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Abstract

For some years ago the main statement among verification engineers was “Bugs in hardware
cost money”. Nowadays, the embedded software is playing an important role in the embedded
systems industry and the statement can be updated to “Bugs in hardware and in software cost a lot
of money”. Embedded software is very powerful in embedded systems in order to implement im-
portant functionalities and functional innovations. The developing costs of embedded software are
becoming huge and its amount in safety critical systems is increasing. Therefore, the verification
of complex systems needs to consider the verification of both hardware and embedded software
modules.

The most commonly used approaches to verify embedded software are based on co-simulation or
on co-debugging, which consume long verification time and additionally have coverage limitations.
Formal verification assures complete coverage, but is limited to the size of the module that can be
verified. This dissertation extends the conventional verification limitations with methodologies that
are based on temporal properties and formal verification. This work proposes to combine temporal
assertions with testing, which is suitable to be applied in existing design flows due to the experience
of the verification engineers with conventional verification approaches. Thus, the formalization
of the requirements by means of temporal properties is able to improve the understanding about
the design and the assertions can be re-used later in the combination of simulation and formal
verification approaches.

The main contributions in this dissertation are (1) two new approaches to integrate assertion-
based verification in embedded software verification and (2) one new semiformal verification ap-
proach to increase state space coverage compared to simulation-based methods. The developed
solutions are evaluated against an industrial automotive embedded software application.

Targeting at simulation-based verification techniques, new approaches are identified and investi-
gated to efficiently integrate assertions in the verification of embedded software: On the one hand,
a SystemC hardware temporal checker is extended with interfaces to monitor the embedded soft-
ware variables and functions that are stored in a microprocessor memory model. On the other hand,
a SystemC model is derived from the original C code to integrate directly with the SystemC tem-
poral checker. The first approach shows the advantage to verify temporal properties in C programs
straightforward under real conditions, however, requiring to explicitly model the microprocessor
itself. For the second approach, a shorter verification time is achieved, however, a SystemC model
has to be generated with more abstraction information.

Due to the limitations of simulation-based approaches, a new semiformal verification is devel-
oped. Targeting at semiformal verification techniques, an approach called SofTPaDS (Semifor-
mal Verification of Temporal Properties in Hardware-Dependent Software), which is based on the
combination of both assertion-based and symbolic simulation strategies for the verification of em-
bedded software with hardware dependencies, is designed. In this approach, a simulation-based
traversing of the state space is combined with local (temporal restricted) explorations of specific
states on the simulation traces. The semiformal approach is evaluated to be more efficient than
state-of-the-art model checkers in order to trace deep state spaces, and shows improvements in the
state coverage relative to a simulation-based software verification approach.






Zusammenfassung

Vor einigen Jahren war eine gingige Aussage von Verifikationsingenieuren “Fehler in Hard-
ware kosten Geld”. Heutzutage spielt eingebettete Software im Bereich eingebetteter Systeme
eine immer wichtigere Rolle und die Aussage kann aktualisiert werden zu “Fehler in Hardware und
Software kosten sehr viel Geld”. Eingebettete Software schafft im Bereich eingebetteter Systeme
die Grundlage fiir die Implementierung neuer Funktionalitidt und liefert damit einen wesentlichen
Treiber fiir die Realisierung von Innovation. Dabei nehmen die Kosten fiir die Entwicklung einge-
betteter Software stetig zu und deren Anteil in sicherheitskritischen Systemen vergrofert sich kon-
tinuierlich. Aus diesem Grund muss die Verifikation komplexer eingebetteter Systeme sowohl die
Hardware als auch die Software des Systems in die Betrachtung einbeziehen.

Die heute zum FEinsatz kommenden Verifikationstechniken fiir eingebettete Software basieren
auf Co-Simulation oder Co-Debugging, woraus ein hoher Zeitaufwand und eine beschrinkte Ab-
deckung der Verifikation resultieren. Im Gegensatz dazu garantieren formale Verifikationstech-
niken eine vollstindige Abdeckung, besitzen jedoch Beschrinkungen hinsichtlich der Grofle der
verifizierbaren Module. Die vorliegende Dissertation erweitert die bestehende Vorgehensweise um
Ansitze auf der Grundlage von temporalen Eigenschaftsbeschreibungen und formalen Verifika-
tionstechniken. Die Arbeit kombiniert temporale Eigenschaftsbeschreibungen mit simulations-
basierten Verfahren und ermdoglicht so eine einfache Einbindung neuer Methoden in industriell
etablierte Entwurfsabldufe und Denkweisen. Die Formalisierung von Anforderungen in temporale
Eigenschaftsbeschreibungen liefert dabei einen wichtigen Beitrag fiir ein besseres Verstidndnis des
Designs und schafft die Grundlage fiir eine kombinierte Anwendung von simulationsbasierten und
formalen Verifikationstechniken.

Die wichtigsten Beitriige dieser Dissertation sind (1) zwei neuartige Assertion-basierte Ansitze
fiir die Integration von temporalen Eigenschaftsbeschreibungen in die Verifikation eingebetteter
Software und (2) ein neuartiger semiformaler Verifikationsansatz, welcher im Vergleich zu rein
simulationsbasierten Vorgehensweisen eine hohere Abdeckung der Verifikation erreicht. Die en-
twickelten Losungen wurden anhand einer industriellen Anwendung aus dem Bereich der Auto-
mobilelektronik evaluiert.

Im Bereich simulationsbasierter Verifikationstechniken wurden zwei neuartige Ansétze identi-
fiziert und untersucht, die eine effiziente Einbindung von Assertions in die Uberpriifung einge-
betteter Software ermoglichen: Zum einen wurde ein Hardware- Verifikationswerkzeug, der Sys-
temC Temporal Checker (SCTC), um Schnittstellen zur Uberwachung von Variablen und Funk-
tionen eingebetteter Software innerhalb eines Mikroprozessor-Speicher-Modells erweitert. Zum
anderen wurde ein Vorgehen aufgebaut, welches die Ableitung eines SystemC-Modells aus dem
urspriinglichen C-Code beinhaltet und so eine direkte Integration in den SCTC ermdglicht. Der
erste Ansatz ermoglicht es, temporale Eigenschaften in C-Programmen einfach unter realen Be-
dingungen zu iiberpriifen. Hierzu ist ein explizites Modell des Mikroprozessors erforderlich. Der
zweite Ansatz erfordert die Generierung eines abstrakteren SystemC-Modells und ermoglicht so
eine Reduzierung des Zeitaufwands fiir die Uberpriifung.

Im Hinblick auf die Beschriankungen simulationsbasierter Ansitze wurde eine neuartige semi-
formale Verifikationsmethodik mit Bezeichnung Sof TPaDS (Semiformal Verification of Temporal
Properties in Hardware-Dependent Software) entwickelt. Dieser kombiniert Assertion-basierte und
symbolische Simulationsstrategien fiir die Uberpriifung von eingebetteter Software mit Hardware-



Abhingigkeiten. Der Ansatz kombiniert eine simulationsbasierte Traversierung des Zustandsraums
mit einer lokalen (zeitlich begrenzten) formalen Exploration einzelner Zustinde. Das Vorgehen
ermdglicht so eine tiefer gehende Untersuchung des Zustandsraums (verglichen zu heutigen Mod-
ellpriifungsverfahren) bei verbesserter Abdeckung der Verifikation (verglichen zu rein simulations-
basierten Verfahren).
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1 Introduction

Today, the verification of complex systems, such as systems-on-a-chip (SoC), cannot be consid-
ered only on hardware module level anymore. The amount of software has increased significantly
over the last years and therefore, the verification of embedded software has become of fundamen-
tal importance. The most commonly used approaches to verify embedded software are based on
co-simulation or on co-debugging techniques. These approaches consume long verification time
and have coverage problems. Formal verification assures complete coverage, but is limited to the
size of the module to be verified. This dissertation presents (1) two new approaches in order to in-
tegrate assertion-based verification in embedded software verification and (2) one new semiformal
verification approach in order to increase the state space coverage compared to simulation-based
methods. This semiformal approach is based on the combination of assertion-based and formal
verification. The new approaches proposed in this dissertation were evaluated with an industrial
embedded software application.

This chapter firstly outlines the motivation for the verification of embedded software. Secondly,
it briefly introduces the different forms of verification with focus on their strengths and weaknesses.
Finally, the scope and the main contributions of this dissertation are presented.

1.1 The Importance of Embedded Software

Embedded systems have frequently been used over the last years in the electronic systems industry
due to their flexible operation and to their possibility of future expansions. Embedded systems are
composed of hardware (HW), software (SW) and other modules (e.g., mechanics) projected to per-
form a specific task as part of a larger system. Internal control of vehicles, autopilot, telecommuni-
cation products, electrical appliances, robot control and medical devices are some of the practical
examples of this area.

Over the last years, the amount of software used in embedded electronic products has been
increasing and the tendency is that this evolution continues in the future. The main reason is
the advent of microprocessors and the flexibility of future functional innovations with embedded
software (ESW). For example, almost 90% of the microprocessors developed worldwide have
been applied in embedded systems products [3] and embedded software is the main responsible
for functional innovations in the automotive area [4], such as reduction of gas emissions or the
improvement of security and comfort.

Additionally, embedded software is economically highly relevant [5]. For example, the world-
wide value creation in automotive electric/electronics (including software) was estimated to €127
billion in 2002 and is expected to be €316 billion in 2015 [6]. It is estimated that the embedded
software will achieve up to 40% of development costs of a car by 2010 [7].
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Figure 1.1: Verification process flow

As it can be also observed, embedded software is frequently used in safety critical applications
(e.g., automotive) where failures are unacceptable [8], as seen in lists of disasters and inconve-
niences occurred due to software errors [9, 10]. However, the complexity of a software-based
system is the main challenge for the current verification approaches in order to reach a single pass
design [11]. Therefore, development of new verification approaches for the industrial embedded
software systems is of fundamental importance.

1.2 Why Verification ?

Verification is the process of checking the functional correctness of a design. The basic flow of a
verification process can be observed in Figure 1.1. From the specification, the design intent (i.e.,
properties - see Section 2.4) and the implementation of the design are derived. Verification is the
process of checking the functionality of a design against a design intent to determine the design’s
correctness. The verification returns True if the design intent holds, otherwise False.

The main challenge of verification is to handle the system complexity. For instance, the auto-
motive embedded software of a car may achieve up to 1 Gigabyte by 2010 [5]. The verification
complexity is higher than the design complexity and for this reason it originates the design pro-
ductivity gap and the verification gap. Figure 1.2 summarizes the new design gap including both
hardware and software modules. The technology capability is currently doubling every 36 months.
The hardware design productivity improved over the last couple of years by filling the silicon with
multi-core and with memory components, and providing additional functionality in software [1].
With the increase amount of embedded software, a software gap can be noticed, where the main
challenge is how to fit millions of software lines with millions of gates [12]. The software part is
currently doubling every 10 months, however, the productivity for hardware-dependent software
only doubles every 5 years [1]. These gaps have been the reason of concern for the industries, since
they cannot achieve their maximum capacity of design.

Together with the increase of the design complexity, the lifetime and the time-to-market re-
quirements have been demanding shorter system design periods. This development period could
be smaller if it would be possible to minimize the verification time of the systems, which nowadays

2
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Figure 1.2: Hardware and software design gaps [1]

takes up to 70% of the design costs in order to identify and to correct the design errors [13]. When
a device needs to be re-designed and/or new project cycles need to be added to the development
due to design errors, the final cost of the product can be increased by hundreds of thousands of
dollars. It is also common agreement that the project errors must be corrected before the device is
released to the market. Supplying companies of both hardware and software intellectual property
(IP") modules are examples of enterprises that demand high level of correctness, because they need
to assure that their IP cores will work correctly when inserted in a target project [13].

Hardware verification techniques have advanced considerably over the last few years. Mature
approaches based on formal methods [14], assertion-based verification (ABV) [15] and coverage-
driven verification (CDV) [16] are successfully used for the verification of small, medium and large
hardware systems.

However, the verification complexity of embedded software is much higher than for hardware.
Hardware design is defined based on modules, which can run in parallel and are mostly syn-
chronous systems controlled by a global clock. Signals are used to transfer the information among
modules, registers and ports and this information is stored in latches at Boolean level. On the other
hand, software has complex data structures, such as pointers, integer, floating-point, trees, chain
lists, unions and structures. Software has an infinite state space due to its dynamic characteristics,
namely, dynamic allocation and recursiveness. The software modules work in a sequential form,
but they communicate with each other based on events or on function calls. Asynchronous inter-
rupts are also used by hardware and software modules to indicate the need for attention. Therefore,
the straightforward application of hardware verification methods is not possible.

The verification of software, especially software with strong hardware dependencies, is still in
its infancy. Considering the experience made in the area of hardware verification, it would be
desirable to use the same principles for the verification of embedded software and its boundary
with the hardware.

'Intellectual property cores are design modules of both hardware or software units used as building blocks within
SoC designs.
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1.3 Identification of the Problem

According to ITRS in 2007 [1] (International Technology Roadmap for Semiconductors) software
is intrinsically harder to verify.

“«

software has more complex structures, dynamic data and a much larger state
space. The most common software verification technique in use today is ’on-chip-
verification’, which entails running the software on a production version of the hard-
ware components. While it allows very fast simulation, as it is required by the intrinsic
complexity of software, its downside is that software verification can only start very
late in the design cycle. Classical formal techniques for software verification are still
too labor-intensive to be widely applicable for SOC, that is, systems with such large
state spaces, and require very aggressively abstracted models of the software appli-
cation. The verification of the hardware/software interface is a challenge on its own,
since it requires verifying the two domains together. To make this task more manage-
able, there is a need for techniques which provide proper abstractions of the interface
activity, solutions to check the correctness of the abstracted driver layers, and asser-
tion checking tools for drivers’ invariants at the non-abstract level. The near-term
challenge will be to develop techniques that allow verification of even elementary and
low-level pieces of software [1].”

Considering additionally the following premises:

* Cis the main used language in the industry [3] for the implementation of embedded software
applications and of hardware-dependent software such as drivers and firmwares.

* The formalization of the requirements by means of temporal properties improves the under-
standing and the verification of a system.

* The industrial desirable parameters for verification tools [17] are error diagnosis, perfor-
mance with complex systems, integration in the design flow, automation and verification
options.

The main problems for the verification of embedded software can be identified as follows:

* As aforementioned by ITRS, the industry has been focusing on testing, co-debugging and
co-simulation techniques. However, these conventional dynamic verification methods can
be started only very late in the design cycle and do not have the ability to monitor internal
variables to discover violations close to the error source. Therefore, they are not efficient
error diagnosis methods. Additionally, they have coverage problems, that is, only the paths
executed during the simulation can be monitored.

» Formal method techniques are efficient for the verification of temporal properties, but only
up to medium sized software systems. They have performance limitations with industrial
case studies. Even the combination of static verification approaches (i.e., model checking
with theorem proving) has limitations to find design errors in the deep state space of large
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embedded software. These formal approaches have not focused on hardware-dependent soft-
ware (e.g., drivers and firmwares). Additionally, the large amount of work needed for the
modeling of suitable formal models raises objections by the verification engineers in industry
to start using formal verification methodologies.

* Dynamic verification is scalable to handle large systems, but it has restrictions concerning
coverage and formalization of requirements. On the other hand, formal verification cov-
ers all possible states with respect to a property, but it is not scalable to complex systems.
The combination of simulation and formal approaches has been focused on hardware veri-
fication, but not on embedded software verification. Additionally, the direct application of
semiformal hardware model checkers to the verification of embedded software is not viable
for large programs [18]. Therefore, there is a gap in the integration of simulation and formal
verification approaches for embedded software, as shown in Figure 1.3.
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testing/simulation conventional and formal verification formal verification
\ v
N
Features ~ - - Features
-~ —_—
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Properties not formalized Disadvantage: Scalability

Figure 1.3: Verification gap between simulation-based and formal approaches

* The current assembly model checkers are able to verify temporal properties in hardware-
dependent software. However, they are dependent on a specific platform and they have
constraints with respect to the size of the embedded software.

In this sense, the existence of a gap including sequential hardware-dependent embedded soft-
ware and verification of temporal properties can be noticed. The conventional methodologies are
not capable to find a suitable solution. To overcome these difficulties, new methodologies us-
ing assertion-based or semiformal verification approaches are proposed in this dissertation to be
capable alternatives to succeed in dealing with the deficiencies of conventional methods.

