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Deutsche Zusammenfassung

Die Visualisierung ist ein bewährtes und probates Mittel für die Repräsen-
tation von Daten. Aufgrund der kognitiven Fähigkeiten von Menschen er-
leichtert eine Visualisierung (graphische Darstellung) das Aufnehmen und
Verstehen der in den Daten enthaltenen Informationen. Die vorliegende
Arbeit beschäftigt sich mit der Graph-basierten Visualisierung, d. h. der
Visualisierung von Daten, die durch Graphen beschrieben werden können.

Ein Graph ist ein Konstrukt der Mathematik (Graphentheorie) und wird
zur Modellierung von binären Relationen zwischen Objekten verwendet. Die
Objekte werden dabei häufig als

”
Knoten“ und die Relationen als

”
Kan-

ten“ bezeichnet. Das Forschungsgebiet, welches sich mit der Visualisierung
von Graphen, im Speziellen mit dem automatischen Anordnen (Layout) von
Knoten und Kanten beschäftigt, heißt

”
Graphenzeichnen“. Beim Zeichnen

von Graphen werden Knoten üblicherweise als Punkte/Rechtecke und Kan-
ten als Kurven repräsentiert. Außerdem werden verschiedene ästhetische
Anforderungen berücksichtigt, z. B. soll die Anzahl der Kantenkreuzungen
in der resultierenden Zeichnung möglichst gering sein.

In orthogonalen Zeichnungen von Graphen werden die Kanten durch
Polygonzüge dargestellt, die aus abwechselnd horizontalen und vertikalen
Liniensegmenten bestehen. Das bekannteste Verfahren zur Erzeugung von
orthogonalen Zeichnungen ist der

”
Topology-Shape-Metrics“ Ansatz (TSM-

Ansatz), der aus den Phasen Planarisierung, Orthogonalisierung und Kom-
paktierung besteht. Im Gegensatz zu den sogenannten kräftebasierten und
hierarchischen Zeichenverfahren, wird der TSM-Ansatz in der Praxis nur
selten eingesetzt. Das liegt zum einen an dessen höherem Implementierungs-
aufwand, zum anderen daran, dass im Vergleich zu den beiden anderen Ver-
fahren nur wenige Erweiterungen zur Einbeziehung von Nebenbedingungen
bezüglich der Anordnung der Graphelemente bekannt sind.

Die Formulierung solcher Nebenbedingungen ist notwendig, um geeignete
Visualisierungen für Anwendungen aus Bereichen wie Software-Technik, Bio-
informatik und Netzwerkanalyse zu erzeugen. In der vorliegenden Arbeit
wird ein neues Zeichenverfahren präsentiert, welches auf dem TSM-Ansatz
basiert und die folgenden Nebenbedingungen unterstützt:
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• Eine Teilmenge der Kanten wird durch monoton steigende Kurven
repräsentiert. Diese Kanten besitzen also eine einheitliche Flussrich-
tung.

• Eine Teilmenge der Knoten wird
”
bimodal“ gezeichnet, d. h. so, dass

die eingehenden und ausgehenden Kanten eines Knotens, bezüglich
ihrer Reihenfolge um den Knoten, getrennt voneinander erscheinen.

• Zusammengehörige Knoten werden zu Clustern gruppiert. Jeder Clus-
ter wird durch eine rechteckige Region repräsentiert, welche genau die
zum Cluster gehörenden Knoten beinhaltet. Die Position eines Clus-
ters wird dabei nicht vorgegeben.

• Die Zeichenfläche wird in Rechtecke zerlegt. Jeder Knoten wird inner-
halb eines vorgegebenen Rechtecks platziert.

• Die möglichen Anschlusspunkte einer Kante an einem dazugehörigen
Knoten werden durch die Vorgabe einer Seite oder einer genauen Po-
sition am Knotenrand eingeschränkt.

Bislang ist kein TSM-basiertes Verfahren bekannt, dass eine solch kom-
plexe Kombination von Nebenbedingungen zulässt. Für die Entwicklung der
entsprechenden Algorithmen wird auf bewährte Methoden und Konzepte
aus dem Bereich des Graphenzeichnens zurückgegriffen. Wie der Titel der
Arbeit bereits verrät, werden nicht nur neue Algorithmen präsentiert, son-
dern diese auch im praktischen Einsatz getestet. Die erzielten Ergebnisse
bestätigen, dass das Verfahren gut für die Visualisierung praktischer An-
wendungen geeignet ist.

Im Einzelnen gliedert sich die Arbeit wie folgt: Nach einer kurzen Ein-
führung in die Thematik werden im zweiten Kapitel zunächst grundlegende
mathematische Konzepte und Definitionen aus dem Bereich der Graphenthe-
orie erläutert. Danach wird ein Überblick über verschiedene Anforderungen
und Konventionen, die beim Zeichnen von Graphen von Bedeutung sind,
gegeben. Es werden die einzelnen Phasen des TSM-Ansatzes beschrieben
und das hierarchische Zeichenverfahren von Sugiyama (Sugiyama-Verfahren)
vorgestellt.

Im dritten Kapitel werden die oben genannten Nebenbedingungen ana-
lysiert und ein Überblick über bereits bestehende verwandte theoretische
und praktische Arbeiten gegeben. Nach der Vorstellung der verschiede-
nen Nebenbedingungen werden die Probleme, die durch deren gleichzeitige
Verwendung entstehen können, betrachtet. Außerdem wird ein Überblick
über die einzelnen Schritte des neuen Zeichenverfahrens gegeben und dessen
Schnittstelle beschrieben.

Im vierten Kapitel wird das neue Planarisierungsverfahren eingeführt,
welches die fünf Nebenbedingungen einbindet. Dabei wird auch eine beson-
ders effiziente Implementierung des Sugiyama-Verfahrens vorgestellt, welche
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den existierenden Implementierungen bezüglich der Laufzeit und des Spei-
cherverbrauchs weit überlegen ist. Die entwickelte Planarisierungsphase ver-
wendet diese Implementierung in einem Zwischenschritt.

In Kapitel fünf wird ein Orthogonalisierungsverfahren vorgestellt, wel-
ches die Nebenbedingungen berücksichtigt. Die Orthogonalisierung basiert
auf dem bekannten

”
Kandinsky“-Verfahren und dessen Erweiterungen, wel-

che das Vorgeben von Kantenknicken und Winkeln zwischen Kanten ermög-
lichen. Es wird aufgezeigt, wie die verschiedenen Nebenbedingungen mithilfe
dieser Erweiterungen realisiert werden können.

Im sechsten Kapitel werden alternative Planarisierungs- und Orthogonal-
isierungsverfahren für die Modellierung von Nebenbedingungen, welche die
möglichen Anschlusspunkte der Kanten an Knoten einschränken, beschrie-
ben. Dabei wird auch ein orthogonales Zeichenverfahren vorgestellt, welches
nicht auf dem TSM-Ansatz, sondern einer anderen Methode beruht.

Die Tauglichkeit der in dieser Arbeit vorgestellten Algorithmen und
Methoden wird im siebten Kapitel demonstriert. Zuerst wird das neue
Verfahren zum Zeichnen von UML-Aktivitätsdiagrammen eingesetzt. Dazu
werden die entsprechenden Anforderungen ermittelt, ein Überblick über
bestehende verwandte Arbeiten gegeben und die Resultate der in bekannten
UML-Werkzeugen verwendeten Zeichenverfahren untersucht. Die Qualität
des Verfahrens wird anhand verschiedener Beispieldiagramme belegt. Im
zweiten Teil des Kapitels wird eine Visualisierungsmethode für Ausführungs-
graphen von parallelen Programmabläufen präsentiert. Diese Methode ba-
siert auf der schnellen Implementierung des Sugiyama-Verfahrens. Wieder
werden die entsprechenden Anforderungen ermittelt und verwandte Arbeiten
auf diesem Gebiet vorgestellt. Die Visualisierungsmethode wird mittels einer
repräsentativen Beispielsanwendung veranschaulicht. Das Kapitel wird mit
einer experimentellen Untersuchung abgeschlossen, welche die Qualität und
die Laufzeit der vorgestellten Algorithmen analysiert.

Die Arbeit endet mit einer Zusammenfassung der wichtigsten Ergebnisse
und einem Ausblick über mögliche Weiterentwicklungen.
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Graph drawing is the best possible field
I can think of: It merges aesthetics,
mathematical beauty and wonderful algo-
rithms. It therefore provides a harmonic
balance between the left and right brain
parts.

Donald E. Knuth

Chapter 1

Introduction

In the last two decades, with the emergence of computer graphics, the re-
search field of information visualization has become increasingly important.
Information visualization utilizes graphical techniques to support people in
understanding and analyzing the information content of data. The impor-
tance of visualization is already pointed out in the proverb “a picture is
worth a thousand words”. Due to the capabilities of the human visual sys-
tem, data represented in (two-dimensional) visual form can be better rec-
ognized and understood than data represented in textual or mathematical
(one-dimensional) form. Visualization especially reveals information about
topological and geometric relations. For example, properties of mathemat-
ical functions like symmetry, critical points or inflection points are readily
identifiable in function graphs but not in mathematical formulas or value
tables.

In this work we consider graph-based visualizations, i.e., the visualiza-
tion of data which can be described by graphs. A graph is a mathematical
construct that consists of a set of objects (called vertices) and a set of binary
relations between these objects (called edges). There are various structures
and problems that can be mapped to graphs. Graph drawing, as a branch of
graph theory, deals with the design and implementation of automatic layout
algorithms for generating readable drawings (diagrams) of graphs. Graphs
are usually drawn on a plane using points or rectangles to represent vertices
and lines to represent edges. Automatic graph layout is motivated by appli-
cations such as software engineering, social network analysis, bioinformatics
and many more. Two example applications are given in Fig. 1.1.
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(a) UML class diagram

(b) Database schema

Figure 1.1: (a) shows a UML class diagram taken from [67]. Red
edges denote generalization relations, which are drawn in upward di-
rection and in a hyperedge representation. (b) presents a database
schema drawn with the “MySQL Explorer” tool from Toolmagic Software
(http://www.sqltoolkit.com). Note that edges are attached to specific at-
tributes on the rectangles representing database tables.
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A central problem in graph drawing is how to produce readable drawings,
i.e., diagrams that best reveal the information contained in the underlying
data. In order to produce such drawings, we have to identify criteria that
determine if a drawing is “good” or “bad”. Besides general aesthetic cri-
teria like the number of bends or crossings of edges, there are also criteria
depending on the semantics and structure of the data.

There are several reasons why we need automatic layout approaches for
graphs: First of all, graphs are often generated automatically; e.g., UML
class diagrams are often generated from existing source code using a reverse
engineering tool. Moreover, there are several applications that use log files
to generate a graph-based model that has to be visualized. Of course, the
layout can be generated manually, but obviously this does not scale very
well with increasing graph size. Drawing large graphs by hand is a very
time-consuming and exhausting task. In practice there are several applica-
tions where automatic events trigger changes in the graph structure. With
an automatic layout approach, the corresponding diagrams can be updated
immediately, which guarantees synchronized views. Another point is that
automatic layout algorithms offer different views of the underlying data by
changing the included layout criteria. Automatic layout also facilitates con-
formance with given style guidelines, which improves communication among
users.

The most established drawing approaches for general graphs which have
received a lot of attention in the graph drawing community are the force-
directed approach, the layered approach (also known as the hierarchical
approach) as well as the topology-shape-metrics approach (TSM approach).
While the first two approaches are very popular in practice and there ex-
ist various graph drawing tools supporting them, the TSM approach has
never gained this attention there. While all three approaches produce fairly
good layout results, the force-directed and layered approaches additionally
support several drawing constraints and are easier to implement.

In [64] Eiglsperger showed that the TSM approach can still be applied
successfully to complex real-world applications, i.e., to the layout of UML-
class diagrams. This thesis builds on results described in that work and
demonstrates how to include various drawing constraints into the TSM ap-
proach. The TSM approach is based on the orthogonal drawing paradigm,
in which all edges are represented by an alternating sequence of horizon-
tal and vertical line segments. It consists of three phases: planarization,
orthogonalization and compaction.

Drawing constraints specify additional requirements for a drawing and
are given as additional input to the layout algorithm. In this work, we
consider the following five drawing constraints which arise in diagrams used
in several practical applications like software engineering, database modeling
and VLSI (very large-scale integration) design. Handling these constraints is
very important for producing adequate visualizations for such applications.



4 Introduction

• FLOW: Edges of a given set are represented by monotonically in-
creasing curves. Fig. 1.1(a) gives an example.

• BIMODAL: Incoming edges (and thus outgoing edges) are consec-
utive with respect to the circular edge order around vertices.

• CLUSTER: Given subsets of vertices are placed inside rectangular
cluster regions.

• PARTITION: Each vertex is placed inside a predetermined partition
cell of a rectangular partitioned drawing area.

• PORT/SIDE: Port constraints specify the exact location (pin) where
an edge should leave/enter its incident vertices, while side constraints
specify on which side of its incident vertices an edge should leave/enter.
An application using port constraints is shown in Fig. 1.1(b).

While for some of the above constraints there are already planarization
and orthogonalization approaches, there is still no approach which allows
one to combine several of these constraints. In this work, we present for the
first time an (automatic) orthogonal drawing approach called Constraint-
Kandinsky which is based on the TSM approach and is able to include all
of the aforementioned constraints at the same time. Therefore, we adapt
several sophisticated graph drawing methods and algorithms. As the title of
this work suggests, we do not only present algorithms but also demonstrate
their efficiency on real-world applications.

This work is structured as follows: Chapter 2 provides the basic defini-
tions and mathematical concepts used in this work. We give an overview
of different requirements for drawing graphs and review the TSM approach.
Furthermore, we describe the layered drawing approach of Sugiyama, which
is used as an intermediate step in our visualization.

In Chapter 3 we introduce the five different drawing constraints in more
detail. In addition to theoretical results, we will also state relevant practical
approaches done so far. After presenting the single constraints, we take a
look at issues arising when we combine them. We present the interface of
our new approach and give an overview of its single steps.

Chapter 4 presents our new planarization framework, which is capable of
simultaneously including the five aforementioned drawing constraints. Af-
ter introducing the so-called “orientation problem”, we describe the basic
concept behind our planarization approach. We also present a fast im-
plementation of Sugiyama’s approach, which provides a significant runtime
improvement over existing implementations.

In Chapter 5 we show how to perform the orthogonalization phase for
the different constraints. Therefore, we review the popular network flow-
based approach of Tamassia [147], which computes bend-minimum orthog-
onal drawings for plane 4-graphs with given embedding. We also present
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the related Kandinsky approach [78] and its extensions for handling pre-
scribed edge bends as well as prescribed angles between adjacent edges [26].
Afterwards we illustrate how to incorporate our set of constraints into this
approach. At the end of this chapter, we briefly sketch how to place labels
on graph elements.

In Chapter 6 we present and analyze different alternative approaches
for realizing port/side constraints. We describe a fast orthogonal draw-
ing approach which implements the so-called three-phase method [13] in-
stead of the TSM approach. Additionally, we present different alternative
planarization approaches as well as two alternative orthogonalization ap-
proaches which produce port/side constraint preserving drawings.

In Chapter 7 we investigate the usability and performance of the methods
and algorithms presented in this work. First we apply our layout approach
to UML activity diagrams. To this end, we identify the corresponding re-
quirements, and give an overview of related work as well as a brief evaluation
of layout capabilities of different popular UML tools. We also provide some
layout examples to demonstrate the quality of our approach. In the second
part, we introduce our visualization method for execution graphs of paral-
lel computations, which is based on our fast implementation of Sugiyama’s
algorithm. Again we identify the corresponding requirements and take a
look at related work done in this area. Furthermore, we demonstrate our
visualization methodology using a representative example application. At
the end of this chapter we give an experimental evaluation of the runtime
and quality of different algorithms presented in this work.

The content and contributions of this thesis are reviewed in Chapter 8.
Some of the presented results have already been published in [14, 15, 67, 71,
135, 136, 137, 138].
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Chapter 2

Basics of Graph Drawing

In this chapter we introduce the basic definitions and algorithms which pro-
vide the basis for this work. First, we review relevant terms and mathe-
matical concepts. Afterwards, we state different requirements for drawings
of graphs. Our new visualization approach is based on the topology-shape-
metrics approach, which we present in Section 2.3. In the last section, we
describe the layered drawing approach of Sugiyama, which we use as an
intermediate step during our visualization.

2.1 Basic Terms and Concepts

In the following we take a look at the mathematical concepts used in this
work – graphs, drawings of graphs and planarity.

2.1.1 Graphs

Below, we present basic terms and concepts of graph theory. For a more
comprehensive overview of this topic, we refer the reader to [37, 51].

A graph is an ordered pair G = (V,E) which consists of a set of vertices
V and a set of edges E ⊆ V × V . The vertices of an edge e are called the
endpoints of e. If all vertex pairs in E are ordered (directed), we call G a
directed graph, and if all pairs are unordered we call it an undirected graph.
Two vertices are called adjacent if they are connected by an edge and two
edges are adjacent if they share an endpoint. If v is an endpoint of edge
e, v and e are called incident. For a directed edge e = (v,w) we call v the
source and w the target of e. A self-loop is an edge that starts and ends
at the same vertex. If there are multiple edges between a pair of vertices,
those edges are called multi-edges. A simple graph is a graph that neither
contains self-loops nor multi-edges.

A graph G′ = (V ′, E′) is called a subgraph of graph G = (V,E) if V ′ ⊆ V
and E′ ⊆ E. G′ is called an induced subgraph of G on V ′ if V ′ ⊆ V and for
any pair of vertices v,w ∈ V ′ is (v,w) ∈ E′ if and only if (v,w) ∈ E. An
undirected graph G = (V,E) is called bipartite if V can be partitioned into
two disjoint vertex sets V = V1 ∪ V2, V1 ∩ V2 = ∅ such that E ⊆ V1 × V2.
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A simple path between vertex v and w is a vertex sequence (v = u1, u2,
. . . , uk = w), such that u1, . . . , uk ∈ V , (ui, ui+1) ∈ E, 1 ≤ i ≤ k − 1 and
ui 6= uj , 1 ≤ i 6= j ≤ k. It is denoted by v →∗

G w. A cycle is a non-empty
path with u1 = uk, k > 1. If a graph contains no cycles it is called acyclic.
An undirected graph is called connected if there is a path between every
pair of vertices. A directed graph is connected if its undirected version is
connected.

The degree δG(v) of a vertex v ∈ V is the number of edges incident to
v. If G is directed, δG(v) can be divided into the out-degree δ+

G(v) = |{w |
(v,w) ∈ E}| and the in-degree δ−G(v) = |{w | (w, v) ∈ E}|. A vertex v ∈ V
with δ−G(v) = 0 is called a source of G and a vertex v ∈ V with δ+

G(v) = 0 a
sink. A directed acyclic graph G is called an st-graph if it has exactly one
source and one sink.

A tree is an undirected, acyclic and connected graph (⇒ |E| = |V | − 1).
In a rooted tree T one vertex is designated as the root. If the order of the
subtrees of T is significant it is called an ordered tree. The depth of a vertex
v in T is the length of the path from the root to v. The lowest common
ancestor of two vertices v and w is defined as the deepest vertex in T that
has both v and w as descendants (where we allow a vertex to be a descendant
of itself). A spanning tree of a connected graph G is a subgraph of G that is
a tree and contains all vertices of G. If G has a weight function on the edges,
a spanning tree is called a minimum spanning tree, if the sum of weights of
its edges is minimum.

Let N = (U,A) denote a directed graph with given cost function c : A→
N and capacity function u : A → N on the edges. Furthermore, for each
vertex v ∈ U the function b : U → Z gives the supply (if b(v) > 0) or
demand (if b(v) < 0) of v. A graph N with these functions is called a flow
network. A minimum cost flow problem on N can be stated as follows:

minimize
∑

e∈A

c(e)f(e)

subject to
∑

e=(v,w)∈A

f(e)−
∑

e′=(w,v)∈A

f(e′) = b(v) ∀ v ∈ U

0 ≤ f(e) ≤ c(e) ∀ e ∈ A

The function f : A → N is called a flow. A flow f is called feasible if it
satisfies all of the above equations and inequalities. In order to be feasible a
minimum cost flow must satisfy

∑

v∈U b(v) = 0. A comprehensive overview
of minimum cost flow networks can be found in [1].

A topological ordering of a directed acyclic graph G = (V,E) is a linear
ordering π : V → N of its vertices such that π(v) < π(w) ∀(v,w) ∈ E. A
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well-known result is that a directed graph is acyclic if and only if it has a
topological ordering.

2.1.2 Drawings and Planarity

In the following we give relevant terms and definitions in the area of graph
drawing and planarity. For a more detailed introduction refer to [46, 103].

A point drawing of a graph G = (V,E) is a mapping of the vertex set V
to distinct points in the plane and the edge set E to open Jordan curves.
The curve of an edge (v,w) connects the points that represent vertices v and
w. In a box drawing the vertices are mapped to boxes (rectangles) instead of
points. A point drawing is called an orthogonal drawing if the curve of each
edge is represented by an alternating sequence of horizontal and vertical
line segments. If, furthermore, all vertices and bends along the edges have
integer coordinates, the drawing is called an orthogonal grid drawing. Note
that a graph has an orthogonal grid drawing if and only if it is a 4-graph
(that is, each vertex has a degree of at most four). A drawing is called
an orthogonal box drawing if it is an orthogonal drawing and each vertex
is mapped to a box. In an orthogonal box grid drawing, the center of the
boxes and the edges’ bends have integer coordinates. Examples of different
drawing styles are given in Fig. 2.1.

(a) point drawing (b) orthogonal point
drawing

(c) orthogonal box draw-
ing

Figure 2.1: Different drawings of the same graph.

A drawing of a graph is called planar if it has no edge crossings, that
is, no two Jordan curves representing edges intersect except at common
endpoints. A graph is called planar, if it has a planar drawing. A planar
drawing partitions the plane into regions called faces (Fig. 2.3(a)). There is
exactly one unbounded region which is called the outer face.

An embedding of a graph is given by the clockwise cyclic ordering of the
incident edges around each vertex. An embedding is called planar if there
is a planar drawing of the graph which preserves this ordering. Planarity
testing of a graph can be done in linear time [21, 99]. Note that a planar
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graph may have an exponential number of different planar embeddings. A
famous theorem about planar graphs was discovered by Euler around 1750:

Theorem 2.1 (Euler’s Formula) Let G = (V,E) denote a connected,
planar graph and F the set of faces. Then

|V | − |E|+ |F | = 2.

Another important result based on this fact is the following:

Corollary 2.2 A planar graph G = (V,E) with |V | ≥ 3 has at most 3|V |−6
edges.

A subdivision of an edge e = (v,w) in graph G = (V,E) can be obtained
by adding a vertex u to V and replacing e by two edges e1 = (v, u) and e2 =
(u,w). A graph G′ = (V ′, E′) is called a subdivision of graph G = (V,E) if
G′ can be obtained by a series of subdivisions of edges of E.

A graph is called a complete graph if each pair of vertices is connected by
an edge. The complete graph with n vertices is denoted as Kn. Analogously,
in a complete bipartite graph G = (V1∪V2, E), every vertex of V1 is connected
to every vertex of V2 (thus E = V1 × V2). A complete bipartite graph
is denoted as Kp,q where p = |V1| and q = |V2|. Fig. 2.2 shows example
drawings of the complete graphs K5 and K3,3.

a

b

cd

e

(a) K5

a b c

d e f

(b) K3,3

Figure 2.2: The complete graph with 5 vertices (K5) and the complete
bipartite graph with 3 vertices in each set (K3,3).

The following characterization for planar graphs was given by Kura-
towski:

Theorem 2.3 (Kuratowski’s Theorem [108]) A graph G is planar if
and only if it does not contain a subdivision of K3,3 or K5 as subgraph.

A planar subgraph G′ = (V,E′) of a graph G = (V,E) is called a maxi-
mum planar subgraph if there is no other planar subgraph of G having more
edges. In [83] it is shown that the calculation of a maximum planar subgraph
is NP-hard.

In a weak visibility representation of a planar graph G = (V,E), each
vertex v ∈ V is mapped to a horizontal segment and each edge e ∈ E
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to a vertical segment. Furthermore, the vertical segment representing an
edge (v,w) has its endpoints on the horizontal segments representing v and
w, and does not intersect with any other horizontal segment. An example
is given in Fig. 2.3(c). A linear time algorithm for constructing such a
representation for a 2-connected planar graph was given in [119]. In [52] it
was independently shown that every planar graph admits a weak visibility
representation.

The dual graph DG of a planar embedding of G has a vertex vf for each
face f of G and an edge (vf , vg) for each edge of G separating two (not
necessarily distinct) faces f and g (Fig. 2.3(b)). Hence, the size of the dual
graph is linear. Furthermore, the dual graph is always planar.

a

b

c

d

f

e

g
f0

f2

f1

f3

(a) planar drawing (b) dual graph (c) weak visibility representation

Figure 2.3: (a) shows a planar drawing of a graph and its faces (f0 denotes
the outer face). (b) shows the corresponding dual graph. Its vertices are
denoted by circles and the edges by solid curves. A visibility representation
of the planar graph is given in (c).

The crossing number cr(G) of a graph G is the minimum number of edge
crossings in any drawing of G in the plane. Determining the crossing number
of non-planar graphs is NP-hard [84]. From Corollary 2.2 we know that each
graph G = (V,E) has at least one crossing if |E| > 3|V | − 6. In [120] it
was shown that the lower bound on the number of crossings for any graph

G with |E| ≥ 7.5|V | is 1
33.75

|E|3

|V |2
. The result is based on work independently

done by [2] and [110]. A simple upper bound on the number of crossings
is cr(G) = O(|E|2). If every pair of edges crosses at most once, then the
number of crossings is O(|E|2). Assume that there are multiple crossings
between an edge pair. Then we can iteratively apply the transformation
shown in Fig. 2.4 until there is at most one crossing left. Due to the lower
bound given above, this bound is tight if |E| = Θ(|V |2).

2.2 Requirements of Drawings

The requirements of a drawing of a graph depend on different factors. Often,
users want to illustrate combinatorial properties of a graph, e.g., if a graph
is planar, then it should be drawn planar. Furthermore, different users may
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(a) (b)

Figure 2.4: Multiple crossings between a pair of edges. The drawing in (a)
can be transformed into the drawing in (b) by exchanging the segments
between two successive crossings.

have different preferences and visual perceptions of a drawing and thus prefer
different drawing styles. In order to describe the requirements for a “nice”
drawing, Di Battista et al. [46] distinguish three different concepts, namely
drawing conventions, drawing aesthetics and drawing constraints. These
concepts define fundamental parameters for each graph drawing methodol-
ogy. In the following we give a brief overview of them.

2.2.1 Drawing Conventions

Drawing Conventions can be seen as general constraints specifying the ge-
ometric representation of edges and vertices. Thus they provide the basic
rules which have to be satisfied to yield an admissible drawing. Examples
of drawing conventions are:

• Polyline Drawings where each edge is represented as a polygonal
chain

• Planar Drawings where no two edges cross each other

• Orthogonal Drawings where each edge is drawn as a sequence of
alternating horizontal and vertical line segments

• Straight-Line Drawings where each edge is represented as a straight-
line segment

In this work we focus on orthogonal drawings (ORTHOGONAL) with
vertices of arbitrary size (VERTEX SIZE). This drawing convention is widely
used in the area of software and database visualization as well as for wiring
diagrams (e.g., for drawing UML-class diagrams, UML-activity diagrams or
Entity-Relationship diagrams).

2.2.2 Drawing Aesthetics

Aesthetics are criteria for judging general graphical properties of a drawing
that should be optimized to increase readability. The drawing of a graph
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with a given set of aesthetic criteria can be seen as a multi-objective opti-
mization problem. The set of applied criteria depends on the application
domain and individual user preferences.

An overview of aesthetic criteria applying to abstract graphs is given in
[36, 46]. The most common are:

• Minimize the number of edge crossings (CROSSING)

• Minimize the area of the drawing (AREA)

• Minimize the deviation from a given aspect ratio (ASPECT RATIO)

• Minimize the maximum length of an edge (EDGE LENGTH)

• Minimize the number of bends (BEND)

• Maximize the smallest angle between two edges incident to the same
vertex (ANGLE)

• Minimize the number of overlapping vertices and edges (OVERLAP)

• Maximize symmetry (SYMMETRY)

Note that it is often difficult to optimize a given set of aesthetics, since
there are a lot of conflicting aesthetics like CROSSING and SYMMETRY
as well as BEND and AREA.

The effects of BEND, CROSSING, ANGLE and SYMMETRY on the
readability of graph drawings were empirically analyzed in [123, 124]. There,
CROSSING was found to be the most important, followed by BEND and
SYMMETRY. ANGLE had no significant effects.

2.2.3 Drawing Constraints

While drawing conventions and aesthetics apply to an entire drawing, draw-
ing constraints only apply to specific parts. They usually emphasize se-
mantic aspects of a graph (e.g., by placing related vertices close to each
other) and are given as additional input to the layout algorithm. If all con-
straints are satisfied, a drawing is called feasible. Some examples of drawing
constraints are the following:

• Place a given vertex to the left, right, top or bottom of another given
vertex (RELATIVE POS)

• Place a given vertex at a given position (ABSOLUTE POS)

• Place a given vertex near the center of the drawing (CENTER)

• Place a given subset of vertices close to each other (CLUSTER)
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(d) compaction

Figure 2.5: The three phases of the TSM approach. The white dummy
vertex represents a crossing.

• Draw a given subset of edges monotonically in a prescribed direction
(FLOW)

In the remainder we use the abbreviations given at the end of the above
items (within the parentheses) to refer to the corresponding constraint or
aesthetic criterion.

Besides the choice of the supported drawing conventions, aesthetics and
constraints, runtime efficiency is another important design issue for layout
algorithms. This is especially true if these algorithms are applied to appli-
cation domains which require interactive usage.

In the next section, we introduce two different well-known drawing ap-
proaches for graphs, namely the TSM approach and Sugiyama’s approach.
Both approaches are relevant for this work.

2.3 The Topology-Shape-Metrics (TSM) Approach

The most effective concept for creating orthogonal grid drawings of undi-
rected graph structures is the topology-shape-metrics (TSM) approach. It
was introduced by Tamassia [147, 148] and later on refined and extended by
several groups of authors [9, 50, 78, 105].

The TSM approach consists of three phases:
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1. Planarization: The planarization phase determines the topology of
a drawing which is described by a planar embedding. Non-planar
graphs are made planar by introducing dummy vertices (also known as
artificial vertices) that represent edge crossings (Fig. 2.5(b)). Common
approaches try to minimize the number of edge crossings (CROSSING)
during this phase.

2. Orthogonalization: The orthogonalization phase fixes the shapes of
the edges in a drawing. It therefore determines edge bends and angles
between adjacent edges. In orthogonal drawings each edge is drawn
as an alternating sequence of horizontal and vertical line segments.
Thus, each angle is a multiple of 90◦ (Fig. 2.5(c)) (ORTHOGONAL).
Orthogonalization algorithms usually try to minimize the number of
edge bends (BEND).

3. Compaction: The compaction phase determines the final coordinates
of graph elements such that vertices and bends are placed on inte-
ger coordinates. Finally, the inserted dummy vertices are removed
(Fig. 2.5(d)). During this phase most approaches try to minimize the
area or the total edge length of the drawing (AREA, EDGE LENGTH).
Note that the placement of vertices and edge bends neither produces
overlapping vertices/edges nor overlapping vertex-edge pairs (OVER-
LAP).

As presented above, the TSM approach incorporates several drawing
aesthetics. Due to the high runtime complexity of its standard implemen-
tations, it is particularly used for medium-sized graphs (about 100 vertices
and 200 edges). Note that because of the arrangement of the phases, the
TSM approach is hardly applicable to constraints which fix the absolute
position of vertices or the distance between them. In the following we have
a closer look at the single phases.

2.3.1 Planarization

Instead of stating the cyclic ordering of edges around each vertex, the em-
bedding of a planar graph G = (V,E) can equivalently be expressed by a
planar representation P. For each edge e ∈ E with endpoints v and w, the
two possible orientations 〈v,w〉 and 〈w, v〉 are called darts. A planar repre-
sentation encodes the embedding in the following way (see [65]): For each
face f ∈ F it contains a cyclic ordered list P(f) which contains the darts
encountered when walking clockwise around f (f lies on the right-hand side
when we traverse a dart of P(f) in the direction of its orientation). The
first list of the planar representation always denotes the outer face. For the
example in Fig. 2.3(a), we obtain the planar representation below. Note
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that each dart is assigned to exactly one face.
P(f0) = { 〈a, d〉; 〈d, f); 〈f, g〉; 〈g, b〉; 〈b, a〉 }
P(f1) = { 〈a, b〉; 〈b, c〉; 〈c, a〉 }
P(f2) = { 〈a, c〉; 〈c, f〉; 〈f, e〉; 〈e, f〉; 〈f, d〉; 〈d, a〉 }
P(f3) = { 〈b, g〉; 〈g, f〉; 〈f, c〉; 〈c, b〉 }

The planarization of non-planar graphs G = (V,E) is motivated by the
availability of various efficient and well-analyzed drawing approaches for
planar graphs. Since crossing minimization for general graphs is NP-hard,
the planarization is usually done using heuristic approaches. The popular
heuristic strategy described in [46] works as follows: First, a planar subgraph
G′ = (V,E′) of G is computed such that |E′| is as large as possible. Recall
that the calculation of a maximum planar subgraph is NP-hard. In the
second step, the remaining edges E \E′ are successively inserted one by one
into G′, minimizing the number of crossings caused at each insertion.

The following calculation of the planar subgraph is based on the two-
phase heuristic of Goldschmidt and Takvorian [89] (GT heuristic). In an
empirical comparison of different heuristics for tackling the maximum planar
subgraph problem [35], only a branch-and-cut approach performed better.
However, the GT heuristic has a shorter runtime and its randomized formu-
lation, given in [127], often achieves better results than the branch-and-cut
approach.

Let G = (V,E) denote the undirected input graph. The GT heuristic
consists of two phases: The first phase determines an ordering ΠV of the
vertices of V . The vertices are placed on a fictitious vertical line according
to ΠV . Let π : V → N denote the function that maps each vertex v ∈ V
to its position within the sequence ΠV . Furthermore, let e1 = (v,w) and
e2 = (x, y) denote two edges such that w.l.o.g. π(v) < π(w) and π(x) < π(y).
Edge e1 crosses edge e2 with respect to ΠV if π(v) < π(x) < π(w) < π(y)
or π(x) < π(v) < π(y) < π(w). The second phase partitions the edge set
E into three subsets L (left of the line), R (right of the line), and B (the
remainder) in such a way that |L ∪R| is large (ideally maximum) and that
no two edges both in L or both in R cross with respect to the sequence ΠV

devised in the first phase. Therefore, we construct a conflict graph GC that
contains a vertex for each edge of G. Two vertices of GC are connected if
the corresponding edges in G cross each other with respect to ΠV . Each
bipartite subgraph of GC represents a valid assignment of the edges of E
to the subsets L, R and B. However, the problem of finding a maximum
bipartite subgraph of a graph is NP-complete [130]. Thus, the second phase
uses the heuristic described in [4] to calculate two disjoint independent sets
of GC in time O(|V ||E|2). An independent set of a graph G = (V,E) is
a subset V ′ ⊆ V such that, for each pair v,w ∈ V ′, v is not adjacent to
w in G. Calculating a maximum independent set (MIS) is known to be
NP-complete [83]. Note that in our application areas (software engineering,
database modeling and VLSI design) the input graphs are almost always
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sparse (|E| = O(|V |)) and the number of crossings is usually O(|V |). In
such a setting the runtime for this phase is O(|V |2).

If the vertex ordering calculated in the first phase corresponds to a
Hamiltonian cycle in a maximum planar subgraph of G, then the number of
edges of the planar subgraph obtained by the GT heuristic is at least three
quarters of the number of edges of a maximum planar subgraph [89]. The
following heuristic attempts to find an ordering ΠV which corresponds to a
Hamiltonian cycle: The first vertex v1 in the ordering is a vertex with min-
imum degree in G. Let v1, . . . , vi denote the first i vertices of the ordering
and Gi the subgraph of G induced by the vertices of V ′ = V \ {v1, . . . , vi}.
The i+1-th vertex vi+1 is a vertex of V ′ which is adjacent to vi in G and has
minimum degree in Gi. If there is no such vertex adjacent to vi, vertex vi+1

is a vertex of minimum degree in Gi. Algorithm 1 shows the corresponding
pseudo code. The ordering can be calculated in O(|V |2) time.

Algorithm 1: calcGTOrdering

Input: A graph G = (V,E).
Output: The ordering function π : V → N.

V ′ ← V ;
Neighbors← ∅;
for i = 1 to |V | do

Gi ← subgraph of G induced by V ′;
Candidates ← Neighbors;
if Candidates = ∅ then

Candidates← V ′;

X ← {v ∈ Candidates | δGi
(v) ≤ δGi

(w) ∀ w ∈ Candidates};
v ← randomly chosen element of X ;
π(v)← i;
Neighbors← {w ∈ V ′ | w adjacent to v};
V ′ ← V ′ \ v;

return π;

The randomized variant of the GT heuristic given in [127] calculates
different vertex orderings using algorithm calcGTOrdering. For each or-
dering it applies the above independent set heuristic and then chooses the
result leading to the largest planar subgraph. Since the number of consid-
ered vertex orderings is bounded by a constant factor, the overall runtime
complexity does not change.

The insertion of the remaining edges is often done using shortest path
computations in an extended dual graph. More precisely, if we want to insert
an edge e = (v,w) into a planar subgraph G′ with given planar embedding,
we first construct the corresponding dual graph DG′ and insert two vertices
v′, w′ into it (Fig. 2.6(b)). For each face f of G′ whose corresponding list
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(a) GT heuristic (b) dual graph routing (c) planarized graph

Figure 2.6: (a) shows the result when we apply the GT heuristic to the
example of Fig. 2.5(a). The red edge (c, d) cannot be inserted without a
crossing and thus is assigned to B. In (b) we demonstrate the routing of
edge (c, d) by means of the extended dual graph. Edges which were added
to the dual graph are drawn using a dashed line (all edges incident to c′ or
d′). The red path denotes a shortest path from c′ to d′. (c) presents the
insertion of edge (c, d) into the planar subgraph. The white circle denotes a
dummy vertex (crossing) inserted during the subdivision of edge (b, e).
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P(f) contains a dart incident to v we insert an edge (v′, uf ) into DG′ (uf

denotes the vertex which represents f in DG′). Analogously, we insert an
edge (ug, w

′) for each face g whose list P(g) contains a dart incident to
w. A path v′ = u1, u2, . . . , uk−1, uk = w′ in DG′ can be used to obtain
a planarization of the graph G′ ∪ e by subdividing those edges of G′ which
correspond to the edges (ui−1, ui), 3 ≤ i ≤ k−1 of DG′ (the first and the last
edge of the path v′ →∗

DG′
w′ are only dummy edges). Let x1, . . . , xk−3 denote

the resulting dummy vertices that represent crossings. Edge e = (v,w) is
inserted as path v, x1, . . . , xk−3, w as shown in Fig. 2.6(c). Hence, if we insert
an edge e into a graph G′ with fixed embedding, the shortest path from v′

to w′ in DG′ induces a planarization with minimal crossing number. Note
that the number of crossings heavily depends on the chosen embedding of
G′. The shortest path can be computed in linear time using a breadth-first
search since the edges have unit weight [37]. Thus, the insertion of a single
edge can be done in linear time. In the remainder of this work we refer to the
above approach as “shortest path routing”. Gutwenger et al. [93] presented
a linear-time approach that determines an embedding of a planar graph G
such that one additional edge can be inserted with the minimum number of
crossings even among all embeddings of G.

2.3.2 Orthogonalization

The shape of an orthogonal drawing is encoded by the orthogonal represen-
tation H. It extends a planar representation P with information about the
bends along edges as well as angles between adjacent edges. More precisely,
each element of a list P(f), f ∈ F is extended to a tuple (〈v,w〉, s, a). The
first entry 〈v,w〉 denotes the dart and the second entry s a bit string. The
k-th bit of s represents the k-th bend that appears when going along the
dart from v to w. A “1” represents a bend whose angle is 270◦ inside of f
and a “0” a bend whose angle is 90◦. If the dart has no bend, s is set to
the empty string ǫ. The angle between a dart and its cyclic predecessor in
list P(f) is specified by a. In orthogonal drawings, a ∈ {90, 180, 270, 360}.
Thus, for the example in Fig. 2.7(a), we have
H(f0) = { (〈a, d〉, ǫ, 180); (〈d, f〉, 11, 270); (〈f, g〉, ǫ, 90); (〈g, b〉, ǫ, 270);

(〈b, a〉, 1, 180) }
H(f1) = { (〈a, b〉, 0, 90); (〈b, c〉, ǫ, 90); (〈c, a〉, ǫ, 90) }
H(f2) = { (〈a, c〉, ǫ, 90); (〈c, f〉, ǫ, 180); (〈f, e〉, ǫ, 180); (〈e, f〉, ǫ, 360);

(〈f, d〉, 00, 90); (〈d, a〉, ǫ, 90) }
H(f3) = { (〈b, g〉, ǫ, 90); (〈g, f〉, ǫ, 90); (〈f, c〉, ǫ, 90); (〈c, b〉, ǫ, 90) }

An orthogonal representation H of a plane graph is called valid if there
exists a planar orthogonal point drawing inducingH. The following theorem
characterizes valid orthogonal representations:
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Figure 2.7: (a) shows an orthogonal drawing for the example of Fig. 2.3(a).
After applying the rectangular decomposition, we obtain the result shown
in (b). The smaller rectangles denote the inserted dummy vertices and the
dashed lines the inserted dummy edges. White dummy vertices are those
replacing bends.

Theorem 2.4 ([147]) An orthogonal representation H of a plane 4-graph
G = (V,E) with given embedding and face set F is called valid if the follow-
ing properties are satisfied:

• Let (〈v,w〉, s1, a1) ∈ H(fi) and (〈w, v〉, s2, a2) ∈ H(fj), fi, fj ∈ F
denote two distinct list elements whose darts represent the same edge.
Then the bit string s1 corresponds to that which we obtain when we
first reverse and then negate bit string s2, e.g., if s2 = 11001 we have
s1 = 01100.

• Let #0 (#1) denote the function that states the number of 0’s (1’s) in
a bit string. Furthermore, let δ(f) denote the number of darts defining
a face f . Since each face f ∈ F is a rectilinear polygon we have:

∑

(〈v,w〉,s,a)∈H(f)

#0(s)−#1(s)+(2−
a

90
) =

{

−4 if f is the outer face,
+4 otherwise.

• Let Lv denote the set of list elements with dart 〈v,w〉, w ∈ V . Then,

for each v ∈ V we have
∑

(〈v,w〉,s,a)∈Lv

a = 360.

The number of bends of an orthogonal drawing is

#bends =
1

2

∑

f∈F

∑

(〈v,w〉,s,a)∈H(f)

|s|.

In Section 5.1 we review the popular network flow-based algorithm of Tamas-
sia [147] which computes bend-minimum orthogonal point drawings for plane
4-graphs with fixed embedding.
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Up to now we have only considered planar 4-graphs. For planar graphs
of higher degree we can no longer draw vertices as points without producing
edge overlaps since there are only 4 different orthogonal directions. Thus,
for those graphs, vertices are usually drawn as boxes. When two edges are
incident to the same side of a vertex, the angle between them is 0◦. An
orthogonal representation H that allows the angle values a to become 0
is called a quasi-orthogonal representation. A quasi-orthogonal representa-
tion is called valid if there exists a corresponding planar orthogonal box
drawing. As shown in [77] Theorem 2.4 also holds for quasi-orthogonal rep-
resentations.

