

Adaptive microstimulation for
stabilizing evoked cortical potentials

Dissertation
der Fakultät für Informations- und Kognitionswissenschaften

der Eberhard-Karls-Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Dominik Brugger

aus Villingen

Tübingen
2009

Tag der mündlichen Qualifikation: 10.02.2010

Dekan: Prof. Dr.-Ing. Oliver Kohlbacher

1. Berichterstatter: Prof. Dr. Wolfgang Rosenstiel

2. Berichterstatter: PD Dr. Cornelius Schwarz

Acknowledgements

At this point I would like to express my gratitude to all the people that contributed to the
success of this thesis’ work.

First I would like to thank Prof. Dr. Wolfgang Rosenstiel for giving me the opportunity to
work on this challenging topic and for funding the project. Special thanks go to Prof. Dr.
Martin Bogdan and PD Dr. Cornelius Schwarz for pointing out the problem of adaptive
stimulation, giving continuous encouragement, and engaging in fruitful discussions. I’m
also indebted to Dr. Sergejus Butovas for finally “bringing the mammoth down” and
inspiring conversations during those seemingly endless lab hours.

Additionally I would like to thank my colleagues at the Department of Computer En-
gineering for their support, especially my coworkers Mike Bensch and Armin Walter for
insightful discussions in our Neuroteam meetings, and Werner Dreher for creating custom
electronic devices. Thanks also go to the people from the Hertie Institute, Maik, Petya,
Chris, Sinia, Julia, Ursula, and Ute for support and interesting paper discussions as well
as to my former students Frank Schulz and Jana Kneslova. For excellent hardware support
I would like to thank Hans Löffler, Peter Jesinger, Rainer Mohrlok, and Andreas Möller
from Multi Channel Systems.

Finally I would like to thank my family and friends for keeping the faith, in particular Ute,
Ruth, Martin, Günther, Barbara, Heribert, Manuel, Katharina, Christoph, Sandra, Frank,
Marcus, Nadja, Willi, Hubert, Markus, Melanie, Simone, Rainer, Rosi, Michaela, Kai,
Felix, Franziska, Georg, Hans-Jörg, Alexandra, Friedrich, Daniel, Frank, Marion, Steffi,
and Steffen.

i

Abstract

Cortical implants hold the promise to restore lost sensory perceptions, like vision, by using
an array of microelectrodes to directly stimulate neural tissue in the corresponding area
of the brain. In contrast to retinal implants, cortical implants can aid blind patients even
when the information flow from receptors to brain is interrupted in later stages of the
visual pathway. Unfortunately evoking stable perceptions by direct stimulation in cortex
is currently not possible. One essential unsolved problem is the high variability of evoked
cortical potentials caused by an incessantly fluctuating cortical state.

This thesis deals with this problem and proposes to stabilize evoked cortical potentials by
adaptive microstimulation, where the intensity of stimulation pulses is continuously ad-
justed based on the ongoing brain activity. To investigate the feasibility of this approach
this work developed an experimental setup with simultaneous recording and stimulation in
the barrel cortex of anesthetized rats. A direct and inverse solution using support vector
regression is suggested to tackle the control problem associated with adaptive microstim-
ulation. Further algorithmic developments include an application specific kernel function
for decoding the cortical state which allows to exploit prior knowledge about the temporal
structure of stimulation trials and outperforms other standard kernels. The experimental
results recorded in seven animals show for the first time that adaptive microstimulation
can stabilize evoked cortical potentials if intensities are chosen from a sub-threshold range.
Unfortunately the size of the stabilization effect varies on a time scale of minutes which is
due to invalidation of the function learnt by support vector regression. To eliminate the
temporal variation in future applications of adaptive microstimulation this work proposes a
novel online training algorithm for support vector regression which is suitable for updating
the estimated function in a real-time environment and does not require manual tuning of a
learning rate. The new algorithm is shown to perform better in terms of convergence speed
in comparison to other state of the art algorithms on several benchmark data sets. Together
the results presented in this work support the feasibility of adaptive microstimulation and
open the perspective to reliably imprint brain activity in future cortical implants.

Zusammenfassung

Die Wiederherstellung einer verlorenen Sinneswahrnehmung, wie zum Beispiel des Se-
hvermögens, ermöglichen kortikale Implantate. Künstliche Wahrnehmungen werden dabei
durch direkte Stimulation des entsprechenden Gehirnareals über eine Reihe von Mikroelek-
troden hervorgerufen. Im Gegensatz zum Retina-Implantat können kortikale Implantate
bei einer blinden Person sogar dann eingesetzt werden, wenn der Informationsfluss zwis-
chen Rezeptor und Gehirn entlang der visuellen Leitungsbahn erst in späteren Stufen
unterbrochen ist. Das Erzeugen stabiler Sinneseindrücke durch direkte Stimulation des
Gehirns ist derzeit noch nicht möglich. Ein wesentliches Problem dabei ist die starke
Schwankung evozierter Potentiale, die durch eine stetig fluktuierende kortikale Aktivität
verursacht wird.

Diese Dissertation hat sich mit dieser Schwierigkeit auseinandergesetzt und schlägt zur Sta-
bilisierung evozierter kortikaler Potentiale eine adaptive Mikrostimulation vor, bei der die
Intensität der Stromstöße ausgehend von der gegenwärtigen Gehirnaktivität fortlaufend
angepasst wird. Um die Machbarkeit dieses Ansatzes zu untersuchen, wurde im Rah-
men dieser Arbeit ein experimenteller Aufbau für eine gleichzeitige Aufnahme und Stim-
ulation im Barrel Kortex anästhesierter Ratten entwickelt. Für die Steuerung der In-
tensitäten werden ein direkter und inverser Lösungsansatz vorgeschlagen und evaluiert,
wobei die Schätzung der erforderlichen Funktionen auf Basis experimenteller Daten durch
Support Vektor Regression erfolgt. Eine anwendungsspezifische Kern-Funktion, die unter
Ausnutzung von Vorwissen über die zeitliche Struktur der Daten, eine Dekodierung der
kortikalen Aktivität erlaubt, gehört zu den weiteren algorithmischen Entwicklungen. Im
Vergleich mit üblichen Kern-Funktionen erzielt die weiterentwickelte Kern-Funktion eine
höhere Präzision bei der Vorhersage der Stimulationsintensität. Die bei sieben Versuch-
stieren erhobenen experimentellen Ergebnisse zeigen erstmals, dass evozierte Potentiale
durch adaptive Mikrostimulation stabilisiert werden können, falls die Stromstöße eine hin-
reichend geringe Intensität aufweisen. Allerdings schwankt der durch adaptive Mikrostimu-
lation erreichte Effekt innerhalb weniger Minuten, was auf einen Verfall der durch Support
Vektor Regression ermittelten Funktion zurückzuführen ist. Zur Vermeidung dieses Verfalls
in zukünftigen Anwendungen adaptiver Mikrostimulation schlägt diese Arbeit einen neuen
Algorithmus zum Online-Training der Support Vektor Regression vor. Der Algorithmus
ist besonders für eine Aktualisierung der geschätzten Funktion in einer Echtzeit Umge-
bung geeignet und benötigt keine manuelle Einstellung einer Schrittweite. Mit dem neuen
Algorithmus lässt sich, bei gleichem Zeitaufwand pro Iteration, im Vergleich mit anderen
aktuellen Verfahren eine schnellere Konvergenz der Vorhersagefehlers auf verschiedenen
Datensätzen erreichen. Zusammengenommen bestätigen die in dieser Arbeit vorgestellten
Ergebnisse die Machbarkeit adaptiver Mikrostimulation. Darüber hinaus eröffnet sich die
Perspektive zukünftig stabile Wahrnehmungen mit Hilfe kortikaler Implantate zu erzeugen.

iii

Contents

1 Introduction 1

2 Perception 5

2.1 Principles of sensory processing . 5

2.1.1 Modality . 5

2.1.2 Location . 7

2.1.3 Intensity . 7

2.1.4 Timing . 8

2.1.5 Sensory systems . 9

2.2 The visual system . 9

2.2.1 Visual pathways . 10

2.2.2 Cortical processing . 11

2.3 Current implant technology . 13

2.3.1 Retinal implants . 14

2.3.2 Cortical implants . 15

2.4 Unsolved problems of cortical implants . 18

2.5 Model sensory system: rat barrel cortex 19

3 Support Vector Regression 25

3.1 State of the art . 25

3.1.1 Dual SVR . 28

3.1.2 Primal and dual optimization . 29

3.1.3 Primal SVR without bias . 32

3.2 Primal SVR with bias . 36

3.2.1 Newton step . 37

3.2.2 Cholesky factorization . 40

3.2.3 Line search . 41

3.2.4 Primal algorithm . 46

3.3 Results . 46

3.3.1 Comparison of l1- and l2-loss functions 47

v

Contents

3.3.2 Comparison of primal and dual algorithms 49

4 Online SVR 51

4.1 Online versus Offline SVR training . 51

4.2 Online training state of the art . 53

4.2.1 Naive online risk minimization . 54

4.2.2 Implicit online learning with kernels 56

4.3 Primal online algorithm . 59

4.3.1 Buffering strategies . 60

4.3.2 Descent directions . 61

4.3.3 Incremental updates . 62

4.3.4 Online kernel ridge regression . 64

4.4 Results . 65

4.4.1 Online training with and without bias 65

4.4.2 Comparison of buffering strategies 67

4.4.3 Comparison of descent directions 68

4.4.4 Comparison of online training algorithms 70

5 Model selection 75

5.1 State of the art . 75

5.1.1 Leave-one-out bounds . 76

5.2 Minimizing the MSP bound and CV error 81

5.3 Results . 83

6 Decoding the cortical state 89

6.1 State of the art . 89

6.1.1 Local field potentials . 91

6.1.2 Multi-unit activity . 92

6.1.3 Phase synchronization . 93

6.1.4 Kernel functions . 94

6.2 Recording setup . 100

6.3 Formal problem definition . 102

6.3.1 Direct solution . 102

vi

Contents

6.3.2 Inverse solution . 102

6.4 ANOVA kernel . 103

6.5 Results . 107

6.5.1 Comparison of direct and inverse solutions 107

6.5.2 Optimal time windows . 110

6.5.3 Comparison of kernel functions . 111

7 Adaptive microstimulation 115

7.1 Experimental setup . 116

7.2 Technical considerations . 119

7.3 Results . 122

8 Conclusion and Outlook 131

A Algorithms 133

B Data sets 137

B.1 Abalone . 137

B.2 Cadata . 138

B.3 Cpusmall . 138

B.4 Feedback . 138

B.5 Housing . 139

B.6 Mpg . 139

B.7 Triazines and Pyrim . 139

B.8 Space-ga . 139

Abbreviations 141

vii

List of Figures

1.1 Examples of sensory neural prostheses . 2

1.2 Dependencies of algorithmic solutions . 4

2.1 Modality, location, intensity, and timing 6

2.2 The visual pathway . 10

2.3 Anatomical connections and information flow in visual cortex 11

2.4 Receptive fields of simple and complex cells 12

2.5 The retinotopic map . 13

2.6 Retinal implants . 15

2.7 Cortical implants for restoring vision . 17

2.8 The barrel cortex . 20

3.1 Example of a one-dimensional regression problem 27

3.2 Convergence of primal and dual regularized least squares 31

3.3 Comparison of l1 and l2 loss functions . 33

3.4 Robustness of l1 and l2 loss with respect to outliers 34

3.5 Family of loss functions . 35

3.6 Objective function of primal SVR problem with bias term 42

3.7 Three cases to be distinguished during the exact line search 43

3.8 Calculation of zero crossing . 44

3.9 Case where it is impossible to determine the minimum analytically 45

3.10 Comparison of dual SVR with l1- and l2-loss function. 48

3.11 Comparison of primal and dual SVR . 49

4.1 Online versus offline SVR training . 52

4.2 Different buffering strategies . 61

4.3 Newton, gradient, and scaled gradient descent directions 62

4.4 Online training with and without bias term 66

4.5 Comparison of buffering strategies . 67

4.6 Norma and Silk with different buffering strategies 68

4.7 Dependence of average iteration time on input buffer size 69

ix

List of Figures

4.8 Performance of Priona with different descent directions 70

4.9 Convergence of online algorithms . 71

4.10 Performance of online training algorithms with optimal buffer size 72

4.11 Performance of Priona with restricted buffer size 73

5.1 Relationship of point set distances and radius of the minimum enclosing sphere 78

5.2 The value of the span. 79

5.3 Example of Quasi-Newton optimization . 82

5.4 Average run time of gradient evaluations 83

5.5 Comparison of model selection methods . 84

5.6 Regions in the lnC - ln γ plane found by model selection methods 85

5.7 Selection of parameter C by minimizing the MSP bound 86

5.8 Comparison of MSP bound and CV error minimization 87

6.1 Spatial resolution of different recording techniques 91

6.2 Extraction of the local field potential . 92

6.3 Extraction of multi-unit activity . 93

6.4 Dependence of RBF kernel on parameter γ 96

6.5 Example of a two dimensional regression problem 97

6.6 Recording setup . 101

6.7 Example application of the ANOVA kernel 106

6.8 Results of the direct and inverse solution for the fb131208-r5 data set . . 108

6.9 Optimal time windows for the direct solution 110

6.10 ANOVA kernel performance for the lowest intensity range 112

6.11 ANOVA kernel performance for higher intensity ranges 113

7.1 Open versus closed loop stimulation . 115

7.2 Experimental setup for closed loop stimulation 117

7.3 Stimulus intensity histograms . 118

7.4 Asynchronous thread execution and communication 120

7.5 Optimal stimulus intensities predicted by SVR 121

7.6 Relationship of pulse width and threshold current 121

7.7 Results of closed loop stimulation . 123

x

List of Figures

7.8 Results of closed loop stimulation with noise control condition 124

7.9 Summary of closed loop stimulation experiments 125

7.10 Strength of stabilization effect in dependence of intensity range 125

7.11 Peak AUC value in dependence of cortical depth 126

7.12 AUC values in dependence of stimulation trial 127

7.13 Summary of closed loop stimulation experiments after removal of temporal
degradation . 128

xi

List of Tables

3.1 Values for hyper-parameters selected by 10-fold cross validation 47

4.1 Optimal buffer sizes for all online training algorithms 74

4.2 Optimal buffer sizes and learning rates for Norma and Silk 74

6.1 Retained variance after projection to PCA subspace 108

6.2 Best preprocessing methods for direct and inverse solutions 109

6.3 Ranges of kernel function parameters . 111

B.1 Overview of benchmark data sets . 137

xiii

It is the tension between creativity and skepticism
that has produced the stunning
and unexpected findings of science.

Carl Sagan (1934-1996) 1
Introduction

During their lifetime, humans constantly interact with their environment and other human
beings. All these interactions are composed of basic motor actions and sensory impressions.
Besides locomotion, the motor actions allow humans to manipulate their environment and
to communicate with other individuals. The perception of the surrounding environment
that is assembled from the activity of many sensory cells is crucial to judge the effect
of motor actions and to control them. Any disruption of sensory input or motor output
consequently leads to a severe loss in human quality of life.

The deprivation of sensory and motor interactions can be the result of chronic diseases or
traumatic injuries. Patients with stroke, amyotrophic lateral sclerosis, multiple sclerosis, or
spinal chord injuries for example suffer a loss of voluntary control over their motor actions.
Spinal chord injury is additionally accompanied by a loss of somatosensory input from the
paralyzed body parts. Yet, the most widely known sensory deficits are related to the visual
and auditory system in humans leading to blindness and deafness.

The diseases and injuries of the nervous system just adverted to are only a small number of
examples, but all of these deficits have in common that currently they are at best treatable
but not curable. Although a complete cure is certainly the final goal of ongoing medical
research, an important option to substantially improve the quality of life in the meantime
lies in the restoration of motor and sensory interactions with the help of biomedical devices
that can partially replace or bypass the injured parts of the nervous system.

One can distinguish two types of biomedical devices depending on the direction of infor-
mation flow. Devices that read out brain activity to restore locomotion or communication,
and thus provide an alternative efferent pathway from brain to muscles, are commonly
called brain machine interfaces [98, 126], or brain computer interfaces [9, 8]. Of concern
in this thesis are the second type of devices called sensory neural prostheses that enable
information flow in the opposite direction along afferent pathways. Sensory neural pros-
theses can partially restore lost sensory perceptions like vision [153, 33] and hearing [93]
by electrically stimulating particular parts of the central nervous system as illustrated in
figure 1.1.

Retinal implants as a way to restore vision are currently tested in clinical trials [154, 67, 49]

1

Chapter 1. Introduction

Figure 1.1: Examples of sensory neural
prostheses. For the cochlear implant sounds
are recorded over a microphone and trans-
formed to electrical stimulation pulses that
are delivered over an electrode placed inside
the cochlea. In a similar manner vision can
be restored by capturing the scene with a
camera and stimulating either the retina in
the eye (retinal implant) or primary visual
cortex (V1) in the brain (cortical implant).

while cochlear implants are already routinely used to treat deafness [65, 112]. Unfortunately
retinal and cochlear implants require intact optical and auditory nerves respectively – a
precondition that is not fulfilled by all patients. If visual deficits are caused by lesions at
later stages of the pathway cortical implants still offer the possibility to restore rudimentary
perceptions by direct stimulation in primary visual cortex (figure 1.1). Cortical implants
have a long history of investigations in humans [14, 43], and both surface electrodes [42]
and implanted micro electrodes [122] have been found suitable to elicit light perceptions,
called phosphenes, by electrical stimulation.

In contrast to stimulation in the first stages of a sensory system, as done by cochlear and
retinal implants, stimulation in cortical areas is complicated by the intricate connectivity
of the brain tissue and so far it has proven difficult to create stable visual perceptions
over longer time periods. Before cortical implants can be routinely applied there are three
fundamental problems that remain to be solved:

1. Temporal dependency of stimulation pulses leading to rapid accommodation. This
manifests itself by a gradual decrease of perceived phosphene brightness during con-
tinuous stimulation with constant pulse intensity [122].

2. Spatial dependency of stimulation pulses leading to context dependent perception of
phosphene properties like color an depth [122].

3. Interference of the background brain activity with evoked cortical potentials [1].

The work described in this dissertation proposes to continuously adjust the stimulation
intensity in dependence of the ongoing brain activity in order to stabilize evoked cortical

2

potentials and reduce the influence of the cortical state. This putative solution to the third
fundamental problem mentioned above will be subsequently called “adaptive microstimu-
lation”. The idea of adaptive microstimulation is supported by studies showing that the
large variability of cortical potentials evoked by stimulation with fixed parameters can be
attributed to the ongoing activity of the brain [1, 77, 26]. Further it is known that fluctu-
ating brain activity actually influences and modulates the processing of incoming sensory
signals [61, 118, 104] and that changes in local network activity alters the responsiveness
of cortical neurons [59]. Even though these findings underpin the principle of adaptive mi-
crostimulation it so far remains unclear whether the ongoing brain activity carries sufficient
information for establishing closed loop control of stimulation intensities.

The major contribution of this work is an empirical proof that adaptive microstimulation
can indeed stabilize evoked cortical potentials in the barrel cortex of anesthetized rats [18].
On the way to a suitable experimental setup several algorithmic problems materialized.
The first problem was the lack of prior work on how to solve the stimulus control problem
with machine learning algorithms. In addition it was unclear how to decode information
about the cortical state from recorded local field potentials and what parts of the pre- and
post-stimulus potentials were relevant for the control task. Due to the restricted time of 1-3
minutes between recording and feedback sessions another problem to be addressed was the
robust and quick selection of support vector regression (SVR) hyper-parameters. Later,
detailed analysis of the stabilization effect revealed a temporal dependence that is probably
caused by rapid out-dating of the offline trained SVR model. It was therefore necessary to
develop a suitable online SVR training algorithm that can be easily incorporated into the
existing experimental setup and does not require manual tuning of the learning rate.

For the stimulus control problem this thesis describes a direct and inverse approach where
the associated functions are estimated by SVR [17]. To exploit prior knowledge about
the structure of stimulation trials temporal information is incorporated by an application
specific ANOVA kernel function and optimal pre- and post-stimulus time windows are
identified. It is further proposed to solve the model selection problem by either minimizing
the minimum span bound or the cross-validation error by the Quasi-Newton algorithm
depending on the set of hyper-parameters to be selected. Finally, this work introduces a
novel online training algorithm for SVR, termed Priona, based on the idea of solving the
primal optimization problem [19]. The PRIONA algorithm is especially suited for real-time
environments since it is easy to trade-off between iteration time and convergence speed.
As an additional advantage over other state of the art online algorithms PRIONA does
not require tuning of a learning rate which facilitates its practical application (figure 1.2).

Besides these algorithmic aspects the time critical adjustment of stimulus intensities led to
several technical problems during the development of the experimental setup. Since optimal
stimulus intensities change on a millisecond time scale it was necessary to implement the
control algorithm in a real-time environment. This in turn required programming of driver
software for connecting with the recording and stimulation equipment and development of
a short latency serial interface to the stimulator hardware.

3

Chapter 1. Introduction

This dissertation has the following structure: The basic principles underlying perception,
the visual system, current implant technology to restore lost visual perceptions, and rat
barrel cortex, which is used as a model sensory system to study adaptive microstimula-
tion are described in chapter 2. After this introduction to the relevant fundamentals of
neurobiology chapter 3 explains the SVR algorithm, its formulation as primal and dual
optimization problems, and the incorporation of a bias term into the primal SVR formu-
lation. Further, this chapter contains an empirical comparison of l1/l2-loss functions and
the primal/dual solution approaches on various benchmark data sets. Chapter 4 describes
state of the art online training algorithms for SVR and proposes a novel online training
algorithm based on the primal SVR formulation. The state of the art algorithms are com-
pared to the new algorithm with respect to convergence speed and prediction precision
on different data sets. Chapter 5 deals with the problem of model selection and explores
how the SVR hyper-parameters can be selected efficiently by either minimizing a bound
on the leave one out error or by directly minimizing the cross validation error. The ap-
plication of SVR to the problem of adaptive microstimulation is discussed in chapter 6,
which comprises a comparison of the direct and inverse modelling approach in conjunction
with different feature extraction methods, and a comparison of standard kernel functions
with an application-specific kernel. Chapter 7 introduces the experimental setup used for
online feedback and presents results that show the feasibility of adaptive microstimulation.
Chapter 8 summarizes the contributions of this thesis and gives an outlook on future ex-
perimental investigations and algorithmic developments. Finally appendix A contains a
formal description of the algorithms and appendix B gives detailed descriptions of all data
sets.

Figure 1.2: Dependencies of algorithmic solutions.

4

In the kingdom of the blind,
the one-eyed man is king.

Desiderius Erasmus
(1466-1536) 2

Perception

Imagine you are on a walk through a forest in autumn, the sight of the colorful leaves in
shades of claret-red to golden yellow, the smell of the musty earth and the rustling sound
of fallen leaves and branches on the ground disturbed by your stride. These impressions
are all examples of sensory perceptions that are made accessible to us by receptor cells
which are sensitive to a particular kind of stimulus. From our personal experience per-
ceptions seem like a perfect copy of the surrounding world. But our brain does not work
like a movie camera that passively records the environment. Rather it constructs repre-
sentations of external events based on its functional anatomy and the dynamic activity of
populations of nerve cells. These representations are the product of information processing
occurring at different stages along the path from receptor cells to the brain. Although the
sensory systems responsible for vision, hearing, touch, smell, and taste convey information
about different physical stimuli there are common principles for information processing.
Understanding the basic principles and the functional properties of neurons in the sensory
systems is crucial when it comes to restoring lost sensory functions, which are caused by
interruption of information flow at one of the processing stages.

2.1 Principles of sensory processing

Modality, location, intensity and timing are the four basic types of information that all
sensory systems transmit upon stimulation, a fact that was revealed by the early work on
psychophysics by Weber and Fechner. Bound together these four stimulus attributes yield
sensation.

2.1.1 Modality

The five classical major modalities comprise vision, hearing, touch, taste, and smell. More
recently the somatic senses of pain, temperature, itch and proprioception and the vestibular
sense of balance were added to the classic modalities. Each modality is determined by the
type of stimulus energy and the sensory receptors. For example, the only detectors for

5

Chapter 2. Perception

the stimulus energy of electromagnetic waves in humans1) are the photoreceptors in the
retina that give rise to the modality of vision, while there are several receptors for chemical
stimulus energy resulting in the modalities of taste, smell, and itch. These receptors form
the first stage in each sensory pathway and transduce the stimulus energy into an electrical
signal called the receptor potential. Since most sensory receptors are selective only for a
single type of stimulus, a property called receptor specificity, modality is represented by a
labeled line code inside the nervous system.

Figure 2.1: Modality, location, intensity, and timing are four stimulus attributes
encoded by a sensory system. These attributes are illustrated for the modality of
touch. A: The submodalities of touch are sensed by different mechanoreceptors in
the human hand. Activation of Merkel cells and Ruffini endings creates sensations
of steady pressure while Meissner’s and Pacinian corpuscles convey the sensation
of vibration. B: Location and spatial properties are encoded by the spatial dis-
tribution of activated receptors. Single receptors fire only when the area of skin,
as illustrated by the red shading, is touched. This area differs in size and is called
the receptive field. C: Spike trains evoked by touch in the center of the receptive
field. The intensity of the stimulus is signaled by the firing rate while the duration
is encoded by the time course of the spike train. Adapted from [73].

1) Sharks additionally have receptors for weak electric fields of low frequency (0.1-40Hz) called Lorenzian
ampullae [46].

6

2.1. Principles of sensory processing

This means that the axon of each receptor can be seen as a communication channel specific
to a certain modality and thus excitation of a sensory neuron, either via a natural stimulus
or by electric stimulation, elicits the same sensation. When it comes to restoring auditory
perception in patients with damaged receptors in the inner ear, the labeled line code
can be exploited, as electrical stimulation of the auditory nerve can be used to signal
tones of different frequencies. Since receptors are usually tuned to a narrow range of
stimulus intensities, each major modality has several constituent submodalities that signal
qualitative aspects of the stimulus. Examples of submodalities for touch are temperature,
texture, and, rigidity (see figure 2.1).

2.1.2 Location

Location about a stimulus is conveyed to the nervous system by the spatial layout of
receptors within a sensory organ. For somatic sensation and vision it is important to
locate the stimulation site on the body or in space, to discriminate the size and shape of
objects, and to resolve the fine detail of the stimulus or environment.

The first task is achieved by the receptive field of a sensory neuron, which is the set of all
locations in the environment where a stimulus can activate the neuron. In touch this is the
area of skin where a tactile stimulus can be conducted to the nerve terminals. Receptive
fields also help in distinguishing the size and shape of objects since stimuli larger than the
receptive field will activate adjacent sensory neurons. Thus the total number of activated
adjacent receptors encodes information about stimulus size and shape. If the density of
receptor cells in a given part of the body is high the receptive field of each receptor is
small and therefore the population of sensory neurons provide fine spatial resolution. On
the fingertips and the central part of the retina spatial discrimination is acute, while it is
coarse on the trunk and the outer margins of the retina which is caused by the nonuniform
receptor densities in the visual and somatic system. These differences in receptor density
and the topographic arrangement of afferent inputs are reflected in the maps of the body
present in the central nervous system. Body parts innervated by a high number of sensory
neurons are represented by larger cortical areas while sparsely innervated regions occupy
smaller areas. Contrary to this topographic arrangement of receptors for vision and somatic
sensation, the spatial arrangement of receptors for hearing, taste and smell follows the
energy spectrum for these modalities. Thus, the ordering of receptors in the auditory
system according to sound frequency leads to a tonotopic map in cortical areas.

2.1.3 Intensity

The relationship between physical intensity of a stimulus and the subjective sense of in-
tensity is described by the laws of psychophysics. From experience we know that it is easy
to distinguish 1 kg from 2 kg whereas it is difficult to discern 50 kg from 51 kg. This phe-
nomenon is present in all sensory systems and can be expressed by the following equation

7

Chapter 2. Perception

known as Weber’s law postulated in 1834:

∆S = K · S,

where ∆S is the minimal difference between a reference Stimulus S and another stimulus
that can be discriminated, and K is a constant. By assuming that ∆S corresponds to
equal increments in the subjective sense of intensity Fechner extended Weber’s law in 1860
to describe the relationship between the stimulus strength S and the intensity of sensation
I experienced by a subject:

I = K logS/S0,

where S0 is the threshold amplitude of the stimulus, and K is a constant. Later Stevens
discovered in 1957 that, when subjects are asked to describe subjective sense either by
reporting numbers or by selecting an equivalent intensity in another modality, the rela-
tionship is better described by power functions:

I = K(S − S0)n,

with modality specific exponent n. Although this seems contradictory, Mac Kay showed
that Stevens’ power law should be experimentally observable if there is a logarithmic
relation between physical stimulus and subjective sense of magnitude, and if the subjective
sense of numbers is also logarithmic. More profoundly this implies that there are a great
number of laws that lead to emergence of the power law [71]. Clearly this ambiguity cannot
be resolved without examination of the internal mechanism, e.g. the neural representation
of intensity. This was investigated by Mountcastle [94], who found that the sense for
subjective intensity linearly depends on the firing rate of sensory neurons. Stimuli with
higher intensity lead to receptor potentials with large amplitude which allows the sensory
neuron to reach the firing threshold earlier in the relative refractory period. Besides this
rate code stimulus intensity is represented by a population code since strong stimuli activate
a greater number of receptor cells. It is important to know these psychophysical laws when
sensory perceptions are restored by direct electrical stimulation of neurons. For example,
the findings described above imply that a linear range of stimulus intensities is appropriate
to cover the full range of subjective sense of intensity.

2.1.4 Timing

Timing properties of a stimulus are encoded by changes in the firing rate of sensory neurons.
When the skin is indented by a probe, the firing rate of mechanoreceptors is proportional to
the indentation speed and the total amount of applied pressure [94]. But after some time of
steady pressure the firing rate decreases to a level that is proportional to skin indentation
and stops when the probe is retracted. If a stimulus is presented for several minutes without
change in position or amplitude the firing rate ceases, an effect called adaptation. Receptor
cells can be distinguished by the speed of adaptation. Slowly adapting receptors have slow
inactivating Na+ or Ca2+ channels or calcium-dependent K+ channels and signal stimulus

8

2.2. The visual system

magnitude for several minutes by continuous firing of action potentials. Rapidly adapting
receptors signal the velocity changes in stimulus intensity. Some of these receptors have a
fast inactivation mechanism that prohibits spike generation while for others the anatomical
structure of the receptor filters out steady state components, as is the case for the Pacinian
corpuscle.

2.1.5 Sensory systems

The view of a painting by Salvador Daĺı and the sounds of speech are conveyed to the brain
by two sensory systems for the modalities of vision and hearing. Despite the differences in
transduction of stimulus energy into an electric signal by the receptors all sensory systems
share common functional and organizational principles. Activity in the receptors is trans-
ferred to neurons in the relay nuclei of the brain stem and from there to the thalamus and
finally to the sensory areas of cortex. This route of information flow is commonly referred
to as a sensory pathway.

Although the organizational principles are similar, sensory systems differ in their complex-
ity between different modalities and stages along the sensory pathway. The most intricate
sensory system in humans, for example, is the visual system where the complexity of in-
formation processing increases along the pathway from retina to primary visual cortex.

To understand the capabilities and limitations of current implant technology for restoring
visual perception, described in section 2.3, it is important to know putative stimulation
targets on the sensory pathway, as well as the properties and organization of the underlying
neural network. Section 2.2 therefore gives a brief introduction to the visual system.

2.2 The visual system

The main parts of the visual system are the retina inside the eyeball, the lateral geniculate
nucleus (LGN) in the thalamus, and the primary visual cortex (V1). Each of these parts is
involved in visual information processing at different levels of abstraction which starts when
light is transduced into an electrical signal by the receptor cells in the retina. Visible light
is electromagnetic radiation with a wavelength of 400-700nm and a speed of approximately
300000km/s in vacuum. Physical properties of electromagnetic radiation are intensity,
frequency or wavelength, and polarization. The human visual system can only perceive
the first two properties, also called luminance and color, while honeybees can additionally
perceive the polarization of light and use it for orientation [148].

Light is converted into electric current in a process called phototransduction by rod and
cone photoreceptor cells in the retina. In contrast to the auditory system, where hair cells
form direct connections with the ganglion cells, the rod an cone cells are connected to
the ganglion cells through lateral and vertical pathways consisting of horizontal, amacrine,
and bipolar cells. This retinal network gives rise to a concentric receptive field structure

9

Chapter 2. Perception

in ganglion cells. When light falls on the center of the receptive field, on-center ganglion
cells are excited and off-center ganglion cells inhibited, while light falling on the surround
part leads to the reverse response behaviour. The concentric shape of the receptive fields
helps to detect changes in stimulus intensity (section 2.1.3). Further one can distinguish
magnocellular ganglion cells, or M cells, with large receptive fields specialized on analyzing
motion and parvocellular ganglion cells, or P cells, with small receptive fields responsible
for perception of color and form [73].

Figure 2.2: The visual pathway. A: Horizontal view of the visual pathway. The
left visual field is projected on the nasal part in the retina of the left eye and
the temporal part of the retina in the right eye. Since information about the
left visual field is processed in the right cortical hemisphere the optic nerve fibers
split at the optic chiasm and cross to the other side. The LGN in the thalamus
comprises six layers that receive exclusive input from the ispi- or contra-lateral
eye. Magnocellular ganglion cells project to the first two layers and give rise to
the magnocellular pathway that terminates in V1. The parvocellular pathway is
the second input channel to V1 and starts in the remaining four layers of LGN. B:
Sagittal view of the visual pathway. Besides the LGN important other projection
targets of the optic nerve are the pretectum and superior colliculus.

2.2.1 Visual pathways

The optic nerve is formed by the axons of retinal ganglion cells and it contains more
than 1 million fibers for each eye. The first station in the visual pathway is the optic

10

2.2. The visual system

chiasm, where the optic nerve fibers split and cross to the other side of the brain. This
crossing is necessary as the left visual field is perceived by the nasal part of the left, or
ipsi-lateral, eye and the temporal part of the right, or contra-lateral, eye (figure 2.2A).
The next projection targets on the visual pathway are the superior colliculus, concerned
with controlling saccadic eye movements and the integration with other sensory inputs, the
pretectum, containing the reflex circuit for pupillary constrictions, and the LGN, which is
the principal relay station for visual information on its way to V1. After disruption of the
LGN pathway visual perception is lost, although movement towards objects in the visual
field is still possible. It is speculated that this residual vision, called blind sight, is due to
an indirect pathway through the superior colliculus [73].

Throughout the visual pathway to the primary visual cortex the axons from the magno-
and parvocellular ganglion cells remain segregated (figure 2.2B) which implies that there
are two parallel information channels to the visual cortex called the M and P pathways.
Neurons in the LGN have the same concentric structure as the ganglion cells in the retina
indicating that the LGN is mainly a relay station for visual information. The primary
visual cortex is the first point in the visual pathway where receptive fields are significantly
different from those in the retina.

Figure 2.3: Anatomical connections
and information flow in visual cortex.
The M and P pathways from LGN are
the main inputs that terminate in lay-
ers 4Cα and 4Cβ of V1. Cells that
lie between the layers in LGN provide
input to layer 2/3 in visual cortex. Im-
portant intracortical connections are
formed by axon collaterals of pyrami-
dal cells in layer 2/3 and layer 5. Fur-
ther there is a loop back connection
from layer 6 to layer 4C. Every layer,
except 4C, has output connections to
neighboring V1 areas. While cells in
layer 2/3 and 4B project to other cor-
tical areas, cells from layer 5/6 project
back to sub-cortical areas.

2.2.2 Cortical processing

The primary visual cortex or visual area 1 (V1), is located in the occipital part of the
cortex (figure 2.2B). In humans it is about 2mm thick and contains six layers of cells
between the cortical surface and the underlying white matter. In comparison to other

11

Chapter 2. Perception

cortical areas it has a prominent layer 4 that is further subdivided into sub-layers 4A, 4B,
4Cα, and 4Cβ. Layer 4 is the principal layer that receives input from the LGN. The axons
from the M pathway terminate in layer 4Cα and those from the P pathway in layer 4Cβ
(figure 2.3). Axons from cells between the LGN layers form the intra-laminar input to V1
and terminate in layer 2 and 3 in patches of cells called blobs that are mainly concerned
with color processing. After processing of visual information in V1 the output is directed
to sub-cortical areas like the superior colliculus or LGN via layers 5 and 6, while output
to other cortical areas occurs via layer 2 and 3 (figure 2.3).

The cortical processing reflects itself in the receptive field structure of neurons. By studies
in layer 4 of visual cortex in cats Hubel and Wiesel [66] identified two different types of
neurons: simple cells and complex cells. Simple cells are only excited by light bars with a
certain orientation and their receptive fields consequently have rectangular inhibitory and
excitatory zones (figure 2.4A).

Figure 2.4: Receptive fields of simple and complex cells. A: The receptive field
structure of simple cells in primary visual cortex is revealed by presentation of
light bars with different orientation and observation of a cells response. Simple
cells are best activated by light bars with a specific orientation. The elongated
excitatory and flanking inhibitory zones of simple cell receptive fields may result
from the superposition of several center surround receptive fields of ganglion cells.
B: Complex cells respond with high firing rates to light bars that move in a certain
direction. The receptive field of complex cells could result from the superposition
of simple cell receptive fields.

On a larger scale V1 is organized into columns that extend from the cortical surface to
the white matter and contain cells with similar receptive fields. Orientation columns are
30 to 100µm wide and 2 mm deep and contain cells in layer 4C with concentric receptive
fields. Below and above this layer there are simple cells with identical axes of orientation
that are responsive to stimuli at a particular position in the visual field. A complete set of
orientation columns that represent all orientation angles between 0 and 180◦ for the same
visual position are arranged in a circular structure like a pinwheel, termed hyper-column.
The arrangement of hyper-columns is occasionally interrupted by patches of cells called
blobs that are not orientation sensitive but respond to different color stimuli. In addition

12

2.3. Current implant technology

to orientation columns and blobs, V1 is organized in ocular dominance columns, where
cells receive exclusive input from the ispi- or contra-lateral eye.

Cortical columns with similar function for different spatial positions are linked through
horizontal connections. To represent the location attribute of a stimulus (section 2.1.2),
the visual system uses a place code since neighboring hyper-columns in V1 are activated
by stimuli in neighboring positions of the visual field. This place code gives rise to a
retinotopic map that can be exploited to restore visual perception by cortical implants,
as described in section 2.3.2. In the retinotopic map the lower part of the visual field is
mapped to the cortical area above the calcarine fissure and vice versa. The region of the
fovea is represented by a large portion of the cortical surface and is mapped to the lateral
part of V1 (figure 2.5).

Figure 2.5: Representation of the visual field on the surface of primary visual
cortex. Due to the crossing of fibers in the optic chiasm, the left visual field is
mapped to the right cortical hemisphere and vice versa. The calcarine fissure
separates the representation for the upper and lower half of the visual field. The
region around the fovea in the visual field is highly magnified and occupies about
half of the cortical surface area in V1.

