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Zusammenfassung

Der Metabolismus lebender Organismen besteht aus einem komplexen Net-
zwerk chemischer Reaktionen, welche kleine Moleküle transformieren, um
Energie und Biomasse aus Nährstoffen zu gewinnen. In solch einem Net-
zwerk repräsentieren Stoffwechselwege regulierte funktionelle Einheiten zur
Konversion bestimmter Quellmetaboliten in Produktmoleküle durch eine Se-
quenz von Reaktionen. Jedoch ist das Wissen über Stoffwechselwege, vor
allem in neu sequenzierten Organismen, unvollständig oder benötigt noch
experimentelle Bestätigung. Das mögliche Vorkommen neuartiger oder al-
ternativer Pfade muss bei der Erforschung der metabolischen Fähigkeiten
von Organismen berücksichtigt werden. In diesem Zusammenhang bietet
die rechnergestützte Herleitung biologisch bedeutsamer Pfade eine attraktive
Ergänzung zu experimentellen Studien und besitzt zahlreiche Anwendungen
in der Systembiologie.

Diese Arbeit prsentiert mehrere neuer rechnergestützter Methoden zur
Analyse von Stoffwechselwegen in genomweiten Netzwerken. Entwickelt wur-
de ein graphtheoretischer Ansatz, der das metabolische Netzwerk auf einen
gewichteten Graphen abbildet und einen effizienten Pfadsuch-Algorithmus
zur Berechnung relevanter Biotransformationsrouten verwendet. Der Ansatz
wurde ergänzt durch die Integration weiterer relevanter Informationen, ab-
geleitet aus den biochemischen Entitäten (Metaboliten, Reaktionen und En-
zyme), die das Netzwerk aufbauen. Aus diesem Grund wurde eine verbesserte
Methode erzeugt, welche atomare Abbildungsregeln aus den chemischen Struk-
turen der Netzwerkverbindungen automatisch berechnet. Für eine gegebene
Reaktion definiert eine atomare Abbildungsregel welches Atom einer Edukt-
verbindung auf welches Atom einer Produktverbindung transferiert wird. Die
Anwendung dieser Regeln erlaubt es den Fluss von Atomen in der Pfadsuche
zu verfolgen, was für die Erkennung biochemisch unzulässiger Routen hilfre-
ich ist. Eine weitere Methode zur Abschätzung freier Reaktionsenthalpien
(Gibbs-Energien) unter (biochemischen) Standardbedingungen wurde ent-
wickelt und verwendet um die Pfadsuche zu verbessern. Die dritte Methode
erweiterte die Pfadanalyse durch vorhergesagte Informationen über die sub-
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zelluläre Lokalisierung der beteiligten Enzyme.
Um die Nützlichkeit der entwickelten Methoden für metabolische Pfad-

analysen zu demonstrieren, wurden experimentell bestätigte Biotransforma-
tionsrouten in den Netzwerken von Escherichia coli und Arabidopsis thaliana
vorhergesagt.

Im letzten Teil dieser Arbeit wird ein benutzerfreundliches Web-Interface,
genannt MetaRoute, zur Erkundung der metabolischen Netzwerke von hun-
derten von Organismen beschrieben.



Abstract

The metabolism of living organisms consists of a complex network of chem-
ical reactions that transform small molecules to gain energy and biomass
from nutrients. In such a network, metabolic pathways represent regulated
functional units for converting particular source metabolites into product
molecules by a sequence of reactions. However, knowledge about pathways,
especially in newly sequenced genomes, is incomplete or remains to be exper-
imentally verified. The potential presence of novel or alternative pathways
has to be considered when investigating metabolic capabilities of organisms.
In this context, computational inference of biologically meaningful pathways
constitutes an attractive complement to experimental studies and has nu-
merous applications in systems biology.

This thesis presents several novel computational approaches for analyzing
metabolic pathways in genome-scale networks. A graph theoretical approach
was developed that maps the metabolic network onto a weighted graph and
uses an efficient path-finding algorithm to calculate relevant biotransforma-
tion routes. The approach was complemented by the integration of further
relevant information derived from the biochemical entities (metabolites, reac-
tions and enzymes) that build up the network. For this purpose, an improved
method was created that automatically calculates atom mapping rules from
chemical structures of the network compounds. Given a chemical reaction,
an atom mapping rule defines which atom of an educt compound is trans-
ferred to which atom of a product compound. The application of these rules
allows one to trace the flow of atoms in the path search, which is useful for
detecting biochemically unfeasible routes. A further method for estimating
Gibbs energy changes of reactions under (biochemical) standard conditions
was developed and used to improve the path search. The third method ex-
tended the pathway analysis using predicted information about subcellular
localizations of the enzymes involved.

To demonstrate the usefulness of the developed approaches for metabolic
pathway analysis, experimentally verified biotransformation routes in the
metabolic networks of Escherichia coli and Arabidopsis thaliana were pre-
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dicted.
In the last part of this thesis a user-friendly web interface, called MetaRoute,

for exploring the metabolic networks for hundreds of organisms, is described.
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Chapter 1

Introduction

1.1 Motivation

Cellular metabolism consists of a complex network of chemical reactions that
transform small molecules and that operate together to convert nutrients into
energy and biomass. In such a network, metabolic pathways represent func-
tional units that are responsible for specific metabolic processes, for exam-
ple, the degradation of carbon sources like glucose or the synthesis of amino
acids. The metabolic pathways known from many biochemical textbooks
have been discovered through painstaking work on specific model organisms.
However, it has been shown that in reality metabolic networks are much
more variable and more interconnected than the (mostly linear) textbook
pathways [Cordwell, 1999]. In microbial genomes especially, even standard
pathways of the core metabolism like glycolysis, the TCA cycle or the pen-
tose phosphate pathway can vary widely even within a species (e.g., from
strain to strain) due to missing or mutated enzymes. The existence of alter-
native pathways is the result of an organism’s adaptation to its environment
or niche. Therefore, knowledge of all feasible routes transforming a source
metabolite into a target metabolite can help to understand the metabolism
better or to decide whether particular enzymes or intermediates are essential
in the process. However, experimental determination of pathways is labori-
ous and time-consuming. So far, there is no high-throughput method for this
task. Hence, there is a need to develop computational approaches for detect-
ing plausible pathways in genome-scale metabolic networks. Applications
can be found in systems biology related fields like metabolic engineering to
support genetic modification of microorganisms in order to increase the yield
of industrially important metabolites. The identification, based on computa-
tional tools, of (non-)essential enzymes in metabolic pathways is also useful
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Figure 1.1: The reconstruction of metabolic networks based on data extracted
from pathway databases enables computational analysis of metabolic pathways.

for detecting potential drug targets. Furthermore, the design of tracer or
knock-out experiments is much easier knowing all alternative routes that are
affected by enzymes under study or compounds marked by radioisotopes.

1.2 State of the art

With the availability of whole-genome data and functional annotation for a
wide range of organisms, computational tools can now be applied to a much
broader range of problems and model organisms. Starting from gene-enzyme
relations, one can use enzyme-reaction as well as reaction-compound relations
(extracted from pathway databases like KEGG [Kanehisa, 1996], EcoCyc
[Keseler et al., 2005], MetaCyc [Caspi et al., 2006] and BRENDA [Schom-
burg et al., 2002]) to reconstruct an organism-specific metabolic network (see
also Fig. 1.1). The computational analysis of these networks, focusing on the
detection of novel or alternative pathways that transform a particular source
into a target compound, requires sophisticated approaches. A major prob-
lem in this context is the computational effort caused by the combinatorial
explosion of the number of possible routes in large-scale metabolic networks.
Searching for relevant pathways without information other than the con-
nectivity, i.e., when two successive reactions are connected by a common
metabolite, often delivers meaningless results. Küffner et al. [2000] applied
such a naive or “blind” search to a metabolic network at genome-scale. An
exhaustive enumeration algorithm was developed to analyze the glycolysis
pathway, i.e., for the enumeration of all routes starting from glucose as source
and ending in pyruvate. The authors found at least 500,000 different routes
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Figure 1.2: Finding relevant routes in metabolic networks is complicated by the
fact that many metabolites can assume different roles (e.g. main educt/product,
black arrows or side educt/product, red arrows) in different reactions depending
on the context.

of at most nine reaction steps from glucose to pyruvate. Of course nearly
all of them are biologically irrelevant. The large number of routes results
from the presence of so-called pool metabolites like water, ATP or NADH
that participate in many reactions (see also Fig. 1.2 for an illustration). For
example, using ADP as an intermediate would lead to a very short but irrel-
evant route from glucose to pyruvate. A simple strategy to avoid irrelevant
short cuts is the removal of pool metabolites. But ignoring these network
hubs cannot be a satisfying solution since their choice is not always obvious.
Removing compounds runs the risk of missing relevant routes and does not
guarantee the retrieval of only relevant ones. The main problem is that even
such a typical side metabolite like ADP acts as a real intermediate in several
pathways. Further examples are glutamate or pyruvate where their role as
a main or side metabolite is not unique or clear in all reactions [van Helden
et al., 2002].

The recent approaches to metabolic pathways described in the literature
can be roughly divided into two main groups. Constraint-based methods
[Schuster et al., 1999; Schilling et al., 2000] infer network-based, stoichiomet-
rically balanced pathways defined as a metabolic subnetwork in which the
net production and consumption of all compounds is zero. Excluded from
this balance are the source and target compounds and a predefined set of
so-called external compounds or pool metabolites. The metabolic network
is represented as a stoichiometric matrix where rows and columns represent
metabolites and reactions. The pathways are inferred using convex analysis
[Rockafellar, 1970], a branch of mathematics for analyzing a set of linear
equations under a given set of constraints. The advantage of the method
is that it is mathematically well defined. Since stoichiometry is the driving
concept, the comparison of alternative pathways with respect to biotech-
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nological applications is well established. In this context, the analysis of
pathways is focused on increasing the yield of industrially important com-
pounds from specific source metabolites. Irrelevant routes, as described in
the previous section, cannot be inferred by stoichiometric approaches. How-
ever, while the problem of enumerating all relevant pathways is avoided, the
underlying calculation still represents a computationally hard problem. It
seems to be intractable to use the approach for most genome-scale networks
[Klamt et al., 2002, 2003; Yeung et al., 2007]. Furthermore, it is not clearly
defined how to distinguish between internal and external (pool) metabolites,
which is, as has already been described, a non-trivial task. In practice, the
computational complexity is reduced by using networks of moderate size and
irreversible reactions.

Graph theory-based methods search for linear biotransformation routes,
simply defined as a linear sequence of chemical reactions in which a source
compound is converted into a target compound step by step. The metabolic
network is represented as a graph [Arita, 2000; Rahman et al., 2005; Croes
et al., 2006]. An advantage is the availability of already established and effi-
cient path-finding algorithms that have polynomial runtime. Therefore, these
algorithms can be used for genome-scale network analysis [Aittokallio et al.,
2006]. An interactive navigation through metabolic networks is possible,
simply by searching for (k-shortest) paths between a given source and tar-
get, without the need for user-defined constraints [van Helden et al., 2002].
However, the main challenge for graph theory-based methods is to detect
only relevant routes within the first calculated (k-shortest) paths as well as
to filter out biologically meaningless routes. This step requires the defini-
tion of relevance or optimization criteria. For this purpose, consideration of
the structural information of the metabolites is used in several methods. The
PathwayHunter tool [Rahman et al., 2005] uses chemical fingerprints to guide
a shortest-path search between structurally similar metabolites. Chemical
fingerprints are unique patterns that represent the presence and absence of a
defined set of chemical groups or substructures. Another promising idea is to
trace the flow of atoms in a shortest-path search using atom mapping rules
[Arita, 2000, 2003]. Given a chemical reaction, an atom mapping rule defines
which atom of an educt compound is transferred to which atom of a product
compound. The sequential application of these rules is helpful for detecting
biochemically irrelevant shortest paths in which no atom is transferred from
the source to the target. The main problem is that, despite the atom trace,
the shortest-path search tends to go through pool metabolites or network
hubs that connect many different pathways across the whole metabolic net-
work. The structural information, necessary for atom mapping calculation, is
either not given or is incomplete for a fraction of compounds participating in
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reactions stored in pathway databases. Those compounds are often described
only by a string name or represent general molecules like ‘an alcohol’. This is
also a principal problem when using chemical fingerprints. Furthermore, the
automated and efficient calculation of atom mapping rules, given thousands
of reactions in a database like KEGG, is complicated and requires sophis-
ticated algorithms. Although the consideration of structural information is
doubtlessly very useful, its incorporation requires pre-calculation effort and
makes the path-finding process more complicated. An alternative strategy
was proposed by Croes et al. [2006], where the metabolic network is rep-
resented by a degree-weighted graph. In this graph each node is assigned
a weight equal to its degree. Searching for the lightest path significantly
reduces the probability of finding irrelevant routes containing pool metabo-
lites as intermediates. An advantage is that structural information about
the compounds is not needed and that the guided shortest-path search is
replaced by the search for the lightest path based on an easy-to-use opti-
mization criterion. However, the method fails for routes containing network
hubs as intermediates or for routes passing through several pathways of the
core metabolism such as glycolysis or the TCA cycle. Those pathways con-
tain highly connected metabolites like pyruvate or acetyl-CoA and receive,
therefore, high overall path weights.

Compared to constraint-based approaches, the main advantage of graph
theory-based methods for metabolic pathways is that efficient (k-shortest)
path-finding algorithms can be used to deal even with genome-scale networks.
However, graph theory-based search requires the consideration of suitable
optimization criteria to find relevant routes. Approaches described in the lit-
erature so far, like node-degrees or atom mapping rules, are not sophisticated
enough and still produce irrelevant routes. The reason is that they ignore
important biochemical and biological constraints like reaction energetics or
subcellular localizations of enzymes. Furthermore, current state-of-the-art
methods are still computationally demanding due to the high number of
irrelevant routes and the necessary adaptation of path-finding algorithms.
This also renders efficient interactive search difficult.

1.3 Contributions of this thesis

This thesis introduces novel approaches for analyzing metabolic pathways
which improve or complement existing approaches. A graph theory-based
approach for finding feasible biotransformation routes represents the basic
framework. Our method ensures efficient calculation of relevant routes in
metabolic networks at the genome scale without the need for pre-defining
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pool metabolites. To this end, we integrated atom mapping rules and the
lightest path search into a joint method. The key component of the ap-
proach is a novel method for the fully automated and efficient calculation of
atom mapping rules. In addition to the detection of biochemically unfeasible
routes, the application of atom mapping rules allows to create graph repre-
sentations that are specialized for carbon, nitrogen, sulfur or phosphorous
metabolism. The advantage is a reduced network complexity. Compared to
the degree-weighted graph approach [Croes et al., 2006] we use more complex
weighting schemes. The combined weighting distinguishes between weights
assigned to the compounds and those assigned to the reactions in the net-
work.

An important goal of this work was also the integration of further relevant
biological or biochemical data into the weighting scheme. For this purpose,
we transformed thermodynamic information (Gibbs reaction energy, ∆Gr)
and the subcellular localization of the catalyzing enzymes into numerical
weights, which improved the combined weighting.

The Gibbs energy represents the driving force for each biochemical reac-
tion in the metabolic network. Reactions require a negative change in Gibbs
energy to take place spontaneously. Those reactions that are associated with
a positive change in Gibbs energy will not occur spontaneously. The biochem-
ical meaning of using Gibbs energy information to select plausible pathways
derives from the assumption that biological systems prefer to use the ther-
modynamically most favorable route among a set of alternative routes for
converting a particular source into a target metabolite. The actual change in
Gibbs energy of a reaction depends on the specific physiological conditions,
the compounds involved (the educts and products) and their intracellular
concentrations. Gibbs reaction energies can be determined experimentally
under standard conditions. These standard Gibbs energies can provide valu-
able clues about the thermodynamic feasibility of metabolic pathways. How-
ever, this kind of thermodynamic information is available only for a very
limited number of reactions stored in pathway databases. Computational
approaches could be the solution by complementing reactions with standard
Gibbs energies. To our knowledge, there is only one method that is special-
ized in the estimation of standard Gibbs energies of biochemical reactions
[Mavrovouniotis, 1990, 1991]. Since this method requires a non-trivial de-
composition of compounds into non-overlapping groups of atoms and ignores
important biochemical effects like the ionic strength, the presence of metal
ions and the dissociation of a compound into several ionic species in dilute
aqueous solution, we decided to develop a novel approach. We applied quan-
titative structure-property relationship (QSPR) techniques. To this end, we
calculated molecular descriptors for the educts of products of reactions with a
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known change in Gibbs energy under biochemical standard conditions. Mul-
tiple linear regression and stepwise feature selection were used to obtain a
high-quality predictive model. Performance evaluation using an independent
test procedure showed excellent performance of the model.

Another important restriction on the feasibility of a metabolic pathway
is the presence of all its constituent enzymes in the same subcellular com-
partment or at least a small number of transitions between compartments
along the pathway. Enzymes are built up from protein monomers, which in
turn, are synthesized in the cytoplasm and need to be further transported
into their destination compartment based on sorting signals in their amino
acid sequence. Eukaryotic cells, in particular, are organized into different
membrane-surrounded compartments. Each compartment is specialized for
a specific set of cellular functions. This includes the spatial organization of
enzymes in metabolic pathways [Hrazdina and Jensen, 1992]. Spatially dis-
tinct enzymes and metabolites enable a better fine-tuning of the metabolism.
While transport between compartments is not uncommon, enzymes belong-
ing to adjacent steps in a pathway are usually localized in the same com-
partment. This information can be exploited as well in order to recognize
infeasible or less probable pathways. The underlying idea of considering the
subcellular localizations of successive enzymes in the path search is, there-
fore, the assumption that a metabolic pathway is more efficient if its enzymes
are co-localized. This was also proposed in a similar way by Gille et al. [2005]
who describe the consideration of the cellular compartmentalization as a new
dimension to the formulation of network models.

However, for newly sequenced genomes especially, experimentally deter-
mined subcellular localizations of enzymes are rarely available. This kind of
information is desirable not only for enzymatic proteins but for the whole pro-
teome. Hence, a variety of computational approaches for predicting the sub-
cellular localizations of proteins have been developed in recent years. Some
of them are based on the detection of sorting signal sequences. However,
the whole protein sorting process is very complex and not completely under-
stood. Many protein sequences lack clearly identifiable signals. Therefore,
other approaches primarily rely on more indirect data like the presence of
functional domains or associated textual information extracted from annota-
tion databases like Swiss-Prot. Our contribution to the problem, within the
scope of this thesis, is a novel approach based on support vector machines
(SVM) that combines features that are directly involved in the protein sort-
ing process and derived from the amino acid sequence with evolutionary
information in the form of phylogenetic profiles and textual information in
the form of Gene Ontology (GO) terms. Using independent datasets, our ap-
proach performed considerably better for most tested categories than current
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state-of-the art tools.
Having computational methods for predicting thermodynamic and subcel-

lular localization information ready, we could extend the weighting scheme
of our graph theory-based approach for finding relevant biotransformation
routes. Different graph types and search strategies were analyzed in genome-
scale studies with the intention to demonstrate that adding relevant informa-
tion into the graph representation and path-finding algorithm would increase
the search performance. Therefore, we tried to infer experimentally deter-
mined biotransformation routes in the metabolic networks of Escherichia
coli and Arabidopsis thaliana. Besides the overall performance results, which
are very promising, we also present detailed results for a selection of several
selected interesting pathways.

Furthermore, we developed a user-friendly web interface called MetaRoute,
which offers interactive navigation through genome-scale metabolic networks
for hundreds of organisms, combined with an easy-to-use visualization of the
search results. Given a source and target metabolite, the tool calculates up
to 500 metabolic routes that can be merged into a local network. Cross-
species comparison is possible by searching in the combined (meta-) network
of multiple organisms.

1.4 Structure of this thesis

The biological and biochemical background required for this thesis is sketched
in Chapter 2. Along with the basic concepts of cellular metabolism, the ba-
sic principles of thermodynamics, especially of biochemical thermodynamics,
and the details of protein sorting are outlined. The computational back-
ground to this work, including related work, is presented in Chapter 3. Here,
the focus is on graph theory-based metabolic pathway analysis, which repre-
sents the main topic of this thesis. Chapter 4 contains the key contributions
of this thesis. It describes the details of our graph theory-based framework
for finding relevant biotransformation routes in metabolic networks, the com-
putational approaches that provide relevant information deduced from com-
pounds, reactions and enzymes in the form of atom mapping rules, standard
Gibbs energies and subcellular localizations. For each approach the results
obtained are presented and discussed. Finally, the functionality and poten-
tial applications of the implemented web interface for network navigation
and visualization are outlined. Concluding remarks, including suggestions
for future research projects, complete this work in Chapter 5.



Chapter 2

Biological and biochemical
background

This thesis was concerned with the problem of computing all biologically rel-
evant pathways transforming a source into a target compound in a metabolic
network of interest. Knowing these pathways supports biomedical and biotech-
nological applications that require a deep understanding about the interplay
of metabolic processes.

The sections in this chapter contain the underlying biological and bio-
chemical background of this work. The basic concepts of cellular metabolism
followed by the basic principles of bioenergetics and protein sorting are pre-
sented.

2.1 Cellular metabolism

Cellular metabolism consists of a highly complex network of chemical reac-
tions that transform small molecules, also called metabolites. Depending on
the needs of the organism, the metabolic network stores or converts energy ex-
tracted from given nutrients. The energy is used to maintain the functioning
of the organism and to renew its structure by synthesizing macromolecules
like proteins, nucleic acids, polysaccharides and lipids. In principle, nutrients
are of the same type as these macromolecules and have to be decomposed in a
process called biological degradation in order to gain the necessary energy and
chemical building blocks for the synthesis of other essential biomolecules. To
enable both macromolecular synthesis and degradation, also called anabolism
and catabolism, cellular metabolism is regulated as well as temporally and
spatially organized.
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Figure 2.1: An illustration of the well-known glycolysis pathway. Glucose is
degraded to pyruvate by a sequence of transforming reactions.

2.1.1 Metabolic pathways

Metabolic pathways represent functional units within a network. Depending
on the particular purpose, one distinguishes between synthesis or degradation
pathways. Typically, biochemistry defines a metabolic pathway as a sequence
of chemical reactions, whereby a given source molecule is converted stepwise
into some other molecule or molecules [Berg et al., 2002]. For example, the
glycolysis pathway (shown in Fig. 2.1) converts glucose into pyruvate. This
is, however, a rather general definition. We will discuss more formal pathway
definitions in Chapter 3.

The chemical reactions that constitute a pathway follow the law of mass
conservation. A particular set of educt molecules is converted into a set of
product molecules while the total mass of the educts remains equal to that of
the products. Almost all metabolic reactions are controlled and catalyzed by
enzymes which bind the reaction educts and release the products. Typically,
enzymes are very specific for their substrates, which means that the major-
ity of reactions can be catalyzed by only one enzyme which in turn catalyzes
only one reaction. However, numerous exceptions exist. The International
Union of Biochemistry and Molecular Biology (IUBMB) suggested a numer-
ical classification scheme called the Enzyme Commission (EC) number. An
EC number is assigned to each enzyme depending on its catalyzed reaction.
Four hierarchical numbers describe the type of chemical conversion and the
compounds involved. For example, the enzyme with EC number 2.7.1.2 (glu-
cokinase) phosphorylates D-glucose to D-glucose-6-phosphate. Using these
EC numbers, the set of all enzymatic reactions in metabolic networks (several
thousand in all) can be subdivided into just six categories:

• Oxidoreductases (EC 1): oxidation/reduction reactions where electrons
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Figure 2.2: Adenosine triphosphate (ATP) an essential metabolite. The triphos-
phate group is highlighted in red.

are transferred between educts and products

• Transferases (EC 2): transfer of functional groups like methyl-, acyl-,
amino- or phosphate groups between educts and products

• Hydrolases (EC 3): formation of two products from an educt by the
cleavage of bonds and the addition of water

• Lyases (EC 4): cleavage of C-C, C-N, C-O or C-S bonds by the non-
hydrolytic addition or removal of groups

• Isomerases (EC 5): structural changes within one molecule

• Ligases (EC 6): joining of two molecules by the parallel hydrolysis of
the diphosphate bond in ATP or a similar triphosphate

Coenzymes and cofactors like NAD+/NADH, CoA/acetyl-CoA, metal ions or
vitamins support enzymes in the transfer of electrons, hydrogens or functional
groups between the educts and products of the catalyzed reactions.

2.1.2 Pathway energetics

Metabolism is a highly dynamic process that permanently converts energy for
a continuous degradation and synthesis of biomolecules. In principle, energy
that is required by synthesis pathways to operate is gained by breaking down
nutrients like glucose in degradation pathways. Typically, energy-producing
and consuming processes are coupled via energy carriers. The most important
and widely used carrier is adenosine triphosphate (ATP). Therefore, AMP
and ADP are phosphorylated to ATP (shown in Fig. 2.2) to form high-
energy phosphate bonds. Then ATP can drive energy-consuming reactions
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and pathways by the hydrolysis of ATP to ADP and inorganic phosphate.
In Section 2.2 we will describe the basic principles of bioenergetics in detail.

2.1.3 Enzyme activity regulation

The biological activity of proteins, including enzymes has to be regulated to
ensure efficient flow of metabolic pathways and quick adaptation of metabolism
according to changing needs of the organism. The control of metabolic path-
ways via enzymatic regulation takes place in four ways:

1. Allosteric control (modulation) of enzymes through activators and
inhibitors. Allosterically controlled enzymes have special regulatory
sites that are sensitive to particular small signal molecules. For exam-
ple, the product of a metabolic pathway sometimes inhibits the first
reaction that is unique for that pathway. This feedback inhibition pre-
vents the unnecessary accumulation of the product. The activation of
an enzyme by a precursor of the substrate of that enzyme is called
feed-forward activation. Feedback inhibition and feed-forward activa-
tion stabilize metabolic pathways and make them more efficient.

2. Reversible covalent modification like phosphorylation, acetylation
or glycosylation of enzymes is controlled, for example, by hormones.
Similar to allosteric control, the conformation of the enzyme and hence
its activity is modified.

3. Regulation of the amount of enzymes available can be regulated
through gene-transcription, translation and proteolytic degradation.

4. Isoenzymes are homologous enzymes with slightly different catalytic,
structural and regulatory properties. These enzymes allow varying reg-
ulation of the same reaction at distinct tissues, subcellular localizations
or times.

2.1.4 Compartmentalization

Eukaryotic cells are organized into different membrane-surrounded compart-
ments also called subcellular locations where each location is specialized for a
specific set of cellular functions. A consequence of this compartmentalization
is spatially distinct sets of enzymes, metabolites and whole pathways which
enable a better fine-tuning of the metabolism [Hrazdina and Jensen, 1992].
The spatial organization of several selected pathways is shown in Fig. 2.3. For
example, the enzymes of glycolysis are localized in the cytoplasm, those of the
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Figure 2.3: The spatial organization of several pathways: glycolysis (A), TCA-
cycle (B), glyoxylate shunt (C), fatty acid degradation (D) and its synthesis (E)
and leucine synthesis (F) and its degradation (G).

tricarboxylic acid cycle (TCA) in mitochondria and those of the glyoxylate-
bypass in the peroxisomes (glyoxisomes). In plants, however, glycolysis also
takes place in the chloroplasts where most of the amino acid biosynthesis
pathways are also localized. Some of the TCA enzymes are also present
in the peroxisomes in several organisms [Tolbert, 1981]. The presence of a
pathway in several compartments is based on differently localized isoenzymes
which are often regulated differently as already mentioned in the previous sec-
tion. Control of the flux of metabolites from one compartment to another
also regulates metabolism. Furthermore, a general principle of metabolism
is that there are distinct biosynthesis and degradation pathways [Berg et al.,
2002]. Separate pathways are necessary for reasons of energetics and these
support the control of metabolism. Control is further enhanced by pathway
compartmentalization. For example, fatty acid degradation is localized in
mitochondria and fatty acid synthesis in the cytoplasm. In A. thaliana, for
example, leucine biosynthesis takes place in chloroplasts and degradation in
mitochondria [Diebold et al., 2002]. The basics of the protein sorting process
in eukaryotic cells are described in Section 2.3.
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2.2 Bioenergetics

2.2.1 Principles of thermodynamics

Cellular metabolism uses complex reaction cascades or networks to optimally
exploit and transform the energy of nutrients or light. For example, plants
use the process of photosynthesis to transform energy in the form of light
into the chemical energy of ATP and other forms of energy. To understand
metabolism better we have to keep in mind that chemical reactions follow
the laws of thermodynamics.

The first law states the principle of energy conservation, which means that
the total amount of energy in the universe is constant. In other words, it is
not possible to create or destroy energy. However, energy can be converted
from one form to another. The second law states that the disorder of the
universe always increases. The discovery of the first and second laws of
thermodynamics led to the definition of three thermodynamic quantities,
which will be explained in the following sections. This kind of thermodynamic
information can be used, for example, to calculate the equilibrium of chemical
reactions and to predict whether a particular reaction can take place under
given environmental conditions.

System: Thermodynamics defines a system as a partition of the space and
the remaining part of the space as the environment of the system. Examples
of systems are a whole living organism or a subcellular compartment.

Enthalpy: The enthalpy or heat (H) of a thermodynamic system, mea-
sured in kJ/mol, is defined by

H = U + PV

where U is the internal energy of the system, which depends on the tempera-
ture T , P is the pressure and V the volume of the system. The enthalpy of a
reaction can be expressed as the difference in enthalpy between the products
and educts (∆H). If a reaction emits energy or heat, it is called exothermic
(∆H < 0) and endothermic (∆H > 0) if heat has to be taken from the en-

vironment. At standard conditions (T = 298.15 K, P = 105 Pa, educts and
products initially present at 1 mol/l concentrations), the reaction enthalpy
is constant and expressed by ∆H0.