Two approaches which are able to consider vertices of arbitrary degree
are the GIOTTO [148] approach and the approach of Klau and Mutzel [105].
Both are based on a reduction of the input graph to a 4-graph. Their
common drawback is that the resulting vertex boxes may be arbitrarily
large, which is not suitable for most diagrams used in the area of software
engineering or database modeling. Hence, we use the Kandinsky approach,
which allows control over the vertex size.

2.3.2.1 The Kandinsky Model

The Kandinsky approach [77, 78] is based on Tamassia’s network flow based
algorithm and produces orthogonal drawings of general planar graphs with
given embedding. In the original Kandinsky model all vertices are repre-
sented by squares of equal size. The model is also known as the podevsnef

model (planar orthogonal drawing with equal vertex size and non-empty
faces). Each vertex is placed on a coarse, rectilinear grid with uniform
distance λ between the grid lines. The center of the vertices is placed on
intersection points of those grid lines. Since the side length of the vertices is
chosen to be λ

2 there are never overlapping vertices. To each coarse grid line a
set of 2κ− 1 fine grid lines is assigned where the edges are routed (Fig. 2.8).
Recall that edges are not allowed to overlap/intersect with vertices. An
intersection point between a fine grid line and the border of a vertex is
called a pin. We always demand from a valid drawing that straight-line
edges are centered at the corresponding vertex side (assigned to the κ-th
fine grid line on the corresponding side). This is guaranteed if κ is chosen
to be ≥ maxv∈V (δ(v)). When we include port constraints, things are more
complicated since in that case only a subset of the edges may be centered.

A valid quasi-orthogonal representation H of a plane graph G with face
set F has a drawing in the Kandinsky model (also called a Kandinsky draw-
ing) if it satisfies the following two properties:

Definition 2.5 (Bend-Or-End Property) H satisfies the bend-or-end
property if for every pair 〈w, v〉, 〈v, u〉 of darts following each other in a
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Figure 2.8: Example of a valid grid drawing in the Kandinsky model (for
κ = 3). The underlying grid is illustrated by dashed lines.

(a) L-triangle (b) T-triangle

Figure 2.9: Example of an L- and a T-triangle.

cyclic ordered list H(f), f ∈ F holds: either the last bend of 〈w, v〉 or the
first bend of 〈v, u〉 is 270◦ inside of f .

The bend-or-end property implies that there is at most one straight-line
edge per vertex side. All bends caused by the bend-or-end property are
called vertex-bends, the remaining bends are called face-bends.

Definition 2.6 (Non-Empty Face Property) Let f ∈ F denote a trian-
gular face (δ(f) = 3) with P(f) = { 〈v,w〉; 〈w, u〉; 〈u, v〉 }. Then, f is called
an L-triangle if H(f) = { (〈v,w〉, 1, 0); (〈w, u〉, ǫ, 0); (〈u, v〉, ǫ, 90) } and a T-
triangle if H(f) = { (〈v,w〉, 1, 0); (〈w, u〉, 1, 0); (〈u, v〉, ǫ, 0) } (Fig. 2.9). H
satisfies the non-empty face property if it does not contain L- or T-triangles.

Neither triangle can be drawn with positive area, which is often undesir-
able, e.g., if those faces should be labeled. As shown in [77], faces f ∈ F with
δ(f) > 3 can always be drawn with positive area. The main motivation for
excluding the L-triangle is that it cannot be drawn without overlap in the
Kandinsky model (Fig. 2.9(a)). Furthermore, excluding L- and T-triangles
leads to the following observation which is used to derive a network flow
formulation for computing Kandinsky drawings.

Lemma 2.7 ([78]) Every 0◦ angle in a Kandinsky drawing has a unique
corresponding vertex-bend.
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A quasi-orthogonal representation H is said to be of Kandinsky shape if
it satisfies the bend-or-end and the non-empty face properties. The bend-
or-end property limits the overall number of straight-line edges as follows:

Lemma 2.8 A Kandinsky drawing of a graph G = (V,E) has at most
⌈2(|V | −

√

|V |)⌉ straight-line edges.

Proof: Obviously, a grid graph has a maximum number of straight-line
edges in a Kandinsky drawing. Each vertex at a corner of the grid has
degree two, other vertices at the grid border have degree three, and the
remaining inner vertices have degree four. Hence, a quadratic grid structure
has a maximum number of straight-line edges. An n× n grid has |V | = n2

vertices and each row/column contains n − 1 straight-line edges. Thus the
overall number of straight-line edges is 2n(n−1) = 2(n2−n) = 2(|V |−

√

|V |).
2

Since all other edges have at least one bend, this leads directly to:

Corollary 2.9 A Kandinsky drawing of a graph G = (V,E) has at least
⌊|E| − 2(|V | −

√

|V |)⌋ bends.

There are different variants derived from the original Kandinsky model
(podevsnef model). In [44] the podavsnef model (planar orthogonal draw-
ing with arbitrary vertex size and non-empty faces) was introduced. It
allows vertices of prescribed size, i.e., the user specifies the width and height
of each vertex. Since the bend-or-end property allows control over the ver-
tex size, the changes for this model are restricted to the compaction step.
The quasi-orthogonal representation corresponds to that of a podevsnef

drawing.
Even though the complexity of finding a bend-minimum Kandinsky draw-

ing is not known, there is an effective network flow formulation (Section 5.2)
which calculates drawings with at most twice the number of bends of the
optimal solution [64]. There are several extensions of the Kandinsky ap-
proach that are applicable to our purpose, e.g., the use of prescribed angles
and bends [26] as well as prescribed edge shapes [64, 67].

2.3.3 Compaction

The compaction phase determines an orthogonal grid drawing for the given
orthogonal representation H, calculated in the preceding phase. It assigns
lengths to the edge segments of H, such that vertices and bends are placed
on integer coordinates. Furthermore, the assignment guarantees that there
are no intersections or overlaps among vertices and edges.

Several (two-dimensional) compaction algorithms for graphs are based on
the so-called one-dimensional compaction approach, which has its origins in
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VLSI design; see [109, 111]. In one-dimensional compaction approaches, only
one dimension is changed at a time while the other dimension is fixed. Thus,
a two-dimensional compaction can be performed by iteratively applying the
one-dimensional compaction to the vertical and horizontal directions.

In the special case where each face of an orthogonal representation has a
rectangular shape, the compaction problem can be formulated as a network
flow problem. More precisely, two networks are constructed: one for the
vertical and one for the horizontal edge segments. A minimum cost flow in
these networks can be used to calculate a drawing with minimum width,
height, area and total edge length [46]. The runtime of this approach is
dominated by solving the minimum cost flow problem, which can be done
in time O(n

7
4 log n) as shown in [86] (n denotes the number of vertices in

the network, which is linear to the number of vertices in the input graph).
The compaction can be done in linear time if the minimization of the total
edge length is omitted.

For general graphs the compaction problem is NP-hard [122]. In order to
apply the above approaches to orthogonal representations of general graphs,
we perform a so-called rectangular decomposition [147], where each face
is made rectangular by introducing additional dummy vertices and edges
(Fig. 2.7(b)). Bends are also replaced by dummy vertices. The rectangu-
lar decomposition can be performed efficiently by iteratively searching for
certain patterns of the angles inside a face. Note that the quality of the
resulting drawings depends heavily on the chosen decomposition.

Two known approaches which are not based on rectangular decompo-
sition are the “turn-regularity” [28] and the “shape-graph” approach [106].
The second approach is based on a branch-and-cut method and calculates
an optimal compaction regarding the total edge length. However, it may
have exponential runtime.

The first compaction algorithm for the podevsnefmodel described in [77]
was based on an adaptation of the rectangular decomposition approach.
Di Battista et al. [44] presented a compaction approach for the podavsnef

model. It starts with a podevsnef drawing and then expands the vertices
by means of a minimum cost flow network.

Another approach which is able to handle vertices of prescribed size was
presented in [64]. It consists of the following two steps: First a low qual-
ity, valid compaction is calculated and this is improved by a postprocessing
algorithm in the second step. The approach is motivated by an experimen-
tal study which compares different orthogonal compaction algorithms [104].
The study shows that the results of different constructive compaction heuris-
tics are almost the same after applying a flow-based one-dimensional com-
paction algorithm [111] as the postprocessing step. Thus, the first step is
performed with a fast linear-time heuristic. It is based on the shape-graph
compaction approach [106] and uses a variant of the rectangular decompo-
sition.
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2.4 Sugiyama’s Approach

Now we turn to the abstract drawing framework of Sugiyama [146], which we
use as an intermediate step during the planarization phase of our new layout
approach. Sugiyama’s framework is the most common approach for produc-
ing layered drawings of directed graphs. It is very popular and supported
by almost all graph drawing libraries. Let G = (V,E) denote a connected
directed graph. The framework consists of four phases:

1. Cycle Removal: In the cycle removal phase, G is made acyclic by
reversing appropriate edges (Fig. 2.10(b)).

2. Layer Assignment: During the layer assignment phase (also called
rank assignment), the vertices of G are assigned to horizontal layers
L1,. . . ,Lh. L1 represents the topmost layer. Let λ : V → 1, . . . , h
denote the function that maps each vertex to a layer number, i.e.,
λ(v) = i if and only if v is in layer Li. A valid layering has the
property that for each edge e = (v,w) ∈ E holds λ(v) < λ(w). After
the layer assignment, edges between vertices of non-adjacent layers
(also called “long edges”) are replaced by chains of dummy vertices and
edges between the corresponding adjacent layers. This process is called
normalization and the result is the normalized graph GN = (VN , EN )
(Fig. 2.10(c)).

3. Crossing Reduction: In the crossing reduction phase, an ordering of
the vertices within a layer is computed such that the number of edge
crossings is reduced (Fig. 2.10(d)). The result is a directed acyclic
compaction graph Ga = (VN , {(a, b) : a, b ∈ VN and a, b consecutive
in Li, 1 ≤ i ≤ h}). It gives the left-to-right order of the vertices in a
layer and hence defines a total ordering for those vertices (Fig. 2.10(e)).
Note that crossing minimization is NP-hard [84].

4. Horizontal Coordinate Assignment: Finally, the horizontal coor-
dinate assignment phase uses the compaction graph to calculate an
x-coordinate for each vertex. Long edges are represented by polygonal
lines with the dummy vertices as intermediate points. Thus, in order
to reduce the number of edge bends, all dummy vertices belonging to
the same long edge should be aligned vertically. After the final lay-
out, the reversed edges are restored to their original direction and the
dummy vertices are removed (Fig. 2.10(f)).

Unfortunately, almost all problems occurring during the phases of this
approach are NP-hard: Feedback Arc Set [102], Two-Layer Crossing Min-
imization [59], Optimal Linear Arrangement [85] etc. Nevertheless, for all
these problems appropriate heuristics have been developed and nearly ev-
ery practical graph drawing software uses this approach, mostly enriched by
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Figure 2.10: The different phases of Sugiyama’s framework. Dummy vertices
are drawn as white circles.
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Figure 2.11: A package diagram laid out with the TSM approach (a) and
with Sugiyama’s approach (b). Both diagrams use rounded bends.

modifications required in practice like large vertices, same-layer-edges, clus-
tering etc. An example of a layered graph drawing is given in Fig. 2.11(b).

The complexity of algorithms implementing Sugiyama’s framework heav-
ily depends on the number of dummy vertices inserted during the normal-
ization. Although this number can be minimized efficiently, it may still
be in the order of Θ(|V ||E|) [79]. Assume that we are using an algorithm
based on Sugiyama’s framework which uses the fastest available algorithms
for each phase. Then this algorithm has runtime O(|V ||E| log |E|) and uses
O(|V ||E|) memory.

In the following, we review Sugiyama’s framework for drawing directed
graphs in more detail and give the necessary definitions and algorithms.

2.4.1 Cycle Removal

In this phase the directed input graph G is made acyclic. This is necessary
for the subsequent phases. Each graph can be made acyclic by reversing
appropriate edges. Obviously, the number of reversed edges should be as
small as possible, because in the final drawing those edges are drawn against
the flow direction. Recall that the edges are only reversed internally. The
problem of finding a small set of edges whose reversal makes G acyclic is
closely related to the well-known feedback arc set problem for which there
are several approved heuristics.

Let G = (V,E) denote a directed graph. A feedback arc set A ⊂ E is
a set of edges such that the subgraph G′ = (V,E \ A) is acyclic. Finding a
minimum cardinality feedback arc set is NP-hard [83]. A feedback arc set A
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is called minimal if there is no edge of A which can be added to G′ without
introducing a cycle.

The greedy heuristic described in [58] determines a feedback arc set A

of a directed simple graph G = (V,E) such that |E \A| ≥ |E|
2 + |V |

6 . It runs
in linear time.

A minimum weighted feedback arc set is a feedback arc set of minimum
weight with respect to a nonnegative weight function ω : E → R

+. A heuris-
tic approach for this problem was described in [42]. For a directed graph
G = (V,E) it has runtime O(|V ||E|) and consists of two phases: First, it
searches for a simple cycle C of G. If there is such a cycle it determines a
minimum weight edge e of C. Then, it decreases the weight of each edge
of C by the weight of e. All edges whose weight becomes equal to 0 (true
for at least e) are removed from G. If G is now acyclic, the first phase ter-
minates, but otherwise the previous steps are repeated. Let A′ denote the
edges removed from G in the first phase. Obviously, A′ is a feedback arc
set, though not necessarily minimal. Thus, in the second phase the heuristic
iteratively tries to reinsert edges of A′ into G. An edge is only reinserted
if this does not introduce a cycle in G. Hence, the result of the heuristic is
always a minimal feedback arc set. We will exploit the following property
of this heuristic:

Lemma 2.10 Let G′ = (V ′, E′) denote an acyclic subgraph of a directed
graph G = (V,E). If we assign weight φ to all edges of E \ E′ and weight
φ · |E| to all edges of E′, the feedback arc set A returned by the heuristic
never contains an edge of E′.

Proof: Assume that there is an edge e ∈ E′ in A. Since E′ is acyclic, each
cycle C detected during the first phase of the heuristic contains at least one
edge of E \ E′. Thus, the weight of e can only become equal to 0 (which is
necessary to put it into A) if e is contained in at least |E| cycles detected in
the first phase. However, since in each step of this phase at least one edge is
removed, the number of processed cycles is smaller than |E|. In the second
phase no additional edges are inserted into A. 2

Note that, in general, we cannot simply reverse all edges of a feedback
arc set of G to make G acyclic; e.g., removing all the edges of a cycle
makes it acyclic, but reversing those edges only reverses the cycle. However,
reversing all edges of a minimal feedback arc set guarantees that G is acyclic.
For heuristics which do not necessarily return a minimal feedback arc set
A, we can proceed as follows: We calculate a topological ordering π of the
graph (V,E \ A) and reverse all edges (v,w) ∈ A for which π(v) > π(w).
This can be done in linear time and guarantees that G is acyclic.
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2.4.2 Layer Assignment and Normalization

We assume that G = (V,E) is a directed acyclic graph. Let L1,. . . ,Lh be
a partition of V with Li ⊂ V , 1 ≤ i ≤ h and

⋃h
i=1 Li = V (h denotes the

number of layers). Such a partition is called a layering of G if for each edge
e = (v,w) ∈ E holds λ(v) < λ(w). The span of an edge e is λ(w)−λ(v). The
number of vertices in a layer Li is denoted with ni. In a layered drawing,
all vertices v ∈ Li are drawn on a horizontal line (same y-coordinate). So
the layer assignment step assigns each vertex v ∈ V a y-coordinate. We call
the layering proper if span(e) = 1 for all edges e ∈ E. In most applications
the layers of the vertices can be assigned arbitrarily and, in some cases, the
layer assignment is even part of the input.

For edges e = (u, v) with span(e) > 1 and for which the endpoints u and
v lie on layers Li and Lj, respectively, we replace e by a chain of dummy
vertices di+1, . . . , dj−1 where vertex dk, i + 1 ≤ k ≤ j − 1 is placed on layer
Lk. The vertices are connected by edges (u, di+1), (dj−1, v) as well as edges
(dk, dk+1) for each i+1 ≤ k < j−1. This process is called normalization and
the result is the normalized graph GN = (VN , EN ). With this construction,
the next phase starts with a proper layering. Recall that in the worst case
|VN |, |EN | = Θ(|V ||E|). After the final layout of the modified graph, we
replace the chains of dummy edges by polygonal chains in which the former
dummy vertices become bends.

A simple layering approach is the so-called “longest path layering‘”. It
first places all vertices v ∈ V with zero in-degree (δ−(v) = 0) in layer L1.
Each remaining vertex v is placed in layer Ll+1, where l denotes the length
of the longest path from v to a vertex in layer L1. Since G is acyclic the
layering can be computed in linear time using a topological ordering of the
vertices. Furthermore, the layering produces a minimum number of layers.

The popular “simplex layering” approach introduced by Gansner et
al. [82] calculates a layer assignment such that the total edge length, and
thus the number of inserted dummy vertices, is minimized. The layering
problem can be reformulated as the following integer program:

minimize
∑

(v,w)∈E

(λ(w) − λ(v))

subject to

λ(v) ≥ 1 ∀ v ∈ V

λ(w)− λ(v) ≥ 1 ∀ (v,w) ∈ E.

The linear program is solved by applying the network simplex method. Its
time complexity has not been proven to be polynomial, but in practice it
takes only a few iterations and runs quickly. Examples of other layering
heuristics which work well in practice are given in [95, 129].
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2.4.3 Crossing Reduction

The vertices within each layer Li are stored in an ordered list which gives
the left-to-right order of the vertices on the corresponding horizontal line.
Such an ordering is called a layer ordering. We will often identify the layer
with the corresponding list Li. The ordering of the vertices within adjacent
layers Li−1 and Li determines the number of edge crossings with endpoints
on both layers.

Crossing reduction is usually done using a layer-by-layer sweep where
each step minimizes the number of edge crossings for a pair of adjacent
layers. It is performed as follows: We start with an arbitrary vertex order
of the first layer L1 (we number the layers from top to bottom). Then
iteratively, while the vertex ordering of layer Li−1 is kept fixed, we put the
vertices of Li in an order that minimizes crossings. This step is called one-
sided two-layer crossing minimization and is repeated for i = 2, . . . , h. After
we have processed the bottommost layer, we reverse the sweep direction and
go from bottom to top. These steps are repeated until no further crossings
can be eliminated for a certain number of iterations. The one-sided two-
layer crossing minimization problem is NP-hard [59]. Let G′ = (L1∪L2, E

′ ⊆
L1×L2) denote a two-layered (bipartite) graph where the ordering of vertices
in L1 is fixed. Many heuristics tackle this problem by first calculating a
measure for each vertex of L2 and then sorting the vertices according to
their measure in ascending order.

Definition 2.11 A linear measure m defines for each vertex v ∈ L2 a non-
negative value m(v). If v has only one neighbor w in L1, then m(v) =
pos(w), where pos(w) is the position of w in layer L1.

In the following, we describe the two most established heuristics which
are both based on a linear measure.

• Barycenter Heuristic [146]
The barycenter heuristic calculates the measures as follows: the mea-
sure of a vertex v ∈ L2 is the barycenter (average) of the positions of
v’s adjacent vertices in L1. Hence, we have

m(v) =
1

δ−G′(v)

∑

(w,v)∈E′

pos(w)

Calculating the barycenter values needs time O(|E′|) and sorting the
vertices according to this values needs time O(|L2| log |L2|).

• Median Heuristic [59]
The median heuristic is related to the barycenter heuristic. Here, the
measure of a vertex v ∈ L2 is the median of the positions of v’s adjacent
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vertices in L1. The median of n elements can be calculated in time
O(n), see, e.g., [37]. Thus, calculating the measures for the vertices
has runtime O(|E′|). We can sort the vertices in time O(|L1|+ |L2|) by
using bucket sort [37] because the medians are integer values between
1 and |L1|.

Only a few provable results on the quality of the above heuristics are known:

• For a graph G′, the barycenter as well as the median heuristic give a
solution without crossings, if one exists [46].

• Let xopt denote the minimum number of crossings for a given one-
sided two-layer crossing minimization problem. Then for the number
of crossings xmed resulting from the median heuristic holds xmed ≤
3xopt [59].

Even if there is no such bound for the barycenter heuristic, various ex-
periments show that it outperforms most other heuristics [100, 150]. In
order to decide whether we have improved the number of crossings by a
layer sweep, we have to count them. Therefore we sum the number of cross-
ings produced by the one-sided two-layer crossing minimization steps. The
problem of counting crossings of a two-layered graph G′ is called the bilayer
cross counting problem. The sweep-line approach proposed by Sander [129]
solves this problem in time O(|E′|+x) where x denotes the number of cross-
ings. This bound has been improved to O(|E′| log(|L1| + |L2|)) by Waddle
and Malhotra [152]. Barth et al. [6] gave a much simpler description of the
algorithm with the same running time.

It works as follows: Let L1 and L2 denote two adjacent layers with layer
ordering v1, . . . , vp and w1, . . . , wq, respectively. The edges between both
layers are sorted lexicographically such that (vi, wj) < (vk, wl) if and only
if i < k or i = k ∧ j < l. Let e1, . . . , er be the lexicographically sorted edge
sequence, and jm ∈ {1, . . . , q} the position of the target vertex of edge em

in L2. An inversion in the sequence j1, . . . , jr is a pair jk, jl with k < l and
jk > jl. Each inversion corresponds to an edge crossing between both layers.
The number of inversions is counted by means of an efficient data structure,
called the accumulator tree T [6]. The data structure can easily be extended
to support cross counting of weighted edges.

Recall that the number of dummy vertices/edges is O(|V ||E|). Hence,
the runtime of the crossing reduction phase is O(|V ||E| log |E|) when we use
the bilayer cross counting approach of Barth et al. together with the median
or barycenter heuristic.

2.4.4 Horizontal Coordinate Assignment

The horizontal coordinate assignment computes the x-coordinate for each
vertex with respect to the layer ordering computed during the crossing re-
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duction phase. There are two objectives to consider to get nice drawings:
First the drawings should be compact and second the edges should be “as
vertical as possible” (with only few bends). Failure in the second objective
can produce many unnecessary bends, which results in a “spaghetti effect”
and reduces the readability.

Gansner et al. [82] model the horizontal coordinate assignment problem
as an integer linear program:

min
∑

(v,w)∈E

Ω(v,w) · |x(v) − x(w)|

subject to

x(b)− x(a) ≥ ρ(a, b) ∀ a, b ∈ VN and a, b consecutive in Li, 1 ≤ i ≤ h

where Ω(v,w) denotes the priority to draw edge (v,w) vertical, x(v) denotes
the x-coordinate of v and ρ(a, b) the minimum distance of consecutive ver-
tices a and b. If Ω is chosen carefully, the “spaghetti effect” can be limited.
The linear program can be interpreted as a layer assignment problem on a
compaction graph Ga = (VN , {(a, b) : a, b ∈ VN and a, b consecutive in Li,
1 ≤ i ≤ h}) with length function ρ. Each valid rank assignment corresponds
to a valid drawing. The above objective function can be modeled by adding
vertices and edges to Ga [82].

The alternative approaches described in [27, 129] are motivated by the
linear segments model, where each edge is drawn as a polyline with at most
three segments. The first and the last segments are always proper (endpoints
lie on adjacent layers) and the middle segment is drawn vertically (Fig. 2.12).
Note that such drawings are only possible if the layer orderings produced
during the crossing reduction phase guarantee that there are no crossing
middle segments. As shown in Lemma 2.12, this is always the case if we
use the traditional two-layer crossing minimization with a linear measure.
In general, drawings in the linear segments model have less bends but need
more area than drawings in other models.

Lemma 2.12 Using a linear measure m, there are no middle segments
crossing each other.

Proof: A middle segment represents a chain of dummy vertices. Each
dummy vertex v on a layer Li has exactly one neighbor w in layer Li−1.
Hence, when we use a linear measure m, m(v) = pos(w). Thus two middle
segments never change their relative ordering and thus never produce a
crossing with each other. 2

The approach of Brandes and Köpf [27] is a longest path-based heuristic
which produces nicely balanced drawings and runs in time linear to the
size of the compaction graph Ga. If the crossing reduction phase uses a
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v

w

Figure 2.12: The linear segments model. Edge (v,w) is drawn as a polyline,
where the first and the last segments are proper and the middle segment is
drawn vertically. Dashed lines denote the layers.

linear measure, the resulting drawings always conform to the linear segments
model. The heuristic first tries to align a vertex with either its median upper
or its median lower neighbor. Aligned vertices share the same vertex in the
compaction graph and thus get the same x-coordinate. There are three kinds
of alignment conflicts: type 0 conflicts arise between two non-inner segments
(a non-inner segment has at least one non-dummy vertex as an endpoint),
type 1 conflicts arise between a non-inner segment and an inner segment and
type 2 conflicts between two inner segments. Note that type 2 conflicts do
not appear if the crossing reduction uses a linear measure. Type 1 conflicts
are always resolved in favor of the inner segment.

Regardless of whether the vertices are aligned with their median upper
or median lower neighbor, alignment conflicts can be resolved either in a
leftmost or a rightmost fashion. Thus, there are four possible combinations
for aligning the vertices. For each combination, the horizontal coordinates
are calculated by a longest path algorithm. Finally, the four resulting coor-
dinate assignments are combined to get a balanced drawing.
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Chapter 3

Orthogonal Graph Drawing
with Constraints

Although there are a lot of publications on orthogonal graph drawing (see [46]
for an overview), very few of these publications consider drawing constraints
that arise in diagram types used for practical applications like software engi-
neering, database modeling and VLSI (Very Large Scale Integration) design.
Handling such constraints is very important for producing adequate visual-
izations for these applications.

In the first section, we present five different drawing constraints which
often appear in graph-based diagrams. The new approach presented in this
work is able to simultaneously include all these constraints. For the design
of our approach, we assume that the underlying graphs are sparse (density
≤ 2) and of medium size (≤ 100 vertices). This assumption applies to
most diagram types which are used to visualize the applications mentioned
above. After the presentation of the single constraints, we take a look at
issues arising when combining them. We also review related work dealing
with combinations of multiple constraints. In the last section, we present
the interface of our new approach for the automatic layout of graphs with
constraints and give an overview of its single steps. In the remainder of this
work, we assume that vertices are represented as boxes.

3.1 Drawing Constraints

In the following we will introduce different important drawing constraints.
Besides theoretical results, like the complexity of planarity testing as well
as crossing and bend minimization, we will also state relevant practical ap-
proaches done so far. Note that we focus on TSM-based approaches here,
i.e., approaches which realize one or more phases of the TSM approach.

3.1.1 Bimodal Drawings (BIMODAL)

Let G = (V,ED) denote a directed graph. For a given drawing/embedding
of G, a vertex v ∈ V is called bimodal if the incoming edges (and thus the



36 Orthogonal Graph Drawing with Constraints

outgoing edges) around v are consecutive. A drawing of G is called a bimodal
drawing if each vertex v ∈ V is bimodal. In practice, incoming and outgoing
edges of a vertex are often placed on opposite sides. Note that for any graph
G there is always a bimodal drawing. G is called bimodally planar if it has
both a bimodal and a planar drawing at the same time. Note that there are
graphs which have a bimodal and a planar drawing but are not bimodally
planar (Fig. 3.1). A bimodal embedding of a graph is given by a clockwise
cyclic ordering of the edges around each vertex in which the incoming and
outgoing edges form separate, non-intersecting intervals. Such an ordering
of the edges around a vertex is called bimodal ordering.

(a) (b)

Figure 3.1: Example of a graph which has a planar (a) and a bimodal
drawing (b) but not a planar bimodal drawing.

A mixed graph is a tuple G = (V,ED ∪ EU ), where V denotes the set of
vertices, ED the set of directed edges and EU the set of undirected edges.
A drawing of a mixed graph is called bimodal if the sub-drawing induced
by (V,ED) is bimodal. We also allow specifying only a subset V ′ ⊆ V of
vertices that have to be bimodal. In that case a drawing is called bimodal
if the sub-drawing induced by (V ′, ED) is bimodal.

Bimodal drawings are helpful for graphs where the edge direction should
be emphasized, e.g., for UML class and entity-relationship diagrams. They
ensure a better recognition of the edge direction by separating incoming and
outgoing edges of vertices.

Testing for whether a directed graph G = (V,ED) is bimodally planar
can be done in time O(|V |) [10]. Obviously, each planar graph with max-
imum vertex degree 3 is bimodally planar, because any order of the edges
around the vertices is bimodal. As shown in [72], calculating a maximum
planar subgraph for cubic graphs (all vertices have degree 3) is NP-hard.
Hence, calculating a maximum bimodally planar subgraph is NP-hard, too.
Furthermore, in [98] it is shown that crossing minimization is NP-hard for
cubic graphs and thus it is also NP-hard when we demand a bimodal order-
ing of edges around vertices. Buchheim et al. [32] show how to adapt the
traditional planarization method in order to produce bimodal embeddings
of directed graphs.
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3.1.2 (Mixed) Upward Drawings (FLOW)

An upward drawing of a directed graph G = (V,ED) is a drawing of G
such that all edges are represented by monotonically increasing curves in
the vertical direction. Furthermore, we add the restriction that incoming
edges enter a vertex at the bottom and that outgoing edges leave a vertex
at the top. An upward drawing exists if and only if G is acyclic. Note that
an upward drawing always induces a bimodal drawing. G is called upward
planar if it has an upward and a planar drawing at the same time. Note
that there are graphs which have an upward and a planar drawing but are
not upward planar (Fig. 3.2). An upward embedding of a graph is given by a
clockwise cyclic, bimodal ordering of the adjacent edges around each vertex.

(a) (b)

Figure 3.2: Example of a graph which has a planar (a) and an upward (b)
drawing but not a planar upward drawing.

A mixed-upward drawing of a mixed graph G = (V,ED∪EU) is a drawing
such that the edges of ED are represented by monotonically increasing curves
in the vertical direction. G is called mixed-upward planar if it has a mixed-
upward and a planar drawing at the same time.

Mixed upward drawings arise in applications where the edges of a graph
can be partitioned into a set which denotes a hierarchical structure and a
set which does not have such a structure. Well-known examples are data
flow diagrams as well as UML class diagrams where we have generalization
and association edges.

In [87], Garg and Tamassia showed that testing directed graphs for up-
ward planarity is NP-hard in general. It follows directly that crossing mini-
mization as well as the calculation of a maximum upward planar subgraph is
also NP-hard. The same results apply to mixed-upward graphs which are a
generalization of upward graphs. Note that for a fixed planar embedding of
a directed graph, testing upward planarity can be done in time O(|V |2) [11].

An approach for mixed-upward planarization was given by Eiglsperger
et al. [69]. The approach is based on a modification of the GT heuris-
tic (Section 2.3.1) which allows preserving the given direction of directed
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edges and thus produces a mixed-upward planar subgraph. This subgraph
is augmented to an upward planar st-graph by inserting appropriate dummy
edges. A special routing graph, which guarantees monotone edge routes, is
used to insert the remaining directed edges. Finally, the dummy edges
are removed and the undirected edges not yet in the subgraph are in-
serted using shortest path routing. The overall runtime of this approach
is O(|V ||E|2 + (|V |+ c)2|E|).

An integer linear program (ILP) formulation for calculating bend-mini-
mum orthogonal upward drawings of graphs with given upward embedding
can be found in [66]. In [70], we presented the “UML-Kandinsky” approach
for drawing UML class diagrams. More precisely, we showed how to calcu-
late a mixed-upward drawing for a given mixed-upward planar embedding
of a connected mixed input graph G = (V,ED, EU ). The algorithm works as
follows: First, we only consider directed (upward) edges, i.e., the subgraph
induced by the edges of ED. For each vertex v, we assign a “head-shape” to
the incoming edges and a “tail-shape” to the outgoing edges. The assigned
shape depends on the given embedding and guarantees monotonically in-
creasing edge routes complying with the Kandinsky model. We obtain the
final shape for directed edges by concatenating the head- and tail-shapes.
In the second step, we calculate the shape of undirected edges by solving a
minimum cost flow problem. In order to produce a mixed-upward drawing
with this approach, we have to guarantee that the subgraph induced by the
directed edges is connected. Hence, we calculate a spanning tree of G and,
if necessary, temporarily add some edges of EU to ED. In Section 5.3 we
will review this approach in more detail. A similar approach (called the
“GoVisual” approach) was independently described in [90].

3.1.3 Cluster Drawings (CLUSTER)

A cluster of a graph is a non-empty subset of vertices. A clustered graph
GC = (G,T ) consists of a graph G (called the underlying graph) and a
directed rooted tree T (called the inclusion tree) that describes the hierar-
chical clustering structure. The leaves of T are exactly the vertices of G.
Edges of T are directed from the root to the leaves. Each internal (non-leaf)
vertex c of T has at least two children and represents the cluster of G whose
vertices are the leaves of the subtree rooted at c. The induced subgraph of
G on those vertices is denoted by G(c). The root of T is a special vertex
which represents the whole drawing area and thus includes each element.
An example of a clustered graph is given in Fig. 3.3.

In a cluster drawing of a clustered graph GC , the vertices of G are drawn
as points and the edges as simple curves. Each internal vertex c of T is drawn
as a simple closed region enclosed by a simple closed curve. In this work each
internal vertex (cluster) is drawn as a rectangle. The region of c contains a
vertex v of G (leaf of T ) if and only if there is a path c→∗

T v. Analogously,
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(a) (b)

(c)

Figure 3.3: Example of a clustered graph, where vertices representing clus-
ters are drawn as rounded rectangles with a dashed border. (a) shows the
underlying graph, (b) the corresponding inclusion tree and (c) the resulting
cluster drawing.
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it contains the region of another internal vertex c′ if and only if there is a
path c→∗

T c′. Furthermore, in a cluster drawing, each edge of G crosses the
boundary of a region at most once.

A clustered graph is called c-planar if it has a planar and a cluster
drawing at the same time. Note that there are clustered graphs which have
a cluster drawing as well as a planar drawing but are not c-planar (Fig. 3.4).
A clustered graph is called c-connected if for each internal vertex c of T the
induced subgraph G(c) is connected. Let GC = (G,T ) and G′

C = (G′, T ′)
denote two clustered graphs. G′

C is called a sub-clustered graph of GC if
T ′ is a subtree of T and for each vertex c of T ′ (and thus of T ) G′(c) is a
subgraph of G(c).

(a) (b)

Figure 3.4: A graph which has a planar (a) and a cluster (b) drawing but not
a planar cluster drawing (different vertex shapes denote different clusters).

Cluster drawings of graphs are required for several application domains
where vertices are grouped together into clusters. Examples are UML class
diagrams where clusters denote the package structure, large computer net-
works where clusters represent local area networks and wiring diagrams
where complex building blocks are mapped to clusters.

There has been a lot of research on clustered graphs (see [29] for an
overview). However, the complexity of the c-planarity testing problem for
general clustered graphs is still unknown. For c-connected clustered graphs,
the following characterization of c-planarity was given by Feng et al. [73]:

Theorem 3.1 ([73]) A c-connected clustered graph GC = (G,T ) is c-planar
if and only if G is planar and there exists a planar drawing of G such that
for each vertex c of T , all the vertices and edges of G\G(c) are in the outer
face of the drawing of G(c).

In the same work it is also shown that for a c-connected clustered graph
with n vertices, testing planarity and computing the corresponding c-planar
embedding can be done in time O(n2). This bound was improved to O(n)
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by Dahlhaus [40]. Another, more precise description of an algorithm with
the same runtime was given by Cortese et al. [39]. Some other important
results for c-planarity testing of special subclasses of clustered graphs are
given in [38, 47, 91].

The problems of calculating a maximum c-planar subgraph and finding
a crossing minimum c-planarization for a clustered graph are both NP-hard,
since for the special case of having only one cluster which contains all vertices
both problems correspond to the related planarization problems for common
graphs.

A planarization algorithm for clustered graphs is given in [43]. For a
clustered graph GC = (G,T ), G = (V,E) the algorithm proceeds as follows:
First a c-connected c-planar sub-clustered graph G′

C = (G′, T ) is computed
such that G′ = (V,E′) is a spanning tree of G. Then G′

C is extended to
a c-connected maximal c-planar sub-clustered graph by successively testing
whether the insertion of an edge e ∈ E \ E′ into G′ would still leave G′

C

c-planar. If so, e is inserted. Recall that for c-connected clustered graphs,
testing c-planarity can be done in linear time. Finally, the remaining edges
are inserted using shortest path routing in a modified dual graph. Let n, m,
c and x denote the number of vertices of G, edges of G, non-leaf vertices of
T and crossing vertices, respectively. The overall runtime of this approach
is O(mx + m2c + nmc)

A linear time orthogonalization algorithm for clustered graphs was given
in [55]. Its input is an n vertex c-connected clustered 4-graph with a c-
planar embedding. The output is a c-planar orthogonal grid drawing with
rectangular cluster regions, O(n2) area and at most 3 bends per edge. The
algorithm first constructs a special visibility representation and uses local
operations to transform each horizontal segment into a point. Note that the
resulting edge routes have at most 4 bends. Finally, a rotation procedure
eliminates all 4 bend edges.

An extension of Tamassia’s orthogonalization approach which is able to
include clustered graphs was independently described in [24] and [112]. The
rectangular shape of clusters is realized by putting additional constraints
on the flow of Tamassia’s network formulation. Note that the applied mod-
ifications still lead to a bend-minimum solution for 4-graphs. The same
modifications can be applied to the Kandinsky network [43]. More details
are given in Section 5.3.

For our approach we will use compound graphs [144], which are an ex-
tension of clustered graphs. While in a clustered graph the vertices of the
underlying graph are exactly the leaves of the inclusion tree, the underlying
graph and inclusion tree of a compound graph are defined on the same set
of vertices. This allows modeling edges connecting two clusters or a cluster
and a (common) vertex. In the following we will refer to the vertices repre-
senting clusters as compound vertices and to the remaining vertices as base
vertices.
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3.1.4 Partitioned Drawings (PARTITION)

In the last section, we presented clustered/compound graphs. In a cluster
drawing, all vertices of a cluster are placed inside the same rectangular re-
gion. Regions can be nested, and their positions are not given as input. In
this section, we consider the problem of placing each vertex inside a prede-
termined partition cell of a rectangular partitioned drawing area. Partition
cells have fixed relative positions and do not overlap. Their size is not given.

Even if such partitions have several applications in practice, e.g., for
UML activity diagrams, to our knowledge, our work described in [135] was
the first one dealing with this kind of drawing constraint. The following
definitions and results are based on the results described there.

Let AR denote the (rectangular) drawing area. A (rectangular) partition
PR of AR is a partition of AR into a set R = r1, . . . , rk of non-overlapping
rectangles (called partition cells); see Fig. 3.5(a) for an example. The corre-
sponding partition grid graph PG is constructed from PR by placing a vertex
on each point where a horizontal segment touches or intersects a vertical
segment. The underlying structure of PG is a rectilinear grid graph which
enables us to assign grid coordinates to the vertices as shown in Fig. 3.5(b).
For each partition cell r ∈ R, let rt, rb, rl and rr represent the grid co-
ordinate of the top, bottom, left and right border, respectively (e.g., for
partition cell r4 in Fig. 3.5, rt

4 = 2, rb
4 = 3, rl

4 = 3 and rr
4 = 4). Recall that

these coordinates do not indicate distances. Only the topology and shape of
PG has to be preserved – the size of the partition cells is not fixed. A par-
tition PR is called a regular partition if the associated partition grid graph
PG corresponds to a rectilinear grid. Otherwise, PR is called an irregular
partition.

1

r 2

r 3 r 4

r

(a)

(3,2) (4,2)

(1,1) (2,1) (4,1)

(2,3) (3,3) (4,3)(1,3)

(2,2)

(b)

Figure 3.5: An irregular partition PR (a) and the corresponding partition
grid graph PG (b).

Definition 3.2 Let G = (V,E) denote a graph, PR a partition and p : V →
R a function that maps each vertex to a partition cell. A drawing of G is
called a partitioned drawing if each vertex v ∈ V is drawn inside p(v). G
is called p-planar if it has a partitioned and a planar drawing at the same
time.
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UML activity diagrams often use regular partitions to divide a diagram
into logical areas, e.g., organizational units in a business model. Typi-
cally, the drawing area is subdivided into vertical or horizontal swimlanes
(stripes). Such a partitioning is especially useful to emphasize a logical flow
or time flow in a drawing. Activity diagrams also offer more complex, grid-
like partitions which are a combination of horizontal and vertical swimlanes
(Fig. 3.6(a)).

Irregular partitions are often used to indicate geometric information or
positions, e.g., for wiring schematics as shown in Fig. 3.6(b). Statechart
diagrams employ a similar structure but determine the partitions during
the layout process. Here, the partition structure is already given as input.
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Figure 3.6: Partitioned drawings: (a) shows a UML activity diagram taken
from the UML 2.2 Superstructure specification [118] and (b) a wiring
schematic taken from www.netgear.de.

The following theorem gives a characterization of p-planar graphs.

Theorem 3.3 A graph G is p-planar if and only if it is planar. A p-planar
embedding of a p-planar graph can be constructed in time O(|V |2).

Proof: A p-planar graph is planar by definition. Let us assume that each
vertex v ∈ V is assigned to an arbitrarily distinct location inside of p(v).
Pach and Wenger [121] showed that every planar graph admits a planar em-
bedding which maps each vertex to an arbitrarily prescribed distinct location
and each edge to a polygonal curve with O(|V |) bends. Such an embedding
can be found in O(|V |2) time and implies that each planar graph is p-planar.

2

An example of such an embedding is given in Fig. 3.7(b). Theorem 3.3
has several consequences: since testing a graph for planarity can be done
in time O(|V |) [99], the same is true for testing p-planarity. Furthermore,
the problems of calculating a maximum p-planar subgraph and finding a
crossing minimum p-planarization are both NP-hard, because the related
planarization problems are also NP-hard.
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(a) (b)

Figure 3.7: (a) shows a planar graph and (b) the corresponding p-planar
embedding using the partition of Fig. 3.5(a) (different vertex shapes denote
different partitions).

3.1.5 Port/Side Preserving Drawings (PORT/SIDE)

In this section we consider two related types of edge constraints, namely
side and port constraints.

The location where an edge joins an incident vertex is called a port.
Using rectangular vertices, the two ports of an edge can lie at the top, right
side, bottom or left side of a vertex. Let dir = {t, r, b, l} denote the set of
different sides. If we restrict an edge e to leave/enter its incident vertex v
at a prescribed side s ∈ dir, we call this a side constraint and denote it with
scv

e . The set containing all side constraints of a graph G is denoted by SCG.
The function side : SCG → dir maps each side constraint to the prescribed
side.

Definition 3.4 A drawing of a graph G = (V,E) is called a side constraint
preserving drawing if all side constraints are fulfilled, i.e., for each side
constraint scv

e ∈ SCG edge e leaves/enters vertex v at side side(scv
e). G is

called side constraint preserving planar if it has a side constraint preserving
and a planar drawing at the same time.

There are graphs which have a side constraint preserving and a planar
drawing but are not side constraint preserving planar. When we assign all
incoming edges of a vertex to the same side and all outgoing edges to another
side, we can reuse Fig. 3.1 to give a corresponding example.