2.3 Current implant technology

Worldwide there are 37 million blind people, with more than 90% of the world’s visual
impaired living in developing countries. On a global scale cataract, an opacity of the lens,
is the main cause for blindness followed by glaucoma, which involves loss of retinal ganglion
cells, and age-related macular degeneration, where abnormal blood vessel growth under the
central retina leads to degeneration of cells. While age-related macular degeneration ranks
third globally, it is the main cause for visual impairment in the most developed countries,
due to the growing number of people over 70 years of age [150]. Current clinical trials that
attempt to restore visual perception with retinal implants, described in section 2.3.1, focus
on patients with age-related macular degeneration or patients with retinitis pigmentosa, a

13

Chapter 2. Perception

hereditary disease that leads to a loss of photoreceptors. Retinal implants, the analogue
to cochlear implants in the auditory systems, bridge the first stage of visual perception
by direct stimulation of bipolar of ganglion cells in the retina. This requires an intact
retinal network, or at least undamaged ganglion cells. For patients with strokes of the
optic chiasm and optic nerve atrophy the normal flow of visual information is disrupted at
later stages of the visual pathways which renders retinal implants useless. This is also the
case for patients with end-stage retinitis pigmentosa, as it involves abnormal connections
formed by amacrine or horizontal cells [33]. Restoring visual perception in these patients
is possible by electrical stimulation of primary visual cortex, an approach that is pursued
by cortical implants described in section 2.3.2.

2.3.1 Retinal implants

Electric stimulation of the human eye was already known in the beginning of the 18th
century to elicit artificial sensation of light called phosphenes. The first retinal prosthesis
proposed in a patent by Tassiker [135] consisted of a light-sensitive selenium photodiode cell
placed behind the retina. Nowadays retinal implants under research can be distinguished
by the placement of the stimulation electrodes. In epiretinal implants electrodes are located
on top of the ganglion cells, while subretinal implants place electrodes above the pigment
epithelium (figure 2.6).

For epiretinal implants the visual scene is captured by a small camera mounted on glasses
or by a field sensor situated in an intra-ocular plastic lens. A video processor converts
the video stream into a train of stimulation pulses that are delivered over an electrode
array attached to the inner retinal surface separating the ganglion cell layer from the
vitreous body of the eye (figure 2.6). Communication between the video processor and
the electrode array either occurs over shielded wires or trans-cutaneous radio frequency
telemetry [87]. In clinical trials [67, 49] with epiretinal implants phosphene perception
could be evoked by biphasic current pulses of 24-702µA amplitude and 1ms duration.
Non-flickering perceptions were achieved by stimulation frequencies between 40 and 50Hz
and some patients were able to detect movements. Compared to subretinal implants the
epiretinal approach is less invasive, does not occlude retinal vasculature, can be monitored
ophthalmoscopically, and does not require intact optics, like a clear lens [33]. On the
downside epiretinal implants complicate the encoding of visual information and cannot
guarantee a consistent relationship between the phosphene map and electrode positions,
by stimulating the ganglion cell layer instead of the remaining retinal network [33].

In the subretinal implant light entering the eye is transformed into stimulation currents by
microphotodiode array located on top of the pigment epithelium (figure 2.6). The generated
electric current stimulates the overlying bipolar cells and leads to a more natural excitation
of ganglion cells through the remaining retinal network [153, 52]. A subretinal implant
comprising 1500 microphotodiodes, amplifiers, and a 4x4 array of stimulation electrodes
was chronically implanted in two retinitis pigmentosa patients in a recent clinical trial [154].

14

2.3. Current implant technology

Figure 2.6: Two types of retinal implants. For epiretinal implants light is either
captured by a camera mounted on glasses or a field sensor that replaces the natural
lens. The encoded visual information is used to directly stimulate ganglion cell
axons by electrodes placed on top of the retina. The subretinal implant – a
silicon plate carrying thousands of microphotodiodes and stimulation electrodes
– is located in front of the pigment epithelium and replaces lost photoreceptors.
Light reaching the photodiodes is converted into electric currents to stimulate
cells of the retinal network.

Depending on the spatiotemporal activation pattern of the electrodes patients were able
to perceive single phosphenes, lines or squares and could distinguish between lines having
vertical or horizontal orientation. Furthermore patients were able to correctly describe the
direction of dot movements [154].

2.3.2 Cortical implants

Cortical implants attempt to restore visual perception by direct stimulation of primary
visual cortex. Because of the retinotopic map (figure 2.5) electric stimulation of neighbor-
ing cortical areas elicits perception of phosphenes at neighboring locations in the visual
field. Direct stimulation of visual cortex, as opposed to stimulation of the retina, has the
advantage that the cortical area occupied by the central visual field is highly magnified.
Two degrees of the central visual field occupy about 1mm2 on the retina but approximately
2000mm2 on the cortex [33]. Unfortunately a part of the central visual field lies hidden
in the calcarine fissure (figure 2.5), and is not accessible to surface stimulation. There are
two different types of cortical implants that either use surface electrodes or intracortical
electrodes for stimulation.

15

Chapter 2. Perception

Surface electrodes

The use of surface electrodes for cortical stimulation has been pioneered by Brindley [14]
and later Dobelle [43]. Initially Brindley used an array of 80 square silicon-insulated
platinum electrodes with an area of 0.64mm2. In later studies the number of electrodes
was increased to 151. These arrays were implanted above the pial surface of visual cortex
and were connected through wires to the extra-cranial part of the implant, which comprised
an array of radio receivers. Electromagnetic induction was used to activate single receivers
and stimulate a single electrode. Upon stimulation of single electrodes implanted patients
commonly perceived single phosphenes with constant position in the visual field, although
stimulation via some electrodes led to perception of several phosphenes or diffuse clouds of
light points. Furthermore patients could distinguish the position of two phosphenes when
the corresponding stimulation electrodes were between 2 and 4mm apart.

Later the Dobelle group [42] combined this basic cortical implant with a camera mounted
on a pair of glasses. The data recorded by the camera is processed by a belt-mounted
laptop computer that uses the Sobel edge detection algorithm for analyzing the visual
scene (figure 2.7). In a first study four blind patients received this implant which was
limited to 64 stimulation electrodes and one side of the visual cortex. After ten days of
training one patient could recognize letters of 15cm2 size at a distance of 1.5 meters [42].
In a more recent clinical trial in Portugal in 2002 a group of 16 blind patients received
bilateral cortical implants with 72 stimulation electrodes. Although these trials received
great media attention [80] including a video showing an implanted patient driving a car
around an empty parking lot, there have been no publications about the quantitative visual
performance of patients or long-term stability of the visual prosthesis yet.

Besides risks associated with brain surgery and bio-compatibility, surface electrodes are
the least invasive cortical implant, but there are also a number of disadvantages. To create
perception of phosphenes, surface electrodes require high stimulation currents of 0.5-5mA,
which enhances the risk of seizures and necessitates electrodes with large surface area to
avoid electrochemical degradation. Large electrode areas in turn lead to a low spatial
resolution around 3mm and increased current spread [14]. Since the surface electrodes are
placed on top of the pia mater, stimulation can in some cases lead to headaches, presumably
by activation of pain fibers in the meninges [33]. Another problem that cortical implants
have in common with epiretinal implants is the motion of phosphenes during voluntary eye
movements. Interestingly phosphenes retain their spatial position during eye movements
caused by the vestibular reflex [14].

Microelectrodes

In comparison with surface electrodes, stimulation of visual cortex via intracortical mi-
croelectrodes has the advantage that lower stimulus currents in the range of 10 to 20µA
are sufficient to evoke perception of phosphenes. This reduces the risk of causing seizures,
allows microelectrodes to be more densely packed on a single array than surface electrodes,

16

2.3. Current implant technology

Figure 2.7: Cortical implants for restoring vision. A: Intracortical implants use
microelectrodes with a tip distance of 500µm that penetrate the cortical surface.
Surface electrodes used by Dobelle [42] have a diameter of 1mm and are implanted
above the pial surface. B: X-ray picture of 64 surface electrodes implanted on
the surface of primary visual cortex. C: The visual scene is recorded by a camera
mounted on a pair of glasses. D: A belt-mounted laptop computer is used to
analyze the camera data and determine appropriate stimulation currents that are
delivered via the implanted electrode array.

and improves the spatial resolution of evoked phosphenes. Experiments with intracortical
stimulation in one human subject showed that two different phosphenes could be discrimi-
nated when stimulation sites were 500µm apart, which is about five times better than the
spatial resolution achieved with surface electrodes [122]. Prior psychophysical studies with
healthy human subjects that used a simulated intracortical visual prosthesis with a 25 ×
25 electrode array demonstrated that this resolution is sufficient to restore mobility and
reading in blind subjects [24, 25]. The main drawback of intracortical microelectrodes is
the higher risk to damage neural tissue, but recently special techniques for safe insertion
of electrodes have been developed [99].

So far the feasibility of a visual prosthesis based on intracortical microelectrodes has been
tested only in a single patient [122]. The cortical implant consisted of 38 iridium electrodes
that were placed in the right visual cortex for a period of 4 months. Similar to the experi-
ments with surface electrodes the patient perceived discrete phosphenes upon stimulation
with a single electrode. The positions of phosphenes were consistent with the placement of
the electrode array and the retinotopic map in primary visual cortex. Phosphene bright-
ness could be adjusted by changing stimulus amplitude, frequency and the pulse duration,
while phosphene size usually decreased with higher stimulation currents and increased
with longer stimulation trains. In contrast to surface stimulation, where phosphenes were
always described to have a yellowish or grayish color, the patient with the intracortical
implant could perceive colored phosphenes when the stimulation amplitude was close to
the threshold current. Furthermore phosphenes appeared at different distances from the
subject [122]. From these findings one can conclude that stimulation of visual cortex with

17

Chapter 2. Perception

microelectrodes can evoke richer visual percepts in comparison to stimulation with surface
electrodes.

2.4 Unsolved problems of cortical implants

In contrast to sensory neural prostheses that target the first stage of a sensory system, like
retinal implants (section 2.3.1), cortical implants have to cope with problems caused by
the inherent complexity of the cortical neural network. The unsolved problems of cortical
implants are temporal degradation of phosphenes, interaction of adjacent stimulation sites,
and interference of ongoing brain activity with stimulus evoked potentials.

The temporal decrease in phosphene brightness during stimulation over several minutes,
reported in [122], is due to an accommodation of cortical neurons to repeated stimuli with
fixed parameters. Further, experiments in this study revealed three types of phosphene
interaction. First, simultaneous stimulation of adjacent electrodes caused a reduction of
threshold currents that are required to produce phosphenes in comparison to the non-
simultaneous stimulation. Second, alternating stimulation of an adjacent electrode pair
resulted in a loss of individual phosphene attributes like color and form that could be per-
ceived during single electrode stimulation. Third, the apparent depth of a single phosphene
changed when additional electrodes in the array were stimulated [122]. For more than two
phosphenes similar interactions were found, e.g. the simultaneous activation of six elec-
trodes required the adjustment of single microelectrode currents before the patient could see
all phosphenes at the same time. In conclusion these interactions indicate that phosphene
creation is highly dependent on the stimulation context in cortical implants.

Beside the interactions of phosphenes that are caused by electric stimulation itself an-
other source that can interfere with the stimulation effect is the background activity of
the brain [1, 118, 26]. As described in section 2.2.2 the neurons in visual cortex form
intricate local connection patterns and receive input from distant sub-cortical structures.
Even without explicit visual input these connections can lead to a dynamically changing
excitability of neural elements like cell bodies and axons [116, 39], which will in turn result
in different visual perceptions as long as the parameters of the stimulation pulses are held
fixed.

On the way to produce a pixelized vision system, like the one envisaged by Cha [24], by
implants using intracortical microelectrodes, the problems of accommodation, context de-
pendency, and interference of the background brain activity have to be solved in order
to evoke stable visual percepts of simple geometric forms like lines and squares and let-
ters. In the same experiments that revealed the interactions between phosphenes it was
observed that manual adjustment of the stimulation parameters could disentangle some
of the interactions [122]. This indicates that a stable visual percept might be achieved
by continuous adaptation of the stimulation parameters based either on contextual infor-
mation from evoked potentials of neighboring stimulation electrodes or the information

18

2.5. Model sensory system: rat barrel cortex

provided by the background activity of the brain. Subsequently this approach will be
termed adaptive microstimulation.

The primary objective of this thesis is to answer the following question: Can adaptive
stimulation be used to stabilize sensory percepts? Up to now there has been no previous
work investigating adaptive microstimulation and hence the experimental setup for an-
swering above question is chosen to be as simple as possible. As a first simplification the
work concentrates on the information that can be extracted from the background brain
activity since gathering contextual information requires several stimulation electrodes that
are harder to handle experimentally. For contextual data it is also difficult to cover the
space of stimulus parameters due to multiple stimulation sites. Therefore the experiments
described in chapter 7 are restricted to a single stimulation and recording electrode. Of
course these experiments cannot be conducted in the visual system of humans. A suit-
able model system for testing adaptive stimulation would be the visual system of primates
which is one of the most investigated sensory systems in mammals. But primates are elab-
orate to handle and thus not suited given the explorative nature of the experiment where
many animals are expected to be needed. Fortunately all sensory systems share common
organizational principles, as described in section 2.1, which gives the opportunity to in-
vestigate the adaptive stimulation approach in a sensory system different from the visual
system. The sensory system used as a model in the experimental part of this thesis is the
somatosensory cortex of rats, called barrel cortex, described in section 2.5. Further, the
experiments exploring adaptive microstimulation will use anesthetized animals to avoid
any difficulties associated with wake behaving rats, like poor signal quality, artifacts, and
limited recording time.

2.5 Model sensory system: rat barrel cortex

The barrel cortex of rats is a special part of the somatosensory cortex where information
acquired by the whiskers is processed. With their whiskers rats and other rodents can
locate objects, build spatial representations of their environment and discriminate between
textures that have small differences in granularity. Except for the latter task humans
would rely on visual cues. This explains why the visual system in humans occupies a
large portion of the cortical surface. The visual system is less important for rats since
they are nocturnal animals that live in tunnels where sensory perceptions picked up by the
whiskers are more informative about the environment. Consequently, the somatosensory
system of rodents is highly developed and covers a large part of the rodent brain. Woolsey
and Van der Loos were the first to discover the remarkable anatomical structure of the
primary somatosensory cortex of rats where each whisker is represented by a discrete and
well-defined cluster of cells in layer 4 that looked like a barrel [149]. Later barrels were also
discovered in other rodents like mice, gerbils and hamsters as well as in rabbits, ferrets and
wallabies [50]. In the years following the initial discovery by Woolsey the barrel cortex

19

Chapter 2. Perception

Figure 2.8: The barrel cortex in rats represents sensory information acquired by
the whiskers. A: Deflection of a whisker evokes action potentials in the sensory
neuron that is conveyed to the trigeminal nuclei in the brain stem (1). Brain
stem neurons project to the thalamus (2) and axons of thalamic neurons finally
terminate in the primary somatosensory cortex, termed barrel cortex (3). B:
The somatotopic map in barrel cortex shown on the left follows the layout of
the whiskers on the snout of the rat. Whiskers and barrel are labeled according
to rows (A-E) and arcs (1-3). Deflection of the D2 whisker leads to excitation
of neurons in the D2 barrel. C: Pathway from whisker to barrel cortex. The
trigeminal nuclei and the thalamus have somatotopic maps called barrelettes and
barreloids. Major input to the barrels in cortical layer 4 comes from a pathway
over nucleus principalis and the ventral posterior medial thalamus. A secondary
pathway over nucleus interpolaris and the posterior medial thalamus provides
input to cortical layer 5A and layer 1. For simplicity other trigeminal nuclei and
projection targets are omitted.

20

2.5. Model sensory system: rat barrel cortex

became a popular research subject in neuroscience. The reasons for this are the easy
experimental access to the barrel cortex and the theoretical connection between barrels and
the cortical column that is supposed to form the basic functional unit in cortex. Under the
columnar hypothesis the cortex is composed of vertical structures called columns that are
aligned orthogonal to the cortical surface and cross the six cortical layers. Each column
has a diameter of about 300µm and contains a local neural circuit that is assumed to
be identical in all columns. Neighboring columns only differ in the input they receive
from the thalamus [50]. So far this hypothesis seems to be valid in the visual system,
where neighboring hyper-columns process information from neighboring areas of the retina
(section 2.2.2), and in the barrel cortex, where neighboring columns represent neighboring
whiskers on the snout (figure 2.8).

The transfer of sensory information to barrel cortex begins with the deflection of a whisker.
Although the precise molecular mechanism is still unknown the deflection is thought to
open mechano-gated ion channels in the dendrites of sensory neurons that innervate the
hair follicle [103]. The action potential elicited by the depolarization is propagated over
the trigeminal nerve to the four trigeminal nuclei in the brain stem, called principalis,
oralis, interpolaris, and caudalis. Each sensory neuron only innervates one whisker and
forms excitatory glutamatergic synapses in the brain stem nuclei. Neurons in the nucleus
principalis are somatotopically arranged into structures called barrelettes, since they re-
semble the layout in the barrel cortex. Similar to the visual system, where information is
transferred separately in the M- and P-pathways, the sensory information that arrives in
the trigeminal nucleus is split up into a main pathway over the nucleus principalis that
projects to the ventral posterior medial (VPM) nucleus of the thalamus and a secondary
pathway over the nucleus oralis that projects to the posterior medial nucleus (POM) of
the thalamus. Besides additional projections to the pretectum and superior colliculus the
brain stem nuclei provide input to the nucleus facialis that forms a feedback connection to
the muscles in the whisker pad. This early feedback connection is important due to a lack
of spindle organs in the whisker pad muscles [50].

At the next stage of the pathway in the VPM nucleus of the thalamus the neurons are again
somatotopically arranged in anatomical units called barreloids. The axons of neurons in
the barreloids finally terminate on neurons in layer 4 of the primary somatosensory cortex
that make up the barrels. The spatial arrangement of the barrels is almost identical
to the layout of the whiskers on the snout of the rat (figure 2.8). Layer 1 and 5A of
the primary somatosensory cortex as well as the secondary somatosensory cortex and the
motor cortex receive input from the neurons in the POM nucleus of the thalamus. In
anesthetized animals this secondary pathway is unlikely to contribute to sensory processing
since neurons in the POM nucleus are inhibited by GABAergic neurons from zona incerta2).
Yet, the POM receives strong excitatory input from cortex and the inhibition depends
upon the brain state. So the POM pathway may play an important role during active
exploration [103].

2) A narrow band of gray matter between the subthalamic nucleus and thalamic fasciculus.

21

Chapter 2. Perception

At a first glance the pathway from whiskers to the barrel cortex seems to be straightforward
but there are important differences in the processing of sensory information between the
relay stations and the cortex. First, neurons in the trigeminal nuclei respond with great
reliability to whisker deflection whereas neurons in the barrel cortex show huge response
variability across trials with identical whisker stimuli. This variability is mainly driven
by interactions with the background brain activity [118] which makes the barrel cortex a
suitable model system to study adaptive stimulation as outlined in section 2.3.2. Second,
the receptive fields of a single whisker are narrow in the trigeminal nucleus and broad in
the barrel cortex [103].

Considering the functional organization of barrel cortex one could ask whether there are
additional functional maps besides the somatotopic layout in analogy to the visual system
with its ocular dominance and orientation selectivity maps (section 2.2.2). Although there
are cell clusters in layer 4 of barrel cortex that preferentially respond to similar directions
of whisker deflections, the direction tuning does not appear to be organized in an orderly
map. But there are indications for a direction preference map within layer 2/3, since cells
responding to a given direction of whisker deflection are located closer to the neighboring
barrel in direction of the deflection. For example, if the D3 whisker is deflected caudally
towards the D2 whisker, then more cells in the half of the D3 barrel closer to the D2 barrel
will fire than in the half of the D3 barrel closer to the D4 barrel [103]. The idea of an
orientation map in barrel cortex is attractive as it encodes an important stimulus feature
that is already represented in the barreloids of the thalamus [137], but it has to be verified
by additional studies.

Recent experiments that concentrated on whisker perception in wake behaving rats re-
vealed that the processing of sensory information in barrel cortex depends on the state of
the animal. When the whiskers are not moving and the animal is at rest but wakeful, there
are slow changes in membrane potential with large amplitude. These slow oscillations of
the membrane potential in cells of layer 2/3 disappear as soon as the animal starts active
whisking. Interestingly these correlations of membrane potential dynamics with behavior
are not observable in the firing of action potentials which on average across cells has a
frequency of 1Hz during rest and active whisking [103]. These findings imply that there
are sub-threshold changes in membrane potentials and thus changes in the excitability of
neurons that are related to the behavioral state of the animal. Further it has been discov-
ered that these changes influence the processing of sensory information in barrel cortex.
Passive deflection of a whisker by the experimenter during quiet wakefulness of the ani-
mal leads to a strong cortical response, while this response is weak during deflections that
occur during active whisking [61]. In addition to a low tactile response amplitude active
whisking is characterized by a narrow spatial representation in barrel cortex and elevated
background firing as opposed to the wide spatial representation and low background firing
of passive whisker contacts. The switching between the active and passive cortical states
occurs within 100ms and is unrelated to the alertness of the animal. Since switching be-
tween cortical states persists after transection of the infraorbital nerve and substitution
of whisker contacts by direct electrical stimulation over a cuff electrode, the modulator

22

2.5. Model sensory system: rat barrel cortex

signal presumably has a central origin. One likely central source are the motor commands
of the animal that initiate the whisker movement [61]. These observations concerning the
state dependent modulation of stimulation evoked responses supports the idea of adap-
tive microstimulation where decoding of the cortical state and appropriate adjustment of
stimulation parameters are hoped to stabilize evoked cortical potentials.

23

Occurrences in this domain
are beyond the reach of exact prediction
because of the variety of factors in operation,
not because of any lack of order in nature.

Albert Einstein (1879-1955)
3

Support Vector Regression

Biological systems are often governed by large numbers of different factors, which makes it
virtually impossible to obtain exact predictions about the quantities of interest. Adaptive
stimulation, as described in section 2.3.2, requires that stimulus parameters can be deter-
mined on the basis of the ongoing background brain activity, and thus also suffers from
this shortcoming, due to the inherent complexity of the brain. Since it is futile to build an
explicit model of the brain, the only way to tackle the problem of adaptive stimulation is
by learning the needed relationships from example stimulation trials. To be more concrete,
one wants to learn a mapping from ongoing brain activity and stimulation response to a
particular stimulation parameter, the stimulation intensity for instance. In general these
parameters will take on real values on a continuous scale and hence the desired mapping
turns out to be the solution of a regression problem.

3.1 State of the art

The Support Vector Machine (SVM), like neural networks is a supervised learning al-
gorithm that can be used to solve both linear and nonlinear classification and regression
problems [45]. Historically SVMs were first used to solve linear classification problems [142]
and later extended to handle regression. The initial limitation to compute linear relation-
ships was later removed by introducing the concept of kernel functions [124] that implicitly
compute a nonlinear mapping to a so called feature space. By using a kernel function,
SVMs still compute a linear function, but this functions now resides in the feature space,
instead of the input space that is spanned by the training patterns. The feature space is
also called reproducing kernel Hilbert space (RKHS). Although neural networks and other
supervised learning algorithms can also learn linear and nonlinear relationships based on
a set of training examples, and have been successfully applied to difficult real world prob-
lems [83, 10], SVMs have gained popularity in recent years since they have some exclusive
properties not shared by other supervised algorithms. First, SVMs allow the incorporation
of prior knowledge about an application via the kernel function, which leads to a sepa-
ration between learning algorithm and application-specific extensions. On the one hand
this means that problems in new application domains can be solved without changing the

25

Chapter 3. Support Vector Regression

basic algorithm and on the other hand that improvements in the learning algorithm are
instantly available to all applications. The development of a special kernel function for
adaptive stimulation will be described in section 6.1.4. Second, the solution of the SVM
optimization problem can be used to determine bounds on the generalization performance
of the algorithm which permits to automatically choose the free hyper-parameters like ker-
nel and loss function parameters. The process of choosing suitable hyper-parameters is
called model selection and will be discussed in chapter 5. Third, the SVM optimization
problem involves minimization of a convex function which ensures that there is a single,
although not unique, global minimum. After training, supervised algorithms often provide
a solution that works like a black box when it comes to prediction on unseen data. In
some application domains this can be a severe restriction, as the black box prevents inter-
pretation of the learned function, and consequently the improvement of the algorithm. As
described later in this chapter, the SVM solution is a linear combination of a subset of the
training patterns, termed support vectors, and hence does not have this black box nature.
In addition it is possible to directly inspect the SVM weight vector even in the nonlinear
case by computing the corresponding pre-image of the weight vector that resides in the
RKHS [123]. Taken together this facilitates the interpretation of the SVM solution.

The adaptation of stimulus parameters requires the solution of a regression problem and
therefore the rest of this chapter will be concerned with Support Vector Regression (SVR)
only. In a regression problem one is given d-dimensional training patterns xi ∈ Rd and
target values yi ∈ R and wants to estimate a function f(xi) 7→ yi. Assuming for the moment
that f(xi) = 〈w, xi〉+ b is a linear function with weight vector w ∈ Rd and bias term b ∈ R
the regression problem is usually solved by minimizing the squared loss (f(xi)−yi)2 over all
pairs of training patterns and target values (xi, yi). The result of this process is called the
least-squares solution to the regression problem [54]. In contrast to least-squares regression,
SVR is different in two aspects: First, it restricts the solution space of linear functions by
regularization and tries to find the flattest function possible; Second, it uses an alternative
loss function to measure the error between predicted values f(xi) and true target values
yi. The ε-insensitive loss function for SVR, shown in figure 3.1B, was introduced by [142]
and is defined as follows:

lε(yi − f(xi)) = max{0, |yi − f(xi)| − ε}p (3.1)

with p = 1. This means that training patterns that incur an error smaller than ε do
not contribute to the solution and that errors that exceed ε are penalized linearly. A
simple one-dimensional example of a regression problem is shown in figure 3.1A, where
the circles represent training patterns (xi, yi) and the black solid line the function f(x)
estimated by SVR. The area that is insensitive to errors forms a tube of width ε around
the function f(x) and is indicated by the dotted lines in figure 3.1A. As a consequence,
only the training patterns outside this tube (red circles in figure 3.1A) contribute to the
SVR solution. This subset of training patterns are the support vectors and coined the
algorithm’s name ’Support Vector Machine’.

26

3.1. State of the art

A B

Figure 3.1: Example of a one-dimensional regression problem. A: Pairs of
training patterns xi and target values yi are represented by circles. The solid
line indicates the function f(x) estimated by SVR. By using the ε-insensitive loss
function, only a subset of the training patterns that lie outside the tube indicated
by the dotted lines contribute to the SVR solution. B: The ε-insensitive loss
function penalizes errors linearly if they exceed the value ε.

From this example it becomes clear that for a given value of ε one finds the function
f(x) = 〈w, x〉+ b, by minimizing the loss over all training patterns. Unfortunately the loss
function given by equation (3.1) is not differentiable and hence the loss cannot be minimized
by gradient descent algorithms. This problem can be avoided by introducing nonnegative
slack variables ξ and ξ∗ to rewrite the loss function as inequalities and minimizing the sum
of the slack variables instead. In addition to minimizing the loss function SVR regularizes
the solution by minimizing the squared norm of the weight vector ‖w‖2 and thus tries to find
the flattest function possible. It is worthwhile to note that finding the flattest function
is not a randomly imposed restriction but instead corresponds to finding a separating
hyperplane with maximum margin in Support Vector Classification (SVC) [124]. Putting
it all together the SVR problem can be formulated as the following optimization problem,
with p = 1:

min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

m∑
i=1

(ξpi + ξ∗pi)

subject to f(xi)− yi ≤ ε+ ξi

yi − f(xi) ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0, ∀i = 1, . . . ,m .

(3.2)

In equation (3.2) the objective function consists of the sum of the regularization term ‖w‖2

and a term involving the sum of slack variables multiplied by a positive parameter C ∈ R+.
By changing the regularization parameter C, one can thus trade off between the complexity

27

Chapter 3. Support Vector Regression

of the function and the error on the training data. Since in practice it is desirable to have a
function with good generalization performance, meaning that it gives accurate predictions
on unseen data, both the regularization parameters C and the loss function parameter ε
are chosen to optimize the performance as described in chapter 5.

The classic approach [124] to solve the optimization problem (3.2) is to derive its dual form
as described in section 3.1.1 which turns out to be a quadratic programming problem.
The connections between the primal and dual formulation of an optimization problem
are explored in section 3.1.2 in the context of the regularized least squares algorithm. A
recent approach that directly solves the primal SVR formulation without bias term b is
presented in section 3.1.3. The extension of this approach to use a bias term b, which
is an important part of this thesis’ work, is developed in section 3.2. Finally section 3.3
compares the performance of the different solution approaches on various data sets from
different application areas.

3.1.1 Dual SVR

The dual SVR formulation is derived from the primal optimization problem given in equa-
tion (3.2) by using nonnegative Lagrange multipliers α, α∗, β and β∗ to incorporate the
constraints into the objective function. The resulting function L also called Lagrangian
can be written as follows

L(w, b, ξ(∗), α(∗), β(∗)) =
1

2
‖w‖2 + C

m∑
i=1

(ξi + ξ∗i)−
m∑
i=1

αi(ε+ ξi − 〈w, xi〉 − b+ yi)

−
m∑
i=1

βiξi −
m∑
i=1

α∗i (ε+ ξ∗i + 〈w, xi〉+ b− yi)−
m∑
i=1

β∗i ξ
∗
i ,

(3.3)

and is minimized with respect to the primal variables w, b, ξ and ξ∗ and maximized with
respect to the Lagrange multipliers, or dual variables, α, α∗, β and β∗. As a shorthand v(∗)

will be used in the following to designate both non-starred v and starred v∗ variables. The
simultaneous minimization of primal and maximization of dual variables implies that one
seeks a saddle point of the Lagrangian function, where the partial derivatives with respect
to the primal variables have to vanish:

∂L

∂w
= w +

m∑
i=1

(αi − α∗i)xi
!

= 0⇔ w =
m∑
i=1

(αi − α∗i)xi (3.4)

∂L

∂b
=

m∑
i=1

(αi − α∗i)
!

= 0 (3.5)

∂L

∂ξ
= C − α(∗)

i − β
(∗)
i

!
= 0

Since β
(∗)
i ≥0
⇔ 0 ≤ α

(∗)
i ≤ C . (3.6)

From equation (3.4) it can be seen that the SVR weight vector is a linear combination
of training patterns xi, as already mentioned in the previous section, and support vectors

28

3.1. State of the art

are those training patterns for which the difference in dual variables (αi − α∗i) is nonzero.
Using the expression of w in terms of α and α∗ and exploiting the constraints on the dual
variables in equations (3.5) and (3.6) it is possible to eliminate the primal variables in the
Lagrangian (3.3) to arrive at the dual formulation of the SVR optimization problem:

min
α,α∗

1

2

m∑
i,j=1

(αi − α∗i)(αj − α∗j) 〈xi, xj〉+ ε

m∑
i=1

(αi + α∗i) +
m∑
i=1

yi(αi − α∗i)

subject to
m∑
i=1

(αi − α∗i) = 0

0 ≤ α
(∗)
i ≤ C, ∀i = 1, . . . ,m .

(3.7)

The dual formulation of the SVR problem (3.7) is a quadratic program with a linear
equality constraint and a box constraint on the dual variables α(∗). General quadratic
programs are usually solved by interior point algorithms [131, 140], but there exist specific
methods to solve the dual SVR formulation more efficiently, like sequential minimal op-
timization (SMO) [107] and projected gradient descent [151, 152]. The most widely used
software implementation to solve the dual formulation, called LibSVM [27], uses a variant
of SMO [48]. For more details on the relative benefits of these different solution methods
and the description of a parallel dual SVR solver the interested reader is referred to [15].

3.1.2 Primal and dual optimization

Before describing the approach to directly solve the primal SVR problem in subsequent
sections, it is fruitful to explore the connection between primal and dual optimization prob-
lems and to identify situations where solving the primal (3.2) or the dual (3.7) should be
preferred. To simplify the ensuing discussion given in [29], the primal and dual optimiza-
tion problems will be compared for the regularized least squares (RLS) algorithm. Given a
matrix X ∈ Rm×d that contains m training patterns with d dimensions the RLS objective
function is defined as:

min
w

λ

2
‖w‖2 +

1

2
‖Xw − y‖2 . (3.8)

Similar to SVR the training patterns in X are linearly combined by the weight vector w ∈
Rd to approximate the targets y and the solution is regularized by the squared norm term
‖w‖2, where the regularization strength can be varied by the nonnegative hyper-parameter
λ ∈ R+. The primal objective function (3.8) is minimized for w = (λI +XTX)−1XTy and
the value of the minimum is then given by:

yTy − yTX(λI +XTX)XTy . (3.9)

Analogous to the derivation of the dual SVR problem in section 3.1.1 the primal RLS
problem is converted into its dual form by introducing slack variables ξ = Xw− y to write

29

Chapter 3. Support Vector Regression

down the Lagrangian with dual variables α:

L(w, ξ, α) =
λ

2
‖w‖2 +

1

2
ξT ξ − α(Xw − y − ξ) . (3.10)

Again, the partial derivatives with respect to the primal variables have to vanish to fulfill
the saddle point condition:

∂L

∂w
= w −XTα

!
= 0⇔ w =

1

λ
XTα (3.11)

∂L

∂ξ
= ξ + α

!
= 0⇔ ξ = −α , (3.12)

and can be used to establish the relationship between primal and dual solution via equa-
tion (3.11) and to eliminate the primal variables from the Lagrangian by employing both,
equations (3.11) and (3.12). The result of this substitution is the dual objective function
for the RLS algorithm:

max
α

2αTy − 1

λ
αT (XXT + λI)α , (3.13)

which attains its maximum at α = λ(XXT + λI)−1y where the value of the maximum is
given by:

λyT (XXT + λI)−1y . (3.14)

According to duality theory the minimum value (3.9) of the primal objective and the
maximum value of dual objective (3.14) should be equal. That this is actually the case
becomes apparent when the inverses of λI + XTX and XXT + λI are related by the
Sherman-Morrison-Woodbury formula [54]:

λ(XXT + λI)−1 = I −X(λI +XTX)−1XT . (3.15)

From the viewpoint of computational complexity the primal optimization requires inversion
of the matrix λI +XTX with complexity O(md2 + d3) and the dual optimization requires
O(m2d + m3) operations to compute the inverse of matrix XXT + λI. At first sight it
therefore seems beneficial to either solve the primal or dual problem depending on whether
m is larger or smaller that d in order to achieve the lowest computational complexity. But
this argument is flawed since it is always possible to use the Sherman-Morrison-Woodbury
formula (4.28) to invert the smaller of the two matrices λI +XTX, or XXT + λI.

So what is the advantage of solving the primal instead of the dual optimization problem?
The difference between primal and dual formulations is important when one seeks an
approximate solution for the primal optimization problem. To illustrate this, it instructive
to optimize both the primal (3.8) and dual (3.13) objective function by the conjugate
gradient (CG) method [6] and to observe how the value of the primal objective function
decreases as a function of the number of CG iterations. During the optimization of the dual
objective function an approximate solution for α can be converted to a primal solution w by
using equation (3.11). Figure 3.2 shows the decrease of the primal objective function value

30

3.1. State of the art

in dependence of the number of conjugate CG iterations for primal and dual optimization
on different subsets of the triazines data set. For some cases the difference between primal
and dual optimization is small (figure 3.2A) while in other cases the dual optimization
converges slower than the primal one (figure 3.2B).

Figure 3.2: Convergence of the primal and dual solution for a regularized least
squares problem on different subsets of the triazines data set. In both experiments
the regularization parameter was set to λ = 0.1. A: For m = 10 training patterns
with d = 60 dimensions the convergence speed of primal and dual solution is
almost identical B: For m = 60 training patterns with d = 10 dimensions the dual
solution needs more conjugate gradient (CG) iterations than the primal solution
to converge to the minimum value of the primal objective function.

Intuitively it is clear that directly minimizing the quantity of interest, as done in primal
optimization, is superior in terms of convergence speed and this is confirmed by the example
shown in figure 3.2. But it can be proven that even after a single CG iteration the primal
optimization always yields a lower value than the dual optimization [29].

Computing approximate solutions for regression problems is interesting in the context of
large scale data sets and there have been suggestions to introduce approximations to the
dual SVR formulation [138, 139], although this seems not to be the right approach in light
of the preceding discussion. Besides large scale optimization computing approximations
for the primal problem plays an essential role in the development of a new online learning
algorithm that will be described in chapter 4. It is based on the insight that online learning
can be considered as computing an approximation to an offline learning problem since the
time for each optimization step and the number of available training patterns in online
learning is limited.

31

Chapter 3. Support Vector Regression

3.1.3 Primal SVR without bias

This section describes an approach proposed by [11] for solving the primal SVR problem
in equation (3.2) directly, but without optimizing the bias term b. As a first step the slack
variables ξi and ξ∗i are removed from the objective function by using the definition (3.1)
of the ε insensitive loss function. By dividing the resulting primal objective function by C
one arrives at the following unconstrained formulation for the primal SVR problem:

min
w
Lε(w) =

m∑
i=1

lε(〈w, xi〉 − yi) + λ‖w‖2 , (3.16)

where the new regularization parameter is given by λ = 1
2C

. So far only linear functions
f(xi) = 〈w, xi〉 were considered in this chapter. Nonlinear SVR is obtained by introduction
of a kernel function k(xi, xj) and an associated Hilbert space H that fulfills the so called
“reproducing property” [2]:

f(xi) = 〈f, k(., xi)〉H . (3.17)

In words the reproducing property states that the function f can be evaluated on training
pattern xi by computing the dot product of function f with the kernel function k(., xi)
centered on the pattern xi in the Hilbert space H. By exploiting the reproducing property,
equation (3.16) can be reformulated to deal with nonlinear functions:

min
f
Lε(f) =

m∑
i=1

lε(f(xi)− yi) + λ‖f‖2
H . (3.18)

Equivalent to the linear formulation the second term in the objective function serves to
regularize the solution by minimizing the squared norm of the function in the Hilbert space.
Before it is possible to derive a closed-form expression for ‖f‖2

H it is necessary to introduce
the “representer theorem” [76] given by:

f(x) =
m∑
i=1

βik(x, xi) . (3.19)

According to this theorem each function f in the Hilbert space H can be expressed as a
linear combination of kernel functions k(., xi) that are centered on the training patterns
xi. When combining the representer theorem (3.19) with the reproducing property (3.17)
the squared norm term in the objective function can be expanded to ‖f‖2

H = 〈f, f〉H =∑m
i,j=1 βiβjk(xi, xj). From these relationships it becomes clear that function f can be

minimized by optimizing its expansion coefficients βi. Substitution into equation (3.18)
yields the following equivalent objective function:

min
β
Lε(β) =

m∑
i=1

lε(
m∑
j=1

βjk(xi, xj)− yi) + λ
m∑

i,j=1

βiβjk(xi, xj) . (3.20)

32

3.1. State of the art

By defining the kernel matrix K ∈ Rm×m via its entries Kij = k(xi, xj) and letting Ki

denote the i-th row of the kernel matrix the objective function (3.20) can be written in
more compact notation as:

min
β
Lε(β) =

m∑
i=1

lε(Kiβ − yi) + λβTKβ . (3.21)

This is an unconstrained optimization problem that can be solved by gradient descent only,
if the loss function lε is differentiable. As already mentioned in the introductory section
of this chapter the loss function in equation (3.1) is not differentiable for p = 1, due to
the hinge points that lie at the border of the ε insensitive zone and the linear part of the
loss function (figure 3.3). By setting p = 2 in definition (3.1) these discontinuities in the
first derivative of lε vanish due to the quadratic part outside the ε insensitive zone. For
p = 1 the resulting loss function is alternatively called the l1 loss and for p = 2 the l2
loss. Thus, by changing the definition of the loss function, the problem (3.1) is actually
solvable by gradient descent methods. But are there possible drawbacks when one uses the
l2 loss instead of the l1 loss? As the shaded area in figure 3.3 indicates the l2 loss penalizes
errors less than the l1 loss when they cross the ε threshold. Consequently the l2 loss tends
to produce more support vectors than the l1 loss for a fixed value of the regularization
parameter λ. Although this does not pose a problem during the SVR training it can be
detrimental for the run time during the prediction on unseen data, since more evaluations
of the kernel function are necessary. Yet, it should be noted that this is just a problem
for nonlinear SVR functions since the weight vector w can be computed once prior to the
prediction for linear functions.