Entropy: Entropy (S) can be described as a measure of the order of a
system. The entropy of a system grows with a decrease of order. For example,
entropy is the driving force for the diffusion of particles from a more highly
concentrated solution towards one of lower concentration. Like enthalpy, the
entropy of a system has a constant value under defined conditions and is
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measured in J/(K mol). Ludwig Boltzmann defined entropy by the relation

S = kb lnW

where kb is the Boltzmann constant and W the total number of different
states which can be captured by the particles of a system. Analogous to
the change in enthalpy, there is also an entropy change (∆S) in a chemical
reaction. Under standard conditions, the reaction entropy is expressed by
∆S0.

Gibbs energy: The Gibbs energy (G) is the thermodynamic measure of
the driving force of a chemical reaction and is enhanced by both an enthalpy
decrease (∆H < 0) and an entropy increase (∆S > 0) where the absolute
entropic contribution also depends on temperature T . The change in Gibbs
energy is defined as

∆G = ∆H − T∆S.

The sign of ∆G indicates the favored direction of the reaction:

∆G < 0 the reaction runs spontaneously while releasing energy
∆G = 0 the reaction is at an equilibrium
∆G > 0 the reaction cannot run spontaneously and requires the supply

of energy from the environment.

Reactions with ∆G < 0 are called exergonic and with ∆G > 0 endergonic.
Since the Gibbs energy of reactions is additive, it is possible to couple an
endergonic reaction with an exergonic one if the resulting overall reaction
is exergonic. In this case, the exergonic (part-) reaction delivers the energy
that is needed by the endergonic reaction. In cellular metabolism, reaction
coupling is a frequently observed phenomenon. A well-known example is the
releasing energy of ATP hydrolysis which is used to drive many endergonic
reactions.

Whereas ∆G depends on the educt and product concentrations, ∆G0 rep-
resents the change in Gibbs energy for a reaction under standard conditions

(T = 298.15 K, P = 105 Pa, educts and products initially present at 1 mol/l
concentrations). The actual Gibbs energy change ∆G as a function of the
concentrations and the temperature T is defined by

∆G = ∆G0 + RT ln(
∏

[pi]/
∏

[ej])

for a reaction e1 + e2 + ... 
 p1 + p2 + ... where R is the gas constant. If the
reaction is at chemical equilibrium, then ∆G = 0 and

∆G0 = −RT ln K
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where K is the equilibrium constant.

By convention, the Gibbs energy of all pure chemical elements is defined
as null under standard conditions. Then the standard Gibbs energy of forma-
tion (∆fG

0) for each non-elementary compound corresponds to the change
in Gibbs energy in the formation of one mol of the compound from its ele-
ments under standard conditions. In the following, the term ∆rG

0 is used to
distinguish the Gibbs reaction energy from the Gibbs energy of formation of
compounds. If ∆fG

0 is known for all educts and products of a reaction, it is
possible to calculate ∆rG

0 using the equation

∆G0
r =

∑

∆G0
f (products)−

∑

∆G0
f(educts).

2.2.2 Biochemical thermodynamics

The standard conditions for the study of biochemical reactions under “near
physiological conditions” recommended by the IUPAC-IUBMB Joint Com-
mission on Biochemical Nomenclature [Alberty, 1996] are T = 298.15 K (or

T = 310.15 K), P = 105 Pa, pH 7.0, pMg 3.0, I = 0.25 mol/l where pMg
is the free concentration of magnesium (or other metal) ions and I is the
ionic strength of the dilute aqueous solution in which the biochemical re-
action takes place. Consideration of the ionic strength I, the pH and pMg
in addition to T and P requires the adjustment and transformation of the
thermodynamic quantities (G, H and S) described in the previous section.
In the following, we will restrict the discussion of these effects on the Gibbs
energy G only.

Ionic strength: The ionic strength is a function of the concentrations of
all ions in a solution and is defined by

I = 0.5
∑

i

ciz
2
i

where the sum runs over the products of the molar concentration ci with the
squared charge number zi for all ions i. The effects of the ionic strength on
the thermodynamic quantities of ionic species in dilute aqueous solutions is
significant. Based on the extended Debye-Hückel theory, the standard Gibbs
energy of formation of species i at ionic strength I and 298.15 K is adjusted
by

∆fG
0
i (I) = ∆fG

0
i (I = 0)− 2.91482z2

i I
1

2 /(1 + BI
1

2 )

where zi is the charge number of species i and B = 1.6 l
1

2 mol−
1

2 is an empirical
constant that is taken to be independent of the temperature.
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Transformed Gibbs energy: The Gibbs energy G provides the criterion for
spontaneous chemical change and the corresponding equilibrium of reactions
at specified T , P (and I). However, this is not the case for biochemical
reactions if the pH is held constant. Furthermore, different equilibriums are
obtained for different pH values. This fact led to the definition of the new
thermodynamic quantity G

′

called the transformed Gibbs energy and the
corresponding apparent equilibrium constant K

′

. It is necessary to use G
′

and K
′

if the pH is a specified experimental condition. Alberty [1992a,b]
applied a Legrendre transform to define G

′

as

G
′

= G− n(H+)µ(H+)

where n(H) is the total amount of hydronium ions in the thermodynamic

system and µ(H) = ∆fG
0(H+) + RT ln(10−pH) is the chemical potential of

H+. The change in transformed Gibbs energy of a reaction under biochemical
standard conditions can directly be inferred from the apparent equilibrium
constant K

′

or the transformed Gibbs energies of formation of the educts
and products using

∆rG
′0 = −RT ln(K

′

) =
∑

j

(∆fG
′0
j ∗ pj)−

∑

i

(∆fG
′0
i ∗ ei)

where ei and pj are the stoichiometric coefficients of the educts and products
in the biochemical reaction. Applying Alberty’s Legrendre transform, the
standard transformed Gibbs energy of formation for the species i is calculated
by

∆fG
′0
i = ∆fG

0
i −NH(i)RT ln(10−pH)

where NH(i) is the total amount of hydrogen atoms in species i and ∆fG
0
i is

the standard Gibbs energy of species i under (chemical) standard conditions
with specified T , P and (I). Chemical equations are written in terms of
species with balanced hydrogen atoms and electric charges. This is different
to biochemical equations with specified pH written in terms of reactants,
that are sums of species. The reason is that many educts and products
of biochemical reactions are present as a mixture of different species in the
neighborhood of pH 7. For example, ATP forms the species ATP4−, HATP3−

and H2ATP−. When a biochemical reactant consists of several species, the
standard transformed Gibbs energy of formation for the reactant has to be
calculated by combining the ∆fG

′0
i values of its species using the following

equation

∆fG
′0(reactant) = −RT ln(

∑

i

exp(
−∆fG

′0
i

RT
)).
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Note that the apparent equilibrium constant K
′

is also expressed in terms of
sums of species. We can use adenosine triphosphate hydrolysis as an example.
The reaction can be represented by the chemical equation

ATP4− + H2O 
 ADP3− + H2PO2−
4 + H+

with balanced hydrogen atoms and electric charges. In a dilute solution the
equilibrium constant depends on the temperature and pressure and is given
by

K(T, P ) =
[ADP3−][H2PO2−

4 ][H+]

[ATP4−](c0)2

where c0 is the standard state concentration of 1 mol/l which makes the
equilibrium constant dimensionless. The biochemical reaction equation at
specified pH can be written as

ATP + H2O 
 ADP + Pi

with the corresponding apparent equilibrium constant

K ′(T, P, pH) =
[ADP][Pi]

[ATP]c0
.

This representation is recommended by the IUPAC-IUBMB Panel on Bio-
chemical Thermodynamics [Alberty, 1996] to distinguish biochemical equa-
tions from chemical ones.

Free concentration of metal ions: We have seen that the Gibbs energy G
is not the criterion for spontaneous chemical change and equilibrium if the
pH is specified as an additional independent variable. The same is true if
the free concentration of magnesium ions pMg (− log10([Mg2+]/c0)) or other
metal ions is specified. In this case, the definition of the transformed Gibbs
energy has to be extended to

G′ = G− n′(H+) ∗ µ(H+)− n′(Mg2+) ∗ µ(Mg2+)

where n′(Mg2+) is the total amount of magnesium ions in the system and

µ(Mg2+) = ∆fG
0(Mg2+)+RT ln(10−pMg) is the chemical potential of mag-

nesium. The treatment of metal ions like magnesium is important because
these ions can be bound by phosphorylated reactants like ATP and change
their thermodynamic properties. In the case of ATP, additional species may
be present, e.g., MgATP2−, MgHATP− and Mg2ATP depending on pH and
pMg. ATP with bound magnesium forms a stable complex that supports
efficient delivery of energy in metabolism.
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Figure 2.4: Cellular compartmentalization and protein sorting [The Nobel As-
sembly at Karolinska Institutet, 1999]

2.3 Protein sorting

2.3.1 Intracellular compartments and protein trans-
port

A eukaryotic cell is organized into several different membrane-enclosed com-
partments (organelles) that are functionally specialized. Since proteins play
an essential role in the functioning of a cell, it is important that they ar-
rive at those subcellular localizations where their function is needed. Often
proteins can fulfill their tasks only at a specific place because they require
particular environmental conditions or interacting partners. However, or-
ganellar membranes (lipid bilayers) are impermeable to most proteins and
hence, specific transport systems are required. This is necessary because
nearly all proteins are synthesized at the ribosomes in the cytoplasm. There-
fore, proteins that work outside the cytoplasm contain sorting signals in their
amino acid sequence which are recognized by receptor molecules in transport
machineries. Proteins without such sorting signals remain in the cytoplasm.
See Fig. 2.4 for an illustration of cellular compartmentalization and protein
sorting. The biological function of the nucleus is the storage of genetic in-
formation in the form of deoxyribonucleic acid (DNA), synthesis of mRNA
(transcription) and assembly of the ribosomes. Proteins are transported from
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the cytoplasm to the nucleus via pore complexes in the nuclear membrane.
The transport of proteins localized in the endoplasmic reticulum (ER), mito-
chondria, chloroplasts and peroxisomes are transported via membrane-bound
translocators. Mitochondria and chloroplast (only in plants) compartments
are specialized in the synthesis of ATP. In the peroxisomes the beta-oxidation
of fatty acids and other oxidative reactions take place. The main function of
the ER is the synthesis of nearly all cellular lipids as well as the synthesis and
modification (glycosylation) of all transmembrane or soluble proteins of the
organelles involved in the secretory and biosynthesis pathway. The subcel-
lular compartments of the secretory and biosynthesis pathway communicate
via particular transport vesicles. For example, proteins can be transported
from the ER to the Golgi apparatus and then to the endosomes, lysosomes,
plasma membrane or extracellular space. The Golgi apparatus receives lipids
and proteins from the ER and distributes them after covalent modification
to other localizations. Carbohydrates are also synthesized in the Golgi appa-
ratus and often added to the lipids and proteins received from the ER. The
intracellular digestion of proteins takes place in the lysosomes and, therefore,
many acid hydrolases can be found there. The endosomes receive molecules
for digestion and develop into lysosomes. In plants and fungi, there are no
lysosomes. Intracellular digestion takes place in the vacuoles. Additionally,
vacuoles maintain storage functions. Plant cells have especially large vacuoles
and use them for storing nutrients, metabolites or waste products. Vacuoles
can also be regarded as equivalent to the extracellular space of animals. The
cellular plasma membrane encloses the cytoplasm, transduces external infor-
mation and receives and releases metabolites.

2.3.2 Sorting signals

There are two main types of sorting signals: signal sequences and signal
patches. Much more is known about signal sequences than about signal
patches. In general, a signal patch is a specific thre-dimensional structure of
residues, which arises from protein folding. The amino acids that take part
in such a signal patch can be far apart in the linear amino acid sequence.

A signal sequence consists typically of 15 - 60 continuous amino acids.
The sequences are frequently cleaved from the mature protein by a signal
peptidase. Signal sequences can also be located elsewhere in the protein,
but they are frequently located at the end of the polypeptide (N-terminal
or C-terminal). Normally, chemical properties like hydrophobicity are more
important for the signal recognition process than the exact amino acid order.
Therefore, the signal sequences for one target organelle can vary in order and
length.
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2.3.3 Transport into the nucleus

Proteins destined for the nucleus contain a nuclear localization signal (NLS)
somewhere in their amino acid sequence. There are two different types of
NLSs. A monopartite NLS is a short sequence which is rich in positively
charged amino acids like lysine and arginine and nearly always contains pro-
line. If the monopartite NLS is split into two parts it becomes bipartite.
Each part is between two and four amino acids long, connected by a spacer
which is about 10 amino acids long. An NLS can be either a signal sequence
or a signal patch. The exact location of an NLS in the protein is not impor-
tant, but it must be exposed on the surface of the protein. The NLSs are
bound by nuclear import receptors.

2.3.4 Transport into the peroxisomes

The exact import process of peroxisomal proteins is still not understood
completely, but depends on signal sequences at the C- and N-termini. The
best-known signal consists of three C-terminal-specific amino acids. This
signal is also known as the SKL motif (-Ser-Lys-Leu-COO-).

2.3.5 Transport into the mitochondria

The transport of mitochondrial proteins from the cytoplasm depends on an
N-terminal targeting sequence and on protein translocators, which are multi-
protein complexes. The sorting signal is called the mitochondrial targeting
peptide (mTP). A membrane-associated signal peptidase cleaves the mTP
after import. Mitochondrial targeting peptides are normally between 25 and
45 amino acids long and prefer to fold as an amphiphilic alpha-helix with
mainly positively charged amino acids on one side (particularly arginine)
and mainly uncharged, hydrophobic ones on the opposite side. Negatively
charged residues are not common in mTPs.

2.3.6 Transport into the chloroplasts

Only plant cells contain chloroplasts. Protein transport into chloroplasts is
similar to the mitochondrial import machinery. The receptors of the chloro-
plasts and the mitochondria can distinguish between mTP and cTP (chloro-
plast targeting peptide). The cTPs have highly variable lengths (20 - 120
amino acids), are enriched for hydroxylated amino acids (particularly serine)
and contain very few negatively charged residues.
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Figure 2.5: The three different kinds of N-terminal targeting sequences and their
chemical properties: SP (top), mTP (middle) and cTP (bottom). Weakly con-
served motifs around the cleavage sites are also shown.

2.3.7 Secretory pathway

The secretory pathway includes the ER, Golgi apparatus, lysosomes, and
plasma membrane. Proteins destined for these organelles have an N-terminal
targeting sequence called the signal peptide (SP) with a cleavage site for lumi-
nal proteins and another without a cleavage site for transmembrane proteins,
called the signal anchor (SA). SPs are between 20 and 30 amino acids long
and contain a short positively charged N-terminal segment, a central hy-
drophobic segment with eight or more non-polar residues and a more polar
segment with mostly small residues. Frequently an alanine occurs at posi-
tions -1 and -3 before the cleavage site. In Fig. 2.5 the SP is compared to
the other two kinds of N-terminal targeting sequences (mTP and cTP). All
proteins of the secretory pathway are translocated into the ER at first, and
from there further sorted to the other organelles or the extracellular space.

A special signal peptidase on the luminal site of the ER membrane cleaves
off the SP after import and during the translation. The peptidase recognizes
a cleavage site specifically. SPs without cleavage sites (SAs) serve as trans-
membrane segments. SAs are located more inside the protein and often
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have a larger hydrophobic segment. The imported proteins are automati-
cally further transported to the other organelles or to the extracellular space
by vesicles. ER-specific proteins contain a retention signal of four amino
acids at the C-terminus (KDEL in one letter-code for luminal and KKXX
for transmembrane proteins). Not all ER-specific proteins have such a re-
tention signal. It is assumed that they remain in the ER because they form
aggregations, which are too big to be packed into vesicles.

The Golgi apparatus is placed next to the ER and consists of batches of
several cisternae. Proteins from the ER go through an ordered series of cova-
lent modifications during their movement through the Golgi batches. Some
of the modifications serve as markers for transport into other localizations.
The proteins are partitioned into different kinds of packages for the plasma
membrane, lysosomes or secretory vesicles. Since transport to the plasma
membrane and the extracellular space occurs without a special signal, there
are retention steps for Golgi-specific proteins. Membrane proteins and lipids
are integrated into the plasma membrane and soluble proteins are released
into the extracellular space.

Luminal proteins of the lysosomes have a mannose-6-phosphate (M6P)
modification, which serves as a selection marker. Signal patches are respon-
sible for selecting a protein to get the mannose-6-phosphate modification. It
is known that lysosomal membrane proteins do not have this kind of modifi-
cation, which means that there is probably an alternative transport path for
them.
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Chapter 3

Computational background and
related work

Computational approaches to metabolic pathways can be roughly divided
into two groups. The first group consists of constraint-based methods that
apply convex analysis to the stoichiometric matrix of the network to calcu-
late network-based or stoichiometrically balanced pathways. Methods of the
second group are based on graph theory and apply shortest-path algorithms
to a graph that represents the metabolic network. However, a major problem
with recent methods is still the computational effort caused by the combina-
torial explosion of the number of possible routes in a metabolic network at
the genome scale.

In this chapter we present the computational background and related
work with respect to methods for analyzing metabolic pathways. For a better
understanding, we first introduce and discuss possible definitions of metabolic
pathways. Then we give a historical overview of constraint-based and graph
theory-based approaches including brief discussions about advantages and
limitations of these methods. Since computational approaches require ade-
quate network data as input, the last section presents the most relevant path-
way databases that often serve as starting sources to build species-specific
metabolic networks.

The focus in this chapter is on approaches computing metabolic pathways
since this is the main topic of this thesis. Computational background and
related work for the remaining subtopics including the calculation of atom
mapping rules, the prediction of Gibbs reaction energies and the prediction of
subcellular protein localization is presented in the corresponding subsections
of Chapter 4.
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Figure 3.1: A standard metabolic pathway (I), the corresponding network-based
pathway (II) and linear biotransformation routes (III).

3.1 Metabolic pathway definitions

In the literature, metabolic pathways are defined in different ways. More
generic definitions are used in biochemical textbooks and pathway databases
were the focus is on the presentation of pathways in the context of their
historical discovery. In this context a metabolic pathway is often simply
described as a connected set of enzymatic reactions that converts source
metabolites into product or target molecules in a step-wise manner [Berg
et al., 2002].

The development of computational approaches for a systematic discov-
ery of biologically meaningful pathways requires more formal definitions.
Fig. 3.1(I) shows an example of a typical metabolic pathway that consists
of five reactions, one source (S) as well as a target (T) compound, four in-
termediates (A, B, C and D), four side or pool compounds (P1, P2, P3 and
P4) and a feedback inhibition of the initial reaction step (drawn in red). The
pathway shown is branched because the third reaction splits its educt (B)
into two products (C and D). The second product (D) is then further con-
verted into the first product (C) by a subsequent reaction. Network-based
metabolic pathway definitions [Schuster et al., 2000] are the underlying con-
cept of constraint-based approaches that compute extreme pathways (EPs)
and elementary flux modes (EFMs) using convex analysis. A network-based
or stoichiometrically balanced pathway represents a metabolic subnetwork in
which the net production and consumption of the involved intermediates is
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zero. This stoichiometric constraint does not have to be fulfilled by the source
and target compounds and a predefined set of pool metabolites. The corre-
sponding network-based pathway in our example, computed by constraint-
based approaches, is shown in Fig. 3.1(II). The network-based pathway is
very similar to the real pathway. Regulatory aspects like feedback inhibition
are not considered in either the pathway definition or computation. Side
metabolites are also not part of the stoichiometric computation but always
available from the predefined list of pool metabolites.

The pathway definitions discussed so far include pathways with branches
and cycles. However, branching pathways are not directly considered by
current graph theory-based approaches, which use path-finding concepts to
compute linear biotransformation routes. In graph theory, a path is defined
as a linear chain of nodes whereby each node is connected by an edge to the
next node in the sequence. The path is called simple if it contains only dis-
tinct nodes. Cycles are produced if the last node in a path is also connected
with the first node in the path. Based on this path concept, a linear bio-
transformation route is simply defined as an unbranched sequence of chemical
reactions and metabolites where a source compound is converted into a target
compound step by step. The biotransformation route is a cycle if source and
target compounds are identical. As a consequence, graph theory-based ap-
proaches decompose our example pathway into two linear biotransformation
routes which are shown in Fig. 3.1(III). The example pathway is indirectly
available by merging these two routes. A linear definition in the context of
pathway alignment was also formally introduced in a previous work [Chen
and Hofestaedt, 2005].

Compared to network-based pathways, the main advantage of linear routes
is that their computation is much easier. The use of efficient path-finding
algorithms enables the detection of relevant pathways in metabolic networks
at genome-scale. Despite these different network-based and linear definitions,
we will often simply use the term pathway in the following.

3.2 Metabolic pathway analysis

3.2.1 Constraint-based approaches

Given a metabolic network and a set of external (pool) compounds, constraint-
based approaches calculate all stoichiometrically balanced pathways (ex-
plained in Section 3.1) transforming a set of given source compounds into
a set of sink (target) compounds. Depending on the underlying approach,
these pathways are called extreme pathways or elementary flux modes.
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Figure 3.2: The basic concepts of steady-state network representation and anal-
ysis [Papin et al., 2003].

Theoretical framework

A metabolic network can be represented by a stoichiometric m × n matrix
S. The m rows of S correspond to the metabolites and the n columns to the
reactions in the network. The matrix element Sij represents the stoichiomet-
ric coefficient of metabolite i in reaction j. Reaction educts receive negative
and products positive values. A zero value is assigned to the matrix elements
of metabolites not present in the corresponding reactions.

The change of compound concentrations in a metabolic network can be
described by the dynamic mass balance equation

dx

dt
= Sv.

The equation defines a system of ordinary differential equations where x is
the concentration vector of all metabolites, S the stoichiometric matrix and v
the vector of fluxes through the reactions. In steady-state, the concentrations
of all metabolites are constant and the mass balance in the network can
be represented by the equation 0 = Sv. This system of linear equations
describes the so-called null space which is the set of all possible solutions for
the flux vector v under steady-state conditions.

If all fluxes of the system are constrained to be non-negative (vi >= 0),
then the corresponding reactions are irreversible and the solution space is
defined by a convex flux cone. Reversible reactions can be modeled by de-
composing them into their respective forward and reverse directions. (See
also Fig. 3.2 for a graphical illustration of the basic concepts.) Furthermore,
the metabolites of the system under study have to be classified as internal or
external according to whether or not they have to fulfill the steady-state con-
dition. Typically, external metabolites represent pool metabolites, cofactors
or by-products as well as the system sources and sinks. These compounds
are called external because they also participate in additional reactions that
are involved in external systems.
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Extreme Pathways

Any point in the flux cone is a valid flux distribution and can be represented
by a non-negative linear combination of the edge vectors which span the
flux cone. These edges are also called the extreme pathways (EPs) of the
network. The set of EPs is conceptually related to the concept of a basis
in linear algebra and can be calculated from the stoichiometric matrix using
convex analysis [Rockafellar, 1970], a branch of mathematics for analyzing a
set of linear equations given a set of constraints. Algorithmic details of the
approach can be found in Schilling et al. [2000].

Elementary Flux Modes

Elementary flux mode (EFM) analysis [Schuster et al., 1999] is strongly re-
lated to the concept of extreme pathways. However, the algorithms for EFMs
and EPs differ in their treatment of reversible and irreversible reactions. In
EP analysis, each reversible reaction is decomposed into two separate reac-
tion fluxes for the forward and backward directions. On the other hand, the
calculation of EFMs is based on the split of the stoichiometric matrix into
two parts, one for reversible and one for irreversible reactions. The computed
set of EPs is always a subset of the resulting EFMs. The EPs represent a
minimal set of EFMs and the remaining EFMs can be represented by a non-
negative linear combination of the EPs. In other words, the set of EFMs
represent, in contrast to the set of EPs, all feasible network-based pathways
when reversible reactions are present. EFMs and EPs share the following
two properties:

• The sets of EFMs and EPs are unique for a given network and a list of
internal compounds.

• Each EFM or EP is non-decomposable, which means that it contains
a minimum number of reactions in order to exist as a functional unit.
The removal of any reaction does not allow the EFM or EP to operate
as a functional unit.

In addition to these two properties, elementary flux modes represent the set of
all network-based pathways within a metabolic network which are consistent
with the second property. A further property specific to extreme pathways
is that they are the systemically independent subset of the elementary flux
modes. In other words, no extreme pathway can be represented as a non-
negative linear combination of any other extreme pathway.
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Advantages and limitations

Biotechnological and biomedical applications of extreme pathways and ele-
mentary flux modes involve the evaluation of network properties such as the
optimal product yield, network robustness and pathway redundancy. Fur-
thermore, the underlying analysis concept is mathematically well-defined.
However, the enumeration of extreme pathways and elementary flux modes
for a given stoichiometric matrix represents a computationally hard problem
and can not be applied to genome-scale networks [Klamt et al., 2002, 2003;
Yeung et al., 2007]. Genome-scale networks of microbes already contain ap-
proximately 1,000 or more reactions. Given a predefined distinction between
internal and external compounds as well as a suitable number of irreversible
reactions, constraint-based approaches are applied to networks with at most
100 reactions. The number of EPs and EFMs which have to be computed for
a metabolic network increases drastically with the size and complexity of the
network. For example, more than 500,000 different EFMs were calculated
by Klamt et al. [2002] for a network with 110 reactions. In a second study
by Yeung et al. [2007], the number of EPs in networks consisting of 904 and
3,311 reactions was estimated to be 3× 1018 and 1029, respectively.

3.2.2 Graph-theory approaches

Given a metabolic network, graph theory-based approaches use path-finding
concepts to calculate linear biotransformation routes between given source
and sink (target) compounds in a graph that represents the network.

Graph representation of metabolic networks

A mathematical graph G = (V, E) is a data structure where V is a set of
vertices (nodes) and E is a set of edges connecting pairs of nodes. The graph
is directed/undirected if all edges e = (v1, v2) are ordered/unordered node
pairs. Furthermore, the graph is weighted if the edges are assigned weights
according to a weighting function w(e) : E → R. Simple examples of the
different graph types are shown in Fig. 3.3.

A metabolic network can be represented as a graph. Different graph
representations for analyzing metabolic networks and pathways have been
described in the literature. The most common graph types are summarized
in this section (see also Fig. 3.4). More detailed information about different
graph representations can be found in Deville et al. [2003].

• Compound graphs: In a compound graph, the nodes represent chem-
ical compounds or metabolites and each edge connects compound E
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Figure 3.3: Examples of different graph types.

with compound P if E is an educt and P a product in the same reac-
tion.

• Reaction graphs: In a reaction graph, the nodes correspond to the
reactions in the network. Here, each edge connects reaction R1 with
R2 if there is a compound that is a product of R1 and an educt of R2.

• Bipartite graphs: In a bipartite graph, there are two different types
of nodes which represent the reactions and compounds of metabolic
network. Edges between the nodes represent the educt/product rela-
tionships between compounds and reactions.

• Hypergraphs: Hypergraphs generalize compound graphs and can be
seen as an equivalent representation of the bipartite graphs. Here,
each hyperedge relates the set of educts of a reaction with the set of its
products.

In all graph types, the reaction directions can be represented by directed
edges. Reversible reactions can be modeled by multiple edges (with the
opposite direction) between two nodes or by decomposing the reaction into
two different nodes, one for the forward and one for the backward direction.
If the reaction direction is irrelevant, undirected edges can also be used.
Each graph representation has its advantages and disadvantages and the
final choice depends on the available information, the purpose of the analysis
and the graph algorithms used [van Helden et al., 2002].

Path-finding concepts

The graph-theoretic representation of metabolic networks yields a well un-
derstood framework for searching pathways within large-scale networks by
the application of efficient path-finding algorithms. In this section, we will
present different path-finding concepts including a discussion about their
usefulness for the detection of pathways in metabolic networks.
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Path-finding algorithms can be used to compute one or more optimal
paths connecting two different nodes in a graph. There is a huge number
of real-world applications for path-finding including the detection of relevant
routes in metabolic networks. The problem of finding the shortest path with
a minimum number of nodes or with the minimum total weight in a weighted
graph has received special interest. In the latter case, the shortest path is
sometimes also called the lightest or cheapest path. We can distinguish a
number of common variants of the shortest path problem:

• single-pair shortest path: The shortest path between two different
nodes.

• single-source shortest path: The shortest paths between a given
source node and all other nodes.

• single-destination shortest path: The shortest paths to a given
destination node from all other nodes. The problem is also called the
reverse single-source shortest path problem because it can be solved
simply by reversing the edge directions in the graph.

• all-pairs shortest path: The shortest path between any two different
nodes.

Several algorithms have been developed in the past for solving the shortest
path problems. These algorithms differ in their potential range of applica-
tions and their underlying complexity. The simplest approach for finding the
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shortest path is breadth-first search. However, there are two main draw-
backs to this method. The first is based on the fact that breadth-first search
is an uninformed search because it traverses exhaustively the whole graph
beginning with the source node but without considering the destination node
until it is found. Furthermore, the standard breadth-first search algorithm
requires an unweighted graph because the shortest path found always consists
of a minimum number of steps, which is not the case for weighted graphs in
general. Weighted graphs require improvements of the algorithm and make
the search more complex. These difficulties are avoided by using more ad-
vanced search techniques. Algorithms based on best-first search find the
shortest path from a source to a destination node using a heuristic evaluation
function F (v), v ∈ V . This approach represents an informed search because
a heuristic is used to guide the search and to speed up the path-finding.
The heuristic function F (v) can depend on any additional problem-specific
information. In general, F (v) utilizes information derived from the starting
node to the current node v (the search up to node v) as well as from the
current node v to the destination node. Best-first search examples are Dijk-
stra’s algorithm [Dijkstra, 1959] and its generalization the A* algorithm
[Hart et al., 1968]. Both algorithms can be applied to directed graphs with
non-negative edge weights. The Bellman-Ford algorithm [Bellman, 1958]
is very similar to Dijkstra’s algorithm but can also deal with negative edge
weights. Using the Floyd-Warshall algorithm [Floyd, 1962] it is possible
to efficiently solve the all-pairs shortest path problem in a weighted, directed
graph. This can also be done using Johnson’s algorithm [Johnson, 1977],
which is, however, especially useful for sparse graphs.

