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Zusammenfassung

Seit den Anfiangen der Erforschung evolutionérer Prozesse gilt das Bestre-
ben dieser Disziplin der Rekonstruktion eines moglichst wirklichkeitsgetreu-
en Stammbaums des Lebens. Dieser Zweig der Wissenschaft wird nach Ernst
Haeckel als “Phylogenetik” bezeichnet — die Entwicklungsgeschichte der Stam-
me. Die ersten phylogenetischen Methoden benutzten morphologische Merk-
male zur Unterscheidung von Arten, um daraus einen Stammbaum des Le-
bens zu erstellen. Allerdings ist diese Methodik nur beschriankt auf Mikro-
organismen anwendbar, da diese nur wenige gut zu unterscheidende mor-
phologische Merkmale besitzen. Erst die Entschliisselung der DNA-Struktur
durch Francis Crick und James Watson, sowie die Entwicklung der Sanger-
Sequenziertechnologie ermoglichten es, genetische Informationen zur phylo-
genetischen Rekonstruktion heranzuziehen.

Noch unbeantwortet ist hingegen die Frage nach der tatséchlichen Exi-
stenz eines prokaryotischen Baums des Lebens. Prokaryoten (Bakterien und
Archaea) besitzen Mechanismen fiir den direkten Austausch von genetischem
Material zwischen Zellen, die zu verschiedenen Arten gehoren kénnen (hori-
zontaler Gentransfer). Dies bedeutet, dafl ein Gen auch durch andere Wege
als die klonale Vermehrung erhalten werden kann, die eben nicht durch eine
Baumstruktur représentiert werden konnen. In dieser Dissertation stellen
wir die GBDP-Methodik (”Genome BLAST distance phylogeny”) vor, mit
der Phylogenien aus ganzen Genomen berechnet werden kénnen. Die Er-
gebnisse der GBDP-Methodik werden mit einer Taxonomie verglichen, die
auf der Phylogenie von Einzelgenen basiert. Des weiteren untersuchen wir
den Anteil von horizontalem Gentransfer in einer Gruppe von Genen, die in
allen von uns untersuchten prokaryotischen Genomen vorkommen. Fiir diese
Untersuchung benutzen wir sowohl eine aktuelle Methode, wie zwei von uns
neu vorgestellte Ansétze. Zusitzlich schlagen wir hier eine neue Methode
zur Spezies-Bestimmung bei Prokaryoten vor, die auf der GBDP-Methodik
basiert.

Im letzten Teil der Dissertation werden mehrere Software-Pakete vor-
gestellt. Zusammen mit AxParafit und AxPcoords stellt CopyCat das er-
ste Grid-fahige Software-Paket dar, das speziell im Hinblick auf groflange-
legte kophylogenetische Analysen entwickelt wurde. Mit diesen Program-
men kénnen grofie Wirts- und Parasitenphylogenien miteinander auf Uber-
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einstimmungen hin untersucht werden. Des weiteren wird MEGAN vorge-
stellt, eine benutzerfreundliche Software-Applikation fiir die Analyse von
Metagenomik-Datensétzen, sowie MetaSim, ein Simulationsprogramm fiir
Metagenomik-Datensétze, das zur Unterstiitzung der Entwicklung und Ve-
rifikation von Metagenomik-Software entwickelt wurde.



Abstract

Since the dawn of evolutionary biology, it was the dream of scientists to
obtain a meaningful genealogy of species, a “tree of life”. The term “phylo-
genetics” was coined by Ernst Haeckel for that area of research, meaning the
history of the evolutionary relationships between species. First phylogenetic
approaches focused on morphological differences between species. However,
the analysis of the phylogeny of microbial organisms is hindered due to the
limited number of observable morphological differences. With the discov-
ery of the structure of DNA by Francis Crick and James Watson, and the
development of the Sanger sequencing technology, it became feasible to use
genetic information for phylogenetic inference.

Regarding the prokaryotic universe (Bacteria and Archaea), a main ques-
tion of phylogenetics is whether there exists a prokaryotic “tree of life” actu-
ally. Those organisms exhibit mechanisms for the direct exchange of genetic
material between cells that can belong to different species (called horizontal
gene transfer). Accordingly, genes can be derived from different organisms
rather than via clonal reproduction, as expressed by a phylogenetic tree.
In this thesis, we introduce the GBDP (“Genome BLAST distance phy-
logeny”) framework for inferring phylogenies based on whole genomes, and
we compare the results with a current taxonomic tree based on single genes.
Furthermore, we investigate the amount of horizontal gene transfer in a
common set of prokaryotic genes by using a state-of-the-art method, as well
as two newly developed approaches. Additionally, a new method for species
delineation is proposed that is based on the GBDP method for deriving
whole genome phylogenies.

In the last part of the thesis, several software packages are presented.
CopyCat, together with AxParafit and AxPcoords, represents the first Grid-
enabled software package that is optimized for large-scale cophylogenetic
studies. With these tools, large host and parasite phylogenies can be screened
for correlations. Furthermore, MEGAN, a user-friendly software application
for the analysis of metagenomic datasets is presented. Metagenomics is the
study of microorganismal communities by direct extraction of DNA from en-
vironmental samples. To aid the development and testing of metagenomic
software, we developed MetaSim, a tool to generate simulated metagenomic
datasets.
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Chapter 1

Introduction

Naturally, when writing a thesis dealing with evolutionary processes in 2009,
one has to refer to the 150th anniversary of Charles Darwin’s groundbreak-
ing work “On the Origin of Species” (Darwin/|1859), which, together with
the work of Alfred Russel Wallace (Wallace||1858]), provided the basis for
the theory of evolution. To express it using Bernard of Chartres famous
metaphor, I am like a dwarf on the shoulder of giants, standing there with
deep gratitude towards all scientists who supplied the prerequisites for my
humble contribution.

1.1 Background

This thesis mainly deals with phylogenetics, the study of evolutionary re-
lationships between organisms, which is related to modern taxonomy pro-
viding a hierarchical classification of species. The idea of a hierarchical
classification of organisms can be traced back to Aristotle (“scala naturae”,
“ladder of life” ), who already divided organisms into groups that can be com-
pared to modern classification (vertebrates vs. invertebrates, mammals vs.
egg-bearing species, etc.). Aristotle’s hierarchical system can be seen as the
progenitor of modern taxonomy (Greene and Mayr |1992), invented by Carl
von Linné (Linnaeus||1758]). His work even had great influence on Darwin
(Gotthelf [1999)). But by the work of Darwin and Ernst Haeckel (Haeckel
1894), the aristotelian idea of a “ladder of life” was transformed into the
concept of a “tree of life” that explicitly depicts speciation events (resulting
in a phylogenetic tree). This modern concept of hierarchical classification
inherently embraces the idea of evolution.

The beginning of computational phylogenetics is closely linked with the
dawn of the age of molecular biology. Consequently, computational meth-
ods are not older than approximately 40 years (a comprehensive overview
is given in [Felsenstein|[2004). While being a young discipline, methodology
was greatly improved with the continuing evolution of wet-lab sequencing
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technology. Early work mainly focused on single genes (e.g., Woese 1987,
whereas the multitude of sequencing projects and completely sequenced
genomes nowadays allows to compare the evolutionary history of a pleni-
tude of single genes, as well as that of whole genomes. Thus, the question
whether a single gene can reflect the phylogeny of the associated species,
or whether a species phylogeny of prokaryotes actually exists, can now be
approached (Rokas et al.|[2003; Dagan and Martin| 2006; McInerney et al.
2008; Dagan and Martin |2009).

However, some scientists even challenge the notion of a hierarchical clas-
sification or the existence of a meaningful species concept for prokaryotes
(Bapteste and Boucher| 2009} |Boucher and Bapteste 2009). They argue that
a prokaryotic lineage comprises different genetic elements that may or may
not share a common evolutionary history, due to mechanisms like horizon-
tal gene transfer (HGT). Some prokaryotic genomes may resemble a genetic
chimera, even to an extent where a tree-like representation of the species
phylogeny may become meaningless. In that case, it may be necessary to
subdivide the species concept into evolutionary units that consist of ge-
netic elements replicated together (i.e., a chromosome, plasmid, operon, or
a transposon).

1.2 Outline of this thesis

During my PhD, I focused on several topics, which all are related to compu-
tational phylogenetics. In Chapter [2| a method for inferring whole-genome
phylogenies is outlined. The basic idea consists of using completely se-
quenced prokaryotic genomes instead of single genes, thus leading to an
“averaged” genomic phylogeny. This allows one to compare the obtained
whole genome phylogenies with phylogenies based on single genes (or tax-
onomic trees) to attempt to illuminate the amount of congruence between
both phylogenies.

Differences between a gene phylogeny and a “species” (or whole-genome)
phylogeny can occur due to horizontal transfer of genes between prokaryotes.
Consequently, we tried to assess the amount of horizontal gene transfer
within a common set of prokaryotic genes in Chapter [3| The concept of a
“true” species phylogeny depends on the existence of a common set of genes
that resist intergenomic exchange. In our study, we tried to determine how
much the phylogenies of these genes differ from a possible species phylogeny.

In Chapter [4] we focused on the study of cophylogenetic relationships.
Here, the question is addressed whether the phylogenies of two groups of
organisms (e.g., hosts and parasites) resemble each other. We developed a
software toolkit that allows to handle large-scale cophylogenetic datasets,
thus providing the instrument for studying deep cophylogenetic relation-
ships.



1.2 Outline of this thesis

A software package for the taxonomic classification of microbial com-
munities is presented in Chapter Metagenomics, the genomic analysis
of entire microbial communities provides an insight into the biodiversity of
different habitats like soil, marine water, acid mines, human and mouse gut.

Finally, the results of this thesis are summarized in Chapter [6]
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Chapter 2

Whole-Genome Phylogeny

2.1 Introduction

At the beginning of the era of molecular systematics and phylogenetics,
sequencing technology was limited to sequencing single genes or even single
loci. Hence, taxonomists looked for suitable marker genes that could be
easily detected and amplified, and also had to carry sufficient information
for reconstruction of deep phylogenetic relationships.

The most widely used marker, at least for prokaryotic phylogenies, is the
16S rRNA gene (Woese |1987). A phylogenetic reconstruction based on this
marker gene led to the proposal of a tripartite natural system of organisms
by Woese and coworkers (Woese et al.||[1990]). They observed a deep dissim-
ilarity between two groups of prokaryotic organisms that previously were
thought to be more similar to each other than to the Eukaryota. Namely,
the new taxonomic system comprised the domains Eukaryota, Archaea, and
Bacteria, whereas the latter two are distinct prokaryotic taxa. Since this
time, a discussion about the ancestry of all eukaryotic organisms began (see
also |Zimmer|2009), and to this day, no clear answer has been found whether
the eukaryotic ancestor was among archaeal prokaryotes (Cavalier-Smith
2002; (Ciccarelli et al.|2006; Saruhashi et al.|2008), or rather a chimeric or-
ganism (Rivera and Lake [2004; Simonson et al.|2005; |Rivera; 2007} [Pisani
et al[[2007). Furthermore, some groups even argue that the last univer-
sal common ancestor may have been an eukaryotic-like cell (Forterre and
Philippe|1999; Kurland et al.|[2006; (Glansdorft et al.|2008).

Like the mythological character Chimera, composed of a mixture be-
tween different animals, genomes may contain segments of different origin.
A popular example may be the eukaryotic cells, which also contain chromo-
somes of organelles like Plastids and Mitochondria, which were thought to
have been derived via endosymbiosis (Gray||1989). Moreover, the so-called
“B chromosomes” use an organism to travel as hitchhikers (Gregory| 2005,
p. 225), while they do not contribute any indispensable function for the
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captured organism. But genomes are also shaped by smaller factors like
recombination, inclusion of transposable elements, or other mechanisms.

Such events can have a devastating effect on phylogenetic reconstruction.
Using sequences from different loci may lead to contradictory evolutionary
scenarios with respect to the inferred tree topologies (Rokas et al.[2003]).
Here, the question arises, which of these genes may harbour the “true” phy-
logenetic signal, provided that one can assume that a true tree-like represen-
tation of evolutionary history even exists (Doolittle1999a; [2000; [MclInerney
et al.|[2008).

Additional factors like saturation may further diminish the quality of a
phylogenetic signal based on single locus data (Forterre and Philippe|/1999;
Gribaldo and Philippe|2004). Thus, the information content of such a small
portion of the whole genome may be rather narrow, which eventually leads
to the reconstruction of inaccurate trees (Aguileta et al.|2008).

An enhanced approach is the supermatrix method, which tries to com-
bine as many as possible multiple sequence alignments (MSA) of orthologous
genes into one single MSA, which can then be analyzed together. Datasets
comprising more than 100,000 base pairs have already been assembled using
this method (Rokas et al.|2003}; Goremykin and Hellwig| 2005} Hejnol et al.
2009). But establishing orthology of genes is error-prone and considered to
be a hard task (see Section page. Even if orthology of a distinct set
of genes can be established, the question arises if the derived sequence length
is sufficient to reliably infer phylogenies (Forterre and Philippe [1999). Fur-
thermore, there exist genes that are not entirely homologous across domains,
leading to a modularized view of homology that cannot be established for the
entire gene (Fitch/2000; Di Giulio|2006; \Glansdortf et al.2008). MSA-based
methods may only be applied when homologous fragments (e.g., protein do-
mains) are collinear, i.e., the fragments have to be in the same consecutive
order. This is a prerequisite that is not always met when dealing with genes
that consist of a complex domain structure (Leipe et al.[[1999; |Apic et al.
2001ajb; [Vishwanath et al. 2004)). Yet another problem of MSA-based ap-
proaches is, that the exclusion of ambiguously aligned positions leads to a
certain loss of information (Lee/2001)). Particularly, fast evolving sites may
harbour a strong phylogenetic signal regarding relationships between closely
related taxa. But if these regions are discarded, resolution of the derived
phylogenies may thus be greatly diminished.

In the age of genomics, an increasing number of fully sequenced genomes
is available, and the speed of publication of new genomes accelerates. Thus,
it may be quite natural to open the door to an era that is dominated by
whole genome based phylogenies. The previously discussed pitfalls of sin-
gle locus and MSA-based phylogenies do not hamper reconstructions that
are based on entire genomic content. Saturation, genetic transfer, length
restrictions, and paralogy thus can be handled by inclusion of the full range
of data a whole genome perspective can provide. Even if a tree-like phyloge-
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netic representation of the evolutionary history of life cannot be assumed to
exist, whole genome based methods are better suited than other methods to
reveal the basic vertical inheritance scheme underlying prokaryotic evolution
(McInerney et al.|[2008)).

Several methods now exist to infer phylogenies based on whole genomic
data. Some of these approaches are based on vectors of word-count frequen-
cies, which can then be used for distance calculation (Qi et al.2004])), or the
average length of maximum common substrings (Ulitsky et al.|2006]). Other
methods utilize gene presence/absence (Snel et al.[[1999), gene order data
(Tang and Moret|[2003)), or even complexity-based metrics (Otu and Sayood
2003). In the following, we present our own whole genome phylogeny ap-
proach, which is based on pairwise local alignments (Henz et al.|2003}; 2005;
Auch et al.|[2006bja; [2009a3b)).

All of these methods have in common that they do not utilize multiple
sequence alignments, and that they are based on calculating distances be-
tween taxa prior to phylogenetic reconstruction. Afterwards, phylogenies
can be inferred using well-known tree-based methods like NJ (Saitou and
Nei 1987} Studier and Keppler|1988) and UPGMA (Sokal and Michener| 1958]),
or even network-based approaches (Huson |1998; [2003).

2.2 Methods

2.2.1 The “Genome BLAST distance phylogeny” approach
Basic steps of the GBDP strategy

Because of the huge amount of sequence data, which has to be considered
in whole-genome phylogenies, and due to methodological restrictions, most
WGP methods utilize distance-based instead of character-based tree recon-
struction methods. In those cases, first a distance calculation is conducted,
then one or several reconstruction methods are applied.

Basically, GBDP (Genome BLAST distance phylogeny) consists of the fol-
lowing steps:

1. All-against-all BLAST comparison of every genome against every other
genome

2. Filtering of HSP (High-scoring segment pairs) data according to their
e-Value and overlapping regions

3. Application of different distance methods

4. Tree or network reconstruction
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After phylogenetic reconstruction, an evaluation of the obtained distance
matrices and trees can be accomplished by calculating § values (Holland
et al|2002), which provide a measure for the additivity of the distance
matrices, and by computing support values for tree edges based on estimated
distance variances (see Section p- . Additivity as measured by the
0 value of a distance matrix is a valuable criterion for the accuracy of the
reconstructed phylogenetic trees (Auch et al.|2006b).

In the following, the HSP filtering step will be discussed. Afterwards, the
GBDP distance functions are introduced, which all share a common structure.
A GBDP distance function consists of a similarity function, which is normal-
ized by selecting a corresponding denominator, and eventually, a dissimi-
larity conversion formula is applied to derive a distance (or “dissimilarity”)
value. Thereafter, a tree (or network) reconstruction algorithm is applied
to the distance matrix.

HSP filtering

Basic filtering is done by defining maximal thresholds for the expectation
value of HSPs. Since the e-Value decreases with growing alignment length,
later filtering steps compensate for a high e-Value threshold setting. Thus,
we used a high setting of 1073 (empirically determined) for inferring most
whole-genome phylogenies.

Additionally, overlapping segments are filtered by applying two different
strategies based on the idea of placing all HSPs in a priority queue and
inserting them in a selection list in the order determined by the priority
queue (Figure . This approach is outlined in more detail in [Henz et al.
(2005) and is based on the greedy strategy described in |[Halpern et al.| (2002,
p. 136). These two strategies are the “Greedy” as well as the “Greedy
with Trimming” filtering approaches, which are discussed in the following
paragraphs.

“Greedy” filtering: HSPs in the priority queue are ranked according to
their length. Each HSP is checked against overlap with all HSPs already
contained in the initially empty selection list (see Figure . In case of an
overlap, the current HSP will not be included in the selection list, and will
thus be discarded.

“Greedy with Trimming” filtering: This is a slightly refined variant
of the previously described approach. Instead of discarding the whole HSP,
the overlapping part of the corresponding HSP is cut off and the HSP is
afterwards re-inserted into the priority queue according to its new length
(see Figure . When a HSP is trimmed, interval borders and its length
are adjusted. Percentage identity as well as the normalized score are not
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adjusted (i.e., recalculated from trimmed alignment data), since we assume a
simplified model with equally distributed patterns. This simplification leads
to a significant decrease of disk storage and memory (RAM) requirements
in the current implementation of GBDP (see Section for details).

Distance functions

After filtering of HSPs, several distance functions are applied to the remain-
ing set of HSPs to infer inter-genomic distances between organisms. Initially,
a similarity is calculated, which is afterwards converted to a dissimilarity for
phylogenetic inferrence using two different formulas. In the following, the
term “distance” is also used for dissimilarities, because these dissimilarity
values can be seen as a distance in a biological sense |Felsenstein| (2004, p.
158).

Similarity formulas: For similarity calculation, we used different denom-
inators for normalizing the values to a range between 0 and 1. For the
definition of the following similarity formulas, we simply use the term g to
represent the denominator. It can be substituted by any of the denominators
defined below. We define H as a set of tuples (g, s), each corresponding to
the intervals of an HSP (query and subject). | X| and |Y'| denote the length
of genomes X and Y respectively, whereas | X ,,| and |Yes,| are defined as
the number of characters that are covered by at least one HSP in genome
X and Y, respectively.

Since similarity formula is independent of the level of coverage, i.e.,
whether more than one HSP interval maps to a specific region, no pre-
filtering using the Greedy or Greedy with trimming strategy is performed in
this specific case.

|Xcov| + |chov|

Scov(X7 Y) g

(2.1)

Some genomes consist of large regions of repeated sequences, leading to an
underestimation of distances when applying this formula. This has been
observed (see Henz et al.2005) for distances between Neisseria meningitidis
strains, which contain a large fraction of repetitive elements (Parkhill et al.
2000; [Liu et al.[2002). To tackle this problem, we designed similarity func-
tion which uses the overlap filtering methods mentioned above. Here,
| Ximaten| and |Yiaten| describe the sum of all interval lengths in genome X
and Y respectively, obtained from the remaining HSPs only.

X Y,
smaten (X, ) = st Yot 2.2)

9
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Genome Y HSP 2 is discarded

Greedy with trimming:
Remaining (blue) part is
Genome X re-inserted into the queue

Al

Genome Y HSP 2 is trimmed

Figure 2.1: “Greedy” filtering strategy. A HSP is taken from the priority
queue and checked against selected HSPs for overlapping regions.
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Auch et al.| (2006a) introduced a modification of the previous formula, count-
ing only characters that are identical in both segments of an alignment.
Here, ident(H) denotes the sum of the number of identical characters over
all HSPs.

2 -ident(H
Sstmaten(X,Y) = g” (2.3)

Application of the identity function can be seen as using a rather simple
scoring model, consisting of a substitution matrix with all diagonal entries
set to 1 and all other entries set to 0. To further refine similarity estimation,
we incorporated a more realistic scoring model to test whether this allows
to improve the inferred distances:

score(q, ) (2.4)

scoreratio(q, = '
oreratio(gq, s) max(|ql, |s]) score(s, 5)

2 - scoreratio(H)

Sscorematch (X, Y) = . (25)

The scoreratio function thus is defined as the length of the larger seg-
ment multiplied by its normalized score. Score normalization in a range
between 0 and 1 is done by dividing the score by the self-score of the respec-
tive subject sequence.

As substitution matrix, either pre-defined matrices or matrices based
on observed frequencies can be used. Pre-defined matrices include, e.g.,
BLOSUM (Henikoff and Henikoff|[1992) and PAM (Dayhoff et al.[{1978) in
case of amino acids, or Purine/Pyrimidine- and Transversion/Transition-
based matrices for nucleotides. In Section we exemplify a method for
deriving empirical substitution matrices that are directly based on the BLAST
aligment data.

Denominators: We introduced two different denominators in [Henz et al.
(2005). The second one (equation performed better according to the
data presented in Henz et al.| (2005) for cases where one genome is actually
a subset of another one. This is the case for the parasitic genome of Buch-
nera aphidicola, which is a subset consisting of approximately 14% of the
genes from Escherichia coli (Moran and Mira 2001). Such a constellation
would result in an overestimation of the distance between the two taxa when

applying formula [2.6]

g1 = |X|+]Y] (2.6)
g2 = 2-min(|X],[Y])
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Breakpoint similarity: We also implemented a similarity function that
relies on the concept of breakpoints (Sankoff and Blanchette|1997; Blanchette
et al.||[1997; Sankoff et al.[2000; Wang et al.|2003). By applying the idea of
breakpoints for homologous genes to our concept of homologous sequences
based on HSPs, we define that a breakpoint occurs if a third, interven-
ing HSP is found between two HSPs in genome X, but not between the
two corresponding consecutive HSPs in genome Y (Auch et al.|2006b; Henz|
et al[2005). An alternative definition would be that if HSP 1 is the direct
neighbour of HSP 2 in X, then this must also be true for Y. Otherwise, a
breakpoint is observed (see Figure [2.2).

Let Bx, By be the number of observed breakpoints in X and Y respectively,
and My, My the amount of adjacent HSPs. We define the breakpoint sim-
ilarity as follows (Auch et al.|2006b, equation 1):

Bx + By

Streakpoint(X,Y) =1 = 37—y

(2.8)

Y

yl y2 y5 y6 y3 y4

Figure 2.2: HSP-based Definition of breakpoints (Auch et al.[2006b). The Y
segment of the turquoise HSP ([y5, y6]) is located between the two red HSPs
([yl,y2,z1,22] and [y3,y4, x3,z4]). This will be counted as a breakpoint.

Homology-based similarity function: In Auch et al.| (2006b) we in-
troduced a similarity function that is solely based on homologous sequence
information, completely discarding any non-matching sequences. The idea
behind this equation is analogous to single-gene phylogeny, where first a ho-
mology search is performed and afterwards tree reconstruction is only based
on characters that are assumed to be homologous according to the applied
alignment algorithm. We define ident(H) as the sum of the numbers of all
identical character pairs in the obtained HSPs, and length(H) as the sum
of the lengths of the larger interval for each HSP:

length(H) := > max(|q, |s|)
(g,5)€H
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Then we obtain the two homology-based similarity functions:

ident(H)
= — 2.9
Shom length(H) (29)
scoreratio( H
Sscorehom = length(I-(I)) (210)

The difference between these formulae and formulae lies in the def-
inition of the denominator. Here, only the length of the sequences covered
by a match are considered.

Dissimilarity conversion: All similarity functions introduced here are
defined to be constrained between 0 and 1, and thus can be converted to
dissimilarity values. Several approaches exist for converting similarity into
dissimilarity values. Common options for conversion are (see Lefkovitch
1993; [Legendre and Legendre|[1998, p. 252):

dX,Y) = 1-s(X,Y) (2.11)
and
diog(X,Y) = —log(s(X,Y)) (2.12)

The rationale behind formula is to utilize a logarithmic scale to
correct for saturation effects in the underlying data (e.g., see Felsenstein
2004, p. 158-159).

Note however that the so defined “distance” functions do not necessarily
provide metric distances, i.e., distances that obey the triangle inequality
(see e.g., Legendre and Legendre 1998, p. 274-275). Given three genomes
X, Y, and Z, the triangle inequality states that d(X,Y) has to be lesser or
equal to d(X, Z) + d(Z,Y). But other well-known distance transformations
like Jukes-Cantor (Jukes and Cantor |1969) also do not obey the triangle
inequality condition (Felsenstein|2004, p. 158). Moreover, [Felsenstein| (2004,
p. 158) states that “most distance matrix methods do not absolutely require
the Triangle Inequality to hold”.

Matrix averaging

BLAST is not symmetric (Altschul et al.[[1990). Thus, when using genome X
as query and genome Y as subject the results can be different compared to
using Y as query and X as subject. Therefore, after calculating dissimilarity
values, symmetry of the dissimilarity matrix is ensured by averaging:

(d(z,y) + d(y,x))

DN |

davg(fﬁy) = davg(yyfﬁ) =
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Further possibilities would be to use the maximum or minimum of the
asymmetric distances, but we have shown in Henz et al.| (2005) that averag-
ing produces better results when comparing the obtained phylogenetic trees
to the NCBI taxonomy.

Tree and network reconstruction

As final step in phylogenetic inference, a distance-based phylogenetic re-
construction method is applied to the obtained distance matrices. Among
tree-based algorithms, UPGMA (Sokal and Michener|1958]), NJ (Saitou and Nei
1987 [Studier and Keppler|1988), BioNJ (Gascuel|1997), FastME (Desper and
Gascuel 2002; [2004)), and STC (Vinh and von Haeseler|2005) are used. Ad-
ditionally, network-based algorithms like Split Decomposition (Bandelt and
Dress||1992b; [Huson|1998) or NeighborNet (Bryant and Moulton |2004]) can
also be applied.

2.2.2 BLAST optimizations
Preliminary considerations

To identify local regions of high sequence similarity between two genomes,
we used the popular tool BLAST (Altschul et al. |1990; |1997)) in the imple-
mentation from Washington University (WU-BLAST), version 2.0MP-WashU,
as well as the implementation from NCBI in version 2.2.18.

We did some preliminary tests to investigate memory consumption and
run time of WU-BLAST and NCBI-BLAST. Generally speaking, the user has
to decide either to optimize run time or memory requirements. Whereas
WU-BLAST has a much lower memory footprint and is slightly slower, NCBI-
BLAST tends to produce fewer HSPs in shorter time, at least when using
standard settings. However, the difference in sensitivity between WU-BLAST
and NCBI-BLAST did not lead to an observable effect on the quality of the
GBDP phylogenies (see Section p- . A detailed study of run time
and memory consumption of different local alignment tools in view of the
derived GBDP distances can be found in |Auch et al| (2009b)). The results
clearly indicate that NCBI-BLAST provides a good balance between execution
time and accuracy of the obtained GBDP distances.

Protein BLAST

In its original form, genetic data is available as nucleotide sequences. For
this reason and because of run time considerations, our first approach con-
sisted of using BLASTN to find similarities at the nucleotide level (Henz et al.
2005). But considering that bacterial genomes have a high density of gene
coding regions, comprising 85% to 95% of the whole-genome (Saccone and
Pesole| 2003)), using translated sequences for homology search seems to be



2.2 Methods

15

adequate. Furthermore, large difference in GC content as observed for many
bacterial groups (Gregory|2005)) can lead to a bias in nucleotide-based phylo-
genetic tree reconstruction, whereas reliability of amino acid sequences will
be affected to a lesser degree (Hasegawa and Hashimoto |1993; Hashimoto
et al.|[1995)). But it has to be considered that protein-based reconstruction
may be hampered as well by differences in nucleotide frequencies (Foster
et al.[|1997; Singer and Hickey|2000). Even if such biases cannot be ruled
out completely, protein sequences are believed to evolve more slowly than
their corresponding nucleotide sequences. This is due to the fact that al-
most all amino acids are represented by more than a single codon. The last
codon position carries the least significant signal, which is denoted as third
base degeneracy in scientific literature (Lewin [2004, p. 168). Thus, most
mutations in the third codon position are synonymous, i.e., they do not lead
to a change in the corresponding amino acid sequence. From a phylogenetic
perspective, this makes amino acid sequences ideal candidates to investigate
deep evolutionary relationships.

However, using TBLASTX instead of BLASTN leads to a 36 fold increase
in run time since six different reading frames (three for each of the two
strands) have to be considered for each of the two genomes. Eventually,
with growth of computing power and the availability of mid-sized and large
Linux Clusters at the University of Tibingen, it became feasible to use
TBLASTX as an alternative to BLASTN, even when dealing with large scale
datasets.

Parameter selection

To avoid finding spurious homologies in sequence regions of low complexity,
i.e., regions consisting of repeats of short patterns or even a single character,
BLAST incorporates several filters designed to find such regions and to mask
them out with ambiguity characters (“X” for protein and “N” for nucleotide
sequences). According to our experience, low complexity filtering in the
hit extension phase of the BLAST algorithm leads to HSPs that break apart
in two or several smaller HSPs having a much lower bit score and thus, a
higher e-Value. However, completely deactivating complexity filters leads to
a huge increase of BLAST run time, so we decided to use soft masking. The
soft masking mode constricts low complexity filtering to the seeding phase
of the algorithm, leaving the hit extension phase unaffected and thus allows
HSPs to remain intact while running faster. According to [Korf et al.| (2003
p. 120), this is the better option in most cases compared to using the default
settings.

When using TBLASTX, an appropriate translation table for translating
codons into amino acids has to be selected. For most Bacteria, translation
table 11 (Bacterial and Plant Plastid Code, see [NCBI 2008) can be used.
The bacterial code differs from the standard code in using several additional
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start codons. A specific code table exists for the group of Mollicutes (ta-
ble 4), which reassigns the UGA codon serving as a stop codon in the universal
code to Tryptophan (Trp). While there is evidence for this usage of UGA in
Entomoplasmatales and Mycoplasmatales (Yamao et al.|[1985} |Bové 1993),
a contrary observation was made for the group of the plant-pathogenic my-
coplasmalike organisms (e.g, Aster yellows) and Acholeplasmataceae (Lim
and Sears| [1992)), indicating standard usage as stop codon. Furthermore,
even for different phyla, similar deviations concerning translation of the
UGA codon as Trp could be observed, namely for Bacillus subtilis (Lovett
et al. |1991; Matsugi et al.|/1998)) and FEscherichia coli (Hatfield and Dia-
mond||1993).

Since it remains unclear when to actually use translation table 4 instead
of 11, we decided to use translation table 11 for all genomes. The impact
on the BLAST similarity search should be negligible, since occurrence of an
UGA codon falsely translated to a stop codon only leads to a small decrease
of the score in case the other sequence contains no stop codon at that site.
Furthermore, no irregularities regarding the placement of taxa belonging to
the Mollicutes could be observed in the inferred phylogenies.

For nucleotide BLAST, we used NCBI BLASTN because of its run time
properties. Parameters were -F ’m D’ -m 7 -S 3 -e 1E-2 -b 100000,
i.e., using the Dust filter for soft masking, XML output, usage of both
strands, e-Value cut off of 1072, and a maximum amount of 100,000 HSPs
per run.

When using translated BLAST (TBLASTX), we considered WU-BLAST be-
cause of its comparably small memory requirements. The NCBI version
needed more than 8 GB memory when comparing large genomes, whereas
the memory consumption of WU-BLAST almost always stayed below 1 GB.
Options were mformat=7 E=1E-2 wordmask=seg C=11 dbgcode=11 T=1000
W=3 hspmax=100000 hspsepSmax=50 hspsepQmax=50, using XML output
format, e-Value cut off 1072, SEG filter with soft masking, translation ta-
ble 11 for query and subject sequence. To optimize performance, we added
options to constrict maximum allowed separation between alignments along
the query and subject sequence to 50, and to set the neighbourhood word
threshold score to 1000. The first two options control which HSPs will be
treated as candidates to be merged, which can have a huge impact on run
time when finding many HSPs. We assume that there is no benefit in merg-
ing two HSPs having a distance of 50 sites, which means that they would
have to bear the associated gap penalty, and thus would not be fused because
of the declined score. The latter option forces WU-BLAST to require matching
words in the seeding phase, leading to a huge increase in performance while
having only a small decrease in sensitivity.

