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Zusammenfassung

Der Metabolismus lebender Organismen besteht aus einem komplexen Net-
zwerk chemischer Reaktionen, welche kleine Molekiile transformieren, um
Energie und Biomasse aus Nahrstoffen zu gewinnen. In solch einem Net-
zwerk reprasentieren Stoffwechselwege regulierte funktionelle Einheiten zur
Konversion bestimmter Quellmetaboliten in Produktmolekiile durch eine Se-
quenz von Reaktionen. Jedoch ist das Wissen tiber Stoffwechselwege, vor
allem in neu sequenzierten Organismen, unvollstandig oder benotigt noch
experimentelle Bestatigung. Das mogliche Vorkommen neuartiger oder al-
ternativer Pfade muss bei der Erforschung der metabolischen Fahigkeiten
von Organismen beriicksichtigt werden. In diesem Zusammenhang bietet
die rechnergestiitzte Herleitung biologisch bedeutsamer Pfade eine attraktive
Ergianzung zu experimentellen Studien und besitzt zahlreiche Anwendungen
in der Systembiologie.

Diese Arbeit prsentiert mehrere neuer rechnergestiitzter Methoden zur
Analyse von Stoffwechselwegen in genomweiten Netzwerken. Entwickelt wur-
de ein graphtheoretischer Ansatz, der das metabolische Netzwerk auf einen
gewichteten Graphen abbildet und einen effizienten Pfadsuch-Algorithmus
zur Berechnung relevanter Biotransformationsrouten verwendet. Der Ansatz
wurde erganzt durch die Integration weiterer relevanter Informationen, ab-
geleitet aus den biochemischen Entitdten (Metaboliten, Reaktionen und En-
zyme), die das Netzwerk aufbauen. Aus diesem Grund wurde eine verbesserte
Methode erzeugt, welche atomare Abbildungsregeln aus den chemischen Struk-
turen der Netzwerkverbindungen automatisch berechnet. Fiir eine gegebene
Reaktion definiert eine atomare Abbildungsregel welches Atom einer Edukt-
verbindung auf welches Atom einer Produktverbindung transferiert wird. Die
Anwendung dieser Regeln erlaubt es den Fluss von Atomen in der Pfadsuche
zu verfolgen, was fiir die Erkennung biochemisch unzulassiger Routen hilfre-
ich ist. Eine weitere Methode zur Abschétzung freier Reaktionsenthalpien
(Gibbs-Energien) unter (biochemischen) Standardbedingungen wurde ent-
wickelt und verwendet um die Pfadsuche zu verbessern. Die dritte Methode
erweiterte die Pfadanalyse durch vorhergesagte Informationen iiber die sub-



vi

zellulare Lokalisierung der beteiligten Enzyme.

Um die Niitzlichkeit der entwickelten Methoden fiir metabolische Pfad-
analysen zu demonstrieren, wurden experimentell bestatigte Biotransforma-
tionsrouten in den Netzwerken von Escherichia coli und Arabidopsis thaliana
vorhergesagt.

Im letzten Teil dieser Arbeit wird ein benutzerfreundliches Web-Interface,
genannt MetaRoute, zur Erkundung der metabolischen Netzwerke von hun-
derten von Organismen beschrieben.



Abstract

The metabolism of living organisms consists of a complex network of chem-
ical reactions that transform small molecules to gain energy and biomass
from nutrients. In such a network, metabolic pathways represent regulated
functional units for converting particular source metabolites into product
molecules by a sequence of reactions. However, knowledge about pathways,
especially in newly sequenced genomes, is incomplete or remains to be exper-
imentally verified. The potential presence of novel or alternative pathways
has to be considered when investigating metabolic capabilities of organisms.
In this context, computational inference of biologically meaningful pathways
constitutes an attractive complement to experimental studies and has nu-
merous applications in systems biology.

This thesis presents several novel computational approaches for analyzing
metabolic pathways in genome-scale networks. A graph theoretical approach
was developed that maps the metabolic network onto a weighted graph and
uses an efficient path-finding algorithm to calculate relevant biotransforma-
tion routes. The approach was complemented by the integration of further
relevant information derived from the biochemical entities (metabolites, reac-
tions and enzymes) that build up the network. For this purpose, an improved
method was created that automatically calculates atom mapping rules from
chemical structures of the network compounds. Given a chemical reaction,
an atom mapping rule defines which atom of an educt compound is trans-
ferred to which atom of a product compound. The application of these rules
allows one to trace the flow of atoms in the path search, which is useful for
detecting biochemically unfeasible routes. A further method for estimating
Gibbs energy changes of reactions under (biochemical) standard conditions
was developed and used to improve the path search. The third method ex-
tended the pathway analysis using predicted information about subcellular
localizations of the enzymes involved.

To demonstrate the usefulness of the developed approaches for metabolic

pathway analysis, experimentally verified biotransformation routes in the
metabolic networks of FEscherichia coli and Arabidopsis thaliana were pre-
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dicted.
In the last part of this thesis a user-friendly web interface, called MetaRoute,
for exploring the metabolic networks for hundreds of organisms, is described.
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Chapter 1

Introduction

1.1 Motivation

Cellular metabolism consists of a complex network of chemical reactions that
transform small molecules and that operate together to convert nutrients into
energy and biomass. In such a network, metabolic pathways represent func-
tional units that are responsible for specific metabolic processes, for exam-
ple, the degradation of carbon sources like glucose or the synthesis of amino
acids. The metabolic pathways known from many biochemical textbooks
have been discovered through painstaking work on specific model organisms.
However, it has been shown that in reality metabolic networks are much
more variable and more interconnected than the (mostly linear) textbook
pathways [Cordwell, 1999]. In microbial genomes especially, even standard
pathways of the core metabolism like glycolysis, the TCA cycle or the pen-
tose phosphate pathway can vary widely even within a species (e.g., from
strain to strain) due to missing or mutated enzymes. The existence of alter-
native pathways is the result of an organism’s adaptation to its environment
or niche. Therefore, knowledge of all feasible routes transforming a source
metabolite into a target metabolite can help to understand the metabolism
better or to decide whether particular enzymes or intermediates are essential
in the process. However, experimental determination of pathways is labori-
ous and time-consuming. So far, there is no high-throughput method for this
task. Hence, there is a need to develop computational approaches for detect-
ing plausible pathways in genome-scale metabolic networks. Applications
can be found in systems biology related fields like metabolic engineering to
support genetic modification of microorganisms in order to increase the yield
of industrially important metabolites. The identification, based on computa-
tional tools, of (non-)essential enzymes in metabolic pathways is also useful



Introduction

R
Genome \ Metabolic Pathway Analysis

X PERY
e | | e \YZ }'%
.".0‘.:... v
BioCyc > 1 > : ' A4
w
Reactions y
BRENDA d
% Compoun S/ Metabolic Network

Figure 1.1: The reconstruction of metabolic networks based on data extracted
from pathway databases enables computational analysis of metabolic pathways.

for detecting potential drug targets. Furthermore, the design of tracer or
knock-out experiments is much easier knowing all alternative routes that are
affected by enzymes under study or compounds marked by radioisotopes.

1.2 State of the art

With the availability of whole-genome data and functional annotation for a
wide range of organisms, computational tools can now be applied to a much
broader range of problems and model organisms. Starting from gene-enzyme
relations, one can use enzyme-reaction as well as reaction-compound relations
(extracted from pathway databases like KEGG [Kanchisa, 1996], EcoCyc
[Keseler et al., 2005], MetaCyc [Caspi et al., 2006] and BRENDA [Schom-
burg et al., 2002]) to reconstruct an organism-specific metabolic network (see
also Fig. 1.1). The computational analysis of these networks, focusing on the
detection of novel or alternative pathways that transform a particular source
into a target compound, requires sophisticated approaches. A major prob-
lem in this context is the computational effort caused by the combinatorial
explosion of the number of possible routes in large-scale metabolic networks.
Searching for relevant pathways without information other than the con-
nectivity, i.e., when two successive reactions are connected by a common
metabolite, often delivers meaningless results. Kiiffner et al. [2000] applied
such a naive or “blind” search to a metabolic network at genome-scale. An
exhaustive enumeration algorithm was developed to analyze the glycolysis
pathway, i.e., for the enumeration of all routes starting from glucose as source
and ending in pyruvate. The authors found at least 500,000 different routes
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Figure 1.2: Finding relevant routes in metabolic networks is complicated by the
fact that many metabolites can assume different roles (e.g. main educt/product,
black arrows or side educt/product, red arrows) in different reactions depending
on the context.

of at most nine reaction steps from glucose to pyruvate. Of course nearly
all of them are biologically irrelevant. The large number of routes results
from the presence of so-called pool metabolites like water, ATP or NADH
that participate in many reactions (see also Fig. 1.2 for an illustration). For
example, using ADP as an intermediate would lead to a very short but irrel-
evant route from glucose to pyruvate. A simple strategy to avoid irrelevant
short cuts is the removal of pool metabolites. But ignoring these network
hubs cannot be a satisfying solution since their choice is not always obvious.
Removing compounds runs the risk of missing relevant routes and does not
guarantee the retrieval of only relevant ones. The main problem is that even
such a typical side metabolite like ADP acts as a real intermediate in several
pathways. Further examples are glutamate or pyruvate where their role as
a main or side metabolite is not unique or clear in all reactions [van Helden
et al., 2002].

The recent approaches to metabolic pathways described in the literature
can be roughly divided into two main groups. Constraint-based methods
[Schuster et al., 1999; Schilling et al., 2000] infer network-based, stoichiomet-
rically balanced pathways defined as a metabolic subnetwork in which the
net production and consumption of all compounds is zero. Excluded from
this balance are the source and target compounds and a predefined set of
so-called external compounds or pool metabolites. The metabolic network
is represented as a stoichiometric matrix where rows and columns represent
metabolites and reactions. The pathways are inferred using convex analysis
[Rockafellar, 1970], a branch of mathematics for analyzing a set of linear
equations under a given set of constraints. The advantage of the method
is that it is mathematically well defined. Since stoichiometry is the driving
concept, the comparison of alternative pathways with respect to biotech-
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nological applications is well established. In this context, the analysis of
pathways is focused on increasing the yield of industrially important com-
pounds from specific source metabolites. Irrelevant routes, as described in
the previous section, cannot be inferred by stoichiometric approaches. How-
ever, while the problem of enumerating all relevant pathways is avoided, the
underlying calculation still represents a computationally hard problem. It
seems to be intractable to use the approach for most genome-scale networks
[Klamt et al., 2002, 2003; Yeung et al., 2007]. Furthermore, it is not clearly
defined how to distinguish between internal and external (pool) metabolites,
which is, as has already been described, a non-trivial task. In practice, the
computational complexity is reduced by using networks of moderate size and
irreversible reactions.

Graph theory-based methods search for linear biotransformation routes,
simply defined as a linear sequence of chemical reactions in which a source
compound is converted into a target compound step by step. The metabolic
network is represented as a graph [Arita, 2000; Rahman et al., 2005; Croes
et al., 2006]. An advantage is the availability of already established and effi-
cient path-finding algorithms that have polynomial runtime. Therefore, these
algorithms can be used for genome-scale network analysis [Aittokallio et al.,
2006]. An interactive navigation through metabolic networks is possible,
simply by searching for (k-shortest) paths between a given source and tar-
get, without the need for user-defined constraints [van Helden et al., 2002].
However, the main challenge for graph theory-based methods is to detect
only relevant routes within the first calculated (k-shortest) paths as well as
to filter out biologically meaningless routes. This step requires the defini-
tion of relevance or optimization criteria. For this purpose, consideration of
the structural information of the metabolites is used in several methods. The
PathwayHunter tool [Rahman et al., 2005] uses chemical fingerprints to guide
a shortest-path search between structurally similar metabolites. Chemical
fingerprints are unique patterns that represent the presence and absence of a
defined set of chemical groups or substructures. Another promising idea is to
trace the flow of atoms in a shortest-path search using atom mapping rules
[Arita, 2000, 2003]. Given a chemical reaction, an atom mapping rule defines
which atom of an educt compound is transferred to which atom of a product
compound. The sequential application of these rules is helpful for detecting
biochemically irrelevant shortest paths in which no atom is transferred from
the source to the target. The main problem is that, despite the atom trace,
the shortest-path search tends to go through pool metabolites or network
hubs that connect many different pathways across the whole metabolic net-
work. The structural information, necessary for atom mapping calculation, is
either not given or is incomplete for a fraction of compounds participating in
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reactions stored in pathway databases. Those compounds are often described
only by a string name or represent general molecules like ‘an alcohol’. This is
also a principal problem when using chemical fingerprints. Furthermore, the
automated and efficient calculation of atom mapping rules, given thousands
of reactions in a database like KEGG, is complicated and requires sophis-
ticated algorithms. Although the consideration of structural information is
doubtlessly very useful, its incorporation requires pre-calculation effort and
makes the path-finding process more complicated. An alternative strategy
was proposed by Croes et al. [2006], where the metabolic network is rep-
resented by a degree-weighted graph. In this graph each node is assigned
a weight equal to its degree. Searching for the lightest path significantly
reduces the probability of finding irrelevant routes containing pool metabo-
lites as intermediates. An advantage is that structural information about
the compounds is not needed and that the guided shortest-path search is
replaced by the search for the lightest path based on an easy-to-use opti-
mization criterion. However, the method fails for routes containing network
hubs as intermediates or for routes passing through several pathways of the
core metabolism such as glycolysis or the TCA cycle. Those pathways con-
tain highly connected metabolites like pyruvate or acetyl-CoA and receive,
therefore, high overall path weights.

Compared to constraint-based approaches, the main advantage of graph
theory-based methods for metabolic pathways is that efficient (k-shortest)
path-finding algorithms can be used to deal even with genome-scale networks.
However, graph theory-based search requires the consideration of suitable
optimization criteria to find relevant routes. Approaches described in the lit-
erature so far, like node-degrees or atom mapping rules, are not sophisticated
enough and still produce irrelevant routes. The reason is that they ignore
important biochemical and biological constraints like reaction energetics or
subcellular localizations of enzymes. Furthermore, current state-of-the-art
methods are still computationally demanding due to the high number of
irrelevant routes and the necessary adaptation of path-finding algorithms.
This also renders efficient interactive search difficult.