When analyzing metabolic pathways the detection of alternative routes
leading from a source to a target metabolite is of great importance. However,
this cannot be achieved by simply computing the shortest path. A better
strategy is to search for the k-shortest paths between two given nodes in a
graph representing the metabolic network. The meaning of the k-parameter
is to find, for example, the shortest path (k = 1), additionally the sec-
ond shortest path (k = 2), the third shortest path (k = 3) etc. The four
mentioned shortest path problems can also be extended to its k-shortest
paths versions. Like the shortest path problem, the problem of finding the
k-shortest paths also has a long history in computer science. One of the
earliest discussions about the problem was published by Hoffman and Pavley
[1959]. After this, numerous algorithms for many variations of the problem
have been described. An exhaustive collection of these papers is also available
online (http://liinwww.ira.uka.de/bibliography/Theory/k-path.html).

Eppstein’s algorithm [Eppstein, 1998] represents a significant improve-
ment in the field. The algorithm creates an implicit representation of the
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k-shortest paths for a given source/destination node pair in a directed graph
with n nodes and m edges in O(m+n log n+k). Furthermore, the k-shortest
paths to a given destination from every node in the graph can be computed
in O(m + n log n + nk) time. The paths themselves can be traversed from
the implicit representation using breadth-first search.

The following sections describe the current state-of-the-art approaches to
metabolic pathways that are based on path-finding concepts.

Automated Metabolic Reconstruction

Masanori Arita, the developer of the Automated Metabolic Reconstruction
tool, introduced the use of a k-shortest path algorithm to search for routes
with a minimum number of reaction steps in a metabolic network [Arita,
2000, 2003]. He also proposed the incorporation of atom mapping rules into
the path search. For a chemical reaction, such a rule defines which educt
atom is transferred or mapped to which product atom. Using these rules,
paths found can be validated according to the structural moiety constraint.
This constraint states that a biochemically feasible route transfers at least
one atom of the source to the target metabolite.

A fundamental problem of the approach is that for approximately 30%
to 40% of reactions stored in pathway databases, it is not possible to easily
compute an atom mapping rule. These reactions contain metabolites with-
out given structural information or general molecules like “an alcohol” or
the reaction equation is unbalanced because of an incomplete or erroneous
annotation. The reactions thus require time-consuming manual checking.
Furthermore, the applied calculation of atom mapping rules is based on a
maximum common subgraph approach that represents a heuristic solution
to the problem and, therefore, fails to find the correct atom mapping rule in
some cases. Additionally, the calculation requires some manual preprocessing
of the reaction equations. A further problem with respect to the path search
is that although the structural moiety constraint is fulfilled, the search for
the shortest path with a minimum number of reaction steps still bears the
risk of finding meaningless results with pool metabolites as intermediates.
However, the approach represents a milestone in the field because it intro-
duces a path validation concept based on atom mapping rules and the use of
a k-shortest path algorithm.

PathMiner

The PathMiner approach [McShan et al., 2003] is based on a chemically mo-
tivated heuristic to guide a search in a state space. The compounds are
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represented using chemical descriptors as points or states in a hyperspace
based on the composition of their atoms and bond types (e.g. C, N, C-C,
P=O and so on; 145 overall). Biochemical reactions are abstracted as transi-
tions between the compound states and expressed as a state vector difference.
Pathways are predicted by searching a route from an initial compound to the
destination compound through a series of state transitions. The search is
guided by best-first search using a heuristic evaluation function. The func-
tion is used to minimize the summed vector differences between the pairs of
succeeding compound states in the final route.

Limitations of the PathMiner approach are that it computes only one
metabolic route between a given source and target which is, of course, a
drawback for studying alternative routes. Furthermore, it does not favor
biochemical transformations that involve the transfer of larger functional
groups between the metabolites like phosphate groups which appear in many
metabolic processes that require the phosphorylation of compounds. The
reason is that the heuristic is specialized on the transition of very similar
compounds and therefore can only find pathways which are “chemically par-
simonious”. Another problem is that there is no evaluation of the quality
of the routes found with respect to experimentally determined pathways.
The authors only compared the computational performance of the heuristic
search to that of uninformed blind search approaches.

Pathway Hunter

The graph-representation of the Pathway Hunter tool [Rahman et al., 2005]
contains only compound nodes. Edges represent educt/product relationships
between compounds in the same reaction. However, only structurally similar
compounds are connected by edges, based on a mapping function. There-
fore, the mapping function combines two measures. The first measure is the
Tanimoto coefficient [Willet et al., 1998] calculated from the chemical finger-
prints of the compounds. The second measure is derived from the atomic
mass contribution of an educt/product pair with respect to all compounds
of a reaction. A breadth-first search algorithm calculates the shortest paths
between a given source and a target compound.

A principle drawback of this approach is that the necessary structural
information is not available for all compounds in the metabolic database
used. Examples of such compounds are generic molecules like “an alcohol”
or diverse macromolecules. Reactions which include these compounds are ex-
cluded from the standard approach. Given a source and a target compound,
the number of computable transforming routes is limited to those that share
the shortest length inferred using a breadth-first search algorithm.
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Degree-weighted metabolic networks

In the degree-weighted metabolic networks approach [Croes et al., 2006], the
metabolic network of an organism is mapped on a bipartite graph, including
all compounds and reactions as nodes. Directed edges connect the compound
nodes (educts and products) with the reaction nodes. Both directions of a
reaction are represented by two independent nodes per reaction. The key
idea of a degree-weighted metabolic network is to assign each compound
node a weight equal to its degree (e.g. the number of in- and outgoing
edges) and each reaction node the weight 1 by default. The weight of a path
in the graph is then defined as the sum of the weights of its nodes. This
implies that the overall weight of a path is much larger if it contains highly
connected compounds like typical pool metabolites or co-factors (e.g. NADP,
ATP or water). Searching for paths of lowest weight significantly reduces
the probability of finding unfeasible biotransformation routes that contain
pool metabolites (network hubs) as intermediates between two successive
reactions. Up to five paths of lowest weight (not a limitation of the algorithm)
can be found by the use of a depth-first back-tracking algorithm.

An advantage is that the structural information of the compounds is not
needed. However, a fundamental problem of the lightest-path search is its
inability to handle important biotransformation routes involving the biosyn-
thesis of pool metabolites (e.g. purine biosynthesis, in which AMP and ADP
are intermediates). The method fails to reconstruct these routes because pool
metabolites participate in many reactions of other transformation processes
and, therefore, are assigned very large node weights. A further problem is
that of routes passing pathways of the core metabolism like glycolysis or the
TCA cycle, because highly connected metabolites like pyruvate or acetyl-CoA
are involved. Fig. 3.5 shows more details of this issue. The transformation
of adenylo-succinate to dADP is part of purine metabolism and is shown
on the left side of Fig. 3.5. On the right side an alternative but biochemi-
cally irrelevant pathway is shown. For each reaction, main metabolites are
drawn in black and side metabolites in red. Irrelevant intermediate steps,
with respect to the adenylo-succinate/dADP conversion, are also drawn in
red. Furthermore, the number of reactions (the weights) in which each inter-
mediate participates as educt or product in a typical genome-scale metabolic
network is presented within adjacent rectangles. Searching for the path with
lowest weight will fail in this case because the irrelevant route obtains an
overall weight of 33, which is significantly lower compared to that obtained
for the textbook route (253).

Overall, this method represents a milestone in the field because it intro-
duces the use of a weighting scheme as optimization criteria in order to detect
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Figure 3.5: This figure depicts the problem of the degree-weighted metabolic
networks approach to find relevant pathways that contain highly connected inter-
mediates like AMP and ADP. Therefore, a relevant but heavy pathway is shown on
the left and a light but irrelevant pathway on the right. Relevant transformation
steps are drawn in black and irrelevant in red. In each step, main metabolites are
drawn in black and side metabolites in red. Typical numbers of reactions (weights),
in which each intermediate participates as educt or product are enclosed by rect-
angles.
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meaningful pathways within the k-shortest or lightest paths. Furthermore,
an evaluation approach is suggested and applied for validating the path-
finding performance against experimentally determined metabolic pathways
extracted from EcoCyc. Such a systematic evaluation was not performed for
the approaches described earlier in this section.

3.3 Metabolic pathway databases

An exhaustive list of databases focusing on metabolic pathways can be found
at http://www.pathguide.org/. The two most popular databases are KEGG
[Kanehisa, 1996] and BioCyc [Karp et al., 2005] which will be briefly described
in the following two sections.

3.3.1 KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database that
integrates manually curated genomic, chemical and systemic information in
the form of metabolic and regulatory pathways. The KEGG project was
initiated in 1995 and is maintained as part of the research projects of the
Kanehisa Laboratories in the Bioinformatics Center of Kyoto University and
the Human Genome Center of the University of Tokyo.

The aim of the KEGG project is to establish a computer representa-
tion of the biological system whereas biological objects (organisms, genes,
enzymes, pathways, reactions, etc.) and their relationships are available as
separate database entries and direct links. Each database entry or KEGG
object is assigned a unique identifier which allows direct access to the cor-
responding database entry via the internet. Many other online biological
databases are already linked to KEGG. Furthermore, KEGG is a valuable
resource for bioinformatics and computational systems biology because a flat
file version of the whole database is freely available and can be downloaded
at ftp://ftp.genome.jp/pub/kegg/.

KEGG comprises 19 sub-databases which are completely described in
Kanehisa [1996]. However, the six databases (KEGG GENOME, KEGG
GENES, KEGG PATHWAY, KEGG COMPOUND, KEGG ENZYME and
KEGG REACTION) can be considered the core databases and will be briefly
described:

• KEGG GENOME contains genomic information on more than 800
organisms
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Figure 3.6: A screenshot of the KEGG wiring diagram that represents the TCA
cycle reference map.

• KEGG GENES contains gene and protein sequence information from
high-quality genomes

• KEGG PATHWAY contains reference maps in the form of wiring
diagrams which combine pathway information from multiple organisms.
The TCA cycle reference map is shown in Fig. 3.6. Each map can be
colored in green to show which enzymatic reactions occur in a selected
organism based on the set of enzymes identified from its genome.

• KEGG COMPOUND contains information about metabolites and
other chemical compounds like trivial names, chemical formulas, links
to other databases or the two-dimensional structure in MOL format.

• KEGG ENZYME contains all relevant information about enzymes.

• KEGG REACTION contains all details about chemical reactions
like the assigned EC number(s) or the reaction equation.

3.3.2 BioCyc

The BioCyc project has been developed by the Bioinformatics Research
Group at SRI International, directed by Dr. Peter Karp. BioCyc is a collec-
tion of more than 300 databases where each database describes the genome
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Figure 3.7: Screenshot of the EcoCyc TCA cycle pathway.

and metabolic pathways of a single organism. The EcoCyc database de-
scribes E. coli and is manually curated from the literature. The metabolic
pathways stored in the remaining species-specific databases were computa-
tionally predicted using the Pathway Tools software [Karp et al., 2002] based
on the MetaCyc [Caspi et al., 2006] pathway database. MetaCyc contains
more than 1,100 experimentally verified metabolic pathways from more than
1,500 different organisms. Like EcoCyc, the MetaCyc database is curated
from the literature.

The BioCyc collection offers electronic reference sources on the pathways
and genomes of different organisms. The main difference between BioCyc
and KEGG is the underlying ontology used to define pathways [Green and
Karp, 2006]. The BioCyc ontology defines a metabolic pathway as a con-
served atomic module within the metabolic network of a single organism.
But there is a more or less strict distinction between biosynthesis and degra-
dation modules as well as alternative pathways. KEGG pathways are on
average 4.2 times larger than BioCyc pathways and represent the combined
biosynthesis and degradation pathway information of multiple organisms;
organism-specific aspects within such a reference pathway can be highlighted
using green color. The corresponding TCA cycle example extracted from
EcoCyc is shown in Fig. 3.7. Like KEGG, there is also a downloadable flat
file version for each BioCyc database (http://biocyc.org/download.shtml).

Each database in the BioCyc collection is based on the same database
scheme within an object database management system, the Ocelot database
system. The system uses a complex object-oriented data model that is based
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on a taxonomic hierarchy of classes, instances of classes (called frames) and
slots which represent attributes of the classes or relationships between them.
Each class represents a biological entity like an organism, a reaction, an
enzyme, a protein etc. The data model contains more than 1,000 class defi-
nitions, which demonstrates that the model is much more complex compared
with the simpler KEGG model. The BioCyc scheme contains, for exam-
ple, very detailed enzyme modulation types like ALLOSTERIC-INHIBITOR,
PROSTHETIC-GROUP and so on. Furthermore, the class instances are an-
notated with numerous comments and extensive literature references.
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Chapter 4

Approaches and results

The computational detection of all relevant pathways transforming a partic-
ular source into a product in genome-scale metabolic networks has numerous
applications in systems biology. However, the combinatorial explosion of
possible routes in large networks represents a challenging task.

In this chapter we introduce several novel approaches which can be used
jointly in order to deal with the complexity of the underlying problem and
to efficiently find the most relevant routes. Methodological details and re-
sults of the developed approaches, concerned with the calculation of atom
mapping rules, the prediction of Gibbs reaction energies and the prediction
of subcellular protein localization are described first. Relevant data obtained
using these methods was integrated into a graph theory-based approach to
metabolic pathways, presented subsequently. The performance of the whole
approach was evaluated by the search for experimentally verified biotrans-
formation routes in the genome-scale metabolic networks of E. coli and A.
thaliana. In the last part of this chapter a brief overview of an implemented
web interface for exploring genome-scale metabolic networks is given.

4.1 Calculation of Atom Mapping Rules

4.1.1 Introduction

Given a chemical reaction, an atom mapping rule describes which educt atom
is transferred to which product atom. Fig. 4.1A shows an atom mapping rules
using serine-pyruvate transaminase (EC 2.6.1.51) as an example. In this re-
action, the whole carbon skeleton of serine is transferred to that of hydrox-
ypyruvate and that of pyruvate to alanine. Furthermore, the amino-group of
serine is mapped to alanine and the keto-group of pyruvate to hydroxypyru-
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Figure 4.1: (A) An atom mapping rule using the reaction catalyzed by serine-
pyruvate transaminase as an example is shown. The atom transfer between both
sides of the reaction is represented using equal geometric shapes. (B) The concept
of path validation based on the structural moiety constraint (SMC) is demon-
strated. Three carbon atoms are transferred from serine to hydroxypyruvate and
none to alanine.

vate. Within the scope of this thesis, we applied atom mapping rules for the
validation of candidate pathways. Arita [2003] originally used atom mapping
rules for this purpose and introduced the concept of the structural moiety
constraint. According to this constraint, a pathway can only be biochemi-
cally feasible if at least one atom is transferred from the source to the product
metabolite. For a given pathway this information is gained by tracing atoms
through the pathway using atom mapping rules. For example, if the carbon
skeleton of serine is reached only by a sequence of reaction steps during a
path-finding algorithm, then it is clear that using EC 2.6.1.51 as subsequent
reaction, the next pathway intermediate must be hydroxypyruvate and not
alanine (shown in Fig. 4.1B). Using alanine as intermediate carbon carrier
would violate the structural moiety constraint. The development of an im-
proved approach for the fully automatic calculation of atom mapping rules
is the topic of this section.

Representing the compounds of a chemical reaction as molecular graphs
1, atom mapping rules can be calculated using graph partition and graph iso-
morphism [Akutsu, 2004]. The underlying idea is that normally in chemical
reactions only very few bonds are broken in order to transform the educts into

1where nodes of the graph represent atoms (ignoring hydrogen atoms) and edges stand
for bonds in the original molecule
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the products. Hence, we can find the mapping rules by removing a limited
number of edges in the molecular graphs of the compounds and searching
for graph isomorphisms between the remaining connected components. A
valid atom mapping contains an isomorphic component of the product side
for each connected component of the educt side and vice versa. However,
the result of such a search, as presented in a previous work [Akutsu, 2004], is
not necessarily unique and may contain biochemically meaningless mappings
alongside the correct one. We were able to solve this problem by introducing
the EC clustering approach. Using this approach, it is possible to detect the
relevant mappings by clustering all mappings of those enzymatic reactions
which have the first three digits of their EC number in common. The under-
lying idea is that only the first three digits describe the underlying reaction
mechanism, and the last digit only enumerates the different chemical struc-
tures. This allows to select the atom mapping rule which best describes the
reaction mechanism of the EC cluster or appears mostly in all reactions of
the cluster.

The next section briefly describes the theoretical framework of the ap-
proach as introduced earlier [Akutsu, 2004] followed by the details of our
practical algorithm for mapping calculation. The following section explains
the EC clustering approach for filtering out irrelevant mappings. The results,
when applying the approach to reactions extracted from KEGG as well as
EcoCyc, are presented subsequently. After this, a brief discussion follows.

4.1.2 Problem definition and practical algorithm

Definition: A chemical cut [Akutsu, 2004] of size C is a partition of a graph
G into connected components which are obtained by removing at most C
edges whereas the nodes of each removed edge have to belong to different
connected components after the removal.

In order to handle reactions modifying ring structures, we must extend
the definition of a cut. A pseudo cut removes edges of a graph G which do
not disconnect G. The total number of removed edges per compound may
still not be larger than C. An example describing both types of cuts is shown
in Fig. 4.2A.

Definition: Given the chemical reaction equation E1 + ... + Ee ↔ P1 +
...+Pp. E1, ..., Ee and P1, ..., Pp are molecular graphs representing educt and
product compounds. The mapping problem is now to find a chemical cut
of size C for each E1, ..., Ee and P1, ..., Pp such that the resulting multiset

of connected components Ê1 ∪ ... ∪ Êe is equal to the multiset of connected
components P̂1 ∪ ... ∪ P̂p. Elements of the multisets are equal if they are
isomorphic.
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Figure 4.2: (A) Schematic illustration of chemical cuts and pseudo cuts. (B)
The general mapping problem. The example shows a reaction with two educt (E1,
E2) and two product compounds (P1, P2), and a cut-size C=1. Graph partitions
(Ê1,Ê2,P̂1,P̂2) were created by removing at most one edge in the molecular graph
for each compound. A mapping is found if the multisets Ê1 ∪ Ê2 and P̂1 ∪ P̂2 are
equal.

Fig. 4.2B illustrates the mapping problem, for a simple example. For fixed
values of p, q and C, the problem can be solved in polynomial time, since
the number of combinations (E1, ..., Ee, P1, ..., Pp) is O(nC(e+p)), where n is
the maximum size of a compound in the reaction [Akutsu, 2004]. Practical
algorithms solving the problem for the special case of C = 1 and e = p = 2
were presented earlier [Akutsu, 2004]. Here, we introduce a procedure for
solving the general problem.

We distinguish two types of mapping rules. Given a chemical reaction, a
fragment mapping rule defines which connected component (called fragment)
of an educt molecular graph is isomorphic to which connected component
of a product molecular graph. Such a rule consists of a list of isomorphic
fragment pairs. An atom mapping rule defines which atom of an educt com-
pound is transferred to which atom of a product compound. A rule of this
type consists of a list of atom pairs. From the fragment mapping rules, we
can deduce atom mapping rules using the canonical graph representations
created by Morgan’s algorithm [Morgan, 1965]. 2 We use unique SMILES
[Weininger et al., 1989] to detect isomorphic components. The advantage is
that this permits the simple incorporation of stereochemical information and
reduces the number of inferred irrelevant atom mapping rules. Furthermore,
we define two functions which are necessary for the mapping calculation.
The first function, CSF (X), transforms the multiset X, which contains con-

2The algorithm assigns an unique integer label to each node in a molecular graph,
based on the node degree and the degrees of its neighbors. Topologically equivalent nodes
in isomorphic graphs get the same labels.
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nected components as elements, to the multiset Y where the elements of X
are replaced by their chemical formulas. Accordingly, the second function,
SMILES(X) replaces the elements of X by their unique SMILES.

Minimum cut algorithm: All valid atom mapping rules corresponding to
a minimal cut size C can be computed as follows:

1. C ← 0

2. For the molecular graphs of the educts E1,...,Ee and products P1,...,Pp

create all possible partitions Ê1i
,...,Êej

and P̂1k
,...,P̂pl

using cut size C.

3. Create all possible multisets of connected components Ẽs = Ê1i
∪...∪Êej

and P̃r = P̂1k
∪...∪P̂pl

.

4. Select all pairs (Ẽs,P̃r) with CSF (Ẽs) = CSF (P̃r).

5. From all pairs calculated in Step 3 select all pairs (Ẽs,P̃r) with
SMILES(Ẽs) = SMILES(P̃r) and a minimum number of removed
edges producing pseudocuts accumulated for all educts and products.
Each pair represents a fragment mapping rule.

6. If no fragment mapping rule is found in Step 4: C ← C + 1, repeat
from Step 2.

7. Extract the final atom mapping rules from the fragment mapping rules
using the canonical graph representation calculated by Morgan’s algo-
rithm.

The third step was introduced to improve the calculation time signifi-
cantly. It is not necessary to compute unique SMILES for all partitions. In
the first iteration of the algorithm we simply compute the chemical formulas
of the connected components and use them to collect a set of candidate par-
titions for the molecular graphs. Step 4 insures that the mappings found are
based on a minimum number of removed edges. If we would search for all
mappings allowing the maximum possible cut size C as well as the maximum
number of edges producing pseudo cuts, the number of irrelevant mappings
per reaction would be much higher. Note that a mapping found by the cut
size C = 0 typically represents isomerization or oxidoreductive reactions.

4.1.3 EC clustering

For a significant number of reactions (approximately 40%, data not shown),
there is more than one possible mapping rule. An example is shown in
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Fig. 4.3A. Using cut size C = 1, there are three possible mapping rules for the
reaction catalyzed by serine-pyruvate transaminase (EC 2.6.1.51). But only
the first mapping rule describes the underlying reaction mechanism which ex-
changes the amino group of L-serine with a keto group of pyruvate. To filter
out biochemically irrelevant mappings, we introduce the EC clustering ap-
proach. The idea is that the mechanism of many chemical reactions consists
of shifting or exchanging small functional groups like amino, keto, methyl,
phosphate or carboxyl groups. All reactions which have the first three dig-
its of their EC number in common also share the reaction mechanism. The
last digit only enumerates the different chemical structures operating as sub-
strates. Typical examples are reactions transferring a phosphate (EC 2.7.1.-)
or a methyl group (EC 2.1.1.-) from one molecule to another.

At first, we define an EC cluster (ECC) as a set of enzymatic reactions
which have the first three digits of their EC number in common. Given an
EC cluster, a reaction mechanism rule generally describes, for the reactions
in the cluster, how the educts are transformed into the products. The aim
is then to automatically infer the reaction mechanism rule by identifying the
relevant functional groups or parts of the substrates. The next step is to
select that fragment mapping rule and underlying atom mapping rule which
correspond to the inferred reaction mechanism rule and to discard all the
other fragment mapping rules.

Reaction mechanism rules are represented as strings and constructed from
fragment mapping rules. The following syntax is used to describe them.
The two sides of a reaction are separated by ‘=’. The fragments of each
compound are separated by ‘,’ and enclosed by ‘<’ and ‘>’. The first fragment
representing a non-relevant structure, is designated with ‘X1’, the second
with ‘X2’ and so on. Relevant fragments like the mentioned functional groups
are represented using their SMILES (e.g. N, O, C, OP(O)O, C(O)O). 3 An empty
fragment is represented by ‘$’ and is used in graph partitions for compounds
in which no edge is removed. The strings representing both the fragments
and the whole reaction sides are alphabetically ordered to ensure uniqueness
in the comparison with reaction mechanism rules from different reactions.
Fig. 4.3B shows an reaction mechanism rule for each fragment mapping rule
shown in Fig. 4.3A.

Note that there is no predefined list of relevant fragments. We generate
all possible reaction mechanism rules from the fragment mapping rules of a
given reaction by allowing each fragment to be relevant or not. Given an
EC cluster and a reaction mechanism rule, the occurrence frequency of this

3Note that the SMILES shown lack double bonds since bond types (parallel edges) are
ignored in our molecular graphs for simplicity.
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rule accumulated over all reactions in the cluster is called the EC cluster
score (ECCS). A reaction mechanism rule occurs in a reaction if it can be
constructed from at least one fragment mapping rule of the reaction. From
all generated reaction mechanism rules we select that to be relevant which
has the highest score. The EC clustering procedure performs the following
steps:

1. For each given fragment mapping rule containing n educt as well as
product fragments, construct for all

(

n

k

)

combinations with k = 0, ..., n−
1, reaction mechanism rules in which k fragments are marked as non-
relevant (represented as ‘X1’, ‘X2’, and so on).

2. For all reaction mechanism rules deduced from a fragment mapping
rule of a reaction in an EC cluster, calculate the EC cluster scores.

3. Assign each fragment mapping rule of a reaction in an EC cluster
the maximum ECCS of the reaction mechanism rules which were con-
structed from the fragment mapping rule.

4. For each reaction select the fragment mapping rule (and its correspond-
ing atom mapping rule) with the highest score as the relevant mapping.

Considering the example shown in Fig. 4.3, it becomes possible to detect
the first mapping rule as biochemically relevant, since the assigned score is
significantly larger than the scores of the other two mapping rules. The
score of 0.96 for the first reaction mechanism rule indicates that for 96% of
the reactions in the EC cluster 2.6.1.- (overall 90 reactions using data from
KEGG), the mechanism can be described as exchange of an amino group
with a keto group. If there is more than one fragment mapping with the
highest score or there is a reaction with no EC number, then we select the
mapping as relevant with the minimum number of transferred atoms (the
number of atoms of the relevant chemical groups).

4.1.4 Results

Atom mapping rules were inferred from chemical reactions extracted from the
KEGG and the EcoCyc databases. The maximum cut-size was restricted to
C = 2 and the maximum number of compounds permitted per reaction was
set to 10. This ensured an efficient calculation. Reactions containing com-
pounds for which the structural information was incomplete or non-existent,
and reactions with an unbalanced reaction equation were not considered.
This reduced the number of reactions from 6811 to 4621 for KEGG, and
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Figure 4.3: (A) A reaction with multiple mapping rules. The atom transfer
between both sides of the reaction is represented by equal geometric shapes. The
different shapes within a compound also represent the connected components in
the corresponding molecular graphs. Only the first rule is biochemically relevant.
(B) Each mapping rule is assigned the maximum score (ECCS) of all reaction
mechanism rules which were derived from the mapping. The mapping with the
highest score is detected as the relevant mapping. For each mapping rule, the best
reaction mechanism rule with corresponding score is shown.
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Table 4.1: The results of the atom mapping calculation using the EcoCyc and
KEGG data sets. 850 as well as 4621 reactions, with balanced equations and
complete structural information of the compounds, were selected from EcoCyc
and KEGG. For 98.0% as well as 97.7% of these reactions, at least one atom
mapping rule could be calculated. More details are described in the text.

EcoCyc KEGG
reactions overall 1348 6811

selected 850 (63.1%) 4621 (67.9%)
successful 833 (98.0%) 4516 (97.7%)

mappings overall 1236 5913
per reaction 1.51 1.31

cut size C = 0 197 (24.0%) 807 (17.8%)
C = 1 553 (67.4%) 3272 (72.5%)
C = 2 71 (8.6%) 437 (9.7%)

from 1348 to 850 for EcoCyc. Tab. 4.1 summarizes the results of the calcula-
tion. For 833 (98%) of the reactions selected from EcoCyc and 4516 (97.7%)
from KEGG, at least one atom mapping rule was found. The overall num-
ber of mappings per reaction was 1.51 (EcoCyc) as well as 1.31 (KEGG).
The number of reactions with mapping rules using cut size C = 0 was 197
(23.6%) for EcoCyc and 807 (17.8%) for KEGG. These are typically stereoiso-
merization or oxidoreductive reactions in which the transfer of substructures
between molecules was not necessary (e.g. EC 1.1.1.-). The majority of the
reactions - 563 (67.6%) for EcoCyc and 3272 (72.5%) for KEGG - required
atom mapping rules with cut size C = 1. Typical representatives are reac-
tions transferring phosphate or methyl groups (e.g. EC 2.7.1.- or EC 2.1.1.-).
Seventy-three (8.8%) of the EcoCyc and 437 (9.7%) of the KEGG reactions
required atom mapping rules with the cut size C = 2. Examples are re-
actions belonging to EC 1.13.11.- in which two oxygen atoms, originating
from molecular oxygen, are transferred. We manually inspected 17 reactions
(2%) from EcoCyc and 105 (2.3%) from KEGG for which no atom mapping
rule could be inferred. These reactions require mapping rules with a cut size
greater than C = 2. The hydrolysis of allophanate resulting in two carbon
dioxide molecules and two ammonia molecules (EC 3.5.1.54) is an example of
a reaction requiring cut size C = 3. Another example is the uroporphyrino-
gen carboxy-lyase reaction (EC 4.1.1.37), in which four molecules of carbon
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dioxide are cleaved off from uroporphyrinogen (C = 4).

4.1.5 Discussion

A novel approach for inferring atom mapping rules from chemical reactions
was developed. Fully automated and efficient calculation was the main target
and was achieved by introducing pseudo cuts, the use of unique SMILES and
EC clustering. The purpose of the EC clustering is to filter out biochemically
irrelevant atom mapping rules but it also offers a way to extract the underly-
ing mechanism of enzymatic reactions and, therefore, could also be used as a
starting point for developing methods suited to large-scale classifications of
reactions as well as automatic assignment of EC numbers. In addition to bio-
chemical feasibility validation of candidate pathways inferred by path-finding
approaches, calculated atom mapping rules can also be used for analyzing ra-
dioisotope tracer experiments, for consistency checking of pathway databases
or visualizing conserved structural moieties along pathways.

We restricted the calculation of atom mapping rules to a maximum cut-
size C = 2 to ensure an efficient calculation. Furthermore, reactions requiring
a higher cut-size are very rare and it is not necessary to have calculated atom
mapping rules for 100% of the reactions in EcoCyc and KEGG to support
the main goal of this thesis, the inference of relevant biotransformaton routes
(as described in Section 4.4.2). However, more work should be invested
to ensure more efficient calculation even for very complex reactions. The
main challenge is how to deal in general with larger compounds like NADH
and acetyl-CoA or even larger ones like protoheme. Such compounds cause
a high number of bond-breaking combinations that have to be considered.
It is, however, obvious that there are bonds which have a higher breaking
probability than others. The introduction of a suited chemical logic that
helps identifying these bonds could significantly reduce the calculation effort.

