimal low binding state energy; it can
be reached through successive improvements of the initial configuration. This successive improve-
ment may be realized by using techniques such simulated annealing [66][118]: a probabilistic
heuristic to solve global optimization problems.

23

2. Basics

v1

v4

v3

v2

v1 v4

v3

v2

v1 v4

v3

v2

(a) (b) (c)

Figure 2.11.: Examples of binding states: (a) long network distance between nodes v4 and v3; (b)
shorter network distance after displacement of v4 to the middle PE; (c) binding state
with minimal network obtained after successive improvements.

Routing

The third task of the application mapping phase is to bind data transfers, represented by edges in
the DFG, to interconnection resources, such as input/output ports and PE interconnection lines. To
distinguish this from the binding of operations to functional units, this task will be called routing
in the remainder of this work. The routing phase goal is to minimize the overall communication
between producer and consumer of the data.

Reconfiguration

Processor-like reconfiguration is another important issue during the application mapping consid-
ered here. The scheduling, binding and routing tasks must consider the partition of the application
in contexts. Each context contains exactly that part of the application that will be executed at a
given clock cycle. Processor-like reconfiguration enables to map the application using three differ-
ent strategies: multi-context, pipeline or multi-context pipeline. Examples for these strategies are
depicted in Figure 2.12. A pure multi-context mapping assigns each scheduled time step to one
different context. During execution, the sequence of context reconfigurations follows exactly the
sequence of time steps determined by the scheduler. As depicted in Figure 2.10, operations v1, v2

are executed at the first context (time step 1), operation v3 at the second context (time step 2) and
v4 at the third.

In a pure pipelined mapping all time steps are executed at the same context. This strategy does
not use reconfiguration or resource sharing. All operations execute at the same time, but each
one of them works on data that was produced by its predecessors in the previous clock cycle. At
a certain clock cycle i, the operation v3 (PE3) in Figure 2.12 processes the data produced by v1

and v2 in clock cycle i − 1. v1 and v2 also execute, but they process already new data. Pipeline
mapping can only be applied if there are enough PEs available in the architecture to accommodate
all operations.

24

2.2. Application

PE< -

PE+ sel

PEsel

Multi-context mapping Pipelined mapping
Multi-context pipeline

mapping

Context 1

Context 2

Context 3

PE -< PE+ sel

PE+ PE< -v3 v2

v1 v4v3 v2

v1

v4

v4v1

v3 v2

Figure 2.12.: Multi-context, pipeline, and multi-context pipeline

A combination of both strategies, called multi-context pipeline, is possible. In this case, at least
two different (but not all) time steps share the same context. The time diagram in Figure 2.13
helps understanding how the DFG in Figure 2.12 is executed. Consider context 1 is executed
at clock cycle 1 and 3, and context 2 is executed at clock cycle 2. At clock cycle 1, context 1
executes: operation v1 produces valid data, but operation v4 produces dummy data because there
are some non-resolved data dependencies. At clock cycle 2, context 2 executes and operations v2

and v3 produce their results. The system reconfigures back to context 1 at clock cycle 3; now, v4

processes the data produced in clock cycles 1 and 2, while v1 processes data from a new input set.

Table 2.1 summarizes the resource requirements and the performance for the previous example.
The pure pipelined mapping requires 4 PEs. The pure pipelined and the multi-context pipelined
mappings require two PEs because they use reconfiguration to share resources among different
operations. The multi-context strategy needs three clock cycles to execute the application, where
the other two strategies require only 2. Finally, pure multi-context solution achieves the smallest
throughput (1/3) because it has to execute the application before it can consume the next input data
set. The best solutions are achieved by the pipelined (1) and multi-context pipelined mapping (1/2),
as they simultaneously process data from different data sets. This example shows a common trend
between these strategies: multi-context leads to less resource usage and slower designs; pipeline
requires a great amount of processing elements but offer the best performance marks; and multi-
context pipeline combines the advantages of both approaches to achieve a middle point trade off.

25

2. Basics

Context 1 – clock cycle 1 Context 2 – clock cycle 2

Reconfiguration

PE+ sel PE< - PE+ sel

Context 1 – clock cycle 3

Reconfiguration

v4v4v1 v1v2v3

Figure 2.13.: Example for the execution of the multi-context pipeline.

Table 2.1.: Resource usage and performance for the example in Figure 2.12.

Multi-context Pipeline Multi-context pipeline

PEs 2 4 2
Latency (clock cycles) 3 2 2
Throughput (input set per cycle) 1/3 1 1/2

We showed that processor-like reconfiguration capability affects simultaneously application
mapping tasks. It is then reasonable to formalize and solve these tasks together. The author pre-
sented a method to solve simultaneously the scheduling, binding, and routing problems in [16]
using an integer linear programming approach; the details for this method are out of the scope of
this thesis, and will not be discussed here.

26

3. State of the Art

During the last two decades, a large number of electronic systems based on coarse grained architec-
tures have been proposed in academic research works, and introduced in the market as commercial
devices. They yield a better performance and smaller power consumption than general purpose
processors and FPGAs, and more flexibility than ASICs. This chapter presents an overview on
actual coarse grained reconfigurable architectures from academy and industry.

Four of the, actually, most representative CGRA instances (NEC’s DRP, Silicon Hive’s ULIW,
IMEC’s ADRES, and the Weakly Programmable Processor Array (WPPA)) were seleced to be dis-
cussed here (Section 3.1). NEC’s DRP and the Silicon Hive’s ULIW architectures are commercial
instances that demonstrate the applicability and feasibility of these devices. IMEC’s ADRES, and
the Weakly Programmable Processor Array (WPPA) are academic proposals that allow a deeper
insight on the development phase. Historically important proposals are also briefly discussed in
Section 3.2. Each section discusses the array structure and functionality of the instance, lists some
of its use cases, and compares it with other approaches. However, the focus of the discussion
will rely on the description and specialization of CGRAs during the design phase (specially on the
academic instances).

Section 3.3 evaluates the design of CGRAs and points out two productivity bottlenecks: the
innadequacy of description languages and a complex, trial-based exploration of the design possi-
bilities. This section also clarifies the points in which this thesis improves the state of the art.

3.1. Coarse grained reconfigurable architectures

3.1.1. NEC — DRP
The Dynamically Reconfigurable Processor (DRP) was introduced by the japanese company NEC
in the year 2002 [84]. According to their designers, the DRP offers an ASIC-like performance
and a software-like scalability (flexibility). ASIC-like performance is obtained by configuring
custom datapaths in an array of PEs, whereas a very fast dynamic reconfiguration of these datapath
configurations build up to the software-like flexibility.

Architecture

NEC’s DRP uses an homogene array with 512 processing elements divided in 8 tiles (see Figure
3.1a). PEs have a set of internal registers, but memory blocks are also spread out along the array
to store larger amount of data, if necessary. The context memory, denoted STC in the DRP, is
centralized in each tile: that means, each STC contains the configuration data for a complete tile.
Sixteen contexts are available in each STC. Also inside each tile, the interconnection network
between PEs is claimed to be fully programmable, and can deal with up to 2 input 8-bit words.

27

3. State of the Art

The DRP device has yet 1 SDRAM/CAM controller, 1 PCI controller, and 8 32-bits multipliers,

St at e Tr an si t ion Con t r o l ler

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

VVMEM VVMEM VVMEM VVMEMVVMEM VVMEM VVMEM VVMEM

VVMEM VVMEM VVMEM VVMEMVVMEM VVMEM VVMEM VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

St at e Tr an si t ion Con t r o l ler

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

VVMEM VVMEM VMEM VMEMHMEM HMEM HMEM HMEM

VMEM VMEM VMEM VMEMHMEM HMEM HMEM HMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

D
at

a_
in

(8
b
x2

)

D
at

a_
o
u
t

(8
b
)

Flag_in

Flag_out

In
st

ru
ct

io
n
s

A
LU

R
eg

is
te

r
Fi

le

Data WireFlag WireIP

D
M

U

D
at

a_
in

(8
b
x2

)

D
at

a_
o
u
t

(8
b
)

Flag_in

Flag_out

In
st

ru
ct

io
n
s

A
LU

R
eg

is
te

r
Fi

le

Data WireFlag WireIP

D
M

U

(a) (b)

Figure 3.1.: Array organization and PE circuit in NEC’s DRP. Source [84].

which are tightly coupled to the array through buses. These components, however, are not part of
the array; their usage incurs on extra delay for the execution because data have to be routed outside
the array.

The DRP’s processing element, depicted in Figure 3.1b, contains an arithmetic-logic unit (ALU),
which performs 8 bits operations, and a data management unit (DMU), that handles data load and
storage, constant generation, and bit manipulations. An internal instruction memory determines
(per instruction) ALU and DMU operations as well as the source and destiny of data for each
cycle. Source and destination operands can come either from the internal register file or other PEs
(using operation chaining).

The functionality of the DRP resembles that of the CRC model, explained in Section 2.1.1: at
each clock cycle, the STC excites the instruction memory of PEs within the tile and configurates
a custom datapath. The difference to the CRC model is on the fact that each context in the STC
affects all the tile, whereas in the CRC each PE is controlled independently. According to NEC, the
DRP architecture was designed for stram data processing, such as network packet routing, motion
or still picture processing, and wireless data streams.

The first DRP version (DRP-1) was implemented in a 0.15µm CMOS technology, and could
run at a maximal speed of 133Mhz. The most recent version, the DRP-2, uses a 90ηm process
technology and runs up to 250Mhz.

Description and design

Not much can be said about the description and design phase of the DRP. Motomura, one of the
main designers of the DRP, explains the basic idea behind the development as:

DRP is architected based on a clear picture of how C code is compiled into hard-
ware. [Microprocessor Forum – A Dynamically Reconfigurable Processor Architec-
ture, 2002, [84]]

28

3.1. Coarse grained reconfigurable architectures

However, there are no further publications from the company NEC or their academic partners that
enlight how the design decisions were taken during the development of this device. For example,
it is not clear which language was used to describe the processing elements and network intercon-
nection, or how designers decided for the division of the array in tiles.

3.1.2. Silicon Hive — ULIW

Silicon Hive is a Netherlands-based startup funded by the Philips Electronics. Silicon Hive pre-
sented in 2003 the Ultra Long Instruction-Word architecture (ULIW) [105]: a mixture of coarse
grained reconfigurable array and very long instruction-word (VLIW) processor. Since then, several
variants of this device appeared, such as the Avispa and Avispa+, designed for signal processing
in OFDM radio systems; the HiveGo-CSS series, devoted to CCD cameras; and the HiveGo VSS,
focused on video streaming applications.

The most remarkable feature of the Silicon Hive’s platform is the configurability during the
design phase. The ULIW architecture is commercialized as synthesizable intellectual properties
(IP Cores) that can be tailored to achieve the costumer’s requirements. Despite its commercial
character, this platform allow a deep insight in the description and specialization of the architecture.

Architecture

The foundation of the Silicon Hive’s ULIW architecture is the component called processing and
storage element (PSE). The basic structure of the ULIW architecture can be seen in Figure 3.2. The
PSE is a processing element with own functional units, register set, and local memory I/O; similar
(but more complex) to the PEs of the CRC model described in Section 2.1.4. The ’network’ circles
in Figure 3.2 represent the local interconnects between a PSE’s register sets and functional units,
or between PSEs. This network is also configurable during design time. Like the DRP and the
CRC model, PSEs are designed to work in parallel, but as a single datapath.

The characteristics of PSEs change depending on the device instance. For example, the Avispa+
has four identical PSEs, each with up to 12 functional units, including 16-bits ALUs, 16-bits mul-
tipliers, a 40-bit adder/accumulator, a 16-bit barrel shifter, two 16-bits load/store units, and a four-
way SIMD add-compare-select unit for acceleration of Viterbi algorithms. In resume, PSEs can be
a mix of general purpose computing elements with dedicated ones. The performance reported by
Silicon Hive is impressive (see Table 3.1 for a comparison between the Avispa and Avispa+): in its
peak operation point, the architecture can execute up to 60 operations per clock cycle at a 150Mhz
frequency. That corresponds to 9 billion operations per second.

Description and design

To support the development of ULIW-based architectures, Silicon Hive has created a whole soft-
ware tool chain composed of specialized ULIW cores, a library of function units for designers to
choose from, and adaptive software-development tools. In terms of the terminology introduced in
Chapter 2, Silicon Hive provides the designer with basic components of an architecture template,
that can be assembled into concrete architecture instances [18]. The design methodology, depicted
in Figure 3.3, follows the same flow as proposed by the designers of the CRC model.

29

3. State of the Art

Se
qu

en
ci

ng
 L

og
ic

....

Network

FUFU

RF RF....

Network

RF RF....

Network

RF RF....

Network

....

Network

FUFU

...

...
...
.

....

Network

FUFU

....

....

....

....Data
Mem

Data
Mem

Data
Mem

Inst Reg

Inst Mem

Bus Interface

PC

Figure 3.2.: Block diagram of the ULIW architecture from Silicon Hive. The number of processing
and storage elements(PSEs), registers, FUs, and data memory is configurable during
the design phase. Source [51].

Table 3.1.: Configuration of two commercial versions of the ULIW architecture: the Avispa and
the Avispa+ devices. Source [51].

Silicon Hive’s Silicon Hive’s
Avispa Avispa+

Appication Domain OFDM Radio OFDM Radio
Instruction-Word Width 486 bits 768 bits
Issue Slots Per Word 41 operations 60 operations
Instruction Memory 32K 48K
Arithmetic PSEs 4 4
Functional Units 75 103
Register sets 95 130
Clock Frequency (0.13µm) 150Mhz 150Mhz
Core Area (0.13µm) 6.5mm2 4mm2

Power 127.5mW 150mW
Peak performance 6.15 GOPS 9 GOPS

The starting point for the design of an instance is the proprietary hardware design language
The Incredible Machine (TIM). Silicon Hive claims TIM is a higher-level language than VHDL,
Verilog, or Tensilica Instruction Extension (TIE) languages because it allows designers to configure
the architecture template by specifying parameters, such as the number of function units, register

30

3.1. Coarse grained reconfigurable architectures

Area, Speed, Power Cycle Count

Operation
Semantic
Library

Processor
Model

(C-syntax)

Processor
Model

Generator

High-level
C Program

HiveCC
Spatial

Compiler

Assembly
Code

(C-Syntax)

Standard
C Compiler

Compiled
Simulator

Assembler
& Linker

Binary
Code

TIM
Machine

Description

Function
Unit

Library

Processor
Simulator/
Generator

Netlist
Layout

Logic Synth
Place &
Route

HDL
Code

State View
&

Trace File

Simulation
&

Verification

Figure 3.3.: Design flow used by costumers of Silicon Hive. The starting point of the design flow
is the proprietary language TIM. From this description a Processor simulator, VHDL
(or Verilog) code, and a compiler are automatically generated. Source [51].

files, interconnects, and the list of instructions each function unit can execute [51]. Based on the
TIM description of the architecture, prewritten blocks of VHDL (or Verilog) code are instantiated
together forming a synthesizable description. TIM also drives the development-tool generator
that creates a matching assembler-linker, C compiler, instruction-set simulator, and cycle-accurate
simulator.

Specialization of the architecture consists of adjusting the number of registers, number of func-
tional units, memory size, and interconnects to the requirements of a set of applications. This is
a refinement process based on an exploration of the design space; that is, designers generate and
evaluate several instances with different configurations, and choose the one that demonstrated the
best performance-power-area trade off for the target applications. It is also possible to include
instructions that are tailored to specific tasks, such as multiply-and-accumulate units or the SIMD
add-compare-select units. These special instructions, however, must be part of a Silicon Hive’s set
of predefined cores.

3.1.3. IMEC — ADRES

The Architecture for Dynamically Reconfigurable Embedded Systems, in short ADRES, was de-
veloped by Mei et al. [76] at the Inter-University Microelectronics Center (IMEC), Belgium. Ac-
cording to their designers, the ADRES is ” a flexible architecture template that includes a tightly
coupled very long instruction word (VLIW) processor and a CGRA[Architecture Exploration for a
Reconfigurable Architecture Template, 2005, page 90, [75]]”. During the last seven years, ADRES
became one of the most representative CGRA proposals in the academic community. The large
number of publications involving the ADRES architecture provides a thorough view for the orga-
nization and connection of CGRAs [76][75], their design phase [77] [75] [15], and their special-

31

3. State of the Art

ization to application domains [119] [14] [37] [4].

Architecture

The ADRES architecture is divided in two parts (see Figure 3.4) a VLIW processor and a reconfig-
urable array. The VLIW processor executes parts of the code that cannot be mapped to the array.
The way it is connected to the array, allows the compiler to see the array as an extension of the
instruction set in the VLIW processor. The reconfigurable array executes only computationally
intensive kernels of applications.

FU

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

Register file

Instruction
memory hierarchy

Data
memory hierarchy

Very large instruction word processor view

Reconfigurable array view

Figure 3.4.: Instance of the ADRES architecture template. The ADRES couples a VLIW processor
with a reconfigurable array. Source [75].

Like the CRC model, discussed in Chapter 2, the ADRES is described as a flexible template con-
sisting of functional units, storage blocks and routing resources. Basically, the routing resources
connect the computational resources to form a certain array topology. Communication between the
VLIW and the reconfigurable array takes place over a register file. The functional units of ADRES
implement a predicated execution that helps to transform the program control flow into a pure data
flow [86]. Predicated execution refers to the conditional execution of an instruction based on the
value of a boolean source operand: the predicate. Local registers coupled to the FUs avoid long
communication delays by buffering intermediary data.

32

3.1. Coarse grained reconfigurable architectures

Description and design

The development team of the ADRES architecture uses the same base methodology as the CRC,
DRP, and Silicon Hive groups1. However, ADRES became more representative than other archi-
tectures and made important contributions for the understanding of CGRA’s design phase. The
reason is that ADRES’s team has at hand a very flexible template and an extensive tool flow that
comprises the retargetable compiler DRESC [78], instruction set simulator, RTL simulator, and
synthesis tools. Like the CRC template, the ADRES template accepts parameters to adjust the
number of registers, number of functional units, and so on. However, this template goes beyond
and makes available pre-configured network topologies, functional units, and memory modules,
that can be combined with each other arbitrarily. This flexibility combined with the retargetable
software tool flow allow designers of the ADRES architecture to generate and evaluate a great
number of distinct instances.

Rather than a gradual refinement of the architecture, the designers of ADRES generate a large
number of instances and evaluate them: a try-and-error design space exploration (see Figure 3.5).
During the evaluation of each instance, the complete set of applications is mapped and simulated
to obtain cycle-accurate performance estimates. RTL simulation provides dynamic power con-
sumption and precise propagation delay results. Synthesis provides area and implementation cost
estimates.

Source-level
transformations

IMPACT frontend

Modulo
Scheduling

ILP
Scheduling

Register
Allocation

Dataflow
analysis &

optimization

Assembly

Compiled ISA
Simulation

Compile and Assemble

ANSI-C files

Create Esterel
Simulator

VHDL Files

Parse XML arch. to
VHDL code

ModelSim
Simulation

Esterel
Simulation

Obtain Switching
Activity

Synthesize ADRES
Architecture

LCode

Calculate Power

Toggle File

Performance Results Physical CharacteristicsPower Results

Gate level
Design

SynthesizeSimulate

= IMEC Tools

A B C

TSMC
Libraries

= External Tools

D
R

E
S

C

DRE files

XML
Architecture

Files

Binary files

Create
Compiled
Simulator

Figure 3.5.: ADRES software-tool flow: an extensive CAD support for the design phase, which
includes compiler, simulator, and synthesis. Source [15].

The development of an ADRES instance starts with a description of the template in an eXtended
1Other examples will follow in Section 3.2.

33

3. State of the Art

Markup Language (XML) format [70]. This XML notation is mentioned in several publications as
a ”high-level parameterized description that lets the designer quickly specify different architecture
variations [Architecture Exploration for a Reconfigurable Architecture Template, 2005, page 93,
[75]]” [15] [77][119]. However, there are no explanations on how this notation looks like, or what
it can really describe. This XML-base description has to be considered as a proprietary language.

For the ADRES architecture, specialization is a product obtained from the design space explo-
ration. The set of target applications is mapped and evaluated in several instances. Each instance
combines a type of interconnect, has a different distribution of functional units and register files,
such as the ones depicted in Figure 3.6. The instance that provides the best cost/benefit rate is
considered to be specialized to the application domain [119] [37] [4] [75]. More recently, some
specific modifications, such the use of clock-gated functional units and register files, were included
to improve the architecture power consumption [14]. This is a different approach to specialization,
which is independent of the exploration in the design phase.

3.1.4. Weakly Programmable Processor Arrays

In 2005, Hannig et. al. proposed the weakly programmable processor arrays (WPPA) [52] [67].
In many aspects, WPPAs are other than CGRAs. First, WPPAs have resembles more a network of
instruction-set processors than typical reconfigurable arrays: their processing elements are com-
plex processors, with full control structures, fetch and decode stages, instruction pipelining, and
instruction memory. Second, their interconnection network resemble more communication buses,
where strings of data (messages) are changed between PEs. Third, for the application mapping,
the compiler does not divide the application in contexts neither combine the processors to form a
datapath to be executed at each clock cycle. Instead, programs are divided in independent threads
(with several instructions), which are mapped to individual processors. Other similar architectures
are the MIT RAW [111], picoArray [30], and Ambric [62].

Because of all this, WPPAs do not exert the same influence over the research community as
the ADRES, nor is this architecture a typical representative for CGRAs. However, the design of
WPPAs is important for this work because of its description language: the MAchine Markup Lan-
guage (MAML) [34]. The designers of the WPPA architecture developed an extension to MAML,
that deals with description of coarse grained elements, scalability, and the spatial organization of
the architecture. These are also common challenges during the description of CGRAs. Since their
approach is in many aspects comparable to the CGADL language proposed here, a more detailed
revision of their design phase will follow, and in particular, its description with MAML.

Description of WPPAs

Beside all the differences pointed before, WPPAs and CGRAs have also several similarities: they
use PEs organized in an (scalable) array, their interconnection is a type of mesh-like network, and
computing elements are coarse-grained. These characteristics make the description and develop-
ment of WPPAs similar to that of CGRAs. The development of WPPAs starts with a description
of a parameterizable template [67], whose parameters are configured along the design phase and
according to a set of target applications.

34

3.1. Coarse grained reconfigurable architectures

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

Multiplier ALU

Very large
instruction word register file

FU
RF

FU

FU
RF

FU
RF

FU
RF

FU
RF

FU

FU
RF

FU
RF

FU
RF

FU
RF

FU

FU
RF

FU
RF

FU
RF

FU
RF

FU

Very large
instruction word register file

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU
RF

FU
RF

FU
RF

RF RF

RF RF

Very large
instruction word register file

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

Interconnection Network

Distribution of distinct functional units

Organization of register files

Figure 3.6.: Possible configurations for the ADRES interconnection network, disposition of differ-
ent functional units, and organization of register files. Many more are available in the
ADRES template library. Source [75].

Designers of WPPAs use the MAchine Markup Language (MAML) to describe their templates.
MAML is an XML-based notation and was used initially for describing architecture parameters,
such as number of FUs and register allocation, required for the application mapping [34]. In 2006,
Kupriyanov et. al. proposed an extension to MAML that was aimed at the design of massively
parallel processor architectures [68]. This extension divides the architecture description in two
views: the processor view and the array view. The processor view has XML constructs (tags) to
describe two aspects: coarse grained components, such as multiplexers and register files; and the
instruction-set of functional units (and even their binary code representation). The array view has
XML constructs (tags) to describe the array geometry and interconnection network. This view uses
a coordinate system to identify and interconnect PEs.

35

3. State of the Art

The processor view

MAML describes a PE type as a structural datapath by listing its storage components (register
sets, instruction memory, etc.), functional units, and the interconnection between them. This is a
difference, for example, to hardware description languages, where these components have to be
first assembled using elementary logic blocks. For example, the tag

<RegisterBank name = ’myBank’ num = 16>

specifies a register file with 16 registers.
In the processor view, the designer can also describe the instruction-set of functional units in a

PE. For that, the designer lists the operation name, its opcode (binary code used by the compiler),
and characteristics of the execution, such as number of cycles and resources usage. There is how-
ever, no behavioral description. The description of instruction sets is another feature that eases the
description of CGRAs. This feature is normally present in architecture description languages, such
as LISA and ArchC, but not in hardware description languages, such as VHDL and Verilog.

The array view

MAML allows the designer to assign positions of a 2D plane to the processing elements in an
array. Describing the spatial distribution of PEs within an array is of great help for the designers of
CGRAs for many reasons: it eases the description of the network interconnection because spatial
concepts such as ’above’ and ’neighbors’ can be used to connect the PEs; it brings valuable locality
information to the compiler, which may try to map dependent operations near to each other; and it
allows to describe the geometry of the array and how it is scaled.

Based on that positioning system, MAML designers can efficiently describe the array geometry
and the interconnection network. The array geometry is described by listing the PE type used in
the array and its size (number of rows and columns). So for example, the tag:

<PELements name=’pe’ rows=’4’ columns=’12’>

describes an array pe with possibly up to 48 PEs (4 × 12 array). Each element can be referred by
the name of the set and teh 2D indexes. In the example, each PE in the array can be designated as
follows: pe[1,1]....pe[4,12].

The interconnection network description uses a mathematical notation, called polytopes, to des-
ignate sets of positions (domains) in the space, as the example depicted in Figure 3.7. Every PE
inside one domain is connected with the same connection pattern. With this technique, the descrip-
tion of the interconnection network can be done based in rules: first, the designer describe sets of
PEs that are connected in a similar way; then, one rule is written that describes how the connection
is carried out [69]. This principle is also used in this work for the proposed description language
CGADL, and will be discussed in detail in Chapter 4.

3.2. Other Work
This section lists several other academic and commercial platforms that fairly represent coarse
grained reconfigurable architectures. Details about their architecture will not be discussed, since
all of them use some instance of a spatially distributted array of processing elements.

36

3.2. Other Work

c2

c2 c2

c2 c2 c2

c2 c2 c2 c2

1 2 3 4 5 6 7 8

1

2

3

4

i

j

j=4

j=1

j=
i

c3

c3 c3

c3D2D1

Domain D1:
(
i
j

)
=

⎧
⎨
⎩

(
i
j

)
∈ Z2 |

(
i
j

)
=

(
1 0
0 1

)(
x
y

)
+

(
0
0

)
∧

⎛
⎝
1 0
0 −1
−1 1

⎞
⎠
(
x
y

)
�

⎛
⎝
4
−1
0

⎞
⎠
⎫
⎬
⎭

Domain D2:
(
i
j

)
=

⎧
⎪⎪⎨
⎪⎪⎩

(
i
j

)
∈ Z2 |

(
i
j

)
=

(
2 0
0 2

)(
x
y

)
+

(
5
1

)
∧

⎛
⎜⎜⎝

1 0
−1 0
0 1
0 −1

⎞
⎟⎟⎠
(
x
y

)
�

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠

⎫
⎪⎪⎬
⎪⎪⎭

Figure 3.7.: MAML’s polytope domains representation. In MAML, the designer can assign posi-
tions in a 2D space to the PEs. Later, PEs can be referred to by using this positioning
system. Source [68].

3.2.1. KressArray

One of the pioneer work in the area of coarse grained reconfigurable arrays was the KressArray,
proposed by Hartenstein and Kress in 1994 [53]. The KressArray focused on executing the appli-
cation as a stream of operations formed by a chain of PEs in the array. This chain of operations
would not change during run-time, and thus, this architecture did not support dynamic reconfigu-
ration. The commercial architecture Extreme Processing Platform (XPP) from the company PACT
was inspired on the KressArray architecture [11]. An important contribution of the KressArray
team was the KressArray Explorer [55]: a tool-supported design methodology that helped to eval-
uate and choose between possible instances of the architecture. The KressArray Explorer can be
considered a prototype of the actual template-based development methodology. It was less flexible
though.

3.2.2. Morphosys

Morphosys was another CGRA proposal, which had large acceptance in the academy[71]. It was
an CGRA tightly coupled to a RISC processor. The idea behind Morphosys was to use the recon-
figurable array to implement the datapath of custom instructions for the processor. Each column
of the array receives the same configuration data, but each PE processes different data: this makes
the execution model similar to that of a single instruction multiple data (SIMD) machine. This
idea inspired the design of several other CGRAs, such as the Garp [19], the Chameleon’s Montium
[108], and the Silicon Hive.

The Morphosys architecture was described in VHDL and implemented in a 0.35 micron tech-
nology in 2000. Morphosys’s architecture components, such as the context memory and functional
units, and its array were custom designed to optimize delay and area [106] . There was no possi-
bility to configure the architecture to obtain different instances. The authors claim that the inter-
connection network, the coupling to a RISC processor, and the memory interface were targeted to
multimedia applications. However, it is not clear how design decisions were taken.

37

3. State of the Art

3.2.3. Rapport’s Kilocore (Piperench)

The Piperench architecture was developed in the Carnegie Mellon University [42], and brought
out to the market by the company Rapport under the name Kilocore. Rows of PEs in the Piperench
are called stripes, and were designed to work as stages of a pipeline. Piperench allows different
architecture instances with different numbers of PEs per row, but has limited flexibility in its in-
terconnection network, which primarily aims the transfer of data between rows in a pipelined way.
Verilog was used to design the Piperench architecture [42].

3.2.4. Summary

Many other examples for coarse grained architectures could be discussed here. However, an ex-
haustive discussion of all the members in the family of coarse grained arrays is a hard task, which is
out of the scope of this thesis: in the last 10 years, more than 30 different instances were introduced
[54], from which at least 11 became commercial devices [3][51]. The presented architectures are
fair representatives of the advances achieved in academy and industry.

A close observation in the design phase of coarse grained architectures discloses two facts: first,
most of CGRAs are designed with basis at a configurable template, and specialization consists of
finding the best configuration for this template (given a set of target applications); second, designers
use hardware description languages, such as Verilog and VHDL, to describe CGRAs. The use of
higher abstraction levels is restricted to proprietary languages, whose details are not available to
the community.

3.3. Evaluation of the state of the art

This section provides a more detailed view about the actual design of CGRAs. Emphasis lays on
the challenges for the description of flexible architecture templates and the possible approaches to
specialize the architecture towards an application domain.

3.3.1. Description of CGRAs

The design of coarse grained reconfigurable architectures must deal with several aspects at the same
time: the distribution and type allocation of PEs, the granularity of the datapath, structure of the
network interconnection, and memory architecture. The result is a very large and complex design.
As CGRAs grow in complexity, designers need new ways to describe their design: the description
of individual circuits composed of thousands of logic circuits makes the design impossible to be
carried out.

Nowadays, the most common approach to design CGRAs is to describe an architecture template.
The template fixes the background structure of the array but some aspects, such as the number of
PEs, can still be configured. Designers of CGRAs have to face the following specific challenges
when describing architecture templates:

Multi-context Reconfigurability Hardware reconfiguration provides after-production flexibil-
ity to CGRAs, and constitutes one important aspect for their design. Every modern coarse

38

3.3. Evaluation of the state of the art

grained architecture provides some kind of partial or total reconfigurability carried out in
some static or dynamic way (see Section 2.1.1). Moreover, there is a growing interest on
CGRAs as reconfigurable platforms because, due to the granularity of their components,
they allow extremely fast context-based reconfiguration mechanisms, such processor-like
reconfiguration.

Spatial distribution of PEs Part of the high performance presented by CGRAs is due to their
ability on distributing the computation spatially. The PEs of coarse grained architectures,
commercial and academic ones, are spatially distributed in some kind of array or grid. This
organization of elements is intentional and partially determines how applications are mapped
and executed in the architecture. Therefore, the design of CGRAs must consider, from the
beginning, some positioning system for the processing elements.

Homogeneous and heterogeneous arrays The simplest array configuration uses only one
PE type for the whole array. It is called an homogeneous array. During a long time, the design
of CGRAs used exclusively homogeneous arrays, due to their simplicity and predictability.
Nowadays, however, the design of arrays with different PE types organized in a somehow
irregular pattern is a growing practice.

Scalability of the array The number of necessary PEs, their type, and distribution are mostly
undefined at the initial description of an architecture. Often, after refinement or design space
exploration, the array must be scaled by inserting new PEs, or by redistributing and removing
old ones. When using actual HDLs, the designer has to reorganize the array manually and
reconnect communication lines in a point-to-point basis. That makes scaling the array a
complex and error-prone task.

Interconnection Network The interconnection network is one of the most variable and com-
plex aspect of CGRAs. Nevertheless, they are critical to the overall architecture performance,
area, and power consumption. The topology of the interconnection network is mostly un-
defined at the initial description of an architecture. After refinement or design space explo-
ration, this topology is often altered by scaling the array, inserting new communication lines,
or redirecting old ones.

Actual hardware, system, or architecture description languages can deal with these challenges only
partially, or not at all. The limitations of these description languages are pointed in the following.

Hardware Description Languages

Most of the actual methodologies for the design of CGRA architectures use some kind of hardware
description language(HDL), such as Verilog [6] [97] or VHDL [5] [116], as depicted in Table 3.2.
However, the use of HDLs for the design of CGRAs have the following drawbacks:

• The low level of abstraction of HDLs results in architecture descriptions that are hard to
write and modify. For example, including a new component requires several modifications
in the description of the interconnection network.

39

3. State of the Art

• The description is hard to scale, even if parameters are used; HDL generative functions, such
as the VHDL statement generate, are not suitable for this purpose, as the designer cannot
foresee the implications for all possible parameter combinations in the description.

• It is difficult to extract information from the code in order to perform analysis, formal veri-
fication, or derive software tools, such as a compiler or simulator.

• They do not provide features to describe hardware reconfiguration, particularly context based
reconfiguration, which are commonly used in the design of coarse grained architectures. This
implies that designers must describe the mechanism of reconfiguration indirectly.

• They do not capture the spatial distribution of modules in the architecture; there is no way to
add positioning information for modules when using these languages. However, the design
of CGRAs usually incorporate some spatial arrangement, such as an array or row.

• They cannot adequately describe the topology of networks because only point-to-point com-
munication channels are allowed. For example, it is not possible to declare that a module is
connected to its neighbors, since there is no notion of neighborhood.

System description languages

Among all investigated works, only the CRC project uses SystemC in its design framework, as
depicted in Table 3.2. System description languages, such as SystemC [21] or SystemVerilog [6],
support higher abstraction level concepts. For example, communication channels may be modeled
using message passing mechanisms, which do not require the declaration of implementation de-
tails. This might ease the functional description of intercommunicating modules, such as switch
boxes and buses, but they do not solve the problems with scaling hundreds of point-to-point con-
nections. Furthermore, system level languages are too generic and do not provide specific features
to describe CGRAs. For example, neither SystemC or Verilog can describe spatial positioning or
reconfigurability.