Figure 3.3: Comparison of l1
and l2 loss functions. The l1 loss
is not differentiable due to dis-
continuities in its first derivative
at the border of the ε-insensitive
zone. The l2 loss is differentiable
but produces more support vec-
tors since errors that just exceed
the threshold ε are penalized less
in comparison to the l1 loss as in-
dicated by the shaded area.

Another drawback of the l2 loss function is its tendency to be less robust to outliers in
the training data. This is illustrated by a simple 1-dimensional example in figure 3.4. For

33

Chapter 3. Support Vector Regression

this example training patterns were generated by uniformly sampling the domain of the
function

sinc(x) =

{
1, x = 0
sin(πx)
πx

, x 6= 0 ,
(3.22)

and manual addition of two outliers. If the training data does not contain any outliers
the SVR solution using l1 or l2 loss is identical (figure 3.4A). But after adding the outliers
to the training data the SVR solution using the l2 loss shows large deviations from the
true underlying sinc-function (figure 3.4B). Although the l2 loss is more sensitive to outliers

Figure 3.4: Robustness of l1 and l2 loss with respect to outliers. A: When clean
training data (red open circles) is created by sampling the sinc-function the SVR
solutions produced by the l1 and l2 loss are indistinguishable. B: After adding
two outliers (red closed circles) the function estimated using the l2 loss strongly
deviates from the true sinc-function at the corresponding locations.

than the l1 loss function, the results of section 3.3.1 imply that the impact on the prediction
accuracy of SVR is not as severe as expected when considering real data sets. Nevertheless
it is possible to overcome this drawback and still ensure the differentiability of the loss
function by introducing the ε-insensitive Huber loss function [11] defined by:

lε,∆(r) =

0, |r| ≤ ε

(|r| − ε)2, ε < |r| < ∆

(∆− ε)(2|r| −∆− ε), |r| ≥ ∆ .

(3.23)

Equation (3.23) defines a family of loss functions that are governed by the two nonnegative
parameters ε and ∆. Different choices for these parameters yield six distinct types of loss
functions that are shown in figure 3.5. In particular, the already introduced l2 and l1 loss
functions are recovered by setting ε > 0,∆ = +∞ or ε = 0,∆ > 0 respectively (figure 3.5D
and F). It is important to note that all loss functions in the left column of figure 3.5 have

34

3.1. State of the art

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

6

7

8

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

A B

DC

E F

Figure 3.5: Overview of a family of loss functions parameterized by ε and ∆.
Blue lines indicate the quadratic, and red lines the linear parts of the loss function.
A: Huber loss. B: ε-insensitive Huber loss. C: Quadratic loss. D: ε-insensitive
quadratic (l2) loss. E: Linear (Laplace) loss. F: ε-insensitive linear (l1) loss.

35

Chapter 3. Support Vector Regression

ε = 0 and the resulting algorithm cannot be considered as a support vector algorithm
anymore, since all training patterns contribute to the solution. For example the quadratic
loss with ε = 0,∆ = +∞ leads to the kernel ridge regression algorithm [120]. Further, the
regularized least squares algorithm described in section 3.1.2 can be seen as kernel ridge
regression with a linear kernel function. But the most important conclusion concerning
the ε-insensitive Huber loss is that the non-differentiable l1 loss can be approximated
to arbitrary precision by a differentiable loss function by choosing ε > 0 and letting ∆
approach ε.

The primal optimization approach was first introduced in [74] for linear SVC and later
extended to nonlinear SVC with and without bias term b in [29]. Building on the results
of [29] the primal optimization was introduced for nonlinear SVR without bias term b
by [11] via the ε-insensitive Huber loss as described in this section. The next section will
describe the extension of this work to primal SVR with bias term and give details on a
practical implementation of the resulting algorithm.

3.2 Primal SVR with bias

By including the bias term b in equation (3.21) and using the definition of the ε-insensitive
Huber loss function in equation (3.23) it is straightforward to formulate the primal opti-
mization problem for SVR with bias:

min
β,b

Lε,∆(β, b) =
m∑
i=1

lε,∆(Kiβ + b− yi) + λβTKβ . (3.24)

In order to simplify the subsequent derivations it is necessary to establish some notation.
First r(β, b), the residual vector, is used as shorthand to denote the difference between the
function value and targets:

r(β, b) = Kβ + b− y , (3.25)

and ri(β, b) is the i-th component of this vector. Second it is convenient to define special
sign functions for the quadratic and linear parts of the ε-insensitive Huber loss function
(figure 3.5B). For the quadratic part the sign function is defined as:

si(β, b) =

+1, ε < ri(β, b) < ∆

−1, −∆ < ri(β, b) < −ε
0, otherwise ,

(3.26)

and for the linear part as:

s̄i(β, b) =

+1, ∆ ≥ ri(β, b)

−1, ri(β, b) ≤ −∆

0, otherwise .

(3.27)

36

3.2. Primal SVR with bias

Finally, by defining an indicator function for the quadratic part of the ε-insensitive Huber
loss via wi(β, b) = si(β, b)

2, the loss function lε,∆ in equation (3.24) can be expanded as
follows:

Lε,∆(β, b) =
m∑
i=1

wi(β, b)(ri(β, b)− ε)2 +
m∑
i=1

s̄i(β, b)(∆− ε)(2|ri(β, b)| −∆− ε) + λβTKβ

=r(β, b)TW (β, b)r(β, b)− 2εs(β, b)T r(β, b) + εTW (β, b)ε

+ 2(∆− ε)s̄(β, b)T r(β, b)− (∆2 − ε2)s̄(β, b)T s̄(β, b) + λβTKβ .

(3.28)

Here the first term in the sum represents the quadratic, and the second term the linear
part of the ε-insensitive Huber loss function. Further, the expression W (β, b) is a diagonal
matrix defined as W (β, b) = diag{w1(β, b), . . . , wm(β, b)}, where the i-th entry on the
diagonal is wi(β, b).

Since the ε-insensitive Huber loss function is differentiable, the objective function in equa-
tion (3.28) can be minimized by a descent algorithm. In general a descent algorithm starts
with an initial guess β0 and b0 for the optimization variables and then determines the
solution at the k-th iteration by setting:(

βk+1

bk+1

)
=

(
βk
bk

)
+ ρkdk , (3.29)

where dk ∈ Rm is the descent direction and ρk ∈ R+ is a positive step size. Different
choices for the descent direction dk lead to different unconstrained optimization algorithms
for solving the primal SVR problem. For example, the steepest descent, diagonally scaled
steepest descent, and the Newton algorithms result for particular choices of dk [6].

In the subsequent description the objective function (3.28) is minimized as proposed in [74]
by Newton’s algorithm with:

dk = −∇2Lε,∆(β, b)−1∇Lε,∆(β, b) , (3.30)

where Lε,∆(β, b) is the gradient and ∇2Lε,∆(β, b) the hessian of the objective function.
Section 3.2.1 describes how to calculate the gradient and hessian for the primal objective
in equation (3.28). Usually these calculations are straightforward but for the primal SVR
problem it is mandatory to find suitable factorizations of the resulting matrices to achieve
an efficient optimization algorithm. Issues concerning the numerically stable inversion of
the resulting system of linear equations are discussed in section 3.2.2. Further, an exact
line search, described in section 3.2.3, will be used to determine the step size ρk in each
iteration. This will guarantee the convergence of the resulting optimization algorithm [6].

3.2.1 Newton step

The Newton step for computing the solution at the next iteration is given by substituting
equation (3.29) into equation (3.30). The partial derivatives with respect to β and b of the

37

Chapter 3. Support Vector Regression

first term in (3.28) are given by:

∂r(β, b)

∂β
= K,

∂W (β, b)

∂β
= 0⇒ ∂r(β, b)TW (β, b)r(β, b)

∂β
= 2KTW (β, b)r(β, b)

∂r(β, b)

∂b
= 1,

∂W (β, b)

∂b
= 0⇒ ∂r(β, b)TW (β, b)r(β, b)

∂b
= 21TW (β, b)r(β, b) .

(3.31)

The symbol 1 represents a vector of appropriate length that has all entries equal to one.
By temporarily ignoring the multiplicative constants (∆− ε) and ε the derivatives for the
second and the fourth term in (3.28) can be deduced as:

∂s(β, b)

∂β
=
∂s(β, b)

∂b
= 0⇒ ∂s(β, b)r(β, b)

∂β
= KT s(β, b),

∂s(β, b)r(β, b)

∂b
= 1T s(β, b) ,

(3.32)
where s(β, b) and s̄(β, b) are interchangable. Terms three and five in (3.28) are independent
of β and b leading to:

∂εTW (β, b)ε

∂β
=
∂εTW (β, b)ε

∂b
=
∂s̄(β, b)T s̄(β, b)

∂β
=
∂s̄(β, b)T s̄(β, b)

∂b
= 0 . (3.33)

Finally the derivatives for the last term in (3.28) are given by:

∂βTKβ

∂β
= 2Kβ,

∂βTKβ

∂b
= 0 . (3.34)

Combining equations (3.31), (3.32), (3.33), and (3.34) the full gradient ∇Lε,∆(β, b) can be
written as follows:

∇Lε,∆(β, b) = 2

(
KT (W (β, b)r(β, b)− εs(β, b) + (∆− ε)s̄(β, b) + λβ

1T (W (β, b)r(β, b)− εs(β, b) + (∆− ε)s̄(β, b))

)
= 2

[
KT 0
1T −λ

]
·([

(W (β, b)K + λI) W (β, b)1
1T 0

](
β
b

)
−
(
W (β, b)y + εs(β, b)− (∆− ε)s̄(β, b)

0

)) .

(3.35)

At first sight the expansion of the gradient vector given by the second equality in (3.35)
seems to complicate the expression, but it is crucial to factorize ∇Lε,∆(β, b) in this way
to later simplify the Newton. For computation of the hessian let ∇Lε,∆(β, b)1 be the first
component, and ∇Lε,∆(β, b)2 the second component of the gradient. Then the partial
derivatives with respect to β for the first and second component are given by:

∂∇Lε,∆(β, b)1

∂β
= 2(KTW (β, b)K + λK),

∂∇Lε,∆(β, b)2

∂β
= 21TW (β, b)K , (3.36)

and with respect to the bias term b by:

∂∇Lε,∆(β, b)1

∂b
= 2KTW (β, b)1,

∂∇Lε,∆(β, b)2

∂b
= 21TW (β, b)1 . (3.37)

38

3.2. Primal SVR with bias

Again, by combining equations (3.36) and (3.37) the full hessian∇2Lε,∆(β, b) can be written
as:

∇2Lε,∆(β, b) = 2

[
KT (W (β, b)K + λI) KTW (β, b)1

1TW (β, b)K 1TW (β, b)1

]
= 2

[
KT 0
1T −λ

] [
W (β, b)K + λI W (β, b)1

1T 0

] . (3.38)

In the Newton algorithm the descent direction is given by multiplying the negative inverse
of the hessian with the gradient. Explicitly computing the hessian inverse changes the
order of factors in equation (3.38) and multiplication with the gradient in equation (3.35)
hence completely cancels out the first factors. In addition the second factor of the hessian
inverse cancels out the first factor inside the brackets of equation (3.35) and it now becomes
clear why the gradient expression was expanded into that particular matrix vector product.
Combining equations (3.38) and (3.35) the resulting Newton step is:(
β̄
b̄

)
= −(∇2Lε,∆(β, b))−1∇Lε,∆(β, b)

=

[
W (β, b)K + λI W (β, b)1

1T 0

]−1(
W (β, b)y + εs(β, b)− (∆− ε)s̄(β, b)

0

)
−
(
β
b

)

=

A1︷ ︸︸ ︷(

Ksv1,sv1 + λI 1sv1
1 . . . 1 0

) A2︷ ︸︸ ︷(
Ksv1,sv2

1 . . . 1

) A3︷ ︸︸ ︷(
Ksv1,nsv

1 . . . 1

)
0

λI
0

0
λI

−1

ysv1 + εs(β, b)sv1
0

(∆− ε)s̄(β, b)sv2
0

−

βsv1
b
βsv2
βnsv

=

A
−1
1

(
ysv1 + εs(β, b)sv1

0

)
− 1

λ
A−1

1 A2(∆− ε)s̄(β, b)sv2
1
λ
(∆− ε)s̄(β, b)sv2

0

−

(
βsv1
b

)
βsv2
βnsv

 .

(3.39)

In equation (3.39) the sets sv1 = {i, |ri(β, b)| ≥ ∆}, sv2 = {i, ε < |ri(β, b)| < ∆}, and
nsv = {i, |ri(β, b)| < ε} are the index sets of training points with residual in the quadratic,
linear, and zero part of the loss function. The second equality in (3.39) is obtained by
expanding the definition of W (β, b) followed by reordering the optimization variables such
that the bias term comes to lie below the optimization variables βi with i ∈ sv1. With
definition of the submatrices A1, A2 and A3, the last equality in (3.39) can be deduced
from the matrix inversion lemma 3.2.1.

Lemma 3.2.1. Let A1 ∈ Rn×n be a non singular square matrix, A2 ∈ Rn×m, A3 ∈ Rn×k

and λ ∈ R \ {0}. Then the inverse of the block matrix parameterized by A1, A2, A3 and λ
is given by: A1 A2 A3

0 λI 0
0 0 λI

−1

=

A−1
1 − 1

λ
A−1

1 A2 − 1
λ
A−1

1 A3

0 1
λ
I 0

0 0 1
λ
I

 .

39

Chapter 3. Support Vector Regression

Lemma 3.2.1 can be verified by multiplying both sides of the equation with the original
block matrix.

Now it becomes apparent that the factorizations introduced for the gradient in equa-
tion (3.35) and the hessian in equation (3.38) not only simplify the expression for the
Newton step, but also avoid inversion of the full kernel matrix K for all training patterns.
The only inversion needed to compute the Newton step involves the square matrix A1 with
size equal to the number of support vectors |sv1| in the quadratic part of the loss function.
Unfortunately the matrix A1 can be singular when none of the training patterns incurs a
loss in the quadratic part, since then sv1 = ∅ and A1 = 0. It is important to note that
this pathological situation cannot arise for the primal SVR problem without bias term b
described in section 3.1.3.

There are two possibilities to circumvent this problem. The first possibility involves addi-
tional regularization of bias b by including the term λb2 in the objective function (3.28).
An empty set of support vectors sv1 = ∅ then leads to A1 = −1 which can always be
inverted. Although feasible, this approach will not be pursued any further, as it compli-
cates the comparison with the classical dual solution of the SVR problem. The second
possibility uses the ε-insensitive quadratic loss (figure 3.5D) instead of the ε-insensitive
Huber loss function by setting ∆ = +∞. This does not avoid singularity of A1 since the
set sv1 can still be empty, but now the optimization algorithm can be safely terminated
when this condition arises since there is no set sv2. In particular, with the ε-insensitive
quadratic loss, sv1 can be empty only when ε was chosen too large a priori by the user of
the algorithm. All the derivations given in the following sections will therefore concentrate
on using the ε-insensitive quadratic loss.

3.2.2 Cholesky factorization

For solving the system of linear equations involving matrix A1 in (3.39) the following matrix
inversion lemma 3.2.2 is useful.

Lemma 3.2.2. Let B ∈ Rn×n be a non singular square matrix, v ∈ Rn a vector, and µ ∈ R
a scalar. Then the inverse of the block matrix parameterized by B, v and µ is given by:[

B v
vT µ

]−1

=
1

ψ

[
ψB−1 −B−1vvTB−1 B−1v

vTB−1 −1

]
, with ψ = vTB−1v − µ .

As before, this lemma can be verified by multiplying both sides of the equation with the
original block matrix. The inverse matrix A−1

1 can be identified with the left side of the
equation in lemma 3.2.2 by setting B = K + λI, µ = 0, and v = 1. The system of linear
equations to be solved for the ε-insensitive quadratic loss is:

A−1
1

(
ysv1 + εs(β, b)sv1

0

)
= A−1

1

(
t
0

)
=

(
B−1t− B−111TB−1t

1TB−11
1TB−1t
1TB−11

)
. (3.40)

40

3.2. Primal SVR with bias

The second equality in (3.40) follows by applying lemma 3.2.2. Thus the inversion of
matrix A1 is reduced to the inversion of matrix B = K + λI. The matrix K + λI is
positive definite for sufficiently large λ > 0 and hence it is possible to compute a Cholesky
decomposition [54] of this matrix. With the Cholesky factors available, it is possible to
efficiently solve linear equations involving matrix B for different right hand sides by back-
substitution. In the example given by equation (3.40) one solves two systems: Bu = t and
Bw = 1. Consequently one has the relationships B−1t = u and B−11 = w which can be
substituted into equation (3.40) to yield:

A−1
1

(
t
0

)
=

(
u− w1Tu

1Tw
1Tu
1Tw

)
. (3.41)

In summary, to compute the next iterate (β̄, b̄) in the Newton algorithm by equation (3.39),
it is necessary to compute the Cholesky decomposition of matrix K + λI with a cost of
O(n3), n = |sv1|, once and then solve two linear systems by back-substitution with a cost
of O(n2). Since the cost to evaluate the dot products in (3.41) is just O(n) the total run
time complexity for the Newton step is O(n3). A detailed description on how the Newton
step is computed is given by algorithm 4 in appendix A.

3.2.3 Line search

The line search finds a point on the line segment between the solution (βk, bk) at the k-
th iteration and the solution (β̄, b̄) determined by the Newton step that minimizes the
value of the objective function. Stated otherwise, it searches for a step size ρ ∈ [0, 1]
such that the objective function is minimized in dependence of β(ρ) = βk + ρ(β̄ − βk)
and b(ρ) = bk + ρ(b̄ − bk). The objective function (3.28) in dependence of the step size
ρ, denoted by φ(ρ), is a piecewise continuous, quadratic function as shown in figure 3.6.
Its derivative φ′(ρ) is a piecewise linear function that crosses zero at the point where the
objective function attains its minimum. Jumps in the second derivative φ′′(ρ) occur at the
points ρ1 to ρ5 when training patterns enter or leave the set of support vectors.

To determine the optimal step size ρ the exact line search proceeds as follows: In the first
step it determines the points ρi ∈ [0, 1], where training patterns enter or leave the set of
support vectors, or, equivalently, the corresponding residual enters or leaves the quadratic
part of the loss function; In the second step the points ρi are sorted in non-decreasing order
and the derivative φ′(ρ) between the pair ρi and ρi+1 is considered. As the derivative is
a linear function, a potential zero crossing of φ′(ρ) between ρi and ρi+1 can be computed
analytically. If no zero crossing is present the objective function is updated, since the
support vector set changes after overstepping ρi+1, and the next pair ρi+1 and ρi+2 is
examined.

It is important to note, that it is not sufficient to just determine the critical points ρi since
it is also necessary to find out whether a training pattern leaves or enters the support

41

Chapter 3. Support Vector Regression

0
1

Minimum

Figure 3.6: The objective function φ(ρ) for the primal SVR problem with bias
term b in dependence of the step size ρ is a piecewise continuous, quadratic func-
tion. The derivative φ′(ρ) is a piecewise linear, and the second derivative φ′′(ρ)
a piecewise constant function. At the points ρ1, . . . , ρ5 the residual of a training
pattern enters or leaves the quadratic part of the loss function, which causes the
jumps in the second derivative φ′′(ρ).

vector set. Therefore one needs to distinguish the three cases shown in figure 3.7. The
residual of the i-th training pattern in dependence of the step size ρ is given by:

ri(β(ρ), b(ρ)) = [Kβk + bk − y + ρ(K(β̄ − βk) + 1(b̄− bk))]i = ri + ρui , (3.42)

where ri = ri(βk, bk) and ui = (K(β̄ − βk) + 1(b̄− bk))i are introduced as abbreviations to
keep the notation uncluttered. Equation (3.42) shows that the residual is a linear function
in dependence of ρ and thus monotonically in- or decreases depending on the sign of ui.
From this one can conclude that the residual can cross the points ±ε only once when the
step size is gradually increased from zero to one and that the cases shown in figure 3.7
cover all possibilities. The critical points ρi for each case can be computed as follows:

Case I: Residuals enter the quadratic part of the loss function from the ε-insensitive zone:

ρi =
sgn(ui)ε− ri

ui

42

3.2. Primal SVR with bias

Figure 3.7: Three cases need to be distinguished for the correct determination
of residuals that enter or leave the quadratic part of the loss function. Case I
comprises residuals in the ε-insensitive zone that enter the quadratic part. Case
II considers residuals leaving the quadratic part and case III deals with residuals
that reenter the quadratic part after leaving it.

Case II: Residuals leave the quadratic part of the loss function:

ri > ε⇒ ρi =
ε− ri
ui

ri < −ε⇒ ρi =
−ε− ri
ui

 ⇒ ρi =
sgn(ri)ε− ri

ui

Case III: Residuals reenter the quadratic part of the loss function:

ri > ε⇒ ρi =
−ε− ri
ui

ri < −ε⇒ ρi =
ε− ri
ui

 ⇒ ρi =
−sgn(ri)ε− ri

ui
.

When the critical points ρi are computed, all points that lie outside the admissible step size
interval (0, 1] are discarded. To find the minimizer of the objective function in dependence
of ρ an analytical expression for φ′(ρ) is needed. By substituting β(ρ) and b(ρ) into the
definition of the objective function (3.28) one obtains:

φ(ρ) = r(β(ρ), b(ρ))TW (β(ρ), b(ρ))r(β(ρ), b(ρ))− 2εs(β(ρ), b(ρ))T r(β(ρ), b(ρ))

+ εTW (β(ρ), b(ρ))ε+ λβ(ρ)TKβ(ρ) .
(3.43)

43

Chapter 3. Support Vector Regression

Differentiating equation (3.43) with respect to ρ then leads to the desired expression:

φ′(ρ) = 2
[
uTW (β(ρ), b(ρ))r(β(ρ), b(ρ))− εs(β(ρ), b(ρ))Tu+ λ(β̄ − βk)TKβk

]
. (3.44)

Figure 3.8: Given a pair of points ρi and
ρi+1 the zero crossing ρ∗ of function φ′(ρ)
is calculated by extending the line seg-
ment between ρi and ρi+1 to the points
(0, φ′(0) and (1, φ′(1)).

0 1

Zero
crossing

To find a potential zero crossing between a pair of critical points ρi and ρi+1 it is best to
extend the line in the (φ′(ρ), ρ) plane to the points (0, φ′(0)) and (1, φ′(1)), as shown in
figure 3.8. The benefit of doing this will become clear shortly. Now the zero crossing ρ∗

can be calculated analytically and is given by:

l(ρ) = φ′(0) + (φ′(1)− φ′(0))ρ
!

= 0⇒ ρ∗ = − φ′(0)

(φ′(1)− φ′(0))
. (3.45)

Consequently only the quantities φ′(0) and (φ′(1)−φ′(0)) are needed during the exact line
search to identify the point ρ∗ that minimizes the objective function. Extending the line
segment to zero and one has the advantage that φ′(0) and (φ′(1)− φ′(0)) can be updated
easily when residuals enter or leave the quadratic part of the loss function. To make this
clear (φ′(1)− φ′(0)) can be deduced from equation (3.44):

φ′(1)− φ′(0) = 2[uT (W (β̄, b̄)r(β̄, b̄)−W (βk, bk)r(βk, bk)− εs(β̄, b̄) + εs(βk, bk))

+ λ(β̄ − βk)TK(β̄ − βk)] .
(3.46)

This expression can be further simplified by using the relations s(β̄, b̄) = W (β̄, b̄)sgn(r(β̄, b̄))
and s(βk, bk) = W (βk, bk)sgn(r(βk, bk)). In addition one can exploit that the set of sup-
port vectors does not change between the pair ρi and ρi+1, that is W (βk, bk) = W (β̄, b̄),
and (3.46) can be rewritten as:

φ′(1)− φ′(0) = 2[uTW (βk, bk)(u− ε(sgn(r(β̄, b̄))− sgn(r(βk, bk))))

+ λ(β̄ − βk)TK(β̄ − βk)] .
(3.47)

44

3.2. Primal SVR with bias

From equation (3.47) it can be seen that after entry of the i-th residual into the quadratic
part of the loss function the quantity (φ′(1) − φ′(0)) can be updated by adding the term
2ui(ui− ε(sgn(r̄i)− sgn(ri))). Analogous this term has to be subtracted when the residual
leaves the quadratic part. Similar considerations are valid for updating φ′(0).

Up to this point the line search follows the description given in [74] for SVC and was
only extended to the regression case. Unfortunately this description of the line search
fails to find the optimal step size ρ∗ in some cases. Figure 3.9 shows one case where
it is impossible to analytically determine the minimum of the objective function φ(ρ) by
locating the zero crossing of the first derivative φ′(ρ). Of course one could devise a heuristic
to choose an arbitrary point in the interval [0, 1] in this case. But this only works when
the descent direction is computed by the Newton step. If the negative gradient, or scaled
gradient are used as alternative descent directions, as described in section 4.3.2 for the
online algorithm, the heuristic choice of a step size can incur large prediction errors or can
even lead to divergence of the algorithm. Clearly, when the minimum cannot be found

Figure 3.9: Since the objec-
tive function φ(ρ) is a piecewise
continuous, quadratic function
there are cases when it is not
possible to determine the min-
imum ρ∗ analytically. In these
cases the minimum is located
at one of the points ρ1, . . . , ρ5

and can be found by evaluating
the objective function at each of
these points.

analytically the optimal step size ρ∗ is located at one of the points ρi that are considered
during the line search. To reliably find the minimizer of φ(ρ) it is therefore necessary to
evaluate the objective function at all of these points and subsequently choose the point with
the minimal function value, if the line search cannot find an analytical solution. Without
this modification, sorting the points ρi is the most expensive step of the line search with
a run time complexity of O(n log n). One evaluation of the objective function costs O(n2)
operations which leads to an overall run time complexity of O(n3) for the modified line

45

Chapter 3. Support Vector Regression

search. Since the cost for the Cholesky decomposition is also O(n3) the robust version
of the line search proposed here does not increase the overall run time complexity of the
primal SVR algorithm. In appendix A the steps of the modified line search are summarized
in algorithm 3.

3.2.4 Primal algorithm

The Newton step described in section 3.2.1 and the line search described in section 3.2.3
allow the optimization algorithm to make progress towards an optimal solution. The only
missing parts to assemble a full optimization algorithm for the SVR problem with bias
term are the initialization step and the termination criteria. To get a feasible initial guess
of the solution one can set the coefficients β to zero and the bias term b to the mean of the
target values that are in the training data set. After this, it is possible to determine the
residuals and an initial guess for the set of support vectors. The optimization loop can be
terminated when the set of support vectors does not change after one full Newton step with
step size ρ = 1. Due to the problem discussed in section 3.2.1, the optimization loop is
also terminated when the new set of support vectors is empty. From a numerical viewpoint
it is practical to finish the optimization when the decrease in the objective function value
is smaller than the machine precision. A practical implementation will therefore exit the
optimization loop when one of these three termination criteria is met.

At the start of the optimization algorithm the initial guess of the set of support vectors
can be far from the final solution. In particular there could be many training patterns in
the support vector set that will not contribute to the final solution of the SVR problem.
From this perspective the matrix A1 that needs to be inverted in the Newton step can be
huge which is detrimental to the run time of the algorithm due to the O(n3), n = |sv1|
complexity of the matrix inversion step. To circumvent this problem [29] proposes to solve
the optimization problem for primal SVC recursively, by first computing the solution on a
subset of the training patterns to get a better initial estimate for the support vector set.
This approach can also be used for the primal SVR problem.

Algorithm 2 in appendix A summarizes all the steps that are needed for the solution of
the primal SVR problem with bias term. It uses the results from section 3.2.1 and 3.2.3
together with the practical considerations discussed in this section.

3.3 Results

How does the different behavior of the l1- and l2-loss function with respect to outliers (cf.
section 3.1.3) influence the performance of the SVR algorithm on real data sets? Are there
any differences between the primal and dual solution? These questions are investigated in
subsection 3.3.1 and 3.3.2 by comparing the prediction accuracy of the SVR algorithm on
data sets from different application areas.

46

3.3. Results

Especially important are the four data sets fb081008-r1, fb141008-r2, fb151008-r2,
and 180708-r1 which originate from the adaptive microstimulation experiments described
in chapter 6. Each pattern in these data sets consists of recorded pre- and post-stimulus
local field potentials and the regression target corresponds to the applied stimulus intensity.
Detailed descriptions of all data sets used in this study are given in appendix B.

3.3.1 Comparison of l1- and l2-loss functions

For regression problems the performance is usually measured by the mean squared error
(MSE) between predicted target values f(xi) and the true targets yi on an independent
test data set:

MSE =
1

m

m∑
i=1

(f(xi)− yi)2 . (3.48)

The performance measure defined by equation (3.48) is a summary statistic that depends on
the partitioning of the original data into training and test subsets, and can thus be regarded
as a random variable with unknown distribution. The subsequent results therefore include
95% confidence intervals calculated by a bootstrap procedure [41, 47] with B = 1000
bootstrap samples alongside the point estimate of the MSE.

Data set Dual l1 Dual l2 Primal l2 Primal l2 w/o b Train size
abalone (3, -2, -7) (2, -2, -3) (3, -2, -7) (3, -2, -7) 500
cadata (5, -1, -8) (6, -2, -4) (4, -1, -8) (4, -1, -8) 500
cpusmall (6, -2, -8) (1, -1, -8) (5, -2, -8) (5, -2, -8) 500
fb081008-r1 (5, 0, -5) (7, -2, -3) (5, 0, -5) (5, 0, -5) 300
fb141008-r2 (7, 0, -6) (5, 0, -3) (6, 0, -7) (6, 0, -6) 300
fb151008-r2 (3, 2, -8) (0, 2, -8) (2, 2, -8) (5, 1, -8) 300
fb180708-r1 (7, 0, -4) (3, 1, -3) (6, 0, -4) (6, 0, -4) 300
housing (4, -2, -8) (2, -2, -3) (4, -2, -8) (4, -2, -8) 400
mpg (2, -1, -8) (0, -1, -3) (2, -1, -7) (3, -2, -8) 300
pyrim (8, -2, -5) (2, -2, -5) (8, -2, -5) (2, -3, -4) 55
space-ga (8, -3, -8) (8, -4, -4) (7, -3, -8) (7, -3, -8) 500
triazines (5, -4, -3) (2, -3, -3) (4, -4, -3) (4, -4, -3) 140

Table 3.1: Values (log(C), log(γ), log(ε)) for the regularization parameter C, RBF kernel
parameter γ, and loss function parameter ε selected by 10-fold cross validation on the
training data set. Here the log(.)-function has base e and the last column shows the size
of the training data set.

The regularization parameter C, the width of the radial basis function (RBF) kernel γ [124],
and the size of the insensitive zone in the loss function ε were chosen by 10-fold cross
validation on the training data set. This selection of hyper-parameters was done once
before calculating the bootstrap estimate of the MSE to avoid impractical run times. The

47

Chapter 3. Support Vector Regression

values of the hyper-parameters employed for the different data sets and algorithms, as well
as the size of the training data set, are listed in table 3.1.

Figure 3.10 compares the prediction accuracy in terms of the MSE for the dual SVR
algorithm with l1- and l2-loss functions on 12 different data sets. The dots symbolize the
point estimates of the MSE and associated 95% confidence intervals are represented by
colored bars. It can be seen that on most data sets the l1- and l2-loss perform equally well.
The l1-loss is slightly better on the mpg data set while the l2-loss is slightly better on the
cadata and fb-081008-r1 data set. But these differences are not statistically significant
at the .05 level as indicated by the overlapping 95% confidence intervals. The confidence
intervals are largest for the pyrim and triazines data sets due to the small total number
of patterns.

Figure 3.10: Comparison
of the dual SVR algorithm
with l1- and l2-loss func-
tions. The performance
is evaluated by point esti-
mates of the MSE (dots)
and associated 95% confi-
dence intervals (bars). Al-
though the l1-loss performs
slightly better on the mpg
data set, while the l2-
loss is better on the ca-
data and fb-081008-r1
data set, these differences
are not significant at the
.05 level.

The results shown in figure 3.10 are surprising at first sight, since one would expect the
l1-loss function to perform better than the l2-loss function. But it is important to recall
that the example in section 3.1.3 was deliberately chosen to show the superiority of the
l1-loss in the presence of outliers. In most practical applications such extreme outliers
occur only rarely or are easily removed by appropriate preprocessing of the input patterns.
Furthermore the target values in many application areas are measured by devices that add
noise to the targets which is governed by a Gaussian distribution. Under these circum-
stances the l2-loss function is suitable for measuring the loss between predicted and true
target values [29]. It should be noted that in case of adaptive microstimulation the choice
of the l2-loss function is not at all detrimental to prediction accuracy, as indicated by the
results on the data sets fb081008-r1, fb141008-r2, fb151008-r2, and 180708-r1.

48

3.3. Results

3.3.2 Comparison of primal and dual algorithms

The performance of dual SVR with bias from section 3.1.1, primal SVR with bias from
section 3.1.3, and primal SVR without bias from section 3.2 is compared by the MSE and
95% confidence intervals on 12 different data sets as described in the previous section. A
summary of the results obtained with the different SVR algorithms is shown in figure 3.11.
There are only small differences in the performance across all data sets. Remarkably the
primal SVR algorithm without bias term seems to perform better on the pyrim data set.
But, as pointed out before, the difference is not statistically significant at the .05 level and
the confidence intervals are large due to the low number of patterns in this data set.

Figure 3.11: Comparison
of the primal and dual
SVR with bias term and
the primal SVR without
bias term. Point esti-
mates and associated 95%
confidence intervals for the
MSE are shown for 12 data
sets from different applica-
tion areas. Although there
are small differences in the
performance of the three
algorithms, none is statis-
tically significant at the .05
level.

Section 3.1.2 described the difference between primal and dual optimization in the context
of the RLS algorithm. Why does one not observe any difference in the performance of
primal and dual SVR in figure 3.11? The reason is, that the results shown in figure 3.11
represent the exact solutions of the regression problem and according to primal and dual
optimization theory these solutions have to be equal. In other words there are no differences
since one does not consider approximate solutions to the regression problem. Nevertheless
one can observe very small dissimilarities in the performance of the primal and dual SVR
algorithm, but these can be attributed to the different optimization algorithms that are
employed: SMO for solution of the dual [27, 107], and Newton’s algorithm for the primal.

49

It is not knowledge, but the act of learning,
not possession, but the act of getting there,
which grants the greatest enjoyment.

Carl Friedrich Gauss (1777 - 1855) 4
Online SVR

The problem of inferring optimal stimulation parameters based on the background brain
activity is associated with many uncertainties that are caused by the inherent complexity
of the nervous system. Chapter 3 discussed how the problem of adaptive stimulation is
reducible to a regression problem that can be solved by SVR. The discussion implicitly
assumed that a full set of training patterns originating from a stationary distribution is
provided for training the SVR algorithm. This assumption is highly questionable in the
context of adaptive stimulation. For a prosthetic device, like a visual cortical prosthesis as
described in section 2.3.2, it is unrealistic to acquire a complete set of training patterns,
since it would drastically limit its practical use. After turning on a cortical prosthesis
there will be a rather short calibration phase that allows collecting a small set of training
patterns. More important, the function estimated by SVR on the training patterns might
already be outdated when it is used to adapt the stimulation parameters. Such a situation
could arise if there is a temporal drift or switch in the distribution of the training patterns
or a temporally changing functional relationship between training patterns and targets. At
the moment these considerations seem to be quite theoretical, but the results in section 7.3
of chapter 7 indicate, that there are temporal differences in the performance of adaptive
stimulation. Although the origin of these differences could not be clarified yet, they could be
explained by either a temporally changing distribution of training patterns or a temporally
changing functional relationship.

4.1 Online versus Offline SVR training

In the ’offline’ or ’batch’ setting that is described in chapter 3 all data is available for
training the SVR algorithm and the estimated function is held fixed for computing pre-
dictions on unseen data. This chapter will be concerned with the ’online’ setting, where
the current estimate of the function is continuously updated upon arrival of a new pair
(xt, yt) of training pattern and target at time point t. At first glance online algorithms
seem to be inferior to offline algorithms. On the one hand they do not have access to
the full data set and cannot anticipate the properties of the next training pattern, on the
other hand online algorithms are usually restricted to store only a small subset of recently

51

Chapter 4. Online SVR

seen training patterns and have only a fixed time window to optimize the current solu-
tion. Surprisingly it is possible to construct examples where online algorithms actually
perform better than their offline counterparts. In the first example the training patterns
xt ∼ N (0.5, 0.1) are normally distributed with mean 0.5 and standard deviation 0.1. The
functional relationship between the patterns xt and the targets yt is defined as follows:

yt =

{
x2
t , kb < t < (k + 1)b, even k

xt, otherwise ,
(4.1)

where b denotes the block size. According to this definition the targets yt are either a linear
or quadratic function of the training patterns xt and functions are switched temporally in
block wise fashion. Figure 4.1A shows the results obtained on this example data set by
offline training with the primal SVR algorithm described in section 3.2 and by online
training with the primal online algorithm introduced in section 4.3. The performance
measure used here is the current average error which at iteration t corresponds to the
mean squared error on the training patterns seen so far:

Current average error = 1/t
t∑
i=0

(yi − f(xi))
2 . (4.2)

Figure 4.1: Online versus offline SVR training. A: The function relating training
patterns and targets switches block wise every 200 iterations between a linear
and quadratic function. Online training outperforms offline training in this case,
since the online algorithm is able to track the switching functional relationship by
rapidly adjusting its current solution. B: The function relating training patterns
and targets continuously drifts with time. In this setting online training incurs
smaller prediction errors compared to offline training because this kind of drift is
hard to capture by the single function computed by the offline algorithm.

52

4.2. Online training state of the art

For this example the regularization and loss function parameters were set to λ = 1/2 and
ε = 0.01. It can be seen that during the initial 50 iterations the current average error of
the online algorithm is higher than the error of the offline algorithm. This is the expected
behavior, since the online algorithm could not yet identify the functional relationship.
After this initial phase the predictions made by the online algorithm are more accurate
than those of the offline algorithm. The block size in equation (4.1) was chosen to be
b = 200 which can also be seen in figure 4.1A as the error of the online algorithm slightly
increases after each switch of the underlying functional relationship.