1.3 Contributions of this thesis

This thesis introduces novel approaches for analyzing metabolic pathways
which improve or complement existing approaches. A graph theory-based
approach for finding feasible biotransformation routes represents the basic
framework. Our method ensures efficient calculation of relevant routes in
metabolic networks at the genome scale without the need for pre-defining
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pool metabolites. To this end, we integrated atom mapping rules and the
lightest path search into a joint method. The key component of the ap-
proach is a novel method for the fully automated and efficient calculation of
atom mapping rules. In addition to the detection of biochemically unfeasible
routes, the application of atom mapping rules allows to create graph repre-
sentations that are specialized for carbon, nitrogen, sulfur or phosphorous
metabolism. The advantage is a reduced network complexity. Compared to
the degree-weighted graph approach [Croes et al., 2006] we use more complex
weighting schemes. The combined weighting distinguishes between weights
assigned to the compounds and those assigned to the reactions in the net-
work.

An important goal of this work was also the integration of further relevant
biological or biochemical data into the weighting scheme. For this purpose,
we transformed thermodynamic information (Gibbs reaction energy, AG,.)
and the subcellular localization of the catalyzing enzymes into numerical
weights, which improved the combined weighting.

The Gibbs energy represents the driving force for each biochemical reac-
tion in the metabolic network. Reactions require a negative change in Gibbs
energy to take place spontaneously. Those reactions that are associated with
a positive change in Gibbs energy will not occur spontaneously. The biochem-
ical meaning of using Gibbs energy information to select plausible pathways
derives from the assumption that biological systems prefer to use the ther-
modynamically most favorable route among a set of alternative routes for
converting a particular source into a target metabolite. The actual change in
Gibbs energy of a reaction depends on the specific physiological conditions,
the compounds involved (the educts and products) and their intracellular
concentrations. Gibbs reaction energies can be determined experimentally
under standard conditions. These standard Gibbs energies can provide valu-
able clues about the thermodynamic feasibility of metabolic pathways. How-
ever, this kind of thermodynamic information is available only for a very
limited number of reactions stored in pathway databases. Computational
approaches could be the solution by complementing reactions with standard
Gibbs energies. To our knowledge, there is only one method that is special-
ized in the estimation of standard Gibbs energies of biochemical reactions
[Mavrovouniotis, 1990, 1991]. Since this method requires a non-trivial de-
composition of compounds into non-overlapping groups of atoms and ignores
important biochemical effects like the ionic strength, the presence of metal
ions and the dissociation of a compound into several ionic species in dilute
aqueous solution, we decided to develop a novel approach. We applied quan-
titative structure-property relationship (QSPR) techniques. To this end, we
calculated molecular descriptors for the educts of products of reactions with a
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known change in Gibbs energy under biochemical standard conditions. Mul-
tiple linear regression and stepwise feature selection were used to obtain a
high-quality predictive model. Performance evaluation using an independent
test procedure showed excellent performance of the model.

Another important restriction on the feasibility of a metabolic pathway
is the presence of all its constituent enzymes in the same subcellular com-
partment or at least a small number of transitions between compartments
along the pathway. Enzymes are built up from protein monomers, which in
turn, are synthesized in the cytoplasm and need to be further transported
into their destination compartment based on sorting signals in their amino
acid sequence. Eukaryotic cells, in particular, are organized into different
membrane-surrounded compartments. FEach compartment is specialized for
a specific set of cellular functions. This includes the spatial organization of
enzymes in metabolic pathways [Hrazdina and Jensen, 1992]. Spatially dis-
tinct enzymes and metabolites enable a better fine-tuning of the metabolism.
While transport between compartments is not uncommon, enzymes belong-
ing to adjacent steps in a pathway are usually localized in the same com-
partment. This information can be exploited as well in order to recognize
infeasible or less probable pathways. The underlying idea of considering the
subcellular localizations of successive enzymes in the path search is, there-
fore, the assumption that a metabolic pathway is more efficient if its enzymes
are co-localized. This was also proposed in a similar way by Gille et al. [2005]
who describe the consideration of the cellular compartmentalization as a new
dimension to the formulation of network models.

However, for newly sequenced genomes especially, experimentally deter-
mined subcellular localizations of enzymes are rarely available. This kind of
information is desirable not only for enzymatic proteins but for the whole pro-
teome. Hence, a variety of computational approaches for predicting the sub-
cellular localizations of proteins have been developed in recent years. Some
of them are based on the detection of sorting signal sequences. However,
the whole protein sorting process is very complex and not completely under-
stood. Many protein sequences lack clearly identifiable signals. Therefore,
other approaches primarily rely on more indirect data like the presence of
functional domains or associated textual information extracted from annota-
tion databases like Swiss-Prot. Our contribution to the problem, within the
scope of this thesis, is a novel approach based on support vector machines
(SVM) that combines features that are directly involved in the protein sort-
ing process and derived from the amino acid sequence with evolutionary
information in the form of phylogenetic profiles and textual information in
the form of Gene Ontology (GO) terms. Using independent datasets, our ap-
proach performed considerably better for most tested categories than current
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state-of-the art tools.

Having computational methods for predicting thermodynamic and subcel-
lular localization information ready, we could extend the weighting scheme
of our graph theory-based approach for finding relevant biotransformation
routes. Different graph types and search strategies were analyzed in genome-
scale studies with the intention to demonstrate that adding relevant informa-
tion into the graph representation and path-finding algorithm would increase
the search performance. Therefore, we tried to infer experimentally deter-
mined biotransformation routes in the metabolic networks of Escherichia
coli and Arabidopsis thaliana. Besides the overall performance results, which
are very promising, we also present detailed results for a selection of several
selected interesting pathways.

Furthermore, we developed a user-friendly web interface called MetaRoute,
which offers interactive navigation through genome-scale metabolic networks
for hundreds of organisms, combined with an easy-to-use visualization of the
search results. Given a source and target metabolite, the tool calculates up
to 500 metabolic routes that can be merged into a local network. Cross-
species comparison is possible by searching in the combined (meta-) network
of multiple organisms.

1.4 Structure of this thesis

The biological and biochemical background required for this thesis is sketched
in Chapter 2. Along with the basic concepts of cellular metabolism, the ba-
sic principles of thermodynamics, especially of biochemical thermodynamics,
and the details of protein sorting are outlined. The computational back-
ground to this work, including related work, is presented in Chapter 3. Here,
the focus is on graph theory-based metabolic pathway analysis, which repre-
sents the main topic of this thesis. Chapter 4 contains the key contributions
of this thesis. It describes the details of our graph theory-based framework
for finding relevant biotransformation routes in metabolic networks, the com-
putational approaches that provide relevant information deduced from com-
pounds, reactions and enzymes in the form of atom mapping rules, standard
Gibbs energies and subcellular localizations. For each approach the results
obtained are presented and discussed. Finally, the functionality and poten-
tial applications of the implemented web interface for network navigation
and visualization are outlined. Concluding remarks, including suggestions
for future research projects, complete this work in Chapter 5.



Chapter 2

Biological and biochemical
background

This thesis was concerned with the problem of computing all biologically rel-
evant pathways transforming a source into a target compound in a metabolic
network of interest. Knowing these pathways supports biomedical and biotech-
nological applications that require a deep understanding about the interplay
of metabolic processes.

The sections in this chapter contain the underlying biological and bio-
chemical background of this work. The basic concepts of cellular metabolism
followed by the basic principles of bioenergetics and protein sorting are pre-
sented.

2.1 Cellular metabolism

Cellular metabolism consists of a highly complex network of chemical reac-
tions that transform small molecules, also called metabolites. Depending on
the needs of the organism, the metabolic network stores or converts energy ex-
tracted from given nutrients. The energy is used to maintain the functioning
of the organism and to renew its structure by synthesizing macromolecules
like proteins, nucleic acids, polysaccharides and lipids. In principle, nutrients
are of the same type as these macromolecules and have to be decomposed in a
process called biological degradation in order to gain the necessary energy and
chemical building blocks for the synthesis of other essential biomolecules. To
enable both macromolecular synthesis and degradation, also called anabolism
and catabolism, cellular metabolism is regulated as well as temporally and
spatially organized.
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Figure 2.1: An illustration of the well-known glycolysis pathway. Glucose is
degraded to pyruvate by a sequence of transforming reactions.

2.1.1 Metabolic pathways

Metabolic pathways represent functional units within a network. Depending
on the particular purpose, one distinguishes between synthesis or degradation
pathways. Typically, biochemistry defines a metabolic pathway as a sequence
of chemical reactions, whereby a given source molecule is converted stepwise
into some other molecule or molecules [Berg et al., 2002]. For example, the
glycolysis pathway (shown in Fig. 2.1) converts glucose into pyruvate. This
is, however, a rather general definition. We will discuss more formal pathway
definitions in Chapter 3.

The chemical reactions that constitute a pathway follow the law of mass
conservation. A particular set of educt molecules is converted into a set of
product molecules while the total mass of the educts remains equal to that of
the products. Almost all metabolic reactions are controlled and catalyzed by
enzymes which bind the reaction educts and release the products. Typically,
enzymes are very specific for their substrates, which means that the major-
ity of reactions can be catalyzed by only one enzyme which in turn catalyzes
only one reaction. However, numerous exceptions exist. The International
Union of Biochemistry and Molecular Biology (IUBMB) suggested a numer-
ical classification scheme called the Enzyme Commission (EC) number. An
EC number is assigned to each enzyme depending on its catalyzed reaction.
Four hierarchical numbers describe the type of chemical conversion and the
compounds involved. For example, the enzyme with EC number 2.7.1.2 (glu-
cokinase) phosphorylates D-glucose to D-glucose-6-phosphate. Using these
EC numbers, the set of all enzymatic reactions in metabolic networks (several
thousand in all) can be subdivided into just six categories:

e Oxidoreductases (EC 1): oxidation/reduction reactions where electrons
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HO OH

Figure 2.2: Adenosine triphosphate (ATP) an essential metabolite. The triphos-
phate group is highlighted in red.

are transferred between educts and products

e Transferases (EC 2): transfer of functional groups like methyl-, acyl-,
amino- or phosphate groups between educts and products

e Hydrolases (EC 3): formation of two products from an educt by the
cleavage of bonds and the addition of water

e Lyases (EC 4): cleavage of C-C, C-N, C-O or C-S bonds by the non-
hydrolytic addition or removal of groups

e Isomerases (EC 5): structural changes within one molecule

e Ligases (EC 6): joining of two molecules by the parallel hydrolysis of
the diphosphate bond in ATP or a similar triphosphate

Coenzymes and cofactors like NAD" /NADH, CoA /acetyl-CoA, metal ions or
vitamins support enzymes in the transfer of electrons, hydrogens or functional
groups between the educts and products of the catalyzed reactions.

2.1.2 Pathway energetics

Metabolism is a highly dynamic process that permanently converts energy for
a continuous degradation and synthesis of biomolecules. In principle, energy
that is required by synthesis pathways to operate is gained by breaking down
nutrients like glucose in degradation pathways. Typically, energy-producing
and consuming processes are coupled via energy carriers. The most important
and widely used carrier is adenosine triphosphate (ATP). Therefore, AMP
and ADP are phosphorylated to ATP (shown in Fig. 2.2) to form high-
energy phosphate bonds. Then ATP can drive energy-consuming reactions
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and pathways by the hydrolysis of ATP to ADP and inorganic phosphate.
In Section 2.2 we will describe the basic principles of bioenergetics in detail.

2.1.3 Enzyme activity regulation

The biological activity of proteins, including enzymes has to be regulated to
ensure efficient flow of metabolic pathways and quick adaptation of metabolism
according to changing needs of the organism. The control of metabolic path-
ways via enzymatic regulation takes place in four ways:

1. Allosteric control (modulation) of enzymes through activators and
inhibitors. Allosterically controlled enzymes have special regulatory
sites that are sensitive to particular small signal molecules. For exam-
ple, the product of a metabolic pathway sometimes inhibits the first
reaction that is unique for that pathway. This feedback inhibition pre-
vents the unnecessary accumulation of the product. The activation of
an enzyme by a precursor of the substrate of that enzyme is called
feed-forward activation. Feedback inhibition and feed-forward activa-
tion stabilize metabolic pathways and make them more efficient.

2. Reversible covalent modification like phosphorylation, acetylation
or glycosylation of enzymes is controlled, for example, by hormones.
Similar to allosteric control, the conformation of the enzyme and hence
its activity is modified.

3. Regulation of the amount of enzymes available can be regulated
through gene-transcription, translation and proteolytic degradation.

4. Isoenzymes are homologous enzymes with slightly different catalytic,
structural and regulatory properties. These enzymes allow varying reg-
ulation of the same reaction at distinct tissues, subcellular localizations
or times.

2.1.4 Compartmentalization

Eukaryotic cells are organized into different membrane-surrounded compart-
ments also called subcellular locations where each location is specialized for a
specific set of cellular functions. A consequence of this compartmentalization
is spatially distinct sets of enzymes, metabolites and whole pathways which
enable a better fine-tuning of the metabolism [Hrazdina and Jensen, 1992].
The spatial organization of several selected pathways is shown in Fig. 2.3. For
example, the enzymes of glycolysis are localized in the cytoplasm, those of the
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Figure 2.3: The spatial organization of several pathways: glycolysis (A), TCA-
cycle (B), glyoxylate shunt (C), fatty acid degradation (D) and its synthesis (E)
and leucine synthesis (F) and its degradation (G).

tricarboxylic acid cycle (TCA) in mitochondria and those of the glyoxylate-
bypass in the peroxisomes (glyoxisomes). In plants, however, glycolysis also
takes place in the chloroplasts where most of the amino acid biosynthesis
pathways are also localized. Some of the TCA enzymes are also present
in the peroxisomes in several organisms [Tolbert, 1981]. The presence of a
pathway in several compartments is based on differently localized isoenzymes
which are often regulated differently as already mentioned in the previous sec-
tion. Control of the flux of metabolites from one compartment to another
also regulates metabolism. Furthermore, a general principle of metabolism
is that there are distinct biosynthesis and degradation pathways [Berg et al.,
2002]. Separate pathways are necessary for reasons of energetics and these
support the control of metabolism. Control is further enhanced by pathway
compartmentalization. For example, fatty acid degradation is localized in
mitochondria and fatty acid synthesis in the cytoplasm. In A. thaliana, for
example, leucine biosynthesis takes place in chloroplasts and degradation in
mitochondria [Diebold et al., 2002]. The basics of the protein sorting process
in eukaryotic cells are described in Section 2.3.
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2.2 Bioenergetics

2.2.1 Principles of thermodynamics

Cellular metabolism uses complex reaction cascades or networks to optimally
exploit and transform the energy of nutrients or light. For example, plants
use the process of photosynthesis to transform energy in the form of light
into the chemical energy of ATP and other forms of energy. To understand
metabolism better we have to keep in mind that chemical reactions follow
the laws of thermodynamics.