Proprietary languages

Some successful CGRA design teams, such as the Silicon Hive and ADRES, use proprietary lan-
guages to describe their templates (see Table 3.2. The problem with these languages is that they are
not available to the community. For example, designers of the ULIW architecture (Silicon Hive)
use the language TIM, discussed in Section 3.1.2. Instances of the ULIW architectures are de-
signed inside the company and delivered to the clients in VHDL or Verilog. Based on the features
list of the TIM language [51], it seems to be an excellent example that higher-level of abstractions
may have a positive impact on the description of CGRAs. However, it is not possible to discuss
and compare details of TIM in this work, only its purposes.

MAML

The extension of MAML, proposed by Kupryianov [68], can deal with all the challenges listed in
the beginning of this section. It was developed with the same purpose as the language proposed in
this work: CGADL. However, this approach has the following drawbacks:

40

3.3. Evaluation of the state of the art

• MAML is based at XML, and thus, it requires the design to deal with long and illegible XML
tags, instead of a clean, concise, and readable description;

• The positioning system in MAML is done through mathematical definition of regions, called
polytopes. Polytopes are way too complex (see, for example Figure 3.7) to write and un-
derstand. This complexity has two serious consequences: first, it makes the composition of
heterogeneous arrays difficult; second, it makes the description of interconnection networks
unclear and difficult to follow.

• MAML allows the description of regions in the space, for example, where all PEs are of the
same type or have the same connection pattern. However, these regions cannot be resized
(scaled).

Summary

Table 3.2 depicts a comparison among all the languages discussed here. Most part of the develop-
ment teams use a hardware description language (VHDL or Verilog), which fully supports synthe-
sis and simulation. However, these languages make the description of scalable and heterogeneous
arrays, as well as the description of scalable interconnection networks difficult and error prone.
Moreover, these languages lack features to describe reconfigurability and spatial distribution of
elements.

Table 3.2.: Description languages used in the development of CGRAs.

Language Used by Sy
nt

he
si

s

Si
m

ul
at

io
n

R
ec

on
fig

ur
ab

ili
ty

Sp
at

ia
ld

is
tr

ib
ut

io
n

H
et

er
og

en
eo

us
ar

ra
ys

Sc
al

ab
ili

ty

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

KressArray

Verilog [6]
CRC

√ √

Piperench
ADRES

VHDL [116] Morphosys
√ √

SystemC [21] CRC
√ √

Proprietary ULIW (TIM)
√

n.a. n.a. n.a. n.a. n.a.
Languages ADRES (XML)

√
n.a. n.a. n.a. n.a. n.a.

MAML WPPAs
√ √ √

complex complex complex
CGADL This work (CRC)

√ √ √
simple simple simple

41

3. State of the Art

Proprietary languages, like Silicon Hive’s TIM and the XML notation from ADRES, are said to
have the necessary features to describe CGRAs at high abstraction level [51] [75]. It is impossible,
however, to know it for sure, as the details about these languages are under concealment policy,
and were never made publicly available.

MAML has an extension, whose features deal with the same challenges this work aims at. How-
ever, the description of heterogeneous arrays and scalable complex network still complex in this
notation.

The coarse grained architecture description language, proposed in this work, can deal with all
this challenges in a simple and concise way. A detailed discussion about CGADL will follow in
Chapter 4.

3.3.2. Design and specialization of coarse grained architectures

This section discusses several works that deal with the design and specialization of coarse grained
reconfigurable architectures.

Design space exploration for CGRAs

Most CGRA’s design teams use parameterizable templates, for example: Silicon Hive [18], ADRES
[75], WPPAs [67], CRC [96], KressArray [55], and Piperench [42]. For these teams, a large part
of the design task consists in finding the parameterization that optimizes the architecture for a
given set of applications. Each combination of parameter values (design decisions) generates an
architecture instance that vary, for example in the granularity of their processing elements, in the
structure of their network interconnection, or in the instruction set of their FUs. And each of these
design decisions may lead to architecture instances that strongly differ in performance, area and
power consumption. This design process is called design space exploration.

The problem is that each architecture instance has to go through a full evaluation cycle, in-
cluding benchmark simulations, verification, synthesis, and estimations of area, performance and
power consumption. Typical templates have an extremely large parameterization space, which
make a trial-and-error approach unfeasible. This problem was stated by Mey et. al. during the
development of the ADRES architecture as follows:

Our retargetable architecture template and its compiler provide a solid base for archi-
tecture exploration of CGRAs. However, this framework only lets us quickly check
different architecture options. Finding a good architecture instance for a given
application domain remains a big challenge[emphasis added]. Exhaustive search
is impossible because of the huge search space and the time required for each step.
[IEEE Design & Test of Computers, May 2005, page 100 [75]].

Several works try to improve this design approach by focusing on a methodology to prune the
design space and conduct the exploration:

• Bossuet et. al. proposes the use of a completely functional model of the architecture, so
that architecture instances do not need to be synthesized to a netlist [13]. To evaluate perfor-
mance and power consumption, Bossuet proposes two metrics: the architectural processing

42

3.3. Evaluation of the state of the art

rate and the communication distribution. The architectural processing rate indicates the av-
erage number of operations per cycle achieved by the architecture instance. The communi-
cation distribution points out which components of the architecture have more activity, and
therefore, consume more power. This approach aims to find a power-efficient architecture
for the application domain.

The problem with this approach is that it does not consider the implementation area. The
factor ”implementation cost” is therefore excluded.

• Miramond and Delosme presents a design exploration tool to map a DFG (application) onto
an heterogeneous architecture composed of a general purpose processor and a reconfigurable
array [80]. Thus, their proposal is focused on the application mapping. However, their
method can deal with different architecture instances and different compilation methods,
and can be used during the design phase too. Their advantage is that application mapping
techniques are also considered as part of the exploration.

The author of this thesis also tried a similar approach as Miramond, but with focus on the
design space exploration [91]. This approach would consider simultaneously different in-
stances and mapping strategies. The most appropriate instance is selected by using a multi-
criteria optimality concept (Pareto optimality).

Including mapping strategies in the design space exploration helps to co-develop architecture
and compiler, but it also makes these two approaches extremely complex.

• Chattopadhyay et. al. argue that the exploration is difficult because the modelling level and
the description languages, used in actual projects, are inappropriate2 [22]. Their proposal is
then a high-level modelling methodology which includes also a description notation. The
search for the best instance, however, retains the same trial-and-error approach, and does not
introduce any technique to prune the design space.

Summarily, current methodologies for the design of CGRAs fail because there are no known
methods to prune the design space based on information about the set of applications the archi-
tecture aims for. Methods for design space exploration consist mostly of a combinatorial search,
rather than a constructive method that gradually refines and specializes the architecture during its
development.

Other approaches to specialization

Some proposals to specialize CGRAs exist, which do not necessarily use the traditional design
space exploration. To deal with this problem, several research groups propose general design
guidelines, as depicted in Table 3.3, based on experimental results.

Kim et. al. proposes to share critical resources, such as multipliers, among several PEs [65][64].
These resources are used alternately by different PEs. Complex, pipelined interconnection net-
works are used to guarantee performance and a fair resource sharing. This centralization of critical
resources can indeed reduce the implementation area, as not every PE have to include its own unit,

2This corresponds to the experience obtained during the development of this thesis.

43

3. State of the Art

Table 3.3.: Design guidelines for coarse grained reconfigurable architecture.

Architecture Guideline Discussed
in Sec-
tion

NEC’s DRP Use a central state transition controller.
IMEC’s ADRES Tightly couple the array to a VLIW processor. Use hetero-

gene arrays.
Kim et. al. [65] Share critical resources and pipeline slow operations.
Bansal et. al. [10] Use multiple and distinct FUs inside each PE.

however, it augments the complexity of the application mapping and the power consumed in the
interconnection.

In 2003, Bansal et. al. suggested that coarse grained arrays should be heterogeneous, and use
PEs with more than one functional unit. They conclude that ”better performance for these (CGRA)
designs are achieved by increasing the number of functionl units in individual PEs as compared to
architecture in which each PE has only one functional unit [Analysis of the Performance of Coarse-
Grain Reconfigurable Architectures with different Processing Element Configurations, Workshop
on Application Specific Processors, 2003, [10]]. Since this work, an increasing number of CGRAs
adopt this strategy, for example, Silicon Hives’s ULIW, and WPPAs.

Summary

This work introduces a completely innovative approach to the specialization of CGRAs: the inclu-
sion of custom instructions in the functional units. The present work proposes more than design
directives or guidelines. It establishes also a framework, composed of methods, tools, and algo-
rithms, to evaluate the set of target applications and design the custom instructions.

3.4. Summary: analogy with the design of application
specific processors

Around the middle of the last decade, designers of application specific processors (ASIPs) realised
the importance of using description languages with higher abstraction levels in their design flows.
Therefore, new description languages were developed that can easily describe particular features
of the processor architecture. About this demand, the designer of the description language LISA
[58], Andreas Hoffman, wrote: ”The research of the machine description language LISA and the
associated tooling was originally motivated by the tedious and error prone task to write instruction-
set simulators manually[Architecture Exploration for Embedded Processors with Lisa, 2003, page
vii - preface, [58]]”. Between 1992 and 2003, several architecture description languages, such
as nML [33], ISDL [49], EXPRESSION [50], LISA [58], and ArchC [8][101], were proposed
in academia and industry. Most of them focused on the description of instruction set processors.

44

3.4. Summary: analogy with the design of application specific processors

Nowadays, commercial platforms, such as Tensilica Xtensa [113] and Coware’s LisaTek [26],
employ these languages for the design of microprocessors.

During the same period, designers of ASIPs adopted design space exploration methodologies,
which drifted from a combinatorial search to the specialization of the processor’s instruction set.
Instead of trying out several architecture instances, their approach consisted of profiling a set of
applications to extract groups of instructions that are executed regularly and using the same execu-
tion pattern. A custom module would then be inserted in the processor’s datapath to carry out this
pattern as a single instruction. This methodology has been shown to speed up the performance and
increase the number of instructions per unit of area of the processor.

These two approaches, the use of an architecture targeted description language and specializa-
tion by custom instructions, motivated the contributions in this work. In this thesis, we apply
these approaches to the design of coarse grained reconfigurable architectures: we develop a
coarse grained-targeted architecture description language and we use custom instructions to
improve and specialize the design of this architecture type.

45

4. Description of Coarse Grained
Arrays

In this chapter, a new architecture description language is proposed, which was tailored for the
design of CGRAs: CGADL. CGADL was designed to describe CGRA templates. It has technical
innovations that deal with specific challenges during the description of CGRAs, such as reconfigu-
ration models, spatial distribution of PEs, scalability, interconnection network, and instruction-set
based functional units. These technical innovations are key features of CGADL, that are not present
in any other hardware description language.

This chapter starts with a discussion about several concepts used during the design of CGRAs
and a brief view on how CGADL deals with them. The key features of CGADL, its semantics,
and syntax, are presented in Section 4.2. Section 4.3 presents a method to estimate the hardware
complexity of CGADL descriptions.

4.1. Motivation and contributions of CGADL

The design of the architecture description language CGADL was motivated by the specific chal-
lenges that appear during the design of spatially distributed coarse grained architectures (discussed
in Section 3.3.1). These challenges are listed here together with a short overview of the CGADL
feature that deals with them.

Multi-context reconfigurability: context memories and finite state machines CGADL
defines models of context memories and finite state machines. Context memories, specially
when used together with finite state machines, allow the designer to describe context-based
reconfigurable processing elements and architectures. CGADL is the only description lan-
guage that provides explicit model and language features for the description of context mem-
ories. That makes the design of reconfigurable components easier, since the details for im-
plementation of the reconfiguration mechanism are embedded in the language. Other lan-
guages, such as the ones discussed in Section 3.3.1, cannot directly describe context-based
reconfigurability. In these languages, an explicit composition of the circuit that implements
the reconfiguration, with basic elements such as multiplexers, latches, memory blocks, and
dedicated glue logic, is necessary.

Spatial distribution of PEs: array-like positioning system In a CGADL description, each
element is logically bound to a position within a bi-dimensional grid. CGADL’s semantics
and syntax define a matrix notation that allows the identification, the placement, and the
connection of elements using its position, instead of identifiers. When combined with other

47

4. Description of Coarse Grained Arrays

CGADL features (discussed in the following), this positioning system eases the description
of scalable arrays and interconnection networks.

Homogeneous and heterogeneous arrays: composition and replication CGADL de-
scribes the distribution of processing elements in the array by composing and combining
them in blocks. That allows the designer to express homogeneous and heterogeneous arrays
in an equally easy way.

Scalability of the array: parameterization In CGADL, blocks of processing elements can
be arbitrarily composed using a matrix notation. This notation allows to quickly insert,
remove, or reorganize elements of the array. Parameters can be used to control the number
of PEs and geometry of the array, such that scaling the array may be as simple as attributing
a new value to the parameter.

Interconnection network: connection rules CGADL introduces an innovative concept to
describe the interconnection network at array level: the connection rules. A connection
rule partitions the array into regions, such that all PEs within one region have their input
ports connected the same way. Regions may express some positional characteristic, such
as all PEs in the first row, all PEs at the borders, etc. Beside the partition, connection
rules define how the PEs inside a region are connected. Connection rules express a set
of connection statements: for example, all PEs at the borders(region) are connected to an
input port of the array. Connection rules describe the interconnection network based on
positions, and therefore independent of a specific distribution of PEs. As a consequence, the
interconnection network scales with the array.

CGADL incorporates several concepts that are specific for the design of coarse-grained array-
based architectures, such as an array-positioning system and a context-based reconfiguration. Nev-
ertheless, the design of CGADL is generic and describes a broad palette of CGRAs.

4.2. CGADL - Semantics and Syntax

CGADL is a simple and intuitive notation language. It uses a PE centric approach: every module
in the architecture is a processing element. Processing elements may process, store, and route data
using functional units, register files, memory modules, shared buses, and switching boxes. This PE
centric approach differentiates between pure interconnection lines and processing/storage/routing
modules of the architecture. In this section, the CGADL’s semantics and syntactic model are
presented.

In CGADL, an architecture is a set of processing elements which communicate by connections,
as depicted in the Unified Modeling Language (UML) diagram (figure 4.1). Every processing
element in the architecture can be uniquely designated by a pair (w, h) ∈ N × N, where N is the
set of natural numbers. The architecture has a so-called bi-dimensional array structure, because
it may be graphically represented using a bi-dimensional grid, in which each processing element
is placed in one node of the grid. Here, this spatial analogy will be frequently used to explain the
concepts in CGADL.

48

4.2. CGADL - Semantics and Syntax

+input[] : InPort
+output[] : OutPort

PE

-type
-name

Element

-is composed of1
*

+bind()

Connections

-has

1
*

+input[] : InPort
+sel : InPort
+output : OutPort

MUX
+input : InPort
+address : InPort
+clk : InPort
+output[] : OutPort
-size : uint

REG

InPort

-has

1

*

OutPort
-has

1

*

+op1()
+op2()

+sel : InPort
-input[] : InPort
-output[] : OutPort

FU

«extends»

*

-binds

1

+address : InPort
+ouput[] : OutPort
-size : uint

CONTEXTMEMORY +clk : InPort
+ctrl[] : InPort
+output : OutPort
-size : uint

FSM

+log : OutPort
+input[] : InPort

Architecture

-is composed of

1*

1

-binds

*

*
-binds1

Figure 4.1.: UML diagram for the semantic model of CGADL.

A processing element is a structural composition of elements and its functionality is completely
determined by its internal structure. An element is an abstract and generic concept: it represents
a hardware module that encapsulates a behavior, but no internal structure. An element may have
any number of input ports, from where data is read, and output ports, to where data is written.
The specific behavior, as well as the exact number of output and input ports is not defined yet
in the element; these are defined using extensions. An extension defines a behavior, which in turn
determine how input data is processed to generate output data. CGADL has a set of basic hardware
modules, which are extensions of an element, as depicted in Figure 4.1. CGADL modules are
MUX, REG, CONTEXTMEMORY, FSM and FU.

In CGADL, connections encapsulate the concept of a communication channel: each connection
transfers data from one point to another. At array level, connections bind PE ports; whereas within
one PE, connections bind element ports. CGADL has one restriction: each connection must bind
one output port to one or more input ports, but each input port cannot bound to more than one
output port. The datatype and the wordlength is not specified explicitly; they are adopted only
when necessary using annotations.

Further details to the semantics of CGADL are introduced in the following sections along with
its syntax. In each case, the syntax will be first explained using syntax diagrams: a graphical
alternative to Backus-Naur Form (EBNF). Following a path on the diagram from its starting point
to the terminal symbol EOF (end-of-file) produces a syntactic valid description of an architecture
in CGADL. The concise syntax diagram for a CGADL description can be seen in figure 4.2. The
structure of aCGADL description file comprises three sections: PARAMETER, PE, and ARCH(see

49

4. Description of Coarse Grained Arrays

start

PARAMETER

PE ARCH EOF

Legend:

- A - Non-terminal symbol

-
�� ��A - Terminal symbol

- A
- - Option, in EBNF: [A]

6
- A
�

- Iteration, in EBNF: (A)*

- A

- B
- Alternative, in EBNF: A|B

- A - B - Concatenation, in EBNF: AB

Figure 4.2.: Starting syntax diagram for a CGADL description. This diagram corresponds to the
production of the start symbol in a EBNF notation. To read syntax diagrams, follow the
arrows from left to right. Branches are possible divergent paths and only one of them
should be followed at a time. A non-terminal symbol (rectangular box) represents
a production rule by itself. A terminal symbol (rounded box) represents a language
keyword oder a symbol.

50

4.2. CGADL - Semantics and Syntax

figure 4.3). A CGADL description may have none, one, or several PARAMETER sections, but they
always precede the other sections. At least one PE section must exist, whereas typically several
are described. Finally, exactly one ARCH section completes the description. Each section has its
own production rule, which will be discussed in the following. A full description of the language
keywords, language symbols, and the grammar production rules in EBNF format is presented in
Appendix A.2.

□■□■□■□□
□□□□■□■□
PE {
□□■■■□□■
□□■□□■□■■□□
□■■□□■■□□■■□■□□
}
ARCH {
□□□■□□■□■□□■□
□■□■□■□■□■□■
□□■□■□□■■■□□■□
}

Parameter section
0 or more parameter declarations

PE section
1 or more PE declarations

ARCH section
Exactly one architecture declaration

Figure 4.3.: Structure of a CGADL description file.

4.2.1. The PARAMETER section

A CGADL file describes the architecture as a parameterized model, the architecture template. As
discussed in Section 2.1.2, many characteristics of the architecture are not yet fixed in a template;
parameters are used to describe which of them may vary. Further in the design process, an archi-
tecture instance is obtained by assigning a value to each parameter. To allow flexible and scalable
templates, CGADL includes mechanisms to parameterize the following architecture characteris-
tics:

• number of registers in a register bank;

• type of state machine;

• number of states in a finite state machine;

• number of contexts in a context memory;

• number of input ports of multiplexers and functional units;

• number of output ports of the context memory and functional units;

• array geometry: number of lines and columns; and

• interconnection network type and complexity.

51

4. Description of Coarse Grained Arrays

The PARAMETER section consists of a list with an arbitrary number of parameters. A param-
eter declaration starts with the keyword PARAMETER followed by an identifier (a non-keyword
name) and a set of integer numbers (see syntax diagram in figure 4.4). This set of numbers corre-
sponds to the possible values that can be assigned to the parameter when defining an arquitecture
instance. This values are declared, separated by commas, between square brackets. For exam-
ple, the parameter REGSize, in figure 4.5, can have values 8, 16, or 32. A scope of integer
values may be declared using the two-points scope operator (..). In this case, all integers inside
the scope (including its limits) are possible values for the parameter. For example, the parameter
ArrayWidth, in figure 4.5, can have values 1, 2, 3,. . . , 10, 50, or 20; and the parameter CMSize
can assume the values 4, 5, 6,. . . , 15, and 16.

PARAMETER

PARAMETER IDENTIFIER IN [

,

NUMBER .. NUMBER] ;

Figure 4.4.: Syntax diagram for a PARAMETER section.

Parameters are variables visible and valid in the subsequent PE and ARCH sections. Declared
parameters are used as arguments when declaring CGADL elements, communication channels,
and the geometry of the array.

4.2.2. The PE section

In CGADL, a processing element (PE) is a structural composition of elements (see Section 4), and
the PE section is where these elements and their interconnections are declared. The PE section is
composed of two subsections: the declaration and the connection sections (see syntax diagram in
figure 4.6).

The declaration section

The first part of the PE section consists of a list of one or more statements; each of them declares
one element. The syntax diagram of one declaration statement is depicted in figure 4.7. The
elements that can be declared are multiplexers (MUX), register banks (REG), finite state machine
(FSM), context memories (CONTEXTMEMORY), functional units (FU), input ports (INPORT),

PARAMETER REGSize IN [8 , 1 6 , 3 2] ;
PARAMETER CMSize IN [4 . . 1 6] ;
PARAMETER ArrayWidth IN [1 . . 1 0 , 5 0 , 2 0] ;

Figure 4.5.: Example of a PARAMETER section.

52

4.2. CGADL - Semantics and Syntax

Figure 4.6.: Syntax diagram of the PE section.

and output ports (OUTPORT). These elements are classified in simple types (TYPE), parameter
types (PTYPE), and data types (DTYPE), as follows:

TYPE The simplest type of declaration. It is used for elements that do not need arguments in their
declaration. Multiplexers are in this class; they are declared with the keyword MUX and a
name, which is used as identifier for this specific multiplexer, for example:

MUX dinMux1 ;

PTYPE This type of declaration is reserved for elements that can receive parameters as arguments.
Arguments for this type must be a value or a parameter, which was declared earlier in the
PARAMETER section. Register banks, finite state machines and context memories are in
this class; they are declared with a keyword (REG, FSM, or CONTEXTMEMORY), a name
(used as identifier), and the identifier of a parameter or a value, for example:

REG dataRegisterSet (REGSize) ;
FSM myFSM (FSMSize) ;
CONTEXTMEMORY myContextMem (1 2) ;

DTYPE This type is used specifically for the declaration of functional units. An FU is declared
with the keyword FU, a name (used as identifier for the FU), and a list of operations that can
be executed with this FU, for example:

FU myALU (uadd , usub , mul , div) ;

PORT This type of declaration is used for the input and output ports. The input ports of a PE are
declared together in a single statement composed of the keyword INPORT and a number,

53

4. Description of Coarse Grained Arrays

Figure 4.7.: Syntax diagram of the declaration section.

which indicates the number of input ports of the PE. Similarly, the output ports of a PE are
declared together in a single statement composed of the keyword OUTPORT and a number,
which indicates the number of output ports of the PE. Parameters cannot be used in place of
the number, for example:

INPORT (8) ;
OUTPORT(4) ;

Declarations of elements can appear in any order, and the name of declared elements cannot be
repeated. Details for the declaration and semantics of each element will be discussed later in this
section. The next section discusses how the interconnection between these elements is described
in CGADL.

The connection section

The interconnection between elements of one PE is described in the connection section. Each
declared element receives one ordered list of connections, named after that element. Each entry

54

4.2. CGADL - Semantics and Syntax

in the list corresponds to an input port of this element in the same order. The input ports of an
element are ordered, as depicted in figure 4.8. The first entry in the list declares a connection that
terminates in the input port 0, the second entry declares a connection to the input port 1, etc. The
content of each entry determines the output port which initiates the connection. For example, the
line

myMux (dataRegister [0] , INPORT [0] , myContextMem [4]) ;

declares a connection between the output port 0 of dataRegister and the input port 0 of myMux,
the PE’s input port 0 and the input port 1 of myMux, and the output port 4 of myContextMem and
the input port 2 of myMux.

IDENTIFIER

. . .
inport0 inport1 inport2

IDENTIFIER(___,___,___, . . .)
inport0 inport1 inport2

Figure 4.8.: Generic schema for the connections of a CGADL element.

The connection section has the following properties:

• Each element listed in the declaration section of a PE must receive one connection list; oth-
erwise, its input ports are considered to be unconnected. The assignment between elements
and their connection lists can happen in any order.

• The number of input ports of an element is determined in the connection section; it corre-
sponds to the number of entries in the connection list.

• The number of output ports of an element is determined in the connection section; it corre-
sponds to the highest index declared to an output port of this element.

• An entry in the connection list can be declared as an ordered set of output ports. For example,
instead of declaring

myMux (dReg [0] , dReg [1] , dReg [2]) ;

it is possible to write

myMux (dReg [0 . . 2]) ;

both of which indicate the connection of output ports 0, 1 and 2 of dReg, to the input ports
0, 1, and 2 of myMux.

55

4. Description of Coarse Grained Arrays

• Parameters, declared in the PARAMETER section, can be used instead of an output port
number. Moreover, the value of parameters can also be decreased up to a non-negative
number. For example, the line

myMux (dReg [0 . . REGSize−1] , myContextMem [4]) ;

connects the output ports 0, 1, . . . , k of dReg to the input ports 0, 1, . . . , k of myMux, where
REGSize is a parameter and k = REGSize− 1. The total number of input ports of myMux,
in this case, is REGSize + 1 (including the input port connected to myContextMem).

The several elements that can be used to compose one PE, their semantics, and their syntax are
explained in more details in the following. A complete example for the declaration of elements
within a PE will be provided later (see Figure 4.16).

Multiplexers - MUX

The MUX element represents generic multiplexers. Multiplexers are common components in re-
configurable datapaths. They are used for routing data, flags, or control signals between different
elements. In CGADL, a MUX element has two or more input ports, one output port, and one
selection control port, as depicted in figure 4.9. The selection port indicates which of the input
ports will be forwarded to the output port. The connection with other elements is defined in the

MULTIPLEXER

sel output

input[]

Figure 4.9.: Model of a multiplexer (MUX) in CGADL.

connection section; the last entry in the input port connection list of a multiplexer is reserved for
the selection control port. The number of input ports of a multiplexer is defined by the number
of entries in its connection list. The input ports of the multiplexer dinMux1, in figure 4.10, are
connected to the input port 0 of pe1, the output ports of the register set. The selection control port
is connected to the fourth output of the context memory. Notice that the number of input ports of
dinMux1 depends on the parameter REGSize.

Register Set - REG

The REG element provides the behavior of a hardware register set (see figure 4.11). A register
set element has exactly one input data port, exactly one input address port, and size output ports,
where size is also to the number of registers in the set. At a clock transition, the data present at the

56

4.2. CGADL - Semantics and Syntax

PARAMETER REGSize IN [4 , 8] ;
PARAMETER CMSize IN [4 . . 1 2] ;
PE {

/ / D e c l a r a t i o n s e c t i o n
MUX dinMux1 ;
FU myFU (addSub , umult , shift) ;
REG regSet (REGSize) ;
CONTEXTMEMORY myCM (CMSize) ;
CONNECTION {

/ / C o n n e c t i o n s e c t i o n
dinMux1 (INPORT [0] , regSet [0 . . REGSize−1] , myCM [4]) ;
myFU (myCM [3] , dinMux [0]) ;
regSet (myCM [2] ,myFU [0]) ;

}
} pe1 ;

MUX

FU

inport

REG

MUX

FU

inport

REG

pe1 if RegSize = 4 pe1 if RegSize = 8

Figure 4.10.: Example of a multiplexer declaration and connection.

input port is stored in the position indicated by the address port. Any entry can be read directly, at
any time, using the respective output port.

Register sets are declared with the keyword REG, a name (used as identifier), and a parameter or
value indicating the size of the set. The declaration of the register set regSet, in figure 4.10, is an
example. A register set has only two input ports; and therefore its connection list is composed of
two entries. The first input port is reserved for the address signal, whereas the second is reserved
for the data input port. In the example, regSet is addressed by the context memory (output port 2)
and stores the data present at the output port 0 of the functional unit.

Finite state machine - FSM

The FSM element provides the behavior of a finite state machine. The FSM is a clocked hardware
block with one input condition port and one output port, as depicted in figure 4.12. At each clock
transition, a new state for the machine is chosen depending on the signal at the condition port. This

57

4. Description of Coarse Grained Arrays

REGISTERBANK

address output[]

0 1 2 size

inputclk

Figure 4.11.: Semantic model of a register set (REG) in CGADL.

new state determines the data to be presented at the output port. The size parameter controls the
maximal number of internal states used in the FSM.

FSM

condition output

0

1

2

size

clk

Figure 4.12.: Semantic model of a finite state machine (FSM) in CGADL.

Finite state machines are declared with the keyword FSM, a name (used as identifier), and a
parameter or value indicating the number of states in the machine; that is, its size. The finite state
machine is a programmable element, which receives an additional description, a program, that
describes behavior. This program must abide by the following characteristics:

• The program describes states and transitions between these states. Transitions occur on a
discrete-time basis, as for example, at positive transitions of a clock signal.

• The program has at most size states.

• Transitions between states are only dependent on the actual state and the data at the condition
port.

CGADL makes no assumptions about how the FSM program is written; its style may be a table, a
comma separated value file, XML, etc.

The connection list of a finite state machine contains only one entry, which corresponds to its
input condition port.

58

4.2. CGADL - Semantics and Syntax

Context memory - CONTEXTMEMORY

The context memory element is a latch memory which implements context-based reconfiguration.
The context memory element has one input address port and n output ports, as depicted in figure
4.13. Each entry in this memory model stores one context with n fields. Each field corresponds to
one output port. A field stores the signal to control another hardware module such as multiplexer
select signals, register addresses, and FU operation codes. At any time, the context memory writes
to its outputs the entry selected by the address port. The size parameter controls the number of
entries in the context memory.

CONTEXTMEMORY

0 1 2 n

0 1 2 n
0 1 2 n

0 1 2 n

si
ze

address output[]

Figure 4.13.: Semantic model of a context memory (CONTEXTMEMORY) in CGADL.

Context memories are declared with the keyword CONTEXTMEMORY, a name (used as iden-
tifier), and a parameter or value indicating the number of entries (contexts) in the memory; that is,
its size. The context memory is a programmable element, which receives an additional description,
a program, that describes its behavior. This program must abide by the following characteristics:

• The context memory program describes contexts. Each context is an ordered list with n data
fields, which are presented at output ports if the context is active; the first field describes the
data to be presented at output port 0 of the context memory, the second field corresponds to
output port 1, etc.

• The context memory program describes at most size contexts.

• Each context is identified with an unique information tag, for example, an index number or
identifier. If this tag is presented to the address port, the context is made immediately active.

CGADL makes no further about how this program is written; for example, it may be a table, a
comma separated value file, XML, etc.

The connection list of a context memory requires only one entry, which corresponds to its input
address port. The number of output ports of a context memory is equal to the largest output port
index, used to connect the context memory to other elements, plus one (as the CGADL indexing
system starts at 0). That determines also the number of fields in each context.

Functional Unit - FU

The FU is the most flexible element in CGADL: its behavior is defined by the designer. FUs
transform, route and store data, or replace and extend the set of elements discussed previously.

59

4. Description of Coarse Grained Arrays

The FU models a hardware module with an operation select port and an arbitrary number of data
input and output ports, as depicted in figure 4.14. During the FU operation, one specific behavior is
chosen using the operation port. The corresponding processing algorithm (function) uses the data
present at input ports, process them, and presents the result at output ports. Therefore, the designer
may model any other custom element by declaring an FU and providing a behavior for it.

FUNCTIONAL UNIT

operation output[]

input[]

User defined
functionality

Figure 4.14.: Semantic model of a functional unit (FU) in CGADL.

Functional units are declared with the keyword FU, a name (used as identifier), and an ordered
list of operation identifiers. When an operation identifier is presented to the operation port, the FU
executes the corresponding operation using the data from input ports as arguments, and transfers
the results to output ports. As an example, a functional unit with two input and one output ports is
considered. This functional unit comprises one unsigned addition (called uadd) and one unsigned
multiplication (called umult), and is declared as follows:

FU myFunctionalUnit (uadd , umult) ;

The uadd operation receives the index with value 0, whereas the umult receives the index with
value 1: according to the order in which they are listed. If the operation port is excited the value 1
(index of umult), the FU multiplies the values at the input ports and transfers the data to the output
port.

The connection with other elements defines the number of input and output ports of the func-
tional unit. The number of input ports is equal to the number of entries in the connection list.
The first entry in the list is reserved to the operation port. The number of output ports is equal
to the largest index, which is used when connecting the FU to other elements, plus one (since the
CGADL indexing system starts at 0).

The behavior for each operation of the FU is defined by the designer in a separate description,
which must abide by the following characteristics:

• Each operation must have its behavior defined separately. A specific format for the behavior
description is not fixed by CGADL. It can be, for example, a C function, an algorithm, or a
data flow graph.

• Each operation processes at most n arguments, n being the number of input ports of the FU.
Similarly, each operation produces at most o output values, o being the number of output
ports of the FU. The number of input ports and output ports of a functional unit is defined in
the connection section, as discussed previously.

60

4.2. CGADL - Semantics and Syntax

• The description of an operation is triggered only when the corresponding index is presented
at the operation port.

The description of an operation’s behavior will be particularly important in this work when
integrating custom instructions (Chapter 5). In this sense, some guidelines will be included in the
following example, that explain how the behavior of the operations were described in C for the
purposes of this work. Consider a functional unit myFU, with three input ports and one output
port, that was declared in a CGADL description as follows:

FU myFU (uAdd , uMAC) ;

The behavior of uAdd and uMAC can be described in the programming language C with the code
depicted in figure 4.15. Note that each declared operation has its own function, and each operation
processes at most 3 inputs (args) and produces at most 1 output.

unsigned i n t uAdd (unsigned i n t args [3]) {
re turn args [0] + args [1] ;

}
unsigned i n t uMAC (unsigned i n t args [3]) {

re turn args [0] * args [1] + args [2] ;
}

Figure 4.15.: An example for the description of operation’s behavior. In this work, the program-
ming language C is used to describe the behavior of FU’s operations.

Input and output ports for the PE - INPORT and OUTPORT

The input ports of a PE transfer data from the exterior of the PE to its internal elements. Each input
port corresponds to one communication line. The output ports transfer data, which are produced,
stored, or routed within one PE to its external environment. They correspond to multiplexers whose
output ports are visible only outside the PE. Like a multiplexer, an output port has several input
ports and one selection control port. The selection control port indicates which input signal is to
be transfered to the PE’s external environment.