All sensitivity affecting options were tested against a small subselection
of 20 taxa, representing the most important phyla as well as different genome
sizes. We assured that the improvement in run time did not lead to a loss in
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phylogenetic signal by comparing reconstructed trees with as well as without
sensitivity affecting options to the NCBI taxonomy (Wheeler et al.|2008)
using the c-score metrics (see Section m page [27)).

2.2.3 Optimizations for large scale datasets

For an efficient handling of large datasets like the one presented in Sec-
tion we had to implement a solution based on a central data storage
appliance as well as an aggressive scheme for data compression. This allowed
us to handle the increasing amount of BLAST outputs, which grows quadrat-
ically with the number of genomes (due to the all-against-all comparison
scheme).

Central Data Storage

The original GBDP program consisted of a set of scripts optimized for mul-
tiprocessor machines. Since the amount of single BLAST runs of this all-
against-all approach increases quadratically, it was necessary to adapt this
concept to a Cluster environment. For this purpose, a central repository
was needed to deposit BLAST outputs of finished processes and to coordinate
processes. Process coordination is needed to ensure that each job will be
executed precisely once.

On the one hand, transaction integrity was an important factor to be
considered, to guarantee that a file written to the server will be in a con-
sistent state, even when the process crashes during writing its results. On
the other hand, the central storage should be able to scale with the amount
of concurrent processes, and it must be independent of the Cluster envi-
ronment. A NFS or CIFS (Common Internet File System) server has to
be mountable or at least a command line front end has to be present on
the Cluster nodes, like smbclient. Using a network filesystem between sev-
eral Clusters would involve alterations in the configuration of Cluster nodes
that were not feasible due to administrative restrictions. Thus, we decided
to implement a solution based on a SQL server instead of a network file
system.

After careful consideration of drawbacks and benefits, we decided to use
a PostgreSQL server (PostgreSQL 2008) as a file storage solution. This
seems to be rather unconventional, since a SQL server is not designed to
store such a large amount of BLOB (binary large object) based data (esti-
mated database size for a 500 taxa project was more than 750 GB). But after
an extensive evaluation phase, we conclude that this solution best matches
our requirements regarding scalability and data integrity. Furthermore, by
using data compression, we ensured that network usage remains within ap-
propriate dimensions (see RFCs 1216/ and 1925).


http://tools.ietf.org/html/rfc1216
http://tools.ietf.org/html/rfc1925

18

Whole-Genome Phylogeny

Cluster A Cluster B

S~

PostgreSQL 8.3

Database Server

Workstation for data evaluation

Figure 2.3: Data flow between Cluster nodes, database server, and the
workstation where the final analysis is conducted.
Icons were derived from jopenclipart| (2009).
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The basic idea was to use a command line application on the Cluster
nodes to handle data storage. The application provides elementary com-
mands like “Is” (list directory), and “get” and “put” for reading and writing
files to a repository. The repository can be a traditional file system directory,
or a SQL database, whereas the location of the repository can be specified
in a text-based configuration file. So, data storage can also be on a Cluster
file system like Lustre or GPFS (Cope et al. 2005|), or even NFS if perfor-
mance and scalability are not critical. Small to medium datasets could thus
be handled by using local facilities, whereas the computation of a large 500
taxa dataset (see Section was done by configuring the application to
submit the result files to the database server acting as a central data stor-
age (see Figure . The frontend application for distance calculation was
modified analogously to support data retrieval from the SQL server.

In the last two months of the 500 taxa project, three different Clusters
were utilized, with more than 300 parallel BLAST runs producing approxi-
mately 700 GB of data. Thus, some modifications of the default configu-
ration of PostgreSQL were necessary to handle a high amount of parallel
sessions and to improve overall performance. We could clearly demonstrate
that PostgreSQL is capable of handling such a scenario quite well. The SQL
server hardware consisted of two quad core AMD Opteron 2.2 GHz proces-
sors with 32 GB of RAM and eight 500 GB disks in a RAID-6 (“Redundant
Array of Inexpensive Disks”) configuration. However, only a subset of these
resources were actually employed since the server was run in a virtualized
environment using Xen 3.2 and Linux Kernel 2.6.18 (Debian 4.0).

The schema of the SQL database is provided in Appendix

Data Compression

When dealing with large datasets, the quadratical growth of BLAST output
has to be considered. The BLAST XML output used in our pipeline results in
rather large files, but differences to the size of a BLAST text output diminish
when a lossless compression algorithm like bzip2 (Seward|2008)) is applied.
XML was favoured because it represents a modern, simple and easy to parse
data exchange format.

However, dealing with data in the range of Terabytes forced us to look
for a more space efficient solution. A first basic optimization step consisted
of storing HSPs in a binary format, which also allows one to omit the effort
to parse the output several times. But the decrease of file size was rather
insignificant (see Table . This is due to the fact that the largest amount
of data in a HSP is required by the actual alignment strings.

Since we also need alignment data for some distance calculations, using
the condensed CGVIZ format (Delgado-Friedrichs et al.|[2003), which only
stores interval coordinates and statistical data like e-Value, was not applica-
ble. This would be a substantial limitation of any further application of the
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BLAST output, especially when using sequence information needed for substi-
tution matrix estimation based on empirical frequencies (see Section .
But a further improvement can only be achieved by losing information (or
waiting for some new magic lossless compression algorithm).

Most algorithms that utilize alignment information are based on the as-
sumption of independence between alignment columns, and thus will not be
affected by a permutation of these columns. As an example, sequence-based
phylogenetic inference methods like Maximum Parsimony or Maximum Like-
lihood are immune to such changes, at least theoretically. In practice, sum-
ming up floating point numbers is not associative, i.e., the order in which
the numbers are summed up affects the outcome due to the limited precision
of floating point numbers (Patterson and Hennessy|[2009, p. 270-271). But
such small discrepancies are artifacts without any biological meaning and
thus, can be ignored in this context. In addition, estimation of an empirical
substitution matrix also does not make use of any information based on the
order of alignment columns.

Considering these facts, we implemented a lossy compression algorithm
using a coding that disregards column order. In a first step, a matrix is
built where each value represents the observed frequency of an unique char-
acter pair, by traversing the alignment column by column. Since score or
distance calculation can be based on affine gap score models, we also have
to consider the number of gap openings, which is assigned to an additional,
usually illegal character pair consisting of two gap characters. Afterwards,
the matrix is converted into a string representation by omitting character
pairs that are not contained in the original alignment, i.e., having a corre-
sponding value of 0 (see Figure . The resulting string is shorter than
the original alignment, at least for all non-trivial cases. The chosen coding
is not the most parsimonious one (compared to a binary encoding), but is
optimized for readability. By applying a lossless compression algorithm af-
terwards, a convenient compression ratio can be achieved. Any gain that
could have been achieved by using a binary encoding would have been al-
most completely counterbalanced by applying the compression algorithm to
the string representation (even when applying the compression to the binary
data as well).

An upper bound for the space complexity of a lossy compressed string
is O(logn), which is a noticeable improvement over O(n) for uncompressed
strings. For calculating the upper bound, consider n; to be the value of the
1th matrix entry, then the number of characters to store this value as a string
is [logyo ns|+1. Thus, the upper bound is O(),log g ni) = O(c-logy n) =
O(logn), where ¢ denotes the maximum number of pairs (e.g., 212 = 441
when using amino acids together with a gap symbol), which can be seen as
an absolute term.

A large example using a BLASTP output is shown in Figure 2.5l By com-
bining this algorithm with a lossless compression algorithm like bzip2, which
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is based on the Burrows-Wheeler transformation (Burrows and Wheeler
1994)), compression factors of almost 20 could be reached even when using
medium-sized BLAST output files (see Table . The most time-consuming
step of this approach consists of using the bzip2 compression, but since this
is executed in a highly parallelized environment, it was considered as negligi-
ble. In contrast, bzip2’s decompression is comparatively fast and no BLAST
parsing has to be done afterwards, which suits the concept of analyzing the
dataset on a single machine well.

Alignment:

query: GATTACAGATTACA
mid: RN Il
hit: —ATTAC--CATAGA

Matrix representation:

A|T| C|G)|-
Al4]1
T 3
C|1 1
G 1
-1 2|2

String representation:

0/2;A-;AA/4;AC;CC;CG;G-/2;TA;TT/3;

Figure 2.4: Explanation of the lossy compression scheme. The count of each
character pair is recorded in the matrix. Eventually, the matrix is converted
to a string representation, including each observed pairing separated by a
semicolon. If the number of observations is higher than one, the amount is
specified after a slash symbol. The alignment contains two gap openings,
which are expressed as 0 characters or (usually illegal) -/- pairings. The
number of gap openings is needed when using an affine gap scoring model
(see, e.g., Durbin et al.|[1998, p. 16).

2.2.4 Substitution matrix estimation

The implementation for deriving a substitution matrix based on empirical
frequencies follows in principle the log odds ratio calculation as outlined in
Altschul (1991), Henikoff and Henikoff] (1992), and Durbin et al. (1998, p.
14-15).
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Original BLAST report:

Query: 10 YRNIGICAHVDAGKTTTTERILFYTGLSHKIGEVHDGAATMDWMVQEQERGITITSAATT 69
YRNIGI AHVDAGKTTTTERIL TG H++GEVHDGA+TMD+M QE ERGITI SAATT
Sbjct: 7  YRNIGIFAHVDAGKTTTTERILKLTGKIHRLGEVHDGASTMDFMEQEAERGITIQSAATT 66

Query: 70 TFWRGMEAQFQEHRINIIDTPGHVDFTIEVERSLRVLDGAVVVFCGTSGVEPQSETVWRQ 129
FW+G HR N+IDTPGHVDFT+EV RSL+VLDG + VFCG+ GVEPQSET WR
Sbjct: 67 CFWKG-------] HRFNVIDTPGHVDFTVEVYRSLKVLDGGIGVFCGSGGVEPQSETNWRY 119

o

Query: 130 ADKYGVPRMVFVNKMDRAGADFLRVVGQIKHRLGANPVPIQLNIGAEEEFKGVIDLIKMK 189
A++ V R++FVNK+DR GADF RVV Q+K LGANP+ + L IG E+EF GV+D++ +

ANESEVSRLIFVNKLDRMGADFFRVVEQVKKVLGANPLVMTLPIGREDEFVGVVDVLTRQ 179

o

Sbjct: 12

o

Query: 190 AINWNEADQGMSFTYEEIPADMLELAQEWRNHLVXXXXXXXXXLMEKYLEDGELSEVEIK 249
A WH++ +F +E+PADM++ +E+R ++ LM Y+E E + +IK

Sbjct: 180 AYVWDDSGLPENFEVKEVPADMVDQVEEYREMMIETAVEQDDELMMAYMEGEEPTVEQIK 239

o

o

Query: 250 QALRQRTINNEIVLAACGSAFKNKGVQAVLDAVIEFLPSPTDV---PAIKGIDDRENSVE 306
+R+ T + CGSAFKNKG+Q VLDAV+++LPSPT+V P

Sbjct: 240 ACIRKGTRDLAFFPTFCGSAFKNKGMQLVLDAVVDYLPSPTEVEPQPLTDPATGEPTGEV 299

o

N

Query: 307 RHADDNEPFSSLAFKIATDPFVGSLTFIRVYSGVVNSGDAVYNSVKQKKERFGRIVQMHA 366
+ P +LAFKI D F G+LTF+R+YSG + GD + NS K ER GR+V+MHA

Sbjct: 300 ATVSVDAPLKALAFKIMDDRF-GALTFVRIYSGKIKKGDTILNSATGKTERIGRMVEMHA 358

s

Query: 367 NKRDEIKEIRAGDIAAAIGLKDVTTGDTLCDPNHVVILERMEFPEPVIQIAVEPRSKADQ 426
N R+E++ +A DI A +G+K+V TG TLCDP H LE M FP PVI IAV+P+ K
NDRNEVESAQASDITAIVGMKNVQTGHTLCDPKHECTLEPMIFPTPVISIAVKPKDKNGS 418

©

Sbjct: 35

3

Query: 427 EKMGIALGKLAAEDPSFRVETDAETGQTLISGMGELHLDIIVDRMKREFGVDCNVGKPQV 486
EKMGIA+GK+ AEDPSF+VETD ++G+T++ GMGELHLDI VD +KR +GV+ VG PQV

EKMGIAIGKMVAEDPSFQVETDEDSGETILKGMGELHLDIKVDILKRTYGVELEVGAPQV 478

©

Sbjct: 41

3

Query: 487 AYRETIRGKSEVEGKFVRQSGGRGQYGHVWLKIEPAEPGQGFVFVDAIAGGVIPKEFINP 546
AYRETI E +QSGG GQ+G + +I PE GF F + GG +PKEF

Sbjct: 479 AYRETITKAVEDSYTHKKQSGGSGQFGKIDYRIRPGEQNSGFTFKSTVVGGNVPKEFWPA 538

©

b

Query: 547 VAKGIEEQMNNGVLAGYPVLDVKATLFDGSFHDVDSSEMAFKIAGSMAFKKGALEAQPVL 606
V KG + M+ G LAG+PVLDV+ LFDG FH VDSS +AF+IA AF++ +A P L

VEKGFKSMMDTGTLAGFPVLDVEVELFDGGFHAVDSSATAFEIAAKGAFRQSIPKAAPQL 598

©

Sbjct: 53

N

LEPLMKVEITTPEDWMGDVVGDLNRRRGIIEGMDEGPAGLKIIHAKVPLSEMFGYATDLR 666
LEP+MKV++ TPED +GDV+GDLNRRRG+I+ + G G++ + A VPLSEMFGY LR
LEPIMKVDVFTPEDHVGDVIGDLNRRRGMIKDQEMGLTGVR-VKADVPLSEMFGYIGSLR 657

Query: 60

Sbjct: 59

©

Query: 667 SATQGRASYSMEFAEYADVPKNIADAITAE 696
+ T GR +SMEF+ YA P N+A+ +IAE

Sbjct: 658 TMTSGRGQFSMEFSHYAPCPNNVAEQVIAE 687

00

Packed representation:

0/4;-E;-P;-Q;A-;AA/29;AC;AE/2;AF;AG/3;AI/4;AL/2;AM/3;AN;AQ; A
R;AS/3;AT/4;AV/5;CC/3;CF;CL;DA;DD/25;DE/4;DG/4;DH;DN/3;DP;DS
/3;DT;DV;E-/2;EA/3;ED/6;EE/29;EH;EI;EK/5;EM/2;EP;EQ; ER; ES/3;
ET/2;EV/2;EY;F-;FF/22;FH;FI;FK;FL;FY/2;GA;GD;GE/3;GG/48;GK;G
N;GP/2;GS/2;GY;HH/9;HK/3;HM; HT; I-;IA/2;IF/3;11/19;IK;IL/3;IM
/3;IR;IT/2;IV/15;IW;IY;KA/3;KD/3;KE/4;KK/16; KQ/2;KR/4;KT/
4;KV;LF;LI/4;LK;LL/22;LM/4;LP/3;LQ;LV/3;LY;M-;ME;MG;MI;ML/3;
MM/12;MQ;MR;MV;ND/4;NE/2;NK/2;NL;NN/9;NP/2;NT/2;NV;PA;PL;PP/
22;PQ;PR;PS;PV;Q-/2;QA/3;QE/3;QG; QK; QL; QM; QQ/7;QS/4;QT; QY;RA
;RE;RG;RI;RK/4;RP;RQ/2;RR/22;RS;RT;RV;SA/2;SD;SG/3;SI;SK/4;S
N;SQ;SS/13;S8T/2;SV;TC;TD;TE/2; TF; TG;TQ/2;TS/2;TT/22;V-;VA;VC
/2;VD;VE/4;VF;VG;VI/8;VK/3;VL;VM;VN/2;VQ;VT/2;VV/31;WD;WF;WH
;WW/3;WY;XA;XD/2;XE/3;XQ; XT; XV; YF/3;YL/2;YS;YV;YY/6;

Figure 2.5: A BLAST text output of a HSP and its packed representation.
Compression ratio increases with growing sequence length.
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Format Size in kB | compression factor
BLAST XML 43680 1.00

BLAST XML bzipped 9540 4.58

binary uncompressed 33776 1.29

binary bzipped 9792 4.46

lossy binary uncompressed 14300 3.05

lossy binary bzipped 2192 19.93

Table 2.1: Comparison of data formats, size and compression factor relative
to the original BLAST XML output of a sample TBLASTX run (NC_000959
against NC_003888).

To determine the frequencies of character pairs, we use the alignments
of the corresponding HSPs from all pairwise BLAST results and treat them
as one large pairwise alignment. All pairs containing a gap character are
discarded.

Let n be the length of this alignment, consequently the overall number
of characters is 2n. We count the observed frequencies f,; for each pair of
aligned residues a, b.

1
Pap = (f“’b; foa) (2.13)
_Ja
w=1 (2.14)
b)Y = 2.1 DPab ) )
s(a.t) =2 logs 222 (2.15)

The term p,; denotes the observed probability of occurrence for each
pair a,b or b,a. Analogously, ¢, denotes the probability of occurrence of a
specific character in an alignment column. Since there is no specific order of
the aligned sequences, i.e., whether one sequence is used as query or subject
is of no importance for probability calculation, we ensured that p,, = py.q
by using the sum of the observed frequencies f,; and f; ,. This leads to a
symmetrical scoring matrix, s(a,b) = s(b,a).

In compliance with Henikoff and Henikoff] (1992)), we used a scaling factor
of 2 in formula [2.15]to derive values in half-bit units being in the same range
as the BLOSUM and PAM (Dayhoff et al.|[1978)) matrices.

Values for ambiguity characters were estimated by averaging over the
values represented by the respective ambiguity character. For every pair
involving the special character ’+’, indicating a stop codon when using amino
acids, a value of min (s(a, b)) is used. The score of a */* pair was hard-coded
and set to 1, analogous to the BLOSUM matrices.
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In the current stage, no explicit model for gap cost estimation is incor-
porated. Instead of this, the affine gap scoring model of BLAST is used, i.e.,
a gap open penalty of 9 and gap extension penalty of 2 for amino acids.

2.2.5 Evaluation of distances and phylogenies
Distance matrix evaluation

Reliability of distance-based tree inference algorithms is closely tied to the
quality of the underlying distance matrix. Depending on the selected recon-
struction algorithm, a distance matrix has to fulfill different mathematical
properties. For instance, when using UPGMA, distances should obey the
ultrametricity condition (Durbin et al.|1998| p. 168f).

Besides the strict claim of ultrametricity, which requires that the un-
derlying sequences evolve under a molecular clock with a constant rate, a
minimal requirement for reasonable tree reconstruction is that the distances
should mostly be treelike (Felsenstein|1984). A mathematical definition of
treelikeness is given by Buneman| (1971)) in form of the additivity condition.
Holland et al.| (2002)) described an approach related to statistical geometry,
which allows to measure the degree of deviation from treelikeness of a given
distance matrix. It is based on inspection of distances between quartets of
taxa (see Figure . For each quartet, a value dguartet := % is computed,
where ¢ is the smaller one of both distances. When r = 0 (and thus, ¢ = 0),
OQuartet is defined to be 0. From this definition, it follows immediately that
0Quartet is in a range between 0 and 1, whereas 0 indicates perfect treelike-
ness of the quartet under consideration. When this process is repeated for
each quartet of taxa, an average  value for the whole distance matrix can be
computed. However, the number of quartets for n taxa is (Z), resulting in a
time complexity of O(n?) when using all quartets. For this reason, we used
an implementation that uses a random subsample to estimate the § value
for the whole matrix, as proposed by Holland et al.| (2002]).

Additionally, we defined €Quarter, Which differs from dguqrter only when
r = 0, then eQuarter is defined to be 1. The e value is calculated as the
average over all eguarter (Or a subsample). The rationale behind this is that
a distance of 0 for » and g has no biological meaning, and thus, should be
treated like conflicting signal.

A similar approach is the @ criterion (Guindon and Gascuel|2002), which
is simply defined as the sum of ¢q over all quartets (or a subsample). A treelike
distance matrix thus has a @) value of 0. We analogously defined R as the
sum of r over all quartets. Furthermore, we used non-ultrametricity and
non-additivity criteria based on the minimization formulae of [Makarenkov
and Legendre (2001) and De Soete| (1986).
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Figure 2.6: Quartet of taxa and their distances (Auch et al.|2006a). By
convention, the smaller distance is labelled with ¢, so that ¢ < r holds.

Interior branch testing

In most studies, phylogenetic reconstruction is followed by an assessment of
individual branches within the trees under consideration. The most com-
monly used approach is the bootstrap invented by |[Efron! (1979)) and adapted
by [Felsenstein| (1985) to MSA-based phylogenies. The basic idea is to assess
the uncertainty of the estimated tree topology by generating replicates from
the original MSAs by using a sampling with replacement strategy. Here, the
independence of alignment columns, which are treated as sampling points,
is implicitly presumed. By conducting tree inference for each replicate, the
fraction of how often a distinct branch (or bipartition) is observed in the
trees can be seen as a confidence value for this branch.

However, statistical properties of the traditional bootstrap approach are
subject of an ongoing controversial debate (see, e.g. |[Hillis and Bull/|[1993;
Felsenstein and Kishino| |1993; [Zharkikh and Li 1995 Efron et al. [1996).
Furthermore, there is doubt whether bootstrapping has to be considered to
be consistent when taxon sampling is increased (Lecointre et al.[[1993; Poe
1998)).

Besides the bootstrap, there exist other methods for interior branch test-
ing that have a different statistical background. |Wrébel (2008)) gives a com-
prehensive overview of this field (see also |Anisimova and Gascuel| 2006).
A straightforward application of the underlying principle of bootstrapping
(sampling with replacement of data points) to distance data is not possi-
ble. Using a resampling strategy based on alignment data would at least be
computationally demanding, if not even impossible with current hardware.
Since handling large alignment data in whole-genome phylogeny requires the
usage of distance-based algorithms, consequently, bootstrapping cannot be
considered as an option.

Sanjuan and Wrébel (2005) introduced a method based on a Weighted
Least-squares Likelihood ratio test, which can be used for support value cal-
culation for a given tree and distance matrix. The Weighted Least Squares
(WLS) approach is based on the minimization of the difference between
observed distances d(i, j) from the matrix and the estimated, patristic dis-
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tances dpgtristic(?, j) derived from the corresponding tree (Felsenstein 2004,
p. 148).

WLS = Z Z Wi, 5 (d(Z,]) - dpatristic(iaj>)2 (216)

i=1 j=1

Here, w; j denotes the weights assigned to the corresponding distances, which
depend on the preferred WLS method. A minimization of the WLS can be
obtained by adjusting distances as well as the tree topology. Distances
can be adjusted by transforming the patristic distances expressed as the
sum of individual path lengths into a set of linear equations obtained by
differentiating the WLS with respect to one of the individual path lengths
(see [Felsenstein [2004, pp. 148-153). The tree topology can be optimized by
applying heuristic search strategies (see |[Felsenstein| 2004, Chapter 4).

When assuming that distances are normally distributed and indepen-
dent, a log likelihood for the given tree can be derived from the above
formula by considering the variances of the observed distances (for details,
see [Felsenstein|[1984; [Sanjuan and Wrébel |2005). This can be exploited for
interior branch testing, by collapsing the considered branch, and recalcu-
lating lengths of the remaining branches. Then, the log likelihoods of the
collapsed and the complete tree can be compared.

Sanjuan and Wrdébel| (2005) provide an implementation of their WLS
Likelihood ratio test, called WeightLESS. It also includes computation of
the Felsenstein| (1984) F-test. This test allows for calculation of p-values for
internal branches without the need to estimate variances beforehand.

Variance estimation

To be able to utilize WeightLESS, we need to estimate variances for the
GBDP distances. Analogous to Kimura and Ohtal (1972)), we can obtain an
estimate of the variance of the fraction pxy of nucleotide or amino acid
sites that differ in the two genomes X and Y. The fraction pxy can be
estimated by using one of the distance formulae defined above. Then, the
binomial variance formula Z '(17;27 ) can be applied (see Sokal and Sneath(1963;
Felsenstein 2004, p. 214):

d(X,Y)-(1-d(X,Y))

n

Var (d(X,Y)) == (2.17)

Here, n represents the number of sites (denominator of the applied distance
formula); n can be g1, g2 or length(H).
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For logarithmic distances, we used the derivative of the distance correc-
tion formula following the principle outlined in [Felsenstein (2004, p.
214-215):

1
= 2.1
dog = 77 d(X,Y) (2.18)

The square of the derivative d{og is then multiplied with the binomial vari-
ance formula:

Var (g (X, 7)) o= ARTLAZAEYD) gy e
d(X,Y)
n-(1—d(X,Y)) (2.19)

By applying formulae or to the entire distance matrix, we thus
obtain a variance matrix, which is suitable for calculating support values

using WeightLESS.

Comparison against a reference taxonomy

Several metrics exist for tree comparison. The most widely used metrics
are the splits-based symmetric difference (Robinson and Foulds| 1981, RF
distance), weighted RF distance (considering the weights of the splits), and
the Maximum Agreement Subtree metric (Goddard et al.|1994, MAST). All
these metrics are applicable when dealing with binary trees. However, tax-
onomies tend to contain multifurcations since they are based on a small num-
ber of hierarchical levels of taxonomic units. The nomenclature introduced
by the Swedish Biologist Carl von Linné in his work “Systema Naturae”
(Linnaeus||1758) is a well-known example for such a hierarchical taxonomy.
It provides the groundwork for the NCBI taxonomy (NCBI/[2009¢; [Wheeler
et al.[2008), which we use as reference taxonomy.

The NCBI taxonomy was chosen since it is updated at regular intervals,
and thus, changes in taxonomy due to erroneous placements or inclusion
of a new species are carried out in time. Furthermore, all species that
are represented in Genbank (Benson et al.|[2008) also have an entry in the
taxonomy database of NCBI. During the study of Henz et al.| (2005]) we also
evaluated the usage of 16S rRNA phylogenies as reference trees. Results were
mainly in congruence with those obtained by using the NCBI taxonomy,
whereas the data collection process was more labour-intensive and hard to
automate even when using relevant databases like the Ribosomal Database
project (Cole et al.[[2009). To date, we successfully used the NCBI taxonomy
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in many different projects to derive approximations for phylogenetic trees
(Auch et al.2006b; Huson et al.[2007b; [Meier-Kolthoff et al. 2007).

As outlined in|Henz et al.|(2005), we developed a tree comparison metrics
known as compatibility score (“c-score”) as a refinement of the RF distance.
It was specifically designed to compare fully resolved trees against multifur-
cating trees as obtained from taxonomical systems. To avoid over-counting
of false positives, as it would be the case when applying the RF distance in
this scenario, the c-score makes use of the concept of compatibility between
splits. For a detailed explanation of splits and compatibility, the reader may
be referred to Bandelt and Dress (1992a), as well as Huson, (1998).

A split is called “non-trivial” if both partitions contain more than one
single taxon, i.e., all splits that are not derived from a leaf edge are non-
trivial splits. X(T") denotes the set of all non-trivial splits in tree T, and
Y (Teompativie) is defined as all non-trivial splits of T that are compatible to
the splits of the reference tree Ty. Thus, X(Ttompatibie) can be seen as a set
of splits that are either already contained in ¥ (7p) or are a refinement of
To.

(T, ;
c-score 1= W (2.20)

The score is normalized to a range between 0 and 1, whereas 1 indicates
perfect accordance with the reference tree. Although the current (naive)
implementation of the c-score algorithm has a time complexity of O(n?),
calculating the c-score for trees comprising several hundreds of taxa can be
done within seconds on a desktop PC.

2.3 Results and Discussion

Since there exist several variants of filtering strategies, nominators, denom-
inators, and dissimilarity conversion formulae, we developed the nomencla-
ture described in Table to identify each specific distance algorithm. The
nomenclature is used in the following sections.

2.3.1 Prokaryotic datasets
Species delineation with GBDP

In Microbiology, species classification is a challenging task compared to most
eukaryotic phyla. Many animal, plant and fungal species can be distin-
guished by an abundance of morphological differences, behavioural traits,
or by interbreeding barriers. Morphological features and metabolic pecu-
liarities can be used to classify microorganisms to a certain degree, but the
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Number | Nominator] Denominator Dissimilarity
conversion

0 2.2 2.6 2.11
1 2] (min) 211
2 2] 2.12] (log)
3 .2 (min) 2.12| (log)
4 2.9 (hom) 2.11
5 0.9 (hom) 2.12 (log)
6 2.3 2.11
7 0.3 (min) 211
8 03 2.12 (log)
9 03 (min) 2.12 (log)
10 2.5 2.11
11 D5 (min) 2.11
12 D5 2.12] (log)
13 D5 7| (min) 2.12] (log)
14 2.10 2.10] (shom) 211
15 2.10 2.10| (shom) 2.12| (log)

Table 2.2: Nomenclature of distance functions names. The fully qualified
name of a distance function is built by appending a prefix to the selected
number. Prefixes denote the filtering approach, i.e. “g” for greedy, “tr”
for greedy with trimming, or they denote a specific algorithm like “bp” for
breakpoint distances and “cov” for the simple unfiltered coverage distance.
Furthermore, a label is added to the prefix indicating if matrix averaging
(“a”), minimum (“min”) or maximum (“max”) is used (see Section [2.2.1)).
For example, “g_al0” characterizes the function obtained by applying a
greedy filtering strategy, followed by using nominator [2.5| with denomina-
tor[2.6)and dissimilarity conversion formula[2.11] as well as matrix averaging.
A specific tree reconstruction can be referenced by appending the applied
tree reconstruction algorithm, e.g., g_.a10_bionj would refer to the tree re-
constructed by using BioNJ with distance algorithm g_a10.

number of features and peculiarities that can easily be recognized is limited
(Fraser et al.[2009). But even those recognizable features are not adequate
to classify closely related species that share the same shape and metabolism.
Consequently, species delineation nowadays is mainly based on DNA-DNA
hybridization (DDH, see Rossell6-Mora, 2006|) experiments.

There exist several different techniques and standards for DNA-DNA
hybridization. A common approach consists of cutting the genome of the
test organism and the genome of a reference organism (type strain) into small
fragments of 600-800 bp. Then, the mixture of fragments from both species is
heated so that the DNA double-strand molecules dissolve. Afterwards, the
temperature is decreased until the fragments form hybrid double-strands.
The melting temperature depends on the degree of similarity between both
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strains of a double-strand, thus by a stepwise increase of the temperature,
the melting temperature can be determined and combined into a single DDH
value. The DDH value usually is specified in percentage relative to the DDH
value obtained by hybridizing the reference genome to itself. A value of 70%
DDH or below is considered as an indication that the test organism belongs
to a different species (Wayne et al.||[1987)).

Determining DDH values is an error-prone and labour-intensive process.
Furthermore, there exist various DDH methods, which yield different re-
sults (Goris et al.|2007). This is considered as a major drawback of the
hybridization approach. Consequently, several in silico methods were devel-
oped in recent years as an alternative to DDH (Konstantinidis and Tiedje
2005; Hanage et al.[2000}; |Goris et al.|[2007; [Martens et al.||2008; [Deloger
et al.[2009).

In |Auch et al. (2009a3b) we proposed a new in silico method for de-
termining species boundaries based on the GBDP method (see Figure .
The new method correlates better with existing DDH data than the pre-
viously mentioned methods. Performance comparisons between the local
alignment search tools NCBI-BLAST V. 2.2.18, WU-BLAST V. 2.0MP-WashU
[04-May-2006], BLAT V. 34 (Kent 2002), and BLASTZ V. 7 (Schwartz et al.
2003)) were conducted in regard to run-time and memory requirements, as
well as in regard to the correlation between the obtained GBDP results and
corresponding DDH values. Results indicated that NCBI-BLAST performs
best considering run-time and memory requirements, while also providing
an accurate correlation and error rate compared to DDH. The error rate
was measured by comparing results of a classification of organisms close to
the 70% DDH threshold for species delineation with the alternative classi-
fication provided by using GBDP. NCBI-BLAST was approximately two times
faster than the second best program, BLASTZ, while its memory consump-
tion was moderate (% more than BLASTZ’s). However, these tests were only
conducted using DNA-DNA-similarity search (BLASTN), thus no conclusions
for protein similarity searches can be deducted.

In accordance with the test results, a web service was developed to fa-
cilitate utilization of the new method for the scientific community (see Fig-
ure . The web service can be accessed at http://www.gbdp.org/species.

Phylogenies

Previous work by [Henz et al.| (2003; |2005|) covered a BLASTN-based similarity
search and using distance algorithms cov_a0 to cov_a3, g_a0 to g_a3, tr_a0
to tr_a3 as well as bp_a0 and bp_al. Using a set of 91 prokaryotic genomes,
we observed that distance algorithm g_3 had the highest c-score (0.727, see
Figure by comparison to the NCBI taxonomy.

We extended the preceding work by using an enhanced taxon set compris-
ing 97 bacterial and archaeal genomes, and by using two additional distance
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DDH similarity

T T
0.0 0.2 0.4 0.6 0.8 1.0
Distance: Blat, greedy—-with—trimming, no filtering, formula 8

Figure 2.7: Comparison of GBDP distances and DNA-DNA hybridization
data. The partial regression line shows that there is a strong linear correla-
tion between GBDP distances and DDH data.
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GBDP - Pairwise Distance Calculator

About this service

This service is provided to the scientific community by Alexander Auch (Center for Bioinformatics, Tlbingen) and Markus Géker (DSMZ).

auchegbdp.,org
goekergbdp, org

Processing of the submitted job may take several minutes depending on the current workload of the server and the job size. After the job is finished, an eMail containing the results will
be sent to the given address. All data belonging to this job will be deleted afterwards. Some statistical data will be permanently stored, that allows to generate overall usage statistics.