1.4 Objective, Scope and Contributions of this
Dissertation

The main objective of this dissertation is verification of functional temporal properties in complex
and large industrial embedded software. In order to achieve this goal, a new methodology and
three new algorithms are proposed to overcome the complexity of embedded software aiming at
the identification of errors in a fast, automated and efficient form. Both contributions can be seen
in Figure 1.4.
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A new verification strategy is proposed to cover the integration gap between simulation and for-
mal approaches (Figure 1.3). Due to the aforementioned limitations of pure formal verification, this
dissertation proposes firstly to combine temporal assertions with simulation, which is suitable to
be applied in existing design flows due to the experience of the verification engineers with conven-
tional verification approaches. Thus, the formalization of the requirements by means of temporal
properties improves the understanding of the design and additionally the assertions can be re-used
later with formal verification (Figure 1.4.(A)). Secondly, the combination of assertion-based and
formal verification is proposed to overcome the coverage limitations of pure simulation-based ver-
ification (Figure 1.4.(B)). This hybrid approach can also re-use the already formalized properties
from the previous phase. Therefore, this work intends to extend the consolidated experience in
industry with methodologies that are based on temporal properties and formal verification.
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Figure 1.4: Contributions of this dissertation

This dissertation proposes new heuristics to identify design errors in early stages of the design
and also to cover more system state spaces. These heuristics are best suited for fast falsification,
that is, fast detection of functional errors. This dissertation uses and extends the frameworks Sys-
temC temporal checker (SCTC) [19] and the symbolic bounded property checker (SymC) [20]
(tools are detailed in Section 2.6). However, the applicability of the dissertation results is not
restricted to these tools.

This work focuses on large industrial sequential embedded software with hardware dependen-
cies (e.g., drivers or firmwares) focusing on the C language. The embedded software input is
constrained to the MISRA-C standard [21], which prohibits, for instance, recursive function calls.

The main approach contributions in this dissertation are:

* Two new approaches to integrate temporal assertions in the verification process of embedded
software [22-24]
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These new approaches enable the simulation-based verification of temporal properties in
the early phases of the design process, where the target electronic control unit (ECU) may
still be not available. The first approach, a hardware temporal checker has been extended
with interfaces in order to monitor the embedded software variables and functions that are
stored in a microprocessor memory model. The second approach, a simulation model is
derived from the original C program in order to integrate directly with the hardware temporal
checker. However, these approaches still have coverage limitations.

* A new hybrid verification approach that combines assertion-based verification (i.e., dynamic)
and formal (i.e., static) verification approaches, called SofTPaDS (Semiformal Verification
of Temporal Properties in Hardware Dependent-Software) [25-27]

The classical formal techniques for software verification still need a large workforce to be
widely applicable for industrial embedded software. They are limited to the module size that
can be verified. Furthermore, simulation-based verification still has coverage limitations. To
overcome these limitations, the new hybrid verification approach combines assertion-based
verification with formal verification. Assertion-based verification is used to locate critical
states of a system. These states are basically the initial states of local functions containing
the variables specified by the property. In the formal phase, formal verification performs
the state space traversal on critical states until a threshold limit is reached or a simulative
operation is found. Then, a state is selected out of this state set to re-start the simulation
phase. This semiformal approach goes deeper into the system compared to classical formal
techniques and improves the coverage relative to the simulation-based verification approach.

1.5 Verification Strategy

As aforementioned in Section 1.3, the current verification methodologies applied in industry are
based on conventional testing or static analysis approaches, where the verification of temporal
properties is not supported. This dissertation extends the consolidated experience in the industry
with formal verification features.

The proposed assertion-based and the semiformal verification approaches have as main goal
the verification of temporal properties in embedded software. However, each approach has its
own merits and is better appropriate for one specific scenario. Figure 1.5 presents the verification
strategy for choosing one appropriate approach.

The formalization of the requirements by means of temporal properties is the initial step in this
proposed verification strategy. It enables the understanding about the design and the corresponding
assertions can be firstly applied to assertion-based verification and later re-used with the semifor-
mal verification approach.

Considering the experience with conventional testing methodology in the industry design flow,
the assertion-based verification is the first indicated approach to be applied. Two approaches are
proposed: (1) Verification of C program using a microprocessor model and (2) using a derived
SystemC model.

If the verification engineer has to consider a real scenario (and debugging) in the verification
process, the direct verification of the C program running on a microprocessor model should be

7
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selected. However, this approach requires a microprocessor model, on which the embedded runs.
The microprocessor model also implies in longer verification time due to its co-simulation. On the
other hand, if no microprocessor model is available and a short verification time is required, the
abstracted derived SystemC model approach is better adequate for the verification process. In this
case, for example, the timing reference is not the same as the absolute time from the microprocessor
model.

Nevertheless, a general shortcoming of both previous assertion-based verification approaches
is the low coverage when the temporal properties are high dependent to input variables. This
characteristic is very common, as for instance, in hardware-dependent software due to its hardware-
software interfaces. In this sense, more test cases should be considered resulting normally in
longer verification time. The combination of assertion-based and symbolic simulation addresses
this limitation and is proposed to cover larger state spaces. This approach extends the existing

design flows with formal verification features.

Formalization of
properties

Y

Microprocessor model
approach

Coverage

Speedup

Speedup or
Coverage?

Y

Derived SystemC Semiformal
model approach approach

Figure 1.5: Verification strategy for the developed approaches

1.6 Structure of this Dissertation

This dissertation is structured as follows:

Chapter 2 outlines the main preliminaries and definitions with focus on the main strategies for
embedded software modeling and verification methods.

Chapter 3 discusses the state-of-the-art approaches for embedded software verification with
focus on dynamic verification (e.g., testing, co-simulation, co-debugging and assertion-based veri-
fication), static verification (e.g., static analysis and model checking) and hybrid approaches (e.g.,
combining static and dynamic verification approaches).
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Figure 1.6: Organization of the contributions in the dissertation

Chapter 4 presents two new approaches (Figure 1.6) to integrate temporal assertions in the ver-
ification of embedded software using assertion-based verification (ABV). Firstly, temporal proper-
ties are integrated into a SystemC microprocessor model. Secondly, a SystemC model is derived
from the original C programs.

Chapter 5 summarizes the embedded software modeling (Figure 1.6) in order to extract both
simulation and formal models to be used in the semiformal verification approach based on control
flow automaton (CFA).

Chapter 6 presents a new hybrid verification approach (Figure 1.6) that combines assertion-
based verification (i.e., dynamic) and formal (i.e., static) verification approaches.

Chapter 7 demonstrates the practical usefulness of the new approaches by means of experimen-
tal results obtained over industrial case studies.

Chapter 8 concludes finally the dissertation with a summary and possible future works.






2 Preliminaries

This chapter outlines the preliminary definitions and concepts for the developed verification method-
ologies. The structure of this chapter can be observed in Figure 2.1. It firstly introduces briefly the
C programing language (Section 2.2), which is the most common used language in the develop-
ment of embedded software.

Secondly, the main strategies for the model generation of embedded software (Section 2.3) are
presented. Three-address code is used in all developed approaches as a source-to-source transfor-
mation of the C program aiming at converting the degrees of freedom of a user implementation into
a standard format. The remaining strategies are applied only for the semiformal approach (Chap-
ters 5 and 6). The control flow automaton formalizes the program semantics, however, it cannot
model pointer structures. Therefore, pointer-to analysis should be performed. The following sec-
tions present, on the one hand, the finite state machine representation and the Boolean functions,
which are used for the generation of a formal model. Binary Decision Diagram (BDD) is used as a
compact data structure representation for Boolean functions. On the other hand, SystemC language
is used in modeling and in execution of simulation models of embedded software.

Thirdly, the formalization of the design intent (Section 2.4) by means of temporal properties
and assertions is presented. The finite linear time temporal logic (FLTL) is the temporal logic
supported by the developed verification approaches.

Specification/Requirement

v ,

Design intent Implementation
(Section 2.4) (Section 2.2)
Modeling
Section 2.3

Verification methods and tools
(Sections 2.5 and 2.6)

Figure 2.1: Chapter organization based on the verification process flow

Finally, the verification methods and the correspondent tools (Sections 2.5 and 2.6) are briefly
introduced. The simulation-based tool SystemC temporal checker (SCTC) and the tool Symbolic
Bounded Property Checker (SymC) are the main verification engines used in this dissertation.
Additionally, coverage techniques are explained to evaluate the efficiency of a verification process.
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2.1 Informal Concepts

Concept 2.1. Verification is the process of checking if the design meets its specification. In other
words, it answers the question “are we implementing the design right?”.

Concept 2.2. Validation is the process of checking if the design meets its requirements. In other
words it answers the question “are we implementing the right design?”.

Concept 2.3. Fast falsification is the verification process that aims at fast detection of design
errors. In this case, heuristics are applied in order to reach error states faster and the design is
not fully verified.

Concept 2.4. Full validation is the verification process that proves a property against the entire
design. In this case, the design is fully verified.

Concept 2.5. Deep state is a state that needs a long path execution to be reached.

2.2 Embedded Software Programming Language

2.2.1 C Language

The C language [28] is an imperative and procedural language. The C language is the most com-
mon used language in the development of embedded software. Therefore, it is chosen as an input
language for the developed verification methodologies. C allows high level control structures, data
manipulation, low-level manipulation of memory and bitwise operations. Therefore, C is mainly
used for the implementation of system software such as operating systems, device drivers and
embedded software applications.

2.2.2 MISRA-C

MISRA-C [21] is a standardized set of coding guidelines for the C language, applied in the auto-
motive industry and developed by the Motor Industry Software Reliability Association (MISRA).
This standard has currently 141 rules, of which 121 are required rules and 20 are recommended
rules. For example, this standard forbids

¢ function recursion,

* arithmetic operation on pointers,

* assignment operators with expressions which return Boolean values,
* goto and continue statements and,

* dynamic memory allocation.

12
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2.3 Strategies for Formal and Simulation Modeling

The modeling of embedded software should follow some important pre-processing techniques,
which will be introduced in the following sections.

2.3.1 Three-address Code

Definition 2.1. Three-address code (3-AC) is a language independent for intermediate code rep-
resentation. Each instruction in the three-address code can be described as a 4-tuple 3 — AC
= (OP, Operandl, Operand2, result) where:

* OP can be a unary or binary operator,

* Operandl,Operand2, result are variables, constants, or compiler-generated temporary
variables.

The three-address code is normally used by compilers in order to support code transformations.
Expressions containing more than one fundamental operation, for instance p := x + y * z, are
decomposed into an equivalent series of instructions, such as

t1:=y~z; => 4—tuple (+,y, z,t_1) !
p:=x+t1; => 4-—tuple (+, x,t.1, p) 2

The CIL (C Intermediate Language) [29] framework generates 3-AC of C programs and is used
in the modeling phase of simulation and formal models for embedded software, as presented in
Section 5.2.

2.3.2 Pointer-to Analysis

Pointer structures cannot be modeled by a control flow automaton (see next Section 2.3.3) [30],
therefore, it is necessary to obtain information about where each pointer may point to within the
program. A pointer is a variable that contains the memory address of another variable. The & sign
is the reference operator and gives the address of a variable. The * sign is the dereference operator
and gives the variable’s content to where the pointer is pointing to.

Definition 2.2. Pointer-to analysis, or alias analysis, is a static code analysis technique that es-
tablishes which pointers can point to which variables or storage locations.

There are different approaches to compute the points-to-set information [31]:

* Flow-sensitive analysis computes analysis for every program point and requires iterative
data-flow analysis.

* Flow-insensitive analysis determines analysis for every procedure and makes no distinction
of the order in which the statements are executed. This approach can be computed in linear
time.

The flow-sensitive analysis can be more precise, but it is less efficient than flow-insensitive
analysis.

13
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2.3.3 Control Flow Automata

In order to extract the operational formal semantics of programs, a formalization of the program
semantics is required. A labeled transition system can describe the possible computational steps
based on a graph representation such as control flow automata (CFA) [30].

Definition 2.3. A labeled directed graph is a 3-tuple G = (V, 2, —) where:
* V is a finite set of vertices,
* Y. is a finite set of labels,

e — CV x X x Visa finite set of edges.

!

oge . . . 0 ] k7
Definition 2.4. A path in G is a finite sequence vy = Vgpever U Z Vjyeees Uk z= v, of edges such that
v; = v;y1 for each 0 <@ < k, with each v; — v; €q.

Definition 2.5. A control flow automaton is a 5-tuple CFA = (Q, ¢in, Gout, X, —) where:
* () is a finite set of locations,
* ¢in € Q is an initial location,
* Qout € Q is an exit location,
* X is a finite set of variables,
* — C @Q x Op x Q is a finite set of transitions.
Op is the set of operations defined by:
e cst i=ceQ,
e var =z € X,
o expr = cstlvar|expr e expr, withe € {+, — *,\},
* guard ::= expr o expr, witho € {<, < = #,> >},
* Op ::= guard|var := expr.

For example, the CFA generated by BLAST (Berkeley Lazy Abstraction Software Verification
Tool) front-end [30], is essentially a control flow graph, where each edge of the graph represents
a statement, also known as transition. There are three types of transitions, Block, Pred and Skip.
The transition Block denotes an assignment in the C program. The transition Pred is related to a
logic formula, as for example an if conditional statement. The next transition after Pred depends
on the result of the conditional formula. Finally, the transition Skip represents a transition from one
state to the other without any assignment or assumption. The CFA has a defined entry node from
where the execution starts. Listing 2.1 and Figure 2.2 show an example of a CFA from a simple C
program.

14
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Block(input=i_input;)

int input;
P Block(cnt=cnt+1;)
int main(void)
{
intcnt=0;
while(cnt != input){
cnt++;;

}

return(0);

}
Listing 2.1: A simple C program

Block(Return(retres);)

=T N Y T N O L N

IS

Figure 2.2: CFA representation

2.3.4 Finite State Machines

The control flow automaton specifies at high level the semantics of embedded software. Complex
non-linear arithmetic operations (e.g., multiplication and division) and pointers are still too com-
plex structures to be applied to formal verification engines (e.g., model checkers). Therefore, the
CFA representation should be synthesized into a finite state representation. Finite states machines
are typically used for modeling finite state systems in formal verification.

Definition 2.6. A Finite State Machine (FSM) [14] is a 6-tuple, M = (S, Sy, X, A, T, O), where
o S ={s1,..., Sn} is a finite set of states,
e Sy C S is the set of initial states,
* Y is the input alphabet,
* A is the output alphabet,
e T: S5 x X — S is the transition relation function,

* the output relation function for

— Mealy machine is O : S x X — A,
— Moore machine is O : S — A.

15
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Mealy [32] and Moore [33] machines are mainly used to model FSMs. In the Mealy machine,
outputs are determined based on its current state and on its input (i.e., O : S x X — A). That is,
the state diagram includes both input and output signals for each transition. In the Moore machine,
the outputs are determined only by the current state and do not depend on the input condition (i.e.,
O : S — A). The state diagram for a Moore machine includes an output signal for each state. The
Mealy machine leads often to a fewer number of states [8].

2.3.5 Boolean Functions

A Boolean function describes how to determine a Boolean value output based on logical computa-
tion of Boolean inputs. It plays an important role in the modeling and verification of software and
hardware designs.

Definition 2.7. A Boolean function [14] with n inputs is a function of the form f(x) : B" — B,
where

* B =1{0, 1} is a Boolean domain and n is a non-negative integer,
o v = (x1,%9,...,0,) € B", and x; € B.

A Boolean function can be described by a Boolean formula which describes how to determine a
Boolean value output from Boolean inputs based on Boolean operations.

Definition 2.8. A Boolean formula is defined as an expression with the following grammar:

expr:: =0 1| (expr)
| < variable >
“expr (OR operator) 2.1

“«

| expr

| expr “&*“ expr  (AND operator)

u' 6«

expr (NOT operator)

The definitions in the following subsections are based on [14] and [34].

2.3.5.1 Support Set

Definition 2.9. The support of a formula f (denoted by supp(f)) is the set of all variables in a
Boolean function f (e.g., supp(x1 V (x4 A x2)) = {x1, T2, T4}).

2.3.5.2 Minterm

Definition 2.10. A literal is an instance of a Boolean variable or of its complement (e.g., x1, T1).
Definition 2.11. A cube is the conjunction of a set of literal functions.

Definition 2.12. A minterm is a conjunction of n variables (i.e., product of n literals) of a Boolean
function f : B"™ — B in which each of the n variables appears once, either complemented or
uncomplemented.
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2.3.5.3 Quantification

The existential () and universal (V) quantification are important operations used for the manipu-
lation of Boolean formulas.