Recall that in the Kandinsky (podevsnef) model there are 2κ − 1 fine
grid lines on each vertex side which are used for routing the edges (see
Section 2.3.2.1). Hence, each port of an edge has to lie on a pin (intersection
point between a fine grid line and the vertex border). Fig. 3.8 shows a
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v

e

Figure 3.8: A vertex v whose pins are denoted by small dashes running
orthogonal to v’s border. Edge e has a port constraint pcv

e with side(pcv
e) = t

and location(pcv
e) = 4.

vertex with 9 pins on each side (κ = 5). Let Pv denote the set of pins
of a vertex v. If we restrict an edge e to leave/enter its incident vertex
v at a prescribed pin p ∈ Pv, we call this a port constraint and denote
it with pcv

e . PCG denotes the set containing all port constraints of graph
G. The injective function pin : PCG → P where P =

⋃

v∈V Pv maps each
port constraint to the corresponding pin. Port constraints can be seen as a
specialization of side constraints; they do not only specify the side but also
the exact pin where an edge leaves/enters a vertex. We extend the function
side to side : {PCG ∪ SCG} → dir, accordingly. Furthermore, the function
location : PCG → {1, . . . , 2κ − 1} maps a port constraint to the number of
the corresponding pin (the pins are numbered separately for each side and
the numbers increase clockwise).

Definition 3.5 A drawing of a graph G = (V,E) is called a port constraint
preserving drawing if it is a side constraint preserving drawing and all port
constraints are fulfilled, i.e., for each port constraint pcv

e ∈ PCG, edge e
leaves/enters vertex v at pin pin(pcv

e). G is called port constraint preserving
planar if it has a port constraint preserving and a planar drawing at the same
time.

In this work we consider the following three scenarios separately:

• sc scenario: all edges have side constraints on both endpoints

• pc scenario: all edges have port constraints on both endpoints

• mc scenario: edges may have mixed constraints, i.e., port, side and
no constraints

Port and side constraints arise in graph-based diagrams where the sides
of the represented objects or the positions where the relation edges en-
ter/leave an object have different semantics.

In electrical circuit schematics the building blocks are connected by a set
of wires which join the blocks at prescribed ports. Furthermore, there are
several electric components with fixed wirings like multiplexer and integrated
circuits. These components can be modeled by means of port constraints.
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In UML class diagrams, inheritance edges are often expected to start at
the top and end at the bottom of the respective class vertices. Association
edges are preferably placed on the left or right side of a vertex.

In [45], an orthogonal layout algorithm for drawing database schemas
is presented where database tables are displayed as boxes containing a ver-
tically ordered sequence of attributes. Edges denoting links between table
attributes are only allowed to leave/enter tables at the left or right side and
must be attached to the corresponding attributes (as in the example shown
in Fig. 1.1(b) on page 2). The planarization approach presented there is
tailored to this specific scenario and cannot be adapted to our port/side
constraint model.

Integer linear program (ILP) formulations for calculating bend-minimum
orthogonal drawings of graphs with fixed embeddings and various constraints
including port and side constraints are given in [66].

Below we investigate planarization issues arising for port and side con-
straints. Let id : dir → {0, 1, 2, 3} denote a function that maps vertex sides
to integers as follows: id(t) = 0, id(r) = 1, id(b) = 2 and id(l) = 3. Let Esc

v

(Epc
v ) denote the set of edges incident to vertex v ∈ V and with side (port)

constraints on v.

Definition 3.6 An embedding is called side constraint preserving if the
clockwise order of the edges e ∈ {Esc

v ∪ Epc
v } around each vertex v ∈ V

induces a monotonic function regarding id(side(scv
e)) and id(side(pcv

e)), re-
spectively.

A side constraint preserving embedding ensures that we can calculate a
side constraint preserving drawing. For two port constraints pce1

v , pce2
v with

e1, e2 ∈ Epc
v , the function ρ : PCG × PCG → N gives the number of pins

lying between pin pin(pce1
v ) and pin pin(pce2

v ) in cyclic clockwise order (not
including pin(pce1

v ) and pin(pce2
v )). Furthermore, let Ee1,e2

v denote the set
of edges lying between edge e1 and e2 (not including e1 and e2) regarding
the cyclic clockwise edge order around v.

Definition 3.7 An embedding is called port constraint preserving if the
following conditions are satisfied:

1. The embedding is side constraint preserving.

2. For each side s ∈ dir of a vertex v, the clockwise order of all edges
in {e | e ∈ Epc

v ∧ side(pce
v) = s} induces a strictly monotonic function

with respect to location(pcv
e).

3. All edges lying between two edges with port constraints can be assigned
to a pin. More precisely, for any pair of edges e1, e2 with port con-
straints pce1

v , pce2
v on a vertex v is ρ(pce1

v , pce2
v ) ≥ |Ee1,e2

v |.
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4. An edge with side constraint can always be assigned to a pin at the cor-
responding side. Among all edges with port constraints on side s ∈ dir
of a vertex v, let e denote the edge assigned to the port with lowest
pin number and f the edge assigned to the port with highest pin num-
ber. Let us further assume that there is at least one edge g with port
or side constraint on another side. Then, for each edge h with side
constraint on side s must hold: location(pcf

v ) + |Ef,h
v | < 2κ − 1 if

h appears in the (cyclic clockwise) edge order between f and g, and

location(pce
v) − |E

h,e
v | > 1, otherwise. If there is no such edge g, at

least one of the above conditions must be satisfied.

Note that items 3 and 4 are only relevant for the mc scenario. Crossing
minimization in the mc scenario is NP-hard since it is a generalization of the
common crossing minimization problem. The same applies to the sc sce-
nario, since it can be reduced to the common crossing minimization problem
by assigning all edges to the same vertex side. The time complexity of the
planarization problem in the pc scenario is unknown (we do not allow edges
to share a pin).

A linear-time approach for testing planarity of graphs with embedding
constraints was recently described in Gutwenger et al. [92]. The authors
introduce three different types of embedding constraints – grouping, mir-
ror and oriented constraints – which can be hierarchically nested. More
precisely, the embedding constraints of the edges around a vertex v can be
modeled as a rooted, ordered tree whose leaves are the edges incident to v.
The inner vertices of the trees represent the different embedding constraints
as follows:

• grouping constraint vertices: the order of the children of these
vertices is arbitrary

• mirror constraint vertices: the order of the children of these ver-
tices may be reversed

• oriented constraint vertices: the order of the children of these
vertices is fixed

The oriented constraints can be used to obtain a linear-time planarity test for
the pc scenario. For the sc scenario we need to nest oriented and grouping
constraints. Note that the above approach does not allow the modeling of
vertices which have both incident edges with and without constraints. Thus,
we can not apply it to the mc scenario.

3.2 Combining Drawing Constraints

In this section we look at issues arising when we combine the five aforemen-
tioned constraints. We state some theoretical results which can be directly
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derived from the results of the single constraints, investigate the compati-
bility of constraints and also review related work.

Definition 3.8 A mixed compound graph GC has a port constraint preserv-
ing bimodal partitioned mixed-upward cluster drawing if it has a bimodal,
a partitioned, a mixed-upward, a cluster and a port constraint preserving
drawing at the same time. Furthermore, GC is called port constraint pre-
serving bimodally mixed-upward p,c-planar, if it has a planar and a port
constraint preserving bimodal partitioned mixed-upward cluster drawing at
the same time.

Let GC denote a mixed compound graph. A port constraint preserving
bimodal partitioned mixed-upward cluster drawing is a generalization of
each drawing with only a subset of these constraints. Hence, the following
results can already be derived from upward drawings:

Corollary 3.9 Testing whether GC is port constraint preserving bimodally
mixed-upward p,c-planar is NP-hard.

Corollary 3.10 The calculation of a port constraint preserving bimodal
partitioned mixed-upward cluster drawing for GC with the minimum number
of crossings is NP-hard.

Corollary 3.11 The calculation of a maximum port constraint preserving
bimodally mixed-upward p,c-planar subgraph of GC is NP-hard.

3.2.1 Drawing Compatibilities

More important than minimizing crossings is the preservation of the drawing
convention given by the different constraints. To satisfy constraint FLOW
the directed input graph has to be acyclic. The other constraints do not
have special requirements for the input graph. However, the combination of
multiple constraints can produce drawing conflicts.

While constraints BIMODAL and PORT/SIDE affect the cyclic order of
edges around vertices, constraints CLUSTER and PARTITION affect the
geometric position of vertices. Since both effects do not interact with each
other, combining constraints CLUSTER and PARTITION with constraints
BIMODAL and PORT/SIDE is always possible without generating drawing
conflicts. Constraint FLOW can be seen as a hybrid because, on the one
hand, it has the same effect on the cyclic order as BIMODAL but, on the
other hand, it also ensures that the source vertex of a directed edge is al-
ways placed below the target vertex thus having an impact on the relative
geometric positions of vertices. Recall that each upward drawing is also a bi-
modal drawing. Hence, constraints BIMODAL and FLOW can be combined
without any problems. When constraints BIMODAL and PORT/SIDE are
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applied to different edge sets, they can also be combined. The same holds
for constraints PORT/SIDE and FLOW.

Combining constraints FLOW and CLUSTER might introduce drawing
conflicts because there are graphs which have an upward drawing and a
cluster drawing but not an upward cluster drawing (Fig. 3.9). The user can
decide which of the two constraints is more important. If CLUSTER is cho-
sen to be more important, we always produce a cluster drawing. However,
the number of edges which can be drawn upward might decrease in that
case.

(a) (b)

Figure 3.9: Example of a graph which has an upward drawing (a) and a clus-
ter drawing (b) but not both at the same time (dashed rectangles represent
clusters). Note that in the upward drawing (a) the vertical ordering of the
vertices is fixed. The clusters have to be arranged horizontally because they
should be drawn as rectangles and are not allowed to overlap each other.
Hence, each upward drawing contains an edge which crosses the boundary
of the middle cluster twice, which is not allowed in a cluster drawing.

Fig. 3.10(a) shows an example of incompatibility when we combine con-
straints PARTITION and FLOW. Edge (a, b) could not be drawn upward
because the partition restricts the source vertex a to be above the target
vertex b. Note that the partition is given as input and thus is not allowed
to be changed or rotated. We assume that if partitions are used, they are
more important than constraint FLOW.

Fig. 3.10(b) shows a conflict which could arise when we combine con-
straints PARTITION and CLUSTER. Cluster a contains vertex c and f ,
cluster b contains vertex e and d, and the assignment of the vertices to par-
titions is as shown in the figure. If the clusters should not be drawn nested,
we cannot realize a valid partitioned cluster drawing. Our approach avoids
those conflicts in the following way: cluster regions are not allowed to cross
partition cells. Thus, each compound vertex can be uniquely assigned to a
partition cell. Under this assumption, each graph has a partitioned cluster
drawing. Table 3.1 summarizes the drawing compatibilities.
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c d
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Figure 3.10: Possible conflicts when we combine constraints PARTITION
and FLOW (a) and constraints PARTITION and CLUSTER (b).

BIMODAL FLOW CLUSTER PARTITION PORT/SIDE

BIMODAL - YES YES YES YES[4]

FLOW YES - NO[1] NO[2] YES[4]

CLUSTER YES NO[1] - NO[3] YES

PARTITION YES NO[2] NO[3] - YES

PORT/SIDE YES[4] YES[4] YES YES -
1 see Fig. 3.9; 2 see Fig. 3.10(a); 3 see Fig. 3.10(b);
4 when applied to different edge sets

Table 3.1: Drawing compatibilities.

In order to simplify the description of our algorithm we only consider
regular partitions here. Irregular partitions lead to some special cases during
the planarization phase. However, the challenges arising are only minor
technical issues and do not require new concepts.

3.2.2 Related Work

In the preceding sections we introduced five important drawing constraints
which arise in several practical applications. While for some of them there
are already planarization and orthogonalization approaches, there is still no
approach which is able to incorporate multiple constraints at the same time.
The only exception is the integer linear program (ILP) based orthogonaliza-
tion approach described in [66], which is able to include various constraints
including FLOW, SIDE and PORT. The drawback of this approach is that
solving the corresponding ILP is NP-complete and thus it cannot be effi-
ciently applied to larger graphs.
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Up to now we have only considered approaches which implement phases
of the TSM approach. In the following, we take a look at the constraint-
handling capabilities of two other popular drawing approaches, namely Sugi-
yama’s approach introduced in Section 2.4, and the so-called force-directed
approaches.

Due to its conceptual design, Sugiyama’s approach is especially suited
to satisfy constraint FLOW. Furthermore, it allows a natural modeling of
geometrical constraints since the layering phase allows control over the y-
coordinates and the crossing minimization and horizontal coordinate assign-
ment phase control over the x-coordinates. Note that Sugiyama’s approach
never produces overlapping graph elements. It is highly adaptable and a lot
of variants/extensions have been introduced to handle application-specific
requirements like compound graphs [128, 144] and constraints on the vertex
order [76, 151]. It has been successfully applied to different areas like visual-
ization of UML class diagrams [61, 62, 132], statecharts [33, 34], biochemical
pathways [7, 25] and compiler graphs [129].

“SugiBib” [62, 63, 132] is a sophisticated, Sugiyama-based layout algo-
rithm for drawing UML class diagrams. It is able to simultaneously con-
sider constraints CLUSTER and FLOW. However, it is rather weak for
basic properties like VERTEX SIZE or ORTHOGONAL, which can be re-
alized in a more natural way by a TSM-based approach. As shown in [64] for
mixed-upward drawings of mixed graphs, TSM-based methods produce con-
siderably fewer crossings than Sugiyama-based approaches as well as fewer
bends. In our new approach we will take advantage of the capabilities of
Sugiyama’s approach. More precisely, we will use Sugiyama’s approach for
an intermediate step during the planarization phase.

Another class of drawing approaches are the so-called force-directed ap-
proaches (see [23] for a comprehensive overview). In those approaches, a
graph is seen as a physical system in which the graph elements represent
interacting physical objects. The objects are subject to forces (e.g., spring,
gravitational or magnetic forces) acting on or between them.

The spring-embedder approach [53] is based on the following physical
model: edges are associated with mechanical springs which attract the edges’
endpoints. Furthermore, vertices are associated with charged particles and
thus repel each other if they get too close together. A minimum energy
(equilibrium) state of the physical system corresponds to a readable layout
where adjacent vertices are placed close together.

There are a lot of refinements and variants of force-directed approaches [41,
80, 81, 101]. An experimental comparison of the different methods is pre-
sented in [22]. Force-directed approaches are particularly used to produce
straight-line drawings of undirected graphs with unknown structure. They
are especially suited to identify and display symmetries.

Force-directed approaches are popular for the following reasons:
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• They are quite intuitive because they are based on physical analogies.
Thus, the behavior of the algorithms is relatively easy to predict and
understand.

• Compared to other drawing approaches, force-directed algorithms are
typically simple and easy to implement.

• Force-directed approaches are highly flexible and can easily be ex-
tended to satisfy advanced requirements, like FLOW [145], CLUS-
TER [54, 154], 3D layouts [30] as well as positioning constraints [94]
(e.g., RELATIVE POS and ABSOLUTE POS).

If CROSSING is the main requirement, classical planarization approaches
seem to be more appropriate. Furthermore, realizing requirements OR-
THOGONAL and BEND is quite difficult here.

3.3 Constraint-Kandinsky

In this section, we present the interface of Constraint-Kandinsky, our new
algorithm for the automatic layout of graphs with constraints. Furthermore,
we give an overview of its individual steps. Constraint-Kandinsky gener-
ates orthogonal drawings (ORTHOGONAL) in the podavsnef model, which
allows vertices of arbitrary size (VERTEX SIZE) as well as vertices of arbi-
trary degree. Besides constraints BIMODAL, FLOW, CLUSTER, (regular)
PARTITION and SIDE/PORT presented in this chapter, the approach in-
corporates the aesthetics CROSSING, BEND, AREA and OVERLAP. Fur-
thermore, it also satisfies the following requirements:

• Several diagram types contain elements which correspond to vertices
whose incident edges can only be connected on two opposing sides as
shown in Fig. 3.11(a) (TWO SIDED VERTICES). Examples of those
elements are buses in wiring diagrams, transitions in Petri nets and
join/fork nodes in activity diagrams. Here, we add the restriction that
all edges incident to a two-sided vertex v have to be directed and that
all incoming edges are attached to one side and the outgoing edges to
the other side (v is bimodal). Furthermore, the edges are not allowed
to have port/side constraints on v.

• An important requirement is a suitable handling of labels of graph
elements (LABEL). While we assume that vertex labels are placed
inside the corresponding vertices and thus do not need special consid-
eration, handling edge labels is a challenging task. An edge label can
be placed near the corresponding source/target vertex or the center
of the corresponding edge. Our algorithm also supports labeling of
clusters and partitions. In order to increase readability we prefer a
horizontal alignment of labels (HORIZONTAL LABELS).
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Figure 3.11: In (a) vertex v represents a bus where edges can only be at-
tached to the top and bottom border. (b) shows a hyperedge structure.

• A notation element which appears in several diagrams is a note (NOTE).
Notes are often represented as rectangles and are used to comment on
diagram elements. Unlike labels, a note can be seen as a special kind
of vertex which is often attached to the corresponding element by an
edge. Notes are, for example, available in all kinds of UML diagrams.
For our approach, we use the restriction that each note has only one
corresponding graph element. Of course, a graph element can have
multiple notes.

• Some diagrams contain edge structures which correspond to so-called
hyperedges (HYPEREDGES). A hyperedge is an edge connecting more
than two vertices and thus allows specifying non-binary relations. In
our approach, we only consider directed hyperedges with exactly one
source vertex and multiple target vertices as well as one target vertex
and multiple source vertices. This kind of hyperedge is often presented
as in Fig. 3.11(b), e.g., for generalization relations in class diagrams.

To our knowledge there is no existing layout algorithm that is able to
handle such a complex combination of requirements.

3.3.1 Input and Interface

The input of our layout algorithm is:

• A mixed compound graph GC = (G,T ), G = (V,E), T = (V,ET ),
E = ED ∪ EU , V = B ∪ C (B denotes the set of base vertices and C
the set of compound vertices). We assume that for each vertex v ∈ V
is δ(v) = O(|V |).

• A set of directed edges E↑ ⊆ {(v,w) ∈ ED | v,w ∈ B} that should be
drawn upward.

• A regular partition PR of the drawing area with R, the set of partition
cells.
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• A function p : V → R assigning each vertex to a partition cell. Fur-
thermore, we use two functions px : V → N and py : V → N to map
each vertex to the column/row index of the corresponding partition
cell. The first (leftmost) column and the first (topmost) row both have
index 0. Since we assume that each column/row contains at least one
vertex we have |R| = O(|V |2).

• A set of side constraints SCG and a set of port constraints PCG. We
do not allow specifying port/side constraints on compound vertices.

• Sets H−
v ⊆ ED (H+

v ⊆ ED) of directed incoming (outgoing) edges with
target (source) v ∈ B that should be represented as hyperedges. We
assume that |H−

v | (|H
+
v |) ≥ 2.

• A function type : B → {common, note, two sided, bimodal, note dum-
my, hyper dummy}, denoting the type of the base vertices (we immedi-
ately explain the vertex types hyper dummy and note dummy). In the
resulting drawing all vertices of type two sided and bimodal have to
be bimodal.

• A set of labels L = LE∪LB∪LC∪LR where LE denotes the set of edge
labels, LB the set of vertex labels, LC the set of cluster labels (i.e.,
labels of compound vertices) and LR the set of partition cell labels.

• A function refer : L→ E ∪B ∪ C ∪R assigning each label to a graph
element.

• A function pos : LE → {center, source, target} denoting the pre-
ferred position of an edge label along the corresponding edge.

• A function size : B ∪L→ N×N denoting the size of the base vertices
and labels in the drawing.

We use edge set E↑ to distinguish between directed edges that should be
drawn upward and those that need not be drawn upward. While constraint
FLOW only applies to edges of E↑, BIMODAL includes all edges of ED. The
algorithm can be customized to fit individual user preferences and different
views of a diagram. The user can, for example, decide if PARTITION should
be applied, if CLUSTER is more important than FLOW or if FLOW should
not be considered at all.

In the remainder of this work we also use the following vertex/edge sets
which can be derived from the above input:

• A vertex set V b = {v ∈ B | type(v) = bimodal ∨ type(v) =
two sided}

• An edge set Eb = {(v,w) ∈ ED | v ∈ V b ∨ w ∈ V b}
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• An edge set Ec = {e ∈ E | e has a port/side constraint}

• An edge set E∗ = E \ E↑

• An edge set E∗
D = ED \E↑

According to the drawing compatibilities shown in Table 3.1, we assume
that Ec ∩ E↑ = ∅ as well as Ec ∩ Eb = ∅.

3.3.2 Overview

We conclude this chapter with an overview of the individual steps of algo-
rithm Constraint-Kandinsky:

1. Preprocessing

(a) We remove all self-loops from the input graph G.

(b) We use common edges to model hyperedges by altering the input
graph as follows: for each set H−

v of incoming hyperedges of a
vertex v ∈ B we insert a dummy vertex d into B and replace
the edges of H−

v by an edge (d, v) and edges {(w, d) | (w, v) ∈
H−

v } (Fig. 3.12(a)). Analogously, for each set H+
v of outgoing

hyperedges, we insert a dummy vertex d and replace the edges of
H+

v by an edge (v, d) and edges {(d,w) | (v,w) ∈ H+
v }. The type

of vertex d is set to hyper dummy. Furthermore, we assign d to
the same cluster and partition as v (this implies that d gets the
same parent in T as v).

(c) For each vertex u ∈ B of type note which is not connected to its
corresponding graph element q, we temporarily insert an undi-
rected edge (u, q). Note that q is either a vertex or an edge
element. In order to obtain a valid graph structure, we have to
transform the graph such that it only contains edges connecting
vertices. Hence, for each edge e = (u, q), where q = (v,w) also
denotes an edge, we insert a dummy vertex d into B and replace
e and q by edges (u, d), (v, d) and (d,w) as shown in Fig. 3.12(b).
Furthermore, we set type(d) to note dummy and assign d to the
same cluster and partition as v.

(d) If the subgraph induced by the vertices of B is not connected,
we make it so by adding additional undirected edges between its
connected components.

(e) For each edge e = (v,w) ∈ E↑, we compare the row indices of the
corresponding endpoints. If py(v) < py(w), e cannot be drawn
upward and thus is removed from E↑. Note that e is still in ED.
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(f) If the subgraph (V,E↑) contains cycles, we calculate a feedback
arc set A ⊂ E↑ as described in Section 2.4.1. All edges of A are
removed from E↑ (they are still in ED).

2. Planarization

We apply the planarization approach described in Chapter 4.

3. Orthogonalization

We apply the orthogonalization approach described in Chapter 5.

4. Compaction

(a) All self-loops removed during the preprocessing step are rein-
serted as described in Section 5.5.

(b) All labels except edge labels l ∈ LE with pos(l) = source or
target are inserted into the orthogonalized graph as described
in Section 5.6.

(c) The compaction phase uses the fast constructive compaction al-
gorithm, described in [68], which is able to handle vertices of
prescribed size (VERTEX SIZE). Furthermore, we use the flow-
based visibility postprocessing strategy described in [111] to fur-
ther optimize aesthetics AREA. During the compaction all dummy
vertices, except those representing edge labels, are assigned a size
of one.

5. Postprocessing

(a) All dummy vertices and edges inserted during the previous steps
are removed.

(b) Edge labels l ∈ LE with pos(l) = source or target are placed
by an efficient map-labeling algorithm [153].

(c) Rectangles denoting cluster regions as well as the grid partition
are inserted into the drawing.

Let x denote the number of crossings and b the number of bends in
the final drawing. Furthermore, let N denote the input size of the layout
algorithm. All steps of the preprocessing phase can be performed in time
linear in N . The runtime of the compaction phase is dominated by the flow-
based postprocessing algorithm which can be performed in time O((N +x+
b)2 log(N + x + b)). The runtime of the postprocessing phase is as follows:
We assume that the number of label candidates (places where a single label
can be placed) is constant. Under this assumption, we can perform the map
labeling in time O(|LE |

2) (see [153]). The remaining steps can be performed
in time O(N + x + b).
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(a) (b)

Figure 3.12: (a) shows the transformation of hyperedges and (b) the trans-
formation of notes attached to edges.

In the above overview we presented the individual steps of the com-
paction phase as well as the pre- and postprocessing. The planarization and
orthogonalization phase both require substantial modifications and exten-
sions to handle our set of constraints. They are addressed in detail in the
next two chapters.
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Chapter 4

Planarization with
Constraints

In this chapter we introduce our new generic planarization framework, which
is capable of including all drawing constraints described in the last chapter.
It combines the layered approach of Sugiyama with a rerouting strategy
known from TSM-based approaches. The result of the planarization is a
port constraint preserving bimodally mixed-upward p,c-planar embedding
of the input graph. This chapter is partly based on our previous work
described in [71, 135, 138].

First, we introduce the so-called orientation problem – an issue that
arises during the layout process. Afterwards, we describe the basic con-
cept behind our planarization approach. Since it was originally designed to
produce mixed-upward planar embeddings of mixed graphs, we introduce
it by means of mixed-upward planarization. Then we show how to incor-
porate the remaining constraints BIMODAL, CLUSTER, PARTITION and
PORT/SIDE into this approach.

In the last section of this chapter, we present a fast implementation of
Sugiyama’s approach. It provides a significant runtime improvement over
existing implementations and, hence, also speeds up our Sugiyama-based
planarization step.

4.1 The Orientation Problem

Before we apply our planarization framework to the input graph, we have
to consider the following issue: our orthogonalization approach is based on
a traditional minimum cost flow formulation. A problem that arises when
we use such an approach is that, up to now, it has not been possible to
directly include the orientation of the vertices into the flow formulation, i.e.,
we cannot specify on which side an edge should enter/leave a vertex. Hence,
in order to include constraints FLOW and PORT/SIDE, we have to unify
the orientation of each vertex such that all edge segments restricted to the
same side point in the same direction for each vertex. We call this issue the
orientation problem.
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Let G = (V,E) denote the connected mixed input graph and E↑ ⊆ E
the set of edges that should be drawn upward. Furthermore G′ = (B,E′)
denotes the subgraph of G induced by the vertices of B. Recall that our
preprocessing step guarantees that G′ is always connected. Only vertices
of B require a uniform orientation since they are the only vertices incident
to upward edges or edges with port/side constraints. Our handling of the
orientation problem is based on that described by Eiglsperger et al. [67].
First we have to calculate a spanning tree T s = (B,Es) of G′. All edges
of Es are treated as upward edges, i.e., they are embedded upward planar.
During the orthogonalization phase, we assign a fixed upward shape to these
edges which is not allowed to change during the orthogonalization phase.
The edges of Es are called skeleton edges since they define a fixed skeleton
of the drawing and thus allow us to determine the orientation of the vertices.
More details on how to fix the shapes of these edges are given in Section 5.3.

Since skeleton edges have to be embedded upward planar, we already
have to consider the orientation problem during the planarization phase.
The choice of edges for the spanning tree T s is affected by the handling of
skeleton edges. Edges of E↑ are especially suited to be in T s because such
edges have to be embedded upward planar in any case. Edges of Ec must not
be handled like upward edges since the shape assignment of upward edges
is not compliant with that of edges with port/side constraints. The same
holds for directed edges (v,w) ∈ ED with py(w) > py(v). These edges could
not be drawn upward without violating the geometrical constraints given by
the partition. Let Ep denote the set of such edges. We include the different
preferences by assigning different weights to the edges and use a minimum
spanning tree algorithm to calculate T s = (B,Es). Let ωs : E′ → N denote
the weight function. For each edge e ∈ E′,

ωs(e) =







1 if e ∈ E↑,
2 if e ∈ E′ \ (E↑ ∪ Ec ∪Ep),
3 if e ∈ Ec ∪ Ep.

With Prim’s algorithm [37], the calculation of T s can be done in time O(|B|
log |B| + |E′|). Let G+ denote the induced subgraph of G′ on the edges of
E↑ ∪ Ec. Since uniform orientation is required only for vertices incident to
upward edges or edges with port/side constraints, we can iteratively remove
edges (v,w) from Es if (δT s(v) = 1∧ δG+(v) = 0) or (δT s(w) = 1∧ δG+(w) =
0). This may reduce the number of required skeleton edges. Now we add
all edges of Es to E↑. Recall that we have to guarantee that E↑ ∩ Ep = ∅
and E↑ ∩ Ec = ∅. Hence, for each edge e ∈ Es ∩ (Ec ∪ Ep) we add a
clone of e into E↑. If e ∈ Ep, we additionally have to reverse the cloned
edge. The inserted clones can be removed after the orthogonalization phase
since the edge shapes and thus the orientation is fixed then. For undirected
edges added to E↑ we have to assign a valid direction which conforms to the
given partition. Due to the chosen weights and the properties of a minimum
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spanning tree, the resulting subgraph (B,E↑) is always acyclic. Let δmax
G

denote the maximum degree of a vertex v of G after inserting the cloned
edges. We assume that κ is chosen such that κ ≥ 2δmax

G − 1. Note that
the number of cloned edges incident to a vertex v is bounded by v’s original
degree.

4.2 Mixed Upward Planarization

In the following, we introduce our generic planarization framework and show
how to apply it to calculate a mixed-upward planar embedding of a con-
nected mixed input graph G. Basically, our planarization framework consists
of the following phases:

1. Construction of an initial drawing: We use a Sugiyama-based
layout approach to construct a preliminary drawing of G which in-
cludes the specified constraints.

2. Construction of a planar embedding: We use a sweep-line algo-
rithm to determine the embedding given by the initial drawing.

3. Rerouting of edges: In order to reduce the number of crossings,
we successively reroute edges.

Fig. 4.1 illustrates our framework for mixed-upward planarization. Un-
like previous planarization approaches we derive the planar embedding of G
by means of an initial drawing. This offers a more suitable way to include ad-
ditional constraints like PARTITION and CLUSTER into the planarization
phase. To construct the initial drawing, we have to take a drawing approach
which is highly adaptable and allows us to realize the different drawing con-
straints. Hence, we use Sugiyama’s approach, which is especially suited
to satisfy constraint FLOW. For acyclic input graphs the resulting draw-
ing is always an upward drawing. There are sophisticated approaches for
handling constraint CLUSTER. Furthermore, constraints PARTITION and
BIMODAL can be included in a natural way. Note that after the first phase
we already have a drawing that satisfies our set of drawing constraints. How-
ever, when we further reduce the number of crossings and take the resulting
embedding as input for a TSM-based approach, we can also easily include
requirements like VERTEX SIZE, LABEL, ORTHOGONAL and ANGLE.
Recall that in TSM-based approaches, vertices are not placed on fixed lay-
ers. The experimental evaluation given in [64] shows that for mixed-upward
drawings of graphs the results produced by TSM-based approaches clearly
outperform those of Sugiyama-based approaches with respect to aesthetics
CROSSING and BEND. However, Sugiyama-based approaches usually re-
quire significantly less area. This is not surprising, since, in general, aesthetic
criteria BEND and AREA as well as CROSSING and AREA are conflicting
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(d) graph after rerouting

Figure 4.1: Illustration of the three phases of our planarization framework
for mixed-upward planarization. All directed edges should be drawn upward.
The small red circles denote crossings and the red edges mark rerouted edges.
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Figure 4.2: Example of two different layerings of the same graph. While
the layering in (a) minimizes edge length, the two edge crossings cannot be
avoided. The layering in (b) uses two additional layers and offers a crossing-
free drawing. However, the overall edge length increases so that we need 5
additional dummy vertices to normalize the graph.

aesthetics. In the next subsections we describe the different phases in more
detail.

4.2.1 Construction of an Initial Drawing

We use Sugiyama’s approach with a customized layering strategy to create
an initial mixed-upward drawing of the mixed input graph G. Recall that
the subgraph induced by the edges of E↑ is acyclic. The layering strategy
has a great impact on the number of edge crossings in the resulting drawing.
Common layering strategies usually cause a high number of crossings since
they are mainly optimized to produce short edges and not for minimizing
the number of crossings. While aesthetic criteria EDGE LENGTH is possi-
bly more important for layered drawings, this is not true when we use the
initial drawing just to derive a planar embedding. Hence, we introduce a
new layering strategy which ignores criteria EDGE LENGTH and leads to
drawings with less crossings. An example of how to save crossings by adding
additional layers is shown in Fig. 4.2.

Recall that in our approach the flow direction of edges is upward. Thus,
unlike for common layerings where the flow direction of edges is top-down,
it is bottom-up, here. Let λ : V → N denote the function that maps ver-
tices to layers. For each edge (v,w) ∈ E↑, we have to guarantee that
λ(v) > λ(w) (layers are still numbered from top to bottom). For edges
(v,w) ∈ E∗ it is sufficient that λ(v) 6= λ(w). Algorithm 2 gives the
pseudo code for our layering strategy. In each iteration of the for-loop,
we choose a vertex v ∈ V and assign it to a new layer, i.e., for a ver-
tex v chosen in the i-th step we set λ(v) = i. Basically, our algorithm
uses a strategy similar to the first phase of the GT heuristic (see algo-
rithm calcGTOrdering on page 17), i.e., it tries to place adjacent ver-
tices on adjacent layers. In order to realize constraint FLOW, we use a
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directed graph CG = (V,EC) called the layering constraint graph. An edge
(w, v) of CG models the requirement that λ(w) should be smaller than λ(v).
The function etype : EC → {upward, bimodal, cluster, partition, pc/sc}
maps each edge e ∈ EC to a type that indicates the drawing constraint which
caused the insertion of e into CG. For each edge (v,w) ∈ E↑, we insert an
edge e′ = (w, v) into CG and set etype(e′) = upward. In order to include
such layering constraints into our algorithm we use a strategy similar to the
one described by Eiglsperger et al. [69], i.e., we can only choose a vertex v if
all its predecessors in CG have already been chosen. Since (V,E↑) is acyclic,
we can always find a feasible vertex. We store those vertices in a list Cand
(lines 6-8). The vertex set V ′ contains vertices not yet placed.

Algorithm 2: calcLayering

Input: A mixed graph G = (V,E), E = ED ∪EU and the acyclic
directed layering constraint graph CG = (V,EC).

Output: The layering function λ : V → N.

V ′ ← V ;1

G′ ← G;2

C ′
G ← CG;3

Neighbors← ∅;4

for i = 1 to |V | do5

Cand← {v ∈ Neighbors | δ−
C′

G
(v) = 0};

6

if Cand = ∅ then7

Cand← {v ∈ V ′ | δ−
C′

G

(v) = 0};
8

X ← {v ∈ Cand | δG(v)− δG′(v) ≥ δG(w)− δG′(w) ∀ w ∈ Cand};9

Y ← {v ∈ X | δG′(v)− δ+
C′

G

(v) ≤ δG′(w)− δ+
C′

G

(w) ∀ w ∈ X};
10

v ← randomly chosen element of Y;11

λ(v)← i;12

Neighbors← {w ∈ V ′ | w adjacent to v};13

V ′ ← V ′ \ v;14

G′ ← subgraph of G induced by V ′;15

C ′
G ← subgraph of CG induced by V ′;16

return λ;17

Note that during a two-layer crossing minimization step, the number of
crossings correlates with the number of edges between both layers. We use
the following two refinements to keep the number of such edges small (and
thus the number of crossings):

• Among all vertices of Cand we prefer those with the highest number
of neighbors n with n ∈ V \ V ′ and store them in a set X (line 9).
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• Among all vertices of X we prefer those with the fewest number of
neighbors n ∈ V ′ as well as those blocking a lot of other vertices, i.e.,
vertices v with large out-degree δ+

C′

G

(v) (line 10).

Before we apply algorithm calcLayering, we temporarily remove all
degree-one vertices, i.e., vertices v ∈ V with δG(v) = 1, and reinsert them
afterwards as follows: if (u, v) ∈ ED, we insert v in a new layer lying between
layer λ(u) − 1 and layer λ(u). Otherwise, we insert v in a new layer lying
between layer λ(u) and λ(u)+1. Thus, as long as we do not include further
constraints, all edges incident to degree-one vertices never have crossings.

The experiments in Section 7.3 verify that our layering strategy induces
drawings which have significantly fewer crossings than those resulting from
common layering approaches. They also show that this behavior does not
solely depend on the sparse layering (only one vertex per layer). Note that
we can still use a common layering strategy as follows: First, we make CG

acyclic. Then, for each edge (v,w) of CG, we insert an edge (w, v) into G
(we have to reverse the edges because the flow direction is upward here). Let
E′ denote the set of inserted edges. We assign weight |E| to edges of E′ and
weight 1 to the remaining edges. Then we use the weighted feedback arc set
heuristic described in Section 2.4.1 to identify an edge set A of edges that
have to be reversed to make G acyclic. From Lemma 2.10 and the chosen
weights, we always have A ∩ E′ = ∅. Now we apply a common layering
strategy to G. Obviously, the resulting layering observes all constraints
given by edges of E′. Note that after the layer assignment we remove those
edges.

After the normalization of the layered graph, we apply the iterative
layer-by-layer sweep to reduce the number of edge crossings. During the
one-sided two-layer crossing minimization, we use a linear measure, e.g., the
median or barycenter heuristic. For the horizontal coordinate assignment
we apply the approach of Brandes and Köpf [27] described in Section 2.4.4
which produces drawings in the linear segments model. Note that due to
our layering strategy all edges of E↑ are drawn upward.

The runtime for constructing the initial drawing is as follows: Making
CG acyclic can be done in time O(|V |+|E↑|). The for-loop of our layering al-
gorithm is iterated |V | times and each step inside the loop can be performed
in O(|V |) time. Thus, the runtime of the layering step is O(|V |2+ |E↑|). The
crossing minimization has runtime O(|V ||E| log |E|) and requires O(|V ||E|)
space (see Section 2.4). For the horizontal coordinate assignment, the time
and space complexity is linear to the size of the normalized graph, i.e.,
O(|V ||E|). Hence, the overall runtime for calculating the initial drawing is
O(|V ||E| log |E|) and the space requirement is O(|V ||E|).
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4.2.2 Construction of a Planar Embedding

In this phase, we use the initial mixed-upward drawing to derive a mixed-
upward planar embedding of G. Therefore, we have to replace crossings by
dummy vertices and specify the cyclic order of the edges around each vertex.

We detect crossings by means of a sweep-line algorithm [8] which we
apply to the initial drawing of G. This can be done in time O(|S| log |S|+x),
where S denotes the set of segments and x the number of crossings. Since
the initial drawing conforms to the linear segments model, the number of
segments |S| is O(|E|). For each crossing, we store its coordinates and the
two related edges. A crossing is modeled by splitting the corresponding
edges with a dummy vertex. For an edge e = (u, v), let xe

1, . . . , x
e
k denote

the ordered sequence of crossings as they appear when we traverse e from
u to v. If we split e in this order, we can easily identify the segment to
split (the i-th crossing of (u, v) splits segment (xe

i−1, v)). If the crossings are
processed arbitrarily, the identification of these segments demands a more
complex data structure. Note that in the initial drawing of the graph all
edges are routed monotone. Hence, we sort the crossings according to their
y-coordinate. Crossings with the same y-coordinate are additionally sorted
according to their x-coordinate. Thus, crossings of horizontal edge segments
are also processed in the ordered sequence. This will be relevant during the
realization of constraints CLUSTER and PARTITION, where we also have
to cope with horizontal edge segments.

A problem arising in this phase is that of multi-crossings, i.e., points
where more than two edges cross. While those crossings are allowed in
Sugiyama’s approach they are not allowed in the TSM approach. Let
e1,. . . ,ek denote edges participating at a multi-crossing. The sweep-line
detects a crossing for each of the k(k−1)

2 edge pairs. In order to obtain a
valid embedding, those crossings have to be processed in a suitable order.
Hence, crossings with the same x- and y-coordinate are additionally sorted
as follows: First we sort them according to the smaller layer position of the
endpoints of the two participating edges in the upper layer. Crossings with
the same value are additionally sorted according to the larger layer position
of these endpoints. This processing order always leads to a valid elimination
of multi-crossings as shown in Fig. 4.3(a).

After inserting crossing vertices, the cyclic order of edges around a vertex
v can easily be determined using the layer positions of v’s neighbors. This
is illustrated in Fig. 4.3(b), where the cyclic order around vertex v is e1, e2,
e4, e3.

If G contains multi-edges, we also have to consider the following issue:
Let Em

v,w denote the set of multi-edges between two vertices v and w. If v
and w lie on adjacent layers, all edges of Em

v,w overlap each other (in the
initial drawing) since they are drawn straight-line. We detect those cases
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Figure 4.3: Planarization issues: (a) illustrates how to eliminate multi-
crossings, and (b) how to determine the cyclic order of edges around vertices.

and embed all edges of Em
v,w in parallel, i.e., such that they all cross exactly

the same edges in the same order.
Sorting crossings according to their coordinates can be done in time

O(x log x) and sorting edges around vertices in time O(|E| log |E|). Thus,
the overall runtime of this phase is O(|E| log |E|+ x log x).

4.2.3 Rerouting of Edges

The initial drawing produced by Sugiyama’s approach is too restrictive be-
cause each edge is routed monotonically, which is not required for edges of
E∗. Thus, we perform a rerouting step to further reduce the number of
crossings. For each edge of E∗ with at least one crossing, we perform a
shortest path routing (see Section 2.3.1) and if we find a route with fewer
crossings we take this route and discard the old one. Note that we always
reroute a complete edge and not just segments. To further improve quality,
we iteratively repeat the rerouting step and process the edges in randomized
order. The size of the planarized graph is O(|V |+ x) and thus the runtime
of the rerouting is O((|V |+ x)|E∗|).

Summing the runtime and space complexity of the single planarization
phases we obtain the following theorem:

Theorem 4.1 Let G = (V,E), E = ED ∪ EU denote a connected, mixed
graph where the subgraph induced by the edges of E↑ is acyclic. The above
approach calculates a mixed-upward planar embedding of G in time O(|V ||E|
log |E|+x log x+x|E∗|) where x denotes the number of crossings in the initial
drawing. The space complexity is O(|V |+ x).
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Figure 4.4: Handling of back edges to maintain bimodality. (a) shows the
original graph that contains a back edge e = (v,w). Instead of reversing e we
apply the transformation shown in (b), which guarantees a bimodal handling
of e, i.e., e enters w at the bottom and leaves v at the top. (c) demonstrates
that this transformation may cause additional crossings.

4.3 Bimodal Planarization

All directed edges e ∈ ED around vertices of V b have to be embedded
bimodally. In order to incorporate constraint BIMODAL into Sugiyama’s
approach we have to adapt the layering phase as follows: For a given layer
assignment λ let AD ⊂ ED denote the set of back edges, i.e., directed edges
(v,w) for which λ(v) < λ(w) (Fig. 4.4). For each back edge (v,w) ∈ AD

with v ∈ V b, we insert a dummy vertex d into layer λ(v) − 1 and replace
(v,w) by two directed edges (v, d) and (w, d). Analogously, if w ∈ V b we
insert a dummy vertex d′ into layer λ(w) + 1 and replace (v,w) (or (w, d))
by two edges (d′, w) and (d′, v) (or (d′, d)). This transformation is sufficient
to guarantee that the resulting drawing is bimodal. There are no changes
required for the crossing minimization or horizontal coordinate assignment
phase.

Until now, the layering constraint graph CG has only contained edges
induced by upward edges e ∈ E↑. To reduce the number of back edges,
we insert additional edges into it. Minimizing the number of back edges
is advantageous since they often cause additional crossings, e.g., if there
are many such edges incident to the same vertex as shown in Fig. 4.4(c).
Furthermore, the handling of those edges produces additional vertices with
zero in- or out-degree. For such vertices d it is more difficult to find a
suitable layer position since the measure m(d) cannot be derived from the
positions of d’s neighbors. Hence, for each edge (v,w) ∈ E∗

D we additionally
insert an edge e′ = (w, v) into CG if v or w ∈ V b. Furthermore, we set
etype(e′) = bimodal. If CG is cyclic, we remove its cycles by applying a
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weighted feedback arc set heuristic (see Section 2.4.1). Therefore, we assign
the following weights to edges of CG (⊻ denotes the XOR operator):

ωc(v,w) =







2|EC | if etype(v,w) = upward,
2 if etype(v,w) = bimodal ∧ v,w ∈ V b,
1 if etype(v,w) = bimodal ∧ (v ∈ V b

⊻ w ∈ V b).