For the second example shown in figure 4.1B the training patterns xt ∼ N (0.5, 0.01) again
follow a normal distribution with mean 0.5 and standard deviation 0.01 but the relationship
to the targets, given by yt = x2

t + t/(2m), where m is the total number of patterns, drifts
with time. In this scenario the difference between the prediction error of the online and
offline algorithm is even more pronounced. Intuitively this can be expected since a drifting
functional relationship is hard to explain by a single fixed function that is computed by
the offline algorithm.

Of course these examples were contrived to show the superiority of online training and one
cannot use these examples to draw general conclusions about the relative merits of online
training. But it is nevertheless interesting to analyze why the offline algorithm failed to
capture the relevant relationship in these examples. The explanation for this failure is
simple: In both examples the functional relationship was deliberately chosen to have a
temporal dependence that is implicitly encoded by the order of the training patterns. For
the offline algorithm the order of the training patterns does not matter since the solution
it produces is invariant to reordering the training patterns. Consequently the information
about the temporal dependence of the function to be learnt gets lost in the offline setting.

The perceptron learning algorithm is one of the first online training algorithms [114]. Its
successor, the back propagation algorithm for training perceptrons with multiple layers of
neurons, was also first formulated for the online setting and then extended to the batch
setting [117]. At that time personal computers or workstations still had severe limitations
in terms of memory capacity and CPU speed, and online training algorithms were even
employed in presence of a complete data set. Compared to this historic development of
training algorithms in the field of neural networks, the development of SVM training algo-
rithms developed in the opposite direction. From the beginning [142] SVMs were formu-
lated in the batch setting and subsequently proposed solution approaches all concentrated
on this setting [107, 27].

4.2 Online training state of the art

This chapter will be concerned with online training algorithms for SVMs, or, more precisely,
online algorithms to solve the SVR problem. Current state of the art algorithms for online
SVM training can be roughly divided into three groups based on their solution approach.

53

Chapter 4. Online SVR

In the first group algorithms use stochastic gradient descent to minimize the objective
function [78, 31, 143] and thus maintain an approximate solution to the learning problem in
every iteration step. The stochastic gradient descent framework for online training was first
introduced by the naive online risk minimization algorithm (Norma) [78], which was later
combined with a sophisticated step size adaptation method [143]. Norma will be described
in more detail in section 4.2.1, while the step size adaptation will not be considered any
further in this chapter because it is hard to implement and a less complicated implicit
update rule was reported to perform better in practice [31] . The sparse implicit learning
with kernels (Silk) will be described in section 4.2.2.

In contrast to the first group, algorithms from the second group maintain an exact solution
to the learning problem in every iteration step [23, 88]. This means that after arrival of
the next training pattern the current solution is incrementally updated, if necessary, until
it is optimal for all training patterns seen so far. To avoid the problems associated with
a fixed function in the offline setting it is possible to remove old training patterns from
the current data set and incrementally update the solution. These incremental learning
algorithms have been proposed for both, classification [23] and regression [88]. Although
the notion of maintaining an exact solution in every iteration step is attractive it requires an
unbounded number of operations to be executed upon arrival of the next training pattern.
In other words it is impossible to restrict the time needed per iteration for incremental
learning, which prevents the use of this approach in a real-time environment. As explained
later in section 7, the real-time system used for adaptive stimulation puts hard constraints
on the available iteration time.

The drawback of an unbounded run time per iteration is overcome by algorithms in the
third group. The LaSVM [13] algorithm employs two steps per iteration which both need
a fixed number of operations. The ’process’ step looks at the next training pattern and
adds it to the support vectors if necessary. In the ’reprocess’ step the coefficients of two
patterns already residing in the support vector set are optimized and can lead to their
removal. Together these steps can be seen as a reorganization of the steps performed by
the SMO algorithm [107] for batch training [13]. This means that LaSVM maintains an
approximate dual solution to the SVM learning problem. In light of the discussion given
in section 3.1.2, concerning the comparison of approximate primal and dual solutions, it is
problematic to compute an approximate dual solution and the LaSVM algorithm will not
be considered any further in this chapter.

4.2.1 Naive online risk minimization

Online training can be formally seen as the problem of estimating a function f : Rd 7→ R
based on a sequence S = ((x1, y1), . . . , (xm, ym)) of examples (xt, yt) ∈ Rd×R that arrive at
time point t. In the naive online risk minimization algorithm (Norma) [78] the unknown

54

4.2. Online training state of the art

function f is found by minimizing the instantaneous regularized risk:

Rinst,λ(f, xt, yt) =
λ

2
‖f‖2

H + l(f(xt), yt) , (4.3)

by using stochastic gradient descent. The definition of the risk functional in (4.3) is almost
identical to the definition of the primal objective function in equation (3.18). But here the
loss function is evaluated only on the next training pattern (xt, yt), while equation (3.18)
contains the average loss across all training patterns in the data set. Similar to the offline
setting the solution is regularized by the first term in equation (4.3) and parameter λ ∈ R+

is used to trade off between the complexity of function f and the incurred loss on pattern
(xt, yt). By computing the partial derivative of equation (4.3) with respect to f one obtains
the following general update rule

ft+1 = ft − ηt∂fRinst,λ(f, xt, yt)|f=ft , (4.4)

that relates the estimate ft of the function at the last iteration to the new estimate ft+1.
Equation (4.4) just expresses a gradient descent step with learning rate ηt ∈ R+ in the
space of admissible functions f . Now, it is assumed that the space of functions is a
kernel Hilbert space H with the reproducing property ft(xt) = 〈f, k(., xt)〉H, introduced in
chapter 3. Using the reproducing property one can calculate the partial derivative of the
loss function with respect to f :

∂f l(ft(xt), yt) = ∂f l(〈ft, k(., xt)〉H , yt) = l′(ft(xt), yt)k(., xt) , (4.5)

with l′(z, y) = ∂zl(z, y). Thus the loss function has to be differentiable in its first argument.
Since ∂fλ/2‖f‖2

H = λf , the update rule (4.4) can be rewritten using equation (4.5) :

ft+1 = ft − ηtλft − ηtl′(ft(xt), yt)k(xt, .) = (1− ηtλ)ft − ηtl′(ft(xt), yt)k(xt, .) . (4.6)

It is clear that the sequence of functions f1, f2, . . . will converge if in the limit of an infinite
number of iterations the distance between consecutive elements of the sequence approaches
zero. In mathematical terms this means that limt→∞ ‖ft+1 − ft‖ → 0. Consequently given
fixed value of λ > 0 the learning rate has to fulfill the condition ηt < 1/λ∀t, in order
to ensure the convergence of Norma. This directly follows from the right hand side of
equation (4.6).

The representer theorem given by equation (3.19) states that every function f ∈ H can
be expanded as a linear combination of kernel functions that are centered on the training
patterns. Using the representer theorem the functions ft+1 and ft in equation (4.6) can be
expanded as follows:

t−1∑
i=1

αik(xi, x) + αtk(xt, x) =
t−1∑
i=1

(1− ηtλ)αik(xi, x)− ηtl′(ft(xt), yt)k(xt, x) . (4.7)

By comparing the left and right hand sides of equation (4.7) it is possible to read off the
general update rules for the expansion coefficients given by:

αt ← −ηtl′(ft(xt), yt), αi ← (1− ηtλ)αi ∀i<t . (4.8)

55

Chapter 4. Online SVR

Until now the derivation of Norma was independent of the specific choice of a loss function.
With the general update rules for the coefficients in equation (4.8) it is possible to solve
both, classification and regression problems online by choosing an appropriate loss function.
Since this chapter is concerned with online training algorithms for SVR, the following
description will focus on the ε-insensitive quadratic, or l2 loss, that is shown in figure 3.5D
of chapter 3. To repeat, the l2 loss is defined by l(f(x), y) = max{0, 1/2(|yi− f(xi)| − ε)}2

and its derivative with respect to function f can be written as:

l′(f(x), y) =

f(x)− y − ε, f(x)− y > ε

f(x)− y + ε, f(x)− y < −ε
0, otherwise

=

{
f(x)− y − sgn(f(x)− y)ε, |f(x)− y| > ε

0, otherwise .

(4.9)

Inserting equation (4.9) into equation (4.8) yields the update rules for the expansion coef-
ficients in the case of online SVR:

αt ←

{
−ηt[ft(xt)− yt − sgn(ft(xt)− yt)ε], |ft(xt)− yt| > ε

0, otherwise

αi ← (1− ηtλ)αi ∀i<t .
(4.10)

The estimated function f did not yet involve a bias term b ∈ R. It is straightforward
to extend Norma and let it optimize the function g(x) = f(x) + b, f ∈ H with an
additional bias term. Optimization of g(x) can be decomposed into separately optimizing
over f and b. The minimization of the instantaneous regularized risk in equation (4.3)
with respect to f can be carried out as already described. One just has to replace ft(xt)
by gt(xt) = ft(xt) + bt in the update equation (4.10) for the coefficients αi. The gradient
descent step to minimize the risk functional with respect to the bias term is given by:

bt+1 = bt − ηt∂bRinst,λ(g, xt, yt)|g=ft+bt . (4.11)

Since the bias term is not regularized, the partial derivative of the risk functional in equa-
tion (4.11) reduces to the partial derivative of the l2 loss. This partial derivative is given
by equation (4.9) when ft(xt) is replaced by gt(xt) = ft(xt) + bt. The update rule for the
bias term b can then be deduced from equation (4.11):

bt+1 ←

{
bt − ηt[gt(xt)− yt − sgn(gt(xt)− yt)ε], |gt(xt)− yt| > ε

bt, otherwise
. (4.12)

4.2.2 Implicit online learning with kernels

When an online algorithm updates its current solution to a learning problem it has to
balance two needs to perform well. On the one side it has to retain the information it

56

4.2. Online training state of the art

extracted about the learning problem from previously seen input patterns. This means
that the algorithm should be conservative and preserve the current solution. On the other
side it has to make more accurate predictions if the same pattern is observed again. This
means that the algorithm should be corrective and update the current solution. These
ideas are encapsulated in the general framework for online algorithms proposed in [79].
The sparse implicit learning with kernels (Silk) algorithm [31] uses this framework to
derive implicit update rules for online SVM training. The estimate of function ft+1 at the
next iteration is obtained from:

ft+1 = arg min
f

1

2
‖f − ft‖2

H + ηt

(
λ

2
‖f‖2

H + l(f(xt), yt)

)
. (4.13)

Minimizing the first term in equation (4.13) prevents large deviations of the new estimate
ft+1 from the current solution ft and helps the algorithm to be conservative. The sec-
ond term in equation (4.13) corresponds to the regularized risk functional introduced in
equation (4.3) and helps the algorithm to be corrective. The simultaneous minimization
of both terms balances between the needs to be conservative and corrective. By increasing
the learning rate ηt ∈ R+ it is possible to emphasize the corrective aspect of the algorithm.
Differentiation of equation (4.13) with respect to f yields:

f − ft + ηtλf + ηt∂f l(f(xt), yt) = (1 + ηtλ)f − ft + ηt∂f l(f(xt), yt)
!

= 0

⇒f =
1

(1 + ηtλ)
ft −

ηt
(1 + ηtλ)

∂f l(f(xt), yt) .
(4.14)

With τt = ηtλ
(1+ηtλ)

the right hand side of equation (4.14) can be written in a more compact
way:

ft+1 = (1− τt)ft − (1− τt)ηt∂f l(ft+1(xt), yt) . (4.15)

At this point it is assumed that the function f resides in a reproducing kernel Hilbert
space (RKHS). This is similar to the assumption made in the description of Norma in
section 4.2.1. Now it is further assumed that the gradient of the loss function is an element
of the RKHS. According to the representer theorem (3.19) the gradient can be expanded
as:

∂f l(ft+1(xt), yt) = l′(ft+1(xt), yt)k(xt, .) = βtk(xt, .) , (4.16)

and hence βt = l′(ft+1(xt), yt). Using this relationship and expanding the functions ft+1

and ft as linear combinations of kernel functions equation (4.15) can be reformulated:

t−1∑
i=1

αik(xi, .) + αtk(xt, .) =
t−1∑
i=1

(1− τt)αik(xi, .)− (1− τt)ηtβtk(xt, .) . (4.17)

Here it is again possible to directly read off the general update rules for the expansion
coefficients by comparing the left and right hand sides of equation (4.17):

αt ← −(1− τt)ηtβt, αi ← (1− τt)αi ∀i<t . (4.18)

57

Chapter 4. Online SVR

It is important to point out that the update rules for Norma (4.8) and Silk (4.18) are
almost identical. The difference in the update rule for coefficient αt lies in the derivative
of the loss function, which is l′(ft(xt), yt) for Norma and l′(ft+1(xt), yt) for Silk.

The description of Silk is so far valid for any differentiable loss function. In the following
the l2 loss function will be used to derive an online training algorithm for the SVR problem.
To replace the expression ft+1 in the derivative of the loss function l′(ft+1(xt), yt) one can
use the following relationship that can be gleaned from the left hand side of equation (4.17):

ft+1(xt) = (1− τt)ft(xt) + αtk(xt, xt). (4.19)

For the l2 loss the derivative is given in equation (4.9) and it is thus necessary to distinguish
three different cases. In the first case ft+1(xt, yt) > ε and by using (4.19) the derivative of
the l2 loss can be expanded as:

βt = ft+1(xt)− yt − ε = (1− τt)ft(xt) + αtk(xt, xt)− (yt + ε) (4.20)

Using the update rule (4.18) for coefficient αt and substituting βt by the right hand side
of (4.20) it is possible to derive a closed form expression for αt:

αt = −(1− τt)ηtβt = −(1− τt)2ηtft(xt)− (1− τt)ηtαtk(xt, xt) + (1− τt)ηt(yt + ε)

⇒αt =
(1− τt)ηt (yt + ε− (1− τt)ft(xt))

(1 + (1− τt)ηtk(xt, xt))
.

(4.21)

Although αt is now computable from expressions known in the previous iteration at time
point t it is still necessary to decide when the update rule is applicable. In other words it
is necessary to answer the question when ft+1(xt) − yt is larger than ε. With the help of
equation (4.19) this can be reduced to a condition on αt:

αt >
ε− (1− τt)ft(xt) + yt

k(xt, xt)
. (4.22)

Finally, by combining equations (4.21) and (4.22), a simplified condition not involving αt
is deducible:

(1− τt)ηtft(xt)− yt > ε . (4.23)

All derivations given for the first case also hold in the second case of the l2 loss, when
ft+1(xt, yt) < −ε. It is only necessary to change the sign of ε and reverse the inequalities.
In the third case one has βt = 0 and equation (4.18) implies that αt = 0. To sum up the
update equations for the coefficients αi for the l2 loss are:

αi ← (1− τt)αi ∀i<t

αt ←

{
(1−τt)ηt(sgn(ν)ε−ν)
(1+(1−τt)ηtk(xt,xt))

, |ν| > ε

0, otherwise ,

(4.24)

58

4.3. Primal online algorithm

where ν = (1− τt)ηtft(xt)− yt.
There still remains the open question on how to choose an appropriate learning rate ηt for
the Norma and Silk algorithm. The convergence analysis of Norma indicates [78] that
the learning rate should decay with an increasing number of iterations according to the
schedule ηt = η0/

√
t. Unfortunately this does not give any hint on how to select the initial

learning rate η0 in practice. It is therefore mandatory to tune the initial learning rate η0

for each application separately in order to achieve good prediction performance with both
Norma and Silk [78, 31]. This limitation of Norma and Silk will be overcome by the
new online algorithm proposed in section 4.3.

4.3 Primal online algorithm

The algorithm developed in section 3 solves the primal SVR problem in the offline setting.
It uses Newton’s method with an exact line search to minimize the objective function of
the primal SVR problem in equation (3.24) iteratively. If the algorithm is terminated pre-
maturely, for example after one Newton step, the resulting solution, namely the coefficients
β and the bias term b, is an approximation to the primal SVR problem. Since the value of
the objective function is decreased by each Newton step the approximate solution is closer
to the optimum than the initial guess for β and b. In this way the algorithm produces a
series of functions f1, f2, . . . , fn that converges to the optimal function fn after n iterations.

In the online setting algorithms receive an infinite sequence S = ((x1, y1), (x2, y2), . . .)
of examples. The next pattern in the sequence (xt, yt) arriving at time point t provides
additional information about the learning problem and is used by the online algorithm
to update its current solution. Under the assumption that the patterns are drawn form
a stationary distribution there will be a time point, say t∗, where the next pattern in
the sequence does not contribute any additional information about the learning problem.
Seen from a different point of view a finite sample of training patterns, say S∗ ⊂ S =
((x1, y1), . . . , (xt∗ , yt∗)), will be sufficient to describe the underlying distribution, at least
to a level of precision that is required for the accurate prediction on the next pattern in
the sequence.

The primal online algorithm (Priona) proposed here uses the Newton step from sec-
tion 3.2.1 and the exact line search from section 3.2.3 in each iteration to minimize the
primal SVR problem defined by the subset of patterns it already received[19]. Thus, Pri-
ona generates a series of functions f̂1, f̂2, . . . , f̂t, which of course is different from the series
of functions produced in the offline setting. But if the patterns are drawn from a stationary
distribution the offline primal algorithm operating on the subset S∗ and Priona receiving
the sequence S will converge to the same optimal solution, that is f̂t → fn for t → ∞.
There are two reasons for this: First, the sequence S can be adequately described by the
subset S∗, as argued in the last paragraph; Second, Priona executes an optimization step
at each time point that is equivalent to one iteration of the offline primal algorithm.

59

Chapter 4. Online SVR

Actually the informal argument given above holds for any offline algorithm that is applied
in the online setting. This line of thought is also followed by the LaSVM algorithm [13],
for example. But the offline counterpart in the LaSVM algorithm finds an optimal solution
to the dual SVM problem. As shown in section 3.1.2 approximate solutions for the dual
optimization problem can be slow to converge to the optimum of the primal problem.
Therefore it can be expected that an online algorithm that uses approximations to the
primal optimization problem, like Priona, yields a higher speed of convergence.

To recapitulate, the essential idea of Priona lies in applying the optimization steps of
the offline primal algorithm described in section 3.2 in an online setting. Although this
idea is straightforward, there are several choices that have to be made for a practical
implementation of Priona [19]. In many problems where online training is applicable
strict time constraints are imposed on one iteration step of the algorithm. When the
time per iteration is limited, only a subset of the recently seen training patterns can be
buffered and processed to update the current solution. Strategies to remove patterns
from the buffer will be discussed in section 4.3.1 and evaluated on several data sets in
section 4.4.2. While restricting the number of stored training patterns is one way to
diminish the iteration time, reducing the computational complexity of each iteration step
is another possibility. Replacements for the Newton step will be described in section 4.3.2
and empirically analyzed in section 4.4.3. Most of the time in the Newton step is consumed
by inverting the hessian matrix. This can be avoided if the inverse is updated incrementally
after arrival of the next training pattern, a possibility discussed in section 4.3.3. Since
this approach proves to be difficult for the SVR loss function, section 4.3.4 introduces
an algorithm for online kernel ridge regression that can fully exploit the advantages of
incrementally updating the hessian inverse.

4.3.1 Buffering strategies

Most online training algorithms for SVMs [78, 143] use the “first in first out” (FIFO)
principle to manage the patterns in the buffer (figure 4.2A). This strategy is easy to imple-
ment, but is suboptimal from a theoretical point of view. In online classification problems
for example, it makes more sense to remove patterns that are far away from the decision
boundary [35], since their removal has the least impact on the current solution. Later this
strategy was refined to remove those patterns that have the lowest classification error on a
subset of the training data and it was shown that this approach performs better on noisy
data sets [146].

For regression problems there is no decision boundary but the concept is transferable by
removing patterns with the smallest absolute value of the residual ri = Kiβi + b − yi. If
|ri| is smaller than the loss function parameter ε the pattern does not contribute to the
current solution and can be safely removed. Alternatively one can base the decision for
removing a pattern on the absolute value of the corresponding coefficient βi. The different
buffering strategies that are applicable to online SVR training are illustrated in figure 4.2.

60

4.3. Primal online algorithm

Figure 4.2: A: FIFO. The
oldest pattern is removed.
B: The pattern with mini-
mum absolute value of co-
efficient βi or residual ri is
removed.

4.3.2 Descent directions

Due to the inversion of the hessian matrix, the Newton step has a run time complexity of
O(n3), where n denotes the number of support vectors. But there are other possibilities to
determine the descent direction and the values of the optimization variables (β̄, b̄) at the
next optimization step.

It is well known that the gradient of a function points in the direction of its steepest
increase. The negative of the gradient therefore is a valid descent direction as illustrated
in figure 4.3. For the primal SVR problem the gradient is given by equation (3.35) and the
new values of the optimization variables in case of the l2 loss can be determined via:(

β̄
b̄

)
=

(
β
b

)
−∇Lε(β, b) =

(
β
b

)
− 2

(
KTW (β, b)r(β, b)− εs(β, b)TK + λKβ

1TW (β, b)r(β, b)− εs(β, b)T1

)
. (4.25)

Assuming that the matrix vector product Kβ is cached and just updated every iteration
the run time complexity to compute the gradient step in equation (4.25) is only O(m · n),
where m denotes the number of patterns in the input buffer. In most applications the
support vectors completely fill the input buffer and n = m. For these cases the gradient
step has a run time complexity of O(n2). Despite the fact that the negative gradient points
in the direction of steepest descent this does not necessarily mean that it points towards
the minimum of the function, as can be seen in figure 4.3B.

Let’s suppose for the moment that the function f to be minimized is a quadratic function.
Then the hessian of f is a diagonal matrix that can be inverted in linear time. Around
a certain neighborhood of a point many functions are approximated well by a quadratic
function. Thus, it makes sense to pre-multiply the negative gradient by the inverse of the
diagonal portion of the hessian. This scaled gradient descent direction for the primal SVR
problem is given by: (

β̄
b̄

)
=

(
β
b

)
−D∇Lε(β, b) , (4.26)

In equation 4.26 D is the diagonal scaling matrix with the i-th entry given by:

Dii =

[
(KTW (β, b) + λI)K KW (β, b)1

1TW (β, b)K 1W (β, b)1

]−1

ii

⇒ Dii =

{
(KT

i,svKi,sv + λKii)
−1, 1 ≤ i ≤ m

1/n, i = m+ 1
.

(4.27)

61

Chapter 4. Online SVR

Equation (4.27) uses Ki,sv to denote the entries support vectors in the i-th column of the
kernel matrix K. The complexity to determine matrix D and its inverse is O(n ·m) and,
under the same assumptions made for the gradient direction, the overall run time com-
plexity is O(n2). For non-quadratic functions the scaled gradient and Newton directions
are different (figure 4.3A), while for quadratic functions they coincide (figure 4.3B).

x

z

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

x

z

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

G
S

N

G

N,S

A B

Figure 4.3: Newton (N), gradient (G), and scaled gradient (S) descent directions
for function f(x, z) = x2 +2z2 +cxz at point (4, 2.5). For illustration purposes the
descent directions have been normalized to length two. A: For c = 3.5 the function
has a saddle point at (0, 0) marked by the asterisk (*). All descent directions are
different in this case. The gradient (G) is perpendicular to the contour lines of
the function. B: The hessian of f is diagonal for c = 0 and the Newton and scaled
gradient descent directions are identical. The asterisk (*) marks the minimum of
f .

In summary the gradient and scaled gradient step are feasible replacements for the Newton
step in the Priona algorithm and incur a lower run time overhead per iteration. It is
worthwhile to point out that the line search introduced in section 3.2.3 does not need to
be modified to work with these alternative descent directions.

4.3.3 Incremental updates

By incrementally updating the inverse of the hessian matrix it is possible to shorten the run
time of an online iteration without sacrificing the properties of the Newton step. The idea
of applying incremental updates to an inverted matrix upon arrival of the next training
patterns has been previously employed for incremental learning of SVC [23] and SVR [88]
as well as for online learning with Gaussian processes [36]. In all cases the incremental
matrix updates are derived from the Sherman-Morrison-Woodbury formula [54]:

(A+ UV T)−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1, A ∈ Rm×m, U, V ∈ Rm×k . (4.28)

62

4.3. Primal online algorithm

Equation (4.28) essentially states that the inverse of an m × m matrix (A + UV T) after
a low rank update can be determined by computing the inverse of a smaller k × k matrix
(I+V TA−1U). This obviously results in substantial savings of computation time, if k � m.
How can this be exploited in an online iteration of Priona? For the Newton step it is
necessary to invert the matrix Ksv,sv +λI. When the next pattern in the sequence replaces
a support vector one has to replace the corresponding row and column in matrix Ksv,sv.
The same is true when the input buffer is not yet full and the matrix has to be extended.
In general it is therefore interesting to study how the inverse of a matrix can be updated
with formula (4.28) after replacing one row and column.

So lets consider an exchange of the i-th row and column given by block entries (a1 a2 a3)
in a symmetric matrix A ∈ Rm×m with the new row and column vector (b1 b2 b3). The
updated matrix A′ can then be expressed as a low rank update of A as follows:

A′ = A+

 0 b1 − a1 0
b1 − a1 b2 − a2 b3 − a3

0 b3 − a3 0

 = A+

0 c1

1 0
0 c3

(c1 c2 c3

0 1 0

)
= A+ uvT , (4.29)

with cj = bj − aj. In the next step the right hand side of (4.29) can be expanded with the
help of the Sherman-Morrison-Woodbury formula:

(A′)−1 = (A+ uvT)−1 = A−1 − A−1u(I + vTA−1u)−1vTA−1 . (4.30)

The expression (I+vTA−1u)−1 on the right hand side of (4.30) is the inverse of a 2×2 matrix
and directly computable in closed form. Together with the other matrix multiplications
the evaluation of equation (4.30) thus requires O(m2) operations.

Initially it seems that incremental updates applied to the inverse of the hessian matrix
can lower the complexity of the Newton step, but this notion ignores the fact that in each
online iteration more than one pattern can enter or leave the set of support vectors. In the
worst case scenario all of the patterns in the input buffer leave the support vector set upon
arrival of the next pattern and the incremental update of the inverse requires m exchanges
of a row and column vector. Although it is unlikely that this will frequently happen in
practice, the run time to update the inverted hessian is O(m3) in the worst case. This
is even worse than the O(n2) operations needed for inverting the hessian afresh in each
iteration step.

However, thinking about incremental updates for online training is not in vain. The next
question that comes to mind is how changes in the support vector set can be avoided.
The set of support vectors is naturally not under direct control of the algorithm and the
easiest way to avoid changes is by having no support vectors at all. From the discussion
given in chapter 3 it is clear that support vectors emerge by choosing a loss function with
ε-insensitive zone. By replacing the l2 loss with a quadratic loss function one can therefore
get rid of the support vectors. The resulting algorithm obviously does not solve the SVR
problem anymore, but instead can be regarded as an online algorithm for kernel ridge
regression.

63

Chapter 4. Online SVR

4.3.4 Online kernel ridge regression

After replacing the l2 loss function with a quadratic loss the objective function for the
primal SVR problem in equation (3.24) is:

min
β,b

L(β, b) = λβTKβ +
m∑
i=1

(yi −Kiβ + b) . (4.31)

Again, the first term in equation (4.31) is responsible for regularizing the solution and the
second term minimizes the loss over all training patterns. Differentiation of equation (4.31)
with respect to the optimization variables (β, b) yields the gradient given by:

∇L(β, b) = 2

[
K 0
1T −λ

](
r(β, b) + λβ

1Tβ

)
= 2

[
K 0
1T −λ

]([
K + λI 1

1T 0

](
β
b

)
−
(
y
0

))
.

(4.32)
The second partial derivatives lead to the hessian matrix that can be factorized as follows:

∇2L(β, b) = 2

[
K 0
1T −λ

] [
K + λI 1

1T 0

]
. (4.33)

The Newton step, which is the outcome of multiplying the gradient in equation (4.32) by
the inverse of equation (4.33), is then given by:(

β̄
b̄

)
= −(∇2L(β, b))−1∇L(β, b) =

[
K + λI 1

1T 0

]−1(
y
0

)
−
(
β
b

)
. (4.34)

At this point it is important to note that due to the choice of the loss function the inverse of
the hessian in equation (4.34) always depends on all training patterns and not just a subset
of patterns as in SVR. This implies that during online training the hessian inverse can be
updated efficiently in O(m2) time by employing the technique of incremental updates
described in section 4.3.3.

Once more a line search is used to minimize the objective function by finding a point on
the line segment between (βk, bk) and (β̄, b̄). While the line search for primal SVR training
is intricate and requires tracking of the support vector set, the line search for online kernel
ridge regression has a closed form solution. With the definition of β(ρ) = βk + ρ(β̄ − βk)
and b(ρ) = bk + ρ(b̄− bk) the objective function (4.31) in dependence of the step size ρ is:

φ(ρ) = λβ(ρ)TKβ(ρ) + r(β(ρ), b(ρ))T r(β(ρ), b(ρ)) , (4.35)

and its derivative:

φ′(ρ) = 2[λ(β̄ − βk)TKβ(ρ) + (K(β̄ − βk) + 1(b̄− bk))T r(β(ρ), b(ρ))] . (4.36)

By setting derivative φ′(ρ) in equation (4.36) to zero one can explicitly solve for step size

ρ = − λ(β̄ − βk)TKβk + uT r

λ(β̄ − βk)TK(β̄ − βk) + uTu
. (4.37)

64

4.4. Results

Here u = K(β̄−βk) +1(b̄− bk) and r = Kβk +1bk−y were introduced as abbreviations to
simplify the formula. It can be verified that the ρ given in equation (4.37) is a minimizer
of the function φ(ρ) by computing the second derivative:

φ′′(ρ) = 2[λ(β̄ − βk)TK(β̄ − βk) + uTu] > 0 . (4.38)

The positivity in equation (4.38) follows from the positive definiteness of the kernel matrix
K. This section showed how a simple exchange of the loss function in the primal SVR
optimization problem leads to an online algorithm for kernel ridge regression. Originally
kernel ridge regression was derived via the dual optimization problem in [120].

4.4 Results

This section presents results to answer the various questions raised in the preceding sub-
sections. In particular, the benefits of using a bias term in online training algorithms
is discussed in section 4.4.1. Further, sections 4.4.2 and 4.4.3 explore the best buffering
strategy and descent direction to be used in conjunction with the Priona algorithm. And
finally section 4.4.4 compares the performance of all online algorithms described in this
chapter on several benchmark data sets. The data sets are identical to those used in chap-
ter 3 for the comparison of primal and dual SVR training and are described in detail in
appendix B. Performance differences between the different online algorithms are especially
important on the four data sets fb081008-r1, fb141008-r2, fb151008-r2, and 180708-
r1 originating from the adaptive microstimulation experiments described in chapter 6.

In all of the presented results the median of the squared prediction errors is used as a
performance measure. It is important to note that in online training the median is a
more adequate measure than the mean, since the prediction errors do not follow a normal
distribution. The reason for this are the presence of very large errors during the initial
iterations of an online algorithm. At that point in time training patterns are scarce and
little information is available about the regression problem. The point estimates for the
median squared errors are complemented by 95% confidence intervals determined via the
bootstrap method [41] with B = 1000 bootstrap samples. The RBF kernel is used for SVR
training on all data sets with regularization, kernel, and loss function parameters set to
the values given in table 3.1.

4.4.1 Online training with and without bias

In the online setting one can imagine situations where training with a bias term can be
advantageous. One example is data, where the target values undergo large shifts frequently.
When training with bias term, such shifts can be compensated for in the next iteration by
a single change in the bias parameter, while training without offset might require several
iterations to cope with this situation. But how often does this situation occur in practice?

65

Chapter 4. Online SVR

Figure 4.4A shows the results of the Norma algorithm with and without bias term on
different data sets. The bars represent the 95% confidence intervals for the median of the
squared prediction errors and the asterisks (*) indicate significant results, as assessed by a
Wilcoxon rank sum test at the α = 0.05 level. On 50% of the data sets Norma training
with bias term leads to significantly better results than training without bias term. But
there are two data sets, namely cadata and mpg, where the opposite statement is true,
and training without bias term is the better choice.

Figure 4.4: Online training with and without bias term. A: The Norma
algorithm performs significantly better with bias term on half of the benchmark
data sets. On the cadata and mpg data sets Norma training without bias term
yields better results. B: There is no significant performance difference for the
Priona algorithm with and without bias term on all the data sets.

Although training Norma with bias yields better results on half of the data sets this
observation does not hold for the Priona algorithm as shown in figure 4.4B. The inclusion
of the bias term does not show any significant performance improvement on all of the data
sets. This result is astonishing first, but one might argue that Priona can compensate
more easily for possible shifts in the target values since it can update several coefficients βi
in each iteration step. In contrast, Norma changes only a single coefficient αt upon arrival
of the next pattern and lets all other coefficients decay according to equation (4.10). As a
consequence adjustment of an additional bias term is more beneficial for Norma on data
sets with shifting target values.

66

4.4. Results

4.4.2 Comparison of buffering strategies

The time needed by an online algorithm in each iteration step can be controlled by re-
stricting the number of buffered training patterns. After the buffer is completely filled one
element has to be removed when the next training pattern arrives. In section 4.3.1 it was
proposed to either remove the oldest pattern (FIFO), the pattern with minimum absolute
value for the coefficient βi, or the pattern with the minimum absolute value of the residual.
Figure 4.5 shows the results of Priona in conjunction with different strategies for pattern
removal.

Figure 4.5: The perfor-
mance of Priona with dif-
ferent buffering strategies.
On most data sets the
buffering strategy does not
have a significant influence
on the performance of the
algorithm, as judged by
the overlapping 95% confi-
dence intervals for the esti-
mated median of the resid-
uals. Only for cadata re-
moving the point with the
minimum residual from the
buffer works slightly better
than the other strategies.

The results in figure 4.5 suggest that selection of a particular buffering strategy is not
critical for obtaining good prediction performance with the Priona algorithm. On all
data sets, except cadata, there are no significant performance differences between the
buffering strategies, and even for cadata removing the pattern with minimum absolute
value of the residual works only slightly better than the alternative removal strategies.

Similar to the results for the Priona algorithm the buffering strategy has only a small
influence on the prediction accuracy of the Norma and Silk algorithm (figure 4.6). The
most notable difference is on the mpg data set for the Norma algorithm where removal
of the pattern with minimum absolute coefficient works best. This strategy also performs
significantly better for Norma on the cadata and cpusmall data sets although the per-
formance difference is very small.

67

Chapter 4. Online SVR

Figure 4.6: The performance of Norma and Silk with different buffering strate-
gies. A: For Norma significant performance differences are only present on the
cadata, cpusmall and mpg data sets. On these three data sets removal of
the pattern with minimum absolute coefficient value yields the best results. Yet,
with exception of the mpg data set, the differences in prediction accuracy is very
small. B: For Silk all buffering strategies perform equally well.

4.4.3 Comparison of descent directions

The next point on the path towards the optimal solution is found in Priona by first
computing the descent direction and then conducting a line search along this direction.
As described in section 4.3.2 feasible descent directions are given by the Newton step, the
steepest descent step along the negative gradient, or the diagonally scaled steepest descent
step. The theoretical run time complexity for the Newton step is O(n3), while computation
of the gradient, and diagonally scaled gradient has a run time complexity of O(n2).

Figure 4.7 shows the empirical run times1) for computing the different descent directions
in dependence of the input buffer size. All measurements were made on the abalone data
set. If there are at most 100 elements in the buffer the empirical run time to compute
all descent directions is virtually the same. As expected, computation of the Newton step
requires more time than computation of the other descent directions at larger buffer sizes.
But with increasing buffer size the time needed by the Newton step grows more slowly
than predicted by the worst case cubic bound, which is represented by the dotted line
in figure 4.7. For the diagonally scaled gradient direction the theoretical O(n2) scaling
coincides well with the empirical run time measurements.

1) Measurements were made on a dual core AMDR©OpteronTM 275 processor with 2.2GHz and 1GB of
main memory under MatlabR©.

68

4.4. Results

Buf fer size

A
ve

ra
g

e
it

er
at

io
n

ti
m

e
in

 m
s

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

Newton
Scaled gradient
Gradient

Buf fer size
100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

PRIONA with Newton step
PRIONA with incremental updates
OKRR

A B

Figure 4.7: Dependence of average iteration time in milliseconds on the size of
the input buffer for the abalone data set. A: For different descent directions.
The dotted curves illustrate cubic and quadratic run time complexities and were
fitted to the first two iteration times measured for the Newton and scaled gradient
directions respectively. B: Newton step compared to incremental updates and
online kernel ridge regression.

In section 4.3.3 incremental updates to the inverse hessian matrix were introduced and are
expected to scale better than the full inversion of the hessian matrix when not all support
vectors change after arrival of the next training pattern. Unfortunately this expectation
is not fulfilled in practice, at least on the abalone data set, as shown in figure 4.7B. Here
incremental updates have larger empirical run times than the Newton step, if the buffer
contains between 100 and 900 elements. For this reason Priona with incremental updates
will not be considered any further in the ensuing discussion. Nevertheless incremental
updates are beneficial to use in conjunction with the online kernel ridge regression (Okrr)
algorithm introduced in section 4.3.4. It can be seen in figure 4.7B that on average Okrr
requires less time per iteration than Priona.

How do the different descent directions influence the precision of the Priona algorithm?
Figure 4.8 shows the performance of Priona in combination with the Newton step, diag-
onally scaled gradient, and gradient descent directions. It is of course unfair to directly
compare the descent directions since the Newton step requires more time per iteration.
Therefore the buffer was restricted to contain only 64 elements for the Newton step. The
markers in the upper part of figure 4.8 represent estimates of the average iteration time in
milliseconds2) and the black bars3) indicate the associated 95% confidence intervals.

In the upper part of figure 4.8 it can be seen that the average iteration time for the Newton

2) Measurements were made on an AMDR©AthlonTM 64 processor with 2.2GHz and 2GB of main memory
under MatlabR©.

3) Barely visible, since confidence intervals are smaller than symbols representing the average iteration
time.

69

Chapter 4. Online SVR

Figure 4.8: The per-
formance of Priona us-
ing different descent di-
rections. On ten of the
data sets, computing the
Newton step leads to sig-
nificantly better results in
comparison to the gradient
and diagonally scaled gra-
dient descent directions.
Here the buffer was re-
stricted to contain only 64
elements for Priona with
the Newton step.

step is in the range of the iteration times measured for the alternative descent directions.
The data sets fb081008-r1, fb141008-r2, fb151008-r2, and 180708-r1, highlighted in
blue, stem from the adaptive stimulation experiments, where new patterns are acquired
at a rate of 100Hz. This forces the iteration times of online algorithms to be shorter than
10ms. As the results in figure 4.8 show, this temporal constraint is fulfilled by Priona
with the Newton step, if the input buffer is restricted to contain less than 64 patterns.

Besides considerations concerning the iteration time, Priona with the Newton step also
produces significantly better results on ten out of twelve data sets, as shown in the lower
part of figure 4.8. Again asterisks (*) indicate significant results, as assessed by an in-
dependent Wilcoxon rank sum test at the α = 0.05 level. This suggest that the descent
direction in Priona should be determined via the Newton step, as it results in more precise
predictions even under strict constraints on the iteration time.

4.4.4 Comparison of online training algorithms

The results presented so far examine the relevance of the bias term and to justify the
choice of buffering strategy and descent direction for the Priona algorithm. Now, the
online training algorithms Norma, Silk, Priona, and Okrr will be compared in terms
of both, iteration time and precision. The initial learning rate of Norma and Silk was
tuned individually for each data set across the set η0 ∈ {0.1, 0.2, . . . , 10}. This additional
work is superfluous for Priona and Okrr, since the best step size is selected in each
iteration by an exact line search.