Definition 2.13. Given a Boolean function f : B" — B, with n input variables (x1,...,X;_1,Ti, Ti11..., Tp),
the existential quantification of variable x; is (1, ...,x; 1,0, Tix1..., o)V f (21, ooy i1, 1, Tig e, Tn),
denoted by Jx;.f [34].

Definition 2.14. Given a Boolean function f : B" — B, with n input variables (x1, ..., X;_1, Ti, Ti11..., Tp),

the universal quantification of variable x; is f(z1,...,x; 1,0, i1 1., Tp)Af(21, oo, i1, 1, T, T),
denoted by Vx;.f [34]. .

2.3.6 Binary Decision Diagram

Binary Decision Diagram (BDD) is a compact data structure representation for Boolean functions
[35]. Bryant [36] proposed the Reduced Ordered Binary Decision Diagram (ROBDD) by applying
restrictions on BDDs, which results in a canonical representation [14].

Definition 2.15. A Binary decision diagram is a rooted directed acyclic graph.
A Boolean function can be built with a BDD obeying the following restrictions:
* One or two terminal nodes labeled by 0 or by 1;

* A set of vertex variable nodes v, where the two outgoing edges are given by two functions
if(v) and else(v);

* No variable appears more than once in any path from the root to a terminal node.
Definition 2.16. A Reduced Ordered BDD (ROBDD) obeys the following optimization rules:

* An ordered BDD (OBDD) follows a given ordering < over all non-terminal variables (e.g.,
var(u) < var(v), ifv is a descendant of u);

* Non-redundant subgraphs;
e Non-redundant terminal or non-terminal nodes.

Figure 2.3 depicts the derivation of an ROBDD from the BDD function f(xy, z2,23) = (21 A
x9) V z3. Note that on applying the first transformation, the number of terminal nodes are reduced
from eight to two, and then the number of nonterminal vertices are reduced by two after the second
transformation. On application of the third transformation rule another two vertices are eliminated.
From now the term BDD will be used to mean ROBDD, since always the BDD is used in its ordered
and reduced form.
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Figure 2.3: Transformation of BDD to ROBDD

2.3.7 SystemC Modeling Language

SystemC [37] is a C++ library developed to support the modeling of hardware and software mod-
ules at the system level. The whole library is written in ISO/ANSI compliant C++ [38] and there-
fore can be compiled with all standard compliant C++ compilers. It constitutes a domain specific
language embodied in the library’s data types and methods and can also profit of the object ori-
ented standard constructs, which allows a larger flexibility in the modeling of embedded software
and hardware modules through templates and inheritance features. The SystemC core language
is built around an event-driven simulation kernel which allows efficient simulation of compiled
SystemC models. SystemC is an IEEE 1666-2005 standard [39] and is further developed by the
Open SystemC Initiative (OSCI).

The core language is constituted of abstract elements, like events, processes, modules, ports,
interfaces and channels. In the following, structural, functional and communication aspects of
SystemC are briefly defined:

* The design structure is defined by means of modules (sc_module) in SystemC. It may contain
both functional description as well as further modules like in an hierarchical design.

* The design functionality is specified by means of processes. SystemC has two types of
process: methods (sc_method) and threads (sc_threads, sc_cthread). Methods are used to
describe hardware at register transfer level (RTL) and its control flow cannot be suspended
during the execution. Threads are used in the modeling of both software and hardware
models at higher level of abstractions and they can be suspended by the wait() function. C++
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language as well as SystemC specific data types can be used, such as sc_bit, sc_int, sc_bigint,
sc_bv. sc_int<N>, for instance, represents signed two’s complement integers and N is the
number of bits of an integer variable. sc_event implements an event that allows to wake up
a suspended process (i.e., thread) by means of the notify() function, which implements the
immediate notification for the process.

* The design communication is defined by means of port, interface and channel concepts,
which are used specially in the modeling at system level.

Due to its flexibilities and closeness to the hardware, the SystemC language is chosen to the
modeling of simulation models of embedded software. A further overview about the SystemC
specification language can be found in [37].

2.4 Assertions and Temporal Logic

Assertions and temporal logics are used to describe sequences of states in reactive systems. A
formula is satisfied if a path in the system corresponds to the sequence of states that the formula
represents. Properties are classified as safety or liveness properties. Safety property informally
means that something bad never happens. Liveness property informally means that something
good will eventually happen.

An assertion is a false-true statement about the design’s intended behavior, which is to be verified
[15]. Assertion languages, such as the IEEE standard Property Specification Language (PSL)
[40] and Open Verification Library (OVL)[41], are used to express design behaviors in terms of
sequences of events. Basically, properties are composed of three layers:

1. The Boolean layer consists of propositions and Boolean connectives.
2. The temporal layer adds operators for temporal reasoning to the Boolean layer.

3. The verification layer provides indicators for verification tools in how to check the property.

The first two layers make up the actual property that relates parts of the system under verification,
thus describing desired or error states. The third layer is used to control the high-level behavior
of the verification tools (e.g., if a property violation should stop the verification process or simple
emit a logging message).
Definition 2.17. Temporal logic expresses the design behavior over time.

Linear Temporal Logic (LTL) and Computational Tree Logic (CTL) are the two main types of
temporal logics used in the verification process. Computational Tree Logic* (CTL*) is the most

expressive logic which contains the two sub logics CTL and LTL. Temporal logics are traditionally
defined in terms of Kripke structures.

Definition 2.18. Let A be a set of atomic propositions’. A Kripke structure K over A is defined as
a 4-tuple, K = (S, Sy, T, L) where

!'A proposition is a statement that can be either true or false. It must be one or the other, and it cannot be both. An
atomic proposition is one whose truth or falsity does not depend on the truth or falsity of any other proposition
[14].
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* S is the set of states,
e So C S is the set of initial states,

T C S x S is the transition relation that must be total, that is, for every state s € S there is
a state s € S such that T(s, s ),

o L : S — 24 is the function that labels each state with a set of atomic propositions that are
true in that state.

A Kripke structure is basically a graph having the reachable states of the system as nodes and
state transitions of the system as edges. It also contains a labeling of system states with properties
that hold in each state.

In the following, the linear temporal logic (LTL) will be focused in this dissertation for being
a suitable logic to both simulation-based and formal verification approaches. A further overview
about temporal logics can be found in [42].

2.4.1 Linear Temporal Logic

In linear temporal logic (LTL), propositions are checked along a linear discrete time [42]. Figure
2.4 depicts the semantics of LTL operators.

Definition 2.19. Let Vars = {a,b,c,...} be a finite set of distinct symbols, called the variable
domain. Then the LTL syntax [14] is defined as follows,

bi=v | 16| 6N | SV | 6o
| Go | Fé | oUo | Xo
Where, v € Vars,
X is the neXt time operator, 2.2)
F'is the eventually (Finally) operator,
G is the Globally operator,
U is the Until operator.

2.4.2 Finite Linear Time Temporal Logic

The Finite Linear time Temporal Logic (FLTL) [43], developed in our group at the University of
Tiibingen, is an extension of the pure LTL by time bounds, which can be annotated to the temporal
operators. Furthermore, the formulas are interpreted over finite runs and the changes of variables
are represented by traces.

Definition 2.20. The syntax of FLTL is recursively defined over the variable domain:

pr=v[!¢|dNG| Xim) & | Finm) & | Gnm) @
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Fa () @ @ .

Ga () O, @ (@--»

xa (O @ O O--»

aUb (@) (a) (a) (b)--»

Figure 2.4: Semantics of LTL operators

withv € Vars, m € N and n € NU {oo}.

Definition 2.21. A trace Tn..m] (m > n) is a mapping T : {n,...,m} — 2V&S. The set of all
traces is denoted by T. The set of all traces T'|0, m] with m = oo is denoted by T°.

Finite traces may be extended. These extensions are used to define formally the semantics of
FLTL over a three valued logic (see Section).

Definition 2.22. Let T'[0,m|,T"[0, n] be two traces with n > m. T" is called a trace extension of
T, if for all 3 with0 < 3 <m: T(j) = T(j)

FLTL formulas are interpreted over traces. The satisfiability relation over infinite traces can be
defined as:

Definition 2.23. The satisfiability relation |=;C (7°°,FLTL) is defined recursively over the struc-
ture of FLTL formulas:

leia 54 GGT(Z)

TE ~f & T f

TE fANg & Tk fandT =g
TEXmf © TFimf

T i Gunf & foralljwithi+m <j<i+n

holds that T |=; f
T =i Fpunf < thereexistsajwithi+m < j<i+n
such that T =, f

Where a is a propositional variable, f is a FLTL formula, X, G, I’ are temporal operators and
m,n,t € N. The standard temporal operators (F, G) are special cases of the timed operators by
instantiating m, n with 0 and oo, respectively. The semantics of FLTL is given by:

Definition 2.24. Let f be a LTL formula and T € T be a trace. T is said to satisfy f (i.e. T |= f)
if T ko f.
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Thus, logic FLTL interprets LTL formulas over finite traces. A formula has one of three states
with respect to a given trace:

Definition 2.25. Let T'[0..n] be a trace and f be a FLTL formula. f is called true with respect to
T (denoted by T' = f) if for all trace extension T"[0..00] of T holds that T' |= f. f is called false
with respect to T if there exists no trace extension T'[0..00] of T such that T' |= f. Otherwise [ is
called pending.

2.4.2.1 Accept-Reject Automata

The FLTL formulas can be translated into AR-automata (AR).
Definition 2.26. The Accept-Reject automata is a 5-tuple AR = (S, —, A, R, Sy) where
* S = 5s1,..., 8, IS a finite set of states,
* — is the deterministic transition relation,
» A C S is the set of accepting states,
* R C S is the set of rejecting states, and
e Sy € S is the start state of AR.

Let AR be an deterministic automaton and 7[0..m] be a trace. s; — s; expresses that there is
a transition from s; to s; labeled with a. A run of 7" with respect to AR is a sequence of states

T .
50, S1, ---, Sp such that s; — s;41 holds for 0 <7 < m:

* T is called an accepted trace if for the run s, s1, ..., ;1 induced by 7', there is a j with
0 <j<m+1andwith s; € Aand foralli < jholds s; ¢ R. This particular run is called
an accepted run.

* T is called a rejected trace if for the run sg, sq, ..., S;+1 Induced by 7', there is a j with
0 <j<m+1andwith s; € R and for all i < j holds s; ¢ A. This particular run is called
a rejected run.

* A pending state is used to represent an intermediate state while no decision can be made.

req”~l!ack req~tack

Figure 2.5: AR-automaton for the FLTL property G|[1|req — F'[2]ack
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Figure 2.5 shows the AR-automaton that corresponds to the FLTL property G[1]req — F[2]ack.
This property checks globally that whenever a request req becomes true, the acknowledgment ack
triggers within two steps. The states labeled with R, A, P and I represent rejecting, accepting,
pending and initial states, respectively.

2.5 Verification Methods

This dissertation focuses basically on simulation-based and on symbolic verification.

2.5.1 Simulation-based Verification

In the simulation-based verification, stimulus is provided to exercise the functionality of the design.
Only one path of the state space can be exercised at each time. Therefore, many simulation runs
should be performed in order to achieve better coverage results.

As presented in Figure 2.6, the simulation process consists of four major tasks and modules:

1. Generation of the functional tests (i.e., driver module). The driver module is responsible for
stimulating the design [44].

2. Execution of the test stimulus on the design (i.e., design under verification (DUV));

3. Determination whether the design behavior satisfies its specification during the execution
(i.e., monitor module). The monitor module is responsible for observing the behavior of the
design. Monitors may be split into two types:

* Interface monitors that monitor the DUV interfaces.
* Internal monitors that monitor the DUV internal components.

4. Collecting coverage statistics (i.e., coverage module). The coverage module is responsible
for measuring the efficiency of the verification process.

The aforementioned execution task is performed by a simulator. The testbench is responsible for
the other three tasks, that is, stimulus generation (e.g., random constrained), checking results and
coverage measurement. A testbench is built to functionally verify the design by providing mean-
ingful scenarios to check that for a given input, the design performs according to the specification
[44]. If enough test cases have been applied to the DUV resulting in the expected coverage mea-
surements, the simulation-based verification can be finished. Otherwise, the user has to manually
readjust the stimulus generation in order to achieve the desired coverage results.

2.5.2 Symbolic Verification

Symbolic model checking based on Boolean decision diagrams represents formulas and functions
in a symbolic compact form. In symbolic verification, the state transitions of the design under
verification are represented by a transition relation. The successors are a set of next states that can
be reached from the initial state in one step. This process to compute the next states is referred as
image computation. The predecessors are also a set of states from where the initial state can be
reached in one step and this is referred as pre-image computation.
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Figure 2.6: Testbench modules

2.5.2.1 Transition Relation

For a synchronous design with m state variables and £ input variables, the state set consists of

* current states @ = {q1, ..., gn} € B™,
s nextstates Q = {q,,...,q,,} € B™ and
e inputs I = {xy,...,1;} € B".

The partitioned transition relation [45] is constructed based on the piece of combinational logic
that determines how a state variable ¢; is updated.

Definition 2.27. Let f; be the next state function, then q;’s value in the next state is given by
q; = fi(Q, I), which defines the whole transition relation T as
T(¢, 7, ¢) =TT, T, q) N NT(T, T, qy,), where T,(T, 7, q;) = (q; = fi(¢, 7).

For instance, lets consider the transition relation of the CFA representation in Figure 2.2. Con-
sidering that Q = {q1, ¢2, g3} denotes the current state set variables and Q" = {q;, ¢, g5 } represents
the next state set variables. The cond variable represents the result of the conditional statement.
Each of the aforementioned states represents a numerical value, for instance, the state (1g; AlgaAlgs)
represent the numerical 0, state (g3/A!ga/Alg; ) represent the numerical 1. The transition relations for
Figure 2.2 are given by:

» T5(Q, Q:,),) = (CI:; = ((lgsAlgeAlgr) V ((gsA\lgaANlgr) Aleond) V (g3 A aA\\qr))),
« To(Q, ) = (¢, = (((gsNlg2&elqn) A cond) V ((gsAlgaAlgr) Aleond))),
* T1(Q,q1) = (¢ = (g5 A 2N y).

Given a BDD for the individual transition relation 73, it is straightforward to compute the BDD
that represents the whole monolithic transition relation 7" as follows,

The transition relation is monolithic because it is represented by a single BDD.
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2.5.2.2 Image and Pre-image Computation

The symbolic verification is performed by repeatedly computing all the reachable states from the
defined initial states. This computation is also called reachability analysis . Computing the reach-
able states is done step by step by collecting the successors of the current state set at every step and
replacing the current state set by the successors for next step. This one step traversal or successors
collection is called image computation [14]. Considering the current set of states S(()), where
Q={q1,q,..,qn} € B™ is the set of state variables.

Definition 2.28. The symbolic image computation is defined as
Image(S(Q).T) = (3T ET(S@Q) AT(T. T, 7))o

The operation ¢ < ¢ performs the replacement of the current state variables by successor
state variables.

The pre-image computation traverses backwards by collecting the predecessors of the present
state set.

Definition 2.29. The symbolic pre-image computation is defined as

Tmage(S(Q).T) = 3¢ GT(S@Q)AT(T. 7. 7 D)o

The operation ¢ « ¢ performs the replacement of the successor state variables by current
state variables.

2.5.2.3 Fix-point Computation

Definition 2.30. The fix-point[14] is a condition where no more new states are available to be
explored.

Listing 2.2 delineates the basic fix-point state space computation algorithm. Line 2 initializes a
variable with the initial state set. Lines 2-6 is the fix-point loop. The new states that are reached by
the image computation are added to the variable fix,.,. The fix-point is reached when no more
new states are available and the loop conditional is not more satisfiable.

fix_point(S(Q))
fiwnew = S(Q)!
do
fixold = f’ixnew;
5(Q) =image(5(Q));
fi-rnew = fixold U S(Q),
while ( fixnew 7é fi-rold )

Listing 2.2: Fix-point iteration of state space traversal

B T Y N T
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2.5.3 Coverage Metrics

Coverage is an important technique for measuring and showing the efficiency of the verification
process. Coverage is a metric responsible for measuring the completeness of the verification pro-
cess.

The coverage process starts with a systematic identification of the corner cases? in the system
specification. These critical points are converted into functional coverage monitors that will help
to monitor whether the design is fully exercised or some remaining corner cases could not be
accessed.

Code-based or functional coverage are the two main types of coverage metrics. Code-based
coverage inspects the code directly in order to measure how well the program has been exercised
with focus on statement, branch and path coverage. However, good code coverage results do not
mean that the functionality has been well exercised.