4.2 Prediction of standard transformed Gibbs

energies of biochemical reactions

4.2.1 Introduction

The Gibbs energy G represents the driving force for each biochemical reac-
tion in a metabolic network. The standard Gibbs energy change ∆rG

0 of a
reaction is related to the equilibrium constant K by

∆rG
0 = −RT ln K
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Figure 4.4: The chemical conversion of fructose-6-phosphate into fructose-1,6-
bisphosphate using EC 3.1.3.11 and EC 2.7.1.11. ∆rG

′0 values (in kJ/mol) in the
desired reaction direction, taken from Alberty [2005b], are also shown.

with gas constant R and absolute temperature T . Knowledge of ∆rG
0 as

well as of K for each reaction step of a metabolic pathway supports ther-
modynamic pathway analysis. Whether a (novel or engineered) pathway is
thermodynamically feasible and where to find bottlenecks and physiologi-
cally irreversible reactions are interesting questions. Their answers help us
to understand cellular metabolism better. An important aim of this thesis
was to consider and integrate thermodynamic information when searching
for relevant pathways using a graph theory-based approach. The basic idea
behind using Gibbs energy data for this purpose was the assumption and ob-
servation that pathways tend to use the reaction that is thermodynamically
most favorable when several alternatives exist. For example, the chemical
conversion of glucose to pyruvate in glycolysis requires the phosphorylation
of fructose-6-phosphate to fructose-1,6-bisphosphate as an intermediate step.
Ignoring regulatory aspects, the pathway could choose between two different
reactions (see also Fig. 4.4). However, compared to the first reaction (EC
3.1.3.11), the second one (EC 2.7.1.11) is thermodynamically much more
favorable in the desired direction under standard conditions. Therefore, it
does not come as a surprise that the second reaction is known to be part of
the textbook glycolysis pathway and the first reaction part of the opposed
gluconeogenesis pathway, which transforms pyruvate back to glucose.

Without a given ∆rG
0 or K it is difficult to estimate even the favored

direction of a reaction. Experimentally determined equilibrium constants
are available only for a limited number of biochemical reactions. It is also
possible to calculate ∆rG

0 of a reaction (if the standard Gibbs energies of
formation ∆fG

0 of the educts and products are known) using the equation

∆rG
0 =

∑

j

∆fG
0
j(pj)−

∑

i

∆fG
0
i (ei)
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where ei and pj are the stoichiometric coefficients of the educts and products.
Unfortunately, the availability of experimentally determined ∆fG

0 values of
biochemical compounds is also limited. Based on data sources [Goldberg
et al., 2004; Alberty, 2005] that provide comprehensive thermodynamic in-
formation collected from the literature, we can annotate less than ten percent
of all biochemical reactions stored in databases like KEGG or MetaCyc with
∆rG

0 or K values. With the rapidly increasing number of genome-scale
metabolic networks stored in pathway genome databases, thermodynamic
pathway analysis is becoming more important but is hindered by the lack
of comprehensive information about equilibrium constants. Hence, there is
a need for computational approaches for estimating or predicting Gibbs en-
ergy information given the educts and products of reactions with unknown
equilibrium constants.

A group contribution method [Mavrovouniotis, 1990, 1991] has been de-
veloped for estimating ∆rG

0 of biochemical reactions in aqueous solution.
To use this method, the chemical structures of the educts and products of a
reaction have to be decomposed into functional groups of atoms. The basic
idea is the assumption that the ∆fG

0 of a molecule is given by the linear
combination of energy contributions from each constituent group multiplied
by the number of occurrences of that group in the molecule. To this end, a
predefined set of groups is provided by the authors and each group is assigned
an energy contribution. Then ∆rG

0 of a reaction is equal to the difference
between the sums of the group contributions of the products and educts. The
contributions are estimated using multiple linear regression on data collected
from the literature. The data set consists of a mixture of Gibbs energies of
biochemical compounds and reactions in dilute aqueous solution at 298.15
K and pH 7. Reaction data are also used because ∆rG

0 of a reaction is
given by the linear combination of net energy contributions from the educt
and product groups. The typical error of an estimated ∆fG

0 is less than
2 kcal/mol (8.37 kJ/mol) but errors higher than 5 kcal/mol (20.92 kJ/mol)
can occur.

Other works, not specialized for biochemical compounds in aqueous solu-
tion but related to the problem, are based on quantitative structure-property
relationship (QSPR) techniques to predict the standard Gibbs energy of
formation of organic compounds [Ivanciuc et al., 2000, 2001; Toropov and
Toropova, 2003; Yan, 2006]. The basic underlying idea is the fact that phys-
iochemical properties like ∆fG

0 are determined by the chemical structure of
the molecules. Molecular descriptors are used to encode the structures in a
numerical form and linear or non-linear statistical methods (like multiple lin-
ear regression or neural networks) are used to model the complex relationship
between ∆fG

0 and the selected descriptors.
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A drawback of the group contribution method described is that it ignores
effects on the thermodynamic equilibrium caused by the ionic strength I, the

presence of metal ions like Mg2+ and the dissociation of biochemical com-
pounds into several ionic species in aqueous solutions at pH 7. These effects
can be significant and their consideration requires the adjustment and trans-
formation of the Gibbs energy. Therefore, the IUPAC-IUBMB Joint Com-
mission on Biochemical Nomenclature[Alberty, 1996] recommends the use of
the apparent equilibrium constant K ′, which is written in terms of sums of
species together with the standard transformed Gibbs energies ∆fG

′0 and
∆rG

′0 instead of K, ∆fG
0 and ∆rG

0 when analyzing biochemical reaction
systems. These thermodynamic quantities should be based on biochemi-
cal standard conditions4. The importance of considering these parameters
when analyzing metabolic pathways was also evaluated in an extensive study
[Maskow and von Stockar, 2005]. Further drawbacks of using the group con-
tribution method are that possible group interactions are neglected and that
a couple of special correction rules have to be applied in order to get better
estimations. Also, the decomposition of the chemical structures into non-
overlapping groups of atoms is a non-trivial task. However, it should be
noted that Forsythe et al. [1997] introduced an algorithm that complements
the group contribution method by an automatic decomposition based on the
application of SMILES [Weininger et al., 1989]. Furthermore, special care has
to be taken when dealing with pool compounds like ATP, ADP or NADH.
These compounds have to be treated as single groups and are assigned spe-
cial energy contributions when occurring in a reaction. Although the group
contribution method represents a pioneering work in this field, the problems
described and their drawbacks makes the estimation of equilibrium constants
quite difficult.

Our contribution to the problem of estimating equilibrium constants was
the development of a method that is easier to use, considers the recommenda-
tions described for analyzing biochemical reactions and provides acceptable
predictions. To this end, we applied QSPR techniques, which allowed us to
calculate a wide range of molecular descriptors fast and easy using a QSPR
software package. Novel to our approach, but inspired by the group contribu-
tion method, is that biochemical reactions are represented as feature vectors
created from the difference of the numerical molecular descriptor vectors
between the products and educts of each reaction. Experimentally deter-
mined ∆rG

′0 values under approximate biochemical standard conditions for
484 reactions were collected using data extracted from relevant data sources
[Goldberg et al., 2004; Alberty, 2005]. Since we were primarily interested in

4T=298.15 K (or T=310.15 K), P = 105 Pa, pH 7, I=0.25 mol/l and pMg 3
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the creation of a prediction model specialized for biochemical reactions in-
volved in carbon, nitrogen, sulfur and phosphor metabolism, we disregarded
reactions with compounds that contained atoms other than H, O, C, N, S
or P. We used multiple linear regression and stepwise feature selection to
calculate a model for the prediction of ∆rG

′0 for reactions given in the form
of feature vectors. Based on an independent test procedure, the prediction
error obtained for a typical reaction was 6.24 kJ/mol with a squared corre-
lation coefficient of 0.9373 between the observed and predicted ∆rG

′0 values
of the test reactions.

The following sections present the methods necessary to develop the ap-
proach including the data sources used, the creation of the training data set
as well as feature vectors and the procedures applied for training and perfor-
mance evaluation, followed by detailed prediction results with a concluding
discussion.

4.2.2 Methods

TECRDB

The Thermodynamics of Enzyme-catalyzed Reactions Database (TECRDB)
[Goldberg et al., 2004] is a systematic collection of thermodynamic data on
enzyme-catalyzed reactions. The data contains apparent equilibrium con-
stants K

′

and molar enthalpies ∆rH
′0 of biochemical reactions measured

in experimental studies. The database is available via a web interface and
stores data for approximately 400 different enzyme-catalyzed reactions cu-
rated from approximately 1,000 published papers. The collected papers were
also previously surveyed in six reviews [Goldberg et al., 1993; Goldberg and
Tewari, 1994,b, 1995,b, 1999].

For each entry (measured K
′

or ∆rH
′0) in the database the following

information, if found in a paper, is given:

• literature reference

• the enzyme-catalyzed reaction written in terms of reactants (sum of
species)

• Enzyme Commission (EC) number of the reaction

• the method of measurement

• the conditions of measurement (temperature, pH, ionic strength, buffer,
cofactor(s) etc.)
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• a subjective evaluation rating of the data

The subjective evaluation rating separates the data into four classes of
quality (A for high, B for good, C for average and D for low quality). To
carry out, the authors of the database considered the level of experimental
details described in the corresponding study.

BasicBiochemData3

BasicBiochemData3 [Alberty, 2005] is a database written in Mathematica
[Wolfram Research, Inc, 2005] that contains the standard Gibbs energy of for-
mation (∆fG

0) of species for 199 reactants of biochemical interest at 298.15
K and zero ionic strength. The standard enthalpies of formation (∆fH

0)
are also available for the species of 94 reactants. Furthermore, the database
provides numerous programs for the calculation of the apparent equilibrium
constant K

′

and other transformed thermodynamical properties of enzyme-
catalyzed reactions.

Some of the collected species data stems directly from the NBS [Wag-
mann et al., 1982] and CODATA [Cox et al., 1989] thermodynamic tables.
The thermodynamic properties are calculated from measurements of appar-
ent equilibrium constants extracted from TECRDB, especially for larger bio-
chemical compounds (e.g. acetyl-CoA).

Species data for 28 more reactants not included in the last version of
BasicBiochemData3, but described in the literature [Alberty, 2006a,b, 2007],
was also used in this work. These reactants represent the GTP, XTP, TTP,
UTP, CTP and carbamoyl-phosphate series.

The species data and Mathematica programs provided can be used to
calculate the standard transformed Gibbs energy of formation (∆fG

′0) of the
reactants at 298.15 K in the pH range from five to nine and ionic strength
from zero to 0.35 mol/l.

Mining standard transformed Gibbs energies from experimental
data

The standard transformed Gibbs energy of formation of a reactant at a spec-
ified temperature, pH and ionic strength can be calculated from the standard
Gibbs energies of formation of the species involved in that reactant using Leg-
endre transforms (described in Section 2.2.2). However, information about
standard Gibbs energies of formation is available only for a limited number of
biochemical species. Another way of obtaining ∆fG

′0 values for biochemical
reactants without knowing ∆fG

0 values of its species was described by Al-
berty [1998]. This method can be applied if the standard transformed Gibbs
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energies of formation are given for all but one reactant in a biochemical re-
action with experimentally determined K

′

(close to T=298.15 K and pH 7)
simply by using the following equation:

∆rG
′0 = −RT ln K

′

=
∑

j

(∆fG
′0
j pj)−

∑

i

(∆fG
′0
i ei)

where ei and pj are the stoichiometric coefficients of the educts and products
in the biochemical reaction. If there are two reactants A and B (one for each
reaction side) with unknown standard transformed Gibbs energy, one can be
assigned ∆fG

0 = 0 or ∆fG
′0 = 0 by convention. The advantage is that this

allows the calculation of K
′

for reactions where both reactants participate.
However, it is not possible to calculate K

′

for reactions forming reactant A or
B. Some of the thermodynamic properties present in the BasicBiochemData3
database are calculated according to this method from experimental data
extracted from the database provided by Goldberg et al. [2004].

In order to increase the number of ∆fG
′0 values available, we performed

an automated version of Alberty’s method by combining BasicBiochemData3
with TECRDB. First, compounds and reactions from TECRDB were mapped
to their corresponding entities in the KEGG and MetaCyc databases by com-
paring compound names and EC numbers. This had to be done because
there is no structural information about the compounds in TECRDB. The
information was required later for creating a QSPR training data set. The
mapping candidates were detected computationally (by matching compound
names) but selected manually to avoid false positives. We mapped TECRDB
compounds only if the corresponding KEGG/MetaCyc compounds were an-
notated with complete structural information and only contained carbon,
oxygen, hydrogen, nitrogen, sulfur or phosphorous atoms. All reactants in
BasicBiochemData3 were also mapped to KEGG and MetaCyc and were,
therefore, available in TECRDB. Then all valid TECRDB entries with mea-
sured K

′

were extracted. An entry was defined as valid if temperature T
and pH values of the experiment were given. The information about ionic
strength and cofactors was also extracted. Furthermore, all compounds oc-
curring in the reaction equation had to be mapped to KEGG/MetaCyc.
The EC number, literature reference and evaluation rating (ER) were always
available. Based on these prepared TECRDB entries, the following iterative
procedure was performed to automatically estimate ∆fG

′0 and ∆rG
′0 values

under near biochemical standard conditions:

1. Calculation of the ∆fG
′0 for each reactant in BasicBiochemData3 from

the ∆fG
0 of its species using Legendre transforms and adaptation to
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ionic strength I=0.25 mol/l. These reactants and their ∆fG
′0 values

form an initial list L∆f G
′0 .

2. Setting the evaluation rate constraint variable: ERused = A

3. Setting the experimental constraint variables:
Tmin = 298.15 K; Tmax = 298.15 K; pHmin = 7.0; pHmax = 7.0;

4. Selection of all entries (K
′

, T , pH, ER) which fulfill the current con-
straints:
Tmin ≤ T ≤ Tmax; pHmin ≤ pH ≤ pHmax; ERused = ER

5. For each reaction in the selected entries, ∆rG
′0 is calculated using equa-

tion ∆rG
′0 = −RT ln K

′

. If more than one TECRDB entry is selected
for a reaction, its ∆rG

′0 values are averaged. The reactions and their
∆rG

′0 values are added to the list L∆rG
′0 . Once a reaction is added

to this list, its ∆rG
′0 value cannot be overwritten or changed in a suc-

ceeding iteration.

6. For each reaction in L∆rG
′0 with exactly one reactant that is not found

in L∆f G
′0 , ∆fG

′0 of that reactant is calculated and added to L∆f G
′0

using the equation ∆rG
′0 =

∑

i vi∆fi
G

′0 where vi are the stoichiometric
coefficients (negative for educts and positive for products). If ∆fG

′0

of a reactant can be calculated from multiple reactions, the average
value is used. Once a reactant is added to the list, its ∆fG

′0 cannot be
overwritten or changed in a succeeding iteration.

7. Repeat step 6 until no new reactant can be added to L∆f G
′0 .

8. Increment/decrement experimental constraint variables:
Tmin = Tmin − 1; Tmax = Tmax + 1
pHmin = pHmin − 0.2; pHmax = pHmax + 0.2

9. If Tmin ≥ 293.15 and Tmax ≤ 303.15 and pHmin ≥ 6.0 and pHmax ≤
8.0 continue with step 4.

10. Reduction of the evaluation rate constraint variable:
If ERused is set to A then set ERused = B and continue with step 3
If ERused is set to B then set ERused = C and continue with step 3.

After this procedure, the lists L∆rG
′0 and L∆f G

′0 contained additional
thermodynamic data which could be used to create a comprehensive QSPR
training data set.
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DRAGON molecular descriptors

The DRAGON software package [Talete srl, 2007] was used to calculate
molecular descriptors. It was possible to calculate up to 3,324 descriptors
including functional group and fragment counts as well as topological, geo-
metrical and molecular properties. We applied the package to chemical struc-
tures extracted from the KEGG and MetaCyc databases. The calculation
was performed with the inclusion of hydrogen atoms and for 2D descriptors
(2,425 overall) only.

Training data set and feature vector representation

The QSPR training data set consists of biochemical reactions with known
∆rG

′0. To this end, we extracted all distinct reactions from KEGG and
MetaCyc that contained only compounds with known ∆fG

′0 and balanced
educt/product atoms. We found 411 reactions. For each reaction, we calcu-
lated ∆rG

′0 using equation ∆rG
′0 =

∑

i vi∆fi
G

′0. Furthermore, we included
all reactions extracted from TECRDB with known ∆rG

′0 and with more
than one compound for which the ∆fG

′0 value was missing. We found 73
reactions, which increased the training data set to 484 reactions overall.

The reaction equations were transformed into a feature vector represen-
tation. To this end, we computed DRAGON features (molecular descriptors)
for all compounds participating in the reactions. Then for each reaction the
difference between its educt and product feature vectors was computed using
the equation

Fr =
∑

i

viFi

where Fr is the feature vector representation of a reaction r, Fi the DRAGON
feature vectors of the educts and products and vi the stoichiometric coeffi-
cients (negative for educts and positive for products).

The feature vector representation of reactions is inspired from the group
contribution method that estimates ∆rG

′0 of a reaction by summing net en-
ergy contributions from the educt and product groups. The decision to de-
velop a prediction method for ∆rG

′0 and not for ∆fG
′0 was based on several

reasons. First, we have more comprehensive training data if we use ∆rG
′0

values. This allowed us to use an additional 73 reactions, each containing
more than one compound with unknown ∆fG

′0, mined from TECRDB. Not
all ∆fG

′0 values extracted from BasicBiochemData3 and other sources can
be considered for a training data set. The reason is that the ∆fG

′0 of several
reactants or the ∆fG

0 of one of its species is set to zero by convention. For
example, the ∆fG

′0 values of the GTP series (GTP, GDP, GMP, guanosine,
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guanine) as calculated by Alberty [2006a] are based on the convention that
∆fG

0 of guanosine is zero. Otherwise it would not be possible to get ∆fG
′0

values for this series of reactants. In order to get correct absolute values for
the GTP series, a certain amount of Gibbs energy remains to be specified
and added to these relative ∆fG

′0 values. An advantage of relative values
is that they can be used to calculate ∆rG

′0 of reactions like EC 2.7.1.305 or
EC 3.2.2.16 that contain exactly one reactant of the series on the educt side
and one on the product side. Furthermore, we believe that it is easier to
predict ∆rG

′0 of reactions with balanced educt/product atom masses that
normally undergo only slight molecular changes instead of using ∆fG

′0 of
biochemical reactants which differ widely in their structural properties. For
example, ∆fG

′0 of PRPP is -2978.51 kJ/mol and that of oxidized glutathione
is 1219.74 kJ/mol. It is also more convenient to estimate the error of pre-
dicted ∆rG

′0 for a reaction if its ∆rG
′0 value can be directly inferred from

a prediction system instead of using the predicted ∆fG
′0 of its educts and

products.

Training and performance evaluation

The QSPR training was performed using multiple linear regression and step-
wise feature selection starting with no pre-selected features. Minimizing the
sum of the squared errors between observed and predicted values was the
criterion for selecting the features using five-fold cross-validation.

Although other (non-linear) statistical learning approaches could be used,
multiple linear regression was chosen because it allowed us to easily model
two important properties of ∆rG

′0 that should be considered in a prediction
method expressed as:

∆rG
′0 = p(Fr)

where Fr is the feature vector of the query reaction and p the prediction
function as a result of the model training. The two properties that should
be supported by p can be defined as follows:

1. p(Fr) = −p(−Fr) reverse reactions

2. p(Fr1
) + p(Fr2

) = p(Fr1
+ Fr2

) reaction coupling

The first property describes the energetic behavior of reverse reactions, i.e.
reversing the direction of a reaction with ∆rG

′0 will invert the Gibbs energy
balance to −∆rG

′0. Given a reaction represented by feature vector Fr, its

5GTP + glycerol 
 GDP + glycerol 3-phosphate
6guanosine + H2O 
 guanine + ribose
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reverse reaction is represented by the inverse feature vector −Fr calculated
from the difference between the educt/product molecular descriptor vectors.
Hence, we can simply model the first property if coefficient b0 of the multiple
linear regression equation

y = b0 +

m
∑

i=1

bixi + ε

is constrained to zero (b0 = 0). The second property represents the fact that
changes in Gibbs energy of reactions are additive if the reactions are coupled
(explained in Section 2.2.1). Given two coupled reactions represented by Fr1

and Fr2
with ∆r1

G
′0 and ∆r2

G
′0, the resulting overall reaction is represented

by ∆r1
G

′0 + ∆r2
G

′0 and Fr1
+ Fr2

, which corresponds to the net molecular
descriptors of the educts and products for both reactions.

An independent test procedure was applied to evaluate prediction perfor-
mance. The test was performed by randomly selecting 50 reactions not to be
used in the training phase. For each of the 50 test reactions, the standard
transformed Gibbs energy was predicted from the regression model obtained
using the remaining 434 reactions for training. The whole independent test
procedure was performed ten times. However, there were two restrictions
for selecting test reactions. Since we expected more data noise for the 73
reactions inferred from TECRDB using our data mining approach, we did
not allow these reactions to be selected for testing. Furthermore, we did not
select reactions for testing that contained some small and rarely occurring
compounds with less than two carbon atoms except the frequently occurring
compounds water, carbon dioxide, oxygen, hydrogen peroxide, ammonia,
phosphate and pyrophosphate. All these reactions were used for training but
not for testing, because we expected that these reactions could distort pre-
diction performance. The results of the ten runs were merged into a unique
independent set of test reactions to get more data for statistical evaluation.
To this end, each reaction of the ten test runs was included only once. If a
reaction appeared in more than one independent test run, we used the av-
erage value of the predicted Gibbs energies for this reaction. The resulting
unique test set contained 285 reactions with predicted ∆rG

′0.

We used two standard statistical measures for estimating prediction per-
formance. The first measure is the coefficient of determination R2 which
compares the variation between observed and predicted values to the vari-
ation within the observed values. In other words, R2 is a measure of the
quality of fit of a model and provides information about how well the pre-
dicted values approximate the observed real data values. The definition of
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R2 is given by

R2 = 1−

N
∑

i=1

(yi − ŷi)
2

N
∑

i=1

(yi − y)2

where yi are the observed values, ŷi are the predicted values, y is the mean
value of the observed values and N is the number of observed/predicted
data value pairs. The standard error of estimate SEE is the second quality
measure and it provides information about the expected accuracy of the
model predictions and is calculated from the sum of the squared errors for
each data value pair. The standard error of estimate is defined by

SSE =

√

√

√

√

√

√

N
∑

i=1

(yi − ŷi)
2

N
.

Both quality measures were also used to evaluate the performance of the
applied data mining approach, which automatically estimates ∆fG

′0 and
∆rG

′0 values from experimental data in TECRDB.

4.2.3 Results

Mining standard transformed Gibbs energies from experimental
data

The result of estimating ∆fG
′0 for biochemical compounds from experimen-

tal data using the data mining approach, described in the methods section,
is shown in Tab. 4.2. For each estimated ∆fG

′0, the table shows the relevant
data for the automatically selected TECRDB entries, i.e., the EC number,
temperature T , pH, ionic strength I, if given, measured equilibrium constant
K

′

and the subjective evaluation rate EV. The approach produced ∆fG
′0 val-

ues for 31 new reactants which were not contained in BasicBiochemData3.
To evaluate the accuracy and reliability of the whole approach, we performed
the following experiment. For each reactant with given ∆fG

′0 inferred from
its species data in BasicBiochemData3, we tried to estimate its ∆fG

′0 from
experimental data using our data mining approach. We collected all suc-
cessfully estimated ∆fG

′0 values (118 overall) and compared them with the
corresponding (observed) values inferred from BasicBiochemData3. The re-
sult of this experiment is plotted in Fig. 4.5.
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Table 4.2: Result of the mined ∆fG
′0 values for 31 reactants. For each ∆fG

′0, all relevant parameters of the automatically
selected TECRDB entries are presented

reactant ∆f G
′
0 EC T pH I/M K

′

∆rG
′
0 Ev

6-phospho-D-gluconate -1568.69 1.1.1.44 298.15 6.9 0.18 0.079 6.29 A
phosphocreatine -750.97 2.7.3.2 298.15 7.0 0.25 0.0058 12.78 A
(S)-2-methylmalate -602.49 4.1.3.22 298.15 7.4 0.26 0.209 3.88 A
4-hydroxyphenylpyruvate -183.38 2.6.1.5 298.15 7.5 0.32 0.88 0.32 A
phenylpyruvate -20.21 2.6.1.5 298.15 7.5 0.33 1.0465 -0.11 A
O-acetyl-L-serine -283.32 2.3.1.30 298.15 6.0 (0.25) 15.00 -6.71 A
UDP-glucose -1723.83 2.4.1.13 303.15 7.0 (0.25) 6.7 -4.71 B

-1725.20 2.7.7.9 303.15 7.0 (0.25) 0.286 3.10 B
D-arabino-3-hexulose 6-phosphate -1302.76 5.3.1.- 303.15 7.0 (0.25) 188.00 -12.98 B
sucrose 6-phosphate -1559.35 2.4.1.14 298.15 7.0 (0.25) 15.65 -6.11 B
formaldehyde -45.69 4.1.2.- 303.15 7.0 (0.25) 4 × 10−5 25.10 B
UDP-galactose -1721.43 5.1.3.2 300.15 7.1 (0.25) 0.289 3.08 B
erythrulose 1-phosphate -1160.60 4.1.2.2 301.15 7.4 (0.25) 4.3 × 10−4 19.21 B
(S)-methylmalonyl-CoA -340.23 5.1.99.1 303.15 7.4 (0.25) 1.0 0.00 B
N-acetyl-L-methionine -143.48 3.5.1.14 298.15 7.5 (0.25) 3.6 -3.18 B
D-xylulose 5-phosphate -1232.98 5.1.3.1 298.15 7.5 (0.25) 1.5 -1.01 B
D-erythrose 4-phosphate -1164.67 2.2.1.1 298.15 7.6 (0.25) 0.084 6.14 B
sedoheptulose 7-phosphate -1377.63 2.2.1.1 298.15 7.6 (0.25) 0.9 0.26 B
2-hydroxy-3-oxopropanoate -486.32 1.1.1.60 296.15 7.6 (0.25) 1.9 × 10−6 32.65 B
(-)-ureidoglycolate -473.24 4.3.2.3 303.15 7.5 (0.25) 0.14 4.87 B
allantoate -361.18 3.5.3.4 303.15 7.5 (0.25) 0.21 3.87 B
5-oxo-D-proline -224.54 4.2.1.48 297.85 7.9 (0.25) 25.65 -8.04 B
2,2’-iminodipropanoate -254.03 1.5.1.17 298.15 7.0 (0.25) 1.0 × 10−6 34.25 C
adenylosuccinate -1089.48 4.3.2.2 298.15 7.0 (0.25) 0.012 10.96 C
D-arabitol -284.98 1.1.1.14 298.15 7.0 (0.25) 8 × 10−4 17.68 C
6-phospho-2-dehydro-3-deoxy-D-gluconate -1454.78 4.1.2.14 298.15 6.8 (0.25) 0.0016 15.96 C
2-dehydro-3-deoxy-D-galactonate 6-phosphate -1452.70 4.1.2.21 298.15 6.8 (0.25) 0.0037 13.88 C
enol-phenylpyruvate -14.50 5.3.2.1 298.15 7.8 (0.25) 0.1 5.71 C
GDP-glucose -1469.60 2.7.7.34 303.15 7.8 (0.25) 0.25 3.44 C
5-dehydro-D-fructose -468.28 1.1.1.124 303.15 7.0 (0.25) 4.78 × 10−4 19.13 C
1-(indol-3-yl)glycerol 3-phosphate -598.07 4.2.1.20 298.15 7.8 (0.25) 2300.0 -19.19 C
adenosine 5’-tetraphosphate -3162.93 2.7.4.3 303.15 8.0 (0.25) 0.1 5.71 C
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Figure 4.5: Performance evaluation of the estimation of ∆fG
′0 for biochemical

reactants from experimental data. This plot shows the observed ∆fG
′0 against

the estimated ∆fG
′0.

The plot shows the observed ∆fG
′0 against the estimated ∆fG

′0. The
range of values of the observed ∆fG

′0 was between -2978.51 kJ/mol (PRPP)
and 1219.74 kJ/mol (oxidized glutathione). The standard error of estimate
of the experiment was 5.17 kJ/mol with an optimal R2 (1.000).

We also applied the approach to estimate ∆rG
′0 values for 73 reac-

tions where each reaction contained more than one compound with unknown
∆fG

′0. These reactions are listed in Appendix A together with all relevant
parameters of the TECRDB entries used. To evaluate the quality of these
estimated ∆rG

′0 values, we used the following experiment. First, we calcu-
lated the ∆rG

′0 of reactions which contained only compounds with known
∆fG

′0 (inferred from BasicBiochemData3). These (observed) ∆fG
′0 values

were compared with the corresponding ∆rG
′0 values (105 overall) estimated

using the data mining approach. The respective data plot can be seen in
Fig. 4.6. This time, the range of values of the plotted data points was be-
tween -30 kJ/mol and 50 kJ/mol. The standard error of estimate was 5.36
kJ/mol and R2 was 0.905.
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R2 = 0.905, SEE = 5.36 kJ/mol

Figure 4.6: Performance evaluation of the estimation of ∆rG
′0 for biochemical

reactions from experimental data. This plot shows the observed ∆rG
′0 against the

estimated ∆rG
′0.