Input ports are declared with the keyword INPORT, and a value corresponding to the total num-
ber of input ports in the PE. Output ports are declared with the keyword OUTPORT, and a value
corresponding to the total number of output ports in the PE. If multiple declarations for the input or
output ports are present, only the first one is valid. There are no parameters to control the number
of input ports or the number of output ports of the PE.

The incoming data of input ports are not accessible inside the PE; therefore, there is no connec-
tion list for the input ports in the connection section. The connection list for output ports is similar
to that of multiplexers. The number of input signals entering an output port is equal to the number
of entries in its connection list; the last entry is reserved for the selection control port. The output
signal of the output port cannot appear in the connection section, since it is visible only outside the
PE.

61

4. Description of Coarse Grained Arrays

Summary of the PE section

A summary for the semantics of CGADL elements is depicted in Table 4.1.

Table 4.1.: Summary of CGADL elements.

Number of input
ports

Number of
output ports

Parameters Comments

MUX (TYPE) defined in the
connection

section

1 input ports last input port is
reserved for the
selection control

port
REG (PTYPE) 2 defined in the

declaration
section

number of
registers,

number of
output ports

first input port is
reserved for the
address port ,

clock
FSM (PTYPE) 1 1 number of states clock
CONTEXT
MEMORY
(PTYPE)

1 defined in the
connection

section

number of
contexts,

number of
output ports

FU (DTYPE) defined in the
connection

section

defined in the
connection

section

operations,
number of

input/output
ports

first input ports
is reserved for

operation
selection

INPORT 0 defined in the
declaration

section

input port is not
visible inside the

PE
OUTPORT defined in the

declaration
section

output port is not
visible inside the

PE

An example of a complete description for a processing element is depicted in figure 4.16. This
description corresponds to the basis PE, discussed in Section 2.1.4. Since this basis PE will be
used in several discussions along this document, it will be referred to as the PE Bianca.

4.2.3. The ARCH section

The ARCH section describes the distribution and the interconnection of PEs in the architecture; that
is, it describes the structure of the architecture rather than its functionality. As discussed before,
every architecture in CGADL follows an array-like structure; each PE is uniquely identified by
a pair (w, h) ∈ N × N, which is said to be its position. An architecture instance has a defined
geometry; that is, there exist W ∈ N∗ and H ∈ N∗, such that w < W , and h < H . Moreover,

62

4.2. CGADL - Semantics and Syntax

PARAMETER REGSize IN [2 , 4 , 8 , 1 2 , 1 6 , 2 4 , 3 2] ;
PARAMETER FSMSize IN [1 2 , 1 6 , 2 4] ;
PARAMETER CMSize IN [4 . . 1 2 , 1 6 , 2 4 , 3 2] ;
PE {

/ / D e c l a r a t i o n s e c t i o n
MUX dinMux1 , dinMux2 ;
MUX finMux1 , finMux2 ;
REG dRegSet (REGSize) ;
REG fRegSet (REGSize) ;
OUTPORT(8) ;
FSM myFSM (FSMSize) ;
CONTEXTMEMORY myCM (CMSize) ;
FU myFU (addSub , mult , and , or , xor ,

not , shift , sel , compare ,
bitAnd , bitOr , bitXor , bitInv) ;

INPORT (4) ;
CONNECTION {

. . .
}

} Bianca ;

FU

FSM

CM

register

in

mux mux

m
u

x
m

u
x

mux mux

m
u

x
m

u
x

mux muxmux mux
in

in

in

Processing Element

Control Block

Data processing block

Figure 4.16.: CGADL description and schematic diagram of the PE Bianca.

there exist only one PE for every pair (w, h) where w < W and h < H . This model is analogous
to a bi-dimensional grid, as depicted in figure 4.17.

In the ARCH section, PEs are like black-box components: only their input and output ports are
visible, and elements inside a PE cannot be accessed directly. The ARCH comprises three main
parts, as depicted in its syntax diagram (figure 4.18):

ARRAY The ARRAY section describes the distribution of PEs within an array; that is, their place-
ment. Any of the PE types declared in the PE section may be used. The notation used in
CGADL to describe the array is an innovative feature, which is not present in any other ar-
chitecture description languages. It allows to describe the placement of PEs in an array using

63

4. Description of Coarse Grained Arrays

d

0

0

1 2 3 4

1
2

Position
(0,3)

Figure 4.17.: Positional model for the distribution of PEs in the architecture: an array-like struc-
ture. A 2× 3 architecture instance is depicted on the grid; every position has exactly
one PE, which can be uniquely identified using the positioning system.

Figure 4.18.: Syntax diagram of the ARCH section.

parameters, such that the array can be scaled easily.

CONNECTION-RULE The CONNECTION-RULE section describes the interconnection net-
work between PEs within an array. In CGADL, the description of an interconnection network
is made by using connection rules. Connection rules describe regular interconnection struc-
tures that apply for a coordinate (or group of coordinates) in the array. For example, a rule

64

4.2. CGADL - Semantics and Syntax

may state that every PE of the array, except for the ones at the borders, is connected to its
neighbor PEs. The concept of connection rules is an innovative feature, which is not present
in any other architecture description languages. It allows a much simpler and scalable de-
scription of regular interconnection networks.

BINDING The binding section assigns a connection rule to a specific array (placement). This
binding requires the connection rule and the array to be mutually compatible; that is, every
connection must start at an input port, and terminate at an output port.

In the following, each one of these sections is discussed in detail.

The array description

The ARRAY section describes uniquely the distribution of PEs within an array. The interconnec-
tion between PEs is not fixed at this point. The ARRAY section comprises two parts: the first
part concatenates PEs to create composite, arbitrarily irregular blocks; the second part defines an
architecture array by replicating a given block in the grid structure (see figure 4.19).

This way to describe the array, composition and replication of PE blocks, is an innovative feature
introduced by this work. Other architecture description languages, such as ArchC, Verilog, and
VHDL, force the designer to compose the array manually or using a generative procedure. For
example, in ArchC [8][101], every PE must be individually instantiated. In Verilog[6] or VHDL[5],
a generate function can be used to automate the declaration of homogeneous blocks; however, the
description of heterogeneous blocks is difficult and error prone.

In the first part of the array declaration, PEs are grouped in blocks composed with PEs of the
same type (homogeneous) or different types (heterogeneous). These blocks can be further con-
catenated to describe larger and more complex blocks. Finally, an array is built by replicating
previously declared blocks in a grid structure.

The semantics and syntax of CGADL expresses the array-like arrangement used for the design
of coarse grained reconfigurable architectures. CGADL uses a matrix notation to describe an
horizontal or vertical concatenation of processor elements or other blocks, as indicated by the
syntax diagram in figure 4.20. The items (PEs and other blocks) within a block are organized in
lines and columns, as follows:

• Lines correspond to an horizontal concatenation of items. Lines can be declared as a list of
items separated by a space(" ") or comma(","), for example,

myLineBlock = [pe1 , pe2 , pe2 , pe1] ;
aLineBlock = [pe3 myBlock] ;

• Columns correspond to a vertical concatenation of items. Columns can be declared as a list
of items separated by a newline or a semicolon(";"). ,for example,

myColumnBlock = [pe1 ; pe2 ; pe2 ; pe1] ;
aColumnBlock = [pe3

myBlock] ;

65

4. Description of Coarse Grained Arrays

PE type 1

PE type 2

PE type 3

Blocks

Blocks

Array

Figure 4.19.: Composition of a regular array based on blocks.

• Horizontal and vertical concatenations may be combined, if the resulting block is convex and
dense; that is, if the block constitutes a rectangular matrix without empty positions (holes)
inside. Two conditions must hold simultaneously: all rows must have the same number of
PEs, and all columns must have the same number of PEs.

• Each block receives an unique identifier which cannot be equal to the identifier of any other
block or PE.

Figure 4.20.: Syntax diagram for the array declaration.

66

4.2. CGADL - Semantics and Syntax

Examples for the composition of blocks are depicted in figure 4.21. aBlock and cBlock are valid
blocks, whereas bBlock and dBlock have lines with different number of PEs; and thus constitute
non valid blocks.

In the second, and last, part of the ARRAY section, one or more arrays may be declared. An
array determines the placement of PEs in the architecture. It is composed with a regular repetition,
in lines and columns, of exactly one block. The declaration of one array is done with the keyword
ARRAY followed by three parameters: the number of vertical repetitions, the number of horizontal
repetitions, and the block to be repeated. The number of vertical and horizontal repetitions may be
parameterized, which allows an easily scaling of the architecture.

Examples are depicted in figure 4.21. The array aBlockArray describes an architecture template,
whose geometry is defined by the parameters width_param and height_param. This tem-
plate has no fixed geometry, and all possible value combination for these parameters generate a
different architecture instance. If, for example, width_param and height_param are both
equal to 2, then aBlockArray corresponds to an architecture instance with 4× 4 PEs.

The array interconnection network

The CONNECTION-RULE section comprises three parts: the first part declares connections be-
tween PEs, or between input ports of the array and input ports of PEs; the second part declares
connections to the outports of the array, that is, communication lines that transfer data to the out-
side of the array; and the third part, declares connections that for some reason will not be used.

CGADL introduces an innovative concept to describe the interconnection network at array level.
Instead of describing explicit connections between PEs ports, the array is partitioned into regions,
such that all PEs within one region have their input ports connected the same way. Thus, for each
region, there is only one description for how the elements are to be connected. The figure 4.22
illustrates this idea. All internal PEs of this instance have their input ports connected directly to
their adjacent neighbors. Hence, only that region (internal PEs) and its connection pattern (adjacent
neighbors) need to be described.

Most of the existing architecture description languages(ADLs), force the designer to connect
every port individually. In CGRAs, this can turn out to be an exhaustive and error prone task
due to size of the array. Individual connections also hinders the scalability of the array, because
the insertion of new elements may imply rewriting several existing connections. Some ADLs use
generative procedures, as the generate function used in Verilog and VHDL [116]. These languages
are still closely dependent on the specific placement of the array.

To describe regions in an array, the coordinate system discussed in section 4.2.3 is used. Assume
an array of arbitrary widthW and heightH . One array position can be designated absolutely, using
a coordinate (w, h), from (0,0), in the upper left corner, to (W − 1,H − 1) in the lower right corner
of the array. A position can also be designated relative to the array limits using the keyword END,
which describes the last position in a row or column; for example, the coordinate (END−1,END)
indicates the PE in the next-to-last row and the last column. To describe a set of different positions,
a colon operator is used, as follows:

(starting row:step:end row, starting column:step:end column)

67

4. Description of Coarse Grained Arrays

PARAMETER width_param = [1 , 2] ;
PARAMETER height_param = [1 , 2] ;
. . .

ARCH {

aBlock = [pe1 , pe2 ; pe3 , pe4] ;
bBlock = [pe1 , pe1 , pe1

pe2 , pe2] ; / / I n v a l i d
cBlock = [pe1 , pe1 , pe1] ;
dBlock = [cBlock ; aBlock] ; / / I n v a l i d

ARRAY(3 , 3 ,pe1) homogeneousArray ;
ARRAY(1 , 2 ,cBlock) cBlockArray ;
ARRAY(width_param , height_param , aBlock) aBlockArray ;

} CONNECTION { . . .

pe1 pe2 pe3 pe4

aBlock

bBlock

cBlock

dBlock

homogeneousArray

cBlockArray

aBlockArray

width_param = 1
height_param = 1

width_param = 1
height_param = 2

width_param = 2
height_param = 1

width_param = 2
height_param = 2

Figure 4.21.: Declaration of blocks and arrays in the ARCH section: examples. The aBlockArray
is a template, which can generate up to 4 different instances depending on the values
of width_param and height_param.

There are two parts divided by a comma. The first part declares a set of rows and the second a set
of columns. The region comprises all positions (w, h) corresponding to the intersection of these
two sets. Examples on how to choose (ir)regular sets of PEs are depicted in figure 4.23.

68

4.2. CGADL - Semantics and Syntax

PE

PE

PE

PE

PE

PE

PE PE

Region of
internal PEs

Figure 4.22.: Description of the interconnection network topology based on a region. Regions are
groups of PEs that are connected in the same way. For example, all internal PEs
in this array are connected in the same way: internal PEs build up a region that
abide by the same interconnection rules. CGADL uses this concept to describe the
interconnection network. The design of an interconnection topology based on regions
and rules is an innovative feature introduced by this work.

(: , 3)

0 1 2 end3

0

1

2

3

end

0 1 2 end (even)3

0

1

2

3

end
(even)

0 1 2 end3

0

1

2

3

end

(0 : 2 : end , 0 : 2 : end) (1 : end – 1 , 1 : end – 1)

Figure 4.23.: Regions representing subsets of PEs in the array. The first example selects all PEs
in the fourth column. The second selects all PEs that are simultaneously in even
columns and even rows. Finally, the internal PEs of an array may be selected as
shown in the third example.

A set of regions that partition the architecture array is called a connection rule. All PEs within
a region receive the same connection pattern to their input ports. Therefore, two regions within a
connection rule cannot have any common position. If that happens, one PE follows two different
connection patterns, which produces an error. Moreover, a connection rule is complete only if all
positions in the array is part of one region. The syntax diagram for declaring a connection rule is
depicted in figure 4.24. Each rule is introduced with the keyword RULE, which is followed by the

69

4. Description of Coarse Grained Arrays

description of the rule and a name for later identification.

Figure 4.24.: Syntax diagram of a connection rule.

Every PE in a region is connected using a connect-by-position mechanism similar to the one used
in the PE section: a list represents input ports in increasing index order for a PE of the region, and
each entry in this list declares the source port where the connection comes from. As an example,
the code depicted in figure 4.25 connects all internal PEs in an array in the following way: input
port 0 is connected to output port 2 of the adjacent PE in north; input port 1 is connected to output
port 3 of the adjacent PE in east; input port 2 is connected to output port 0 of the adjacent PE
in south; and finally, input port 3 is connected to output port 1 of the adjacent PE in west. That
connection is known as nearest-neighbors, and is depicted in Figure 4.22.

ARCH {
B=[pe1 pe2 ; pe2 pe1] ;
ARRAY(width ,height ,B) myArray ;
CONNECTION {
RULE {

PE IN (1 :END−1 ,1:END−1)
(REL_COORD(−1 , 0) [2] ,REL_COORD(0 , 1) [3] ,
REL_COORD(1 , 0) [0] ,REL_COORD(0 , − 1) [1]) ;

. . .
LOG {

PE IN (END , :) [0] ;
} nearest_neighbor ;
RULE { . . . } myRule ;
myArray (nearest_neighbor) ;

}
}

Figure 4.25.: Example of a CONNECTION-RULE section.

The second part of a connection rule, introduced by the keyword LOG, is a list of output ports
of PEs in the array that will be connected to output ports of the array. Each statement of this part

70

4.3. Estimation of hardware costs

declares a region of the array, and an index, such that every PE in the region has the indexed output
port logged. The code depicted in figure 4.25 designates that all PEs in the last array row have their
output port 0 connected to output ports of the array.

After describing parts 1 and 2, there may remain PEs in the array whose output ports have not
been connected; they are ports that are intentionally not used. CGADL does not allow unused ports
to remain unconnected; they need to be explicitly terminated. The third part of a connection rule
is a list, like the one in the LOG part, of output ports (of PEs) that have not been connected. This
part starts with the keyword VOID to indicate that those ports are explicitly terminated. The VOID
part allows to discern between an intentionally terminated communication line and a design error,
a forgotten connection between two points.

The binding section

The last step in the declaration of architecture is the binding section, where declared arrays and
connection rules are assigned to each other. To apply one connection rule to one array, the identifier
of the array is used followed by identifier of the connection rule (in parenthesis). For example, the
declarations

myArray (myRule) ;
arrayA (myRule) ;
arrayB (anotherRule) ;

assign the rule named myRule to the arrays myArray and arrayA; and the anotherRule to
the arrayB.

Connection rules and arrays can be combined arbitrarily if the following conditions hold:

• Each position in the array is declared in exactly one of the regions defined in the connection
rule. This guarantees that all input ports, at all PEs, will have a connection.

• The number of input ports of each PE in the array must be equal to the number of connections
that is declared in the connection rule of the region that contains this PE.

• Every connection declared in the connection rule must start at the output port of a PE, or at
an input port of the array (INPORT), and must finish at the input port of a PE, at an output
port of the array (LOG), or at a dead-end termination (VOID).

Several concurrent bindings between arrays and connection rules may exist; each one of them
represent an architecture template, or instance (if parameter values are assigned).

4.3. Estimation of hardware costs

The success of a description language depends on the support of software tools, such as compilers,
simulators, verifier, and estimators. It should, therefore, be possible to implement software tools
that ’understand’ the designer’s description and transform, or use it to ease the design task. So,
for example, simulators can be written that proof the functionality of the described architecture,
or softwares to formally verify if the design meet some requirement. When no tools are available

71

4. Description of Coarse Grained Arrays

that work with a certain language, the designer is obliged to rewrite the description into another
language to, for example, simulate, verify, or synthesize the design.

In this section, a method is proposed to estimate the hardware complexity of processing elements
and architecture templates described in CGADL. Hardware complexity is a measure for the number
of basic logic gates, such as inverters and logic OR, necessary to implement an electronic circuit,
and therefore it is directly related to the implementation area of this circuit. The proposed method
allows to evaluate the following aspects:

Area composition of processing elements and architecture instances The area com-
position indicates how the implementation area is distributed among the components of the
architecture or PEs. This distribution is dependent on the values attributed to the parameters
of the template. Consider , for example, processing elements differing only in the width of
their datapath. As the datapath width increases, functional units, registers, and multiplexers
build up a larger portion of the circuit area in comparison to context memories and finite
state machines, whose size do not increase with this parameter.

Scalability of the implementation area The scalability analysis indicates how the area of
components scale as a function of parameters of the description. The scalability analysis
can indicate, for example, how the complexity (and thus area) of multiplexers and output
ports is affected by parameters such as the number of registers.

Comparison between architecture instances The hardware complexity analysis allows to
compare indirectly the implementation area of architecture (or PE) instances with distinct
parameterizations. This comparison is important for the design space exploration, as it indi-
cates which parameter configuration leads to smaller hardware complexity, and thus requires
less implementation area.

The estimation method proposed here increases the productivity of the development phase and
anticipates the design space exploration because:

• it does not require synthesis of the architecture model. All the analysis is based exclusively
on the CGADL description of the architecture.

• it is technology independent. The estimated complexity of a circuit is presented as the num-
ber of gates, each of which equivalent to an inverter-gate, necessary to implement the circuit.
It is, therefore, independent of the fabrication technology that will be used to implement the
array.

• it must run only once for all the architecture instances. The estimation method outputs a set
of estimation functions, which have a similar parameterization as the architecture model. To
evaluate new instances, it is not necessary to run the estimation method again. Instead, the
same set of functions is solved considering new parameter values.

4.3.1. Estimation flow
To implement the estimation method, a circuit model of each native element of the CGADL lan-
guage was created, composing a library as depicted in figure 4.26. From each circuit model a

72

4.3. Estimation of hardware costs

function was derived, which estimates the hardware complexity as a function of the circuit pa-
rameters, such as width of the datapath and number of input ports. The estimation method itself
consists in a composition analysis which receives as input a CGADL description file and the library
of circuit models with their respective estimation functions. Using the CGADL description file,
the estimation method analyzes the list of elements in the declaration section (see section 4.2.2) of
each PE to compose a set of estimation functions. In the next two sections, the library of analytic
models and the composition analysis from a CGADL description are discussed in detail.

CGADL language

Composition Analysis
Library of circuit

models

Estimation functions for:
Multiplexers
Register sets

Context memories
Functional Units

Finite State Machines

Architecture template:
CGADL

Hardware complexity
estimation functions

Figure 4.26.: Workflow for the hardware complexity analysis method.

4.3.2. Library of circuit models

By using the methodology presented in [82], an electronic circuit model was elaborated for each
of the following elements: multiplexer, register set, output ports, FSM, FU, and context memory.
Each circuit model is an hierarchical composition of smaller circuits, such that its complexity may
be calculated by summing up the complexity of its components. The hardware costs for each
circuit are expressed in inverter gates equivalence considering the costs of basic gates as in Table
4.2.

Consider, for example, the model of an r-registers bank with r n-bits registers, as depicted in
figure 4.27. This bank receives a n-bits signal as data input and an a-bits signal as address input.
At the clock rising edge, the address is decoded and the value present in the input is stored in the
addressed register. The number of necessary address signals is normally equal to dlog2(r + 1)e,
because one register address is used to indicate that there will be no storage. Each cell in the
register set model comprises a D flip-flop, a 2-input 1-bit multiplexer, and an inverter as additional

73

4. Description of Coarse Grained Arrays

Table 4.2.: Hardware costs of basic logic gates.

Costs (1bit)

Cinv 1
Cnand, Cnor 2
Cand, Cor 2
Cxor, Cxnor 4
Cmux 3
Cff 11

glue logic to reset and load enable circuits. These are necessary for the initialization of the register
bank and its addressing control.

decoder

...

reg[0]

reg[a-1]

register

a

register register...

in[n-1:0]

out0[n-1:0] out1[n-1:0] outr[n-1:0]

Q

QSET

CLR

D

hold

enable
in[i]

Register
cell

m
u

x

Figure 4.27.: Circuit model for hardware cost estimation of a register set.

The complexity of the register bank can be calculated by summing the complexity cost of r
registers and one a-address decoder. The complexity of r registers is given by

CregSet(r, n) = r × Creg(n) = r × n× (Cff + Cmux + Cinv)

and the costs for an a-address decoder[82] is given by

CregDec(1) = Cinv

CregDec(a) = CregDec(
⌈a

2

⌉
) + CregDec(

⌊a
2

⌋
) + 2aCand

74

4.3. Estimation of hardware costs

Composing these elements, the total cost for the register bank is

CREG(r, n) = n× r × (Cff + Cmux + Cinv) + CregDec(dlog2(r + 1)e)

The estimation functions for the hardware complexity of each basic CGADL element are pre-
sented in Table 4.3. The assembly of these estimation functions and their background circuit
models are detailed in Appendix A.3. The library of estimation functions needs to be assembled
only once. However, modifications are possible, for example, to adequate the model of the FU to
other instruction sets, or to adjust one of the circuit models to better reflect synthesis results.

Table 4.3.: Hardware costs of CGADL basic elements relative to an inverter gate.
r is the number of registers.
n is the width of the datapath (number of bits in the data word).
c is the number of contexts.
s and b are the number of states and branches per state in the FSM, respectively.
f is the number of decision flags in the FSM.
Detailed explanation for each equation term can be found in Appendix A.3.

CGADL element Hardware complexity estimation function

Register set CREG(r, n) = r × Creg(n) + CregDec(dlog2(r + 1)e)
Multiplexers

Cmuxi(n) = 3n(i− 1)
Output ports

FSM CFSM(s, c, b, f) = CstateMem(s, b, c) + Cmuxf (1) + Cmuxb(log2 c) + Cff(log2 c)

Context memory CCM(aw, ar, c, n) = CcmWrDec(aw) + ClatchMem(c, n) + Cmuxar (n)

FU
CFU(n) = CAddSub(n) + Cmult(

n
2
) + Cand(n) + Cor(n)+

Cxor(n) + Cnot(n) + Cshift(n, log2 n) + Csel(n)+
Ccomp(n) + Cand + Cor + Cxor + Cinv + Cmux16(1) + Cmux12(n)

4.3.3. Composition analysis

The second phase of the hardware complexity estimation is the analysis of a CGADL description.
The analysis evaluates the composition of each PE in the architecture description and determines
the hardware complexity estimation functions for the set of output ports, the composition of the
FU datapath, register sets, PE datapath, PE control path, and the PE general composition. As
an example, consider the PE Bianca described previously in the figure 4.16. The PE Bianca is
composed of:

• Two n-bits multiplexers for the input of data in the functional unit. Each multiplexer should
be able to switch the content of rd registers plus 4 input ports. The number of input ports of
the multiplexer is extracted from the connection section (not shown).

75

4. Description of Coarse Grained Arrays

• Two 1-bit multiplexers for the input of flags in the functional unit. Each multiplexer should
be able to switch the content of rf registers plus 4 input ports. The number of input ports of
the multiplexer is extracted from the connection section (not shown).

• One rd-registers, n-bits register set, used for data storage. rd is given by the parameter
REGSize.

• One rf -registers, 1-bit register set, used for flag storage. rf is given by the parameter
REGSize.

• Four n-bits multiplexers for the output of data from the PE. Each multiplexer should be able
to switch the content of rd registers, 3 other input ports, and the direct output from the FU.

• Four 1-bit multiplexers for the output of flag signals from the PE. Each multiplexer should
be able to switch the content of rf registers and 3 input ports. Together with the last item, it
make a total of 8 output ports.

• One s-state finite state machine, with 2-branch possibilities and log2 c-bits output, where c is
the number of contexts in the context memory. s is equivalent to the description parameter
FSMSize, and c is equivalent to the parameter CMSize. Additionally, the FSM becomes
(rf + 5) 1-bit flag signals as input, which come from the rf flag registers, 4 flag input ports
and one flag directly from the functional unit. The later information is extracted from the
connection section (not shown).

• One context memory with c contexts.

• One n-bits functional unit composed of the following operations: n-bits addition/subtraction,
n
2
-bits multiplication, n-bits logic operations (AND, OR, XOR, NOT), shift, 2 n-bits word

selection, a n-bits comparator, and a 1-bit flag operation unit(with AND, OR, XOR, NOT).

The complexity cost of a PE may be resumed as:

CPE(rd, rf , s, c, n) =CREG(rd, n) + CREG(rf , 1)+ (4.1)
2Cmuxrd+4(n) + 2Cmuxrf+4(1) + 4Cmuxrd+4(n) + 4Cmuxrf+3(1)+

CFSM(s, c, 2, (rf + 5)) + CCM(aw, ar, c, n) + CFU(n)

where rd, rf are given by the parameter REGSize, s is given by the parameter FSMSize, c is
given by the parameter CMSize, and n is the width of the datapath. The last parameter, n, is
not explicitly declared in the CGADL description, and must be provided by the designer when
evaluating the estimation functions.

4.3.4. The hardware complexity estimation tool

Within this research work a software tool was developed that implements the hardware complexity
estimation method proposed in the previous section. This tool has two purposes in this work: first,

76

4.3. Estimation of hardware costs

it automates the tasks of the proposed estimtion methodology and provides an automatic, software-
based production of results; second, it demonstrates that tools can be developed which directly use
the proposed CGADL language. This section discusses the implementation details for this tool.

The estimation tool is a command-line based program, written in the programming language
Java [45], which follows the flow depicted in Figure 4.28. The input for the tools is a CGADL
description of the architecture template. This description is parsed inside the tool and transformed
into an intermediate format, as explained in Section 4.3.4. The intermediate format contains
(among other information) a list of all PEs in the CGADL description. Each entry in this list
is a record of all components within the PE and its interconnections.

CGADL
Description

Estimation function file:
Matlab Script

Parser

Composition
Analysis

Estimation
Tool

Library of
Circuit Models

Matlab

Parameter
Values

Estimated costs

Figure 4.28.: Workflow of the hardware cost estimation software tool.

After the CGADL description is parsed, the estimation tool analyses which components are
present in each PE. This phase is called composition analysis, and is discussed in Section 4.3.4.
The composition analysis produces an estimation function by summing the costs of individual com-
ponents within the PE. These costs are obtained from the library of circuit models (see 4.3.2) and
consist of a pre-written estimation function dependent on the component type. The composition
analysis phase outputs a Matlab [41] script file containing the cost estimation function.

The cost estimation function Matlab script can be evaluated inside the Matlab environment for
a set of arbitrary parameters values. This evaluation outputs hardware complexity costs, expressed
in gate equivalence, for the PE and its FU. This step is discussed in Section 4.3.4.

The CGADL parser

The CGADL parser reads a CGADL description and generates the intermediary format depicted
in Figure 4.29. The intermediary format is a data structure composed of several lists: a list of
the template parameters, a list of PE types (their composition and internal connections), a list of
concatenations, a list of described arrays, and a list for connection rules for these arrays. For the
generation of cost estimation functions, only the list of template parameters and the list of PE types
is used.

77

4. Description of Coarse Grained Arrays

PARAMETER REGSize IN [1..32];
PARAMETER CMSize IN [2,4];

Data structure

myFU : FU

regSet : REG

myCM :
CONTEXTMEMORY

Parameter list

PE list: myPE1 myPE2 myPE3

Arrayconcat list

Array list

Connection rule
list

PE {…} myPE1;
PE {
FU myFU(addSub, umult);
REG regSet(REGSize);
CONTEXTMEMORY myCM(CMSize);
…
} myPE2;
PE {...} myPE3;

Figure 4.29.: Intermediate format generated by the CGADL parser.

The parameter list contains all the parameters declared in the CGADL description (see Section
4.2.1) and the possible values they may assume. These parameters are used when instantiating
components of the PEs, and they have a direct correspondence to the estimation function parame-
ters.

The list of PE types contains an entry for each PE section in the CGADL description (see Section
4.2.2). Each PE type entry contains a record of all basic CGADL elements that are used inside the
PE. This record will be used by the composition analysis to build the total hardware cost estimation
function.

The parser also makes available other information, which is present in the ARRAY section,
such as a list of blocks (concatenated arrays), a list of possible architecture arrays, and a list of
connection rules. However, this information is not useful for the hardware cost estimation tool and
will not be discussed here.

Composition Analysis Module

The composition analysis module receives two inputs: the intermediate format produced by the
CGADL parser and cost estimation functions corresponding to basic element of CGADL such
as MUX, REG, etc. Estimation functions for each basic element are part of the library of circuit
models; they were obtained by using the estimation method explained in Section 4.3 and Appendix
A.3, and implemented as Matlab scripts. One example can be seen in the detail of Figure 4.30: the
estimation function file for the register set (RegSet), discussed in Section 4.3.2.

During the composition analysis, the following procedure is made for each PE present in the
intermediate format (list of PE types). First, the tool lists each one of the internal components
of the PE and their quantities. Second, the tool retrieves from the library of circuit models es-
timation function files for the listed components. These files are copied to a separate directory.
Third, the tool produces a Matlab script that evaluates the estimation function files with a correct
parameterization and sums up their evaluations to build up the cost of a PE.

The main file, depicted in Figure 4.30, contains an example of the file generated for the PE

78

4.3. Estimation of hardware costs

Figure 4.30.: Matlab scripts for hardware complexity estimation. The main figure shows the
file produced by the estimation tool. In detail, a pre-written estimation function
(C_RegSet) from the library of circuit models. Compare with value in table 4.3.

Bianca, discussed in Section 4.2.2, Figure 4.16. In this example, the costs of each individual
component within the PE Bianca is evaluated by calling the pre-written functions C_regSet, and
C_mux, and storing their results in intermediary values. Finally, the final estimation cost of the PE
Bianca is evaluated as a sum of the costs of all its components.

Estimation function evaluation

The hardware cost estimation function produced by the composition analysis module is file con-
taining a Matlab function (see Figure 4.30). In order to obtain the estimate hardware complexity
of a particular instance, it is necessary to invoke this file in the Matlab environment, passing to the
file a set of parameter values corresponding to that of the instance to be evaluated.

79

5. Design of Custom Instructions for
Coarse Grained Architectures

This chapter proposes methods, techniques, and algorithms to design and integrate custom instruc-
tions in coarse grained architectures. Custom instructions are designed to meet specific demands or
to provide advantage in the execution of a specific application or application group (see discussion
in Section 2.1.5). Therefore, custom instructions are the way by which this work specializes the
architecture.

There are several ways to design custom instructions. For example, the designer can rewrite the
datapath of an operation to reduce its implementation area execution delay [87] [124]. Another
option is to use another gate technology in the instruction datapath; for example, Bouwens et al.
implemented instructions of the ADRES architecture using a clock-gating library to reduce power
consumption [14].

In this work, custom instructions are designed based on groups of operations found in the set of
applications. It can be often observed that some groups of operations in the DFG of one application
follow the same execution pattern. If a custom instruction is available in the architecture that
implements this pattern, it can be used to map and execute any of those groups of operation. Also
often, some clusters of operations are found in DFGs of different applications that follow the
same execution pattern. In this case, different applications may reuse the same custom instruction.
Therefore, the more likely it is to find groups of operations with the same execution pattern, the
better this group is to guide the design of a custom instruction.

The design of custom instructions, in this work, specializes and improves the architecture design
according to the following principle:

A custom instruction executes a group of operations that, otherwise, would only be ac-
complished by using several individual PEs. PEs embedded with such custom instruc-
tion can be used to replace groups of non-custom PEs, decreasing the total number of
necessary PEs in the array.

This principle can be explained by means of the example depicted in Figure 5.1.
Figure 5.1 depicts the DFG of the trilinear interpolation filter kernel, used in the resampling

phase of the ray casting algorithm [29]. The ray casting is a real-life application for the visual-
ization of 3D scientific and medical data. This application was mapped in a coarse grained array
as a pipeline: each operation was assigned to a certain PE in the array, respecting constraints and
execution order. That required a total of 28 PEs and 12 pipeline stages, so that each PE could
process one operation per clock cycle.

A closer observation of the trilinear interpolation DFG reveals a very regular structure, where
some subgraphs (corresponding to similar clusters of operations) appear very often. Three ex-
amples of such clusters – IPa, IPb, and IPc – are indicated in Figure 5.1. Custom instructions

81

5. Design of Custom Instructions for Coarse Grained Architectures

(a) Architecture
with standard PEs

�

24 24 2424

24 24

24 (b) Architecture with
customized PEs

IPa

IPb

IPc

Figure 5.1.: Trilinear Interpolation mapping on architectures with (a) standard and (b) customized
PEs.

were designed to execute the clusters IPa and IPc as a single operation (and one clock cycle).
These custom instructions were integrated in the funcional units of the coarse grained array used
before. Then, the application was mapped as a pipeline again, but now using the specialized array:
groups of operations with the same execution pattern as IPa, IPb, and IPc could be mapped to one
single PE, whereas in the non-custom array they required two PEs. The mapping of the trilinear
interpolation in this specialized architecture (Figure 5.1(b)) required 14 PEs, and 6 pipeline stages.

Table 5.1.: Impact of instruction specialization

#PEs PE Area Total Dynamic
(µm2) Area Power
×103 (mm2) (mW)

Standard PEs 28 96.42 2.70 177.64
Customized PEs 14 97.14 1.36 91.39

Table 5.1 depicts the costs for area and power of the two architectures after synthesis in a 130nm
technology. The PEs of the specialized architecture are more complex because they incorporate
two new instructions. Therefore, each PE requires more area. However, the overall necessary
area and consumed dynamic power are 49% and 48% smaller, respectively. That is explained by

82

5.1. Instruction Pattern Identification and Custom Instruction Composition

the fact that only half the amount of PEs is necessary. For these cases, we also have significant
performance improvement. While the throughput is still the same, the number of necessary pipeline
stages (latency) drops from 12 to 6.