Let A ⊂ EC denote the resulting feedback arc set. From Lemma 2.10 and
the chosen weights, we have A ∩ {e ∈ EC | etype(e) = upward} = ∅. Thus,
we still obtain a proper layering for the upward edges.

Dummy vertices inserted during the transformation step are removed
after the calculation of the planar embedding of the initial drawing. This
guarantees that, during the embedding phase, edge routes can still be con-
sidered to be monotonic. In the example of Fig. 4.4(b), we restore the trans-
formed edge (v,w) by concatenating segment (v, d), the reverse of segment
(d′, d) and segment (d′, w).

During the rerouting phase we reroute edges of E∗
D. We only have to

guarantee that the resulting edge order around the vertices of V b remains
bimodal. The valid positions of an edge (v,w) in the cyclic edge order around
the vertices v as well as w can be calculated in time O(δG(v) + δG(w)). We
temporarily remove edges from the dual routing graph that might lead to
invalid edge orders.

The number of additional dummy vertices inserted after the layering
phase is O(|ED|). Hence, the runtime for the first two planarization phases
stays the same as for the mixed-upward planarization described in the previ-
ous section. Removing cycles from CG requires time O(|V ||ED|) [42]. Since
all edges except those of E↑ can be rerouted, the rerouting step runs in
time O((|V | + x)|E∗|). Summing, the overall runtime is O(|V ||E| log |V | +
x log x + x|E∗|) and the space requirement O(|V |+ x).

4.4 Planarization of Clusters and Partitions

In this section, we show how to adapt our planarization framework to in-
corporate constraints CLUSTER and PARTITION. We consider both con-
straints simultaneously because they demand a similar treatment. Recall
that the input is a mixed compound graph GC = (G,T ) with G = (V,E),
T = (V,ET ), E = ED ∪EU and V = B ∪C. Furthermore, let r ∈ C denote
the root of T .

4.4.1 Construction of an Initial Drawing

For the construction of an initial drawing that includes constraints CLUS-
TER and PARTITION we have to modify the single phases of Sugiyama’s
approach.
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Similar to the approach described in [128], we first transform G as fol-
lows: Let B′ = {ct, cb | c ∈ C} denote the vertex set that contains, for
each compound vertex c ∈ C, two vertices ct and cb that represent the top
and bottom boundaries of the corresponding cluster region. The graph G
now consists of the vertex set V ′ = B ∪ B′. All incoming edges (v, c) ∈ E,
v ∈ V are replaced by edges (v, ct) if there is a path c →∗

T v (the cluster c
contains v) and by edges (v, cb) otherwise. Analogously, all outgoing edges
(c, v) ∈ E, v ∈ V are replaced by edges (cb, v) if there is a path c→∗

T v and
by edges (ct, v) otherwise. Furthermore, we replace each edge (c, d) ∈ E,
c, d ∈ C with an edge (cb, db) if c →∗

T d, with an edge (ct, dt) if d →∗
T c

and with an edge (ct, db) otherwise. For each vertex c{t,b} ∈ B′ we set
type(c{t,b}) = bimodal and insert an edge (c, c{t,b}) into T .

4.4.1.1 Layer Assignment and Cycle Removal

For a compound vertex c ∈ C, the layering has to satisfy the following
condition: for each base vertex w ∈ B with c →∗

T w, λ(ct) < λ(w) < λ(cb)
and for each compound vertex d ∈ C with c→∗

T d, λ(ct) < λ(dt) < λ(db) <
λ(cb).

Sander [128] guarantees this by introducing the concept of a nesting
graph Gn = (V ′, En). The edge set En contains the following edges:

• Edges (ct, v) and (v, cb) for each edge (c, v) ∈ ET with c ∈ C and
v ∈ B.

• Edges (ct, dt) and (db, cb) for each edge (c, d) ∈ ET with c, d ∈ C.

Note that Gn is acyclic by construction (Fig. 4.5(b)). Each layer assignment
on Gn complies with the above condition. We adopt this concept into our
planarization approach by inserting edges of En into the layering constraint
graph CG and setting their type to cluster.

Let pymax (pxmax) denote the number of rows (columns) of the partition.
We obtain a layering that preserves the partition by inserting pymax + 1
additional vertices py

j into G. Let Py denote the set of those vertices. A
vertex py

j denotes the horizontal grid line separating grid row j − 1 and j.
The layering has to satisfy the following condition: For each base vertex
v ∈ B with py(v) = j, λ(py

j ) < λ(v) < λ(py
j+1) and for each compound

vertex c ∈ C with py(c) = j, λ(py
j ) < λ(ct), λ(cb) < λ(py

j+1). We realize this
by inserting two edges, (py

j , u) and (u, py
j+1), into CG for each vertex u ∈ B

with j = py(u). Furthermore, we insert edges (py
j−1, p

y
j ), 1 ≤ j ≤ pymax into

CG to guarantee that λ(py
i ) < λ(py

j ), if i < j (Fig.4.6(b)). The type of these
edges is set to partition.

Let Ec
C = {e ∈ EC | etype(e) = cluster}, Ep

C = {e ∈ EC | etype(e) =
partition} and Eu

C = {e ∈ EC | etype(e) = upward}.
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(a) (b) (c)

Figure 4.5: A cluster drawing (a) and the edges induced in the constraint
graph CG (b). The vertices rt, rb represent the top and bottom borders of
the whole drawing. The assignment of the dummy vertices is shown in (c).

(a) (b) (c)

Figure 4.6: A partitioned drawing (a) and the edges induced in the constraint
graph CG (b). The insertion of the dummy vertices is shown in (c).

Lemma 4.2 The graph C ′
G = (V ′, E′

C) with V ′ = B ∪ B′ ∪ Py and E′
C =

Ec
C ∪ Ep

C ∪ Eu
C is acyclic.

Proof: The graph C ′
G is acyclic if and only if there is a permutation ΠV ′

of the vertices of V ′ that induces a topological ordering. Let Vi = {v ∈ B |
py(v) = i} denote the subset of vertices of B assigned to the i-th partition
row and ΠVi

a permutation of the vertices of Vi. Analogously, we define V t
i =

{v ∈ B′ | py(v) = i ∧ v represents the top boundary of a cluster region}
and V b

i = {v ∈ B′ | py(v) = i ∧ v represents the bottom boundary of a clu-
ster region}. In the following, we show that the permutation ΠV ′ = rt, py

0,
ΠV t

1
,ΠV1 ,ΠV b

1
, py

1,ΠV t
2
,ΠV2 ,ΠV b

2
, py

2, . . . , p
y
k, r

b with k = pymax induces a topo-

logical ordering, i.e., each edge e ∈ E′
C is directed from left to right with

respect to ΠV ′ . The vertices rt and rb are associated with the root vertex
r ∈ C and thus represent the top/bottom boundary of the whole drawing.

Obviously, ΠV ′ induces a topological ordering for the edges of Ep
C since

each vertex v ∈ B∪B′ lies between vertex py
i and py

i+1 if and only if py(v) =
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i. Furthermore, in ΠV ′ the vertices py
i appear in increasing order of their

indices. Note that up to now we have not made assumptions about the order
of the subsequences ΠVi

, ΠV t
i

and ΠV b
i
.

Now we take a look at edge set Ec
C . Recall that Ec

C consists of edges
(ct, dt), (db, cb), (ct, v), (v, cb) with v ∈ B and ct, cb, dt, db ∈ B′. For vertex rt

we have δ−
C′

G

(rt) = 0 and for vertex rb we have δ+
C′

G

(rb) = 0. Hence, due to

the positioning of both vertices, edges incident to rt or rb are always directed
from left to right. For all remaining edges (v,w) ∈ Ec

C , it is p(v) = p(w)
because we do not allow clusters to cross partition cells. Since Ec

C is acyclic,
we can always find a valid permutation ΠV t

i
that induces a topological order

for the edges (ct, dt) ∈ Ec
C with py(ct) = py(dt) = i. Analogously, we can find

a valid permutation ΠV b
i

for vertices of V b
i . Furthermore, in ΠV ′ the vertices

of Vi are placed to the right of the vertices V t
i and to the left of vertices V b

i

such that each edge (ct, v) and (v, cb) with py(v) = py(ct) = py(cb) = i runs
from left to right. Note that the order of the vertices of Vi is still not yet
relevant.

Since Eu
C ⊆ B × B is acyclic there is a permutation ΠVi

that induces a
topological ordering for the edges (v,w) ∈ Eu

C with p(v) = p(w) = i. Fur-
thermore, the permutation ΠV ′ guarantees that each edge (v,w) ∈ Eu

C with
p(v) < p(w) runs from left to right. Note that there are no edges (v,w) ∈ Eu

C

with p(v) > p(w) (those edges are removed during the postprocessing step).
Summing up, it follows that there is a permutation such that each edge of
E′

C runs from left to right. 2

We assign the following weights to the edges of EC :

ωc(v,w) =







2|EC | if (v,w) ∈ E′
C ,

2 if etype(v,w) = bimodal ∧ v,w ∈ V b,
1 if etype(v,w) = bimodal ∧ (v ∈ V b

⊻ w ∈ V b).

Note that due to Lemma 4.2 and Lemma 2.10, the edge weights guarantee
that A ∩E′

C = ∅ and thus we obtain a proper layering.
After the layer assignment, we normalize the graph by replacing long

edges by chains of dummy vertices and edges (see Section 2.4). We have
to extend the function px as follows: For each dummy vertex de of an
edge e = (u, v), we set px(de) = px(v) if λ(u) < λ(v) and px(de) = px(u)
otherwise (Fig. 4.6(c)). We also have to include the dummy vertices into the
inclusion tree T . For each dummy vertex de of an edge e = (u, v), we first
determine the lowest common ancestor w ∈ C of u and v in T . Then we
assign de to cluster w, i.e., we insert an edge (w, de) into ET . Note that this
assignment is consistent with the assignment of the partition cells because if
u and v are in different partition cells, the first common predecessor is always
the root of the inclusion tree (recall that cluster regions are not allowed to
cross partition cells).
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Let px
j , 0 ≤ j ≤ pxmax denote the vertical grid line which separates

partition column j−1 and j. For each px
j , we insert a dummy vertex u

px
j

i on
each layer Li, 1 ≤ i ≤ h. Furthermore, for each compound vertex c ∈ C, we
insert two dummy vertices ucl

i and ucr

i on each layer Li, λ(ct) ≤ i ≤ λ(cb)
representing the left/right boundary of the cluster region. The number of
dummy vertices and edges inserted during normalization is O(|V ′||E|).

4.4.1.2 Crossing Reduction

We realize constraint CLUSTER by using the clustered crossing reduction
approach described by Forster [74, 75]. First, a layer cluster tree TLi

is
computed for each layer Li, 1 ≤ i ≤ h. TLi

is the subgraph of T that is
induced by all vertices relevant for layer Li, i.e., all base vertices v ∈ B
with λ(v) = i and all compound vertices c ∈ C with λ(ct) ≤ i ≤ λ(cb).
Note that we can contract a layer cluster tree by removing every single-child
compound vertex and connecting the child directly to its grandparent. This
guarantees that the size of a layer cluster tree TLi

is linear to the size of Li.
For compound graphs, there are two new restrictions which have to be

considered during the crossing minimization:

Cluster-Layer Restriction: The cluster-layer restriction is satisfied, if for
any compound vertex c ∈ C of TLi

, 1 ≤ i ≤ h, the vertices lying

between ucl

i and ucr

i in Li are exactly the successors of c in TLi
.

Cluster-Cluster Restriction: The cluster-cluster restriction is satisfied
if, for any two compound vertices c, d ∈ C which are not nested, the
relative position of c and d is the same on each common layer, i.e.,
pos(ucr

i ) < pos(udl

i ) for max(λ(ct), λ(dt)) ≤ i ≤ min(λ(cb), λ(db)) or

pos(udr

i ) < pos(ucl

i ) for max(λ(ct), λ(dt)) ≤ i ≤ min(λ(cb), λ(db)).

The crossing reduction of Forster is based on the following lemma:

Lemma 4.3 [75] Let G′ = (L1 ∪ L2, E
′ ⊆ L1 × L2) denote a two-layered

(bipartite) graph where the ordering of vertices in L1 is fixed. An order of
the vertices in L2 has a minimum number of crossings with respect to L1

if and only if the child order of each compound vertex c in TL2 induces a
minimal number of crossings.

Thus, during a one-sided two-layer crossing minimization step, the num-
ber of crossings can be minimized without losing quality by independently
computing an order of the children for each compound vertex. More pre-
cisely, for each compound vertex c of the layer cluster tree TL2 , we con-
struct a weighted two-layered crossing reduction graph G′

c = (V ′
c , E′

c) with
V ′

c = L1 ∪L′
2. The upper layer is the same as for G′, the lower layer L′

2 con-
sists of the children of c in TL2 . The relevant edges of E′ are then transferred
to E′

c as follows (Fig. 4.7):
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• Edges (v,w) ∈ E′ ending in a vertex w that is not the successor of c
in TL2 are ignored.

• For each remaining edge (v,w) ∈ E′, let y denote the unique child of
c, which is a predecessor of w. If E′

c does not already contain edge
(v, y), we add it and set its weight to one. Otherwise, we increase the
weight of (v, y) by one.

Note that for a two-layered graph G′ each single edge may be transferred
to O(|C2|) crossing reduction graphs where C2 denotes the set of compound
vertices of TL2. The runtime for building the crossing reduction graphs
for G′ is O(|L2| + |C2||E

′|). Now, for each crossing reduction graph we
use a weighted one-sided two-layer crossing minimization to determine the
vertex order of its lower layer. The results are used to derive an order of
the vertices of L2 that satisfies the cluster-layer restriction. Vertices ucl

i

(ucr

i ) representing the left (right) border of a compound vertex c ∈ C2 are
placed accordingly. Finally, we use the approach of Barth et al. described
in Section 2.4.3 to count crossings.

(a) (b)

(c) (d)

Figure 4.7: Example of creating crossing reduction graphs (taken from [74]).
(a) shows the underlying two-layered graph where the colored rectangles
sketch the cluster regions. Note that vertices representing the left/right
border of a compound vertex are omitted here. (b),(c) and (d) show the
crossing reduction graph for the white, gray and green cluster regions re-
spectively. Edges with weight > 1 are labeled accordingly.

To satisfy the cluster-cluster restriction, we use the constrained one-
sided two-layer crossing minimization described in [75, 76]. For a crossing
reduction graph G′

c = (L1∪L′
2, E

′
c) it allows us to specify constraints on the

relative order for some vertex pairs of L′
2. We store these constraints in an
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edge set R ⊆ L′
2×L′

2. An edge (v,w) ∈ R denotes that v should be placed to
the left of w. The given constraints are always satisfied if the graph (L′

2, R)
is acyclic. We preserve the relative ordering of two compound vertices by
inserting an appropriate constraint (edge) into R. Using this approach, the
layer ordering of the vertices is no longer based on a linear measure and,
hence, crossing middle segments may occur. For a single crossing reduc-
tion graph G′

c, the algorithm has runtime O(|L′
2| log |L

′
2|+ |E

′
c|+ |R|

2). Note
that we have to apply the constrained crossing minimization to each crossing
reduction graph of G′. As shown in [75], it is always sufficient to add con-
straints between compound vertices having the same parent in TL2 . Thus,
summed over all crossing reduction graphs of G′, the overall number of con-
straints is bounded by O(|C2|). Furthermore, the overall number of edges
is O(|C2||E

′|) and the overall number of vertices is linear to the size of TL2 .
Hence, for a two-layered graph G′ the clustered crossing minimization has
runtime O(|L′

2| log |L
′
2|+ |C2||E

′|+ |C2|
2)

Recall that the normalized mixed compound graph GC may contain
Θ(|V ||E|) vertices and edges. More precisely, the number of layers may
be Θ(|V |), the number of vertices per layer Θ(|V |+ |E|) and the number of
edges per layer Θ(|E|). Furthermore, we know that the number of compound
vertices of a layer cluster tree is bounded by O(|V |). Hence, the overall run-
time complexity for applying the above crossing reduction approach to GC

is O(|V |2|E|).
Below, we show how to realize constraint PARTITION. Let G′ = (L1 ∪

L2, E
′ ⊆ L1 × L2) denote a two-layered graph and Li

2 ⊆ L2 the set of
vertices assigned to the i-th partition column, i.e., those vertices v ∈ L2

with px(v) = i. We apply the above clustered crossing reduction approach
separately to the subgraphs G′

i induced on G′ by the vertices of L1 ∪ Li
2,

0 ≤ i < pxmax. Recall that cluster regions never intersect partition cells
and, thus, the cluster-layer as well as the cluster-cluster restriction are still
maintained. We process the subgraphs G′

i in increasing order of i and con-
catenate the resulting vertex orders to obtain the order of L2. The vertices

representing the vertical grid lines are placed accordingly, e.g., vertex u
px

i

2 is
placed between the vertices of Li−1

2 and Li
2. Regarding the quality of the

separate handling of the subgraphs G′
i, we can state the following theorem:

Lemma 4.4 During the one-sided two-layer crossing minimization of G′,
we can separately calculate the vertex order for each subgraph G′

i without
losing quality.

Proof: Let e1 = (u, v) and e2 = (w, z) denote two edges of G′ with px(v) 6=
px(z), i.e., both edges are assigned to different subgraphs. Furthermore, we
assume w.l.o.g. that in L1, vertex u is placed to the left of w. Since the
vertex order of L1 as well as the order of the partition columns is fixed,
e1 crosses e2 if and only if px(z) < px(v). Hence, the crossing number of
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such edge pairs cannot be influenced and, thus, we do not lose quality if we
separately minimize the number of crossings for each subgraph. 2

Building the subgraphs of G′ requires O(|L2| log |L2|+ |E
′|) overall run-

time, i.e., we first sort the vertices of L2 according to their px values and
then assign the vertices and edges of G′ to the different subgraphs. We
only need to consider subgraphs G′

i with |Li
2| > 0. The overall size of the

subgraphs is linear to the size of G′. Placing the dummy vertices u
px

i

2 needs
time O(|L2|+ pxmax).

Note that our crossing reduction approach does not depend on a spe-
cific constrained one-sided two-layer crossing minimization strategy. Due to
Lemmas 4.3 and 4.4, an optimal strategy would also imply optimality with
respect to constraints CLUSTER and PARTITION. However, this does not
imply global optimality because the layer-by-layer sweep may introduce un-
necessary bends. The overall running time of the above crossing reduction
is O(|V |2|E|). If we only consider constraint PARTITION, the runtime is
O(|V ||E| log |E|).

4.4.1.3 Horizontal Coordinate Assignment

Let Ga denote the directed acyclic (Sugiyama-based) compaction graph
resulting from the layer ordering calculated during the crossing reduction
phase (see Section 2.4). Each cluster should be represented by an enclosing
rectangle. Therefore, we have to vertically align the left (right) bound-

ary vertices ucl

i (ucr

i ), λ(ct) ≤ i ≤ λ(cb) for each compound vertex c ∈ C.

Furthermore, we have to align the vertices u
px

j

i , 1 ≤ i ≤ h for each px
j ,

0 ≤ j ≤ pxmax to obtain the vertical grid lines of the partition. Both are
realized by mapping all vertices that should be aligned to the same vertex of
Ga. Due to the adapted crossing minimization, this never introduces cycles
in Ga and, hence, all aligned vertices are assigned to the same horizontal
coordinate.

We use Ga to perform the horizontal coordinate assignment with the
algorithm of Brandes and Köpf introduced in Section 2.4.4. Note that we
no longer use a linear measure during the crossing minimization and, hence,
the resulting drawing is not guaranteed to be in the linear segments model.
Finally, all dummy vertices inserted during normalization are removed.

4.4.2 Construction of a Planar Embedding

In our approach, we model cluster regions and partitions using vertices and
edges. More precisely, before we calculate the planar embedding, we “ma-
terialize” them in the following way: Let x(v) denote the x-coordinate and
y(v) the y-coordinate of a vertex v. For each compound vertex c ∈ C,
we know the coordinates of the vertices ct and cb representing the top and
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bottom boundaries of the cluster. In addition, we have stored the former
coordinates of the already removed dummy vertices ucl

i and ucr

i representing
c’s left and right boundaries. The cluster region of c is represented by in-
serting two edges e1, e2 between ct and cb into the drawing. For the route of
e1, we use point (x(ucl

i ), y(ct)) and (x(ucl

i ), y(cb)) as intermediate points and
for the route of e2, point (x(ucr

i ), y(ct)) and (x(ucr

i ), y(cb)); see Fig. 4.8(a).
We materialize the partition by inserting the partition grid graph PG into
the drawing. The position of the vertices of PG is derived from the former

coordinates of the dummy vertices u
px

j

i and py
i ; see Fig. 4.8(b). Note that

the overall number of additional elements inserted into the drawing is linear
in the number of clusters and partition cells.

d

g

e

f

(a)

fd

e

c

a

b

(b)

Figure 4.8: Materializing cluster regions (a) for the example shown in
Fig. 4.5. Small red circles denote dummy vertices which represent cross-
ings. They are inserted during the construction of the planar embedding.
Partitions are materialized by inserting the partition grid graph as shown
in (b). Small rectangular vertices denote the vertices of the partition grid
graph. Fig. 4.6 shows the underlying graph.

Now we construct the planar embedding induced by the modified drawing
as described in Section 4.2.2. For clustered graphs the runtime of this step
increases to O(|V ||E| log |E| + x log x) since the underlying drawing is not
in the linear segments model and, thus, may contain up to O(|V ||E|) bends.
When we only consider constraint PARTITION the runtime is O((|E| +
|P |) log(|E|+ |P |) + x log x), where |P | = pymax · pxmax denotes the number
of partition cells. For the overall number of crossings x we have x = xE +
xC+xP where xE denotes the crossing number of edges of E, xC the crossing
number of edges of E with edges modeling cluster regions and xP the crossing
number of edges of E with edges of the partition grid graph. Due to the
monotonic edge routes produced by Sugiyama’s approach, an edge of E
crosses at most pymax + pxmax partition cells. Hence, we have xP = O(|E| ·
(pymax + pxmax)). Moreover, an edge of E crosses at most O(|C|) clusters,
with the result that xC = O(|E||C|).
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The orthogonalization phase demands a connected planarized input graph.
Recall that the induced subgraph G∗ of G on the base vertices B is con-
nected. Hence, if there are vertices of B both inside and outside of a
cluster region/partition cell, there is at least one crossing vertex that con-
nects an edge of G∗ with one representing the boundary of that cluster
region/partition cell. Thus, the graph G∗ ∪ PG is always connected since
using partitions with only one non-empty partition cell is useless. If we do
not use partitions, there could be a compound vertex c ∈ C containing all
base vertices. If there is such a compound vertex c, we simply add an edge
from c to one of its children in T into G, which then guarantees that G is
connected.

Recall the orientation problem described in Section 4.1. The shape as-
signment during the orthogonalization phase guarantees correct orientation
of the partition grid graph if there is at least one upward edge (v,w) ∈ E↑

that crosses the boundary of a partition cell, i.e., p(v) 6= p(w). Hence, we
add a preprocessing step that checks this condition and, if necessary, adds
such an edge to E↑.

4.4.3 Rerouting of Edges

To obtain a c-planar embedding of GC , we have to modify the rerouting step
such that the calculated edge routes guarantee that each edge crosses the
boundary of a region at most once. Note that up to now the embedding may
have contained edges that do not satisfy this property. Let Ex denote the
set of such edges. Since our rerouting approach cannot guarantee that edges
are inserted upward planar, we only reroute edges e ∈ Ex∩E↑ if requirement
CLUSTER is more important than FLOW. Furthermore, we never reroute
skeleton edges.

A modification of the dual graph routing approach that guarantees that
each edge crosses a region boundary at most once is described in [43]. Let
G′ denote the planarized graph. First, a common dual graph DG′ of G′ is
computed. As illustrated in Fig. 4.9, each vertex of DG′ is enclosed by a
certain set of boundary rectangles of clusters. Let c denote the innermost
cluster that encloses a vertex uf of DG′ . Then each vertex on the path
r →∗

T c also encloses uf (r denotes the root of the inclusion tree T ). When
we route an edge e = (v,w) ∈ E, we first calculate the undirected path
v →∗

T w = v, c1, . . . , ck, w. Each edge (uf , ug) of DG′ is handled as follows:
Let ci denote the innermost cluster that encloses uf and cj the innermost
cluster that encloses ug. If ci or cj is not contained in {c1, . . . , ck}, (uf , ug)
is temporarily removed. Otherwise, if i < j we orient (uf , ug) from uf to ug

(the edge can only be passed from uf to ug) and if i > j we orient it from
ug to uf . If i = j, then edge (uf , ug) is bidirectional, i.e., it can be traversed
in both directions. Now, as in the common dual graph routing approach,
we compute a directed shortest path between vertex v′ and w′. Edge e is
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inserted by following the shortest path and replacing crossings with dummy
vertices. The old route of e is discarded. After each step, the dual graph has
to be updated and the temporarily removed and oriented edges are restored.
The running time of this step is O((|V |+ xE + xC + xP )|E|) [43].

Figure 4.9: The modified dual graph for the example shown in Fig. 3.3(c)
when we route edge (k, f). Edges without arrows are bidirectional. The
embedding of the underlying graph is shown in the background (gray vertices
and dashed edges).

To satisfy constraint PARTITION, the route of an edge is not allowed
to leave the outer boundary of the partition grid graph. Furthermore, in
practice we obtain more readable drawings if we use the following restrictions
on edge routes:

• Each route of an edge (v,w) ∈ E is completely contained inside the
smallest rectangle containing partition cell p(v) and p(w).

• No edge reenters a partition cell after leaving it.

Both restrictions lead to fewer crossings between edges of E and edges of
the partition grid graph. Since the shape of the partition grid graph is fixed,
such crossings often lead to unsatisfying edge routes of the crossing edges,
i.e., to lurching edge routes with a lot of bends. Using these restrictions,
an edge route never crosses a partition cell if p(v) = p(w). For an edge
e = (v,w) ∈ E, let Re denote the smallest rectangle containing partition
cell p(v) and p(w). In order to include the first restriction, we remove each
vertex of DG′ that represents a face lying outside of Re. Let dist denote the
function that returns the Manhattan distance between two partition cells p1
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and p2, i.e., dist(p1, p2) = |px
1 − px

2 | + |p
y
1 − py

2|. Furthermore, for a vertex
uf of DG′ let p′ denote the function that maps uf to its enclosing partition
cell. We incorporate the second restriction by orienting edges e′ = (uf , ug)
of DG′ towards the partition cell of e’s target, as shown in Fig. 4.10. More
precisely, if dist(p′(uf ), p(w)) < dist(p′(ug), p(w)) we orient e′ from ug to
uf and if dist(p′(uf ), p(w)) > dist(p′(ug), p(w)) we orient it from uf to ug.
If p′(uf ) = p′(ug), then e′ is bidirectional. Note that this is sufficient to
meet the second restriction. The time needed for rerouting a single edge is
linear in the size of the planarized graph and, hence, the overall runtime of
the rerouting step is O((|V |+ xE + xC + xP )|E|). Since cluster regions are
not allowed to cross partition cells, we can easily combine both approaches
described in this subsection.

Figure 4.10: The modified dual graph for the example shown in Fig. 4.8
when we route edge (b, d). Edges without arrows can be traversed in both
directions. The embedding of the underlying graph is shown in the back-
ground (gray vertices and dashed edges).

After rerouting edges, we replace the vertices c{t,b} representing the top
and bottom borders of a cluster c ∈ C as follows: if c{t,b} is only incident to
the two edges representing the border of c, we remove c{t,b} and join these
edges. Otherwise, as shown in Fig. 4.11, we replace c{t,b} by a chain of
vertices each connected to a non-border edge incident to c{t,b}. This step
can be done in time O(|C|+ |E|).

4.4.4 Optimal Swimlane Order

When partitions are only one-dimensional, i.e., traditional swimlanes, and
the order of the lanes is not prescribed, we can use the following strategy
to improve the readability of the resulting drawing: since each vertex is
constrained to stay in its swimlane, the number of crossings as well as the
total edge length heavily depend on the order of the swimlanes. If there are
many edges between two swimlanes it is advantageous to place them near
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(a) (b)

Figure 4.11: Splitting a vertex representing the bottom border of a cluster
into several vertices, one for each incident edge.

each other. Hence, we construct an undirected graph GP = (VP , EP ) as
follows (w.l.o.g. we assume a vertical alignment of partitions): VP contains
a vertex pi, 0 ≤ i < pxmax for each partition column (swimlane) and EP

an edge (pk, pl) if there is at least one edge e = (u, v) ∈ E with px(u) =
k ∧ px(v) = l or px(u) = l ∧ px(v) = k. The weight of an edge e ∈ EP is
equal to the number of edges in E that meet this condition. Now we can
formulate the corresponding optimization problem: Find a permutation π
of the vertices such that

z =
∑

e=(v,w)∈EP

weight(e) · |π(v)− π(w)|

is minimized (π(v) denotes the position of v in π). For uniform edge weights
this problem is known as the Optimal Linear Arrangement Problem [85] and
is NP-hard.

We tackle this optimization problem with a variant of the greedy switch
heuristic [56]. It works as follows: Starting with some order π of the vertices
of VP , consecutive pairs of vertices are exchanged if this reduces the value of
the objective function z. We repeat this step with the resulting order until
there is an iteration without an improvement of z. Algorithm 3 gives the
corresponding pseudo-code. Note that the maximum number of iterations
is bounded by |VP |. A single iteration has runtime O(|VP | + |EP |) since
we have to check |VP | − 1 vertex pairs and updating z for a vertex pair
vi, vi−1 needs O(δGP

(vi) + δGP
(vi+1)) time. Hence, the overall runtime is

O(|VP |
2 + |VP ||EP |).

The heuristic performs a lot of local changes, but it does not recompute
the complete ordering. Hence, to further improve the results, we apply it
to a certain number of randomized initial vertex orders of VP and take the
result of the best iteration. Finally, we arrange the partitions according to
the resulting order. Note that for two-dimensional partitions we can simply
apply the same heuristic for each dimension separately.
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Algorithm 3: greedySwitchHeuristic

changed← true;
while changed do

changed← false;
for i← 1 to |VP | − 1 do

if exchange of vi and vi+1 reduces z then
switch position of vi and vi+1;
changed← true;

4.5 Including Port and Side Constraints

In this section, we show how to include port/side constraints into our pla-
narization framework. We first give the modifications needed to realize
port/side constraints within Sugiyama’s approach followed by some notes
about the remaining steps.

4.5.1 Construction of an Initial Drawing

An approach for incorporating port constraints into Sugiyama’s approach
was sketched in [131]. It models ports as dummy vertices which are placed
inside the layer above or below the corresponding vertex (depending on
the side associated with the port constraint). The edge ordering given by
the port constraints is realized by inserting appropriate constraints between
these dummy vertices and then applying a constraint crossing minimiza-
tion approach. Note that this approach is not sufficient for our port/side
constraint model.

Let G = (V,E) denote a simple input graph. Recall that in Sugiyama’s
approach each edge is either attached to the top or bottom of its endpoints.
Hence, for each vertex v ∈ V we first map all pins of the left and right sides
to the top and bottom. Therefore, we use an imaginary horizontal line that
crosses v below the κ-th pin of its left/right side (see the dashed red line
in Fig. 4.12(a)). As shown in Fig. 4.12(b), we increase the width of v and
assign all pins above this separation line to the top and all pins below that
line to the bottom. Let P t

v denote the ordered list of pins mapped to the top
and P b

v the order list of pins mapped to the bottom of v. The pins of P t
v are

ordered as follows (from left to right): first we have pin κ, . . . , 2κ− 1 of the
left side followed by pin 1, . . . , 2κ−1 of the top and finally pin 1, . . . , κ of the
right side. Pins of P b

v are ordered as follows: first we have pin κ − 1, . . . , 1
of the left side followed by pin 2κ − 1, . . . , 1 of the bottom and finally pin
2κ− 1, . . . , κ + 1 of the right side.

Below we show the required modifications for the layering and crossing
minimization phase. Due to the above mapping of the pins to the top and



4.5 Including Port and Side Constraints 83

h
g

e

f

vv

(a)

v

h

v

gf

e
(b)

v

hgf

e

v

(c)

Figure 4.12: (a) shows a vertex v with some incident edges assigned to pins
of v. The dashed red line denotes the separation line that determines which
of the pins are mapped to the top or bottom. (b) illustrates the result after
mapping pins to these sides. To obtain valid routes for edges originally
assigned to pins of the left/right side, we extend the routes as shown in (c).

bottom of the vertices, our layering strategy is similar to that for constraint
BIMODAL. Note that in the following we consider edges to be undirected,
i.e., (v,w) = (w, v).

4.5.1.1 Layering

For each vertex v ∈ V , let Et
v ⊆ Ec denote the set of edges which have

to be connected to a pin of P t
v , i.e., those edges e with side constraint

sce
v, side(sce

v) = t or those with port constraint pce
v with pin(pce

v) ∈ P t
v .

Analogously, we define Eb
v to be the set of edges which have to be connected

to a pin of P b
v (edges e with side constraint sce

v, side(sce
v) = b or those with

port constraint pce
v and pin(pce

v) ∈ P b
v ).

For a given layer assignment λ, we proceed as follows: for each edge
(v,w) ∈ Et

v of a vertex v with λ(v) < λ(w), we insert a dummy vertex d into
layer λ(v)−1 and replace (v,w) by two edges (v, d) and (w, d). Analogously,
for each edge (w, v) ∈ Eb

w, we insert a dummy vertex d′ into layer λ(w) + 1
and replace (v,w) (or (w, d)) by two edges (d′, w) and (d′, v) (or (d′, d)).
This construction corresponds to that for back edges shown in Fig. 4.4. Note
that we have to transfer the port/side constraints of (v,w) to the resulting
dummy edges.

We try to reduce the number of inserted dummy vertices by adding
appropriate edges into the layering constraint graph CG = (V,EC). For
each edge e = (v,w) ∈ Ec, we add a directed edge e′ = (v,w) into EC if
e ∈ Et

w or e ∈ Eb
v. If e ∈ Eb

w or e ∈ Et
v, we add a directed edge e′ = (w, v)

into EC . For each edge e′ added to EC , we set etype(e′) = pc/sc. We
extend the weight function ωc as follows: For each edge e = (v,w) ∈ EC ,
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ωc(e) =























2|EC | if e ∈ E′
C ,

2 if etype(e) = bimodal ∧ v,w ∈ V b,
2 if etype(e) = pc/sc ∧ e ∈ Et

v ∧ e ∈ Eb
v,

1 if etype(e) = bimodal ∧ (v ∈ V b
⊻ w ∈ V b),

1 if etype(e) = pc/sc ∧ (e ∈ Et
v ⊻ e ∈ Eb

v).

There are no further changes for the layer assignment and normalization.
The removal of the dummy vertices inserted during the above transformation
is done as for constraint BIMODAL.

4.5.1.2 Crossing Minimization

The following crossing minimization approach only supports port constraints.
Hence, before we apply it, we temporarily transform each side constraint sce

v

of an edge e into a port constraint pce
v. Therefore, we assign e to a non-

occupied pin on side side(sce
v) of v. For side constraints on the left and right

side we choose a pin that conforms to the given layering, i.e., for an edge
(v,w) with λ(v) < λ(w), the pin has to be in P b

v and if λ(v) > λ(w) it has
to be in P t

v . Obviously, a port constraint preserving drawing of the trans-
formed graph is also a port constraint preserving drawing of the original
graph. After the crossing minimization we restore the original constraints.

In the following, we consider the one-sided two-layered crossing mini-
mization for a two-layered graph G′ = (L1 ∪ L2, E

′ ⊆ L1 × L2) with port
constraints.

Port Constraints on Vertices of L2 First, we show how to handle port
constraints of edges on vertices of L2. For each vertex v ∈ L2, let pos(v)
denote the layer position of v in L2 and Ev ⊆ E′ the edges incident to
v. While up to now there have never been crossings between edges of Ev,
this is no longer true when we include port constraints since such constraints
restrict the valid orderings of edges around vertices. An ordering of the edges
Ev around v is called valid if it satisfies the items of Definition 3.7 (page 46).
Since the positions of vertices of L1 are fixed, we have the following property:

Property 4.5 During a one-sided two-layered crossing minimization, the
number of crossings between edges of Ev, v ∈ L2 does not depend on the
position pos(v) of v.

It follows that we cannot affect the crossing number between these edges.
Since common cross counting approaches do not include port constraints,
we have to additionally count and add the number of such crossings.

Let Epc
v ⊆ Ev denote the edges with port constraint on v and Efree

v ⊆ Ev

the edges without constraints. Then, there are three different kinds of cross-
ings between edges of Ev: crossings between two edges with port constraints
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on v (called pc-pc crossings), crossings between two edges without con-
straints on v (called free-free crossings) as well as crossings between an
edge without constraint and one with port constraint on v (called pc-free

crossings). Below, we show how to find a valid ordering of the edges Ev on
a vertex v ∈ L2 such that the number of crossings between these edges is
minimized.

For edges of Epc
v , the relative positions of the endpoints are already fixed.

Hence, the number of pc-pc crossings is also fixed and can be calculated in
time O(|Epc

v |2).
In the following, we present a network flow problem which calculates a

valid ordering of the edges of Ev on v such that the number of pc-free

crossings is minimized. Let Nv = (U1 ∪ U2 ∪ t, A) denote the network used
for minimizing crossings between edges incident to a vertex v ∈ L2. Vertex
set U1 contains the neighbors of v in layer L1, i.e., U1 = {w | w ∈ L1 ∧
w adjacent to v}. Each vertex w ∈ U1 has supply b(w) = 1. Vertex set U2

consists of vertices P0, p0, P1, p1, . . . , Pk−1, pk−1, Pk, k = |Epc
v | where vertex

pi represents the i-th pin of P t
v that is associated with an edge of Epc

v . Vertex
Pi represents the set of pins lying between pin pi−1 and pi (not including pi−1

and pi). Vertices of U2 have zero supply. Vertex t has supply b(t) = −|U1|.
The edge set A consists of the following subsets:

• An edge set Ap that contains an edge (w, pi) for each edge e = (w, v) ∈
Epc

v , w ∈ L1 with port constraint pcv
e associated with the pin repre-

sented by vertex pi (i.e., pi represents pin(pcv
e)). Edges of Ap have

zero costs and capacity one.

• An edge set AP that contains, for each edge e′ = (w, v) ∈ Efree
v ,

w ∈ L1, an edge (w,Pi) ∀ 0 ≤ i ≤ k, i.e., w is connected to each vertex
Pi. The capacity of these edges is one and the costs are set to the
number of edges of Epc

v that are crossed by e′ if e′ is assigned to a pin
represented by vertex Pi.

For an edge e ∈ AP , we can determine the corresponding number of
crossings with edges of Epc

v in time O(|Epc
v |) (by simply comparing

the relative positions of the endpoints). Hence, the overall time for
calculating the costs for a network Nv is O(|Epc

v ||AP |) = O(δG(v)3).

• An edge set At that contains an edge (u, t) for each vertex u ∈ U2. Let
|Pi| denote the number of pins represented by a vertex Pi ∈ U2. The
cost of an edge (u, t) ∈ At is zero and its capacity is |Pi| if u represents
a vertex Pi and one if it represents a vertex pi.

Fig. 4.13(a) shows an example of a network Nv and illustrates its geomet-
ric interpretation. Our transformation of the crossing minimization problem
into a network flow problem has the following intuitive interpretation: Due
to the chosen supplies, each neighbor w ∈ U1 of v has exactly one incident
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edge e = (w, u) ∈ A with f(e) > 0. The flow on this edge is interpreted
as an assignment of edge (w, v) ∈ E to a pin represented by u ∈ U2. For
an edge e ∈ AP , the cost of this flow corresponds to the number of cross-
ings of e with edges of Epc

v . The capacity of edges (Pi, t) guarantees that
the number of edges assigned to pins represented by vertex Pi is valid, i.e.,
there are enough free pins for these edges. Since the number of available
pins is larger than the number of neighbors of v, there is always a feasible
flow in Nv. We can derive a valid ordering of the edges of Ev by sorting
them according to the position of the associated pin in P t

v . Edges assigned
to pins represented by the same vertex Pi can be ordered arbitrarily. Using
the above observations we can directly derive the following lemma:

(a) (b)

Figure 4.13: (a) illustrates the minimum cost flow network Nv for a vertex
v. Edges of Ap are denoted by solid lines, edges of AP by dotted lines and
edges of At by dashed lines. To demonstrate the geometric interpretation
of the construction of Nv, the neighbors wi of v are ordered from left to
right according to their position in L1. Furthermore, edges (w1, v), (w3, v),
(w4, v) ∈ E′ have port constraints on v. Now if, for example, edge e = (w5, v)
is assigned to a pin represented by vertex P0 (f(w5, P0) = 1) this would
induce a cost of 3 in Nv which corresponds to the number of crossings of
e with edges of Epc

v . (b) demonstrates how to resolve free-free crossings.
The crossing between edges (wi, v) and (wj , v) (gray-colored) can be removed
by changing the pins of both edges.

Lemma 4.6 A minimum cost flow in the network Nv induces a valid order-
ing of the edges of Ev on v with a minimum number of pc-free crossings.

We store the induced edge order in an ordered list LEv . Let xpc−free

denote the corresponding number of pc-free crossings, xpc−pc the corre-
sponding number of pc-pc crossings and xfree−free the corresponding num-
ber of free-free crossings. Since xpc−pc is fixed and due to Lemma 4.6,
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xpc−free +xpc−pc is a lower bound on the number of crossings between edges
of Ev.

Lemma 4.7 There is always a valid ordering of the edges of Ev on v such
that the number of crossings between these edges is x = xpc−free + xpc−pc,
i.e., xfree−free = 0. This number is minimal.

Proof: The minimum cost flow induces a valid ordering of the edges of
Ev on v. If, for this ordering, xfree−free = 0, we have x = xpc−free +
xpc−pc. Assume that xfree−free > 0. Then there are crossing edges e =
(wi, v) and e′ = (wj , v), both without port constraint on v. As illustrated
in Fig. 4.13(b), we can remove such a crossing by exchanging the pins of
both edges. Obviously, neither xpc−free nor xpc−pc can be increased by this
transformation (each edge that crosses (wi, Pk) or (wj, Pl) also has to cross
edge (wi, Pl) or (wj , Pk)). Furthermore, this transformation does not change
the number of edges assigned to pins represented by a vertex Pi. Hence, after
successively removing all free-free crossings, we obtain a valid ordering of
the edges that induces x ≤ xpc−free + xpc−pc crossings. Thus, the resulting
edge order induces a minimum number of crossings between edges of Ev. 2

We know that a minimum cost flow in Nv induces an edge order that
minimizes pc-free crossings and that this order can be transformed into an
optimal edge order without free-free crossings. Hence, after calculating
the minimum cost flow f in Nv, we can use Algorithm 4 to directly construct
an optimal edge order in time O(|Ev |). The function pop(L) (line 6) removes
the first element of a list L and returns it. The function append(L, e) (lines 7
and 10) adds an edge e to the end of a list L.

For each vertex v the network Nv = (U,A) can be constructed in time
O(δG(v)3). For a network Nv = (U,A), the wave implementation of the cost
scaling minimum cost flow algorithm calculates a minimum cost flow in time
O(|U |3 log(|U | · C)) [1, 88], where C denotes the maximum absolute value
for costs. This results in a runtime of O(δG(v)3 log δG(v)2) for each vertex
v ∈ V .