This service is designed for small and middle-sized datasets of at most 15 MB of data. This limitation should be sufficient for all currently segquenced prokaryotic genomes. For example,
the largest prokaryotic genome sequenced to date has approx. 13 Mbp (Sorangium cellulosum). If you intend to use it for larger data sizes, please contact the authars.

Use of this form is free for academic purposes at an academic institute. For all other uses, please contact the authors.

Form

Reference Genome:

Name:
Please enter the rame of the referenc
This field is

canism. Alpha-numerical as well as the *_'character are allowed,

Fasta file:
Please
If the Refe ganis 2w = xtra-chromosomal elements like Plasmids, a multi-fasta file can be u

(

ed as well.

Il as the '_' charac

faining the Target
ins several

omal elements like Plasmids, a multi-fasta file can be uploaded as well

Personal data:

Your eMail address:

Flease pro

Figure 2.8: GBDP web service for computing DDH-like distances, « version
(http://www.gbdp.org/species).
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Figure 2.9: BioNJ tree reconstructed from a distance matrix calculated by
using algorithm g_a3 (see Table Data from Henz et al| (2005)). c-score

is 0.727.
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algorithms no. 4 and 5 based on homology (Formula see Table . In
this study, nucleotide-based as well as protein-based similarity search was
carried out by using NCBI BLAST’s TBLASTX algorithm. We also tested if
calculating an average matrix between both matrices for each distance func-
tion, i.e., the one derived by using TBLASTX, and the second one by BLASTN,
would lead to an improvement in accuracy.

Figure [2.10] shows boxplots of c-scores for different combinations of HSP
selection and similarity search algorithms. Boxplots for greedy and “greedy
with trimming” show a large interquartile range, because its first quartile
lies below a c-score of 0.20. The reason for this is a low c-score of the
homology-based functions 4 and 5, which is in contrast to results obtained
by using TBLASTX, where no similar observation could be made.

Overall, protein-based similarity search leads to higher c-scores than
nucleotide-based, whereas “greedy with trimming” clearly outperforms the
other approaches. Matrix averaging does not lead to changes in the c-score
median values, but also diminishes performance of the best distance func-
tions, especially when using functions 4 and 5. When using trimming, not
a single case could be observed when matrix averaging resulted in better
c-scores.

The best tree was achieved by using distance algorithm tr_6 with BioNJ,
having a c-score of 0.8511. A cluster network representation created by
Dendroscope (Huson et al.|2007¢c) is shown in Figure

2.3.2 Mitochondrial and Plastidial datasets
Experimental setup

Taxon selection Completely sequenced genomes of plastidial as well as
mitochondrial organelles were downloaded from NCBI (2005) and [EBI (2005).
In case of more than one genome belonging to the same species and hav-
ing a different length, we randomly selected one sequence as proxy for all
genomes having the same length and species affiliation. It is known that
Apicomplexa, which are unicellular, parasitic eukaryotes, contain a special
kind of extrachromosomal circular DNA that is considered to be derived
from plastids (Kohler et al. |[1997). We also included two genomes of this
group, namely Tozoplasma gondii and Eimeria tenella.

For plastidial phylogenies, we used three cyanobacterial genomes, Syne-
chococcus sp., Synechocystis sp., and Thermosynechococcus elongatus as out-
group. It is commonly believed that plastids originated from an ancestor of
cyanobacteria (Gray|(1989).

A multitude of studies indicate an « proteobacterial origin of mitochon-
dria (e.g., Yang et al.|[1985; (Gray et al|2001} Esser et al.2004). Recent
studies more precisely located the closest relative of mitochondria within
the Rickettsiales (Lang et al.[|[1999b; |Emelyanov|2003a;c). Correspondingly,
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Figure 2.10: Boxplots showing c-scores for GBDP functions cov_a0 to cov_a3,
g-a0 and tr_a0 to g_a6 and tr_a6 (see Table using tree reconstruction
methods UPGMA, NJ, and BioNJ. A boxplot is shown for each combination
of homology search (BLASTN, TBLASTX, and combined data) and filtering
algorithm (coverage, greedy, and trimming).
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Figure 2.11: Cluster network view (see [Huson et al. 2007c|) of a TBLASTX-
based tree using GBDP function tr_6_bionj and the corresponding NCBI
tree. The blue edges indicate where a subtree is differently placed in both
trees. The c-score of the tree was 0.8511.
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as outgroup, we included genomes of two Rickettsia species as well as of two
Wolbachia species, which also belong to the order Rickettsiales.

To get a balanced taxon selection, we decided to only include a single
taxon in each case for the main lineages of the group Coelomata. This group
includes the two phyla Arthropoda and Chordata, both represented by a
high abundancy of sequences in the databases. The inclusion of more taxa
from these phyla would have considerably increased run time, while leading
to a bias of the mitochondrial dataset towards these metazoan lineages. This
would have diminished its comparability with the plastidial dataset.

Altogether, we curated a plastidial dataset having 50 genomes, as well as
a mitochondrial dataset comprising 125 genomes (including outgroup taxa).

GBDP functions and similarity search As variants of GBDP, we used dis-
tance functions tr_0 to tr_5 (see Table 2.2)), i.e., matched distances (Equa-
tion , as well as homology based distances (Equation .

For similarity search, BLASTN and TBLASTX variants were used separately,
as well as a combination of both approaches by merging resulting HSPs was
produced. Additionally, combined matrices were derived by first applying a
normalization function to each distance matrix, and afterwards calculating
the average between the normalized BLASTN as well as TBLASTX matrices.
Normalization is needed to fit the matrices to the same scale, which is of
importance for logarithmic distance functions. For that purpose, the ranging
method was applied (see |[Legendre and Legendre 1998, p. 38 and 252), by
determining the minimum and maximum matrix values, and applying the
following formula:

D(z,y) — min(D)
max(D) — min(D)

Dnormalized (JI, y) =

This leads to a distance in the range between 0 and 1.

Thus, two different approaches to combine nucleotide and protein level
data were used. By combining datasets on the HSP level, the usually
larger protein-based HSPs suppress the overall shorter, overlapping nu-
cleotide HSPs. This can rather be seen as a slight enrichment of the TBLASTX
hits, whereas in case of matrix averaging, both matrices are equally treated.

Regression analysis To quantify the influence of method selection on
the c-score and ¢ value, we conducted a multiple linear regression using the
R package (version 2.1.1, R|[2008). Prior to the application of a regression
analysis, we normalized the data to achieve a better comparability, by cal-
culating z-scores for § values and c-scores. The z-score is simply x;“ , where
1 is the mean value, o is the standard deviation, and x denotes the value to

be normalized.
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As explanatory variables, we used the following qualitative categories:
Plastidial vs. Mitochondrial genomes; BLASTN, TBLASTX, combined HSPs, or
matrix combining; minimum, maximum, or average of asymmetric distance
values (see Section ; non-logarithmic (Formula , or logarithmic
distance conversion (Formula ; applied distance functions +
+ or the homology based function 2.9} and tree-reconstruction
algorithms UPGMA, NJ, BioNJ, FastME, or STC for c-score as dependent vari-
able.

The R package incorporates several important features. One such func-
tionality is the automatic classification of qualitative variables into binary
categories (see, e.g., |[Legendre and Legendre| 1998, p. 46-47) that contain
the same information, and are suitable for linear regression analysis. Addi-
tionally, R provides a step-wise elimination procedure based on the Akaike
Information Criterion (AIC, [Faraway 2002, p. 128-129). The elimination
procedure starts with a model based on a complete set of describing vari-
ables, and calculates the according AIC score. In the following iterations,
variables are successively removed and the AIC is re-calculated to find an
optimal model. Optimality in the AIC sense is defined as a balance between
model simplicity (i.e., the number of model parameters) and its likelihood

(see also Section page. [62)).

Experimental results

Distance function assessment As a first step, the expressiveness of the
¢ value on phylogenetic reconstruction was examined by several linear regres-
sion analyses. The R? value of a linear regression represents the “percentage
of variance explained” (Faraway|2002, p. 22), i.e., how much of the predicted
variable’s variance can be explained by the explanatory variables. Thus, a
perfect prediction would induce a R? of 1.

To determine the influence of the § value on the c-score, we made a
regression using the & value as explanatory variable. This yielded a R? of
0.617, which means that 61.7% of the variance in c-score can be explained by
the ¢ value. Together with tree reconstruction methods, the § value explains
62.1%, whereas including distance parameters, reconstruction methods and
0 value explains 87.0% of the c-score variance. Thus, the largest part in the
variance of the c-score can be explained by the § value alone. According
to this, the accuracy of reconstructed phylogenies is highly dependent on
distance matrix quality as measured by the ¢ value. We conclude that the §
method is a valuable approach for distance quality assessment. In particular,
it can be used in future research to select distance functions without having
to rely on a reference tree or taxonomy.

Table shows the results of a step-wise multiple linear regression with
the c-score as dependent variable. Analogously, Table shows the results
of a regression analysis with the § value as dependent variable.
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’ | cscore (adjusted R? = 0.775) ‘

explanatory var. coefficient | standard error | ¢ value | P(z > |t])
(Intercept) 0.032509 0.010895 2.984 0.00292

Plastids 0.123627 0.006290 19.655 | <2-10716
BLASTN+TBLASTX | 0.047477 0.008895 5.337 | 1.18-107%7
Matrix Averaging 0.024675 0.008895 2.774 0.00565

TBLASTX 0.044962 0.008895 5.055 | 5.18-10797
Equ. 0.437622 0.008895 49.197 | <2.10716
Equ. 0.380340 0.008895 42.757 | <2-10716
Equ. 0.247183 0.008895 27.788 | <2-10716
STC -0.040611 0.009945 -4.083 | 4.81-1079%
UPGMA -0.029744 0.009945 -2.991 0.00285

Table 2.3: Results of a step-wise multiple linear regression based on the
AIC criterion (Auch et al.|[2006b|) for the c-score depending on all variables.
Explanatory variables were: Plastidial vs. Mitochondrial genomes; BLASTN,
TBLASTX, combined HSPs, or matrix combining; minimum, maximum, or
average of asymmetric distance values (see Section [2.2.1)); non-logarithmic
(Forrnula, or logarithmic distance conversion (Formula; applying
distance functions [2.2] + + or the homology based function
tree-reconstruction algorithms UPGMA, NJ, BioNJ, FastME, or STC. Only
explanatory variables that were not eliminated by the step-wise optimization
are shown.

’ | § value (adjusted R? = 0.888) ‘

explanatory var. coefficient | standard error | ¢ value | P(z > |t])
(Intercept) 0.533266 0.008668 61522 | <2-10°16
Plastids -0.172317 0.005779 -29.820 | <2-10716
BLASTN+TBLASTX | -0.044311 0.008172 -5.422 | 1.84-107°7
TBLASTX -0.041812 0.008172 -5.116 | 7.82-10797
Equ. [2.12] (log 0.043077 0.005779 7.455 | 3.48-10712
Equ. 22[+ -0.184422 0.008172 -22.567 | <2-10716
Equ. 2.2 + -0.125118 0.008172 -15.310 | <2-107'°
Equ. 2.9 -0.088696 0.008172 -10.853 | <2-10716

Table 2.4: Results of a step-wise multiple linear regression based on the
AIC criterion (Auch et al.2006b) for the ¢ value depending on all variables.
Explanatory variables were: Plastidial vs. Mitochondrial genomes; BLASTN,
TBLASTX, combined HSPs, or matrix combining; minimum, maximum, or
average of asymmetric distance values (see Section [2.2.1)); non-logarithmic
(Forrnula, or logarithmic distance conversion (Formula; applying
distance functions 2.2 + + or the homology based function
Only explanatory variables that were not eliminated by the step-wise
optimization are shown.
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For the § value (Table , most influential parameters were using Equa-
tion and plastidial genomes. This corresponds with the results obtained
using the c-score as dependent variable. Here, Equation also yields a
positive effect. In contrast, breakpoint distances had the worst performance
for both c-score as well as § value. This is in agreement with the results
in (Henz et al.|2005) based on prokaryotic phylogenies. We assume that
the poor performance of breakpoint distances is caused by a deficiency in
collinearity in the examined genomes. Breakpoint distances should only be
used when there is a considerable amount of collinearity (Henz et al.|2005)
between genomes, which only seems to be valid for closely related species.

Interestingly, using homology based distance functions based on Equa-
tion leads to a marginal improvement of the c-score and § value com-
pared with functions based on Equation This may be due to the fact
that when comparing two distant genomic sequences, the similarity search
algorithms may only find a small amount of highly conserved HSPs. In this
case, the distance will be underestimated when applying Equation [2.9] be-
cause of the grade of conservation between the detected hits. On the other
hand, more closely related taxa may also share regions having a lower grade
of conservation, thus distance between those taxa will be overestimated.

In contrast to the results shown in Henz et al.| (2005]), using the length
corrected denominator 2.7 together with Equation lead to inferior c-scores
and ¢ values for plastidial and mitochondrial genomes. However, using de-
nominator always led to a correct placement of the reduced genome
of Epifagus virginiana. On the other hand, reconstruction based on For-
mula incorrectly placed the taxon E. virginiana at the base of the An-
giosperms. The species Epifagus virginiana is a parasitic plant that grows
on the roots of beeches, and is commonly known as “beech drops”. Dur-
ing its evolution, E. wvirginiana’s plastid lost all genes that are necessary
for photosynthesis, but its preservation indicates that it still entails some
important functionality for the organism (Krause 2008). Epifagus belongs
to the phylum Streptophyta, subclass Asteridae, together with well-known
plants like Atropa belladonna and Nicotiana tabacum. Accordingly, E. vir-
giniana is correctly placed in Figure [2.12] unlike the incorrect placement in
Figure 2.13]

The length corrected denominator was specifically designed for cases
where high rates of gene loss occurred in a lineage, as presumed for the evo-
lution of Buchnera genomes (see Section page . We conclude that
uncorrected distances (i.e., based on denominator are usually superior
for reconstruction of plastidial and mitochondrial genomes. Denominator [2.7]
should be preferred only when cases of extreme gene loss are observed.

Using a logarithmic distance transformation (see Section page
leads to an increase of the ¢ value (with a moderate coefficient of 0.043, see
Table . This means that the non-logarithmic distance transformation
(Equation leads to distances that deviate from the additivity condition
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to a lesser extent. Usage of the logarithmic transformation (Equation
had no significant influence on the c-score. While logarithmizing has a small
negative effect on the § value, this effect seems to be too small to affect tree
reconstruction. Actually, we assume that using logarithmizing may even
improve topological accuracy in relation to taxa that underwent extreme
genome modifications, like E. virginiana (Wolfe et al.|1992)). Such effects can
be seen when comparing Figure (logarithmized) and Figure (non-
logarithmic) with regard to the placement and edge length of E. virginiana.
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Figure 2.12: NeighborNet reconstruction using distance algorithm tr min2
(see Table [2.2) and BLASTN search within whole plastidial genomes. As

outgroup, three cyanobacterial genomes were used.
Using a BioNJ reconstruction, this matrix resulted in the overall best tree

according to the c-score (with respect to the NCBI taxonomy) of 0.8298
(Auch et al.|[2006b)). The corresponding ¢ value was 0.2013, indicating a
high accordance with the additivity condition.

Distance correction by usage of minimum, maximum, or average matrix
values due to the asymmetry of BLAST had no significant influence on the
0 value, and only a rather small influence on the c-score (see Tables
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Figure 2.13: NeighborNet reconstruction using combined matrices derived
by applying distance algorithm tr_a0 (see Table to BLASTN as well as
TBLASTX within whole plastidial genomes.

This approach resulted in the lowest § value (0.1629), thus giving the most
tree-like distance data. However, the highest c-score was only 0.6596 using
BioNJ or STC (Auch et al.[2006b). An interesting observation is the incorrect
placement of Epifagus virginiana (see discussion).
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and . Here, the coefficient for using matrix averaging was 0.025, which

was the lowest observed coefficient of all significant variables. As already
outlined,

usage of the matrix averaging option thus seems to be sufficiently
justified.
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Figure 2.14: NeighborNet reconstruction using combined matrices derived
by applying distance algorithm tr_a0 (see Table

TBLASTX within whole mitochondrial genomes.

to BLASTN as well as

This approach resulted in the highest c-score (0.5574) using BioNJ, whereas
the § value of the matrix was 0.2946, a relatively high quality compared to

the other results using mitochondrial genomes. As outgroup, a proteobac-
terial genomes were used.

Influence of HSP search methods

Table|2.3|indicates that using TBLASTX
performs better than using BLASTN (coefficient 0.045), and combining nu-

cleotide and amino acid data at the HSP level (BLASTN + TBLASTX, coeffi-
cient 0.047) slightly improves the results. Analogously, ¢ values also improve



44

Whole-Genome Phylogeny

when using HSP-combined data (see Table . As already mentioned in
Section (page [14)), we assume that the difference between results ob-
tained by using BLASTN and those using TBLASTX, originates from the
greater sequence conservation at the protein level. But an enrichment of
protein data by nucleotide data seems to lead to a slightly improved phylo-
genetic signal, as observed when using HSP-combined data.

However, the effect of HSP search methods on the ¢ value and c-score is
far smaller than selection of the distance method or even the dataset itself
(plastidial vs. mitochondrial). Considering run time differences, preference
of the computationally feasible BLASTN algorithm, when dealing with large
datasets, seems to yield a sufficient degree of accuracy.

Tree reconstruction methods Regression analysis indicates that BioNJ
tree reconstruction produces the best trees according to their conformance
with the NCBI taxonomy as measured by the c-score (see Table and Fig-
ure . Regarding mean values of BioNJ, FastME and NJ reconstructions,
the latter two algorithms do not perform considerably worse than BioNJ.
Notably, whereas UPGMA is known to be sensitive to deviations from ultra-
metricity, this method performed best when distance quality was quite low.
This can be observed for § values above approximately 0.55 when regarding
Figure 2.15]

Interestingly, performance of the STC tree reconstruction algorithm was
severely impaired when using distance matrices having a bad § value, whereas
results obtained by STC were comparable to those obtained by using BioNJ,
FastME and NJ when distance quality was high (see Figure .

c-scores | BioNJ | FastME NJ UPGMA STC
mean 0.3899 | 0.3888 | 0.3790 | 0.3601 | 0.3601
best 0.8298 | 0.7660 | 0.7660 | 0.6170 | 0.8085

Table 2.5: Mean and best c-scores for applied tree reconstruction methods.
Data from |Auch et al|(2006D).

Phylogenies Overall, using plastidial data gave rise to better ¢ values and
c-scores (see Tables and[2.4). The c-score maximum was 0.8298 for plas-
tidial (see Figure[2.12)), and 0.5574 for mitochondrial data (see Figure[2.14)).

It is well known that mitochondrial genomes dramatically differ in genome
size and thus, in gene coding capacity (Gray et al.|1999). Whereas mitochon-
drial genome evolution in land plants tends towards an increase of genome
size, the opposite can be observed for mitochondrial genomes in Metazoa
(Lang et al.[1999a). Thus, a comprehensive taxon selection including plant
as well as metazoan taxa, is hampered by insufficient homology between
mitochondrial genomes. Furthermore, in metazoan mitochondria, a high
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Figure 2.15: Comparison of distance functions and reconstruction methods
(Auch et al|2006b). The picture shows how ¢ values influence the corre-
sponding c-scores when using different tree-reconstruction methods. Note
that a low § value indicates a high treelikeness of the underlying distance
matrix, whereas a high c-score indicates a high level of correspondence of
the accordant tree with the NCBI taxonomy. To illustrate characteristic
trends of certain tree-reconstruction methods, cubic splines with 15 degrees
of freedom were used to fit the data points onto a curve.
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mutation rate leading to saturation complicates phylogenetic reconstruction
within this group (Lang et al.|1999a)).

On account of this, we conclude that the low backbone resolution, as seen
in Figure [2.14] is no artefact of the GBDP method. This opinion is supported
by the fact that reconstructed plastidial phylogenies highly resemble the
NCBI taxonomy, which is usually based on nuclear genes.

A comprehensive analysis of the reconstructed phylogenies and devia-
tions from the taxonomy is outlined in |Auch et al.| (2006b)), to which the
reader may be referred.

2.3.3 Extended Mitochondrial and Plastidial dataset
Experimental setup

Distance methods and similarity search Based on the study of |Auch
et al.| (2006b)), we extended the approach in several ways. First, we in-
cluded the newly developed distance methods tr_a6 to tr_a9 derived from
Equation [2.3] (see Table [2.2)).

Second, we used BLAT (Kent|2002) in addition to BLASTN and TBLASTX.
BLAT is several orders of magnitude faster than BLAST, but less sensitive.

Comparison with a reference taxonomy Additionally, we also incor-
porated an alternative to the c-score to measure the agreement of a tree with
a reference taxonomy. Legendre and Lapointe (2004) introduced a test of
congruence among distance matrices (CADM) that is based on the Mantel
test of matrix correspondence (Mantel [1967; Mantel and Valand|[1970). The
test indicates whether matrices are congruent, i.e. whether they are related
to each other in a way that permits combining them. CADM allows to cal-
culate Spearman correlation coefficients (Legendre and Legendre [1998, p.
195-198) between distance matrices, which were used as agreement measure
between matrices in this study. The Spearman coeflicient varies between —1
and 1, whereas 1 indicates a perfect positive correlation. A coefficient of 0
would indicate absence of any correlation.

To apply the CADM test, the NCBI taxonomy, which was used as ref-
erence topology, was converted into a matrix of patristic distances. Then,
a CADM score based on Spearman correlation was calculated between the
distance matrix under investigation and the NCBI matrix. This method al-
lows to directly measure agreement between the reference topology and the
distances. Thus, it is independent of the chosen tree reconstruction method.

Topology-independent measures We also tested different topology-
independent measures of distance quality, in addition to the § value. Namely,
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we used non-ultrametricity and non-additivity as described by [Makarenkov
and Legendre (2001), and De Soete| (1986)), as well as the € value (see Sec-
tion page . Non-metricity is analogously defined as the square root
of the sum of (d;; — di, — djk)2 for all triplets of taxa 7, j, and k in which
dij > dii, + dji, divided by the sum of all squared distances (SSD).

Experimental results

Distance functions and Homology search Table [2.6]shows the results
of a step-wise regression analysis using the R package. The findings mainly
correspond to the results of our previous study (see Section . All
three metrics (c-score, € value, and CADM score) coincide, that the most
important factors for distance quality were usage of Plastidial data, and
Equation But in contradiction to previous results (see Tables ,
Equation led to distances that performed worse.

The newly included distance functions based on Equation[2.3]had a slight
positive influence on distance quality as measured by the c-score (coefficient:
0.017). But admittedly, the result was not significant (P-value: 0.080).

Preferrence of using BLAT instead of BLAST, leads to a small but signifi-
cant decrease in phylogenetic accuracy (see Table . While BLAT is much
faster than BLAST (Kent|2002)), it identifies only a subset of HSPs compared
to the BLAST results. Thus we conclude that BLAT should not be applied if
genomes are too distantly related, as is the case for mitochondrial genomes
of the major eukaryotic groups (see also Section m, page . Overall,
we conclude that preference of BLAT over BLAST seems to lead to a trade-off
between speed of similarity search and phylogenetic accuracy.

Figure [2.16] confirms the results of the previous study as shown in Fig-
ure Although the UPGMA method performs supprisingly well in some
circumstances, especially with low-quality distance matrices, results of the
regression analysis indicate a negative impact on phylogenetic accuracy (see
Table [2.6]).

Distance quality metrics We compared several distance metrics accord-
ing to their accuracy as measured by the c-score and CADM (test of Con-
gruence Among Distance Matrices) score against the NCBI taxonomy (Ta-
ble . Correlation between distance quality metrics and reference based
metrics was tested by calculating the Pearson, as well as the rank-based
Kendall and Spearman correlation coefficients (Legendre and Legendre|1998|
p. 140, 199, and 195).

Results indicate that e values, re-scaled @ values, and § values performed
best according to their correlation to the c-score, as well as to the CADM
score. Whereas the difference between ¢ values and e values consists only of
the treatment of the case when both distances ¢ and r are 0 (see Figure ,
a considerable improvement of correlation to the c-score and CADM was
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Figure 2.16: Comparison of distance functions and reconstruction meth-
ods (Auch et al|2006a)). Analogous to Figure the picture shows
how € values influence the corresponding c-scores when using different tree-
reconstruction methods. Note that a low € value indicates a high treelikeness
of the underlying distance matrix, whereas a high c-score indicates a high
level of correspondence of the accordant tree with the NCBI taxonomy. To
illustrate characteristic trends of certain tree-reconstruction methods, cubic
splines with 15 degrees of freedom were used to fit the data points onto a
curve.
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c-score (adj. R? = 0.636) | e value (adj. R? = 0.859) | CADM-score (adj. R? = 0.549)
explanatory var. | coefficient P(z > |t]) coefficient P(z > |t]) coefficient Pz > |t|)
Intercept 0.4510 <2-10716 0.3390 <2-10°16 0.3366 <2.10°16
UPGMA -0.0540 0.0002
Plastids 0.1371 <2.10716 -0.1744 <2.10716 0.1794 1.59 -10—12
BLAT -0.0303 0.0008 eliminated from model eliminated from model
translated 0.0843 <2.10716 -0.0347 0.0002 eliminated from model
Equ. [2.12} (log) not significant 0.0273 0.0027 eliminated from model
Equ. -0.2068 <2.10716 0.1003 3.43.10~12 -0.1506 1.82-10°6
Equ. 2.7 g2 -0.0214 0.0324 0.0386 0.0002 not significant

Table 2.6: Results of a step-wise multiple linear regression based on the AIC
criterion for the c-score, € value, and CADM score depending on all other
variables (Auch et al. 2006a). Explanatory variables were: Plastidial vs.
Mitochondrial genomes; BLAST or BLAT; using translated sequences or nu-
cleotide sequences; non-logarithmic (Formula , or logarithmic distance
conversion (Formula ; applying distance functions the homol-
ogy based function [2.9] or the newly included function 2.3} using denomi-
nators or minimum, maximum, or average of asymmetric distance
values (see Section ; tree-reconstruction algorithms UPGMA, NJ, BioNJ,
FastME, or STC. Only explanatory variables that were not eliminated by the
step-wise optimization are shown.

observed. According to that, we think that our definition of the e value, with
regard to the biological interpretation of distances, seems to be justifiable.

Overall, similarity between correlations with the c-score metrics and cor-
relations with the CADM score in Table could clearly be observed. This
also shows that the influence of tree reconstruction methods is much lower
than the influence of distance quality on the outcome of tree inference. Thus,
the CADM score can be used to assess distance quality by comparing the
distance matrices to a reference taxonomy, without having to compute trees
from the matrices.

Phylogenies In accordance with the previous study, distances based on
plastidial data led to better phylogenies according to the c-score (coefficient:
0.14) as well as the CADM score (coefficient: 0.18). Figure shows a
NeighborNet reconstruction based on the distance and HSP search method
that achieved the highest c-score when using BioNJ tree reconstruction.

2.3.4 Large-scale study of 500 prokaryotic genomes

We downloaded all completely sequenced prokaryotic genomes that were
available on NCBI (2009a) in July 2008. Strains of the same prokaryotic
species were reduced to the type strain (in case that the type strain was in-
dicated on the NCBI website), or a representative strain, which was selected
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c-score CADM-score
Metrics Pearson Kendall Spearman | Pearson Kendall Spearman
R? -0.420 -0.074 -0.129 -0.384 -0.022 -0.049
non-additivity; Q* [3] -0.638 -0.351 -0.526 -0.710 -0.393 -0.565
R—Q[0] -0.028 0.220 0.295 -0.042 0.158 0.241
R [2] -0.604 -0.212 -0.328 -0.601 -0.226 -0.356
Q 2] -0.680 -0.399 -0.582 -0.751 -0.448 -0.649
R[1] -0.631 -0.125 -0.189 -0.202 0.040 0.039
Q [1] -0.730 -0.315 -0.451 -0.375 -0.164 -0.246
(R—Q)? [3] -0.132 0.055 0.056 0.005 0.135 0.157
€ Q/R -0.701 -0.507 -0.712 -0.789 -0.510 -0.720
non-metricity [3] -0.543 -0.302 -0.456 -0.634 -0.296 -0.432
d; Q/R -0.578 -0.404 -0.601 -0.746 -0.462 -0.664
R [0] -0.062 0.194 0.263 -0.079 0.138 0.217
Q [0] -0.147 -0.046 -0.079 -0.170 -0.106 -0.184
non-ultrametricity [3] | -0.459 -0.241 -0.379 -0.588 -0.268 -0.390
R—-Q 2] -0.442 -0.132 -0.226 -0.370 -0.117 -0.201

Table 2.7: Correlation of Distance Quality Metrics (Auch et al. [2006al)
Non-metricity is defined as the square root of the sum of (d;; —
for all triplets of taxa ¢, j, and k in which d;; > dj; + d;i, divided by the
sum of all squared distances (SSD). R — ) denotes the sum of r — ¢, and

dire — dji)?

(R—Q)? denotes the sum of (r —q)?. All other quality metrics are described

in Section on page [24]
Scaling formulae are [0], division by the total number of quartets; [1], division
by the total number of quartets and the largest distance value in the matrix;

[2] division by the square root of SSD; [3] taking the square root after division

by SSD.
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tr min9 (see Table

NeighborNet Plastid phylogeny based on distance method

) and a BLASTN search. This combination lead to the
highest c-score of 0.790, using BioNJ. Data from |Auch et al.| (2006a)).
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manually. Eventually, a list of 515 prokaryotic genomes was assembled, con-
sisting of 957 single files (chromosomes and plasmids).

BLASTN as well as TBLASTX runs were concurrently conducted on three
different Cluster systems at the University of Tibingen, using the SQL
Server infrastructure outlined in Section (p. [I7). Overall run-time
was 6 months approximately, but not all Clusters or Cluster resources could
be utilized over the whole time span. Most notably, the bwGRiD Cluster,
which provided a noticeable speed-up, became available not until the last
four weeks of the project.

To give an impression of the amount of data that had to be managed
by the SQL server for the TBLASTX runs, we collected some statistical data
about the database. The size of the ta_file_stats table containing the file
names of the individual runs (see Appendix has 912, 546 entries with a
total size of 183 MB (index size included). The size of the BLOB data of the
SQL table holding the data for the TBLASTX runs (ta_file streams) is 674
GB, using the “lossy binary bzipped” encoding (see p. and Table .
Accordingly, using no compression at all would have resulted in more than
12 TB of data.

While data evaluation is still ongoing, some preliminary results are avail-
able. The best c-score (in regard to the NCBI taxonomy) obtained by using
BLASTN was 0.6888 (tr_a3 FastME), whereas using TBLASTX resulted in a best
c-score of 0.6426 (tr_a6 FastME). Interestingly, in contrast to prior observa-
tions, using BLASTN yielded better c-scores than using TBLASTX. A thorough
analysis of the dataset is in preparation and will be published in the near
future (Auch et al., in preparation).

2.4 Conclusions

In this chapter, we presented a framework for inferring whole genome phy-
logenies based on local alignment search tools like BLAST, BLAT or BLASTZ.
Within this framework, several distance functions were implemented and
evaluated using real-world datasets ranging from prokaryotic genomes to
organelle genomes from mitochondria and plastids. Overall, a noticeable
congruence between the inferred phylogenies and the NCBI taxonomy could
be observed for the major groups of Bacteria, Archaea, plants, fungi, and
animals. This may be seen as an indication for the presence of a pre-
dominant signal of vertical inheritance in these genomes, since the NCBI
taxonomy is mainly based on the phylogeny of ribosomal DNA. Moreover,
we can conclude that the GBDP approach is able to infer robust distance-
based phylogenies based on organelle or prokaryotic genomes. The distance-
based approach also allows to apply phylogenetic network algorithms like
NeighborNet (e.g., see Figures [2.12] [2.13] and [2.14). Furthermore, by pro-
viding variance estimates, calculation of support values analogous to boot-
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strap values can be accomplished using WeightLESS (Sanjuan and Wrdbel
2005).

Additionally, we enhanced our framework for handling large-scale datasets.
An efficient lossy compression algorithm was incorporated to deal with large
amounts of BLAST outputs, and a SQL database was established for data
storage. After providing these basic prerequisites, we were able to approach
projects with several hundreds of taxa by utilizing Cluster resources, which
are necessary to effectively parallelize local alignment searches. Hence, a
large project with 515 prokaryotic genomes could be conducted successfully.
Results will be published in the near future.

Besides phylogenetic reconstruction, distances derived by using the GBDP
formulae can also be applied to other subjects. For example, GBDP distances
have been successfully used as an alternative to DNA-DNA hybridization
for species delineation. In principle, intergenomic distances could also be
employed to detect horizontal gene transfer by comparing them to inter-
genic distances using Cook’s distance, as proposed by [Kanhere and Vingron
(2009, see also Section p. 65)). Furthermore, an adaptation of GBDP for
single loci (like, e.g., ITS or rRNA sequences) was developed and applied to
Foraminifera SSU rRNA data (Goker et al.| submitted to BMC' Biology, see
p- [140)).

In the future, the GBDP approach may be enhanced by providing an
interface to the SIMAP database (Similarity Matrix of Proteins, Rattei et al.
2008). Thus, the computational demanding step of BLASTing translated
genomic sequences against each other could be omitted by incorporating
the protein alignment data as already provided by the SIMAP database (T.
Rattei, pers. comm.).