On the other hand, functional coverage focuses on the functionality of the design. It is used to
check that all important aspects of the functionality have been tested. The three main functional
coverage analyzes are:

 [tem coverage shows if all legal values of a variable has been tested;

* Transition coverage is applied for state machines and expresses which legal transitions have
been covered;

* Cross coverage provides the cross product of item or transition coverage and shows if this
combination has occurred;

* Property coverage determine the total number of properties from a set of properties that were
evaluated, that is, that reached the accept or reject states. This measurement approach has
been already applied to the verification of hardware designs [46].

Figure 2.7 shows an example of the functional coverage of an id variable. By analyzing the
coverage results, it can be seen that important corner cases (i.e., values 0 and 56) were missed
during verification.

Functional coverage has been mostly applied to simulation-based verification to measure its
efficiency. However, it can be applied also to formal verification approaches in order to estimate
the completeness of a set of properties, verified by model checking [47].

2.6 Verification Tools

This dissertation focus on the verification tools: SystemC temporal checker (SCTC) and symbolic
bounded property checker (SymQC).

2Corner case state is a combination of parameters or conditions in extreme levels of operation that is difficult to be
tested and covered.
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Figure 2.7: Functional coverage example [2]

2.6.1 SystemC Temporal Checker

SystemC temporal checker (SCTC) [19, 48] is a hardware oriented temporal checker developed at
the University of Tiibingen. SCTC supports specification of properties either in a subset of PSL
(Property Specification Language) [40] or FLTL (Finite Linear time Temporal Logic) [43].

The SystemC checker supports the specification of properties in SystemC via a library exten-
sion. It is able to check properties in temporal logics with a linear time model, which is well suited
for simulation contexts. SystemC provides no built-in language mechanism for temporal property
specification. SCTC has a synthesis engine which converts the plain text property specification
into a format that can be executed during system monitoring. The property is translated to Accept-
Reject automata (AR-automata) [43] in the form of Intermediate Language (IL) and later to a
monitor in SystemC. The motivation for IL is producing a space-efficient and executable represen-
tation of properties for the validation process. The commands available in IL can be grouped into
four categories: time, compare, branch and return statements. Table 2.1 shows the IL statements.

Category | Statement | Semantics

time WAIT n wait n steps

compare | CHK s compare signal s to zero

branch JMP n jump to address n (possibly depending on pre-
JEQ n vious CHK)
JNE n

return RET T/F | terminate with true/false result (possibly de-
RNE T/F | pending on previous CHK)
REQ T/F

Table 2.1: The categorized IL statements

The translation of linear temporal logic formulae to IL converts temporal operators into se-
quences of IL statements. This algorithm works bottom-up and merges subformulae until the
whole expression is translated. The main operation is merging two subformulae.
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SCTC can also check properties which include complex structures using a base class Proposi-
tion. This class allows wrapping arbitrary source code entities as named objects, and will be further
discussed in Section 4.1.2.

The checker main loop is shown in Listing 2.3. The check() method depends on the represen-
tation of the AR-automata. For an exhaustive enumeration of the transitions the valuation of all
propositions present in the property provides an index into the current state’s transition table. Then
the next state is checked for being the automaton’s accept (reject) state, thus indicating validation
(violation) of the property. Otherwise, the automaton remains in pending state.

checkerLoop(in: activationQueue, activeList)
for all properties p; in activationQueue
if p;.timestamp < now
activeList.append(p;)
activationQueue.remove(p;)
for all properties p; in activeList
p;.check()

B T Y N T

Listing 2.3: The main loop of the checker process

2.6.2 Symbolic Bounded Property Checker

The formal verification tool Symbolic Bounded Property Checker SymGC [20], which was devel-
oped at the University of Tiibingen, combines bounded property checking and symbolic traversal.
It takes a system description in a finite state description language, and temporal expressions in
PSL or FLTL. Similar to the SCTC the temporal logic formulas are converted to AR-automata
[43]. Later SymC translates both the system description and the AR-automata into a BDD form.
SymC traverses the design and the properties simultaneously and observes the state of the proper-
ties and reports success or failure to the user.

// tis the checking time bound
symbolicSimulate(in: t)
S = Seys N SAr
while iteration < t
S :=image 4r(S) /Compute image of AR-automata.
if (checkUniversally)
if (Ssys N ARycject 7 0) reportTrue();
if (Ssys N ARqccept = Ssys) reportFalse();
if (checkExistentially)

© o N ! R W N =

if (Ssys N\ ARyeject 7 0) reportTrue(); 10
if (Ssys N ARgccept = Ssys) reportFalse(); 1
S :=image7(S) /Compute image of the system. 2

Listing 2.4: Static verification using SymC
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Listing 2.4 delineates the main computation loop of the symbolic simulation algorithm. After
forming a product state, SymGC first computes the successor states of the AR-automata and checks
the termination condition of the property. Informally, the condition is defined as follows:

Universal If one reject state of the AR-automata is detected in the current state set, a violation of
the property is found. If all states in the current state set are accepting states, a validation of
the property is found. Otherwise, the property is still pending.

Existential If one accept state is detected in the current state set, a validation of the property is
found. If all states in the current state set are rejecting states, a violation of the property is
found. Otherwise, the property is still pending.

In the second step of each iteration SymC performs one symbolic execution step on the system
under inspection. During image computation the conjunction of all partitions on-the-fly is built to
obtain the successor state set.

2.7 Summary

This chapter has introduced the main concepts that will be used in this dissertation. Firstly, the
main embedded software language covered in this dissertation was briefly introduced. Secondly,
the main strategies for modeling embedded software were presented. Thirdly, the formalization
of the design intent by means of temporal properties and assertions were presented. Finally, the
verification methods and the respectively tools were briefly introduced.
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3 State-of-the-art

The current industrial choice for verification of embedded software has been focusing on dynamic
approaches such as testing, co-simulation, co-debugging and co-verification, due to the established
know-how by the verification engineers in the simulation area and to its graphical visualization
options. Static analysis is also an automated approach that is already covered by industry. However,
these approaches have limitations that will be explored in this chapter.

The verification of temporal properties in embedded software is getting more importance due
to its benefits for the formalization of the system requirements, observability and debug ability.
The main related approaches to this topic are assertion-based verification, model checking and
hybrid approaches. The main merits and shortcomings in the current temporal property verification
approaches for embedded software will be discussed in this chapter.

Figure 3.1 illustrates the taxonomy of embedded software verification approaches and the re-
mainder of this chapter. Firstly, it deals with dynamic verification, which needs to execute the
embedded software during the verification process. Dynamic verification focuses on testing, co-
simulation, co-verification, debugging and assertion-based verification. Secondly, static verifi-
cation verifies the embedded software without its execution. Static verification is presented with
focus on static analysis and model checking approaches. Theorem proving demands skilled user it-
eration and will be discussed only in combination with other static verification approaches. Thirdly,
hybrid approaches are focused on the combination of static approaches and of dynamic-static ap-
proaches. Finally, the verification approaches will be compared and the unaddressed problems will
be discussed.

Static (Section 3.2) Dynamic (Section 3.1)

* Testing

* Static analysis

* Co-simulation

(Section 3.3)

* Model checking +
theorem proving

* Symbolic model checking
- SAT-based
- BDD-based

* Co-debugging

. * Co-verification
* Assertion-based +

model checking

* Explicit model checking

* Assertion-based
verification

Figure 3.1: Taxonomy of embedded software verification approaches
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3.1 Dynamic Verification

The dynamic verification focuses on testing, co-simulation, co-verification, co-debugging and
assertion-based verification approaches. The main advantage of dynamic verification is that the
whole system can be verified to traverse more deeply into the system state space. However, it is an
incomplete approach, that is, it faces the coverage problem.

3.1.1 Testing, Co-simulation, Co-verification and Co-debugging

Conventional verification methods to check embedded software errors are based on testing, co-
simulation, co-verification and co-debugging. Embedded software is mostly described using the
C programming language. Input sequences, also known as test cases, are applied to the design
in order to exercise critical execution traces. The design computes output sequences with respect
to the applied test cases. Both input and output sequences are created and checked, respectively,
in different forms: manually, semi-automated and automated. The stop criteria is determined by
coverage metrics such as code coverage or functional coverage.

Kaiser [49] presents the Systemtests approach at NEC Electronics company. After the design of
the embedded software, a testing environment is created to exercise its main functionalities. Test
case functions are defined manually by the designer with different parameters and different sequen-
tial calls. Both embedded software and test case functions are applied to the target hardware and
the results are manually analyzed based on memory footprints using JTAG' interfaces. Turner [51]
from Accelerated Technology presents a simulation environment to enable testing and validation
of automotive embedded software applications. This simulation environment provides a human-
machine graphical interface (e.g., a virtual steering wheel with cruise control, dashboard display,
brake and gas pedals) so that the designer can define manually input parameters and observe man-
ually the responses of the system. Genetic algorithms [52] are a search technique used to find
approximate solutions for optimization problems. They can be applied in the testing approach to
automize the generation of test data sequences that violate a desired requirement for the embedded
software, as presented by Pohlheim ez al. [53]. In this approach, the user needs manually

1. to define the test objective function (i.e., the desired requirement to be violated),
2. to describe the search space (i.e., the description of the input sequences),

3. to describe the objective (fitness) function and

4. to analyze the generated counterexamples.

In this approach, the initial population is randomly generated corresponding to the different combi-
nations of input sequences. The requirements determine the fitness of the test cases. The selection
operation decides which test cases are selected for reproduction of new input sequences by means
of a mutation operation. The new population (i.e., new test cases) is joined to the previous genera-
tion (i.e., old test cases) and the whole process is repeated. This approach automates the generation

'JTAG (Joint Test Action Group) is a hardware interface based on the IEEE 1149.1 standard and used for scan testing
of printed circuit boards [50].
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of test data sequences, however, it cannot guarantee the violation of the desired property. Henry et
al. [54] present improvements of testing using simulation at the modeling level using MATLAB.
In this work, a set of functions are responsible to generate test cases for the input variables aim-
ing to cover the desired functionalities of embedded software. These test cases are based on the
specification of the software. They intend to mimic the system behavior and to test stable/unstable
conditions. A further overview about embedded software testing can be found in [11].

In co-simulation approaches, usually the embedded software engineer uses cross-compilers, in-
struction set simulators (ISS) and/or hardware engines (e.g., in-circuit-emulators, simulation ac-
celerators or rapid prototyping boards). In heterogeneous environments such as C and hardware
description languages (HDL) (e.g., VHDL and Verilog), the communication between embedded
software and hardware modules is performed by procedure calls or inter-process communication
[55], decreasing the simulation performance. The use of C/C++ system description languages (e.g.,
SystemC) enables the design and simulation of both hardware and software modules concurrently
in a single environment.

Post et al. [56] describe a design and co-simulation platform for embedded software (wireless
IP) based on SystemC. The SystemC-based test environment is responsible to integrate the test
case modules, which generate stimuli for the protocol stack, for the hardware components and
for the embedded software (executed on an instruction set simulator). Every test case scenario
for a specific module is manually defined in SystemC by the designer. Later these test cases can
be reused at the integration-level testing phase. Nakamura ef al. [57] present an approach to
enable a part of the design to be simulated on a workstation and another part to be emulated in a
FPGA board. The emulator hardware engine is used to speed up the simulation of cycle accurate
microprocessor models. A synchronized execution between the simulator and the emulator is
achieved based on shared register communication. This approach is faster compared to the co-
simulation at register-transfer level (RTL), but the test cases have to be manually defined by the
designer.

In order to automize the generation and the checking process, and the coverage measurements of
simulation, the coverage-driven verification (CDV) approach has been successfully used to verify
hardware designs, for instance in the e language [58]. Winterholer [59] presents incisive software
extensions (ISX), an extension of CDV to the embedded software. ISX provides communication
with the software running on the embedded processor and it does this in a model and processor
independent manner. This is achieved through a mailbox (i.e., a shared buffer) located in the
processor’s memory map. The mailbox is written to and read from both by software running
on the embedded processor and by the verification environment. The verification environment
writes tasks to the mailbox so that an embedded software wrapper may notice these tasks and
act upon them. The mailbox gives the verification environment the ability to indirectly control
and observe activity in the embedded software. This methodology was evaluated by means of
an industrial case study by Lettnin et al. [2]. Although, the reuse methodology of e has been
applied to reuse the testbenches on new projects, the verification engineer still has to manually
improve the testbenches to achieve the desired coverage results. If an error is detected by any of
the conventional aforementioned verification approaches, the designer should be able to locate the
error source by means of debugging techniques. In [60], Benini e al. describe the application of
the open-source GNU debugger (GDB) [61] in the hardware/software co-simulation approach. In
this approach, a gdbAgent class implements a wrapper over the instruction set simulators. This
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class is responsible for loading and executing the GDB and for creating Unix pipes to establish
communication channels to exchange GDB commands with the design. However, debugging with
GDB needs intensive manual user interaction to locate the error sources in a design. A further
overview about co-simulation, co-verification and debugging of embedded software can be found
in [50].

3.1.2 Assertion-based Verification

The assertion approach started in the earlier 1970s as part of the theory of program verification to
help the debugging process of complex software modules [62]. Assertion is a false-true statement
about the design’s intended behavior and is used to describe sequences of states in reactive sys-
tems. Nowadays, also hardware description languages supply various forms of assertion support
(e.g., OVL and PSL) [15] for the verification of temporal properties. Assertion-based verification
has the ability to monitor internal variables and to discover violations locally. Furthermore, it im-
proves observability and debug ability. In many ways it is different from the conventional testbench
based verification methodology, where output sequences are usually manually checked against the
specification.

Brunel et al. [63] proposed an extension of assertions to embedded software based on a model-
based design flow. They use the logic of constraint (LOC) language to define the functional and
non-functional properties. The assertions can be generated for multiple target languages with focus
on simulation and on rapid prototyping. However, this work focuses only on embedded software
at modeling level and on invariant assertions. It does not make use of temporal operators to specify
temporal assertions for embedded software. In [64], Cheung and Forin presented a proprietary
approach of Microsoft for binding the C programming language with the property specification
language (PSL) [40]. They defined the sPSL (a subset of PSL) language to specify temporal prop-
erties. SPSL uses the Giano simulator [65] as a execution platform. The Data Model Generation
engine is responsible to obtain the debugging information (i.e., memory address of variables and
functions) that are used by the Evaluation engine during the simulation phase. However, this ap-
proach supports only the equality operator in Boolean expressions [64] and the Giano simulator
has to be integrated. This simulator has limitations concerning hardware-dependent software.

In the co-verification area, hardware verification approaches have also been extended, as pre-
sented by Xie [66] and by Winterholer [59]. Xie and Liu [66] presented the xPSL unified property
specification language. This work defines the semantics of events (e.g., signals in hardware and
messages/function calls in software) based on a translation of hardware and software designs into
a common semantic basis. Winterholer [59] reuses the temporal expressions already available
in the e hardware verification language [58] to define runtime checkers in the hardware-software
boundaries. These temporal expressions are similar, but not fully compatible to the PSL standard.

The framework SystemC temporal checker (SCTC) is a hardware temporal checker and it has
been successfully used at lower levels of hardware designs [19], especially at register transfer level
(RTL), which requires a clock mechanism as timing reference and signals at the Boolean level.
However, this approach is not suitable to apply the hardware verification technique directly to
embedded software, which has no timing reference (i.e., where events are only used for the syn-
chronization of processes/threads) and contains more complex structures (e.g., integers, pointers,
etc.).

34



3.2 Static Verification

ABYV has also been extended to Java programming language, as presented by Bodden in [67].
However, this language is not in the focus of this dissertation.

3.2 Static Verification

Static verification of software started about 40 years ago, when in 1966/67 [68] Floyd uses logical
statements for the verification of software. This work was the basis for Hoare’s work [69]. Hoare
published in 1969 an approach, which could prove the correctness of programs based on a set of
logical rules. This work formed the basis for all subsequent work in the field of static software
verification.

3.2.1 Static Analysis

In software verification, static analysis has been used for highlighting possible coding errors (e.g.,
linting tools) or formal static analysis to detect software runtime errors (e.g., division by zero,
arithmetic overflows, out of bound arrays, buffer overflows, dead code, etc). Formal static analysis
is based on abstract interpretation theory [70], which approximates the semantics of program exe-
cution. This approximation is achieved by means of abstract functions (e.g., numerical abstraction
or shape analysis) that are responsible for mapping the real values to abstract ones. This model
over-approximates the behavior of the system to make it simple to analyze. If the property is valid
for the abstract interpretation, then the property is also valid in the original system. On the other
hand, due to its incompleteness, not all real properties of the original system are valid for the
abstract model, resulting in false positive? (i.e., false alarm) results.