Port Constraints on Vertices of L1 In the following, we show how to
handle port constraints of edges on vertices of L1. Recall that the vertex
order of L1 is fixed. For a vertex v ∈ L1 let Av ⊆ L2 denote the set of
neighbors of v in L2. To reduce the number of crossings between edges of
Ev, we refine the measure calculation of the vertices in L2 as follows: We
calculate the measure value for each vertex of L2, using a linear measure
m. For all pairs of neighbors n1, n2 ∈ Av , v ∈ V with m(n1) = m(n2) we
use a second sorting criteria which guarantees an order of the edges (v, n1),
(v, n2) on v that complies with the given port constraints. Therefore, we
simply calculate a valid ordering of the edges Ev and use the edges’ index
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Algorithm 4: calcEdgeOrder

Input: A vertex v, the edge set Ev = Epc
v ∪ Efree

v as well as the
network Nv with flow function f .

Output: A valid edge order LEv (ordered list) that induces a
minimum number of crossings between the edges of Ev.

LEv ← ∅;1

Lfree ← edges (w, v) ∈ Efree
v sorted according to pos(w) in increasing2

order;
for i← 0 to |Epc

v | do3

a← edge (Pi, t) of AP ;4

for j ← 0 to f(a) do5

e← pop(Lfree);6

append(LEv ,e);7

if i < |Epc
v | then8

e′ ← edge (w, v) of Epc
v ∧ pi represents pin(pc

(w,v)
v );9

append(LEv ,e′);10

in this ordering as the sorting criteria. Note that such an ordering can be
found in time O(δG(v) log δG(v)) by first sorting the edges of Epc

v and then
distributing the remaining edges.

Our modified measure calculation does not completely prevent crossings
between edges of Ev. However, due to our layering strategy (only one non-
dummy vertex per layer), there are always a lot of neighbors n1, n2 ∈ Av with
equal measure values, i.e., if both neighbors are dummy vertices inserted
during the normalization. When we include constraints PARTITION and
CLUSTER, there might be additional crossings between edges of Ev because
the layer ordering of vertices is influenced by these constraints. Hence, after
fixing the order of the vertices of L2 we apply the same strategy as described
above for counting the number of crossings between edges of Ev for each
v ∈ L1.

Runtime Our crossing minimization performs a layer-by-layer sweep and
applies the one-sided two-layered crossing minimization to each pair of ad-
jacent layers. For each non-dummy vertex v, we have to construct the
network Nv to calculate a valid ordering of the edges Ev on v and to count
the corresponding number of crossings. The number of vertices with port
constraints as well as the maximum degree of a single vertex is bounded
by |V |. Thus, the overall runtime is

∑

v∈V O(δG(v)3 log δG(v)2) =
∑

v∈V c ·
δG(v)3 log δG(v)2 ≤

∑

v∈V δG(v) · c · |V |2 log |V |2 = O(|V |2|E| log |V |) with
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c being a suitable constant. The horizontal coordinate assignment uses the
calculated edge orders for assigning edges to pins.

4.5.2 Remaining Steps

After performing the horizonal coordinate assignment we use the resulting
drawing to obtain a port constraint preserving embedding. Note that all
edges are either attached to the top or bottom of vertices. Hence, if the above
approach is used solely for producing layered drawings, we have to adjust
the route of edges attached to the left/right sides accordingly. This can be
done as described in [131] and shown in Fig. 4.12(c) by using orthogonal
routes with one bend to connect those edges with the corresponding pin on
the left/right side.

Unlike our crossing minimization, the rerouting can also cope with side
constraints. During the rerouting of edges we have to ensure that the result-
ing edge order around the vertices is still port constraint preserving. Hence,
before we reroute an edge e = (v,w), we first traverse the cyclic edge order
around v and w to determine the valid positions of e in both orders. Let DG

denote the dual graph used for routing e and v′ and w′ the vertices of DG

that represent v and w. We temporarily remove those edges of DG which are
incident to v′ (w′) and which might lead to invalid edge orders around v (w).
Since, for a single edge (v,w), this can be done in time O(δG(v) + δG(w)),
the overall runtime of the rerouting step remains O((|V |+x)|E|). Thus, the
overall runtime of the above planarization approach with respect to the mc

scenario is O(|V |2|E| log |V |+ x|E|).

To combine the approach described in this section with that for con-
straints UPWARD and BIMODAL, we have to assign temporary side con-
straints to the edges of E↑ and Eb. More precisely, for each edge e = (v,w) ∈
E↑ ∪ Eb, we insert two side constraints scv

e and scw
e with side(scv

e) = t and
side(scw

e ) = b into SCG. This guarantees a correct ordering of edges around
vertices and thus a valid embedding for those constraints.

The runtime of our planarization framework for the different constraints
depends heavily on the runtime of Sugiyama’s algorithm. In the next section,
we present a significant improvement of the runtime and space complexity
of Sugiyama’s approach which guarantees a satisfying runtime for our pla-
narization. Note that the described improvement does not depend on our
planarization approach and, thus, can also be used just to produce layered
drawings of graphs.

4.6 Fast Implementation of Sugiyama’s Approach

As already stated in Section 2.4, the time complexity of algorithms imple-
menting Sugiyama’s framework depends heavily on the number of dummy



90 Planarization with Constraints

vertices inserted during the normalization. Let G = (V,E) denote the di-
rected input graph. Using the fastest available algorithms for each phase,
the runtime is O(|V ||E| log |E|) with O(|V ||E|) space requirement.

In the following, we present a fast implementation of Sugiyama’s ap-
proach which produces drawings in the linear segments model (introduced
in Section 2.4.4) and reduces the above time and space complexity. The
approach avoids introducing dummy vertices for each layer spanned by an
edge. Instead, it splits edges only in a limited number of segments (at most
three). As a result, there may be edges which traverse layers without having
a dummy vertex in them. We will extend the existing crossing minimization
and coordinate assignment algorithms to handle this case. Our algorithm is
able to keep the number of dummy vertices and edges linear in the size of
the graph without increasing the number of crossings. Thus, it reduces the
worst-case time complexity to O((|V |+|E|) log |E|) and requires O(|V |+|E|)
space.

A similar idea is used in the Tulip system described in [5]. Unfortu-
nately, no details about the theoretical or practical performance, or the im-
plementation are given, and a comparison with the quality of the approaches
commonly used has not been described. However, in their approach, only
the proper edges are considered in the crossing reduction phase and the long
edges are ignored. This leads to drawings which have many more crossings
than those using the traditional approach. In contrast, we will show that
our technique yields the same quality as the methods traditionally used in
practice.

4.6.1 Basic Idea

Since in the linear segments model each edge consists of at most two bends,
all corresponding dummy vertices in the middle layers have the same x-
coordinate. We combine them into one middle segment which reduces the
size of the normalized graph GN noticeably. More precisely, if edge e =
(v,w) spans between layers Li and Lj with |j − i| > 2, we introduce only
two dummy vertices: pe at layer Li+1 (called p-vertex) and qe at layer Lj−1

(called q-vertex), as well as three edges: (v, pe), se = (pe, qe), and (qe, w).
The first and the last edge are proper while the vertical edge se, called the
middle segment of e, is not necessarily proper (Fig. 4.14(a)). If |j − i| = 2,
we insert a single dummy vertex re at layer Li+1 as well as two edges, (v, re)
and (re, w) (Fig. 4.14(b)). Single dummy vertices are treated like common
vertices later on. We call this transformation sparse normalization and call
the result the sparse normalized graph GS = (VS , ES) (Fig. 4.15(a)). The
size of the sparse normalized graph is linear with respect to the size of the
input graph. A similar transformation is used in the horizontal coordinate
assignment approach of Brandes and Köpf [27], where vertically aligned
vertices are combined into blocks.
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Figure 4.14: Sparse normalization: In (a), edge e = (v,w) (span(e) > 2) is
split into three segments: (v, pe), se = (pe, qe) and (qe, w). The first and the
last edge are proper (each of span 1) and se is drawn vertical. In (b), edge
e (span(e) = 2) is split into two segments: (v, re) and (re, w).

A layer L of a sparse normalized graph contains vertices and middle
segments. A layer ordering of a sparse normalized graph is a linear ordering
of the vertices and middle segments in a layer and is called a sparse layer
ordering. When we draw a graph G in the linear segments model, there is a
correlation between layer orderings of the normalized graph GN and sparse
layer orderings of the sparse normalized graph GS .

Let us look at the layer orderings of normalized graphs: instead of stor-
ing the layer ordering in lists, we can store it in a directed graph D. This
graph has an edge between vertices v and w if and only if both vertices
are in the same layer Li and are consecutive. The ordering <o defined as
v <o w if and only if there is a directed path from v to w in D, is a com-
plete ordering for the vertices of a layer, i.e., either v <o w or w <o v
for v,w ∈ Li. In fact, D is the compaction graph Ga mentioned in Sec-
tion 2.4.4. The graph D has |VN | vertices and O(|VN |) edges, which results
in a worst-case size of O(|V ||E|).

We want to reduce the size of D to O(|V |+ |E|) without losing the prop-
erty that <o defines a total layer ordering. The key observation therefore is
that edges between two consecutive middle segments of Li can be omitted
if there are no crossing middle segments.

Given a layer Li of a sparse normalized graph, we partition the layer in
the following way:

Si0 , vi0 , Si1 , vi1 , Si2 , vi2 , . . . , Sini−1
, vini−1

, Sini
.

The list Sik contains the middle segments lying between vertices vik−1
and vik

for 1 ≤ k ≤ ni − 1, Si0 contains the middle segments preceding vi0 and Sini

the middle segments succeeding vini−1
. We denote the first element of a non-

empty list Sik as head(Sik) and the last element as tail(Sik). Furthermore,
we denote by s(v) the middle segment to which v ∈ VS is incident if v is a
p- or q-vertex, otherwise s(v) = v.
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(a) sparse normalized graph (b) sparse compaction graph

Figure 4.15: (a) shows a sparse normalized graph where thick lines denote
the middle segments. (b) shows the corresponding sparse compaction graph.

Definition 4.8 Given a directed acyclic graph G = (V,E) and a sparse
layer ordering in which no two middle segments cross, the sparse compaction
graph (N,A) of the sparse normalized graph GS = (VS , ES) of G is defined
as:

N = V ∪ {re : re single dummy vertex of e ∈ E} ∪

{se : se middle segment of e ∈ E}

A = {(s(vij−1), s(vij )) : 1 ≤ i ≤ h, 1 ≤ j ≤ ni − 1, Sij = ∅} ∪

{(tail(Sij ), s(vij )) : 1 ≤ i ≤ h, 0 ≤ j ≤ ni − 1, Sij 6= ∅} ∪

{(s(vij−1), head(Sij )) : 1 ≤ i ≤ h, 1 ≤ j ≤ ni, Sij 6= ∅}

An example of a sparse compaction graph is given in Fig. 4.15(b). If we
look at two consecutive layers, Li and Li+1, of a sparse normalized graph
we have the following properties:

Property 4.9 A middle segment se in Li is either also in Li+1 or the cor-
responding q-vertex qe is in Li+1.

Property 4.10 A middle segment se in Li+1 is either also in Li or the
corresponding p-vertex pe is in Li.

Lemma 4.11 The ordering <o induced by the sparse compaction graph
(N,A) of a sparse normalized graph GS = (VS , ES) defines a sparse layer
ordering. The compaction graph (N,A) has linear size with respect to G.
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Proof: In the sparse compaction graph, each edge is induced by a vertex
in VS . Each vertex in VS induces at most 2 edges. Therefore, the number
of edges is at most 2|VS |. Since there are at most 2|VS | lists S, the number
of vertices in the compaction graphs is linear with respect to G. We prove
that the compaction graph yields a total layer ordering by induction on the
layers. In the first layer, there are no middle segments and the compaction
graph of the sparse normalized graph is identical to the compaction graph of
the normalized graph for this layer which defines a total layering. Assume
that the compaction graph defines a total layer ordering for all layers above
Li. We show that for two consecutive middle segments, s1 and s2, in a list
Sij , there is a path from s1 to s2 using vertices and middle segments defined
in the layers above Li. From this fact it follows that the compaction graph
defines a total ordering for layer Li. Let Lj , j < i be the layer with the
largest number j such that s1 and s2 are no longer consecutive in a list
Sjk

. We show that there are only vertices of VS between s1 and s2 in Lj.
If there was a middle segment se between them, then this middle segment
would end in a layer Lk with j < k < i, otherwise se would cross either s1

or s2, which contradicts the fact that no pair of middle segments crosses.
But then, using Property 4.9 in layer Lk+1, there is a vertex qe between s1

and s2, otherwise there would again be a pair of crossing middle segments.
But this contradicts the definition of Lj, which is the layer with the largest
layer number in which s1 and s2 are non-consecutive. Because there are
only vertices of V between s1 and s2 in layer Lj , there is a path between s1

and s2 according to the definition of the compaction graph. 2

Our new approach works as follows: In the first phase, we create a sparse
normalization of the input graph. In the second phase, we perform crossing
minimization on the sparse normalization. In the third phase, we take the
resulting sparse compaction graph and perform a coordinate assignment in
linear time using the approach of Brandes and Köpf [27]. We must still
show how we can perform crossing minimization on a sparse normalization
efficiently, which is the topic of the next section.

4.6.2 Efficient Crossing Reduction

In the following, we present an algorithm which performs crossing minimiza-
tion on a sparse normalization. For our algorithm it is not important which
one-sided two-layer crossing minimization heuristic we choose as long as it
uses a linear measure m (see Definition 2.11). The output of our crossing
minimization is a sparse compaction graph which induces a sparse layer or-
dering with the same number of crossings as the measure would produce for
a common normalization.
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4.6.2.1 Two-Layer Crossing Minimization

The input of our two-layer crossing minimization algorithm is an alternating
layer Li and the sparse compaction graph for the layers L1, . . . , Li. An alter-
nating layer consists of an alternating sequence of vertices and containers,
where each container represents a maximal sequence of middle segments.
The output is an alternating layer Li+1 and the sparse compaction graph
for L1, . . . , Li+1, in which the vertices and middle segments are ordered by
a given linear measure. Note that the representation of layer Li will be lost,
since the containers are reused for layer Li+1.

The containers correspond to the lists S introduced in Section 4.6.1.
Note that the contained middle segments are ordered. The data structure
implementing the container must support the following operations:

• S = create() : Creates an empty container S.

• append(S, s) : Appends middle segment s to the end of container S.

• join(S1,S2) : Appends all elements of container S2 to container S1.

• (S1,S2) = split(S, s) : Split container S at middle segment s into two
containers S1 and S2. All elements less than s are stored in container
S1 and those which are greater than s in S2. Element s is neither in
S1 nor S2.

• (S1,S2) = split(S,k) : Split container S at position k. The first k
elements of S are stored in S1 and the remainder in S2.

• size(S) : Returns the number of elements in S.

Our algorithm crossingMinimization(Li, Li+1) is divided into six steps
(Fig. 4.16):

1. We append the middle segment s(v) for each p-vertex v in layer Li to
the container preceding v. Then we join this container with the suc-
ceeding container. The result is again an alternating layer (p-vertices
are omitted).

2. We compute the measure values for the elements in Li+1. First we
assign a position value pos(vij ) to all vertices vij in Li. pos(vi0) =
size(Si0) and pos(vij ) = pos(vij−1) + size(Sij ) + 1. Note that the pos
values are the same as they would be for the median or barycenter
heuristic if each middle segment was represented as a dummy vertex.
Each non-empty container Sij has pos value pos(vij−1)+1. If container
Si0 is non-empty, it has pos value 0. Now we assign the measure to all
non-q-vertices and containers in Li+1. The initial containers in Li+1

are the resulting containers of the first step. Recall that the measure
of a container in Li+1 is its position in Li.
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Figure 4.16: The six steps applied to layers L6 and L7 of Fig. 4.15(a).
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3. We calculate an initial ordering of Li+1. We sort all non-q-vertices in
Li+1 according to their measure and store them in a list LV . We do
the same for the containers and store them in a list LS . We use the
following operations on these sorted lists:

• l = pop(L) : Removes the first element l from list L and returns
it.

• push(L, l) : Inserts element l at the head of list L.

We obtain Li+1 by merging list LV with LS as described by Algo-
rithm 5.

Algorithm 5: mergeLists

Input: The list of vertices LV and the list of containers LS.
Output: The layer list Li+1.

Li+1 = ∅;
while LV 6= ∅ ∧ LS 6= ∅ do

if m(head(LV )) ≤ pos(head(LS)) then
v = pop(LV ), append(Li+1, v);

else if m(head(LV )) ≥ pos(head(LS)) + size(head(LS))− 1 then
S = pop(LS), append(Li+1, S);

else
S = pop(LS), v = pop(LV ), k = ⌈m(v) − pos(S)⌉,
(S1, S2) = split(S, k), append(Li+1, S1), append(Li+1, v),
pos(S2) = pos(S) + k, push(LS , S2);

while LV 6= ∅ do
v = pop(LV ), append(Li+1, v);

while LS 6= ∅ do
S = pop(LS), append(Li+1, S);

return Li+1;

4. We place each q-vertex v of Li+1 according to the position of its cor-
responding middle segment s(v). We do this by calling split(S, s(v))
for each q-vertex v in layer Li+1 and placing v between the resulting
containers (S denotes the container that includes s(v)).

5. We perform cross counting according to the scheme proposed by Barth
et al. (see Section 2.4.3). During the cross counting step between
layers Li and Li+1, therefore, we consider all layer elements as ver-
tices. Besides the common edges between both layers, we also have
to handle ’virtual edges’, which are imaginary edges between a con-
tainer element in Li and the resulting container elements or q-vertices
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Figure 4.17: Example for our modified cross counting. Container S1 is split
into containers S′

1 and S′
2, container S2 into a q-vertex and container S′

3.
Dashed edges represent ’virtual edges’. Besides the common edges (v1, w1),
(v2, w1) and (v2, w2) with weight = 1, we have the ’virtual edges’ (S1, S

′
1)

and (S1, S
′
2) both with weight = 2 as well as (S2, q) and (S2, S

′
3), both with

weight = 1. So the crossing between (v1, w1) and (S1, S
′
1) as well as the

crossing between (v2, w1) and (S1, S
′
2) counts as two crossings.

in Li+1 (Fig. 4.17). In terms of the common approach, each ’virtual
edge’ represents at least one edge between two dummy vertices. The
number of represented edges is equal to the size of the container ele-
ment in Li+1. We have to consider this fact to get the right number
of edge crossings. We therefore introduce edge weights. The weight
of a ’virtual edge’ ending at a container element S is equal to size(S).
The weight of the other edges is one. Thus a crossing between two
edges, e1 and e2, counts as weight(e1) · weight(e2) crossings.

6. We perform a scan on Li+1 and insert empty containers between two
consecutive vertices, and call join(S1, S2) on two consecutive contain-
ers in the list. This ensures that Li+1 is an alternating layer.

Finally, we create the edges in the sparse compaction graph for layer Li+1.

4.6.2.2 The Overall Algorithm

In the crossing reduction phase we perform a layer-by-layer sweep on the
sparse normalization and apply the two-layer crossing minimization as de-
scribed above. During a reverse sweep we simply have to take the former
p-vertices as q-vertices and vice versa. The first and the last layers never
contain middle segments because of Properties 4.9 and 4.10. Therefore,
when we perform a sweep or reverse sweep it is easy to create the initial
alternating layer.

There are no other changes to the original Sugiyama approach except for
the modified calculation of the linear measure m for all vertices in a layer,
the normalization of the layer lists such that the lists are alternating and
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the modified counting scheme for crossings. Furthermore, the horizontal
coordinate assignment needs a minor modification. Recall that we are using
the approach of Brandes and Köpf (see Section 2.4.4). In our case, there
are no type 2 conflicts because we have used a linear measure and thus do
not have crossing inner segments. We mark type 1 conflicts during the cross
counting step. Since the conflicts are resolved in favor of the inner segments,
we simply have to mark edges that cross a ’virtual edge’. Type 0 conflicts
can be resolved as in the original approach. There are no further changes.
We summarize this subsection with the following lemma:

Lemma 4.12 Using a linear measure m, the approach described above gives
the same result as the traditional crossing reduction.

4.6.3 An Efficient Data Structure

When we use doubly linked lists to represent the containers, we are able to
perform the append, size and join operations in time O(1). Although we
store a pointer to the split element, we cannot perform the split operation
in time O(1), since we have to update the size of the resulting containers.
Hence we need O(n) for splitting, where n denotes the maximal number of
elements in a container. To be competitive, we need a data structure that
supports append, split, join and size operations in O(log n). A standard
binary search tree (not balanced) also requires O(n). Thus we use splay
trees, a data structure developed by Sleator and Tarjan [141]. Splay trees
are self-adjusting binary search trees, which are easy to implement because
the tree is allowed to become unbalanced and we need not keep information
about its balance. Nevertheless, we can perform all required operations in
O(log n) amortized time. A single operation might cost O(n) but k consecu-
tive operations starting from an empty tree take O(k log n) time. The basic
operation on a splay tree is called a splay. Splaying vertex x makes x the
root of the tree by a series of special rotations. There are three different
kinds of rotations (Fig. 4.18). In the basic position, we denote the parent of
x with y and the parent of y with z (if it exists).

• If y is the root of the tree we perform a single rotation between x
and y. Fig. 4.18(a) shows a right rotation; a left rotation is symmetric.
Note that this kind of rotation corresponds to a single rotation in an
AVL tree [37]. It is performed at most once during a splay, because
afterwards x is the root of the tree.

• If x and y are both left (right) children, we perform a zig-zig rotation
(Fig. 4.18(b)). The effects are the same as performing a single rotation
between y and z followed by a single rotation between x and y.

• If x is a right child and y is a left child, then we perform a zig-zag
rotation (Fig. 4.18(c)). The effects are the same as performing two
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Figure 4.18: Possible rotations during a splay (symmetric cases are omitted).

single rotations with x and its respective parent. The zig-zag rotation
complies with a double rotation in an AVL tree. If x is a left and y is
a right child, we perform the rotation in a symmetric manner.

The rotations are iteratively applied until x becomes the root of the tree.
Since we use splay trees to represent containers, we have to implement

the corresponding operations.

• size(S) : When we perform a split operation we want to update the
size of the resulting containers in O(1). Therefore, each vertex knows
the size of the subtree rooted by it. While performing the rotations we
can update the size information at no extra cost. Let size(x) denote
the size of the subtree rooted at x before we perform the rotation
and size′(x) the size after the rotation. Furthermore, size(A) denotes
the size of subtree A. Recall that in order to obtain the size of a
subtree it is sufficient to access the root of it. If we perform a single
rotation, then size′(x) = size(y) and size′(y) = size(B) + size(C).
If we perform a zig-zig rotation, then size′(x) = size(z), size′(z) =
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size(C)+ size(D) and size′(y) = size′(z)+ size(B). During a zig-zag
rotation we have size′(x) = size(z), size′(y) = size(A) + size(B) and
size′(z) = size(C) + size(D).

• append(S, s) : The append operation is performed once for each p-
vertex. First, we search the rightmost element in the tree (last element
in the container) by going from the root down always taking the right
child and increasing the size of each vertex on the path between the
root and the last element by 1. Now, we insert s as the right child of
the rightmost element and then splay s.

• join(S1,S2) : To join two containers, we search the rightmost element
x of S1, splay it and then make S2 the right child of x. Furthermore,
we set size′(x) = size(S1) + size(S2). The join operation can only be
invoked by an append operation or during the normalization of a layer
list. Thus, it is invoked O(|V |+ |E|) times.

• split(S, s) : The split operation is performed once for each q-vertex.
First, we have to locate s in the container. We cannot perform a
conventional tree search because the elements have only an implicit
ordering (their container position), which they do no store. We can
avoid a search by storing a pointer to s in the corresponding p-vertex
(each q-vertex knows its corresponding p-vertex). So we just have to
splay s and then take its left and its right children as roots for the
resulting containers.

• split(S,k) : This split operation is performed at most once for each
common vertex. First, we search for the element at position k. We use
a conventional binary tree search. Let par(x) denote the parent of x
and l(x) (r(x)) the left (right) child of x. The positions are computed
by the following formula: pos(x) = pos(par(x)) + size(l(x)) + 1, if x
is a right child and pos(x) = pos(par(x))− size(r(x))− 1 if x is a left
child. If x is the root, then pos(x) = size(l(x)) + 1. After we have
found the element at position k, we just splay it and then take its right
child as root for the second container.

All the above operations, except the size operation, are based on splay-
ing. In [141] the following theorem is proved:

Theorem 4.13 ([141]) A sequence of k arbitrary update operations on a
collection of initially empty splay trees takes O(k+

∑k
j=1 log nj) time, where

nj is the number of items in the tree or trees involved in operation j.

The update operations include insert, join and split operations. The
append operation is a special case of the insert operation and the size op-
eration does not change the data structure. Each new iteration starts with



4.6 Fast Implementation of Sugiyama’s Approach 101

empty containers and there are at most O(|E|) elements. Thus, the overall
runtime of our crossing minimization is O((|V |+ |E|) log |E|).

4.6.4 Runtime and Space Complexity

Our new technique leads to a noticeable reduction of the complexity of the
popular algorithm of Sugiyama. We first normalize the graph by introducing
at most O(|E|) dummy vertices and edges. Then we perform the layer-by-
layer sweep with the modified two-layer crossing minimization procedure.
Using the splay-tree data structure as well as the cross counting scheme by
Barth et al. [6], we can ensure that each crossing minimization step can be
executed in time O(n log n), where n denotes the number of vertices and
edges involved in this step. Summed over all layers, the time complexity re-
mains O((|V |+|E|) log |E|). The coordinate assignment is performed in time
O(|V |+ |E|) using the algorithm of Brandes and Köpf [27]. The space com-
plexity is linear to the size of the input graph. Together with Lemma 4.12
we obtain the following theorem:

Theorem 4.14 Our implementation of Sugiyama’s approach is able to keep
the number of dummy vertices and edges linear in the size of the graph with-
out increasing the number of crossings. It has runtime O((|V |+ |E|) log |E|)
and requires O(|V |+ |E|) space.

As the experiments in Section 7.3 show, our implementation clearly out-
performs previous ones. We will now show how we can include our set of
drawing constraints into it. In the remainder of this work, we will refer to
our implementation as Fast-Sugiyama.

4.6.5 Including Drawing Constraints

Below, we sketch how to include the different constraints into Fast-Sugiya-
ma. While there are no changes required for constraints FLOW, BIMODAL
and PORT/SIDE, the sparse normalization demands some modifications for
constraints CLUSTER and PARTITION.

4.6.5.1 Including Partitions

Recall that the layer elements are now vertices and containers. Instead of
inserting a dummy vertex on each layer, we model the vertical lines which
separate consecutive partition columns by means of middle segments, i.e.,
for each vertical line px

j we insert a dummy vertex into the first layer and one
in the last layer and connect both with an edge. Let s(px

j ) denote the middle
segment representing the vertical line px

j . When we build the subgraph G′
i

for the i-th partition column (as described in Section 4.4.1.2), we obtain the
relevant container elements by splitting the containers including s(px

i−1) and
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s(px
i ). All containers between middle segments s(px

i−1) and s(px
i ) are required

for the crossing reduction of G′
i. After performing the crossing reduction, we

place the resulting order between those middle segments. Note that we only
need to handle non-empty partition columns of a layer, i.e., those with at
least one vertex inside. If there are only middle segments inside a partition
column, their order does not change. The number of additional join and
split operations needed for handling partitions is O(|E|). Furthermore, the
number of additional vertices inserted during normalization is O(|V |) since
there are at most |V | partition columns. Thus, the overall runtime of the
crossing reduction for Fast-Sugiyama including partitions is O(|E| log |E|).

4.6.5.2 Including Clusters

To combine the clustered crossing reduction described in Section 4.4.1.2 with
the Fast-Sugiyama implementation, we have to modify it to comply with the
linear segments model. Analogous to the vertical lines separating partition
columns, the left and right borders of cluster regions are now represented
by middle segments. For a compound vertex c, let s(cl) and s(cr) denote
the middle segment representing the left and right border. respectively.
During a one-sided two-layer crossing minimization of a two-layered graph
G′ = (L1 ∪ L2, E

′), we first split s(cl) and s(cr) for each compound vertex
c ∈ C2 (i.e., the compound vertices of the layer cluster tree TL2). Since
the size of C2 is O(|V |) and we have at most O(|V |) layers, the overall
number of container operations and thus that of layer elements is bounded by
O(|V |2). Recall that for G′ the clustered crossing minimization has runtime
O(|L′

2| log |L
′
2| + |C2||E

′| + |R|2), where R denotes the set of constraints
between elements of L2. Considering containers as vertices with weighted
edges, we can directly apply the clustered crossing minimization. However,
to obtain drawings in the linear segments model, we have to insert additional
constraints into R. More precisely, we insert a constraint between each
pair of adjacent containers in L2. This never introduces cycles into the
constraint graph (L2, R) since those constraints are derived from the (valid)
layer ordering of L1. Note that we only have to handle compound vertices
of C2 that contain at least one non-container element.

Since the number of elements inside a layer is O(|V |+ |E|), the number
of additional constraints inserted into a layer is also O(|V |+ |E|). However,
since the overall number of layer elements is bounded by O(|V |2), there

are at most O( |V |2

|E| ) layers having O(|V |+ |E|) constraints. The number of

constraints of the remaining layers is bounded by O(|V |). Hence, the overall
runtime complexity for applying the clustered crossing reduction approach
to GC is O(|V |2|E|). Note that while the runtime complexity of Fast-
Sugiyama is still the same as for the common implementation, the space
complexity is reduced to O(|V |+ xE + xC).
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4.6.5.3 Runtime and Space Complexity

We end this chapter with a short overview of the time and space complexity
of our planarization approach for the different constraints. Let G = (V,E)
denote a connected input graph and xE the crossing number between edges
of E in the initial drawing. Furthermore, xC denotes the crossing number of
edges of E with edges modeling cluster regions and xP the crossing number of
edges of E with edges of the partition grid graph. In Table 4.1 we summarize
the runtime complexity for constructing a layered drawing using Fast-Sugi-
yama. The overall runtime of our planarization approach is given in Table 4.2
and the space complexity in Table 4.3. The presented results are derived
from the runtime/space complexity stated in the different sections as well
as from the above considerations.

Constraint Time Complexity of Fast-Sugiyama

UPWARD O((|V |2 + |E| log |E|)
BIMODAL O(|V ||E|)
CLUSTER O(|V |2|E|)
PARTITION O(|V |2 + |E| log |E|)
PORT/SIDE O(|V |2|E| log |V |)

Table 4.1: Time complexity for constructing a layered drawing for the dif-
ferent constraints using Fast-Sugiyama.

Constraint Overall Time Complexity

UPWARD O((|V |+ xE)|E|)
BIMODAL O((|V |+ xE)|E|)
CLUSTER O(|V |2|E| + (xE + xC)|E|)
PARTITION O((|V |+ xE + xP )|E|)
PORT/SIDE O(|V |2|E| log |V | + xE |E|)

Table 4.2: Overall time complexity of our planarization approach for the
different constraints.

When we combine multiple constraints we have to sum the time and
space complexity of the single constraints. If we combine all constraints, we
obtain an overall runtime complexity of O(|V |2|E| log |V | + (|V |+xE +xP +
xC)|E|) and require O(|V |2 + xE + xP + xC) space. Note that the crossing
number xE depends highly on the given constraints. In our experiments in
Section 7.3, we investigate the impact of the number of constraints on that
of crossings.
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Constraint Space Complexity

UPWARD O(|V |+ xE)
BIMODAL O(|V |+ xE)
CLUSTER O(|V |+ xE + xC)
PARTITION O(|V |+ xE + xP )
PORT/SIDE O(|V |2 + xE)

Table 4.3: Overall space complexity of our planarization approach for the
different constraints. Recall that |E| = O(|V |+ xE).



Chapter 5

Orthogonalization with
Constraints

The result of the planarization phase is a planar representation P of the
planarized input graph. Now we have to perform the orthogonalization phase
which extends P to a quasi-orthogonal representation H. Besides aesthetic
criterion BEND, we also have to include the different drawing constraints
here. Our orthogonalization is based on the Kandinsky model described in
Section 2.3.2.1.

First, we review the network flow-based orthogonalization algorithm of
Tamassia. Then we describe the Kandinsky network formulation which ex-
tends Tamassia’s approach and produces orthogonal drawings in the Kandin-
sky model. Subsequently, we sketch two extensions for modeling prescribed
angles and bends [26, 64]. Based on these extensions as well as an approach
for realizing valid shapes of upward edges [64, 67], we describe an orthogonal-
ization approach that includes our set of drawing constraints. Special issues
which have to be considered during the orthogonalization with port/side
constraints are discussed in a separate section. At the end of this chapter,
we briefly sketch how to handle self-loops as well labels of graph elements.

5.1 Tamassia’s Approach

In this section, we review the network flow-based algorithm of Tamas-
sia [147] which computes bend-minimum orthogonal point drawings for plane
4-graphs with fixed embedding. Note that the number of bends heavily de-
pends on the chosen embedding [49]. Minimizing the number of bends over
all planar embeddings is NP-complete [87].

Let G = (V,E) denote a planar 4-graph with given planar representation
P and face set F . We use P to construct a network N (P) = (U,A) whose
minimum cost flow induces a bend-minimum orthogonal representation H.
Let c : A→ N denote the cost function, u : A→ N the capacity function and
b : U → Z the supply/demand function (see Section 2.1.1). The vertex set
U consists of the following subsets:
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(a) Edges of AV F (b) Edges of AF F

Figure 5.1: Construction of the network N (P). Gray elements denote ver-
tices/edges of the underlying graph.

• A set UV containing a vertex uv for each vertex v ∈ V . The supply
b(uv) of a vertex uv ∈ UV is set to 4− δG(v).

• A set UF containing a vertex uf for each face f ∈ F . The sup-
ply/demand of a vertex uf ∈ UF is set to:

b(uf ) =

{

−4− δ(f) if f is the outer face,
4− δ(f) otherwise.

The edge set A consists of the following subsets:

• A set AV F containing edges eV
〈v,w〉 = (uv , uf ) for each dart 〈v,w〉 of

P (f), f ∈ F starting at a vertex v ∈ V (Fig. 5.1(a)). Edges of AV F

have cost 0 and capacity ∞.

• A set AFF containing edges eF
〈v,w〉 = (uf , ug) for each dart 〈v,w〉 of

P (f), f ∈ F that separates face f and a face g ∈ F with f 6= g
(Fig. 5.1(b)). Edges of AFF have cost 1 and capacity ∞.

The above construction of N (P) is based on the following intuitive in-
terpretation: The flow on an edge eV

〈v,w〉 = (uv, uf ) ∈ AV F represents the

angle between the dart 〈v,w〉 and its cyclic predecessor in list P(f). A flow
x = f(eV

〈v,w〉) defines an angle of (x+1) ·90◦ (Fig. 5.2(a)). Each flow unit on

an edge eF
〈v,w〉 = (uf , ug) ∈ AFF represents a bend on edge (v,w). The bend

forms a 90◦ angle inside face f and a 270◦ angle inside face g (Fig. 5.2(b)).
Note that due to the chosen costs of edges of A, the overall number of bends
in the induced orthogonal shape H is

#bends(H) =
∑

e∈A

c(e)f(e).



5.2 The Kandinsky Network 107

f3

v

f1

u

u

u
f2
u

0 0

1

(a)

f1
u

v

f2
u

v
1

2

0

1

(b)

Figure 5.2: Interpretation of flow in the network N (P). Labels denote the
flow value of edges of A according to the shape of the underlying graph.

Tamassia states the following theorem:

Theorem 5.1 ([147]) Let P be a planar representation. The minimum
number of bends for any orthogonal graph with planar representation P is
equal to the minimum cost of a feasible flow in N (P). Furthermore, the or-
thogonal representation H of any optimal orthogonal graph can be computed
from some optimal flow in N (P).

With the optimized minimum cost flow algorithm proposed in [86] the
runtime for calculating a bend-minimum orthogonal representation of a
plane 4-graph G = (V,E) is O(|V |

7
4

√

log |V |).

5.2 The Kandinsky Network

In Section 2.3.2.1 we introduced the Kandinsky model. In this section we
show the corresponding Kandinsky network flow formulation which is based
on Tamassia’s approach and calculates a quasi-orthogonal representation
H for general planar graphs G = (V,E) with given embedding P. Our
description is based on the work described in [64, 78].

5.2.1 Basic Network Formulation

We obtain the Kandinsky network NK(P) by extending N (P) as follows:
Since a flow of x over an edge e ∈ AV F models an angle of (1 + x) · 90◦, a
0◦ angle corresponds to negative flow which is not feasible in N (P). Hence,
we model 0◦ angles by inserting additional vertices and edges into NK(P)
that allow flow coming from a vertex uf ∈ UF to enter a vertex uv ∈ UV .
To be compliant with the Kandinsky model properties, such a flow has to
induce a vertex-bend on an edge incident to the 0◦ angle.
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We realize this in the following way: For a vertex v ∈ V let f0, . . . , fk−1

denote a (clockwise) ordered list of the faces around v and e0, . . . , ek−1 the
edges that separate these faces, i.e., edge ei separates face f(i−1) mod k and
face fi (Fig. 5.3(a)). For each face fi, 0 ≤ i ≤ k − 1 around v we insert a
vertex uhi

into NK(P) and set its supply to b(uhi
) = 0. Furthermore, we

add the following edges (Fig. 5.3(b)):

• Edges (uhi
, uv), 0 ≤ i ≤ k − 1 with cost 0 and capacity 1. Note that

the chosen capacity avoids flow which would correspond to negative
angles.

• Edges (uf(i−1) mod k
, uhi

) and (uf(i+1) mod k
, uhi

), 0 ≤ i ≤ k − 1 with
cost 1 and capacity 1.

e2
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Figure 5.3: The Kandinsky network NK(P). (a) shows a piece of the under-
lying graph that contains a vertex v incident to 3 edges. The corresponding
vertices and edges of NK(P) are illustrated in (b). New vertices are drawn
as blue circles and new edges as solid lines.

For vertices representing crossings we do not add the above vertices and
edges to NK(P) since all angles between consecutive edges around crossing
vertices are 90◦. Up to now a feasible flow in NK(P) has not induced a
valid Kandinsky shape H. Consider the example in Fig. 5.3(b). If there is
flow on edge (uf0 , uh1) as well as on edge (uf1 , uh0), this would induce two
vertex-bends at one endpoint of edge e1, which is not allowed. We can fix
this using an extended network flow definition. Let D = {d0, . . . , dk} with
di ⊆ A, 0 ≤ i ≤ k denote a partition of the edge set A. The elements di

of D are called devices. We define a capacity function u′ : D → N on these
devices. A minimum cost flow problem on NK(P) is called an edge partition
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minimum cost flow problem [64] if it is a minimum cost flow problem with
the additional restriction that

∑

e∈d

f(e) ≤ u′(d) ∀d ∈ D.

Using an edge partition minimum cost flow problem, a valid Kandinsky
shape H can be calculated by putting the edges (uf(i−1) mod k

, uhi
) and

(uf(i+1) mod k
, uhi

) for each vertex uhi
into one device d with capacity u′(d) =

1.

In [64] it was shown that solving the above edge partition minimum cost
flow problem is NP-hard. Note that this does not imply that finding a bend-
minimum Kandinsky drawing is also NP-hard. The complexity of this prob-
lem is still unknown. There is a 2-approximation for the Kandinsky bend
minimization problem which is based on a relaxation of the edge partition
minimum cost flow problem and runs in time O(|V |

7
4

√

log |V |). Further-

more, there is an improved heuristic that runs in time O(|V |
11
4

√

log |V |)
and produces satisfying results in practice [64].

5.2.2 Incorporating Prescribed Angles and Bends

Below, we show how to incorporate prescribed angles and bends into the
Kandinsky network NK(P). More precisely, we review the approach given
in [26, 64] that allows defining target values for angles formed by intervals
of consecutive edges around a vertex as well as the number and types of
bends on edges. Both can be realized in a natural way since in network
flow-based orthogonalization approaches, there is a correspondence between
angle size/bends and flow on edges. We use these extensions to obtain a
quasi-orthogonal shape H that includes our set of drawing constraints.

Let AC denote the set of given angle-constraints. An angle-constraint
ac ∈ AC is a tuple (I, v, a, c) where I ⊆ E denotes an interval of consecutive
edges around vertex v ∈ V , a ∈ {0, 90, 180, 270, 360} denotes the target
value of the sum of angles defined by the edges of I around v and c ∈ N

the cost for deviations of this target value. ACv ⊆ AC denotes the set
of angle-constraints associated with a vertex v ∈ V . Note that for any
pair of angle-constraints ac = (I, v, a, c) and ac′ = (I ′, v, a′, c′) of ACv the
intervals I and I ′ are not allowed to intersect except at their endpoints.
For each angle-constraint ac = (I, v, a, c) ∈ ACv, v ∈ V we insert a vertex
uac (called angle-vertex) into NK(P). Furthermore, we insert two directed
edges (uac, uv) and (uv, uac). Both edges have cost c and capacity ∞. The
supply of a vertex uac is set to

b(uac) =
a

90
− |I|+ 1
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and the supply of uv to

b(uv) = δG(v)− 4−
∑

ac∈ACv

b(uac).

All edges originally connected to vertices of UV are now connected to the
corresponding angle-vertices. Figure 5.4 illustrates the above modifications.
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Figure 5.4: Incorporating prescribed angles into the Kandinsky network.
Blue circles denote the inserted angle-vertices and solid edges inserted or
redirected edges. The example shows an angle-constraint for the interval
[e0, e1, e2] as well as for the interval [e2, e0].

Let BC denote the set of given bend-constraints. A bend-constraint
bc ∈ BC is a tuple (e, s, ci, cd) where e = (v,w) ∈ E denotes an edge and s
a bit string. The k-th bit of s represents the k-th prescribed bend bk that
should appear when going along edge e from v to w. A “1” represents a left
bend with respect to the edge’s direction and a “0” a right bend. If e should
have no bend, s is set to the empty string ǫ. The third entry ci ∈ N states
the cost of inserting an additional bend into e and the last entry cd ∈ N the
cost for a prescribed bend that is not considered. Note that each bend bi,
0 ≤ i < |s| in a bend-constraint bc = (e = (v,w), s, ci, cd) ∈ BC is treated
as a vertex of degree two. For each bi we insert two vertices u(e,i) and u′

(e,i)

into NK(P) (Fig. 5.5(a)). The supply of u(e,i) is set to b(u(e,i)) = 2 and the
supply of u′

(e,i) to b(u′
(e,i)) = 0. Both vertices are connected by a directed

edge (u(e,i), u
′
(e,i)) with cost 0 and capacity 1. Let f1 denote the face in which

the bend should form a 270◦ angle and f0 the face in which the bend should
form a 90◦ angle. We add a demand of one to the vertices uf1 and uf0 (i.e.,
we set b(uf ) = b(uf ) − 1). Additionally, we add an edge (u(e,i), uf1) with
cost 0 and capacity 2 as well as an edge (u′

(e,i), uf0) with cost cd and capacity
1. The effect of this modification is that H either contains the prescribed
bend bi at zero cost or removes it at cost cd. If bi is the first (i = 0) or
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last (i = |s| − 1) prescribed bend of bc, we add an additional directed edge
(u′

(e,i), uh1) to NK(P) as shown in Fig. 5.5(b). The cost of this edge is set
to 0 and its capacity to 1. This ensures that vertex-bends can be confirmed
at zero costs. Note that edge (u′

(e,i), uh1) is assigned to the same device as

the edges (uf0 , uh1) and (uf1 , uh0) since only one of these edges is allowed to
carry flow. Additionally, we assign cost ci to edge eF

〈v,w〉 and eF
〈w,v〉. Hence,

each additional bend on edge e has cost ci. A more detailed description for
both modifications stated above can be found in [64].

 u (e,i) u’ (e,i)

(1,c  )      (1,0)      (2,0)
 u f 1

e

 u d
 f 0

(a)

(e,i)u’ (e,i)

u

(1,c  )      (1,0)      (2,0)

e

uf 0

(1,0)

v

uhh 10

u
d

f1u

(b)

Figure 5.5: Incorporating prescribed bends into the Kandinsky network.
Blue circles denote inserted vertices. The first entry of an edge label denotes
the capacity and the second the cost of the corresponding edge.