70

4.4. Results

Figure 4.9: Convergence of online SVR algorithms on two data sets from the
adaptive stimulation experiments. The current average error (equation (4.2)) is
the mean squared error between predicted and target values on the patterns seen
so far. A: On the fb180708-r1 data set Priona and Okrr have a lower cur-
rent average error than Norma and Silk after iteration 25 and Okrr performs
slightly better than Priona. B: On the fb141008-r1 data set Silk performs
better than Norma, but it does not match the precision of Priona and Okrr.

Figure 4.9 shows the convergence of the online algorithms on two data sets from the
adaptive stimulation experiments. Here the buffer size of Priona and Okrr was restricted
to 64 while Norma and Silk were allowed to store all the patterns. In figure 4.9A Norma
and Silk have the highest convergence speed during the first 25 iterations, but converge
to a larger asymptotic error than Priona and Okrr subsequently. On the first data set
Okrr has a slightly smaller current average error than Priona while the results of both
algorithms are indistinguishable on the second data set (figure 4.9B). Overall Priona and
Okrr converge to a lower asymptotic error than Norma and Silk.

The observations made for the two examples from the adaptive stimulation experiments
carry over to the other benchmark data sets, as shown in figure 4.10. Table 4.1 lists the
optimal buffer size used for each data set and algorithm and the best initial learning rates
η0 for Norma and Silk. With these settings Priona and Okrr perform better than
Norma and Silk in terms of precision on all but the pyrim data set. The asterisks (*) in
figure 4.10 indicate where the median squared error of Priona is significantly lower than
the median squared error of Norma and Silk. This was assessed by a combination of two
independent Wilcoxon rank sum test at the α = 0.05 level. Since the precision of Okrr
and Priona match on all data sets the same assertion also holds for Okrr of course.

At first sight these results suggest that Priona and Okrr outperform Norma and Silk
on a broad range of different regression problems, but this analysis neglects the fact that
Priona and Okrr require more time per iteration on average than Norma and Silk

71

Chapter 4. Online SVR

Figure 4.10: The per-
formance of online train-
ing algorithms with opti-
mal buffer size. Asterisks
(*) indicate results where
the median squared error
of Priona is significantly
lower than both Norma
and Silk as assessed by
a combination of two in-
dependent Wilcoxon rank
sum test at the α = 0.05
level. Markers in the upper
part of the plot indicate
estimates of the average
iteration times and black
bars represent the associ-
ated 95% confidence inter-
vals.

as shown in the upper part of figure 4.10. Especially for the data sets from the adaptive
stimulation experiment the iteration time of Priona and Okrr exceeds the 10ms con-
straint. Another issue with the current analysis concerns the best initial learning rates for
Norma and Silk which are at the upper bound of the tuning interval for the cadata and
cpusmall data sets.

To address these issues, the comparison of online algorithms was repeated under two ad-
ditional conditions. First, the buffer of Priona and Okrr was limited to contain at most
64 patterns. Second, Norma and Silk were allowed to retain all of the training patterns
in the buffer, if this strategy yielded better results. The results obtained under these new
conditions are shown in figure 4.11.

With restricted buffer size the iteration time of Priona and Okrr does not exceed the
10ms constraint and is in the same range as the iteration times of Norma and Silk on most
data sets (figure 4.11A). In spite of this restriction Priona produces results with higher
precision than Norma and Silk on ten of the twelve data sets. Allowing Norma and
Silk to buffer all patterns improves the precision on some of the data sets, most notably
for cadata, but it still does not reach the level of precision achieved by Priona and Okrr
(figure 4.11B). Apparently Norma and Silk are unable to exploit the unlimited iteration
time under this condition to produce more accurate predictions, which can be seen in
figure 4.11B by the time used per iteration of both algorithms. In addition it is important
to note that the optimal values for the initial learning rate η0, given in table 4.2, now lie
inside the tuning interval, which excludes the possibility that inappropriate selection of η0

72

4.4. Results

caused the observed performance difference on the cadata and cpusmall data sets.

Figure 4.11: A: When the buffer for Priona and Okrr is restricted to contain
only 64 patterns the precision of the predicted values changes only slightly. The
largest change occurs on the triazines data set. But now the estimated average
iteration time for Priona and Okrr on the feedback data sets (highlighted in
blue) is below the 10ms barrier indicated by the dotted line. B: The precision of
the predicted values increases only moderately for Norma and Silk, if the buffer
size equals the number of patterns in the data set.

In conclusion the analysis in this section encourages the use of the new online algorithms
Priona and Okrr in practice, especially in situations where the available time per itera-
tion is limited. Although the computational complexity of one update step in Priona and
Okrr is higher compared to Norma and Silk one can regulate the time per iteration by
restricting the buffer size. Buffering a larger number of patterns results in convergence to
a lower asymptotic error which allows to directly trade off between computation time and
quality of prediction. This trade off is particularly valuable in practice for applications
that put hard upper bounds on the iteration time like adaptive microstimulation, where
the SVR solution is updated at a rate of 100Hz. The relationship between buffer size and
prediction error also holds for Norma and Silk, but, as shown in figure 4.11B, the quality
of prediction is worse compared to Priona and Okrr even for unlimited buffer sizes.
Finally, Norma and Silk need tedious tuning of the initial learning rate η0 for each data
set – a task that is not necessary for Priona and Okrr which choose the optimal step
size automatically via the exact line search.

73

Chapter 4. Online SVR

Optimal buffer size Optimal η0

Data set Norma Silk Priona Okrr Norma Silk
abalone 512 512 512 512 1.00 2.30
cadata 512 512 512 512 2.10 10.00
cpusmall 512 512 512 512 1.40 10.00
fb081008-r1 512 512 512 512 1.00 3.30
fb141008-r2 512 512 256 512 1.10 3.80
fb151008-r2 512 512 512 512 0.70 1.10
fb180708-r1 512 512 512 512 0.90 1.30
housing 512 512 512 512 1.30 2.30
mpg 512 512 128 128 0.80 1.00
pyrim 64 64 128 128 0.80 3.10
space-ga 512 512 512 512 0.90 3.30
triazines 256 128 256 256 0.50 1.60

Table 4.1: Optimal buffer sizes were selected for all online training algorithms from the
set {64, 128, 256, 512}. The optimal initial learning rate η0 for Norma and Silk was tuned
across the range 0.1, 0.2, . . . , 10.

Optimal buffer size Optimal η0

Data set Norma Silk Norma Silk
abalone 4177 4177 0.60 0.70
cadata 20640 20640 1.30 1.50
cpusmall 8192 8192 1.30 3.60
fb081008-r1 600 600 1.10 3.30
fb141008-r2 600 600 1.00 3.70
fb151008-r2 600 600 0.60 0.90
fb180708-r1 512 600 0.90 0.90
housing 512 512 1.30 2.30
mpg 512 512 0.80 1.00
pyrim 64 64 0.80 3.10
space-ga 3107 3107 0.80 1.70
triazines 256 128 0.50 1.60

Table 4.2: Optimal buffer sizes for Norma and Silk when sizes are selected from the
set {64, 128, 256, 512,m}, where m is the number of patterns in the data set. The optimal
initial learning rate η0 for Norma and Silk was tuned across the range 0.1, 0.2, . . . , 10.

74

It must be hard to be a model
because you’d want to be like the photograph of you
and you can’t ever look that way.

Andy Warhol (1928-1987) 5
Model selection

The SVR algorithm uses a set of training patterns to estimate a function that is fully spec-
ified in terms of the coefficients β and offset b, as previously described in chapter 3. While
the coefficients and offset are automatically determined as the solution of an optimization
problem, there are so called hyper-parameters that need to be selected before the opti-
mization starts. These hyper-parameters include the regularization parameter λ, the loss
function parameter ε, and the various parameters of the kernel function, like γ in case of
the RBF kernel. Model selection refers to the problem of finding suitable hyper-parameters
based on available training data.

Often the specific choice of a kernel function is guided by the application domain for the
SVR problem and is described for adaptive microstimulation in section 6.1.4. In addition
it is sometimes possible to make an educated guess for the hyper-parameters based on
experience and prior knowledge about the application. For example, the loss function
parameter ε can be chosen to match the level of noise present in the regression targets.
But in absence of such clues one has to resort to model selection in most practical situations.

5.1 State of the art

One of the simplest ways to solve the model selection problem independent of the learning
algorithm is an exhaustive search over the full space of hyper-parameters, where each
parameter combination is ranked according to an estimate of the error on the test set, and
the best combination is chosen in the end. The most popular estimate of the test set error
is obtained by cross validation [45]. For n-fold cross validation (CV) the available patterns
are evenly split into n blocks. The algorithm is trained on one of the blocks and tested on
the remaining n− 1 blocks. After repeating this process n times the test set error can be
estimated by averaging across the individual test errors of each fold.

Although the exhaustive search is appealing due to its simplicity, it scales exponentially
with the number of hyper-parameters to be tuned. It is therefore infeasible to select
more than 3-4 hyper-parameters simultaneously in practice. Further, since the CV by
itself is computational intensive, this approach can only be applied in non time critical

75

Chapter 5. Model selection

situations, like the selection of hyper-parameters C, γ, and ε in the offline analysis of
section 3.3. As opposed to this, there should be just a short time delay of about 5 minutes
between the collection of training data and closed loop feedback in the adaptive stimulation
experiments, which precludes an exhaustive search for the SVR hyper-parameters.

Fortunately there are computationally lighter approaches to solve the model selection prob-
lem for SVMs [124]. Two of the most popular approaches are either based on Bayesian
reasoning or bounds on the test set error. For Bayesian model selection the SVR prob-
lem is restated in a probabilistic formulation [127, 32], that allows the hyper-parameters
to be found by optimizing the evidence function [10]. This optimization is either tackled
by the Laplace approximation [32] or a variational approach [127]. Yet, this chapter will
focus on the derivation of test error bounds that can be minimized with respect to the
hyper-parameters.

Initially bounds on the test error were introduced for classification and used information
about the number of support vectors, the classification margin, the radius of the smallest
sphere containing the training patterns [142], and the expansion coefficients [70, 124].
While some of these bounds turned out to be overly conservative in practice, like the bound
derived from expansion coefficients [70], other bounds, like the radius margin bound, turned
out to be too loose when applied in the regression setting [28]. Later a tighter bound based
on the span of the support vectors was proposed [141] and it has been shown that this
span bound can be optimized to select the hyper-parameters [30].

The two most important bounds in the context of SVR, the radius margin bound, and the
span bound, are described in the following sections 5.1.1 and 5.1.1. The minimization of
the span bound and CV error with respect to the hyper-parameters by the Quasi-Newton
method is outlined in section 5.2 and section 5.3 compares model selection by minimization
of the span bound and CV error on several benchmark data sets.

5.1.1 Leave-one-out bounds

The leave-one-out (LOO) error is equivalent to the m-fold CV error if there are a total of
m patterns in the training set. Stated otherwise, it is computed by repeatedly training the
algorithm on m−1 patterns an averaging across the error on the left out pattern. Formally
the LOO error for SVR is defined by:

LOO =
m∑
t=1

|f t(xt)− yt| , (5.1)

where f t denotes the function estimated by SVR when the t-th pattern is removed from
the training set. It can be shown that the LOO error is an almost unbiased estimate of the
test error, where unbiased refers to the fact that LOO provides an estimate for training sets
of size m−1 instead of m [124]. The direct evaluation of equation (5.1) is computationally
more costly than CV of course, and one is therefore interested in bounding this error with

76

5.1. State of the art

a quantity that can be directly derived from the SVR solution. The starting point for
the subsequently discussed LOO bounds is the solution of the SVR problem with l2 loss
function, where the associated optimization problem is given by:

min
α,α∗

1

2
(α− α∗)T (K + I/C)(α− α∗) + ε

m∑
i=1

(αi + α∗i) +
m∑
i=1

yi(αi − α∗i)

subject to
m∑
i=1

(αi − α∗i) = 0

0 ≤ αi, α
∗
i ∀i = 1, . . . ,m .

(5.2)

The optimization problem in equation (5.2) is similar to the dual SVR formulation given in
equation (3.7) of chapter 3. Only the box constraints for the coefficients αi are replaced by
positivity constraints. For the l2 loss, the regularization parameter C is incorporated into
the modified kernel matrix K + I/C. Note that each entry in the modified kernel matrix

(K + I/C)ij =
〈
φ̃(xj), φ̃(xj)

〉
may still be written as the dot product between patterns in

feature space, if the mapping is modified according to:

φ̃(xi) =

(
φ(xi)

ei/
√
C

)
. (5.3)

In equation (5.3) ei denotes the i-th unit vector.

Radius margin bound

The radius margin bound for SVR is derived under the mild assumption that there are
always free support vectors. This implies that there are always training patterns with
associated coefficients |(α∗i − αi)| > 0. Under this assumption it has been proven [28]
that for αt > 0 one has f t(xt) ≥ yt and conversely for α∗t > 0 one has f t(xt) ≤ yt.
This means, that information about the relative position of function f t with respect to
the regression targets is extractable from the value of the coefficients. Consequently, the
following relationships for the LOO error can be derived [28]:

|f t(xt)− yt| ≤ ε, for αt = α∗t = 0

f t(xt)− yt ≤ 4R2αt + ε, for αt > 0

yt − f t(xt) ≤ 4R2α∗t + ε, for α∗t > 0 ,

(5.4)

where R is the radius of the smallest sphere that encloses all the points φ̃(xi). In combi-
nation the equalities in equation (5.4) lead to the radius margin bound for the SVR LOO
error:

LOO ≤ 4R2

m∑
t=1

(αt + α∗t) +mε . (5.5)

77

Chapter 5. Model selection

Independent of the proof technique used to derive equation (5.5) one can gain an intuitive
understanding of the radius margin bound. To begin with, the LOO error on pattern xt is
expected to grow if the function f t deviates from f . Deviations of the function are naturally
related to changes of the weight vector w =

∑m
i=1(α∗i −αi)xi. Clearly, the removal of xt will

lead to a large change of the weight vector if the distance of xt to the remaining patterns
in the data set is large and if the absolute value of the associated coefficient |(α∗i − αi)|
is large. In the primal SVR problem, given in equation (3.2), only one of the constraints
can be satisfied at a time and hence the dual variables either satisfy α∗i > 0, αi = 0 or
α∗i = 0, αi > 0. Consequently, the absolute value of the coefficients in the weight vector
fulfills the relationship |(α∗i −αi)| = αi +α∗i . With these considerations in mind the radius
margin bound just states that the LOO error will be large if both, the distance to the other
support vectors and the absolute value of the coefficients is large. Figure 5.1 shows how
the distance between patterns can be bounded by the sphere with minimum radius that
encloses all the support vectors.

Figure 5.1: Relationship between average l2 norm distance between a point set
and the radius R of the minimum enclosing sphere. A: The minimum enclosing
sphere and its radius for n = 20 points drawn from a normal distribution N (0, 1).
B: The average l2 norm distance between n = 1000 points from N (0, k) with
k = 1, . . . , 10, and the radius of the minimum enclosing sphere.

The preceding discussion gives an intuitive understanding of the first term in equation (5.5).
Without the second term in the radius margin bound the loss function parameter ε can
be arbitrarily increased, which will in turn lead to an empty set of support vectors and a
zero radius margin bound. The experimental results with the radius margin bound in [28]
indicate that it is not the best choice for model selection based on LOO bounds. The
radius margin bound is therefore not used for the comparison in section 5.3. Nevertheless
the radius margin bound paves the way for the minimum span bound described next.

78

5.1. State of the art

Minimum span bound

The minimum span (MSP) bound [30, 28] for SVR is similar to the radius margin bound
and defined by:

LOO ≤
m∑
t=1

(αt + α∗t)S
2
t +mε. (5.6)

The arguments given in the preceding section for the intuitive interpretation of the radius
margin bound also hold for the span bound. But instead of R2, the quantity S2

t bounds
the distance between the left out pattern φ(xt) and the other support vectors. Further,
S2
t is computed for each support vector separately while the radius margin bound uses

the radius of the smallest enclosing sphere for all patterns. The quantity S2
t is called the

span of the support vectors and corresponds to the minimum of the following optimization
problem:

min
λ
‖φ(xt)−

∑
i∈sv\t

λiφ(xi)‖2

subject to
∑
i∈sv\t

λi = 1 .
(5.7)

In words the value of the span S2
t is equivalent to the minimal distance between the left

out pattern and the convex hull of the remaining support vectors. This fact is illus-
trated in figure 5.2 for a set of two dimensional patterns. Unfortunately the span S2

t is

Figure 5.2: The value of the span S2
t

corresponds to the minimal distance
between training pattern φ(xt) and
the convex hull of all other training
patterns φ(x1), . . . , φ(x7) in the fea-
ture space. Each point in the convex
hull can be written as

∑
i∈sv\t λiφ(xi)

with
∑

i∈sv\t λi = 1.

not a continuous function [30], which would prevent its minimization with respect to the
SVR hyper-parameters. To circumvent this problem and make S2

t continuous the term
η
∑

i∈sv\t λ
2
i

1
αi+α∗i

is added to the objective function in equation (5.7), where η = 0.1 is

a small constant [28]. For the following discussion S2
t will refer to the minimum of the

modified optimization problem to avoid notational clutter. In practice it is not necessary
to solve the optimization problem directly, since there exists an analytical solution for the
span:

S2
t =

1

(M−1)tt
− η

αt + α∗t
, with M =

[
(K + I/C +D)sv,sv 1

1T 0

]
. (5.8)

79

Chapter 5. Model selection

In equation (5.8) D is a diagonal matrix with entries Dii = η/(αi + α∗i). Obviously the
value of the span can be directly determined from the optimal solution (α, α∗) of the SVR
problem.

Now, for model selection the MSP bound is minimized with respect to the hyper-parameters
that are subsequently represented by the vector θ. The necessary gradients are:

∂S2
t

∂θ
= − 1

(M−1)2
tt

∂(M−1)tt
∂θ

+
η

(αt + α∗t)
2

∂(αt + α∗t)

∂θ
(5.9)

∂(M−1)tt
∂θ

= (
∂M−1

∂θ
)tt =

(
−M−1∂M

∂θ
M−1

)
tt

(5.10)

∂M

∂θ
=

[
∂(K+I/C)sv

∂θ
+ ∂Dsv

∂θ
0

0T 0

]
(
∂D

∂θ
)tt = − η

(αt + α∗t)
2

∂(αt + α∗t)

∂θ
. (5.11)

Equality (5.10) follows from a well known result about matrix derivatives [54]. For equa-
tion (5.9) and (5.11) it remains to be clarified, how to determine the partial derivative
∂(αt+α∗t)

∂θ
.

The KKT conditions state, that the product of primal constraints and dual variables has to
be zero at the optimum. For the SVR problem in equation (5.2) this leads to the following
relationships:

((K + I/C)(α∗ − α))i + b = yi + ε, if αi > 0

((K + I/C)(α∗ − α))i + b = yi − ε, if α∗i > 0

|((K + I/C)(α∗ − α))i + b− yi| ≤ ε, if αi = α∗i = 0

(5.12)

With the shorthand α̂ = α∗ − α the KKT conditions (5.12) for support vectors, with
αi, α

∗
i > 0 and

∑m
i=1(α∗i − αi) = 0, can be reformulated in compact form as:

(K + I/C)α̂ + b = y − sgn(α̂)ε
1T α̂ = 0

⇔M

(
α̂
b

)
=

(
y − sgn(α̂)ε

0

)
(5.13)

In the discussion of the radius margin bound it was argued that (αt +α∗t) = |(α∗−α)| and

it follows that
∂(αt+α∗t)

∂θ
= sgn(α̂t)

∂α̂t

∂θ
. Only the right hand side of equation (5.13) depends

on ε while the remaining hyper-parameters in vector θ depend on the matrix M . By using
the product rule to differentiate the KKT conditions (5.13) one can distinguish two cases.

In the first case θ 6= ε and differentiation of the KKT conditions yields:

M

(
∂α̂/∂θ
∂b/∂θ

)
+
∂M

∂θ

(
α̂
b

)
= 0⇒

(
∂α̂/∂θ
∂b/∂θ

)
= −M−1

(
∂(K+I/C)

∂θ
α̂

0

)
, (5.14)

from which ∂α̂t

∂θ
can be determined.

In the second case θ = ε and differentiation of the KKT conditions yields:(
∂α̂/∂ε
∂b/∂ε

)
= M−1

(
−sgn(α̂)

0

)
, (5.15)

80

5.2. Minimizing the MSP bound and CV error

from which ∂α̂t

∂ε
can be determined. In summary the MSP bound is minimized with respect

to a general vector of hyper-parameters θ by combining equations (5.9)-(5.11), (5.14), and
(5.15).

How can this framework be used for a particular kernel function? Let’s consider the
example of the RBF kernel that is discussed in detail in section 6.1.4. The RBF kernel
function for patterns xi, xj is defined by:

k(xi, xj) = exp(−γ‖xi − xj‖2) , (5.16)

and the resulting kernel matrix is Kij = k(xi, xj). Since there is only one kernel parameter
γ the vector of hyper-parameters is θ = (C, γ, ε). The gradients of the span bound depend
on the kernel function only through equation (5.11). It is therefore sufficient to compute

the partial derivative of ∂(K+I/C)sv
∂θ

. Evidently the partial derivative with respect to the
loss function parameter ε is zero. For the kernel parameter γ the partial derivative is:

∂(K + I/C)ij
∂γ

= −‖xi − xj‖2 exp(−γ‖xi − xj‖2) , (5.17)

and the derivative with respect to the regularization parameter C is:

∂(K + I/C)ij
∂C

=

{
− 1
C2 , i = j

0, otherwise .
(5.18)

The only missing part to turn this framework into a model selection method is an opti-
mization algorithm that uses solely gradient information to minimize the MSP bound.

5.2 Minimizing the MSP bound and CV error

The Quasi-Newton optimization algorithm is a common choice when no information is
available about the second order derivative of the objective function to be minimized [6].
As indicated by its name, the algorithm works similar to the Newton optimization used in
chapter 3 for solving the primal SVR problem with l2 loss. In each iteration step the descent
direction is computed as the product of a positive definite matrix and the negative gradient
of the objective function. While this matrix corresponds to the inverse Hessian in the
standard Newton optimization, the Quasi-Newton algorithm uses an approximation of the
inverse Hessian calculated from the gradients ∇f(θk+1),∇f(θk), the iterates θk+1, θk, and
the approximation Hk at the previous step k. During the first iteration the approximation
is usually initialized by the identity matrix and is guaranteed to remain positive definite
throughout the whole optimization process, if updated according to the Broyden-Fletcher-
Goldfarb-Shanno method [6]. Algorithm 1 in appendix A contains a formal description
of the Quasi-Newton algorithm. The chain of iterates produced by the Quasi-Newton
optimization of a simple example function is shown in figure 5.3.

81

Chapter 5. Model selection

Figure 5.3: Contour plot of exam-
ple function f(x, z) = x exp−x

2−z2 and
the optimization path followed by the
Quasi-Newton method. Black arrows
represent the gradient of the function.
The red dot at (0.55, 0.4) indicates the
starting point of the optimization and
the blue dots intermediate solutions.

The SVR algorithm is known to be quite robust with respect to small changes in the hyper-
parameters [28]. It is therefore practical to optimize the hyper-parameters on a logarithmic
scale. In this case the gradient calculations of section 5.1.1 are still applicable by exploiting
the following relationship between the partial derivatives of the objective function:

∂ ln θ

∂θ
=

1

θ
⇒ ∂f(θ)

∂ ln θ
= θ

∂f(θ)

∂θ
. (5.19)

While the gradients of the MSP bound are computable analytically as described in sec-
tion 5.1.1, the gradients of the CV error have to be approximated numerically by central
differences:

∂f(θ)

∂θ
=
f(θ + h)− f(θ − h)

2h
. (5.20)

If k denotes the number of selected hyper-parameters one gradient evaluation according
to equation (5.20) costs 2k function evaluations and hence scales linearly with k. One
can empirically study the scaling behaviour by considering the selection of an increasing
number of parameters γi for the extended RBF kernel:

k(x, z) = exp(−
k∑
i=1

γi
∑
j∈Ii

(xj − zj)2) , (5.21)

where x, z ∈ Rn and {I1, . . . , Ik} denotes an arbitrary partition of the index set {1, . . . , n}.
With this definition of the RBF kernel it is possible to implement a feature selection
by individually choosing the scaling factors γi. Figure 5.4 confirms the expected scaling
behaviour for the fb081008-r1 data set.

82

5.3. Results

Figure 5.4: Average run time re-
quired to evaluate the MSP bound and
CV error gradients for an increasing
number k of factors γi in the extended
RBF kernel function. Both the MSP
bound and CV error gradient evalua-
tions scale linearly in dependence of k.
But the constants for the linear scal-
ing function are better for MSP bound
gradient evaluations.

5.3 Results

The potential to select SVR hyper-parameters by means of the MSP bound or tenfold
CV error is evaluated here with respect to the run time of the selection method and the
precision of the resulting SVR model on test data. In order to asses the benefits of the
MSP bound and CV error independent of the optimization method both error measures
are combined once with an exhaustive search over the whole parameter space and once
with the Quasi-Newton algorithm described in section 5.2. This essentially leads to a
comparison of four different model selection methods:

1. Minimization of the MSP bound with the Quasi-Newton algorithm (QN-MSP)

2. Exhaustive search using the MSP bound (ES-MSP)

3. Minimization of the CV error with the Quasi-Newton algorithm (QN-CV)

4. Exhaustive search using the CV error (ES-CV).

The performance of the different model selection methods for choosing parameters C, γ,
and ε for SVR with RBF kernel is shown in figure 5.5 in terms of the average run time
required by each method and the average MSE achieved on independent test data. The
results are obtained by first running each selection method ten times on random partitions
of the data into 50% training and test subsets and subsequently computing 95% confidence
intervals by the bootstrap with B=1000 bootstrap samples [41].

On all data sets except cpusmall, pyrim, and triazines the selection by ES-MSP incurs
significantly larger test set errors than the other methods. Qualitatively similar results are
obtained for selection by QN-MSP, although it performs better than ES-MSP on abalone,

83

Chapter 5. Model selection

Figure 5.5: Comparison of the
model selection methods QN-
MSP, ES-MSP, QN-CV, and ES-
CV on twelve benchmark data
sets. The lower part of the figure
shows 95% confidence intervals
for the average MSE on the test
set. The upper part of the figure
shows the average run time in
seconds required by each selec-
tion method. To ease the com-
parison the run times for two
fastest methods QN-MSP and
QN-CV are given numerically.

cadata, housing, and mpg. In contrast the methods based on the CV error measure
consistently yield the best results across all data sets.

The upper part of figure 5.5 shows the average selection time consumed by the different
model selection methods. As expected, minimization of the error measure with the Quasi-
Newton algorithm requires less run time than an exhaustive search over parameter space.
Further, minimization of the MSP bound is more efficient than minimization of the CV
error. The latter observation can be attributed to the fact that gradient evaluations for
the CV error, which use the central difference formula, are more costly than evaluations
of the analytical MSP bound gradient. But QN-CV is still a viable approach with respect
to run time in practice, especially for the feedback data sets fb081008-r1, fb141008-r2,
fb151008-r2, and fb180708-r1, where the method requires a maximum of about two
minutes to select the hyper-parameters.

The thorough examination of the lnC - ln γ plane in parameter space indicate spurious
minima of the MSP bound in the region of high C/γ values. As opposed to QN-MSP which
might get stuck before reaching the global minimum, these spurious extremal points are
always found by ES-MSP. In part this difference can be explained by numerical round off
errors that make the evaluation of the analytical gradient of the MSP bound inaccurate.
But this failure can be overcome by computing the gradients by automatic differentia-
tion [56], although at the expense of substantially higher run times. If the MSP bound
gradient is evaluated by automatic differentiation the results of QN-MSP and ES-MSP are
almost identical (results not shown).

The underestimation of the LOO error by the MSP bound can be observed for the cadata
data set, where QN-MSP produces a lower test set error in contrast to ES-MSP.

84

5.3. Results

Figure 5.6: Examples of parameter regions in the lnC - ln γ plane found by dif-
ferent model selection methods. Each point corresponds to one hyper-parameter
combination chosen for one of the ten random splits into training and test subsets.
The parameter regions are represented by the convex hull of these points. Num-
bers below the method name are the area of the parameter region A: cadata.
B: fb081008-r1. C: fb180708-r1. D: housing.

85

Chapter 5. Model selection

Figure 5.6 shows the lnC - ln γ parameter space and the optimal combination of hyper-
parameters identified by the different model selection methods. Obviously QN-MSP finds
parameter pairs that are located in a region of low C and γ values while the selection
region of ES-MSP extends up to the point (lnC, ln γ) = (8, 4). For the housing data
in figure 5.6D one can observe the same behavior of QN-MSP and ES-MSP, but for the
adaptive stimulation data sets fb081008-r1 and fb180708-r1, shown in figures 5.6B and
C, both methods end up in an inadequate region of parameter space of high C and γ values.

The area of the parameter region displayed in figure 5.6 is a measure of spread for the
optimal hyper-parameter combinations and indicates how stable a particular model selec-
tion method is with respect to changes in the training data. Although there are notable
differences between the areas of different model selection methods for individual data sets,
there is no consistent trend across all data sets.

Figure 5.7: Selection of regularization parameter C by minimizing the MSP
bound or CV error. The MSP and CV values are scaled to the interval [0, 1] to
ease the comparison. For both data sets (A: fb081008-r1 and B: fb180708-r1)
the optimal values for lnC are close, and selection via the MSP bound results in
a lower value for lnC.

The presented results suggest that QN-CV is the method of choice for the model selec-
tion problem, but this picture changes when one considers the tuning of a single hyper-
parameter only, for instance the regularization parameter C. This scenario arises in the
adaptive stimulation experiments described in section 4, where the SVR algorithm is essen-
tially used in conjunction with the linear kernel function and the loss function parameter
is fixed at the noise level of the stimulus generator (ε = 0.002). Under these conditions
the MSP bound does not display any spurious minima and the minima of the MSP bound
and the CV error are located close together, as shown in figure 5.7 for the two data sets
fb081008-r1 and fb180708-r1 from the adaptive stimulation experiments.

Figure 5.8 shows the average test set MSE, the selected regularization parameter C, and
the average time needed for the selection process for the four feedback data sets. The

86

5.3. Results

value of the MSP bound and the CV error are minimized by a golden section search1) in
this case. Surprisingly the minimization of the MSP bound is better suited for this kind
of model selection problem since it incurs a lower test set MSE, selects the regularization
parameter in a stable manner, and consumes the least run time for the selection.

Figure 5.8: Comparison of MSP bound and CV error minimization for selecting
the regularization parameter C of the linear SVR algorithm on four feedback data
sets. Bars in all plots represent 95% confidence intervals. A: The average MSE
on the test set. B: The value of the selected regularization parameter C. C: The
average time required by the model selection method in seconds.

In conclusion there is no silver bullet for solving the model selection problem. For selection
of the hyper-parameters of SVR with RBF kernel the MSP bound underestimates the
true LOO error for high values of C and γ, and minimizing the CV error with the Quasi-
Newton algorithm is the better approach. On the other hand the MSP bound instead of
the CV error should be optimized, if only the regularization parameter C is selected. The
situation where only C needs to be optimized arises frequently in practice, for example in
the adaptive microstimulation experiments described in chapter 7, where suitable kernel
parameters are determined separately.

1) Using the fminbnd function in MatlabR©.

87

He who seeks for methods
without having a definite problem in mind
seeks in the most part in vain.

David Hilbert (1862 - 1943) 6
Decoding the cortical state

This chapter describes how the primal SVR algorithm developed in chapter 3 and the model
selection method of chapter 5 are applied to the problem of adaptive microstimulation in
the barrel cortex of anesthetized rats. The application of the online training algorithm
developed in chapter 4 is discussed in chapter 7. Before it is possible to dynamically
change the stimulus parameters it is crucial to find a relationship between the brain state,
the stimulus evoked potential, and the stimulus parameters. It is clear that the brain
state is somehow reflected by the ongoing brain activity, but it remains to be clarified how
the state is encoded by the ongoing activity. So far there has been no prior work that
investigated whether the brain’s state can be used to adjust stimulus parameters in order
to stabilize evoked cortical potentials.

6.1 State of the art

Although the best way to characterize the brain state for the purpose of adaptive mi-
crostimulation is unknown, there is an abundance of work about decoding the voluntary
modulations of brain activity to drive an effector, like a cursor on a computer screen or a
prosthetic hand [97, 44, 125]. The preprocessing and decoding strategies described in this
work will serve as a starting point for finding an appropriate description of the brain state
for adaptive microstimulation.

Historically the first reliable way to decode reaching directions of a monkey in three di-
mensional space from brain activity is the population vector method [53]. In these early
experiments a monkey had to do a center-out reaching task, where it started with its hand
at the center of a three dimensional cube and had to move the hand to one of the cube’s
corners upon receiving a cue. Simultaneously the activity of single neurons in the primary
motor cortex was recorded. It was discovered that single neurons respond to a broad range
of movement directions, but also had one preferred direction where the firing rate is high-
est. When the preferred direction is represented by a vector in three dimensional space the
actual moving direction of the monkey’s hand could be decoded from the population activ-
ity by computing the weighted vector sum over the whole population of recorded neurons.

89

Chapter 6. Decoding the cortical state

For each cell the weight of the direction vector was a function of the movement direction
and proportional to the firing rate of the cell [53].

The population vector method only allows predicting movement directions, but it was later
shown that even trajectories of three dimensional hand movements can be predicted by
using back-propagation neural networks to decode the brain activity [145]. Furthermore
this work demonstrated that signals recorded from cortical areas outside the primary motor
cortex could also be used for predicting the hand trajectory. Recently this and other
pioneering work on monkeys [136] has been applied in a clinical trial to restore rudimentary
motor actions in a tetraplegic patient [64]. In this study the action potentials of single
neurons were recorded via an electrode array [99] implanted in the primary motor cortex
of the patient. The patient modulated the recorded neural activity by imagined hand
movements and these modulations could be decoded to either move a cursor on a computer
screen, or open and close a prosthetic hand [64].

The work on decoding motor actions described so far relies on the activity of single neurons
as a control signal. This type of signal is also called single unit activity (SUA) and requires
the recording of action potentials from a single neuron. Unfortunately the quality of the
SUA is susceptible to changes on the boundary between electrode surface and the neural
tissue, which is a major drawback for long-term clinical applications [133]. In contrast to
SUA the local field potential (LFP) is easier to record and is more stable with respect to
changing electrode properties. It has been shown, that the LFP is a viable alternative to
SUA when it comes to decoding the movement direction [91, 113], and it has also been
used as a control signal in human subjects [75]. Besides the LFP and SUA the so called
multi-unit activity (MUA) has been employed to predict movement direction, grasp type
and, two dimensional hand trajectories in monkeys [133]. As the name already points out
the MUA can be regarded as the superimposed SUA of multiple cells, but, like the LFP,
the MUA does not need sophisticated recording techniques to acquire it.

To summarize, the SUA, LFP, and MUA are signals reflecting the ongoing brain activity
and have been successfully used to read out intended movement directions and trajectories
of the hand. In this chapter it will be explored whether these signals are suited for the
purpose of adaptive microstimulation.

Before describing the extraction of LFP, MUA, and the signal’s phase in sections 6.1.1, 6.1.2,
and 6.1.3, it is instructive to see what kind of neural activity can be captured by a mi-
croelectrode recording. Figure 6.1 shows the spatial resolution of common recording tech-
niques [126]. The electroencephalogram (EEG) is recorded via electrodes on the scalp and
is mostly used for clinical diagnostics, for example to monitor the level of anesthesia. It
has a coarse spatial resolution and samples the activity from a large portion of the cortical
surface. More focal measurements are possible by placing the electrodes directly on the
cortical surface, which is done to record the electrocorticogram (ECoG). An even higher
spatial resolution is achieved by inserting microelectrodes into the neural tissue of the cor-
tex. From the raw data recorded with microelectrodes it is possible to obtain the LFP
which samples the activity of a local population of neurons. When the microelectrode is

90

6.1. State of the art

carefully placed in the vicinity of a cell body it is feasible record the action potentials of a
single nerve cell.

Figure 6.1: Spatial resolution of different
recording techniques. For noninvasive EEG
recordings the electrode is located at a dis-
tance of about 1.5cm from the cortical sur-
face. As a consequence the EEG has a
low spatial resolution and neural activity is
recorded from a large portion of the cortical
surface that spans up to 3cm. The electro-
corticogram (ECoG) samples a population
of neurons that cover about 0.5cm of cor-
tical surface and provides a more focused
measurement in contrast to the EEG. To
record the ECoG, the electrode is directly
placed on the cortical surface but it does
not penetrate the neural tissue. In contrast,
microelectrodes are inserted into the neural
tissue to record LFP and SUA. The LFP re-
flects the synaptic activities of a local popu-
lation of neurons that may span up to 1mm.
The highest spatial resolution is obtained by
recording the action potentials or SUA of a
single nerve cell.

6.1.1 Local field potentials

The LFP is extracted from the raw signal recorded via a microelectrode by bandpass
filtering in the range of 1-200Hz. Figure 6.2A shows the raw signal recorded from the barrel
cortex of an anesthetized rat, and figure 6.2B the LFP obtained after filtering. As opposed
to action potentials, that indicate the activity of a single neuron after receiving synaptic
input, the LFP directly reflects the synaptic activity of a more or less local population of
neurons [92]. This makes the LFP harder to interpret, but it has been shown that the LFP
and its spectral decomposition encode the movement direction in a center-out reaching
task with a monkey [113]. It is even possible to discriminate between different types of
movement intentions, like hand or eye movements, by analyzing the LFP [121]. Further it
has been reported, that the LFP conveys approximately twice as much information about
arm movement directions in comparison to the ECoG [91].

When multiple LFPs are recorded via a laminar electrode array, with electrodes ori-
ented perpendicular to the cortical surface, it is possible to calculate the actual current

91

Chapter 6. Decoding the cortical state

Figure 6.2: A: Example of raw signal recorded from barrel cortex with a sampling
frequency of 20KHz. B: Local field potential extracted from the raw signal by
bandpass filtering in the range of 1-200Hz (Butterworth order 2).

sources that generate the recorded field potential via current source density (CSD) anal-
ysis [96, 105, 106]. This type of analysis provides detailed information about the neural
activity in a cortical column and has been applied to analyze the sensory response after
whisker stimulation in anesthetized rats for example [40]. Unfortunately the CSD analysis
currently cannot be applied to extract information from recorded LFPs in the adaptive
microstimulation experiments since only one electrode is available to register the neural
activity (cf. figure 6.6).

6.1.2 Multi-unit activity

The processing to extract the MUA is more elaborate compared to the extraction of the
LFP. First the recorded raw signal is bandpass filtered in the range of 300-6000Hz to remove
the slow potentials. Then all values deviating more than two standard deviations from the
mean signal are clipped and the resulting values are squared to rectify the signal. Finally,
the signal is averaged by lowpass filtering with a cutoff frequency of 100Hz, down sampled
to 500Hz, and each value is raised to the power 0.5 to complete the rectification [133].
Figure 6.3 shows the result of this processing for a short cutout of the raw signal.