Lint [71] was the first static analysis tool for finding simple errors in C programs. Several mod-
ern tools followed and extended the principles of Lint in terms of detecting errors and warning
messages. The PolySpace Verifier tool [72] is based on abstract interpretation theory [70] and on
convex polyhedral theory [73], which is used to consider non-trivial relationships between vari-
ables. The analyses performed by this tool are flow-sensitive, inter-procedural, context-sensitive
and alias analysis. The results are presented in different colors in the source code. It may present
many false positives, but it assures to be free of false negatives® (i.e., unsounds) results. For a
program with 50,000 lines of code, it may have between 400 to 8,000 warnings [74], which cost a
lot of time to be checked by a verification engineer. A list of the invariant properties for the C lan-
guage supported by PolySpace Verifier can be found in [75]. PolySpace supports also the linting of
programming guidelines, such as MISRA-C standard. Coverity Prevent [76] is a data flow analysis
tool based on inter-procedural analysis techniques. The final analysis might be unsound, that is, it
may have both false positive (lesser than PolySpace) and false negative results. The error messages
can be filtered based on the Bayesian learning to detect inconsistencies in the program. A list of
the invariant properties supported by Coverity Prevent in the C language can be found in [74]. The
KlocWork K7 [77] tool has similar merits and shortcomings (e.g., unsoundness) to Coverity Pre-
vent. AbsInt [78] has been used for the static analysis of architecture-dependent properties such

“False positive is when a property is evaluated as unsafe, although it is safe.
3False negative, also known as unsound feature, is when a property is evaluated as safe, where it is unsafe.
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as worst case execution time (WCET) and of stack/heap memory usage. A further overview about
static analysis of embedded software can be found in [74].

3.2.2 Model Checking

Model checking checks whether the model of the design satisfies a given specification. There
are two main paradigms for model checking: explicit state model checking and symbolic model
checking. Explicit state model checking uses an explicit representation (e.g., a hash table) to
store the explored states given by a state transition function. On the other hand, symbolic model
checking [8] (BDD-based or SAT-based) stores the explored states in a compact form.

In the following, a selection of the most commonly used methods for the verification of C pro-
grams is presented. All approaches must support forms to overcome the infinite state space of
embedded software. The state space must be reduced to a finite size, because the model checker
should visit all states. The often used software model checking approaches are:

* Convert the C program into a model and feed it into a model checker

This approach models the semantics of programs into finite state systems by using suit-
able abstractions. These abstract models are verified using both explicit or symbolic model
checkers.

F-SOFT [79] models the semantics of C programs as finite state systems. It applies a series of
source-to-source transformations to subsets of the C language. The program state is modeled
as a collection of simple scalar variables and each program step is modeled as a set of parallel
assignments to these variables (i.e., basic-block*). Pointers are eliminated based on pointer
analysis [79]. Heaps and stacks are modeled in finite global arrays. This representation is
converted to Boolean level by allocating latches to each C variable. These abstract models
are verified using both a BDD-based unbounded model checker and a SAT-based bounded
model checker based on the tool DiVer [81]. The FeaVer system [82] transforms the C-
code into a Promela formal model by means of a conversion table. The statements in the C
program are converted to a respective statement in the formal model. If a statement is outside
the scope of the verification, it is replaced with a skip operation (i.e., a dummy no operation).
The Promela model is checked with the SPIN explicit model checker [83], which is used to
verify concurrent systems. The Wolf system [84] translates concurrent C programs into
labeled transition systems (LTS). This model is applied to the RuleBase model checker [85],
which uses partial disjunctive partitions [86] to enhance the speed of image computation.

* Bounded Model Checking (BMC)

This approach basically unrolls the embedded software source code. The resulting formula
is a formal model which is applied to a SAT-based model checker.

CBMC [87] (ANSI-C bounded model checker) works in an statement-based mode (i.e., one
assignment statement per state) and requires a full inlining and unwinding of the source
code to obtain a Boolean formula. Loops and (recursive) function calls are unwound by
duplicating the body n times. After performing the preprocessing phase, the program is

A basic-block has one entry point, one exit point and no enclosed jump instruction [80].
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transformed into bit-vector formulas: C' (i.e., program constraints) and P (i.e., properties).
In order to check the property, the formula (C' A —P) is converted into CNF (conjunctive
normal form) by adding intermediate variables. This formula is then checked by a SAT
solver. If the formula is satisfiable, a counterexample is generated. Otherwise, the tool
checks if sufficient unwinding has been done to ensure that no longer bound can generate
a counterexample. This model checker try to optimize the whole-program, which limits
its performance to some hundred lines of code [88]. CBMC is mainly oriented to detect
semantic errors similar to the static analysis approach. Saturn [88], like CBMC, translates
also C programs into Boolean formulas by unrolling loops up to a given bound and uses
a SAT solver to analyze relevant properties. However, Saturn uses function summaries’® in
order to handle inter-procedural calls and models assignments that are only relevant for the
property. This heuristic enables the analysis of larger programs. This tool has been mainly
applied to the verification of lock-unlock-properties in the Linux kernel and not to hardware
dependent software. The aforementioned F-SOFT [89] works in a basic-block-based mode
and it allows additionally to perform program slicing® and range analysis’. Furthermore,
this tool supports local abstractions of the software using counterexample-guided predicate
abstraction, also known as CEGAR, which is covered in the next section.

A further overview about model checking of embedded software can be found in [90].

3.3 Hybrid Verification

The biggest challenge is to verify large and complex embedded software programs. Hybrid-based
verification can be used to overcome the drawbacks of the isolated verification methods. Basically,
this section covers the combination of static-static and dynamic-static approaches.

3.3.1 Combining Static Approaches

The main hybrid verification approach for the verification of embedded software has been focused
on combining model checking and theorem proving, such as satisfiability modulo theories (SMT)
[91] and predicate abstraction approaches [92].

SMT combines theories (e.g., linear inequality theory, array theory, list structure theory, bit
vector theory) expressed in classical first-order logic to determine if a formula is satisfiable. The
predicate symbols in the formula may have additional interpretations that are classified according
to the theory that they belong to. In this sense, SMT has the advantage that a problem does not
have to be translated to the Boolean level (like in SAT solving) and can be handled on word level.
However, SMT has limitations concerning some theories, such as non-linear theory.

73 [93] 1s an SMT solver from Microsoft Research, which is targeted at solving problems that
arise in software verification basically for test case generation and predicate abstraction. Z3 in-
tegrates DPLL-based SAT (Davis-Putnam-Logemann-Loveland) solver [94], a core theory solver

SFunction summary is a simplified representation of a function based on predicates in the initial/final state [88].
®Program slicing prunes irrelevant blocks by backward slicing from the error state [89].
"Range analysis bounds the range of each variable values based on static analysis [89].
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that handles equalities and uninterpreted functions, and satellite solvers (i.e., arithmetic and arrays
theories). CVC3 [95] is being developed by the University of New York and the University of lowa.
CVC3 supports theories such as abstract data types, bitvectors and quantifier theories. It enables
also to integrate different SAT solvers (e.g., Zchaff [96] and MiniSat [97]). Yices [98] developed
at SRI International handles large and complex formulas in a combination of theories. Yices deci-
sion procedure has been used by the SAL finite and infinite-state bounded model checkers [99]. A
further overview can be found in [100, 101].

Model checking and theorem proving have been also combined to perform abstraction for alle-
viating the burden of the back-end model checker during the verification process. In [92] Graf and
Saidi propose the predicate abstraction (PA) approach based on abstract interpretation theory [70].
Since this approach is typically very conservative, it may happen that the model checker finds an
error in the abstracted model that is unreachable in the concrete program (i.e., a false positive).
In this case, the abstraction has to be improved by refinement, as it works in the counterexample
guided abstraction and refinement (CEGAR) paradigm. It constructs an abstract model based on
predicates, then checks the safety property. If the model checker finds a counterexample, it refines
the model with new predicates provided by means of a theorem prover or a SAT-solver. After that
a new process iteration is performed.

The SLAM toolkit from Microsoft [102] is used to verify properties for Windows XP drivers. It
describes the safety properties in a specification language for interface checking (SLIC) and trans-
forms the C program into a Boolean program [103] using the C2BP tool [102]. Later Bebop [104],
a symbolic model checker, performs reachability analysis on the Boolean program. If Bebop finds a
counterexample, the theorem prover Newton [105] or Zapato [106] is applied to certify whether the
counterexample path is feasible or not. If not, the theorem prover discovers additional predicates
to refine the Boolean program and goes to the next iteration. BOOP [107] follows the same princi-
ples of the SLAM project, but using different frameworks in its tool chain (i.e., the MOPED model
checker [108] and the HOL98 theorem prover [109]). The KISS [110] tool works on top of the
SLAM toolkit and proposes a novel technique to transform a concurrent software into a sequential.
Therefore, it allows the usage of sequential software model checkers to verify concurrent software.
BLAST [30] is an on-the-fly reachability analysis framework. It verifies temporal safety proper-
ties of C programs via a specification language (SpC) [111]. BLAST performs abstractions of the
program state space based on lazy predicate abstraction [112] and interpolation-based predicate
discovery [113]. Internally, the C intermediate language (CIL) [29] is used to generate a control
flow graph (CFA) for every function. During its execution, the tool incrementally constructs an
abstract reachability tree (ART), whose nodes are labeled with program locations and truth values
of predicates. If the verification succeeds, it is guaranteed that the concrete program satisfies the
specification as described by the tested property. If the verification of the current property fails,
it produces a path that contradicts the specification in the abstract program. If this path is infeasi-
ble, the interpolation-based theorem prover is used to add predicates to remove the infeasible error
path. SATABS [114] uses predicate abstraction like BLAST, but unlike a theorem prover it uses a
SAT-solver. MAGIC [115] is similar to the SLAM and BLAST projects. It is basically composed
of three verification steps: 1) a control flow graph is generated; 2) a labeled transition system (LTS)
is extracted based on predicate abstraction by means of a theorem prover; and a SAT-solver is used
for the verification process. On the other hand, the IMPACT model checker [116] is an unbounded
symbolic model checker based on computing Craig interpolants [117], which is also used in the
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lazy abstraction paradigm. IMPACT is designed to support infinite-state sequential programs and
to be precise (i.e., to avoid both false positives and false negatives). In order to improve scalability,
it avoids the usage of abstract image computation, which is the most costly operation in predicate
abstraction [113]. Instead, IMPACT uses the interpolating prover [118] only for important paths,
which alleviates the complexity for the prover. IMPACT also avoids refuting and unfolding the
whole program, which is common on interpolation-based model checking [119]. Tools that use
abstraction techniques to verify Java programs are JavaPathFinder [120] and Bandera [121]. How-
ever, this language is not in the focus of this dissertation. A further overview can be found in
[90].

3.3.2 Combining Dynamic and Static Approaches

Simulation and testing scale polynomially with the program size, and therefore, they are the main
approach in industrial practice. However, they need long verification time due to the incomplete
coverage problem. On the other hand, formal verification considers all possible conditions to prove
a desired property, however, it does not scale well. One way to control the complexity of embed-
ded software is the combination of formal methods with simulative approaches. This semiformal
approach combines the benefits of going deep into the system and of covering exhaustively local
state spaces of the embedded software system.

The state exploring assembly model checker (StEAM) [122] transforms the concurrent C/C++
code into machine code. StEAM uses the internet C virtual machine (ICVM) to build the state
space and stores the visited states in a hash table (i.e., explicit model checking). However, this
model checker has restrictions related to the hardware dependencies. The [mc]square model
checker [123] follows similar principles as StEAM. Schlich and Kowalewski propose to verify as-
sembly code for a specific platform, for instance, the ATMEL ATmega micro-controllers [124]. In
the back-end they use an explicit model checker. A micro-controller simulator is used only to cre-
ate the successors of a current state set. Therefore, during simulation, no verification is performed.
Additionally, this model checker has to be extended in order to support different platforms. It has
been applied to verify hardware dependent properties in automotive embedded software, however,
only for small programs with few hundred lines of code [125].

To the best of my knowledge, semiformal verification approaches combining simulation-based
and formal verification interactively have been only applied to the verification of hardware designs
[126—135], but not to the verification of embedded software using the C language. In hybrid hard-
ware verification, Dill [126] presented convincing arguments supporting hybridization to overcome
the hardware design complexity and to improve the coverage results. Pei-Hsin et al. [127] propose
a hardware verification approach that uses simulation to reach “interesting” (also known as criti-
cal) states. Later, these states are applied to a model checker to verify exhaustively a local state
space for a certain number of time steps. This approach is available in the Magellan verification
tool from Synopsys [136]. Similar efforts were also taken by Ruf and Kropf in [129]. They used
one step interaction between dynamic and static verification, that is, first start with the simulation
to store states that are used as initial states for the formal verification in a second phase. Tasiran
et al. [130] presented a combination of simulation and formal verification with abstraction. They
proposed a refinement map that linked the simulation runs to the state transitions of the formal
verification, which has a more abstract model. The counterexamples from the formal verification
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can be mapped to implementation level using simulation. Baumgartner ef al. [131] presented
a guided transformation approach in order to scale the hardware verification with the tool Sixth-
Sense from IBM [137]. This approach applies abstraction algorithms to simplify and to decompose
complex hardware designs. SixthSense and RuleBase were applied to verify complex properties in
the pSeries microprocessors designs [132]. Shyam and Bertacco [135] presented the Guido tool,
that uses formal verification to guide the simulation. They use a cost function based on the circuit
structure to determine which direction the simulation should continue to reach a target state. A
similar approach was proposed by Nanshi and Somenzi [134]. Gorai et al. [133] showed that the
combination of simulation and formal verification is able to find bugs during the verification of
a serial protocol that the isolated techniques were unable to find. However, the application of a
current semiformal hardware model checker to verify embedded software is not viable for large
programs [18]. A further survey about hardware hybrid functional verification can be found in
[138].

3.4 Comparison of State-of-the-art Approaches and the
Unaddressed Problems

The main embedded software verification methodologies are categorized in dynamic, static and
hybrid verification approaches. In Table 3.1 the merits and shortcomings of the current embedded
software verification approaches are compared and unaddressed problems will be discussed.

Dynamic verification has the advantage to be scalable for large embedded software systems and
to consume a low amount of memory. However, to exercise the design completely, the verification
engineer has to perform a complete simulation which covers all possible input combinations. Con-
sidering that the number of input sequences increases exponentially with the number of both inputs
and states variables, this is a manually laborious task to exercise all possible input sequences, even
for designs of moderate size. This problem is typically referred to as the incomplete coverage
problem. Furthermore, most approaches do not support verification of temporal properties. Only
sPSL [64] checks temporal properties in C programs, but its simulator has limitations concerning
hardware-dependent software. The SystemC hardware temporal checker (SCTC) [19] has been
successfully used at lower levels of hardware designs, especially at register transfer level. How-
ever, this approach is not suitable to apply directly to embedded software, which has no timing
reference and contains more complex structures.

Static analysis is a semi-automated approach used by the industry to verify invariant properties
already defined in the static analysis tools. It scales up to middle size of embedded software and
supports most of the C structures. However, this approach does not support user defined temporal
properties and may present both false positive and false negative results, which consume a high
verification time to determine the right answer.

Software model checkers allow the verification of user defined temporal properties and provides
100% of functional coverage with respect to the property. This main shortcoming is the state space
explosion for large industrial embedded software. In most of the cases, the embedded software
code has to be manually sliced, what is an error-prone task. The hybrid software verification
approaches focus mainly on the combination of model checkers with theorem provers to implement
predicate abstraction. Abstraction alleviates the complexity for model checkers in the back-end.

40



3.5 Own Developed Approaches

A limitation of this approach is the non-support of hardware dependent software features [123],
such as direct access to the hardware in case of setting hardware registers or bitwise operations for
embedded software memory address [139]. On the other hand, an assembly model checker does
not scale well and is only available for some specific platforms.

The modeling of temporal properties is an important aspect in the verification process. In most of
the state-of-the-art software model checkers, the temporal properties have to be manually defined
by means of assert functions. The BLAST model checker has a specification language (SpC)
[111] to define properties. However, for complex properties it is as hard as implementing a finite
state machine that represents the property, since there are no temporal operators available for the
specification. The spec tool is most of the cases not robust resulting in commonly parsing errors. In
addition, the user needs to introduce new global variables that debilitate the strength of the model
checker.

The combination of dynamic and static methods for the verification of temporal properties has
uptonow only been applied to the verification of hardware designs. Both techniques complement
each other. The state space coverage can be increased compared to only simulation-based verifi-
cation and the verification of deeper states can be performed compared to only formal verification
approaches. However, the application of a current semiformal hardware model checker to verify
embedded software is not viable for large programs [18].