5.3 Incorporating Constraints

In this section we describe an orthogonalization approach that includes con-
straints FLOW, CLUSTER, BIMODAL and PARTITION. Furthermore,
we show how to deal with vertices of types two sided, hyper dummy and
note dummy. Constraint PORT/SIDE is handled in Section 5.4.

The input of the orthogonalization phase is a planarized graph G =
(V,E) and its port constraint preserving bimodally mixed-upward p,c-planar
embedding P calculated during the planarization phase. We assume that
all dummy vertices representing crossings are marked accordingly. Our or-
thogonalization approach consists of the following three steps:

1. Let G↑ denote the induced subgraph of G on the upward edges E↑.
Note that G↑ contains all skeleton edges inserted to guarantee a uni-
form orientation of the vertices (see Section 4.1). In the first step, we
assign a fixed upward shape to each edge of G↑. Therefore, we calculate
a tail- and a head-shape for each edge. The tail-shape (head-shape)
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depends on the type of the corresponding source (target) vertex. The
algorithm iteratively chooses a vertex of G↑ and assigns the head-
shape to the incoming edges and the tail-shape to the outgoing edges.
The head-/tail-shapes assigned to edges incident to vertices v of type
hyper dummy are shown in Fig. 5.6(a),(b). We always choose the mid-
dle of the incoming/outgoing edges to be straight on v. For crossing
vertices we use the shapes shown in Fig. 5.6(c). Note that if one of
the edges incident to a crossing represents a vertical segment of the
partition grid graph, it is chosen to be the straight edge. For edges in-
cident to other vertices we assign the shapes illustrated in Fig. 5.6(d).
The final shape of an edge is constructed by concatenating its tail-
and head-shape. In [67] we successfully applied a similar strategy and
showed that there is always a valid Kandinsky drawing in which the
shapes of edges correspond to the shapes assigned above.

We use the bend-stretching transformations described in [67] to remove
superfluous bends. Bend-stretching successively scans the shape of
edges and if a shape contains a specific pattern it is replaced by a new
shape with less bends. To maintain a valid upward drawing, the first
and last direction of a shape is never changed.

(a) hyper dummy (1) (b) hyper dummy (2)

(c) crossing vertices (d) other vertices

Figure 5.6: Different shapes assigned to upward edges.

2. In the second step, we consider all edges of G. To satisfy constraint
TWO SIDED VERTICES we have to put restrictions on the angles
between specific edges. More precisely, for vertices of type two sided,
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angles between incoming and outgoing edges are fixed to 180◦, as
shown in Fig. 5.7(a). If there are only incoming (outgoing) edges
on such a vertex we define a 360◦ angle between the first and last in-
coming (outgoing) edges as shown in Fig. 5.7(b). The angles around a
vertex of type note dummy are fixed to the values shown in Fig. 5.7(c).
Furthermore, Fig. 5.7(d) shows the angles around vertices of the par-
tition grid graph. Note that the angle assignment is consistent with
the fixed shapes calculated in the first step. This is necessary because
there could be both edge types on a vertex.

  180
      o

180
   o

(a) two-sided vertex (1)

      o
  360

(b) two-sided vertex (2)

note o

  90o

  90o

180

(c) note dummy

  90o

  90o

  90o

180o

180o

  90o

270o

  90o

  90o

  90o

  90o

  90o

  90o

  90o

  90o

  90o   90o

180o

  90o

(d) partition grid graph

Figure 5.7: Different angles assigned to edges around vertices.

3. In the third step, we calculate the shapes for edges of E∗. Shapes as-
signed to upward edges as well as prescribed angles specified in the pre-
vious steps are not allowed to change. Furthermore, all edge segments
of the partition grid graph are not allowed to bend. We model these
requirements by constructing a minimum cost flow network NK(P)
for G and adding appropriate angle- and bend-constraints. The trans-
formation of the shapes assigned to upward edges into a set of angle-
and bend-constraints is described in [67]. Note that there is always
a valid Kandinsky drawing that satisfies all these constraints. For
each segment e of the partition grid graph we add a bend-constraint
bc = (e, ǫ, ci, cd). Now, as described in Section 5.2.2, we map the angle-
and bend-constraints to NK(P). Note that the number of bends as-
signed to an edge e ∈ E is at most 4. Furthermore, the number of
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f

e

v

90°

90°

180°

g

Figure 5.8: Angles induced by edges e, f and g with side constraints scv
e ,

scv
f and scv

g (side(scv
e) = t, side(scv

f ) = r, side(scv
g) = b). Dashed edges do

not have port/side constraints on v.

inserted angle-constraints is bounded by O(|E|). Hence the size of
NK(P) is still linear to the size of the planarized input graph.

We realize the rectangular shape of cluster regions as described in [112]
by putting additional constraints on the flow traversing edges that
represent the region border. Note that each edge segment e which
represents the border of a cluster region c ∈ C separates two distinct
faces, f and g. Let f denote the face lying outside of c. Then, for each
such segment e, we remove the corresponding edge (uf , ug) from the
Kandinsky network NK(P).

To obtain the shapes of edges of E∗, we apply the network flow al-
gorithm described in [64] to NK(P). This algorithm runs in time

O(|V |
7
4

√

log |V |) and has the property that the number of bends on
edges of E∗ is not more than 3 times the minimum number of bends in
a Kandinsky shape that satisfies the given constraints. Let C denote
the overall cost of the minimum cost flow. If the costs assigned to the
angle- and bend-constraints (c, ci and cd) are larger than C, we always
obtain a valid Kandinsky drawing that satisfies the given constraints.
For our experiments, setting c = ci = cd = 5|E| was always sufficient.

Since the first two steps can be implemented in linear time, the overall
runtime of the above approach is O(|V |

7
4

√

log |V |).

5.4 Adding Port and Side Constraints

To incorporate port/side constraints into the orthogonalization phase, we
have to consider different issues. Recall that for each constraint scv

e ∈ SCG∪
PCG, edge e should enter/leave v at side side(scv

e). Hence, as shown in
Fig. 5.8, port/side constraints define angles between edges around vertices.
These angles can be realized with the approach described in the previous
section.
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Figure 5.9: Different examples that illustrate the straight-line edge

assignment issue as well as the no pin left issue. Edges without con-
straints are drawn dashed.

In the sc scenario (only side constraints) we are always able to place
straight-line edges at the center of the corresponding vertex sides. However,
when we include port constraints, there are different cases which prevent
such a placement (Fig 5.9). We call this issue the straight-line edge

assignment issue. Recall that in our drawing model an edge can only be
drawn straight-line if it can be assigned to the κ-th pin of the respective
vertex side on both endpoints without changing the given embedding. In
Fig. 5.9(a), edges e and h have port constraints pcv

e and pcv
h with side(pcv

e) =
t, location(pcv

e) = 4 as well as side(pcv
h) = r, location(pcv

h) = 5 (recall that
on each vertex, side pins are numbered in clockwise order). Since edge h
is assigned to pin 5 = κ of the right side, it can be centered there. Edge e
cannot be drawn straight-line because it is fixed to a pin 6= κ. Since edge h
blocks the center pin on the right side, edges f , g and i cannot be centered
on that side. While edge f can be centered at the top, edge g cannot be
centered here because there would be no free pin left for edge f . Edge i can
be centered at the left side or bottom of v. It cannot be centered at the top,
because edge e prevents an assignment to a pin larger than 3. Fig. 5.9(b)
shows a special case where f can only be centered at the top of v if it is
placed to the right of e.

Lemma 5.2 Incorporating the straight-line edge assignment issue

may introduce at most 4(|V | −
√

|V |) additional bends.

Proof: Assume that we have a Kandinsky shape H which does not consider
the straight-line edge assignment issue. Then we can construct a
shape that incorporates this issue by adding two additional bends to affected
straight-line edges as shown in Fig. 5.10(a). Obviously, the resulting shape
still maintains the Kandinsky properties. Since we introduce at most two
additional bends for each straight-line edge and the number of those edges is
bounded by 2(|V |−

√

|V |) (see Lemma 2.8), the overall number of additional



116 Orthogonalization with Constraints

(a) (b)

Figure 5.10: (a) illustrates a valid transformation of a straight-line edge
that introduces two additional bends. In (b) we demonstrate that 4(|V | −
√

|V |) is a tight bound on the number of additional bends required when
we incorporate the straight-line edge assignment issue. Assume that
each edge of the 3× 3 grid has a port constraint which is associated with a
pin 6= κ. Then, instead of a drawing without bends, we obtain the drawing
with 24 bends (b).

bends is less than or equal to 4(|V | −
√

|V |). As shown in Fig. 5.10(b) this
bound is tight. 2

In the mc scenario there may appear edges which could not be placed
on a given side, because there are not enough pins left. We call this issue
the no pin left issue. Fig. 5.9(c) shows two edges, e and i, with port
constraints pcv

e (side(pcv
e) = t, location(pcv

e) = 7) and pcv
i (side(pcv

i ) = b,
location(pcv

i ) = 3) as well as three (dotted) edges, g, h and f , without
constraints on v. Edge f cannot be placed at the top and edge g cannot be
placed on the bottom of v, because on both sides there are only two free pins
when we have to preserve the given embedding. As shown in Fig. 5.9(c),
this issue can be modeled with additional angle-constraints. However, this
kind of angle-constraint (angles between overlapping edge intervals) cannot
be handled by common network flow-based approaches.

Lemma 5.3 Incorporating the no pin left issue may introduce at most
2|E| additional bends.

Proof: Assume that we have a Kandinsky shape H which does not consider
the no pin left issue. To incorporate it, we successively identify affected
edges for each vertex v ∈ V and assign them to the cyclic previous/next side
of v by adding one additional bend as shown in Fig. 5.11. Note that a port
constraint preserving embedding always ensures that there is a free pin on
the previous/next side. The resulting shape still maintains the Kandinsky
properties. Since each edge requires at most one additional bend on each
of its endpoints, the overall number of additional bends introduced by this
issue is bounded by 2|E|. 2

Now, after looking at the different issues that need to be considered dur-
ing the orthogonalization, we can realize port/side constraints as follows:
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Figure 5.11: A valid transformation that resolves the no pin left issue.
Assume that we have to assign edge f to the leftmost pin on the top of v
and edge g to a pin on the left side. In the given embedding, edge e cannot
be assigned to the top of v. Hence, we assign it to the left side by adding
one additional bend. Note that for a port constraint preserving embedding
there is always a free pin between edges g and f .

For each non-dummy vertex v ∈ V we determine the angles between inci-
dent edges with port/side constraints on v. Such angles can be realized with
the approach described in the previous section. Note that a port constraint
preserving embedding ensures that there is a valid Kandinsky drawing real-
izing these angles. Since the number of inserted angle-constraints is linear
to the number of edges, the runtime complexity of the orthogonalization is
still O(|V |

7
4

√

log |V |). A uniform orientation of the vertices is guaranteed
by inserting appropriate skeleton edges as described in Section 4.1. The
straight-line edge assignment issue and the no pin left issue are
handled after the orthogonalization by inserting additional bends as depicted
in the proofs of Lemma 5.2 and Lemma 5.3. This can be done in linear time.

5.5 Handling of Self-Loops

We propose the following strategy to handle self-loops: Before we apply the
layout algorithm, we first remove all self-loops from the input graph. After
the orthogonalization phase, we reinsert them by choosing a suitable corner
on the corresponding vertex. As shown in Fig. 5.12(a), a self-loop can be
placed at each of the four corners without introducing new crossings and
with a minimum number of bends (3) in the Kandinsky model. There are
two exceptions to this rule: First, port and side constraints on a self-loop
can prevent such a placement, e.g., if a self-loop has two side constraints
lying on opposite vertex sides (Fig. 5.12(b)). Second, port constraints on
other edges incident to the same vertex can prevent a self-loop from being
placed on a corner since the required pins might be occupied and, thus,
the insertion of the self-loop would introduce additional crossings. In both
cases we suggest inserting those self-loops in a postprocessing step without
worrying about the Kandinsky model properties.
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Figure 5.12: Placement of a self-loop s.

5.6 Placement of Labels

Labels can be placed at vertices, edges, clusters and partitions (LABEL).
Edge labels l ∈ LE with pos(l) = source or target are placed during a
postprocessing step by a map labeling algorithm [153]. All edge labels with
pos(l) = center are placed after the orthogonalization phase. At that time,
edges are paths of horizontal and vertical segments. For each label l ∈ LE

with refer(l) = e we choose one of e’s middle segments and split it into
two parts by inserting a dummy vertex (Fig. 5.13). The dummy vertex
represents label l and thus gets size size(l). After the compaction phase
such dummy vertices are removed and replaced by the corresponding label.
Note that we always align labels horizontally (HORIZONTAL LABELS).

label

label

(a)

labellabel

(b)

Figure 5.13: Placement of labels on a horizontal/vertical edge segment.

Analogously, for labels of clusters and partition cells we split the edge
representing the top of the enclosing rectangle (Fig. 5.13(a)). For regular
partitions we provide an alternative strategy which is typically used to label
swimlanes (e.g., in UML activity diagrams). Instead of labeling each parti-
tion cell separately, we only label each row/column of the partition. Thus,
semantically, the label of a row/column applies to each partition cell of that
row/column. We realize this in the following way: For each column of the
partition we split the edge representing the top border of the corresponding
rectangle and for each row the edge representing the left border. Vertex
labels are placed inside the corresponding vertex and thus do not require
special handling.



Chapter 6

Alternatives for Realizing
Port/Side Constraints

In this chapter we sketch and analyze alternative approaches for realizing
port/side constraints. First, we describe a fast orthogonal drawing approach
which implements the so-called three-phase method [13] instead of the TSM
approach. It produces port constraint preserving drawings in the odevs

model, which is introduced below. In the second section, we come back to
the TSM approach and present alternative planarization approaches which
are mainly derived from state-of-the-art planarization techniques. Two al-
ternative orthogonalization approaches which produce port constraint pre-
serving drawings in the Kandinsky model are given in the third section. In
the last section, we list additional requirements needed to apply port/side
constraints to a wider field of applications.

6.1 An Alternative Drawing Method

While for orthogonal drawings without constraints TSM-based approaches
have been shown to be clearly superior to other known approaches (see [48]),
this is not necessarily true when we include constraints. Thus, in this sec-
tion, we take a look at an alternative drawing approach which is based on the
three-phase method [13]. This method belongs to the so-called draw-and-
adjust approaches which work directly on the geometry of a drawing. The
three-phase method consists of the following phases: First, the vertices are
placed onto a rectilinear grid. In the second phase, edges are routed accord-
ing to their endpoints. Overlap among edges as well as intersections between
edges and vertices may occur during this phase. They are removed in the
third phase, where the ports of edges are determined (each edge is assigned
to a pin of its incident vertices). Compared to layout algorithms based on
the TSM approach, algorithms implementing the three-phase method are
usually faster, much simpler to implement and are better suited to include
constraints on the relative and absolute positions of vertices.
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wv

(a) odevs drawing

wv

(b) podevsnef drawing

Figure 6.1: An example drawing in the odevs model (a), and in the
podevsnef model (b). In (b) crossings (white circles) are handled like ver-
tices.

6.1.1 The Odevs Model

The Kandinsky model assumes that the underlying graph is planar and is
thus dedicated to approaches where non-planar graphs are planarized first.
Since the three-phase method does not demand a planarization, we introduce
a more suitable drawing model called the odevs model (orthogonal drawing
with equal vertex size). Note that the number of crossings produced by
algorithms implementing the three-phase method is usually much higher
than that for TSM-based algorithms. Recall that the podevsnef model
utilizes a coarse uniform grid for placing vertices and a finer grid for routing
edges (see Section 2.3.2.1). The odevs model uses the same grid structure as
well as vertices of equal size. Furthermore, neither model allows intersections
between vertices and edges. The odevs model differs from the podevsnef

model in the following points: Since a drawing in the podevsnef model is
subject to a planar or planarized graph, crossings are handled like common
vertices and thus are always placed on intersection points of lines of the
coarse grid. The odevs model has a more appropriate handling of crossings.
It does not require a planarized graph and places crossings on the finer grid
lines, too. Furthermore, in the podevsnef model, the bend-or-end property
is required for the edges of the planarized graph. In the odevs model we
only demand the bend-or-end property for the original edges, which often
saves a lot of bends as shown in Fig. 6.1. In the podevsnef drawing (b) the
left edge on the top of v has to bend before it reaches the crossing vertex
to satisfy the bend-or-end property regarding the planarized graph. In the
odevs drawing (a) the edge bends after the crossing, which is sufficient to
satisfy the bend-or-end property in the odevs model. The odevs model
does not exclude empty faces if they can be drawn without intersections
between vertices and edges. Thus, the L-triangle (see Section 2.3.2.1) is
still excluded. Table 6.1 summarizes the main differences between the two
drawing models.

Note that any drawing in the podevsnef model is also a valid drawing
in the odevs model. Thus, we have the following property:



6.1 An Alternative Drawing Method 121

podevsnef odevs

bend-or-end property apply to the apply to the
planarized graph original graph

empty faces not allowed allowed if drawable

crossings handled like vertices special handling

Table 6.1: Differences between the podevsnef and odevs drawing models.

Property 6.1 For a given graph G, the minimum number of bends of a
drawing in the odevs model is less than or equal to that of a drawing in the
podevsnef model.

Below we present a theorem about the complexity of minimizing bends
in odevs drawings with port/side constraints. We also give a tight upper
bound on the bend number of such drawings.

Theorem 6.2 The bend minimization in the odevs model with side as well
as port constraints is NP-hard.

Proof: The proof is based on a reduction of the minimum feedback arc
set problem (introduced in Section 2.4.1) to the odevs bend minimization
problem. Let GD = (V,A) denote a directed graph with feedback arc set
A′. The directed input graph G∗ = (V ∗, A∗) of the corresponding bend
minimization problem consists of the vertex set V ∗ = V ∪ N where N
contains two vertices nv

1, nv
2 for each vertex v ∈ V and the edge set A∗ =

A ∪ E′ where E′ contains two directed edges (nv
1, v) and (v, nv

2) for each
vertex v ∈ V . We put the following side constraints on the edges: for each
edge e = (v,w) ∈ A∗ we restrict e to leave v on the right side (side(scv

e) = r)
and enter w on the left side (side(scw

e ) = l).

First, we show that in a port constraint preserving, bend-minimum
odevs drawing, all edges of E′ are drawn straight-line (without bends). As-
sume that there is a bend-minimum drawing with an edge e = (u, nu

2 ) ∈ E′

that is not drawn straight-line. To satisfy the side constraints, e must have
at least 2 bends (with the edge route shown in Fig. 6.3(b)). Then there is a
straight-line edge a = (u, v) ∈ A leaving u at the same side as edge e. Oth-
erwise, the number of bends can be reduced since edges of E′ can always be
drawn straight-line (all n-vertices have degree one). Since edge a is drawn
straight-line there is also an edge e′ = (nv

1, v) ∈ E′ with at least 2 bends;
see Fig. 6.2(a). Thus, the number of bends can be reduced by drawing a
with 2 bends and e, e′ straight-line as shown in Fig. 6.2(b). Note that this
can be done without changing the shape of the remaining edges. Hence, in
a bend-minimum drawing each edge of E′ is drawn without bends.

It follows that each edge of A has at least 2 bends (with the edge route
shown in Fig. 6.3(b)). Such a route is always possible for edges e = (u, v) ∈ A
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Figure 6.2: Illustration of Theorem 6.2. (a) and (b) demonstrate why edges
of E′ (drawn as dashed lines) are always drawn straight-line in a bend-
minimum odevs drawing. (c) shows a drawing strategy for acyclic graphs
that yields bend minimum results for the given port/side constraints. (d)
depicts a bend-minimum drawing of an edge cycle. (e) and (f) illustrate
the motivation for inserting dummy vertices N (drawn as dashed rectan-
gles). While both drawings are bend-minimum (8 bends) under the given
constraints (edges leave vertices at the right side and enter them at the left
side), they have a different number of edges with 4 bends. Only in (e) does
the number of those edges correspond with the number of feedback arcs.
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(a) (b) (c) (d) (e)

Figure 6.3: Examples of different edge routes in an odevs drawing with
port/side constraints (we omit symmetric routes here).

if u is placed to the left of v. Hence, if GD is acyclic, it has a topological
order and thus all edges of A can be drawn with 2 bends. A drawing strategy
is to place each vertex v ∈ V on coordinate (π(v), π(v)) where π denotes the
index of v in a topological order of GD; see Fig. 6.2(c). For each cycle there
is an edge which has 4 bends; see Fig. 6.2(d). Note that 4 bends are always
sufficient since we can always take the route shown in Fig. 6.3(c) when we
use the above drawing strategy. Since a minimum number of those edges
corresponds to a feedback arc set A′, the bend number in a bend-minimum
drawing of G∗ is |A \ A′| · 2 + |A′| · 4. Thus, in order to minimize bends
we have to minimize edges having 4 bends and thus the number of feedback
arcs, which is known to be NP-hard [83].

The proof also holds if we replace each side constraint by a port con-
straint on the same vertex side. To guarantee that all edges of E′ can be
drawn straight-line, the corresponding port constraints must be assigned to
the κ-th pin. 2

A simple but tight approximation on the bend number gives the following
theorem:

Theorem 6.3 Let G = (V,E) denote the input graph. There is always a
port constraint preserving odevs drawing of G with less than or equal to 3|E|
bends (omitting self-loops).

Proof: Let us assume that all vertices are placed arbitrarily onto a grid
in general position such that there is no pair of vertices sharing the same
grid line. W.l.o.g we further assume that each edge has port/side con-
straints on both ends. The edge routes shown in Fig. 6.3 are complete,
i.e., there is always an odevs drawing that preserves port/side constraints
and uses only those routes (or symmetric routes). More precisely, if both
port/side constraints of an edge e = (v,w) lie on the same side (e.g.,
side(scv

e) = t, side(scw
e ) = t), e can always be drawn with two bends as

shown in Fig. 6.3(a). If both port/side constraints lie on opposite sides
(e.g., side(scv

e) = t, side(scw
e ) = b), we can use the edge route of Fig. 6.3(b)

or (c). For the other cases where both port/side constraints lie on adjacent
sides (e.g., side(scv

e) = t, side(scw
e ) = l), we can take one of the two routes

shown in Fig. 6.3(d) and (e).
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(a) (b)

Figure 6.4: Examples of bend-minimum port constraint preserving odevs

drawings.

Let E∗ denote the edges where both port/side constraints lie on opposite
sides. Since only edges of E∗ can have more than three bends, it is sufficient
to show that the overall number of bends of those edges is less than or
equal to 3|E∗|. Let E∗

lr and E∗
tb denote the subsets of E∗ containing the

edges whose ports lie on the left or right side and on the top or bottom,
respectively. While the number of bends of edges of E∗

lr depends only on the
x-coordinate of the incident vertices, the number of bends of edges of E∗

tb

depends only on the y-coordinate. We temporarily direct edges e ∈ E∗
lr from

the endpoint v with side(scv
e) = r to the endpoint w with side(scw

e ) = l.
We calculate a feedback arc set A′ of the subgraph induced by the edges

of E∗
lr that guarantees that

|E∗

lr
|

|A′| ≥ 2 (e.g., with the heuristics described

in [58]). Each topological order of the vertices of the subgraph (V,E∗
lr \A′)

induces an x-coordinate assignment that guarantees that all edges E∗
lr \ A′

can be drawn with 2 bends, as in Fig. 6.3(b). The edges of A′ can be drawn
with at most 4 bends (Fig. 6.3(c)). Thus, the overall number of bends for
edges of E∗

lr is less than or equal to 3|E∗
lr|. We do the same for edges of E∗

tb

by assigning appropriate y-coordinates to the vertices. Hence, the overall
number of bends for edges of E∗ is less than or equal to 3|E∗|. 2

When we allow multi-edges, a simple example that shows that this bound
is tight can be found in Fig. 6.4(a). Clearly, this bound increases to 4|E| if
we also include self-loops (Fig. 6.4(b)). Edges with one or without associated
port/side constraint can always be drawn in with at most two bends (using
the routes shown in Fig. 6.3(d) and Fig. 6.3(a)).

If we drop the restriction that vertices are placed in general positions
(different grid lines), the number of required edge routes increases, because
straight-line edges may cause more complicated edge routes. Recall that
due to Lemma 2.8, the maximum number of straight-line edges in an odevs

drawing of a graph G = (V,E) is bounded by ⌈2(|V |−
√

|V |)⌉ and hence we
may save up to 2⌈2(|V | −

√

|V |)⌉ bends without this restriction. However,
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even without it, the above bound on the bend number is still tight for the
example in Fig. 6.4(a).

6.1.2 Incorporating Port/Side Constraints

The result of Theorem 6.3 provides the basis for the construction of the fol-
lowing approach which produces port constraint preserving odevs drawings
with less than or equal to 3|E| bends (omitting self-loops) and less than
or equal to 4 bends per edge. The approach is based on the three-phase
method and runs in linear time. In the following, we look at the realization
of its single phases. Note that a similar approach is presented in [12]. How-
ever, the author neither gives a bound on the bend number nor the runtime
complexity.

6.1.2.1 Vertex Placement

First, we place the vertices on a grid in general positions, i.e., such that
no two vertices share a grid row/column. Our placement strategy is based
on the observation that port/side constraints imply geometric preferences
on the vertex placement, e.g., if an edge e = (v,w) should leave v on the
bottom and enter w on the right side, it is preferable – in terms of a low bend
number – to place v to the right and above of w. Then e can be routed with
one bend as shown in Fig. 6.3(d). Obviously, including such preferences
into the placement strategy guarantees orthogonal edge routes with few
bends. During the vertex placement we consider all port constraints as side
constraints; the specific port is not yet relevant. Table 6.2 shows the number
of bends for different placements. More precisely, for each combination
of side constraints on an edge (v,w) (first column) it states the minimum
number of bends (second column) for the given condition on the coordinates
of the endpoints (third column). For each bend number it also contains a
reference to a figure showing the corresponding edge route.

To generate a drawing with few bends, we try to place vertices such
that, for many edges, the conditions leading to the fewest bends are ful-
filled. Therefore, we introduce two directed constraint graphs Cx and Cy

representing the preferred relative x- and y-coordinates of the endpoints of
an edge. Both constraint graphs have the same vertex set as the input
graph. We assume that the lower left corner of the drawing has coordinate
(0, 0). Let x(v) denote the x-coordinate and y(v) the y-coordinate of a ver-
tex v. An edge (a, b) in Cx (Cy) represents the constraint that a should
have a smaller x-coordinate (y-coordinate) than b. Thus, we proceed as
follows: for an (undirected) edge (v,w) with side constraints side(scv

e) = t
and side(scw

e ) = r we refer to Table 6.2. In the corresponding row, we see
that in order to obtain a route with lowest bend number for (v,w) we have
to satisfy y(v) < y(w) and x(v) > x(w). Hence, we insert an edge (v,w)
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Side Constraints Bends (Shape) Condition

side(scv
e) = side(scw

e ) 2 (Fig. 6.3(a)) -

side(scv
e) = t, side(scw

e ) = b 2 (Fig. 6.3(b)) y(v) < y(w)
4 (Fig. 6.3(c)) else

side(scv
e) = r, side(scw

e ) = l 2 (Fig. 6.3(b)) x(v) < x(w)
4 (Fig. 6.3(c)) else

side(scv
e) = t, side(scw

e ) = r 1 (Fig. 6.3(d)) y(v) < y(w) ∧ x(v) > x(w)
3 (Fig. 6.3(e)) else

side(scv
e) = t, side(scw

e ) = l 1 (Fig. 6.3(d)) y(v) < y(w) ∧ x(v) < x(w)
3 (Fig. 6.3(e)) else

side(scv
e) = b, side(scw

e ) = r 1 (Fig. 6.3(d)) y(v) > y(w) ∧ x(v) > x(w)
3 (Fig. 6.3(e)) else

side(scv
e) = b, side(scw

e ) = l 1 (Fig. 6.3(d)) y(v) > y(w) ∧ x(v) < x(w)
3 (Fig. 6.3(e)) else

side(scv
e) = t 1 (Fig. 6.3(d)) y(v) < y(w)

2 (Fig. 6.3(a)) else

side(scv
e) = b 1 (Fig. 6.3(d)) y(v) > y(w)

2 (Fig. 6.3(a)) else

side(scv
e) = r 1 (Fig. 6.3(d)) x(v) < x(w)

2 (Fig. 6.3(a)) else

side(scv
e) = l 1 (Fig. 6.3(d)) x(v) > x(w)

2 (Fig. 6.3(a)) else

Table 6.2: The table gives the minimum number of bends of edges subject
to the given coordinates of their endpoints. Note that port constraints are
considered as side constraints here.
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into Cy as well as an edge (w, v) into Cx. Note that for edges (v,w) with
side constraints side(scv

e) = side(scw
e ) we do not insert edges into Cx or Cy

since we can always draw those edges with two bends without any placement
restrictions. The same holds for edges without side constraints, which can
always be drawn in with one bend.

The constraint graphs might contain cycles which can be broken using
a minimum feedback arc set heuristic. The heuristic described in [58] runs
in linear time and guarantees that at most half of the edges of Cx and
Cy are feedback arcs. As soon as both graphs are acyclic we assign the
vertices to grid coordinates. We, therefore, calculate two vertex sequences
which correspond to a topological ordering πy, πx of the vertices of Cy and
Cx, respectively. Each vertex v ∈ V is then placed on grid coordinate
(πx(v), πy(v)). For the calculation of the sequences, we have to keep in
mind that not all edges have port/side constraints. We also want to produce
satisfying results in cases where the number of port/side constraints is small.
If we use a traditional topological sorting algorithm, vertices which are not
associated with port/side constraints are placed arbitrarily since they do not
induce edges in Cy and Cx.

Thus, we use a modified version of the first phase of the GT heuristic
to calculate the vertex sequences. Similar to the calculation of the layering
described in Section 4.2.1, this modified version operates on the input graph
G and includes the constraints given by the constraint graphs. Hence, the
result corresponds to a topological ordering of the vertices of Cy (Cx), which
additionally incorporates the adjacencies of the vertices in G. Recall that
the GT heuristic tries to place adjacent vertices of G next to each other
and thus may produce better results in terms of edge length as well as the
number of crossings. In the following, we describe how to calculate the
horizontal (vertical) vertex sequence in linear time.

Let πx : V → N (πy : V → N) denote the function that maps vertices to
their positions in the horizontal (vertical) sequence. We must ensure that
for each edge (v,w) ∈ Cx (Cy), πx(v) < πx(w) (πy(v) < πy(w)). A sequence
is constructed incrementally as follows: Assume that vertex v is chosen in
the k-th step. Let Gk denote the subgraph of G induced by vertices not yet
chosen. In the k + 1-th step, we choose a vertex which is adjacent to v and
which has minimum degree in Gk, but is not the successor of an unchosen
vertex in Cx (Cy). If this is not possible, we take a vertex of minimum degree
in Gk which, additionally, is not the successor of an unchosen vertex in Cx

(Cy). Since both constraint graphs are acyclic we always find such a vertex.
The first vertex in the sequence is a vertex without incoming edge in Cx (Cy)
and minimum degree in G. Algorithm 6 gives the corresponding pseudo-
code. It is very similar to that of algorithm calcLayering on page 64.
Since Cx contains the horizontal and Cy the vertical constraints, the vertex
ordering can be interpreted as an assignment of x- and y-coordinates to each
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vertex. Recall that the vertices are placed such that there is at most one
vertex per x- as well as y-coordinate.

Algorithm 6: calcCoordinates

Input: A graph G = (V,E) and the acyclic directed
horizontal/vertical constraint graph C = (V,A).

Output: The ordering function π : V → N.

V ′ ← V ;1

G′ ← G;2

C ′ ← C;3

Neighbors← ∅;4

for i = 1 to |V | do5

Candidates← {v ∈ Neighbors | δ−C′(v) = 0};6

if Candidates = ∅ then7

Candidates← {v ∈ V ′ | δ−C′(v) = 0};8

X ← {v ∈ Candidates | δG′(v) ≤ δG′(w) ∀ w ∈ Candidates};9

v ← choose element of X ;10

π(v)← i;11

Neighbors← {w ∈ V ′ | w adjacent to v in G};12

V ′ ← V ′ \ v;13

G′ ← subgraph of G induced by V ′;14

C ′ ← subgraph of C induced by V ′;15

return π;16

The overall runtime of the vertex placement phase is as follows: For
each edge e ∈ E, we perform a table lookup to determine the corresponding
constraint edges in Cx or Cy. Since the table has a constant number of
entries, this can be done in time O(|E|). We insert at most 2 constraints
per edge and use a linear-time feedback arc set heuristic to remove cy-
cles in the constraint graphs. Thus, it remains to show that algorithm
calcCoordinates can be implemented in linear time. Assume that vertex
list Neighbors in line 6 is non-empty. Then, the time complexity of choosing
a vertex v ∈ Neighbors of minimal degree and δ−C′(v) = 0 over all iterations of
the for-loop is O(|V |+|E|). Hence, it is sufficient to show that inside the for-
loop, we can determine a vertex v of minimal degree in G′ and δ−C′(v) = 0 in
constant time (line 8). Therefore, we use an array vertex degree of vertex
lists. A vertex v is contained in the vertex list at index i of vertex degree if
it has degree i in G′ and zero degree in C ′. Note that the corresponding list
cell is stored by v. We choose the size of the array to be constant, say c+ 1.
All vertices v ∈ V with δG′(v) ≥ c are contained in the vertex list at index
c. Thus, finding a vertex of minimum degree in G′ and zero degree in C ′

can be done in constant time by searching for the first non-empty vertex list
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(a) (b) (c)

Figure 6.5: Different edge routes appearing in the odevs approach. In (a)
and (b) the edge should leave v at the top and enter w at the bottom. In
(c) there are no restrictions on the edge route.

in vertex degree. If the degree of the chosen vertex is larger than or equal
to c, it is not guaranteed that it is a vertex of minimum degree. However,
as experiments show, this has only insignificant effects on the quality of the
result if c ≥ 10. Determining the subgraphs G′ and C ′ in lines 14 and 15
simply consists of removing the current vertex v and its incident edges from
G′ and C ′. For all previous neighbors w of v in G′ with δC′(w) = 0 we have
to move w to another list in vertex degree since we decreased w’s degree.
Furthermore, we have to remove v from vertex degree. For a single vertex,
both can be done in constant time since each vertex stores a reference to its
list cell in the current vertex list. Vertices whose degree in C ′ becomes 0 af-
ter removing v from C ′ have to be inserted into vertex degree. Obviously,
the overall runtime of these steps is bounded by O(|V |+ |E|).

6.1.2.2 Edge Routing

We first determine the route for all edges E′ ⊆ E with at least one port/side
constraint. The route depends on the vertex placement and can be deter-
mined by referring to Table 6.2. Note that port constraints are still handled
like side constraints during this phase. For edges with two port/side con-
straints lying on opposite sides there are two different valid routes. Let
e = (v,w) denote an edge with side constraints scv

e = t and scw
e = b.

Fig. 6.5(a) shows the valid routes of e when w is placed above v. We always
choose the route where the middle segment is placed close to (and above)
the vertex v with scv

e = t (route r2 for the example in Fig. 6.5(a)). When
w is placed below v as shown in Fig. 6.5(b) we always place the middle
segment close to the vertex v with scv

e = t (either to the left- or right-hand
side, depending on the relative horizontal positions of v and w). Thus, for
the example in Fig. 6.5(b) we choose route r2. Analogously, if e has side
constraints scv

e = r and scw
e = l, side r is handled like side t and side l like

side b.
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We continue iteratively determining the route for edges without port/side
constraints. For each such edge e = (v,w) ∈ E \ E′ there are two valid
routes with one bend (Fig. 6.5(c)). Both routes are incident to different
vertex sides. Let δs

r1
(v), δs

r1
(w) denote the number of already handled edges

which are incident to the side where edge route r1 attaches v and w, re-
spectively. Analogously, we define δs

r2
(v), δs

r2
(w) for the second route. If

δs
r1

(v) + δs
r1

(w) > δs
r2

(v) + δs
r2

(w) we choose route r2 and otherwise route
r1. This strategy can be implemented in linear time and leads to a more
balanced distribution of the edges on the vertex sides.

To guarantee that there are enough fine grid lines for routing edges, we
have to insert coarse grid lines as follows: Let v and w denote a pair of
vertices which are placed on consecutive coarse grid lines with respect to
the vertical direction. Let ξ denote the number of required horizontal fine
grid lines lying between both vertices. Due to our vertex placement and the
set of valid edge routes, only edges incident to v or w may require such fine
grid lines. Hence, we can determine ξ (0 ≤ ξ ≤ δG(v)+δG(w)) by looking at
the routes of the corresponding edges. We have to insert ⌈ ξ

2κ−1⌉ horizontal
coarse grid lines between v and w. Analogously, we have to insert additional
vertical coarse grid lines between vertices placed on consecutive coarse grid
lines with respect to the horizontal direction.

In Theorem 6.3 we showed that there is always a port constraint pre-
serving drawing with less than or equal to 3|E| bends. We, therefore, only
considered port/side constraints lying on opposite sides. To improve prac-
tical results, we also include other constraints in our algorithm. In the
following lemma we show that we still maintain the same bound for the
overall number of bends.

Lemma 6.4 For an input graph G = (V,E) the generated drawing has less
than or equal to 3|E| bends and at most 4 bends per edge.

Proof: Let E1, E2, E3 and E4 denote the sets of edges with one, two, three
and four bends. Since there are neither edges with zero bends nor with more
than four bends, we have E = E1 ∪ E2 ∪ E3 ∪ E4. We want to show that
|E1|+2|E2|+3|E3|+4|E4| ≤ 3(|E1|+ |E2|+ |E3|+ |E4|), which is equivalent
to |E4| ≤ 2|E1|+ |E2|.

For each edge of E1 ∪ E3, we inserted at most two constraints into the
constraint graphs and for each edge of E2 ∪E4 at most one constraint (Ta-
ble 6.2). Hence, the overall number of inserted constraints is less than or
equal to 2|E1| + |E2| + 2|E3| + |E4|. Let c+ denote the number of satis-
fied constraints and c− the number of unsatisfied constraints. The applied
feedback arc set heuristic guarantees that c+ ≥ c−. Furthermore, we have
c− ≥ |E3|+ |E4| since each edge of E3 ∪ E4 can be associated with at least
one unsatisfied constraint. Hence, the number of satisfied constraints is
c+ ≤ 2|E1| + |E2| + |E3|. It follows that 2|E1| + |E2| ≥ |E4| and thus, the
overall number of bends is less than or equal to 3|E|. 2
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Type Constraints Order

a y(v) > y(w) ∧ x(v) < x(w) ∧ rside(e,w) = b, l decreasing y

b y(v) > y(w) ∧ x(v) > x(w) ∧ rside(e,w) = t, l decreasing x

c y(v) < y(w) ∧ x(v) > x(w) ∧ rside(e,w) = b increasing x

d y(v) < y(w) ∧ x(v) > x(w) ∧ rside(e,w) = t, r, l increasing y

e y(v) < y(w) ∧ x(v) < x(w) ∧ rside(e,w) = t, r, l decreasing y

f y(v) < y(w) ∧ x(v) < x(w) ∧ rside(e,w) = b increasing x

g y(v) > y(w) ∧ x(v) < x(w) ∧ rside(e,w) = t, r decreasing x

h y(v) > y(w) ∧ x(v) > x(w) ∧ rside(e,w) = b, r increasing y

Table 6.3: Ordering of edges e = (v,w) on the top of a vertex v (from left
to right).

6.1.2.3 Port Assignment

For each side s ∈ dir of a vertex v ∈ V , we have to assign the corresponding
edges to pins (i.e., fine grid lines) of v. Let Ev,s denote the set of edges
assigned to side s of vertex v, Epc

v,s ⊆ Ev,s the subset of edges with port
constraints on v and E∗

v,s = Ev,s \ Epc
v,s the subset of remaining edges. For

edges of Epc
v,s, the pins and thus the ordering is given. For edges of E∗

v,s,
we want to find an assignment to pins such that the number of crossings
among edges of Ev,s is small (for a given side s ∈ dir). Therefore, we first
determine a suitable order for the edges of E∗

v,s and then merge these edges
with that of Epc

v,s.

Let rside : (E,V ) → dir denote the function that returns the side s ∈
dir, where the route of an edge e ∈ E enters vertex v ∈ V . Tables 6.3 and 6.4
give a suitable sorting order (from left to right) for edges on the top and
bottom, respectively. For an edge e = (v,w) on a vertex v, we first determine
the type of e which depends on the side rside(e,w) where the route of e
enters w as well as the relative positions of v and w. Note that the number
of different types in both tables is not the same because of the different routes
chosen for the middle segment of edges (Fig. 6.5(a),(b)). Edges e ∈ E∗

v,s,
s ∈ {t, b} of different types are placed in ascending alphanumerical order,
according to their type from left to right, i.e., all edges of type b are placed to
the left of those of type f . Edges of the same type are ordered as specified in
the third column of the tables according to the x- or y-coordinate of w, either
in decreasing or increasing order. Edges e ∈ E∗

v,s, s ∈ {r, l} on the right or
left sides of a vertex are sorted analogously. As can be seen in Fig. 6.6, for
a given side s, our ordering strategy can prevent crossings between edges of
E∗

v,s in most cases.

Let Lpc
v,t denote the sorted list of edges of Epc

v,t and L∗
v,t the sorted list

of edges of E∗
v,t. To assign edges of E∗

v,t to pins, we merge both lists using
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Type Constraints Order

A y(v) < y(w) ∧ x(v) < x(w) ∧ rside(e,w) = l increasing y

B y(v) < y(w) ∧ x(v) > x(w) ∧ rside(e,w) = t, b, l decreasing x

C y(v) > y(w) ∧ x(v) > x(w) ∧ rside(e,w) = t, b, r, l decreasing y

D y(v) > y(w) ∧ x(v) < x(w) ∧ rside(e,w) = t, b, r, l increasing y

E y(v) < y(w) ∧ x(v) < x(w) ∧ rside(e,w) = t, b, r decreasing x

F y(v) < y(w) ∧ x(v) > x(w) ∧ rside(e,w) = r decreasing y

Table 6.4: Ordering of edges e = (v,w) on the bottom of a vertex v (from
left to right).

(a) (b)

Figure 6.6: Examples of ordering edges on the top/bottom of vertices. In
both examples the order of edges on v yields a crossing-free drawing. The
labels of edges correspond to the different types given by Table 6.3 and 6.4.
Dotted gray edges denote alternative routes from vertices wi to v.
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a variant of the “first-fit” heuristic described in [12]. Our pin assignment
satisfies the following two properties:

1. For both lists, the relative order of elements remains unchanged.

2. The assignment is valid regarding our port/side constraint model, i.e.,
the order of edges satisfies the points given in Definition 3.7 on page 46.