The first law states the principle of energy conservation, which means that
the total amount of energy in the universe is constant. In other words, it is
not possible to create or destroy energy. However, energy can be converted
from one form to another. The second law states that the disorder of the
universe always increases. The discovery of the first and second laws of
thermodynamics led to the definition of three thermodynamic quantities,
which will be explained in the following sections. This kind of thermodynamic
information can be used, for example, to calculate the equilibrium of chemical
reactions and to predict whether a particular reaction can take place under
given environmental conditions.

System: Thermodynamics defines a system as a partition of the space and
the remaining part of the space as the environment of the system. Examples
of systems are a whole living organism or a subcellular compartment.

Enthalpy: The enthalpy or heat (H) of a thermodynamic system, mea-
sured in kJ/mol, is defined by

H=U-+PV

where U is the internal energy of the system, which depends on the tempera-
ture T', P is the pressure and V' the volume of the system. The enthalpy of a
reaction can be expressed as the difference in enthalpy between the products
and educts (AH). If a reaction emits energy or heat, it is called exothermic
(AH < 0) and endothermic (AH > 0) if heat has to be taken from the en-

vironment. At standard conditions (7' = 298.15 K, P = 10° Pa, educts and
products initially present at 1 mol/l concentrations), the reaction enthalpy
is constant and expressed by AHC.

Entropy: Entropy (S) can be described as a measure of the order of a
system. The entropy of a system grows with a decrease of order. For example,
entropy is the driving force for the diffusion of particles from a more highly
concentrated solution towards one of lower concentration. Like enthalpy, the
entropy of a system has a constant value under defined conditions and is
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measured in J/(K mol). Ludwig Boltzmann defined entropy by the relation
S = k‘b InW

where k; is the Boltzmann constant and W the total number of different
states which can be captured by the particles of a system. Analogous to
the change in enthalpy, there is also an entropy change (AS) in a chemical
reaction. Under standard conditions, the reaction entropy is expressed by
AS°.

Gibbs energy: The Gibbs energy (G) is the thermodynamic measure of
the driving force of a chemical reaction and is enhanced by both an enthalpy
decrease (AH < 0) and an entropy increase (AS > 0) where the absolute
entropic contribution also depends on temperature 7. The change in Gibbs

energy is defined as
AG =AH —TAS.

The sign of AG indicates the favored direction of the reaction:

AG <0 the reaction runs spontaneously while releasing energy

AG =0 the reaction is at an equilibrium

AG >0 the reaction cannot run spontaneously and requires the supply
of energy from the environment.

Reactions with AG < 0 are called exergonic and with AG > 0 endergonic.
Since the Gibbs energy of reactions is additive, it is possible to couple an
endergonic reaction with an exergonic one if the resulting overall reaction
is exergonic. In this case, the exergonic (part-) reaction delivers the energy
that is needed by the endergonic reaction. In cellular metabolism, reaction
coupling is a frequently observed phenomenon. A well-known example is the
releasing energy of ATP hydrolysis which is used to drive many endergonic
reactions.

Whereas AG depends on the educt and product concentrations, AG® rep-
resents the change in Gibbs energy for a reaction under standard conditions
(T'=298.15K, P = 10° Pa, educts and products initially present at 1 mol/l
concentrations). The actual Gibbs energy change AG as a function of the
concentrations and the temperature 7' is defined by

AG = AG° + RT ln(H [pil/ H [e])

for a reaction e; + e+ ... = p1 + p2 + ... where R is the gas constant. If the
reaction is at chemical equilibrium, then AG = 0 and

AG’=—RThhK
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where K is the equilibrium constant.

By convention, the Gibbs energy of all pure chemical elements is defined
as null under standard conditions. Then the standard Gibbs energy of forma-
tion (A;G") for each non-elementary compound corresponds to the change
in Gibbs energy in the formation of one mol of the compound from its ele-
ments under standard conditions. In the following, the term A, G is used to
distinguish the Gibbs reaction energy from the Gibbs energy of formation of
compounds. If A;G° is known for all educts and products of a reaction, it is
possible to calculate A, G° using the equation

AGY = Z AGY(products) — Z AGY(educts).

2.2.2 Biochemical thermodynamics

The standard conditions for the study of biochemical reactions under “near
physiological conditions” recommended by the IUPAC-IUBMB Joint Com-
mission on Biochemical Nomenclature [Alberty, 1996] are 7" = 298.15 K (or
T = 310.15 K), P = 10° Pa, pH 7.0, pMg 3.0, I = 0.25 mol/l where pMg
is the free concentration of magnesium (or other metal) ions and I is the
ionic strength of the dilute aqueous solution in which the biochemical re-
action takes place. Consideration of the ionic strength I, the pH and pMg
in addition to 7" and P requires the adjustment and transformation of the
thermodynamic quantities (G, H and S) described in the previous section.
In the following, we will restrict the discussion of these effects on the Gibbs
energy G only.

lonic strength: The ionic strength is a function of the concentrations of
all ions in a solution and is defined by

[=05) ¢z}

where the sum runs over the products of the molar concentration ¢; with the
squared charge number z; for all ions i. The effects of the ionic strength on
the thermodynamic quantities of ionic species in dilute aqueous solutions is
significant. Based on the extended Debye-Hiickel theory, the standard Gibbs
energy of formation of species ¢ at ionic strength I and 298.15 K is adjusted
by

AsGYI) = AsGY(I = 0) — 2.914822712 /(1 + BI?)

where z; is the charge number of species i and B = 1.6 12mol "2 is an empirical
constant that is taken to be independent of the temperature.
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Transformed Gibbs energy: The Gibbs energy G provides the criterion for
spontaneous chemical change and the corresponding equilibrium of reactions
at specified T, P (and I). However, this is not the case for biochemical
reactions if the pH is held constant. Furthermore, different equilibriums are
obtained for different pH values. This fact led to the definition of the new
thermodynamic quantity G’ called the transformed Gibbs energy and the
corresponding apparent equilibrium constant K. It is necessary to use G’
and K’ if the pH is a specified experimental condition. Alberty [1992a,b]
applied a Legrendre transform to define G’ as

G = G —n(H" u(H*)

where n(H) is the total amount of hydronium ions in the thermodynamic
system and p(H) = A;G°(H") + RT 1n(10—PH) is the chemical potential of
H™. The change in transformed Gibbs energy of a reaction under biochemical
standard conditions can directly be inferred from the apparent equilibrium
constant K or the transformed Gibbs energies of formation of the educts
and products using

NGO = —RTIn(K') =) (A;Gxp;) = (ApG xey)
j i
where e; and p; are the stoichiometric coefficients of the educts and products
in the biochemical reaction. Applying Alberty’s Legrendre transform, the
standard transformed Gibbs energy of formation for the species i is calculated
by
A;GPY = A;GY — Ny (i)RT In(107PH)

where Ny (i) is the total amount of hydrogen atoms in species i and A;GY? is
the standard Gibbs energy of species ¢ under (chemical) standard conditions
with specified T, P and (/). Chemical equations are written in terms of
species with balanced hydrogen atoms and electric charges. This is different
to biochemical equations with specified pH written in terms of reactants,
that are sums of species. The reason is that many educts and products
of biochemical reactions are present as a mixture of different species in the
neighborhood of pH 7. For example, ATP forms the species ATP*~, HATP3~
and HoATP™. When a biochemical reactant consists of several species, the
standard transformed Gibbs energy of formation for the reactant has to be
calculated by combining the A fG;O values of its species using the following
equation

—AGY

A;G(reactant) = —RT ln(z exp( BT ).
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Note that the apparent equilibrium constant K~ is also expressed in terms of
sums of species. We can use adenosine triphosphate hydrolysis as an example.
The reaction can be represented by the chemical equation

ATP*” + H,0 = ADP?” + H,PO;} + H'

with balanced hydrogen atoms and electric charges. In a dilute solution the
equilibrium constant depends on the temperature and pressure and is given
by
[ADP*7][H,PO7|[HY]

[ATP*](V)2

where ¥ is the standard state concentration of 1 mol/l which makes the
equilibrium constant dimensionless. The biochemical reaction equation at
specified pH can be written as

K(T,P) =

ATP + H,0 = ADP + P;

with the corresponding apparent equilibrium constant

[ADP][P;]

K/(T, P,pH) = W

This representation is recommended by the [UPAC-IUBMB Panel on Bio-
chemical Thermodynamics [Alberty, 1996] to distinguish biochemical equa-
tions from chemical ones.

Free concentration of metal tons: We have seen that the Gibbs energy GG
is not the criterion for spontaneous chemical change and equilibrium if the
pH is specified as an additional independent variable. The same is true if
the free concentration of magnesium ions pMg (— log,,([Mg*]/c%)) or other
metal ions is specified. In this case, the definition of the transformed Gibbs
energy has to be extended to

G'=G —n'(HY) % p(HY) — ' (Mg?*) % u(Mg*")

where n’'(Mg?") is the total amount of magnesium ions in the system and
p(Mg*™) = A;GO(Mg*") + RT In(10-PM8) is the chemical potential of mag-
nesium. The treatment of metal ions like magnesium is important because
these ions can be bound by phosphorylated reactants like ATP and change
their thermodynamic properties. In the case of ATP, additional species may
be present, e.g., MgATP?~, MgHATP~ and Mg,ATP depending on pH and
pMg. ATP with bound magnesium forms a stable complex that supports
efficient delivery of energy in metabolism.
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Figure 2.4: Cellular compartmentalization and protein sorting [The Nobel As-
sembly at Karolinska Institutet, 1999]

2.3 Protein sorting

2.3.1 Intracellular compartments and protein trans-
port

A eukaryotic cell is organized into several different membrane-enclosed com-
partments (organelles) that are functionally specialized. Since proteins play
an essential role in the functioning of a cell, it is important that they ar-
rive at those subcellular localizations where their function is needed. Often
proteins can fulfill their tasks only at a specific place because they require
particular environmental conditions or interacting partners. However, or-
ganellar membranes (lipid bilayers) are impermeable to most proteins and
hence, specific transport systems are required. This is necessary because
nearly all proteins are synthesized at the ribosomes in the cytoplasm. There-
fore, proteins that work outside the cytoplasm contain sorting signals in their
amino acid sequence which are recognized by receptor molecules in transport
machineries. Proteins without such sorting signals remain in the cytoplasm.
See Fig. 2.4 for an illustration of cellular compartmentalization and protein
sorting. The biological function of the nucleus is the storage of genetic in-
formation in the form of deoxyribonucleic acid (DNA), synthesis of mRNA
(transcription) and assembly of the ribosomes. Proteins are transported from
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the cytoplasm to the nucleus via pore complexes in the nuclear membrane.
The transport of proteins localized in the endoplasmic reticulum (ER), mito-
chondria, chloroplasts and peroxisomes are transported via membrane-bound
translocators. Mitochondria and chloroplast (only in plants) compartments
are specialized in the synthesis of ATP. In the peroxisomes the beta-oxidation
of fatty acids and other oxidative reactions take place. The main function of
the ER is the synthesis of nearly all cellular lipids as well as the synthesis and
modification (glycosylation) of all transmembrane or soluble proteins of the
organelles involved in the secretory and biosynthesis pathway. The subcel-
lular compartments of the secretory and biosynthesis pathway communicate
via particular transport vesicles. For example, proteins can be transported
from the ER to the Golgi apparatus and then to the endosomes, lysosomes,
plasma membrane or extracellular space. The Golgi apparatus receives lipids
and proteins from the ER and distributes them after covalent modification
to other localizations. Carbohydrates are also synthesized in the Golgi appa-
ratus and often added to the lipids and proteins received from the ER. The
intracellular digestion of proteins takes place in the lysosomes and, therefore,
many acid hydrolases can be found there. The endosomes receive molecules
for digestion and develop into lysosomes. In plants and fungi, there are no
lysosomes. Intracellular digestion takes place in the vacuoles. Additionally,
vacuoles maintain storage functions. Plant cells have especially large vacuoles
and use them for storing nutrients, metabolites or waste products. Vacuoles
can also be regarded as equivalent to the extracellular space of animals. The
cellular plasma membrane encloses the cytoplasm, transduces external infor-
mation and receives and releases metabolites.

2.3.2 Sorting signals

There are two main types of sorting signals: signal sequences and signal
patches. Much more is known about signal sequences than about signal
patches. In general, a signal patch is a specific thre-dimensional structure of
residues, which arises from protein folding. The amino acids that take part
in such a signal patch can be far apart in the linear amino acid sequence.

A signal sequence consists typically of 15 - 60 continuous amino acids.
The sequences are frequently cleaved from the mature protein by a signal
peptidase. Signal sequences can also be located elsewhere in the protein,
but they are frequently located at the end of the polypeptide (N-terminal
or C-terminal). Normally, chemical properties like hydrophobicity are more
important for the signal recognition process than the exact amino acid order.
Therefore, the signal sequences for one target organelle can vary in order and
length.
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2.3.3 Transport into the nucleus

Proteins destined for the nucleus contain a nuclear localization signal (NLS)
somewhere in their amino acid sequence. There are two different types of
NLSs. A monopartite NLS is a short sequence which is rich in positively
charged amino acids like lysine and arginine and nearly always contains pro-
line. If the monopartite NLS is split into two parts it becomes bipartite.
Each part is between two and four amino acids long, connected by a spacer
which is about 10 amino acids long. An NLS can be either a signal sequence
or a signal patch. The exact location of an NLS in the protein is not impor-
tant, but it must be exposed on the surface of the protein. The NLSs are
bound by nuclear import receptors.

2.3.4 Transport into the peroxisomes

The exact import process of peroxisomal proteins is still not understood
completely, but depends on signal sequences at the C- and N-termini. The
best-known signal consists of three C-terminal-specific amino acids. This
signal is also known as the SKL motif (-Ser-Lys-Leu-COO-).