Furthermore, improvements could be made in refining the variance esti-
mation process by considering the asymmetry between distance values when
interchanging subject and query sequences in a BLAST search. Also, an adap-
tation of MSA-based jackknifing (Felsenstein 2004, p. 339-342) to the HSP
level could be used as a resampling strategy. Here, a random fraction of
HSPs could be taken as a new sample. This would allow to calculate sup-
port values based on the generated HSP subsamples by calculating GBDP
distances and inferring trees for each subsample.

Moreover, refinement of the distance functions may be the subject of
future investigations.
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Chapter 3

Detection of Horizontal Gene
Transfer in Prokaryotes

3.1 Introduction

In this Chapter, we present an automated approach for the classification of
genes into groups of orthologs and the detection of horizontally transferred
genes within these groups. Detection of HGT (horizontal gene transfer) is
performed using three methods that are based on phylogenetic tree inference
but use different strategies for tree comparison: Two statistical approaches
are incorporated, namely AxParafit (Stamatakis et al.[2007) and Cook’s
distance (Kanhere and Vingron 2009)), as well as an efficient topological
algorithm that was developed by our group.

The outcome of the different HGT detection methods is compared using
a dataset of genes shared between 279 prokaryotic organisms. But first,
some important biological concepts are outlined in the next sections.

3.1.1 Horizontal gene transfer and phylogenetic reconstruc-
tion

Many phylogenetic approaches are based on the study of a single gene or
locus as phylogenetic markers such as 16S rRNA or other informational
genes (i.e., genes that are involved in transcription and translation, see|Jain
et al.[[1999)). However, an analysis limited to a single source of phylogenetic
signal disregards the fact that each gene has its own evolutionary history
which can be different from the “true” species phylogeny (Rokas et al.|[2003;
Gadagkar et al.[[2005). Furthermore, conflicts in the phylogeny of genes
diverging from the species phylogeny are ignored. Such conflicts may be
caused by horizontal gene transfer (HGT), gene duplication events or ho-
mologous recombination (Inagaki et al.|2006). Even for 16S rRNA there is
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evidence for occasional horizontal gene transfer (Yap et al.|1999; Koonin and
Wolf] 2008)), and recent findings indicate that a core set of prokaryotic genes
may also be affected by horizontal gene transfer (Dagan and Martin|2007)).
Furthermore, the work of Sorek et al. (2007) indicates that there may be
no gene family that is entirely untransferable. Thus, the question whether
the true species phylogeny can be reconstructed at all is strongly associated
with an estimation of the amount of horizontally transferred genes among
species (Doolittle/[1999b; 2000)). Kunin et al.| (2005) investigated the rela-
tive contribution of HGT to prokaryotic phylogeny, but the number of HGT
events during prokaryotic evolution is still discussed controversially (Beiko
et al.|[2005}; |Ge et al.|[2005}; [Lerat et al.|[2005; [Wiezer and Merkl 2005} [Dagan
and Martin/20006}; |Choi and Kim| 2007} [Dagan et al.|[2008; Koonin and Wolf]
2008).

In Chapter [2| we focused on whole-genome based phylogenetic recon-
struction methods to infer reliable phylogenies that are not affected by the
presence of horizontal gene transfer. Even in the light of HGT, this remains
feasible as long as it can be assumed that HGT is no “rampant” factor
shaping the evolution of prokaryotes (see, e.g., Kurland et al.[2003; Puigho
et al. [2009). In the previous chapter, we concluded that the phylogenetic
signal derived from analyzing whole-genome data is dominated by vertical
inheritance. Still, the question about the amount of HGT in prokaryotic
genomes remains unanswered.

Basically, there exist three different approaches for detecting horizon-
tally transferred genes. Compositional methods try to use signatures based
on GC content, nucleotide or word count frequencies to detect genes that
deviate from the average genomic composition (e.g., Dufraigne et al.|2005).
In contrast, phylogenetic methods rely on the comparison between gene
trees and organismal trees to detect deviations that can be interpreted as
HGT (Ge et al.[[2005; [Poptsova and Gogarten 2007). A third method uses
BLAST similarity searches to find the closest hits for a group of genes (Podell
and Gaasterland| 2007; Podell et al.|2008). If the closest hit has a larger
taxonomic distance as expected, the corresponding gene is assumed to be
derived via horizontal transfer. However, these methods all have strengths
and weaknesses, and it has been assumed that these methods may detect
different types of horizontal gene transfer events (Ragan 2001; Lawrence
and Ochman|[2002; Ragan et al. |2006|). Compositional methods are better
suited for the detection of recent genetic transfers, since genes derived via
HGT assimilate to the composition of their host genome over time (see, e.g.,
Gophna et al.|2006). Though, some genomic regions have a different base
composition due to functional constraints, which could be misinterpreted as
HGT. However, phylogenetic methods are able to detect ancient gene trans-
fers, but tree comparison is difficult to automate and a computationally
demanding task. Furthermore, phylogenetic methods are computationally
more challenging than compositional methods. The accurracy of similar-
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ity search based methods mainly depends on the accurracy of the local
alignment search program. However, using only the best BLAST hit can be
misleading (Eisen 2000; [Koski and Golding[2001)).

3.1.2 The concept of homology

Reconstruction of phylogenetic trees is only reasonable if the features that
are used to infer the phylogenies (i.e., morphological traits or sequence data)
share a common ancestry. Consequently, distinguishing between homologies
(common ancestry) and analogies (similarities without a relationship based
on common descent) is a crucial step prior to phylogenetic inference. The
concept of homology can be applied to morphological traits as well as to
sequence data (e.g., genes). Accordingly, homologous genes are genes that
originate from a common ancestor gene.

Homologous genes can further be divided into orthologous (orthologs)
and paralogous genes (paralogs). Orthologs are genes that are derived from a
single gene in a common ancestor, whereas paralogs emerge from gene dupli-
cation. It is assumed that orthologous genes fulfill the same biological func-
tions (Koonin|2005) in the corresponding organisms. In contrast, paralogs,
which are derived by gene duplication instead of vertical inheritance, do not
share the same evolutionary constraints (like purifying selection, which may
be constricted to a single gene copy) and thus, may be subject to positive
selection, which may lead to the acquirement of new functions (Kondrashov
et al.[2002; |Koonin 2005)). Consequently, phylogenetic inferrence should be
based on orthologous genes. Otherwise, phylogenetic reconstruction may
be misleading when searching for horizontally transferred genes (see Eisen
2000).

However, finding clusters of orthologous genes is a challenging task, espe-
cially the detection and distinction of out-paralogs and in-paralogs (Remm
et al.[[2001). Whereas in-paralogs, i.e. paralogs that arose after speciation,
pose no problem for phylogenetic reconstruction, out-paralogs, gene dupli-
cations preceding speciation, can easily be misjudged as events of horizontal
gene transfer. Hence, prior to phylogenetic reconstruction, a method has to
be applied that is able to distinguish between orthologs (and in-paralogs)
on the one hand, and out-paralogs on the other hand.

3.2 Methods

3.2.1 Detecting a common set of orthologous prokaryotic
genes

One of the best known databases of orthologous genes is the COG database
at NCBI (Tatusov et al.|1997;2000; |[2003)). In March 2009, the database con-
tains 192,987 proteins from 66 unicellular genomes (NCBI|2009b)), compris-
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ing only a small subset of currently sequenced prokaryotic genomes (approx.
700, see Section for recent estimates).

Thus, to get a more recent sampling of prokaryotic diversity, we consid-
ered to build a set of orthologous genes on our own initiative.

In order to derive a set of orthologous gene clusters, we decided to use
an approach that is mostly independent of any species tree hypothesis, and
that is able to remove in-paralogs as well as out-paralogs. The latter requires
using taxonomical information for discarding paralogs that conflict with a
tree induced by the taxonomy.

Taxon sampling

At the beginning of this study (November 2006), more than 300 fully se-
quenced prokaryotic genomes were available. By selecting only a single
representative for each species having more than one sequenced strain, we
finally compiled a list of 279 taxa. Using different strains of the same species
would not have brought any benefit regarding phylogenetic diversity, but a
needless prolongation of computing time.

For all of these taxa, annotated protein sequences were downloaded from
the NCBI genome database (NCBI 2006]). Eventually, we compiled a library
consisting of 856, 535 protein sequences, on average, 3070 genes per genome.

The smallest genomes in the study were the genome of Nanoarchaeum
equitans (536 genes, 490 kbp), Mycoplasma genitalium (477 genes, 580 kbp)
and Buchnera aphidicola (504 genes, 620 kbp). By including these parasitic
organisms, the amount of potential common genes that can be detected will
be considerably diminished. However, the aim of this study was to find a
set of common genes large enough for proper phylogenetic reconstruction
of a species phylogeny, as well as the detection of horizontally transferred
genes within this set, but not to find a comprehensive core set of prokaryotic
genes.

Furthermore, the phylogeny of parasitic organisms like Mollicutes, En-
terobacteriales or the genus Wolbachia is a matter of particular interest
(Sirand-Pugnet et al.|[2007aib; [Herbeck et al.|2005; |Bordenstein et al.|2009).
Therefore, exclusion of species with a shrunken genome would greatly di-
minish the value of our investigation, especially when regarding HGT events
in parasitic genomes.

Ortholog detection using OrthoMCL

The first step in orthology detection consists of a BLAST search (Altschul
et al.|[1990)) for sequence similarity between all genes in the library. This
task was parallelized by using a computing cluster available at the “Zen-
trum fiir Datenverarbeitung“, University of Tiibingen (ZDV|2009). We used
NCBI-BLAST version 2.2.17, with an e-Value cutoff threshold of 10~ and soft
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filtering. The latter option prevents HSPs from breaking apart if a region
of low complexity is detected (e.g., a repetition of the same short pattern
or even of a single amino acid), without losing the benefit of shorter run-
time due to low complexity filtering. Using these parameters, we obtained
184,966, 875 High-scoring segment pairs.

For further analysis of the BLAST results, we applied OrthoMCL (Li
et al.[2003), a state-of-the art method for unsupervised orthology assignment
(Chen et al.[2007; Altenhoft and Dessimoz|2009)). The current distribution
of OrthoMCL comes as a Perl script and includes the MCL binaries (Markov
clustering algorithm, see |[Enright et al.[2002). On an environment equipped
with 64 MB RAM, we were able to execute OrthoMCL with such a large
dataset. The calculation took approximately 4 weeks on an AMD Opteron
2 GHz processor, using a single core since no parallelisation was done in the
Perl script.

After clustering the results with MCL, we selected all clusters having at
least one gene included from each single species. We repeated this step using
different values for the inflation parameter between the default value of 1.50,
and 3.0. Since we could not detect a setting that enabled MCL to separate
all paralogs from the clusters, i.e. by producing consistent clusters having
exactly one gene from each species, we used the default value of 1.50. Using
the default value for the inflation parameter is supported by recent studies
indicating that this parameter has only a small influence on the accurracy
of OrthoMCL (Chen et al. 2007; [Li et al.|2003). The default may already
constitute an optimal trade-off between sensitivity and selectivity (Li et al.
2003)).

Multiple sequence alignment

Multiple sequence alignments (MSA) were generated using the version of
Muscle 3.6 (Edgar |2004a3b)) improved by using the ”nralign® algorithm,
which considers the alignment of neighbouring residues in its scoring func-
tion (Lu and Sze 2009). Lu and Sze (2009) showed that their algorithm
improves alignment quality mostly independent of the level of sequence iden-
tity. This fits well when using a large dataset showing quite different kinds
of degrees of relationships between organisms. We decided to use Muscle to
maintain a reasonable balance between high accurracy and speed. Resarch
of [Edgar| (2004c)) indicates that the average accurracy of Muscle alignments
is similar to that of T-Coffee (Notredame et al. [2000)) and clearly outper-
forms ClustalW (Thompson et al.||1994) and MAFFT (Katoh et al. 2002,
whereas Muscle’s execution time is lower.

To further improve alignment quality, we used Gblocks (Castresana
2000) to automatically clean the resulting MSAs. Gblocks is a program that
deletes ambiguous alignment positions from a multiple sequence alignment,
while it tries to preserve columns with significant phylogenetic signal. This



60

Detection of Horizontal Gene Transfer in Prokaryotes

is achieved by using several criteria like the level of sequence conservation
in a column, the amount of gaps and minimal length for blocks of conserved
positions. A recent study of |Talavera and Castresana (2007) shows that
the impact of MSA quality improvement by using Gblocks is significant for
protein-based sequences, especially when the alignments are heterogenous.
In the latter case, even Maximum Likelihood based reconstruction meth-
ods seem to be hampered by using information from misaligned sites. This
supports our view to use Gblocks to purify the MSAs prior to phylogenetic
reconstruction.

Parameters for Gblocks mainly followed recommendations of [Talavera
and Castresanal (2007) for ”"relaxed “ settings, which seem to be better suited
for ML-based tree reconstruction than more stringent settings. Furthermore
after cleaning, alignments must remain long enough to bear sufficient infor-
mation for the phylogenetic reconstruction of deep relationships. Hence,
this supports the use of more protective settings. In detail, we set ”Min-
imum Number Of Sequences For A Conserved Position“ and ”Minimum
Number Of Sequences For A Flank Position® to [ 5| + 1, whereas n denotes
the amount of sequences (which can be different if more than one gene per
species is included in a cluster). The parameter for ”Maximum Number Of
Contiguous Nonconserved Positions* was set to 12, a value slightly larger
than the recommended setting of 10. ”Minimum Length Of A Block“ was
changed to 4 (recommendation: 5). Additionally, we decided to retain all
positions with gaps. The recommended setting was to only retain positions
consisting of no more than 50% gap characters.

Our tests indicated that these settings allowed us to keep alignment
length in an acceptable range (see Table (3.1 and discussion in Section |3.3.1)).
We decided to also include heavily gapped columns because we assume that
such columns may bear a phylogenetic signal on lower taxonomic levels
(i.e., closer to the leaves). This helps to enhance resolution between family
or genus members sharing a homologous block that may not be present in
more distant taxa.

Phylogenetic reconstruction

Phylogenetic reconstruction of diverse samples of species has to cope with
problems like saturation and heterotachy (differences in evolutionary rates
of certain positions among lineages), which may lead to long branch at-
traction (LBA) artifacts. LBA was first described by [Felsenstein| (1978) for
Maximum Parsimony (MP), but it also affects other reconstruction meth-
ods, like Maximum Likelihood (ML, Huelsenbeck! |1995; |Brinkmann et al.
2005)). However, simulation studies showed that ML is more robust against
LBA than MP (Kuhner and Felsenstein| [1994; [Swofford et al. 2001) and
distance-based approaches like NJ (Huelsenbeck|1995).
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Even in case of heterotachy, recent work of Philippe and co-workers
(Philippe et al.[[2005) indicates that ML is superior to MP in analyzing
real world datasets. It should be mentioned that this result is in contra-
diction with the work of Kolaczkowski and Thornton| (2004). The authors
explicate the intrinsic advantage of MP as a non-parametric method over
approaches based on assumptions of a distinct evolutionary model, like ML
and Bayesian methods. In contrast, Philippe et al.[(2005]) and [Spencer et al.
(2005) pointed to some limitations in the validity of this study, which seems
to be solely valid for a particular simulation scenario. Furthermore, Steel
(2005) argues that the type of heterotachy investigated by [Kolaczkowski
and Thornton| (2004) might not correspond to any biochemical mechanism
known to date and thus, it seems to be only a theoretical setting. His opinion
was countered by a follow-up paper of Thornton and Kolaczkowskil (2005)),
stating that heterotachy is not sufficiently explored in real world datasets
to allow to completely refuse their scenario. The discussion of this topic is
ongoing, though many scientists agree that ML seems to be relatively stable
in handling heterotachy in real world datasets when choosing an appropriate
evolutionary model (Gadagkar and Kumar |2005; [Lockhart et al.|20006).

Combining these facts and since ML seems also to be more robust against
alignment ambiguity than Maximum Parsimony or distance-based approaches
(Talavera and Castresana [2007), we decided to use a Maximum Likelihood
based reconstruction method for our study.

However, development of more realistic models of evolution remains a
hot and controversial topic (Steel 2005; [Thornton and Kolaczkowski 2005).
Consequently, we base our work on what is currently available and well-
established in literature. Basically, there exist two such solutions for mod-
elling unequal rates of change at different positions. One approach is based
on random drawing of rate values independently for each site from a dis-
tribution. For this purpose, a I' distribution as introduced by |Uzzell and
Corbin| (1971) and adapted by [Yang| (1993)) for ML-based tree-inferrence is
widely used, due to its mathematical tractability. By specifying the shape
parameter «, the corresponding I' distribution can be used to approximate
many other distributions, like an exponential distribution (v = 1) or even a
Gaussian distribution for large values of a. But there is no biological reason
for favouring this function so far (Felsenstein 2004, p. 219).

The other major approach consists of using a fixed number of rate cat-
egories, which is far smaller than the actual amount of positions in the
alignment. Constricting the number of rate categories is meant to avoid
over-fitting, which is a formidable problem in model selection (Yang|1996;
Steel||2005). Whereas the I' model has a high demand of memory and run
time, there exists an implementation of a fixed rate category model explicitly
optimized for large datasets (Stamatakis|2006a}, referred to as CAT model).
Stamatakis (2006a)) shows by evaluating empirical datasets that CAT can
be used as a replacement for the I' model.
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We decided to use RAXML 7.04 (Stamatakis |2006b)) as one of the fastest
ML implementations available to date. RAXML provides parallelized versions
capable of utilizing multi-threading environments (Ott et al.[[2007) as well
as MPI (Message Passing Interface, see |Gropp et al[1999) for interprocess
communication, which makes this tool well-suited for cluster environments.
Additionally, it has some unique advantages like its incorporation of the
(comparatively) computationally undemanding CAT model, and a new rapid
bootstrapping algorithm (Stamatakis et al.[2008), which makes RAXML more
than an order of magnitude faster than other popular applications.

For selection of an appropriate model, we used ProtTest 1.4 (Abascal
et al.[2005). ProtTest uses a modified version of phyml (Guindon and Gas-
cuel 2003) for inferring ML trees and compares their log likelihoods based
on the well-known Akaike Information Criterion (AIC, Posada and Cran-
dalll 2001). The AIC (see also |Legendre and Legendre||1998, p. 520-521)
tries to penalize models having a large number of parameters and thus can
be used to avoid over-fitting of the model. This approach is based on the
principle of Ockham’s razor, which is well-established in the philosophy of
science. William of Ockham (who lived and worked most of his time in Mu-
nich actually) formulated the lex parsimoniae: ”pluralitas non est ponenda
sine necessitate“ (plurality should not be posited without necessity), mean-
ing that when one has to choose among different hypotheses, each explain-
ing the facts (almost) equally well, then the most parsimonious hypothesis
should be preferred, i.e., the explanation needing the fewest assumptions (or
parameters).

The AIC is defined as follows (Felsenstein 2004, p. 316), whereby p
denotes the number of parameters, and L denotes the likelihood of the tree
under investigation:

AIC = —2InL +2p (3.1)

When LnL decreases or the amount of parameters is growing, the AIC
increases and vice versa. Trying to find a minimal AIC is thus the goal
for model optimization. The addition of 2p can be seen as a penalty for
introducing parameters, leading to a balance between model simplicity and
its likelihood.

Another established method for model selection is the Bayesian Informa-
tion criterion (Schwarz1978)), with n indicating the sample size (Felsenstein
2004, p. 316):

BIC = —2In L + pln(n) (3.2)

This formulation leads to an increased penalty for models with many
parameters when the sample size is large.

We decided to use the AIC as selection criterion, because it is preferred
in the relevant literature (Felsenstein|2004, p. 316). Furthermore, using the
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BIC would require to determine sample sizes of the given MSAs, which is
considered a controversial topic (Abascal et al. 2007)).

Since the calculation of likelihoods is partly depending on the concrete
implementation, we compared the ProtTest results with those obtained from
using the Perl script ProteinModelSelection.pl published on the RAXML
homepage (Stamatakis 2009). The script uses RAxML to find the model
with the highest likelihood score by using the same starting tree for each
invocation.

However, for the actual tree inference we used the PROTMIX mode of
RAxML, which uses the CAT model for searching a good tree topology, but
afterwards switches to the I' model to determine tree likelihood scores. The
study of |Stamatakis| (2006a)) indicates that this approach performs better
in many cases than a direct search under the I' model, while remaining
computationally feasible using large datasets.

AxParafit and removal of remaining out-/in-paralogs

Since it can not be ruled out that the OrthoMCL-based clusters contain
out-paralogs to some extent, we needed a method to purify the datasets.
Consider the situation when two (or more) genes from the same species are
included in a single cluster. This implies that at least one of the genes
must be derived either by gene duplication or via horizontal gene transfer.
Affected genes can be detected by reconstructing a phylogenetic tree and
by comparing the placement of the genes belonging to the same species. In
case of in-paralogy, e.g., gene duplication after speciation, the two genes
should be nearest neighbours in the tree. Selecting the best candidate can
be accomplished by looking at edge lengths and taking the one with the
shortest edge length. This is based on the hypothesis that one of the gene
copies should remain under purifying selection, and thus it should have a
smaller evolutionary distance to the remaining genes.

When the genes are not adjacent in the tree, we can compare the po-
sitions to a species phylogeny and choose the candidate that is correctly
placed. This method is well-founded, since the whole definition of orthology
is based on the assumption that the phylogeny of orthologous genes reflects
the species phylogeny (Altenhoff and Dessimoz|2009; Koonin 2005)), at least
in absence of any HGT events. Certainly, the worst case would be that both
genes deviate from the species phylogeny. In that case, we would have to
discard the whole cluster.

In absence of a self-derived hypothesis about the species phylogeny (which
cannot be established with multi-labeld trees due to ambiguities in some
clusters), we used a tree based on the NCBI taxonomy (NCBI [2009¢) to
exclude paralogs from further investigation. Note however that this method
is not a variant of tree reconciliation (Mirkin et al.||[1995), since the species
phylogeny is only used to remove ORFs (Open Reading Frames) that deviate
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from the species tree. Horizontally transferred genes can thus be preserved
when there exists no other homologous gene in the same genome that is more
appropriately placed in the corresponding gene tree. Particularly, replace-
ments of genes by a gene copy derived from another species (i.e., xenologous
gene displacements) can thus be recognized by this method. In summary,
our method combines clustering methods and phylogenetic methods in a
way that allows to conserve HGT events leading to gene replacement.

We used a statistical test for host-parasite cophylogeny, named ParaFit
(Legendre et al.|[2002), to compare tree topologies of gene trees and species
trees in case that there exists more than one single candidate for orthol-
ogy. With this method a hypothesis of cophylogeny between two sets of
species can be tested. This approach is outlined in more detail in Chap-
ter [l ParaFit is especially suited for comparing the trees, because it is
able to handle one-to-many associations (i.e., more than one homolog in
the same species). Furthermore, it calculates the overall significance as well
as significance values for each association between gene and species. More
precisely, the reconstructed gene phylogeny is used as parasite tree, whereas
the species tree based on the NCBI taxonomy is used as host tree. For each
gene, an association is assumed between the gene and the species to which
it belongs in the species tree.

To subsume the main types of events affecting historical host-parasite
associations, there exist four possibilities (see Figure page , whereby
parasites denote the cluster genes, and hosts refer to the species:

e cospeciation, which is comparable to orthology

e duplication, meaning speciation of parasites only, which corresponds
to paralogy

e lineage sorting, the loss of a parasitic species and its link
e and host switching, which can be seen as a HGT event

Since there is an obvious correspondence between these events and or-
thology /paralogy (see Section p. as well as [Page (1994; [Page and
Charleston|/1998), we think that this method can be used to prune datasets
from paralogs.

For this purpose, we used AxParafit (Stamatakis et al. 2007) and the
recently developed command line enabled version of CopyCat (Stockinger
et al. 2009) to infer significance values for the gene/species associations.
For details, the reader may be referred to Sections [4.2.2| (p. |105]) and [4.2.4]
(p- . In case of more than one association for a given species, we selected
the gene having the highest F'1 score (Legendre et al.|[2002, formula 4). This
identifies the association that contributes to a greater extend to the global
Host-Parasite (or rather Species-Gene) relationship.
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3.2.2 Species phylogeny

In order to determine horizontal gene transfer in gene trees, many methods
refer to an organismal (or species) phylogeny as comparison. Currently, two
approaches are commonly used to infer an organismal phylogeny from single
gene trees: the supermatrix method (e.g., Rokas et al.[|2003; Ciccarelli et al.
2006; |[Smith et al.|2009) on the one hand, as well as the consensus tree meth-
ods (Swofford||1991; Bryant||2003) and supertree methods (Bininda-Emonds
2005) on the other hand. The first method is based on concatenating single
gene alignments to a large alignment and tree reconstruction based on the
whole concatenated alignment. In contrast, the consensus and supertree
methods try to combine several gene trees based on single gene alignments
into a single tree, whereas supertree methods are able to combine trees hav-
ing only partially overlapping taxa sets.

In this study, we favoured the supermatrix approach, since the contri-
bution of every single gene in the supermatrix implicitly depends on its
alignment length. This means that genes having only a low amount of phy-
logenetic signal due to their limited sequence length contribute to a lesser
extent to the resulting tree than long genes. Furthermore, a simulation study
performed by |Gadagkar et al.| (2005) indicates that concatenation leads to
more accurate phylogenies than the consensus tree method.

Single gene alignments were concatenated and a species tree was in-
ferred using RAXML 7.04. For each alignment region (i.e., each single gene
alignment), an individual substitution model was specified by using RAXML’s
multiple model file feature.

As an alternative to the supermatrix tree, a reference tree based on
the NCBI taxonomy was included in the analysis. Additionally, a refined
(binary) reference tree was generated by using the NCBI tree as a constraint
when applying RAXML to the concatenated alignment.

3.2.3 Detection of horizontal gene transfers
Cook’s Distance

Kanhere and Vingron (2009) proposed a statistical measure based on the
comparison of phylogenetic distances between taxa, which are commonly
represented by corresponding sequences. The basic idea is to apply a dis-
tance calculation process (protdist or dnadist from Felsenstein’s phylip
package) to infer distances between all single gene sequences. After this,
the distances are compared against genomic distances by calculating Cook’s
distance (Cook |1979) between both measures.

Cook’s distance (CDISS) provides an estimate of the influence a data
point has on a linear regression. The linear regression model is based on
the pairing of corresponding intergene and intergenomic distances. For each
taxon, a mean CDISS is calculated and compared against a given threshold.
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Taxa having a mean CDISS above this threshold are considered as candi-
dates of horizontal gene transfer. As cut-off, |[Kanhere and Vingron! (2009)
proposed a distance of %, where D denotes the number of paired data points.

Phylogenetic distances can be seen as estimates of the sum of the branch
lengths between two species (Felsenstein [2004, p. 147). On this account,
we used the patristic distances between taxa of the gene trees as phylo-
genetic distances. A comparison of the results obtained by using patristic
distances with those obtained by directly using the ML distances, resulted
in no significant differences (data not shown).

As a source for genomic distances between taxa, we used patristic dis-

tances obtained from the species trees based on the concatenated alignment,
and the NCBI tree.

Parafit statistical test

As outlined in Section a statistical test for host-parasite cophylogeny
as implemented in ParaFit (Legendre et al. 2002) and AxParafit (Sta-
matakis et al.|2007)) can be applied to remove paralogs from a set of homol-
ogous genes. Furthermore, a gene transfer leads to differences between gene
tree and species tree. These differences correspond to the distortion of the
cophylogenetic structure between parasite and host tree due to a parasite
switching to another host. In that case, the null hypothesis of the ParaFit
statistical test is that gene tree and species tree do not share a common
evolutionary history.

Since this test can also be applied to individual taxa (1-to-1 associations),
genes that contribute negatively to the correlation between gene and species
tree can be detected. When a gene has a p-value above the significance
threshold «, the null hypothesis is considered to be not rejected for this gene.
Such genes may be regarded as candidates for horizontal gene transfer.

To determine a reasonable significance threshold, the HGT counts ob-
tained with different threshold values were optimized on the basis of their
Pearson and Kendall correlation coefficient with the ML-conflict measure.

A topology-based method

We implemented an additional HGT detection method that is based on
comparing the gene tree topology with the NCBI taxonomy.

An important precondition of this method is a meaningful rooting of the
gene trees to be tested. Therefore, trees having a monophyletic archaeal
clade were rooted by placing the root between the two prokaryotic superk-
ingdoms. In all other cases, midpoint rooting (Farris 1972)) was applied.
The midpoint rooting strategy can be considered as reliable in cases where
a proper outgroup cannot be provided (Hess and De Moraes Russo|2007)).
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Prior to invoking the HGT detection, edges with a low bootstrap support
(below 0.90) were removed from the gene trees.

In rooted trees, each inner node defines an individual subtree. Accord-
ingly, there is a direct relation between an inner node and a clade comprising
all leaves that belong to the inner node’s subtree.

Each taxonomic rank defines a complete partitioning of the taxa con-
tained in the taxonomy. For each partition, the corresponding clades (i.e.,
inner nodes) are recursively determined in the gene tree. In the absence of
HGT or other aberrations, a one to one correspondence is anticipated be-
tween the taxonomic partition and an inner node (representing a clade) of
the gene tree. However, HGT leads to a polyphyly, which means that there
has to be more than one clade that represents all members of a taxonomic
partition. This even leads to the detection of paraphyletic clades when
searching for the taxonomic partition that harbors the donor organism of
the displaced gene.

In the case of HGT, our proposed algorithm has to detect the "main“
clade, i.e. the clade that is supposed to represent the majority of the taxa
belonging to this partition. By applying Ockham’s razor, the most parsimo-
nious scenario would then be to assume that this is the clade that correctly
reflects the evolutionary history, whereas diverging clades may be caused by
horizontal gene transfer. But it has to be considered that a clade may be pa-
raphyletic, which, in this context, means that it also can include alien taxa.
Thus, when searching the main clade of a taxonomic partition, our method
tries to achieve a balance between the overall clade size, and the amount of
taxa in the clade that actually belong to the corresponding partition.

To address this problem, we defined a clade score, which can be optimized
by recursively traversing the gene tree. Let C be a set of clades that are not
nested and that contain at least one taxon of the partition P currently under
investigation. Moreover, we demand that C' has to comprise all taxa of P,
i.e. Usecc = P. Let |C] denote the amount of clades in C, and p. = c¢N P
be the number of leaves belonging to ¢ € C that are members of P. Further,
let |c| denote the total number of leaves within clade ¢. The algorithm then
tries to recursively find the maximum clade score as defined by:

ZCEC %

cladescore(C) := —CE

(3.3)

The quadratically increasing denominator acts as a penalty that avoids get-
ting a large number of distinct clades.

To optimize the clade detection process, the algorithm is allowed to
resolve polytomies, which emerge due to the removal of edges with a low
bootstrap support. This was done by combining clades that are directly
connected to the same polytomous node.
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The resulting set of clades that are not identical to the corresponding
main clade were considered to be candidates for HGT. The algorithm is
repeated for each partition belonging to the taxonomic groupings of order,
class, phylum and superkingdom.

3.2.4 Statistical tests
Test for rejection of the species phylogeny

Poptsova and Gogarten| (2007)) showed recently that the AU test (Shimodaira
2002, approximately unbiased test) is a good method in order to test whether
a dataset rejects the species phylogeny. Thus, this test can be used to assess
the reliability of a reconstructed gene tree that is disagreement with the
species phylogeny.

For each alignment, we tested the original best ML tree, a ML tree based
on the alignment under consideration that was constrained by the NCBI tax-
onomy, as well as the three species tree candidates. Site-wise log likelihoods
were calculated by RAXML after applying a branch length optimization of the
input trees. Afterwards, consel (Shimodaira and Hasegawa/[2001)) was used
to perform the AU test.

A dataset was considered as incongruent with the species phylogeny, if
no single candidate of the potential species trees reached a p-value larger
than the significance level o = 0.01.

Empirical test for false positives in HGT detection

A second AU test was performed to examine whether the different methods
missed to detect some HGT events. For each combination of HGT detection
method and reference (species) tree, the presence of such false positives was
tested as follows: A pruned reference tree was created by removing all leaves
for which the current method reported a HGT event. Subsequently, RAxML
was used to infer a tree using the the pruned reference tree as constraint.
Afterwards, an AU test was conducted with the best (unconstrained) ML
tree and the newly inferred tree. Thus, in absence of any further HGT
events, the tree under constraint should be within the confidence interval
computed by consel.

ML-based measure of conflict between gene and reference trees

In addition to the c-score (see Section page , which provides a
measure of discrepancy between gene trees and a reference topology, the
ML-conflict measure as recently introduced by |Galtier and Daubin/ (2008)
can also be applied. The ML-conflict quantifies divergence of two trees
based on their Maximum Likelihood scores. Here, LnLajignment(7") denotes
the likelihood of tree T for the given alignment, by optimizing branch lengths
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of T'. The ML-conflict between the gene tree Tyene, and reference tree Trer
is calculated as follows:

MLconflict (Tgene’ Tref) -— min ( LnLgene (Tgene) - LDLgene (Tref)a > (34)

LnLref(Tref) — LnL,ef (Tgene)

As long as the best ML trees are used for Tyene and Tief, the resulting
distance should always be a positive number. Thus, when applying this
distance function to the reference tree that was constrained by the NCBI
taxonomy, a negative distance may occur when the current gene tree may ex-
hibit a higher LnL score for the concatenated alignment than the constrained
reference tree does. In this case, we used LnLgene(Tgene) — LtLgene (Trer) @s
a measure of ML-conflict.