Simulation-based Formal-based Hybrid-based
Aspects Conventional | Assertion | Static Model | static- | dynamic-
analysis | checking | static static
HdS'! Mostly No Mostly No No No
Temporal No Yes No Yes Yes Yes
properties’
Coverage Low Low Middle High High Middle
Automation Manual Manual Semi Semi Semi Manual
Scalable Yes Yes Middle Small Small Small
Applied in industry Yes No Yes No No No
!'Hardware dependent software 2 User defined

Table 3.1: Comparison of the current state-of-the-art embedded software verification approaches

3.5 Own Developed Approaches

Embedded software has been frequently used in safety critical applications. The industry demands
a high level of correctness and needs to assure that the software modules will work correctly when
inserted in a target project. However, the main challenge in embedded software verification is to
overcome the complexity of embedded software in order to identify errors in a fast, automated and
efficient form.

The state-of-the-art solutions present shortcomings to attend these needs, as presented in Section
3.4. Testing, co-debugging and co-simulation techniques are the currently approaches used by the
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industry. However, they can be started only very late in the design cycle. They do not have the
ability to monitor internal variables to discover violations close to the error source. Additionally,
the formalization of the requirements by means of temporal properties is not addressed. On the
other hand, the hardware temporal checkers does not support mechanisms to monitor variables
and functions of embedded software. Formal property verification using a model checker often
suffers from the state space explosion problem when a large software design is considered. Formal
verification is still too labor-intensive to be widely applicable in industry, and therefore, it raises
objections by the verification engineers to start using this methodology.

This dissertation proposes a new verification strategy to cover the integration gap of the simula-
tion approach with formal features. This contribution can be achieved by means of new assertion-
based and new hybrid-based verification approaches.

This dissertation extends the consolidated experience in industry with methodologies that are
based on temporal properties and formal verification. This work proposes firstly to combine tem-
poral assertions with simulation, which is suitable to be applied in the industrial design flow due to
the experience of the verification engineers with conventional verification approaches. Thus, the
formalization of the requirements by means of temporal properties will improve the understand-
ing of the design and the assertions can be re-used later with the formal verification. Secondly,
the combination of assertion-based and formal verification are proposed to overcome the coverage
limitations of pure simulation-based verification.

Two new approaches to integrate assertions in the verification of embedded software using
simulation-based verification are proposed. Firstly, a SystemC hardware temporal checker is ex-
tended with interfaces to monitor the embedded software variables and functions that are stored in
a microprocessor memory model. This approach considers a real scenario in the verification pro-
cess, on which the direct verification of the C program is performed on a microprocessor model.
Secondly, a SystemC model is derived from the original C program to integrate directly with the
SystemC temporal checker. When no microprocessor model is available, an abstracted derived
SystemC model approach is generated for the verification process. However, for example, the tim-
ing reference is not the same as the absolute time from the microprocessor model. In general, these
approaches still have coverage limitations.

In order to increase the state space coverage when the temporal properties are high depen-
dent to input variables, a hybrid verification approach has been proposed that combines assertion-
based and formal verification approaches, called SofTPaDS (Semiformal Verification of Temporal
Properties in Hardware-Dependent Software). This new methodology extracts both dynamic and
static suitable models from C programs. The dynamic aspects (e.g., dynamic allocation) and the
data-flow arithmetic operations (e.g., multiplication and division) of embedded software are main-
tained on the simulation side. On the other hand, the static features are translated to a finite formal
model and are applied to formal verification. To overcome the state space explosion, formal mod-
els are generated on demand based on critical states, which are generated from the properties.
This semiformal approach improves the state space coverage, which was a limitation in the pure
simulation. This approach enables the verification of deep states in industrial hardware-dependent
software, which is still a limitation of the state-of-the-art software model checkers.

This dissertation focuses on the frameworks SystemC temporal checker (SCTC) [19] and on the
symbolic bounded property checker (SymC) [20]. However, the applicability of this dissertation
results is not restricted to these tools.
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3.6 Summary

This chapter has presented and discussed the main merits and shortcomings of the state-of-the-art
in the verification of embedded software. This dissertation extends the consolidated experience in
the industry with methodologies based on temporal properties and formal verification. The integra-
tion of temporal assertions in the conventional embedded software verification will be covered in
Chapter 4. The increase of coverage by means of a hybrid verification approach will be presented
by in Chapters 5 and 6.
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4 Assertion-based Verification of
Embedded Software

This chapter presents two new assertion-based verification approaches to integrate temporal asser-
tions in the verification of embedded software using simulation-based verification techniques. As
a preliminary step, a hardware temporal checker is extended with more abstract timing reference
as well as data structures to verify properties at the system level. As a first approach, temporal
properties are integrated into a SystemC microprocessor model, on which the embedded software
runs, to perform verification based on detailed semantics of a given microprocessor model. Sec-
ondly, a SystemC model is derived from the original C programs without the co-simulation of a
microprocessor model. The SystemC temporal checker is used with these approaches in order to
verify the temporal properties during the simulation runs.

4.1 Introduction

The assertion-based verification methodology captures a design’s intent behavior as temporal prop-
erties and monitors the properties during system simulation runs. These approaches are suitable
to be applied in the industrial design flows due to the experience of the verification engineers with
conventional verification approaches. Two approaches are proposed: (1) Verification of C program
using a microprocessor model and (2) using a derived SystemC model. The direct verification of
the C program running on a microprocessor model allows the verification engineer to consider real
scenarios (and debugging) of the embedded software. However, this approach requires a micro-
processor model, on which the embedded should run. The microprocessor model also implies in
longer verification time due to its co-simulation. On the other hand, the abstracted derived SystemC
model approach addresses when no microprocessor model is available and a short verification time
is required.

However, hardware temporal checkers [19] are not suitable to be applied directly to embed-
ded software, which has no timing reference (i.e., clock mechanism) and contains more complex
structures (e.g., integers, pointers, etc.). Therefore, the verification process should support more
abstract mechanisms to evaluate the assertions to check more abstract structures of the design, as
aforementioned in Section 3.5. Satisfying these needs, it becomes possible to include assertions in
hardware as well as in software modules, enabling the verification at system level.

The original SystemC hardware temporal checker (SCTC) focuses on the verification of hard-
ware modules, and therefore, it does not support mechanisms to monitor variables and functions
of embedded software. Thus, it is necessary to extend it (Sections 4.2 and 4.3). However, to
achieve the desired enhancements, some requirements should be met. Firstly, not only a global
clock but also more abstract timing references (e.g., events) should be able to trigger the execution
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of assertion monitors. Secondly, assertions should be able to check more abstract structures of
the embedded software design. These requirements are extended and discussed in the following
subsections.

4.1.1 Abstract Timing Reference

The SystemC temporal checker is realized as a separate module (regarding the SystemC library)
with a thread process dedicated to execute the monitors corresponding to user defined properties.
The main problem for integrating a checker process into the simulation kernel is the SystemC
scheduling feature. That is, the order in which processes are executed is undetermined. The
main consequences of this behavior is that only the state of signals can be asserted across module
boundaries, or the system has to expose an explicit synchronization event. If the checker process
would be called before or after all processes execute during one simulation cycle, a stable snapshot
of the system would be available for property checking. This problem was handled by introducing
an activation queue [19]. Newly activated properties perform their initial check immediately and
are appended to the activation queue. The checker process in the current cycle adds all properties
from the previous cycle to its active list, as shown in Listing 2.3. Finally, the properties in the
active list are executed.

——————————————————————————————————————————————————————————————

scTC Property
PSL/FLTL

1

Translator

Module A Channel Module B

Figure 4.1: SCTC trigged by a write_event

In the original version of SCTC, a cycle was referred to as a clock cycle event. This event was
extended to integrate any arbitrary events and not only the clock events. This new feature allows
to specify more abstract timing references for the embedded software verification. Once an event
mechanism has been specified, it can be set as a timing reference for SCTC. For instance in Figure
4.1, the write_event triggers the monitors, which are responsible to check the temporal properties
in the respective modules.
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4.1.2 Abstract Property Specification

C++, and therefore also SystemC, provides no language mechanism for temporal property specifi-
cation. Two approaches to deal with this problem are:

* To hide the specification in external files and instrument the system code in a preprocessing
phase.

* To provide functions to trigger property checking. The property specification itself is given
as a string to the function call.

The advantage of the first approach is that the entities in the specification can relate to source level
constructs like variable names. However, a separate tool is needed to pre-process the code. The
second technique is more easy to handle by the user, but entities in the specification have to refer
to source code constructs by name. For instance, in SystemC all signals are given a unique name
and can therefore be used in such specifications. In addition, specifications are treated as first class
citizens of the code, which means they are directly written in the code without the needs of a pre-
processor phase, what makes it much easier to control the addition of properties dynamically. The
SystemC temporal checker is based on the second approach.

// The request req becomes active therefore, 1

// within 2*n time units ack has to become 2 // After one operation is active the value of

// a sensor should never be higher than 100  »

true!
sc_monitor(”(F req)—>(F[2+n] ack)”); 3 sc_monitor(”(F Oper)—>G!(Sensor > 100)”},
Listing 4.1: Hardware temporal property Listing 4.2: Software temporal property

However, the original SystemC hardware temporal checker supported only the specification of
temporal properties based on signals at the Boolean level. Listing 4.1 presents the definition of
a simple hardware temporal property involving only signals req, ack and precise time units in-
formation. On the other hand, Listing 4.2 requires complex data variables (without precise time
information) Oper, Sensor and complex conditional operation “>" for the definition of a software
temporal property.

class Proposition {
public:
// A proposition must evaluate to either true or false.
virtual bool is_true() = 0;
bool is_false() { return !is_true(); }
// Create clone of the current proposition.
virtual Proposition: clone() = 0;
// Ensure proper destruction with virtual destructor.
virtual "Proposition() { }

IS
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S

Listing 4.3: Proposition class interface

Therefore, SCTC was extended to check properties which include complex structures using a
base class Proposition. This class allows wrapping arbitrary source code entities as named objects.
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4 Assertion-based Verification of Embedded Software

Figure 4.3 lists the interface of class Proposition. The virtual member function is_true (line 4) has
to be provided by any subclass. The checker evaluates these functions in order to get the current
system states. The return value of this function is connected with the Boolean layer of the temporal
property. These atomic entities constitute the predicates in the temporal logic formulas.

4.2 Verification Embedded Software with a
Microprocessor Model

After the preliminary extension of the temporal checker with more abstract mechanisms, a first
developed approach will be discussed. One of the main problems in embedded software verifica-
tion is to check temporal properties of variables and of functions in embedded software, which is
already running on a microprocessor model during the design phase. The use of a microprocessor
model enables the user to verify real operating conditions of the embedded software. In order to
enable the verification of the C program using a microprocessor model, the C program needs to be
instrumented (Section 4.2.1) and a monitor module has to be developed (Section 4.2.2). Finally,
the implementation details are introduced (Section 4.2.3).

4.2.1 Instrumentation of the C Program

The embedded software that runs on a microprocessor model is instrumented by the module C2C.
The algorithm responsible for instrumenting the C program is presented in Listing 4.4. This process
should follow the steps:

void C2C_Translator() {
insert_Protocoll Var();
for all FunctionBody
add fName=FUNCTION_NAME;
identify_InputVariables();
create_Testbench();

}

BT N N S

Listing 4.4: Instrumentation of the C program

1. Insert variable (i.e., sctc_flag) responsible for the protocol between the temporal checker and
the embedded software (Listing 4.4.(line 2)). This variable signalize when the embedded
software is ready to start the verification process.

2. For all functions, the assignment fName = FUNCTION_NAME is added. This allows to
monitor a function sequences through a variable. Thus, function names can be also used in
the property specification (Listing 4.4.(lines 3-4)).

3. Identify the possible input variables to advise in the testbench creation (Listing 4.4.(line 5)).
Variables are considered input variables if they are read only (i.e., left-hand-side) variables.

4. Create the driver function (Listing 4.4.(line 6)). C2C defines the driver functions with con-
straint randomization for the input variables, which are represented by the global variables.
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4.2 Verification Embedded Software with a Microprocessor Model

They will be driven by the testbench. Initially, the constraints are defined covering the whole
range of possible values for the input variables, however, the user may restrict the constraints
to generate input values for some specific scenarios.

4.2.2 Monitor Module

The integration of temporal properties with the embedded software is performed by the PROP2C
module. It follows the steps:

1. Parsing the user defined properties to determine the embedded software variables that are
specified in the properties.

2. Parsing the embedded software addresses, which are used to read its content from the main
memory model.

3. Create an ESW_monitor module in order to wrap the SCTC in the SystemC microprocessor
design. This module will handle the handshake protocol between the embedded software

and SCTC.
4. Create the embedded software propositions that should be used for temporal properties.

5. Instantiate temporal properties in the ESW_monitor module.

Additionally, the temporal checker needs a timing reference to trigger the temporal properties
during the simulation. Using the microprocessor clock as a timing reference enables the user to
verify the temporal properties in real-time conditions (Listing 4.5.(line 2)). Before starting the
embedded software verification with SCTC, it first needs to check that the software is active and
has been initialized by the microprocessor model. This can be done by reading the status of the
variable sctc_flag in the software (Listing 4.5.(lines 3-5)).

void ESW_monitor :: esw_monitor(){

define_clock_asTrigger();

while !initialized
initialized =

readfromMemory(sctc_flag_address);

register_ThePropositions();
instantiate_TheTemporalProperties();

forever
monitor_TheTemporalProperties();

}

N T - N ¥ S O

S

Listing 4.5: Protocol between SCTC and embedded software

When the embedded software is initialized, the propositions are registered and the temporal
property monitors are instantiated (Listing 4.5.(lines 6-7)). This process occurs only in the ini-
tial phase of ESW_monitor module. After this initialization phase, the temporal properties (i.e.,
assertions) will be monitored during the simulation. The ESW_monitor module is generated auto-
matically and an example can be seen in Listing 4.8.
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Figure 4.2: Overview of the verification process with C program

4.2.3 Implementation Overview

An overview of the instrumentation process and of the verification process with a microproces-
sor model is presented in Figure 4.2. The instrumentation process starts with the C program
given by the user, as shown in Figure 4.2.(a). The first step in the modeling process focuses on
source-to-source transformations of the C program aiming at converting the degrees of freedom
of a user implementation into three-address code (3-AC) (see Section 2.3.1) by means of the CIL
[29] framework. The C2C module is responsible to automate the work of transforming the source
code to be applied with the temporal checker and with the microprocessor model. In the next step,
the embedded software is compiled to the specific microprocessor platform and it will be ready to
be executed. However, to integrate the temporal properties with the corresponding embedded soft-
ware variables, their addresses are required from the object file. This information is provided by the
tool objdump [140], which generates a list with the desired variable addresses. This information is
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appended to the user defined properties and given to the module prop2c (Figure 4.2.(d)), which is
responsible to create the testbench environment and to define the embedded software monitors. In
order to allow the monitoring of variables and functions in the embedded software, SCTC needs
to communicate with the software running on the processor through interfaces, which should be
manually defined by the user. The architecture of this extension can be seen in Figure 4.2.(1).
SCTC needs a SystemC microprocessor model and a read interface to the main memory (e.g.,
sc_uint <32> sctc_sc_read_uint (sc_uint <32> addr)), where the embedded software is stored.
The state from the embedded software variables can be read from memory through the interface
and monitored by SCTC.