Prediction of standard transformed Gibbs energies of biochemical
reactions using multiple linear regression

The evaluation of the prediction performance based on the independent test
procedure, described in the methods section, can be seen in Fig. 4.7. The
observed ∆rG

′0 of 285 reactions are plotted against the predicted ∆rG
′0

values. The quality of the prediction model was expressed by an R2 of 0.9892.
The corresponding standard error of estimate was 6.12 kJ/mol. The range
of values of the plotted (observed) ∆rG

′0 was between -500 kJ/mol and 80
kJ/mol. Since the ∆rG

′0 values of 264 reactions (92%) were between -80
kJ/mol and 80 kJ/mol, we further analyzed these reactions in a separate
plot which is shown in Fig. 4.8. This plot represents a cut-out of the plot
shown in Fig. 4.7. Based on this sample subset, the model obtained an R2

of 0.9373 and a standard error of estimate of 6.24 kJ/mol.

4.2.4 Discussion

We have developed a novel approach based on QSPR techniques for the
prediction of ∆rG

′0 for biochemical reactions in dilute aqueous solution. The
model was trained using stepwise multiple linear regression to select the best
features for fitting the training data, which consisted of 484 reactions. The
typical error rate for an estimated ∆rG

′0 was between six and seven kJ/mol.
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Since the final regression model deliverers acceptable error rates and a sig-
nificant correlation between observed and predicted values, we believe that
our approach is very robust and is able to estimate ∆rG

′0 of reactions with
unknown equilibrium constant. Furthermore, the approach is well suited
for in silico thermodynamic analysis because it considers important effects
on the equilibrium caused by the ionic strength, the presence of metal ions
and the dissociation of biochemical compounds in several ionic species at pH
7. Although even better error rates are desirable for more accurate studies,
we believe that our approach can give valuable clues about thermodynamic
bottlenecks or physiologically irrelevant reactions in metabolic pathways and
can help to select plausible and thermodynamically feasible biotransforma-
tion routes in large-scale reaction networks.

Using our model, we were able to predict standard energy changes for
approx. 63% (or 4600) of the KEGG reactions. The remaining reactions
had either unbalanced equations, missing structural information of the com-
pounds or compounds that contained atoms other than H, O, C, N, P and
S. Among the limitation with respect to these atom types, our method is re-
stricted to enzymatic reactions, i.e. reactions causing relatively small chemi-
cal changes of the involved molecules. It is less suited to estimate the energy
balance of overall pathway equations which typically contain structurally
very different educts and products. To reach also this goal, the integration
of ∆fG

′0 values for biochemical compounds into the training data set could
be an option. Furthermore, the general addition of more training samples,
retrieved from the literature or further sources, as well as the application
of advanced (non-linear) statistical learning approaches like support vector
machines could increase the prediction performance and thus the number of
applications.

4.3 Prediction of subcellular protein localiza-

tion

4.3.1 Introduction

A eukaryotic cell is organized into different membrane-surrounded compart-
ments which are specialized for different cellular functions. However, most
cellular proteins are synthesized in the cytoplasm and need to be transported
to their final location to fulfill their biological function. The whole protein
sorting process is not yet understood in all details but, in principle, it de-
pends on signals in the amino acid sequence or signal patches on the protein
surface.
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There are diverse applications for the knowledge of the localization of the
complete proteome, the localizome, in the fields of proteomics, drug target
discovery and systems biology. Since subcellular localization is highly cor-
related with biological function, it is possible to draw conclusions from the
knowledge of a protein’s localization regarding its cellular role. Eisenhaber
and Bork [1998] described subcellular localization as a key functional char-
acteristic of proteins. Proteins destined for the cell surface are especially of
pharmaceutical interest as they are easily accessible drug targets. The in-
tegration of large-scale localization data with diverse omics data, produced
by high-throughput techniques, will help in understanding cellular function.
Localization data can be used to validate or analyze protein-protein interac-
tions inferred from two-hybrid experiments or biochemical pathways inferred
from microarray expression data.

In Chapter 2, we described the spatial organization of enzymes as ba-
sic principle that supports regulation and fine-tuning of metabolism. The
knowledge about the subcellular localizations of all enzymes in a metabolic
network under study is therefore helpful to understand metabolism better.
Localization information was considered in the path-finding process in order
to support the main goal of this thesis, the development of an advanced graph
theory-based approach for metabolic pathway analysis (described in Section
4.4.2). The biological meaning of this step derives from the assumption that
the enzymes of a metabolic pathway are not distributed over various com-
partments by chance (see also Fig. 2.3) and tend to catalyze their reactions
mainly within one or two localizations. To this end, we extended the weight-
ing scheme of the network graph in order to penalize subsequent reactions
that are catalyzed by differently localized enzymes. This allows a better
analysis and ranking of alternative pathways that differ in their number of
involved compartments.

In recent years large-scale sequencing projects have caused a rapid growth
of sequence information and increased the number of proteins but without
any further annotation in public databases. These databases also include rel-
evant data sources specialized on metabolic pathways like KEGG and Meta-
Cyc. Determining the localization of proteins using experimental methods
alone is expensive and time-consuming.

Fast and accurate computational prediction methods provide an attrac-
tive complement to experimental methods. In the last decade numerous
computational methods, which can be roughly divided into sequence-based
and annotation-based methods [Emanuelsson et al., 2007; Nair and Rost,
2005], have been developed. Sequence-based predictors only use the amino
acid sequence of the query protein as input. They are based either on the de-
tection of sequence-coded sorting signals like N-terminal targeting peptides
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[Emanuelsson et al., 1999; Bendtsen et al., 2004; Emanuelsson et al., 2000;
Bannai et al., 2002; Petsalaki et al., 2006; Fujiwara et al., 2001; Boden et al.,
2005; Small et al., 2004; Cokol et al., 2000] and nuclear localization signals
(NLS) [Cokol et al., 2000] or use the fact that the amino acid composition
of a protein is correlated with its localization [Andrade et al., 1998]. The
latter methods [Cedano et al., 1997; Reinhardt and Hubbard, 1998; Hua and
Sun, 2001; Park and Kanehisa, 2003; Xie et al., 2005; Guo and Lin, 2006;
Nair and Rost, 2005; Pierleoni et al., 2006; Cui et al., 2004; Chou and Cai,
2003] use different kinds of composition information like the overall, paired,
gapped-paired, surface or pseudo amino acid composition from the protein
sequence or sequence profiles. More recent and advanced methods combine
composition information with the detection of sorting signals [Horton et al.,
2007; Höglund et al., 2006]. Annotation-based predictors search the sequence
for functional domains and motifs [Chou and Cai, 2002; Scott et al., 2004] or
use textual information like Swiss-Prot keywords [Nair and Rost, 2002; Lu
et al., 2004], Gene Ontology (GO) terms [Lei and Dai, 2006; Huanq et al.,
2008] or PubMed abstracts [Brady and Shatkay, 2008; Fyshe et al., 2008]. If
such information is not available for the query protein most of these meth-
ods transfer annotation from close homologs. Nair and Rost [2002] showed
that homology-driven subcellular localization assignment works because the
localization is clearly conserved in the protein sequence. Annotation-based
predictors often report higher performance than sequence-based predictors
which, however, are more general and robust and can also be used for novel
proteins for which no additional information is present and no annotated
close homologs can be found. In addition to the predictors of the two cate-
gories, there are also hybrid approaches which combine sequence-based and
annotation-based information [Shatkay et al., 2007; Guda and Subramaniam,
2005; Bhasin and Raghava, 2004; Shen et al., 2007; Chou and Cai, 2004] and
can therefore profit from the advantages of both worlds.

Although there exist already numerous computational prediction meth-
ods, there is still room for improvement. This is due to the fact that the
protein sorting process is very complex and not yet well understood. Only
a small portion of proteins have clearly identifiable sorting signals in their
primary sequence. As a consequence, available prediction methods are of-
ten either specialized for the prediction of very few localizations with higher
accuracy or for the prediction of a wide range of localizations with reduced
accuracy.

Our previously published support vector machine (SVM) based predictor
MultiLoc [Höglund et al., 2006] utilizes overall amino acid composition and
the presence of known sorting signals. The aim of this work was to show that
sequence-based predictors like MultiLoc can be improved by incorporating
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phylogenetic profiles and GO terms inferred from the primary sequence lead-
ing to a high-accuracy prediction system that covers all main eukaryotic sub-
cellular localizations. Phylogenetic profiles encode evolutionary information
in the form of patterns of protein inheritance among the species. Marcotte
et al. [2000] successfully applied this approach to distinguish mitochondrial
and non-mitochondrial proteins. GO terms were previously combined with
sequence-based information in the form of pseudo amino acid composition
[Shen et al., 2007]. The GO terms are used as primary prediction criteria
and pseudo amino acid composition is used if no GO term can be found.
Our novel MultiLoc2 prediction system integrates composition and sorting
signal information with phylogenetic profiles and GO terms towards a com-
mon localization prediction. The extended MultiLoc system was trained on
two different datasets resulting in two versions with different resolutions.
MultiLoc2-LowRes is a low resolution predictor that is specialized for glob-
ular proteins and predicts up to five localizations for animals, fungi and
plants. MultiLoc2-HighRes is a high resolution predictor that covers all 11
main eukaryotic subcellular localizations.

MultiLoc2 was compared with current state-of-the-art tools (BaCelLo
[Pierleoni et al., 2006], LOCtree [Nair and Rost, 2005], Protein Prowler [Bo-
den et al., 2005], TargetP [Emanuelsson et al., 2000] and WoLF PSORT
[Horton et al., 2007]) using independent datasets sharing very low sequence
identity with the training datasets of all compared tools. We found Multi-
Loc2 to perform considerably better than related tools for animals and plants
and comparably well for fungal proteins in a benchmark study with five local-
izations. Since GO terms are not always available, we evaluated MultiLoc2
as purely sequence-based and found the performance only slightly reduced
but still better or comparable with other tools showing the robustness of
our method. Furthermore, MultiLoc2-HighRes performed significantly bet-
ter compared with WoLF PSORT using a second independent dataset that
extends the benchmark study to all main eukaryotic subcellular localizations.
In the following sections the MultiLoc2 system is described in detail together
with the training and test datasets used, followed by the performance evalua-
tion and the results of the benchmark studies. Both novel tools are available
online at http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc2.

4.3.2 Methods

MultiLoc2 architecture

The MultiLoc prediction system described earlier [Höglund et al., 2006] is
based on the integration of the output of four sequence-based subclassifiers
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(SVMTarget, SVMSA, SVMaac and MotifSearch) into a protein profile vector
(PPV). The subclassifiers utilize the overall amino acid composition or search
for specific sorting signals. MultiLoc2 extends the original architecture with
two new classifiers based on phylogenetic profiles (PhyloLoc) and GO terms
(GOLoc). As stated in the introduction, there are two versions of MultiLoc2
which differ in the number of predictable localizations. MultiLoc2-HighRes
can deal with nuclear (nu), cytoplasmic (cy), mitochondrial (mi), chloroplast
(ch), extracellular (ex), plasma membrane (pm), peroxisomal (pe), endoplas-
mic reticulum (er), Golgi apparatus (go), lysosomal (ly) and vacuolar (va)
proteins. MultiLoc2-LowRes is specialized for globular proteins and predicts
secretory pathway (SP) proteins (separated into the six classes ex, pm, er,
go, ly, va in MultiLoc2-HighRes) as well as nu, cy, mi and ch. Similar to its
previous version, MultiLoc2 is available for plant, animal and fungal protein
localization prediction. An example of the overall architecture of MultiLoc2
is shown in Fig. 4.9. A query sequence is processed by a first layer of six
subprediction methods. The results from these methods are collected in the
PPV, which is used as input for the final layer of SVMs, which in turn yields
the final localization prediction. In both layers one-vs.-one SVMs are used
for classification. The corresponding figure of MultiLoc2-LowRes is avail-
able in Appendix B. The original four sequence-based classifiers are briefly
described in the next section, followed by details of PhyloLoc and GOLoc.

Subprediction methods

SVMTarget: SVMTarget is based on the detection of N-terminal targeting
peptides to predict ch, mi, SP and other (OT) localizations for plant proteins
and only mi, SP and OT for animal and fungal proteins. A sliding window
approach scans the N-terminal part of a given query sequence. The partial
amino acid composition in the window is used as input for the the SVMs.
The output of SVMTarget is a probability for each localization.
SVMSA: SVMSA scans the sequence for a signal anchor (SA) which can be
present in membrane proteins of the secretory pathway instead of a signal
peptide. Therefore, SVMSA complements SVMTarget. SAs are also detected
using a sliding window approach based on partial amino acid composition.
SVMSA is specialized for membrane proteins and is therefore not included
in MultiLoc2-LowRes.
SVMaac: SVMaac is based on the overall amino acid composition of the
query sequence and outputs a probability for each localization. In contrast
to the original MultiLoc, the binary one-versus-all classification is replaced
by a one-versus-one procedure.
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Figure 4.9: The architecture of MultiLoc2-HighRes (animal version). A query sequence is processed by a first layer of six
subprediction methods (SVMTarget, SVMSA, SVMaac, PhyloLoc, GOLoc and MotifSearch). The individual output of the
methods of the first layer are collected in the protein profile vector (PPV), which enters a second layer of SVMs producing
probability estimates for each localization.
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MotifSearch: MotifSearch outputs five binary features that encode the pres-
ence or absence of sequence motifs relevant to protein sorting like nuclear
localization signals (NLSs). Two additional binary features represent the
presence or absence of a DNA-binding domain or a plasma membrane recep-
tor domain.
PhyloLoc: Proteins within the same subcellular localization tend to share a
similar phylogenetic distribution of their homologs in organisms with known
genome [Marcotte et al., 2000]. This kind of information can be represented
as a phylogenetic profile [Pellegrini et al., 1999] which encodes the pattern
of presence or absence of a given protein in known genomes. Marcotte et al.
[2000] applied phylogenetic profiles for the distinction of mitochondrial and
non-mitochondrial proteins using 31 genomes and a linear discrimination
function. PhyloLoc is based on phylogenetic profiles derived from 78 fully
sequenced genomes and SVMs to predict all of the localizations of the Multi-
Loc2 predictors. The genomes were downloaded from the National Center for
Biotechnology Information (NCBI) web site. We used all available eukary-
otic (20) and archaean (33) genomes and a non-redundant set of 25 bacterial
genomes. (More details are available in Appendix B.) The input of PhyloLoc
(as shown in Fig. 4.10) is a vector of similarities between the query sequence
and the best sequence match in each genome using BLAST. The BLAST
homology searches were performed using default settings. The bit score Bqi

of the best sequence match of the query sequence q in genome i and the self
bit score Bqq of q aligned with itself were used to calculate the similarity
Sqi which is defined as: Sqi = Bqi/Bqq. Due to the fact that Bqi is always
smaller than Bqq, the values of Sqi range from zero to one. Values close to
one indicate presence of the query protein and values close to zero indicate
absence. The calculation of phylogenetic profiles based on bit scores was also
previously used for the functional annotation of bacterial genomes [Enault
et al., 2003]. An important point to note is that, although BLAST is used,
creating phylogenetic profiles is not an annotation-based or homology-based
method as sometimes described in the literature. The reason is that there is
no annotation-transfer from the aligned sequences. Actually, it is irrelevant
whether the proteins of the genomes are annotated or not. Proteins with
similar phylogenetic profiles are co-inherited and do not have to be close
homologs [Marcotte, 2000b].
GOLoc: The Gene Ontology (GO) is a controlled vocabulary for uniformly
describing gene products in terms of biological processes, cellular compo-
nents and molecular function across all organisms [Ashburner et al., 2000].
It has been shown that GO terms can be used to improve the performance
of subcellular protein localization prediction methods [Chou and Cai, 2003;
Lu and Hunter, 2005]. In the literature to date, there are three possibilities
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Figure 4.10: The architectures of PhyloLoc and GOLoc from MultiLoc2-LowRes.
The input of PhyloLoc is a vector of similarities (phylogenetic profile) between
the query sequence and the best sequence match in each genome inferred from
BLAST. The input of GOLoc is a binary encoded vector representing the GO terms
of the query sequence inferred from InterPro using InterProScan. PhyloLoc and
GOLoc use one-versus-one SVMs to process their input and to calculate probability
estimates for each localization.

for obtaining GO annotation terms for a query sequence. If the UniProt
[Bairoch et al., 2005] accession number is known, one can simply extract the
GO annotation from the UniProt database [Shen et al., 2007]. However, this
procedure fails for novel proteins without accession number. Another possi-
bility is to search for homologous proteins annotated with GO terms using
BLAST [Lei and Dai, 2006; Huanq et al., 2008]. This becomes difficult in
cases where proteins have no close homolog or proteins have many homologs.
In this case, no GO term can be obtained or GO terms might be ambigu-
ous. Another method of inferring GO terms is InterProScan [Zdobnov and
Apweiler, 2001] used, for example, by Chou and Cai [2004]. Given a protein
sequence, the tool scans against various pattern and signature data sources
collected by the InterPro project [Mulder et al., 2007]. InterPro also provides
a mapping of the detected protein domains and functional sites to GO terms.

Our subpredictor GOLoc is based on GO terms calculated using Inter-
ProScan. Since the GO terms are derived directly from the query sequence,
we avoid the drawbacks of using accession numbers or BLAST. The input of
GOLoc is a binary-coded vector which represents all GO terms of the train-
ing sequences (see Fig. 4.10). GO terms present in the query sequence are
set to 1 in the vector and to 0 otherwise.
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Datasets

BaCelLo: The datasets used for training and testing MultiLoc2-LowRes
against comparable predictors were obtained from the BaCelLo website7.
The homology-reduced training dataset was extracted from Swiss-Prot re-
lease 48 and contains 2597 animal, 1198 fungal and 491 plant proteins result-
ing in three kingdom-specific predictors. By ignoring proteins annotated as
’membrane’ or ’transmembrane’, only globular proteins were considered.

The animal and fungal proteins represent four localizations (nu, cy, mi,
SP) and the plant proteins five localizations (with the addition of ch). The
independent test dataset was extracted from Swiss-Prot release 54. Only
proteins added to the database starting from release 49 were considered. Fur-
thermore, proteins sharing a sequence identity >30% to at least one protein
from release 48 were removed. This ensured that all test proteins were novel
to the predictors in the benchmark study since all of them were trained using
Swiss-Prot proteins up to release 48. In order to avoid a bias towards the
prediction of over-represented protein classes, all sequences which share the
same localization and align with an E-value lower than 10−3 using BLAST
were clustered into 432 animal, 418 fungi and 132 plant groups.
MultiLoc: For training MultiLoc2-HighRes we used the original MultiLoc
dataset [Höglund et al., 2006], which contains 5959 eukaryotic proteins ex-
tracted from Swiss-Prot release 42. The data set covers 11 localizations (cy,
ch, er, ex, go, ly, mi, nu, pe, pm, va). To also compare the prediction per-
formance of MultiLoc2 with WoLF PSORT in regard to the localizations
not present in the BaCelLo test dataset, we created a second independent
dataset which covers seven localizations (er, ex, go, ly, pe, pm, va). To this
end, animal, fungal and plant proteins of these localizations were extracted
from Swiss-Prot release 55.3 in the same way as the BaCelLo independent
dataset. However, in the case of the plant proteins, we increased the allowed
sequence identity threshold to 40% in order to obtain enough data. We used
BLASTClust to cluster the sequences using 30% pairwise sequence identity
for the animal and fungal proteins and 40% for the plant proteins. The whole
procedure delivered 158 animal, 106 fungi and 30 plant groups.

SVM training and performance evaluation

All building blocks (except MotifSearch) of MultiLoc2 were trained using
SVMs [Vapnik, 1999] from the LIBSVM [Chang and Lin, 2003] software. We
used the radial basis kernel function throughout, and optimized the c and g
parameters by grid search. Furthermore, we defined weights for each class

7http://gpcr2.biocomp.unibo.it/bacello/index.htm
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in order to reduce the over-prediction effect when using unbalanced training
datasets. The probability estimates calculated by LIBSVM were used for
ranking the final predicted localizations and choosing the most probable one.

We used five-fold cross-validation for training and evaluating the predic-
tion performance. Additionally, independent datasets were used for test-
ing MultiLoc2 and comparison with other prediction methods. Therefore,
all test proteins share low sequence homology with proteins in the train-
ing datasets. Localization-specific performance results were expressed using
sensitivity (SE) and the Matthews correlation coefficient (MCC). To evalu-
ate the overall prediction performance, we used average sensitivity (AVG),
which is also known as the average localization-specific accuracy, as primary
measure. The average sensitivity is better suited than the overall accuracy
(ACC), the percentage of correctly predicted proteins of all localizations. The
reason is that all prediction methods were trained on unbalanced datasets
with strongly varying numbers of proteins per localization. This often biases
the prediction towards the localization with the most representations in the
training dataset. Hence an unbalanced test dataset would also normally lead
to a distorted performance evaluation when using the ACC only. To calculate
the performance measures for the independent datasets, we used the average
rates of true and false predicted proteins within each cluster.

4.3.3 Results

Cross-validation performance

The impact of the MultiLoc2 extensions on the overall prediction perfor-
mance was evaluated using 5-fold cross-validation. The results are summa-
rized in Tab. 4.3. The average sensitivity and overall accuracy of MultiLoc2-
LowRes (trained on the BaCelLo dataset) and MultiLoc2-HighRes (trained
on the MultiLoc dataset) were compared with those of the original MultiLoc
architecture and MultiLoc extended by PhyloLoc as well as GOLoc only.
Using the BaCelLo dataset, MultiLoc2-LowRes yielded a significantly higher
AVG (85.0% for animals, 83.9% for fungi and 81.6% for plants) than the
original MultiLoc (77.3%, 78.4% and 71.4% respectively). For the Multi-
Loc dataset the AVG was increased from 78.6% to 89.2% for animal, from
78.0% to 89.2% for fungal and from 78.0% to 89.4% for plant proteins by the
MultiLoc2-HighRes system compared to the original MultiLoc. Note that
the performance results for the original MultiLoc differed from those pre-
viously reported [Höglund et al., 2006] since the SVMaac architecture has
slightly changed.
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Table 4.3: Cross-validation performance comparison of different MultiLoc architectures trained using the BaCelLo and the
MultiLoc datasets. This table compares the average sensitivities (AVGs) and overall accuracies (ACCs) of MultiLoc2-LowRes
and MultiLoc2-HighRes with those of the original MultiLoc and the extended architecture based on PhyloLoc as well as
GOLoc only. The AVGs and ACCs are given in percent. The standard deviations (in parentheses) refer to the differences of
the AVGs and ACCs of the different cross-validation models.
Dataset Method Animals Fungi Plants

No. avgACC ovACC No. avgACC ovACC No. avgACC ovACC
BaCelLo

MultiLoc 2597 77.3 (±2.9) 75.7 (±3.1) 1198 78.4 (±2.7) 71.0 (±2.6) 491 71.4 (±6.8) 67.8 (±3.8)
+ PhyloLoc 80.1 (±2.4) 78.2 (±2.9) 80.0 (±2.5) 73.6 (±0.9) 78.6 (±3.6) 77.4 (±1.9)
+ GOLoc 83.4 (±1.6) 82.4 (±1.8) 80.7 (±1.1) 75.1 (±1.7) 79.3 (±4.1) 74.9 (±3.8)
MultiLoc2-LR 85.0 (±1.9) 83.9 (±2.6) 84.0 (±1.5) 78.9 (±1.8) 81.6 (±2.9) 79.6 (±4.3)

MultiLoc
MultiLoc 5447 78.6 (±1.2) 76.4 (±1.2) 5407 78.0 (±1.3) 76.6 (±1.2) 5856 78.0 (±1.8) 76.4 (±1.7)
+ PhyloLoc 84.6 (±0.7) 84.0 (±0.6) 84.7 (±1.4) 84.4 (±0.9) 86.5 (±1.5) 84.3 (±0.7)
+ GOLoc 87.5 (±1.7) 86.6 (±1.1) 87.6 (±0.6) 87.2 (±0.9) 87.1 (±1.4) 86.5 (±1.1)
MultiLoc2-HR 89.2 (±1.5) 88.7 (±1.1) 89.2 (±0.7) 88.7 (±1.0) 89.4 (±0.8) 88.6 (±0.9)
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Adding PhyloLoc or GOLoc individually to MultiLoc already increased
the performance significantly whereas the performance gain caused by GOLoc
was slightly higher compared to PhyloLoc. However, the best performance
was achieved by the addition of both subpredictors in MultiLoc2. Similar
trends could be detected regarding the overall accuracies. The standard de-
viations of the MultiLoc2-LowRes plant version were higher compared to the
other versions which is due to the fact that the number of training sequences
in the dataset is significantly lower.

Comparison with related tools

In a recently published study [Casadio et al., 2008] five selected top-performing
sequence-based prediction methods (BaCelLo, LOCtree, Protein Prowler,
TargetP and WoLF PSORT) were compared using an independent dataset.
Based on this benchmark study, we compared the performance of MultiLoc2
against these five methods using the same test setting. The benchmark study
considered five subcellular localizations (nu, cy, mi, ch, SP). Furthermore,
a virtual class nu/cy containing nu and cy proteins was created in order to
ensure a fair comparison with TargetP and Protein Prowler which do not dis-
criminate between these two localizations. To deal with WoLF PSORT and
LOCtree, predicted sublocalizations of the secretory pathway were grouped
into the SP class. A similar approach was followed for MultiLoc2-HighRes.
Depending on the inclusion of the virtual nu/cy class, the number of tested
classes was three or four for animals and four or five for fungi and plants.
We also evaluated the performance of only sequenced-based predictions of
MultiLoc2 by disregarding GO terms. The performance resembles the case
of unavailability of GO terms. Tab. 4.4 shows the localization-specific per-
formance results using sensitivity and MCC and Tab. 4.5 summarizes the
overall performances using AVG and ACC. Note that the number of SP clus-
ters for fungi (9) and plants (6) and the mi clusters for plants (6) is quite
small compared to the remaining localizations. Therefore, some care should
be taken when interpreting the prediction results. Small clusters have only
a small influence on the ACC, however, a large influence on the AVG.

MultiLoc2-LowRes always yielded the highest ACCs and AVGs for animal
and plant proteins and hence outperformed all other predictors. The reason
for this outstanding result is that MultiLoc2-LowRes is, in general, better
suited to discriminate between nu and cy and between mi and ch proteins
(see Tab. 4.4), which is a known challenge in the prediction of subcellular
protein localization.
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Table 4.4: Comparison of the localization-specific prediction results using an independent dataset. The sensitivity (SE),
given in percentages, and Matthews correlation coefficient (MCC) are listed for each localization (Loc). The number of
clusters (No.) per localization is also shown. In Protein Prowler and TargetP, predictions for nu and cy are only available
grouped as nu/cy.
Version Loc No. MultiLoc2-LR MultiLoc2-HR BaCelLo LOCtree Protein Prowler TargetP WoLF PSORT

SE MCC SE MCC SE MCC SE MCC SE MCC SE MCC SE MCC
Animals SP 75 95 0.87 88 0.81 93 0.88 79 0.65 86 0.88 88 0.88 92 0.80

mi 48 84 0.74 85 0.77 74 0.66 64 0.51 51 0.71 82 0.63 71 0.63
nu 224 65 0.59 55 0.52 57 0.41 66 0.39 77 0.58
cy 85 70 0.44 71 0.36 51 0.21 35 0.22 34 0.23
nu/cy 308 91 0.83 91 0.79 93 0.83 84 0.64 98 0.79 89 0.75 89 0.76

Fungi SP 9 78 0.59 78 0.61 100 0.74 78 0.35 93 0.20 89 0.56 89 0.73
mi 77 66 0.61 56 0.56 79 0.58 42 0.38 33 0.51 50 0.44 53 0.44
nu 152 59 0.35 46 0.29 72 0.38 63 0.22 93 0.35
cy 180 57 0.27 58 0.21 32 0.19 35 0.15 11 0.19
nu/cy 332 92 0.64 86 0.51 85 0.61 83 0.31 98 0.52 89 0.48 89 0.46

Plants SP 6 83 0.57 83 0.51 100 0.66 83 0.60 100 0.61 100 0.61 33 0.24
mi 6 67 0.46 67 0.42 17 0.40 58 0.30 67 0.40 50 0.26 42 0.52
ch 72 71 0.67 54 0.52 71 0.54 77 0.66 7 0.40 55 0.49 61 0.43
nu 36 94 0.76 86 0.75 88 0.60 72 0.61 72 0.52
cy 17 35 0.33 37 0.20 27 0.38 33 0.39 24 0.28
nu/cy 52 96 0.85 93 0.74 88 0.70 75 0.70 86 0.52 83 0.62 87 0.61
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Table 4.5: Comparison of the overall performance results using an independent dataset. The average sensitivity and the
overall accuracy (in parentheses) for the prediction of three and four classes for animals and fungi and four and five classes
for plants are shown. Both measures are given in percentages. The top-scoring average sensitivity and average accuracy are
highlighted in bold. Results for Protein Prowler and TargetP predictions are only available for a reduced number of classes
since nu and cy are grouped as nu/cy.
Version Classes Average accuracy (Overall accuracy)

MultiLoc2-LR MultiLoc2-HR BaCelLo LOCtree Protein Prowler TargetP WoLF PSORT
Animals 3 90 (91) 88 (90) 87 (91) 76 (81) 78 (91) 86 (88) 84 (88)

4 79 (73) 75 (67) 69 (64) 61 (62) 69 (71)
Fungi 3 79 (87) 73 (80) 88 (84) 68 (75) 75 (86) 76 (82) 77 (82)

4 65 (60) 60 (54) 71 (57) 55 (47) 62 (51)
Plants 4 79 (81) 74 (71) 69 (76) 73 (76) 65 (63) 72 (67) 56 (69)

5 70 (73) 65 (62) 61 (69) 65 (70) 46 (57)
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For fungal proteins the ACCs were the highest and the AVGs were the
second highest after the BaCelLo predictor. One reason for the reduced
AVG performance is that on average only 34% of the fungal proteins were
annotated with GO terms by InterProScan. The annotation-rate was higher
for animals (43%) and plants (79%). Compared to MultiLoc2-LowRes, the
performance of MultiLoc2-HighRes was, not surprisingly, reduced, since it
is a more general predictor not specialized for globular proteins and cov-
ering a wider range of localizations. However, for animal and plant pro-
teins the AVGs of MultiLoc2-HighRes were equal or higher compared to
the other methods. Similar to MultiLoc2-LowRes, MultiLoc2-HighRes per-
formed worse for fungal proteins. The AVGs were still better than LOCtree,
however, worse compared with Protein Prowler, TargetP and WoLF PSORT.