3.3 Results and Discussion

3.3.1 Detected Orthologous Clusters

Using the dataset of 279 prokaryotic genomes we derived a set of 17 com-
mon genes (see Table . Most of these 17 genes are contained in the
set of prokaryotic core genes detected by (Charlebois and Doolittle (2004]).
Additionally, we also found Alanyl and Tyrosyl tRNA-Synthetase. Despite
many differences in the translational apparatus between Archaea and Bac-
teria, Elongation factor G in Bacteria and its archaeal homolog, Elongation
factor 2, are also conserved across the two superkingdoms. A considerable
set of genes related to replication and translation was removed from the
dataset due to lack of conservation across both superkingdoms.

Some alignments were heavily reduced when applying Gblocks. The
impact using Gblocks has on the quality of tree inference is analyzed in the
following chapter.

3.3.2 Prokaryotic gene phylogenies
Model selection

Table shows the amino acid substitution models that were selected by
ProtTest (based on phyml) and ProteinModelSelection.pl, which utilizes
RAXML. Interestingly, only two substitution matrices are selected by both
methods, the WAG model (Whelan et al.[2001]) and the RtREV model (Dim-
mic et al.|2002). The only discrepancy in model preference was observed in
the gene of Phenylalanyl-tRNA synthetase § subunit. In that case, the AIC
criterion favoured the RtREV+G+F model slightly over WAG+G+-F. Since
the amount of parameters is the same for both models (20 + 557 branch
length estimates), a rather small difference in log likelihoods was crucial for
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Description No. of No. taxa | Alignment | Length after | Percentage
Paralogs | with par. length Gblocks remaining

Elongation factor G/2 52 46 1509 712 47
Threonyl-tRNA synthetase 17 16 1031 674 65
Tyrosyl-tRNA synthetase 16 16 713 320 44
DNA polymerase III subunits v and 7 / 7 7 3689 261 7
replication factor C small subunit

Methionyl-tRNA synthetase 6 6 1680 484 28
Arginyl-tRNA synthetase 6 6 1056 358 33
GTP-binding protein, YchF family 5 5 557 431 7
50S ribosomal protein L11 3 2 268 156 58
Phenylalanyl-tRNA synthetase 8 subunit 1 1 1447 593 40
Alanyl-tRNA synthetase 1 1 1628 809 49
O-sialoglycoprotein endopeptidase 0 0 1247 314 25
30S ribosomal protein S3 0 0 524 244 46
Phenylalanyl-tRNA synthetase a subunit 0 0 725 319 44
50S ribosomal protein L1 0 0 376 252 67
Valyl-tRNA synthetase 0 0 2460 754 30
Translation initiation factor IF-2 0 0 1984 588 29
30S ribosomal protein S9 0 0 313 143 45

Table 3.1: Orthologous clusters found by OrthoMCL.

The last column shows the percentage of remaining sequence length after
cleaning the MSAs with Gblocks. ORFs not contained in the set of core
genes described by |Charlebois and Doolittle| (2004) are set in bold type.

the preference of RtREV+G+F (LnL: —151736.34, AIC: 304626.67) over
WAG+GHF (LnL: —151766.37, AIC: 304686.74).

Based on this observation, we conclude that ProteinModelSelection.pl
performs as well as ProtTest in most cases. Given that RAxML is much faster
than phyml, the former approach may be preferred for middle sized to large-
scale datasets.

To evaluate the performance of selecting an individual model for each
gene, we also inferred trees using the well-known JTT model (Jones et al.
1992). Table shows the log likelihoods and the Robinson-Foulds dis-
tance between the trees inferred using the model chosen by ProteinModel-
Selection.pl and the trees based on the JTT substitution model. Whereas
there are considerable discrepancies in likelihood scores between the trees
based on these different substitution models, differences in c-scores are mod-
erate. There are even some trees having a better c-score when using the JT'T
model. This may be an indication that the substitution model choice seems
to have a smaller influence on tree reconstruction accurracy as it is com-
monly assumed.

Gene length and average bootstrap support

Figure shows the relation between gene length before and after applying
Gblocks, and the median bootstrap support (MBS) of the corresponding re-
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Description ProtTest LnL RAxML LnL
(model) (best tree)

Elongation factor G/2 RtREV+GH+F -136976.48 || RtREV+GHF | —136155.13
Threonyl-tRNA synthetase WAGH+G -145608.29 WAG+G —144907.99
Tyrosyl-tRNA synthetase RtREV+GH+F -75530.66 RtREV+G+F | —74870.82
DNA polymerase III subunits v and 7 / RtREV+G+F -59224.63 RtREV+G+F —58745.12
replication factor C small subunit
Methionyl-tRNA synthetase WAG+G+F -97075.39 WAGH+G+F —96627.21
Arginyl-tRNA synthetase RtREV+G+F -87123.25 RtREV+G+F —86740.49
GTP-binding protein, YchF family RtREV+GH+F -84454.48 RtREV+G+F —83958.78
508 ribosomal protein L11 RtREV+G+F -25330.85 RtREV+G+F —25025.49
Phenylalanyl-tRNA synthetase 3 subunit RtREV+4+G+HF | -151736.34 WAG+G+H+F | —151420.00
Alanyl-tRNA synthetase WAGH+G -184472.91 WAG+G —183889.11
O-sialoglycoprotein endopeptidase WAG+G -66102.17 WAG+G —65786.31
30S ribosomal protein S3 RtREV+G+F -36989.87 RtREV+G+F | —36692.64
Phenylalanyl-tRNA synthetase o subunit WAG+G -71681.65 WAGHG —71342.27
50S ribosomal protein L1 RtREV+G+F -49261.86 RtREV+G+F —48851.05
Valyl-tRNA synthetase WAGH+G -158019.16 WAGH+G —157475.06
Translation initiation factor IF-2 RtREV+GH+F -113089.23 || RtREV+G+F | —112404.28
30S ribosomal protein S9 WAG+G -24024.51 WAGH+G —23757.89

Table 3.2: Substitution models and log Likelihoods. Note however that

log likelihoods of phyml and RAxML should be compared with caution. The

Akaike weights calculated by ProtTest were always 1 for the selected models.
Description model JTT model JTT normalized

LnL LnL c-score | c-score RF dist.

Elongation factor G/2 —136155.13 | —137646.05 | 0.6232 | 0.6196 0.0942
Threonyl-tRNA synthetase —144907.99 | —146525.10 | 0.6232 | 0.6341 0.0290
Tyrosyl-tRNA synthetase —74870.82 —75822.61 0.5725 | 0.5652 0.1159
DNA polymerase III subunits v and 7 / —b8745.12 —59229.21 0.6558 | 0.6775 0.2283
replication factor C small subunit
Methionyl-tRNA synthetase —96627.21 —97635.49 | 0.7065 | 0.7029 0.0652
Arginyl-tRNA synthetase —86740.49 —87854.07 | 0.5652 | 0.5688 0.0761
GTP-binding protein, YchF family —83958.78 —84722.13 | 0.6630 | 0.6304 0.1848
50S ribosomal protein L11 —25025.49 —25494.59 0.5833 0.6051 0.2319
Phenylalanyl-tRNA synthetase 3 subunit —151420.00 | —152890.52 | 0.7174 | 0.7138 0.1196
Alanyl-tRNA synthetase —183889.11 | —185687.88 | 0.7101 | 0.7029 0.0725
O-sialoglycoprotein endopeptidase —65786.31 —66502.38 0.6377 | 0.6196 0.1159
30S ribosomal protein S3 —36692.64 —37022.16 | 0.6920 | 0.7174 0.2355
Phenylalanyl-tRNA synthetase o subunit —71342.27 —72043.48 0.6667 | 0.6848 0.1703
508 ribosomal protein L1 —48851.05 —49277.75 | 0.7029 | 0.6739 0.1413
Valyl-tRNA synthetase —157475.06 | —159249.08 | 0.6775 | 0.6630 0.1341
Translation initiation factor IF-2 —112404.28 | —113454.37 | 0.7717 | 0.7319 0.1377
30S ribosomal protein S9 —23757.89 —23950.54 0.6232 0.6486 0.2790

Table 3.3:

Comparison of results obtained by preferring a specifically se-

lected model over the JTT model. c-scores were obtained from the purified
trees (after applying AxParafit to remove paralogs).
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constructed tree. The original trees prior to applying AxParafit were used
for this comparison. Above a gene length of approximately 350 residues, the
median bootstrap support persistently is over 70%. In 15 out of 17 cases
the MBS has become worse after applying Gblocks. Exceptions were 505
ribosomal protein L11 (52% against 53% after applying Gblocks) and Elon-
gation factor G/2 where no difference was detected (88% in both cases).
This seems to indicate that the truncated columns bear sufficient phylo-
genetic signal that is in agreement with the columns selected by Gblocks.
In case of disagreement, the MBS values of the trees based on untrimmed
alignments would be noticeably reduced, which would be in contradiction
with our observation.

However, systematic error in the data, equally affecting columns selected
or ruled out by Gblocks, could be a further explanation of this observation.
Figure [3.2] shows a plot of gene length against the c-score using the NCBI
taxonomy as reference. In most cases, a slight improvement of the c-score
could be observed when using untrimmed sequences. Since the space of
possible tree topologies is quite large for 279 taxa (approximately 10042
rooted trees!), an improvement of the c-score by chance only seems to be
rather unlikely. Thus, using the untrimmed alignments here seems to lead
to an actual improvement of the trees, at least in most instances.

We do not want to challenge the meaning of using Gblocks for alignment
purification in general, but our results seem to coincide with [Talavera and
Castresana (2007) who concluded that ML is able to extract some signal
even from problematic alignment regions.

Phylogenies

Based on the comparison of phylogenetic trees obtained with and without
alignment trimming, we decided to use the trees inferred from the untrimmed
alignments for HGT detection. Table[3.4shows the ML-conflict measure and
the c-scores of the obtained phylogenies. The Pearson correlation coefficient
between c-score measure and ML-conflict is —0.5300 using the MLNC tree,
and —0.5379 using the best ML tree (BML). Figure depicts a plot of
c-scores against the BML ML-conflict. The plot clearly shows a correla-
tion between both measures, especially when both measures indicate a high
agreement with the respective reference tree. This indicates a strong phylo-
genetic signal in the data, and also, a significant congruence between both,
the individual gene trees and the supermatrix tree on the one hand, and the
NCBI taxonomy on the other hand.
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Figure 3.1: Alignment length vs. Median bootstrap support for trees based
on trimmed (Gblocks) and untrimmed alignments. A connecting line is
drawn between each pair of trimmed/untrimmed values.
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Figure 3.2: Alignment length vs. c-score against the reference taxonomy for
trees based on trimmed (Gblocks) and untrimmed alignments. A connecting
line is drawn between each pair of trimmed/untrimmed values.
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Description MLNC ML-conflict | BML ML-conflict | c-score
Elongation factor G/2 4900.49 4602.28 0.6304
Threonyl-tRNA synthetase 5190.79 4214.48 0.6413
Tyrosyl-tRNA synthetase 9733.19 6532.41 0.5725
DNA polymerase III subunits v and 7 1478.44 972.85 0.7065
/ replication factor C small subunit

Methionyl-tRNA synthetase 6144.41 5462.72 0.6993
Arginyl-tRNA synthetase 14043.01 10645.44 0.5833
GTP-binding protein, YchF family 1485.22 1136.86 0.6449
508 ribosomal protein L11 890.93 732.59 0.5761
Phenylalanyl-tRNA synthetase 8 sub- 2224.14 992.74 0.7283
unit

Alanyl-tRNA synthetase 2620.86 1409.40 0.7174
O-sialoglycoprotein endopeptidase 1114.01 903.36 0.6630
308 ribosomal protein S3 803.53 529.33 0.7283
Phenylalanyl-tRNA synthetase o sub- 1485.13 923.58 0.6522
unit

50S ribosomal protein L1 985.02 691.95 0.7101
Valyl-tRNA synthetase 4549.25 3028.55 0.6812
Translation initiation factor IF-2 1984.28 1321.65 0.7754
30S ribosomal protein S9 810.06 572.70 0.6667

Table 3.4: Agreement of the gene trees measured against reference trees
using the Maximum Likelihood distance, as well as the c-score.
NCBI: results obtained by directly using the NCBI taxonomy.

MLNC: results based on the reference tree inferred by using the NCBI tax-

onomy as constraint.

BML: best ML tree as determined by RAXML.
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Figure 3.3: Plot of c-scores based on the NCBI taxonomy against ML-
conflict between the gene trees and the best ML reference tree. The Pearson
correlation coefficient is —0.5379.
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3.3.3 Parameter optimization for HGT detection
Selection of an appropriate o threshold for Parafit

To detect horizontal gene transfer, topological and distance-based methods
try to determine deviations between a gene tree and a reference tree, based
on their topology or patristic distances. It can be assumed that there should
be an interrelation between measures of discrepancy among gene and refer-
ence trees on the one hand, and the amount of HGT that can be detected
by these methods, on the other hand. That plausible connection may de-
pict a suitable and empirical strategy for optimizing sensitivity influencing
parameters of the concerned methods.

In particular, ParaFit allows to select a p-value threshold, which indi-
cates when an association is considered as significant, i.e., when the null
hypothesis stating that there is no cophylogenetic relationship can be re-
jected. To determine an optimal p-value threshold, we computed the HGT
counts for each p-value between 0.05 and 1.0, and we calculated the corre-
sponding Pearson and Kendall correlation coefficients between the amount
of HGT and the corresponding ML-conflict value for each gene tree. Addi-
tionally, we included the correlation to the c-score between gene tree and
reference tree to provide a second discrepancy measure that is solely based
on the tree topology.

Figures|3.4| (Pearson) and |3.5| (Kendall) show a plot of p-value thresholds
against correlation coefficients. Overall, the correlation remains high for
values between 0.05 and 0.80, having its maximum at a p-value threshold
of a = 0.025, when regarding the Pearson correlation. Using the Kendall
correlation coefficient, the best value could be obtained at o = 0.020, but
there is only a small observable difference to the maximum when using
a = 0.025. Correlation to the c-score measure is considerably lower, but it
shows a trend similar to the ML-conflict’s correlation.

Based on the initial assumption of correlation between the amount of
detected HGT and discrepancy measures, we recommend a threshold of
a = 0.025 for HGT detection based on ParaFit.

Threshold for Cook’s distance

Kanhere and Vingron| (2009) proposed a threshold of % for the Cook’s dis-
tance (see Section p- based on the results of a simulation study.
To determine whether the observed discrepancy between the correlation of
the HGT counts using the CDISS and the correlation of the ParaFit HGT
counts (see Table represent a general tendency, we applied the proposed
optimization method to the Cook’s distance by investigating correlations for
HGT counts obtained by applying cut-off values between % and %.
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Figure 3.4: Pearson correlation between ParaFit HGT counts and ML-
Conflict, as well as c-score to both ML-based reference trees, for different
p-value thresholds. The signum of the c-score correlations was changed to
fit in the plot.
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Figure 3.5: Kendall correlation between ParaFit HGT counts and ML-
Conflict, as well as c-score to both ML-based reference trees, for different
p-value thresholds. The signum of the c-score correlations was changed to
fit in the plot.
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Results are shown in Figure (Pearson) and Figure (Kendall).
Clearly, the maxima are far from the threshold proposed by [Kanhere and
Vingron| (2009), and maxima obtained by using both correlation coefficients
do not show coincidence. This may indicate that there is no strong linear
relationship between HGT counts obtained by using the CDISS method
and the ML-conflict measure. Overall, both correlation coefficients indicate
an inferior interrelation, compared to results obtained by using ParaFit
(Figures and [3.5)).

Using thresholds that are optimal considering the correlation to the ML-
conflict would lead to a pronounced increase of HGT counts. For example,
when using a threshold of % as proved optimal when using the Pearson
correlation, the number of detected occurrences is more than fivefold in
comparison to using the default cut-off. Furthermore, by lowering the CDISS
threshold, the rate of false positives increases to a level above 5% (Kanhere
and Vingron|2009)).

Bootstrap cut-off for the topological method

We also applied the optimization strategy to the topological method for
comparison purposes. Figures (Pearson), and (Kendall) show the
results. The bootstrap cut-off determines the edges to be removed from
the gene tree under consideration prior to applying the topological HGT
detection method. Overall, above a bootstrap cut-off of 0.50, the correlation
tends to improve when increasing the cut-off value. There are two interesting
observations: a local maximum at 0.80, as well as a global maximum at a
cut-off of 1.0, meaning that all edges having a lower support will be removed
from the tree. Between these values, there is a small decrease towards the
cut-off of 0.90 that was preferred in our study.

There is neither agreement in current literature concerning a feasible
bootstrap cut-off value, nor how bootstrap values should be interpreted.
The latter was already touched on in Section (p. . Considering
cut-off selection, statistical properties of the bootstrap procedure play an
important role. Some authors consider the bootstrap method as biased
towards the underestimation of support values (see discussion in [Wrébel
2008; Felsenstein|[2004, pp. 346). They argue that even a support of 70%
might be regarded as sufficient (Hillis and Bull|1993). In contrast, |Taylor and
Piell (2004)) found no evidence for a systematic bias. Hence, they proposed
a conservative cut-off as high as 95% for the yeast dataset they surveyed.

Bringing all this together, we recommend a cut-off of at least 90% when
searching for HGT occurrences in a phylogenetic tree. Avoiding the detec-
tion of spurious events should be the primary goal, even though this increases
the amount of false negatives, i.e., undetected events. A low support value
indicates that the branch is not sufficiently backed up by the underlying
data, thus this branch should not be considered for HGT detection by a



80

Detection of Horizontal Gene Transfer in Prokaryotes

Pearson correlation coefficient

1.0

0.8

0.6

0.4

0.2

0.0

ML-Conflict BML
—— ML-Conflict NCBIML
—— c-score BML

c-score NCBIML

dhavall

Figure 3.6:

Kendall correlation coefficient

1.0

0.8

0.6

04

0.2

0.0

1.0

T
15 2.0

CDISS threshold

Pearson correlation between CDISS HGT counts and ML-
Conflict, as well as c-score to both ML-based reference trees, for different
thresholds n/D. The signum of the c-score correlations was changed to fit
in the plot.

ML-Conflict BML
—— ML-Conflict NCBIML
—— c-score BML

c-score NCBIML

m M\/\

0.5

Figure 3.7:

1.0

T
15 2.0

CDISS threshold

25 3.0

Kendall correlation between CDISS HGT counts and ML-
Conflict, as well as c-score to both ML-based reference trees, for different
thresholds n/D. The signum of the c-score correlations was changed to fit
in the plot.
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topology-based method. Removing a branch allows the algorithm to op-
timize its clade detection step by combining nodes belonging to the same
clade while resolving polytomies. Consequently, inclusion of branches hav-
ing low bootstrap values leads to recognition of more occurrences, especially
those that are poorly supported by the underlying data. Here, choosing a
cut off of 90% seems to represent a balanced trade-off between sensitivity
and accurracy, whereas there is only a small loss of correlation against the

ML-conflict measure (see Figures and .

3.3.4 Comparison of the results
Amount of detected HGT events

Table shows the amount of hypothetical HGT occurrences as detected
by the different methods. In the following, we do not use the term "HGT
event“ in a stringent biological sense, meaning that an actual gene transfer
happened between a distinct donor and recipient, in contrast to vertical gene
transfer by clonal reproduction. Here, vertical inheritance of a gene followed
by speciation leads to the recognition of one ”event “ for each descendant that
is represented in the dataset, even if, in a stringent sense, only one actual
transfer happenend during the lifetime of a common ancestor of the affected
group. This results in an overestimation of the objective amount of HGT
events, since we cannot distinguish between a recent event of HGT affecting
a single species on the one hand, and a past event preceding cladogenesis on
the other hand. In the following, the HGT numbers may be seen as numbers
indicating how many taxa may be affected by HGT, instead of a count of
individual gene transfers.

The amount of detected occurrences range between 291 (NCBI-AxParafit)

to more than 500 (BML-AxParafit and topological method). Dagan and
Martin| (2007) tried to assess the amount of HGT by estimating the size of
ancestral genomes that would be necessary to explain the observed amount
of today’s gene families. Based on this, they concluded that at least 65%,
and perhaps even all gene families may be affected by at least one HGT
event during their evolutionary history. In a later study, they even stated
that at least 81 +15% of the genes within the probed genomes were involved
in HGT (Dagan et al.|2008). Considering the subsequent vertical inheri-
tance of these aquired genes, an accumulation of such horizontally acquired
genes seems to be inevitable. Further, genes that are present in all recent
organisms, must also have been present in the last universal common an-
cestor, and thus, have had plenty of time to undergo genetic transfers. In
the light of this thought, the amount of HGT occurrences detected by the
different methods may be credible.
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Figure 3.8: Pearson correlation between the topological method’s HGT
counts and ML-Conflict, as well as c-score to both ML-based reference trees,
for different bootstrap significance thresholds. The signum of the c-score
correlations was changed to fit in the plot.
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Figure 3.9: Kendall correlation between the topological method’s HGT
counts and ML-Conflict, as well as c-score to both ML-based reference trees,
for different bootstrap significance thresholds. The signum of the c-score
correlations was changed to fit in the plot.



3.3 Results and Discussion

83

Effect of reference tree selection

Three possible candidates for a species tree were used for HGT detection
based on the CDISS and AxParafit method. One is solely based on the
NCBI topology, and thus, its branch lengths reflect taxonomical distances
rather than the number of site changes. The other alternatives are based on
a concatenation of all single gene alignments (supermatrix). One tree was
inferred using RAXML to search for the best ML tree (BML tree), whereas
the other was reconstructed by RAxML using the NCBI topology as constraint
(MLNC tree). This leads to a binary tree that is completely in agreement
with the NCBI taxonomy, but having branch lengths reflecting rates of site
changes.

Table shows the correlations between the amount of predicted oc-
currences and the ML-conflict as well as the c-scores. Interestingly, a high
correlation between both ML-conflict values (BML and MLNC) can be ob-
served (Pearson r,s = 0.9871). This indicates that gene trees deviating from
the reference tree based on the concatenated alignment, also deviate in a
similar magnitude from the constrained reference tree that resembles the
NCBI taxonomy.

Using the CDISS method, correlation of the amount of HGT occur-
rences is high (7,5 = 0.9217) for the MLNC (constrained) and the best ML
tree (BML, unconstrained), but considerably lower between MLNC and the
NCBI taxonomy (rps = 0.4023), as well as between BML and the NCBI
taxonomy (rps = 0.3970). In contrast, the correlations are far higher when
comparing results based on AxParafit showing 7,, > 0.9 in each case. A
main difference between the NCBI taxonomy tree and the two trees derived
by using RAXML consists in the meaning of the distances between leaves. Us-
ing the NCBI taxonomy, this distance resembles taxonomical units, while
in the other cases, the distances are estimated by applying the Maximum
Likelihood function. While the ParaFit-based method was already success-
fully applied to patristic distances solely based on taxonomical information
(Meier-Kolthoft et al.|2007; Stamatakis et al.[2007)), the CDISS distance was
tested on distances that were derived in a manner that allows to assume a
linear correlation between inter-gene and inter-genomic distances. This con-
dition may possibly be violated when comparing topological distances with
ML-based distances.

Nevertheless, for both distance-based methods, more than 75% of HGT
occurrences are consistently detected regardless of which ML tree was used
as reference (see Table MLNC N BML). The agreement between results
based on the best ML tree, as well as the constrained tree indicates that
the supermatrix method can be used here to infer a reliable species tree.
Furthermore, the c-score of the BML tree is 0.7536 when using the NCBI
taxonomy as reference. This means that the phylogenetic congruence be-
tween both trees is in the same range as the percentage of overlap between
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the detected HGT occurences. Moreover, the agreement between both trees
indicates that there is a strong signal of vertical inheritance in the derived
set of genes, despite being exposed to a considerable amount of HGT.

Description NCBI MLNC BML NCBI MLNC BML Topo
CDISS CDISS CDISS AxParafit AxParafit AxParafit
Elongation factor G/2 25 33 40 16 23 48 117
Threonyl-tRNA synthetase 25 31 31 9 21 27 121
Tyrosyl-tRNA synthetase 10 18 18 62 91 93 71
DNA polymerase III subunits v and 18 12 20 17 22 27 2
7 / replication factor C small sub-
unit
Methionyl-tRNA synthetase 8 3 4 29 30 49 23
Arginyl-tRNA synthetase 23 13 11 65 135 139 28
GTP-binding protein, YchF family 26 33 30 19 29 30 109
50S ribosomal protein L11 17 26 23 10 25 29 1
Phenylalanyl-tRNA synthetase /3 23 24 23 8 18 21 12
subunit
Alanyl-tRNA synthetase 23 23 23 1 12 18 1
O-sialoglycoprotein endopeptidase 17 35 31 9 14 16 5
30S ribosomal protein S3 31 19 21 11 27 31 3
Phenylalanyl-tRNA synthetase o 26 20 19 14 19 20 17
subunit
508 ribosomal protein L1 20 18 20 4 10 15 0
Valyl-tRNA synthetase 24 22 22 2 38 32 53
Translation initiation factor IF-2 27 18 17 5 24 28 7
30S ribosomal protein S9 23 21 18 10 15 16 0
Sum 366 369 371 291 553 639 570

Table 3.5: Amount of detected HGT events using different detection meth-
ods. Note that each gene considered as conflicting by the accordant method
is counted as one individual event, thus leading to an overestimation if an
entire monophyletic group is affected by the same HGT event due to vertical

inheritance.

NCBI: results obtained by directly using the NCBI taxonomy.
MLNC: results based on the reference tree inferred by using the NCBI tax-

onomy as constraint.

BML: best ML tree as determined by RAXML.
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Degree of congruence between different HGT detection methods

Table[3.7shows a quantification of the overlap between HGT detection meth-
ods. Clearly, the intersection between predictions of AxParafit and the
topological method shows the largest overlap, both in absolute counts (152
for BML) and relative amount (24%). However, many hypothetical events
detected by AxParafit or the topological method could not be confirmed
by the Cook’s distance based approach.

Whereas the intersection of all methods (CDISS N AxParafit N Topo)
contains only a small fraction of hypothetical events, we could clearly demon-
strate that the events predicted by all methods are established occurrences
of HGT (see Section[3.3.5). We also tried the CDISS method using a smaller
threshold of 1.3/D (Kanhere and Vingron/[2009, relaxed cut-off setting). Al-
though this lead to a great increase in the amount of postulated events from
371 to 946 (best ML tree as reference), representing more than a 2.5 fold
change. Even when using this large set, the relative amount of intersection
sizes stayed almost the same (ranging from 10 to 12 percent).

By adjusting the thresholds for the AxParafit method, a larger inter-
section size may be obtainable, though this would also lead to an increase
of false positives. Since all three methods use different approaches for HGT
detection, we conclude that a combination of two or more methods may lead
to a corroborated set of hypothetical HGT candidates.

CDISS | CDISS % | AxParafit | AxParafit %
NCBI N MLNC N BML 159 43 226 35
NCBI N MLNC 181 49 234 42
NCBI N BML 176 47 238 37
MLNC n BML 319 86 493 7
NCBI | NCBI % | MLNC | MLNC % | BML | BML %
CDISS N AxParafit N Topo 4 1 22 4 18 3
CDISS N AxParafit 16 4 52 9 53 8
CDISS N Topo 55 10 65 11 71 12
AxParafit N Topo 91 16 135 24 152 24

Table 3.7: Intersection sizes
NCBI: results obtained by directly using the NCBI taxonomy.

MLNC: results based on the reference tree inferred by using the NCBI tax-

onomy as constraint.

BML: best ML tree as determined by RAxML.
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Empirical test for false positives

All 119 AU-tests indicated the presence of false positives. This may imply
that all methods used for HGT detection underestimate the real amount
of HGT. A more pessimistic interpretation would be that the confidence
interval provided by the AU test narrows with increasing taxon count. Thus,
small discrepancies between trees would lead to an exclusion of all trees
except the best ML tree from the confidence interval. But this remains
speculative, since we did not explicitly test this assumption.

3.3.5 HGT events detected by all methods

In the following, we will focus on the hypothetical HGT events that are
predicted by all three proposed methods. This is the most conservative
setting that allows to assess whether these methods are appropriate to detect
real occurrences of horizontal gene transfer. Table[3.8shows these 19 events.
Thereof, 16 events could be found when using the best ML tree (BML) as
reference, as well as when using the constrained reference tree (MLNC). In
the remaining cases, either the ParaFit p-value lay above the threshold, or
the Cook’s distance (CDISS) was below the defined threshold.

Valyl tRNA synthetase

Strikingly, 19 occurrences of HGT have been detected for the gene of Valyl
tRNA synthetase (see Figure [3.10). All of these have in common that the
origin of the transfer seems to be located within the Euryarchaeota, whereas
the recipients were Bacteria, more precisely Rickettsiales (o Proteobacteria)
and Actinobacteria.

Previous studies already indicated the presence of a gene transfer of
this gene from Euryarchaeota to Rickettsia (Farahi et al.|2004; Emelyanov
2003b; [Woese et al. 2000), hence, raising the question whether other repre-
sentatives of Rickettsiales were also affected. Among this order, all represen-
tatives of families Rickettsiaceae ( Wolbachia, and Rickettsia) and Anaplas-
mataceae (Anaplasma, Ehrlichia, and Neorickettsia) that were included in
this study, seem to share an archaeal copy of the Valyl tRNA synthetase
gene. Only Candidatus Pelagibacter ubique seems to be unaffected and is
correctly placed within the remaining o Proteobacteria. A possible scenario
that could explain this observation is based on the assumption that the
SARI11 clade to which P. ubique belongs to (Rappé et al.|2002)), diverged
from the remaining Rickettsiales before Rickettsiaceae and Anaplasmataceae
separated. A common ancestor of these two families then may have received
the Valyl tRNA synthetase gene from an Euryarchaeon. This would also
correspond to the subtree of Rickettsiales located within the Euryarchaeota
that is mostly in agreement with the species tree and the NCBI taxonomy.
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Also, the supposed branching order of the SAR11 clade and the clade con-
sisting of Rickettsiaceae and Anaplasmataceae is in accordance with the
species phylogeny based on the concatenated alignment.

Emelyanov] (2003b)) investigated the evolutionary history of Valyl tRNA
synthetase and detected analogous deviations in the phylogeny of Rickettsi-
aceae (comprising R. prowazekii, R. conorii, Wolbachia, Ehrlichia chaffeen-
sis and Cowdria ruminantium). They concluded, ”that acquisition of the ar-
chaeal enzyme by the family Rickettsiaceae or the order Rickettsiales shaped
the evolutionary history of the rickettsial lineage“. Our findings strongly
support this view.

The remaining hypothetical occurrences of HGT concerned six Acti-
nobacteria, three of them being either human pathogens ( Tropheryma whip-
plei TWO08/27 and Propionibacterium acnes KPA171202), or normal inhab-
itants (Bifidobacterium longum) of the human body. Frankia alni and Leif-
sonia xyli xyli are plant pathogens, whereas Thermobifida fusca is a hay and
organic waste decomposing bacterium. For all observations within Acti-
nobacteria, no indication could be found in the current literature. However,
Raoult et al. (2003) detected that Valyl tRNA synthetase gene of T. whip-
plei strain Twist may be derived from Euryarchaeota. Since strain Twist is
up to 99% identical to strain TWO08/27 at the nucleotide level (Raoult et al.
2003), we assume that both strains are equally affected. Furthermore, the
original analysis of Tropheryma whipplei TWO08/27 focused on the detection
of recent genetic transfer by investigating nucleotide composition (Bentley
et al.[2003), whereas Raoult et al.| (2003) relied on phylogenetic methods.

There is no evidence in literature for HGT between Archaea on the one
hand, and the remaining Actinobacteria on the other hand. But certainly,
HGT is not uncommon between Actinobacteria, as well as between Acti-
nobacteria and other phyla (Ventura et al.|2007)).

Figure [3.10] shows the subtree containing Archaea and the concerned
Actinobacteria and Rickettsiales. Strikingly, all Bacteria are concentrated
in one cluster showing 100% bootstrap support. Thus, the observed clus-
tering of Actinobacteria within Archaea cannot be explained by one single
HGT event. One may assume that one single HGT event between Archaea
and these Bacteria occurred, whereas at least one further gene transfer be-
tween both bacterial clades must have emerged after the initial transmission.
Even then, a simple gene loss scenario after a common ancestor received the
archaeal gene, may not be the most parsimonious explanation, because only
a small fraction of all Actinomycetales included in this study seem to be
affected. No single Streptomyces species, nor Corynebacterineae (compris-
ing Mycobacterium, Corynebacterium, Rhodococcus, and Nocardia) share the
archaeal Valyl tRNA synthetase gene. Nevertheless, the archaeal version is
also found in Bifidobacterium longum, which belongs to a sister group of
Actinomycetales, namely the Bifidobacteriales.
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At least, human pathogens (7. whipplei, and P. acnes) and commensals
(B. longum) within the phylum Actinobacteria share a common habitat,
the human body. These microbes may occasionally meet in the same host,
and perhaps, may have had the chance to share genes in an ancestor of our
species, a long time ago. This may also explain the clustering with Rick-
ettsiales, since this group also includes many human and animal parasites.