2.3.5 Transport into the mitochondria

The transport of mitochondrial proteins from the cytoplasm depends on an
N-terminal targeting sequence and on protein translocators, which are multi-
protein complexes. The sorting signal is called the mitochondrial targeting
peptide (mTP). A membrane-associated signal peptidase cleaves the mTP
after import. Mitochondrial targeting peptides are normally between 25 and
45 amino acids long and prefer to fold as an amphiphilic alpha-helix with
mainly positively charged amino acids on one side (particularly arginine)
and mainly uncharged, hydrophobic ones on the opposite side. Negatively
charged residues are not common in mTPs.

2.3.6 Transport into the chloroplasts

Only plant cells contain chloroplasts. Protein transport into chloroplasts is
similar to the mitochondrial import machinery. The receptors of the chloro-
plasts and the mitochondria can distinguish between mTP and ¢TP (chloro-
plast targeting peptide). The ¢TPs have highly variable lengths (20 - 120
amino acids), are enriched for hydroxylated amino acids (particularly serine)
and contain very few negatively charged residues.
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Figure 2.5: The three different kinds of N-terminal targeting sequences and their
chemical properties: SP (top), mTP (middle) and ¢TP (bottom). Weakly con-
served motifs around the cleavage sites are also shown.

2.3.7 Secretory pathway

The secretory pathway includes the ER, Golgi apparatus, lysosomes, and
plasma membrane. Proteins destined for these organelles have an N-terminal
targeting sequence called the signal peptide (SP) with a cleavage site for lumi-
nal proteins and another without a cleavage site for transmembrane proteins,
called the signal anchor (SA). SPs are between 20 and 30 amino acids long
and contain a short positively charged N-terminal segment, a central hy-
drophobic segment with eight or more non-polar residues and a more polar
segment with mostly small residues. Frequently an alanine occurs at posi-
tions -1 and -3 before the cleavage site. In Fig. 2.5 the SP is compared to
the other two kinds of N-terminal targeting sequences (mTP and ¢TP). All
proteins of the secretory pathway are translocated into the ER at first, and
from there further sorted to the other organelles or the extracellular space.
A special signal peptidase on the luminal site of the ER membrane cleaves
off the SP after import and during the translation. The peptidase recognizes
a cleavage site specifically. SPs without cleavage sites (SAs) serve as trans-
membrane segments. SAs are located more inside the protein and often



2.3 Protein sorting

23

have a larger hydrophobic segment. The imported proteins are automati-
cally further transported to the other organelles or to the extracellular space
by vesicles. ER-specific proteins contain a retention signal of four amino
acids at the C-terminus (KDEL in one letter-code for luminal and KKXX
for transmembrane proteins). Not all ER-specific proteins have such a re-
tention signal. It is assumed that they remain in the ER because they form
aggregations, which are too big to be packed into vesicles.

The Golgi apparatus is placed next to the ER and consists of batches of
several cisternae. Proteins from the ER go through an ordered series of cova-
lent modifications during their movement through the Golgi batches. Some
of the modifications serve as markers for transport into other localizations.
The proteins are partitioned into different kinds of packages for the plasma
membrane, lysosomes or secretory vesicles. Since transport to the plasma
membrane and the extracellular space occurs without a special signal, there
are retention steps for Golgi-specific proteins. Membrane proteins and lipids
are integrated into the plasma membrane and soluble proteins are released
into the extracellular space.

Luminal proteins of the lysosomes have a mannose-6-phosphate (M6P)
modification, which serves as a selection marker. Signal patches are respon-
sible for selecting a protein to get the mannose-6-phosphate modification. It
is known that lysosomal membrane proteins do not have this kind of modifi-
cation, which means that there is probably an alternative transport path for
them.
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Chapter 3

Computational background and
related work

Computational approaches to metabolic pathways can be roughly divided
into two groups. The first group consists of constraint-based methods that
apply convex analysis to the stoichiometric matrix of the network to calcu-
late network-based or stoichiometrically balanced pathways. Methods of the
second group are based on graph theory and apply shortest-path algorithms
to a graph that represents the metabolic network. However, a major problem
with recent methods is still the computational effort caused by the combina-
torial explosion of the number of possible routes in a metabolic network at
the genome scale.

In this chapter we present the computational background and related
work with respect to methods for analyzing metabolic pathways. For a better
understanding, we first introduce and discuss possible definitions of metabolic
pathways. Then we give a historical overview of constraint-based and graph
theory-based approaches including brief discussions about advantages and
limitations of these methods. Since computational approaches require ade-
quate network data as input, the last section presents the most relevant path-
way databases that often serve as starting sources to build species-specific
metabolic networks.

The focus in this chapter is on approaches computing metabolic pathways
since this is the main topic of this thesis. Computational background and
related work for the remaining subtopics including the calculation of atom
mapping rules, the prediction of Gibbs reaction energies and the prediction of
subcellular protein localization is presented in the corresponding subsections
of Chapter 4.
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Figure 3.1: A standard metabolic pathway (I), the corresponding network-based
pathway (II) and linear biotransformation routes (III).

3.1 Metabolic pathway definitions

In the literature, metabolic pathways are defined in different ways. More
generic definitions are used in biochemical textbooks and pathway databases
were the focus is on the presentation of pathways in the context of their
historical discovery. In this context a metabolic pathway is often simply
described as a connected set of enzymatic reactions that converts source
metabolites into product or target molecules in a step-wise manner [Berg
et al., 2002].

The development of computational approaches for a systematic discov-
ery of biologically meaningful pathways requires more formal definitions.
Fig. 3.1(I) shows an example of a typical metabolic pathway that consists
of five reactions, one source (S) as well as a target (T) compound, four in-
termediates (A, B, C and D), four side or pool compounds (P1, P2, P3 and
P4) and a feedback inhibition of the initial reaction step (drawn in red). The
pathway shown is branched because the third reaction splits its educt (B)
into two products (C and D). The second product (D) is then further con-
verted into the first product (C) by a subsequent reaction. Network-based
metabolic pathway definitions [Schuster et al., 2000] are the underlying con-
cept of constraint-based approaches that compute extreme pathways (EPs)
and elementary flux modes (EFMs) using convex analysis. A network-based
or stoichiometrically balanced pathway represents a metabolic subnetwork in
which the net production and consumption of the involved intermediates is



3.2 Metabolic pathway analysis

27

zero. This stoichiometric constraint does not have to be fulfilled by the source
and target compounds and a predefined set of pool metabolites. The corre-
sponding network-based pathway in our example, computed by constraint-
based approaches, is shown in Fig. 3.1(IT). The network-based pathway is
very similar to the real pathway. Regulatory aspects like feedback inhibition
are not considered in either the pathway definition or computation. Side
metabolites are also not part of the stoichiometric computation but always
available from the predefined list of pool metabolites.

The pathway definitions discussed so far include pathways with branches
and cycles. However, branching pathways are not directly considered by
current graph theory-based approaches, which use path-finding concepts to
compute linear biotransformation routes. In graph theory, a path is defined
as a linear chain of nodes whereby each node is connected by an edge to the
next node in the sequence. The path is called simple if it contains only dis-
tinct nodes. Cycles are produced if the last node in a path is also connected
with the first node in the path. Based on this path concept, a linear bio-
transformation route is simply defined as an unbranched sequence of chemical
reactions and metabolites where a source compound is converted into a target
compound step by step. The biotransformation route is a cycle if source and
target compounds are identical. As a consequence, graph theory-based ap-
proaches decompose our example pathway into two linear biotransformation
routes which are shown in Fig. 3.1(III). The example pathway is indirectly
available by merging these two routes. A linear definition in the context of
pathway alignment was also formally introduced in a previous work [Chen
and Hofestaedt, 2005].

Compared to network-based pathways, the main advantage of linear routes
is that their computation is much easier. The use of efficient path-finding
algorithms enables the detection of relevant pathways in metabolic networks
at genome-scale. Despite these different network-based and linear definitions,
we will often simply use the term pathway in the following.

3.2 Metabolic pathway analysis

3.2.1 Constraint-based approaches

Given a metabolic network and a set of external (pool) compounds, constraint-
based approaches calculate all stoichiometrically balanced pathways (ex-
plained in Section 3.1) transforming a set of given source compounds into
a set of sink (target) compounds. Depending on the underlying approach,
these pathways are called extreme pathways or elementary flux modes.
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Figure 3.2: The basic concepts of steady-state network representation and anal-
ysis [Papin et al., 2003].

Theoretical framework

A metabolic network can be represented by a stoichiometric m X n matrix
S. The m rows of S correspond to the metabolites and the n columns to the
reactions in the network. The matrix element S;; represents the stoichiomet-
ric coefficient of metabolite 7 in reaction j. Reaction educts receive negative
and products positive values. A zero value is assigned to the matrix elements
of metabolites not present in the corresponding reactions.

The change of compound concentrations in a metabolic network can be
described by the dynamic mass balance equation

dx
i Sv.
The equation defines a system of ordinary differential equations where x is
the concentration vector of all metabolites, S the stoichiometric matrix and v
the vector of fluxes through the reactions. In steady-state, the concentrations
of all metabolites are constant and the mass balance in the network can
be represented by the equation 0 = Sv. This system of linear equations
describes the so-called null space which is the set of all possible solutions for
the flux vector v under steady-state conditions.

If all fluxes of the system are constrained to be non-negative (v; >= 0),
then the corresponding reactions are irreversible and the solution space is
defined by a convex flux cone. Reversible reactions can be modeled by de-
composing them into their respective forward and reverse directions. (See
also Fig. 3.2 for a graphical illustration of the basic concepts.) Furthermore,
the metabolites of the system under study have to be classified as internal or
external according to whether or not they have to fulfill the steady-state con-
dition. Typically, external metabolites represent pool metabolites, cofactors
or by-products as well as the system sources and sinks. These compounds
are called external because they also participate in additional reactions that
are involved in external systems.
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Extreme Pathways

Any point in the flux cone is a valid flux distribution and can be represented
by a non-negative linear combination of the edge vectors which span the
flux cone. These edges are also called the extreme pathways (EPs) of the
network. The set of EPs is conceptually related to the concept of a basis
in linear algebra and can be calculated from the stoichiometric matrix using
convex analysis [Rockafellar, 1970], a branch of mathematics for analyzing a
set of linear equations given a set of constraints. Algorithmic details of the
approach can be found in Schilling et al. [2000].

Elementary Flux Modes

Elementary flux mode (EFM) analysis [Schuster et al., 1999] is strongly re-
lated to the concept of extreme pathways. However, the algorithms for EFMs
and EPs differ in their treatment of reversible and irreversible reactions. In
EP analysis, each reversible reaction is decomposed into two separate reac-
tion fluxes for the forward and backward directions. On the other hand, the
calculation of EFMs is based on the split of the stoichiometric matrix into
two parts, one for reversible and one for irreversible reactions. The computed
set of EPs is always a subset of the resulting EFMs. The EPs represent a
minimal set of EFMs and the remaining EFMs can be represented by a non-
negative linear combination of the EPs. In other words, the set of EFMs
represent, in contrast to the set of EPs, all feasible network-based pathways
when reversible reactions are present. EFMs and EPs share the following
two properties:

e The sets of EFMs and EPs are unique for a given network and a list of
internal compounds.

e Each EFM or EP is non-decomposable, which means that it contains
a minimum number of reactions in order to exist as a functional unit.
The removal of any reaction does not allow the EFM or EP to operate
as a functional unit.

In addition to these two properties, elementary flux modes represent the set of
all network-based pathways within a metabolic network which are consistent
with the second property. A further property specific to extreme pathways
is that they are the systemically independent subset of the elementary flux
modes. In other words, no extreme pathway can be represented as a non-
negative linear combination of any other extreme pathway.
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Advantages and limitations

Biotechnological and biomedical applications of extreme pathways and ele-
mentary flux modes involve the evaluation of network properties such as the
optimal product yield, network robustness and pathway redundancy. Fur-
thermore, the underlying analysis concept is mathematically well-defined.
However, the enumeration of extreme pathways and elementary flux modes
for a given stoichiometric matrix represents a computationally hard problem
and can not be applied to genome-scale networks [Klamt et al., 2002, 2003;
Yeung et al., 2007]. Genome-scale networks of microbes already contain ap-
proximately 1,000 or more reactions. Given a predefined distinction between
internal and external compounds as well as a suitable number of irreversible
reactions, constraint-based approaches are applied to networks with at most
100 reactions. The number of EPs and EFMs which have to be computed for
a metabolic network increases drastically with the size and complexity of the
network. For example, more than 500,000 different EFMs were calculated
by Klamt et al. [2002] for a network with 110 reactions. In a second study
by Yeung et al. [2007], the number of EPs in networks consisting of 904 and
3,311 reactions was estimated to be 3 x 10 and 10%, respectively.

3.2.2 Graph-theory approaches

Given a metabolic network, graph theory-based approaches use path-finding
concepts to calculate linear biotransformation routes between given source
and sink (target) compounds in a graph that represents the network.

Graph representation of metabolic networks

A mathematical graph G = (V| E) is a data structure where V is a set of
vertices (nodes) and F is a set of edges connecting pairs of nodes. The graph
is directed /undirected if all edges e = (v, vy) are ordered/unordered node
pairs. Furthermore, the graph is weighted if the edges are assigned weights
according to a weighting function w(e) : E — R. Simple examples of the
different graph types are shown in Fig. 3.3.

A metabolic network can be represented as a graph. Different graph
representations for analyzing metabolic networks and pathways have been
described in the literature. The most common graph types are summarized
in this section (see also Fig. 3.4). More detailed information about different
graph representations can be found in Deville et al. [2003].

e Compound graphs: In a compound graph, the nodes represent chem-
ical compounds or metabolites and each edge connects compound E
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Figure 3.3: Examples of different graph types.

with compound P if F is an educt and P a product in the same reac-
tion.

e Reaction graphs: In a reaction graph, the nodes correspond to the
reactions in the network. Here, each edge connects reaction R, with
R, if there is a compound that is a product of R; and an educt of R,.

e Bipartite graphs: In a bipartite graph, there are two different types
of nodes which represent the reactions and compounds of metabolic
network. Edges between the nodes represent the educt/product rela-
tionships between compounds and reactions.

e Hypergraphs: Hypergraphs generalize compound graphs and can be
seen as an equivalent representation of the bipartite graphs. Here,
each hyperedge relates the set of educts of a reaction with the set of its
products.