As mentioned previously, the MUA can be regarded as the superposition of the SUA of
a population of nerve cells. The spikes, or action potentials, that constitute the SUA
have been proven to be a reliable source of information in past studies of the nervous
system [7]. With the recent introduction of large scale recordings it is possible to detect
spike patterns of whole ensembles of neurons [22]. However, large scale recordings of spikes
are faced with some serious limitations in practice. On the one hand it is hard to maintain
stable recordings with good signal quality for long time periods in experimental setups.
On the other hand the SUA cannot be obtained directly from the raw signal in most cases
but instead requires sophisticated spike sorting algorithms to assign detected spikes to a
particular neuron [85, 63, 62, 16]. Besides these practical considerations, the relationship

92

6.1. State of the art

between SUA and the overall level of neural activity in a brain region is often unclear,
while the MUA provides a measure to quantify this relationship [84].

Figure 6.3: A: Example of raw signal recorded from barrel cortex with a sampling
frequency of 20KHz. B: Multi-unit activity extracted from the raw signal by
bandpass filtering in the range of 300-6000Hz, rectification, lowpass filtering with
cutoff frequency 100Hz, and down sampling to 500Hz.

In contrast to LFPs and SUA, the MUA is not routinely used in experimental studies, but
it has been shown to encode the reaching direction and grasp type in monkeys [133]. In
these experiments the monkey had to perform either a center-out reaching task or trace
a given path in two dimensions with its hand. The highest accuracy for the classification
of reaching direction and grasp type was achieved with MUA, while the performance of a
classifier based on SUA or multiple spikes was worse. Surprisingly the combination of LFP
and MUA worked best for the prediction of two dimensional hand trajectories. This result
is unexpected since it has been recently reported that spikes can be inferred from the LFP
to a certain extent [111], which implies some redundancy in the information carried by LFP
and MUA. But in some applications the LFP and MUA seem to complement each other,
which can be seen by comparing figure 6.2B and figure 6.3B. This ad hoc observation is
further supported by the results presented in section 6.5.1, where the best results for the
direct solution (section 6.3.1) are achieved with a combination of LFP and MUA.

6.1.3 Phase synchronization

The basic phenomenon of synchronization is present in different scientific areas and was ini-
tially discovered by Huygens [115]. Classically synchronization is defined as the adjustment
of frequencies of periodic self-sustained oscillators and emerges due to weak interactions.
More recently phase synchronization of chaotic systems has been defined as the appearance
of a certain relation between the phases of interacting systems, or alternatively between
the phase of the system and an external force. Aside from the emergence of phase rela-
tionships the amplitudes of the interacting systems can remain chaotic and are in general
uncorrelated [115].

93

Chapter 6. Decoding the cortical state

In the field of neuroscience synchronization is a potential mechanism for information pro-
cessing within a brain area and it might also play an important role for the communication
between different brain areas [115]. One fundamental question in the visual system, that
so far remained unanswered, concerns the binding of different but related visual features
to enable the perception of a visual pattern or object. Results from animal experiments
suggest that this binding problem could be partially solved by synchronization of the neu-
ral activity in visual cortex [130]. Under these assumptions a visual pattern is perceivable
if the neurons representing the visual features were synchronously active. On a more local
scale, analysis of the LFP phase has been reported to predict the sensory response evoked
by whisker deflections in the barrel cortex of anesthetized rats [60].

The phase synchrony between neural signals can be determined by wavelet methods or the
Hilbert transform, although both approaches were reported to yield equivalent results for
the analysis of EEG and ECoG signals [82]. Given a scalar signal s(t) the corresponding
analytical signal ζ(t) is a complex function defined by:

ζ(t) = s(t) + i(Hs)(t) = A(t)eiφ(t) , (6.1)

where (Hs)(t) is the Hilbert transform of the signal, A(t) is the amplitude, and φ(t) the
so called instantaneous phase. The Hilbert transform of s(t) is defined as:

(Hs)(t) =
1

π

∫ ∞
−∞

s(t)

τ − t
dt . (6.2)

Due to the singularity of the integrand in equation (6.2) the integral is taken in the sense of
the Cauchy principal value, e.g. limε→0(

∫ τ−ε
−∞ +

∫∞
τ+ε

). From a computational point of view
the discrete time analytic signal and the corresponding Hilbert transform can be computed
by means of the FFT algorithm [90].

The phase synchrony between two scalar signals is usually quantified by first finding the
instantaneous phase of both signals via the Hilbert transform followed by the computation
of a phase locking value that measures the similarity of the instantaneous phases. Although
one at least needs two signals to define synchrony it is also possible to directly search for
connections between the instantaneous phase and other neural events like evoked sensory
responses [60]. The latter approach is followed here, since brain activity is recorded solely
over one channel in the experimental setup for adaptive stimulation.

6.1.4 Kernel functions

Every linear algorithm that just computes dot products 〈x, z〉 between input patterns
x, z ∈ Rn, and hence is invariant to rotations of the input space, can be extended to the
nonlinear case by replacing the computation of the dot product by the evaluation of a
kernel function. The kernel function k(x, z) is equivalent to the dot product 〈φ(x), φ(z)〉
between input patterns that have been mapped by the nonlinear function φ to a so called
feature space. This feature space is usually higher dimensional than the input space, and

94

6.1. State of the art

for some kernel functions it can even have an infinite number of dimensions. It is therefore
not feasible in most cases to explicitly compute the mapping φ and then evaluate the dot
product. But fortunately it is possible to derive closed form expressions for many feature
mappings that allow efficient evaluation of 〈φ(x), φ(z)〉.
From an alternative point of view the kernel function can be considered as a similarity
measure between input patterns. Of course the notion of similarity strongly depends on
the application and the type of objects that the input patterns represent. The choice of a
suitable kernel functions then allows incorporating prior knowledge about the problem at
hand without changing the algorithm. Examples are kernel functions that were developed
for discrete structures like strings [86], graphs [51, 128], and spike trains [129]. Before
describing the kernel for spike trains in section 6.1.4 and the kernel function for adaptive
stimulation in section 6.4 it is instructive to first study the properties of standard kernel
functions like the polynomial kernel and RBF kernel [124].

Polynomial kernel

For the polynomial kernel an input pattern x ∈ Rn is mapped to the space of all monomials
that have maximal degree d. Here it is possible to explicitly write down the feature mapping
by indexing the feature vector with the n-dimensional vector j that represents one feasible
combination of exponents in the monomial:

φj(x) =
n∏
i=1

xjii , j ∈ Nn,
n∑
i=1

ji = d (6.3)

Using this explicit form of the feature mapping one can derive the following closed form
expression for evaluating the polynomial kernel:

〈φj(x), φj(z)〉 =
∑

1≤i1≤...≤id≤n

xi1 · . . . · xid zi1 · . . . · zid =
n∑

i1=1

xi1zi1 · . . .
n∑

id=1

xidzid

= (
n∑
i=1

xizi)
d = 〈x, z〉d .

(6.4)

The first equality in equation (6.4) holds, due to the sum constraint in equation (6.3) for the
vector of exponents. Obviously the special case of d = 1 is equivalent to the linear kernel.
What is the dimensionality of the feature space that is induced by the polynomial kernel?
Each component of the feature vector consists of one monomial which is the product of
d single features xi that were chosen from the n components of the input pattern with
replacement. Since there are

(
d+n−1

d

)
different choices the feature space induced by the

polynomial kernel has dimensionality
(
d+n−1

d

)
. For example, if d = 5 and n = 20 then the

feature space has 42504 dimensions.

95

Chapter 6. Decoding the cortical state

Besides the polynomial kernel k(x, z) = 〈x, z〉d there exists the inhomogeneous polynomial
kernel that uses an additional parameter c and is defined as:

k(x, z) = (〈x, z〉+ c)d =
d∑

k=0

(
d

k

)
cd−k 〈x, z〉k , c ∈ R, d ∈ N . (6.5)

The second equality in equation (6.5) follows from the binomial formula. Although the
change in definition seems to be subtle at first sight it can be seen that the inhomogeneous
polynomial kernel actually computes a weighted sum over polynomial kernels of all degrees
between zero and d. By increasing parameter c the relative weighting of higher order
polynomials is decreased [128].

RBF kernel

There exists no explicit expression for the feature vector that is associated with the RBF
kernel. On two input patterns x, z ∈ Rn the RBF kernel function is evaluated according
to:

k(x, z) = exp(−γ‖x− z‖2) , (6.6)

where γ ∈ R+ is the kernel parameter that controls the shape of the RBF kernel. When
γ approaches zero the RBF kernel function is almost linear in dependence of the distance
‖x− z‖, as shown in figure 6.4. In the limit of large values for γ the RBF kernel function
approximates the nonlinear Dirac δ-function.

Figure 6.4: Shape of the
RBF kernel function for
different values of the ker-
nel parameter γ. When γ
tends to infinity the kernel
function approaches the
nonlinear Dirac δ-function
in the limit while for small
values of γ it approaches a
linear function.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The specific choice of the RBF kernel parameter γ1) influences the shape of the function
estimated by SVR as well. This influence is illustrated in figure 6.5 for a two dimensional

1) Often the parameterization σ =
√

1
2γ is used alternatively.

96

6.1. State of the art

regression problem. For large values of γ the predicted points lie close to the underlying
nonlinear peaks function. On the other hand the peaks function is not approximated well
by the estimated function for a small value of γ since the entire predicted points lie close to
plane in R2. It is important to note that in both cases the regularization and loss function
parameters were fixed at C = 100 and ε = 1e− 03 during training which guarantees that
the observed differences are actually caused by changes of γ.

-4
-2

0
2

4

-4
-2

0
2

4

-4

-2

0

2

4

6

8

-4
-2

0
2

4

-4
-2

0
2

4

-4

-2

0

2

4

6

8

A B

Figure 6.5: Two dimensional toy regression problem with 200 data points gener-
ated by the MatlabR© peaks function, where 75% of the points were randomly
selected for SVR training. A: By setting γ = 1, the estimated function is nonlin-
ear and a good approximation to the underlying peaks function. The blue dots
represent the predicted values on the test data set. B: The test set predictions
lie close to a plane when γ = 1e − 05, which means that the estimated function
is almost linear.

Contrary to the polynomial kernel the dimensionality of the feature space induced by the
RBF kernel cannot be derived directly. Rather it is known that the kernel matrix K, having
entries Kij = exp(−γ‖xi−xj‖), has full rank as long as the input patterns are distinct [124].
Stated otherwise, the feature vectors φ(x1), . . . , φ(xm) are linearly independent and the
RBF kernel evaluated on an infinite number of distinct training patterns hence induces a
infinite dimensional feature space.

Another interesting property of the RBF kernel is its invariance to both, rotations of the
input space and permutations of the input space coordinates. Let R ∈ Rn be an arbitrary
rotation or permutation matrix and x, z ∈ Rn two input patterns. Since by definition
RTR = I one has:

‖Rx−Rz‖2 = xTRTRx− 2xTRTRz + zTRTRz = xTx− 2xT z + zT z = ‖x− z‖2

〈Rx,Rz〉d = (xTRTRz)d = (xT z)d = 〈x, z〉d .
(6.7)

97

Chapter 6. Decoding the cortical state

This means that, irrespective of rotations in the input space or changes in the order of input
pattern components, the RBF as well as the polynomial kernel always yield the same value.
On the one hand there are applications, like the recognition of letters, where the rotation
invariance is desirable. On the other hand the rotation and permutation invariance can
also discard valuable information about the learning problem. If, for example, the input
patterns represent time series then the RBF and polynomial kernel ignore any temporal
interdependency due to the permutation invariance.

The input patterns x, z in the adaptive stimulation experiments are time series that repre-
sent the pre- and post-stimulus brain signal (cf. figure 6.6). From the preceding discussion
it is clear, that the RBF and polynomial kernel are not the best choice in this case since
they discard any temporal information. To overcome this limitation the following section
describes a kernel function for spike trains that takes the temporal structure of the input
patterns into account.

Spikernel

The Spikernel is a kernel function specifically developed to provide a similarity measure
between sequences of firing rates [129], and it builds on previous work on string kernels [86].
Before describing the structure of the Spikernel’s feature vector it is necessary to establish
some notation. First let S, T ∈ Rq×m denote sequences of firing rates from q neurons, where
|S| is the length of sequence S. The firing rate of all neurons at time point i is denoted by Si
and the subsequence of firing rates from time point t1 to t2 is symbolized by St1:t2 . Further,
Ss is the concatenation of sequence S with the additional firing rate s and the distance
between two sequences is measured by quadratic loss function l2(Si, U) =

∑n
k=1(Sik−Uk)2.

Similar to the polynomial kernel it is possible to explicitly specify the mapping to feature
space:

φnU(S) =
∑

i∈In,|S|

µl2(Si,U)ν |S|−i1 , (6.8)

where the summation occurs over all indices i = (i1, . . . , in) ∈ In,l = {i ∈ Nn, 1 ≤
i1 < . . . < in ≤ l} and the kernel parameters are µ, ν ∈ [0, 1]. In other words one
coordinate of the feature vector in equation (6.8) corresponds to a sum over all n-long
subsequences of S. When the sequence U is bin-wise similar to a subsequence of S the
feature in equation (6.8) has a big value and the overall impact of the similarity measure is
controlled by the parameter µ. In contrast to the RBF and polynomial kernel the Spikernel
takes into account temporal information by considering subsequences. The second factor
in equation (6.8) ensures that subsequences being far from the time point of interest i1
are weighted less. The relative importance of this time point is regulated by ν. A simple
example helps to derive a computable expression for the feature vector in (6.8).

98

6.1. State of the art

For n = 3 and a subsequence length of |S| = 5 the index set of the sum is given by:

I3,5 = {(1 2 3),

(1 2 4), (1 3 4), (2 3 4),

(1 2 5), (1 3 5), (1 4 5), (2 3 5), (2 4 5), (3 4 5)} .
(6.9)

Evidently the sum over all subsequences of S can be split based on the last index i3 and
the feature vector is:

φ3
U(S) =

∑
i∈I3,5

µl2(Si,U)ν5−i1 =
∑
i3=5

νµl2(S5,U3)
∑
i∈I2,4

µd(si,U)ν4−i1+

∑
i3=4

ν2µl2(S4,U3)
∑
i∈I2,3

µd(si,U)ν3−i1+

∑
i3=3

ν3µl2(S3,U3)
∑
i∈I2,2

µd(si,U)ν2−i1

=

|S|∑
i=1

ν |S|−i+1µl2(Si,Un)
∑

i′∈I2,|S1:i−1|

µl2(Si′ ,U1:n−1)ν |S1:i−1|−i1 .

(6.10)

This splitting reveals the recursive nature of the feature vector as the last sum in equa-
tion (6.10) is equivalent to a feature mapping for S and U , with the last firing rate chopped
off, and subsequences of length n− 1. In general the feature mapping is given by the fol-
lowing recursive formula:

φnU(S) =

∑|S|

i=1 ν
|S|−i+1µl2(Si,Un)φn−1

U1:n−1
(S1:i−1), 0 < n ≤ |S|

0, |S| < n ∧ n > 0

1, n = 0 .

(6.11)

The kernel function for a fixed subsequence length n corresponds to the dot product be-
tween feature vectors and is given by:

kn(S, T) = φn(S) · φn(T) =

∫
Rq×n

φnU(S)φnU(T)dU

=

|S|∑
i=1

|T |∑
j=1

ν |S|+|T |−i−j+2

∫
Rq

µl2(Si,Un)µl2(Tj ,Un)dUn

∫
Rq×n−1

φn−1
U1:n−1

(S1:i−1)φn−1
U1:n−1

(T1:j−1)dU1:n−1

=

|S|∑
i=1

|T |∑
j=1

ν |S|+|T |−i−j+2k∗(Si, Tj)k
n−1(S1:i−1, T1:j−1) .

(6.12)

In equation (6.12) the recursive structure of equation (6.11) was exploited to simplify the
expression. So far only subsequences of length n were considered. To take into account

99

Chapter 6. Decoding the cortical state

all possible subsequence lengths the Spikernel is defined by k(S, T) =
∑n

i=1 k
i(S, T). The

Spikernel can be evaluated efficiently by dynamic programming [34], which avoids unnec-
essary computations of common sub-expressions:

kn(Ss, T t) =ν2k∗(s, t)kn−1(S, T)

+

|S|∑
i=1

|Tt|∑
j=1

ν · ν |S|+|Tt|−i−j+2k∗(Si, T tj)k
n−1(S1:i−1, T t1:j−1)

+

|Ss|∑
i=1

|T |∑
j=1

ν · ν |Ss|+|T |−i−j+2k∗(Ssi, Tj)k
n−1(Ss1:i−1, T1:j−1)

−
|S|∑
i=1

|T |∑
j=1

ν2 · ν |S|+|T |−i−j+2k∗(Si, Tj)k
n−1(S1:i−1, T1:j−1)

=ν2k∗(s, t)kn−1(S, T) + ν(kn(S, T t) + kn(Ss, T))− ν2kn(S, T) .

(6.13)

Apparently the evaluation of kn(Ss, T t) is reducible to computation of kn(S, T t), kn(Ss, T),
kn(S, T), and kn−1(S, T). These expressions are stored in a dynamic programming table
that is initialized with k0(S, T) = 1 and ki(S, T) = 0, ∀i > min{|S|, |T |}, which follows
from recursive definition of the feature vector in equation (6.11).

In conclusion the Spikernel allows exploiting the temporal information by considering fea-
tures computed from subsequences of the input patterns. The extent of the time warps
is controlled by the maximal subsequence length n, while the similarity between subse-
quences and the importance of the time point of interest are steered by parameters µ and
ν respectively. Although the Spikernel was originally devised to operate on sequences of
binned firing rates, it is equally applicable to sequences that represent the binned activity
of LFPs.

6.2 Recording setup

The setup used to record data during the adaptive microstimulation experiments is out-
lined in figure 6.6. Here only the setup for recording and stimulation is described, while the
discussion of the setup necessary for closed-loop stimulation is deferred to chapter 7. The
recording of brain activity and delivery of electrical stimuli occurs simultaneously in the
barrel cortex (cf. section 2.5) of anesthetized rats (figure 6.6A). One example of a stimula-
tion trial is shown in figure 6.6B and consists of the recorded pre-stimulus signal denoted
by x and the post-stimulus signal denoted by y. The particular shape of the post-stimulus
signal y, also termed evoked potential, is known to be highly variable across stimulation
trials [77] and is influenced by both, the ongoing brain activity [1] before the stimulus x,
and the stimulus intensity itself. In the experiment the stimulus intensity, denoted by s,
is adjusted by changing the amplitude of a bipolar rectangular current pulse as shown in
figure 6.6D.

100

6.2. Recording setup

With the notation just introduced each stimulation trial is completely described the triple
(x, y, s). To accomplish the closed-loop control of stimulus intensity s, it will be necessary
to learn the relationship between x, y and s by SVR. Therefore each experiment starts
with ten minutes of recording and stimulation to collect a set of training patterns (x, y, s).
Stimulation pulses are delivered with a frequency of 1Hz and varying intensity, which
amounts to a training data set comprising 600 patterns. During the first experiments the
range of intensities suitable for adaptive microstimulation was still unknown. Previous
studies of microstimulation in rat barrel cortex covered the whole range between 0.8 and
4.8nC [20].

Figure 6.6: A: Recording of the brain activity and stimulation occurs simultane-
ously in the barrel cortex of anesthetized rats. B: Raw data recorded during one
stimulation trial. The pre-stimulus signal is denoted by x and the post-stimulus
signal by y. C: The tips of recording and stimulation electrodes are separated
by 200µm and the recording electrode has higher impedance than the stimulation
electrode. D: Bipolar rectangular current pulses are used for stimulation. The
stimulus intensity s is varied by changing the amplitude of the pulse and the
duration of each pulse is fixed.

101

Chapter 6. Decoding the cortical state

Here three ranges for the stimulus intensity were examined separately: 0.8-1.6nC, 2.4-
3.2nC, and 4.0-4.8nC. For the collection of a training data set the intensity s is sampled,
uniform and randomly, from one of the ranges with a resolution of 0.025nC.

6.3 Formal problem definition

Given a target evoked potential y∗ and the recorded brain activity x what stimulus intensity
s∗ is required to obtain an evoked response that is close to y∗? This question represents the
core problem to be solved repeatedly during adaptive microstimulation. Without doubt it
is necessary to learn a functional relationship between x, y and s by SVR training before
it is possible to answer the question above. There are two different approaches to tackle
this problem [17], termed direct and inverse solution.

6.3.1 Direct solution

For the direct solution a single scalar function f : (x, y) 7→ s is estimated by SVR. After
fixing the second argument at the target evoked potential y∗ the function can be used
to predict the optimal intensity s∗ in dependence of the ongoing brain activity x. This
approach has the advantage that only a single function has to be estimated. In addition
it is easy to extend this approach via the use of different kernel functions to estimate a
nonlinear mappings. On the downside it is hard to evaluate the quality of function f ,
since it is only possible to get precision estimates for the predicted stimulus intensities, but
not for the evoked potential. It is therefore difficult to make precise statements about the
stabilization capability of the estimated function.

6.3.2 Inverse solution

The inverse solution models the relationship between pre- and post-stimulus signals by
estimating a set of functions f : (x, s) 7→ y, an approach which seems to be more natural
with respect to the goal of stabilizing the evoked potential. A function g : (x, y∗) 7→ s,
which allows to determine the optimal intensity s∗ given the ongoing brain activity and
the target potential, is found by partially inverting the set of estimated functions. Let
fj(x

′) = 〈wj, x′〉 + bj be the j-th function in the set of functions f : (x, s) 7→ y, where
the vector x′ = (s x) is assumed to have the stimulus intensity as its first component and
the weight vector wj = (wsj wj) is partitioned accordingly. Now the function g is found by
minimizing the l2-loss between f(x′) and the target evoked potential y∗ which leads to the
following optimization problem:

min
s

1

2
‖f(x′)− y∗‖2

subject to l ≤ s ≤ u ,
(6.14)

102

6.4. ANOVA kernel

where l, u ∈ R are the upper and lower bound for the stimulus intensities. Since the
constraint is enforceable by simple projection to the interval [l, u] the unconstrained opti-
mization problem can be directly solved for s. Let

h(s) =
1

2

∑
j

(swsj + 〈wj, x〉+ bj − y∗j)2 . (6.15)

Computing the derivative of equation (6.15) and setting to zero yields:

h′(s) =
∑
j

(swsj + 〈wj, x〉+ bj − y∗j)wsj
!

= 0 (6.16)

⇔ s =

∑
j(y
∗
j − 〈wj, x〉 − bj)wsj∑

j(w
s
j)

2
. (6.17)

The value of s given in equation (6.16) is a local minimum since h′′(s) =
∑

j(w
s
j)

2 ≥ 0
and the desired function g : (x, y∗) 7→ s is given by evaluating the right hand side of
equation (6.17).

Unlike the direct solution this approach allows to measure the precision with respect to the
evoked potentials, but it requires estimation of a set of functions and additional computa-
tion time. Although it is feasible to use kernel functions for estimating nonlinear mappings
with the inverse solution, it is necessary to compute pre-images [81] of the weight vector as
an intermediate step. Thus the extension to nonlinear functions is not as straightforward
as for the direct solution.

Until now the formal description used the variables x and y to refer to the pre- and post-
stimulus signals without specifying how these signals are extracted from the recorded raw
data. The direct and inverse solution will be evaluated in combination with different
preprocessing methods for extracting the LFP (section 6.1.1), MUA (section 6.1.2), and
the signal’s phase (section 6.1.3) in section 6.5.1.

6.4 ANOVA kernel

The modified analysis of variance (ANOVA) kernel proposed in this section allows to
incorporate prior knowledge about the temporal structure of pre- and post-stimulus signals
and the time point of stimulation onset. Similar to the Spikernel (section 6.1.4) it overcomes
the drawback of rotation invariance inherent to the RBF and linear kernel function, but
additionally decreases the number of adjustable kernel parameters. While the Spikernel
has three parameters (n, µ, ν) the ANOVA kernel has two: the monomial degree d, and µ
for the weighting function. This reduces the tuning efforts during the training phase in the
adaptive microstimulation experiments. The simple structure of the ANOVA kernel further
permits explicit computation of the feature vector for low monomial degrees d which speeds
up the kernel evaluations throughout the online prediction of stimulus intensities. Results

103

Chapter 6. Decoding the cortical state

that compare the performance of RBF, polynomial, spike, and ANOVA kernel functions
on data from the adaptive stimulation experiment will be presented in section 6.5.3.

The feature space induced by the ANOVA kernel is spanned by monomials analogous to
the polynomial kernel. But unlike the polynomial kernel, the monomials in the ANOVA
kernel exclude single features raised to a power greater than one [128]. Hence the feature
vector can be expressed as:

φj(x) =
n∏
i=1

xjii , j ∈ {0, 1}n,
n∑
i=1

ji = d , (6.18)

where d is the maximal degree of the monomials. This definition is similar to equation (6.3)
except for the restriction imposed on the index vector, which ensures that its entries are
either zero or one. Using the explicit definition in (6.18) the dot product between mapped
input patterns is given by:

〈φj(x), φj(z)〉 =
∑

1≤i1<...<id≤n

xi1 · . . . · xid zi1 · . . . · zid =
∑

1≤i1<...<id≤n

d∏
k=1

xikzik . (6.19)

Although the differences between the ANOVA and polynomial kernel are subtle, equa-
tion (6.19) shows that there is no closed form expression for the ANOVA kernel. Compared
to the polynomial kernel evaluation of the ANOVA kernel consequently requires more com-
putation time. This is somehow counter intuitive since the polynomial kernel implicitly
considers all monomials with degree d and not just a subset like the ANOVA kernel. Each
monomial in the ANOVA kernel is the product of d single features that are chosen from a
set of n features. Accordingly the dimensionality of the feature space is

(
n
d

)
. For example,

if d = 5 and n = 20 then the feature space has 15504 dimensions. This is about one third
of the number of dimensions in the feature space induced by the polynomial kernel.

How can the ANOVA kernel be used to encapsulate prior knowledge about the adaptive
stimulation problem? As opposed to the polynomial kernel, the ANOVA kernel allows
individual weighting of single features. By giving monomials with nonconsecutive indices
in the index vector j a lower weight one can therefore encode the knowledge that the inputs
are time series. Further, by giving higher weight to single features that are close to a certain
point in time, it is possible to incorporate knowledge about a time point of interest. A
simple example that uses the proposed weighting scheme is shown in figure 6.7A.

In summary the weight ωij = µ|i−τ |+|j−τ |+|i−j| for the product term xixj captures both,
the fact that the input pattern x ∈ Rn is a time series, and the importance of the time
point τ . For the data from the adaptive stimulation experiments the time point of interest
τ is chosen to coincide with the onset of the stimulation pulse. Intuitively this choice
makes sense since the recorded brain signal and the evoked potential in the vicinity of the
stimulus are expected to carry most of the information about the stimulus intensity. By
analyzing the weight vector of the direct solution with linear kernel this intuition can be
corroborated as features close to the stimulation pulse receive the largest absolute weight.

104

6.4. ANOVA kernel

Decreasing the parameter µ in the ANOVA kernel has the effect, that the temporal struc-
ture of the input patterns and the time point of interest are emphasized, as shown in
figure 6.7B. With the proposed weighting scheme the equation of the modified ANOVA
kernel is given by:

〈φj(x), φj(z)〉 =
∑

1≤i1<...<id≤n

d−1∏
k=1

µik+1−ik
d∏

k=1

µ|ik−τ |
d∏

k=1

xikzik . (6.20)

After introducing individual weights for the product terms the efficient evaluation of the
ANOVA kernel is still possible by using dynamic programming [34]. The structure of the
dynamic programming table is shown in figure 6.7C for the recursive evaluation of the kernel
function up to third degree for four-dimensional input patterns x, z ∈ R4. The rows of the
table are ordered by the increasing cumulative temporal distance of the product terms, e.g.
the third row of the third table contains all possible products with three factors, aiajak,
where the temporal distances, |i − j| and |j − k|, sum up to two, while the zeroth row of
the second table does not contain any products, since all products of second degree are at
least one time step apart. Along the columns the product terms are ordered according to
the largest index of the constituent factors, e.g. the third column always contains product
terms where the factor with the largest index is given by factor a3.

The recursive evaluation of the modified ANOVA kernel initially starts with the table
containing the products of degree one, that are ordered in the manner just described
(figure 6.7C, table d = 1). In the subsequent steps of the recursive evaluation the table
containing products with d factors is filled with the help of the table containing products
with d− 1 factors and so on, e.g. the table with products of degree two (figure 6.7C, table
d = 2) is constructed based on information stored in the initial table (figure 6.7C, table
d = 1).

When creating a new table entry one only considers the entries in the previous table which
lie on the “upper diagonal”, or more precisely, entries which are p columns to the left and
p rows up (p = 1, 2, . . .). If the new table entry has column index j, it is constructed by
multiplying the p-th entry on the diagonal in the previous table by µpaj and summing up
the results. The reason for multiplying by µp is that the p-the entry on the diagonal lies
p columns to the left of the new entry and, as a consequence of the column ordering by
largest index, has a temporal distance of p to the new factor aj. Figure 6.7C exemplifies
the construction process for the entry in the third row and fourth column of the last table
(d = 3), which is calculated based on the entries in the second table (d = 2), highlighted
in blue. A formal description for evaluating the modified ANOVA kernel is provided by
algorithm 5 in appendix A.

105

Chapter 6. Decoding the cortical state

Figure 6.7: Example application of the ANOVA kernel. A: The input pattern x
corresponds to a single stimulation trial and the elements xi and xj to the ampli-
tudes of the signal at time points i and j. The weight ωij for the monomial feature
xixj is determined by the power function ωij = µ|i−τ |+|j−τ |+|i−j|, which encodes
the temporal distance between the amplitudes xi and xj and their temporal dis-
tance from the time point of interest τ . B: The power function for different base
weights µ. C: Dynamic programming tables for evaluating the ANOVA kernel up
to third degree for input patterns x, z ∈ R4.

106

6.5. Results

6.5 Results

The data collected in the adaptive stimulation experiments consists of 15 data sets with
stimulus intensities in the range of 0.8-1.6nC and 5 data sets for each of the other ranges,
namely 2.4-3.2nC and 4.0-4.8nC. This section presents results for the different techniques
previously described in this chapter on all of these data sets. In particular, section 6.5.1
compares the prediction accuracy of the direct and inverse solution and section 6.5.2
presents optimal time windows for pre- and post-stimulus LFPs. Finally, results of linear,
RBF, polynomial, and ANOVA kernels, as well as the Spikernel, are given in section 6.5.3.

6.5.1 Comparison of direct and inverse solutions

Each of the data sets from the adaptive stimulation experiments contains 600 patterns.
For the SVR training with linear kernel, required by both direct and inverse solution, the
available patterns are equally divided into training and test data sets. The performance of
both approaches is measured on unseen test data by the root mean squared error (RMSE)
between predicted and actual stimulus intensities. The RMSE is computed from the MSE
in equation (3.48) by taking the square root and makes the results easier to interpret since
the errors are then in units of nC. Analogous to the results presented in chapter 4, 95%
confidence intervals are determined for the RMSE by using the bootstrap method [41] with
B = 1000 bootstrap samples.

In order to study the information extraction methods of section 6.1 in conjunction with
the direct and inverse solution the duration of the pre-stimulus signals is fixed at 500ms.
The duration of the post-stimulus signal is 100ms for the direct solution and either 20ms or
100ms for the inverse solution. Although signals are down sampled to 500Hz following the
preprocessing of the raw signal, the dimensionality of the input patterns is still very high.
The combined pre- and post-stimulus signal for the direct solution for instance has 300
dimensions. To reduce the dimensionality and additionally remove redundant information
the signals are optionally averaged over bins of 100ms length or projected to a PCA [72]
subspace. For the PCA projection 50 components are retained for the pre-stimulus signal
and 10 components for the post-stimulus signals. Keeping the components with the largest
eigenvalue ensures that most of the variance in the pre- and post-stimulus signals is ex-
plained by the subspace (table 6.1). After extracting the LFP spectral decompositions are
computed in the α- (1-12Hz), β- (13-30Hz), γ- (31-60Hz), and γh-band (61-100Hz). The
definition of these frequency bands is taken from [133].

The regularization parameter λ and the loss function parameter ε for the SVR training
are selected by minimizing the MSP bound as described in chapter 5. Since the stimulus
intensities are directly predicted in the direct solution it is admissible to fix parameter ε at
the measured noise level (0.002nC) of the stimulator, while the regularization parameter
λ is again optimized via the MSP bound.

Figure 6.8 shows the results obtained with the direct and inverse solution in combination

107

Chapter 6. Decoding the cortical state

Direct Inverse
pca-lfp 99.2± 0.4% 99.4± 0.4%

pca-mua 85.0± 4.3% 81.4± 6.2%
pca20 - 100%

Table 6.1: Variance, in per cent that is retained after projecting LFPs and MUA to the
PCA subspace. Each table entry shows the mean and standard deviation computed across
all data sets.

with different information extraction methods on the data set fb131208-r5. Overall the
predicted stimulus intensities of the direct solution are more accurate than those predicted
by the inverse solution. With respect to the different extraction methods the direct solution
works best on the LFP and its projections, or a combination of LFP and MUA. The inverse
solution achieves the best results with MUA or binned LFPs. Obviously not suited for the
adaptive stimulation problem are the various spectral decompositions of the LFP and the
instantaneous phase of the signal.

Figure 6.8: Results of
the direct and inverse so-
lution for the fb131208-
r5 data set in combina-
tion with different prepro-
cessing methods. Overall
the direct solution achieves
more accurate predictions
than the inverse solution.
The LFP and the MUA
contain sufficient informa-
tion for the prediction
task. The phase and spec-
tral decomposition of the
LFP are less suitable to
describe the current brain
state in the context of
adaptive stimulation.

The assertions made for the fb131208-r5 data set carry over to the other data sets as well.
Table 6.2 lists the best extraction method and test set RMSE for the direct and inverse
solution on the remaining data sets. It can be seen that across all data sets the direct
solution provides more accurate predictions than the inverse solution. With exception of
the fb-031208-r8 data set, the direct solution can glean most of the information from the
LFP, its PCA projection, or a combination of LFP and MUA.

108

6.5. Results

Direct Inverse
Intensity range Data set x,y RMSE x y RMSE

0.8-1.6nC

fb-180708-r1 lfp 0.14 bin100-lfp pca20 0.22
fb-081008-r1 lfp+mua 0.12 lfp+mua pca20 0.14
fb-081008-r6 lfp 0.15 bin100-lfp pca20 0.22
fb-081008-r8 lfp 0.12 bin100-lfp pca20 0.12
fb-141008-r2 lfp+mua 0.10 lfp+mua pca20 0.11
fb-151008-r2 lfp 0.06 lfp+mua bin100 0.11
fb-151008-r4 lfp+mua 0.08 lfp+mua pca20 0.10
fb-151008-r6 lfp 0.07 bin100-mua pca20 0.12
fb-151008-r8 lfp 0.12 bin100-lfp pca20 0.15
fb-031208-r2 pca-lfp 0.08 lfp pca20 0.09
fb-031208-r6 lfp 0.14 lfp+mua pca20 0.17
fb-041208-r4 lfp 0.11 lfp+mua pca20 0.13
fb-131208-r2 pca-lfp 0.12 bin100-lfp pca20 0.14
fb-131208-r5 lfp 0.18 pca-mua pca20 0.24
fb-131208-r7 lfp 0.13 lfp+mua pca20 0.20

2.4-3.2nC

fb-031208-r3 lfp 0.16 bin100-lfp pca20 0.21
fb-031208-r7 lfp 0.17 bin100-mua pca20 0.19
fb-041208-r5 lfp 0.14 lfp+mua pca20 0.15
fb-131208-r3 lfp+mua 0.19 pca-mua pca20 0.25
fb-131208-r8 pca-lfp 0.17 lfp+mua pca20 0.21

4.0-4.8nC

fb-031208-r4 pca-lfp 0.22 bin100-lfp pca20 0.44
fb-031208-r8 pca-mua 0.22 bin100-lfp pca20 0.48
fb-041208-r6 pca-lfp 0.21 bin100-lfp pca20 0.35
fb-131208-r4 pca-lfp 0.23 mua pca20 0.43
fb-131208-r9 pca-lfp 0.21 bin100-mua pca20 0.35

Table 6.2: Best preprocessing methods and test set RMSE in nC for the direct and inverse
solution on all data sets recorded in the adaptive stimulation experiments. The pre- and
post-stimulus signals are denoted by x and y respectively.

109

Chapter 6. Decoding the cortical state

The overall picture is similar for the inverse solution, although it relies more often on
information from the MUA. The PCA projection of the first 20ms of the evoked potential
consistently works best across all data sets for the inverse solution, the only exception
being the fb-151008-r2 data set.

By comparing the results in table 6.2 with respect to the intensity range it becomes ap-
parent that predictions are most accurate for the lowest intensity range of 0.8-1.6nC and
decrease in precision for the higher intensity ranges. Since the direct solution performs
best, the inverse solution will not be considered any further in the following subsections.

6.5.2 Optimal time windows

Up to this point the direct solution used fixed time windows for the pre- and post-stimulus
LFPs. This section deals with the question whether there are optimal time windows that

0.7570.840.715

0.77

0.
78

0.
79 0.8

0.81

0.82

0.83

Length of y in ms

Le
ng

th
 o

f
x

in
 m

s

10 20 50 100
10

20

50

100

200

300

400

500

0.74
0.76 0.77

0.78

0.79

0.4860.5530.66

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.58

0.62
0.64

A B

C

0.01080.0860.1

0.04

0.06

0.08

0.1

0.12

0.14

0.12

0.14
0.16

0.18
0.2

0.02

Figure 6.9: Optimal time windows for the direct solution with linear SVR. A:
The mean squared correlation coefficient R2 in dependence of different window
sizes for the pre- and post-stimulus signal (x and y) of the fb081008-r1 data set.
The maximum standard deviation (SD) of the R2 estimates is 0.02 and the red
dot marks the optimal time window – 20ms of pre- and post-stimulus data. This
result is consistent across all (n=15) data sets, as shown by the population average
in the inset. Stimulus intensities are in the range of 0.8-1.6nC. B: Same as in A
but for the range of 2.4-3.2nC and data set fb-031208-r7 (maximum SD=0.05).
C: Same as in A but for the range of 4.0-4.8nC and data set fb-031208-r8
(maximum SD=0.03).

can be consistently used across all data sets. Here the squared correlation coefficient R2

110

6.5. Results

between predicted and true intensities is used to measure the performance2). To get an
estimate of the R2 value on the test set it is averaged across ten random splits of the
available patterns into 50% training and test data. The time windows for the pre-stimulus
signal x are varied between 10 and 500ms, and for the post-stimulus signal y between 10
and 100ms.

Figure 6.9A shows the average test set R2 in dependence of the window length for the
range of 0.8-1.6nC on the fb081008-r1 data set. For this data set the optimal time
window has a length of 20ms for both pre- and post-stimulus LFPs. This result also holds
across all data sets for this intensity range, as shown by the population average in the
inset of figure 6.9A. It is surprising that exactly the same time windows are optimal even
for the other intensity ranges as shown by the results in figure 6.9B and C. In conclusion
there is a definite answer for the question posed at the beginning of this section: 20ms
of pre- and post-stimulus LFPs yield the best results for the direct solution with linear
kernel. These optimal time windows form the basis for the comparison of different kernel
functions described in the following section.