The concerned Bacterial clades both group with Thermoplasmatales
(Thermoplasma acidophilum, T. volcanium, and Picrophilus torridus), and
two Halobacteria (Haloquadratum walsbyi, and Haloarcula marismortui),
showing 100% bootstrap support for this cluster. These Euryarchaeota
occupy rather extreme habitats, like hydrothermal vents (7. wolcanium),
salterns or even the Dead Sea (H. marismortui). Despite being well sup-
ported by the clustering, these organisms may not be the most likely donors,
considering that most of the concerned Bacteria are animal parasites or
commensals. Among Euryarchaeota, other possible donor candidates may
be found within Methanobacteria, since this phylum includes many inhabi-
tants of the human gastrointestinal tract (Gregory|2005, p. 613), like, e.g.,
Methanobrevibacter smithii (Huson et al.|2009).

In Appendix (p. , two Archaeal consensus networks of a previ-
ous study are illustrated (Figures and . Both networks show a high
amount of uncertainty in reconstruction of the branching order of archaeal
clades. Interestingly, that uncertainty is even present in the most conserved
and least conflicting genes (Figure . Difficulties in the reconstruction of
archaeal branching orders have been also experienced by other workgroups
(Soria-Carrasco and Castresanal |2008]), in particular regarding the place-
ment of Thermoplasmatales and Halobacteria (Gophna et al.[2005). Thus,
alternatives to the observed clustering may also be possible.

Threonyl tRNA synthetase

For the gene of Threonyl tRNA synthetase, two hypothetical HGT events
were detected. An inter-domain transfer from Bacteria to the Archaeon
Aeropyrum perniz could be observed, which is in agreement with the findings
of [Farahi et al.| (2004).

Furthermore, the Cyanobacterium Prochlorococcus marinus strain CCMP-
1375 seems to have aquired the Threonyl tRNA synthetase gene from Pro-
teobacteria. This is a well-known example of HGT that seems to affect many
P. marinus strains (Luque et al.|2008; |Zhaxybayeva et al.|20006).

GTP-binding protein, YchF family

The YchF family represents a group of conserved, hypothetical proteins
that contain a GTP-binding domain. Recent studies indicate that this is
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Figure 3.10: Section of the Valyl tRNA synthetase tree showing the position
of certain Rickettsiales and Actinobacteria within the Archaeal clade.
The figure was created using Dendroscope (Huson et al.[2007c).
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an ubiquituous protein functioning as a GTP-dependent translation factor
(Galperin and Koonin|[2004; |(Caldon et al.[2001]).

The YchF gene is often used to infer a species phylogeny based on super-
matrix approaches (e.g., Bapteste et al. [2008; Marri et al. 2007; Ciccarelli
et al. 2006, equates to COG0012). Anyhow, in current literature, no infor-
mation could be found that confirms our findings.

Missed events

Kanhere and Vingron| (2009)) tested the Cook’s distance using a dataset of
Aminoacyl tRNA synthetases by comparing the results against well-known
cases of HGT (Kanhere and Vingron| 2009, Table 1). In addition to the
events described here, they could detect the transfer of Phenylalanyl tRNA
synthetase from Archaea to Spirochaetes. This HGT event was previously
described by Woese et al.| (2000) for both, a and # subunit of this protein.

In our data, the gene trees for both subunits clearly show these events,
consequently leading to the detection of this event by the topological method,
as well as by the Cook’s distance. However, the ParaFit p-value obviously
was below the threshold (p = 0.001 for Treponema pallidum and T. denti-
cola).

3.4 Conclusions

We downloaded gene sequences of 279 prokaryotic organisms and tried to
find a common set of genes that can be used for phylogenetic inference. Due
to the application of a strict protocol to remove paralogs and the requirement
that each gene has to be present in all included genomes, only a small set of
17 common genes could be detected unequivocally, consisting mostly of genes
coding tRNA synthetases and ribosomal proteins. Individual gene sequences
were aligned and afterwards filtered by applying Gblocks. We tested the
effect of alignment filtering by comparing both, trees based on filtering,
as well as trees based on the original alignments, to the NCBI taxonomy.
Generally speaking, it could be shown that the pruning process resulted in
trees that were more distant to the NCBI taxonomy. We suppose that this
is an indication that the Maximum Likelihood reconstruction method is able
to extract information even from poorly aligned sites, an observation also
reported by Talavera and Castresana; (2007).

Inferred trees were compared to a species tree derived by concatenating
all single gene alignments into a supermatrix, and to the NCBI taxonomy. A
considerable agreement between single gene trees and the NCBI taxonomy
could be observed, as well as between the unconstrained supermatrix tree
and the NCBI taxonomy. Considering that the NCBI taxonomy is broadly
based on 16S rRNA trees, this indicates the presence of a strong coherent
phylogenetic signal in all genes. With exception of the T-IF 2 gene, the
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Threonyl-tRNA synthetase

BML MLNC
Recipient Donor clade rank AxParafit CDISS AxParafit CDISS
p-value p-value
Aeropyrum pernix Proteobacteria phylum 1 + 0.999 +
Prochlorococcus marinus CCMP1375 1 Proteobacteria phylum 0.958 + 0.966 —
GTP-binding protein, YchF family
BML MLNC
Recipient Donor clade rank AxParafit CDISS AxParafit CDISS
p-value p-value
Moorella thermoacetica ATCC 39073 Proteobacteria phylum 0.108 + 0.102 —
Syntrophomonas wolfei Goettingen Proteobacteria phylum 0.099 + 0.096 +
Thermotoga maritima Proteobacteria phylum 0.060 + 0.056 +
Valyl-tRNA synthetase
BML MLNC
Recipient Donor clade rank AxParafit CDISS AxParafit CDISS
p-value p-value
Anaplasma marginale St Maries Euryarchaeota phylum 0.224 + 0.189 +
Anaplasma phagocytophilum HZ Euryarchaeota phylum 0.210 + 0.199 +
Ehrlichia canis Jake Euryarchaeota phylum 0.175 —+ 0.142 —+
Ehrlichia chaffeensis Arkansas Euryarchaeota phylum 0.180 + 0.170 +
Ehrlichia ruminantium Gardel Euryarchaeota phylum 0.187 + 0.143 +
Neorickettsia sennetsu Miyayama Euryarchaeota phylum 0.753 + 0.729 +
Rickettsia bellis RML369-C Euryarchaeota phylum 0.371 + 0.264 +
Rickettsia conorii Euryarchaeota phylum 0.400 + 0.289 +
Rickettsia felis URRWXCal2 Euryarchaeota phylum 0.394 + 0.284 +
Rickettsia prowazekii Euryarchaeota phylum 0.410 + 0.301 +
Rickettsia typhi wilmington Euryarchaeota phylum 0.435 + 0.300 +
Wolbachia endosymbiont of Brugia malayi TRS Euryarchaeota phylum 0.226 + 0.224 +
Wolbachia endosymbiont of Drosophila melanogaster Euryarchaeota phylum 0.249 + 0.214 +
Bifidobacterium longum * Euryarchaeota phylum 0.020 + 0.053 +
Propionibacterium acnes KPA171202 * Euryarchaeota phylum 0.018 + 0.065 +
Tropheryma whipplei TWO08/27 = Euryarchaeota phylum 0.023 + 0.091 +
Frankia alni ACN14a * Euryarchaeota phylum 0.007 + 0.05 +
Leifsonia zyli zyli CTCBO * Euryarchaeota phylum 0.016 + 0.04 +
Thermobifida fusca YX * Euryarchaeota phylum 0.018 + 0.04 +

Table 3.8: Hypothetical HGT events detected by all three methods. A 7+4“
in the CDISS column means that the corresponding CDISS value was above

the HGT detection threshold.

1+ HGT events that were not detected when using the MLNC reference tree
(constrained by the NCBI taxonomy).

x HGT events that were not detected when using the best ML tree.
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supermatrix tree had a higher resemblance to the NCBI taxonomy than any
other single gene tree. Given that vertical inheritance overweights any other
signal, this shows that the supermatrix method can even be used when there
is a distinct amount of disagreement between single gene trees. This finding
is endorsed by the fact that more than 75% of predicted HGT occurrences
could be found using the NCBI-constrained, as well as the unconstrained
reference tree.

The amount of disagreement that may be caused by horizontal gene
transfer (i.e., the proportion of leaves affected by HGT) was analyzed by
applying three different methods. We used the Cook’s distance (CDISS)
introduced by Kanhere and Vingron (2009), as well as a statistical test for
host-parasite cophylogeny (Legendre et al. 2002)). Additionally, a method
based on the comparison of single gene trees with a taxonomy was developed
by our group, that directly analyzes clades defined by the topology of an
individual gene tree. The method was tested using the NCBI taxonomy.

Interestingly, there was a high number of predicted occurrences by the
different methods, ranging from 250 to more than 500 hypothetical occur-
rences of HGT over all 17 genes, whereas the overlap between all three tests
was restricted to 19 occurrences only. Most of these common occurrences
were observed for the gene of Valyl tRNA synthetase and are well estab-
lished in current literature. In contrast, no indication could be found for
two hypothetical HGT events predicted for the ychF gene. But overall, we
could show that the intersection between all three methods produces a ro-
bust set of HGT candidates. This observation could be made with both, the
unconstrained as well as the NCBI-constrained reference tree based on the
supermatrix of all genes.

By restricting the analysis to a common, and thus, essential set of genes,
only xenologous gene displacements (XGD) can be recognized, which involve
HGT on the one hand, and loss of the original gene on the other hand.
Thus, XGD may be less frequent than the adoption and retention of a new
gene by an organism (Koonin and Wolf |2008). Additionally, the complexity
hypothesis as postulated by |Jain et al.| (1999) predicates that informational
genes, whose products are involved in many complex interactions with other
proteins, are less frequently transferred as, e.g., metabolic genes. Although
assigned to the group of informational genes, tRNA synthetases only interact
with a narrow area of the ribosome and also show a substantial pattern of
HGT (Woese et al. |2000; Woese 2002; (O’Donoghue and Luthey-Schulten
2003; Farahi et al.|2004; Beiko et al.[2005]). But even ribosomal proteins are
occasionally affected by HGT (Koonin and Wolf|2008]), and so far, there is
no evidence for an absolutely untransferable gene (Sorek et al. 2007). Yet it
remains controversial whether informational genes are less affected by HGT
than operational genes, as predicted by the complexity hypothesis (Kanhere
and Vingron/2009; [Koonin and Wolf| 2008} |(Choi and Kim|2007; [Beiko et al.
2005; Nakamura et al. 2004). Therefore, the number of occurrences may
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reflect the real amount of genes that were affected by HGT in this set, even
when considering that the composite of all three methods contains more
than 500 possible occurrences. This high amount of predicted occurences
may coincide with the findings of other groups (Woese||2002; |Zhaxybayeva,
et al.|[2006; [Dagan and Martin|[2007; Dagan et al.|2008)).

On the other hand, there also exist methodological biases that may lead
to the detection of spurious incidents. The Cook’s distance (CDISS) was
invented to detect outliers in a correlation based on linear regression (Cook
1979). Thus, a linear relation between gene and species distances is an
important precondition for the application of this method. Consequently,
Kanhere and Vingron (2009) explicate that protein families evolving at in-
constant rates cannot be analyzed using the Cook’s distance method. Hence,
genes showing a considerable fraction of heterotachous sites may lead to the
detection of outliers that are wrongly considered as candidates for HGT.
Such occurrences of accelerated evolutionary rates for translational proteins
are known for certain taxa and can arise by adaptation to an extreme en-
vironment (Cavalier-Smith 2002)). But, considering the presence of long
branches between clades, a large amount of outliers may also lead to a
decrease of the Cook’s distance when the Mean squared error grows (see
Equation 2 in Kanhere and Vingron|2009).

Strikingly, there is a negative correlation between ML-conflict and the
amount of observed HGT using the CDISS method. On the whole, this
means that a lower amount of HGT is detected in trees showing a larger
disagreement with the reference tree, and vice versa. A positive correlation
between ML-conflict and CDISS HGT counts could only be achieved using
a reduced cut-off value of % or below (see Figures and . But
lowering the threshold leads to a considerable increase of HGT counts, and
unavoidably, to an increase in the rate of false positives. We assume that
the negative correlation indicates that the CDISS measure seems to be more
affected by the presence of heterotachous sites than the ParaFit method,
precisely because the former method is developed to detect outliers.

When regarding the AxParafit results, it has to be considered that the
AxParafit method may miss HGT occurrences when a whole clade of a
considerable size may be misplaced, but the topology of the clade’s subtree
resembles the equivalent subtree in the reference tree. In that case, some,
if not all, of the concerned taxa may significantly contribute to the overall
cophylogenetic structure, even if the position of the whole clade deviates
from the reference. But this is an assumption that has to be tested yet
by conducting a simulation study. Furthermore, since AxParafit focuses
on distances rather than tree-topology, non-proportional deviations of edge
lengths between gene and species tree may also affect the outcome. One
potential source of such deviations may be Heterotachy. Certainly, as a
result of the high correlation between ML-conflict and AxParafit’s HGT
counts (rps > 0.9), we conclude that the influence of heterotachy to the



3.4 Conclusions

95

outcome of the AxParafit-based HGT detection method is considerably
lower, compared to the CDISS method’s results.

Nonetheless, the correlation between ML-conflict and AxParafit results
indicates that AxParafit can be used to detect taxa that negatively affect
congruence between gene and species tree. A taxon missing significance for
cophylogenetic association thus may be a reasonable candidate for HGT.

The significance threshold was determined by optimizing correlation be-
tween determined HGT counts and ML-conflict. A threshold of a = 0.025
was found to be optimal using the Pearson correlation coefficient. Using
Kendall’s 7, an @ = 0.02 performed slightly, but insignificantly better, al-
lowing us to propose a threshold of 0.025 that is in a typical range for
a significance threshold in applied statistics. However, the null hypothe-
sis of the AxParafit test states that there does not exist a cophylogenetic
structure between an individual gene and its organism, represented by the
corresponding taxon in the reference tree. Hence, the concerned leaf is con-
sidered to be a candidate for HGT if the null hypothesis cannot be rejected.
The statistical power of the test is defined as the rate of correct rejections
of the null hypothesis when the very same is wrong. Correspondingly, a
high power of the AxParafit test indicates a low amount of false positives
in HGT detection. Thus, the statistical power is a crucial measure of the
suitability of this test for HGT detection.

Legendre et al. (2002)) conducted several simulation studies to determine
the power of the ParaFit test. In one test, trees were generated that share
a common part, whereas the remaining taxa were placed differently. This
scenario resembles the empirical situation when a large part of the tree shows
a pattern similar to the reference tree, while some taxa deviate due to HGT.
In that case, results of Legendre et al.| (2002)) indicate that the statistical
power mainly depends on the fraction of species showing a cophylogenetic
structure. The c-score measure clearly shows that the gene trees are mostly
in agreement with the reference tree represented by the NCBI taxonomy
(see Table page [75)). Hence, it can be assumed that the cophylogenetic
structure is prevailing in all gene trees. But the ParaFit test itself provides a
well-suited method to clarify whether the fraction of cophylogenetic species
is adequate: the global significance test for cophylogeny. Consequently, if the
global test shows a significant cophylogenetic structure between gene tree
and reference tree, the individual tests should provide sufficient statistical
power to ensure a low rate of false positives in HGT detection. Using our
empirical dataset, all global tests were significant using a = 0.01, which
corroborates our conclusion based on the gene trees’ c-scores.

In addition to these two distance-based methods, we proposed an ap-
proach depending on the comparison between a gene tree and a taxonomy.
For each taxonomic group, a corresponding clade in the gene tree is located.
Taxa that are not correctly placed in the associated clade are identified
as potential HGT candidates. Thus, clade identification is the most crucial
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part of the algorithm, which we tried to accomplish by searching a node that
provides the best balance between clade tightness and completeness. Like-
wise, quality of the taxonomic source affects the outcome of the algorithm,
considering that taxonomic ranks are, at least to some level, arbitrary, and
undergo frequent modifications and refinements. This may also explain that
correlations between ML-conflict and HGT counts were considerably lower
than results obtained by using ParaFit, while they were noticeably better
than those of the CDISS method. Furthermore, the method is focused on
tree topology, whereas edge lengths are not considered. Nevertheless, re-
stricting the HGT search process to the tree topology has its strength, since
the method is not affected by branch length differences, possibly caused by
heterotachy. At least, this is valid as long as the underlying tree reconstruc-
tion method is unsusceptible against heterotachy. Of course, distance-based
methods suffer from such differences, which makes this a prominent feature
of topology-based methods. While this omits detection of false positives due
to heterotachy, there exist candidates for false negatives that are not easily
mastered. Taxa that could not be successfully assigned to a specific clade,
e.g., due to polytomies, are simply overlooked by the current implementa-
tion.

Consequently, future work has to be focused in refining this selection
process to avoid both, the detection of false positives and the oversight of
HGT events. Furthermore, combination of the topological method with a
statistical method like ParaFit may also be a possibility to enhance accur-
racy of our HGT detection method, considering the overlap between both
methods. On the one hand, this omits susceptibility to heterotachy, while
on the other hand, it allows to compensate for ambiguous taxon classifica-
tion due to polytomies. Moreover, run time efficient implementations of the
ParaFit algorithm are available (Stamatakis et al.|[2007; |Stockinger et al.
2009), whereas the topology-based method is computationally undemand-
ing.



Chapter 4

Cophylogenetic studies

4.1 Introduction

4.1.1 Biological background
Terminology

In phylogeny, extant species are treated as independent entities. While try-
ing to reconstruct relationships between species based on common ancestry,
dependencies between communities of species are only regarded in the light
of horizontal gene transfer. However, in nature, organisms are embedded
in a tight web of dependencies with cohabiting life-forms and their environ-
ment, thus forming an ecosystem. Such dependencies are: the food chain,
host and parasite, as well as commensal or symbiotic relationships. It can be
assumed that evolutionary forces shaping one species will also affect other
species that are either directly coupled as, e.g., in a predator-prey or host-
parasite relationship, or due to intermediate factors like the competition for
shared resources. Consequently, such mutual evolutionary dependencies can
be described as coevolution. More precisely, coevolution is a process of mu-
tual influence between participating species, where one change in a species
induces changes in another species, which eventually causes the first species
to adapt again to the changed environment (Janzen|1985)), thus depicting a
recurring scheme.

A related concept is cospeciation, denoting “the joint speciation of two
or more lineages that are ecologically associated” (Page [2003)). It has to
be considered that there is no perfect accordance between these two terms
(Goker|2003). On the one hand, coevolution does not necessarily involve spe-
ciation, and thus, cospeciation. On the other hand, joint speciation of two
lineages may be driven by other processes like, e.g., genetic drift of a host’s
immunity gene leading to unilateral adaptational pressure on the parasite.
Unfortunately, both concepts are not deducible by phylogenetic methods,
since an actual mutual evolutionary dependency or an ecological association
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cannot be verified in this way (Goker||2003). When using phylogenies, his-
torical dependencies of speciations cannot be established. Host speciation
followed by colonization of host species by a parasite that quickly adapts
to the different hosts may lead to congruent host and parasite phylogenies,
while not actually depicting a cospeciation event. In contrast, cospecia-
tion should induce a congruent phylogeny, i.e., a cophylogenetic structure.
Thus the lack of cophylogenetic structure may be seen as contradicting a
cospeciation hypothesis.

Consequently, we use the term “cophylogeny” instead of “cospeciation”
in the following, when referring to congruent phylogenies.

Historical associations between hosts and parasites

In the broader sense, historical associations between entities in biology can
be classified into the following groups (Page and Charleston 1998)): organ-
isms and organisms, like hosts and parasites; genes and organisms, e.g.,
when looking for deviations between gene and species phylogenies (see Sec-
tion p- ; and organisms and areas (Biogeography and Paleobio-
geography). All three can be described analogously, since there is a direct
correspondence. Hence, in the following, the terms host and parasite also
represent the associations between organisms and their genes, as well as
between areas and their inhabitants.

Associations between hosts and their parasites may change during time.
These changes basically can be modeled by four events (see Figure :

e (ospeciation. Host speciation is closely followed by speciation of the
parasite.

e Duplication. Speciation of the parasite only, without a corresponding
cladogenesis concerning the host.

e Lineage sorting. Extinction of the parasite while the host persists.
This is in contrast to extinction of the host, which also leads either to
extinction of the parasite, or host switching (see below).

e Host switching. The parasite colonizes a new host species, while either
leaving the original host (complete host switching) or colonizing both,
the old as well as the new host (partial host switching). Complete
host switching is a particular case of partial host switching followed
by extinction in the old host.

It is assumed that cospeciation may be the predominant factor shaping
the history of host-parasite associations (Fahrenholz’ rule, see Eichler|[1948)).
But to date, this rule could not be thoroughly investigated by conducting
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large-scale studies of host-parasite associations covering major phyla. Co-
evolution and cospeciation are not directly approachable by using cophyloge-
netic methods, but a falsification of the Fahrenholz rule may be contrivable
if there is no evidence for cophylogenetic structure in a large-scale analysis.

In recent years, many phylogenetic reconstruction tools were developed
that are performant and adequately parallelized to be used with large datasets
(see, e.g., Stamatakis| 2006b; Stamatakis et al.|2008), whereas there was no
such tool for computational analysis of cophylogenetic relationships. Ac-
cordingly, our objective was to provide computational tools making large-
scale cophylogenetic analyses feasible.

Cospeciation Duplication

erezx
Figure 4.1: Four basic kinds of events that may occur during the history
of host-parasite associations: cospeciation, duplication, lineage sorting and

host switching. A thorough model can be found in Begerow et al.| (2004}
Fig. 2).
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4.1.2 Technical background
Computational methods for host-parasite cophylogenies

Though it seems feasible to compare small host and parasite phylogenies
by hand, computational methods are needed to study deep cophylogenetic
relationships comprising many different families, orders, or even phyla. A
plenitude of such computational methods exist, of which the best-known
methods are described in the following (see also reviews in Stevens| 2004}
Charleston and Perkins 20006).

One of the oldest and most known methods is the Brooks Parsimony
(BPA, |Brooks||1981; 1990)). Here, the nodes of the parasite tree are coded as
a binary matrix representation (see Felsenstein|[2004, p. 541 for an example).
Afterwards, the characters of the matrix are reconstructed on the host tree
by parsimony, allowing to optimize the host tree in the light of parasite
phylogeny. Other parsimony approaches use an event cost model, which is
based on assigning a cost value to each possible event affecting historical
host-parasite associations (see Figure , as implemented in TreeFitter
(Ronquist|[2001)).

Another popular group of algorithms depend on reconciled tree analysis.
The main idea behind tree reconciliation is to reconcile several incongruent
trees into a tree showing a minimum of conflict. Several different heuristics
exist to address this time-consuming problem. Common implementations
are Component (Page|1990), TreeMap (Charleston|1998; Charleston and Page
2002)), and Tarzan (Merkle and Middendorf [2005).

Furthermore, statistical frameworks are available to test for congruence
of host and parasite phylogenies, which are based on Maximum likelihood
(Huelsenbeck et al.|[1997), or Bayesian analysis (Huelsenbeck et al. [2000).
But these tests are specifically designed to handle bijective relations only.
Here, bijectivity means that one-to-one associations are merely allowed, i.e.,
each parasite can only be associated to a single host, and vice versa.

Fast methods for tree comparison, like I¢ong (de Vienne et al.2007) are
also limited to bijective associations between parasite and host taxa.

However, all of these methods are not applicable to large-scale cophylo-
genetic datasets, due to memory consumption or run time considerations,
due to the fact that their statistical properties are simply unknown in these
circumstances (Stamatakis et al. [2007; [Stockinger et al.|2009)), or because
they do not support multiple associations between the same parasite and
different hosts, or vice versa. KEspecially the latter restriction diminishes
practicability of these method, since associations of parasites that can col-
onize a multitude of hosts become hard to model. For example, approxi-
mately 45% of european smut fungi are known to colonize more than a single
host species (Begerow et al.|2004), which underlines that allowing bijective
associations only, is a severe limitation for large-scale empirical studies.
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In contrast to the aforementioned methods, ParaFit (Legendre et al.
2002) is explicitly designed to allow for parasites colonizing several host
species, or for hosts that are colonized by more than one parasite species.
ParaFit has been successfully applied in several empirical studies (Hansen
et al.|2003; Ricklefs et al.|2004; Meinila et al.|[2004; [Refrégier et al. 2008;
Garamszegi [2009). Furthermore, the method’s statistical properties were
thoroughly tested in several simulation studies. |Legendre et al.| (2002)
showed that the ParaFit test yields acceptable rates for type I and type
IT errors. Furthermore, they demonstrated that the power of the test (1 -
type II error rate) increases with the size of the dataset, which makes this
tool well-suited for large-scale analyses.

Therefore, we decided to focus on the ParaFit algorithm, which is out-
lined in the next section.

Description of the Parafit test

Legendre et al| (2002)) introduced ParaFit, a program that implements a
statistical test for host-parasite cophylogeny. The null hypothesis of the
statistical test is that the evolution represented by the corresponding phy-
logenies of hosts and parasites has been independent.

Prior to conducting the ParaFit test, phylogenies have to be transformed
into distance matrices, either based on patristic distances or topological dis-
tances. Patristic distances simply reflect the sum of all edge lengths of the
path between two taxa (e.g., see distance matrices in Figure . When
using topological distances, all edge lengths are set to 1, so that the corre-
sponding patristic distance matrix reflects tree topology only. Additionally,
genetic distances can also directly be used with ParaFit.

Before the ParaFit test is conducted, host and parasite distance ma-
trices have to be transformed into rectangular matrices by Principal Co-
ordinate Analysis (PCoA, see Legendre and Legendre||1998, p. 424-426).
This also reduces the size of the matrices, which leads to reduced space and
run time demands of the subsequent ParaFit analysis. In contrast to the
widely known Principal Component Analysis, PCoA can also be applied to
distances derived from semi-quantitative variables (Legendre and Legendre
1998, p. 388), such as topological distances based on taxonomical rankings.
An implementation of the PCoA algorithm called DistPCoA is provided by
Legendre and Anderson| (1998).

After providing host and parasite principal coordinate matrices, as well
as a 0-1 encoded association matrix (comparable to an adjacency matrix)
representing the host-parasite associations (see Figure , the ParaFit
test can be performed. It consists of two matrix multiplications to obtain
the fourth-corner parameters (Legendre et al.|2002; |Legendre and Legendre
1998, p. 565-574) between host and parasite phylogenies. The new matrix
simply is a cross-product of the principal coordinate matrices weighted by
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Parasite tree Host tree

P4 ..........I ...... H4
P1 P2 P3 P4 H1 H2 H3 H4 H1 H2 H3 H4
P10 2 4 4 P1 1 0 O 0 H 0 2 3 5
P2 0 4 4 P2 0 1 0 0 H2 0 3 5
P3 0 2 P83 0 0 1 O H3 0 4
P4 0 P4 0 O 1 1 H4 0
Parasite distance matrix Association matrix Host distance matrix

Figure 4.2: Data preparation steps for a ParaFit run. Phylogenetic trees of
hosts and parasites are converted to patristic distance matrices, whereas the
associations are coded into a 0-1 matrix, analogous to an adjacency matrix.
Drawing corresponds to |Legendre et al.| (2002, Figure 1).
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the corresponding association matrix. It can further be converted into a
single value by taking the sum of squares of the matrix values, which is
referred to as ParafitGlobal (Legendre et al.2002). The ParafitGlobal
value gets larger in case of higher congruence between the trees, given the
associations. Additionally, for each host-parasite association, its contribu-
tion to the ParafitGlobal value can be calculated by removing the asso-
ciation and re-calculating ParafitGlobal. This allows to obtain a value
describing the individual contribution of the corresponding association to
the global value (named ParafitLink1 and ParafitLink2, whereas the lat-
ter is scaled appropriately). The test is then repeated by permuting the
values within each row of the association matrix, resulting in an estimate
of the distribution of the ParafitGlobal value. Permuting the associa-
tion matrix leads to randomized associations, allowing to test whether the
original ParafitGlobal is significantly better than values obtained from
random associations. Eventually, the fraction of all values that are larger
than the original ParafitGlobal is determined, which can be interpreted
as the p-value of the statistical test under the null hypothesis (stating that
both phylogenies are independent). Thus, if the original ParafitGlobal
value is larger than or equal to 1 — « of the obtained values (e.g., 99% for
a = 0.01), the null hypothesis is rejected. Likewise, individual significances
are calculated by obtaining estimates of the distributions of ParafitLink1
and ParafitLink2.

Since ParaFit does not allow to provide taxon names with the input
distance matrices, its output consists of a list of associations, having the
taxa labelled in input order (e.g., “Host 1”7, “Parasite 1”7). These labels
have to be mapped by hand to the corresponding host and parasite, which
constitutes a rather error-prone procedure. In addition, ParaFit only pro-
vides a basic console menu complicating the handling for users. Hence, we
decided to develop an easy-to-use graphical frontend (named CopyCat, see
Meier-Kolthoff et al.|2007)) that allows biologists to prepare their data in a
convenient way, and to conduct the analysis in a user-friendly manner. Fur-
thermore, the application to large-scale datasets required optimizations of
the ParaFit and DistPCoA programs, including adaptation to Cluster and
Grid environments (see |Stockinger|[2006; 2007}, for an introduction into this
topic).

4.2 Methods

4.2.1 Large-scale cophylogenetic studies with CopyCat

As outlined in the previous Section, we decided to design an easy-to-use
graphical frontend on top of the command line applications ParaFit and
DistPCoA, which we named CopyCat (Meier-Kolthoff et al.2007).
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For a typical cophylogenetic analysis using ParaFit, the user has to pre-
pare three different matrices (see Figure . These are the host and para-
site distance matrices, as well as the association matrix. The first two can be
obtained either by directly using genetic distances or by computing patristic
distances from a phylogenetic tree. In many cases, tree inference is done by
collecting specific marker sequences, aligning them into a Multiple Sequence
Alignment, and applying a tree reconstruction algorithm. Frequently used
markers are 16S rTRNA (Woese| 1987)), ITS (Internal Transcribed Spacer,
Goker et al.|[2009)), and ribosomal proteins (Henz et al.[2004).

However, the necessity to provide phylogenetic data for a set of asso-
ciated hosts and parasites may constitute an obstacle to the scientist who
may be primarily engaged in gathering the available association data. In
practice, collecting all sequences needed to infer a host or parasite tree can
be a rather challenging, error-prone, and above all, time consuming task.
CopyCat greatly reduces workload by offering the option to derive host and
parasite distances from taxonomical data based on the NCBI taxonomy
(NCBI|[2009¢|). The user can decide to provide a distance matrix, a phyloge-
netic tree, which is automatically converted to a patristic distance matrix,
or whether distances shall be inferred from taxonomical information.

In the latter case, the user only has to prepare the association file, which
can be provided as a simple adjacency list containing the scientific names of
associated host and parasite species. CopyCat tries to match these names
by comparing them to the NCBI taxonomy (NCBI 2009¢c|). Non-matchable
entries are highlighted so that the user can change those and re-run the
matching process. Additionally, a NCBI taxon ID can also be specified
directly. To support the handling of large datasets, identified taxa can be
filtered by narrowing them to certain systematic divisions as defined by
the NCBI (like Bacteria, Invertebrates, Mammals etc.), or by performing a
taxonomic reduction to genera or families (see Figure . Afterwards, a
taxonomic tree is generated comprising all selected taxa.

However, taxonomical trees mostly contain polytomies, in contrast to bi-
nary trees as obtained by using phylogenetic tree reconstruction algorithms.
Since this may influence the outcome of a ParaFit analysis, CopyCat com-
putes several tree statistics prior to conducting the time-consuming analysis,
allowing the user to decide whether it is necessary to further improve taxon
sampling. These statistics comprise tree resolution and balance (Colless
1982), cherry count (McKenzie and Steel |2000) and cladistic information
content (Thorley and Page|2000). Furthermore, to reduce bias in taxon
sampling, CopyCat implements a model based on the broken stick distri-
bution (Legendre and Legendre| 1998, p. 244) to detect species that are
over-represented in respect of the proportion of associations in the dataset.

After filtering, CopyCat automatically invokes DistPCoA (or AxPcoords,
see Section , which computes the principal coordinates of the distance
matrices. The user can then decide to either invoke ParaFit (or AxParafit)
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on the local machine, or whether CopyCat shall generate a zip file containing
all necessary files to start the analysis on a remote machine.

Eventually, CopyCat merges the ParaFit output with the original taxon
names, and displays the associations together with the corresponding sig-
nificance values. Significant associations are highlighted in compliance to a
threshold, which can be altered by the user (see Figure .

CopyCat was developed in Java using the highly performant SWT Ili-
brary (Standard Widget Toolkit) as graphics engine (see, e.g., Guojie 2005)).
Versions for Linux, Windows and MacOS are provided at http://www-
ab.informatik.uni-tuebingen.de/software/copycat. Use of the program is
free for academic purposes.

4.2.2 AxParafit and AxPcoords

As a first step prior to conducting large-scale cophylogenetic studies, we es-
tablished CopyCat as a user-friendly frontend for the command line driven
tools DistPCoA and ParaFit. As described above, CopyCat also allows to
automatically infer distances between hosts and parasites by using taxo-
nomical data. This simplification should not be underestimated, since it
relieves the user from the burden to collect marker sequences for inferring
trees, which becomes unfeasible for large taxon sets.