Simulating the case in which no GO term was available for any test pro-
teins, the overall performances of the MultiLoc2 predictors were slightly re-
duced but still better than the other methods for animal and plant and com-
parable for fungal proteins. Detailed results are available in Appendix B.

In a second benchmark study, MultiLoc2-HighRes and WoLF PSORT
were compared using the MultiLoc independent dataset. In contrast to the
other predictors, both methods allow the prediction of all main eukaryotic
subcellular localizations. We further note that WoLF PSORT can also dis-
tinguishes the cytoskeleton within the cytoplasm. In this comparison we only
considered those localizations (ex, pm, pe, er, go, ly, va) not tested in the
previous study. Since it is known that discriminating between these classes
is a big challenge, we also evaluated whether the tested proteins could be
correctly predicted within the top three ranked localizations. The results of
this study are summarized in Tab. 4.6. MultiLoc2-HighRes always achieved
significantly higher AVGs. In particular, the AVG within the top three lo-
cations was about twice as high for MultiLoc2 than for WoLF PSORT. A
similar result was observed regarding the ACCs. MutliLoc2-HighRes had a
much lower bias towards overrepresented localizations and, thus, almost never
showed zero sensitivity for a localization with few representatives. This again
proves high robustness of MultiLoc2, even in cases of many localizations.

4.3.4 Discussion

Our new approach for predicting subcellular protein localization, MultiLoc2,
integrates several subpredictors based on the overall amino acid composition,
the detection of sorting signals, phylogenetic profiles and GO terms.
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Table 4.6: The sensitivity (SE) and top three sensitivity (SE3) for each localization are shown. SE3 measures the fraction
of correctly predicted proteins within the top three ranked localizations. The corresponding average sensitivity and overall
accuracy are listed also, with the top-scoring highlighted in bold. All measures are given as percentages.
Loc animal fungi plant

No. MultiLoc2-HR WoLF PSORT No. MultiLoc2-HR WoLF PSORT No. MultiLoc2-HR WoLF PSORT
SE SE3 SE SE3 SE SE3 SE SE3 SE SE3 SE SE3

ex 78 78 92 93 97 7 71 86 36 79 1 0 100 0 0
pm 34 51 78 41 59 29 7 28 59 79 6 17 50 83 83
pe 3 33 100 0 0 5 20 100 0 0 2 50 100 0 0
er 25 32 74 8 40 46 48 85 9 25 6 50 83 0 50
go 14 14 50 0 7 8 38 63 0 0 6 33 33 17 17
ly 4 25 75 0 25
va 11 0 0 0 0 9 22 59 0 33

avgACC 39 78 24 38 31 60 17 31 29 73 17 31
ovACC 57 82 58 68 31 59 22 51 30 63 20 40
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Compared to the original MultiLoc architecture, the robustness and pre-
diction performance was significantly improved. The performances of the
MultiLoc2 predictors were compared with current state-of-the-art sequence-
based methods using independent datasets.

MultiLoc2-LowRes is specialized for globular proteins and offers kingdom-
specific prediction of up to five localizations based on the BaCelLo dataset.
On the other hand, MultiLoc2-HighRes is able to deal with membrane pro-
teins and predicts all of the main eukaryotic localizations based on a dataset
that consists of a mixture of animal, fungal and plant proteins. In comparison
with five other methods, the MultiLoc2 predictors performed better for ani-
mal and plant proteins whereas MultiLoc2-LowRes outperformed MultiLoc2-
HighRes in general. However, the performance of MultiLoc2-HighRes is re-
markable since it is able to predict more localizations than the other tools
except WoLF PSORT. We also simulated the scenario in which no GO term
was available for any test proteins, which made the prediction sequence-based
only. The resulting performance of the MultiLoc2 predictors was slightly
reduced but still better for animals and plants and comparable for fungi.
Therefore, we conclude that the MultiLoc2 approach is very robust and well
suited for novel proteins without relevant sequence homology to annotated
proteins but can also benefit from the presence of calculated GO annotation
from the sequence using InterProScan.

In a second benchmark study we evaluated the prediction performance
of MultiLoc2-HighRes compared to WoLF PSORT for proteins localized in
the peroxisomes and in the sublocalizations of the secretory pathway. For
all three eukaryotic kingdoms, MultiLoc2-HighRes performed significantly
better. In particular, MultiLoc2-HighRes showed much better sensitivity
throughout all localizations and yielded high robustness. However, the results
indicate that the classification in all main eukaryotic localizations is still a
challenging task and leaves room for improvement for future work.

We also demonstrated that our concept of a PPV is very useful since
it can be easily extended and enables the integration of very heterogeneous
but relevant information towards a common prediction of subcellular pro-
tein localization. Future improvements of our approach could be based on
the integration of further relevant sequence-based or annotation-based infor-
mation. An important issue that is not explicitly covered is the handling of
proteins present in multiple localizations. Furthermore, with more annotated
sequences available, the consideration of more locations like the mitochon-
drial or choroplast sub-compartments should be one of the next steps in order
to increase the usefulness of the approach. At the moment, MultiLoc2 is only
able to annotate eukaryotic proteins. However, an extended version suited
for prokaryotes should also be taken into account.
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4.4 Graph theory-based inference of feasible

biotransformation routes

4.4.1 Introduction

Graph theory-based approaches (as introduced in Chapter 2) infer linear
biotransformation routes using efficient (k-shortest) path-finding algorithms
that can handle genome-scale networks. The big challenge for these ap-
proaches is to apply useful optimization criteria in order to find the most
relevant routes within the k-shortest paths among a huge number of possible
routes which are biologically irrelevant to a great extent.

Weighted graphs enable an easy integration of suitable information into
the path search to overcome the above mentioned problem. For example,
in the degree-weighted metabolic networks approach [Croes et al., 2006], the
metabolic network of an organism is mapped onto a bipartite graph, including
all compounds and reactions as nodes. Directed edges connect the compound
nodes (educts and products) with the reaction nodes. Both directions of a
reaction are represented by two independent nodes per reaction. The key idea
of a weighted metabolic network is to assign each compound node a weight
equal to its degree (e.g. the number of in- and outgoing edges) and each
reaction node the weight 1 by default. The weight of a path in the graph
is then defined by the sum of the weights of its nodes. This implies that
the overall weight of a path is much larger if it contains highly connected
compounds like typical pool metabolites or co-factors (e.g. NADP, ATP,
water). Searching for paths with lowest weight reduces the probability of
finding unfeasible biotransformation routes which contain pool metabolites
as intermediates between two subsequent reactions.

A fundamental problem of this lightest-path search is its inability to han-
dle important biotransformation routes that involve the biosynthesis of pool
metabolites (e.g. purine biosynthesis in which AMP and ADP are intermedi-
ates). The method fails to reconstruct these routes because pool metabolites
participate in many reactions of other transformation processes and, there-
fore, are assigned very large node weights. Another problem are routes pass-
ing through pathways of the core metabolism like glycolysis or the TCA cycle
because highly connected metabolites, for example, pyruvate or acetyl-CoA
are involved.

The main goal of this thesis was to develop a novel graph theory-based
approach which complements and improves existing methods. The approach
is based on a novel graph representation of the metabolic network, called
the metabolic transition graph, and on novel weighting schemes for a better
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detection of biologically meaningful routes. To this end, pre-calculated atom
mapping rules were integrated into the graph representation and combined
with the lightest-path search. To improve the graph weighting, novel weights
were defined based on reaction context, thermodynamic and subcellular lo-
calization information. In the next sections, these novel concepts will be
described followed by an extensive evaluation of the search performance of
the approach.

4.4.2 Methods

Combining atom mapping rules with lowest weight paths

The mentioned problems of the degree-weighted metabolic networks ap-
proach can be reduced by combining the lightest-path search with atom
mapping rules. The key idea is to use atom mapping rules to identify bio-
chemically irrelevant paths of low weight. To this end, all relevant paths
must fulfill the structural moiety constraint (SMC). The usefulness of the
SMC when searching for relevant routes was briefly motivated in Section 4.1
where the calculation of atom mapping rules was described. Since the appli-
cation of this constraint to the lightest-path search represents one of the most
important aspects of this thesis, the topic is recaptured in this section. The
structural moiety constraint can be defined as follows. A path and its cor-
responding biotransformation route can only be feasible if at least one atom
of the source compound is transferred, via the intermediates, to the target
compound. In many cases, this helps to filter out biochemically irrelevant
lowest-weight paths. We also show that the combination of atom mapping
rules with lowest-weight paths performs better than searching for the shortest
path in the unweighted atom mapping graph. The example shown in Fig. 4.11
illustrates the concept of using the structural moiety constraint for path val-
idation. 3-phosphoglycerate, also known as an intermediate in the degrada-
tion of glucose in glycolysis, is used as source metabolite and the amino acid
L-alanine as target. The dashed arrows (1, 2, 3, 4A, 5, 6) describe a path
which consists of six enzymatic steps for transforming 3-phosphoglycerate
into L-alanine. Five intermediates are required. The rectangles mark the
conserved substructures. In this example, 3-phosphoglycerate serves as car-
bon source for L-alanine. The sequential application of atom mapping rules,
linking the educts and products in each reaction, enables a tracing of the
conserved structure. Now, it is clear that this path fulfills the structural
moiety constraint.

The path described by the solid arrows (1, 2, 3, 4B) requires only four
steps in total. The enzymatic reaction with EC number 2.6.1.51 is used
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Figure 4.11: (A) Transformation of 3-phosphoglycerate to L-alanine. The dashed
arrows represent a valid biotransformation route that conserves the structural moi-
ety (shown using rectangles). No atom is transferred from 3-phosphoglycerate to
L-alanine via L-serine in the route represented by solid arrows. (B) All atoms
from 3-phosphoglycerate which are contained in L-serine are transferred to hy-
droxypyruvate according to the atom mapping rule of the reaction 2.6.1.51.

as final conversion step. However, the application of the atom mapping
rule of that reaction implies that no atom could be transferred from 3-
phosphoglycerate to L-alanine via L-serine. Hence, this path does not satisfy
the structural moiety constraint.

Metabolic transition graph

Our graph representation of a metabolic network integrates pre-calculated
atom mapping rules. Therefore, each reaction in the network is decomposed
into a set of all possible educt/product pairs where at least one atom is
transferred from the educt to the product according to the atom mapping
rule of that reaction. Then each node in the graph represents a unique
educt/product atom mapping pair (Ei, Pj). All reactions which have such a
pair in common are associated with the corresponding node. This allows a
more compact representation of reactions because frequent metabolic tran-
sitions like acetyl-CoA/CoA or glutamate/2-oxoglutarate, shared by several
reactions, are summarized by a single node. The reverse reactions are rep-
resented by product/educt pair nodes. Each edge in the graph connects two
nodes (Ei, Pj) and (Ek, Pl) if Pj = Ek and if at least one atom is transferred
from Ei to Pl according to the sequential application of the atom mapping
rules of both nodes. Fig. 4.12 compares a transition graph with the common
bipartite graph representation of an example network.
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Figure 4.12: A bipartite graph (above) and a transition graph (bottom) rep-
resenting a metabolic network that contains four reactions and corresponding
metabolites. The transition graph integrates atom mapping rules and represents
each biochemically feasible route that consists of two successive reaction steps by
one edge. Irrelevant metabolic conversions like glucose → ADP → AMP, which
are possible in the bipartite graph, are avoided.
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Although this transition graph is more complex compared to other graph
representations, it is more suited to our path-finding algorithm. Each bio-
chemically feasible route consisting of two successive reaction steps is im-
plicitly represented by one edge in the transition graph because each node
codes one educt/product conversion. Therefore, the path-finding algorithm
does not have to deal with a huge number of routes that contain irrelevant
metabolic conversions like glucose → ADP→ AMP because there will be no
edge between the nodes representing the educt/product pairs glucose, ADP
and ADP, AMP.

The computational complexity can be further reduced by the restriction
to consider only one atom type when creating the nodes and edges of the
transition graph. For example, if we are interested in questions concerning
the carbon metabolism, we can simply ignore nodes and edges where no
carbon atom is transferred. The same can be done for the nitrogen, sulfur
or phosphorous metabolism.

Reaction context weight

As already described, the weighted metabolic networks approach [Croes et al.,
2006] fails to find routes involved in purine biosynthesis or routes passing the
core metabolism (like glycolysis or TCA cycle) because frequently occurring
compounds (like pyruvate or acetyl-coA) have to be traced. Therefore, we
created an additional weight that also considers the context of the traced
reactions as a counterpart to the weights derived from the network connec-
tivities of the compounds (the compound weights). The context of a reaction
contains all compounds of that reaction which are not used as intermediates
in the path search. Each reaction Rk,(i,j) associated with the transition node
(Ei, Pj) gets a context weight for that node. The context consists of all
educts Ek, k 6= i and products Pk, k 6= j of Rk,(i,j). The weight of Rk,(i,j) is
the sum of the context weights of its context compounds. The higher/lower
the number of reactions in the metabolic network a compound participates
in, the lower/higher is its context weight. We used a function (based on
piecewise linear interpolation) that maps the reaction count to the context
weight and is defined as follows:

cw(i) =



















1 if rc(i) > b1

1 + (rc(i)−b1)(b3−1)
b2−b1

if b2 ≤ rc(i) ≤ b1

b3 + (rc(i)−b2)(b2−b3)
b3−b2

if b3 ≤ rc(i) < b2

b2 + (rc(i)−b3)(b1−b2)
1−b3

if 1 ≤ rc(i) < b3

where:
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Figure 4.13: Motivation for using piecewise linear interpolation to transform
compound frequencies (#) into context weights. The empirical bounds 10 and 100
separate the compounds in the KEGG network in frequent occurring compounds
with context weights between 10 and one, in compounds of medium frequency
with weights between 100 and 10 and in rare occurring compounds with weights
between 500 and 100. The set of frequent occurring compounds contains typical
pool metabolites like ATP participating in 476 KEGG reactions or acetyl-CoA
participating in 141 reactions. Medium occurring compounds are typical interme-
diates of the core metabolism like succinate (with frequency 89) or GAP (frequency
28). Rare occurring compounds like LL-2,6-Diaminopimetate participate in less
than ten reactions and are intermediates in very specialized or species-specific
pathways.

• cw(i): the context weight of compound i in the network

• rc(i): the reaction count of compound i (number of reactions it is
participating in as educt or product)

• b1, b2, b3: empirical bounds which separate compounds in the network
in frequent occurring compounds which will obtain low context weights,
in compounds of medium frequency and in rare occurring compounds
which will get high context weights (see also Fig. 4.13). For example,
useful values are b1 = 500, b2 = 100, b3 = 10 in case of the KEGG
metabolic ‘super network’ with more than 5,000 distinct reactions or
b1 = 100, b2 = 20, b3 = 2 in case of the EcoCyc genome-scale metabolic
network with more than 1,000 reactions. Since the EcoCyc network is
approx. five times smaller, its empirical bounds are also reduced by
factor five.
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For example, the reactions EC 1.4.1.4 and EC 2.6.1.42 share the transforma-
tion of 2-oxoglutarate to glutamate where EC 1.4.1.4 uses NADPH, NADP+,
NH3 and H2O as co-substrates contrary to EC 2.6.1.42 using valine and 2-
keto-isovalerate. The exclusive presence of pool metabolites in the context
(all co-substrates) of EC 1.4.1.4 results in a significant lower weight com-
pared to the weight for the context of EC 2.6.1.42. This weight makes sure
that a biosynthesis route of glutamate via 2-oxoglutarate prefers to trace
EC 1.4.1.4 instead of EC 2.6.1.42 which requires the production and con-
sumption of further amino acids. The compound and reaction weights are
incorporated into our transition graph where each edge represents the inter-
mediate (metabolite) Im of two subsequent educt/product transition nodes
(Ei, Im) and (Im, Pj). The weight of each edge is assigned the number of re-
actions (in the network) in which Im participates plus the minimum context
weight of the reactions Rk,(m,j) associated with the target transition node
(Im, Pj).

Note that a path in the graph can code multiple metabolic routes if more
than one reaction is associated with at least one node in the path. The
combined weighting is more suited to routes passing the core metabolism
like glycolysis and the TCA cycle or routes of purine biosynthesis which
involve ‘hub compounds’ like ADP as main intermediates.

Integration of thermodynamic information

The combined weighting scheme of the metabolic transition graph can be
extended by the integration of thermodynamic information. Therefore, pre-
dicted standard transformed Gibbs energies ∆rG

′0 of the network reactions
were transformed into positive energy weights. The biochemical meaning of
this transformation derives from the assumption that cellular systems prefer
to use the pathway, among a set of alternative ones, which is thermodynam-
ically most efficient. Only positive energy weights are assigned to the edges
in the graph. The use of negative weights for negative ∆rG

′0 and positive
weights for positive ∆rG

′0 would make the path-finding problem very com-
plicated. Furthermore, our preferred path-finding algorithm cannot handle
negative edge weights. However, a simple shifting of the ∆rG

′0 range of val-
ues into a positive range would discriminate long pathways compared to very
short but meaningless routes. Therefore, we applied a similar transformation
like that used for creating the context weights. The transformation is defined
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by:

ew(k, i, j) =































1 if ∆rG
′0(k, i, j) < e1

1 + (∆rG
′
0(k,i,j)−e1)(b3−1)

e2−e1
if e1 ≤ ∆rG

′0(k, i, j) < e2

b3 + (∆rG
′
0(k,i,j)−e2)(b2−b3)

e3−e2
if e2 ≤ ∆rG

′0(k, i, j) < e3

b2 + (∆rG
′
0(k,i,j)−e3)(b1−b2)

e4−e3
if e3 ≤ ∆rG

′0(k, i, j) ≤ e4

b1 if ∆rG
′0(k, i, j) > e4

where:

• ew(k, i, j): the energy weight of reaction Rk,(i,j)

• ∆rG
′0(k, i, j): the standard transformed Gibbs energy of reaction Rk,(i,j)

• e1, e2, e3, e4: empirical energy bounds which separate reactions in the
network in reactions with negative or weak positive ∆rG

′0 which will
obtain low energy weights, in reactions with medium positive ∆rG

′0 and
in reactions with high positive ∆rG

′0 which will get high energy weights
(e1 = −50 kJ/mol, e2 = +10 kJ/mol, e3 = +30 kJ/mol, e4 = +50
kJ/mol).

• b1, b2, b3: empirical weight bounds which define the range of values of
the energy weight mapping. Similar to the context weight definition,
useful values are b1 = 250, b2 = 100, b3 = 10 using the KEGG metabolic
‘super network’ or b1 = 50, b2 = 20, b3 = 2 using the EcoCyc genome-
scale metabolic network.

Reactions with very negative ∆rG
′0 receive very low energy weights compared

to reactions with very high ∆rG
′0. All reactions for which no ∆rG

′0 can be
calculated, are assigned the weight specified by b3. These reactions contain
compounds with incomplete structural information or with atoms other than
C, O, N, P, S, H. The addition of the calculated energy weight of each reac-
tion Rk,(i,j) to its context weight finishes the integration of thermodynamic
information into the weighting scheme.

Integration of subcellular localization information

The reactions of a metabolic network can be annotated with information
about the subcellular localization of the protein monomers that build up the
catalyzing enzymes. We can also use this information to extend the weighting
schemes defined in the previous sections. The idea of integrating subcellular
localization information derives from the assumption, that pairs of enzymes
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tend to be co-localized if they catalyze subsequent reaction steps within a
metabolic pathway. We used experimentally verified localization information
extracted from Swiss-Prot. If this information was not available, we used
subcellular localizations predicted by MultiLoc2 (described in Section 4.3).
Since the prediction of up to ten different eukaryotic subcellular localizations
is a source of errors (see Section 4.3.3), virtual compartments were used.
A virtual compartment consists of evolutionary related subcellular localiza-
tions that are difficult to discriminate by prediction methods like MultiLoc2.
The virtual other compartment includes the nucleus, cytoplasm and perox-
isomes. All subcellular localizations involved in the secretory pathway (ER,
Golgi apparatus, lysosomes, vacuoles, plasma membrane and extracellular
space) are summarized in the SP compartment. These two compartments
are completed by mitochondrial and chloroplast organelles.

A further possibility to reduce the error rate of MultiLoc2 was to enable
the prediction of multiple localizations. The idea is based on the fact that
there are proteins or enzymes which operate in multiple localizations. Mul-
tiLoc2 does not directly predict multiple localizations. However, we assume
that the probability estimates, calculated by MultiLoc2, are distributed more
over multiple localizations compared to the probability estimates of proteins
present in only a single localization. We assigned each localization, predicted
with a MultiLoc2 score ≥ 0.25, to the query protein sequence. We used 0.25
as cut-off because this value would be assigned to the other, SP, mitochon-
drial and chloroplast compartment if the probability estimates are distributed
equally. It should be noted, that the MultiLoc2 score for the virtual other
and SP compartments are the sum of the MultiLoc2 scores calculated for
their grouped single localizations.

For each pair of reactions Rk1,(i,j) and Rk2,(j,l) associated with the edge-
connected transition nodes (Ei, Pj) and (Ej, Pl), we calculated a localization
penalty weight which is defined by:

lpw(k1, k2) =

{

0 if |Lk1

⋂

Lk2
| > 0 or |Lk1

| = 0 or |Lk2
| = 0

p if |Lk1

⋂

Lk2
| = 0 and |Lk1

| > 0 and |Lk2
| > 0

where:

• lpw(k1, k2): the localization penalty weight for pairs of subsequent re-
actions Rk1,(i,j) and Rk2,(j,l)

• Lk1
, Lk2

: the set of subcellular localizations assigned to reaction Rk1,(i,j)

and Rk2,(j,l)

• p: empirical weight which penalizes pairs of subsequent reactions in the
network that do not share a common subcellular localization. Useful
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values are p = 100 in case of the KEGG ‘super network’ or p = 20 for
the EcoCyc network. Compared with the context and energy weights
that are in the range between one and 500, single medium weights are
used here as compromise.

Note that there are also reactions Rk,(i,j) with no assigned subcellular local-
izations (|Lk| = 0). These reactions are either non-enzymatic and take place
spontaneously or no enzymes as well as protein monomers are assigned to
them so far. The final weight of each edge was assigned the minimum penalty
weight of all reaction pairs associated with that edge.

Experimental setting

We performed several experiments for testing and comparing our approach.
For this purpose, a bipartite graph and a metabolic transition graph were
constructed from the EcoCyc and AraCyc databases. All reactions (1,348 and
1,284 respectively) from the small molecule metabolism were included repre-
senting the E. coli and A. thaliana metabolic networks at genome-scale. We
investigated the search performances based on five different network types.
The first four graph types were bipartite graphs used for comparison with the
metabolic transition graph. The blind search graph (bsg) contains only the
connectivity information extracted from the metabolic network. Using the
atom mapping graph (amg), pre-calculated atom mapping rules are available
via the educt-reaction-product node relations and can be accessed in con-
stant time. In the weighted graph (wg), each edge representing a compound-
reaction relation is assigned a weight equal to the connectivity of the com-
pound in the whole metabolic network. This network type corresponds to
the weighted metabolic networks approach [Croes et al., 2006]. The only
difference is that edges instead of nodes are assigned a weight. The weighted
atom mapping graph (wamg) contains all of the available information as de-
scribed for the other three network types. Finally, the metabolic transition
graph (mtg) was used. The last two graph types represent our novel approach
based on the integration of atom mapping rules and weighting schemes. The
intension to test also the blind search graph and the atom mapping graph was
to evaluate the impact of adding relevant information in the graph represen-
tation.

We always searched for feasible biotransformation routes between two
given nodes (source and target). Using the blind search graph, feasible routes
were found by searching for the shortest path. In the atom mapping graph,
we searched for the shortest path that fulfills the structural moiety constraint.
The lightest path was searched in the weighted graph. In the weighted atom
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mapping graph and in the metabolic transition graph, we searched for the
lightest path fulfilling the structural moiety constraint. Paths between two
given nodes were calculated using Eppstein’s k-shortest path algorithm [Epp-
stein, 1998] which efficiently computes the first k-shortest or lightest paths
in a directed graph. 8 Given two metabolites as source and target, we
simply used the corresponding compound nodes for the search in the bipar-
tite graphs. Using the metabolic transition graph, we had to create in each
search a start node s and end node e representing the source metabolite Es

and product Pe where s was connected to all nodes (Es, Pj) and e to (Ei, Pe).
The weights of the edges connecting s and e with the graph were calculated
as described in the section that defines the reaction context weight. Further-
more, the algorithm was adapted to consider the atom mapping rules. For
this purpose, we used an analogous approach for path validation which was
proposed by Arita [2003]. Each extracted path is validated by a sequential
application of atom mapping rules. In the beginning, all atoms of the source
metabolite are available for the mapping. After this, for each step, only
those atoms of an educt are available for mapping to the next compound,
which can be reached by a mapping in the step before. If no atom reaches
the target metabolite, the path is rejected as not valid. Atom mapping rules
were available for only 63% of the reactions (explained in Section 4.1). This
fact is considered in the procedure. If a reaction without atom mapping rule
is reached, the validation process is restarted with the next reaction that
has an atom mapping rule. Hence, both the atom mapping graph and the
metabolic transition graph can also find paths violating the structural moi-
ety constraint. It should also be mentioned that oxygen and hydrogen atoms
are ignored in the process. Hydrogen atoms are represented implicitly in the
molecular graphs and not considered in the mapping calculation. Although
oxygen atoms are considered in the mapping calculation, these atoms are ig-
nored in the path validation process. The problem is that the water molecule
is the most frequent pool metabolite and it is often impossible to detect a
correct and unique mapping.

4.4.3 Results

The search performance of the presented network types and search strategies
was evaluated by trying to find experimentally verified biotransformation
routes in the metabolic networks of E. coli and A. thaliana. For this purpose,
all annotated biotransformation routes of the small molecule metabolism with

8The algorithm creates an implicit representation of the k-lightest paths in a directed
graph with n vertices and m edges in O(m + n logn + kn), which can be traversed using
breadth-first-search.
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at least three reactions were extracted from EcoCyc and AraCyc (137 and
135 respectively).

It should be noted that, contrary to EcoCyc, the AraCyc database was
computationally predicted using the pathway tools software [Karp et al.,
2002]. After this, AraCyc was manually curated and improved. However,
AraCyc still contains a lot of pathways annotated with comments describing
that the exact intermediate reaction steps are uncertain and remain to be val-
idated experimentally. Since the EcoCyc database is of high quality, we used
it as a gold standard. The AraCyc database was used only to evaluate the
weighting scheme based on the integration of subcellular localization infor-
mation. This was done because the established prediction method MultiLoc2
is based on eukaryotic training data only and outputs eukaryotic subcellular
localizations.

Given the main source and target metabolites of the annotated routes as
start and end nodes, we calculated the shortest (lightest) path constrained to
use the first as well as the last reaction of the annotated route. If n annotated
routes shared the same main source as well as target metabolites and start as
well as end reaction, we computed the n shortest (lightest) paths. The quality
of the routes found was measured by comparing the intermediate compounds
and reactions with the annotated routes, and was expressed using sensitivity,
specificity and relevance score, which are defined as follows:

sensitivity = tp

tp+fn

specificity = tp

tp+fp

relevance = sensitivity+specificity

2
∗ smc

where:

• tp (true positives): The number of compounds and reactions of the
route found which are also present in the annotated route. The first
and last compounds and reactions are not considered.

• fp (false positives): The number of compounds and reactions of the
route found which are not present in the annotated route.

• fn (false negatives): The number of compounds and reactions of the
annotated route which are not present in the route found.

• smc (structural moiety constraint): This value is set to 1 if the route
found fulfills the structural moiety constraint, and set to 0 otherwise.

If an extracted route was not identical to an annotated one and contained
reactions without atom mapping rules, we manually checked the structural



4.4 Graph theory-based inference of feasible biotransformation routes 97

moiety constraint. Note that this evaluation procedure produces only rel-
ative performance measures useful for comparing different search strategies
because novel routes could be very different compared to the annotated ones.

In case of the metabolic transition graph, we always used the carbon net-
work (with carbon as the only traceable atom type) except for the sulfate
reduction pathway (EcoCyc ID: SO4ASSIM-PWY) because sulfate and hy-
drogen sulfide were used as source and target metabolites. Here, we used the
sulfur network (with sulfur as the only traceable atom type).

The search results are shown in Tab. 4.7. Searching for the shortest
path in the blind search graph delivered poor search results. The average
relevance score was only 0.31. Incorporating atom mapping rules for about
two-thirds of the reactions in the graph doubled the search performance up to
an relevance score of 0.61. A further improvement was achieved by search-
ing for the lightest path in the weighted graph. This approach produced
significantly more relevant routes. The relevance score was 0.77. But only
80% of the routes found fulfilled the structural moiety constraint which was
clearly better in the atom mapping graph (+ 8%). The search for the light-
est path in the weighted atom mapping graph further improved the search
performance. The relevance score reached 0.86. Although atom mapping
rules were available for only two-thirds of the reactions, 91% of the routes
found fulfilled the structural moiety constraint, 11% more as for the weighted
graph. The best search performance results with respect to all performance
measures were produced by the metabolic transition graph. Compared to
the weighted atom mapping graph, the performance was increased by ap-
proximately eight per cent. Now, nearly all of the extracted routes fulfilled
the structural moiety constraint (99%). The routes especially of the core
metabolism (glycolysis and TCA cycle) and the routes of the purine biosyn-
thesis were better predicted.

In the next paragraph, we will demonstrate the search results of the three
best approaches (wg, wamg and mtg) using glycolysis as an example.