#define Min 0
#define Max 232
typedef enum {
ERROR_L, LOCK, SETHW
} nameFunctions;
nameFunctions fName;
char sctc_flag;
void error_1(void) {
fName = ERROR_L;

void setHW() {
fName = SETHW;

u32 global Var; 1 u32 addr = *(0OxFFFFF8DA);
2
void error_l(void) 3 }
4 void lock(veid) {
u32 addr = *(0xFFFFF8DA); 5 fName = LOCK;
6
} 7 }
8
9

void lock() {

u32 local = global Var; 10 while (Ou != (HWReg & VALUE )){
1 HWReg = gen_constraint(Min,Max);
} 12 }
13 }
void setHW() { 14 void sctc_testbench(void){
is globalVar = gen_constraint(Min,Max);
while ( Ou = (HWReg & VALUE)); s
17 }
} 18 void main(void){
19 sctc_flag = 1;
void main(void){ 20 while(1) {
while(1) { 21 sctc_testbench();
22
} 2 }
) 2 )
Listing 4.6: Original C program Listing 4.7: Modified C program

4.2.3.1 Embedded Software Instrumentation

The instrumentation of embedded software begins with reading the original C program (Listing
4.6) in a line-by-line mode and directly writing the contents to the modified .c file. During the
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import of the source code, it is checked whether the current line states the beginning of a function.
If this is the case, its name as well as its declaration are deduced and stored into a referring list.
At this point, the only modification performed in the original C program is the fName assignment
directly into the beginning of each function body, as shown in lines 9, 14 and 18 in Listing 4.7.
The enumeration nameFunctions is included into the modified original C program in lines 3-5.
During the parsing step, the C2C check if the global variables are read only (i.e., left-hand-side)
in the body of the embedded software. If this is the case, these variables might be suitable input
variables and their values should be driven by the testbench. Thus, a new procedure sctc_testbench
(lines 23-26) is created and is responsible to drive constraint values (defined by Max and Min
values in lines 1-2) to the global input variables. This new procedure is added in the main loop of
the function main (line 30). However, in some cases, when the embedded software has procedures
that work 1n a polling mode (Listing 4.6, line 16), new input variables have to be manually added
by the user, as shown in Listing 4.6, lines 19-21. Additionally, the sctc_flag variable is initialized
in line 28 and allows to start the monitoring process by the verification environment (i.e., SCTC).

4.2.3.2 Integration of Temporal Properties in Embedded Software

Listing 4.8 presents an example of the ESW_monitor that is automatically generated by PROP2C
module. The first part is responsible to include the libraries and embedded software propositions.
In the following, the addresses of the embedded software variables are defined (lines 4-5). Lines
12-15 defines the method readVarsfromMem, which is responsible to read the content of the vari-
ables in the memory. The monitor process is defined in the lines 17-37. In the initialization phase,
the SCTC has to wait in a polling mode (lines 20-26) until the embedded software has been loaded
by the microprocessor model. From this state, the embedded software is ready for the verification
process. At this time, the verification process registers the propositions and instantiates the em-
bedded software monitors (lines 28-32). After the initialization phase, the current state will read
the variables and update the current state of the temporal properties. If the property holds, the
ESW _monitor returns true to the user, otherwise false. In the remaining lines, the SystemC process
is defined and internal variables are declared.

#include "sc_check.hpp”
#include "esw_props.h”

#define SCTC_FLAG 0x0000000010077e94
#define ERROR 0x0000000010077ea8

class ESW _monitors : public sc_module {

T T N o S

public:

sc_in_clk clock;
sc_event esw_pc_event; 10
11
void readVarsfromMem(void) { 12
m_ERROR = ppc_mem—>sctc_sc_read_uint(ERROR); 13
14
} 15
16
void esw_monitor() { 17
sctc_flag = 0; 18

52



4.3 SystemC Model Derivation from Embedded Software

wait(); 19
while ( true ) { 20

if (sctc_flag == 0) { 21
cout< < ”Waiting for the initialization of ESW ...” <<endl, 2
while (sctc_flag==0) { 23
sctc_flag = ppc_mem—>sctc_sc_read_uint(SCTC_FLAG); 24

wait(); 25

} 26
cout<<”...done! FLAG: ”<<sctc_flag<<endl; 27
//Register ESW propositions 28
G_proposition_register[ "esw_prop_P1_ERRORI”] = 29

new esw_prop_P1_ERRORI1< sc_int<32> >("esw_prop_P1_ERRORI”, m_ERROR); 30

//Instance of the ESW monitors 31
sc_monitor_esw(”P1”,”G!(esw_prop_P1_ERRORI)"); 32

} 3
//Read the current state from the main memory 34
readVarsfromMem(); 35
wait(); 36

} 37
38

SC_HAS_PROCESS ( ESW _monitors ); 39
ESW _monitors (sc_module_name _name, ppc_memory *ppc_m): sc_module(_name), ppc_mem(ppc_m) { 40
SC_THREAD ( esw_monitor ); 41
sensitive << clock.pos(); 42
dont_initialize(); 4

} 4
"ESW _monitors () { } 45
46

//Access to the microprocessor memory model 47
ppc-memory sppc_mem; 48
int sctc_flag; 49
sc_int<32> m_ERROR; 50
} 51

Listing 4.8: ESW_monitor module

4.2.4 Merits and Shortcomings

This verification approach using a microprocessor model allows the verification of embedded soft-
ware with real-time temporal properties. This approach is better suitable to embedded software
with hardware dependencies with few input variables. Albeit verification under real-time con-
ditions is required, longer simulation time is consumed due to the simulation overhead of the
microprocessor model.

4.3 SystemC Model Derivation from Embedded Software

In order to speed up the verification process, a second approach is proposed, where a SystemC
model is derived from the embedded software and thereafter applied to the SCTC. The algorithm
responsible for deriving the SystemC model is presented in Listing 4.9. The derived model is as
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precise as original C program. It consists of one SystemC class (ESW_SC) mapped to a correspond-
ing C program. The main function in C will be converted into a SystemC process (SC_THREAD).
Since software itself does not have any clock information, a new timing reference using a program
counter (esw_pc_event) event is provided (lines 3 and 13-15). Additionally the wait(); statement
is necessary to suspend the SystemC process. The program counter event will be notified after
every statement and is responsible to trigger the SCTC. It is important to point out that the timing
reference is not the same as the absolute time from the microprocessor model. This makes an
enormous difference in the length of the AR-automaton if the properties are specified involving
fixed time length. Since the prior approach works with absolute time, it needs larger time bounds
to be specified in the property in order to execute each statement in the C program. This second
approach uses the program counter (esw_pc_event) as a timing reference, that is, each statement
execution is one time step. Therefore, it needs relatively lower time bounds in AR-automaton to
check the same functionality.

void C2SC_Translator() {

create_ESW _SC class();

define_esw_pc_event_asTrigger();

create_VirtualMemModel();

for all directMemAccessVars
convert_DirectMemAccessToVM();

for all Cvars
define_CvarsToSCmembers();

for all Cfunctions

© o N ;R W N =

define _CfuncsToSCmemberFuncs(); 10
for all FunctionBody 1
add fName=FUNCTION _NAME; 12
after every statement 13
add esw_pc_event.noti fy(); 14

add wait(); Is

} 16

Listing 4.9: Derivation of a SystemC model from C program

When a hardware dependent software is being verified, the hardware dependencies have to be
considered, as for instance, direct access to the memory. However, the verification process is
mostly performed without having the original microprocessor memory. In such cases, the direct
access to the memory should be mapped to a virtual memory model. Thus, all direct memory
access (e.g., *(address)) should be converted into virtual memory requests. Lines 4-6 in Listing
4.9 implements these functionalities and Figure 4.3 shows the use of the virtual memory for the
lower embedded software model layer. Lines 7-10 in Listing 4.9 convert the global variables and
functions in the C program into SystemC class parameters and methods, respectively. As afore-
mentioned in Section 4.2, a new variable named f Name is created to help inspecting the function
sequence properties. The variable will be updated in each function context with the assignment
fName=FUNCTION _NAME.

In contrast to the first approach, there is no need to implement any protocol in the initializa-
tion of the verification process. The derived SystemC model and the SCTC are integrated in the
verification environment.
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4.3.1 Embedded Software Derivation

Before using the SystemC Temporal Checker framework, the C program needs to be transformed
into appropriate SystemC code. For instance, Listings 4.10 and 4.11 represent the corresponding
SystemC model for the original C program from Listing 4.6.

A header file (Listing 4.10) is needed first to declare the SytemC module. Basically, the original
function main is the process in SystemC (Listing 4.10, lines 18;29-32). Additionally, an enu-
meration structure named nameFunctions needs to be part of the header (Listing 4.10, lines 2-5).
Within this structure, we encounter the names of all the functions defined in the C source file but
the names have been converted to upper case writing. Additionally, all the function declarations
and the global variables need to be derived from the source code and inserted into the SystemC
header (Listing 4.10, lines 25-27).

Secondly, the complete source code has to be adapted to be processable within the simulator.
The new source code (Listing 4.11) contains the implementation of the functions. One step is
to rename all the functions within the code so that they match the SCTC specifications. Next, a
variable named fName needs to be inserted into the body of each function with the exception of the
main method (Listing 4.11, lines 13,20). Onto this variable the function name is assigned in upper
case letters. The same name can be found in the enumeration containing all the function names,
which was inserted into the header file earlier on.

The most important part, however, is the insertion of code into the source file, which is used
to trigger the checker. This has to be done exclusively within a function body and after every
statement (Listing 4.10, lines 14-515, 26-28,...). If the current line does not belong to a function
body, the converter checks for global variables and define them in the header file (Listing 4.10,
lines 25-27).

If direct memory access is found in parts of the embedded software that are hardware dependent,
this direct access is converted to a virtual memory access (Listing 4.11, line 6). The virtual memory
VMEM module is a hash table, which is responsible to associate a memory address with its value.
VMEM is defined in the header file (Listing 4.10, line 13).

In this approach, the same heuristic as with microprocessor model is used to define input vari-
ables for the testbench. That is, all read only variables (i.e., left-hand-side) are considered to be
input variables. Additionally, the reading of VMEM can be transformed into input variables to test
other scenarios. This feature is specially useful when the embedded software contains procedures
working in a polling mode, waiting for the answer from the hardware model, as can be seen in
Listing 4.11, lines 19-30. Due to this feature, the derived SystemC model may have more input
variables compared to the microprocessor model approach. At the end, the SystemC model is
ready to be checked by SCTC.

55



4 Assertion-based Verification of Embedded Software
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#include <systemc.h>
typedef enum {
ERROR_L,
LOCK
} nameFunctions;

class ESW_SC: public sc_module {
public:
/internal variables
sc_in<bool> clock;
sc_event esw_pc_event;

virtualMemoryx VMEM;

nameFunctions fName;
void sctc_testbench(void);

void main_esw(void);

//function declarations
void error_1(void) ;
void lock(void)

void setHW (void);

//global variables
int varl;

SC_CTOR(ESW_SC) {
SC_THREAD(main_esw);
sensitive << clock;

}
=

Listing 4.10: Generated header
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#include "output.h”

void ESW _SC::error_l(void) {
fName = ERROR_L;
esw_pc_event.notify();
wait();
u32 addr = VMEM(0xFFFFF8DA);
esw_pc_event.notify();
wait();

-

void ESW _SC::lock(void) {
fName = LOCK;
esw_pc_event.notify();
wait();

-

void ESW _SC::setHW() {
fName = SETHW;
esw_pc_event.notify();
wait();

while (Ou != (HWReg & VALUE )){

HWReg = gen_constraint_value(Min, Max);

esw_pc_event.notify();
wait();

}

void ESW_SC::sctc_testbench(veid){
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25
26
27
28
29
30
31
32

global Var = gen_constraint_value(Min, Max);3

-

void ESW_SC::main_esw(void) {

esw_pc_event.notify();
wait();

while (1) {
sctc_testbench();
esw_pc_event.notify();
wait();

-
}

Listing 4.11: Generated SystemC model

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
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4.3.2 Implementation Overview

Figure 4.3 shows the verification approach without using a microprocessor model. The initial
steps (a) and (b) in Figure 4.3 are the same as for the verification approach with microprocessor
model. That is, the user needs to provide and to define the properties (Figure 4.3.(a)) and the
embedded software is converted to three-address format (Figure 4.3.(b)) (see Section 2.3.1). The
main difference occurs in the Figure 4.3.(c), where the developed tool C2SC is responsible to
generate the SystemC design model. The integration of the properties is also simplified and no
addresses of the embedded software variables are required from the object file anymore.
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Figure 4.3: Verification without using microprocessor model

4.3.3 Merits and Shortcomings

The second approach focuses on the derivation of a SystemC model to speed up the verification
process. Therefore, the pre-processing phase is simpler compared to the approach with the micro-
processor model, where the user has to specify additionally interfaces in the main memory model.
Hardware dependencies can be partially solved with the introduction of a virtual memory with-
out loss of accuracy. However, this approach is better suitable for the verification of embedded
software applications.
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4.4 Summary

In this chapter, two new assertion-based verification approaches were detailed to integrate tempo-
ral assertions in the verification of embedded software using simulation-based verification: Firstly,
the temporal properties were integrated into a SystemC microprocessor model. Secondly, a Sys-
temC model is derived (without performing any abstraction) from the original C programs. The
first approach has the advantage of verifying real-time temporal properties in C programs using
the microprocessor clock as a timing reference. The second approach uses only a SystemC model
with objective to achieve shorter verification times. The instrumentation and the derivation pro-
cesses are automated with few user iterative steps. Both approaches are suitable for verifying
complex temporal properties and are easy to apply in industrial design flows due to their similarity
to conventional-based verification approaches. However, both methodologies are simulation-based
and still have limitations concerning the coverage aspects. Therefore, the next chapter proposes
the integration of assertion-based and formal verification approaches.
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In Chapter 4, the two new assertion-based verification verification approaches were detailed. Whereas
this chapter outlines the developed modeling approach for the generation of both simulation and
formal models, which is the foundation for the semiformal software verification, covered in next
Chapter 6. Firstly, this chapter presents an overview of the developed semiformal modeling ap-
proach for embedded software. Secondly, it details the simulation and formal model generation
process.

5.1 Introduction

The developed semiformal verification combines both assertion-based verification and model check-
ing approaches. Assertion-based verification was elaborately explained in Chapter 4 to support

complex data structures (e.g., pointers, integer, floating-point and structures). However, formal

verification (i.e., model checking) supports only models described as finite state machines (FSM),

Boolean variables and gate operations. To enable the exchange of state information between sim-

ulation and formal engines, a common suitable representation has to be developed.

For the semiformal verification approach, both dynamic and static verifiable models should be
automatically extracted from C programs to perform both assertion-based and formal verification.
The dynamic aspects (e.g., dynamic allocation) and the data-flow arithmetic operations (e.g., mul-
tiplication and division) of embedded software are maintained on the simulation side. On the other
hand, the static features are translated into a finite formal model for the formal verification.

The next section presents an overview about the developed modeling methodology.

5.2 Software Modeling Strategy

An overview of the developed semiformal modeling approach is presented in Figure 5.1. The
modeling process starts with the C program given by the user, as shown in Figure 5.1.(a). The
embedded software should follow the MISRA-C standard, as briefly presented in Section 2.2.2.
The first two steps in the modeling process focus on source-to-source transformations of the C
program aiming at converting the degrees of freedom of a user implementation into a simpler
three-address format (Figure 5.1.(b)). Additionally, complex dynamic structures such as indirect
memory access and structure parameters passed by reference should be transformed into constant
representations (Figure 5.1.(c)). The third step performs the points-to analysis and transforms the
“simpler” C program into a CFA representation (Figure 5.1.(d)).
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Figure 5.1: Semiformal modeling approach

The semiformal model generator is responsible firstly to model functions, arrays, logic operators,
state/data variables and pointers in a global control flow automata (Figure 5.1.(f-h)). Secondly,
optimization heuristics with focus on function calls, skips removal and dynamic operations are de-
veloped to reduce the number of states (i.e., complexity) in the modeling of the embedded software
design (Figure 5.1.(1)). Thirdly, temporal properties are integrated automatically (Figure 5.1.(j)).
The last step is responsible for the generation of simulation and formal models (Figure 5.1.(k-1)).

The next sections present in detail each aforementioned step in the modeling methodology.

5.3 Transformation of Embedded Software into
Three-address Code

The three-address code (3-AC) (see Section 2.3.1) is an easier format in order to handle the degrees
of freedom of a user implementation (e.g., result := variable; operation variables). However,
the original transformation has to be modified to allow a suitable generation of three-address code
for the hardware-dependent software. The main problem that should be handled was the model-
ing of arrays and pointers by structures. The I-value analysis! performed by CIL [29] framework
transforms arrays and structure pointers into indirect memory access. Therefore, the indirect mem-
ory accesses have to be transformed to direct memory accesses. The implementation details are
discussed in Section 5.7.1.