After establishing adequate prerequisites, we focussed our work on per-
formance improvements of DistPCoA and ParaFit, since the execution time
of those applications dominates the overall runtime of the CopyCat anal-
ysis pipeline. As a first step, the original Fortran sources were ported to
C. The code was carefully optimized with regard to runtime and memory
consumption (for details, see Stamatakis et al.[2007]).

A considerable performance improvement was accomplished by using
highly optimized matrix multiplication routines from the |BLAS| (Basic Lin-
ear Algebra Package) library, and eigenvector/eigenvalue decomposition rou-
tines from the LAPACK (Linear Algebra PACKage) library. For this pur-
pose, processor-independent implementations of BLAS and LAPACK were
used, in particular the ATLAS Library (Whaley and Petitet |2005) and the
GNU scientific Library (GSL|). Furthermore, specifically optimized versions
of BLAS and LAPACK for AMD and Intel processors were incorporated
and evaluated in regard to potential runtime benefits. Namely, these were
the AMD Core Math Library (ACML])), as well as the Intel Math Kernel
Library (MKL), which both are freely available for academic use. Using the
LAPACK routines lead not only to considerable runtime improvements but
also to improved numerical stability compared to the original implementa-
tion (Stamatakis et al.[2007)).

While AxParafit and AxPcoords are specifically designed to interact
with CopyCat, they can also be used independently. Both programs provide
command line options, which are mostly equivalent to the functionality of
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Fle View Options Setup Help
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INFO: Successfully resolved associations-list!

INFO: Association list successfully written to file: Brandenburger_Oomycetes.tit_resolved.txt
INFO: Parasites taxa list successfully written to file: parasites.txt

INFO: Hosts taxa list successfully written to file: hosts bt

INFO: Successfully filtered association filel|
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Figure 4.3: Screenshots showing the two configuration tabs of the CopyCat
main window.
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Parafit results (significant links are coloured grey, else remain white)

parasite host probl value prob2 value

Plasmopara_4780 Epilobium_13054 0.90909 0.80809
Plasmopara_4780 Geranium_4028 0.93939 093839

Plasmopara_4780 Vitis_3603 0.21212 0.21212
Pseudoperonospora_143452 Urtica_3500 | 0.74747 0.74747
Pseudoperonospora_143452 Humulus_3484 0.80808 0.80808
Pseudoperonospora 143452 Cucumis_3655 0.77778 0.77778

The pre-defined value of significance:

( 0.02]

Result: Overall cophylogenetic structure is highly significant: 0.01010=0.02 (sig.val.). 103 links (out of 185} :

[ dump results to working dirE::tryI

Figure 4.4: Screenshot of the CopyCat dialog window depicting the results
of a Parafit run. Significant links are grey while insignificant links are drawn
in white.
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ParaFit’s and DistPCoA’s text mode menu. AxParafit and AxPcoords
can be downloaded from the |CopyCat homepage together with the current
CopyCat version (Meier-Kolthoff et al.2007)). Sources are freely available
from |http:/ /icwww.epfl.ch/ stamatak /AxParafit.html.

4.2.3 Parallelized AxParafit

While AxPcoords needs less than 24 hours on a single AMD 2.4 GHz Opteron
CPU even for large matrices with several thousands of taxa, AxParafit’s
runtime demands required a parallelization of the most time-consuming
steps. Let Ao denote the number of non-zero elements in the associa-
tion matrix, i.e. the number of associations. Further, let ¢ be the number of
iterations AxParafit has to perform (alterable by the user, usually between
100 to 10,000), and m be the time complexity of AxParafit’s main compu-
tational step, a dense matrix multiplication (see Legendre et al.[2002; [Sta-
matakis et al.|2007)). Considering that the matrix dimensions’ upper bound
is n with n denoting the number of hosts/parasites, m is roughly O(n?).
Moreover, the time complexity of AxParafit’s global test is approximately
O(mi), which is also the time complexity of a single test of an individual
association (Stamatakis et al.|[2007). Since there are A associations, the
overall time complexity is O(Aomi).

It can be assumed that Ao will be huge when using large-scale datasets.
At least, it will be greater than or equal to n. For this reason, we decided
to parallelize the computation of individual tests, which depicts the most
time-consuming part of the analysis (Stamatakis et al.[2007). The ParaFit
test is an “embarassingly parallel” problem (Stockinger et al.[|2009)), since
calculation of individual tests can be done independently without any com-
munication between concurrent worker tasks. Accordingly, parallelization
was accomplished by using a straight-forward master-worker scheme, based
on the MPI API (Message Passing Interface, see |Gropp et al.|1999).

Ideally, up to Ay single worker tasks can be distributed and simul-
taneously executed. Together with the fine-grained parallelization of the
ACML and MKL libraries, a maximum benefit can be achieved in a Cluster
environment consisting of multicore machines.

4.2.4 Grid-enabled CopyCat and AxParafit
Grid Computing

Current advances in physics and life sciences increasingly require compu-
tational resources that exceed the capacity of single workstations. For a
certain time, this could be handled in an inexpensive way, at least com-
pared to maintaining supercomputers, by assembling Clusters of standard
PCs or blade systems. Certainly, this approach remains limited to the re-
sources of a single facility. However, growing demands for computing power
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led to the development of several Grid frameworks, which allow to utilize
several Clusters from one or more facilities as one large decentralized sys-
tem. The term “Grid Computing” was coined in analogy to the power grid,
which provides easy access to electric power for everyone (Foster et al.[2001)).
Correspondingly, the ambitious goals of Grid Computing are to provide com-
puting power as easily accessible as the electric power grid. But a mutual
influence of both technical areas should be avoided, since no one wants to
plug in his coffee machine to the power grid anymore when Mr. General
Protection Fault may step out.

Foster et al. (2001)) defined the essence of Grid Computing as “coordi-
nated resource sharing and problem solving in dynamic, multi-institutional
virtual organizations”. Thus, there are two key components: a software
part that enables resource sharing, as well as an umbrella association that
bundles the participating institutions.

The software that enables resource sharing and management between
the participants of the Grid infrastructure is commonly called “middle-
ware”, indicating that it is located between user applications and the op-
erating system. A middleware provides interoperability between different
local infrastructures, hardware, and operating systems. It comprises ser-
vices for resource management, data transfer and user-authentification be-
tween different institutions. Several sophisticated middlewares exist to date,
the best-known are UNICORE (Forschungszentrum Jiilich, see Streit|[2009),
LCG/gLite (Laure et al.|2006), and the Globus Toolkit (Foster|2005).

Naturally, virtual organizations in the academic field are mainly financed
by public funds. In Europe, two such projects are of special interest that are
well supported with regard to providing a computing infrastructure for the
Life Sciences, Physics (e.g., the CERN Large Hadron Collider project, be-
ing the most famous project at this time), and other scientific areas. These
are the EGEE (“Enabling Grids for E-sciencE”) project, funded by the Eu-
ropean Commission, and the german D-Grid initiative harboring several
subprojects like the bwGRiD, which, amongst others, operates a Cluster at
the University of Tiibingen together with the local “Zentrum fiir Datenver-
arbeitung”.

Let’s plug it in

From the user’s and software developer’s viewpoint, there are some funda-
mental differences between Clusters and Grids. A single Cluster normally
has a shared file system and homogenous hardware infrastructure. Thus,
starting an application in a Cluster environment normally consists of col-
lecting and uploading data and applications to a central storage, and either
submitting several batch jobs, or submitting a single MPI job, which is then
automatically distributed to the Cluster nodes. In contrast, a Grid may
comprise many different hardware systems with different processor architec-
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tures, and various decentralized storage solutions. Thus, job distribution
also requires to transfer a considerable amount of data to the node the
job was assigned to. Furthermore, for the middleware to make an optimal
scheduling decision, information about runtime and memory requirements
at submission time of the jobs is essential. Consequently, “gridifying” ap-
plications, i.e., porting them to a Grid environment may be no easy task.

We decided to port CopyCat and AxParafit to the Grid in a way that
hides all these rather technical aspects from the user. Thus, the user-friendly
graphical frontend of CopyCat remained unchanged, while the underlying
engine was adapted to the needs of the Grid infrastructure (see Figure .
CopyCat was modified to delegate invocation of AxPcoords and AxParafit
to a Perl script (AxParafit.pl), which can easily be modified and adapted
to the underlying Grid environment. Status messages of the AxParafit.pl
script are monitored by CopyCat and displayed in its message window, thus
keeping the user informed about the progress of the cophylogenetic analysis.
After the analysis is performed on the Grid, the results are displayed by the
graphical frontend and can be further analyzed with CopyCat. Additionally,
a command line interface was integrated into CopyCat to allow for using the
program in batch scripts to speed-up automatable analyses (for an example,
see Section page [63)).

The AxParafit.pl Perl script first invokes AxParafit to calculate the
global significance, which also allows to estimate run time and memory con-
sumption of the individual tests. By knowing the amount of parallelizable
jobs (i.e., the amount of individual tests) and their resource utilization, the
Perl script then can make an appropriate decision about job granularity, i.e.,
into how many tasks the execution of the test has to be divided in order to
limit latencies due to overhead of job submission (for details, see [Stockinger
et al. 2009). Depending on that, a certain amount of AxWorker.pl jobs is
submitted to the Grid engine (see Figure . The middleware then handles
transfer of the job parameters, executables and corresponding data to the
executing node. AxParafit.pl constantly monitors the status of submitted
jobs and eventually assembles the final results for CopyCat.

The current implementation of AxParafit.pl and AxWorker.pl was de-
veloped for the gLite middleware (Stockinger et al. 2009). But due to the
modular design based on these easily modifiable Perl scripts, porting to other
middleware systems can be accomplished quickly. Furthermore, adjustments
to different usage scenarios will also be possible, like the development of a
Web interface for job submission.

4.3 Results

Performance of the original ParaFit and DistPCoA executables was com-
pared with the accelerated versions of AxParafit and AxPcoords using a
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system of 36 4-way AMD 2.4 GHz Opteron processors, each node equipped
with 8 GB RAM. All executables were compiled with the GNU compiler
suite (gee and g77) having all optimizations enabled (for details, see [Sta-
matakis et al.|2007). Host-parasite association data was derived from a large
empirical dataset with more than 30,000 associations that was derived from
the [EMBL Database using the method described in Meier-Kolthoff (2006)).

Figure shows the runtime improvement of the sequential version of
AxParafit in comparison to ParaFit. Interestingly, the speedup increases
with growing matrix size up to a factor of 61.86, which may be attributed
to highly efficient cache-utilization strategies of the BLAS implementation
(Stamatakis et al.|[2007)).
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Figure 4.6: Runtime improvement of the sequential version of AxParafit
over the original ParaFit (Stamatakis et al.[2007). Quadratic association
matrices of dimensions 128, 256, ... up to 2048 were used.

In Figure [£.7] corresponding results of AxPcoords are shown. In com-
parison to DistPCoA, a performance gain up to a factor of 25.74 could be
measured. Due to runtime considerations and numerical instability, which
was observed using large matrices with DistPCoA, the acceleration rate could
only be measured up to a matrix size of 4, 096.

Scalability of the MPI-enabled version of AxParafit was measured using
a Cluster environment with up to 128 nodes. Figure shows the speedup
depending on the number of allocated CPUs. Due to the embarassingly
parallel structure of the ParaFit test (Stockinger et al.2009), the speedup
is near-optimal (i.e., linear speedup).
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Figure 4.7: Runtime improvement of AxPcoords over DistPCoA (Stamatakis

2007)). Quadratic association matrices of dimensions 128, 256, ... up
to 2048 were used.
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Figure 4.8: Runtime improvement of the parallelized version of AxParafit
over the sequential version (Stamatakis et al.|2007). “Speeduplndividual”
refers to the speedup of the parallelized part only, whereas “SpeedupWhole”
also includes runtime of the sequential part. A quadratic association matrix
of size 512 was used on 4, 8, ... up to 128 CPUs.




114

Cophylogenetic studies

4.4 Conclusions

So far, the study of deep cophylogenetic relationships was hampered by the
absence of a user-friendly and highly efficient toolkit, which ideally, also
can eagily be used in a Cluster environment. We approached this problem
by providing the easy to use graphical frontend CopyCat to the scientific
community, based on the ParaFit statistical test for cophylogeny. ParaFit’s
statistical properties make this test well-suited for the study of large-scale
datasets, while CopyCat enables the user to infer host and parasite trees
based on taxonomical data without having to collect marker sequences for
phylogenetic tree reconstruction.

Additionally, we provided a highly optimized and efficient implementa-
tion of the ParaFit test showing speedups up to 60, as well as a parallelized
implementation based on the MPI API for usage in a Cluster environment.
Furthermore, we ported our toolkit to a Grid environment based on the
gLite middleware.

Integration of Grid resources into the CopyCat graphical frontend depicts
a major improvement for non-expert users, who are now able to access Grid
resources in a transparent way. The Grid-enabled version of CopyCat and
AxParafit was installed and successfully deployed on the [Vital-IT| Cluster
of the Swiss Institute of Bioinformatics (Stockinger et al.|2009).

To further improve accessibility of the CopyCat/AxParafit toolkit, we
intend to provide a freely accessible web-frontend to these services, includ-
ing an interface to the RAXML web servers (Stamatakis et al. [2008) to al-
low the user to directly infer host or parasite phylogenies from Multiple
Sequence Alignments. Additionally, a CUDA (Compute Unified Device Ar-
chitecture, see [Halfhill 2008; [Patterson and Hennessy 2009, Appendix A)
port of AxParafit is currently developed by co-operation partners.



Chapter 5

Metagenomics

5.1 Introduction

Assessing biodiversity on Earth is a main goal of today’s life sciences. While
there is a great variety of eukaryotic species (even when focusing on meta-
zoa, consider for example nature’s preference for some groups like beetles,
which already kept Darwin and Wallace occupied, see Berry|[2008]), the most
dominant group of life-forms certainly are the prokaryotes (Gregory|2005]).

But estimating species richness of prokaryotes is severely hampered be-
cause many of those (up to 99%) cannot be cultured, and therefore can
neither be classified, nor sequenced using traditional sequencing methods.
However, recent advances in next-generation sequencing technologies helped
cutting the Microbiologists’ Gordian knot by providing methods to isolate
DNA from an environment and to directly sequence the whole sample in one
go. This new methodology was labelled “Metagenomics”, denoting “the ge-
nomic analysis of microorganisms by direct extraction and cloning of DNA
from an assemblage of microorganisms” (Handelsman 2004)).

Due to restrictions of conventional sequence technologies, sequencing of
single organisms as well as whole communities results in a large amount of
short fragments of DNA (called “reads”). Recent sequencing technologies
produce several millions of reads in one single run, whereas typical read
lengths range from 35 bp to more than 900 bp (Pop and Salzbergl 2008).
Consequently, there is a great need for computational tools that are able to
handle large metagenomic and paleogenomic (i.e., the study of prehistoric
genomes, see Birnbaum et al. 2000; Poinar et al.|2006|) datasets.
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5.2 Methods

5.2.1 Taxonomic binning using MEGAN

An important step of a metagenomic analysis consists of mapping reads
obtained from the sequencing process to the corresponding species, thus al-
lowing to assess species richness and abundancy of the metagenomic sample.
MEGAN was specifically developed to map large datasets of metagenomic data
onto a taxonomic tree using homology search tools. The first step in the
taxonomical binning process (see Figure consists of using a homology
search program like BLAST (Altschul et al.[[1990; 1997) or BLASTZ (Schwartz
et al.[2003) to look for hits in large sequence databases such as NCBI-NR and
NCBI-NT (Wheeler et al.[2008). After blasting the reads against a database,
the resulting HSPs (High Scoring Segment Pairs) are mapped to the corre-
sponding taxon (represented by its taxon-ID, see |[Benson et al.|[2008; NCBI
2009¢|) based on the description line of the database hit sequence. Several
filters can be used to reduce the amount of hits of a read sequence to obtain
a candidate list for taxonomic binning.

DNA | Sequence Megan A
reads comparison file
p .
metagenome sequence comparison
data T data {

Interactive
analysis and

visualization
using Megan
A 4
reference databases
specific

Figure 5.1: Typical workflow of a MEGAN analysis (Huson et al.[2007al).

MEGAN includes a taxonomic tree based on the NCBI taxonomy (Wheeler
et al.|2008), which is used to visualize the species distribution of the sample
(see Figure . The taxonomic tree is derived by converting the raw tax-
onomy data from NCBI (2009¢)) into a tree representation. In doing so, the
hierarchical information is retained, so that tree nodes can be collapsed or
expanded in regard to their clade (i.e., superkingdom, phylum, class, order,
and family).

When blasting reads against a large database, most reads hit more than
one single database sequence. While this poses no problem if all those hits
can be mapped to the same taxon, a conflict resolving strategy has to be
applied in the other case. Figure demonstrates the application of the
Lowest Common Ancestor (LCA) assignment algorithm of MEGAN. In this ex-
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Screenshot of the MEGAN main window with the taxonomy tree

browser. An analysis of a random subsample of the Global Ocean Survey

dataset (]Rusch et a1.||2007|> is shown.
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ample, three hits could be obtained for the given read, which were mapped
to Campylobacter lari, Helicobacter hepaticus, and Wolinella succinogenes.
Consequently, the read is assigned to the node depicting the lowest common
ancestor of those species in the taxonomy tree, i.e., the common ancestor
that is nearest to the leaves (here, the node of the order Campylobacterales).
This strategy ensures that the specificity of a hit can directly be observed
based on the taxonomic level of its assignment. Accordingly, highly con-
served sequences are assigned to high-ranking taxa close to the root, whereas
species-specific sequences are placed near to the leaves.

*Campylobacter fetus >gi|57241447 |ref [2P_00369393.1| flagellar motor switch protein F1iG
[Camp: cter lari RM2100]
Score = 33.9 bits pect = 1.8
> Campylobacter jejuni Identities = 13/26 , Positives = 19/26 (73%)
Query: 79 LMFVFDDLATVEENGIREIINRADKK 2
Campylobacter T TRERE RDEE Jes
Campylobacter coli RM2228 2LSTNATREVLKARDER 26
= -
Campylobacter lari RM2100 >gi132262158|gb|AAPT7207.1| flagellar motor switch protein F1iG
[Helicobacter hepaticus ATCC 51449]
LCA Score = 33.5 bits : .4
Campylobacter upsaliensis RM3195 Tdentities = 13/ 20/26 (76%)
Campylobacterales,
Query: 79 LMFV DLATVEENGIREIINRADKK 2
4MF F4D++ ++ N IREI+ ADKK
D_'Hellcobactel' Dy|0ﬂ Jgg Sbjct: 244 MMFTFEDISKLDNNAIREILKIADKK 269
Hellcobacter
(Helicobacter hepaticus ATCC 51449 >g1134484004 |emb|CAE11000.1| FLAGELLAR MOTOR SWITCH PROTEIN FLIG
- i inoge
. | ts (73), Expec 1
Helicobacteradeae Wolinella succinogenes | Identities (50%), Positives = 19/26 (73%)
Query: 79 LMFVFDDLATVEENGIREIINRADKK 2
4MF F4D+ 4+ N IREI+ ADKK
_._oThlomlcrosp".a denlirlﬁcal’ls ATCC 33889 Sbjct: 242 MMFTFEDIEKLDNNAIREILKVADKK 267
New, unknown species

Figure 5.3: LCA assignment algorithm QHuson et al.||2007aD.

Species abundancies as measured by the amount of reads mapped to a
certain taxon are displayed by the corresponding node sizes. Thus, MEGAN
allows to visualize the species distribution of a sample in a comprehensible
and descriptive way (see Figure |5.2)).

MEGAN was successfully applied in several metagenomics studies (e.g.,

Poinar et al.|[2006}; [Urich et al.|2008} [Claesson et al.|2009; [Huson et al.[2009}
Qi et al.[2009; [Woyke et al.|2009).

5.2.2 The FragmentAssigner pipeline

Sequence comparison represents the most time-consuming part of a MEGAN
analysis. Thus, the automation and parallelization of this step is an im-
portant factor for each metagenomics project, especially when considering
that the amount of sequence data is continously growing due to ongoing
improvements in sequencing technology .

To analyze metagenomics datasets in a user-friendly way, we developed
the FragAssigner tool as an in-house solution that provides an easy inter-
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face to different local alignment search tools, as well as to different sequence
databases.

Basic concept

In the current version, the FragAssigner tool provides a command line
interface. Databases and local alignment tools can be configured using a
configuration file with keyword=value pairs (see Figure . Command
line arguments of the different alignment tools are made transparent to the
user, so that settings can be kept consistent over a wide range of tools. Such
settings are: using low complexity filter and soft masking, seed word size,
e-Value threshold and maximum number of HSPs per query sequence (for
an explanation, see Korf et al.|2003)).

FragAssigner supports BLAST (Altschul et al.|[1990; [1997) in the im-
plementation from Washington University, as well as in the implementation
from NCBI. Furthermore, BLASTZ (Schwartz et al|2003) and BLAT
can also be used.

Figure [5.4] shows the layout of the FragAssigner pipeline. The tool
is invoked by providing a Multi-FASTA file with the reads to be assigned.
FragAssigner then starts several database queries in parallel (on a multi-
processor system), by using large databases like NCBI NR and NT
. In addition, the archive of completely sequenced prokaryotic

genomes from [NCBI| (2009a)) can be included in the local alignment search.
Hence, the whole range of genomic DNA can be used to search for homolo-

gies.
Fragment Assigner Pipeline

Merging Results,
Parallelized HSP Fusion
Homology Search
Cloud of Reads %

Figure 5.4: Graphical visualization of the FragAssigner Pipeline.

The MEGAN BLAST import filter assign HSPs to a specific taxon-ID by
parsing its database hit description lines. FragAssigner however uses a
different approach by directly utilizing the taxon-ID information contained
in the compiled NR and NT database files. Correspondingly, wrong as-
signments are avoided, at least if it can be assumed that the assignments
provided by NCBI are accurate (an example of such a wrong assignment is
discussed in [Huson et al|[2007a). To obtain the taxon-ID information, the




120

Metagenomics

tool fastacmd distributed with the NCBI BLAST package is used to com-
pile a binary file containing a map between sequence accession IDs (Benson
et al.|2008]) and the corresponding taxon-ID. This time-consuming process
only has to be repeated when a new version of the NT or NR database
is installed. In addition, the archive of completely sequenced prokaryotic
genomes is automatically mapped to the corresponding taxon-ID based on
the species labels.

The FragAssigner pipeline was successfully used by Ramona Schmid to
evaluate ReadSim (Schmid|2006)), the predecessor of MetaSim (Richter et al.
2008), as well as by Nikita Meyer in his student research project dealing
with the comparison of several metagenomics datasets (Meyer|2007)).

Improving the specificity of contig assignments

MEGAN assigns reads to taxon nodes by filtering the corresponding HSPs, de-
termining the associated species’ taxon-IDs, and seeking the lowest common
ancestor node of those species (see Figure. Consequently, a high amount
of HSPs mapped to a read may lead to unspecific assignments, i.e., assign-
ments that are close to the root of the taxonomy. On the one hand, this
may be due to the fact that the read contains a highly conserved sequence
(e.g., a protein domain) shared between a broad range of organisms. On the
other hand, when using sequence technologies that yield large read lengths
or by assembling reads into contigs (contiguous sequences), the likelihood
increases that a sequence (read or contig) may contain more than one open
reading frame. Thus, with increasing sequence length, specific assignments
become harder to obtain.

In Huson et al.| (2007a), we studied the specificity of the LCA assign-
ment process depending on different read lengths from 35 bp to 800 bp. It
could be demonstrated that the rate of assigned reads considerably increases
with read length, while most reads can be specifically assigned close to the
originating species. But subsequent analyses with larger reads close to the
length of contigs showed that the assignments move towards more unspecific
nodes with growing sequence length (data not shown).

There exist several ways to approach this problem. One possibility may
be to refine the LCA assignment process by using improved filtering strate-
gies together with a majority rule for determining the lowest common an-
cestor. A different approach consists in addressing this problem within the
FragAssigner pipeline by grouping HSPs together that belong to the same
subject sequence. These HSPs can be merged into a large HSP (see Fig-
ure . On the one hand, this reduces the amount of HSPs per read,
while on the other hand, the new HSP may be preferred by MEGAN’s filtering
process over other HSPs that have a lower bitscore.

After the merging of several HSPs into one large HSP, a new sum bitscore
and e-Value can be calculated based on Korf et al. (2003, p. 103). Let r
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# FragAssigner Inifile
localAlignmentTool=NCBIBlastWrapper

NCBIBlastWrapper.appPath=blastall
NCBIBlastWrapper.formatDbPath=formatdb
#NCBIBlastWrapper.wordLength=7

WUBlastWrapper.appPath=wublast
#WUBlastWrapper.wordLength=7

### blast low complexity filter

### 1: filter enabled, 0: filter deactivated
#lowComplexityFilter=1

lowComplexityFilter=0

### soft masking
### default: 0
softMasking=1

### directory containing the prokaryotic genome database
genomesDir=. /genomes

NTdbLocation=/path/to/nt-db
NTdbTaxInfoFile=/path/to/nt-db/compiled-taxinfo.txt

NRdbLocation=/path/to/nr-db
NRdbTaxInfoFile=/path/to/nr-db/compiled-taxinfo.txt

taxDataFile=taxondata.txt
blastOutputDir=./blastout
parallelJobCount=8

#eValueThreshold=1E-3
eValueThreshold=10

outputFileType=auch.mgp.MeganFile
#outputFileType=auch.blasthsp.CGVIZFile

### exclude groups from homology search
### groups:

###  bacteriaGenomes

###  ncbilR

###  ncbiNT
#removeGroups=bacteriaGenomes,ncbiNR,ncbiNT
#removeGroups=ncbiNR,ncbiNT

### uses NT only:
#removeGroups=bacteriaGenomes,ncbilNR
### uses NR only:
removeGroups=bacteriaGenomes ,ncbiNT

Figure 5.5: Example of a FragAssigner configuration file.
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Figure 5.6: A contig (contiguous sequence, may comprise 1000 to more than
100,000 bp) with several HSPs. The green, shaded HSPs belong to the same
subject sequence and could be successfully combined into one single HSP
with a bitscore that is higher than any of the single HSPs.

denote the number of HSPs to be merged, spit(i) the bitscore of the ith
HSP, k the adjustment constant of the Karlin-Altschul statistics (Karlin
and Altschull|{1990; |[Korf et al.[2003|, p. 65), and m’ as well as n’ the effective
query and database lengths (see |[Korf et al.|[2003, p. 67). Further, let g be
the number of gaps between the HSPs. Then, the sum bitscore Sgumpit ()
can be obtained by using the following equation:

rink —rin(km'n’)
In2

Soumbit (1) = sit (i) + (5.1)
i=1

When combining HSPs that are collinear, a smaller penalty can be used
(see Formula [5.2]). HSPs are called collinear when their query and subject
sequences have the same direction and their intervals do not overlap.

.  rlnk—In(ekmn) = (r—=1)-(Ink + 2lng) — In(r!
Seuit (1) = 3 s (3) + (kmn’) — ( m) ( g) — In(r))

i=1

(5.2)

The HSP merging algorithm works as follows: For each query (read) se-
quence, HSPs belonging to the same subject sequence are determined. A
list of non-overlapping candidates for merging is then built using a greedy
algorithm similar to the approach described in Section (p-[B). After-
wards, the algorithm tries to extend each candidate by successively merging
it with its neighbours and testing whether the resulting sum bitscore is
larger than the maximum bitscore of the individual HSPs. If such an opti-
mally merged HSP can be found, the original HSPs are replaced by the new
combined HSP. This step is repeated until no further improvement can be
achieved.

Taxonomy-based HSP fusion

Another source for ambiguous assignments especially affects reads from
species that are represented by a plenitude of different strains in the se-
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quence databases. In this case, the reads will be scattered over the species
node and its subnodes, as shown in Figure for E. coli reads. To im-
prove MEGAN’s assignment results, we decided to approach this problem in
FragAssigner using an ad-hoc strategy based on the previously discussed
HSP fusion.

In contrast to the previous algorithm, candidates for HSP fusion are
determined using taxonomic information. First, each HSP is internally as-
signed to its species node in the taxonomy, thus assignments to different
strains of the same species are all remapped to the same taxon. This is
made in a transparent way, so that the remapping only affects results if
the HSP merging process succeeds. In the next step, all HSPs belonging
to the same read and remapped taxon-ID are combined. If the bitscore of
the resulting HSP (recalculated based on Formula is greater than the
maximum of the individual HSPs, the individual HSPs are replaced with
the combined HSP, which is assigned to the species node.

The taxonomy-based filter can be deactivated in case that a remapping
to species nodes is not desired (e.g., when subspecies/strain assignments are
biologically meaningful).

5.2.3 MetaSim, a sequencing simulator for Metagenomics

Developing software, especially in the scientific area, also requires the devel-
opment of test cases or datasets that allow to evaluate the software’s accu-
racy. Namely, the quality of programs for taxonomic binning of reads can be
determined by simulation studies based on the generation of a considerable
amount of reads from already sequenced genomes, so that the originating
species is known. This enables to evaluate the taxonomic binning software
by comparing its results with the true assignments. Naturally, such a pro-
cess can be done in the wet lab by sequencing organisms whose genome
is already known, but this depicts a rather expensive and time-consuming
procedure.

MEGAN was initially assessed using ReadSim (Huson et al.[2007azb), a read
simulation software that extracts reads from a genomic sequence and simu-
lates sequencing errors of different sequencing technologies (Schmid 2006]).
However, ReadSim was not specifically designed for simulating large metage-
nomics datasets, but rather to simulate sequencing of single genomes. Hence,
it did not allow for simulating different species abundancies or for the incor-
poration of taxonomic information.

Consequently, we decided to develop MetaSim, a sequencing simulator
for genomics and metagenomics (Richter et al.|2008). Within MetaSim (see
Figure , different taxon profiles can be generated and managed. Relative
abundancies of selected species can be defined in those profiles, enabling the
user to fine-tune the species distribution of the metagenomics sample to be
simulated. The current version of MetaSim supports error models of Sanger
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(Meldrum|[2000), Roche’s 454 (Margulies et al.|2005)), and Illumina (Bentley!
2006]) sequencing technologies.
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Figure 5.7: Screenshot of MetaSim’s main window and the dialog for starting
the simulation run (Richter et al.[2008)).

Additionally, MetaSim contains a population sampler to model the com-
plexity of real-world datasets. The population sampler generates a popu-
lation of offsprings from a given genome. For that purpose, either a user-
generated phylogenetic tree can be loaded into the program, or a random
tree is automatically generated by using the Yule-Harding model
. The user can select a genome, which is then used to gen-
erate a population of offsprings. Sequence evolution is simulated along the
phylogenetic tree based on the Jukes-Cantor model of DNA evolution
land Cantor||1969). The transition rate « is used together with the branch
length of the phylogenetic tree to estimate a probability of change for each
site. The value of a can be adjusted by the user within reasonable limits
(0<a<1/3).
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MetaSim is freely available at http://www-ab.informatik.uni-tuebingen.-
de/software/metasim. To date, MetaSim has been successfully used in sev-
eral studies (Haque et al.[2009; |Hoff et al.|2009; Zagordi et al.[2009).

5.3 Results

5.3.1 HSP fusion algorithm

To evaluate the performance of the HSP fusion algorithm, we simulated
1000 fragments from the Escherichia coli strain K12 genome using ReadSim.
Fragment lengths were between 500 and 10,000 bp with a mean length of
2000 bp. The lengths were chosen to simulate typical sizes of small contigs.

Figure [5.8 shows the results based on a MEGAN analysis without utilizing
the HSP fusion filter. Most reads are assigned to the family “Enterobacte-
riaceae”. Only a minority of reads is clearly assigned to the FE. coli taxon
or its subnodes. However, applying the HSP fusion algorithm based on
collinearity, as well as on taxonomic information leads to a specific assign-
ment of the majority of reads to the E. coli taxon (Figure . This clearly
demonstrates the effectivity of the HSP fusion algorithm.

5.3.2 MetaSim and MEGAN

To evaluate the accuracy of MEGAN’s taxonomic binning approach, we gen-
erated three different species abundance profiles using three different simu-
lated sequencing technologies, altogether resulting in nine different datasets.
Species abundance profiles were modeled in analogy to Mavromatis et al.
(2007), corresponding to low, medium, and high complexity communities.

Approximately 15 Mbp of reads were generated for each dataset. After-
wards, the reads were blasted against the NR database, and were assigned
to taxa using MEGAN.

Results indicate that the amount of assignable reads increases with read
length, together with the amount of true positives. But even for small read
sizes, the amount of false positives remained low (< 2%), which corroborates
the observations made in [Huson et al.| (2007a)). Overall, MEGAN shows high
accuracy in assigning reads to corresponding taxa. A thorough analysis of
the simulation results can be found in Richter et al.| (2008]).