Glycolysis

The biotransformation routes of glycolysis were searched given D-glucose-6-
phosphate as source and pyruvate as target as well as EC 5.3.1.9 as start
reaction and EC 2.7.1.40 as end reaction. Fig. 4.14A represents the two an-
notated routes extracted from EcoCyc. The first route (shown as red arrows)
contains eight reactions. Three carbon atoms are transferred from the source
to the target. An additional three atoms, resulting in a second molecule of
pyruvate, are transferred via the second route (black arrows). This route
contains dihydroxyacetone 3-phosphate (DHAP) as a further main interme-
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Table 4.7: The search results for 137 experimentally verified biotransformation
routes extracted from EcoCyc are shown here. The results of the verified routes
present only in glycolysis, the TCA cycle and the purine biosynthesis are also
shown. Each row represents one search approach: the blind search graph (bsg),
the atom mapping graph (amg), the weighted graph (wg), the weighted atom
mapping graph (wamg) and the metabolic transition graph (mtg). The columns
show the average sensitivity (sens), specificity (spec), structural moiety constraint
(smc) and relevance score (rel).

experiment approach sens spec smc rel
all routes bsg 0.34 0.41 0.47 0.31

amg 0.61 0.66 0.88 0.61
wg 0.82 0.87 0.80 0.77
wag 0.86 0.87 0.91 0.86
mtg 0.93 0.95 0.99 0.94

glycolysis wg 0.37 0.79 0.00 0.00
wag 0.73 0.80 1.00 0.77
mtg 0.96 0.96 1.00 0.96

TCA cycle wg 0.15 0.12 0.00 0.00
wag 0.46 0.67 1.00 0.56
mtg 1.00 1.00 1.00 1.00

purine syn. wg 0.37 0.67 0.00 0.00
wag 0.67 0.70 0.75 0.69
mtg 0.93 0.94 1.00 0.94
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Figure 4.14: The annotated and the predicted routes for glycolysis, given D-
glucose-6-phosphate as source metabolite, pyruvate as target and EC 5.3.1.9 as
start reaction and EC 2.7.1.40 as end reaction. Different colors represent different
routes. (A) The annotated routes extracted from EcoCyc. (B) The routes found
using the weighted graph, the weighted atom mapping graph and the metabolic
transition graph. For each graph type, the number of reaction steps, the overall
weight, the number of transferred atoms from source to target, and the relevance
(rel) of the routes found are shown.
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diate which is transformed to D-glyceraldahyde 3-phosphate (GAP). All in
all, the route contains nine reactions. The routes found by the lightest-
path search in the graphs containing edge weights are shown in Fig. 4.14B.
The first route (blue arrows), found by the weighted atom mapping graph,
requires seven reactions, one and two less than the annotated routes, respec-
tively. Once again three atoms are transferred from D-glucose-6-phosphate
to pyruvate. The difference is that the route found needs only one reaction
for transforming D-fructose-6-phosphate into GAP. The reaction with the
EcoCyc ID RXN0-313 (EC 4.1.2.-) is very interesting since it is not assigned
to a pathway in EcoCyc. The enzyme catalyzing this reaction is fructose-
6-phosphate aldolase (gene name fsa) and was reported as a novel enzyme
activity catalyzing an aldol cleavage of D-fructose-6-phosphate [Schürmann
et al., 2001]. The similarity to the standard glycolysis routes is reflected in
a relevance score of 0.84. The second route (lightblue arrows), found by the
wamg approach, also bypasses the annotated transformation of D-fructose-6-
phosphate into GAP via fructose-6-phosphate aldolase. The difference is the
alternative transformation of 3-phosphoglycerate into 2-phosphoglycerate via
glycerate as an additional main intermediate. Three atoms are transferred
again, but nine reactions are required. The relevance of this route is 0.69.
However, reaction EC 2.7.1.31 is annotated in EcoCyc as physiologically
favored in the opposite direction (glycerate as educt). The first annotated
route (red arrows) was found on position three in the weighted atom mapping
graph.

The first two routes found by the lightest-path search in the weighted
graph are shown using green and orange arrows. Both routes contain only
five reactions. However, no atom is transferred to pyruvate. The reaction
with EcoCyc ID 2.7.1.121-RXN is responsible for the failed glycolysis recon-
struction. The reaction transfers a phosphate group from DHAP to phos-
phoenolpyruvate. In the final reaction (EC 2.7.1.40), the phosphate group
is cleaved so that no atom from DHAP can be transferred to pyruvate. The
presence of the target pyruvate as an educt in reaction 2.7.1.121-RXN is a
further reason for the irrelevance of this route. The failed reconstruction is
reflected by an relevance score of 0.0.

The pink, the red and the blue routes were found by the metabolic tran-
sition graph. The top-ranked pink route is very similar to the glycolysis
routes (0.92 relevance). The only difference is that EC 3.1.3.11 (fructose-
1,6-bisphosphatase) is used instead of EC 2.7.1.11 (phosphofructokinase) to
phosphorylate fructose-6-phosphate. However, EC 3.1.3.11 is known to be a
key enzyme in the gluconeogenesis pathway for the conversion of fructose-
1,6-bisphosphate to fructose-6-phosphate. The blue route, top-ranked using
the wamg approach, was found one position after the red annotated route
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now. This is interesting because the blue route is shorter than the red route
and contains only intermediary compounds that are also present in the red
annotated route. The reason is the weighting used in the metabolic transition
graph which combines the compound connectivity weight with the reaction
context weight. Fig. 4.14B shows the weights of the relevant compounds and
reactions drawn in grey. The total weight of EC 2.7.1.11, EC 4.1.2.13 and the
intermediate fructose-1,6-bisphosphate is 18. This weight is slightly below
the reaction context weight (19) of EC 4.1.2.- which is used in the alternative
blue route. The context of EC 2.7.1.119 consists of the pool metabolites ATP
and ADP. The reaction receives therefore a low context weight. The same is
true for EC 3.1.3.1110 with H2O and phosphate in the reaction context. The
context of EC 4.1.2.1311 is given by DHAP and that of EC 4.1.2.-12 by dihy-
droxyacetone. DHAP participates in 12 and dihydroxyacetone in only three
reactions in the network. Compared to DHAP, dihydroxy-acetone is a rarely
occurring compound in the pathways of the E. coli metabolism. Hence, EC
4.1.2.- receives a higher context weight compared to EC 4.1.2.13. The bio-
logical meaning, which is reflected in the context weight, is that using EC
4.1.2.13 instead of EC 4.1.2.- results in a higher probability that the occurred
byproduct can be efficiently converted by other reactions.

Integration of thermodynamic information

To evaluate the impact on the search performance of the metabolic transi-
tion graph when integrating thermodynamic information into the weighting
scheme, we ran three experiments. The setting of the first experiment was
identical to that used in the section before. In experiment two and three we
removed the constraint to only search for routes that pass through the first
and last reaction of the annotated routes. This was done because using this
constraint implies to a certain extent thermodynamic information and, there-
fore, makes the problem easier. The only difference of the third experiment
compared to experiment two was that the most relevant route, among the first
five routes extracted, was selected for performance evaluation. The results of
the three experiments are summarized in Tab. 4.8. The result of experiment
one was that the performance measures were only slightly improved. The
already quite high relevance score of 0.94 was increased to 0.95. This was
different in the other experiments where the search setting was more difficult.
The final relevance scores are lower. However, the performance improvement

9D-fructose-6-phosphate + ATP 
 D-fructose-1,6-bisphosphatase + ADP
10D-fructose-1,6-bisphosphatase + H2O 
 D-fructose-6-phosphate + phosphate
11D-fructose-1,6-bisphosphatase 
 DHAP + GAP
12D-fructose-6-phosphate 
 dihydroxyacetone + GAP
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Table 4.8: The influence on the search results of the metabolic transition graph
caused by integrating thermodynamic information into the weighting scheme is
shown. Each row represents one search approach: the metabolic transition graph
(mtg) and the metabolic transition graph with integrated thermodynamic informa-
tion (mtg/T). The columns show the average sensitivity (sens), specificity (spec),
structural moiety constraint (smc) and relevance score (rel).

experiment approach sens spec smc rel
I mtg 0.93 0.95 0.99 0.94

mtg/T 0.95 0.96 0.99 0.95

II mtg 0.65 0.72 0.98 0.68
mtg/T 0.70 0.81 0.98 0.75

III mtg 0.79 0.87 0.99 0.83
mtg/T 0.85 0.93 0.99 0.89

was much more obvious when integrating thermodynamic information into
the weighting scheme. The performance was significantly increased from
0.68 to 0.75 in experiment two and from 0.83 to 0.89 in experiment three. In
the next paragraph, we describe the improvements based on thermodynamic
information using arginine biosynthesis as an example.

Arginine biosynthesis

Arginine biosynthesis in E. coli (given L-glutamate as carbon source) is an
interesting example because the reactions and intermediates of this pathway
are completely different compared to the annotated arginine degradation
pathway. Additionally, further alternative metabolic routes for converting
L-glutamate into L-arginine are possible. Fig. 4.15 shows the first five routes
found by the metabolic transition graph. The annotated route (shown in
red) requires eight reaction steps for transferring five carbon atoms from L-
glutamate to L-arginine. Using the standard metabolic transition graph with-
out thermodynamic information, the annotated route was found on position
five. The green route represents the reverse annotated arginine degradation
pathway and was found on position two. The green route also transfers five
carbon atoms but requires only five reaction steps. Also five reactions steps
are used by the blue route which was ranked on position one. Furthermore,
this route contains a completely different set of reactions and intermediates
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Figure 4.15: The predicted routes for arginine biosynthesis, given L-glutamate
as source metabolite and arginine as target. Different colors represent different
routes. The predicted ∆rG

′0 (in kJ/mol) of the reactions are drawn in grey. For
each graph type, the number of reaction steps, the overall weight, the number of
transferred atoms from source to target, and the relevance (rel) of the routes found
are shown. Furthermore, for each route three scores which are calculated from the
∆rG

′0 values of the reactions involved are shown.
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compared to the red and green routes. The pink and lightblue routes (ranked
on position three and four) use parts of the annotated biosynthesis pathway
and the blue route. Similar to the green route, the metabolic conversions of
parts of the blue, the lightblue and the pink routes are physiologically more
relevant in the reverse direction. For example, the reactions EC 1.2.1.19
and EC 2.6.1.82 are annotated in EcoCyc to be involved in the putrescine
degradation. Further examples are the reactions EC 3.5.3.11 and EC 4.1.1.19
which are annotated to be also involved in the arginine degradation. Only
the initial reaction of the blue top-ranked route takes place in the direc-
tion as indicated by the EcoCyc annotation as to be involved in glutamate
degradation.

The ranking of these five routes was completely different when we inte-
grated thermodynamic information in the form of predicted standard trans-
formed Gibbs energy changes of the reactions. In Fig. 4.15 each reaction is
annotated with its predicted standard transformed Gibbs energy ∆rG

′0 in
kJ/mol. Now, the path-finding algorithm detects the annotated red route
at first. The green and inverse arginine degradation route receives a signifi-
cantly higher overall weight compared to the annotated route and drops from
rank two to rank five. A further consequence is that the pink route which
obtains a relevance score of 0.67 was found on position two. The blue and
light blue routes were found on position three and four now. We also provide
three interesting scores calculated for each route from the ∆rG

′0 values of its
reactions in Fig. 4.15. The first score is simply the sum and the second the
average of the energy values. The last score represents the maximum reaction
energy within each route. An interesting result is that the relevance scores
of the routes correlate quite well with the three energy scores. For example,
the total energy of the red annotated route is -71.03 kJ/mol and is signif-
icantly lower compared to the values of the remaining routes. The reverse
annotated arginine degradation pathway (green route) especially obtains a
high positive energy sum of +148.0 kJ/mol. We also show the cumulative
Gibbs energy landscape for the three routes that contain disjoint reaction
sets (red, blue and green) in Fig. 4.16. This kind of a plot was also applied
by [Chunhui et al., 2004] for thermodynamic comparison of computationally
created novel pathways. The energy landscape of the green reverse arginine
degradation route clearly emphasizes that this pathway is thermodynami-
cally not feasible. Although the blue biotransformation route starts with a
thermodynamic very favorable reaction, it ends up clearly in the range of
positive energy values. The first half of the red annotated route takes place
in weak positive range. In the second half, however, the cumulative energy
drops significantly into the negative range.
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Figure 4.16: The landscape of the cumulative standard transformed Gibbs energy
change for the three biotransformation routes (from glutamate to arginine) that
contain disjoint reaction sets.

Integration of subcellular localization information

We used the same experimental setting as described in the previous section
to evaluate the use of integrating subcellular localization information into
the weighting scheme. As described earlier, we used Arabidopsis thaliana as
a model organism instead of Escherichia coli because the subcellular local-
ization information used is eukaryotic.

In each of the three experiments we compared the performance measures
of the metabolic transition graph with respect to four different weighting
schemes:

• mtg: the ordinary metabolic transition graph with integrated atom
mapping rules, compound connectivity and context weight information.

• mtg/T: the metabolic transition graph with integrated thermodynamic
information

• mtg/L: the metabolic transition graph with integrated subcellular lo-
calization information

• mtg/L/T: the metabolic transition graph with integrated subcellular
localization and thermodynamic information

The results of the experiments are shown in Tab. 4.9. Although the number
of reactions in the metabolic network and the number of annotated biotrans-
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Table 4.9: Results for 135 experimentally verified biotransformation routes ex-
tracted from AraCyc. The table summarizes the influence on the search results of
the metabolic transition graph caused by the integration of thermodynamic and
subcellular localization information into the weighting scheme. Each row repre-
sents one search approach: the metabolic transition graph (mtg), the metabolic
transition graph with integrated subcellular localization (mtg/L) as well as in-
tegrated thermodynamic information (mtg/T) and with the integration of both
(mtg/L/T). The columns show the average sensitivity (sens), specificity (spec),
structural moiety constraint (smc) and relevance score (rel).

experiment approach sens spec smc rel
I mtg 0.83 0.84 0.99 0.83

mtg/L 0.83 0.82 0.99 0.83
mtg/T 0.84 0.85 0.99 0.85
mtg/L/T 0.85 0.85 0.99 0.85

II mtg 0.52 0.61 0.97 0.56
mtg/L 0.53 0.62 0.97 0.58
mtg/T 0.56 0.67 0.98 0.61
mtg/L/T 0.57 0.66 0.98 0.61

III mtg 0.67 0.77 0.97 0.72
mtg/L 0.68 0.78 0.97 0.73
mtg/T 0.70 0.81 0.98 0.76
mtg/L/T 0.70 0.81 0.98 0.76

formation routes extracted from AraCyc are comparable to those extracted
from EcoCyc, the quality measures for the AraCyc data set were significantly
lower compared to EcoCyc. This can be explained by the fact that AraCyc
contains more noisy data, because the database was computationally pre-
dicted using the pathway tools software. After this, AraCyc was manually
curated and improved. However, AraCyc still contains a lot of pathways
annotated with comments that describe that the exact intermediate reac-
tion steps are uncertain and remain to be validated experimentally. In each
experiment, we tested different localization penalty weights (5, 10, 20, 40,
60). However, it was not possible to improve the relevance score of the mtg
approach in experiment one by the addition of subcellular localization infor-
mation (mtg/L). Using a penalty weight of 20 delivered a slightly increase
of relevance from 0.56 to 0.58 in experiment two and from 0.72 to 0.73 in
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experiment three. The performance measures obtained by the integration
of thermodynamic information (mtg/T) were significantly higher. Here, the
relevance was increased from 0.83 to 0.85, from 0.56 to 0.61 and from 0.72 to
0.76 in experiment one, two and three. These improvements are comparable
to those obtained using the EcoCyc data set. The simultaneous integration
of subcellular localization and thermodynamic information led to the same
relevance scores as those obtained by the integration of thermodynamic in-
formation alone in all experiments.

In the next paragraph, we will use the biosynthesis of DMAPP in A.
thaliana as an interesting example to show that the consideration of subcel-
lular localization information can still be useful when analyzing metabolic
pathways.

DMAPP biosynthesis

The basic chemical units in isoprenoid biosynthesis are dimethylallyl diphos-
phate (DMAPP) and its isomer isopentenyl diphosphate (IPP). The biosyn-
thesis of IPP and DMAPP is an interesting example because there are two dif-
ferent alternative routes in plants and bacteria [Bochar et al., 1999; Rohmer,
1999]. These pathways operate in separated subcellular localizations [Licht-
enthaler et al., 1997; Kuzuyama et al., 2003]. In A. thaliana, the methylery-
thritol phosphate pathway (MEP pathway) which is also called the mevalonate-
independent or nonmevalonate pathway is localized completely in the chloro-
plasts. This differs from the mevalonate pathway (MVA pathway) which
contains mevalonate as an intermediate and is referred to as cytoplasmic.
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (EC 1.1.1.34) rep-
resents an exception and is located within the endoplasmatic reticulum (ER)
but has also been found within the cytoplasm [Leivar et al., 2005]. However,
two recent studies [Sapir-Mir et al., 2008; Reumann et al., 2007] reported
experimental evidence regarding the peroxisomal localization for at least two
enzymes (EC 2.3.1.9 and EC 5.3.3.2) of the MVA pathway. The additional
presence of EC 5.3.3.2 in the chloroplasts was confirmed. This enzyme is the
only one that is shared by the MVA and MEP pathways. The findings of
both studies are based on more suited experimental techniques and are closer
to the spatial organization observed in mammalian systems in which most of
the MVA pathway enzymes are peroxisomal. Note that this literature dis-
crepancy did not affect the weighting scheme of the search approach since
cytoplasm and peroxisomes were grouped within the virtual “other” (OTH)
compartment (described on page 93).

The annotated biotransformation routes of both pathways including the
subcellular localizations involved are shown in Fig. 4.17. Given pyruvate as
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Figure 4.17: The annotated routes for DMAPP biosynthesis, given pyruvate as
well GAP as source metabolite and DMAPP as target. Different colors represent
different routes. Furthermore, the involved compartments are highlighted in green
(chloroplasts), yellow (other) and red (secretory pathway). The predicted ∆rG

′0

(in kJ/mol) of the reactions and the predicted or SwissProt extracted subcellular
localizations of the catalyzing enzymes are drawn in grey. For each graph type,
the number of reaction steps, the overall weight, the number of transferred atoms
from source to target, and the position of the routes found are shown.
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carbon source, the MVA pathway is represented by the green route within
the virtual other and SP compartments, shown on the right side of the dia-
gram. The annotated MEP pathway is represented by the four routes within
the chloroplast organelle on the left side. In addition to pyruvate, GAP is re-
quired as carbon source. The blue and lightblue routes transfer three carbon
atoms each from GAP to DMAPP. Two carbon atoms are transferred from
pyruvate via the red and pink routes. Contrary to the blue and red routes,
the lightblue and pink routes contain IPP as intermediate. The last reaction
(EC 5.3.3.2) of both routes converts IPP to DMAPP. This is also the final
reaction step in the MVA pathway (green route). The orange route does not
represent an annotated biotransformation route. It consists of the first seven
reactions steps of the MVA pathway. The final IPP/DMAPP transforma-
tion of the MVA pathway is bypassed using the metabolic transformations
catalyzed by MEP pathway enzyme EC 1.17.1.2. All reactions in the dia-
gram are annotated with their predicted standard transformed Gibbs energy
changes and the predicted or Swiss-Prot extracted subcellular localizations
of the assigned protein monomers (according to AraCyc). Only two reactions
in the MEP pathway are annotated with Swiss-Prot subcellular localization
information. However, the predicted localizations with high probability es-
timates are consistent with the experimental localization observation of the
MEP pathway. The predictions of the MVA pathway are also consistent
because the pathway is known to be located outside the chloroplasts in the
other as well as SP compartments. Using the ordinary mtg approach and
given GAP as source compound, the annotated blue and lightblue routes
were found on position three and 21. Including subcellular localization infor-
mation, these routes were found on position one and four, which represents a
significant improvement. The green route (MVA pathway) was found on po-
sition one using the mtg and the mtg/L search approach. The red and pink
routes, with pyruvate as source, were found on position six and 22 using
the mtg approach and found one position three and 11 including subcellular
localization information. The non-annotated orange route drops from po-
sition four to 14 when using the mtg/L approach. The reason is that the
orange route obtained a penalty weight because reaction EC 4.1.1.33 was
predicted to be located in the other compartment (with score 0.97) and the
subsequent enzyme EC 1.17.1.2 to be present in the chloroplasts (with score
0.94). Contrary to the annotated MVA pathway, the orange route requires
the involvement of the chloroplasts as an additional compartment to take
place.
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4.4.4 Discussion

Based on atom mapping rules and weighting schemes, we introduced a novel
graph theory-based approach for finding feasible biotransformation routes in
metabolic networks. Constraining the lightest-path search to those paths
where atoms are transferred between source and target nodes yielded im-
proved predictions that are more consistent with experimentally verified bio-
transformation routes. Simply by checking sequentially the atom mapping
rules of the transforming reactions, problematic routes like those present in
glycolysis or purine synthesis were found better. The approach is generally
more robust for biotransformation routes of the core metabolism or routes
containing typical pool metabolites as intermediates compared to the ordi-
nary lightest-path search in a degree-weighted graph. Further improvements
were achieved by the integration of relevant information based on reaction
context, thermodynamic and subcellular localization into the edge weights
of the graph.

The combined use of the reaction context and thermodynamic weights
makes sure that the path-finding algorithm selects the most plausible re-
action among a set of candidate reactions that all convert the same pair of
metabolites. To this end, reactions resulting in a negative change in standard
transformed Gibbs energy and with no rare occurring side educts or products
are preferred. Furthermore, the introduced metabolic transition graph with
its integrated atom mapping rules and its specialized carbon, nitrogen, sul-
fur and phosphorus networks avoids the calculation of biochemically invalid
routes to a very high extent.

The impact of using subcellular localization on the search performance
was low compared to the remaining information. There are several reasons
which may contribute to this somewhat disappointing result. As already
mentioned, AraCyc contains noisy data. The exact assignment of reactions
as well as genes and proteins to the individual pathways is uncertain in
many cases. Only approximately 70% of the AraCyc reactions are assigned
to genes. Further uncertainties come from failed MultiLoc2 predictions. Fur-
thermore, the metabolic transition graph with its integrated atom mapping
rules, compound and reaction weights as well as thermodynamic information
already represents a lot of relevant biological meaning. Therefore, further
improvements of the search performance are difficult. Providing integrated
localization data in the context of metabolic networks, however, gives po-
tential users of our approach interesting information about the organellar
distribution of the catalyzing enzymes present in the pathways under study.

An open challenge for this approach is how to select optimally the param-
eters used to calculate the context weight, the thermodynamic weight and
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the localization penalty weight or how to integrate optimally these weights
in the combined weight. A solution could be based on a cross-validation pro-
cedure that systematically analyzes pre-defined value ranges for all weighting
parameters.

We believe that our approach could be used to complement existing ap-
proaches. It can bridge, for example, the gap between the raw genome-scale
content stored in pathway databases and well curated local metabolic (sub-)
networks necessary for applications in metabolic engineering. Fast and intelli-
gent navigation through the network at genome-scale enables a goal-oriented
refinement of the search by an iterative addition of constraints. Such con-
straints contain the identification of side metabolites and the sets of allowed,
required or forbidden main intermediates as well as reactions. The search
results can help scientists for designing experiments or biotechnologists for
defining the constraints necessary for an efficient calculation of stoichiomet-
rically balanced pathways using approaches based on computationally hard
convex-analysis [Schuster et al., 1999; Schilling et al., 2000]. Too many con-
straints at the beginning of the analysis run the risk of missing relevant
pathways, which is avoided by our approach.

4.5 Network navigation and visualization

4.5.1 Introduction

In this section, we present MetaRoute, a user-friendly tool for exploring
metabolic networks. MetaRoute offers web access on efficient (and thus in-
teractive) graph theory-based search and navigation through genome-scale
metabolic networks combined with an easy-to-use visualization of the search
results. Compared with other graph theory-based tools [Rahman et al., 2005;
Croes et al., 2006; Klukas et al., 2007] MetaRoute offers interactive speed,
cross-species comparison, and the dynamic retrieval of local networks. It
is possible to search in user-defined networks, in the network of a particu-
lar species or in that of multiple organisms based on data from the KEGG
database [Kanehisa, 1996]. Another related web tool is MetaPath Online
[Handorf et al., 2007], an implementation of the network expansion approach
that delivers information on which products can be synthesized in princi-
ple from a given set of seed compounds by the calculation of an expanded
network. Additionally, the shortest route to a particular product can be ex-
tracted from such a network. This is different from MetaRoute where up to
500 different routes (between a source and a product) of increasing weight
and size can be calculated and combined into a local network. This allows
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a systematic enumeration and a very compact representation of alternative
routes. By enforcing biochemical constraints, MetaRoute strongly favors
‘textbook pathways’ over less relevant pathways. MetaRoute is available
online at http://www-bs.informatik.uni-tuebingen.de/Services/MetaRoute.

4.5.2 Methods

The search engine of MetaRoute is an implementation of the graph theory-
based approach which was described in Section 4.4. The basic algorithm
uses atom mapping rules and the combined compound and reaction context
weighting schemes to search for relevant paths in a directed graph represent-
ing the metabolic network.

MetaRoute is built upon BNDB [Küntzer et al., 2007] and BN++ [Sirava
et al., 2002; Küntzer et al., 2006] and uses the metabolic data imported from
KEGG [Kanehisa, 1996]. All reactions (approx. 7,000) and the compounds
involved therein were used to create a metabolic ‘super network’. Organism-
specific networks are constructed by removing reactions catalyzed by enzymes
absent in that organism.

We use the graph visualization software Graphviz (http://www.graphviz.org)
for drawing the search results. Additional information within the search re-
sults is always available via small popup boxes. To this end, we use overLIB
(http://www.bosrup.com/web/overlib/), a JavaScript library developed by
Erik Bosrup.

4.5.3 Applications

The main application of MetaRoute is the exploration of genome-scale meta-
bolic networks by the search for relevant routes transforming a source metabo-
lite into a product.

Before starting a search, several search settings (shown in Fig. 4.18) can be
defined by the user. However, only three (source metabolite, product metabo-
lite and network) are necessary. The user can enter the name of the metabo-
lite which will be used as source. Alternatively, the corresponding KEGG
identifier (e.g. C00022) can be entered instead. However, it is also possible to
leave the field empty and to search for metabolic routes with an unspecified
source but that produce a given product metabolite. The product metabolite
field is accordingly used.
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Figure 4.18: A screenshot showing the MetaRoute search settings window. The user has to define several search settings
before MetaRoute can perform a search job.
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Figure 4.19: After the calculation of a search request, the results are presented in a summary page.
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It is possible to search for relevant routes in the metabolic network of
one organism of interest or in the combined network of multiple organisms,
which is interesting for cross-species comparison. Furthermore, the user can
search in the ‘super network’ containing all KEGG reactions as well as in an
external or user-defined network. In the latter case, a file has to be submitted
that contains a valid KEGG reaction ID (e.g. R00200) per line and at least
10 reactions overall. The remaining settings are pre-defined using default
values which can be changed by experienced users.

As an example, we can search for lysine-producing routes with pyruvate
as source in the combined network of yeast and E. coli. This is interesting
because lysine biosynthesis is very different in each organism.

After the calculation of the submitted job is finished, the results are
presented in a summary page (see Fig. 4.19). The summary page lists the
user-defined search settings and shows useful information about the selected
network size, the number of routes found and the number of distinct KEGG
reactions within the routes.

After the first run, the user can refine the search by the addition of ar-
bitrary constraints. Compounds and reactions can be marked as forbidden
or required in the routes found. Furthermore, reactions can be defined by
experienced users as irreversible (left-to-right or right-to-left). All reactions
are set reversible by default. The reason is that detailed knowledge of ther-
modynamic data and physiological conditions is required in order to decide
whether a reaction is irreversible.

All routes found can be visualized simultaneously in a local network show-
ing only the main metabolites which were traced in the path-finding algo-
rithm. If multiple organisms are selected (as in our example), the user can
assign them to two groups which are differently highlighted for species com-
parisons. The resulting network for our search example, including the species
highlighting, is shown in Fig. 4.20A. Another option is to visualize each route
found in a separate window (see Fig. 4.20B). This time, for each reaction, the
side metabolites are also drawn. Image maps offer direct links to the KEGG
database, but the user also immediately gets more information in a small
popup box simply by moving the mouse over the compounds and reactions
(see Fig. 4.21).
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Figure 4.20: An example of the local network view is shown (A). Enzymatic
reactions present in yeast are drawn in yellow boxes and those in E. coli in green
double borders. Furthermore, an example of the single route view is shown (B).
Here, the side metabolites are also drawn.
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Figure 4.21: Pupup boxes and direct links to the KEGG database provide additional information to the user.
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Besides its network exploration capabilities, MetaRoute can be used to
complement related approaches. For example, Metatool [Kamp et al., 2006],
which is based on the elementary flux mode approach, allows sophisticated
pathway analysis. However, the approach represents a computationally hard
problem and cannot be used for genome-scale networks. Furthermore, a
pre-defined distinction between internal and external (pool) metabolites is
necessary. Using MetaRoute, the user can select a local network of moderate
size and export it in the Metatool format including an automated definition
of external compounds.

4.5.4 Conclusions

MetaRoute is a user-friendly tool for exploring genome-scale metabolic net-
works. It integrates efficient search for relevant routes with interactive net-
work navigation and visualization. Due to the weighting scheme and the
application of atom mapping rules in the path-finding approach, the result-
ing routes are close to textbook-like routes. Search results can be exported in
various formats, e.g. Systems Biology Markup Language (SBML) or Meta-
tool format [Kamp et al., 2006] for further processing or analysis.

Potential applications of MetaRoute contain the systematic analysis of
the KEGG database which includes the detection of novel or alternative
pathways. In general, it can be used to support the design of knock-out or
tracer experiments. Further applications exist in biotechnology (metabolic
engineering) or biomedicine (drug target identification). MetaRoute can also
complement other methods like elementary flux mode analysis where it can
be used to identify (local) networks of moderate size as well as internal and
external compounds.