5.1. Instruction Pattern Identification and Custom
Instruction Composition

Basically, the design of a custom instruction consists of transforming parts of the application’s
dataflow into the description of a circuit datapath. There are several ways to do this, for example,
one can use high level synthesis techniques to generate a scheduled description at register-transfer
level and a controler circuit [79] [112] [35] [20]. In this work, the design of custom instructions
generates a single cycle circuit having all the operators chained. That allows designers to easily
estimate area and delay for the new instruction, and to merge two or more custom instructions into
one datapath (further detailed in Section 5.1.3).

When using operation chaining to design the datapath of custom instructions, nodes and edges
of the DFG are in direct analogy to elements in the datapath: nodes can be considered as operation
modules and edges as interconnection lines. The example in Figure 5.2 clarifies this. Nodes in
a DFG that represent input operations can be transformed into input ports of the datapath; and,
nodes representing output operations can be transformed into output ports. Nodes representing
atomic operations can be mapped to operation modules. Edges between two nodes can be seen as
communication lines used to transfer data from one module (or port) to other.

+

» ×
v7v5

v6

v9

v2 v3

v1

v4

ADDERm2

m3m1 MULTIPLIER

v8

SHIFTER

i1 i2 i3
i4

o1 o2

Figure 5.2.: DFGs can be seen as the description of a datapath: input operations ({v1, v2, v3, v4})
are mapped to input ports ({i1, i2, i3, i4}); output operations ({v8, v9}) correspond to
output ports ({o1, o2}); atomic operations ({v5, v6, v7}) represent operation modules
({m1,m2,m3}); and edges correspond to data transfer lines between modules and/or
ports.

This idea is used to rationalize and guide the design of custom instructions in this work.

83

5. Design of Custom Instructions for Coarse Grained Architectures

5.1.1. Extraction of operation clusters
Consider the data flow graph G(V,E) of an application, as defined in Section 2.2.1.

Definition 5.1 Operation cluster is a subgraph S ⊂ G(V,E) induced by any non-empty subset of
atomic operations Va ⊂ V .

In the DFG of an application, any subgraph induced by a set of atomic operations is an operation
cluster, and may be used to design a custom instruction for this application.

However, not every operation cluster leads to a feasible custom instruction. The design of cus-
tom instructions must usually meet some constraints, such as a maximal implementation area, a
maximal execution delay, or a maximal number of input ports. Some operation clusters may lead
to instructions that violate these constraints. These clusters should not be considered to design
custom instructions. The objective of the extraction phase is to list all operation clusters that can
be used to design feasible, constraint-conform custom instructions.

The methodology presented here considers the following constraints for the design of custom
instructions:

• A feasible instruction must be an atomic chaining of operations. Atomic means that after an
instruction starts its execution, it will continue without interference until all the output data
is produced (see definition in Section 2.2.1).

• A feasible instruction must use at most a predefined number of input ports; and, it must use
at most a predefined number of output ports.

• A feasible instruction must have at most a predefined hardware implementation cost, usually
measured in silicon area units or gate equivalence.

• And a feasible instruction must execute in no more than a predefined delay.

A property of the operation cluster graph may be formally described for each one of these con-
straints.

Atomic instruction – Convexity

Definition 5.2 An operation cluster S is said to be convex if for all vi, vj ∈ S, all paths between
vi and vj are within S.

In this work, the datapath of a custom instruction is a chain of operations. Convexity guarantees
that the data to be processed remains within this chain throughout the execution. If the cluster is not
convex, its corresponding datapath produce data that must be processed outside the datapath, and
thus the execution must be interrupted (non-atomic). Therefore, convexity is a necessary property
for the design of atomic instructions. Convexity also ensures that all input values are available to
the FU when it starts executing one instruction.

Examples of convex and non-convex clusters are depicted in Figure 5.3. S1 is a convex operation
cluster because there is no path between v2 and v1 that uses a node outside S1. In contrast, S2 is a
non-convex operation cluster because the result of operation v4 has to be processed by v3, which is
not in S2, and returned to v2 within this cluster.

84

5.1. Instruction Pattern Identification and Custom Instruction Composition

-

×

»
24

-
S1

S2

v1

v2

v3

v4

Figure 5.3.: Operation clusters in a DFG. S1 is the subgraph induced by {v1, v2}. It is convex, con-
sumes three input values (IN(S1) = 3) and produces one output value (OUT(S1) = 1).
Its estimated implementation cost is C(S1) = C(v1) + C(v2), and its estimated exe-
cution delay is δ(S1) = δ(v1) + δ(v2). S2 is a non-convex cluster induced by {v2, v4}.

Input and output ports – number of input and output values

Instructions must abide by constraints in the usage of input and output ports. Each input value
consumed by an operation cluster corresponds to an input port. Each output value produced by an
operation cluster corresponds to an output port. Formally, one can write:

Definition 5.3 For a given subgraph S ⊂ G(V,E), the input number of S, denoted by IN(S),
is the number of predecessor vertices of those edges that enter the operation cluster S from any
v ∈ V . Similarly, the output number of S, denoted by OUT(S), is the number of predecessor
vertices v ∈ S of edges leaving the operation cluster S.

IN(S) matches the number of input values used by S, and thus the number of input ports necessary
to implement the corresponding custom instruction. OUT(S) corresponds to the number of output
values produced by S, and thus the number of output ports of the corresponding custom instruction.
For example, in Figure 5.3, IN(S1) = 3 and OUT(S2) = 2. During the extraction of feasible
operation clusters, a maximal number of input data values Nin and a maximal number of output
data values Nout are allowed. Nin and Nout are defined at design time.

Hardware implementation cost – estimated cost of an operation cluster

To keep the implementation area of the FU small, designers usually define constraints for the
hardware costs implied by a custom instruction. When the custom instruction is based on an
operation cluster, an estimate for this overhead can be defined as follows:

Definition 5.4 Given a subgraph S ⊂ G(V,E), the estimated cost C(v) of the vertex v ∈ S, is
the cost of implementing the atomic operation Op(v)1 in hardware. The estimated cost C(S) of an

1Op is the labeling function defined in Section 2.2.1, definition 2.2.

85

5. Design of Custom Instructions for Coarse Grained Architectures

operation cluster S is the estimated cost of implementing S as a custom instruction. It is given by
C(S) =

∑
v∈S C(v).

Typically, the costs C(v) and C(S) are expressed in silicon area units or gate equivalent. v usually
represents well known basic operations, such as addition, arithmetic shift, or multiplications, and
their costs are known at design time or can be easily obtained from synthesis. In the CRC tem-
plate, these operations correspond to hardware modules of a design library. Each module has well
specified characteristics in terms of usage area, execution delay, and static power consumption.
These costs can also be obtained by using the estimation method proposed in Section 4.3. During
the extraction of operation clusters, an upper bound Cmax is adopted for the estimated cost of an
operation cluster.

Instruction execution delay – cluster execution delay

To keep the execution delay of the FU small, designers usually define constraints for the delay
implied by the datapath of a custom instruction. When the custom instruction is based on an
operation cluster, an estimate for this delay can be defined as follows:

Definition 5.5 The execution delay δ(v) of a vertex v ∈ S is the delay of the atomic operation
Op(v) when implemented in hardware. The execution delay δ(S) of an operation cluster S is the
estimated delay for the the critical path of S, when S is implemented as a custom instruction. This
delay is δ(S) = maxp⊆S

∑
v∈p δ(v), p being a path between an input and an output node.

Typically, the delays δ(v) and δ(S) are expressed in nanoseconds. In Figure 5.3, δ(S1) = δ(v2) +
δ(v1) and δ(S2) = max{δ(v4), δ(v2)}. During the extraction of operation clusters, an upper bound
δmax is adopted for the execution delay of an operation cluster.

Problem formulation

The extraction of operation clusters for the design of feasible custom instructions can be formulated
as:

Problem 1 Given a graph G(V,E), list all operation clusters S that meet the following con-
straints:

1. IN(S) ≤ Nin and OUT(S) ≤ Nout

2. C(S) ≤ Cmax and δ(S) ≤ δmax

3. S is convex

An exhaustive approach to solve this problem is to list all possible operation clusters in G(V,E)
and then select those that meet the constraints. Assuming that V ′ is the subset of all atomic op-
erations of V , then there are 2|V

′| possible operation clusters to be listed. This approach may be
computationally not feasible if the number of atomic operations in the DFG of an application is
large.

Another approach is proposed here based on the work by Atasu [7]. Atasu proposes an algorithm
that builds a binary search tree over the DFG of an application. Each node in the tree corresponds to

86

5.1. Instruction Pattern Identification and Custom Instruction Composition

-

×
»
-

v1

v2

v3

v4

1

2

3

4

×

»

- 1

2

3

» 2 »

- 1

2

- 1

×

» 2

3

- 4

× 3

-

× 3

4
-

×

» 2

3

4 -

×

» 2

3

4

×

»

- 1

2

3

-

×

»

- 1

2

3

4 -

×

»

- 1

2

3

4

A

k = 1

k = 2

k = 3

k = 4
CB D

-

×

»

- 1

2

3

4

Figure 5.4.: Binary search tree for the extraction of feasible operation clusters of the depicted DFG.
Constraints are Nout = 1, Nin = 4, Cmax = ∞, and δmax = ∞. Each branching
level k considers the exclusion (left branch) or the inclusion (right branch) of the node
numbered as k. Crossed boxes indicate operation clusters that violate some constraint:
node A© produces more than 2 output values; and nodes A©, B©, C©, and D© are not
convex.

a possible operation cluster. The search tree potentially spreads over all the search space, but during
its construction, the algorithm detects and prunes branches that corresponds to unfeasible operation
clusters. In this work, Atasu’s algorithm is extended to consider the hardware implementation
cost C(S) and the execution delay δ(S). The base algorithm was kept the same. An example is
illustrated in Figure 5.4.

87

5. Design of Custom Instructions for Coarse Grained Architectures

The algorithm starts listing the atomic operations in G(V,E) in a topological order. In a topo-
logical order, the operation vi always appears after the operation vj , if vj is dependent on the datum
produced by vi. In Figure 5.4, the vertices of the example DFG are numbered in topological order.
Based on this topological order, a binary search tree is built. The root node represents an empty
operation cluster and at each branching level k the node numbered as k is considered. At each
level, pairs of 1- and 0-branches represent the addition and non-addition, respectively, of the node
to the operation cluster represented by the parent node. Following the example in Figure 5.4, af-
ter branching from the root node, all nodes at the left side of the tree represent operation clusters
for which the operation 1 (v1) is not present. Concurrently, the right side of the tree represents
operation clusters for which the operation 1 (v1) is present. The next branch considers then the
inclusion or not of the operation 2 (v2), and so on. Nodes of the search tree immediately following
a 0-branch represent the same operation cluster as their parent node, and are not considered.

It can be shown that in some cases there is no need to build the branches under a certain node,
and the corresponding search space can be pruned. There are four situations where the branches
derived from a given operation cluster can be completely ignored:

1. The number of output ports OUT(S) of a given operation cluster S violates the constraint
Nout. Adding vertices that appear later in topological order cannot decrease the number of
output ports. Therefore, all derived operation clusters will also violate the same constraint.
In Figure 5.4, all branches under and including the node A© will produce 2 or more data
values and can be ignored if Nout = 1.

2. The estimated costC(S) of a given operation cluster S surpass the upper boundCmax. Lower
levels of the search tree implies that the derived operation clusters have equal or more oper-
ations than its parents. If C(S) exceeds Cmax at one node, there is no way to reduce this cost
by adding new operations.

3. The execution delay δ(S) of a given operation cluster S surpass the upper bound δmax. There
is no way to decrease the critical path delay associated with an operation cluster. That is
because adding new vertices in topological order can only increase or maintain the paths
within the subgraph S.

4. A given operation cluster S is not convex. If convexity is violated at a certain tree node, there
is no way of regaining it by considering the insertion of vertices of G(V,E) that appear later
in the topological order. This is the case for nodes A©, B©, C©, and D© in Figure 5.4.

In Figure 5.4, all branches under and including the node A are not convex, and can be ignored.
In case the number of input ports IN(s) of a given operation cluster S violates the constraintNout,

the corresponding node is invalidated and will not be listed as a valid operation cluster. However,
because nothing can be assumed about the operation clusters derived in lower levels, the search
does not prune the tree and continues into further branches.

The complete search tree corresponds to all possible operation clusters that can be listed in
the graph G(V,E). The worst case complexity of this algorithm is therefore 2|V

′|, where V ′ is
the subset of all atomic operations of V . Although still exponential, this algorithm significantly
reduces the search in practical situations (see [7]).

88

5.1. Instruction Pattern Identification and Custom Instruction Composition

Later in the development of this work, another algorithm was proposed by Bozini that lists feasi-
ble operation clusters in polynomial time with respect to the size of the graph [12]. This algorithm
is based on properties of convex subgraphs and the concept of multiple-vertex dominators.

After the search is complete, a list is available containing all operation clusters of an application
that meet the defined constraints. This phase is repeated for each application of the application set.
The next section discusses how to group these operation clusters using their structural similarity
and select the groups that will be used to compose custom instructions.

5.1.2. Instruction pattern selection

The set of operation clusters extracted in the previous phase is used as input for this selection.
Designing one custom instruction for each different operation cluster may lead to a huge design
and hardware overhead due to the large number of possible clusters. Often, a small subset of
clusters is sufficient to cover the target applications. The question is then how to select a small set
of operation clusters so that a large part of each target application can be mapped using custom
instructions? One may look at how representative are the operation clusters in this set, and how
large should be the set of generated custom instructions.

The representativeness of a given operation cluster is related to the chance of finding other
clusters with the same structure. If two distinct operation clusters describe the same datapath, they
correspond to the same custom instruction. This similarity can be described as follows.

Definition 5.6 Two graphs G(V,E) and G′(V ′, E ′) are called isomorphic, denoted G ∼= G′, if
there is a bijection f : V → V ′, that satisfies (vi, vj) ∈ E ⇔ (f(vi), f(vj)) ∈ E ′, for all
vi, vj ∈ V [43]. Two graphs are called label isomorphic with respect to a labeling function L, if
they are isomorphic and L(vi) = L(f(vi)) for all vi ∈ V .

Definition 5.7 Two operation clusters S and S ′ have the same instruction pattern IP , if they are
label isomorphic with respect to the labeling function Op, defined in Section 2.2.1.

This work proposes the flow depicted in Figure 5.5 as an approach to select which custom
instructions should be implemented. Initially, all operation clusters are partitioned into subsets,
such that any two elements in a subset have the same instruction pattern. These subsets are called
instruction pattern sets. Each instruction pattern set is evaluated and ordered in a list according
to the frequency their members can be found in the applications. The first instruction pattern in
the list is selected to generate a custom instruction. It is then measured to which extent the target
applications will benefit if the selected patterns are implemented as custom instructions. If the
number of operations in the target application set that can be mapped into custom instructions is
below a lower bound, another instruction pattern set is added to the selection list. Each one of these
steps is discussed in more details in the following.

Partition of operation clusters into instruction pattern sets

Let Ωa be the set of all feasible operation clusters from an application a of the target application
set A. Operation clusters with the same instruction pattern in Ωa can be defined as follows:

89

5. Design of Custom Instructions for Coarse Grained Architectures

Set of operation clusters

Partition into instruction pattern subsets

Cover assessment

Is at least x% of the target
 applications covered?

no

end
yes

Selection of instruction pattern sets

In
st

ru
ct

io
n

P
at

te
rn

 S
el

ec
tio

n

Figure 5.5.: Activity flow proposed to select which instruction patterns should be implemented as
custom instructions.

Definition 5.8 An instruction pattern set, denoted as set(IP), is a set of operation clusters such
that for any two elements Si, Sj ∈ set(IP), Si have the same instruction pattern as Sj .

The procedure to partition a given set of operation clusters Ω into instruction pattern sets is
depicted in lines 4 to 17 of Algorithm 1. One element S ′ is removed from a given set of operation
clusters G and inserted into an empty instruction pattern set set(IPi). Then, label isomorphism
between S ′ and every other element S ∈ G,S 6= S ′ is checked. If the test is positive, S is added to
the set(IPi) and eliminated from G. The procedure is repeated until there are no elements left in
G.

Two potential problems may arise when applying this algorithm. First, the number of label
isomorphism tests increases with the cardinality of Ω. In the worst situation, no two graphs are
isomorphic to each other, and the number of tests is (|Ω|2 − |Ω|)/2. Second, the complexity of the
graph isomorphism test increases with the number of vertices in the inspected graphs. For directed
acyclic graphs, such as dataflow graphs, the complexity is isomorphism complete[9].

Usually, it is unneccessary to run an isomorphism test between all elements of Ω. For two
operation clusters Si(Vi, Ei) and Sj(Vj, Ej) to be label isomorphic, the following conditions are
necessary (but not sufficient):

• The number of vertices in both clusters is the same, that is |VSi
| = |VSj

|.

• The number of edges in both clusters is the same, that is |ESi
| = |ESj

|.

• There is a label matching function. That is, there exists a bijection f : Vi → Vj such that if
f(v) = u, v ∈ VSi

, u ∈ VSj
, then Op(v) = Op(u).

These conditions can be easily tested, so the isomorphism test can be performed in two parts. First,
operation clusters in Ω are groupped, such that two elements in a group have the same number of
vertices, the same number of edges and present at least one label matching function. This is done
in the procedure PREPARTITION indicated in the line 1 of the algorithm 1. Second, the partition
algorithm using the isomorphism test is applied only among the elements of each group.

90

5.1. Instruction Pattern Identification and Custom Instruction Composition

Algorithm 1 Partitionate Ω into instruction pattern sets

1: GΩ ← PREPARTITION(Ω)
2: i← 1
3: for all G ∈ GΩ do
4: repeat
5: set(IPi)← ∅
6: Get one element S ′ of G
7: set(IPi)← set(IPi) ∪ S ′
8: G← G− S ′
9: for all S ∈ G do

10: if S is label isomorph to S ′ then
11: set(IPi)← set(IPi) ∪ S
12: G← G− S
13: end if
14: end for
15: i← i+ 1
16: until G = ∅
17: end for

The output of algorithm 1 is a partition Πa = {set(IP1), set(IP2), . . . , set(IPm)}, for each
application a ∈ A such that

Ωa = set(IP1) ∪ set(IP2) ∪ · · · ∪ set(IPm)

and

set(IPi) ∩ set(IPj) = ∅ for i 6= j, i = 1, 2, . . . ,m , and j = 1, 2, . . . ,m. (5.1)

Cover assessment

The next step is to assess which instruction patterns are the most useful for, or representative to,
the applications in the target set. If a custom instruction, based on a given instruction pattern IP ,
is available in an architecture, all operation clusters in the instruction pattern set set(IP)can use
it during the application mapping phase. The more representative one instruction pattern is, the
larger is that part of one application (or application group) that can be executed using the custom
instruction suggested by the pattern. It is necessary to define representativeness of an instruction
pattern and how to measure it.

An approach is to use the cardinality of the instruction pattern set | set(IP)| as a metric for
the representativeness of an instruction pattern. In that case, the more operation clusters follow a
pattern, the more representative its set is. Another approach is to use the total number of operations
in set(IP) as a metric. However, neither of these approaches account for the interference between
operation clusters.

This is clarified by the example in Figure 5.6. Three operation clusters S1, S2 and S3 were
extracted with the same instruction pattern IP1: two sequential additions. The instruction pattern

91

5. Design of Custom Instructions for Coarse Grained Architectures

+ +

+

+ v1

v2

v4 v3

S1

S3 S2

set(IP1) = {S1, S2, S3}

|set(IP1)| = 3

set(IP1) = 2

Figure 5.6.: Operation clusters with common operation vertices: only one cluster at a time may be
mapped to a custom instruction.

set set(IP1) = {S1, S2, S3} has cardinality 3 and consists of 4 operations. But these are not good
measures of how representative this operation cluster is. If S1 is mapped to a custom instruction,
neither S2 nor S3 may be mapped without executing the operation of vertex v2 again. The same
happens when mapping S2 or S3 first. Only one of these operation clusters may be mapped to a
custom instruction because all clusters share one vertex.

A new measure for the representativeness is proposed here:

Definition 5.9 The cover set of an operation cluster S(VS, ES) is the set of operation vertices VS .
The cover of S, denoted Ŝ, is the cardinality of its cover set; that is Ŝ = |VS|. Equivalently, one
can say that S covers |VS| operations.

Now, the representativeness of an instruction pattern set may be measured as follows:

Definition 5.10 The cover of an instruction pattern set, denoted as ̂set(IP), is the maximal num-
ber of operations that can be covered by any subset of non-overlapping operation clusters of
set(IP). Equivalently, let ℘(set(IP)) be the set of all possible subsets (power set) of set(IP).
Let C = {c ∈ ℘(set(IP))| for all Si, Sj ∈ c, and i 6= j then Si ∩ Sj = ∅} then:

̂set(IP) = max
C

∑

S∈c
Ŝ (5.2)

In Figure 5.6, C = {∅, {S1}, {S2}, {S3}} for any other subset of ℘(set(IP)) has overlapping
operation clusters. For example, {S1, S2} cannot be in C because S1 ∩ S2 = {v2}. The cover
̂set(IP1) = 2 is the effective number of operations that can be covered at a time by this instruction

pattern.
Formally, one can obtain the cover of an instruction pattern set ̂set(IP a) for a given application

a by means of an undirected graph GIPa(VIPa , EIPa). GIPa is created as follows (see Figure 5.7).
Each operation cluster S ∈ set(IP a) corresponds to a vertex vS in VIPa . There exists an edge
(vSi

, vSj
) in EIPa for each Si, Sj ∈ set(IP a), i 6= j, if Si ∩Sj 6= ∅. GIPa(VIPa , EIPa) is called the

92

5.1. Instruction Pattern Identification and Custom Instruction Composition

conflict graph of set(IP a); two connected vertices represent operation clusters that have at least
one operation vertex in common (a conflict). Additionally, one weight function W : VIPa → R
maps the cover of the operation cluster S to each vertex vS ∈ VIPa ; that is w(vS) = Ŝ.

× +

+

+ v1

v2

v4

v3

S1

S2

set(IP1) = {S1, S2, S3,S4,S5}

+ +
+

+

S3

S4

S5

v5

v8

v6

v7

S5

S3

S4

S2 S1

w(VSi) = 2 , i = 1,2,3,4,5

Conflict Graph

vS1vS2

vS3

vS4

vS5

Figure 5.7.: Building the conflict graph for the instruction pattern set set(IP) =
{S1, S2, S3, S4, S5}: Vertices vS1 , vS2 , vS3 , vS4 , and vS5 represent the operation
clusters S1, S2, S3, S4, and S5, respectively. vS1 and vS2 are connected because they
have v2 as a common vertex. vS2 , vS3 and vS4 are interconnected because there is a
conflict in v3. Operation cluster S5 does not have a conflict with any other operation
cluster, therefore vS5 has no edges.

In a conflict graph, non-connected vertices represent non-overlapping operation clusters. Each
vertex is weighted by the number of operations covered by its matching operation cluster. There-
fore, a subset of non-interconnected vertices with maximum sum of weights represents a group of
non-overlapping operation clusters that covers a maximal number of operations, as defined in Def-
inition 5.10. Finding this subset is known as the maximum weight stable set problem[38], which
can be formally defined as follows.

Definition 5.11 Let G(V,E) be an undirected graph, and G(V ′) a subgraph induced by the set
V ′ ⊆ V . If no two vertices in G(V ′) are adjacent to each other, V ′ is called an stable set in
G(V,E). Given a graph G(V,E) and an weight function W : V → R, the maximum weight
stable set problem is to find an stable set V ′ in G(V,E) of maximum weight w(V ′) =

∑
v∈V ′ w(v)

[43].

The maximum weight stable set problem is a well-known NP-hard problem[38]. Polynomial so-
lutions are possible for some restricted graph classes such as arc-circular[40] and overlap graphs[39].

93

5. Design of Custom Instructions for Coarse Grained Architectures

Unfortunately, no assumptions can be made about the class of the conflict graph. Some exact al-
gorithms for small graphs were proposed in the literature [125][9][114].

This work uses one branch-and-bound exact algorithm to solve this problem [117]. The algo-
rithm builds a search tree where each node represents a set of vertices V ′ not yet included in a
stable set. Each node also records a variable aw for the weight of the actual node, and a variable
bw for the best accumulated weight. For each node, the algorithm branches the search into |V ′|
subtrees, each considering the inclusion of one vertex v ∈ V ′ in the stable set. Each time a branch
is executed, a bound is calculated for the total weight that can be achieved for any stable set ob-
tained from this point. If this bound is less or equal than the best accumulated weight achieved at
any other previously searched subtree, the search stops for the underlying subtree. If the bound is
greater, there is still a chance to find an stable subset with larger weight. In this case, the actual and
the best accumulated weight are updated and the search continues branching into deeper subtrees.

Algorithm 2 The weight of a maximum weight stable set - source [117]

Require: Graph G(V,E) and weight function W : V → R
1: procedure MAX_SS_WEIGHT:
2: return BRANCH(V, 0, 0) {Initial node: V ′ ← V, aw ← 0, bw ← 0}
3: end
4: procedure BRANCH(V ′, aw, bw):
5: for all v ∈ V ′ do
6: V ∗ ← V ′ − {v} − adj(v)
7: a∗w ← aw + w(v)
8: if a∗w + w(V ∗) ≤ bw then
9: return max{bw, a∗w}

10: else
11: bw = max{bw,BRANCH(V ∗, a∗w, bw)}
12: end if
13: end for
14: return bw
15: end

The algorithm is depicted in Algorithm 2. Notice that at each step, only the weight of the maxi-
mum weight stable set is calculated, as there is no need to record the stable set itself. The algorithm
starts branching from a root node, where V ′ = V , such that the induced graph G(V ′) is equivalent
to the complete conflict graph. Additionally, aw and bw are set to 0. The branch procedure derives
a new node for each v ∈ V ′ using the following steps. It calculates the remaining vertex subset
V ∗ subtracting v and the adjacency set adj(v) from V ′. It updates the actual accumulated weight
adding to it the weight of the considered vertex v. Finally, it calculates an upper bound for the
weight that can be achieved from this node: a maximum weight subset is achieved from this node
if the remaining set V ∗ induces a graph G(V ∗, E∗), E∗ = ∅. In this case, all the vertices in V ∗

contribute to the weight of the stable set in w(V ∗). If the upper bound is less or equal than a pre-
viously obtained best accumulated weight, that is a∗w +w(V ∗) ≤ bw, the subtree under this node is
ignored.

94

5.1. Instruction Pattern Identification and Custom Instruction Composition

Figure 5.8 shows the application of Algorithm 2 to the example DFG given in Figure 5.7. The
root node corresponds to all vertices in the conflict graph. The left subtree considers the inclusion
of the vertex vS1 in the stable set. The first derived node represents the graph induced by V ∗ =
{vS3 , vS4 , vS5}. The actual accumulated weight is aw = w(vS1) = 2 because the only node in the
stable set up to here is vS1 . The calculated upper bound at this node assumes that vS3∩vS4∩vS5 = ∅.
If this is the case, the total weight under this subtree would be 8. The search proceeds until the
leaves of this subtree, and a best accumulated weight of 6 is achieved. Later, another branch is
created from the root node considering the inclusion of vS2 . Here, the first derived node has a
maximal weight of 4. This is because if vS2 is in the stable set, vS1 , vS3 and vS4 cannot be included
in the stable set anymore. The search does not need to continue in this subtree. The weight of the
maximum weight stable set is 6. That corresponds to covering the data flow graph with S1, S5, and
S3 or S4.

vS1

[{vS1, vS2 ,vS3 ,vS4 ,vS5},0,10]

[{vS3 ,vS4 ,vS5},2,8]

[{vS5},4,6] [{vS5},4,6] [{vS3 ,vS4},4,4]

[{Ø},6,0] [{Ø},6,0] [{Ø},6,0]

vS1

vS3 vS4 vS5

vS3 vS4vS5

[{vS5},2,4]
vS2

...

...

S5

S3

S4

S2 S1

vS2

vS3

vS4

vS5
vS1

Figure 5.8.: Calculating the cover of set(IP) = {S1, S2, S3, S4, S5}, for the example DFG de-
picted in Figure 5.7. This search tree is generated executing the Algorithm 2 to the
example conflict graph. The conflict graph is repeated here to ease the understand-
ing. Each node is depicted as a tuple [{v1, v2, . . . , vk}, a∗w, a∗w + w(V ∗)], representing
the nodes not yet considered in the stable set, the actual accumulated weight up to
this node, and the upper bound to the weight that can be achieved by the underlying
subtree.

One may also calculate the cover of several applications by building a conflict graph based on
the set set(IP) =

⋃
a∈A set(IP a). This is , however, not necessary because two applications have

no operation clusters in common (and consequently no common operation vertices). Therefore,
the cover ̂set(IP) along all applications may be easily calculated by

̂set(IP) =
∑

a∈A

̂set(IP a). (5.3)

Now, ̂set(IP) is a measure of how representative the instruction pattern IP is to the target appli-
cation set.

95

5. Design of Custom Instructions for Coarse Grained Architectures

Finally, the concept of representativeness of an instruction pattern IP can be extended to a group
of instruction patterns IP1, IP2, . . . , IPk. In this case, operation clusters Si and Sj may still have
common vertices, even if they follow different instruction patterns IPi and ipj , respectively. Si
and Sj are also in conflict, and only one of them will be mapped into a custom instruction. Similar
to the definition 5.10:

Definition 5.12 Let ¯IP = set(IP1)∪ set(IP2)∪ . . . set(IPk) be a set of k instruction pattern sets.
The cover of an instruction pattern selection, denoted by ̂̄IP , is the maximal number of operations
that can be covered by any subset of non-overlapping operation clusters of ¯IP . Equivalently, let
℘(¯IP) be the set of all possible subsets (power set) of ¯IP , and let C̄ = {c̄ ∈ ℘(¯IP)| for all Si, Sj ∈
c̄, and i 6= j then Si ∩ Sj = ∅}. Then:

̂̄IP = max
C̄

∑

S∈c̄
Ŝ (5.4)

Similar to equation 5.3, the cover ̂̄IP along all applications is

̂̄IP =
∑

a∈A

̂̄IP a
. (5.5)

Selection of instruction pattern sets

Up to this point, clusters of operations were extracted from the target applications, and grouped
into sets using their similarity or instruction pattern. Also, the representativeness of an instruction
pattern, i.e. to which extent one application can make use of a custom instruction based on a
given instruction pattern, was evaluated. And this evaluation was expanded to consider several
applications and several instruction patterns simultaneously. In this last step, one subset of high
representative instruction patterns will be selected to guide the design of custom instructions. It
is important to keep the number of custom instructions to be generated small. A large set of new
instructions hinders the productivity of the design phase and increases the implementation costs.

The more patterns are included in the selected group, the larger is the number of custom instruc-
tions in the architecture, and the larger the chance to bind operations onto custom hardware during
the application mapping phase. However, each new custom instruction produces an overhead in
the design phase, as is must be integrated and tested. Each new instruction demands the addi-
tion of new hardware modules and modification of existing ones, such as I/O ports, multiplexers
and register banks. This increases the complexity of the design, implementation area and static
power consumption. Therefore, it is desirable to find a small number of instruction patterns that is
extensively representative of the target applications.

5.1.3. Custom Instruction Composition

Custom instruction composition is the process that transforms an operation cluster into the de-
scription of an instruction datapath. The custom instruction composition is simple if it considers
only one operation cluster. It is compound if it considers more than one operation cluster that do

96

5.1. Instruction Pattern Identification and Custom Instruction Composition

not follow the same instruction pattern. The compound process improves the design of custom
instructions because it allows different instruction datapaths to reuse hardware modules.

The simple custom instruction composition is a direct mapping between vertex and edges of the
operation cluster graph to modules and communication paths that describe a hardware datapath.
One module is created for each vertex in the operation cluster. Modules are hardware units, like
adders and multipliers; they execute the atomic operation indicated by the corresponding vertex.
Input and output vertices in the operation cluster generate input and output ports at the datapath
description, respectively. The elements in the datapath description are interconnected in correspon-
dence to the edges of the operation cluster.

In the example depicted in Figure 5.9, the operation cluster S composes a custom instruction.
Two adders and a multiplier modules are created; they correspond to vertices v1, v2 and v3, respec-
tively. Vertices v6, v7, and v8 describe three input ports, and the vertex v5 is transformed into an
output port. The modules in the datapath description are connected according to the edges in S; for
example, the edge (v1, v5) implies a connection between the multiplier and the output port module.
Data is transferred between modules using these connection lines.

+ +

×
v1

v2
v3

S

v4

v5 v6 v7

ADDER ADDER

MULTIPLIER

m2m3

m1

Figure 5.9.: Simple custom instruction composition. Only one instruction pattern is considered.

A simple custom instruction composition generates a feasible datapath if the operation cluster
satisfies the properties discussed in Section 5.1.1. These properties guarantee that the datapath
description satisfies the constraints for number of input and output ports, implementation cost,
and execution delay. However, generating one datapath for each operation cluster is not efficient
because it duplicates hardware modules that could be shared between two datapaths. Suppose,
for example, that the two operation clusters depicted in Figure 5.10 are implemented as custom
instruction in the same processing element. If they are generated using a simple composition, two
multipliers are instantiated, one for each special instruction. These multipliers will never be used
simultaneously, as a PE executes only one instruction at a time; a more efficient datapath could be
generated where the multiplier is shared between both instructions.

The compound custom instruction composition merges two or more operation clusters and use
the resulting graph to describe a reconfigurable instruction datapath. The goal is to design a datap-
ath with the minimum number of functional units and interconnections. Reconfigurable means that

97

5. Design of Custom Instructions for Coarse Grained Architectures

v8

+ +

×
v1

v2
v3

S1

v4

v5 v6 v7

+ »

×
v1

v2
v3

v4

v5 v6
v7

S2

Compound composition

+ »

×
v1

v2
v3

v4

v5 v6 v7 v8

SC

+
v9

Figure 5.10.: Compound composition.

this datapath can be controlled at run time to execute any instruction corresponding to the merged
operation clusters.