Let maxPinv : E∗
v,t → {1, . . . , 2κ − 1} denote the function that assigns the

largest possible pin number to edges of E∗
v,t such that the above proper-

ties are still satisfied. Such a “rightmost” assignment can be calculated in
O(|Epc

v,t|+ |E
∗
v,t|) time. We try to obtain a more suitable pin assignment by

using algorithm calcPins. Note that it is only applied if both edge sets
are non-empty since otherwise the pin assignment is trivial. The ordering
relation given by Table 6.3 is denoted <t. Furthermore, the list function pop
removes and returns the first element of a list. The result of our algorithm
is a function location′

v : E∗
v,t → {1, . . . , 2κ − 1} giving the pin number for

edges of E∗
v,t.

Algorithm 7: calcPins

Input: A vertex v ∈ V , the function maxPinv, the ordering relation
<t as well as the sorted lists Lpc

v,t and L∗
v,t.

Output: The function location′
v : E∗

v,t → {1, . . . , 2κ − 1}.

e′ ← pop(Lpc
v,t);1

pin← 0;2

empty ← false;3

while L∗
v,t 6= ∅ do4

e← pop(L∗
v,t);5

if not empty then6

pin′ ← location(pcv
e′);7

while (e′ <t e ∨ pin′ ≤ pin) ∧ (pin′ < maxPinv(e)) do8

pin← pin′ + 1;9

if Lpc
v,t 6= ∅ then10

e′ ← pop(Lpc
v,t);11

pin′ ← location(pcv
e′);12

else13

empty ← true;14

location′
v(e)← pin;15

pin← pin + 1;16

return location′
v;17

The algorithm iteratively removes the first edge e of L∗
v,t and searches for

the first edge g of Lpc
v,t with e <t g. Then it tries to assign e to a pin between
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g and its successor in Lpc
v,t. Note that the expression pin′ < maxPinv(e)

in line 8 guarantees that location′
v(e) ≤ maxPinv(e). Furthermore, the

expression pin′ ≤ pin handles the following special case: let f , g denote
two consecutive edges in list Lpc

v,t with f <t e and e <t g. If there is no
free pin between edge f and g, we cannot place e in between and, hence,
simply continue. Since the pins assigned to the edges of L∗

v,t increase strictly
monotonically we also satisfy the first property stated above.

The outer while-loop is iterated once for each edge of E∗
v,t and the inner

while-loop once for each edge of Epc
v,t. Thus the algorithm has linear runtime.

Pins of edges attached to the other sides are determined analogously. The
final coordinates of bends of edges can be derived from the pins assigned to
these edges.

In order to maintain a linear overall runtime, we also have to sort the
edge sets Epc

v,s and E∗
v,s in linear time. For a given vertex v ∈ V and side

s ∈ dir, we can sort the edges of Epc
v,s using bucket sort [37] with 2κ − 1

buckets (each bucket represents a different pin). We cannot maintain a
linear runtime if we calculate the order of edges for each vertex v separately.
Hence, we sort the edges for all vertices simultaneously. Note that each
single edge e = (v,w) is assigned to two edge lists, one associated with v
and one associated with w. Thus, for each edge e = (v,w) we obtain two
sorting elements 〈v, e〉 and 〈w, e〉 representing the position of e in an edge
list of v and w, respectively. When we sort the sets Epc

v,s, we only consider
those elements 〈v, e〉 for which there is a port constraint pcv

e . We first sort
those elements according to their sides, i.e., for each side s we determine
all elements 〈v, e〉 with rside(e, v) = s. Then for each side s ∈ dir, we
sort the corresponding elements 〈v, e〉 according to their associated pins
(location(pcv

e)) in ascending order (using 2κ − 1 buckets). Now, for each
side s, we traverse the sorted elements from left to right. For each element
〈v, e〉 we assign edge e to list Lpc

v,s. Since the number of sides is constant
and the number of pins on a vertex side is O(|E|), the overall runtime for
generating these lists is linear.

Edges of E∗
v,s can be sorted similarly. Now we only consider elements

〈v, e〉 if there is no port constraint pcv
e . Again, we first sort the elements

according to their sides. Then we sort all elements of the same side according
to their type in ascending alphanumerical order. All elements 〈v, e = (v,w)〉
of the same side and type are again sorted according to the x-/y-coordinates
of w in decreasing/increasing order, dependent on the type. Recall that
the number of different x-/y-coordinates of vertices is |V | in our approach
and, hence, we require |V | buckets. Since the number of sides and types is
constant the overall runtime for sorting the elements is still linear. Now we
use the same strategy as above to assign edges to lists L∗

v,s. Note that due
to the high constant factor, for smaller graphs it might be more suitable to
use a common sorting strategy.
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Figure 6.7: The different phases of the odevs approach for a graph with side
constraints.

Fig. 6.7 gives an example of applying the odevs drawing approach to an
input graph. Since each step has linear runtime and due to Lemma 6.4, we
can conclude this section with the following theorem:

Theorem 6.5 For an input graph G = (V,E) without self-loops, our ap-
proach calculates an odevs drawing with less than or equal to 3|E| bends
and at most 4 bends per edge in linear time.

6.2 Alternative Planarization Approaches

In this section, we state alternative approaches for including port/side con-
straints into the planarization phase. More precisely, we describe different
heuristics for calculating maximum planar subgraphs including port/side
constraints. Therefore, we focus especially on approved approaches used for
graphs without constraints. After the calculation of a planar subgraph, we
can obtain a port constraint preserving planarization of the input graph by
using a modified shortest path routing, which maintains a valid edge order
around the vertices.

6.2.1 Successive Planarity Testing

A planar subgraph G′ = (V,E′) of a graph G = (V,E) is called maximal
planar subgraph if there is no edge e ∈ E\E′ which can be added to G′ with-
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out losing planarity. A maximal planar subgraph of G can be constructed
by starting with the empty graph (V, ∅) and then successively testing if the
reinsertion of an edge e ∈ E would still leave the graph planar. If so, e is
reinserted; otherwise it is discarded. Unfortunately, up to know there has
been no general planarity test which includes port/side constraints. For the
pc and sc scenarios, planarity can be tested in linear time with the approach
of [92] described in Section 3.1.5. This results in a quadratic overall runtime.

6.2.2 Spanning Tree-Based Planarization

Obviously, each tree can be drawn planar because it does not contain a
cycle and hence no subgraph that is a subdivision of K5 or K3,3. Thus,
each spanning tree of a graph G = (V,E) yields a planar subgraph with
|V | − 1 edges. An ordered tree (with fixed order of the children) can also
be drawn planar, since the embeddings of the subtrees rooted at any vertex
v ∈ V are independent of each other and thus the cyclic order around v can
be chosen arbitrarily. It follows that each spanning tree of G is a planar
subgraph which preserves the given port/side constraints. A spanning tree
can be calculated in linear time using, e.g., a breadth-first search [37]. To
obtain a planar embedding we have to determine the cyclic order of the
edges around each vertex v ∈ V . The ordering has to be consistent with the
given port/side constraints. While it is fixed for edges with port constraints
on v, the remaining edges can be arranged arbitrarily taking into account
the restrictions given by side constraints and occupied pins. As a basic
rule for the arrangement, edges should be equally distributed around the
vertices such that we still maintain a high degree of freedom for routing the
remaining edges. If, for example, there are only a few free pins between
two edges with port constraints on v, there should be no edge placed in
between. A weakness of this approach is, that the resulting planar subgraph
always contains only |V | − 1 edges. Thus, a lot of edges have to be routed
through the extended dual graph, which often results in a higher number
of edge crossings. For the mc scenario it is preferable to have many edges
with port/side constraints in the planar subgraph. While the number of its
edges is then still |V | − 1, we obtain a higher degree of freedom during the
routing of the remaining edges. We realize this by calculating a minimum
spanning tree (e.g., with Prim’s algorithm [37]), where the weight of an edge
e depends on the number of port/side constraints associated with e. Hence,
the overall runtime of this approach is O(|V | log |V |+ |E|).

6.2.3 GT-Based Planarization

The following calculation of the planar subgraph is based on the GT heuristic
described in Section 2.3.1. Since the heuristic does not incorporate port/side
constraints, we have to extend it accordingly.
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We first look at the sc scenario, which allows a realization that is close
to the original heuristic. More precisely, we reduce the problem of finding
a planar subgraph which observes side constraints to finding one without
constraints. After having calculated the vertex sequence ΠV in the same way
as for the original heuristic, we split each vertex v into three vertices vb, vt

and vl,r. Vertex vb represents the bottom and vt the top of v. Furthermore,
when we calculate L (the set of edges placed to the left of the line), the
vertex vl,r denotes the left side and when we calculate R (the set of edges
placed to the right of the line) it denotes the right side of v. Let V ∗ denote
the resulting set of vertices. For the new vertex sequence ΠV ∗ we have
π∗(vl,r) = 3 · π(v), π∗(vb) = 3 ·π(v)− 1 and π∗(vt) = 3 · π(v) + 1. Obviously,
π∗ has the property that π∗(vx) < π∗(wy), x, y ∈ {b, t, {l, r}} if π(v) < π(w).
Furthermore, we have π∗(vb) < π∗(vl,r) < π∗(vt). Each edge is reconnected
according to its side constraints, e.g., an edge e = (v,w) with side constraints
scv

e, side(scv
e) = l and scw

e , side(scw
e ) = t changes to (vl,r, wt). Recall that

in the sc scenario each edge has side constraints on both ends. During the
calculation of the edge sets L and R in the second phase, two edges cross
each other if they cross with respect to π∗. When we calculate L we only
consider edges e = (v,w) with side(scv

e) 6= r ∧ side(scw
e ) 6= r and when

we calculate R only edges e = (v,w) with side(scv
e) 6= l ∧ side(scw

e ) 6= l.
After calculating both sets, the cyclic ordering of the edges around a vertex
v ∈ V can be obtained by contracting the vertices vb, vl,r and vt as shown
in Fig. 6.8(c).

For the sc scenario, the above approach is able to calculate a planar
subgraph which observes side constraints. It has the same runtime as the
GT heuristic, O(|V ||E|2), since the number of vertices in the extended graph
is 3|V | and the number of edges is |E|. A weakness of that approach is that
the planar subgraph never contains edges with one side constraint on the
left and the other on the right. Note that when the number of those edges
is large, we can alternatively apply the heuristic to the same graph where
the sides assigned to edges with side constraints are temporarily rotated by
90◦ (i.e., top becomes right, right becomes bottom etc.). It is not possible
to efficiently adopt this approach for port constraints.

6.3 Alternative Orthogonalization Approaches

The following alternative orthogonalization approaches produce port con-
straint preserving drawings in the podevsnefmodel for given port constraint
preserving embeddings of graphs.

6.3.1 An Integer Linear Program Formulation

The ILP formulation given in [66] is already able to handle port/side con-
straints in the podevsnefmodel and to determine a bend-minimum solution.
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(a) (b) (c)

Figure 6.8: The modified GT heuristic. (a) shows the input graph and (b)
the resulting graph after splitting the vertices and reconnecting the edges.
After applying the heuristic and contracting the vertices, we obtain the
planar subgraph shown in (c).

It is restricted to planar graphs, but the extension to handle vertices which
represent crossings inserted during the planarization phase is straightfor-
ward. The ILP contains variables that denote angles between consecutive
edges. Thus, for each vertex c representing a crossing, we add further con-
straints to ensure that all angles around c are fixed to 90◦. Recall that the
degree of such vertices is always equal to 4.

The existing ILP does not guarantee that straight-line edges can always
be assigned to the κ-th (center) pin of the corresponding vertex sides. We
can maintain this issue by putting additional constraints on the ILP: The
ILP contains variables sdir(v,w) ∈ {0, 1} with sdir(v,w) = 1 if and only if
edge (v,w) leaves vertex v at side dir (dir ∈ {t, b, l, r}). Furthermore, it
contains variables lbv(v,w), rbv(v,w) ∈ {0, 1} which represent the vertex-
bends of edge (v,w) at vertex v. Vertex v has a left vertex-bend if and
only if lbv(v,w) = 1 and a right vertex-bend if and only if rbv(v,w) = 1.
Note that lbv(v,w) + rbv(v,w) ≤ 1. Thus, if an edge e = (v,w) cannot
be assigned to the κ-th pin at side dir of vertex v, we add the constraint
sdir(e) ≤ lbv(e) + rbv(e). Fig. 6.9 shows a special case which has to be
considered. Assume that edge e has a port constraint pcv

e with side(pcv
e) = t,

location(pcv
e) = 4 and edge f has no constraints. Edge f can only be

centered at the top if it is placed to the right-hand side of e. Hence, for
edge f we cannot determine in advance if it can be drawn straight-line.
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f

e

v

Figure 6.9: A special case occurring during the orthogonalization with
port constraints. Edge e has a port constraint pcv

e with side(pcv
e) = t,

location(pcv
e) = 4. Edge f can only be centered at the top if it is placed to

the right-hand side of e.

Thus, for each edge e = (v,w) with port constraint pcv
e we set lbv(e) = 1

if location(pcv
e) < κ and rbv(e) = 1 if location(pcv

e) > κ. This is sufficient,
because the ILP formulation guarantees a consistent bend assignment of the
remaining edges.

6.3.2 Orthogonalization Without Fixing a Skeleton

The following approach is a variant of the network flow-based orthogonal-
ization with port/side constraints described in Section 5.4. Recall that, in
order to get a uniform orientation of the vertices, we fixed the shape of so-
called skeleton edges there. In general, finding such skeleton edges together
with a valid shape is a difficult task since the shape has to be consistent
with the given planar embedding and the given port/side constraints. It is
advisable to already consider this issue during the planarization phase. The
planarization approaches described in Section 6.2 do not incorporate the
calculation of an appropriate skeleton and thus cannot be combined with
our primary orthogonalization. Hence, we present below an alternative or-
thogonalization approach. Its only difference to the approach of Section 5.4
is that it does not fix the shape of skeleton edges. Thus, after calculating
the shape of edges, we additionally have to unify the orientation of vertices.
Therefore, we rotate vertices which do not conform to a prescribed direc-
tion by 90◦ to the left/right or by 180◦. As shown in Theorem 6.6, this
produces at most 2|E| additional bends. After rotating vertices, we apply
bend-stretching transformations [46] to reduce the number of unnecessary
bends.

Theorem 6.6 Let G = (V,E) denote a graph and Γ a podevsnef drawing
of G without a uniform orientation of the vertices. The orientation can then
be unified by introducing at most 2|E| bends.

Proof: Γ can be transformed into a drawing with a uniform orientation
of the vertices by rotating vertices which do not conform to a prescribed
direction by 90◦ to the left/right or by 180◦. As illustrated in Fig. 6.10, a
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Figure 6.10: A vertex and its incident edges (a). A rotation of the vertex
by 90◦ to the right adds one additional bend per edge (drawn as red point)
(b) and a rotation by 180◦ two additional bends (c).

(a) (b)

Figure 6.11: A bend-minimum podevsnef drawing which preserves the an-
gles induced by the given side constraints (a) as well as a bend minimum
drawing with a uniform orientation of the vertices (b).

rotation of a vertex by 90◦ introduces one additional bend at its incident
edges and a rotation by 180◦ introduces two additional bends. Clearly, the
resulting drawing is still a podevsnef drawing because the rotations neither
create crossings nor empty faces. Note that some of the additional bends
are superfluous and can be removed by bend-stretching transformations.
For a given orientation of the drawing let V0, V90 and V180 denote the set
of vertices which need not be rotated, rotated by 90◦ and rotated by 180◦,
respectively. Note that V = V0 ∪V90 ∪V180. We chose the orientation of the
drawing such that

∑

v∈V0
δG(v) >

∑

v∈V180
δG(v). Thus, the overall number

of bends introduced by rotating vertices is
∑

v∈V0
δG(v) · 0+

∑

v∈V90
δG(v)+

∑

v∈V180
δG(v) · 2 ≤

∑

v∈V δG(v) = 2|E|. 2

Fig. 6.11 shows that this bound is tight: While there is a drawing with-
out bends when we omit the uniform orientation of the vertices, the bend-
minimum drawing observing the orientation has 2|E| bends. Note that the
above strategy does not produce a bend-minimum solution in most cases.
The rotation step can be implemented in linear time.
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6.4 Additional Requirements

Below, we shortly sketch different additional requirements that are necessary
in order to apply port/side constraints to a wider field of applications. These
requirements can serve as motivation for future work in this area.

• Multi-Candidates Port/Side Constraints: Recall that, in gen-
eral, pins determine the possible attachment points of edges on their
incident vertices. In practice, there often appear side constraints like
“edge e should leave its source vertex either at the right- or left-hand
side” (e.g., in UML class diagrams). Moreover, there are often edges
which should end at an arbitrary pin out of a given set of pins. We
call such port/side constraints multi-candidates port/side constraints.
The increasing degree of freedom of choosing a valid pin/side where
an edge enters/leaves a vertex may further improve the quality of a
drawing. It is also possible to assign different weights to the different
candidates.

• Limited Number of Pins: The second requirement concerns the
arrangement of pins as well as their number. Up to now we have as-
sumed that each side of a vertex has 2κ−1 pins with κ ≥ maxv∈V δ(v).
For vertices of different size this is often inappropriate. In practice it
might be more suitable to allow an irregular arrangement of pins, e.g.,
for wiring diagrams where electric components like multiplexer and
integrated circuits have prescribed connection points. In such a model
the only restriction regarding the number of pins on a vertex v is that
it has to be greater than or equal to δ(v). The distribution and ar-
rangement of pins on the vertex sides are arbitrary. Note that such an
extension makes things more complicated even for edges without con-
straints since we are no longer able to place these edges at an arbitrary
vertex side.

• Pin Sharing: Another useful requirement is to allow multiple edges
to be attached to the same pin. This is essential when we want to
visualize wiring diagrams. Furthermore, for some applications it might
be useful to allow the specification of an upper bound on the number
of edges that can be attached to a given pin.
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Chapter 7

Usability Study

In this chapter we investigate the usability and performance of the methods
and algorithms presented in the previous chapters. First, we demonstrate
how to use algorithm Constraint-Kandinsky to draw UML activity dia-
grams. We identify requirements for such diagrams and give an overview of
related work followed by a brief evaluation of layout capabilities for different
popular UML tools. We also provide some example drawings to demonstrate
the quality of our layout approach. Our work on drawing activity diagrams
was published in [136, 137].

Section 7.2 is based on joint work with Wolfgang Blochinger, which is
described in [14, 15]. It demonstrates how to visualize execution graphs of
parallel computations using our Fast-Sugiyama implementation. Again we
identify the corresponding requirements and review related work done in this
area. We introduce specific modifications needed for visualizing execution
graphs and describe the integration of the visualization into an integrated
development environment. Furthermore, we demonstrate our visualization
methodology using a representative example application.

In Section 7.3, we give an experimental evaluation of the runtime and
quality of different algorithms presented in this work. We perform experi-
ments for our Fast-Sugiyama implementation, the Constraint-Kandinsky
algorithm as well as for the different approaches for handling port/side con-
straints discussed in the previous chapter.

For the implementation of our algorithms, we used the programming
language Java and the yFiles library [156]. The Java-based yFiles library
features a flexible and extensible architecture and provides basic graph-based
data structures, graph algorithms and view components. The library also
supports several graph formats.

7.1 Visualization of Activity Diagrams

Activities and the corresponding activity diagrams (Fig. 7.1) belong to the
basic concepts of the Unified Modeling Language (UML) which has become
the standard modeling language for specifying, visualizing and documenting
software systems. Activity diagrams are used for modeling behavioral logic
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like business processes or workflow. The current version 2.2 of the UML was
released in February 2009 by the Object Management Group (OMG). While
activity diagrams were considered a special case of state diagrams in UML
version 1.x, they are now enriched with additional constructs that widen the
range of their applicability. This makes them more suitable for areas like
economics or bio-informatics [134].
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Figure 7.1: An activity diagram taken from the OMG UML 2.2 Superstruc-
ture specification [118].

While automatic layout for class diagrams received considerable atten-
tion by developers of corresponding software tools and designers of funda-
mental concepts of diagramming, activity diagrams were considered to be
either just a special case for tools supporting state diagrams or too complex
to handle them by a direct application of basic layout algorithms.

Since activity diagrams require properties that are different from those
for class diagrams, existing concepts cannot be simply transferred. For activ-
ity diagrams the emphasis lies on partitions and flow, which are properties
that are influenced by the semantics of activity diagrams. These proper-
ties have to be supported by an automatic layout algorithm because it is
difficult, or sometimes even impossible, to place all elements appropriately
by hand. Furthermore, an automatic layout algorithm with customizable
layout options allows us to include different user preferences.

7.1.1 Layout Requirements

In this section we examine requirements for the automatic layout of activity
diagrams. We, therefore, briefly introduce the notation elements. This is
necessary to derive a graph theoretic concept to layout those diagrams. We
also analyze aesthetics and standards for creating activity diagrams.

7.1.1.1 Notation of UML Activity Diagrams

In the following we give an overview of the visual notation of activity dia-
grams and identify the resulting requirements for a layout algorithm. We
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do not focus on semantics unless necessary. More details can be found in
the UML Superstructure specification [118].

An activity specifies the coordination of executions of actions using a
control and data flow model. Each activity diagram shows exactly one ac-
tivity. An activity is modeled as a labeled graph of activity nodes which are
connected by edges denoting data or control flow. It can optionally be rep-
resented by a border rectangle containing all its elements and a name shown
in the upper left corner. There are three different node types appearing in
an activity - action, object and control nodes.

Action nodes (Fig. 7.2(a)) are the basic elements of an activity. An action
node may have outgoing and incoming edges denoting control or data flow to
or from other nodes. There are two special kinds of action nodes to handle
signal events, the accept event and the send signal action. Object nodes
indicate an instance of a particular classifier (Fig. 7.2(b)).

A control node (Fig. 7.2(c)) coordinates the flow between other nodes.
If an activity is invoked, a flow starts at each initial node. If a flow reaches
an activity final node, the activity terminates. In contrast, a flow final node
terminates only its incoming flow. A decision node has one incoming edge
and multiple outgoing edges. The incoming flow is forwarded to only one
outgoing edge. This edge is commonly determined by guards, which are
edge labels representing conditions. A merge node has one outgoing edge
and multiple incoming edges. Each flow arriving at an incoming edge is
forwarded to the outgoing edge. A fork node is similar to a decision node,
but it splits the incoming flow into multiple concurrent flows. A join node is
similar to a merge node, but synchronizes multiple flows. Edges are always
connected to the long side of the fork/join node. The nodes can be placed
vertically or horizontally.

Node elements can be connected by two different edge types, one denot-
ing control flow and one denoting data flow. Both edge types are represented
by an arrowed line.

There are also notation elements for grouping subsets of nodes and edges
in an activity. Partitions (swimlanes) use vertical or horizontal boundaries
to partition a diagram into logical areas, e.g., organizational units in a busi-
ness model. Nodes and edges are placed inside the related partition. UML2
activity diagrams also allow the use of two-dimensional (grid-like) partitions
as depicted in Fig. 7.2(e). Such partitions are combinations of horizontal
and vertical swimlanes. Another grouping element is an expansion region.
This is a strictly nested region of an activity with explicit input and output
nodes called expansion nodes (Fig. 7.2(f)). Each input is a collection of
values. Expansion regions can have keywords in the upper left corner. An
interruptible activity region has the same notation as an expansion region
but without expansion nodes.

A notation element available to all UML diagrams is a note. Notes com-
ment on some diagram elements. They are attached to the corresponding
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Figure 7.2: Activity diagram notation elements.

elements by a dashed line (Fig. 7.2(d)). In activity diagrams, notes are often
used to show post- and preconditions of actions.

Below we list requirements resulting from the visual notation. If a re-
quirement corresponds to one that was already identified in Chapters 2 or 3,
we also state the corresponding abbreviation given there.

• Nodes (synonym for vertices) have different sizes (VERTEX SIZE).

• We have to consider swimlanes/partitions (PARTITION).

• Since edges denote control and data flow it seems to be natural to draw
them with respect to a given flow direction (FLOW, BIMODAL).

• Regions can be nested and edges can start/end at a region (expansion
input/output nodes). This corresponds to the concept of compound
graphs (see Section 2.1) (CLUSTER).

• Notes can be attached to nodes and edges (NOTES).

• Join/fork nodes are two-sided nodes (TWO SIDED VERTICES).

• Activities, regions, nodes and edges can have labels (LABEL).

7.1.1.2 Aesthetics

Unfortunately, up to now there have been no empirical studies on aesthet-
ics of activity diagrams. However, since the underlying structure of such
diagrams are graphs, we will use common aesthetics (see Section 2.2) that
apply to abstract graphs (graphs without special semantics) and thus to
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activity diagrams, too. Obviously, aesthetics BEND, CROSSING, AREA
and OVERLAP are also important here. SYMMETRY seems to be useless
since activity diagrams normally do not have a symmetric structure.

7.1.1.3 Standards for Creating Activity Diagrams

Although the UML specification does not explicitly describe how to layout
diagrams, there are a lot of standards, conventions and guidelines on how
to do this. A comprehensive collection of those principles that have been
proven in practice is given in [3]. Their use increases the usability and clarity
of diagrams.

The principles for general UML diagrams are:

• Minimize the number of crossings (CROSSING).

• Draw edges orthogonally (ORTHOGONAL).

• Organize diagrams with respect to the reading direction from left to
right or top to bottom (FLOW).

• Use only horizontal labels (HORIZONTAL LABELS).

• Reorganize larger diagrams into several smaller ones. This principle
is based on the fact that it is often easier to have several diagrams
at various levels of detail than a single complex one. Hence, complex
actions are often decomposed into subactivities. In practice there are
almost no activity diagrams containing more than 50 nodes and 80
edges, which allows the use of more complex algorithms than for larger
graphs.

The following principles are specific to activity diagrams:

• Incoming and outgoing edges enter a join (fork) node on different sides
(TWO SIDED VERTICES).

• Swimlanes (partitions) should be ordered in a logical manner, with the
primary swimlane placed leftmost. Thus, we assume that the ordering
of the partitions is given as input.

7.1.2 Related Work

Up to know there has been no work about layout algorithms for activity
diagrams. However, there are several publications about related diagram
types.

Most of the recent work on layout approaches for UML diagrams was
dedicated to class diagrams. Representatives of two different approaches are
UML-Kandinsky/GoVisual [67, 70, 90] and SugiBib [62, 63, 132] (both were
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already mentioned in Chapter 3). The first one is based on refinements of the
TSM approach while the second one is based on Sugiyama’s approach. They
support aesthetic criteria like ORTHOGONAL, OVERLAP, CROSSING in
various ways and are able to handle constraint FLOW. SugiBib is also able
to consider advanced properties like CLUSTER, but on the other hand, it
is rather weak for basic properties like VERTEX SIZE or ORTHOGONAL.
None of the above approaches is able to handle constraint PARTITION.

A layout approach for statecharts is given in [33, 34]. Statecharts are
extended finite state machines and support the repeated decomposition of
states into substates. The approach is based on a combination of Sugiyama’s
approach with a recursive floorplanning algorithm and an integrated label-
ing method. It supports aesthetics AREA, CROSSING, OVERLAP, BEND
and ASPECT RATIO as well as constraint CLUSTER. However, the clus-
tering is specific to state decompositions and thus not applicable to activity
diagrams.

There is also some work about the visualization of process diagrams.
Process diagrams are related to flowcharts and visualize the flow through
a process or system. The layout approaches described in [155] and [139]
support constraints FLOW and PARTITION. The second one produces or-
thogonal drawings and is also able to support aesthetics CROSSING, BEND
and OVERLAP. However, both approaches are restricted to one-dimensional
partitions (horizontal swimlanes) and do not include constraint CLUSTER.

As we have seen, there is no conceptual approach covering all require-
ments for activity diagrams. On the other hand, there exist quite a few
commercial products that claim to support activity diagrams. In the follow-
ing subsection we review some of them.

7.1.3 Layout Capabilities of UML Tools

An evaluation of automatic layout capabilities of different UML tools with
respect to class diagrams was given in [61]. For most tools supporting auto-
matic layout, the results were not satisfying. Meanwhile some of the tools
provide improved layout capabilities. In the following we review some popu-
lar UML tools with respect to their layout capabilities for activity diagrams.
We are particularly interested in their ability to handle constraints FLOW,
CLUSTER and PARTITION. All of the tools below except Microsoft Visio
support UML2.

• EclipseUML 2008 Studio Edition (Omondo)
(http://www.omondo.com)
EclipseUML does not support automatic layout for activity diagrams.

• Enterprise Architect 7.1 Professional Edition (Sparx Systems)
(http://www.sparxsystems.com)

http://www.omondo.com
http://www.sparxsystems.com
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Enterprise Architect does not support automatic layout for activity
diagrams.

• MagicDraw UML 16.5 Enterprise Edition (NoMagic)
(http://www.magicdraw.com)
MagicDraw provides several automatic layout approaches including a
hierarchic layout that is able to consider FLOW, PARTITION and
CLUSTER. However, using two-dimensional partitions often leads to
poor layout results as well as to a violation of constraint FLOW
(Fig. 7.3(b)).

• Office Visio Professional 2007 (Microsoft)
(http://office.microsoft.com/visio)
Visio does not allow modeling regions for activity diagrams. It includes
different layout approaches that are able to consider constraint FLOW.
However, constraints PARTITION and CLUSTER are not supported.

• Poseidon for UML 5.0 Professional Edition (Gentleware)
(http://www.gentleware.com)
Poseidon does not support automatic layout for activity diagrams.

• Rational Software Architect V 7.5 Standard Edition (IBM)
(http://www.ibm.com/software/rational)
Rational Software Architect does not allow modeling two-dimensional
partitions. It only allows one-dimensional partitions, i.e., either ver-
tical or horizontal swimlanes. Furthermore, it does not support the
modeling of interruptible activity regions. The provided automatic
layout considers FLOW, CLUSTER and one-dimensional partitions.
However, constraint FLOW is not observed for edges running between
two different partitions. These edges are often routed unfavorably and
may intersect with node elements.

• Together 2008 (Borland)
(http://www.borland.com/us/products/together)
Together does not allow modeling regions for activity diagrams. Fur-
thermore, it only supports one-dimensional partitions. The provided
layout approaches consider constraint FLOW and one-dimensional par-
titions. Similar to Rational Software Architect, edges running between
two different partitions are often routed unfavorably and may intersect
with node elements.

• Visual Paradigm for UML 6.4 Enterprise Edition (Visual Paradigm)
(http://www.visual-paradigm.com)
Visual Paradigm supports automatic layout for activity diagrams. It
generates a hierarchic layout which considers FLOW and CLUSTER.
The use of partitions often produces broken layouts.

http://www.magicdraw.com
http://office.microsoft.com/visio
http://www.gentleware.com
http://www.ibm.com/software/rational
http://www.borland.com/us/products/together
http://www.visual-paradigm.com
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(a) Our Approach

<<external>>

Make
Payment

Ship
Order

Close
Order

Receive
Order

Fill
Order

Send
Invoice

Order Processor Accounting Clerk

Invoice

 [order rejected]

 [order accepted]

(b) MagicDraw UML 16.5

Figure 7.3: Two automatic layouts for the example of Fig. 7.1.
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The layout capability and quality of the above UML tools differs signif-
icantly. None of them was able to produce satisfying results. Only Magic-
Draw supports automatic layout for two-dimensional partitions. However,
as shown in Fig. 7.3, it produces poor layout results when using partitions
even for small diagrams.

7.1.4 Applying Constraint-Kandinsky

Below, we describe how to apply the Constraint-Kandinsky algorithm to
activity diagrams. First, an activity has to be transformed into a suitable in-
put graph. The transformation step is straightforward since the underlying
structures of activities are mixed graphs containing clustering and parti-
tioning information. All essential requirements identified in Section 7.1.1
are supported by Constraint-Kandinsky. This comprises the notation-
dependent requirements CLUSTER, PARTITION, FLOW, BIMODAL, VER-
TEX SIZE, NOTES, TWO SIDED VERTICES and LABEL, the structure-
dependent aesthetics BEND, CROSSING, AREA and OVERLAP as well
as the requirements ORTHOGONAL and HORIZONTAL LABELS, which
are derived from standards and conventions for creating activity diagrams.
Moreover, Constraint-Kandinsky allows specifying layout parameters, e.g.,
if partitions should be drawn in and which kind of edges should be drawn
upward.

Note that in activity diagrams, the edges of E↑ are drawn downward
(from top to bottom) instead of upward. We realize this by temporarily
reversing the edges’ direction. Recall that in activity diagrams, all edges
except edges incident to notes are directed. We propose using the following
layout configuration for activity diagrams: All edges which are not incident
to an initial node, final node or note are added to E↑. We set the type
of fork and join nodes to two sided and the type of all remaining nodes
to bimodal. When the user decides to consider FLOW, we assign type
hyper dummy to decision and merge nodes, which results in a pleasing fork
style representation of these nodes. After applying Constraint-Kandin-
sky, we optionally draw the enclosing rectangle denoting the border of the
activity and place the activity’s name in the upper left corner. As the
experiments in Section 7.3.3 show, the runtime of Constraint-Kandinsky
is low considering the typical size of activity diagrams.

7.1.5 Examples

Below, we present some activity diagrams drawn with Constraint-Kandin-
sky. Our approach was able to produce satisfying results for all of them.
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(a)

(b)

Figure 7.4: Constraint-Kandinsky applied to two diagrams of the UML
Superstructure specification [118]. While the drawing in (a) considers con-
straint FLOW, the drawing in (b) does not.
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Figure 7.5: Constraint-Kandinsky applied to an activity diagram taken
from the HyperGraphics website on http://www.hypergraphics.co.uk. The
flow direction is from left to right.

Figure 7.6: Another activity diagram taken from the Borland Together Mod-
eling Guide (http://techpubs.borland.com/together/2008/Together.pdf).
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7.2 Visualization of Parallel Computations

Parallel programs are considerably more difficult to design and implement
than sequential programs. One has to cope with several additional aspects,
in particular, task decomposition, task mapping, communication and syn-
chronization. Moreover, parallel applications usually exhibit a significantly
more complex runtime behavior. Despite these aspects, maximizing perfor-
mance is most crucial in parallel computing. Hence, sophisticated tools for
performance analysis and tuning are of paramount importance [113, 126].

Visualization is increasingly being recognized as an effective tool for gain-
ing detailed insights into critical aspects of parallel computing, especially
correctness and performance. In this section we present a visualization
approach which employs the Fast-Sugiyama implementation described in
Section 4.6 and which is capable of depicting several performance-relevant
properties of task-parallel computations.

Our visualization is based on the multithreading parallel programming
model (not to be confused with the shared-memory model), which specifi-
cally supports irregular task-parallel applications. This programming model
was originally introduced in the Cilk programming language [125]. It is lo-
cated on a medium level of abstraction, thus low-level synchronization and
communication are carried out completely transparently. Our visualization
component is integrated with the parallel system platform DOTS [17] (Dis-
tributed Object-Oriented Threads), which provides extensive support for the
multithreading model on a wide range of shared and distributed memory
architectures [16]. Since we use the properties and features of DOTS on a
rather abstract level, our method remains applicable without major changes
for other task-parallel models [140].

7.2.1 A Graph-Theoretic Model for Parallel Computations

Parallel programs based on the multithreading programming model are
called multithreaded programs. A multithreaded computation results from
the execution of a multithreaded program on a given input.

In [19], Blumofe and Leiserson introduce a graph-theoretic model for
multithreaded computations. Such a computation can be represented as a
directed acyclic graph called an execution graph. The vertices of the execu-
tion graph represent basic tasks which can be either regular computations
or communication operations. Vertices are connected by continue, spawn,
or data-dependency edges. Continue edges indicate the sequential ordering
of basic tasks and also define the extent of a thread. Threads are the main
structural entities of a multithreaded computation. Spawn edges depict a
parent/child relationship among two threads. The parent thread creates
the child thread and passes arguments to it. The tree composed of all
threads of a computation and corresponding spawn edges is called a spawn
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tree. A thread can produce one or more results which are consumed by
other threads. Such producer/consumer relationships between two threads
are indicated by data-dependency edges. Threads can be executed concur-
rently, provided that data-dependencies between threads are considered. An
important subclass of general multithreaded computations are strict multi-
threaded computations where all data-dependency edges of a thread go to an
ancestor of the thread in the spawn tree. Strict computations are considered
to be the most comprehensive class of multithreaded computations that are
well-structured. This property was utilized for the design of the DOTS API.

The DOTS API is a compact and completely orthogonal API for writ-
ing multithreaded programs. A thread is created using the dots fork or
dots hyperfork primitive. The primitives differ in the assignment of threads
to so-called thread groups [16]. We omit the concept of thread groups here,
since they are not important for our visualization. In both cases, a procedure
to be executed by the child thread and an argument-object has to be sup-
plied. Threads return result objects employing dots return. The last result
of a thread is delivered by the final return statement of the procedure. The
dots join primitive is used to retrieve results of threads applying join-any
semantics: The first result which becomes available from any thread in the
group is delivered. If no results are available, the calling thread is blocked
until a thread of the group delivers a result. Fig. 7.7 shows the execution
graph of a strict computation.

Figure 7.7: Execution graph of a strict multithreaded computation [16].
Communication operations are marked with the corresponding DOTS prim-
itives.

The graph-theoretic concept described in this section provides a starting
point for our visualization and enables us to take advantage of our Fast-
Sugiyama implementation.
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7.2.2 Requirements for Visualizing Parallel Computations

To determine the basic requirements for our visualization, we first look at
task decomposition and load balancing issues. This is necessary to iden-
tify performance-critical issues appearing in this context. Our visualization
should enable the application designer to reliably detect manifestations of
parallel overhead and to investigate their individual root causes.

7.2.2.1 Dynamic Task Decomposition and Load Balancing

Since, in typical multithreaded computations, threads are continuously gen-
erated, task decomposition and load balancing are tightly coupled and can
interfere with each other in various ways. The DOTS runtime system em-
ploys the so-called distributed task pool model for load balancing. Upon
creation, a thread is reified. It only exists in the form of a passive object
which encapsulates the thread’s complete state. Initially, reified threads are
placed in the local task pool. They can be instantiated and executed lo-
cally (when a processor becomes available) or might first be transferred to
a remote task pool for load balancing purposes. In the execution graph, the
load balancing process can be represented by additional vertices adjacent to
fork vertices which denote enqueue and dequeue events.

To ensure high parallel scalability, dynamic task decomposition and load
balancing have to be performed in a fully distributed manner. However, in
a fully distributed system each processor has only limited knowledge of the
global state of the parallel computation. As a consequence, dynamic task de-
composition and the load balancing process must be steered by local strate-
gies and several corresponding parameter values, e.g., thresholds on the size
of task pools, which interact in a complex manner. The parameters of the
decomposition and load balancing strategies are sensitive to individual char-
acteristics of applications, like the degree of irregularity. Furthermore, they
depend on the specific properties of the parallel target platform, like het-
erogeneity or volatility of resources. Finding appropriate strategies along
with optimal parameter values which minimize both processor idling and
task interaction overhead is a delicate task. In practise, this can only be
accomplished by extensive experimentation on representative problem in-
stances. In the following, we identify several classes of performance-critical
issues typically encountered in this context.

7.2.2.2 Manifestations and Causes of Parallel Overhead

Basically, achieving high parallel efficiency requires minimizing the overall
parallel overhead of a computation. Parallel overhead is mainly determined
by three factors: idle times of processors, communication overhead and ex-
cess computation. The main goal of our visualization approach is to reveal
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the following specific conditions that directly or indirectly contribute to one
of these factors:

• Processor Idling: One or more processors remain idle for a pro-
hibitively long time interval. A typical reason for this situation is that
(temporarily) too few reified threads are present in the system due
to an unsuitable decomposition approach. Another possible reason is
that the load balancing strategy is too slow-acting because of inappro-
priate threshold and timeout values or due to limited scalability.

• False Sharing: Threads with a too fine granularity are generated and
transferred to other processors. This effect can be caused by an un-
suitable decomposition approach or by badly chosen parameter values.
False sharing can considerably increase communication overhead.

• False Parallelism: Threads are dynamically created and subsequently
executed on the same processor (after the parent thread’s execution is
finished). This condition is mainly affected by inappropriate thresh-
old values. False parallelism contributes to overhead due to excess
computation.

• Roaming: Threads are passed to several processors before they are
actually executed. The so called ping-pong effect is a special case of
roaming. Here, a thread is passed back and forth between two proces-
sors before it finally gets executed. Extensive roaming can be caused
by inapt threshold values. Roaming can seriously increase communi-
cation overhead of the computation.

7.2.2.3 Basic Requirements for the Visualization

To reliably identify all of the above manifestations of parallel overhead and
to investigate their individual root causes, the visualization must present
the following information in a distinct manner:

• Dynamic mapping of threads to processors.

• Activity and idle times of processors.

• Parent/child relationships of threads.

• Data dependencies between threads.

• Time flow of the execution process.

• Transfer activities of reified threads between processors.

• Documentation of the internal state of the runtime system for each
relevant event.
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To effectively transfer insights gained by visualization into actual perfor-
mance improvements, it is essential to tightly embed the visualization into
a comprehensive development workflow, establishing a seamless execute-
analyze-tune cycle. A crucial prerequisite for tool-integration is that the
employed visualization method is fast enough to enable interactive use. Note
that for applications with high irregularity, execution graphs typically be-
come considerably large.

Basically, the requirements listed above can be met by appropriately
visualizing execution graphs which are enriched with supplemental informa-
tion. In Section 7.2.4.1 we introduce an advanced layout algorithm for exe-
cution graphs based on our Fast-Sugiyama implementation. Section 7.2.4.2
deals with means for further strengthening the expressiveness of execution
graphs.

7.2.3 Related Work

Heath et al. [97] present a general model for the visualization of parallel per-
formance data along with a discussion of many visualization concepts and
previously developed principles. In the following, we give a short overview
of representative visualization environments which contributed to the devel-
opment and understanding of these basic concepts and principles.

ParaGraph [96] represents an early research effort in performance eval-
uation and visualization of message-passing parallel programs. It provides
graphical animations of different runtime properties and also graphical sum-
maries of performance metrics.

Vampir [116], the commercial version of the PARvis [115] system, is
especially designed for MPI (Message Passing Interface) programs. Vam-
pir features diverse visualization capabilities for MPI-related resources at
different levels of abstraction, e.g., timeline views and parallelism displays.

Paradyn [114] is an integrated suite of performance measurement tools
for parallel and distributed applications. It is based on dynamic instrumen-
tation of unmodified executables for generating performance profiles. This
approach is capable of adapting the data collection process during execution
to be able to dynamically change the focus of the analysis. Paradyn fea-
tures several visualization capabilities, e.g., time histograms or bar charts
for individual performance metrics.

Parade [107] is based on the Polka [142] animation toolkit and represents
a general purpose visualization environment designed to create algorithm an-
imations. A well-known sub-project is PVaniM [149], which provides support
for the visualization of message-passing parallel programs that are based on
PVM (Parallel Virtual Machine). It is designed as a two-phase approach
where online visualization is employed for large-grained events that are in-
fluenced by the computing environment, and post-mortem visualization is
used for a more detailed program analysis and subsequent tuning.
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A commonality of all systems discussed above is that they primarily fo-
cus on the visualization of diverse system-level performance metrics, like
processor utilization, communication rates or memory access times. In con-
trast, our approach is located on a higher level of abstraction, focusing on
specific properties of the multithreading task-parallel programming model.
It is based on visualizing execution graphs and thus substantially relies on
human intuition and pattern recognition capabilities.

A comparable approach for visualizing execution graphs of multithreaded
parallel applications is described in [143]. That approach relies on the dis-
tributed threads system (DTS) [31], which is a programming environment
for portable parallel applications. However, the described visualization is
much simpler and does not include an adequate representation of the differ-
ent processors and transfer activities. Furthermore, our approach is based
on a tight integration of the visualization into an integrated development
environment to assist the application designer in carrying out an interactive
performance-analyzing and tuning process.