Chapter 5

Conclusions

In this thesis, several computational approaches that support the analysis
of metabolic pathways were developed. Each of these approaches provides
useful applications in systems biology and their integration represents a way
to deal with the complexity of metabolic networks. The main approach is
based on graph theory and enables an efficient search for relevant biotrans-
formation routes in genome-scale metabolic networks and it is available to
the community via a web interface called MetaRoute. Compared to related
work for analyzing metabolic pathways, a major step forward was the idea of
combining pre-calculated atom mapping rules with the shortest-path search
in a weighted graph representing the metabolic network. This was possible
by introducing a novel graph representation as well as weighting scheme and
a method for the automatic calculation of atom mapping rules that solves
the problems of a previous approach. The weighting scheme was extended
by the integration of further relevant information associated with biochem-
ical reactions and their catalyzing enzymes. To this end, we developed two
further novel approaches in the course of this thesis. The first predicts the
standard transformed Gibbs energy changes of reactions from the chemical
structures of educts and products and the second predicts the subcellular
localizations given enzymatic amino acid sequences. The second method,
called MultiLoc2, can also be accessed online as a web server.

Applying the approaches of this thesis to the genome-scale metabolic
networks of Escherichia coli and Arabidopsis thaliana, in order to detect bi-
ologically meaningful pathways, showed encouraging results. However, there
is still room for improvement, which is due to the fact that the interplay of
different biochemical entities is very complex and also depends on environ-
mental influences or the changing needs of the organism.

In future work, it should be possible to integrate further relevant infor-
mation into the graph representation of metabolic networks and the path-
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finding algorithm for a more comprehensive analysis. Such information could
consider pathway regulation or the evolutionary distance of enzymes, for ex-
ample, in the form of phylogenetic profiles. As already described in Chapter
2, feedback inhibition and feed-forward activation are typical biochemical
concepts that regulate or control the stability of metabolic pathways. There-
fore, the presence of one or several of these concepts could indicate meaningful
pathways. Phylogenetic profiles were already used in this thesis to improve
the prediction of subcellular protein localization. This kind of information
could also be applied to select, from a list of alternative pathways, the one
with the highest degree of co-inherited enzymes during evolution. A suitable
definition of such a degree remains to be specified but could be based on a
pairwise comparison of phylogenetic profiles. Also, the incorporation of ex-
perimentally gained metabolomics or expression data extracted, for example,
from public databases like the Golm Metabolome Database (GMD) [Kopka
et al., 2005] or Gene Expression Omnibus (GEO) [Barrett et al., 2007], could
lead to better results.

Although MetaRoute provides an easy-to-use visualization of the search
results, the analysis of metabolic pathways based on complex networks and
heterogeneous data requires more sophisticated visualization capabilities.
The visual inspection of meaningful routes and local networks inferred by
scientists can be significantly improved by, for example, visualizing the flow
of atoms based on atom mapping rules, by highlighting the subcellular local-
izations of the involved enzymes or by highlighting potential thermodynamic
bottlenecks with very positive ∆rG

′0 as well as more favorable reactions with
very negative ∆rG

′0. Furthermore, suitable graph-layout algorithms that, for
example, center top-ranked routes within a local network could offer attrac-
tive visual complements.

One nice feature of MetaRoute is that inferred local networks can be ex-
ported in a format that enables direct elementary flux mode analysis of these
networks using external tools. The integration of an automatic elementary
flux mode analysis of inferred local networks using efficient graph theory-
based concepts into a joint method is desirable since this would enable the
exploitation of the advantages of both worlds.

Having available meaningful pathways or flux modes and (predicted) stan-
dard transformed Gibbs energy changes of reactions, makes possible an em-
bedded calculation of the equilibrium composition of the intermediates based
on specified initial concentrations of the source compounds, using, for exam-
ple, an iterative approach such that suggested by Alberty [2006cb]. This
could support biotechnological applications which aim to increase the yield
of commercially interesting compounds.



Appendix A

Mining standard transformed
Gibbs energies for biochemical
reactions

The result of estimating ∆rG
′0 for biochemical reactions from experimental

data using the data mining approach, described on page 63, is shown in
Tab. A.6. For each estimated ∆rG

′0, the table shows the relevant data of the
automatically selected TECRDB entries, i.e. the EC number, temperature
T , pH, ionic strength I if given, measured equilibrium constant K

′

and the
subjective evaluation rate EV. The approach produces ∆rG

′0 values for 73
biochemical reactions where each reaction contains more than one compound
with unknown ∆fG

′0. Additional information concerning detailed reaction
equations is available in Tab. A.7.
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Table A.1: Result of the mined ∆rG
′0 values for 73 biochemical reactions. For

each ∆rG
′0, all relevant parameters of the automatically selected TECRDB entries

are presented

reaction (EC) T pH I/M K
′

∆rG
′
0 Ev

1.1.1.1b 298.15 7.5 (0.25) 17.17 C
1.1.1.1 298.15 8.0 (0.25) 0.2 3.99 B
1.1.1.3 298.15 7.9 (0.25) 0.00063 18.27 C
1.1.1.3b 298.15 7.9 (0.25) 0.0088 11.73 C
1.1.1.4 300.15 7.4 (0.25) 0.00723 12.22 B
1.1.1.9 298.15 7.0 (0.25) 6.91 × 10−5 23.75 B
1.1.1.14 298.15 7.0 (0.25) 0.013 10.76 C
1.1.1.25 303.15 7.0 (0.25) 0.0361 8.23 B
1.1.1.30 298.15 7.0 (0.25) 0.0146 10.48 A
1.1.1.31 298.15 8.0 (0.25) 0.0031 14.32 B
1.1.1.35 298.15 7.0 0.25 0.00025 20.56 C
1.1.1.37 298.15 7.5 (0.25) 5.3 × 10−5 24.40 C
1.1.1.50 298.15 7.0 (0.25) 0.058 7.06 B

298.15 7.0 (0.25) 0.092 5.91 B
1.1.1.61 298.15 7.1 (0.25) 3.9 -3.37 C
1.1.1.62 298.15 7.0 (0.25) 0.18 4.25 C
1.1.1.69 303.15 7.5 (0.25) 0.00011 22.59 C
1.1.1.97 303.15 7.6 (0.25) 0.18 4.25 C
1.1.1.108 303.15 7.0 (0.25) 0.00013 22.18 B
1.1.1.108b 295.15 8.0 (0.25) 0.00022 20.88 B
1.1.1.129 298.15 7.0 (0.25) 0.000342 19.78 C
1.1.1.150 303.15 6.9 (0.25) 7.8 × 10−8 40.57 B
1.1.1.153 298.15 7.6 (0.25) 0.13 5.06 B
1.1.1.194 303.15 7.8 (0.25) 0.18 4.25 C
1.1.99.3 293.15 7.03 (0.25) 0.000723 17.93 B
1.3.99.11 293.15 7.2 (0.25) 0.00619 12.60 B
1.4.1.11 299.15 7.0 (0.25) 0.004 13.69 A
1.5.1.1 298.15 7.9 (0.25) 0.0036 13.95 B
1.5.1.3 298.15 7.5 (0.25) 6.1 × 10−5 24.06 B
1.5.1.3b 295.15 7.0 (0.25) 19.4 -7.35 C
1.5.1.5 298.15 6.9 (0.25) 0.14 4.87 B
1.5.1.11 298.15 7.0 (0.25) 3 × 10−6 31.52 C
1.8.1.4 298.15 6.87 0.25 0.138 4.91 A

298.15 6.89 0.25 0.13 5.06 A
298.15 7.08 0.25 0.267 3.27 A
298.15 7.09 0.25 0.27 3.25 A

1.8.1.4b 295.15 6.9 (0.25) 0.18 4.25 B
295.15 7.2 (0.25) 0.28 3.16 B
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Table A.6: Continued

reaction (EC) T pH I/M K
′

∆rG
′
0 Ev

2.1.2.1 303.15 7.3 (0.25) 0.125 5.15 A
2.1.2.4 298.15 7.0 (0.25) 3.1 -2.80 B
2.1.2.5 298.15 6.7 (0.25) 1.3 -0.65 B
2.2.1.1 298.15 7.6 (0.25) 0.015 10.41 B
2.3.1.2 299.15 7.0 (0.25) 0.011 11.17 B

299.15 7.2 (0.25) 0.0099 11.44 B
2.3.1.6 298.15 7.03 0.25 11.7 -6.10 A
2.3.1.7 298.15 7.0 0.25 1.6 -1.17 A
2.3.1.8 303.15 6.85 (0.25) 0.14 4.87 B
2.4.1.67 298.15 6.5 (0.25) 4.0 -3.44 C
2.4.1.120 303.15 6.0 (0.25) 0.21 3.87 C
2.4.2.1 298.15 7.4 (0.25) 0.00036 19.66 C
2.4.2.10 301.15 8.0 (0.25) 1.4 -0.83 B
2.7.3.4 303.15 7.1 (0.25) 0.53 1.57 C
2.7.4.2 303.15 1.7 (0.25) 1.7 -1.32 B
2.7.4.14 303.15 7.5 (0.25) 1.49 -0.99 B
2.7.7.24 298.15 8.0 (0.25) 0.67 0.99 B
2.7.3.4 303.15 7.1 (0.25) 0.53 1.57 C
2.7.4.2 303.15 8.0 (0.25) 1.7 -1.32 B
2.7.4.14 303.15 7.5 (0.25) 1.49 -0.99 B
2.7.7.24 298.15 8.0 (0.25) 0.67 0.99 B
3.5.1.11 298.15 6.0 (0.25) 0.02 9.70 B
3.5.2.3 303.15 6.1 (0.25) 1.9 -1.59 B
3.5.4.9 298.15 7.0 (0.25) 11.0 -5.94 B
4.1.2.18 301.15 7.4 (0.25) 0.00037 19.59 B
4.1.2.18b 301.15 7.5 (0.25) 0.00012 22.38 B
4.1.3.3 298.15 7.5 (0.25) 0.034 8.38 A

298.15 7.5 (0.25) 0.0348 8.32 A
4.1.3.32 298.15 8.0 (0.25) 0.5 1.72 B
4.2.1.10 302.15 7.4 (0.25) 15.0 -6.71 C
4.2.1.17 298.15 7.5 (0.25) 0.29) 3.07 C
4.2.1.49 298.15 7.5 (0.25) 69.8 -10.52 A
4.2.1.85 298.15 7.0 0.1 0.089 6.00 B
4.3.1.2 298.15 7.9 (0.25) 0.238 3.56 B
4.3.1.3 298.15 8.0 (0.25) 3.0 -2.73 C
4.4.1.5 303.15 7.0 (0.25) 9 × 10−5 23.09 C
5.1.1.5 303.15 8.0 (0.25) 1.0 0.0 B
5.1.3.5 303.15 8.0 (0.25) 1.25 -0.55 B
5.1.3.6 298.15 7.5 (0.25) 2.6 -2.37 B
5.1.3.8 298.15 7.5 (0.25) 0.201 3.98 A
5.4.2.2 303.15 7.11 (0.25) 0.28 3.16 C
5.4.3.2 303.15 7.7 (0.25) 5.3 -4.13 C
5.4.99.6 298.15 7.5 (0.25) 0.66 1.03 A
5.5.1.1 303.15 7.5 (0.25) 0.041 7.92 B

303.15 6.5 (0.25) 0.011 11.18 B
5.5.1.3 296.15 7.5 (0.25) 620.0 -15.94 C
5.5.1.6 298.15 7.6 (0.25) 7.6 -5.03 C
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Table A.7: This table shows EC number and reaction equation for each mined biochemical reaction.

EC reaction equation
1.1.1.1 cyclohexanol + NAD = cyclohexanone + NADH
1.1.1.1b benzyl alcohol + NAD = benzaldehyde + NADH
1.1.1.3 L-homoserine + NADP = L-aspartate 4-semialdehyde + NADPH
1.1.1.3b L-homoserine + NAD = L-aspartate 4-semialdehyde + NADH
1.1.1.4 (R,R)-2,3-butanediol + NAD = (R)-acetoin + NADH
1.1.1.9 L-threitol + NAD = L-erythrulose + NADH
1.1.1.14 galactitol + NAD = D-tagatose + NADH
1.1.1.25 shikimate + NADP = 5-dehydroshikimate + NADPH
1.1.1.30 (R)-3-hydroxybutanoate + NAD = 3-oxobutanoate + NADH
1.1.1.31 3-hydroxy-2-methylpropanoate + NAD = 2-methyl-3-oxopropanoate + NADH
1.1.1.35 (S)-3-hydroxyhexanoyl-CoA + NAD = 3-oxohexanoyl-CoA + NADH
1.1.1.37 meso-tartrate + NAD = (E)-dihydroxyfumarate + NADH
1.1.1.50 5-alpha-androstane-3alpha-ol-17-one + NAD = 5-alpha-androstane-3,17-dione + NADH
1.1.1.61 4-hydroxybutanoate + NAD = 4-oxobutanoate + NADH
1.1.1.62 estradiol-17-beta + NAD = estrone + NADH
1.1.1.69 D-gluconate + NADP = 5-oxo-D-gluconate + NADPH
1.1.1.97 3-hydroxybenzyl alcohol + NADP = 3-hydroxybenzaldehyde + NADPH
1.1.1.108 L-carnitine + NAD = 3-dehydrocarnitine + NADH
1.1.1.108b D-carnitine + NAD = 3-dehydrocarnitine + NADH
1.1.1.129 L-threonate + NAD = 3-oxo-L-threonate + NADH
1.1.1.150 4-pregnene-11beta,17alpha,21-triol-3,20-dione + NAD = 4-pregnene-11beta,17alpha-diol-3,20,21-trione+ NADH
1.1.1.153 7,8-dihydrobiopterin + NADP = sepiapterin + NADPH
1.1.1.194 coniferyl alcohol + NADP = coniferyl aldehyde + NADPH
1.1.99.3 D-gluconate + NADP = 2-oxo-D-gluconate + NADPH
1.3.99.11 (S)-dihydroorotate + NAD = orotate + NADH
1.4.1.11 L-erythro-3,5-diaminohexanoate + NAD + H2O = (S)-5-amino-3-oxohexanoate + NADH + ammonia
1.5.1.1 (S)-proline + NADP = D-pyrroline-2-carboxylate + NADPH
1.5.1.3 5,6,7,8-tetrahydrofolate + NADP = 7,8-dihydrofolate + NADPH
1.5.1.3b 2 7,8-dihydrofolate = folate + 5,6,7,8-tetrahydrofolate
1.5.1.5 5,10-methylenetetrahydrofolate + NADP = 5,10-methenyltetrahydrofolate + NADPH
1.5.1.11 N2-(D-1-carboxyethyl)-L-arginine + NAD + H2O = L-arginine + pyruvate + NADH
1.8.1.4 dihydro-alpha-lipoate + NAD = alpha-lipoate + NADH
1.8.1.4b dihydrolipoamide + NAD = lipoamide + NADH
2.1.2.1 5,10-methylenetetrahydrofolate + glycine + H2O = tetrahydrofolate + L-serine
2.1.2.4 5-formiminotetrahydrofolate + glycine = N-formiminoglycine + tetrahydrofolate
2.1.2.5 5-formiminotetrahydrofolate + L-glutamate = N-formimino-L-glutamate + tetrahydrofolate
2.2.1.1 D-fructose 6-phosphate + glycolaldehyde = L-erythrulose + D-erythrose 4-phosphate
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Table A.7: Continued

EC reaction equation
2.3.1.2 acetyl phosphate + imidazole = N-acetylimidazole + orthophosphate
2.3.1.6 acetyl-CoA + choline = CoA + O-acetylcholine
2.3.1.7 acetyl-CoA + L-carnitine = CoA + L-acetylcarnitine
2.3.1.8 formyl-CoA + orthophosphate = CoA + formyl phosphate
2.4.1.67 1-alpha-D-galactosyl-myo-inositol + raffinose = myo-inositol + stachyose
2.4.1.120 UDP-glucose + sinapate = UDP + 1-sinapoyl-D-glucose
2.4.2.1 nicotinamide + alpha-D-ribose 1-phosphate = nicotinamide riboside + orthophosphate
2.4.2.10 orotidine 5’-phosphate + pyrophosphate = orotate + 5-phospho-alpha-D-ribose 1-diphosphate
2.7.3.4 ATP + taurocyamine = ADP + N-phosphotaurocyamine
2.7.4.2 ATP + (R)-5-phosphomevalonate = ADP + (R)-5-diphosphomevalonate
2.7.4.14 ATP + dCMP = ADP + dCDP
2.7.7.24 dTTP + alpha-D-glucose 1-phosphate = dTDPglucose + pyrophosphate
3.5.1.11 penicillin G + H2O = 6-aminopenicillanic acid + phenylacetic acid
3.5.2.3 (S)-dihydroorotate + H2O = N-carbamoyl-L-aspartate
3.5.4.9 5,10-methenyltetrahydrofolate + H2O = 10-formyltetrahydrofolate
4.1.2.18 2-dehydro-3-deoxy-L-pentonate = pyruvate + glycolaldehyde
4.1.2.18b 2-dehydro-3-deoxy-D-fuconate = pyruvate + (S)-lactaldehyde
4.1.3.3 N-acetylneuraminate = N-acetyl-D-mannosamine + pyruvate
4.1.3.32 2,3-dimethylmalate = propanoate + pyruvate
4.2.1.10 3-dehydroquinate = 3-dehydroshikimate + H2O
4.2.1.17 (3S)-3-hydroxybutanoyl-CoA = trans-but-2-enoyl-CoA + H2O
4.2.1.49 urocanate + H2O = 4,5-dihydro-4-oxo-5-imidazolepropanoate
4.2.1.85 (2R,3S)-2,3-dimethylmalate = dimethylmaleate + H2O
4.3.1.2 L-threo-3-methylaspartate = 2-methylfumarate + ammonia
4.3.1.3 L-histidine = urocanate + ammonia
4.4.1.5 (R)-S-lactoylglutathione = glutathione (reduced) + methylglyoxal
5.1.1.5 L-lysine = D-lysine
5.1.3.6 UDP-D-glucuronate = UDP-D-galacturonate
5.1.3.8 N-acetyl-D-glucosamine = N-acetyl-D-mannosamine
5.4.2.2 D-glucosamine 6-phosphate = D-glucosamine 1-phosphate
5.4.3.2 L-lysine = (3S)-3,6-diaminohexanoate
5.4.99.6 chorismate = isochorismate
5.5.1.1 2,5-dihydro-5-oxofuran-2-acetate = cis-cis-hexadienedioate
5.5.1.3 tetrahydroxypteridine = xanthine-8-carboxylate
5.1.3.5 UDP-L-arabinose = UDP-D-xylose
5.5.1.6 2’,4,4’-trihydroxychalcone = (2S)-4’,7-dihydroxyflavanone
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Appendix B

MultiLoc2

B.1 Data used for the development of MultiLoc2

B.1.1 Phylogenetic profiles

We downloaded 453 fully sequenced genomes from the National Center for
Biotechnology Information (NCBI) ftp site (ftp.ncbi.nih.gov/genomes) con-
sisting of 20 eukaryotes, 33 archaea and 400 bacteria. However, only 78
genomes were used for the calculation of phylogenetic profiles. We used all
eukaryotic and archaea genomes and selected only the 25 genetically most
distant bacteria genomes in order to get an approximately equal distribution
of genomes from the three kingdoms. We used the same genome subselection
procedure as described in Sun et al., 2005. The method uses the NCBI taxon-
omy information to reconstruct an evolutionary tree and exploits hierarchical
information in a top down approach to select a preferably non-redundant set
of genomes. The complete set of the genomes used is listed in Tab. B.1,
Tab. B.2 and Tab. B.3.
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Table B.1: The selected fully sequenced eukaryotic genomes used for the calcu-
lation of phylogenetic profiles.

Taxonomy ID Organism name
3702 Arabidopsis thaliana
4932 Saccharomyces cerevisiae
5693 Trypanosoma cruzi
6239 Caenorhabditis elegans
7227 Drosophila melanogaster
9606 Homo sapiens

10090 Mus musculus
33169 Eremothecium gossypii
35128 Thalassiosira pseudonana
36329 Plasmodium falciparum 3D7
39947 Oryza sativa Japonica Group

214684 Cryptococcus neoformans var. neoformans JEC21
280699 Cyanidioschyzon merolae strain 10D
284590 Kluyveromyces lactis NRRL Y-1140
284591 Yarrowia lipolytica CLIB122
284592 Debaryomyces hansenii CBS767
284593 Candida glabrata CBS 138
284812 Schizosaccharomyces pombe 972h-
284813 Encephalitozoon cuniculi GB-M1
294381 Entamoeba histolytica HM-1:IMSS
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Table B.2: The selected fully sequenced archaea genomes used for the calculation
of phylogenetic profiles.
Taxonomy ID Organism name

64091 Halobacterium sp. NRC-1
69014 Thermococcus kodakarensis KOD1
70601 Pyrococcus horikoshii OT3

178306 Pyrobaculum aerophilum str. IM2
186497 Pyrococcus furiosus DSM 3638
187420 Methanothermobacter thermautotrophicus str. Delta H
188937 Methanosarcina acetivorans C2A
190192 Methanopyrus kandleri AV19
192952 Methanosarcina mazei Go1
224325 Archaeoglobus fulgidus DSM 4304
228908 Nanoarchaeum equitans Kin4-M
243232 Methanocaldococcus jannaschii DSM 2661
259564 Methanococcoides burtonii DSM 6242
263820 Picrophilus torridus DSM 9790
267377 Methanococcus maripaludis S2
269797 Methanosarcina barkeri str. Fusaro
272557 Aeropyrum pernix K1
272569 Haloarcula marismortui ATCC 43049
272844 Pyrococcus abyssi GE5
273057 Sulfolobus solfataricus P2
273063 Sulfolobus tokodaii str. 7
273075 Thermoplasma acidophilum DSM 1728
273116 Thermoplasma volcanium GSS1
323259 Methanospirillum hungatei JF-1
330779 Sulfolobus acidocaldarius DSM 639
339860 Methanosphaera stadtmanae DSM 3091
348780 Natronomonas pharaonis DSM 2160
349307 Methanosaeta thermophila PT
362976 Haloquadratum walsbyi DSM 16790
368408 Thermofilum pendens Hrk 5
384616 Pyrobaculum islandicum DSM 4184
410358 Methanocorpusculum labreanum Z
415426 Hyperthermus butylicus DSM 5456
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Table B.3: The selected fully sequenced bacteria genomes used for the calculation
of phylogenetic profiles.

Taxonomy ID Organism name
1140 Synechococcus elongatus PCC 7942
1148 Synechocystis sp. PCC 6803

59920 Prochlorococcus marinus str. NATL2A
60480 Shewanella sp. MR-4
62928 Azoarcus sp. BH72
62977 Acinetobacter sp. ADP1
64471 Synechococcus sp. CC9311

103690 Nostoc sp. PCC 7120
156889 Magnetococcus sp. MC-1
197221 Thermosynechococcus elongatus BP-1
203124 Trichodesmium erythraeum IMS101
232721 Acidovorax sp. JS42
240292 Anabaena variabilis ATCC 29413
243164 Dehalococcoides ethenogenes 195
251221 Gloeobacter violaceus PCC 7421
255470 Dehalococcoides sp. CBDB1
266779 Mesorhizobium sp. BNC1
290400 Jannaschia sp. CCS1
292414 Silicibacter sp. TM1040
292459 Symbiobacterium thermophilum IAM 14863
296591 Polaromonas sp. JS666
326442 Pseudoalteromonas haloplanktis TAC125
374463 Baumannia cicadellinicola str. Hc

(Homalodisca coagulata)
387662 Candidatus Carsonella ruddii PV
413404 Candidatus Ruthia magnifica str. Cm

(Calyptogena magnifica)
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B.2 MultiLoc2-LowRes architecture

The architecture of the animal version of MultiLoc2-LowRes is shown in Fig.
B.1. Compared with MultiLoc2-HighRes the SVMSA subpredictor is not
used because MultiLoc2-LowRes is specialized for globular proteins.
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Figure B.1: The architecture of MultiLoc2-LowRes (animal version). A query
sequence is processed by a first layer of five subprediction methods (SVMTarget,
SVMaac, PhyloLoc, GOLoc and MotifSearch). The individual output of the layer
one methods are collected in the PPV which enters a second layer of SVMs pro-
ducing probability estimates for each localization.

B.3 Independent test without GO terms

The results of the simulation that no GO terms are available for all proteins
of the independent data set are presented in this section. Tab. B.4 shows
the localization-specific performance results using sensitivity and MCC and
Tab. B.5 summarizes the overall performances using AVG and ACC.

B.3.1 MultiLoc2-LowRes

The animal prediction performance of MultiLoc2-LowRes is reduced by only
one per cent regarding to AVG and ACC when predicting three classes and by
two and four percent when predicting four classes. The reason is that more
nuclear proteins are wrongly predicted if we discard the GO terms. The
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fungal prediction performance is almost unchanged which is mainly caused
by the fact that on average only 34% of the fungal proteins are annotated
with GO terms by InterProScan. The plant ACCs are decreased from 83%
to 80% and from 76% to 71% for the prediction of three classes and four
classes respectively. This is caused by the dropping sensitivity of the nuclear
proteins (from 91% to 77%). The AVGs are reduced by nine per cent which
seems to be a very significant performance lost at the first view. The reason
is that the SP sensitivity is reduced from 83% to 50%. Only two SP proteins
are additionally wrong predicted if we neglect the GO annotation. However,
these two proteins have a large impact on the AVGs because the SP cluster
contains only six proteins overall.

B.3.2 MultiLoc2-HighRes

Similar to the MultiLoc2-LowRes, the fungal prediction performance of Mul-
tiLoc2-HighRes is almost unchanged. This is the same for the plants in case
of the prediction of four classes. The performance reduction by three per
cent for the prediction of five plant classes is also moderate. However, very
different to MultiLoc2-LowRes, the animal ACCs are reduced by nine per-
cent and 11% respectively. We analyzed the additionally wrong predicted
proteins and found out that this was caused by a failure in the clustering
procedure performed by the curators of the data set [Casadio et al., 2008].
The nuclear data set contains 56 proteins of the protamine-P1 family. Each
protein represents one cluster which biases the prediction towards this over-
represented protein class. The reason for the failed clustering are obviously
the relatively short sequences of the proteins between 50 and 60 amino acids.
Therefore, we reclustered the nuclear proteins using BLASTClust and 30%
sequence identity. Now, the 56 proteins of the protamine-P1 family are clus-
tered and the new number of clusters is 186 for the nuclear proteins and
277 for the nu/cy class. The comparison of the animal results based on the
reclustered nuclear proteins delivers only a slightly performance reduction.
We also applied BLASTClust on all other localizations and always received
either the same number of clusters or a few more which indicates that the
described clustering problem did not appear for the remaining classes.
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Table B.4: Comparison of the localization-specific prediction results of the Mul-
tiLoc2 predictors using an independent dataset
Version Loc Nr MultiLoc2-LR MultiLoc2-LR* MultiLoc2-HR MultiLoc2-HR*

SE MCC SE MCC SE MCC SE MCC
Animals SP 75 97 0.89 97 0.88 87 0.79 88 0.60

mi 48 89 0.81 86 0.78 83 0.75 83 0.74
nu 224 62 0.57 56 0.52 58 0.54 36 0.34
cy 85 72 0.43 72 0.38 71 0.39 72 0.37
nu/cy 308 93 0.87 92 0.84 91 0.78 77 0.63

Animals+ SP 75 97 0.89 97 0.88 87 0.82 88 0.80
mi 48 89 0.80 86 0.78 83 0.75 83 0.73
nu 186 54 0.51 46 0.44 52 0.50 45 0.43
cy 85 72 0.41 72 0.35 71 0.37 72 0.35
nu/cy 277 92 0.85 91 0.83 91 0.79 89 0.77

Fungi SP 9 78 0.60 78 0.59 78 0.63 78 0.63
mi 77 68 0.62 66 0.61 51 0.52 54 0.55
nu 152 63 0.36 63 0.36 50 0.32 44 0.28
cy 180 54 0.27 54 0.27 56 0.22 54 0.18
nu/cy 332 92 0.63 93 0.66 84 0.48 83 0.47

Plants SP 6 83 0.58 50 0.40 83 0.50 83 0.47
mi 6 67 0.51 67 0.45 67 0.40 67 0.42
ch 72 77 0.72 78 0.70 53 0.51 54 0.51
nu 36 91 0.77 77 0.63 86 0.74 79 0.64
cy 17 41 0.38 41 0.33 37 0.20 29 0.12
nu/cy 52 94 0.84 88 0.76 93 0.74 91 0.70

The sensitivity (SE) and Matthews correlation coefficient (MCC) of MultiLoc2 (ML2) are listed for

each localization (Loc). The number of clusters (Nr) per localization is also shown. The results for

MultiLoc2-LowRes* and MultiLoc2-HighRes* are obtained by simulating that for all test proteins no

GO term is available. The Animals+ dataset was obtained by reclustering the nuclear proteins from the

original animals dataset. Changes in performance are highlighted in italic.

Table B.5: Comparison of the overall performance results of the MultiLoc2 pre-
dictors using an independent dataset
Version Classes Average sensitivity (Overall accuracy)

MultiLoc2-LR MultiLoc2-LR* MultiLoc2-HR MultiLoc2-HR*
Animals 3 93 (93) 92 (92) 87 (89) 83 (80)

4 80 (73) 78 (69) 75 (68) 70 (57)
Animals+ 3 93 (93) 91 (92) 87 (89) 87 (88)

4 78 (70) 75 (66) 73 (67) 72 (64)
Fungi 3 79 (87) 79 (88) 71 (78) 72 (77)

4 66 (60) 65 (60) 59 (52) 58 (51)
Plants 4 80 (83) 71 (80) 74 (70) 74 (70)

5 72 (76) 63 (71) 65 (62) 62 (59)

The average sensitivity and the overall accuracy (in parenthesis) of MultiLoc2 (ML2) for the prediction

of three and four classes for animals and fungi and four and five classes for plants are shown. The results

for MultiLoc2-LowRes* and MultiLoc2-HighRes* are obtained by simulating that for all test proteins no

GO term is available. The Animals+ dataset was obtained by reclustering the nuclear proteins from the

original animals dataset. Changes in performance are highlighted in italic.
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