6.5.3 Comparison of kernel functions

The direct solution so far employed the linear kernel to estimate the function f : (x, y) 7→ s.
But what kernel functions are suitable to model a possibly nonlinear relationship between
x, y and s? To answer this question and compare the different kernel functions described in
section 6.1.4 and section 6.4, the RMSE on the test set is used as a performance measure.
Like in section 6.5.2 the RMSE is averaged across ten random splits of the available patterns
into 50% training and test data. For the SVR training the loss function parameter is fixed
at ε = 0.002 and the regularization parameter is set to λ = 0.005 during the search for
optimal kernel parameters. The kernel parameters and search ranges are given in table 6.3.

Kernel function Parameters No. of combinations
Linear - -
RBF γ ∈ ln{−12,−11, . . . , 12} 25

Polynomial d ∈ {2, 3, . . . , 14} 13
Spikernel n ∈ {5, 10, 15}

µ ∈ {0.99, 0.9, 0.8, 0.7} 48
ν = {0.99, 0.9, 0.7, 0.5}

ANOVA d ∈ {2, 4, . . . ,min{14, |x|+ 1}} ≤ 42
µ ∈ {0.99, 0.9, 0.8, 0.7, 0.6, 0.5}

Table 6.3: Ranges for the kernel function parameters searched by tenfold cross-validation.
The last column shows the total number of combinations to be tested during the search.

2) R2 ∈ [0, 1] and corresponds to the fraction of variance in the intensities explained by the predictions.

111

Chapter 6. Decoding the cortical state

After optimal kernel parameters have been found the regularization parameter is again
optimized via the MSP bound as described in chapter 5. It is important to note that the
MSP bound cannot be used to optimize all parameters of the ANOVA kernel function and
the Spikernel, since this would involve solving a combinatorial optimization problem with
respect to the parameters d and n.

Figure 6.10 shows the performance of the ANOVA kernel relative to the other kernel
functions for all data sets with stimulus intensities in the range of 0.8-1.6nC. Points below
the diagonal are data sets where the ANOVA kernel achieves a lower prediction error on the
test set. Clearly, the ANOVA kernel outperforms the polynomial kernel with exception of
one data set. The same statement can be made with respect to the linear kernel, although
the performance difference is smaller. Further, there are only slight differences between
the ANOVA, RBF, and Spikernel across all data sets.

Figure 6.10: Performance of the ANOVA kernel relative to the other kernel
functions for the range of 0.8-1.6nC. Symbols represent the average RMSE on
the test set, and lines indicate the standard deviation. The performance for
linear, RBF, and polynomial kernel, as well as the Spikernel are plotted against
the performance of the ANOVA kernel. Points below the diagonal are data sets
where the ANOVA kernel performs better than the corresponding alternative
kernel function.

The observations just made for the range of 0.8-1.6nC are equally valid for the other ranges,
as shown in figure 6.11A and B. Comparing the results across all intensity ranges shows,
that predictions are less accurate for the higher ranges, which is consistent with the findings

112

6.5. Results

of section 6.5.1.

Figure 6.11: Performance of the ANOVA kernel relative to other kernel func-
tions. Symbols represent the average RMSE on the test set, and lines indicate the
standard deviation. A: For the range of 2.4-3.2nC. B: For the range of 4.0-4.8nC.

In conclusion the analysis presented in this section implies that the direct solution approach
yields the most accurate prediction of optimal stimulus intensities. For this approach the
cortical state is best represented by the LFP or a combination of both LFP and MUA,
although the performance gain is small when MUA is used in addition to the LFP. On all
analyzed data sets the optimal time windows for pre- and post-stimulus signals are short
(20ms). This indicates a rapidly changing cortical state, at least with respect to the given
objective of stabilizing cortical potentials. Further, the prediction errors of both direct
and inverse solution are smallest in the lowest intensity range of 0.8-1.6nC – a discovery
corroborated by the results for closed loop stimulation given in chapter 7.

Combined with the ANOVA kernel function, proposed in section 6.4, the prediction accu-
racy of the direct solution is better in comparison to the linear and polynomial kernel. The
ANOVA kernel does not outperform the RBF and Spikernel, but it still is favorable when
stimulus intensities are predicted in real time during adaptive microstimulation. Across
all data sets the optimal monomial degree of the ANOVA kernel is low d = 2, or d = 3.
This gives the opportunity to explicitly compute the feature vector in advance and use
SVR with the linear kernel instead. With this strategy it is not necessary to evaluate
the ANOVA kernel by dynamic programming for the prediction of optimal stimulus in-
tensities. It is important to note that this approach is not feasible in conjunction with
the RBF kernel since there exists no explicit expression for the feature vector. For the
Spikernel equation (6.11) describes the feature vector, but its evaluation is elaborate and
requires dynamic programming even for small values of the maximal subsequence length
n. Therefore the direct solution combined with the ANOVA kernel is used in chapter 7 for
predicting optimal stimulus intensities.

113

Ce qui embellit le désert
dit le Petit Prince
c’est qu’il cache un puits quelque part...

Antoine de Saint-Exupéry (1900-1944) 7
Adaptive microstimulation

While the last chapter investigated the best way to describe the relationship between pre-
/post-stimulus activity and the stimulus intensity by using SVR on data collected offline,
this chapter is concerned with the question whether the SVR model can be employed to
control the stimulus intensity in an online feedback system in real time. To recapitulate
the aim of adaptive microstimulation, figure 7.1 illustrates the stimulus trains and evoked
cortical potentials under open and closed loop conditions.

In the open loop condition the stimulus intensity is held fixed irrespective of the ongoing
brain activity and the evoked potentials are highly variable. When the control loop is
closed, by using SVR to predict the optimal stimulus intensities for a given target response,
it is expected that the evoked potentials can be stabilized and are less variable. Until now

Figure 7.1: Open versus closed loop stimulation. The stimulus intensity is
fixed under the open loop condition and evoked potentials are highly variable.
By closing the feedback loop optimal stimulus intensities with respect to a target
potential are predicted by SVR and the evoked potentials are expected to be less
variable.

there have been no previous attempts to establish the envisaged online feedback system.
Although the underlying idea is simple, the feedback system is challenging from a technical
point of view. More details on technical aspects will be given in section 7.2. For now it
is important to keep in mind that predicted stimulus intensities can change rapidly within

115

Chapter 7. Adaptive microstimulation

10-50ms and that it is necessary to update the intensities at a rate of 100Hz.

Closed loop control has been previously established in the context of functional electrical
stimulation [69] and the stimulation of cell cultures [147, 38]. The system proposed for
functional electrical stimulation could potentially fulfill the stringent timing requirements
of adaptive stimulation, but it uses an explicit model for the knee joint in its control
algorithm – an approach that is not feasible for adaptive stimulation since one would have
to explicitly model whole parts of the brain. The activity in whole cortical columns in
rat barrel cortex can of course be simulated, as shown in [89], but this is only possible by
using huge amounts of computational resources, not to mention the additional resources
consumed by a control algorithm that is build on top of the simulation.

For the closed loop stimulation of cardiac cell cultures described in [147], stimulus param-
eters are changed based on neural responses recorded over time periods of several seconds.
This time scale is too coarse for adaptive microstimulation, since the evoked potentials to
be controlled only last up to 100ms. In the work of [38] cultured neurons from rats are
used to steer the behavior of a computer generated animal that lives in a virtual world.
Sensory information about the virtual environment of the animal is routed back to the
cell culture by stimulating the neurons. The parameters of the stimulus are fixed but the
spatial location of the stimulation electrode is updated every 100ms. Later work used the
same 10Hz update rate to maintain a certain level of spike bursts in cultured neurons by
using a fixed rule to adjust the stimulation voltage [144].

All of these studies either utilize explicit models or simple fixed rules to control stimu-
lus parameters. For adaptive microstimulation SVR is applied to estimate an appropriate
function for controlling the stimulus intensity from recorded data, as described in chapter 6.
A similar data driven approach has proven to be viable for controlling the width of stimu-
lation pulses in the peripheral nervous system by using a neural network [12]. This work
showed that modulations of the pulse width could be used to steer muscle contractions and
thus achieve a predefined rotational angle of a pig’s limb.

The experimental setup and control conditions used for studying closed loop stimulation
are described in section 7.1. An overview of technical problems that had to be solved to
establish the online feedback system is given in section 7.2. Finally section 7.3 presents
results that quantify the extent to which adaptive microstimulation can stabilize evoked
cortical potentials.

7.1 Experimental setup

An overview of the experimental setup is shown in figure 7.2. Raw signals are recorded from
rat barrel cortex over the PCI interface by a data acquisition board (Multichannel Systems,
ME128) on a computer running a real time operating system (Interval Zero, ETS). Optimal
stimulus intensities predicted by SVR are delivered via a stimulus generator (Multichannel
Systems, STG2008) that is programmed over the serial RS-232 interface. Communication

116

7.1. Experimental setup

with a host computer that controls and monitors the real time operating system occurs
over the Ethernet interface.

Figure 7.2: Experimental
setup for closed loop stimu-
lation. Data acquisition and
programming of the stimulus
generator (STG) are handled by
the real time operating system
provided by the LabViewR©

real time module. The setup
is monitored and controlled by
a host computer connected via
the Ethernet interface.

Each experimental session consists of two parts. In the first part data for the SVR training
are collected by delivering stimuli with a frequency of 1Hz and randomly chosen intensity
from on of three ranges (0.8-1.6nC, 2.4-3.2nC, and 4.0-4.8nC). This part is identical to the
data collection described in chapter 6. The stimulation with random intensity lasts for
ten minutes and yields a data set with 600 training patterns. For the second part of the
experimental session the trained SVR model is transferred to the real time computer to
predict optimal stimulus intensities for a predefined target evoked potential. The target
evoked potential is extracted from the data collected in the first part of the experiment
and corresponds to the average evoked potential for one stimulus intensity. In particular
this intensity is 1.2nC for the 0.8-1.6nC range, 2.8nC for the 2.4-3.2nC range, and 4.4nC
for the 4.0-4.8nC range.

The SVR model is constructed by using the ANOVA kernel described in section 6.4. The
most accurate predictions with the ANOVA kernel are obtained with a monomial degree
of (d = 2, or d = 3) and a base weight of µ = 0.9 as revealed by a previously conducted
analysis of offline data. The time point of interest, represented by the remaining kernel
parameter τ , is chosen to coincide with the onset of the stimulation pulse. Furthermore the
loss function parameter ε is fixed at the measured jitter of the STG and the optimal regu-
larization parameter λ is found by minimizing the MSP bound as described in chapter 5.
With these settings it takes approximately two minutes to train the SVR model.

When the ANOVA kernel is evaluated by the dynamic programming approach of section 6.4
it is not possible to predict optimal stimulus intensities in less than 10ms. Fortunately the
optimal degree of the monomials is small (d = 2, or d = 3). It is therefore feasible to
explicitly compute the mapping to the feature space induced by the ANOVA kernel and
use the linear SVR algorithm instead. With this strategy optimal stimulus intensities can
be updated efficiently at a rate of 100Hz.

117

Chapter 7. Adaptive microstimulation

During the second part of one experimental session the stimuli are again delivered at
a rate of 1Hz but the intensity is set according to one of three conditions. Under the
first condition, termed constant, the intensity is set to a constant value of 1.2, 2.8, or
4.4nC for each of the ranges respectively. This condition is important in order to quantify
the stabilization of evoked potentials that can be achieved by adaptive stimulation. The
intensities under the second condition, termed adaptive, are set to the value predicted by
the SVR algorithm.

In four animals stimulation under the third control condition, termed noise, was similar
to the adaptive condition but with the input x to the SVR algorithm replaced with white
Gaussian noise matching the amplitude of the ongoing activity. Unfortunately the distri-
bution of stimulus intensities differs between noise and adaptive stimulation trials as shown
in figure 7.3A for the example presented in figure 7.8. Therefore stimulation trials under
the noise condition cannot rule out the possibility that stabilization effects observed under
adaptive stimulation are solely caused by the peculiar distribution of stimulus intensities.

To additionally exclude distributional influences the noise control was replaced in the
three remaining animals by a control condition, termed shifted, which sets the intensities
to the value determined during the last adaptive trial. Figure 7.3B shows the distribution
of stimulus intensities for the example presented in figure 7.7. In contrast to the noise
control the distribution of stimulus intensities under the shifted and adaptive conditions are
almost identical with small differences caused by the block-wise randomization of control
conditions.

Figure 7.3: Stimulus intensity histograms. A: Distribution of stimulus intensities
under the adaptive and noise condition for the closed loop experiment shown
in figure 7.8. The two distribution differ substantially and intensities emitted
under the noise condition cover only a sub-range of intensities emitted by adaptive
stimulation. B: Replacing the intensities of the noise control condition by shifted
intensities guarantees almost identical distributions.

118

7.2. Technical considerations

Of course one could alternatively use a random permutation of adapted stimulus intensities
to exclude distributional effects, but this is not practicable since the three stimulation
conditions are applied in block-wise randomized order. The block-wise randomization is
important to eliminate temporal influences on the stabilization effect. For example, it might
be easier to stabilize the evoked potential at the beginning of the experimental session. It
is important to note that the shifted intensities might be temporally correlated to the
adapted intensities, which makes this kind of control condition in some sense stronger than
a condition that would use a permutation of adapted intensities. The time delay between
shifted and adapted intensity values can vary between one and four seconds due to the
block-wise randomization.1)

The closed loop stimulation is investigated in an experimental group comprising seven
Sprague-Dawley rats of both sexes with a body weight between 250 and 400 grams.
The animals are anesthetized with an intraperitoneally administered mixture of ketamine
(100mg/kg) and xylacine (20mg/kg), and the body temperature is maintained at 37◦C
with a heating pad. Additional doses of ketamine are used to keep the hind-paw reflex
below threshold and preserve the level of anesthesia. For the craniotomy over somatosen-
sory cortex the animal is placed in a stereotaxic apparatus and after removal of the dura
mater the electrode array is inserted perpendicular to the cortical surface by a hydraulic
micropositioner [18]. The cortical depth of recordings varied between 200 and 1000µm for
different experimental sessions.

7.2 Technical considerations

As shown in figure 7.2 the data acquisition occurs over the PCI interface. For the PCI card
(Multichannel Systems, ME-128) used in the experiments there were no drivers available
for LabViewR©. In order to enable instant access to recorded data under the real time
operating system a driver was implemented in user space with the infrastructure provided
by the virtual instruments software architecture [108]. After configuring the data acquisi-
tion card, by setting the sampling frequency, number of recording channels, etc., the driver
can initiate the recording and has to subsequently handle the interrupts of the device that
indicate the arrival of the next data packet. Each of these interrupts, that occur every
10ms, is served through the driver by setting up a DMA transfer that copies the sampled
raw data to a location in RAM where it is accessible to the user program. The end of the
DMA transfer is signaled by another interrupt that is handled by the driver. During the
DMA transfer the CPU is not locked and other threads can execute and use the available
CPU time. By giving the driver thread the highest priority on an operating system with
preemptive scheduling policy [134], like Interval Zero’s ETS operating system, it can be
ensured that hardware interrupts are always served on time.

1) This becomes clear by considering the following sequences of conditions: . . . | a s c | . . ., . . . | a c s | . . .,
. . . | a s c | s . . ., and . . . | a s c | c s . . ., where the vertical bars symbolize the borders of one block.

119

Chapter 7. Adaptive microstimulation

In addition to the data acquisition it is necessary to compute the SVR prediction, program
the stimulus generator, visualize the recorded data, and perform disk I/O in the real time
environment. These tasks are executed asynchronously by separate threads that exchange
data over queues, as shown in figure 7.4. With this architecture it is possible to compute
optimal stimulus intensities instantly after arrival of the next data packet and thus sustain
an update rate of 100Hz.

Figure 7.4: Under the LabViewR© real time operating system data acquisition,
SVR prediction, programming of the STG, data I/O, and visualization are handled
each by a separate thread. To enable the asynchronous execution of these threads
communication occurs over queues. The data acquisition thread has the highest
priority to avoid delays in handling the interrupt that signals the arrival of new
data.

The stimulus intensities predicted by SVR during the closed loop stimulation in one of the
experimental sessions is shown in figure 7.5. It can be seen that the intensity values change
rapidly on a millisecond time scale. Consequently any delays incurred by programming the
STG and the hardware itself are detrimental for adaptive stimulation. Initial experiments
were conducted with the STG1008 (Multichannel Systems) that is real time capable due to
its RS-232 interface. Unfortunately the measured delay between programming the device
and the output of the stimulation pulse can last up to 300ms. To overcome this problem
an RS-232 interface was developed for a single channel stimulator (A368, World Precision
Instruments) that allowed programming the width and amplitude of rectangular pulses with
short time delays of 300-700µs. But this custom solution had to be abandoned since the
analog hardware of this stimulator could not produce clean rectangular pulses, especially
in the low intensity range of 0.8-1.6nC.

At this point it is important to note that the particular shape of the pulse is crucial since
one phase of the pulse just lasts 200µs and the transferred charge directly correlates with
the evoked neural activity. Of course one could argue that the impact of the pulse’s shape
can be ameliorated by simply increasing the pulse width and diminishing the current am-

120

7.2. Technical considerations

Figure 7.5: Optimal stimulus
intensities predicted by SVR on
the fb-081008-f6 data set. In-
tensity values change rapidly, for
example by 0.34nC over a time
period of 200ms.

Figure 7.6: The relationship be-
tween pulse width and threshold
current for eliciting orthodromic
action potentials [100].

plitude, but this is not practicable as the threshold current to elicit an action potential is
a nonlinear function of the pulse width (figure 7.6). Classically the relationship between
threshold current and pulse duration is characterized by two measures: the rheobase cor-
responds to the asymptotic value of the threshold current for large pulse widths and the
chronaxie is defined as the pulse width associated with twice the rheobase current [100].
The final solution adopted for the stimulator interface consists of the STG2008 (Multichan-
nel Systems) with an additional RS-232 interface that allows programming of the device
in real time. Further, this solution is able to produce clean rectangular pulses across all
intensity ranges and has a short delay of 1-2ms between programming and pulse output.

121

Chapter 7. Adaptive microstimulation

7.3 Results

The potentials elicited by constant and adaptive stimulation together with the associated
target response during one experimental session (fb031208-f2) are shown in figure 7.7A-C
for the three different intensity ranges. For the range of 0.8-1.6nC it can be seen that the
evoked potentials are less variable under the adaptive condition during a time period of six
milliseconds that directly follows the stimulation pulse. This stabilization effect cannot be
observed for the higher intensity ranges. The histograms in figure 7.7D-F show that the
amplitudes of the evoked potentials are not normally distributed and it would be therefore
erroneous to quantify the stabilization effect by a simple ratio of variances2).

Instead the stabilization effect is quantified by first computing the error between the evoked
and target potential and subsequently calculating the probability that the error under the
adaptive or shifted condition is smaller than the error during stimulation with constant
intensity. In other words this directly answers the question: How large is the probability
of hitting the target potential with higher precision by adaptive stimulation than by con-
stant stimulation? Independent of the distribution of the errors this probability can be
estimated in a robust way by the area under the receiver operating characteristic (ROC)
curve [55]. For this purpose the value on the ordinate of the ROC graph is the probability
P (ea < v) that the error under adaptive stimulation is smaller than a certain value v,
while the value on the abscissa corresponds to the probability P (ec < v) for the constant
condition. Then the area under the ROC curve (AUC) is equivalent to the probability
P (ea < ec), that the error under adaptive stimulation is smaller than the error under con-
stant stimulation [5, 57]. Like all statistical measures the AUC is itself a random variable
with associated uncertainties. Therefore the results presented in the following additionally
give 95% confidence intervals for the AUC estimate. In principle there are several paramet-
ric and non-parametric ways to determine the AUC and its confidence intervals [109, 37].
Here the AUC is computed exactly by summing the area of rectangles under the discrete
ROC graph, and the bootstrap method with B=1000 bootstrap samples is used to find the
95% confidence intervals [41].

The results of this quantitative analysis are shown in figure 7.7G-I for the adaptive and
shifted stimulation conditions. Clearly, for the range of 0.8-1.6nC the probability of hitting
the target potential is higher for adaptive stimulation, at least during the first six millisec-
onds that directly follow the stimulation pulse (figure 7.7G). For the higher intensity ranges
of 2.4-3.2nC and 4.0-4.8nC (figures 7.7H,I) adaptive stimulation achieves no significant sta-
bilization effect in this example. In general the stabilization effect declines gradually with
increasing stimulation intensity range as shown by the summary of all results in figure 7.10.

The AUC value for the shifted control condition does not exceed the chance level, an
AUC value of 0.5, in figure 7.7 and hence one can safely exclude the possibility that the
observed stabilization effect under the adaptive condition is solely caused by the peculiar
distribution of stimulus intensities.

2) The estimator for a ratio of variances is highly sensitive to deviations from the normal distribution [119].

122

7.3. Results

F
ig

u
re

7.
7:

R
es

u
lt

s
of

cl
os

ed
lo

op
st

im
u
la

ti
on

.
A
-C

:
E

vo
ke

d
p

ot
en

ti
al

s
in

(n
=

30
0)

tr
ia

ls
fo

r
st

im
u
la

ti
on

w
it

h
co

n
st

an
t

in
te

n
si

ty
(t

op
)

an
d

ad
ap

ti
ve

st
im

u
la

ti
on

(b
ot

to
m

)
to

ge
th

er
w

it
h

th
e

ta
rg

et
ev

ok
ed

p
ot

en
ti

al
(b

la
ck

).
D
-F

:
A

m
p
li
tu

d
e

h
is

to
gr

am
s

ar
e

sh
ow

n
at

se
ve

ra
l

p
os

t-
st

im
u
lu

s
ti

m
e-

p
oi

n
ts

fo
r

co
n
st

an
t

st
im

u
la

ti
on

(c
),

ad
ap

ti
ve

st
im

u
la

ti
on

(a
),

an
d

th
e

d
iff

er
en

ce
b

et
w

ee
n

h
is

to
gr

am
s

(c
-a

).
G
-I
:

A
U

C
fo

r
ad

ap
ti

ve
an

d
sh

if
te

d
st

im
u
la

ti
on

co
n
d
it

io
n
s

w
it

h
95

%
co

n
fi
d
en

ce
in

te
rv

al
s

sh
ow

n
in

gr
ay

.
T

h
e

st
im

u
lu

s
ar

ti
fa

ct
w

as
ex

cl
u
d
ed

fr
om

th
e

an
al

y
si

s
as

in
d
ic

at
ed

b
y

th
e

d
ar

k
gr

ay
ar

ea
s.

123

Chapter 7. Adaptive microstimulation

The results of closed loop stimulation obtained with the shifted control condition are qual-
itatively similar to the results under the noise control condition, as shown for the range
of 0.8-1.6nC in figure 7.8. But due to the difference between the stimulus intensity distri-
butions for noise and adaptive conditions (figure 7.3) one cannot eliminate distributional
influences on the stabilization effect in this case.

Figure 7.8: Result of closed loop
stimulation with noise control for the
range of 0.8-1.6nC on the fb180708-
f1 data set. A: Evoked potentials
in (n=300) trials for stimulation with
constant intensity (top) and adaptive
stimulation (bottom) together with
the target evoked potential (black).
B: Amplitude histograms are shown
at several post-stimulus time-points
for constant stimulation (c), adaptive
stimulation (a), and the difference be-
tween histograms (c-a). C: Effect size
of the difference between adaptive and
constant trials (blue) and shifted and
constant trials (red) across time ex-
pressed as AUC values. Gray shading
signify 95% confidence intervals. The
stimulus artifact was excluded from
the analysis as indicated by the dark
gray areas. To summarize the stabi-
lization effect the peak AUC value and
duration are determined.

Irrespective of the particular control condition the AUC values gradually decay behind
the peak that follows the stimulation pulse. This indicates that immediate succession of
measurement and stimulation is crucial for achieving the observed stabilization effect.

The full data set comprises 28 closed loop stimulation sessions recorded from seven different
animals. In four animals all three stimulation ranges were investigated resulting in a total
of 18 data sets. The remaining 10 data sets were recorded in experiments with three
animals where only the lowest intensity range of 0.8-1.6nC was applied in order to analyze
the influence of the recording depth.

The time course of the stabilization effect is highly stereotypical across all experimental

124

7.3. Results

sessions, with a peak of the AUC value immediately after the stimulation pulse followed by
a gradual decay to chance level. The results for all sessions are therefore summarized by
the peak AUC value and the duration where the stabilization effect is significant, e.g. the
lower bound of the 95% confidence interval stays above chance level. Figure 7.8C shows
how peak AUC value and duration are determined and figure 7.9 quantifies the stabilization
effect for all 28 data sets by plotting peak AUC value against the duration.

Figure 7.9: Summary of the
closed loop stimulation experi-
ments for all 28 recording ses-
sions. The stabilization effect
is measured in terms of the
peak AUC value and the du-
ration where the lower bound
of the 95% confidence interval
stays above chance level. The
different stimulation ranges are
represented by symbols.

For the four animals where all three intensity ranges were tested figure 7.10 shows the
dependence of the stabilization effect, quantified by the product of peak AUC value and
duration, in dependence of the stimulus intensity. It is clear that the biggest effect is
usually obtained for the lowest intensity range.

Figure 7.10: Strength of stabi-
lization effect, as measured by
the product of peak AUC value
and duration, in dependence of
the stimulation intensity range.
All intensity ranges were tested
in four different animals leading
to a total of 18 data sets shown
in this figure.

125

Chapter 7. Adaptive microstimulation

Only in one session of the first animal (rat 1 in figure 7.10) the effect for the intensity of
2.4-3.2nC is bigger compared to the 0.8-1.6nC range. This exception might be explained
by the temporal dependence of the stabilization effect discussed later. Nevertheless these
results contain the general tendency that more stabilization is achieved for low stimulation
intensities, although the effect size can vary substantially between recording sessions and
animals even for the range of 0.8-1.6nC (figure 7.9).

Figure 7.11: Peak AUC value in
dependence of cortical depth for
the range of 0.8-1.6nC. A-C: In-
dividually for three animals. D:
Across all data sets recorded for
the range of 0.8-1.6nC.

One could speculate that specific cortical layers are more amenable to stabilization than
others, or that the depth of the recording location plays a role. While the first conjecture
cannot be investigated due to lack of suitable data the second possibility can be ruled out.
Figures 7.11A-C show the peak AUC value in dependence of cortical depth for the three
animals where several recordings were made in the 0.8-1.6nC range. Apparently there
is no consistent relationship between effect size3) and cortical depth, and the correlation
between Peak AUC value and cortical depth is not significant in each of the animals. This
conclusion remains valid when the relationship is analyzed across all data sets recorded for
the lowest range (figure 7.11D).

The trial wise analysis revleals a temporal dependence of the stabilization effect, as shown
in figure 7.12 for several example data sets. The effect is strongest during the initial trials
of the experimental session shown in figures 7.12A and C, while it is sustained almost
throughout the entire session in figures 7.12B,D and E, or even increases during the final
trials the session shown in figure 7.12F. Obviously there is no systematic evolution of the
stabilization effect with time. To date the cause of this temporal dependence could not
be clarified. A first speculation that it is caused by changing levels of anesthesia is not
supported by the currently available experimental data.

3) Similar results are obtained if the product of peak AUC and duration or duration only are used to
quantify the stabilization effect.

126

7.3. Results

Figure 7.12: AUC values in dependence of the stimulation trial. A,C: For
data sets fb031208-f2 and fb180708-f1 the initial trials yield the highest AUC
values. B,D,E: For data sets fb041208-f4, 151008-f1, and 141008-f1 the
stabilization effect is almost constant across the whole session. F: For data set
fb081008-f3 AUC values increase during the final trials of the experimental
session.

127

Chapter 7. Adaptive microstimulation

A definite answer in this direction will rather be given by future closed loop stimulation
experiments in awake, behaving animals.

Figure 7.13: Summary of the
closed loop stimulation experi-
ments for all 28 recording ses-
sions. In contrast to figure 7.12
the analysis is conducted on a
manually selected sub-range of
trials where the stabilization ef-
fect is present.

Of course this temporal influence could be alternatively caused by the SVR model be-
coming inadequate over time. Should this be the case, then Priona, the novel online
algorithm for SVR training developed in chapter 4, could help to continuously update the
current SVR solution and stop the temporal degradation of the stabilization effect. The
special properties of Priona, the straightforward adjustment of iteration times and its
fully automatic choice of optimal step sizes, have proven valuable during integration into
the existing experimental setup. Although online training with Priona is already imple-
mented in the current experimental setup this option could not be systematically tested
yet, due to a lack of experimental time.

But how would the effect size change if it were possible to avoid the temporal degradation
by online training? To answer this question the analysis done for all experimental sessions
in figure 7.12 is repeated with manually selected ranges of trials where the stabilization
effect is present. The results of this second analysis are shown in figure 7.13, implying
that peak AUC values up to 0.8 and durations up to 18ms are achievable if the temporal
degradation is avoided.

In conclusion these results show the feasibility to stabilize evoked potentials by monitoring
the ongoing brain activity. This finding supports the hypothesis that cortical states influ-
ence the processing of sensory information [1, 77, 59, 104]. Further, the transitions between
cortical states seem to be governed by small time constants since optimal stimulus inten-
sities change rapidly on a millisecond time scale. The changing input-output relationship
underlying the fluctuating cortical state is thus probably caused by fast synaptic inputs
rather than slow modulatory transmitter systems.

The intensity interval where stabilization is possible, 0.8-1.6nC, is known to cover the

128

7.3. Results

range just sub-threshold for detection of single pulses in awake, behaving animals [21]. It
could therefore be argued, that stabilization is not possible for the stimulus intensity range
that is relevant for detection. But future prosthetic devices will need to deliver repetitive
stimulation for long time periods in order to create perceptions, and repetitive pulses are
known to lower the detection threshold by more than a factor of two. For example, the
80% detection level is reached with a single pulse at 2.8nC or 15 pulses at 1.2nC delivered
with a frequency of 320Hz [21].

The short duration of the stabilization effect is less problematic when stimulation is viewed
in the context of a prosthetic device, since a visual prosthesis [42, 122, 33] for example will
need to provide repetitive stimulation pulses with a frequency around 25Hz in order to
enable the flicker-free perception of phosphenes. On the contrary, the short time dura-
tion rather seems to favor an approach where evoked activity in sensory cortical areas is
stabilized in a pulse-by-pulse fashion. Certainly it first remains to be clarified by future
experiments with awake, behaving animals, whether the observed effects are large enough
to influence perception and behavior.

129

Prediction is very difficult
especially about the future

Niels Bohr (1885 - 1962) 8
Conclusion and Outlook

This dissertation shows for the first time that adaptive microstimulation can stabilize
evoked cortical potentials in the barrel cortex of anesthetized rats. The results imply that
cortical states, which are reflected in the ongoing brain activity, exhibit rapid temporal
changes on a millisecond time scale. The concept of closed loop stimulation has been
previously employed in a few experimental environments to control the activity of cultured
nerve cells [147, 144]. Yet, none of these feedback systems had to cope with the timing
constraints of adaptive microstimulation and did not require efficient learning algorithms
since the control variable was adjusted by fixed rules. Thus the established experimental
setup is exceptional from both a technical and algorithmic point of view.

The contributions of this dissertation on the algorithmic side include:

• A model selection method for support vector regression (SVR) that is based on min-
imizing the cross validation error with the Quasi-Newton algorithm as described in
chapter 5. This approach yields better results across several benchmark data sets
in contrast to minimizing the minimum span bound when the hyper-parameters are
selected for SVR with the radial basis function kernel. On the other hand minimiza-
tion of the minimum span bound is the method of choice when the regularization
parameter C needs to be tuned.

• An extension of the primal formulation for the SVR algorithm to learning with bias
term as described in chapter 3.

• The primal online algorithm [19], Priona, a novel online training algorithm for SVR
which is based on the primal formulation (chapter 4). It outperforms current state of
the art online training algorithms [31, 78] in terms of convergence speed and allows an
easier trade off between iteration time and prediction accuracy. Priona additionally
has the advantage that it does not require the setting of a learning rate – a task that
is often cumbersome in practice.

• A direct and inverse modeling approach for solving the adaptive stimulation problem
with SVR [17].

131

Chapter 8. Conclusion and Outlook

• An application specific kernel function which explicitly encodes prior knowledge
about the temporal structure of the stimulation trials. As discussed in chapter 6
the custom kernel function yields better results on a majority of data sets in contrast
to the linear and polynomial kernel, and it is more amenable to implementation in a
real time environment.

The results presented in this thesis naturally spark off several future research topics. On
the experimental side the first issue to be addressed is the temporal dependence of the sta-
bilization effect described in chapter 7. It remains to be clarified what causes this temporal
dependence and whether it is avoidable by using online training algorithms that continu-
ously update the SVR model. Additional experiments are also required to investigate the
transfer of adaptive microstimulation from anesthetized to awake and behaving animals. If
this transfer is successful, future research has to clarify whether adaptive microstimulation
can actually influence the animal’s behavior and perception.

One direction of research on the algorithmic side should aim at enhancing the stabilization
effect by more accurately extracting the cortical state from the recorded signals. Cer-
tainly the potential for improving algorithms in this direction is limited by the current
recording technique that uses a single channel only. If recordings from multiple electrodes
are available it will be possible to devise more sophisticated algorithms for analyzing the
background brain activity. The potentials acquired by a microelectrode array are usually
generated by underlying current sources that are located close in space and are tightly cou-
pled by the local neural network. It will be therefore necessary for instance to investigate
how methods for independent component analysis [68, 4] have to be modified when the
independence assumption about the sources is partially weakened or violated.

The ultimate goal of adaptive microstimulation is the creation of stable sensory percepts
that correspond to complex spatiotemporal activation patterns. Another direction of re-
search should consequently focus on extending the single pulse stimulation in the temporal
as well as the spatial domain. The natural next step in this direction is the development
of an algorithm capable of stabilizing cortical potentials evoked by stimulation pulse trains
instead of single pulses. Under these conditions it will be important to analyze how the
evoked potentials of temporally close stimulation pulses interact with each other and in-
corporate this knowledge into the algorithm. The stimulation with pulse trains might even
offer the opportunity to actively probe the cortical state instead of passively analyzing the
recorded brain activity. In this scenario the first pulse in each train would be delivered with
a fixed intensity under the assumption that the cortical state is represented with higher
precision in the associated evoked potential. With the information gleaned from the first
evoked potential the intensity of the subsequent pulses in the train could then be adjusted.
Besides the cortical state the algorithm could also exploit the knowledge of stimulus inten-
sities predicted at previous time points. Yet, it is still an open question how the algorithm
should deal with the uncertainties of the predicted intensities in this situation.

132

Computer Science is no more about computers
than astronomy is about telescopes.

Edsger Dijkstra (1930-2002) A
Algorithms

Algorithm 1: Minimizes function f(θ) by the Quasi-Newton method.

Input: Objective function f , gradient ∇f , starting point θ0, lower bounds
l, and upper bounds u.
Output: Point θ∗ where f(θ∗) attains its minimum.
Quasi-Newton(f , ∇f , θ0, l, u)
(1) k ← 1, H1 ← I, γ ← 0.5, ε ← 1e− 05
(2) θ1 ← max(min(θ0, u), l)
(3) repeat

Compute search direction p
(5) p ← −H∇f(θk)

Perform line search with a maximum of 100 iterations
(7) i ← 0
(8) repeat
(9) λ ← γi

(10) i ← i+ 1
(11) θk+1 ← max(min(θk + λp, u), l)
(12) until f(θk+1) > f(θk) + 1e− 04λ∇f(θk)p ∨ i > 100

Update approximation of inverse Hessian matrix
(14) t ← ∇f(θk+1)−∇f(θk)
(15) s ← θk+1 − θk
(16) if tT s > 0
(17) Hk+1 ← (I − stT/tT s)Hk(I − tsT/tT s) + ssT/tT s
(18) k ← k + 1

(19) until ‖∇f(θk)‖ < (1 + f(θk)) ∗ ε ∨ |f(θk+1)−f(θk)

f(θk)
| < ε

(20) θ∗ ← θk

133

Appendix A. Algorithms

Algorithm 2: Primal SVR training by Newton Optimization

Input: Kernel matrix K, regression targets y, regularization parameter λ, and loss func-
tion parameter ε.
Output: Coefficient vector β, bias term b and support vector index set sv.
PrimalSVR(K, y, λ, ε)
(1) β ← 0
(2) m ← Length(y)
(3) if m > 1000

Use a subset of the training patterns to estimate the support vector index set.
(5) m′ ← m/2
(6) (β1:m′ , b, sv) ← PrimalSVR(K1..m′,1..m′ , y1..m′ , λ, ε)
(7) ŷ ← K1..m,sv βsv + b
(8) else

Use the mean of the regression targets as an initial guess for the bias term.
(10) b ← 1/m

∑m
i=1 yi

(11) ŷ ← b
(12) while true
(13) r ← ŷ − y
(14) sv ← {i, |ri| > ε}
(15) nsv ← {i, |ri| ≤ ε}

Compute the full Newton step using algorithm 4.
(17) (β̄, b̄) ← Newton-step(K, y, λ, ε, r, sv)
(18) r̄ ← K1..m,sv β̄sv + b̄

Check for convergence of algorithm.
(20) if (r̄i > ε∀i∈sv ∧ r̄i ≤ ε ∀i∈nsv) ∨ |sv| = 0
(21) return (β̄, b̄, sv)
(22) u ← K1..m,sv(β̄ − β)sv + (b̄− b)
(23) φ′(0) ← 2[uTsvrsv − ε sgn(rsv)

Tusv + λ(β̄ − β)TKβ]
(24) (φ′(1)− φ′(0)) ← 2[uTsv(usv − ε(sgn(r̄sv)− sgn(rsv))) + λ(β̄ − β)TK(β̄ − β)]

Find step size ρ with algorithm 3.
(26) ρ ← Line-search(u, r, r̄, ε, φ′(0), (φ′(1)− φ′(0)))

Update the coefficients and bias term.
(28) β ← β + ρ(β̄ − β)
(29) b ← b+ ρ(b̄− b)
(30) ŷ ← ŷ + ρu

134

Algorithm 3: Exact line search for the primal SVR problem with bias.

Input: u, r, r̄, ε, φ′(0), and (φ′(1)− φ′(0)).
Output: Step size ρ∗ ∈ (0, 1].
Line-search(u, r, r̄, ε, φ′(0), (φ′(1)− φ′(0)))
(1) foreach i ∈ nsv

Case I
(3) ρ ← (sgn(ui)ε− ri)/ui
(4) if ρ ∈ (0, 1]
(5) Ω ← Ω ∪ (ρ, nsv(i), ’entering’)
(6) foreach i ∈ sv

Case II
(8) ρ ← (sgn(ri)ε− ri)/ui
(9) if ρ ∈ (0, 1]
(10) Ω ← Ω ∪ (ρ, sv(i), ’leaving’)
(11) foreach i ∈ sv

Case III
(13) ρ ← (−sgn(ri)ε− ri)/ui
(14) if ρ ∈ (0, 1]
(15) Ω ← Ω ∪ (ρ, sv(i), ’entering’)
(16) Ω ← Quick-Sort(Ω) # The quicksort algorithm as described in [34]
(17) s ← 0
(18) φmin ← ∞
(19) foreach (ρ, i,mark) ∈ Ω
(20) ρ∗ ← −φ′(0)/(φ′(1)− φ′(0))
(21) if s < ρ∗ ≤ ρ
(22) return ρ∗

(23) if ρ∗ > ρ
Minimum of φ(ρ) is to the right of ρ

(25) ρ∗ ← ρ
(26) if ρ∗ <= s

Minimum of φ(ρ) is to the left of s
(28) ρ∗ ← s
(29) if φ(ρ∗) < φmin
(30) ρmin ← ρ∗

(31) if mark = ’entering’
(32) φ′(0) ← φ′(0) + 2ui(ri − ε sgn(ri))
(33) (φ′(1)− φ′(0)) ← (φ′(1)− φ′(0)) + 2ui(ui − ε(sgn(r̄i)− sgn(ri)))
(34) if mark = ’leaving’
(35) φ′(0) ← φ′(0)− 2ui(ri − ε sgn(ri))
(36) (φ′(1)− φ′(0)) ← (φ′(1)− φ′(0))− 2ui(ui − ε(sgn(r̄i)− sgn(ri)))
(37) s ← ρ

This point is reached only if the minimum could not be found analytically.
(39) return ρmin

135

Appendix A. Algorithms

Algorithm 4: Computes the Newton step for the primal SVR problem with bias.