Consider the design of a compound custom instruction based on two operation clusters S1 and
S2, in Figure 5.10. S1 and S2 can be merged into a graph Sc as follows:

1. Create a graph Sc(Vc, Ec) such that S1 ⊆ Sc and S2 ⊆ Sc.

2. The number of input vertices in Sc is equal to the maximum number of input vertices among
all operation clusters. S1 has 3 input vertices, whereas S2 has 4. Consequently, Sc has also 4
input vertices.

3. The number of output vertices in Sc is equal to the maximum number of output vertices
among all operation clusters. The number of output vertices of both S1 and S2 are equal to
1; Sc has therefore 1 output vertex.

4. The number of vertices in Sc representing an atomic operation t is equal to the maximum
number of vertices representing t among all operation clusters. S1 has two vertices repre-
senting an addition, whereas S2 has one; thus, Sc contains 2 vertices representing additions.

The number of vertices in Sc, when constructed in this way, is the minimal to meet the conditions
S1 ⊆ Sc and S2 ⊆ Sc. Adding another vertex to the merged graph does not increase parallelism,
because each instruction is executed once at a time. The vertex set of the compound operation

98

5.1. Instruction Pattern Identification and Custom Instruction Composition

cluster Sc is therefore simply the maximum number of each vertex type among all the involved
operation clusters.

The next problem is to map the vertices of S1 and S2 onto vertices of Sc such that the number
of interconnections is minimal. This problem is solved using the concept of edge similarity. A
vertex2 (v1

i , v
1
j) of S1 is called similar to the vertex (v2

l , v
2
m) of S2, and denoted (v1

i , v
1
j) ∼ (v2

l , v
2
m)

if Op(v1
i) = Op(v2

l) and Op(v1
j) = Op(v2

m). In other words, two vertices are similar if the
following conditions hold:

• the sources of both vertices represent operations of the same type; and

• the sinks of both vertices represent operations of the same type.

For example, in Figure 5.10, the edge (v1
1, v

1
4) is similar to (v2

1, v
2
4) because both of them connect

a vertex representing a multiplication to an output vertex. Figure 5.11 lists all possible similarities
between the vertices of S1 and S2. Additionally, suppose that (vi, vj) and (vo, vp) are edges of S

(v1
1, v

1
4) ∼ (v2

1, v
2
4) (v1

3, v
1
1) ∼ (v2

3, v
2
1) (v1

2, v
1
1) ∼ (v2

3, v
2
1)

(v1
5, v

1
3) ∼ (v2

5, v
2
3) (v1

5, v
1
3) ∼ (v2

6, v
2
3) (v1

6, v
1
3) ∼ (v2

5, v
2
3)

(v1
6, v

1
3) ∼ (v2

6, v
2
3) (v1

6, v
1
2) ∼ (v2

5, v
2
3) (v1

6, v
1
2) ∼ (v2

6, v
2
3)

(v1
7, v

1
2) ∼ (v2

5, v
2
3) (v1

7, v
1
2) ∼ (v2

6, v
2
3)

Figure 5.11.: All possible similarities between edges of S1 and S2 in Figure 5.10.

and (vl, vm) and (vr, vs) are edges of S ′. Two edge similarities (vi, vj) ∼ (vl, vm) and (vo, vp) ∼
(vr, vs) are incompatible if and only if they map the same vertex of S to two different vertices of
S ′. For the example in Figure 5.10, the similarities (v1

3, v
1
1) ∼ (v2

3, v
2
1) and (v1

2, v
1
1) ∼ (v2

3, v
2
1) are

incompatible because they map the vertex v2
3 to two different vertices v1

2 and v1
3 . Incompatible edge

similarities may be found if at least one of the following conditions is true:

C1 :(vi = vo) ∧ (vl 6= vr)

C2 :(vl = vr) ∧ (vi 6= vo)

C3 :(vj = vp) ∧ (vm 6= vs)

C4 :(vm = vs) ∧ (vj 6= vp)

(5.6)

An incompatibility graph is a graph H(VH , EH), such that each vertex of H corresponds to a
similarity between two edges: one from S1 and other from S2. There exists an edge between two
vertices of H if two similarities are incompatible. Sets of non-interconnected vertices (stable set)
in H correspond to edges that can be merged in the compound composition process because they
are similar and not incompatible. In a maximal stable set inH , all the similar edges in the operation
clusters, considered during the compound composition, may be merged. Therefore, the problem
can be formulated as that of finding a maximal stable set in the incompatibility graph H . This can
be solved using the Algorithm 2 in Section 5.1.2. The incompatibility graph for the similarities in
Figure 5.11 is depicted in Figure 5.12.

2Here, the superscript in the vertex representation indicates to which subgraph (instruction pattern) belongs the
vertex.

99

5. Design of Custom Instructions for Coarse Grained Architectures

(v1,v4)~(v1,v3) (v3,v1)~(v3,v1) (v2,v1)~(v3,v1)

(v5,v3)~(v5,v3) (v5,v3)~(v6,v3)

(v6,v3)~(v5,v3)

(v6,v3)~(v6,v3)

(v6,v2)~(v5,v3)(v6,v2)~(v6,v3)

(v7,v2)~(v5,v3)

(v7,v2)~(v6,v3)

Figure 5.12.: Incompatibility graph for the edge mapping between S1 and S2 in the Figure 5.10.
Vertices shaded in dark are part of the maximal stable set extracted.

The problem of merging two DFGs was formally described and solved in the work of Huang
and Moreano[59][109]; they applied the discussed solution to merge the datapath of program loops
during the design of coprocessors. They also show that any stable set found in the incompatibility
graph leads to a merged graph with the minimal number of connections.

The explanation presented in this work considers only two operation clusters. In order to merge
more than two operation clusters, this method is applied iteratively; at each iteration, a previously
merged solution and a new operation cluster are considered. The algorithm to merge more than
two graphs is presented in [59].

By merging all the operation clusters, an unique graph is obtained, which can be used to describe
the datapath of merged custom instructions. This graph is transformed using the simple custom
instruction composition method discussed previously. There is, however, one difference: when the
input port of an operation module in the datapath has to be used by two or more connection lines,
a multiplexer is inserted in the design. For example, consider the graph Sc in Figure 5.13, obtained
by merging the graphs S1 and S2 in Figure 5.10. The second operand of the multiplier module
has to be shared by one of the adder modules and the shifter (edges (v9, v1) and (v2, v1)). It is
necessary to insert one multiplexer which selects which data are to be used, as a function of the
instruction to be executed.

A control circuit to reconfigure this merged datapath must be designed manually. The control
circuit receives as input the code for the instruction that should be executed. It can be any instruc-
tion corresponding to the considered operation clusters. The control circuit output signals to enable
or disable operation modules, as well as controlling the multiplexers. When a certain instruction is
chosen, the active part of the datapath must correspond to the datapath of the chosen instruction as
if it was obtained using a simple composition process.

100

5.2. Custom Instructions for Coarse Grained Architectures

+ »

×
v1

v2
v3

v4

v5 v6 v7 v8

SC

+
v9

ADDER ADDER

m2m3

m1

MULTIPLIER

m4

SHIFTER

Figure 5.13.: The graph Sc is used to describe the datapath of compound custom instructions based
in the operation clusters S1 and S2 in Figure 5.10.

5.2. Custom Instructions for Coarse Grained
Architectures

Integrating the designed custom instructions in the instruction set of coarse grained architectures
involves three points, which includes:

• modifications that should be carried out in the description of the FU behavior;

• modifications that should be carried out in the compiler to adapt the application mapping
phase to the new integrated custom instructions;

• the organization (distribution) and incorporation of processing elements with custom instruc-
tions in the architecture.

5.2.1. Description of custom instructions in CGADL
The first step is to describe the behavior of a newly designed custom instructions in the CGADL
description. In this case, it is necessary to create a behavioral description by using, for example,
the programming language C. This process was explained in Section 4.2.2, but for the sake of
understanding, an example will be provided here.

The custom instruction depicted in the detail of Figure 5.14 receives three operands and outputs
the sum of them: it will be then denoted as Add3. This new operation can be included in the set
of operations of an FU, say myCustomFU, in a CGADL description, as follows:

FU myCustomFU (op1 , op2 , . . . , Add3) ;

where, op1 and op2, are operations already existent in the myCustomFU FU. The behavior of
the Add3 operation is then described in C as:

unsigned i n t Add3 (i n t args [3]) {
re turn args [0] + args [1] + args [2] ;

}

101

5. Design of Custom Instructions for Coarse Grained Architectures

Custom instructions are represented, in each case, individually, even if their datapath is merged
with those of other custom instructions (compound composition).

5.2.2. Integration of custom instructions in the application
description

The use of custom instructions during the application mapping phase starts with the application
description: the scheduling, binding and routing tasks must already know which parts of the ap-
plication will be mapped into custom hardware. Accordingly, the compiler must be extended to
recognize and transform these parts. There are two ways to integrate custom instructions in the
application description: an explicit modification of the base description, or a modification of the
intermediary representation. In the first case, the designer uses function calls or keywords to deter-
mine exactly that part of the application that will be mapped to a custom instruction. In the second
case, the compiler identifies and transforms these parts of the intermediary description that can be
mapped to a custom instruction.

This work modifies the application’s DFG automatically, since the operation clusters used to
generate custom instructions are known from the design phase. The compiler identifies the opera-
tion clusters that corresponding to one of the custom instructions available in the architecture, and
replace them with one node that represents this new operation. Suppose that the target architecture
supports a custom instruction that has two sequential additions as instruction pattern (see Figure
5.14). The compiler identifies the operation clusters within the DFG that match the instruction pat-
tern (S1, S2, S3, S4, S5), and replace each one of them by a single operation node representing the
custom instruction (node marked with #). The resulting DFG contains atomic nodes representing
both single operations and collapsed clusters.

Identifying certain operation clusters within a DFG is equivalent to finding subgraphs, that match
a given pattern, within a graph. This problem is largely studied and is referred to as subgraph
isomorphism [31][25], pattern matching [24], and subgraph covering [48]. Given an instruction
pattern subgraph, the present work solves this problem using the following steps:

• The algorithm presented in Section 5.1.1 is used to list all convex operation clusters that
have an equal or smaller amount of output ports, an equal or smaller amount of input ports,
an equal or smaller implementation cost, and an equal or smaller execution delay as the
matching instruction pattern;

• The list is filtered to remove all operation clusters that do not have the same number of both
input and output ports as the matching instruction pattern;

• A graph isomorphism test (the same used in Section 5.1.2) is performed between each re-
maining operation cluster and the instruction pattern graph; a positive match indicates that
the operation clusters under test follow the instruction pattern, otherwise the operation clus-
ter is removed from the list.

The resulting list indicates all operation clusters within the DFG that match the desired instruction
pattern.

In this final list, there may exist some overlapping operation clusters; for example, S2, S3, and S4

in Figure 5.14 overlap, because they have at least one common operation (v3). The same holds for

102

5.2. Custom Instructions for Coarse Grained Architectures

+

+
#

× +

+

+ v1

v2

v4

v3

S1

S2

+ +
+

+

S3

S4

S5

v5

v8

v6

v7

×

#
s1

s3

+ v5

v8

#s5

#

Figure 5.14.: Modifying the original DFG to incorporate nodes that represent a custom instruction:
clusters of operations that match the instruction pattern of a custom instruction are
identified and colapsed into one single atomic operation node.

S2 and S1, which share v2. When two or more clusters overlap, only one of them can be mapped
to a custom instruction; otherwise, the shared operations will execute unnecessarily more then
once. The problem to determine which clusters will be mapped to a custom instruction is known
as allocation.

Allocation is a classical task within the high level synthesis, together with scheduling and bind-
ing (discussed in Section 2.2.2). The allocation task determines the type and quantity of resources
to map the application. The goal of allocation is to make appropriate trade-offs between the map-
ping cost and performance. For example, when applied to the DFG in Figure 5.14, the allocation
task determines if the operation cluster S3 is to be implemented using one PE with custom instruc-
tion #, or using two PEs with additions. In this work, allocation is resolved such that the number
of clusters that will be mapped into custom instructions is maximum.

5.2.3. Integration of custom processing elements in the architecture

When several types of processing elements are available to compose the architecture array, two
important questions arise. How many PEs should be used from each type? And how should
they be distributed within the array? The design methodology presented in previous sections may
produce differentiation between PEs for several reasons: (1) custom instructions are designed using

103

5. Design of Custom Instructions for Coarse Grained Architectures

different operation clusters; (2) they are grouped for merging, such that non similar clusters are
placed in different groups; and (3) merged custom instructions are embedded in the functional
units of different PEs. If distinct PE types are available, how many of each type should be used
to compose the array? This problem is called the array allocation problem. Moreover, assuming
the necessary quantity is known, how should they be displaced in the array? Does the spatial
distribution of PEs, defined at design time, has an influence for the application mapping phase?
This problem is called the array placement problem.

This section proposes a method to answer these questions when PEs with different instruction
sets are used to compose the array. Solutions for the array allocation and the array placement
problems are usually grouped in the literature in two classes depending on the array compostion:
homogeneous arrays or custom arrays. This work defines and destinguishes a third class called
pattern array. These classes are explained in the following.

Homogeneous arrays

Homogeneous arrays use only one type of processing element, which implies that differences
between distinct PEs must be resolved before the array is composed, as depicted in Figure 5.15.
Only one PE type is designed which supports all custom instructions. The number of PEs to be
allocated is the minimal number of PEs necessary to run all the target applications under their
performance constraints. The array placement problem is reduced to that of determining the array
geometry.

PE

PE

PE

PE

PE

PE

PE1 – {Op1,Op2,Op3}

PE1 – {Op1,Op4,Op5}

PE1 – {Op1,Op2,Op3,Op4,Op5}

Figure 5.15.: Homogeneous arrays are composed with one PE type. If several PE types are avail-
able, they must be first combined into one PE type containing all the operations sup-
ported by them.

Homogeneous arrays are simple to design. They maximize the reusability of the PE and are easy
to scale. They also simplify the application mapping phase, as scheduling and binding phases do
not have to consider different types of elements and their position. However, this simplicity has
a cost: PEs tend to have a larger silicon area and higher power consumption due to the hardware
components that implement all custom instructions. Often, there will be more instructions avail-
able in the architecture than it is necessary to map the applications; that is, unnecessary hardware
overhead.

104

5.3. INSTPATT - A software tool for extraction of instruction patterns

The first coarse grained arrays were designed using homogeneous arrays [71] [11]. However,
nowadays designers tend to use different types of PEs. Area and power consumption costs may
be reduced if specific functional units, such multipliers, may be shared among PEs[65]. PEs with
multiple functional units may be more efficient than their one-FU counterparts[10], as discussed in
Chapter 3.

Custom arrays

In custom arrays, the allocation and placement of PEs reflect specific requirements of the target
applications. The array allocation problem is solved quite straightforward: the designer allocates
the minimal amount of PEs (of each type) that is necessary to map the applications. The distribution
of PEs in the array and the array geometry are tailored to the set of applications; and therefore
highly dependent on this set.

Custom arrays are smaller, consume less energy and provide a better performance. However,
their design is complex and expensive because no generic solution to this problem is available.
Moreover, this hand-tailored array usually requires the compiler to be matched; the application
mapping must be "aware" of specific issues, like the position of PEs and different intercommuni-
cation interfaces.

Pattern arrays

This work introduces a third category to classify the composition of coarse grained arrays: pattern
arrays. Pattern arrays allocate and distribute PEs according to some rules. For example, PEs with
custom instructions for I/O access should be placed on the border, and general purpose PEs at the
center (see Figure 5.16a). Rules may also simply describe an desirable array configuration, usually
repetitive and scalable, for this distribution; for example, a cluster configuration joins PEs of the
same type forming islands along the array (Figure 5.16b). This rule base placement makes it easier
to implement and scale the array than at custom arrays. Note that an homogeneous array may
be described according to the rule that the array has only one PE type, which supports the whole
instruction set (also custom instructions).

The array allocation problem is solved in a similar way as for custom arrays: a minimal number
of PEs (of each type) are allocated according to the demand of target applications. Like custom
arrays, pattern arrays use a smaller silicon area and consume less energy than their homogeneous
counterparts.

Summary

Table 5.2 resumes the advantages and drawbacks of homogeneous, custom, and pattern arrays.

5.3. INSTPATT - A software tool for extraction of
instruction patterns

During the development of this work, a software tool, called InstPatt, was developed to extract
operation clusters out of an application’s DFG, and group them into instruction pattern sets. This

105

5. Design of Custom Instructions for Coarse Grained Architectures

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

(a) (b)

PE without custom
instructions

PE with custom
instructions

Figure 5.16.: Two different pattern arrays: custom on borders (a) and cluster (b).

tool automizes the methods and algorithms presented in Sections 5.1.1 and 5.1.2. Like the hard-
ware complexity estimation tool, the InstPatt software demonstrates the feasibility and practical
applicability of the algorithms introduced in this work. It also provides automation for some tasks
of the proposed methodology and a software-based production of results;

5.3.1. The InstPatt flow

The InstPatt tool was implemented in the programming language Java. It receives as input the
description of one application’s DFG in an XML dialect called GraphML [46]. The tool parses
the GraphML notation and creates an internal representation of the graph. This graph is available
inside the tools for further processing as indicates the flow in Figure 5.17.

Basically, the InstPatt tool processes the applications DFG in three steps: an operation cluster
extraction step; a pre-partitioning of clusters based on some characteristic, such as the number of
nodes in the graph; and a label isomorphism partitioning. After the label isomorphism partitioning,
instruction pattern sets are available for statistical and cover evaluation. These steps are explained
in the following.

106

5.3. INSTPATT - A software tool for extraction of instruction patterns

Table 5.2.: Comparison between homogeneous, custom, and pattern arrays: possible solutions to
allocate and place PEs in the array during the design phase.

Homogeneous Pattern Custom

Silicon area usage −− + ++
Power consumption −− + ++
Complexity for the design ++ + −−
Complexity for the application mapping ++ + −−
Flexibility ++ + −−

Application’s DFG
(GraphML Notation)

Instruction patterns

Operation cluster extraction InstPatt
Tool

Prepartition

Label isomorphic partition
Statistics

Cover

Figure 5.17.: Workflow of the software tool InstPatt.

Extraction of operation clusters with the InstPatt tool

A screen shot of the InstPatt tool is depicted in Figure 5.18. Before operation clusters can be
extracted, it is necessary to open an application’s DFG. That is done through the menu item
Main Graph. The most recent application’s DFG is shown in the central window, and the appli-
cation name is shown as a file in the Project Viewer area (left superior side).

To extract operation clusters from the application’s DFG, the designer right-clicks in the appli-
cation name (Project Viewer area) and chooses the option Extract Subgraphs. The
extraction settings dialog appears, which is depicted in the detail of Figure 5.18. In this dialog,
the designer can determine the maximal number of input (Nin and output (Nout) data, the maximal
execution delay (δmax), and the maximal estimated implementation area (Cmax), as discussed in
Section 5.1.1. When Ok is pressed in this dialog, the InstPatt tool runs the algorithm presented in
Section 5.1.1 and extracts all operation clusters with the given characteristics.

The set of extracted operation clusters can be seen by selecting the item Subgraphs in the
Project Viewer area. Moreover, this collection can now be further processed and splitted in
smaller subsets.

107

5. Design of Custom Instructions for Coarse Grained Architectures

Figure 5.18.: Screenshot the software tool InstPatt. The project viewer on the left side lists collec-
tions (sets) of operation clusters extracted from the application’s DFG. The selected
collection can be seen separately in the windows at the lower part. A log viewer prints
out error and warning messages. The area at the center depicts the application’s DFG
graph. In detail, one can see the dialog to adjust the settings for the operation cluster
extraction.

Prepartition and label isomorphic partition

The prepartition of the set of operation clusters is not obligatory. The set can be directly partitioned,
after it is generated, into label isomorphic subsets. However, depending on the number of elements
in this set, and the individual size of the operation clusters, this task can be computing intensive and
require time. To overcome this problem, it is possible to previously partition the set of operation
clusters according to the following criteria: number of nodes in the cluster, number of edges in
the cluster, and input/ouput degree of the nodes in the cluster. All the operation clusters within a
prepartition collection has the same characteristic. For example, the operation clusters set in Figure
5.18 (Subgraphs), was prepartitioned in two subsets with respectivelly one and two nodes in the

108

5.3. INSTPATT - A software tool for extraction of instruction patterns

cluster: the 2-Vertices Collection and the 1-vertex Collection.
Each subcollection can be further partitioned according to other criterium. The objective, how-

ever, is to obtain label isomorphic collections, that correspond to the instruction pattern sets. For
that, the InstPatt tool applies label isomorphic partition algorithm introduced in Section 5.1.2. The
output of this phase is a partition of the set of operation clusters into instruction pattern sets.

From this point on, the InstPatt tool helps the designer to visualize and identify where operation
clusters corresponding to a given instruction set can be found in the application’s DFG. Moreover,
it allows the designer to evaluate the frequency with which each instruction pattern can be found
in the application. And it helps the designer to calculate the cover of a given instruction pattern.

109

6. Experiments and Results

This chapter presents experiments and results involving the description of coarse grained arrays
and PEs with CGADL, and the specilization of these arrays by using custom instructions. The
starting point for all the experiments is the CGADL description of the PE Bianca, discussed in
details along the Chapter 4.

Section 6.1 estimates the hardware (gate equivalency) costs directly from the CGADL descrip-
tion by using the hardware complexity estimation methodology and the software tool, proposed by
the author in Section 4.3. These estimated costs are compared to the implementation costs obtained
after using a commercial synthesis tool. Results show that CGADL can be used to estimate imple-
mentation costs without the need of synthesis, and therefore, earlier in the design phase. Moreover,
these results demonstrate, through an example, that it is possible to derive software tools out of the
description language proposed here.

Section 6.2 evaluates the impact of using custom instructions during the design (specialization)
of coarse grained architectures. The starting point for these experiments are coarse grained arrays
based on the PE Bianca, analysed in 6.1. The methodology, techniques, and algorithms introduced
in Chapter 5 are used custom two arrays according to the demand of two real-world application
domains: the scalable OFDMA modulation scheme, and computer-vision for driving-assistance
systems.

Each one of these experiments was partially automated by using the software tools presented in
Sections 4.3.4 and 5.3.

6.1. A CGADL-based software tool: estimation of
hardware costs

Chapter 4 introduced the coarse grained architecture description language CGADL, and presented
a method to estimate the hardware complexity of PEs and architecture instances described in this
language. This section uses this estimation method as an example to demonstrate that software
tools can be derived from CGADL, and that these tools may produce results which are comparable
to results obtained from synthesis in a traditional design flow. The experiments in this section
capture the tasks within this method in a software framework, and apply it to answer three usual
questions about the design of coarse grained arrays: (1) how does the silicon area is distributed
among the components of PEs and architecture instances; (2) how does the design area scales if
architecture resources, such as registers, are inserted or removed; and (3) how can architecture
instances be sorted according to their size or complexity. Experimental results demonstrate that,
when analysing these three issues, the estimated hardware complexity can be used as a metric in
place of area units, which is usually available only after synthesis. That implies that CGADL-based
software tool can replace commercial synthesis tools earlier at the design phase.

111

6. Experiments and Results

6.1.1. Experimental set up
The experiments in this section concern the design of the PE Bianca, which was described in
Sections 4.2.2 and 4.3.3. The PE Bianca was chosen because it represents a typical processing
element, as usually found in commercial and academic CGRAs. This PE was described twice: the
first description used CGADL and can be partially seen in Figure 4.16, section 4.2.2, along with
a schematic diagram of the PE. The second description used the hardware description language
Verilog. This description is not included in this thesis for sake of clarity and space. Both descrip-
tions corresponded to exactly the same PE template, and its composition was discussed in details
in Section 4.3.3.

Design costs for the PE Bianca were estimated using CGADL and Verilog software tool flows,
as follows (depicted also as a flow in Figure 6.1):

1. The CGADL description was input to the software program presented in Section 4.3.4, which
produces estimation functions for the hardware complexity. This program parses a CGADL
description of the PE Bianca, analyzes the PE composition as well as its FUs, and outputs
estimation functions for the hardware complexity in form of Matlab [41] scripts. Hardware
complexity estimations for a particular PE instance, expressed in gate equivalence, are then
obtained by evaluating these scripts for a corresponding set of parameter values within the
Matlab environment.

2. The Verilog description was synthesized with a commercial tool. Synthesis results included
a detailed estimation of the circuit implementation area, expressed in µm2. During synthesis,
the commercial software tool was configured to produce area optimal results under a time
constraint of 5ns for all combinational datapaths within one PE.

Composition Analysis

Hardware complexity
estimation functions

(number of inverter gates)

Synthesis commercial tool

Implementation area
(µm2 and # of gates)

Comparison

CGADL Verilog

BIANCA template

Figure 6.1.: Generation flow of the data compared in this section.

Both software tools produce estimations for the implementation costs of the PE Bianca: the
CGADL-based tool expresses these costs in gate equivalence, and the commercial tool in area
units. The design of the PE Bianca is investigated by comparing the produced results in view of
three questions:

112

6.1. A CGADL-based software tool: estimation of hardware costs

Composition how is the design area distributed among the components of the PE?

Scalability how does this area scale as a function of the parameter values used to describe the
PE instance?

Ordering how can PE instances be sorted based on their implementation costs?

Each one of these aspects is discussed in the following.

6.1.2. Analysis of PE datapath composition

Architecture designers need to determine which components of the datapath dominate the circuit
area before they can improve the design. These components are prioritary targets for optimizations
and refinements because reducing them may have a more significative impact on the total imple-
mentation area. To identify such components, the designer can use an analysis of the datapath
composition.

The analysis of the datapath composition lists the portion of area occupied by each component
relative to the total area of the design. Figure 6.2 depicts the datapath composition of the PE Bianca
for datapath widths from 8 (upper row) to 32 bits (lower row). Each row compares the distribution
of hardware costs obtained from estimation and from synthesis. Components of the architecture
are grouped in data input and output multiplexers, flag input and output multiplexers, data and flag
register banks and the FU. The third column depicts the error of the estimation method for each
component group of the datapath. A register bank with 16 registers was used for all cases.

It can be observed that the FU, data register banks, and data output multiplexers sum up to more
than 75% of the circuit area for all the considered datapath widths. The longer the datapath width,
the smaller is the area portion used by flag components (registers and multiplexers) because their
circuit is the same at all instances.

The composition analysis based on the CGADL description corresponded well to the analysis
obtained with synthesis results of the Verilog model. The differences between estimation and syn-
thesis results were typically under 2.5%, and remained under 5% for all the cases. The estimation
tool overestimated the FU portion in about 2.5% in each case. This effect will be explained later
in this section. This analysis is valid for all considered datapath widths. In addition to identify-
ing area critical resources, the analysis of a PE’s datapath composition helps to determine how
hardware costs are redistributed if resources, such as registers or contexts are inserted or removed.
For example, modifying the number of registers in a PE is likely to affect the size of the register
bank and the size of multiplexers. Figure 6.3 depicts the composition of a 16-bit datapath of the
PE Bianca with 12, 24 and 36 registers. Each row compares the distribution of hardware costs
obtained by the CGADL-based estimation tool and from synthesis of the Verilog description. The
third column depicts the error of the estimation method for each component group of the datapath.

The area portion of register banks increases for increasing number of registers, whereas the FU
portion decreases. The datapath composition obtained by estimating the hardware complexity of
the CGADL description corresponds well to that obtained by synthesis of the Verilog description:
errors are typically under 2.5%.

113

6. Experiments and Results

Estimated Synthesis Error

dInMux
dOutMux
fInMux
fOutMux
dRegSet
fRegSet
FU

13.762%

27.524%

1.720%
3.441%

30.497%

5.146%

17.912% 13.246%

26.492%

2.242%
4.485%32.887%

6.146%

14.502%

-5% -2.5% 0% 2.5% 5%

8 bits

13.924%

27.847%

0.870%
1.740%

30.084%

2.603%

22.931% 13.556%

27.112%

1.152%
2.304%

32.594%

3.157%

20.126%

-5% -2.5% 0% 2.5% 5%

16 bits

13.154%

26.308%

0.411%
0.822%28.057%

1.230%

30.018%
17.291%

24.219%

0.512%
1.025%29.230%

1.412%

26.310%

-5% -2.5% 0% 2.5% 5%

32 bits

Figure 6.2.: Distribution of hardware costs for the PE Bianca when varying the datapath width.
Results from the CGADL-based estimation tool and synthesis of the Verilog descrip-
tion. Rows compare PEs with datapath width of 8, 16 and 32 bits (top to bottom).
Differences between the proposed estimation method and commercial synthesis tools
remain under 5%.

114

6.1. A CGADL-based software tool: estimation of hardware costs

13.385%

26.771%

0.837%
1.673%27.254%

2.156%

27.923%
13.561%

27.122%

1.109%
2.218%29.168%

2.785%

24.038%

-5% -2.5% 0% 2.5% 5%

Estimated Synthesis Error

14.737%

29.475%

0.921%
1.842%

33.324%

2.621%

17.080% 13.942%

27.932%

1.137%
2.274%

36.432%

3.458%

14.825%

-5% -2.5% 0% 2.5% 5%

15.109%

30.218%

0.944%
1.889%

35.354%

2.977%

13.508% 14.217%

28.435%

1.167%
2.334%

38.471%

3.641%

11.734%

-5% -2.5% 0% 2.5% 5%

dInMux
dOutMux
fInMux
fOutMux
dRegSet
fRegSet
FU

12 Registers

24 Registers

36 Registers

Figure 6.3.: Distribution of hardware costs of the PE Bianca when varying the number of registers
in the register set. Results from the CGADL-based estimation tool and synthesis of the
Verilog description. Rows compare PEs with 12, 24 and 36 registers in the register set
(top to bottom). Differences between the proposed estimation method and commercial
synthesis tools remain under 5%.

The analysis of the datapath composition also applies to sub-components of a PE, such as the
FU. Figure 6.4 depicts the composition of the FU in the PE Bianca for datapath widths from 8
(upper row) to 32 bits (lower row). Each row compares the distribution of hardware costs obtained
by the CGADL-based estimation tool and from synthesis of the Verilog description. The FU is
composed of a selection multiplexer, adder/subtracter, a comparator, a multiplier, a shifter, and
glue-logic, which is used for decoding the instruction and controlling the datapath (denoted in

115

6. Experiments and Results

Figure 6.4 as Others). The third column depicts the difference between area portions (relative to
the total area) of each component of the FU.

2.022%
12.131%

9.099%

25.695%18.197%

32.856%
4.033%

16.635%

9.704%

20.038%22.432%

27.158%

-7% -3.5% 0% 3.5% 7%

Estimated Synthesis Error

1.598% 9.587%

7.324%

38.149%

19.174%

24.168%
3.232%

12.757%

7.272%

36.729%

22.209%

17.801%

-7% -3.5% 0% 3.5% 7%

1.153% 6.919%
5.333%

52.505%

17.297%

16.793%
2.209%

8.345%

4.892%

53.072%

19.504%

11.977%

-7% -3.5% 0% 3.5% 7%

Select
Add/Sub
Comparator
Multiplier
Shifter
Others

8 bits

16 bits

32 bits

Figure 6.4.: Distribution of hardware costs for the FU when varying the datapath. Results from the
CGADL-based estimation tool and synthesis of the Verilog description. Rows com-
pare FUs with datapath width from 8 (upper row) to 32 bits(lower row). Differences
between the proposed estimation method and commercial synthesis tools remain under
7%.

The multiplier uses about 25% of the implementation area on the 8-bits FU, whereas this portion
increases to about 52% on the 32-bits FU. Concurrently, the area necessary for glue-logic circuits
decreases as the width of the datapath increases because this circuit is not part of the FU datapath.

The difference between the area portion of each FU component obtained from the estimation
results and that obtained from synthesis remains under 5%. The only exception is the area portion

116

6.1. A CGADL-based software tool: estimation of hardware costs

of glue logic circuits, which presented a difference of about 7%. Glue-logic circuits existent at the
library of element models (see Section 4.3.1) are composed of decoders and multiplexers, whereas
the description in Verilog uses a switch-case block. Apparently, the synthesis tool implements
these switch-case blocks as lookup table based circuits, which have a lower cost than full
decoders and multiplexers.

6.1.3. Scalability of the model
Designers of CGRAs need to determine how the complexity of PE’s elements, of PEs, and of ar-
chitecture templates scales as a function of the parameters of the model. For example, how does
the area of the FU increases as bits are added to the datapath width? A CGADL description con-
tains the necessary information to carry out this analysis early in the design phase. Experimental
results demonstrate that the hardware complexity, estimated from the CGADL description, scales
proportionaly to the implementation area obtained from synthesis of the Verilog description. This
proportional relationship is shown in two examples: the hardware costs of the multiplexers and the
hardware costs of the PE Bianca.

1. The size of output multiplexers (i.e. output ports) and input multiplexers depends on the
number of registers in the PE and the datapath width. For each new register in the PE, one
new input port is necessary in each multiplexer. The datapath width affects the number of bits
in each input port of the multiplexer. Figure 6.5 depicts how the hardware complexity scales
as new registers are inserted in the register set. Hardware complexity estimates, measured in
inverter-equivalent gates, were obtained by using the CGADL-based tool and by synthezising
of the Verilog description.

2. A similar comparison is shown in Figure 6.6, which depicts how the overall hardware com-
plexity of the PE Bianca scale as a function of the number of registers used to build it.
Results are depicted for PE instances with 8, 16 and 32-bits. Lines indicate results obtained
from synthesis of the Verilog description, whereas markers indicate the costs obtained from
the CGADL-based estimation tool.

The examples in Figure 6.5 and 6.6 demonstrate that the estimated hardware complexity ob-
tained by the CGADL-based tool can be used in place of the results obtained from synthesis of the
Verilog description.

6.1.4. Comparison of implementation area
It is not always clear which combination of parameter values leads to the smallest implementation
area. For example, consider a PE instance with 16-bits datapath and 32 registers and a PE with 32-
bits datapath and 8 registers. It is not trivial to decide which of these two instances has the smallest
area because the width of the datapath and the number of registers affect the area in opposite trends.
To solve this problem, it is necessary to directly compare the implementation area of the involved
PE instances.

In the current experiment, instances of the PE Bianca with different datapath width and number
of registers were sorted according to their implementation area, as depicted in Figure 6.7. Two
area estimates were obtained per instance:

117

6. Experiments and Results

0 2 4 8 12 16 24 32
0

0.5

1

1.5

2

2.5
x 10

4

Number of registers in the register set

H
ar

d
w

ar
e

co
st

N
u

m
b

er
 o

f
in

ve
rt

er
-e

q
u

iv
al

en
t

ga
te

s

Hardware cost of the multiplexer set
(estimated vs. synthesis)

8 bits - synthesis
16 bits - synthesis
32 bits - synthesis
8 bits - estimated
16 bits - estimated
32 bits - estimated

Figure 6.5.: Hardware complexity of the multiplexer set (PE Bianca) described as a function of
the the register bank size. PE instances with 8, 16 and 32-bits datapath were consid-
ered. Discrete markers indicate results obtained by the CGADL-based estimation tool.
Results from Verilog synthesis are presented as lines.