5.4 Conclusions

Assigning reads to taxonomic groups (taxonomic binning) represents an im-
portant step of each metagenomic analysis (Raes et al. [2007; Kunin et al.
2008). Therefore, we developed MEGAN as a user-friendly graphical appli-
cation for the visualization of species diversity in metagenomics datasets.


http://www-ab.informatik.uni-tuebingen.de/software/metasim
http://www-ab.informatik.uni-tuebingen.de/software/metasim
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Figure 5.8: Test of assignment accuracy using contigs with MEGAN. Here,
1000 reads were generated from FE. coli strain K12 using ReadSim with a
read length between 500 and 10,000 bp (mean length: 2000 bp) to simulate
typical lengths of small contigs. Most reads were assigned to Enterobacte-
riaceae.

eRhodopseudomonas palustris CGADOS 2

C¥anthomonas oryzae pv. oryzae KACCIN331 3

o - ; .
Escherichia cali 720 956 ,7 Eschetichia cali O157:H7 2

Proteabacteria 5 p7 g Enterobacteriaceae f St QEscherichia coli O157:H7 EDLO33 123
Bacteria 4 454 & b ' ¢ erichia coli K12 18
Rkt b Escherichia coliw3110 93

root 0 956

CShigella boydii Sb227 3

“Ha philus influenzae Rd EW20 2

@ Burkholderia pseudomallei 1710b 2

BitreptocoCcuys pneumaoniae 2

O Mot assigned 14

Figure 5.9: Test of assignment accuracy using contigs with MEGAN. The same
dataset was used as for Figure In addition, the HSP fusion strategy of
FragAssigner was used to pre-filter HSPs (collinearity as well as taxonomy
based). Accordingly, most reads could be assigned to the E. coli species
node, thus showing higher specificity.
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MEGAN scales well even on standard hardware and is able to efficiently han-
dle datasets comprising up to several hundred gigabytes of BLAST output.

Additionally, we developed MetaSim, a sequencing simulator specifically
designed for the simulation of metagenomics datasets. By including a pop-
ulation sampler, the complexity of real world metagenomic datasets can be
reproduced more closely. While MetaSim can be used to test any software
that processes reads of a metagenomics sample (like assemblers, taxonomic
binning software, etc.), we explicitly tested the accuracy of MEGAN, using nine
simulated datasets of different complexity level and sequencing technology.
The results clearly indicate that MEGAN has a low rate of false positives, while
the amount of assignable reads increases with read length. Overall, speci-
ficity of the assignments made by MEGAN’s LCA algorithm is high (Huson
et al. 2007a; Richter et al. 2008). Anyhow, an improvement of the assign-
ment of contigs may be achieved by applying the HSP fusion algorithm as
outlined in Section [£.2.2]
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Chapter 6

Conclusions and Outlook

In this thesis, several topics were discussed that are all related to phyloge-
netics. In Chapter [2] the GBDP framework was presented fo inferring whole
genome phylogenies based on local alignment search tools (Henz et al.|2005;
Auch et al.|2006bfa; 2009a3b). The framework was applied to datasets
of prokaryotic genomes, as well as organelle (mitochondria and plastids)
genomes of the major eukaryotic groups of plants, fungi and animals. The
most interesting observation is that the obtained whole genome phylogenies
are largely, but not completely, in agreement with the reference taxonomy
provided by NCBI. Since the NCBI taxonomy is primarily based on the
phylogeny of single markers like 16S rRNA, one may conclude that verti-
cal inheritance clearly plays the dominant role for most species. We also
analyzed a common set of 17 prokaryotic genes and screened them for the
occurrence of HGT (horizontal gene transfer, see Chapter . Despite the
high amount of potential HGT, a noticeable congruence could be observed
between the individual gene trees and the corresponding supermatrix tree.
Furthermore, the individual trees and the supermatrix tree mostly were in
accordance with the NCBI taxonomy.

Thus, there seems to exist an unobscured vertical inheritance signal both
in the “averaged” phylogenies based on whole genomes, as well as in the set
of individual common genes. For this reason, we conclude that the majority
of the genome follows the phylogeny of marker genes (mainly translational
genes), with the exception of some groups of genes that are more likely to
undergo horizontal gene transfer (e.g., metabolic genes, see Kanhere and
Vingron 2009). Bringing all this together, we take sides with the camp
of the positivists (the expression was coined by Dagan and Martin| 2006]),
stating that there is a microbial tree of life, at least for the majority of
taxa (and genes). This may seem to be impudent, but it is supported by
recent findings of other groups (House 2009; [Puigho et al. [2009; Swithers
et al.2009). However, our assumption does not deny the possibility of a
era dominated by horizontal inheritance at the beginning of the history
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of life on our planet (the progenote era, see Woese and Fox [1977; Woese
2002). Certainly, there also exist conflicting views denying the dominance
of a reasonable tree-like evolutionary structure in prokaryotes (Dagan and
Martin/ 2006; Doolittle and Bapteste [2007; Bapteste and Boucher| 2009).
However, the jury is still out on this question, and it may be more realistic
to use network-based phylogenetic methods to allow for uncertainty and
incongruence between gene phylogenies (Huson and Bryant|[2006).

Moreover, the employment of GBDP to species delineation yields promis-
ing results. Two corresponding publications describing the usage of GBDP
in this context (Auch et al. 2009a3b|) will be published in the open access
journal of the “Genomics Standards Consortium” (“Standards in Genomic
Sciences”).

In Chapter [4] and we presented user-friendly software packages for
biologists. With CopyCat and the Grid-enabled versions of AxParafit and
AxPcoords, large-scale cophylogenetic analyses have now become feasible
(Stamatakis et al.[2007; Stockinger et al.|2009)). Consequently, an empirical
verification of the Fahrenholz rule can be approached in the future (see also
Begerow et al.|2004; Refrégier et al.[2008} (Garamszegi|2009). The Fahrenholz
rule states that cospeciation may be the predominant factor in host-parasite
evolution (Eichler|[1948). We are currently preparing a large-scale dataset
comprising several tenths of thousands of host and parasite taxa, which
hopefully allows us to shed light on that question. In this context, we look
forward to the ongoing CUDA (Halfhill 2008) port of AxParafit, which will
allow us to use large GPU farms for that purpose.

We assisted the analysis of large metagenomics datasets by providing
MEGAN to the scientific community. MEGAN is a user-friendly software for the
efficient analysis and taxonomic classification of metagenomic samples. It
was successfully applied in several metagenomic studies (e.g., Poinar et al.
2006; [Urich et al. 2008} |Claesson et al.|[2009; [Huson et al.|[2009; Qi et al.
2009; |Woyke et al.[2009). Furthermore, we developed MetaSim, a sequencing
simulator for metagenomics. With MetaSim, current and future software for
metagenomic and genomic analysis can be evaluated. Consequently, we used
MetaSim to successfully evaluate the performance of MEGAN in taxonomic
binning (Richter et al.[2008).

Overall, when looking on the growing field of computational biology, one
receives the impression of an endless journey to the horizon of knowledge
and perception. But it is hard to decide whether this will be more like
Alice’s Adventures in Wonderland (Carroll 1865)), or rather like a Sisyphean
challenge (Kohlmeier|2002]).
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1. Hendrik N. Poinar, Carsten Schwarz, Ji Qi, Beth Shapiro, Ross D.
E. MacPhee, Bernard Buigues, Alexei Tikhonov, Daniel Huson, Lynn
P. Tomsho, Alexander Auch, Markus Rampp, Webb Miller, Stephan
C. Schuster. Metagenomics to Paleogenomics: Large-Scale
Sequencing of Mammoth DNA. Science 311:392-394, 2006.

We sequenced 28 million base pairs of DNA in a metage-
nomics approach, using a woolly mammoth (Mammuthus
primigenius) sample from Siberia. As a result of excep-
tional sample preservation and the use of a recently devel-
oped emulsion polymerase chain reaction and pyrosequenc-
ing technique, 13 million base pairs (45.4%) of the sequenc-
ing reads were identified as mammoth DNA. Sequence iden-
tity between our data and African elephant (Loxodonta afri-
cana) was 98.55%, consistent with a paleontologically based
divergence date of 5 to 6 million years. The sample includes
a surprisingly small diversity of environmental DNAs. The
high percentage of endogenous DNA recoverable from this
single mammoth would allow for completion of its genome,
unleashing the field of paleogenomics.

2. Alexander F. Auch, Stefan R. Henz, Barbara R. Holland, Markus
Goker. Genome BLAST distance phylogenies inferred from

whole plastid and whole mitochondrion genome sequences.
BMC Bioinformatics 7:350, 2006.

Background: Phylogenetic methods which do not rely on
multiple sequence alignments are important tools in infer-
ring trees directly from completely sequenced genomes. Here,
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we extend the recently described Genome BLAST Distance
Phylogeny (GBDP) strategy to compute phylogenetic trees
from all completely sequenced plastid genomes currently
available and from a selection of mitochondrial genomes rep-
resenting the major eukaryotic lineages.

BLASTN, TBLASTX, or combinations of both are used to
locate high-scoring segment pairs (HSPs) between two se-
quences from which pairwise similarities and distances are
computed in different ways resulting in a total of 96 GBDP
variants. The suitability of these distance formulae for phy-
logeny reconstruction is directly estimated by computing a
recently described measure of ”treelikeness”, the so-called §
value, from the respective distance matrices. Additionally,
we compare the trees inferred from these matrices using UP-
GMA, NJ, BIONJ, FastME, or STC, respectively, with the
NCBI taxonomy tree of the taxa under study.

Results: Our results indicate that, at this taxonomic level,
plastid genomes are much more valuable for inferring phylo-
genies than are mitochondrial genomes, and that distances
based on breakpoints are of little use. Distances based on
the proportion of ”matched” HSP length to average genome
length were best for tree estimation. Additionally we found
that using TBLASTX instead of BLASTN and, particularly,
combining TBLASTX and BLASTN leads to a small but
significant increase in accuracy. Other factors do not sig-
nificantly affect the phylogenetic outcome. The BIONJ al-
gorithm results in phylogenies most in accordance with the
current NCBI taxonomy, with NJ and FastME performing
insignificantly worse, and STC performing as well if applied
to high quality distance matrices. d values are found to be
a reliable predictor of phylogenetic accuracy.

Conclusion: Using the most treelike distance matrices, as
judged by their ¢ values, distance methods are able to re-
cover all major plant lineages, and are more in accordance
with Apicomplexa organelles being derived from ”green”
plastids than from plastids of the "red” type. GBDP-like
methods can be used to reliably infer phylogenies from dif-
ferent kinds of genomic data. A framework is established
to further develop and improve such methods. § values are
a topology-independent tool of general use for the develop-
ment and assessment of distance methods for phylogenetic
inference.
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3. Daniel H. Huson, Alexander F. Auch, Ji Qi, Stephan C. Schuster.
MEGAN Analysis of Metagenomic Data. Genome Research
17:377-386, 2007.

Metagenomics is the study of the genomic content of a sam-
ple of organisms obtained from a common habitat using tar-
geted or random sequencing. Goals include understanding
the extent and role of microbial diversity. The taxonomical
content of such a sample is usually estimated by comparison
against sequence databases of known sequences. Most pub-
lished studies use the analysis of paired-end reads, complete
sequences of environmental fosmid and BAC clones, or en-
vironmental assemblies. Emerging sequencing-by-synthesis
technologies with very high throughput are paving the way
to low-cost random shotgun approaches. This paper intro-
duces MEGAN, a new computer program that allows lap-
top analysis of large metagenomic data sets. In a prepro-
cessing step, the set of DNA sequences is compared against
databases of known sequences using BLAST or another com-
parison tool. MEGAN is then used to compute and explore
the taxonomical content of the data set, employing the NCBI
taxonomy to summarize and order the results. A simple low-
est common ancestor algorithm assigns reads to taxa such
that the taxonomical level of the assigned taxon reflects the
level of conservation of the sequence. The software allows
large data sets to be dissected without the need for assembly
or the targeting of specific phylogenetic markers. It provides
graphical and statistical output for comparing different data
sets. The approach is applied to several data sets, including
the Sargasso Sea data set, a recently published metagenomic
data set sampled from a mammoth bone, and several com-
plete microbial genomes. Also, simulations that evaluate the
performance of the approach for different read lengths are
presented.

4. Jan P. Meier-Kolthoff, Alexander F. Auch, Daniel H. Huson, Markus
Goker. COPYCAT: Co-phylogenetic Analysis tool. Bioinfor-
matics 23(7):898-900, 2007.

We have developed the software COPYCAT which provides
an easy and fast access to cophylogenetic analyses. It in-
corporates a wrapper for the program PARAFIT, which
conducts a statistical test for the presence of congruence
between host and parasite phylogenies. COPYCAT offers
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various features, such as the creation of customized hostpar-
asite association data and the computation of phylogenetic
host /parasite trees based on the NCBI taxonomy.

5. Daniel H. Huson, Alexander F. Auch, Ji Qi, Stephan C. Schuster.
Metagenome analysis using MEGAN. In Proceedings of the 5th
Asia-Pacific Bioinformatics Conference, Volume 5 of Series on Ad-
vances in Bioinformatics and Computational Biology. Edited by D.
Sankoff, L. Wang and F. Chin, Imperial College Press 2007:7-16.

In metagenomics, the goal is to analyze the genomic content
of a sample of organisms collected from a common habi-
tat. Ome approach is to apply large-scale random shot-
gun sequencing techniques to obtain a collection of DNA
reads from the sample. This data is then compared against
databases of known sequences such as NCBI-nr or NCBI-
nt, in an attempt to identify the taxonomical content of the
sample. We introduce a new software called MEGAN (Meta
Genome ANalyzer) that generates species profiles from such
sequencing data by assigning reads to taxa of the NCBI
taxonomy using a straight-forward assignment algorithm.
The approach is illustrated by application to a number of
datasets obtained using both sequencing-by-synthesis and
Sanger sequencing technology, including metagenomic data
from a mammoth bone, a portion of the Sargasso sea data
set, and several complete microbial test genomes used for
validation proposes.

6. Alexandros Stamatakis, Alexander F. Auch, Jan P. Meier-Kolthoff,
Markus Goker. AxPcoords & parallel AxParafit: statistical
co-phylogenetic analyses on thousands of taxa. BMC Bioinfor-
matics 8:405, 2007.

Background: Current tools for Co-phylogenetic analyses are
not able to cope with the continuous accumulation of phy-
logenetic data. The sophisticated statistical test for host-
parasite co-phylogenetic analyses implemented in Parafit does
not allow it to handle large datasets in reasonable times.
The Parafit and DistPCoA programs are the by far most
compute-intensive components of the Parafit analysis pipeline.
We present AxParafit and AxPcoords (Ax stands for Accel-
erated) which are highly optimized versions of Parafit and
DistPCoA respectively.

Results: Both programs have been entirely re-written in C.
Via optimization of the algorithm and the C code as well
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as integration of highly tuned BLAS and LAPACK meth-
ods AxParafit runs 561 times faster than Parafit with a
lower memory footprint (up to 35% reduction) while the per-
formance benefit increases with growing dataset size. The
MPI-based parallel implementation of AxParafit shows good
scalability on up to 128 processors, even on medium-sized
datasets. The parallel analysis with AxParafit on 128 CPUs
for a medium-sized dataset with an 512 by 512 associa-
tion matrix is more than 1,200/128 times faster per pro-
cessor than the sequential Parafit run. AxPcoords is 826
times faster than DistPCoA and numerically stable on large
datasets. We outline the substantial benefits of using par-
allel AxParafit by example of a large-scale empirical study
on smut fungi and their host plants. To the best of our
knowledge, this study represents the largest co-phylogenetic
analysis to date.

Conclusion: The highly efficient AxPcoords and AxParafit
programs allow for large-scale co-phylogenetic analyses on
several thousands of taxa for the first time. In addition, Ax-
Parafit and AxPcoords have been integrated into the easy-
to-use CopyCat tool.

7. Daniel C. Richter, Felix Ott, Alexander F. Auch, Ramona Schmid,
Daniel H. Huson. MetaSim - A Sequencing Simulator for Ge-
nomics and Metagenomics. PLoS ONE 3(10): e3373
doi:10.1371 /journal.pone.0003373, 2008.

Background: The new research field of metagenomics is pro-
viding exciting insights into various, previously unclassified
ecological systems. Next-generation sequencing technologies
are producing a rapid increase of environmental data in pub-
lic databases. There is great need for specialized software
solutions and statistical methods for dealing with complex
metagenome data sets.

Methodology/Principal Findings: To facilitate the develop-
ment and improvement of metagenomic tools and the plan-
ning of metagenomic projects, we introduce a sequencing
simulator called MetaSim. Our software can be used to gen-
erate collections of synthetic reads that reflect the diverse
taxonomical composition of typical metagenome data sets.
Based on a database of given genomes, the program allows
the user to design a metagenome by specifying the number
of genomes present at different levels of the NCBI taxonomy,
and then to collect reads from the metagenome using a sim-
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ulation of a number of different sequencing technologies. A
population sampler optionally produces evolved sequences
based on source genomes and a given evolutionary tree.
Conclusions/Significance: MetaSim allows the user to simu-
late individual read datasets that can be used as standard-
ized test scenarios for planning sequencing projects or for
benchmarking metagenomic software.

8. Daniel H. Huson, Daniel C. Richter, Suparna Mitra, Alexander F.
Auch, Stephan C. Schuster. Methods for Comparative Metage-
nomics. BMC Bioinformatics, 10(Suppl 1):S12, 20009.

Background: Metagenomics is a rapidly growing field of re-
search that aims at studying uncultured organisms to under-
stand the true diversity of microbes, their functions, coop-
eration and evolution, in environments such as soil, water,
ancient remains of animals, or the digestive system of an-
imals and humans. The recent development of ultra-high
throughput sequencing technologies, which do not require
cloning or PCR amplification, and can produce huge num-
bers of DNA reads at an affordable cost, has boosted the
number and scope of metagenomic sequencing projects. In-
creasingly, there is a need for new ways of comparing mul-
tiple metagenomics datasets, and for fast and user-friendly
implementations of such approaches.

Results: This paper introduces a number of new methods
for interactively exploring, analyzing and comparing multi-
ple metagenomic datasets, which will be made freely avail-
able in a new, comparative version 2.0 of the stand-alone
metagenome analysis tool MEGAN.

Conclusion: There is a great need for powerful and user-

friendly tools for comparative analysis of metagenomic data
and MEGAN 2.0 will help to fill this gap.

9. Heinz Stockinger, Alexander F. Auch, Markus Goker, Jan Meier-Kolthoff,
Alexandros Stamatakis. Large-Scale Co-Phylogenetic Analysis
on the Grid. International Journal of Grid and High Performance
Computing, 1(1):39-54. 2009.

Phylogenetic data analysis represents an extremely compute-
intensive area of Bioinformatics and thus requires high-per-
formance technologies. Another compute- and memory-in-
tensive problem is that of hostparasite co-phylogenetic anal-
ysis: given two phylogenetic trees, one for the hosts (e.g.,
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mammals) and one for their respective parasites (e.g., lice)
the question arises whether host and parasite trees are more
similar to each other than expected by chance alone. Copy-
Cat is an easy-to-use tool that allows biologists to conduct
such co-phylogenetic studies within an elaborate statistical
framework based on the highly optimized sequential and
parallel AxParafit program. We have developed enhanced
versions of these tools that efficiently exploit a Grid envi-
ronment and therefore facilitate large-scale data analyses.
Furthermore, we developed a freely accessible client tool
that provides co-phylogenetic analysis capabilities. Since
the computational bulk of the problem is embarrassingly
parallel, it fits well to a computational Grid and reduces the
response time of large scale analyses.

10. Alexander F. Auch, Hans-Peter Klenk, Markus Goker. Standard
operating procedure for calculating genome-to-genome dis-
tances based on high-scoring sequence pairs. To appear in
Standards in Genomic Sciences.

DNA-DNA hybridization (DDH) is a widely applied wet-lab
technique to obtain an estimate of the overall similarity be-
tween the genomes of two organisms. To base the species
concept for prokaryotes ultimately on DDH was chosen by
microbiologists as a pragmatic approach for deciding about
the recognition of novel species but also allowed a relatively
high degree of standardization compared to other areas of
taxonomy. However, DDH is tedious and error-prone and
first and foremost cannot be used to incrementally establish
a comparative database. Recent studies have shown that
in-silico methods for the comparison of genome sequences
can be used to replace DDH. Considering the ongoing rapid
technological progress of sequencing methods, genome-based
prokaryote taxonomy is coming into reach. However, calcu-
lating distances between genomes is dependent on multiple
choices for software and program settings. We here pro-
vide an overview over the modifications that can be applied
to distance methods based on high-scoring sequence pairs
(HSPs) or maximally unique matches (MUMs) and that
need to be documented. As a reference implementation, we
introduce the GGDC web server (http://www.gbdp.org/species).

11. Alexander F. Auch, Mathias von Jan, Hans-Peter Klenk, Markus
Goker. Digital DNA-DNA hybridization for microbial species
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delineation by means of genome-to-genome sequence compar-
ison. To appear in Standards in Genomic Sciences.

The pragmatic species concept for Bacteria and Archaea is
ultimately based on DNA-DNA hybridization (DDH). While
enabling the taxonomist, in principle, to obtain an estimate
of the overall similarity between the genomes of two strains,
this technique is tedious and error-prone and cannot be
used to incrementally built up a comparative database. Re-
cent technological progress in the area of genome sequencing
calls for bioinformatics methods to replace the wet-lab DDH
by in-silico genome-to-genome comparison. We here inves-
tigate state-of-the-art methods for inferring whole-genome
distances in their ability to mimic DDH. Algorithms to ef-
ficiently determine high-scoring sequences pairs or maxi-
mally unique matches perform well as a basis of inferring
intergenomic distances. The examined distance functions,
which are able to cope with heavily reduced genomes and
repetitive sequence regions, outperform previously described
ones regarding correlation with and error ratios in emulating
DDH. Simulation of incompletely sequenced genomes indi-
cates that some distance formulas are very robust against
missing fractions of genomic information. Digitally derived
genome-to-genome distances show a better correlation with
16S rRNA gene sequence distances than DDH values. The
future perspectives of genome-informed taxonomy are dis-
cussed, and the investigated methods are made available as
a web service for genome-based species delineation.
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12. Alexander F. Auch, Stefan. R. Henz, Markus Goker. |Phyloge-
nies from whole Genomes - Methodological update within a
distance-based framework. Poster at GCB 2006, and addition-
ally published via TOBIAS-lib. URN: urn:nbn:de:bsz:21-opus-34178.
2006.

Methods which derive pairwise distances directly from com-
plete sequenced genomes are a potentially important and
efficient tool within the growing field of phylogenomics. We
have shown in two previous studies that the Genome BLAST
Distance Phylogeny (GBDP) approach leads to reliable phy-
logenetic estimates if applied to prokaryotic as well as plastid
and mitochondrial genomes. Basically, GBDP first invokes
tools such as BLAST to identify high-scoring segment pairs
(HSPs) between all pairs of genomes; afterwards, pairwise
distances are estimated based on different formulae.

Here, we examine (1) a new GBDP distance formula, based
on a combination of two previously existing ones; (2) use
of BLAT instead of BLASTN and TBLASTX HSP search;
(3) an alternative measure for the agreement of a distance
matrix with a predefined reference topology; (4) alternative
topology-independent measures of distance quality per se.
All examinations were based on a enlarged dataset compared
to that used in our previous study, additionally containing
interesting key taxa.


http://tobias-lib.ub.uni-tuebingen.de/volltexte/2008/3417/
http://tobias-lib.ub.uni-tuebingen.de/volltexte/2008/3417/
http://tobias-lib.ub.uni-tuebingen.de/volltexte/2008/3417/
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A.3 Submitted Manuscripts

13. Markus Goker, Guido W. Grimm, Alexander F. Auch, Ralf Aurahs,
Michal Kucera. A clustering optimization strategy for molec-
ular taxonomy and its application to planktonic foraminifera
SSU rDNA. Submitted to BMC' Biology.

Background: Identifying species is challenging in the case of
organisms for which often only molecular data are available.
Even if morphological characteristics are well established,
molecular taxonomy is often necessary to emend current
taxonomic concepts and to analyze environmental DNA se-
quences. Typically, for this purpose clustering approaches to
delineate molecular operational taxonomic units have been
applied using arbitrary choices regarding the distance for-
mulae, threshold values and clustering algorithms. Also,
calculation of distance matrices has proved difficult in the
case of high alignment ambiguity.

Results: Here, we report on a clustering optimization method
to establish a molecular taxonomy of planktonic foraminifera
based on highly divergent small subunit rDNA sequences.
The method enables one to determine the combination of
alignment program, distance function and clustering setting
that results in an optimal agreement with non-molecular ref-
erence data. Optimization was applied to both alignment-
based and alignment-free distance calculation. The latter,
which we adapted for use with partly non-homologous se-
quence fragments caused by distinct primer pairs, outper-
formed multiple sequence alignment. Resampling and per-
mutation methods indicate that clustering optimization is
robust regarding taxon sampling and, importantly, against
errors in the reference data.

Conclusion: Our approach offers new perspectives for bar-
coding of species diversity and for environmental sequencing,
where the carriers of the analysed DNA are unknown. Clus-
tering optimization is a general tool for selecting methods
and settings for molecular taxonomy which bridges the gap
between traditional and modern taxonomic disciplines by
specifically addressing the issue of how to optimally account
for both traditional species concepts and genetic divergence.

14. Markus Goker, Alexander F. Auch, Daniel H. Huson. Phylogenetic
Accuracy of Alignment-Based and Alignment-Free Methods:
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Effects of Indel Rate and Violation of Fragment Homology.
Submitted to Systematic Biology.

Phylogenetic inference from molecular sequences usually pro-
ceeds in two steps: multiple sequence alignment followed
by subsequent reconstruction of trees. As an alternative,
several types of alignment-free sequence comparison meth-
ods have been introduced in recent years, but their perfor-
mance has not been as thoroughly tested. Here we com-
pare the phylogenetic accuracy of common alignment-based
algorithms with a variety of recently introduced alignment-
independent inference algorithms. Simulations of nucleotide
sequence data containing gaps are conducted to test two
main hypotheses: (1) in the case of high rates of gap inser-
tion and deletion, alignment-free methods outperform tree
inference from sequence alignments; and (2) the violation of
the fragment homology condition has a profound impact on
the relative accuracy of alignment-independent approaches.
The same inference methods are also applied to real-world
nucleotide datasets chosen so as to display considerable se-
quence diversity. The results of the simulation study confirm
both hypotheses. If sequences are trimmed irregularly to
cause deviations from fragment homology, some alignment-
independent algorithms significantly outperform others. A
correction method is introduced which increases the robust-
ness of methods that identify high-scoring segment pairs.
FEmpirical tests indicate that the violation of the fragment
homology condition has a severe impact on phylogenetic ac-
curacy in real-world datasets, probably caused by sequenc-
ing with distinct primer pairs. If the indel rate in the sim-
ulation is increased above a specific turning point, the best
alignment-free methods are significantly more accurate than
any alignment-based approach. Within limits, relative per-
formance can be predicted by a simple measure of alignment
variability. However, under conditions of very high indel
rates, all algorithms perform poorly in absolute terms. If ap-
plied to some of the real-world datasets, the best alignment-
free methods outperform multiple sequence alignment, but
only insignificantly so.
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Appendix B

Contribution

Here, I want to separate the contributions of others from my work clearly
and in detail.

Chapter 2t Whole-Genome Phylogeny
The basic idea of the GBDP strategy was developed by Daniel Huson,
Stefan Henz and myself (see |Henz et al. 2005). Together with Markus
Goker and Stefan Henz, we considerably refined the GBDP framework
in |Auch et al. (2006bza). The implementation of GBDP in Java was
done by me, as well as most phylogenetic inferrences. Based on his
profound knowledge on eukaryotic taxonomy and biological data anal-
ysis, Markus conceptualized the empirical studies and the analyses of
the results. He also developed the idea behind the variance estimation
and the single-locus GBDP adaptation.

Design, taxon sampling, and implementation of necessary modifica-
tions of the GBDP framework for the large prokaryotic dataset was done
by me.

Chapter Detection of Horizontal Gene Transfer in Prokaryotes
In 2006, I developed the concept for the HGT survey together with
Stefan Henz and Stephan Steigele. Stephan did the initial implemen-
tation of the topological method. In 2009, we decided to refine the
topological method, and I re-implemented a new algorithmic approach
using Java, with considerable contribution by Markus Goker who de-
veloped the idea of the clade score. Markus and me conceptualized
the optimization strategy and the comparison of the different HGT
search methods. I implemented all necessary scripts, carried out the
survey and the final data analysis. Also, I am responsible (and maybe,
blamable) for the biological interpretation of the detected HGT events.
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Chapter Cophylogenetic studies

CopyCat was developed by Jan P. Meier-Kolthoff during his diploma
thesis (Meier-Kolthoff]|2006), which was supervised by Markus Goker
and me. The parts of the code dealing with phylogenetic trees were
implemented by me, as well as the tree measures and the interface
to the NCBI taxonomy. I created the installation archives and the
CopyCat website. Maintenance of the CopyCat application and the
website is also performed by me.

In 2007, Alexandros Stamatakis developed AxParafit and AxPcoords.
Integration into CopyCat was done by Jan and me. Performance tests
of AxParafit and AxPcoords were conducted by Alexandros. The
“gridified” version of both ax-programs was implemented by Alexan-
dros and Heinz Stockinger (Stockinger et al.[2009). The Grid-enabled
version of CopyCat was developed by Jan and me.

Chapter Metagenomics

MEGAN was conceptualized, designed and implemented by Daniel Hu-
son. I provided the code for converting the NCBI taxonomy to a
tree representation, and conducted the simulation studies described in
Huson et al.| (2007a). The simulation studies were conceptualized by
Daniel Huson and Stephan Schuster. The FragAssigner was designed
and implemented by me, as well as the idea to merge HSPs to improve
the classification of contigs.

MetaSim mainly was developed by Felix Ott during his diploma the-
sis, which was supervised by Daniel Richter and me. Felix based his
work on the sourcecode of ReadSim, which was developed by Ramona
Schmid. Daniel Richter, Daniel Huson and me drafted the basic ideas
for MetaSim. I contributed the code for the population sampler, which
was integrated into MetaSim by Felix. The simulation study (Richter
et al.|2008) was designed and conducted together with Daniel Richter.
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C.1 Schema of the GBDP storage database

CREATE TABLE ta_file_stats (
stats_idx bigint NOT NULL,
name character varying(256) NOT NULL,
size bigint,
modify_time timestamp with time zone

)

ALTER TABLE ONLY ta_file_stats

ADD CONSTRAINT ta_stats_primarykey PRIMARY KEY (stats_idx);
CREATE UNIQUE INDEX ta_stats_idx_name ON ta_file_stats USING btree (name);
ALTER TABLE ta_file_stats CLUSTER ON ta_stats_idx_name;

CREATE TABLE ta_file_streams (
stream_idx bigint NOT NULL,
stype integer DEFAULT O,
stream bytea,
stats_idx bigint NOT NULL

);

ALTER TABLE ONLY ta_file_streams ALTER COLUMN stream SET STORAGE EXTERNAL;
ALTER TABLE ONLY ta_file_streams
ADD CONSTRAINT ta_file_streams_primarykey PRIMARY KEY (stream_idx);
CREATE INDEX ta_file_streams_stats_idx ON ta_file_streams USING btree (stats_idx);

ALTER TABLE ONLY ta_file_streams
ADD CONSTRAINT ta_file_stats_fk_stats_idx FOREIGN KEY (stats_idx)
REFERENCES ta_file_stats(stats_idx) ON UPDATE CASCADE ON DELETE CASCADE;

CREATE FUNCTION update_stats() RETURNS trigger
AS $$DECLARE
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bloblen bigint;
currDate timestamp;
doUpdate boolean;
statsIdx bigint;
BEGIN
doUpdate:=FALSE;

IF (TG_OP = ’DELETE’) THEN
IF (OLD.stype = 0) THEN
bloblen:=0;
statsIdx:=0LD.stats_idx;
doUpdate:=TRUE;
END IF;
ELSE -- update or insert
IF (NEW.stype = 0) THEN
bloblen:=length(NEW.stream) ;
statsIdx:=NEW.stats_idx;
doUpdate:=TRUE;
END IF;
END IF;

IF (doUpdate=TRUE) THEN
currDate:=now() ;
update ta_file_stats set size=bloblen, modify_time=currDate
where stats_idx=statsIdx;
END IF;

return NEW;
END;
$3$
LANGUAGE plpgsql;

CREATE TRIGGER streams_update_stats_trig
AFTER INSERT OR DELETE OR UPDATE ON ta_file_streams
FOR EACH ROW
EXECUTE PROCEDURE update_stats();

CREATE SEQUENCE ta_file_stats_stats_idx_seq
INCREMENT BY 1
NO MAXVALUE
NO MINVALUE
CACHE 1;

CREATE SEQUENCE ta_file_streams_stream_idx_seq
INCREMENT BY 1
NO MAXVALUE
NO MINVALUE
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CACHE 1;

ALTER TABLE ta_file_stats ALTER COLUMN stats_idx

SET DEFAULT nextval(’ta_file_stats_stats_idx_seq’::regclass);
ALTER TABLE ta_file_streams ALTER COLUMN stream_idx

SET DEFAULT nextval(’ta_file_streams_stream_idx_seq’::regclass);

C.2 Archaeal Consensus Networks

The Consensus networks (Holland et al.[2004)) were generated using Splits-
Tree4 [Huson and Bryant| (2006). A list of shared genes for the Archacal
lineage was obtained using a revised approach based on Henz et al.| (2004)).

Figure shows a network comprising all 146 shared genes. Addition-
ally, we generated a network based on a subset showing the highest amount of
correspondence among themselves and to the NCBI taxonomy (Figure [C.2]).
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Figure C.1: Consensus network for 28 Archaea based on 146 common genes
(each with 100 bootstrap replicates) using a threshold of 10%. The graph
contains 47 non-trivial splits and has a c-score of 0.91. The numbers shown
represent the bootstrap support for the corresponding edge.
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