Input: Kernel matrix K, regression targets y, regularization parameter λ, loss function
parameter ε, residual vector r, and support vector index set sv.
Output: Vector β̄ and scalar b̄.
Newton-step(K, y, λ, ε, r, sv)
(1) β̄ ← 0
(2) t ← ysv + ε sgn(rsv)
(3) R ← Cholesky-decomposition(Ksv,sv + λI)

Using triangular Cholesky factor R, solve the linear systems
as described in section 3.2.2 by two back-substitutions.

(6) u ← R−1(R−T t)
(7) w ← R−1(R−T1)
(8) β̄sv ← u− (w1Tu)/(1Tw)
(9) b̄ ← (1Tu)/(1Tw)

Algorithm 5: Evaluates the ANOVA kernel with the time point of interest weighting scheme
by dynamic programming

Input: Input patterns x, z ∈ Rn, base weight µ ∈ [0, 1], maximal monomial degree d, and
time point of interest τ ∈ [0, n].
Output: Value k(x, z) of the ANOVA kernel
ANOVA-Kernel(x, z, µ, d, τ)

Initialize dynamic programming table
(2) for k = 2 to n
(3) for j = 1 to n
(4) T (1, k, j) ← 0
(5) for j = 1 to n
(6) T (1, 1, j) ← mu|τ−j|xjzj
(7) k(x, z) ← 0

Recursively fill dynamic programming table
(9) p1 ← 2
(10) p2 ← 1
(11) for i = 2 to d
(12) for k = i to n
(13) for j = k to n
(14) T (p1, k, j) ← 0
(15) for l = 1 to k − i+ 1
(16) T (p1, k, j) ← T (p1, k, j) + µ|τ−j|+lxjzjT (p2, k − l, j − l)
(17) k(x, z) ← k(x, z) + T (p1, j, k)

Swap p1 and p2

(19) p1 ↔ p2

136

Everything is vague to a degree
you do not realize
till you have tried to make it precise.

Bertrand Russell (1872-1970) B
Data sets

The following subsections give detailed descriptions of the data sets used in the evaluation
of primal and dual SVR training in chapter 3, the comparison of online SVR algorithms
in chapter 4, and the comparison of model selection methods in chapter 5. An overview
of all data sets is given in table B.1. With exception of a linear scaling to the interval
[0, 1], applied to the prediction targets, the data sets obtained from Internet repositories
were used without further modifications. The scaling operation facilitates the comparison
of prediction errors.

Data set Number of patterns Dimension Source
abalone 4177 8 UCI Repository
cadata 20640 8 StatLib
cpusmall 8192 12 Delve Repository
fb081008-r1 600 20 Feedback experiment
fb141008-r2 600 20 Feedback experiment
fb151008-r2 600 20 Feedback experiment
fb180708-r1 600 20 Feedback experiment
housing 506 13 UCI Repository
mpg 392 7 UCI Repository
pyrim 74 27 UCI Repository
space-ga 3107 6 StatLib
triazines 186 60 UCI Repository

Table B.1: Overview of benchmark data sets used for the evaluation of primal/dual SVR
training and the comparison of online SVR algorithms.

B.1 Abalone

The age of abalone is usually determined by cutting the shell through the cone and counting
the rings with the aid of a microscope after staining. This procedure is a very tedious task.
This data set was collected to predict the age of abalone from easily obtainable physical

137

Appendix B. Data sets

measurements only [95]. The dimensions of the data set include the sex (male, female, or
infant), the length, diameter, and height of the shell in mm, and the whole, meat, gut, and
dry weight in grams. Certainly, further information like weather patterns and location that
indicate food availability and are not included in the data set would be required to achieve
more accurate predictions. Patterns with missing values were already removed from the
original examples in the data set available from the UCI repository [3].

B.2 Cadata

The dimensions of each training pattern represent the median income, the median age, total
number of rooms per population, the number of bedrooms per population, the number of
people in each household, and the number of households. Except for the median income all
dimensions were transformed by computing the natural logarithm. This information was
gleaned from the 1990 Census data for California, where estimates for each variable were
determined across block groups comprising 1425 individuals on average. The six variables
mentioned above are complemented by the median income raised to the second and third
power. Based on this information the median house price can be predicted as shown in the
original study [102].

B.3 Cpusmall

In order to optimize resource usage of a server in a multi-user environment it is important
to know what portion of time the CPU runs in user mode in dependence of other computer
system activity measurements. This data set was collected on a Sun Sparcstation 20/712
with 128 Mbytes of memory running in a multi-user university department, where users
would do a large variety of tasks like accessing the Internet, editing files, or running CPU-
intensive programs. To make prediction of the user mode CPU time more challenging all
dimensions related to paging information were excluded from the full data set.

B.4 Feedback

All the data sets that follow the naming scheme fbDDMMYY-rN or fbDDMMYY-fN
originate from the experiments on adaptive microstimulation described in more detail in
chapters 6 and 7. The naming scheme contains the date of the experiment (DDMMYY)
and the number (N) of the recording (r) or feedback stimulation (f). One training pattern
of this data set includes 20ms of recorded pre- and post-stimulus local field potentials
during one stimulation trial. The signal, recorded with a sampling frequency of 20KHz,
was subsequently down-sampled to 500Hz after extraction of the local field potential. In the

138

B.5. Housing

direct solution for adaptive stimulation, described in chapter 6, the goal is the prediction
of stimulus intensity based on the recorded pre- and post-stimulus brain signal.

B.5 Housing

In the original work [58] this data set was used to study the influence of air pollution,
as measured by the nitric oxides concentration, on the median house price. The relevant
information stems from census tract data collected in 1970 for the Boston metropolitan
area. The dimensions represent crime rate, proportion of residential land zoned for lots over
25,000 square feet, proportion of non-retail business acres per town, an indicator whether
a census tract bounds a river, nitric oxides concentration, average number of rooms per
dwelling, proportion of owner-occupied units built prior to 1940, weighted distances to
five Boston employment centers, an index for accessibility to radial highways, full-value
property tax rate per 10,000$, pupil-teacher ratio, a measure for the proportion of blacks,
and the percentage of lower status of the population.

B.6 Mpg

For the prediction of city-cycle fuel consumption, measured in miles per gallon, each pattern
of this data set contains information for one car model. Each car model is described by
the number of cylinders, the displacement, the horsepower of the engine, the car weight,
the acceleration, the year of the car model, and its origin [110]. In the data set available
from the UCI repository [3] eight patterns, having missing values for the miles per gallon
measurement, were excluded from the original data.

B.7 Triazines and Pyrim

Both data sets were collected to establish qualitative structure activity relationships for
the problem of E. Coli dehydrofolate reductase inhibition by the enzymes triazine and
pyrimidine [132].

B.8 Space-ga

The data set stems from a geographical analysis of spatial data [101], collected during the
U.S. presidential election in 1980. Each training pattern includes the number of votes cast
in the election per county, the population in each county of 18 years of age or older, the
population in each county with a 12th grade or higher education, the number of owner-
occupied housing units, the aggregate income, and the spatial coordinates of the county.

139

Appendix B. Data sets

Based on this information the logarithm of the proportion of votes cast for both candidates
has to be predicted.

140

Abbreviations

ANOVA Analysis of variance. 3, 103–106, 110–112, 115

AUC Area under ROC curve. 120–126

CSD Current source density. 92

CV Cross validation. 75, 76, 82–84, 86, 87

DMA Direct memory access. 117

ECoG Electrocorticogram. 90, 91, 94

EEG Electroencephalogram. 90, 91, 94

FFT Fast fourier transform. 94

FIFO First in first out. 60, 61

GABA Gamma amino butyric acid. 21

KKT Karush Kuhn Tucker. 80

LFP Local field potential. 90, 91, 93, 94, 103, 106, 107, 112

LGN Lateral geniculate nucleus. 9–12

LOO Leave one out. 76–78, 84, 87

MSE Mean squared error. 47–49, 83, 84, 87, 106

MSP Minimum span. 79–84, 86, 87, 106, 111, 115

MUA Multi unit activity. 90, 92, 93, 103, 107, 112

NORMA Naive online risk minimization. 54, 56–59, 66–68, 70–74

OKRR Online kernel ridge regression. 69–74

PCA Principal component analysis. 106, 107, 109

PCI Peripheral component interconnect. 114, 117

POM Posterior medial. 21

141

Abbreviations

PRIONA Primal online algorithm. 3, 59, 60, 62, 65–74, 129

RBF Radial basis function. 47, 65, 75, 81–83, 87, 95–98, 103, 110, 112

RKHS Reproducing kernel Hilbert space. 25

RLS Regularized least squares. 29, 30, 49

RMSE Root mean squared error. 106–108, 110–112

ROC Receiver operating characteristic. 120

SD Standard deviation. 109

SILK Sparse implicit learning with kernels. 58, 59, 67, 68, 70–74

SMO Sequential minimal optimization. 29, 49, 54

STG Stimulus generator. 115, 118

SUA Single unit activity. 90–93

SVC Support vector classification. 27, 36, 45, 46

SVM Support vector machine. 25, 26, 53, 54, 57, 60

SVR Support vector regression. 3, 4, 26–29, 31–34, 36, 37, 40, 42, 46, 48, 49, 51–53,
58–61, 63–65, 71, 73, 75–83, 86, 87, 89, 96, 97, 102, 106, 110, 112–116, 118, 119, 126,
129, 130, 135

V1 Primary visual cortex. 2, 9–13

VPM Ventral posterior medial. 21

142

Bibliography

[1] A. Arieli, A. Sterkin, A. Grinvald, and A. Aertsen. Dynamics of Ongoing Activ-
ity: Explanation of the Large Variability in Evoked Cortical Responses. Science,
273(5283):1868–1871, 1996. 2, 3, 18, 100, 128

[2] N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathe-
matical Society, 68(3):337–404, 1950. 32

[3] A. Asuncion and D. J. Newman. UCI machine learning repository, 2007. 138, 139

[4] F. R. Bach and M. I. Jordan. Kernel independent component analysis. JMLR, 3:1–48,
2002. 132

[5] D. Bamber. The area above the ordinal dominance graph and the area below the re-
ceiver operating characteristic graph. Journal of mathematical psychology, 12(4):387–
415, 1975. 122

[6] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 2003.
30, 37, 81

[7] W. Bialek, F. Rieke, R. R. de Ruyter van Steveninck, and D. Warland. Reading a
neural code. Science, 252(5014):1854–1857, 1991. 92

[8] N. Birbaumer and L. G. Cohen. Brain-computer interfaces: communication and
restoration of movement in paralysis. The Journal of Physiology, 579(3):621, 2007.
1

[9] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kübler,
J. Perelmouter, E. Taub, and H. Flor. A spelling device for the paralysed. Nature,
398:297–298, 1999. 1

[10] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1st edition, 1996. 25, 76

[11] L. Bo, L. Wang, and L. Jiao. Recursive finite newton algorithm for support vector
regression in the primal. Neural Computation, 19:1082–1096, 2007. 32, 34, 36

[12] M. Bogdan, M. Schröder, and W. Rosenstiel. Towards restoration of hand grasp
function of quadriplegic patients based on an artificial neural net controller using
peripheral nerve stimulation - an approach. In ESANN proceedings, pages 427–432,
2003. 116

[13] A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online
and active learning. Journal of Machine Learning Research, 6:1579–1619, 2005. 54,
60

143

Bibliography

[14] G. S. Brindley and W. S. Lewin. The sensations produced by electrical stimulation
of the visual cortex. Journal of Physiology, 196:479–493, 1968. 2, 16

[15] D. Brugger. Parallel support vector machines. Technical Report WSI-2006-01,
Eberhard-Karls Universität Tübingen, WSI für Informatik, 1 2006. 29

[16] D. Brugger, M. Bogdan, and W. Rosenstiel. Automatic cluster detection in kohonen’s
som. IEEE Tran. Neural Networks, 19(3):442–459, 2008. Automatic cluster detection
in Kohonen’s SOM. 92

[17] D. Brugger, S. Butovas, M. Bogdan, C. Schwarz, and W. Rosenstiel. Direct and
inverse solution for a stimulus adaptation problem using SVR. In ESANN proceedings,
pages 397–402, Bruges, 2008. 3, 102, 131

[18] D. Brugger, S. Butovas, M. Bogdan, C. Schwarz, and W. Rosenstiel. Real-time
adaptive microstimulation increases reliability of electrically evoked cortical poten-
tials. Submitted to Journal of Neuroscience, 2009. 3, 119

[19] D. Brugger, W. Rosenstiel, and M. Bogdan. Online SVR training by solving the
primal optimization problem. In IEEE International Workshop on Machine Learning
for signal processing, 2009. 3, 59, 60, 131

[20] S. Butovas and C. Schwarz. Spatiotemporal effects of microstimulation in rat neocor-
tex: a parametric study using multielectrode recordings. J Neurophysiol, 90(5):3024–
39, 2003. eng. 101

[21] S. Butovas and C. Schwarz. Detection psychophysics of intracortical microstimulation
in rat primary somatosensory cortex. Eur J Neurosci, 25(7):2161–9, 2007. eng. 129

[22] G. Buzsáki. Large-scale recording of neuronal ensembles. Nature Neuroscience,
7:446–451, 2004. 92

[23] G. Cauwenberghs and T. Poggio. Incremental and decremental support vector ma-
chine learning. In NIPS, pages 409–415, 2000. 54, 62

[24] K. Cha, K. W. Horch, and R. A. Normann. Mobility performance with a pixelized
vision system. Vision Research, 32:1367–1372, 1992. 17, 18

[25] K. Cha, K. W. Horch, and R. A. Normann. Reading speed with a pixelized vision
system. Journal of the Optical Society of America A, 9(5):673–677, 1992. 17

[26] F. S. Chance, L. F. Abbott, and A. D. Reyes. Gain modulation from background
synaptic input. Neuron, 35(4):773–82, 2002. eng. 3, 18

[27] C. C. Chang and C. J. Lin. LIBSVM: a Library for Support Vector Machines, 2006.
Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm. 29, 49, 53

144

Bibliography

[28] M. W. Chang and C. J. Lin. Leave-one-out bounds for support vector regression
model selection. Neural Computation, 17:1188–1222, 2005. Leave-one-out bounds for
support vector regression model selection. 76, 77, 78, 79, 82

[29] O. Chapelle. Training a support vector machine in the primal. Neural Computation,
19:1135–1178, 2007. 29, 31, 36, 46, 48

[30] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple param-
eters for support vector machines. Machine Learning, 46(1-3):131–159, 2002. 76,
79

[31] L. Cheng, S.V.N. Vishwanathan, D. Schuurmans, S. Wang, and T. Caelli. Implicit
online learning with kernels. In NIPS, pages 249–256. MIT Press, 2007. 54, 57, 59,
131

[32] W. Chu, S. S. Keerthi, and C. J. Ong. Bayesian support vector regression using a
unified loss function. IEEE Tran. Neural Networks, 15(1):29–44, January 2004. 76

[33] E. D. Cohen. Prosthetic interfaces with the visual system: biological issues. Journal
of Neural Engineering, 4:14–31, 2007. 1, 14, 15, 16, 129

[34] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, second edition, 2001. 100, 105, 135

[35] K. Crammer, J. S. Kandola, and Y. Singer. Online classification on a budget. In
NIPS, 2003. 60

[36] L. Csató and M. Opper. Sparse representation for gaussian process models. In
Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, NIPS, pages 444–
450. MIT Press, 2000. 62

[37] E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson. Comparing the areas under
two or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics, pages 837–845, 1988. 122

[38] T. B. DeMarse, D. A. Wagenaar, A. W. Blau, and S. M. Potter. The Neurally
Controlled Animat: Biological Brains Acting with Simulated Bodies. Autonomous
Robots, 11(3):305–310, 2001. 116

[39] A. Destexhe, M. Rudolph, and D. Pare. The high-conductance state of neocortical
neurons in vivo. Nat Rev Neurosci, 4(9):739–51, 2003. eng. 18

[40] I. M. Devonshire, J. E. W. Mayhew, and P. G. Overton. Cocaine preferentially
enhances sensory processing in the upper layers of the primary sensory cortex. Neu-
roscience, 146(2):841–851, 2007. 92

145

Bibliography

[41] T. J. DiCiccio and B. Efron. Bootstrap confidence intervals. Statistical Science,
11(3):189–228, 1996. Bootstrap Confidence Intervals. 47, 65, 83, 107, 122

[42] W. H. Dobelle. Artificial vision for the blind by connecting a television camera to
the visual cortex. ASAIO J., 46:1–7, 2000. 2, 16, 17, 129

[43] W. H. Dobelle and M. G. Mladejovsky. Phosphenes produced by electrical stimulation
of human occipital cortex, and their application to the development of a prosthesis
for the blind. Journal of Physiology, 243:553–576, 1974. 2, 16

[44] J. P. Donoghue. Connecting cortex to machines: recent advances in brain interfaces.
Nature Neuroscience, 5(supp):1085–1088, 2002. 89

[45] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,
2nd edition, 2001. 25, 75

[46] Dudel, Menzel, and Schmidt. Neurowissenschaft – Vom Molekül zur Kognition.
Springer, 2. auflage edition, 2001. 6

[47] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Monographs on
Statistics and Applied Probability. Chapman & Hall, 1st edition, 1994. 47

[48] R. E. Fan, P. H. Chen, and C. J. Lin. Working Set Selection Using Second Order
Information for Training Support Vector Machines. Journal of Machine Learning
Research, 6:1889–1918, 2005. 29

[49] M. Feucht, T. Laube, N. Bornfeld, P. Walter, and M. Velikay-Parel. Entwicklung
einer epiretinalen prothese zur stimulation der humanen netzhaut. Ophthalmologe,
102(7):688–691, 2005. 1, 14

[50] K. Fox. Barrel Cortex. Cambridge University Press, first edition edition, 2008. 19,
21

[51] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient
alternatives. LNAI, 2777:129–143, 2003. On Graph Kernels: Hardness Results and
Efficient Alternatives. 95

[52] F. Gekeler and E. Zrenner. Stand des subretinalen implantatprojekts. Ophthalmologe,
102(10):941–949, 2005. 14

[53] A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner. Neuronal population coding
of movement direction. Science, 233(4771):1416–1419, 1986. 89, 90

[54] G. H. Golub and C. F. van Loan. Matrix Computations. The John Hopkins University
Press, third edition, 1996. 26, 30, 41, 62, 80

146

Bibliography

[55] D. M. Green and J. A. Swets. Signal detection theory and psychophysics. Wiley,
New York,, 1966. 66021059 [by] David M. Green [and] John A. Swets. illus. 24 cm.
Bibliography: p. 417-428. 122

[56] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation. Frontiers in Applied Mathematics. Society for Industrial Mathematics,
1st edition, January 1987. 84

[57] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143(1):29, 1982. 122

[58] D. Harrison and D. L. Rubinfeld. Hedonic housing prices and the demand for clean
air. Journal of Environmental Economics and Management, 5(1):81–102, 1978. 139

[59] A. Hasenstaub, R. N. Sachdev, and D. A. McCormick. State changes rapidly mod-
ulate cortical neuronal responsiveness. J Neurosci, 27(36):9607–22, 2007. eng. 3,
128

[60] R. Haslinger, I. Ulbert, C. I. Moore, E. N. Brown, and A. Devor. Analysis of lfp phase
predicts sensory response of barrel cortex. Journal of Neurophysiology, 96(3):1658,
2006. 94

[61] H. Hentsche, F. Haiss, and C. Schwarz. Central signals rapidly switch tactile process-
ing in rat barrel cortex during whisker movements. Cerebral Cortex, 16(8):1142–1156,
2006. 3, 22, 23

[62] T. Hermle, M. Bogdan, C. Schwarz, and W. Rosenstiel. ANN-based system for
sorting spike waveforms employing refractory periods. Lecture notes in computer
science, 3696:121, 2005. 92

[63] T. Hermle, C. Schwarz, and M. Bogdan. Employing ICA and SOM for spike sorting of
multielectrode recordings from CNS. Journal of Physiology-Paris, 98(4-6):349–356,
2004. 92

[64] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan,
A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue. Neuronal ensemble control
of prosthetic devices by a human with tetraplegia. Nature, 442:164–171, 2006. 90

[65] W. H. House. Cochlear implants. Annals of Otology, Rhinology and Laryngology,
85:3–91, 1976. 2

[66] D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat’s striate
cortex. Journal of physiology, 148(3):574–592, 1959. 12

[67] M. S. Humayun, J. D. Weiland, G. Y. Fujii, R. Greenberg, R. Williamson, J. Little,
B. Mech, V. Cimmarusti, G. Van Boemel, G. Dagnelie, and E. de Juan Jr. Visual
perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision
Research, 43(24):2573–2581, 2003. 1, 14

147

Bibliography

[68] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and ap-
plications. Neural Networks, 13:411–430, 2000. Independent component analysis:
algorithms and applications. 132

[69] S. Jezernik, R. G. V. Wassink, and T. Keller. Sliding mode closed-loop control of
FES controlling the shank movement. Biomedical Engineering, IEEE Transactions
on, 51(2):263–272, 2004. 116

[70] T. Joachims. Estimating the generalization performance of an svm efficiently. In Pat
Langley, editor, ICML, pages 431–438. Morgan Kaufmann, 2000. 76

[71] K. O. Johnson, S. S. Hsiao, and T. Yoshioka. Neural coding and the basic law of
psychophysics. Neuroscientist, 8(2):111–121, 2002. 8

[72] I.T. Jolliffe. Principal component analysis. Springer New York, 2nd edition, October
2002. 107

[73] E. R. Kandel, J. H. Schwarz, and T. M. Jessell. Principles Of Neural Science.
McGraw-Hill, fourth edition edition, 2000. 6, 10, 11

[74] S. S. Keerthi and D. DeCoste. A modified finite newton method for fast solution of
large scale linear SVMs. JMLR, 6:341–361, 2005. 36, 37, 45

[75] P. R. Kennedy, M. T. Kirby, M. M. Moore, B. King, A. Mallory, N. S. Inc, and
G. A. Atlanta. Computer control using human intracortical local field potentials.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(3):339–
344, 2004. 90

[76] G. S. Kimeldorf and G. Wahba. A correspondence between bayesian estimation on
stochastic processes and smoothing by splines. The Annals of Mathematical Statistics,
41(2):495–502, April 1970. 32

[77] M. A. Kisley and G. L. Gerstein. Trial-to-trial variability and state-dependent mod-
ulation of auditory-evoked responses in cortex. J Neurosci, 19(23):10451–60, 1999.
eng. 3, 100, 128

[78] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. IEEE
Trans. Sig. Proc., 52(8):2165–2175, 2004. 54, 59, 60, 131

[79] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for
linear predictors. Information and Computation, 132(1):1–64, 1997. 57

[80] S. Kotler. A half century of artificial-sight research has succeeded. and not this blind
man can see. Wired Magazine, 2002. 16

[81] J. T. Kwok and I. W. Tsang. The pre-image problem in kernel methods. In Proceeding
of the 20th International Conference on Machine Learning, 2003. 103

148

Bibliography

[82] M. Le Van Quyen, J. Foucher, J. P. Lachaux, E. Rodriguez, A. Lutz, J. Martinerie,
and F. J. Varela. Comparison of hilbert transform and wavelet methods for the
analysis of neuronal synchrony. Journal of Neuroscience Methods, 111(2):83–98, 2001.
94

[83] Y. LeCun, L. Bottou, B. Yoshua, and Patrick H. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.
25

[84] A. D. Legatt, J. Arezzo, and H. G. Vaughan Jr. Averaged multiple unit activity as
an estimate of phasic changes in local neuronal activity: effects of volume-conducted
potentials. J Neurosci Methods, 2(2):203–17, 1980. 93

[85] M. S. Lewicki. A review of methods for spike sorting: the detection and classification
of neural action potentials. Comput. Neural Syst., 9:53, 1998. A review of methods
for spike sorting: the detection and classification of neural action potentials. 92

[86] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classi-
fication using string kernels. The Journal of Machine Learning Research, 2:419–444,
2002. 95, 98

[87] N. H. Lovall and G. J. Suaning. Retinal neuroprosthesis: science fact of science
fiction? Expert Rev. Ophthalmol., 2(2):145–148, 2007. 14

[88] J. Ma, J. Theiler, and S. Perkins. Accurate on-line support vector regression. Neural
Computation, 15:2683–2703, 2003. 54, 62

[89] H. Markram. The blue brain project. Nature Reviews Neuroscience, 7(2):153–160,
2006. 116

[90] L. Marple Jr. Computing the discrete-time “analytic” signal via fft. Signal Process-
ing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE
Transactions on], 47(9):2600–2603, 1999. 94

[91] C. Mehring, M. P. Nawrot, S. C. de Oliveira, E. Vaadia, A. Schulze-Bonhage, A. Aert-
sen, and T. Ball. Comparing information about arm movement direction in single
channels of local and epicortical field potentials from monkey and human motor
cortex. Journal of Physiology-Paris, 98(4-6):498–506, 2004. 90, 91

[92] U. Mitzdorf. Current source-density method and application in cat cerebral cor-
tex: investigation of evoked potentials and EEG phenomena. Physiological Reviews,
65(1):37–100, 1985. 91

[93] A. R. Moller. History of cochlear implants and auditory brainstem implants. Adv.
Otorhinolaryncol., 64:1–10, 2006. 1

149

Bibliography

[94] V. B. Mountcastle, W. H. Talbot, and H. H. Kornhuber. The neural transformation
of mechanical stimuli delivered to the monkey’s hand. In A. V. S. de Reuck and
Julie Knight, editors, Ciba Foundataion Symposium: Touch, Heat and Pain, pages
325–351. London: Churchill, 1966. 8

[95] W. J. Nash. The Population Biology of Abalone (Haliotis Species) in Tasmania. I.
Blacklip Abalone (H Rubra) from the North Coast and the Islands of Bass Strait. Sea
Fisheries Division, Marine Research Laboratories-Taroona, Department of Primary
Industry and Fisheries, Tasmania., 1994. 138

[96] C. Nicholson and J. A. Freeman. Theory of current source-density analysis and deter-
mination of conductivity tensor for anuran cerebellum. Journal of Neurophysiology,
38(2):356–368, 1975. 92

[97] M. A. L. Nicolelis. Actions from thoughts. Nature, 409:403–407, January 2001. 89

[98] M. A. L. Nicolelis. Brain–machine interfaces to restore motor function and probe
neural circuits. Nature Reviews Neuroscience, 4(5):417–422, 2003. 1

[99] R. A. Normann, E. M. Maynard, P. J. Rousche, and D. J. Warren. A neural interface
for a cortical vision prosthesis. Vision Research, 39:2577–2587, 1999. 17, 90

[100] L. G. Nowak and J. Bullier. Axons, but not cell bodies, are activated by electrical
stimulation in cortical gray matter. Experimental Brain Research, 118(4):477–488,
1998. 121

[101] R. K. Pace and R. Barry. Quick computation of regressions with a spatially autore-
gressive dependent variable. Geographical Analysis, 29(3):232–247, 1997. 139

[102] R. K. Pace and R. Barry. Sparse spatial autoregressions. Statistics and Probability
Letters, 33(3):291–297, 1997. 138

[103] C. C. Petersen. The functional organization of the barrel cortex. Neuron, 56:339–355,
2007. 21, 22

[104] C. C. Petersen, T. T. Hahn, M. Mehta, A. Grinvald, and B. Sakmann. Interaction of
sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc
Natl Acad Sci U S A, 100(23):13638–43, 2003. eng. 3, 128

[105] K. H. Pettersen, A. Devor, I. Ulbert, A. M. Dale, and G. T. Einevoll. Current-
source density estimation based on inversion of electrostatic forward solution: effects
of finite extent of neuronal activity and conductivity discontinuities. J. Neurosci.
Meth., 154:116–133, 2006. 92

[106] K. H. Pettersen, E. Hagen, and G. T Einevoll. Estimation of population firing rates
and current source densities from laminar electrode recordings. J Comput Neurosci,
24(3):291–313, Jun 2008. 92

150

Bibliography

[107] J. Platt. Fast training of SVMs using sequential minimal optimization. In A. Smola
B. Schölkopf, C. Burges, editor, Advances in Kernel Methods: Support Vector Ma-
chines. MIT Press, Cambridge, MA, 1999. 29, 49, 53, 54

[108] VXI plug & play System Alliance. Vpp-4.3: The visa library, October 2008. 119

[109] G. Qin and L. Hotilovac. Comparison of non-parametric confidence intervals for the
area under the ROC curve of a continuous-scale diagnostic test. Statistical Methods
in Medical Research, 17(2):207, 2008. 122

[110] J. R. Quinlan. Combining instance-based and model-based learning. In Proceedings
of the Tenth International Conference on Machine Learning, pages 236–243. Morgan
Kaufmann, 1993. 139

[111] M. J. Rasch, A. Gretton, Y. Murayama, W. Maass, and N. K. Logothetis. Inferring
spike trains from local field potentials. J. Neurophysiol., 99:1461–1476, 2008. 93

[112] J. P. Rauschecker and R. V. Shannon. Sending sound to the brain. Science,
259(8):1025–1028, 2002. 2

[113] J. Rickert, S. C. de Oliveira, E. Vaadia, A. Aertsen, S. Rotter, and C. Mehring.
Encoding of Movement Direction in Different Frequency Ranges of Motor Cortical
Local Field Potentials. Journal of Neuroscience, 25(39):8815–8824, 2005. 90, 91

[114] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958. 53

[115] M. G. Rosenblum, A. S. Pikovsky, J. Kurths, C. Schäfer, and P. A. Tass. Phase
synchronization: from theory to data analysis. Handbook of Biological Physics, 4:279–
321, 2001. 93, 94

[116] M. Rudolph and A. Destexhe. The discharge variability of neocortical neurons during
high-conductance states. Neuroscience, 119(3):855–73, 2003. eng. 18

[117] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986. 53

[118] R. N. S. Sachdev, F. D. Ebner, and C. J. Wilson. Effect of subthreshold up and
down states on the whisker-evoked response in somatosensory cortex. Journal of
Neurophysiology, 92:3511–3521, 2004. 3, 18, 22

[119] L. Sachs and J. Hedderich. Angewandte Statistik: Methodensammlung mit R.
Springer, 2006. 122

[120] C. Saunders, A. Gammerman, and V. Vovk. Ride regression learning algorithm
in dual variables. In Proceedings of the 15th International Conference on Machine
Learning, 1998. 36, 65

151

Bibliography

[121] H. Scherberger, M. R. Jarvis, and R. A. Andersen. Cortical local field potential
encodes movement intentions in the posterior parietal cortex. Neuron, 46(2):347–
354, 2005. 91

[122] E. M. Schmidt, M. J. Bak, F. T. Hambrecht, C. V. Kufta, D. K. O’Rourke, and
P. Vallabhanath. Feasibility of a visual prosthesis for the blind based on intracortical
microstimulation of the visual cortex. Brain, 119:507–522, 1996. 2, 17, 18, 129

[123] B. Schölkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and A. Smola.
Input space vs. feature space in kernel-based methods. IEEE Transactions on Neural
Networks, 10(5):1000–1017, September 1999. 26

[124] B. Schölkopf and A. J. Smola. Learning with kernels. MIT Press, 2002. Learning
with kernels. 25, 27, 28, 47, 76, 95, 97

[125] A. B. Schwartz. Cortical neural prosthetics. Annual Review of Neuroscience,
27(1):487–507, 2004. 89

[126] A. B. Schwartz, X. T. Cui, D. J. Weber, and D. W. Moran. Brain-controlled inter-
faces: Movement restoration with neural prosthetics. Neuron, 52(1):205–220, 2006.
1, 90

[127] M. Seeger. Bayesian model selection for support vector machines, gaussian processes
and other kernel classifiers. In Sara A. Solla, Todd K. Leen, and Klaus-Robert Müller,
editors, NIPS, pages 603–609. The MIT Press, 1999. 76

[128] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press New York, NY, USA, 2004. 95, 96, 104

[129] I. Shphigelman, Y. Singer, R. Paz, and E. Vaadia. Spikernels: predicting arm move-
ments by embedding population spike rate patterns in inner-product spaces. Neural
Computation, 17:671–690, 2005. 95, 98

[130] W. Singer and C. M. Gray. Visual Feature Integration and the Temporal Correlation
Hypothesis. Annual Reviews in Neuroscience, 18(1):555–586, 1995. 94

[131] A. J. Smola. Learning with Kernels. PhD thesis, Technische Universität Berlin, 1998.
29

[132] A. Srinivasan and R. D. King. Feature construction with inductive logic program-
ming: A study of quantitative predictions of biological activity aided by structural
attributes. Data Mining and Knowledge Discovery, 3(1):37–57, 1999. 139

[133] E. Stark and M. Abeles. Predicting movement from multiunit activity. J. Neurosci.,
27:8387–8394, 2007. Predicting movement from multiunit activity. 90, 92, 93, 107

[134] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2nd edition, 2001. 119

152

Bibliography

[135] G. E. Tassiker. US Patent 2760483, 1956. 14

[136] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz. Direct cortical control of 3d
neuroprosthetic devices. Science, 296(5574):1829–1832, 2002. 90

[137] E. Timofeeva, C. Mérette, C. Émond, P. Lavallée, and M. Deschênes. A map of angu-
lar tuning preference in thalamic barreloids. Journal of Neuroscience, 23(33):10717–
10723, 2003. 22

[138] I. W. Tsang, J. T. Kwok, and P. M. Cheung. Core Vector Machines: Fast SVM
Training on Very Large Data Sets. Journal of Machine Learning Research, 6:363–
392, 2005. 31

[139] I. W. Tsang, J. T. Kwok, and K. T. Lai. Core Vector Regression for Very Large
Regression Problems. In Proceedings of the 22nd International Conference on Machine
Learning, pages 913–920, 2005. 31

[140] R. J. Vanderbei and D. F. Shanno. An interior-point algorithm for nonconvex non-
linear programming. Technical Report SOR-97-21, Princeton University, 1997. 29

[141] V. Vapnik and O. Chapelle. Bounds on error expectation for support vector machines.
Neural Computation, 12(9):2013–2036, 2000. 76

[142] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, second edition,
1999. 25, 26, 53, 76

[143] S. V. N. Vishwanathan, N. N. Schraudolph, and A. J. Smola. Step size adaptation
in reproducing kernel Hilbert space. JMLR, 7:1107–1133, 2006. 54, 60

[144] D. A. Wagenaar, R. Madhavan, J. Pine, and S. M. Potter. Controlling Bursting in
Cortical Cultures with Closed-Loop Multi-Electrode Stimulation. Journal of Neuro-
science, 25(3):680–688, 2005. 116, 131

[145] J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J. K. Chapin,
J. Kim, S. J. Biggs, M. A. Srinivasan, and M. A. Nicolelis. Real-time prediction of
hand trajectory by ensembles of cortical neurons in primates. Nature, 408(6810):361–
5, 2000. eng. 90

[146] J. Weston, A. Bordes, and L. Bottou. Online (and offline) on an even tighter budget.
In Proc. of the 10th Int. Workshop on Artificial Intelligence and Statistics, pages
413–420, 2005. 60

[147] R. H. Whittington, L. Giovangrandi, and G. T. A. Kovacs. A closed-loop electrical
stimulation system for cardiac cell cultures. Biomedical Engineering, IEEE Trans-
actions on, 52(7):1261–1270, 2005. 116, 131

153

Bibliography

[148] M. L. Winston. The Biology of the Honey Bee. Harvard University Press, first edition
edition, 1991. 9

[149] T. A. Woolsey and H. van der Loos. The structural organization of layer iv in the
somatosensory region (s1) of mouse cerebral cortex. Brain Research, 17(2):205–242,
1970. 19

[150] World Health Organization. Fact Sheet No. 282: Magnitude and causes of visual
impairment, November 2004. 13

[151] G. Zanghirati and L. Zanni. A parallel solver for large quadratic programs in training
support vector machines. Parallel Computing, 29:535–551, 2002. 29

[152] L. Zanni, T. Serafini, and G. Zanghirati. Parallel Software for Training Large Scale
Support Vector Machines on Multiprocessor Systems. Journal of Machine Learning
Research, 7:1467–1492, 2006. 29

[153] E. Zrenner. Will retinal implants restore vision? Science, 259(8):1022–1025, 2002.
1, 14

[154] E. Zrenner, D. Besch, K. U. Bartz-Schmidt, F. Gekeler, V. P. Gabel, and C. Kutt.
Subretinal chronic multi-electrode arrays implanted in blind patients. Investigative
Ophthalmology and Visual Science, 47(5):1538, 2006. 1, 14, 15

154

	Introduction
	Perception
	Principles of sensory processing
	Modality
	Location
	Intensity
	Timing
	Sensory systems

	The visual system
	Visual pathways
	Cortical processing

	Current implant technology
	Retinal implants
	Cortical implants

	Unsolved problems of cortical implants
	Model sensory system: rat barrel cortex

	Support Vector Regression
	State of the art
	Dual SVR
	Primal and dual optimization
	Primal SVR without bias

	Primal SVR with bias
	Newton step
	Cholesky factorization
	Line search
	Primal algorithm

	Results
	Comparison of l1- and l2-loss functions
	Comparison of primal and dual algorithms

	Online SVR
	Online versus Offline SVR training
	Online training state of the art
	Naive online risk minimization
	Implicit online learning with kernels

	Primal online algorithm
	Buffering strategies
	Descent directions
	Incremental updates
	Online kernel ridge regression

	Results
	Online training with and without bias
	Comparison of buffering strategies
	Comparison of descent directions
	Comparison of online training algorithms

	Model selection
	State of the art
	Leave-one-out bounds

	Minimizing the MSP bound and CV error
	Results

	Decoding the cortical state
	State of the art
	Local field potentials
	Multi-unit activity
	Phase synchronization
	Kernel functions

	Recording setup
	Formal problem definition
	Direct solution
	Inverse solution

	ANOVA kernel
	Results
	Comparison of direct and inverse solutions
	Optimal time windows
	Comparison of kernel functions

	Adaptive microstimulation
	Experimental setup
	Technical considerations
	Results

	Conclusion and Outlook
	Algorithms
	Data sets
	Abalone
	Cadata
	Cpusmall
	Feedback
	Housing
	Mpg
	Triazines and Pyrim
	Space-ga

	Abbreviations