0 2 4 8 12 16 24 32
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Number of registers in the register set

H
ar

d
w

ar
e

co
st

N
u

m
b

er
 o

f
in

ve
rt

er
-e

q
u

iv
al

en
t

ga
te

s

PE Hardware cost
(estimated vs. synthesis)

8 bits - synthesis
16 bits - synthesis
32 bits - synthesis
8 bits - estimated
16 bits - estimated
32 bits - estimated

Figure 6.6.: Hardware complexity of the PE Bianca described as a function of the register-bank
size. Results are depicted for PE instances with 8, 16 and 32-bits. Discrete markers
indicate results obtained by the CGADL-based estimation tool. Results from Verilog
synthesis are presented as lines.

118

6.1. A CGADL-based software tool: estimation of hardware costs

• The first estimate was obtained by converting the hardware complexity results of the CGADL-
based estimation tool, expressed in inverter-equivalent gates, to area units. During this
conversion, the implementation area of one inverter gate was assumed to have an area of
2.54µm2. This value corresponds to the average area of the inverter gate in the 130nm
TSMC technology library used during synthesis.

• The second estimate was obtained directly from synthesis of the Verilog description.

Estimated Synthesis
0

1

2

3

4

5

6

7

8

9

10

11

12

12.5
x 10

4

Im
pl

em
en

ta
ti

on
 A

re
a

(
m
2

)

Implementation Area
(estimated vs. synthesis)

-10% -5% 0% 5% 10%-10% -5% 0% 5% 10%

Error

8 bits - 2 registers

8 bits - 4 registers

8 bits - 8 registers

8 bits - 12 registers

8 bits - 16 registers

8 bits - 24 registers

8 bits - 32 registers

16 bits - 2 registers

16 bits - 4 registers

16 bits - 8 registers

16 bits - 12 registers

16 bits - 16 registers

16 bits - 24 registers

16 bits - 32 registers

32 bits - 2 registers

32 bits - 4 registers

32 bits - 8 registers

32 bits - 12 registers

32 bits - 16 registers

32 bits - 24 registers

32 bits - 32 registers

u

Figure 6.7.: Implementation area of different architecture instances (on the left): estimated and
synthesis results agree upon the ordering of the instances. Relative error between
estimation and synthesis results (on the right). Errors remained under 10%.

The ordering of architecture instances using results from the CGADL-based tool was the same
as the one obtained using results from the Verilog synthesis. A similar ordering cannot be always
guaranteed by the proposed estimation method, and inversions of order may happen. However, the
presented results show that for typical cases the proposed method preserves the same order.

The graph on the right side of Figure 6.7 presents the relative difference between area values
obtained by estimation and by synthesis for each of the architecture instances. The comparison
between the area obtained by the CGADL tool and that obtained by synthesis showed a typical error

119

6. Experiments and Results

between 5% and 9%. This error can be larger if an element of the PE, such as the register set or FU,
is considered because differences between the model of these elements and the synthesized circuit
become more apparent. Therefore, a comparison of implementation area for internal elements of
the PE is less reliable. Moreover, the conversion between gate-equivalence and area units may lead
to different results depending on the process technology and gate library adopted.

6.1.5. Discussion on the hardware costs estimation
The results presented here show that:

1. The hardware complexity distribution among the components of FUs, PEs, and architecture
instances corresponds well to the distribution of the implementation area, obtained from
synthesis results. The estimation of hardware costs from a CGADL description can replace
results of commercial synthesis tools for analysis of the area composition.

2. The hardware complexity of architecture templates, of PEs, and of PE’s components varies
as a function of parameters of the model. This variation was the same for results obtained
from the CGADL estimation tool for results by synthesis of the Verilog description. The
estimation of hardware costs from a CGADL description can therefore replace synthesis
results when evaluating the impact of a parameter over the architecture area.

3. The ordering of PEs and architecture instances was preserved when sorting them by their
hardware complexity, obtained from the CGADL-based tool, or by their implementation
area, obtained by synthesis of the Verilog description. In all the investigated cases, hardware
complexity estimatives preserved the same relation between instances, as when the compari-
son was done using area units. Therefore, the proposed method may replace synthesis results
when comparing the size (or complexity) of architecture instances with different parameter
settings.

The proposed estimation method can be generalized to all designs (PEs or arrays) which are
based on the elements present in CGADL: multiplexers, register sets, logic-arithmetic units, finite
state machines, and context memories. This generalization is possible because the complexity
model used to evaluate each element is generic and scalable. If custom elements are used, which
cannot be partially modeled or composed by CGADL’s elements, an external complexity model
must be elaborated.

Assessing hardware costs from a CGADL description has a number of advantages over other
methodologies that extract results after synthesis. These advantages are listed in table 6.1. The
proposed method applies directly to a CGADL description, which is much simpler than a fully
synthesizable description in Verilog or VHDL. As a consequence, the evaluation cycle can be-
gin earlier in the development phase. Gate equivalence results are also technology independent,
and may be more adequate if the underlying implementation technology is not yet defined. The
CGADL based estimation is also much faster: each instance could be completely evaluated in less
than one second. On the other hand, a complete synthesis cycle took in average 660s (11 minutes)
for each architecture instance. That can be explained by the fact that many other tasks are involved
in the synthesis process, which delivers detailed information for the area usage, signal propagation
timing, and power consumption, besides the netlist of the circuit.

120

6.2. The impact of custom instruction sets on CGRAs

Table 6.1.: Comparison between CGADL-based estimation and synthesis-based hardware cost
analysis.

CGADL-based estimation Synthesis-based estimation

Early in design phase — only CGADL de-
scription necessary.

Late in design phase — full, synthesizable
description necessary.

Technology independent Technology dependent
Fast estimation — less than 1s per instance
(Pentium 4, 2.6Ghz, 2Gb).

Slow estimation — about 660s per instance,
for a complete synthesis cycle (Pentium 4,
2.6Ghz, 2Gb).

No extra ouput — hardware complexity esti-
mates only.

Extra output info — area usage, timing,
power consumption, netlist.

6.2. The impact of custom instruction sets on CGRAs

The experiments in this section investigate the impact of custom instructions that are based on
instruction patterns on the design of coarse grained architectures. The design methodology pro-
posed in Chapter 5 is applied in two real-world applications and considers constraints. The first
experiment concerns the design of a custom coarse grained array that supports the Orthogonal
frequency-division multiple access modulation scheme (OFDMA) of the WiMax[123] standard.
The second experiment concerns the design of a CGRA for a set of diverse computer vision appli-
cations, which are commonly used in driving assistance systems.

The main contributions of these experiments are:

• They provide a detailed evaluation on how the use of custom instructions affect the area,
performance, power consumption, and composition of coarse grained architectures, their
PEs and FUs. Both experiments show that embedding custom instructions in the PEs of
coarse grained arrays

– augments the complexity, area, and power consumption of individual PEs and FUs, but
reduces the complexity, area, and power consumption of the complete array.

– augments the efficiency of architecture resources, such as context memories, control
units, and routing components during the execution of applications: custom arrays
need less configuration bits to control operations and route data than CGRAs with non-
custom PEs.

– augments the efficiency of silicon area usage: custom arrays use less area per operation
as their non-custom counterparts.

• They demonstrate that instruction patterns, extracted from the target applications, constitute
an effective basis for the generation of custom instructions for coarse grained architectures.

• They show that the proposed design methodology keeps low the number of custom instruc-
tions, and maximizes their usage during the execution of the target applications.

121

6. Experiments and Results

• They assert the feasibility of this methodology: extraction, evaluation, and selection of in-
struction patterns, as well as their integration in the FUs as custom instructions is realized in
a rational and effective way.

Both experiments follow the same general set up, as depicted in Figure 6.8. Their starting
points were twofolds: (1) a set of applications, which characterized an application domain, and
(2) an homogene, non-customized coarse grained array, called initial array and composed by PEs
Bianca or a variant of it. The design and costs of the PE Bianca were analysed in the last section.
Instruction patterns were extracted from the application domain and integrated to the instruction
set of PEs in the initial array transforming it into into a custom array. Both, initial and custom
arrays were, simulated, synthesized and evaluated regarding their composition, implementation
area, performance, and power consumption.

Initial
Array

Evaluation

Design of custom coarse
grained arrays based on

instruction patterns

Evaluation

Applications

Custom
Array

Area
Performance

Power
Array composition

Comparison

Figure 6.8.: Design flow for the experiments presented in this section. The design of custom coarse
grained arrays is conducted according to the methodology proposed in Chapter 5.

An area analysis, similar to that carried out in the previous section (Section 6.1), could be used
to evaluate the costs of both initial and custom arrays. However, evaluation results, used for com-
parison, were obtained using a commercial synthesis tool for two reasons:

• This allows a more accurate evaluation for the impact of using custom instructions to special-
ize CGRAs. Custom instructions mainly affect the functional unit complexity and area. Re-
sults discussed in Section 6.1 indicate that estimation method proposed in this work presents
an error of 5%-7% when estimation the FU area. This error could be larger when considering
custom instructions, because of the innacurate hardware model. To avoid this error, we use
synthesis results.

• The time required to evaluate the results through synthesis did not constitute a hindrance in
the following experiments. The advantage of the CGADL-based hardware cost estimation
relies on avoiding the long synthesis cycles usually necessary during the design. However,
these long cycles were not the case for the two experiments presented in this section.

122

6.2. The impact of custom instruction sets on CGRAs

6.2.1. Custom architecture for scalable OFDMA based systems

The scalable orthogonal frequency-division multiple access (OFDMA) is a digital modulation
scheme used by leading wireless communication standards, such as the IEEE 802.16 Wireless
MAN (also known as WiMax[123]) and the 3GPP Long Term Evolution standard (also known
as LTE[47]). Scalable means that the bandwidth of each communication channel varies depend-
ing on traffic demand. For example, the physical layer of the WiMax standard allocates channels
with bandwidths varying from 1.25 MHz to 20 MHz, depending on the number of users at a time
point. The scalability in the OFDMA requires the underlying hardware architecture to support fast
Fourier transforms (FFTs) with a high throughput rate (up to 480MSamples/s), implemented in a
stream oriented way, and with a input vector size varying between 128 and 8196 points. In this
first study case, the methodology proposed in Chapter 5 is used to obtain a custom architecture for
this multipoint fast Fourier transform algorithm (FFT).

The multipoint FFT algorithm

The equation for an N -points FFT is given by

X(k) =
N−1∑

n=0

x(n)W nk
N , where WN = e−j2π/N . (6.1)

This equation can be factored by using a two dimensional map, as follows. Consider

N = N1 ×N2,

n = N2n1 + n2, where
{
n1 = 0, 1, 2, . . . , N1 − 1
n2 = 0, 1, 2, . . . , N2 − 1

, and

k = k1 +N1k2, where
{

k1 = 0, 1, 2, . . . , N1 − 1
k2 = 0, 1, 2, . . . , N2 − 1;

then, equation 6.1 can be rewritten as

X(k1 +N1k2) =

N2−1∑

n2=0

N1−1∑

n1=0

x(N2n1 + n2).W (N2n1+n2)(k1+N1k2)
N

Expanding the twiddle factors (WN) reduces the problem to

X(k1 +N1k2) =

N2−1∑

n2=0

{W n2k1
N [

N1−1∑

n1=0

x(N2n1 + n2)W n1k1
N1

]}W n2k2
N2

= DFTn2,N2 [W
n2k1
N DFTn1,N1 [x(N2n1 + n2)]]. (6.2)

For the results presented here, the equation 6.2 is considered for FFT problems with 128, 256,
512, 1024, 2048, 4096, and 8192 points, such that N1 = 8 and N2 = N

8
. In these cases, the FFT

123

6. Experiments and Results

problem can be partitioned in two parts or Fields, as follows:

X(k1 + 8k2) =

Field B︷ ︸︸ ︷
DFTn2,

N
8

[W n2k1
N DFTn1,8[x(

N

8
n1 + n2)]

︸ ︷︷ ︸
Field A

]

Field A diminishes the demand for data storage when N is large. It solves N
8

8-points FFTs, and
divides the remaining computation task into 8 independent N

8
-points FFTs, each of which is solved

in one of the B fields.
The implementation of field A is a pipeline that solves the radix-8 FFT algorithm [72], whereas

each field B implements the radix-22 Single-path Delay Feedback algorithm as proposed by [57].
The general FFT data flow graph (DFG) can be seen in Figure 6.9. At each clock cycle, the
field A is fed with a set of 8 complex data values, corresponding to {x(n2), x(N

8
+ n2), x(1N

8
+

n2), x(3N
8

+ n2), x(4N
8

+ n2), x(5N
8

+ n2), x(6N
8

+ n2), x(7N
8

+ n2)}, where n2 = 1, 2, . . . , N
8
− 1.

Field A processes this data in a 6-stage pipeline and outputs 8 streams of data, each of which feeds
a B field.

Field A

-
-
-
-

-
-

-

-

-

-
-

+
+
+
+ -

+
+

+
+

+

+

+

+
×

×

×
×
×
×
×
×
×
×

Field B

FIFO FIFO

- -
+ +

×

FIFO FIFO

- -
+ +

×

FIFO FIFO

- -
+ +

×

FIFO FIFO

- -
+ +

×

FIFO FIFO

- -
+ +

-jk

-jk

-jk

-jk -jk -jk -jk -jk

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

-jk -jk -jk -jk -jk

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

-jk -jk -jk -jk -jk

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

-jk -jk -jk -jk -jk

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

-jk -jk -jk -jk -jk

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

-jk -jk -jk -jk -jk

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

-jk -jk -jk -jk -jk

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

-jk -jk -jk -jk -jk

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

×
W

FIFO FIFO

- -
+ +

-jk -jk -jk -jk -jk

Figure 6.9.: Data flow graph of the multipoint FFT algorithm.

Initial setup

The architecture instance in Figure 6.10 is the starting point for the experiments presented here.
The number of PEs in this instance, their type distribution in the array, and the interconnect network
correspond to operations and communication edges of the DFG in Figure 6.9. This architecture in-

124

6.2. The impact of custom instruction sets on CGRAs

stance executes the algorithm in a pipelined way. Therefore, one PE is necessary for each operation
in the DFG.

Field B

PE

PE

PE

PE

PE

PE

PE

PE PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Field A

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE

PE

PE

Frida

Mirna

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE PE

FIFO FIFO

PE

PE PE

PE

PE

Figure 6.10.: Initial architecture instance – or initial array – adopted as reference for comparison
results.

To compose the architecture array, two PE types, denoted as Frida and Mirna, were derived
from the generic PE Bianca, detailed in Sections 4.2.2 and 4.3.3. The PEs Frida and Mirna have a
similar composition as the PE Bianca except for their FU, which was simplified to contain only the
necessary instructions for the FFT computation. The FU of PEs type Frida is composed of a 16-
bits adder/subtracter unit with integer complex-arithmetic, as depicted in Figure 6.11a. Logical and
comparison operations are not presents in the PEs because they are not necessary for the FFT. PEs
of type Mirna have 4 simple 8-bits integer multipliers, which together with the adder/subtracter
unit yields a complex-arithmetic multiplier, as depicted in Figure 6.11b. The design chosen for
Frida’s and Mirna’s FUs allows this work to evaluate the area costs introduced by inserting custom
instructions in a more fairly basis, because the FU excludes non-necessary instructions.

The B fields in the architecture instance are attached to a bank of FIFOs. These memory modules
are not considered as part of the array because they are not altered in any way after the PEs’s
specialization. The context memory of each PE has 8 contexts, and their finite state machine 8
states. These contexts and states allow to implement different FFTs with input vector sizes (through
reconfiguration) and are suitable for implementing the algorithm in field B. In the following, the
architecture instance in Figure 6.10 will be referred to as the initial array.

Running the experiment

Operation clusters were extracted from the FFT’s DFG by applying the method introduced in
Section 5.1.1 with the following set up constraints:

125

6. Experiments and Results

8 contexts

8
re

gs

+
\

-
+

\
-

a

b

c

d

fu

PE
Frida

(a)

8 contexts

8
re

gs

+
\

-
+

\
-

a

b

c

d

fu

PE
Mirna

(b)

×
×

×
×

a

c

b

d

a

c

b

d

Figure 6.11.: PEs used in the initial architecture instance. Context memory, finite state machine
and control signal lines are implemented as in the PE Bianca, presented in Figure
4.16.

• An operation cluster can process at most 2 complex-arithmetic values. That leads to custom
instructions with up to 4 simple 16-bits input ports;

• An operation cluster can produce at most 2 complex-arithmetic values. That leads to custom
instructions with up to 4 simple 16-bits output ports;

• An operation cluster can contain up to 3 atomic operations;

• The execution delay of an operation cluster must take no longer than 5ns. That leads to
custom instructions that can be executed within this interval.

A total of 61 valid operation clusters were obtained from the DFG of field A, and 37 other operation
clusters were obtained from the DFG of field B1.

The extracted operation clusters were grouped in 11 instruction patterns by the procedure in Sec-
tion 5.1.2. Table 6.2 presents six of these instruction patterns ordered according to their individual
cover on the entire DFG (cover in field A plus 8 times the cover of field B).

The instruction pattern IP1 corresponds to the so-called FFT butterfly. This pattern can be found
frequently in the DFGs of fields A and B and covers up to 68% of the whole application. Patterns
IP2 and IP3 extend this butterfly by multiplying its output (IP2) or its input (IP3) by the term
((−j)k). Each of these instruction patterns cover about 48% of the application.

An instruction pattern set IPFFT = {IP1, IP2} has a small size, but covers up to 84.38% of
the FFT application due to the regular and repetitive structure of the FFT DFG. This instruction
pattern set was selected to compose the custom instructions for this experiment. A common in-
struction datapath was composed by applying the composition method explained in Section 5.1.3.
Multipliers were not used in this datapath because the multiplication term ((−j)k) is always one
of the complex numbers 1,−j,−1, or j. Instead, this multiplication term was implemented as a

1Operation clusters with only one operation node were not included in this total.

126

6.2. The impact of custom instruction sets on CGRAs

Table 6.2.: Feasible instruction patterns of the FFT’s DFG. The number of operations clusters,
represented by a given instruction pattern, and the cover of each instruction pattern
are indicated separately for field A and field B. The instruction patterns were ordered
according to their individual cover considering the entire FFT DFG(cover in field A plus
8 times the cover of field B)

Pattern Number of Cover Total Cover
operation clusters (% of the application)

IP1

+
/

-
+

/
- Field A 12 24

184 (68.40%)
Field B 10 20

IP2

+
/

-
+

/
-

-j
k

Field A 3 9
129 (47.95%)

Field B 5 15

IP3 -j
k

+
/

-
+

/
-

Field A 3 9
129 (47.95%)

Field B 5 15

IP4

+
/

-
+

/
-

×

Field A 6 15
111 (41.30%)

Field B 4 12

IP5 ×
+

/
-

+
/

-

Field A 2 6
102 (37.91%)

Field B 4 12

IP6 +
/

-

-j
k

Field A 3 6
86 (31.90%)

Field B 5 10

Others
Field A 72 n.a.

Maximal 31.0%
Field B 4 n.a.

FFT butterfly where one of the output values shifts its real and imaginary terms and their signs
depending on the value k.

By using the methodology introduced in Section 5.2, the new datapath was embedded as custom
instructions in the FU of the PE Frida, explained earlier in this Section. This custom version of the
PE Frida is called Fiji, and its layout can be seen depicted in Figure 6.12. The PE type Fiji have

127

6. Experiments and Results

the same control path, routing resources, and register banks of the PE type Frida, but different FU
and context memory. These last two elements were modified to support the custom instructions for
patterns IP1 and IP2.

Field B

PE

PE

PE

PE

PE

PE

PE

PE
PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Field A

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE PE

FIFO FIFO

PE PE

PE

PE

Fiji

Mirna

8 contexts

8
re

gs

a

b

c

d

+
\

-

fu

+
\

-
+

\
-

+
\

-

PE Fiji

Figure 6.12.: Architecture instance composed with custom PEs Fiji. In detail: the PE type Fiji,
which embeds custom instructions based on the instruction patterns IP1 and IP2.

The architecture presented in Figure 6.10 was refined in the following way. Every pair of PEs
Frida that was connected in a butterfly structure was replaced by one PE of the type Fiji. Also, PEs
carrying out the (−j)k multiplication term were suppressed. This new architecture instance has a
total of 134 PEs organized as depicted in Figure 6.12. In the following, this architecture will be
referred to as the custom array.

Impact on composition and implementation area of singular PEs

The composition and implementation area of the PEs Frida and Fiji are compared in this section.
The extra costs introduced by the custom instructions can be determined by direct comparison of
these two PEs, as depicted in table 6.3.

Fiji needs to incorporate 2 extra adders/subtracters, 2 extra output multiplexers and 4 multiplex-
ers for internal data routing. This overhead corresponds to the hardware of the custom instructions
that were integrated. The resulting implementation area of Fiji’s FU is about 3 times that of Frida’s
FU. Frida uses 15 configuration bits, whereas Fiji needs 23. The 8 extra bits are used for instruc-
tion selection, as well as activation of routing and output multiplexers. Because of this, the area
of Fiji’s context memory is about 71% larger than area of the context memory in Frida. The inte-
gration of custom instructions in the PE Frida increased its total area in about 37%. Apparently,
adding custom instructions (even a small set) to the instruction set can significantly increase the
size of an individual PE.

128

6.2. The impact of custom instruction sets on CGRAs

Table 6.3.: FU composition and implementation area of the PEs Frida and Fiji. Fiji has the same
design as Frida, except for its FU and context memory.

FU FU Configuration Context Total PE
composition Area bits Memory Area area

(µm2) (µm2) (µm2)

Frida
2 adders/subtracters

2279.60 15 3323.50 21796.312 output multiplexers
1 decoder

Fiji

4 routing multiplexers

7093.43 23 5698.17 29896.30
4 adders/subtracters
4 output multiplexers
1 decoder

Mirna

4 routing multiplexers

17119.97 16 3505.13 36752.10
2 adders/subtracters
2 output multiplexers
4 multipliers
1 decoder

The PE Mirna is about twice as large the PE Fiji because of its 4 multipliers, so replacing PEs
Mirna with PEs Fiji reduce the overall area of the architecture. This replacement took place during
the architecture refinement, and followed the discussion presented in Section 5.2.3. Specially the
B fields (see last section) were affected: 5 from the 9 PEs Mirna were replaced by PEs Fiji in each
field B. On the other hand, PEs Fiji have more configuration bits and a larger context memory area
than Mirna which indicates that its control path is more complex. The use of custom instructions
explain this extra complexity.

Impact on architecture composition, area, and power consumption

The impact of custom instructions must also be investigated at architectural level. A compari-
son is presented here for the composition, implementation area, and power consumption of two
architecture instances: the initial array (see Figure 6.10) and the custom array (see Figure 6.12).

The composition of both architecture instances can be seen in table 6.4. The initial array re-
quired the use of 269 PEs (184 PEs Frida and 85 PEs Mirna) without custom instructions for a
completely pipelined execution of the FFT algorithm. On the other hand, the custom array re-
quires, for this same task, a total of 134 PEs (92 PEs Fiji and 42 PEs Mirna). This corresponds to
a reduction of 50% in the number of PEs.

The custom array uses larger but less PEs in its composition. So, what was the real gain in terms
of implementation area? A comparison of the area usage of initial and custom arrays is depicted
in Figure 6.13a. The initial array uses 7.1344mm2 of silicon area, whereas its custom counterpart
occupies 4.2940mm2. That corresponds to an effective reduction of 39.81% in the implementation
area of the architecture instance.

129

6. Experiments and Results

Table 6.4.: Composition of the initial and custom arrays.

Instance PEs type Frida PEs type Mirna PEs type Fiji

Initial array
Field A (1x) 24 13 0
Field B (8x) 20 9 0

Total 269 PEs 184 85 0

Custom array
Field A (1x) 0 10 12
Field B (8x) 0 4 10

Total 134 PEs 0 42 92

The reduction in area usage also implies a reduction of the static power (leakage power) and
dynamic power, as depicted in Figure 6.13b and 6.13c. The initial array consumes up to 1.44mW
leakage power, whereas for the custom array the estimation is 0.84mW . That corresponds to
a reduction of 41% in the leakage power consumption. For the dynamic power estimation, a
toggling probability of 50% was assumed for input bits of PEs. The dynamic power was estimated
in 750mW for the initial array and in 534.42mW for the custom array. That corresponds to a
reduction of 28% in the dynamic power consumption.

Discussion of experimental results

In the present experiment, both custom and initial arrays execute the same number and sequence
of operations during the execution of the multipoint FFT algorithm. Both arrays have similar
throughput performance: they consume 8 samples per clock cycle. However, the custom array
required only half the number of PEs. That is explained by the fact that custom instructions inside
a single PE Fiji can compute groups of operations that, on the initial array, can only be executed
using 2 (butterfly pattern) or even 3 (butterfly scaled by −jk) distinct PEs. Due to the reduced
number of PEs, the custom array uses about 39% less silicon area, and consumes up to 40% less
leakage power than its non-custom version.

In Chapter 5, this work defined and used instruction patterns to design and integrate custom
instructions to coarse grained arrays. This experiment demonstrates the principle by which the
proposed methodology improves the design of CGRAs: A custom instruction based on instruc-
tion patterns executes a group of operations that, otherwise, would only be accomplished by
using several individual PEs; PEs embedded with such custom instruction can be used to re-
place groups of non-custom PEs, decreasing the total number of necessary PEs in the array.
The experimental results show that custom instructions based on instruction patterns improve the
efficiency with which resources in the architecture are used.

To demonstrate that custom arrays use resources of the architecture more efficiently, two effi-
ciency metrics will be considered (see table 6.5): the number of configuration bits per operation,
and the area per operation. The number of configuration bits per operation is a metric, often
proposed in the literature (e.g. [75] and [120]), to assess the complexity of control resources in
CGRAs. The larger the number of configuration bits per operation, the more complex is the control
circuitry.

130

6.2. The impact of custom instruction sets on CGRAs

0

1

2

3

4

5

6

7

8

Im
p

le
m

en
ta

ti
on

 A
re

a
(m

m
²)

7.1344

4.2940

-39.81%

0

0.5

1

1.5

St
at

ic
 (

L
ea

k
ag

e)
 P

ow
er

(m
W

)

1.44

0.84

-41%

0

100

200

300

400

500

600

700

800

D
yn

am
ic

 P
ow

er
(m

W
)

750.13

534.42

-28%

(a) (b) (c)

In itia l A rray

C u sto m A rray

Figure 6.13.: Initial vs. Custom Array: estimations for silicon area (a), static power consumption
(b), and dynamic power consumption (c). The array using custom PEs Fiji can be
implemented in smaller area and consumes less power.

The initial array uses 4120 configurations bits per context (15 bits on each PE Frida and 16 bits
on each PE Mirna.)2, which corresponds to about 15.31 bits per operation. The custom array needs
only 2788 bits per context (23 bits on each PE Fiji and 16 bits on each PE Mirna) 3, which leads
to an efficiency of the control structures of 10.36 bits per operation. The custom array is more
efficient because it uses fewer configuration bits to control the same amount of operations than the
initial array.

Table 6.5.: Efficiency of the area usage for the initial and custom arrays. Both instances can execute
up to 269 operations per context.

Instance Composition Configuration bits Area
per operation per operation

Initial array
184 PEs Frida

15.31 26521µm2

85 PEs Mirna

Custom array
92 PEs Fiji

10.36 15962µm2

42 PEs Mirna

Another efficiency measure is the silicon area per executed operation. The initial array uses
7.1344mm2 to execute 269 operations; that is, 26521µm2 per operation. This area usage is im-
proved up to 15962µm2 per operation at the custom instance (269 operations within 4.2940mm2).

2 See tables 6.3 and 6.4.
3 See tables 6.3 and 6.4.

131

6. Experiments and Results

Table 6.6.: Comparison with state-of-art FFT designs

ASIC1 ASIC2 Altera Custom Array
[73] [72] FPGAs [2] (proposed)

Area (mm2) 1.25 3.09 n.a. 4.29
Throughput (MSamples/s) 160 1000 195 1600
Power Consumption 0.33 @ 8196 points
(mW /MSample) 0.34 0.175 n.a. 0.26 @ 1024 points

0.16 @ 128 points
Clock Frequency (MHz) 250 250 220 200
Technology 180nm 180nm Stratix III 130nm
Input Vector Size 1024 128 256,1024,4096 256-8196

The custom array is more efficient because it uses a smaller implementation area than the initial
array to realize the same work.

The FFT experiment presented in this section had as starting point an arbitrary coarse grained
array (the initial array), which was refined up to a custom array by applying the method proposed
in Chapter 5. When comparing initial and custom arrays, experimental results demonstrate a re-
duction in area and power consumption for the latter. However, the custom array must still be
compared to similar state-of-art solutions. Therefore, a comparison between the custom array and
state-of-art work will be presented in the following.

Comparison with other state-of-art FFT solutions

Some works can be found in the literature that tackled the multi-point FFT problem recently. The
design of Liu et. al. [73] proposes an array with few complex elements strongly connected among
each other. It is optimized for a low memory fingerprint and requires a small area usage, but
because of its sequential execution it only achieves 160 MSamples/s. Lin et. al. [72] uses the
radix-22 Single-path Delay Feedback algorithm, which implements the B fields. They aim at a
high throughput, stream-oriented design (up to 1 GSamples/s) for a 128-points FFT. These two
designs, [73] and [72], have their input vector size fixed at design time. The third design, by
Altera for FPGAs [2], is more flexible and can be customized for calculating 256-, 1024- or 4096-
points FFTs. Altera’s design achieves a throughput of around 200 MSamples/s. Unfortunately, no
numbers for overall area and power consumption are available.

Table 6.6 depicts a comparison between the custom array and state-of-art FFT designs in terms
of silicon area, throughput and power consumption. The coarse grained architecture proposed in
this work has a larger silicon area usage, which provides a higher hardware parallelism. The size
of this array is comparable to the size of the designs mentioned before4. The massive hardware
parallelism of the custom array allows a throughput of 1.6 GSamples/s and the design accepts all
input vectors between 128 and 8196 points.

Power consumption was obtained for the custom array from a commercial synthesis tool, and for
the other platform from their respective literature sources. is equivalent to that of the state-of-art

4A comparison based on gate equivalence is not possible, because this data is not available in [73] and [72].

132

6.2. The impact of custom instruction sets on CGRAs

VLSI designs. The dynamic power consumption is dependent on the size of the FFT’s input vector:
0.33mW /MSample when 8196 points FFTs are calculated, and down to 0.16mW /MSample when
128 points are considered. The small difference between these values and the ones obtained by
[73] and [72] can be explained by the implementation technology rather than by the use of custom
instructions.

Critics to the FFT and motivation for a second experiment

The application set considered so far comprises FFTs with several input vector sizes. Operation
clusters and instruction patterns extracted for this application originated from variations of the
same DFG structure, which was scaled when necessary to accommodate new points in its input
vector. This example particularly helped to investigate the impact of custom instructions when the
target applications have regular and repetitive tasks.

However, the FFT application set could be considered atypical. The design of coarse grained
architectures typically aims at several different applications, which do not necessarily use similar
structures. The next example addresses an application set with several applications. This example
will demonstrate that, even in such cases, embedding custom instructions in the PEs of a CGRA
may reduce area and power consumption, and improve performance.

6.2.2. Computer vision for automotive applications

Reconfigurable architectures, including the coarse grained ones, are usually tailored to an applica-
tion domain – a family of diverse programs which are used within a common context or to solve
a more complex problem. The ability to address diverse applications should be considered and
maintained by any methodology that aims at the design of coarse grained reconfigurable architec-
tures. The second experiment presented in this work applies the design methodology proposed in
Chapter 5 to coarse grained arrays that must address the execution of several applications.

The second experiment will deal with computer vision algorithms used in automotive driving
assistance systems. Driving assistance systems integrate a growing number of functionalities, such
as navigation, driving safety and visual recognition of traffic signs. Each one of these functions
requires the system to make decisions within critical time constraints. For example, a traffic sign
recognition system that captures images at 30 frames per second has to process and classify each
video frame within 30ms. Typical image processing techniques in these systems are image filtering,
edge detection and feature extraction. These techniques are computing intensive because driving
assistance systems require the use of high resolution images.

Application Domain – Computer vision for automotive driving assistance

Seven algorithms were selected as the application set of this experiment: general mask convolution,
the Sobel and Prewitt gradient operators, the Hough transform for a circle, and the RGB-to-YIQ
and the RGB-to-CMYQ conversion. These algorithms are used by several automotive driving
assistance systems, such as traffic sign recognition softwares, person identification systems, and
video based crash avoidance systems.

133

6. Experiments and Results

Generic Mask Convolution [44] This technique is employed when spatial filtering is needed
(as opposed to frequency filtering using Fourier transform); for example Gaussian, high pass,
and low pass filters. It consists in re-calculating the value of each pixel on the image as a
weighted sum of its neighbor pixel values, that is:

p′(x, y) =
m∑

u=−m

m∑

v=−m
M(u, v)p(x− u, y − v), where M is a matrix of size m×m. (6.3)

Spatial mask convolutions may turn into a intensive computing task, as the size m of the
mask grows. For the experiments presented here, a m was set to 5.

Sobel and Prewitt gradient operators [61] Sobel and Prewitt are instances of edge detec-
tion filters, which are frequently used to identify strong local changes in an image. These
operators calculate the horizontal and vertical gradients associated to a pixel based on its
neighbors, as depicted in equations 6.4 and 6.5. In both cases the intensity of the target pixel
is given by

√
G2
h +G2

v.