In all graph types, the reaction directions can be represented by directed
edges. Reversible reactions can be modeled by multiple edges (with the
opposite direction) between two nodes or by decomposing the reaction into
two different nodes, one for the forward and one for the backward direction.
If the reaction direction is irrelevant, undirected edges can also be used.
Each graph representation has its advantages and disadvantages and the
final choice depends on the available information, the purpose of the analysis
and the graph algorithms used [van Helden et al., 2002].

Path-finding concepts

The graph-theoretic representation of metabolic networks yields a well un-
derstood framework for searching pathways within large-scale networks by
the application of efficient path-finding algorithms. In this section, we will
present different path-finding concepts including a discussion about their
usefulness for the detection of pathways in metabolic networks.
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Path-finding algorithms can be used to compute one or more optimal
paths connecting two different nodes in a graph. There is a huge number
of real-world applications for path-finding including the detection of relevant
routes in metabolic networks. The problem of finding the shortest path with
a minimum number of nodes or with the minimum total weight in a weighted
graph has received special interest. In the latter case, the shortest path is
sometimes also called the lightest or cheapest path. We can distinguish a
number of common variants of the shortest path problem:

e single-pair shortest path: The shortest path between two different
nodes.

e single-source shortest path: The shortest paths between a given
source node and all other nodes.

e single-destination shortest path: The shortest paths to a given
destination node from all other nodes. The problem is also called the
reverse single-source shortest path problem because it can be solved
simply by reversing the edge directions in the graph.

e all-pairs shortest path: The shortest path between any two different
nodes.

Several algorithms have been developed in the past for solving the shortest
path problems. These algorithms differ in their potential range of applica-
tions and their underlying complexity. The simplest approach for finding the
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shortest path is breadth-first search. However, there are two main draw-
backs to this method. The first is based on the fact that breadth-first search
is an uninformed search because it traverses exhaustively the whole graph
beginning with the source node but without considering the destination node
until it is found. Furthermore, the standard breadth-first search algorithm
requires an unweighted graph because the shortest path found always consists
of a minimum number of steps, which is not the case for weighted graphs in
general. Weighted graphs require improvements of the algorithm and make
the search more complex. These difficulties are avoided by using more ad-
vanced search techniques. Algorithms based on best-first search find the
shortest path from a source to a destination node using a heuristic evaluation
function F'(v),v € V. This approach represents an informed search because
a heuristic is used to guide the search and to speed up the path-finding.
The heuristic function F(v) can depend on any additional problem-specific
information. In general, F'(v) utilizes information derived from the starting
node to the current node v (the search up to node v) as well as from the
current node v to the destination node. Best-first search examples are Dijk-
stra’s algorithm [Dijkstra, 1959] and its generalization the A* algorithm
[Hart et al., 1968]. Both algorithms can be applied to directed graphs with
non-negative edge weights. The Bellman-Ford algorithm [Bellman, 1958]
is very similar to Dijkstra’s algorithm but can also deal with negative edge
weights. Using the Floyd-Warshall algorithm [Floyd, 1962] it is possible
to efficiently solve the all-pairs shortest path problem in a weighted, directed
graph. This can also be done using Johnson’s algorithm [Johnson, 1977],
which is, however, especially useful for sparse graphs.

When analyzing metabolic pathways the detection of alternative routes
leading from a source to a target metabolite is of great importance. However,
this cannot be achieved by simply computing the shortest path. A better
strategy is to search for the k-shortest paths between two given nodes in a
graph representing the metabolic network. The meaning of the k-parameter
is to find, for example, the shortest path (k = 1), additionally the sec-
ond shortest path (k = 2), the third shortest path (k = 3) etc. The four
mentioned shortest path problems can also be extended to its k-shortest
paths versions. Like the shortest path problem, the problem of finding the
k-shortest paths also has a long history in computer science. One of the
earliest discussions about the problem was published by Hoffman and Pavley
[1959]. After this, numerous algorithms for many variations of the problem
have been described. An exhaustive collection of these papers is also available
online (http://liinwww.ira.uka.de/bibliography/ Theory/k-path.html).

Eppstein’s algorithm [Eppstein, 1998] represents a significant improve-
ment in the field. The algorithm creates an implicit representation of the
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k-shortest paths for a given source/destination node pair in a directed graph
with n nodes and m edges in O(m+nlogn+k). Furthermore, the k-shortest
paths to a given destination from every node in the graph can be computed
in O(m + nlogn + nk) time. The paths themselves can be traversed from
the implicit representation using breadth-first search.

The following sections describe the current state-of-the-art approaches to
metabolic pathways that are based on path-finding concepts.

Automated Metabolic Reconstruction

Masanori Arita, the developer of the Automated Metabolic Reconstruction
tool, introduced the use of a k-shortest path algorithm to search for routes
with a minimum number of reaction steps in a metabolic network [Arita,
2000, 2003]. He also proposed the incorporation of atom mapping rules into
the path search. For a chemical reaction, such a rule defines which educt
atom is transferred or mapped to which product atom. Using these rules,
paths found can be validated according to the structural moiety constraint.
This constraint states that a biochemically feasible route transfers at least
one atom of the source to the target metabolite.

A fundamental problem of the approach is that for approximately 30%
to 40% of reactions stored in pathway databases, it is not possible to easily
compute an atom mapping rule. These reactions contain metabolites with-
out given structural information or general molecules like “an alcohol” or
the reaction equation is unbalanced because of an incomplete or erroneous
annotation. The reactions thus require time-consuming manual checking.
Furthermore, the applied calculation of atom mapping rules is based on a
maximum common subgraph approach that represents a heuristic solution
to the problem and, therefore, fails to find the correct atom mapping rule in
some cases. Additionally, the calculation requires some manual preprocessing
of the reaction equations. A further problem with respect to the path search
is that although the structural moiety constraint is fulfilled, the search for
the shortest path with a minimum number of reaction steps still bears the
risk of finding meaningless results with pool metabolites as intermediates.
However, the approach represents a milestone in the field because it intro-
duces a path validation concept based on atom mapping rules and the use of
a k-shortest path algorithm.

PathMiner

The PathMiner approach [McShan et al., 2003] is based on a chemically mo-
tivated heuristic to guide a search in a state space. The compounds are
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represented using chemical descriptors as points or states in a hyperspace
based on the composition of their atoms and bond types (e.g. C, N, C-C,
P=0 and so on; 145 overall). Biochemical reactions are abstracted as transi-
tions between the compound states and expressed as a state vector difference.
Pathways are predicted by searching a route from an initial compound to the
destination compound through a series of state transitions. The search is
guided by best-first search using a heuristic evaluation function. The func-
tion is used to minimize the summed vector differences between the pairs of
succeeding compound states in the final route.

Limitations of the PathMiner approach are that it computes only one
metabolic route between a given source and target which is, of course, a
drawback for studying alternative routes. Furthermore, it does not favor
biochemical transformations that involve the transfer of larger functional
groups between the metabolites like phosphate groups which appear in many
metabolic processes that require the phosphorylation of compounds. The
reason is that the heuristic is specialized on the transition of very similar
compounds and therefore can only find pathways which are “chemically par-
simonious”. Another problem is that there is no evaluation of the quality
of the routes found with respect to experimentally determined pathways.
The authors only compared the computational performance of the heuristic
search to that of uninformed blind search approaches.

Pathway Hunter

The graph-representation of the Pathway Hunter tool [Rahman et al., 2005]
contains only compound nodes. Edges represent educt/product relationships
between compounds in the same reaction. However, only structurally similar
compounds are connected by edges, based on a mapping function. There-
fore, the mapping function combines two measures. The first measure is the
Tanimoto coefficient [Willet et al., 1998] calculated from the chemical finger-
prints of the compounds. The second measure is derived from the atomic
mass contribution of an educt/product pair with respect to all compounds
of a reaction. A breadth-first search algorithm calculates the shortest paths
between a given source and a target compound.

A principle drawback of this approach is that the necessary structural
information is not available for all compounds in the metabolic database
used. Examples of such compounds are generic molecules like “an alcohol”
or diverse macromolecules. Reactions which include these compounds are ex-
cluded from the standard approach. Given a source and a target compound,
the number of computable transforming routes is limited to those that share
the shortest length inferred using a breadth-first search algorithm.
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Degree-weighted metabolic networks

In the degree-weighted metabolic networks approach [Croes et al., 2006], the
metabolic network of an organism is mapped on a bipartite graph, including
all compounds and reactions as nodes. Directed edges connect the compound
nodes (educts and products) with the reaction nodes. Both directions of a
reaction are represented by two independent nodes per reaction. The key
idea of a degree-weighted metabolic network is to assign each compound
node a weight equal to its degree (e.g. the number of in- and outgoing
edges) and each reaction node the weight 1 by default. The weight of a path
in the graph is then defined as the sum of the weights of its nodes. This
implies that the overall weight of a path is much larger if it contains highly
connected compounds like typical pool metabolites or co-factors (e.g. NADP,
ATP or water). Searching for paths of lowest weight significantly reduces
the probability of finding unfeasible biotransformation routes that contain
pool metabolites (network hubs) as intermediates between two successive
reactions. Up to five paths of lowest weight (not a limitation of the algorithm)
can be found by the use of a depth-first back-tracking algorithm.

An advantage is that the structural information of the compounds is not
needed. However, a fundamental problem of the lightest-path search is its
inability to handle important biotransformation routes involving the biosyn-
thesis of pool metabolites (e.g. purine biosynthesis, in which AMP and ADP
are intermediates). The method fails to reconstruct these routes because pool
metabolites participate in many reactions of other transformation processes
and, therefore, are assigned very large node weights. A further problem is
that of routes passing pathways of the core metabolism like glycolysis or the
TCA cycle, because highly connected metabolites like pyruvate or acetyl-CoA
are involved. Fig. 3.5 shows more details of this issue. The transformation
of adenylo-succinate to dADP is part of purine metabolism and is shown
on the left side of Fig. 3.5. On the right side an alternative but biochemi-
cally irrelevant pathway is shown. For each reaction, main metabolites are
drawn in black and side metabolites in red. Irrelevant intermediate steps,
with respect to the adenylo-succinate/dADP conversion, are also drawn in
red. Furthermore, the number of reactions (the weights) in which each inter-
mediate participates as educt or product in a typical genome-scale metabolic
network is presented within adjacent rectangles. Searching for the path with
lowest weight will fail in this case because the irrelevant route obtains an
overall weight of 33, which is significantly lower compared to that obtained
for the textbook route (253).

Overall, this method represents a milestone in the field because it intro-
duces the use of a weighting scheme as optimization criteria in order to detect
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Figure 3.5: This figure depicts the problem of the degree-weighted metabolic
networks approach to find relevant pathways that contain highly connected inter-
mediates like AMP and ADP. Therefore, a relevant but heavy pathway is shown on
the left and a light but irrelevant pathway on the right. Relevant transformation
steps are drawn in black and irrelevant in red. In each step, main metabolites are
drawn in black and side metabolites in red. Typical numbers of reactions (weights),
in which each intermediate participates as educt or product are enclosed by rect-
angles.
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meaningful pathways within the k-shortest or lightest paths. Furthermore,
an evaluation approach is suggested and applied for validating the path-
finding performance against experimentally determined metabolic pathways
extracted from EcoCyc. Such a systematic evaluation was not performed for
the approaches described earlier in this section.

3.3 Metabolic pathway databases

An exhaustive list of databases focusing on metabolic pathways can be found
at hitp://www.pathguide.orq/. The two most popular databases are KEGG
[Kanehisa, 1996] and BioCyc [Karp et al., 2005] which will be briefly described
in the following two sections.

3.3.1 KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database that
integrates manually curated genomic, chemical and systemic information in
the form of metabolic and regulatory pathways. The KEGG project was
initiated in 1995 and is maintained as part of the research projects of the
Kanehisa Laboratories in the Bioinformatics Center of Kyoto University and
the Human Genome Center of the University of Tokyo.

The aim of the KEGG project is to establish a computer representa-
tion of the biological system whereas biological objects (organisms, genes,
enzymes, pathways, reactions, etc.) and their relationships are available as
separate database entries and direct links. Each database entry or KEGG
object is assigned a unique identifier which allows direct access to the cor-
responding database entry via the internet. Many other online biological
databases are already linked to KEGG. Furthermore, KEGG is a valuable
resource for bioinformatics and computational systems biology because a flat
file version of the whole database is freely available and can be downloaded
at ftp://ftp.genome.jp /pub/kegq/.

KEGG comprises 19 sub-databases which are completely described in
Kanehisa [1996]. However, the six databases (KEGG GENOME, KEGG
GENES, KEGG PATHWAY, KEGG COMPOUND, KEGG ENZYME and
KEGG REACTION) can be considered the core databases and will be briefly
described:

¢ KEGG GENOME contains genomic information on more than 800
organisms
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Figure 3.6: A screenshot of the KEGG wiring diagram that represents the TCA
cycle reference map.

¢ KEGG GENES contains gene and protein sequence information from
high-quality genomes

e KEGG PATHWAY contains reference maps in the form of wiring
diagrams which combine pathway information from multiple organisms.
The TCA cycle reference map is shown in Fig. 3.6. Each map can be
colored in green to show which enzymatic reactions occur in a selected
organism based on the set of enzymes identified from its genome.

e KEGG COMPOUND contains information about metabolites and
other chemical compounds like trivial names, chemical formulas, links
to other databases or the two-dimensional structure in MOL format.

e KEGG ENZYME contains all relevant information about enzymes.

e KEGG REACTION contains all details about chemical reactions
like the assigned EC number(s) or the reaction equation.

3.3.2 BioCyc

The BioCyc project has been developed by the Bioinformatics Research
Group at SRI International, directed by Dr. Peter Karp. BioCyec is a collec-
tion of more than 300 databases where each database describes the genome
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Figure 3.7: Screenshot of the EcoCyc TCA cycle pathway.

and metabolic pathways of a single organism. The EcoCyc database de-
scribes F. coli and is manually curated from the literature. The metabolic
pathways stored in the remaining species-specific databases were computa-
tionally predicted using the Pathway Tools software [Karp et al., 2002] based
on the MetaCyc [Caspi et al., 2006] pathway database. MetaCyc contains
more than 1,100 experimentally verified metabolic pathways from more than
1,500 different organisms. Like EcoCyc, the MetaCyc database is curated
from the literature.