7.2.4 A Layout Algorithm for Execution Graphs

For the layout of execution graphs we use our Fast-Sugiyama implemen-
tation. The specific modifications needed to produce adequate results are
described below. Afterwards, we present additional visual decorations which
we use to emphasize pertinent details of these graphs.

7.2.4.1 Specific Modifications of the Layout Algorithm

The main objective of our new visualization approach for parallel program
execution is an adequate representation of the execution’s time flow as well
as of the threads and the different processors. To meet the last objective,
we use vertical partitions (swimlanes) which represent the processors. The
time flow is visualized by using horizontal partitions.

The input of our algorithm is a directed acyclic execution graph G =
(V,ED), constructed as described in Section 7.2.1. For its construction we
analyze the event trace generated during the execution of a parallel pro-
gram. To ensure a correct event ordering, we also have to compensate for
the time skew. Additionally, the input consists of a function p-id : V → N

assigning each vertex the ID of the corresponding processor, a function
τ : V → N denoting the time when v ∈ V was processed as well as a func-
tion t-id : V → N assigning thread IDs to vertices (vertices that denote
queuing events for reified threads are not assigned to threads). We assume
w.l.o.g. that 1 ≤ p-id(v) ≤ Φ, ∀ v ∈ V , where Φ denotes the number of
processors. An edge e = (v,w) between two vertices of the same thread
(t-id(v)=t-id(w)) is called an execution edge. Note that the execution edges
of a thread build up a simple monotone path. Furthermore, if the ordering
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of the different processors is not given as input, we can use the heuristic
described in Section 4.4.4 to find a suitable order for them.

For the visualization, we use our Fast-Sugiyama implementation along
with the modifications to handle partitions (see Section 4.4). In the follow-
ing, we introduce the specific modifications for visualizing parallel execution
graphs. We, therefore, reconsider the different phases of Sugiyama’s algo-
rithm. Since the input graph G is acyclic by construction, we can skip the
cycle removal phase. Hence, we start with the layer assignment.

Layer Assignment:
In our approach we use the layering (y-coordinate) to reflect the time
flow of the program execution. We, therefore, introduce “synchroniza-
tion points”, which represent certain points in time. A synchronization
point is drawn as a horizontal line. For each pair of consecutive syn-
chronization points representing times tj and tj+1 our layering has the
following property: a vertex v ∈ V is placed between the two synchro-
nization points if and only if tj ≤ τ(v) ≤ tj+1.

We can affect the layering results by changing the length of the time
interval between two synchronization points. If we choose large in-
tervals, the height of the graph is smaller but the time flow is poorly
reflected. If we choose short intervals, the height of the graph increases
but the time flow becomes clearer.

The customized layering works as follows: First, we sort V according
to τ in ascending order. We call the resulting list Lτ . Let Tj denote
the time interval between times tj and tj+1. We partition V into time
intervals T1,. . . ,Tk, where k depends on a uniform, user-defined inter-
val length δ. A vertex v ∈ V is assigned to interval 1 + ⌊ τ(v)−minτ

δ
⌋,

where minτ is the time value of the first vertex in Lτ . If we choose
a small δ, the number of time intervals k can be very large. How-
ever, this has no impact on the running time, because it is sufficient
to consider only non-empty time intervals (intervals with at least one
vertex). The number of such intervals l is bounded by the number of
vertices. Let Ti1 ,. . . ,Til denote the subsequence of non-empty time in-
tervals. Each time interval is mapped to a partition row using function
py (introduced in Section 3.3.1). More precisely, for a vertex v ∈ V
is py(v) = j, 1 ≤ j ≤ l if and only if v ∈ Tij . For the layer assign-
ment, we propose to use a longest path layering because it produces
a minimum number of layers and can be computed in linear time (see
Section 2.4.2).

Sorting the vertices of V according to τ requires O(|V | log |V |) time
and the assignment to time intervals O(|V |). The number of additional
dummy vertices and edges needed to model time intervals is O(|V |).
Thus, the layer assignment phase runs in time O(|ED| + |V | log |V |).
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After the layer assignment, we normalize the input graph. We have
to extend the functions p-id and t-id to dummy vertices as follows:
each dummy vertex de which splits an edge e = (u, v) gets the value
p-id(de) = p-id(u). Furthermore, if e represents an execution edge we
set t-id(de) = t-id(u) (= t-id(v)).

Crossing Minimization:
The crossing minimization has to consider the representation of the
processors and threads. Since we represent each processor by a ver-
tical partition we simply set px(v) = p-id(v) for each vertex v ∈ V .
To obtain the vertical line representation of threads (all vertices of a
thread have the same x-coordinate), we have to change the calcula-
tion of the measure values. The measure of a vertex v ∈ Li is set
to the position of its neighbor w ∈ Li−1 for which t-id(w) = t-id(v)
holds. Note that for such neighbors we always have p-id(w) = p-id(v)
and thus px(w) = px(v). For a vertex v there is at most one such
neighbor, because the execution within a thread is strictly serial. If
there is no such neighbor, the measure is determined traditionally with
the median or barycenter heuristics. Our measure calculation has the
property that it prevents crossings between execution edges as well as
between middle segments of long edges and execution edges. Thus,
execution edges can always be drawn vertically.

Horizontal Coordinate Assignment:
Let GC = (VC , EC) denote the compaction graph computed during
crossing minimization. The vertical alignment of vertices belonging to
the same thread can be realized by simply mapping those vertices to
the same vertex in the compaction graph. The above modification of
the measure calculation guarantees that this never introduces directed
cycles in the compaction graph. Obviously, this modification does not
increase the size of the compaction graph.

We use the compaction graph to perform the horizontal coordinate
assignment, using the algorithm proposed by Brandes and Köpf (see
Section 2.4.4). We always resolve alignment conflicts in favor of middle
segments and execution edges, between which no alignment conflicts
occur.

The number of processors Φ as well as the number of non-empty time
intervals l is less than or equal to |V |. Since the introduced modifications do
not increase the runtime of our original implementation of Sugiyama’s ap-
proach and we only use partition constraints, our visualization algorithm for
execution graphs has runtime O((|V |+ |ED|) log |ED|) and requires O(|V |+
|ED|) space. In Section 7.3 we will give an experimental evaluation of this
algorithm.



162 Usability Study

7.2.4.2 Visual Decoration of Execution Graphs

As our approach essentially relies on displaying execution graphs, the main
perspective of the visualization is closely related to the programming model.
This characteristic considerably reduces the semantic gap between the vi-
sual representation of computations and the application code. In addition to
applying the above layout algorithm for generating the display, we visually
emphasize pertinent details of execution graphs. Moreover, we link the vi-
sual representation with information about the system level performance as
well as the internal state of the runtime system. This approach provides the
application designer with detailed and cross-linked information at several
levels of abstraction enabling a thorough investigation of reasons for perfor-
mance problems. In particular, we provide the following visual decorations
and enhancements for execution graphs:

Representation of Processors
We represent swimlanes (denoting processors) as gray background
rectangles. Idle times of processors are indicated by a red-colored
background. This enables us to quickly grasp the processor utilization
of a computation.

Representation of Threads
To emphasize vertices belonging to the same thread, we vertically align
them and give them the same color. Vertices representing DOTS prim-
itives, e.g., fork and join vertices, are given individual shapes. We ad-
ditionally introduce vertices indicating start- and end-execution events
of a thread. Each vertex is associated with information about the in-
ternal state of the runtime system at the time the corresponding event
took place.

Edge Types
Execution graphs contain two different kinds of edges: Execution edges
indicate the execution process of a thread, while data-flow edges de-
pict communication between threads. We distinguish both types by
drawing them with different thickness. According to which of these
aspects is of interest, the representation of the two edge types can be
switched.

Load Balancing Activities
As discussed in Section 7.2.2.1, load balancing is performed by trans-
ferring reified threads between task pools. Segments of the execution
graph representing times when a thread is reified (including the cor-
responding queueing events) can be selectively shown for individual
threads. This allows detailed investigations of roaming effects.
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Additionally, we provide extensive customization capabilities for layout
parameters, e.g., time interval length, distance between layers or appearance
of swimlanes.

7.2.5 Tool Integration

We employ Eclipse [133] for building a comprehensive development environ-
ment around our visualization method. Eclipse is a universal tool platform
which considerably facilitates integration of new functionality via a sophis-
ticated plug-in mechanism. For the development of parallel C++ programs
we use the C++ Development Tool (CDT), which is a fully functional C and
C++ IDE for the Eclipse platform. Our Eclipse plug-in (Fig. 7.8) provides
the following wizards and views:

Figure 7.8: Integration with Eclipse.

Configuration Wizard
The Configuration Wizard guides users through the configuration of
the parallel computation environment (e.g., the definition of the em-
ployed nodes/processors, locations of executables and startup proce-
dures). An XML document stores the configuration as well as infor-
mation about individual program runs performed in this configuration
(e.g., parameters of the DOTS runtime system, program input/output
data and event traces).
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Launch View
The launch view displays information about the progress of a parallel
computation, e.g., program output and event logs.

Graph View
The graph view is the main view used by our tool, displaying the dec-
orated execution graph. Double-clicking on a vertex denoting a DOTS

primitive marks the corresponding line in the source code editor. Leav-
ing the mouse-pointer over a vertex pops up a tooltip displaying the
internal state of the runtime system at the time of the corresponding
event. Cross-execution views (enabling visual comparison of differ-
ent programs runs) can simply be realized by opening several graph
views, one for each computation of interest. Furthermore, the graph
view provides scrolling and zooming functionality.

Graph Overview
The graph overview displays the entire execution graph and highlights
the region currently displayed within the graph view. By moving the
highlighted region on the graph overview, the graph view is set to the
corresponding region.

Performance Problems Catalog
This view presents the list of possible performance problems, which
can be automatically detected from the event trace. Double-clicking
on a list item points the graph view to the affected region of the exe-
cution graph and highlights the relevant graph elements. The different
problems are identified as follows:

• Roaming: Execution graphs contain vertices denoting queue
events. We identify possible roaming problems by searching max-
imum sequences of consecutive queue vertices whose length ex-
ceeds a given threshold value.

• False Sharing: Execution graphs also contain vertices that de-
note start-execution, end-execution and fork events. To identify
possible false sharing problems, we check, for each fork vertex,
whether the runtime of the created thread is smaller than a given
threshold value. We, therefore, use the function τ and the start-
and end-execution vertices of a thread to determine the thread’s
runtime and the function p-id and the fork and start-execution
vertex to determine if the thread was transferred to another pro-
cessor.

• False Parallelism: To identify possible false parallelism prob-
lems, we use the function p-id to check if the start-execution
vertex of a created thread has the same processor-id as the cor-
responding fork vertex.
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Besides these main components, our tool provides several auxiliary fea-
tures, e.g., exporting a graph representation for postprocessing and docu-
mentation purposes or customizing threshold values for adapting the severity
level of the problems to be listed in the performance problems catalog.

7.2.6 Analysis Methodology and Usability Example

In this section, we demonstrate our visualization methodology in the light
of a representative example application. We consider parallel Boolean sat-
isfiability (SAT) solving [18]. State-of-the-art sequential SAT solving meth-
ods employ sophisticated heuristics to prune the search space. The paral-
lelization of these heuristics results in a high degree of irregularity. Thus,
all subsequently discussed issues of parallel SAT solving can be considered
archetypal for a large class of highly irregular task-parallel applications.

Typically, the first step in analyzing a parallel program run is to check
the overall load balancing. Fig. 7.9(a) shows a computation with a high
degree of processor idling (red-colored swimlanes in the background of the
execution graph indicate idle times). Using the navigation capabilities of our
tool one can zoom to the affected regions and investigate possible causes of
processor idling by examining the local structure of the graph and checking
the state of the runtime system on other processors, e.g., sizes of task pools.
To see the effect of modifications, cross execution views can be employed for
visual comparison. Fig. 7.9(b) shows the execution graph of a computation
with the same input resulting from tuning parameter values for problem
decomposition and load sensing intervals. As the figure indicates, processor
idling is now significantly reduced.

When processor idling has been minimized, attention can be turned
to optimizing communication overhead and reducing excess computation.
Specifically, false sharing, false parallelism and roaming phenomena must
be eliminated to achieve this objective (see Section 7.2.2.2). For optimiza-
tions carried out at this stage in the tuning process, it must be ensured that
the overall load balancing is not affected. Thus, all tuning actions should
be first evaluated by using the overview graph, as described previously.

By employing the performance problem catalogue, one can detect, for
each class of performance problems, the affected region in the execution
graph. The display is automatically pointed to the region and the corre-
sponding part of the execution graph is highlighted in yellow.

Fig. 7.10 shows a part of the execution graph exhibiting typical staircase
patterns indicating a high degree of false parallelism. This is a result of
inadequate timing parameters that control the minimum delay for consec-
utive thread forks. By determining the largest of the thread cascades, one
can obtain a better estimate of the corresponding timing parameters.

In Fig. 7.11 one can see the execution graph of a computation which
suffers from noticeable false sharing effects. Here, employing a different
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(a) initial (b) optimized

Figure 7.9: Overview of the load balancing of two parallel SAT computa-
tions. Idle times are indicated by a red-colored background.
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Figure 7.10: Execution graph of a parallel SAT computation exhibiting false
parallelism.

task transfer strategy and refining load-sampling intervals can result in an
improvement.

A typical example of roaming is shown in Fig. 7.12. Roaming effects can
be reduced by adapting thresholds on the size of task pools or considering
different transfer strategies.

In principle, these performance-related issues could also be detected by
more generic visualization methods for distributed-memory architectures,
e.g., message passing displays. Typically, in such displays, processor activity
is depicted in a horizontal time-line and message transfers between proces-
sors are indicated by corresponding arrows. Thus, generic message passing
displays are located more closely to the system level. But at this level of
abstraction one can not distinguish between different message types occur-
ring in our programming model, like task transfers and task requests (em-
ployed by receiver-initiated load balancing strategies). Also, events which
do not immediately trigger a communication operation (e.g., creation of
a new thread or calling the join primitive) cannot be easily identified in
generic message passing displays. This makes it considerably more difficult
to extract appropriate information for optimizing program execution. In
particular, finding root causes of performance problems located on the pro-
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Figure 7.11: Execution graph of a parallel SAT computation with false
sharing effects.

Figure 7.12: Execution graph of a parallel SAT computation suffering from
roaming.
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gramming model level is virtually impossible with displays at lower levels of
abstraction.

7.3 Experiments

In this section we present the results of our empirical evaluation. First, we
describe the experimental setting as well as the different graph sets used for
testing our algorithms. Then we state the results related to our Fast-Sugi-
yama implementation as well as the results of the Constraint-Kandinsky
algorithm.

7.3.1 Data and Experimental Setting

All experiments were performed on an Intel Core 2 Duo System with 2.13
GHz and 2 GB main memory, running Scientific Linux 4. We used Sun’s Java
Platform, Standard Edition 6 as the runtime environment. We performed
the experiments using the following sets of graphs:

Connected Directed Random Graphs: We generated a total number
of 3000 connected directed random graphs G = (V,E), i.e., 100 graphs
for each combination of the following parameters:

|V | ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}

|E|/|V | ∈ {1.5, 2.0, 2.5}

The graphs were constructed as follows: To obtain a connected graph
with n vertices and m edges, we first construct a random tree with n
vertices. Therefore, we start with a single-vertex graph G = ({v}, ∅),
iteratively add a new vertex w to it and connect w to a randomly
chosen vertex already in G. Obviously, after n−1 iterations we obtain
a connected tree with n vertices and n − 1 edges. Now, we add the
|m|−|n|+1 outstanding edges to G by randomly choosing two vertices
and connecting them.

Execution Graphs: This graph set contains five different graphs that
represent program runs of a parallel SAT solver as described in the
preceding section.

Rome Graphs: The Rome graph test suite [48] is a well-known graph
collection that contains about 11000 undirected graphs1 with number
of vertices ranging from 10 to 100. These graphs have been generated
from a core set of 112 graphs used in “real life” software engineering
and database applications. The density of the Rome graphs is between
1 and 2 with an average value of 1.4.

1http://www.dia.uniroma3.it/people/gdb/wp12/LOG.html

http://www.dia.uniroma3.it/people/gdb/wp12/LOG.html
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7.3.2 Test Results for Fast-Sugiyama

In the following, we compare the results of our Fast-Sugiyama implementa-
tion to the results of a traditional implementation. Both implementations
use a layer-by-layer sweep with the barycenter heuristic. To obtain compa-
rable results, we fix the number of layer sweeps. More precisely, for both
algorithms we perform 12 iterations, where each iteration consists of an up
and a down sweep (a single sweep performs the two-layer crossing minimiza-
tion for each pair of adjacent layers). Furthermore, we randomly change
the processing order of the graph elements after every third iteration. Both
algorithms start with exactly the same layering produced by the simplex lay-
ering approach described in Section 2.4.2. Recall that this approach gives a
solution which minimizes the overall edge length.

For the experiments, we use the connected random graphs. We use the
feedback arc set heuristic described in Section 2.4.1 to make these graphs
acyclic. As shown in Fig.7.13(a), our Fast-Sugiyama implementation leads
to an enormous reduction of the dummy vertices inserted during the nor-
malization. Note that the diagram uses a logarithmic scale on the y-axis.
The reduction also leads to a significant improvement of the crossing mini-
mization time (Fig. 7.13(c)). Our improvements make it possible to handle
graphs that could not be handled before, due to high memory consumption
and runtime of the traditional implementation. Fig. 7.13(b) shows that the
number of crossings is almost the same for both algorithms. Slight differ-
ences are caused by the randomization as well as different refinements used
by the algorithms.

In the second experiment, we applied Fast-Sugiyama to execution graphs
as described in Section 7.2.4.1. We test the implementation using five ex-
ecution graphs of different size. The parallel computations were performed
using 16 processors (modeled as vertical partitions). For the layering we use
a longest path strategy with time interval length δ = 1s. As shown in Ta-
ble 7.1, our implementation performed well. Again it leads to a significant
reduction of the number of required dummy vertices.

# Vertices Time # Dummy Vertices # Crossings
/ Edges (ms) Fast-Sugiyama traditional

1952 / 2282 322 945 13612 1947
2690 / 3121 615 1280 23068 3129
4933 / 5732 1095 2259 46475 6363

11330 / 13259 3968 9128 133877 17480
17433 / 20460 7125 14802 244156 39140

Table 7.1: Results of the experiments for execution graphs.
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Figure 7.13: Comparing two different implementations of Sugiyama’s al-
gorithm for connected random graphs with density 1.5, 2.0 and 2.5. The
number of vertices is shown on the x-axis.
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7.3.3 Test Results for Constraint-Kandinsky

In the following, we use the Rome graph collection to test the quality of
the Constraint-Kandinsky algorithm with respect to the different drawing
constraints. We measure the number of crossings in the final drawing, the
number of crossings reduced by the rerouting step, the number of bends
as well as the runtime of the planarization and orthogonalization phase.
For our experiments on the different constraints, the compaction time never
exceeds 50 ms and is always below 10% of the overall runtime. Note that the
results presented here may be specific to our algorithm/implementation as
well as to the chosen graph set and, hence, do not give a general insight into
the complexity of the constraints. For all tests we use the following general
configuration: The planarization uses our Fast-Sugiyama implementation
with the barycenter heuristic and 12 iterations of the layer-by-layer sweep.
The rerouting step performs 3 randomized passes.

When we apply a state-of-the-art TSM-based layout approach, i.e., the
“OrthogonalLayouter” of the yFiles library [156], to the Rome graphs with-
out considering any constraints, the average number of crossings for the
instances with 100 vertices is 39.2. The average number of bends for these
instances is 39.1 and the average layout time is 61.2 milliseconds.

7.3.3.1 Mixed Upward Drawings

In this subsection we present the results of the Constraint-Kandinsky al-
gorithm with respect to constraint FLOW. First, we compare our new layer-
ing strategy described in Section 4.2.1 to traditional layering strategies. We
randomly assign directions to the edges and then remove cycles using the
feedback arc set heuristic described in Section 2.4.1. We apply our Fast-
Sugiyama implementation to the different layering strategies. We compared
our new layering to the longest path layering and the simplex layering (both
described in Section 2.4.2) as well as to a topological layering. The topolog-
ical layering calculates a topological order π of the vertices and then assigns
each vertex v to layer π(v). Fig. 7.14 shows the number of crossings for
the different layering strategies. The x-axis gives the number of vertices of
the graph instances. Our new layering significantly reduces the number of
crossings in the resulting drawing, i.e., compared to the simplex layering it
produces up to 20% fewer crossings. The results of the topological layering
indicate that our improvement does not depend solely on the sparse layers.
The runtime for calculating a result did never exceed 10 milliseconds.

In the second experiment, we compare Constraint-Kandinsky to the
UML-Kandinsky approach described in [69]. For the UML-Kandinsky ap-
proach we use the parameter set proposed in [64]. For the experiment we use
three different densities of upward edges, i.e., |E↑|/|E| ∈ {0.3, 0.6, 0.9}. The
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Figure 7.14: Number of crossings induced by different layering strategies.

edges of E↑ are chosen randomly. Cycles in the graph (V,E↑) are removed
using the feedback arc set heuristic described in Section 2.4.1.

The results shown in Fig. 7.15 and Fig. 7.16 lead to the following obser-
vations:

• For both approaches, the number of crossings increases with the num-
ber of upward edges. Constraint-Kandinsky produces slightly fewer
crossings than UML-Kandinsky.

• The planarization of Constraint-Kandinsky is significantly faster than
the planarization of UML-Kandinsky.

• For both approaches the number of bends increases with increasing
number of crossings. This can be attributed to the increasing size
of the planarized graph. This also leads to an increasing size of the
Kandinsky network and, thus, to an increasing orthogonalization time.

• For Constraint-Kandinsky the number of crossings reduced by the
rerouting step decreases with the number of upward edges. This is not
surprising since we do not reroute upward edges.

• The rerouting step of Constraint-Kandinsky is very fast and never
exceeds 4 milliseconds.

7.3.3.2 Bimodal Drawings

We test constraint BIMODAL using a similar setting as that for constraint
FLOW, i.e., for |ED|/|E| ∈ {0.3, 0.6, 0.9}. We assume that all vertices of V
are of type bimodal. The directed edges are chosen randomly.



174 Usability Study

0

50

100

150

10 30 50 70 90

vertices

c
ro

s
s

in
g

s

Constraint-Kandinsky (0.3)

UML-Kandinsky (0.3)

Constraint-Kandinsky (0.6)

UML-Kandinsky (0.6)

Constraint-Kandinsky (0.9)

UML-Kandinsky (0.9)

(a) overall number of crossings

0

10

20

30

40

10 30 50 70 90

vertices

c
ro

s
s

in
g

s

Constraint-Kandinsky (0.3)

Constraint-Kandinsky (0.6)

Constraint-Kandinsky (0.9)

(b) crossings reduced by rerouting step

0

100

200

300

10 30 50 70 90

vertices

b
e

n
d

s

Constraint-Kandinsky (0.3)

UML-Kandinsky (0.3)

Constraint-Kandinsky (0.6)

UML-Kandinsky (0.6)

Constraint-Kandinsky (0.9)

UML-Kandinsky (0.9)

(c) number of bends

Figure 7.15: Test results for constraint FLOW.
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Figure 7.16: Runtimes for constraint FLOW.
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Figure 7.17: Test results for constraint BIMODAL.
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Figure 7.18: Runtimes for constraint BIMODAL.
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The results shown in Fig. 7.17 and Fig. 7.18 lead to the following obser-
vations:

• The number of crossings increases with the number of directed edges,
i.e., edges that have to be embedded bimodally.

• The number of crossings reduced by the rerouting step increases with
the number of directed edges. This is not surprising since in the initial
drawing all directed edges point in the same direction (the layering
is more restrictive for directed edges). However, we are allowed to
reroute such edges.

• The number of bends slightly increases with the number of crossings.

• The results validate that constraint BIMODAL is less restrictive than
constraint FLOW since it produces fewer crossings and bends. Note
that for acyclic graphs, the number of crossings in the initial draw-
ing is about the same for both approaches. However, for constraint
BIMODAL we can reroute all edges, which significantly decreases the
number of crossings.

• The runtime of the planarization is dominated by the rerouting step.

• The rerouting time (and thus the planarization time) increases with
the number of reduced crossings. This can be attributed to the time
needed for updating the data structure after finding a more suitable
route for an edge. Furthermore, the size of the routing graph (and
thus the rerouting time) increases with the number of crossings in the
initial drawing (the drawing calculated with Sugiyama’s algorithm).

• The orthogonalization times for the different configurations do not dif-
fer significantly. We attribute this to the similar size of the planarized
graphs.

7.3.3.3 Cluster Drawings

Below, we state the results for constraint CLUSTER. We tested Constraint-
Kandinsky for five different configurations “(a/b)” varying in the number
of compound vertices as well as the number of vertices assigned to clusters.
For an input graph G = (V,E), the first value a of a configuration states
the number of compound vertices which is |C| = a · |V |. The second value
b states the number of vertices x = (|C| + |V |) · b assigned to compound
vertices. The vertices are assigned to compound vertices as follows: First,
for each compound vertex c ∈ C, we randomly choose a vertex of V and
assign it to c. This guarantees that each cluster contains at least one vertex.
Then, while the number of vertices assigned to compound vertices is less
than x, we randomly choose an unassigned vertex v of C ∪ V and assign
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it to a randomly chosen vertex c of C (if c is not already a successor of
v with respect to the inclusion tree). Note that the crossing number does
not include crossings of common edges with edges representing the cluster
regions.

The results shown in Fig. 7.19 and Fig. 7.20 lead to the following obser-
vations:

• The number of crossings increases with the number of clusters as well
as the number of vertices assigned to clusters.

• The number of bends increases with the number of crossings.

• The planarization time is clearly dominated by the rerouting step and
increases with an increasing number of crossings in the initial drawing.

• The rerouting time increases with the number of reduced crossings.

• The orthogonalization time increases with the number of crossings.

7.3.3.4 Partitioned Drawings

In our experiments for constraint PARTITION, we consider two-dimensional
as well as one-dimensional partitions (swimlanes). We tested 8 configura-
tions of partitions with different number of columns and rows (denoted with
“column × row partition”). For the one-dimensional partitions, we test a
configuration with (“opt”) and one without an optimized swimlane order,
calculated as described in Section 4.4.4. For each configuration the vertices
are randomly assigned to the partition cells. Note that the crossing number
does not include crossings of common edges with edges of the partition grid
graph.

The results shown in Fig. 7.21 and Fig. 7.22 lead to the following obser-
vations:

• The number of crossings increases with the number of partition columns
and rows.

• The overall number of crossings does not indicate a positive effect of
the swimlane order optimization heuristic. However, the number of
crossings reduced during the rerouting step is higher for the configura-
tions that do not use the optimization strategy. Hence, the number of
crossings in the initial drawing is lower when we use it. Thus, apply-
ing the optimization is especially useful if we also have upward edges
which cannot be rerouted.

• The rerouting step reduces the number of crossings by up to 50%.

• The number of bends increases with the number of crossings.



180 Usability Study

0

100

200

300

400

500

600

10 30 50 70 90

vertices

c
ro

s
s

in
g

s

Constraint-Kandinsky (0.1 / 0.2)

Constraint-Kandinsky (0.1 / 0.5)

Constraint-Kandinsky (0.1 / 1.0)

Constraint-Kandinsky (0.3 / 0.5)

Constraint-Kandinsky (0.3 / 1.0)

(a) overall number of crossings

0

100

200

300

400

10 30 50 70 90

vertices

c
ro

s
s

in
g

s

Constraint-Kandinsky (0.1 / 0.2)

Constraint-Kandinsky (0.1 / 0.5)

Constraint-Kandinsky (0.1 / 1.0)

Constraint-Kandinsky (0.3 / 0.5)

Constraint-Kandinsky (0.3 / 1.0)

(b) crossings reduced by rerouting step

0

50

100

150

200

250

10 30 50 70 90

vertices

b
e

n
d

s

Constraint-Kandinsky (0.1 / 0.2)

Constraint-Kandinsky (0.1 / 0.5)

Constraint-Kandinsky (0.1 / 1.0)

Constraint-Kandinsky (0.3 / 0.5)

Constraint-Kandinsky (0.3 / 1.0)

(c) number of bends

Figure 7.19: Test results for constraint CLUSTER.



7.3 Experiments 181

0

250

500

750

1000

10 30 50 70 90

vertices

ti
m

e
(m

s
)

Constraint-Kandinsky (0.1 / 0.2)

Constraint-Kandinsky (0.1 / 0.5)

Constraint-Kandinsky (0.1 / 1.0)

Constraint-Kandinsky (0.3 / 0.5)

Constraint-Kandinsky (0.3 / 1.0)

(a) planarization time

0

200

400

600

800

10 30 50 70 90

vertices

ti
m

e
(m

s
)

Constraint-Kandinsky (0.1 / 0.2)

Constraint-Kandinsky (0.1 / 0.5)

Constraint-Kandinsky (0.1 / 1.0)

Constraint-Kandinsky (0.3 / 0.5)

Constraint-Kandinsky (0.3 / 1.0)

(b) rerouting time

0

100

200

300

10 30 50 70 90

vertices

ti
m

e
(m

s
)

Constraint-Kandinsky (0.1 / 0.2)

Constraint-Kandinsky (0.1 / 0.5)

Constraint-Kandinsky (0.1 / 1.0)

Constraint-Kandinsky (0.3 / 0.5)

Constraint-Kandinsky (0.3 / 1.0)

(c) orthogonalization time

Figure 7.20: Runtimes for constraint CLUSTER.
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Figure 7.21: Test results for constraint PARTITION.
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Figure 7.22: Runtimes for constraint PARTITION.



184 Usability Study

• The planarization time is clearly dominated by the rerouting step and
increases with an increasing number of crossings in the initial drawing.

• The rerouting time increases with the number of reduced crossings.

• The orthogonalization time increases with the number of crossings.

7.3.3.5 Port Constraint Preserving Drawings

Below, we compare different planarization and orthogonalization approaches
that include port/side constraints. In the first experiment, we compare
the Constraint-Kandinsky planarization with the alternative planarization
approaches described in Section 6.2. We, therefore, independently consider
the sc, pc and mc scenarios and measure the overall number of crossings,
the number of edges in the planar subgraph (i.e., the number of these edges
divided by the overall number of edges) as well as the overall runtime of the
planarization. Note that for all alternative planarization approaches we use
a modified shortest path routing for inserting the remaining edges.

sc scenario Recall that in the sc scenario each edge has side constraints
on both endpoints. Hence, for each endpoint of each edge we randomly
choose one of the four possible sides. We compare the results of the Constra-
int-Kandinsky planarization to the results produced with the GT-based and
the tree-based planarizations. As shown in Fig. 7.23(b), the Constraint-
Kandinsky planarization produces slightly fewer crossings than the other
approaches. However, to obtain this number of crossings, its rerouting step
has to remove a lot of crossings, which results in a significantly higher run-
time compared to the two other approaches (Fig. 7.23(c)). Hence, when we
only consider constraint PORT/SIDE, approaches that are based on calcu-
lating a maximum planar subgraph may be superior to our approach.

Surprisingly, the planar subgraphs produced by the tree-based approach
have more edges than the subgraphs produced by the GT-based approach
(Fig. 7.23(a)). We attribute this to the relatively small density of the Rome
graph collection. When the density is higher there are more candidates
during the calculation of the maximum independent sets, which will improve
the results of the GT-based planarization.

pc scenario In the pc scenario each edge has port constraints on both
endpoints. For each endpoint of each edge we randomly choose one of the
8κ − 4 possible pins. For the experiments we choose κ = 10. We com-
pare the results of the Constraint-Kandinsky planarization to the results
produced with the successive planarity testing approach and the tree-based
planarization. As shown in Fig. 7.24(b), the number of crossings for all these
approaches does not differ significantly. The successive planarity testing ap-
proach produces larger planar subgraphs than the tree-based planarization
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(Fig. 7.24(a)). This is not surprising since it always calculates a maximal
planar subgraph (not to be confused with a maximum planar subgraph).

For all approaches, the number of crossings in the pc scenario was only
slightly higher than for the sc scenario (recall that the pc scenario is more
restrictive). We attribute this to the relatively small density of the Rome
graph collection, i.e., the average degree of a vertex is below three. Hence,
there may be several vertex sides that are associated with only one edge. In
this case, the port constraints can be handled like side constraints.

mc scenario First, for each endpoint of each edge we randomly choose,
if the endpoint has a port, a side constraint or no constraint (all with the
same probability). The side/pin is randomly chosen in the same way as
for the sc and pc scenarios, respectively. We compare the results of the
Constraint-Kandinsky planarization to the results produced with the tree-
based planarization. As shown in Fig. 7.25(b), the Constraint-Kandin-
sky planarization produces slightly fewer crossings. Compared to the other
scenarios, the number of crossings is fewer because about one third of the
edges’ endpoints have no constraints (the edge routing is less restrictive for
these edges).

For the mc scenario we also test the different orthogonalization approaches,
i.e., the skeleton-based network flow approach described in Section 5.4 (called
“skeleton”) and the network flow approach without fixing a skeleton (called
“no-skeleton”) described in Section 6.3.2. Both approaches are applied to
the same port constraint preserving embedding. Surprisingly, the number
of bends produced by the skeleton-based approach was significantly higher
than that of the no-skeleton approach (Fig. 7.26(b)). We mainly attribute
this to an unsuitable handling of the orientation problem. Recall that we
insert up to |V | − 1 additional edges, i.e., skeleton edges, to fix the orien-
tation of the vertices. Of course, this can lead to artifacts in the resulting
drawings. The skeleton-based approach has a higher runtime since the ad-
ditional skeleton edges as well as angle- and bend-constraints enlarge the
Kandinsky network.

We also state the results obtained with the odevs approach described
in Section 6.1.2. As shown in Fig. 7.26(c), the approach is very fast and
produces significantly fewer bends. However, the number of crossings was
extremely high compared to the two other orthogonalization approaches
(Fig. 7.26(a)). Hence, we think that in order to use the odevs approach in
practice we have to further reduce the number of crossings.

7.3.3.6 Summary

From the above results for Constraint-Kandinsky, we draw the following
conclusions:
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• Constraint-Kandinsky is fast. In our experimental setting, it never
exceeds a runtime of 1.5 seconds.

• The rerouting step always removes a lot of crossings (up to 50%).
Hence, regarding aesthetic CROSSING, our TSM-based approach is
clearly superior to Sugiyama-based approaches. Recall that our initial
drawing is derived from a state-of-the-art Sugiyama implementation.

• The orthogonalization produces satisfying results in most cases. The
number of bends for constraint PORT/SIDE is quite high. We at-
tribute this to an unsuitable handling of the orientation problem.



Chapter 8

Conclusion

In this work, we addressed different drawing constraints which appear in dia-
grams used in application areas like software engineering, database modeling
and VLSI design. We presented Constraint-Kandinsky, a new automatic
layout algorithm which is based on the topology-shape-metrics approach and
is able to consider all these constraints at the same time. Constraint-Kan-
dinsky can be applied to several diagram types, e.g., UML class diagrams,
entity-relationship diagrams, business process diagrams and many more. In
our usability study we demonstrated how to apply Constraint-Kandin-
sky to UML activity diagrams. Furthermore, we presented a visualization
method for execution graphs of parallel computations.

The experiments reveal the strengths and weaknesses of our layout ap-
proach. The results from our new planarization framework are especially
convincing. In our experimental setting, Constraint-Kandinsky never ex-
ceeds a runtime of 1.5 seconds. For constraint PORT/SIDE, the handling of
the orientation problem often leads to artifacts in the resulting drawings, i.e.,
edge routes with unnecessary bends. Nevertheless, we think that Constra-
int-Kandinsky is well suited for graphs of medium size and lower density
(≤ 100 vertices, ≤ 2 density), which is sufficient for most diagrams used in
the aforementioned applications. Our results prove that for these graphs the
layout capabilities of TSM-based approaches regarding drawing constraints
are competitive with those of layered and force-directed approaches. For
larger graphs, the results produced by TSM-based approaches often suffer
from phase arrangement, i.e., minimizing the number of crossings and bends
is more important than minimizing the required drawing area. This strategy
often leads to unsatisfying results for larger graphs since the drawing area is
not used efficiently. For these graphs it is often desirable to switch to alter-
native layout approaches, e.g., to Sugiyama’s approach, which we used for
the visualization of execution graphs. Besides the size of the input graphs,
the layout quality and runtime strongly depend on the number of constraints
that have to be satisfied. However, this behavior is not surprising and we
do not attribute it to a weakness in our approach.
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In the following, we give a short overview of the main results presented
in this work followed by a discussion about possible directions for future
research.

8.1 Results

The main results presented in this work are the following:

• We reviewed different important drawing constraints which appear in
several practical applications. These constraints restrict the cyclic or-
der of edges around the vertices (BIMODAL and PORT/SIDE), group
related vertices (CLUSTER and PARTITION) and draw edges mono-
tonically in a prescribed direction (FLOW). Besides a formal descrip-
tion of these constraints, we also state important theoretical results
as well as practical approaches carried out so far. Furthermore, for
constraint PARTITION we showed that the corresponding planarity
testing problem can be solved in linear time.

• We presented a generic planarization framework which is able to si-
multaneously include all the aforementioned constraints. It is based
on a combination of the layered drawing approach of Sugiyama and
a common rerouting strategy. As shown in this work, our framework
is highly adaptable, robust and well suited for calculating planar em-
beddings subject to our set of drawing constraints.

• We presented Fast-Sugiyama, a fast implementation of the popular
layered drawing approach of Sugiyama which produces drawings in the
linear segments model. By a conceptually simple new technique, we are
able to keep the number of dummy vertices and edges linear in the size
of the input graph without increasing the number of crossings. Thus,
we reduce the worst-case time complexity from O((|V ||E|) log |E|) to
O((|V | + |E|) log |E|) and the space consumption from O(|V ||E|) to
O(|V |+ |E|).

• We described the necessary extensions for incorporating the different
drawing constraints into the orthogonalization phase. Furthermore,
we gave a brief description of how to handle self-loops as well as labels
of graph elements.

• We presented alternative approaches for handling port and side con-
straints. This includes different planarization approaches which are
based on common planarization strategies as well as two further or-
thogonalization approaches. We also introduced the odevs drawing
model and showed that producing bend-minimum port constraint pre-
serving drawings in this model is NP-hard. Based on this model we
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developed a linear-time approach for handling port/side constraints
which produces less than or equal to 3|E| bends and at most 4 bends
per edge.

• We described how to apply Constraint-Kandinsky for drawing UML
activity diagrams. We identified requirements and aesthetics for such
diagrams and reviewed some popular UML tools with respect to their
automatic layout capabilities.

• We presented an advanced visualization method for execution graphs
of parallel computations which is based on our Fast-Sugiyama imple-
mentation. Our visualization is capable of concisely depicting several
performance-relevant properties of task-parallel computations. The
low runtime complexity of our visualization method enables highly in-
teractive development workflows. We also studied the integration of
our visualization method into a comprehensive development environ-
ment and realized a visually steered workbench for minimizing parallel
overhead of irregular task-parallel computations.

8.2 Directions for Future Research

In this section we discuss possible directions for future research. This in-
cludes improvements of the presented algorithms, general extensions to in-
clude further drawing requirements as well as solving open theoretical ques-
tions. The following items depict promising improvements for our layout
algorithms:

• During the planarization phase, we only reroute non-upward edges.
As our experiments have shown, rerouting has a great impact on the
crossing number. Hence, we can further improve quality by also rerout-
ing upward edges. The approach for routing upward edges described
in [69] can provide a suitable starting point for this purpose. Further-
more, the experiments point out that the runtime of the planarization
phase is dominated by the rerouting step. We think that we can speed
up the rerouting by using a more sophisticated data structure that
allows faster updates of the planar embedding and the dual routing
graph after changing the route of an edge.

• The experiments also indicate that a more adequate handling of the
orientation problem may lead to a significant improvement of the lay-
out quality. The current handling often leads to unsatisfying edge
routes with many bends, especially for port/side constraints.

• A more appropriate handling of the straight-line edge assignment

issue and the no pin left issue (both introduced in Section 5.4)
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can further reduce the number of bends in drawings with port/side
constraints.

• For graphs with port/side constraints, our odevs-based approach pro-
duces drawings with fewer bends than drawings produced by TSM-
based approaches. However, to make the odevs approach more at-
tractive for practical use, the number of crossings has to be further
reduced. We believe that there is still some room for such an improve-
ment. In addition, in practice it is more suitable to not restrict vertices
to lie on general positions.

While our layout algorithms already cover important requirements de-
manded by several diagram types, there are still some relevant requirements
left for future work:

• Future work might comprise an interactive version of Constraint-
Kandinsky where the user can continuously change a diagram by
adding or removing graph elements. When we apply our current ap-
proach to the modified graph structure, the resulting drawing can be
significantly different to the previous one, even for small updates. The
main objective of an interactive layout approach is to preserve the
user’s mental map [57] of a drawing, i.e., to produce a readable drawing
that minimizes changes to the previous diagram. Here, the concepts
of sketch-driven orthogonal layout developed in [26] fit into our frame-
work. Furthermore, there are approaches for including interactivity
in Sugiyama’s approach; see, e.g., [20, 117]. However, these concepts
require major modifications and extensions in order to be applicable
to our set of drawing constraints.

• Another issue that often arises in interactive applications are “partial
layouts”, i.e., layouts where some of the vertices have fixed coordinates
and some of the edges have specified routing points. The layout al-
gorithm has to integrate the non-fixed graph elements into the layout
of the fixed elements such that the resulting diagram is readable and
the coordinates of the fixed elements do not change. Due to the fixed
order of the phases of the TSM approach – coordinates first appear
in the last phase – including this kind of constraint seems to be very
difficult.

• To reduce complexity, it is often desirable to reorganize larger dia-
grams into several smaller ones [3]. Basically, there are two different
strategies for how this task can be performed. We can take the in-
put graph, subdivide it into several subgraphs according to semantic
properties and then apply the layout algorithm to each subgraph sep-
arately. The second strategy applies the algorithm to the whole input
graph and subdivides the resulting diagram into smaller pieces. Here,
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the objective is to produce pieces that do not exceed a given size and
that minimize the number of cut edges. An approach realizing this
strategy is sketched in [60].

• To apply port/side constraints to a wider field of applications, we can
include enhanced requirements like multi-candidates port/side con-
straints, limited number of pins and pin sharing as proposed in Sec-
tion 6.4.

There are several open theoretical questions which we encountered in
this work. Solving them may lead to new or improved algorithms. We think
the most interesting questions are the following:

• It remains unknown whether bend minimization in the Kandinsky
model is NP-hard. A further interesting question is whether the min-
imization problem can be solved if all edges are drawn upward. Note
that this restricts the edge routes in a way such that the problem may
become easier.

• There are several publications about c-planarity testing for clustered
graphs; see [38, 39, 40, 47, 73, 91], however, the complexity of the
problem is still unknown.

• Up to now, there has been no planarity test for graphs with port/side
constraints, but the approach of Gutwenger et al. [92] offers a step
towards such a test. It cannot, however, handle vertices which have
both incident edges with and without constraints.

• Another open problem related to port/side constraints is whether
crossing minimization in the pc scenario is still NP-hard. An alterna-
tive formulation of this problem is: Given a general graph G = (V,E)
and the cyclic order of the edges around each vertex, is crossing mini-
mization subject to the given cyclic order still NP-hard?

In our opinion, working on the above topics is important to further
improve the quality and benefits of automatic layout approaches as well as
to produce adequate visualizations for complex and interactive applications.
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