Sobel
Gh =p(x− 1, y − 1) + 2p(x− 1, y) + p(x− 1, y + 1)

− p(x+ 1, y − 1)− p(x+ 1, y)− p(x+ 1, y + 1)

Gv =p(x− 1, y − 1) + 2p(x, y − 1) + p(x+ 1, y − 1)

− p(x− 1, y + 1)− p(x, y + 1)− p(x+ 1, y + 1) (6.4)
Prewitt
Gh =− p(x− 1, y − 1)− p(x− 1, y)− p(x− 1, y + 1)

+ p(x+ 1, y − 1) + p(x+ 1, y) + p(x+ 1, y + 1)

Gv =− p(x− 1, y − 1)− p(x, y − 1)− p(x+ 1, y − 1)

+ p(x− 1, y + 1) + p(x, y + 1) + p(x+ 1, y + 1) (6.5)

Hough transform for a circle The Hough transform can be used to determine the parameters
of a circle when a number of points that fall on the perimeter are known. A circle with
radius r and center (a, b) can be described with the parametric equations x = a + r cos θ
and y = b + r sin θ, 0◦ ≤ θ ≤ 360◦. If an image contains many points, some of which
fall on perimeters of circles, then the job of the search program is to find parameter triplets
(a, b, r) to describe each circle. The fact that the parameter space is 3D makes a direct
implementation of the Hough technique expensive in terms of memory usage and time.

If the circles in an image are of known radius R, then the search can be reduced to 2D, as
depicted in Figure 6.14. Most of the calculation work in this approach relies on drawing
a circle in the parameter space for each non-blank pixel in the image. Because of this, the
circle rasterization algorithm is used to customize the array in this experiment.

RGB-to-YIQ conversion During a RGB-to-YIQ conversion, the color information (red, green,

134

6.2. The impact of custom instruction sets on CGRAs

Image Transform space

Figure 6.14.: Hough transformation for a circle with known radius R.The locus of (a, b) points
in the parameter space fall on a circle of radius R centered at (x, y). The true cen-
ter point will be common to all parameter circles, and can be found with a Hough
accumulation array.

and blue values) of each pixel in an image is transformed in a brightness value (Y) and two
color difference values (I and Q), as depicted in equations 6.6. This conversion is used in
for the transmission of digital color images and to keep compatibility between color and
black-an-white images.

y =((yrr + ygg + ybb+ (1� (scale− 1)))� scale
i =((irr + igg + ibb+ (1� (scale− 1)))� scale
q =((qrr + qgg + qbb+ (1� (scale− 1)))� scale (6.6)

RGB-to-CMYQ conversion During a RGB-to-CMYQ conversion, the color information (red,
green, and blue values) of each pixel in an image is transformed in values for cyan (C),
magenta (M), and yellow (Y), as well as a key value for black: another color system. In
contrast to the RGB-to-YIQ conversion, this algorithm requires also control structures to
decide the key value for black.

Initial Setup

The initial architecture instance for this experiment has 18 PEs type Bianca with 32-bits datapath,
and organized in a 3×6 homogene array (see Figure 6.15). The PEs type Bianca were discussed
in detail in Sections 4.2.2 (Figure 4.16) and 4.3.3. The number of PEs, the double connection
nearest neighbor network, and the geometry of the initial architecture were found by exploring the
design space according to [91]. For example, 17 PEs were necessary to map the mask convolution
filter, which is the application with largest number of operations in one context. An extra PE (the
18th) was kept in the array to retain the rectangular geometry. Similarly, the double connection
network (as opposed to one simple nearest neighbor network) is necessary to route data to/from
the extra storage resources in the Prewitt application, which is the most communication intensive
application. This architecture instance will be referenced as initial array in the remainder of this

135

6. Experiments and Results

section.

Initial array

PE Bianca

Figure 6.15.: Initial architecture, denoted initial array, for the computer vision experiment. This
instance is composed of 18 (3×6) PEs of the type Bianca.

Running the experiment

Operation clusters were extracted from the DFG of each application by applying the method intro-
duced in Section 5.1.1. The following set up constraints were considered: clusters may process at
most 4 32-bits input values, produce at most one output value, and use no more than 3 functional
units. No timing constraints were imposed for the operation clusters or for the custom instructions
derived from them. Storage operations, present in the Prewitt, Sobel, Mask, and RGB-to-CMYK
applications, were not considered during the extraction. These operations use the register bank, in-
stead of an FU, and cannot be transformed into a custom instruction by using the method proposed
in this work.

The number of operation clusters varied depending on the application (see table 6.7). 39 opera-
tion clusters were extracted for the mask convolution, 14 for the Sobel operator, 33 for the Prewitt
operator, 40 for the RGB-to-YIQ conversion, 11 for the circle rasterization of the Hough transform
and 8 for the RGB-to-CMYK conversion algorithms.

In each case, the operation clusters could be grouped into a smaller number of instruction pat-
terns (see table 6.7) by using the methodology introduced in Section 5.1.2. For example, the 39
operation clusters of the mask convolution were partitioned in only 7 different patterns. Similarly,
the 40 operation clusters extracted from the RGB-to-YIQ correspond to only 8 different instruc-
tion patterns. That reinforces the idea that many application are mainly composed of groups of
operations with the same execution pattern.

The cover of each instruction pattern was evaluated for each application and for the complete
application set by using the method introduced in Section 5.1.2. Four patterns were selected to
compose custom instruction datapaths according to the method proposed in Section 5.1.2: patterns
IPA, IPB, IPC , and IPD, indicated in table 6.7. IPA and IPB have only adders in their structure, and
this structure that can be found several times in almost all DFGs. For example, 60% of the opera-
tions in the Prewitt gradient calculation can be associated to independent clusters with the pattern

136

6.2. The impact of custom instruction sets on CGRAs

Table 6.7.: Instruction patterns for the computer vision application set. Extracted operation clusters
could, in each case, be grouped in a much smaller number of instruction patterns. That
reinforces the idea that, in many applications, it is possible to find several groups of
operations that have the same execution pattern. The individual and combined cover of
patterns IPA, IPB, IPC , and IPD is depicted for each application. These patterns were
chosen to compose custom instruction datapaths for this experiment.

M
as

k
co

nv
ol

ut
io

n

So
be

lg
ra

di
en

t

Pr
ew

itt
gr

ad
ie

nt

H
ou

gh
tr

an
sf

or
m

R
G

B
-t

o-
Y

IQ

R
G

B
-t

o-
C

M
Y

K

Extracted
operation clusters 39 14 33 11 40 8

Instruction
patterns 7 4 10 8 8 3

Pattern IPA

+
/

-
+

/
-

+
/

-

41.17% 50% 60% 16.6% 45% 0%

Pattern IPB

+
/

-
+

/
-

35.28% 100% 80% 55.5% 45% 33.3%

Pattern IPC

»

+
/

-

0% 0% 0% 22.22% 40% 0%

Pattern IPD

<

se
l

0% 0% 0% 0% 0% 50%
Patterns
IPA, IPB, 47.05% 100% 100% 83.33% 65% 83.3%
IPC , and IPD

IPA, and the complete Sobel DFG can be covered by clusters with the simpler pattern IPB. Patterns
IPC can only be found in the Hough transform, and RGB-to-YIQ applications. It covers 22.22% of
the Hough transform and 40% of the RGB-to-YIQ: a small share for both cases. When combined

137

6. Experiments and Results

with patterns IPA and IPB, however, the pattern IPC leads the cover of the Hough transform DFG
up to 83.33%, and the cover of the RGB-to-YIQ up to 65%. Pattern IPD corresponds to a compare
and select cluster that covers up to 50% of the RGB-to-CMYK DFG.

The instruction pattern set composed of IPA, IPB, IPC , and IPD covers more than 80% of each
application DFG in almost all cases. The exceptions are the mask convolution (47.05%) and the
RGB-to-YIQ (65%) applications. The remainder of these applications use multipliers, which can-
not be found in any of the selected patterns. Clusters including multipliers were only found in
these two applications, so they do not contribute to the cover in the other applications.

IPA and IPB were used to compose a custom instruction datapath, whereas IPC and IPD were
used to compose a second one. There are two reasons to build two different custom instruction
datapaths instead of one: the similarity between IPA and IPB, and the more restricted usage of
IPC and IPD. IPA and IPB can be easily combined in one datapath, as IPB is a subgraph of IPA,
but their combination with IPC or IPD is more difficult, as they do not share common operations.
IPC and IPD are exclusively used for the Hough transform, RGB-to-YIQ, and RGB-to-CMYK.
Therefore, it makes sense to isolate the datapath for a custom instruction that is targeted for these
three applications.

A new PE type, denoted PEI , was obtained by expanding the FU of the PE Bianca with the
custom instruction datapath formed by IPA and IPB. Similarly, another PE type, denoted PEII , was
obtained by expanding the FU of the PE Bianca with the custom instruction datapath composed
of IPC and IPD. A new architecture instance, denoted custom array, was obtained from the initial
array by substituting 5 PEs of type Bianca by 5 PEs of type PEI ; substituting 3 PEs of type Bianca
by PEs of type PEII; suppressing the use of 6 redundant PEs of type Bianca; and organizing the
PEs in a 4×3 array, as depicted in Figure 6.16. The composition of the custom array was chosen,
so that the number of PEs of each type is the minimal necessary to run all applications with at least
the same performance as the initial array.

Custom array

PE Bianca

PEI

PEII

Figure 6.16.: Custom architecture, denoted custom array, for the computer vision experiment. This
instance is composed of 12 (4×3) PEs of the type Bianca, PEI , and PEII .

138

6.2. The impact of custom instruction sets on CGRAs

Impact on composition and implementation area of singular PEs

The composition of the custom PEs PEI and PEII resembles that of the PE Bianca, except for small
details, as depicted in table 6.8. PEI uses 2 extra adders/subtracters to implement the datapath of
instruction patterns IPA and IPB. The original adder/subtracter of the PE Bianca was kept in the
FU and merged together within this datapath. Custom instructions in FUs of the PEII type required

Table 6.8.: FU composition and implementation area of the PEs Bianca, PEI and PEII . Details
about the implementation of PE Bianca can be found in Section 4.3.1, Figure 4.16. PEI
and PEII have the same basic design as Bianca, except for its FU and context memory.

FU FU Configuration Total PE
composition area Bits area

(µm2) (µm2)

Bianca

1 adders/subtracters

22493.94 58 96597.3
1 shifter, 1 comparator,
1 multiplier,
1 logic unit, and 1 decoder

PEI

Equal to PE

28018.13(+24%) 65 108607
Bianca plus
2 extra
adders/subtracters
and 1 multiplexer

PEII
Equal to PE

23352.82(+3.81%) 61 97028.47Bianca plus
3 multiplexers

only 3 internal routing multiplexers. The shifter, adder, comparator and selection units originally
used in the PE Bianca were merged in a common datapath, that allows the execution of each
operation, or their combination to execute custom instructions with patterns IPC and IPD. The FU
in PEs type PEI uses 24% more silicon area than FUs in PEs Bianca do. This overhead is of 3.81%
for the FU in PEs type PEII . This small area overhead 5 can be explained by the fact that custom
instructions use units available in the base FU in their composition, as opposed to extra operational
units.

PEs of type Bianca need 58 configuration bits. This number increases to 65 in PEI , and to 61 in
PEII . In both cases, extra configuration bits are necessary due to the new input ports of their FUs.
For example, the FU in PEs type PEI uses 4 input ports because of the custom instructions with
patterns IPA and IPB.

The estimated area for PEI is 108607µm2, about 12.43% larger than that of the PE Bianca.
PEII occuppies 97028.47µm2 (estimated), which corresponds to an increase of 0.44% in the area
in comparison to the PE Bianca.

5Compare to the overhead incurred in the FUs of type Fiji in the multi-point FFT experiment!

139

6. Experiments and Results

Impact on architecture composition, area, and power consumption

The initial array uses 18 PEs type Bianca, whereas the custom array uses a total of 12 PEs: 4 PEs
Bianca, 5 PEs of type PEI ,and 3 PEs of type PEII (see Figure 6.16). This combination of PE types
was determined according to the the mapping strategy and requirements of each application, which
are depicted in table 6.9. The mask convolution, Sobel and Prewitt applications were completely

Table 6.9.: Number and type of PEs used during the mapping of each application of the autovision
experiment: initial and custom arrays. PEs with custom instructions were eventually
used to execute simple operations, such as multiplication, when necessary.

Application Mapping Initial Custom
style Array Array

PE0 PE0 PEI PEII

Mask Convolution pipelined 17 4 5 3
Sobel Gradient pipelined 12 0 5 0
Prewitt Gradient pipelined 10 0 4 0
Hough transform multi-context 2(field A)
(circle rasterization) + pipeline and 4(field B) 4 5 2
RGB-to-YIQ multi-context 10 4 3 3
RGB-to-CMYK multi-context 3 0 1 3

pipelined, since they require a high throughput rate. In all of them, three pixel values have to be
processed per clock cycle. The circle rasterization of the Hough transformation has a loop with
data dependency between iterations, and therefore cannot be completely pipelined. It’s mapping is
a mixture of multi-context and pipeline. The 2 other remaining applications are mapped by using
multi-contexts (explained in Section 2.2.2).

The area estimated for the initial array is 1.73mm2 (see table 6.10) ; the area estimated for the
custom array is 1.22mm2, which is about 29% smaller. The static power consumption (leakage
power) estimated for the initial array corresponds to 114.19µW . The custom array consumes
31.36% less leakage power.

Table 6.10.: Impact of instruction specialization - autovision

Initial Custom
Array Array

Area
(µm2) 1.73mm2 1.22mm2

Power
(µW) 114.19 78.379

140

6.2. The impact of custom instruction sets on CGRAs

Impact on performance

Custom instructions affected the execution performance of applications in different ways, depend-
ing on the mapping strategy used: pipeline or multi-context. When pipeline is used, custom instruc-
tions tend to reduce the number of pipeline stages, and thus, the pipeline latency. At multi-context
mappings, custom instructions potentially reduce the number of necessary contexts. These two
effects are explained here using two examples from the previous set of applications.

Consider the pipeline mapping used for the Prewitt gradient calculation, as depicted in Figure
6.17. All the operations are mapped in the same context, but on different pipeline stages depend-
ing on their depth at the DFG. In the initial array, three different pipeline stages are required: the
first precalculates pixel differences, whereas the second and the third solve two 2-level adders/-
subtracters trees. In the custom array, instructions exist (PEI) that execute these trees as a single
atomic operation (IPA). This custom instruction only requires one cycle, so the whole pipeline can
be resume to two stages instead of three. This implies a reduction of 33% in the pipeline latency.

Prewitt
Filter

-

x

y z

-
- -

- -
+ +

++

Gh Gv

1 2

3
54

6

7 8 9 10

IPA

Stage 3

Stage 2

Stage 1

IPB

IPB

x

y z

Gh Gv

IPA IPA

IPB

Initial array Custom array 9,10

IPB

IPB

IPA

IPA

6,5,2

3,4,17,8

PE
Bianca

PEI

PEII

4610

- - +

- +

- + - +

-

259

137 8

Figure 6.17.: Mapping of the Prewitt’s gradient calculation on the initial array and on the custom
array. This application uses 10 PEs of the initial array to implement a 3 stages
pipeline. The use of custom instructions allow the same application to be mapped as
a 2-stages pipeline that uses only 4 PEs(custom array).

When a multi-context mapping strategy is used, each operation is assigned to a different context
depending on their depth at the DFG. An example is depicted in Figure 6.18 for the circle rasteri-

141

6. Experiments and Results

zation loop of the Hough transform. When mapping this application in the initial array, a total of
5 contexts is necessary. Intermediate results from the second context have to be first shifted (third
stage) before they are incremented by one in the fourth context. In the custom array, this group of
shift-and-add operations (IPC) constitutes a single custom instruction of the PEII , which executies
in one context. The overall number of necessary contexts drops from 5 to 4, and thus the loop
latency is reduced to 4 clock cycles. The contexts in the circle rasterization example are part of a
loop, and is typically executed millions of times per processed picture. The use of IPC as a custom
instruction reduces in 20% the whole task execution time, when compared to the initial array.

Context 1

Context 2

Context 3

Context 4

Context 5

Hough Transform
(circle)

+

1

1

-2

sel

1

0

<
» »

++
1

-

2

sel

+ -

x0

+ -

y0

+ - + -

p yx

Pipelined

IPC

Multicontext

IPB

+

1

1

-
2

sel

1

0

<

1

-

2

sel

x0
y0

p yx

IPC IPC

IPB IPB IPB IPB

Figure 6.18.: The circle rasterization internal loop of the Hough transformation needs 5 contexts if
there are no custom instructions in the architecture. With custom instructions based
in the patterns IPA, IPB, and IPC , this application can be mapped onto 4 contexts
only.

Discussion of experimental results

Like in the FFT experiment, the initial and custom arrays in this experiment execute the same
number and sequence of operations during the execution of each application of the set. Both arrays
have similar throughput performance: applications running at the initial array consume the same
ammount of input data at each clock cycle as when running in the custom array. However, the
custom array uses 12 PEs, whereas the initial array uses 18 PEs: a reduction of 29%. Like in the
first experiment, the reason is the use of custom instructions which executes, in one PE, a group
of operations that, otherwise, would be mapped onto several individual PEs. As a result, the total
number of necessary PEs in the array decreases.

142

6.2. The impact of custom instruction sets on CGRAs

This experiment considers simultaneously several application. It could be observed that there
was no instruction pattern which was frequently used by every applications. However, a consider-
ably small set of them (in this case 4 patterns) would already cover a large part of each application.
For example, the four extracted patterns cover all the Sobel and Prewitt gradient calculations, and
up to 83% of the Hough transform and the RGB-to-CMYK applications. The only exception was
the mask convolution, because the area constraints adopted did not allow the extraction of patterns
with multipliers. To cover a large part of each application with a small set of instruction patterns
is important to keep the number of custom instructions (and the extra costs introduced by them)
small. This experiment is an example that, even when the target set contains several applications,
it is possible to design a small set of custom instructions that improves architecture area, power
consumption, and architecture efficiency (area per operation).

In this experiment, the patterns IPA and IPB were merged in one single datapath by using a
compound composition (see Section 5.1.3). The same for patterns IPC and IPD. The custom FU for
the first two patterns is about 20% bigger than when no custom instructions are used, and the area
increment is not significant for the custom FU with the other two patterns. These extra costs are
much smaller than when compound composition is not used (compare with the FFT experiment).

One last aspect can be observed from this experiment: custom instructions also may improve the
performance of applications running in coarse grained arrays. PEs with custom instructions can
concentrate the execution of operations which would otherwise be scheduled to different pipeline
stages or contexts. As a consequence, it may happen that the number of necessary pipeline stages,
or the number of necessary contexts, decreases when mapping the applications. Two examples,
the mapping for the circle rasterization of the Hough transform and the Prewitt filter, were pre-
sented, which show this effect. This demonstrates that the use of instruction pattern based custom
instructions may improve the application’s performance, besides the architecture area.

143

7. Conclusions
This research work investigated and presented new methods, techniques, algorithms, and tools to
describe and specialize coarse grained reconfigurable architectures during their development phase.
For the description of CGRAs, a new architecture description language, CGADL, was introduced
that allows the design of these architectures at a high level of abstraction. For the specialization of
CGRAs, this work presented methodology, algorithms, and tools that allow the designer to identify,
design, and integrate custom instructions in the functional units of CGRAs’s processing elements.
This chapter summarizes the improvements proposed in this work to the design of CGRAs.

The first research goal in this work was the description of coarse grained architectures. This
work showed that, currently, CGRAs are described in a poor and complex way. Actual description
languages do not address some specific challenges for the design of CGRAs, such as configurability
and spatial distribution of components. The approach introduced in this work was a new, high level,
architecture description language: CGADL.

By using CGADL, the designer can describe coarse grained architecture templates in concise,
definite, and easy way. In contrast to hardware/system description languages, such as Verilog,
VHDL, and SystemC, the key features and technical innovations in CGADL allows the designer
to:

• model explicitly how the architecture reconfigures, for example, by use of fast, dynamic,
multi-context reconfigurability or by use of statically programmed memories;

• describe the architecture array by means of a spatial positioning system: PEs and intercon-
nection network can be referred to by their position in the array;

• compose and scale the architecture array in an easy, concise, and parameterizable way;

• describe complex and scalable interconnection network based on connection rules, instead
of point-to-point connections.

The use of descriptions with high level of abstractions, as the proposed CGADL, eases the
generation of software tools, such as estimators, compilers, and simulators. This is an advan-
tage because compilers and simulators can be co-generated, and the architecture templates can
be evaluated much earlier in the development phase. This works demonstrates that CGADL al-
lows the generation of software tools: methodology and tools were introduced here that estimate
the hardware complexity (gate-count equivalence) of architecture templates described in CGADL.
This estimation methodology does not require logic synthesis of the template, and therefore, it can
be used early in the development phase. Experimental results show that estimates obtained from
CGADL correspond well to those obtained after synthesis in at least three situations:

1. when determining the distribution of hardware costs (gates) among the components of FUs,
PEs, and architecture arrays.

145

7. Conclusions

2. when determining how the hardware costs (implementation area) of PEs and of FUs vary as
a function of parameters of the model, such as number of registers in the register bank and
width of the datapath.

3. when sorting FUs, PEs, and architecture instances according to their hardware costs (imple-
mentation area).

The second research goal in this work was the specialization of coarse grained architectures
towards a set of target applications. To carry out the specialization, this work investigated the
design, integration, and use of custom instructions: instructions that meet specific demands of
one application or application group. One decade ago, the use of custom instructions boosted the
industrial development of application specific processors (ASIPs) and is up-to-date an established
praxis for the design of these architectures. This work is the first one to use custom instructions
for the design of coarse grained arrays. It investigates the principles by which custom instructions
can be integrated in CGRAs’s PEs, and it demonstrates that custom instructions may decrease the
implementation area, decrease the power consumption, and improve performance of coarse grained
arrays.

For the design of custom instructions, groups of operations were considered that appear fre-
quently in a set of target applications and with the same kind of execution pattern. According
to this design approach, each custom instruction executes a group of operations that, otherwise,
would only be accomplished by using several individual PEs. As a consequence, PEs with custom
instructions may replace groups of non-custom PEs, decreasing the total number of PEs in the
array.

A complete design framework, including methodology, techniques, and algorithms were intro-
duced that allows the designer to:

• identify clusters of operations which lead to feasible custom instructions;

• group clusters according to the similarity of their structure;

• evaluate these clusters according to the frequency they appear in the applications;

• design and implement custom instructions based in one or more clusters of operations;

• integrate the implemented custom instructions in the description of FUs, PEs, and architec-
ture arrays;

Moreover, a tool was implemented that automates the first three tasks mentioned above.
To evaluate the impact (costs and benefits) of custom instructions, two representative, real-world

oriented experiments were implemented. The first experiment carries out the specialization of an
architecture template for the execution of scalable-OFDMA1 based systems, such as WiMax [123]
and LTE [47]. This target set of applications, composed of streaming FFT algorithms with different
input-vector sizes, is very regular and repetitive. This corresponds to an ideal condition to apply
the custom instruction design approach proposed here.

According to the experimental results, PEs embedded with custom instructions were about 37%
larger than its non-custom counterparts. However, the overall number of PEs in the array could be

1Orthogonal frequency-division multiple access modulation scheme.

146

decreased in 50%, since each PE with custom instructions replaced groups of two or three non-
custom PEs. As a consequence, the final, specialized array was about 40% smaller, consumed
about 41% less static (leakage) power, and consumed 28% less dynamic power than the initial,
non-custom array. This work also demonstrated that the use of custom instructions augments the
area efficiency of the architecture: custom arrays use less configuration bits per operation and need
less silicon area per operation than its non-custom counterparts.

The second experiment considered a set of seven applications used in computer vision appli-
cations for automotive systems. This set of applications was composed of different and irregular
applications, and reflects better the specialization of the architecture when several applications are
involved. In this situation, it is more difficult to find clusters of operations that are common to all
applications, and correspondingly, to design domain-adequate custom instructions. Experimental
results show that, even under these conditions, the use of custom instructions has a positive effect
to the design of CGRAs.

In the second experiment, the use of custom instructions led to a reduction of 33% in the num-
ber of PEs in the array. The custom array used 29% less implementation area than the non-custom
array. And the static (leakage) power consumption could be reduced in 31% after specialization.
This experiment also demonstrated that the use of custom instructions may improve the execution
performance in two situations. First, if the application is mapped in the architecture as a pipeline,
the use of custom instructions may execute in one pipeline stage groups of operations that, other-
wise, would be executed using several pipeline stages. As a consequence, custom instructions may
reduce the number of pipeline stages and therefore the pipeline latency. Second, if the application
is mapped in the architecture using a multi-context execution, the use of custom instructions may
execute in one context groups of operations that, otherwise, would be executed using several con-
texts. As a consequence, custom instructions may reduce the number of contexts necessary to map
one application.

During the development of this research work, the author published several articles that comple-
ment and reflects the content of this dissertation:

1. The description language CGADL was presented for the first time in the article "An Ar-
chitecture Description Language for Coarse-Grained Reconfigurable Arrays" [89], in
the International Conference on Hardware/Software Codesign and System Synthesis
(CODES) - Workshop on Application Specific Processors (WASP), in 2007, Salzburg,
Austria.

2. In addition to the estimation tool presented in this dissertation, two additional software tools
based in CGADL, a validation tool and a simulator generator, were presented in the journal
article "CGADL: An Architecture Description Language for Coarse-Grained Reconfig-
urable Arrays" [90], IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, pages 1233-1246, volume 17, number 9, in 2009.

3. Experiments for the specialization and design space exploration of coarse grained archi-
tectures were published in the article "Tuning Coarse-Grained Reconfigurable Architec-
tures towards an Application Domain" [91], International Conference on Reconfigurable
Computing and FPGAs (ReConfig), in 2006, San Luís Potosi, Mexico.

147

7. Conclusions

4. Complementary results and discussions about the use of custom instructions to specialize
coarse grained arrays were presented in "Evaluating the Impact of Customized Instruction
Set on Coarse Grained Reconfigurable Arrays" [88], International Conference on Field-
Programmable Technology (ICFPT), in 2008, Taipei, Taiwan.

5. A method for mapping applications in CGRAs considering simultaneously the scheduling,
the binding, and the routing tasks was proposed in co-authorship with Brenner et al. in
the article "Optimal Simultaneous Scheduling, Binding and Routing for Processor-Like
Reconfigurable Architectures" [16], International Conference on Field Programmable
Logic and Applications (FPL), in 2006, Madrid, Spain.

6. The mapping of Parallel Algorithms in specialized coarse-grained architectures was dis-
cussed in co-authorship with Rullmann et al. in the article "Efficient Mapping and Func-
tional Verification of Parallel Algorithms on a Multi-Context Reconfigurable Architec-
ture" [102], International Conference in Architecture of Computing Systems (ARCS),
in 2007, Zurich, Switzerland.

During the development of this research work, the author contributed in several other research
works involving the design of CGRAs. These works considered the use of processor-like reconfig-
urable arrays [95] [96], their specialization to decrease power consumption [104] [103], and their
integration in system-on-chip environemnts [32].

148

A. Appendix A

A.1. CGADL keywords and symbols

Table A.1.: CGADL specific keywords.

Keyword

MUX
REG
FSM
CONTEXTMEMORY
FU
INPORT
OUTPORT
IN
PARAMETER
PE
ARCH
RULE
CONNECTION
ABS_COORD
REL_COORD
END
CONST
LOG
VOID

A.2. CGADL grammar production rules - EBNF
In computer science, Extended Backus–Naur Form (EBNF) is a metasyntax notation used to ex-
press context-free grammars: that is, a formal way to describe computer programming languages
and other formal languages. It is an extension of the basic Backus–Naur Form (BNF) metasyntax
notation. In the following the grammar production rules for the CGADL language is presented.

start ::= (PARAMETER)* (PE)* ARCH <EOF>
PARAMETER ::= <PARAMETER> <IDENTIFIER> <IN> <LBRACKET>

149

A. Appendix A

<NUMBER> (<RANGE> <NUMBER>)?
(<COMMA> <NUMBER>(<RANGE> <NUMBER>)?)*
<RBRACKET> <SEMICOLON>

PE ::= <PE> <LBRACE> (DECLARATION)*
<CONNECTION> <LBRACE> (CONNECT)*
<RBRACE> <RBRACE> <IDENTIFIER><SEMICOLON>

DECLARATION ::= (<TYPE> ID (<COMMA> ID)* <SEMICOLON>)
| (<PTYPE> IDPARAM (<COMMA> IDPARAM)*
<SEMICOLON>)
| (<DTYPE> IDDESIGN (<COMMA> IDDESIGN)*
<SEMICOLON>)
| PORT (<COMMA> PORT)? <SEMICOLON>

ID ::= <IDENTIFIER>
IDPARAM ::= <IDENTIFIER> <LPARENTHESES>

(<NUMBER> | <IDENTIFIER>) <RPARENTHESES>
IDDESIGN ::= <IDENTIFIER> <LPARENTHESES><IDENTIFIER>

(<COMMA><IDENTIFIER>)* <RPARENTHESES>
PORT ::= (<INPORT> | <OUTPORT>)

<LPARENTHESES> <NUMBER> <RPARENTHESES>
CONNECT ::= IDC <LPARENTHESES> IDCP (<COMMA> IDCP)*

<RPARENTHESES> <SEMICOLON>
IDC ::= (<IDENTIFIER> | <OUTPORT>)
IDCP ::= (<IDENTIFIER> | <INPORT>)

(<LBRACKET> (<NUMBER> | <IDENTIFIER>)
(<MINUS> <NUMBER>)?
(<RANGE> (<NUMBER> | <IDENTIFIER>)
(<MINUS> <NUMBER>)?)? <RBRACKET>)?
| <VOID>

ARCH ::= <ARCH> <LBRACE> ARRAY <CONNECTION> <LBRACE>
(RULE)* (<IDENTIFIER> <LPARENTHESES>
<IDENTIFIER> <RPARENTHESES> <SEMICOLON>)*
<RBRACE> <RBRACE>

ARRAY ::= (ARRAYCONCAT)* (<ARRAY> <LPARENTHESES>
(<IDENTIFIER> | <NUMBER>) <COMMA>
(<IDENTIFIER> | <NUMBER>)
<COMMA> <IDENTIFIER> <RPARENTHESES>
<IDENTIFIER> <SEMICOLON>)*

ARRAYCONCAT ::= <IDENTIFIER> <EQUALS> <LBRACKET> <IDENTIFIER>
(((<COMMA> | <SEMICOLON>))? <IDENTIFIER>)*
<RBRACKET> <SEMICOLON>

RULE ::= <RULE><LBRACE> (<PE> <IN> <LPARENTHESES>
ARRAYSUBSCRIPT <RPARENTHESES>
<LPARENTHESES> ARRAYCONNECT <RPARENTHESES>
<SEMICOLON>)* (<LOG> <LBRACE>

150

A.2. CGADL grammar production rules - EBNF

ARRSUBSCROUTPORTS <RBRACE>)?
(<VOID> <LBRACE> ARRSUBSCROUTPORTS
<RBRACE>)? <RBRACE> <IDENTIFIER> <SEMICOLON>

ARRAYSUBSCRIPT ::= ((COLONOPERATOR | <COLON>) | <LBRACKET>
(COLONOPERATOR)* <RBRACKET>) <COMMA>
((COLONOPERATOR | <COLON>) | <LBRACKET>
(COLONOPERATOR)* <RBRACKET>)

COLONOPERATOR ::= (<NUMBER> | <IDENTIFIER> | <END>)
(<MINUS> <NUMBER>)? (<COLON>
(<MINUS> (<NUMBER> | <IDENTIFIER> | <END>)
(<MINUS> <NUMBER>)? <COLON>
(<NUMBER> | <IDENTIFIER> | <END>)
(<MINUS> <NUMBER>)? |
(<NUMBER> | <IDENTIFIER> | <END>)
(<MINUS> <NUMBER>)? (<COLON>
(<NUMBER> | <IDENTIFIER> | <END>)
(<MINUS> <NUMBER>)?)?))?

ARRAYCONNECT ::= ARRINCONNECT (<COMMA>
ARRINCONNECT)*

ARRINCONNECT ::= (((<RELCOORD> <LPARENTHESES> (<MINUS>)?
(<NUMBER> | <IDENTIFIER> | <END>)
(<MINUS> <NUMBER>)? <COMMA> (<MINUS>)?
(<NUMBER> | <IDENTIFIER> | <END>)
(<MINUS> <NUMBER>)? <RPARENTHESES>)
|
(<ABSCOORD> <LPARENTHESES>
(<NUMBER> | <IDENTIFIER> | <END>)
(<MINUS> <NUMBER>)? <COMMA>
(<NUMBER> | <IDENTIFIER> | <END>)
(<MINUS> <NUMBER>)? <RPARENTHESES>))
<LBRACKET> <NUMBER> (<RANGE> <NUMBER>)?
<RBRACKET>)
| <CONST> <LPARENTHESES> <NUMBER> <RPARENTHESES>
| <INPORT>

ARROUTPORTSS ::= (<PE> <IN> <LPARENTHESES> ARRAYSUBSCRIPT
<RPARENTHESES>
<LBRACKET> <NUMBER> (<RANGE> <NUMBER>)?
<RBRACKET> <SEMICOLON>)*

151

A. Appendix A

A.3. Circuit models and hardware complexity estimation
costs

A.3.1. Multiplexer Block

Notation

The complexity of a multiplex block can be calculated using 2-input multiplexers as a base. Mul-
tiplexers may be parameterized with the number of inputs and the input wordlength (in bits).

• Cmux2 : is the complexity cost of a 2 input multiplexer, where each input is an 1-bit signal.

• Cmux2(n) : is the complexity cost of a 2-input multiplexer, where each input is an n-bit signal.

Schematic drawing

No schematic drawing.

Complexity

For an i-input multiplexer, where i > 2, the following costs may be applied, because such multi-
plexer uses (i− 1) 2-input multiplexers in a tree-like structure:

Cmuxi(n) = (i− 1)Cmux2(n) (A.1)
Cmuxi(n) ≤ 3n(i− 1)

Observations for the CRC model

In the CRC Model, the instantiation of a multiplexer block requires the parameterization of the
input bit-width and the select signal bit-widht. That gives margin to a second interpretation, where
the generated multiplexer would have 2s inputs, where s is the number of bits in the select signal.
That is, however, not always the case. For example, one can instantiate a multiplexer with a 3-bit
select signal to control 5, 6 or 7 inputs. In that case, the synthesis is optimized to take out the, from
8 possible, not used inputs (and consequently internal gates).

A.3.2. Finite state machine block

Notation

An s-state finite state machine (FSM) is capable of codifying s states. Each state contains the
information for b-branch possibilities. Each branch determines to which state the machine will
jump if the branch is taken. The output information is stored as an n-bit signal. There are f flag
signals used to take the branching decision. The complexity of a finite state machine block can be
calculated using the complexity cost of its components. These are:

152

A.3. Circuit models and hardware complexity estimation costs

• CstateMem(s, b, c) : is the complexity cost of an s-word latch memory. Each word in this
memory block contains b branchwords, each one with log c bits. c corresponds here to the
number of contexts that should be addressed by the output value of the FSM. Modeling
c, instead of directly indicating the number of bits, is more interesting in the CRC Model,
because the number of contexts is a natural parameter of the system.