The BioCyc collection offers electronic reference sources on the pathways
and genomes of different organisms. The main difference between BioCyc
and KEGG is the underlying ontology used to define pathways [Green and
Karp, 2006]. The BioCyc ontology defines a metabolic pathway as a con-
served atomic module within the metabolic network of a single organism.
But there is a more or less strict distinction between biosynthesis and degra-
dation modules as well as alternative pathways. KEGG pathways are on
average 4.2 times larger than BioCyc pathways and represent the combined
biosynthesis and degradation pathway information of multiple organisms;
organism-specific aspects within such a reference pathway can be highlighted
using green color. The corresponding TCA cycle example extracted from
EcoCyc is shown in Fig. 3.7. Like KEGG, there is also a downloadable flat
file version for each BioCyc database (http://biocyc.org/download.shtml).

Each database in the BioCyc collection is based on the same database
scheme within an object database management system, the Ocelot database
system. The system uses a complex object-oriented data model that is based
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on a taxonomic hierarchy of classes, instances of classes (called frames) and
slots which represent attributes of the classes or relationships between them.
Each class represents a biological entity like an organism, a reaction, an
enzyme, a protein etc. The data model contains more than 1,000 class defi-
nitions, which demonstrates that the model is much more complex compared
with the simpler KEGG model. The BioCyc scheme contains, for exam-
ple, very detailed enzyme modulation types like ALLOSTERIC-INHIBITOR,
PROSTHETIC-GROUP and so on. Furthermore, the class instances are an-
notated with numerous comments and extensive literature references.
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Chapter 4

Approaches and results

The computational detection of all relevant pathways transforming a partic-
ular source into a product in genome-scale metabolic networks has numerous
applications in systems biology. However, the combinatorial explosion of
possible routes in large networks represents a challenging task.

In this chapter we introduce several novel approaches which can be used
jointly in order to deal with the complexity of the underlying problem and
to efficiently find the most relevant routes. Methodological details and re-
sults of the developed approaches, concerned with the calculation of atom
mapping rules, the prediction of Gibbs reaction energies and the prediction
of subcellular protein localization are described first. Relevant data obtained
using these methods was integrated into a graph theory-based approach to
metabolic pathways, presented subsequently. The performance of the whole
approach was evaluated by the search for experimentally verified biotrans-
formation routes in the genome-scale metabolic networks of E. coli and A.
thaliana. In the last part of this chapter a brief overview of an implemented
web interface for exploring genome-scale metabolic networks is given.

4.1 Calculation of Atom Mapping Rules

4.1.1 Introduction

Given a chemical reaction, an atom mapping rule describes which educt atom
is transferred to which product atom. Fig. 4.1A shows an atom mapping rules
using serine-pyruvate transaminase (EC 2.6.1.51) as an example. In this re-
action, the whole carbon skeleton of serine is transferred to that of hydrox-
ypyruvate and that of pyruvate to alanine. Furthermore, the amino-group of
serine is mapped to alanine and the keto-group of pyruvate to hydroxypyru-
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Figure 4.1: (A) An atom mapping rule using the reaction catalyzed by serine-
pyruvate transaminase as an example is shown. The atom transfer between both
sides of the reaction is represented using equal geometric shapes. (B) The concept
of path validation based on the structural moiety constraint (SMC) is demon-
strated. Three carbon atoms are transferred from serine to hydroxypyruvate and
none to alanine.

vate. Within the scope of this thesis, we applied atom mapping rules for the
validation of candidate pathways. Arita [2003] originally used atom mapping
rules for this purpose and introduced the concept of the structural moiety
constraint. According to this constraint, a pathway can only be biochemi-
cally feasible if at least one atom is transferred from the source to the product
metabolite. For a given pathway this information is gained by tracing atoms
through the pathway using atom mapping rules. For example, if the carbon
skeleton of serine is reached only by a sequence of reaction steps during a
path-finding algorithm, then it is clear that using EC 2.6.1.51 as subsequent
reaction, the next pathway intermediate must be hydroxypyruvate and not
alanine (shown in Fig. 4.1B). Using alanine as intermediate carbon carrier
would violate the structural moiety constraint. The development of an im-
proved approach for the fully automatic calculation of atom mapping rules
is the topic of this section.

Representing the compounds of a chemical reaction as molecular graphs
! atom mapping rules can be calculated using graph partition and graph iso-
morphism [Akutsu, 2004]. The underlying idea is that normally in chemical
reactions only very few bonds are broken in order to transform the educts into

Lwhere nodes of the graph represent atoms (ignoring hydrogen atoms) and edges stand
for bonds in the original molecule
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the products. Hence, we can find the mapping rules by removing a limited
number of edges in the molecular graphs of the compounds and searching
for graph isomorphisms between the remaining connected components. A
valid atom mapping contains an isomorphic component of the product side
for each connected component of the educt side and vice versa. However,
the result of such a search, as presented in a previous work [Akutsu, 2004], is
not necessarily unique and may contain biochemically meaningless mappings
alongside the correct one. We were able to solve this problem by introducing
the EC clustering approach. Using this approach, it is possible to detect the
relevant mappings by clustering all mappings of those enzymatic reactions
which have the first three digits of their EC number in common. The under-
lying idea is that only the first three digits describe the underlying reaction
mechanism, and the last digit only enumerates the different chemical struc-
tures. This allows to select the atom mapping rule which best describes the
reaction mechanism of the EC cluster or appears mostly in all reactions of
the cluster.

The next section briefly describes the theoretical framework of the ap-
proach as introduced earlier [Akutsu, 2004] followed by the details of our
practical algorithm for mapping calculation. The following section explains
the EC clustering approach for filtering out irrelevant mappings. The results,
when applying the approach to reactions extracted from KEGG as well as
EcoCyc, are presented subsequently. After this, a brief discussion follows.

4.1.2 Problem definition and practical algorithm

Definition: A chemical cut [Akutsu, 2004] of size C' is a partition of a graph
G into connected components which are obtained by removing at most C'
edges whereas the nodes of each removed edge have to belong to different
connected components after the removal.

In order to handle reactions modifying ring structures, we must extend
the definition of a cut. A pseudo cut removes edges of a graph G which do
not disconnect G. The total number of removed edges per compound may
still not be larger than C'. An example describing both types of cuts is shown
in Fig. 4.2A.

Definition: Given the chemical reaction equation E; + ... + E, < P; +
...+ P,. Eq,...,E. and Py, ..., B, are molecular graphs representing educt and
product compounds. The mapping problem is now to find a chemical cut
of size C for each Ey,...,E, and P, ..., P, such that the resulting multiset
of connected components El U...u Ee is equal to the multiset of connected
components P U ... U Pp. Elements of the multisets are equal if they are
isomorphic.
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remove edges

* °| |
chemical cut A-X + B-Y A-Y + B-X molecular
E, Ep P P graphs
connected components

{AX} {B,Y} {A,Y} {B,X}  graph
E, E> P P partitions
?

{A;B,X1Y} = {A1B!X!Y} graph
pseudo cut E{UE, Py U P isomorphism

Figure 4.2: (A) Schematic illustration of chemical cuts and pseudo cuts. (B)
The general mapping problem. The example shows a reaction with two educt (E,
Eg) and two product compounds (P;, P»), and a cut-size C=1. Graph partitions
(El,EQ,Pl,Pg) were created by removing at most one edge in the molecular graph
for each compound. A mapping is found if the multisets EyUE; and P, U P, are
equal.

Fig. 4.2B illustrates the mapping problem, for a simple example. For fixed
values of p, ¢ and C', the problem can be solved in polynomial time, since
the number of combinations (Ey, ..., E., P, ..., P,) is O(n®*P) where n is
the maximum size of a compound in the reaction [Akutsu, 2004]. Practical
algorithms solving the problem for the special case of C'=1and e =p =2
were presented earlier [Akutsu, 2004]. Here, we introduce a procedure for
solving the general problem.

We distinguish two types of mapping rules. Given a chemical reaction, a
fragment mapping rule defines which connected component (called fragment)
of an educt molecular graph is isomorphic to which connected component
of a product molecular graph. Such a rule consists of a list of isomorphic
fragment pairs. An atom mapping rule defines which atom of an educt com-
pound is transferred to which atom of a product compound. A rule of this
type consists of a list of atom pairs. From the fragment mapping rules, we
can deduce atom mapping rules using the canonical graph representations
created by Morgan’s algorithm [Morgan, 1965]. 2 We use unique SMILES
[Weininger et al., 1989] to detect isomorphic components. The advantage is
that this permits the simple incorporation of stereochemical information and
reduces the number of inferred irrelevant atom mapping rules. Furthermore,
we define two functions which are necessary for the mapping calculation.
The first function, C'SF(X), transforms the multiset X, which contains con-

2The algorithm assigns an unique integer label to each node in a molecular graph,
based on the node degree and the degrees of its neighbors. Topologically equivalent nodes
in isomorphic graphs get the same labels.
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nected components as elements, to the multiset Y where the elements of X
are replaced by their chemical formulas. Accordingly, the second function,
SMILES(X) replaces the elements of X by their unique SMILES.

Minimum cut algorithm: All valid atom mapping rules corresponding to
a minimal cut size C' can be computed as follows:

1. C 0

2. For the molecular graphs of the educts E,...,E. and products P,...,P,
create all possible partitions F,,...,E.; and Py, ,...,P, using cut size C.

3. Create all possible multisets of connected components E, = Eliu...uEej
and P, = Plku...uﬁpl.

4. Select all pairs (E,,P,) with CSF(E,) = CSF(P,).

5. From all pairs calculated in Step 3 select all pairs (E,,P,) with
SMILES(E,) = SMILES(P,) and a minimum number of removed
edges producing pseudocuts accumulated for all educts and products.
Each pair represents a fragment mapping rule.

6. If no fragment mapping rule is found in Step 4: C' « C + 1, repeat
from Step 2.

7. Extract the final atom mapping rules from the fragment mapping rules
using the canonical graph representation calculated by Morgan’s algo-
rithm.

The third step was introduced to improve the calculation time signifi-
cantly. It is not necessary to compute unique SMILES for all partitions. In
the first iteration of the algorithm we simply compute the chemical formulas
of the connected components and use them to collect a set of candidate par-
titions for the molecular graphs. Step 4 insures that the mappings found are
based on a minimum number of removed edges. If we would search for all
mappings allowing the maximum possible cut size C' as well as the maximum
number of edges producing pseudo cuts, the number of irrelevant mappings
per reaction would be much higher. Note that a mapping found by the cut
size C' = 0 typically represents isomerization or oxidoreductive reactions.

4.1.3 EC clustering

For a significant number of reactions (approximately 40%, data not shown),
there is more than one possible mapping rule. An example is shown in
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Fig. 4.3A. Using cut size C' = 1, there are three possible mapping rules for the
reaction catalyzed by serine-pyruvate transaminase (EC 2.6.1.51). But only
the first mapping rule describes the underlying reaction mechanism which ex-
changes the amino group of L-serine with a keto group of pyruvate. To filter
out biochemically irrelevant mappings, we introduce the EC clustering ap-
proach. The idea is that the mechanism of many chemical reactions consists
of shifting or exchanging small functional groups like amino, keto, methyl,
phosphate or carboxyl groups. All reactions which have the first three dig-
its of their EC number in common also share the reaction mechanism. The
last digit only enumerates the different chemical structures operating as sub-
strates. Typical examples are reactions transferring a phosphate (EC 2.7.1.-)
or a methyl group (EC 2.1.1.-) from one molecule to another.

At first, we define an EC cluster (ECC) as a set of enzymatic reactions
which have the first three digits of their EC number in common. Given an
EC cluster, a reaction mechanism rule generally describes, for the reactions
in the cluster, how the educts are transformed into the products. The aim
is then to automatically infer the reaction mechanism rule by identifying the
relevant functional groups or parts of the substrates. The next step is to
select that fragment mapping rule and underlying atom mapping rule which
correspond to the inferred reaction mechanism rule and to discard all the
other fragment mapping rules.

Reaction mechanism rules are represented as strings and constructed from
fragment mapping rules. The following syntax is used to describe them.
The two sides of a reaction are separated by ‘=’. The fragments of each
compound are separated by ‘,” and enclosed by ‘<’ and ‘>". The first fragment
representing a non-relevant structure, is designated with ‘X1’ the second
with ‘X2” and so on. Relevant fragments like the mentioned functional groups
are represented using their SMILES (e.g. N, 0, C, 0P(0)0, C(0)0). > An empty
fragment is represented by ‘$” and is used in graph partitions for compounds
in which no edge is removed. The strings representing both the fragments
and the whole reaction sides are alphabetically ordered to ensure uniqueness
in the comparison with reaction mechanism rules from different reactions.
Fig. 4.3B shows an reaction mechanism rule for each fragment mapping rule
shown in Fig. 4.3A.

Note that there is no predefined list of relevant fragments. We generate
all possible reaction mechanism rules from the fragment mapping rules of a
given reaction by allowing each fragment to be relevant or not. Given an
EC cluster and a reaction mechanism rule, the occurrence frequency of this

3Note that the SMILES shown lack double bonds since bond types (parallel edges) are
ignored in our molecular graphs for simplicity.
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rule accumulated over all reactions in the cluster is called the EC cluster
score (ECCS). A reaction mechanism rule occurs in a reaction if it can be
constructed from at least one fragment mapping rule of the reaction. From
all generated reaction mechanism rules we select that to be relevant which
has the highest score. The EC clustering procedure performs the following
steps:

1. For each given fragment mapping rule containing n educt as well as
product fragments, construct for all (Z) combinations with k = 0, ..., n—
1, reaction mechanism rules in which k fragments are marked as non-
relevant (represented as ‘X1°, X2’ and so on).

2. For all reaction mechanism rules deduced from a fragment mapping
rule of a reaction in an EC cluster, calculate the EC cluster scores.

3. Assign each fragment mapping rule of a reaction in an EC cluster
the maximum ECCS of the reaction mechanism rules which were con-
structed from the fragment mapping rule.

4. For each reaction select the fragment mapping rule (and its correspond-
ing atom mapping rule) with the highest score as the relevant mapping.