• Cmuxf (1) : is the complexity cost of an f -input multiplexer, where each input is a 1-bit
long signal. Such multiplexer is used to select which flags are going to be considered when
deciding the next state of the finite state machine.

• CstateDec(b, c) : is the complexity cost for the state decoder. Each state in the finite state
machine codifies the information about the next state to be used after branching and the out-
put value associated to the state. Up to now, the CRC Model makes no explicit distinction
between these two informations, although it is a possibility in future instances. Such infor-
mation is stored in each one of the b-branch words of each state, and it is represented with a
(log c)-bit signal.

Schematic drawing

The general model for the realization of the FSM in the CRC Model is depicted in figure A.1.
Particularly for the model Bianca, which is analysed here, the output is used to select the context
(output) as well as the next state of the machine. Such connection is shown with a dashed line.

state memory

mux

sb[n-1:0]sb[2n-1:n]...sb[bn-1: (b-1)n]

m
u

x ...

f[0]

f[f-1]

sel[k-1:0]

register

out[n-1:0]

1

Figure A.1.: Schematic for the CRC-FSM block.

153

A. Appendix A

Complexity

Before coming to the final cost equation of the finite state machine, we have to discuss the con-
struction of its sub-elements. The state memory block is implemented as RAM latch cells, which
take us to the following cost and delay:

CstateMem(s, b, c) = CRAMcell(s+ 3)(b log c+ log log(b log c)) (A.2)

If the number of addressed contexts is the same of addressed states, then s = log c. The cost for
the flag multiplexer follows the cost of a multiplexer block, as indicated in section A.3.1.

The finite state machine decoder may be decomposed in:

• one b-input multiplexer, where each input has (log c) bits, and therefore its costs isCmuxb(log c);
and

• one (log c)-bit register with cost Cff(log c).

Therefore, it is possible to write the costs of the finite state machine block as follows:

CFSM(s, c, b, f) = CstateMem(s, b, c) + Cmuxf (1) + Cmuxb(log c) + Cff(log c)

A.3.3. Context memory block
Notation

A context memory is a latch based memory module. That is, the bits are stored in latches instead
of registers. A c-contexts block is a set of c n-bits latches. This module receives an aw-bits write
address, an ar-bits read address and a n-bits vector. It outputs a n-bits dataword. When writing to
this memory model, the input data is stored on the position indicated by the write address. When
reading from this module, the content presente in the position indicated by the read address is
output. The complexity of a context memory may be calculated using the complexity cost of its
components. These are:

• CcmWrDec(aw) : is the complexity cost of a aw bits decoder. The context memory decoder
also includes a set of enabling gates to control the writing process on the latches.

• ClatchMem(c, n) : is the complexity cost of the latch set forming c-contexts with n-bits each.

• Cmuxc(n) : is a n-bits c-inputs multiplexer unit.

Schematic drawing

The general circuit for the realization of the context memory in the CRC model is depicted in figure
A.2.The number of necessary address signals is normaly equal to dlog(n)e. Each cell in the context
memory model is based in simple tri-state buffers and consider additional glue logic to reset and
load enable circuits. These are necessary for the initialization, writing and reading on the latch
memory.

154

A.3. Circuit models and hardware complexity estimation costs

decoder

...

pos[0]

pos[a-1]

latchBlock

a

...

DataIn[n-1:0]

out0[n-1:0] out1[n-1:0] outr[n-1:0]

enable Latch
Block

mux
readAddr[a-1:0]

latchBlock latchBlock

writeAddr[a-1:0]
wr

ENB

ENB

...

Figure A.2.: Schematic for the CRC context memory block.

Complexity

Before coming to the final cost equation of the register bank, we have to discuss the construction of
its sub-elements. The decoder cost is equivalent to the cost of a register set, as discussed in chapter
4. Additionally, each decoding line receives an AND gate as part of the writing mechanism control.

CcmWrDec(aw) = CDec(aw) + a2
wCand

ClatchMem(c, n) = c× n× C3-stateDrive

It is then possible to write the costs of the context memory block as follows:

CCM(aw, ar, c, n) = CcmWrDec(aw) + ClatchMem(c, n) + Cmuxar (n)

155

Bibliography

All the Internet sources are from October 2009.

[1] AHO, A. V., R. SETHI and J. D. ULLMAN: Compilers: Principles, Techniques and Tools.
Addison Wesley, 1996.

[2] ALTERA CORPORATION: FFT MegaCore Function User Guide - v6.1. Online:
http://www.altera.com, 2004.

[3] AMANO, H.: A Survey on Dynamically Reconfigurable Processors. IEICE Transactions on
Communications, E89-B(12):3179–3187, 2006.

[4] ARBELO, C., A. KANSTEIN, S. LOPEZ, J. LOPEZ, M. BEREKOVIC, R. SARMIENTO and
J.-Y. MIGNOLET: Mapping Control-Intensive Video Kernels onto a Coarse-Grain Recon-
figurable Architecture: the H.264/AVC Deblocking Filter. In Proceedings of the Design,
Automation, and Test Conference in Europe (DATE), Nice, France, 2007.

[5] ASHENDEN, P. J.: The Designer’s Guide to VHDL. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2001.

[6] ASHENDEN, P. J.: Digital Design : an Embedded Systems Approach using Verilog. Morgan
Kaufmann Publishers, Amsterdam, Boston, 2008.

[7] ATASU, K., L. POZZI and P. IENNE: Automatic Application-Specific Instruction-Set Ex-
tensions under Microarchitectural Constraints. In Proceedings of the Design Automation
Conference (DAC), New York, USA, 2003.

[8] AZEVEDO, R., S. RIGO, M. BARTHOLOMEU, G. ARAUJO, C. ARAUJO and E. BARROS:
The ArchC Architecture Description Language and Tools. International Journal of Parallel
Programming, 33(5):453–484, 2005.

[9] BABEL, L.: A Fast Algorithm for the Maximum Weight Clique Problem. Computing, 52:31–
38, 1994.

[10] BANSAL, N., S. GUPTA, N. DUTT and A. NICOLAU: Analysis of the Performance of
Coarse-Grain Reconfigurable Architectures with Different Processing Element Configura-
tions. In Workshop on Application Specific Processors (WASP), San Diego, USA, 2003.

[11] BAUMGARTE, V., G. EHLERS, F. MAY, A. NAECKEL, M. VORBACH and M. WEIN-
HARDT: PACT XPP—A Self-Reconfigurable Data Processing Architecture. Journal of Su-
percomputing, 26(2):167–184, 2003.

157

Bibliography

[12] BONZINI, P. and L. POZZI: Polynomial-time Subgraph Enumeration for Automated In-
struction Set Extension. In Proceedings of the Conference on Design, Automation and Test
in Europe (DATE), Nice, France, 2007.

[13] BOSSUET, L., G. GOGNIAT and J.-L. PHILIPPE: Generic Design Space Exploration for
Reconfigurable Architectures. In Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Washington, USA, 2005.

[14] BOUWENS, F., M. BEREKOVIC, B. D. SUTTER and G. GAYDADJIEV: Architecture En-
hancements for the ADRES Coarse-Grained Reconfigurable Array. In HiPEAC, Goteborg,
Sweden, 2008.

[15] BOUWENS, F. J., M. BEREKOVIC, A. KANSTEIN and G. N. GAYDADJIEV: Architectural
Exploration of the ADRES Coarse-Grained Reconfigurable Array. In Proceedings of In-
ternational Workshop on Applied Reconfigurable Computing (ARC), Zurich, Switzerland,
2007.

[16] BRENNER, J., J. VAN DER VEEN, S. FEKETE, J. OLIVEIRA FILHO and W. ROSENSTIEL:
Optimal Simultaneous Scheduling, Binding and Routing for Processor-Like Reconfigurable
Architectures. In Proceedings of the International Conference on Field Programmable Logic
and Applications (FPL), Madrid, Spain, 2006.

[17] BROWN, S. and J. ROSE: FPGA and CPLD Architectures: A Tutorial. IEEE Design and
Test of Computers, 13(2):42–57, 1996.

[18] BURNS, G. F., M. JACOBS, M. LINDWER and B. VANDEWIELE: Silicon Hive’s Scal-
able and Modular Architecture Template for High-Performace Multi-Core Systems. Online,
http://www.siliconhive.com, Silicon Hive, 2005.

[19] CALLAHAN, T. J., J. R. HAUSER and J. WAWRZYNEK: The Garp Architecture and C
Compiler. Computer, 33(4):62–69, 2000.

[20] CAMPOSANO, R. and W. ROSENSTIEL: Synthesizing Circuits From Behavioral Descrip-
tions. IEEE Transaction on Computer-Aided Design, 8(2):171–180, 1989.

[21] CHAREST, L., E. M. ABOULHAMID and A. TSIKHANOVICH: Designing with SystemC:
Multi-Paradigm Modeling and Simulation Performance Evaluation. In Proceedings of the
International Hardware Description Language Conference (HDL), San Jose, CA, 2002.

[22] CHATTOPADHYAY, A., X. CHEN, H. ISHEBABI, R. LEUPERS, G. ASCHEID and H. MEYR:
High-Level Modelling and Exploration of Coarse-Grained Re-configurable Architectures.
In Proceedings of the Conference on Design, Automation and Test in Europe (DATE), New
York, USA, 2008.

[23] CONG, J., Y. FAN, G. HAN and Z. ZHANG: Application-Specific Instruction Generation
for Configurable Processor Architectures. In Twelfth International Symposium on Field
Programmable Gate Arrays, Monterey, California, USA, 2004.

158

Bibliography

[24] CORDELLA, L. P., P. FOGGIA, C. SANSONE and M. VENTO: Performance Evaluation
of the VF Graph Matching Algorithm. In Proceedings of the International Conference on
Image Analysis and Processing (ICIAP), Washington, DC, USA, 1999. IEEE Computer
Society.

[25] CORDELLA, L. P., P. FOGGIA, C. SANSONE and M. VENTO: A (Sub)Graph Isomorphism
Algorithm for Matching Large Graphs. IEEE Transactions on Pattern Analysis Machine
Intelligence, 26(10):1367–1372, 2004.

[26] COWARE CORPORATION: Lisatek. Online, http://www.coware.com, 2009.

[27] DEHON, A.: DPGA Utilization and Application. In Proceedings of the 1996 ACM Fourth
International Symposium on Field-programmable Gate Arrays (FPGA), New York, USA,
1996.

[28] DEMICHELI, G.: Synthesis and Optimization of Digital Circuits. McGraw-Hill Series in
Electrical and Computer Engineering. McGraw-Hill, New York, 1994.

[29] DREBIN, R. A., L. CARPENTER and P. HANRAHAN: Volume rendering. SIGGRAPH
Computer Graphics, 22(4):65–74, 1988.

[30] DULLER, A., D. TOWNER, G. PANESAR, A. GRAY and W. ROBBINS: picoArray Technol-
ogy: The Tool’s Story. In Proceedings of the Conference on Design, Automation and Test in
Europe (DATE), Washington, DC, USA, 2005.

[31] EBELING, C.: GeminiII : a Second Generation Layout Validation Program. In Procceedings
of the International Conference on Computer-Aided Design (ICCAD), Santa Clara, USA,
1988.

[32] EISENHARDT, S., J. OLIVEIRA FILHO, T. KUHN and W. ROSENSTIEL: Speculative Con-
figuration Prefetching for Multi-Context Architectures. In Workshop on Synthesis and Sys-
tem Integration of Mixed Information Technologies (SASIMI), Okinawa, Japan, 03 2009.

[33] FAUTH, A., J. V. PRAET and M. FREERICKS: Describing Instruction Set Processors Us-
ing nML. In Proceedings of the European Design and Test Conference (DATE), Munich,
Germany, 1995.

[34] FISCHER, D., J. TEICH, R. WEPER, U. KASTENS and M. THIES: Design space char-
acterization for architecture/compiler co-exploration. In Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), New
York, USA, 2001.

[35] GAJSKI, D. D. and L. RAMACHANDRAN: Introduction to High-Level Synthesis. IEEE
Design and Test of Computers, 11(4):44–54, 1994.

[36] GALUZZI, C. and K. BERTELS: The Instruction-Set Extension Problem: A Survey. In
Proceedings of the International Workshop on Applied Reconfigurable Computing (ARC),
London, UK, 2008.

159

Bibliography

[37] GARCIA, A., M. BEREKOVIC and T. V. AA: Mapping of the AES Cryptographic Algo-
rithm on a Coarse-Grain Reconfigurable Array Processor. In Proceedings of the Interna-
tional Conference on Application-Specific Systems, Architectures, and Processors (ASAP),
Montreal, Canada, 2008.

[38] GAREY, M. R. and D. S. JOHNSON: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco, California, 1978.

[39] GAVRIL, F.: Algorithms for a Maximum Clique and a Minimum Independent Set of a Circle
Graph. Networks, 3:261–273, 1973.

[40] GAVRIL, F.: Algorithms on Circular-arc Graphs. Networks, 4:357–369, 1974.

[41] GILAT, A.: Matlab – An Introduction With Applications. John Wiley & Sons, Incorporated,
2008.

[42] GOLDSTEIN, S. C., H. SCHMIT, M. BUDIU, S. CADAMBI, M. MOE and R. TAYLOR:
PipeRench: A Reconfigurable Architecture and Compiler. IEEE Computer, 4(33):70–77,
2000.

[43] GOLUMBIC, M. C.: Algorithmic Graph Theory and Perfect Graphs. Annals of discrete
mathematics. Elsevier, Amsterdam, Netherlands, 2004.

[44] GONZALEZ, R. and R. WOODS: Digital Image Processing. Addison Wesley, New York,
USA, 1992.

[45] GOSLING, J., B. JOY, G. STEELE and G. BRACHA: The Java Language Specification.
Addison Wesley, 2005.

[46] GRAPHDRAWING.ORG: The GraphML File Format. Online,
http://graphml.graphdrawing.org, 2009.

[47] GSA - THE GLOBAL MOBILE SUPPLIERS ASSOCIATION: Evolution to LTE (GSA
Information Paper) confirms 42 LTE network commitments in 21 countries. Online,
http://www.gsacom.com, 2009.

[48] GUO, Y., G. SMIT, P. HEYSTERS and H. BROERSMA: A Graph Covering Algorithm for a
Coarse Grain Reconfigurable System. In Languages, Compilers, and Tools for Embedded
Systems (LCTES), San Diego, USA, 2003.

[49] HADJIYIANNIS, G., S. HANONO and S. DEVADAS: ISDL: An Instruction Set Description
Language for Retargetability. In Proceedings of the Design Automation Conference (DAC),
Anaheim, California, USA, 1997.

[50] HALAMBI, A. and P. GRUN: EXPRESSION: A language for architecture exploration
through compiler/simulator retargetability. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE), Munich, Germany, 1999.

160

Bibliography

[51] HALFHILL, T. R.: Silicon Hive Breaks Out — Philips Startup Unveils Configurable
Parallel-Processing Architecture. Microprocessor, 12:1–7, 2003.

[52] HANNIG, F., H. DUTTA, A. KUPRYIANOV, J. TEICH, R. SCHAFFER, S. SIEGEL,
R. MERKER, R. KERYELL, B. POTTIER, D. CHILLET, D. MENARD and O. SENTIEYS:
Co-Design of Masiively Parallel Embedded Processor Architectures. In Proceedings of the
ReCoSoC Workshop, Montpellier, France, 2005.

[53] HARTENSTEIN, R., R. KRESS and H. REINIG: A New FPGA Architecture for Word-
Oriented Datapaths. In Proceedings of the International Wrokshop on Field Programmable
Logic and Applications (FPL), Prague, Czech Republic, 1994.

[54] HARTENSTEIN, R. W.: A Decade of Reconfigurable Computing: a Visionary Retrospec-
tive.. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE),
Munich, Germany, 2001.

[55] HARTENSTEIN, R. W., M. HERZ, T. HOFFMANN and U. NAGELDINGER: Genera-
tion of Design Suggestions for Coarse-Grain Reconfigurable Architectures. In Proceed-
ings of the The Roadmap to Reconfigurable Computing, International Workshop on Field-
Programmable Logic and Applications (FPLA), London, UK, 2000.

[56] HAUCK, S. and A. DEHON: Reconfigurable Computing: The Theory and Practice of
FPGA-Based Computation. Morgan Kaufmann, 2007.

[57] HE, S. and M. TORKELSON: Designing pipeline FFT processor for OFDM (de)modulation.
In Procceedings of the International Symposium on Signals, Systems, and Electronics
(ISSSE), Pisa, Italy, 1998.

[58] HOFFMANN, A., H. MEYR and R. LEUPERS: Architecture Exploration for Embedded Pro-
cessors with LISA. Kluwer Acaddemic Publishers, 2002.

[59] HUANG, Z., S. MALIK, N. MOREANO and G. ARAUJO: The Design of Dynamically Re-
configurable Datapath Coprocessors. ACM Transactions on Embedded Computing Sys-
tems, 3(2):361–384, 2004.

[60] IENNE, P. and R. LEUPERS: Customizable Embedded Processors–Design Technologies
and Applications. Systems on Silicon Series. Morgan Kaufmann, San Mateo, California,
USA, 2006.

[61] JAIN, R., R. KASTURI and B. G. SCHUNCK: Machine Vision. McGraw-Hill International
Editions, 1995.

[62] JONES, A. M. and M. BUTTS: TeraOPS Hardware: A New Massively-Parallel MIMD
Computing Fabric IC. In Proceedings of the IEEE Hot Chips Symposium, Stanford, USA,
2006.

[63] KASTNER, R., S. OGRENCI-MEMIK, E. BOZORGZADEH and M. SARRAFZADEH: In-
struction generation for hybrid reconfigurable systems. In Procceedings of IEEE/ACM In-
ternational Conference on Computer Aided Design (ICCAD), San Jose, California, 2001.

161

Bibliography

[64] KIM, Y., M. KIEMB and K. CHOI: Efficient Design Space Exploration for Domain-Specific
Optimization of Coarse-Grained Reconfigurable Architecture. In SoC Design Conference,
Korea, 2005.

[65] KIM, Y., M. KIEMB, C. PARK, J. JUNG and K. CHOI: Resource Sharing and Pipelining
in Coarse-Grained Reconfigurable Architecture for Domain-Specific Optimization. In Pro-
ceedings of the Conference on Design, Automation and Test in Europe (DATE), Washington,
USA, 2005.

[66] KIRKPATRICK, S., C. D. GELATT and M. P. VECCHI: Optimization by Simulated Anneal-
ing. Science, 220(4598):671–680, 1983.

[67] KISSLER, D., F. HANNIG, A. KUPRIYANOV and J. TEICH: A Dynamically Reconfigurable
Weakly Programmable Processor Array Architecture Template.. In ReCoSoC, Darmstadt,
Germany, 2006.

[68] KUPRIYANOV, A., F. HANNIG, D. KISSLER, R. MERKER, R. SHAFFER and J. TEICH: An
Architecture Description Language for Massively Parallel Processor Architectures. In Pro-
ceedings of the GIITGGMM-Workshop - Methoden und Beschreibungssprachenzur Model-
lierung und Verifikation von Schaltungen und Systemen, Dresden, Germany, 2006.

[69] KUPRIYANOV, A., F. HANNIG, D. KISSLER, J. TEICH, J. LALLET, O. SENTIEYS and
S. PILLEMENT: Modeling of Interconnection Networks in Massively Parallel Processor
Architectures. Lecture Notes in Computer Science - Architecture of Computing Systems
(ARCS), 4415:268–282, 2007.

[70] LAURENT, S. S.: XML: a Primer. John Wiley & Sons, Inc., New York, USA, 2001.

[71] LEE, M.-H., H. SINGH, G. LU, N. BAGHERZADEH, F. J. KURDAHI, E. M. C., A. FILHO

and V. CASTRO: Design and Implementation of the MorphoSys Reconfigurable Computing
Processor. Journal of VLSI Signal Processing Systems, 24(2/3):147–164, 2000.

[72] LIN, Y.-W., H.-Y. LIU and C.-Y. LEE: A 1-GS/s FFT/IFFT Processor for UWB Applica-
tions. IEEE Journal of Solid-State Circuits, 40(8):1726–1735, 2005.

[73] LIU, Z., Y. SONG, T. IKENAGA and S. GOTO: A VLSI Array Processing Oriented Fast
Fourier Transform Algorithm and Hardware Implementation. IEICE Transactions on Fun-
damentals, E88-A(12):3523–3530, 2005.

[74] MEALY, G. H.: A Method for Synthesizing Sequential Circuits. Bell System Technical
Journal, 34(5):1045–1079, 1955.

[75] MEI, B., A. LAMBRECHTS, D. VERKEST, J.-Y. MIGNOLET and R. LAUWEREINS: Ar-
chitecture Exploration for a Reconfigurable Architecture Template. IEEE Design and Test,
22(2):90–101, 2005.

162

Bibliography

[76] MEI, B., S. VERNALDE, D. VERKEST, H. DE MAN and R. LAUWEREINS: ADRES: An Ar-
chitecture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Ma-
trix. In Proceedings of the International Conference on Field Programmable Logic and
Applications (FPL), Lisbon, Portugal, 2003.

[77] MEI, B., S. VERNALDE, D. VERKEST and R. LAUWEREINS: Design Methodology for a
Tightly Coupled VLIW/Reconfigurable Matrix Architecture: A Case Study. In Proceedings
of the Conference on Design, Automation and Test in Europe (DATE), Washington, USA,
2004.

[78] MEI, B., S. VERNALDE, D. VERKEST, H. D. MAN, R. LAUWEREINS, B. MEI, S. VER-
NALDE, D. VERKEST, H. DE MAN and R. LAUWEREINS: DRESC: A Retargetable Com-
piler for Coarse-Grained Reconfigurable Architectures. In Proceedings of the International
Conference on Field Programmable Technology (FPT), Hong Kong, China, 2002.

[79] MERIBOUT, M. and M. MOTOMURA: Efficient Metrics and High-Level Synthesis for
Dynamically Reconfigurable Logic. IEEE Transactions on Very Large Scalse Integration
(VLSI) Systems, 12(6):603–621, 2004.

[80] MIRAMOND, B. and J.-M. DELOSME: Design Space Exploration for Dynamically Recon-
figurable Architectures. In Proceedings of the Conference on Design, Automation and Test
in Europe (DATE), Washington, USA, 2005.

[81] MIRSKY, E. and A. DEHON: MATRIX: A Reconfigurable Computing Architecture with
Configurable Instruction Distribution and Deployable Resources. In IEEE Symposium on
FPGAs for Custom Computing Machines, Los Alamitos, CA, 1996.

[82] MÜLLER, S. and W. PAUL: Computer Architecture: Complexity and Correctness. Springer,
2000.

[83] MOORE, E. F.: Gedanken Experiments on Sequential Machines. In Automata Studies, pp.
129–153. Princeton U., 1956.

[84] MOTOMURA, M.: A dynamically Reconfigurable Processor Architecture. In Microproces-
sor Forum, Tokio, Japan, 2002.

[85] MOTOMURA, M., T. FUJII, K. FURUTA, K. ANJO, Y. YABE, K. TOGWA, J. YAMADA,
Y. IZAWA and R. SASAKI: New Generation Microprocessor Architecture (2) Dynamically
Reconfigurable Processor (DRP). Joho Shori, 46(11):1259–1265, 2005.

[86] MUCHNICK, S. S.: Advanced compiler design and implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997.

[87] OH, J.-Y. and M.-S. LIM: New Radix-2 to the 4th Power Pipeline FFT Processor. IEICE
Transactions on Electronics, 88(8):1740–1746, 2005.

[88] OLIVEIRA FILHO, J., T. KUHN and W. ROSENSTIEL: Evaluating the Impact of Cus-
tomized Instruction Set on Coarse Grained Reconfigurable Arrays. In Proceedings of the In-
ternational Conference on Field-Programmable Technology (ICFPT), Taipei, Taiwan, 2008.

163

Bibliography

[89] OLIVEIRA FILHO, J., S. MASEKOWSKY, T. SCHWEIZER and W. ROSENSTIEL: An Archi-
tecture Description Language for Coarse-Grained Reconfigurable Arrays. In International
Conference on Hardware/Software Codesign and System Synthesis (CODES) - Workshop on
Application Specific Processors (WASP), Salzburg, Austria, 10 2007.

[90] OLIVEIRA FILHO, J., S. MASEKOWSKY, T. SCHWEIZER and W. ROSENSTIEL: CGADL:
an Architecture Description Language for Coarse-Grained Reconfigurable Arrays. IEEE
Transactions in Very Large Scale Integration Systems, 17(09):1233–1246, September 2009.

[91] OLIVEIRA FILHO, J., T. SCHWEIZER, T. OPPOLD, T. KUHN and W. ROSENSTIEL: Tun-
ing Coarse-Grained Reconfigurable Architectures towards an Application Domain. In In-
ternational Conference on Reconfigurable Computing and FPGAs (ReConfig), San Luis
Potosi, Mexico, 2006.

[92] OPPOLD, T., U. KANUS, T. SCHWEIZER, T. KUHN, W. ROSENSTIEL and W. STRASSER:
Evaluation of Ray Casting on Processor-Like Reconfigurable Architectures. In International
Conference on Field Programmable Logic and Applications (FPL), Tampere, Finland, 2005.

[93] OPPOLD, T., T. SCHWEIZER, T. KUHN and W. ROSENSTIEL: Cost Functions for the De-
sign of Dynamically Reconfigurable Processor Architectures. In Workshop on Synthesis and
System Integration of Mixed Information Technologies (SASIMI), Kanazawa, Japan, 2004.

[94] OPPOLD, T., T. SCHWEIZER, T. KUHN and W. ROSENSTIEL: A New Design Approach for
Processor-Like Reconfigurable Hardware. In Proceedings of the Euro DesignCon, Munich,
Germany, 2004.

[95] OPPOLD, T., T. SCHWEIZER, J. OLIVEIRA FILHO, S. EISENHARDT, T. KUHN and
W. ROSENSTIEL: Execution Schemes for Dynamically Reconfigurable Architectures. In
Procceedings of the Workshop on Synthesis And System Integration of Mixed Information
(SASIMI), Taipei, Taiwan, 2006.

[96] OPPOLD, T., T. SCHWEIZER, J. OLIVEIRA FILHO, S. EISENHARDT and W. ROSEN-
STIEL: CRC-Concepts and Evaluation of Processor-Like Reconfigurable Archtitectures. it -
Information Technology, 49(3):157–164, 2007.

[97] PALNITKAR, S.: Verilog®Hdl: a guide to digital design and synthesis. Prentice Hall Press,
Upper Saddle River, NJ, USA, 2003.

[98] PETROV, M., T. MURGAN, F. MAY, M. VORBACH, P. ZIPF and M. GLESNER: The XPP
Architecture and Its Co-Simulation Within the Simulink Environment. Lecture Notes in
Computer Science, 3203:761–770, 2004.

[99] PICOCHIP: picoArray Architecture. Online, http://www.picochip.com/, 2009.

[100] QUICKSILVER TECHNOLOGY: Homepage. Online : http://www.qstech.com/, 2009.

[101] RIGO, S., G. ARAUJO, M. BARTHOLOMEU and R. AZEVEDO: ArchC: A SystemC-Based
Architecture Description Language. In Proceedings of the 16th Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), Washington, DC, USA, 2004.

164

Bibliography

[102] RULLMANN, M., S. SIEGEL, R. MERKER, J. OLIVEIRA FILHO, T. SCHWEIZER, T. OP-
POLD and W. ROSENSTIEL: Efficient Mapping and Functional Verification of Parallel Algo-
rithms on a Multi-Context Reconfigurable Architecture. In Proccedings of the International
Conference in Architecture of Computing Systems (ARCS) – Workshop for Dynamically Re-
configurable Systems (DRS), Zurich, Switzerland, 2007.

[103] SCHWEIZER, T., J. OLIVEIRA FILHO, T. KUHN and W. ROSENSTIEL: Low Energy Volt-
age Dithering in Dual VDD Circuits. In Power and Timing Modeling, Optimization and
Simulation (PATMOS), Delft, Netherlands, 09 2009.

[104] SCHWEIZER, T., J. OLIVEIRA FILHO, T. OPPOLD, T. KUHN and W. ROSENSTIEL:
Evaluation of Temporal-Spatial Voltage Scaling for Processor-Like Reconfigurable Archi-
tectures. In Proceedings of the Euro DesignCon, Munich, Germany, 2005.

[105] SILICON HIVE. Online, http://www.siliconhive.com, 2009.

[106] SINGH, H., G. LU, M.-H. LEE, N. BAGHERZADEH, R. MAESTRE, E. FILHO and F. KUR-
DAHI: MorphoSys: Case Study of a Reconfigurable Computing System Targeting Multime-
dia Applications. In Proceedings of the Design Automation Conference (DAC), Los Alami-
tos, CA, USA, 2000.

[107] SIPPER, M. and E. SANCHEZ: Configurable Chips Meld Software and Hardware. IEEE
Computer, 33(1):120–121, 2000.

[108] SMIT, G. J. M., P. M. HEYSTERS, M. A. J. ROSIEN and E. MOLENKAMP: Lessons
Learned from Designing the Montium: a Coarse-Grained Reconfigurable Processing Tile.
In Proceedings of the International Symposium on System-on-Chip (ISSC), Los Alamitos,
California, 2004.

[109] SOUZA, C. C. DE, A. M. LIMA, N. MOREANO and G. ARAUJO: The Datapath Merging
Problem in Reconfigurable Systems: Lower Bounds and Heuristic Evaluation. In Workshop
on Efficient and Experimental Algorithms, Rio de Janeiro, Brazil, 2004.

[110] SUN, F., S. RAVI, A. RAGHUNATHAN and N. K. JHA: Custom-Instruction Synthesis for
Extensible-Processor Platforms. IEEE Transactions on CAD of Integrated Circuits and
Systems, 23(2):216–228, 2004.

[111] TAYLOR, M.: The RAW Processor – A Scalable 32-bit Fabric for Embedded and General
Purpose Computing. In Proceedings of IEEE Hot Chips Symposium, Stanford, USA, 2001.

[112] TEICH, J.: Digitale Hardware/Software Systeme – Synthese und Optimierung. Springer
Verlag, 1997.

[113] TENSILICA. Online, http://www.tensilica.com, 2009.

[114] TOMITA, E. and T. SEKI: An Efficient Branch-and-Bound Algorithm for Finding a Maxi-
mum Clique. Lecture Notes in Computer Science, 2731:278–289, 2003.

165

Bibliography

[115] TREDENNICK, N. and B. SHIMAMOTO: Go Reconfigure. IEEE Spectrum, 40(12):36–40,
2003.

[116] VAHID, F. and R. LYSECKY: VHDL for Digital Design. Wiley, John & Sons, Incorporated,
2007.

[117] VALIENTE, G.: Algorithms on Trees and Graphs. Springer, 2002.

[118] ČERNÝ, V.: Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. Journal of Optimization Theory and Applications, 45(1):41–51, 1985.

[119] VEREDAS, F.-J., M. SCHEPPLER, W. MOFFAT and B. MEI: Custom Implementation of the
Coarse-grained Reconfigurable ADRES Architecture for Multimedia Purposes. In Proceed-
ing of the International Conference on Field Programmable Logic and Applications (FPL),
Tampere, Finland, 2005.

[120] VEREDAS-RAMIREZ, F. J., M. SCHEPPLER and H. J. PFLEIDERER: A Survey on Re-
configurable Computing Systems: Taxonomy and Metrics. In Workshop on Reconfigurable
Computing and Applications (JCRA), Spain, 2004.

[121] WALKER, R. A. and S. CHAUDHURI: Introduction to the Scheduling Problem. IEEE De-
sign and Test of Computers, 1:60–69, 1995.

[122] WEBOPEDIA: s.v. program. Online, http://www.webopedia.com, 2009.

[123] WIMAX FORUM: Mobile WiMax. Online: http://www.wimaxforum.org/, 2006.

[124] WU, J., K. LIU, B. SHEN and H. MIN: A Hardware Efficient VLSI Architecture for FFT
Processor in OFDM Systems. In International Conference on ASIC, Shangai, China, 2005.

[125] YAMAGUCHI, K. and S. MASUDA: A New Exact Algorithm for the Maximum Weight Clique
Problem. In Proceedings fo the International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC), Shimonoseki, Japan, 2008.

166

	Introduction
	Motivation
	Objectives and proposed solutions
	Description of coarse grained reconfigurable architectures
	Specialization of coarse grained reconfigurable architectures

	Workflow and organization of this document

	Basics
	Architecture
	The CRC Model
	The CRC Template
	The CRC Instance
	The Processing Element
	The Functional Units

	Application
	Application representation
	Application mapping

	State of the Art
	Coarse grained reconfigurable architectures
	NEC — DRP
	Silicon Hive — ULIW
	IMEC — ADRES
	Weakly Programmable Processor Arrays

	Other Work
	KressArray
	Morphosys
	Rapport's Kilocore (Piperench)
	Summary

	Evaluation of the state of the art
	Description of CGRAs
	Design and specialization of coarse grained architectures

	Summary: analogy with the design of application specific processors

	Description of Coarse Grained Arrays
	Motivation and contributions of CGADL
	CGADL - Semantics and Syntax
	The PARAMETER section
	The PE section
	The ARCH section

	Estimation of hardware costs
	Estimation flow
	Library of circuit models
	Composition analysis
	The hardware complexity estimation tool

	Design of Custom Instructions for Coarse Grained Architectures
	Instruction Pattern Identification and Custom Instruction Composition
	Extraction of operation clusters
	Instruction pattern selection
	Custom Instruction Composition

	Custom Instructions for Coarse Grained Architectures
	Description of custom instructions in CGADL
	Integration of custom instructions in the application description
	Integration of custom processing elements in the architecture

	INSTPATT - A software tool for extraction of instruction patterns
	The InstPatt flow

	Experiments and Results
	A CGADL-based software tool: estimation of hardware costs
	Experimental set up
	Analysis of PE datapath composition
	Scalability of the model
	Comparison of implementation area
	Discussion on the hardware costs estimation

	The impact of custom instruction sets on CGRAs
	Custom architecture for scalable OFDMA based systems
	Computer vision for automotive applications

	Conclusions
	Appendix A
	CGADL keywords and symbols
	CGADL grammar production rules - EBNF
	Circuit models and hardware complexity estimation costs
	Multiplexer Block
	Finite state machine block
	Context memory block