Considering the example shown in Fig. 4.3, it becomes possible to detect
the first mapping rule as biochemically relevant, since the assigned score is
significantly larger than the scores of the other two mapping rules. The
score of 0.96 for the first reaction mechanism rule indicates that for 96% of
the reactions in the EC cluster 2.6.1.- (overall 90 reactions using data from
KEGG), the mechanism can be described as exchange of an amino group
with a keto group. If there is more than one fragment mapping with the
highest score or there is a reaction with no EC number, then we select the
mapping as relevant with the minimum number of transferred atoms (the
number of atoms of the relevant chemical groups).

4.1.4 Results

Atom mapping rules were inferred from chemical reactions extracted from the
KEGG and the EcoCyc databases. The maximum cut-size was restricted to
C = 2 and the maximum number of compounds permitted per reaction was
set to 10. This ensured an efficient calculation. Reactions containing com-
pounds for which the structural information was incomplete or non-existent,
and reactions with an unbalanced reaction equation were not considered.
This reduced the number of reactions from 6811 to 4621 for KEGG, and
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A serine-pyruvate transaminase (2.6.1.51)
2
L-Serine Pyruvate Hydroxypyruvate L-Alanine

~@-

L-Serine Pyruvate Hydroxypyruvate L-Alanine

B e 4

L-Serine Pyruvate Hydroxypyruvate L-Alanine

<N,X1><0,X2>=<N,X2><0,X1> ECCS=0.96
<$,X1><0,X2>=<$,X2><0,X1> ECCS=0.03
<C,X1><C0,X2>=<C,X2><C0O,X1> ECCS=0.02

w N = W

Figure 4.3: (A) A reaction with multiple mapping rules. The atom transfer
between both sides of the reaction is represented by equal geometric shapes. The
different shapes within a compound also represent the connected components in
the corresponding molecular graphs. Only the first rule is biochemically relevant.
(B) Each mapping rule is assigned the maximum score (ECCS) of all reaction
mechanism rules which were derived from the mapping. The mapping with the
highest score is detected as the relevant mapping. For each mapping rule, the best
reaction mechanism rule with corresponding score is shown.
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Table 4.1: The results of the atom mapping calculation using the EcoCyc and
KEGG data sets. 850 as well as 4621 reactions, with balanced equations and
complete structural information of the compounds, were selected from EcoCyc
and KEGG. For 98.0% as well as 97.7% of these reactions, at least one atom
mapping rule could be calculated. More details are described in the text.

EcoCyc KEGG
reactions overall 1348 6811
selected 850 (63.1%) 4621 (67.9%)
successful 833 (98.0%) 4516 (97.7%)
mappings overall 1236 5913
per reaction 1.51 1.31
cut size C=0 197 (24.0%) 807 (17.8%)
Cc=1 553 (67.4%) 3272 (72.5%)
C=2 71 (8.6%) 437 (9.7%)

from 1348 to 850 for EcoCyc. Tab. 4.1 summarizes the results of the calcula-
tion. For 833 (98%) of the reactions selected from EcoCyc and 4516 (97.7%)
from KEGG, at least one atom mapping rule was found. The overall num-
ber of mappings per reaction was 1.51 (EcoCyc) as well as 1.31 (KEGG).
The number of reactions with mapping rules using cut size C' = 0 was 197
(23.6%) for EcoCyc and 807 (17.8%) for KEGG. These are typically stereoiso-
merization or oxidoreductive reactions in which the transfer of substructures
between molecules was not necessary (e.g. EC 1.1.1.-). The majority of the
reactions - 563 (67.6%) for EcoCyc and 3272 (72.5%) for KEGG - required
atom mapping rules with cut size C' = 1. Typical representatives are reac-
tions transferring phosphate or methyl groups (e.g. EC 2.7.1.- or EC 2.1.1.-).
Seventy-three (8.8%) of the EcoCyc and 437 (9.7%) of the KEGG reactions
required atom mapping rules with the cut size C' = 2. Examples are re-
actions belonging to EC 1.13.11.- in which two oxygen atoms, originating
from molecular oxygen, are transferred. We manually inspected 17 reactions
(2%) from EcoCyc and 105 (2.3%) from KEGG for which no atom mapping
rule could be inferred. These reactions require mapping rules with a cut size
greater than C' = 2. The hydrolysis of allophanate resulting in two carbon
dioxide molecules and two ammonia molecules (EC 3.5.1.54) is an example of
a reaction requiring cut size C' = 3. Another example is the uroporphyrino-
gen carboxy-lyase reaction (EC 4.1.1.37), in which four molecules of carbon
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dioxide are cleaved off from uroporphyrinogen (C' = 4).

4.1.5 Discussion

A novel approach for inferring atom mapping rules from chemical reactions
was developed. Fully automated and efficient calculation was the main target
and was achieved by introducing pseudo cuts, the use of unique SMILES and
EC clustering. The purpose of the EC clustering is to filter out biochemically
irrelevant atom mapping rules but it also offers a way to extract the underly-
ing mechanism of enzymatic reactions and, therefore, could also be used as a
starting point for developing methods suited to large-scale classifications of
reactions as well as automatic assignment of EC numbers. In addition to bio-
chemical feasibility validation of candidate pathways inferred by path-finding
approaches, calculated atom mapping rules can also be used for analyzing ra-
dioisotope tracer experiments, for consistency checking of pathway databases
or visualizing conserved structural moieties along pathways.

We restricted the calculation of atom mapping rules to a maximum cut-
size C' = 2 to ensure an efficient calculation. Furthermore, reactions requiring
a higher cut-size are very rare and it is not necessary to have calculated atom
mapping rules for 100% of the reactions in EcoCyc and KEGG to support
the main goal of this thesis, the inference of relevant biotransformaton routes
(as described in Section 4.4.2). However, more work should be invested
to ensure more efficient calculation even for very complex reactions. The
main challenge is how to deal in general with larger compounds like NADH
and acetyl-CoA or even larger ones like protoheme. Such compounds cause
a high number of bond-breaking combinations that have to be considered.
It is, however, obvious that there are bonds which have a higher breaking
probability than others. The introduction of a suited chemical logic that
helps identifying these bonds could significantly reduce the calculation effort.

4.2 Prediction of standard transformed Gibbs
energies of biochemical reactions

4.2.1 Introduction

The Gibbs energy G represents the driving force for each biochemical reac-
tion in a metabolic network. The standard Gibbs energy change A,G° of a
reaction is related to the equilibrium constant K by

AG'=—RTInK
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glucose
v
Pi fructose-6-phosphate ~ ATP
EC 3.1.3.11 EC 2.7.1.11
+12.79 kJ/mol -23.25 kd/mol

H,O" fructose-1,6-bisphosphate ADP

pyruvate

Figure 4.4: The chemical conversion of fructose-6-phosphate into fructose-1,6-
bisphosphate using EC 3.1.3.11 and EC 2.7.1.11. A,G'° values (in kJ/mol) in the
desired reaction direction, taken from Alberty [2005b], are also shown.

with gas constant R and absolute temperature 7. Knowledge of A,G° as
well as of K for each reaction step of a metabolic pathway supports ther-
modynamic pathway analysis. Whether a (novel or engineered) pathway is
thermodynamically feasible and where to find bottlenecks and physiologi-
cally irreversible reactions are interesting questions. Their answers help us
to understand cellular metabolism better. An important aim of this thesis
was to consider and integrate thermodynamic information when searching
for relevant pathways using a graph theory-based approach. The basic idea
behind using Gibbs energy data for this purpose was the assumption and ob-
servation that pathways tend to use the reaction that is thermodynamically
most favorable when several alternatives exist. For example, the chemical
conversion of glucose to pyruvate in glycolysis requires the phosphorylation
of fructose-6-phosphate to fructose-1,6-bisphosphate as an intermediate step.
[gnoring regulatory aspects, the pathway could choose between two different
reactions (see also Fig. 4.4). However, compared to the first reaction (EC
3.1.3.11), the second one (EC 2.7.1.11) is thermodynamically much more
favorable in the desired direction under standard conditions. Therefore, it
does not come as a surprise that the second reaction is known to be part of
the textbook glycolysis pathway and the first reaction part of the opposed
gluconeogenesis pathway, which transforms pyruvate back to glucose.
Without a given A,G° or K it is difficult to estimate even the favored
direction of a reaction. Experimentally determined equilibrium constants
are available only for a limited number of biochemical reactions. It is also
possible to calculate A,G° of a reaction (if the standard Gibbs energies of
formation A;G° of the educts and products are known) using the equation

AGY =) AGpy) =) MG ()
j i
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where e; and p; are the stoichiometric coefficients of the educts and products.
Unfortunately, the availability of experimentally determined A;G° values of
biochemical compounds is also limited. Based on data sources [Goldberg
et al., 2004; Alberty, 2005] that provide comprehensive thermodynamic in-
formation collected from the literature, we can annotate less than ten percent
of all biochemical reactions stored in databases like KEGG or MetaCyc with
A,GY or K values. With the rapidly increasing number of genome-scale
metabolic networks stored in pathway genome databases, thermodynamic
pathway analysis is becoming more important but is hindered by the lack
of comprehensive information about equilibrium constants. Hence, there is
a need for computational approaches for estimating or predicting Gibbs en-
ergy information given the educts and products of reactions with unknown
equilibrium constants.

A group contribution method [Mavrovouniotis, 1990, 1991] has been de-
veloped for estimating A,G° of biochemical reactions in aqueous solution.
To use this method, the chemical structures of the educts and products of a
reaction have to be decomposed into functional groups of atoms. The basic
idea is the assumption that the A;G® of a molecule is given by the linear
combination of energy contributions from each constituent group multiplied
by the number of occurrences of that group in the molecule. To this end, a
predefined set of groups is provided by the authors and each group is assigned
an energy contribution. Then A,G° of a reaction is equal to the difference
between the sums of the group contributions of the products and educts. The
contributions are estimated using multiple linear regression on data collected
from the literature. The data set consists of a mixture of Gibbs energies of
biochemical compounds and reactions in dilute aqueous solution at 298.15
K and pH 7. Reaction data are also used because A,G° of a reaction is
given by the linear combination of net energy contributions from the educt
and product groups. The typical error of an estimated A;G is less than
2 keal/mol (8.37 kJ/mol) but errors higher than 5 kcal/mol (20.92 kJ/mol)
can occur.

Other works, not specialized for biochemical compounds in aqueous solu-
tion but related to the problem, are based on quantitative structure-property
relationship (QSPR) techniques to predict the standard Gibbs energy of
formation of organic compounds [Ivanciuc et al., 2000, 2001; Toropov and
Toropova, 2003; Yan, 2006]. The basic underlying idea is the fact that phys-
iochemical properties like A;G° are determined by the chemical structure of
the molecules. Molecular descriptors are used to encode the structures in a
numerical form and linear or non-linear statistical methods (like multiple lin-
ear regression or neural networks) are used to model the complex relationship
between A;GY and the selected descriptors.
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A drawback of the group contribution method described is that it ignores
effects on the thermodynamic equilibrium caused by the ionic strength I, the
presence of metal ions like Mg2+ and the dissociation of biochemical com-
pounds into several ionic species in aqueous solutions at pH 7. These effects
can be significant and their consideration requires the adjustment and trans-
formation of the Gibbs energy. Therefore, the IUPAC-IUBMB Joint Com-
mission on Biochemical Nomenclature[Alberty, 1996] recommends the use of
the apparent equilibrium constant K’, which is written in terms of sums of
species together with the standard transformed Gibbs energies A fGIO and
A,G instead of K, A;G® and A,G° when analyzing biochemical reaction
systems. These thermodynamic quantities should be based on biochemi-
cal standard conditions*. The importance of considering these parameters
when analyzing metabolic pathways was also evaluated in an extensive study
[Maskow and von Stockar, 2005]. Further drawbacks of using the group con-
tribution method are that possible group interactions are neglected and that
a couple of special correction rules have to be applied in order to get better
estimations. Also, the decomposition of the chemical structures into non-
overlapping groups of atoms is a non-trivial task. However, it should be
noted that Forsythe et al. [1997] introduced an algorithm that complements
the group contribution method by an automatic decomposition based on the
application of SMILES [Weininger et al., 1989]. Furthermore, special care has
to be taken when dealing with pool compounds like ATP, ADP or NADH.
These compounds have to be treated as single groups and are assigned spe-
cial energy contributions when occurring in a reaction. Although the group
contribution method represents a pioneering work in this field, the problems
described and their drawbacks makes the estimation of equilibrium constants
quite difficult.

Our contribution to the problem of estimating equilibrium constants was
the development of a method that is easier to use, considers the recommenda-
tions described for analyzing biochemical reactions and provides acceptable
predictions. To this end, we applied QSPR techniques, which allowed us to
calculate a wide range of molecular descriptors fast and easy using a QSPR
software package. Novel to our approach, but inspired by the group contribu-
tion method, is that biochemical reactions are represented as feature vectors
created from the difference of the numerical molecular descriptor vectors
between the products and educts of each reaction. Experimentally deter-
mined A,G'° values under approximate biochemical standard conditions for
484 reactions were collected using data extracted from relevant data sources
[Goldberg et al., 2004; Alberty, 2005]. Since we were primarily interested in

4T7=298.15 K (or T=310.15 K), P = 10° Pa, pH 7, I1=0.25 mol/l and pMg 3
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the creation of a prediction model specialized for biochemical reactions in-
volved in carbon, nitrogen, sulfur and phosphor metabolism, we disregarded
reactions with compounds that contained atoms other than H, O, C, N, S
or P. We used multiple linear regression and stepwise feature selection to
calculate a model for the prediction of A,G'° for reactions given in the form
of feature vectors. Based on an independent test procedure, the prediction
error obtained for a typical reaction was 6.24 kJ/mol with a squared corre-
lation coefficient of 0.9373 between the observed and predicted A,G'° values
of the test reactions.

The following sections present the methods necessary to develop the ap-
proach including the data sources used, the creation of the training data set
as well as feature vectors and the procedures applied for training and perfor-
mance evaluation, followed by detailed prediction results with a concluding
discussion.

4.2.2 Methods
TECRDB

The Thermodynamics of Enzyme-catalyzed Reactions Database (TECRDB)
[Goldberg et al., 2004] is a systematic collection of thermodynamic data on
enzyme-catalyzed reactions. The data contains apparent equilibrium con-
stants K and molar enthalpies A, H® of biochemical reactions measured
in experimental studies. The database is available via a web interface and
stores data for approximately 400 different enzyme-catalyzed reactions cu-
rated from approximately 1,000 published papers. The collected papers were
also previously surveyed in six reviews [Goldberg et al., 1993; Goldberg and
Tewari, 1994,b, 1995,b, 1999.

For each entry (measured K or A,H') in the database the following
information, if found in a paper, is given:

e literature reference

e the enzyme-catalyzed reaction written in terms of reactants (sum of
species)

e Enzyme Commission (EC) number of the reaction
e the method of measurement

e the conditions of measurement (temperature, pH, ionic strength, buffer,
cofactor(s) etc.)
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e a subjective evaluation rating of the data

The subjective evaluation rating separates the data into four classes of
quality (A for high, B for good, C for average and D for low quality). To
carry out, the authors of the database considered the level of experimental
details described in the corresponding study.

BasicBiochemData3

BasicBiochemData3 [Alberty, 2005] is a database written in Mathematica
[Wolfram Research, Inc, 2005] that contains the standard Gibbs energy of for-
mation (A;G) of species for 199 reactants of biochemical interest at 298.15
K and zero ionic strength. The standard enthalpies of formation (A;H?)
are also available for the species of 94 reactants. Furthermore, the database
provides numerous programs for the calculation of the apparent equilibrium
constant K and other transformed thermodynamical properties of enzyme-
catalyzed reactions.

Some of the collected species data stems directly from the NBS [Wag-
mann et al., 1982] and CODATA [Cox et al., 1989] thermodynamic tables.
The thermodynamic properties are calculated from measurements of appar-
ent equilibrium constants extracted from TECRDB, especially for larger bio-
chemical compounds (e.g. acetyl-CoA).

Species data for 28 more reactants not included in the last version of
BasicBiochemData3, but described in the literature [Alberty, 2006a,b, 2007],
was also used in this work. These reactants represent the GTP, XTP, TTP,
UTP, CTP and carbamoyl-phosphate series.

The species data and Mathematica programs provided can be used to
calculate the standard transformed Gibbs energy of formation (A ;G'°) of the
reactants at 298.15 K in the pH range from five to nine and ionic strength
from zero to 0.35 mol/l.

Mining standard transformed Gibbs energies from experimental
data

The standard transformed Gibbs energy of formation of a reactant at a spec-
ified temperature, pH and ionic strength can be calculated from the standard
Gibbs energies of formation of the species involved in that reactant using Leg-
endre transforms (described in Section 2.2.2). However, information about
standard Gibbs energies of formation is available only for a limited number of
biochemical species. Another way of obtaining A fG,O values for biochemical
reactants without knowing A ;G° values of its species was described by Al-
berty [1998]. This method can be applied if the standard transformed Gibbs
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energies of formation are given for all but one reactant in a biochemical re-
action with experimentally determined K’ (close to T'=298.15 K and pH 7)
simply by using the following equation:

AGY=-RTInEK =Y (A;Gp) =) (A;Ge))
] 7

where e; and p; are the stoichiometric coefficients of the educts and products
in the biochemical reaction. If there are two reactants A and B (one for each
reaction side) with unknown standard transformed Gibbs energy, one can be
assigned A;G° =0 or A;G'® = 0 by convention. The advantage is that this
allows the calculation of K’ for reactions where both reactants participate.
However, it is not possible to calculate K for reactions forming reactant A or
B. Some of the thermodynamic properties present in the BasicBiochemData3
database are calculated according to this method from experimental data
extracted from the database provided by Goldberg et al. [2004].

In order to increase the number of A fG'O values available, we performed
an automated version of Alberty’s method by combining BasicBiochemData3
with TECRDB. First, compounds and reactions from TECRDB were mapped
to their corresponding entities in the KEGG and MetaCyc databases by com-
paring compound names and EC numbers. This had to be done because
there is no structural information about the compounds in TECRDB. The
information was required later for creating a QSPR training data set. The
mapping candidates were detected computationally (by matching compound
names) but selected manually to avoid false positives. We mapped TECRDB
compounds only if the corresponding KEGG/MetaCyc compounds were an-
notated with complete structural information and only contained carbon,
oxygen, hydrogen, nitrogen, sulfur or phosphorous atoms. All reactants in
BasicBiochemData3 were also mapped to KEGG and MetaCyc and were,
therefore, available in TECRDB. Then all valid TECRDB entries with mea-
sured K’ were extracted. An entry was defined as valid if temperature T
and pH values of the experiment were given. The information about ionic
strength and cofactors was also extracted. Furthermore, all compounds oc-
curring in the reaction equation had to be mapped to KEGG/MetaCyc.
The EC number, literature reference and evaluation rating (ER) were always
available. Based on these prepared TECRDB entries, the following iterative
procedure was performed to automatically estimate A;G* and A, G values
under near biochemical standard conditions:

1. Calculation of the A fG'O for each reactant in BasicBiochemData3 from
the A;G° of its species using Legendre transforms and adaptation to
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ionic strength 7=0.25 mol/l. These reactants and their A;G'® values
form an initial list L A;GI0

2. Setting the evaluation rate constraint variable: ER g = A

3. Setting the experimental constraint variables:

T = 298.15 K; Tinax = 298.15 K; pH,i, = 7.0; pHpax = 7.0;

4. Selection of all entries (K, T, pH, ER) which fulfill the current con-
straints:
Tmin S T S TmaXS pHm]n S pH S PHmaXS ERused = ER

5. For each reaction in the selected entries, A, G0 is calculated using equa-
tion A,G'° = —RTIn K. If more than one TECRDB entry is selected
for a reaction, its A,G'° values are averaged. The reactions and their
A, G values are added to the list L, 0. Once a reaction is added
to this list, its A, G0 value cannot be overwritten or changed in a suc-
ceeding iteration.

6. For each reaction in L, 40 with exactly one reactant that is not found
in Lp g, A;G° of that reactant is calculated and added to La, o
using the equation AGO = > Uiy G'° where v; are the stoichiometric
coefficients (negative for educts and positive for products). If A fGIO
of a reactant can be calculated from multiple reactions, the average
value is used. Once a reactant is added to the list, its A fG'O cannot be
overwritten or changed in a succeeding iteration.

7. Repeat step 6 until no new reactant can be added to L, .

8. Increment/decrement experimental constraint variables:

T,

min = Imin — 1 Tmax = Tmax + 1
PHin = PHpin — 0-2; pHmax = pPHmax + 0.2

9. Tf Ty > 293.15 and Timax < 303.15 and pH

8.0 continue with step 4.

min = 6.0 and pHyax <

10. Reduction of the evaluation rate constraint variable:
If ER|geq is set to A then set ER ;soq = B and continue with step 3
If ER jgeq 18 set to B then set ER,;4oq = C and continue with step 3.

After this procedure, the lists L, o0 and L A;G0 contained additional
thermodynamic data which could be used to create a comprehensive QSPR
training data set.
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DRAGON molecular descriptors

The DRAGON software package [Talete srl, 2007] was used to calculate
molecular descriptors. It was possible to calculate up to 3,324 descriptors
including functional group and fragment counts as well as topological, geo-
metrical and molecular properties. We applied the package to chemical struc-
tures extracted from the KEGG and MetaCyc databases. The calculation
was performed with the inclusion of hydrogen atoms and for 2D descriptors
(2,425 overall) only.

Training data set and feature vector representation

The QSPR training data set consists of biochemical reactions with known
A,G°. To this end, we extracted all distinct reactions from KEGG and
MetaCyc that contained only compounds with known A fGIO and balanced
educt /product atoms. We found 411 reactions. For each reaction, we calcu-
lated A, G using equation A,G'0 = 3" v;A;,G°. Furthermore, we included
all reactions extracted from TECRDB with known A,G° and with more
than one compound for which the A fG/O value was missing. We found 73
reactions, which increased the training data set to 484 reactions overall.
The reaction equations were transformed into a feature vector represen-
tation. To this end, we computed DRAGON features (molecular descriptors)
for all compounds participating in the reactions. Then for each reaction the
difference between its educt and product feature vectors was computed using

the equation
F,=> uF
i

where F is the feature vector representation of a reaction r, F; the DRAGON
feature vectors of the educts and products and v; the stoichiometric coeffi-
cients (negative for educts and positive for products).

The feature vector representation of reactions is inspired from the group
contribution method that estimates A, G'° of a reaction by summing net en-
ergy contributions from the educt and product groups. The decision to de-
velop a prediction method for A,G° and not for A;G'® was based on several
reasons. First, we have more comprehensive training data if we use A, G
values. This allowed us to use an additional 73 reactions, each containing
more than one compound with unknown A fG'O, mined from TECRDB. Not
all A fGIO values extracted from BasicBiochemData3 and other sources can
be considered for a training data set. The reason is that the A fG,O of several
reactants or the A;G° of one of its species is set to zero by convention. For
example, the A fGIO values of the GTP series (GTP, GDP, GMP, guanosine,
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guanine) as calculated by Alberty [2006a] are based on the convention that
A;GP of guanosine is zero. Otherwise it would not be possible to get A fGIO
values for this series of reactants. In order to get correct absolute values for
the GTP series, a certain amount of Gibbs energy remains to be specified
and added to these relative A fG'O values. An advantage of relative values
is that they can be used to calculate A, G of reactions like EC 2.7.1.30° or
EC 3.2.2.1% that contain exactly one reactant of the series on the educt side
and one on the product side. Furthermore, we believe that it is easier to
predict A,G'? of reactions with balanced educt/product atom masses that
normally undergo only slight molecular changes instead of using A fG'O of
biochemical reactants which differ widely in their structural properties. For
example, A fG'O of PRPP is -2978.51 kJ/mol and that of oxidized glutathione
is 1219.74 kJ/mol. It is also more convenient to estimate the error of pre-
dicted A, G for a reaction if its A,G° value can be directly inferred from
a prediction system instead of using the predicted A fG/O of its educts and
products.

Training and performance evaluation

The QSPR training was performed using multiple linear regression and step-
wise feature selection starting with no pre-selected features. Minimizing the
sum of the squared errors between observed and predicted values was the
criterion for selecting the features using five-fold cross-validation.

Although other (non-linear) statistical learning approaches could be used,
multiple linear regression was chosen because it allowed us to easily model
two important properties of A, G that should be considered in a prediction
method expressed as:

AG° = p(F,)

where F, is the feature vector of the query reaction and p the prediction
function as a result of the model training. The two properties that should
be supported by p can be defined as follows:

1. p(F,) = —p(—F,) reverse reactions
2. p(F.,) + p(F,,) = p(F,, + F,,) reaction coupling

The first property describes the energetic behavior of reverse reactions, i.e.
reversing the direction of a reaction with A, G will invert the Gibbs energy
balance to —A,G'°. Given a reaction represented by feature vector F,, its

SGTP + glycerol = GDP + glycerol 3-phosphate
Sguanosine + HoO = guanine + ribose
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reverse reaction is represented by the inverse feature vector —F, calculated
from the difference between the educt/product molecular descriptor vectors.
Hence, we can simply model the first property if coefficient by of the multiple
linear regression equation

y:bo—l—Zbixi—l—e

=1

is constrained to zero (by = 0). The second property represents the fact that
changes in Gibbs energy of reactions are additive if the reactions are coupled
(explained in Section 2.2.1). Given two coupled reactions represented by Fi,
and F,, with A, G'* and A,,G", the resulting overall reaction is represented
by A, G+ A,,G° and F,., + F,,, which corresponds to the net molecular
descriptors of the educts and products for both reactions.

An independent test procedure was applied to evaluate prediction perfor-
mance. The test was performed by randomly selecting 50 reactions not to be
used in the training phase. For each of the 50 test reactions, the standard
transformed Gibbs energy was predicted from the regression model obtained
using the remaining 434 reactions for training. The whole independent test
procedure was performed ten times. However, there were two restrictions
for selecting test reactions. Since we expected more data noise for the 73
reactions inferred from TECRDB using our data mining approach, we did
not allow these reactions to be selected for testing. Furthermore, we did not
select reactions for testing that contained some small and rarely occurring
compounds with less than two carbon atoms except the frequently occurring
compounds water, carbon dioxide, oxygen, hydrogen peroxide, ammonia,
phosphate and pyrophosphate. All these reactions were used for training but
not for testing, because we expected that these reactions could distort pre-
diction performance. The results of the ten runs were merged into a unique
independent set of test reactions to get more data for statistical evaluation.
To this end, each reaction of the ten test runs was included only once. If a
reaction appeared in more than one independent test run, we used the av-
erage value of the predicted Gibbs energies for this reaction. The resulting
unique test set contained 285 reactions with predicted A, G'°.

We used two standard statistical measures for estimating prediction per-
formance. The first measure is the coefficient of determination R? which
compares the variation between observed and predicted values to the vari-
ation within the observed values. In other words, R? is a measure of the
quality of fit of a model and provides information about how well the pre-
dicted values approximate the observed real data values. The definition of
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R? is given by

where y; are the observed values, y; are the predicted values, 7 is the mean
value of the observed values and N is the number of observed/predicted
data value pairs. The standard error of estimate SEFE is the second quality
measure and it provides information about the expected accuracy of the
model predictions and is calculated from the sum of the squared errors for
each data value pair. The standard error of estimate is defined by

Both quality measures were also used to evaluate the performance of the
applied data mining approach, which automatically estimates A fG,O and
A, G values from experimental data in TECRDB.

4.2.3 Results

Mining standard transformed Gibbs energies from experimental
data

The result of estimating A fG/O for biochemical compounds from experimen-
tal data using the data mining approach, described in the methods section,
is shown in Tab. 4.2. For each estimated A fGIO, the table shows the relevant
data for the automatically selected TECRDB entries, i.e., the EC number,
temperature T, pH, ionic strength I, if given, measured equilibrium constant
K’ and the subjective evaluation rate EV. The approach produced A fG'O val-
ues for 31 new reactants which were not contained in BasicBiochemData3.
To evaluate the accuracy and reliability of the whole approach, we performed
the following experiment. For each reactant with given A fG'O inferred from
its species data in BasicBiochemData3, we tried to estimate its A fG'O from
experimental data using our data mining approach. We collected all suc-
cessfully estimated A;G'® v