IL-values are expressions making reference to a memory region and are expressed as a pair of a base address plus an
offset [29].
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Listing 5.1 shows the I-value optimization example performed by the original 3-AC transfor-
mation. As can be observed, many temporary variables are needed to model the I-values for an
array variable. On the other hand, without optimization of l-values based on the aforementioned
modifications, a direct access to an array location without additional variables is possible, as seen
in Listing 5.2. Therefore, the non-usage of 1-value optimization is better suitable for the modeling
of the simulation and the formal model.

u32 dummyData[3];
unsigned int __cil_tmp8 ;
unsigned int __cil_tmp9 ;
unsigned int __cil_tmp10 ;
unsigned int __cil_tmpl1 ;
unsigned int __cil_tmp12 ;
unsigned int __cil_tmp13;

= T - Y T R N

_cil_tmp8 =0 = 4U; 10
__cil_tmp9 = (dummyData) + __cil_tmp8; 1
#((032 *)__cil_tmp9) = 1UL; 12
_cil_.tmpl0 =1 * 4U; 13
_cil_tmpl1 = (dummyData) + __cil_tmp10; 14 1
#((u32 #)__cil_tmpl1) = 2UL; 15 u32 dummyData[3] ; 2
_cil.tmpl2 =2 * 4U; 16 dummyData[0] = 1UL,; 3
_cil_tmp13 = (dummyData) + __cil_tmp12; 17 dummyData[1] = 2UL; 4
#((032 %)__cil_tmp13) = 3UL; 18 dummyData[2] = 3UL; 5
. 19 6
Listing 5.1: With 1-values Listing 5.2: Without I-values

5.4 Removal of Reference Structure Parameters

The reference parameter removal (RPR) [141] step? transforms structure parameters passed by
reference into static global variables. The basic idea is to move the definition of the function pa-
rameter to a static global variable. Before calling the function that contains the reference parameter,
an assignment is performed to update the static global variable with the actual variable that should
be passed as reference. After calling the corresponding function, an assignment is performed to
update the corresponding actual variable. Listing 5.3 shows a simple example, where the function
foo has a structure variable refPar passed by reference (line 4). In lines 10-11, the function is called
and the actual variable actualVar is passed by reference to the function foo. Listing 5.4 shows the
same example after performing the RPR step. The parameter refPar of the function foo is moved
to the global context (lines 5-6). At the global context, the pointer can be removed, which in turn
simplifies the modeling process later. Before and after calling the function foo, assignments are in-
serted to update the global and the actual variables, respectively (lines 13-18). The implementation
details are discussed in Section 5.7.2.

2The script was implemented using the php scripting language.
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struct testl { inta;intb;};
typedef struct test] TEST;

TEST refPar ;
/+void foo(TEST =refPar )+/
void foo(/+TEST =refPar+/) {

1 refPar.a=1;
struct test] { int a; int b; }; 2 refPar.b = 10;
typedef struct test] TEST; 3 return,;
4
}
void foo(TEST #refPar ) { 5 int main(void) {
refPar—>a = 1; 6 TEST actualVar ;
refPar—>b = 10; 7 /+foo(&actualVar); =/
return,; 8 refPar.a = actualVar.a ;
} 9 refPar.b = actualVar.b ;
int main(void) { 10 foo(/x& actualVar+/);
TEST actual Var ; 11 actualVar.a = refPar.a ;
foo(&actual Var); 12 actualVar.b = refPar.b ;
return (0); 13 return (0);
} 14 }
Listing 5.3: With reference parameter Listing 5.4: Without reference parameter

5.5 Generation of CFAs and Pointer-to Analysis

As introduced in Section 2.3.3, the BLAST front-end generates the control flow antomata inter-
nally, which can be exported as a dot format [142], as seen in Listing 5.5. The CFA representation
has three types of transitions, Block, Pred and Skip, which denote the statement assignments, con-
ditional and no-operation, respectively.

The BLAST front-end generates the flow-insensitive points-to analysis that contains information
about single pointers, double pointers and function pointers. In Listing 5.6, a C program with
simple pointer variables is presented. The pointer i points to the variables v/, v3 and v2 and the
pointer j to the to the variables v2 and v/. For instance in Listing 5.7, the points-to information
for the pointer i (line 2) represents variable v/ with the value (i.e., a pseudo variable address) 0,
the variable v3 with the value / and the variable v2 with the value 2. Section 5.6.3 will discuss the
synthesis of pointer in detail.

5.6 Semiformal Model Generator

The embedded software has to be synthesized and later translated into both formal and simulation
models in order to be semiformally verified. The following issues are considered by the SMG
(Semiformal Model Generator) framework [143] in the modeling process:

* Inline the CFAs into a global CFA,
* synthesis of the pointer variables,

* modeling of arithmetic and conditional operations,
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. . Block(input=i_input;)
digraph main {

1
))] ”; ’
"1 —> ”1.i_I” [label="Block(inpui=i_input;)”] :
7117 .
»1.i_1” —> ”3” [label="Skip"] ’
)!3 ”; 6
737 —> 74" [label="Block(cnt=0;)"] 7
7)4 ”; ’
4" _> 76" [label="Pred(cnt == input)”] ’
”6”; 10
76" —> "8 [label="Block(retres=0;)”’] 1 lock(cnt=cnt+1;)
”8”; 12
”8” —> 70" [label="Block(Return(retres);)”] 13
”4 ”; 14
"4” —> 5" [label="Pred(cnt != input)”] )
”5”; 16
757 —> 74" [label="Block(cnt=cnt+1;)”] 17
} 18

Block(Return(retres);)

Listing 5.5: CFA output

 optimizations of the global CFA,
* integration of the global CFA model with the user defined temporal properties, and
 generating both simulation and formal models.

The following sections will present each of these steps in detail.

5.6.1 Inlining of Control Flow Automata

During the modeling process, SMG takes the control flow automata (CFA) of each C function and
inlines (i.e., merges) them into a global CFA. The inlining process is needed to model the sequential
feature of embedded software programs. Otherwise, every C function would be considered as a
concurrent process during the verification process.

During the merging process, SMG maps the local function names with its correspondent global
state in order to keep the locality of local functions. This information will be useful later in the
semiformal verification process to generate the local verifiable models. Additionally, all functions
are merged only once in order to minimize the state space and all the local variables become global
variables. Finally, a new variable pc is added to represent the symbolic transition relation. This
variable is also used by the simulation phase to trigger the embedded software monitors.

The following subsections detail the merging process of functions, arrays and logical operations.
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5.6.1.1 Inline Function Calls

The MISRA standard does not support recursive functions in embedded software. Therefore, the
inline of function calls is applied only to non-recursive functions. The inline process of function
calls has two phases:
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1. Acquire transition states, parameter names and return variables of function calls

When the merging process locates a function in the first phase, it has to keep track from
which transition state the function inline has to be started and to which transition state the
function inline has to be finished. Additionally, the merging process has to store the names
of the corresponding parameters and return variables.

. Perform the function inline

During the second phase of the merging process, all the local variables and the function code
are moved to the function main, that is, each function statement is inlined into a global CFA.
Additionally, it is necessary to create new state transitions in order to avoid overlapping of
the same states. For example, considering the two CFAs in Figure 5.2, functions foo (1)
and main (2). The function foo is being called between the transition states / and 2 in the
function main. The function foo is replaced by its corresponding CFA and the inlined CFA
can be seen in Figure 5.2.(3).

(1) (2) (3)
foo CFA main CFA Inlined CFA

‘ (5 (4

R ST
FunctionCallfvar ¥ fdo(x);‘j
D
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. “
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‘~ ¢'
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Block(Return(0);)
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Pred(n < 0)

Block(a[t] = ret;) i °

Block(a[t] = ret;)

"4 (5)

BlocK(var = ret)
o

Block(Return(ret);)

Figure 5.2: Inline function calls

In Figure 5.2.(1), the function foo has a parameter x and the returning value is stored by
the variable var. When a called function has parameters, assignments to the corresponding
variables have to be added before starting the inlining of the function’s CFA, as shown in
Figure 5.2.(4), where the assignment n = x has been added before entering into the CFA.
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The return value is assigned just after finishing the inlined CFA, as shown in Figure 5.2.(5)
by the assignment var = ret at the end of the function foo. If there are no parameters or
return statements, a skip label is added corresponding to a no-operation transition to the next
statement.

5.6.1.2 Modeling of Arrays

For the modeling of arrays, it is necessary to find the length of arrays, or even better, to find the
exact position where an array is going to be accessed. Thus, it is necessary to model read and write
operations of arrays in a formal model. Figure 5.3.(1) depicts an array a that is being accessed at
the position ¢. The modeling process traverse backwards through the CFA looking for the value of
t. If the value of # can be found, the exact position, where the array is being accessed, is replaced,
as seen in Figure 5.3.(2).

Inlined CFA: Inlined CFA:

Block(n = x)

H .

Block(t =10)

g \‘
Pred(n >= 0

Y
Pre\‘(n <0)
.
Block(ret =ret*n;n=n-1;)

Block(n = x)

“ (2)
Bloclf‘(a[O] * ret;)

.

Block(Return(ret);) Block(Return(ret);)

Figure 5.3: Mapping of array index

If the exact position cannot be found, then the length of the array has to be determined by means
of iterations through the array. This approach enables to remove the assignment of an unknown
array position. Considering that the length of an array b is 3. If an assignment b/?] = x is analyzed
and the value of ¢ cannot be found, then the assignment is replaced with the switch-case structure
in Figure 5.4.(1). This structure enables the iteration from zero to the number of elements in the
array in order to find the array position, as shown in Figure 5.4.(2).

5.6.1.3 Logical Operators

Logical operators are mostly used in conditional statements in C programs. To simplify the mod-
eling process, variables used with logical operations >, >, < and < are compared against zero.
An internal variable _sfvVar is added in order to store the result value of the comparison against
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(2)
Corresponding CFA
(1)

Determination of array position
Pred(t != 0)

Pred(t == 0)
switch t:

case 0: b[0] = x;
case 1: b[1] = x; »

case 2: b[2] = x;

Pred(t !'= 1)

Block(b[ 0 ] = x)

Block(b[ 2

1=x)

Block(Return(0);)

Figure 5.4: Modeling of an array access with unknown array position

zero. The resulting value will be a positive or a negative value, which allows to make the decision
of which condition is satisfied. Figure 5.5 shows how the optimization of the logical operators
>(1) and <(2) are performed. Additionally, a new state /_/ is necessary in the modeling process
to implement the comparison against zero.

(1)
">" operator

Block(_sfvVar = x - 4)

—>

Pred(x > 4) Pred(x <= 4) Pred(_sfvVar > 0) Pred(_sfuVar <= 0)

(2)
"<" operator

—>

Pred(x < 4) Pred(x >= 4) Pred(_sfvVar > 0) Pred(_sfvvar <= 0)

Figure 5.5: Modeling of logical operators
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5.6.2 State and Data Variables

Arithmetic operations are modeled using adders to reduce the modeling complexity of non-linear
arithmetic operations, such as multiplication and division. Multiplication is considered as a special
case of multiple additions, as shown in Figure 5.6. Division is considered as a special case of
multiple subtractions, as shown in Figure 5.7. Additions and subtractions are performed by the
two’s complement method. A vector with n latches is allocated, where n can be 8, 16 and 32 bits
for both simulation and formal models. The internal pc variable needs log, m latches to represent
m transitions. The input variables are assigned to state variables at the initialization phase to keep
the range of values constant during the symbolic simulation.

Block(_counter = n; _ret = 0)

Block(var = x * n) »

Block(var = _ret)
Block(_counter = _counter -1;

_ret = _ret +1)

Figure 5.6: Modeling of multiplication

Block(_counter = x; _ret = 0)

Block(var = x/ n) »

Block(var = _ret)
Block(_counter = _counter -n;
_ret=_ret +1)

Figure 5.7: Modeling of division

5.6.3 Synthesis of Pointers

The main objective of pointer synthesis is to replace load and store pointer operations by assign-
ments involving regular variables based on the points-to analysis information of BLAST. This
analysis contains information about single pointers, double pointers and function pointers. SMG
performs the synthesis of C pointers based on the points-to analysis information and on multiplexed
expressions [144]. In the following, the synthesis of different pointer operations are detailed.
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5.6.3.1 Initialization

During the pointer initialization, an assignment of the reference value to where the pointer points-
to is performed. The value of a pointer (i.e., corresponding variable address) is encoded and stored
by an internal new variable with suffix _fag. This new variable stores the address of the variable
that is being referenced to the pointer. Basically, a mapping is performed by looking at all the
variables that the pointer may point to and by a number to each of them is associated with. For
instance in Listing 5.6, a simple C program and its corresponding points-to analysis are presented.
The pointer i points to v/, v3 or v2. The initialization of the pointer i in the statement i = &v/
updates the variable i_tag to zero. i_tag contains the address value of the current variable that the
pointer is pointing to, that is, 0 means that the pointer i is pointing to v/, / is associated with v3
and the value 2 is associated with v2.

int main(void) {
int =i, =j;
int v1,v2,v3,tmp;
vi=1;v2=2;v3=3;

© e N ;R W =

i=&vl;
j=&Vv2;
//swap
tmp = *i; 10
*1 = %j; )
*j = tmp; 12
13
i= &V3; 14
j=&vl; 15 '
i=j; 16 i—> v1(0), v3(1), v2(2) 2
return(0); 17 3
} 18 j—>v2(0), v1(1) s
Listing 5.6: C program with pointers Listing 5.7: Point-to information
5.6.3.2 Load

In the load operation, the variable’s content is read through the address that the pointer is pointing
to. In an assignment operation, a new variable with prefix star_ is introduced to store the value of
the variable that a pointer is pointing to. In each load operation, a switch-case statement is gener-
ated based on the corresponding _tag variable. For instance, considering the first load instruction
tmp = *i in Listing 5.6 (line 10), the first step generates a switch-case statement based on the point-
to information to define the value of star_i, as shown in Listing 5.8 (lines 1-4). The second step

replaces the load operation by an assignment of the variable star_i to the variable tmp (Listing 5.8
(line 5)).
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switch i_tag:
case 0 : star.i = v1;
case 1 :star_i = v3;
case 2 : star.i = v2;
tmp = star.i ;

[ T N

Listing 5.8: Modeling of load operation

5.6.3.3 Store

In the store operation, the star_ variable is firstly updated. Later, a switch-case structure is used to
update the value of the corresponding variable that a pointer is pointing to. The variable that should
be updated is determined by the variable _fag. This switch-case statement is modeled according
to the point-to-set information. For example, the statement *j = temp from the code in Listing 5.6
(line 11) is replaced by the switch-case statement in Listing 5.9.

star_j = tmp;

switch j_tag:
case 0 :v2 = starj;
case 1:v1 =star;

N

Listing 5.9: Modeling of store operation

In case of load and store pointer operations in the same assignment, for instance *i = *;j in Listing
5.6 (line 12), two switch-case structures have to be used in the modeling, as shown in Listing 5.10.
Thus, the pointer j is loaded and its value is stored by pointer i.

switch j_tag: /Load
case 0 : starj = v2;
case 1 :starj=v1;
star_i = starj ;

switch i_tag: //Store
case 0 : vl = star_i;
case 1 :v3 =star_i;
case 2 : v2 = star_i;

o - NV S O SR SR

Listing 5.10: Modeling of consecutive load and store operations

5.6.3.4 Assignment

The assignment between two pointers, for instance i = j in Listing 5.6 (line 16), results in a point-to
information to the same set of variables. The variables’ contents are not modified. Only the left-
hand-side pointer will have the same reference set as the right-hand-side pointer to the common
point-to information. That is, the encoded values of the pointer i (i.e., i_tag) has to be updated
according to the encoded values of pointer j (i.e., j_tag). Thus, the point-to-set information of
pointer i is modeled in a switch-case statement to define the new encoded values of pointer j. For
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instance, considering the point-to information of pointer i points to v/, to v3 and to v2, and the
point-to information of the pointer j points to v2 and to v/. i_tag associates the value 0 with v/,
1 with v3 and 2 with v2. j_tag associates 0 with v2 and I with v/. Thus, the variables v/ and v2
are common for both pointers and the encoded values of the pointer i (i.e., i_tag) is replaced by the
switch-case structure in Listing 5.11.

switch j tag: |
case 0 :itag = 2; 2
case 1 :itag=0; 3

Listing 5.11: Modeling of pointer assignment

5.6.3.5 Double Pointers

Double pointers are pointers that point to pointers. The point-to analysis generated by BLAST
removes all the double pointers from the code by introducing new temporary variables. The load of
a double pointer is decomposed in two consecutive load operations. For example, the assignment
vl = **p2p is replaced by mem_7 = *p2p; vl = *mem_7;. Although there are no more double
pointers, some extra analysis in the load operation has to be performed. Considering that the
double pointer p2p can point to p or to p2, the pointer mem_7 has not the variable address that p2p
is pointing to. Thus, the pointer mem_7 has to get the address of where p2p is pointing to by means
of the corresponding variable p2p_tag and the switch-case structure shown in Listing 5.12.

switch p2p_tag:
case 0 : star_p2p = p_tag;
case 1 : star_p2p = p2_tag;
mem_7_tag = star_p2p ;

N

Listing 5.12: Modeling of double pointers

5.6.4 Optimizations

This section will handle optimization heuristics that will help to reduce the number of states in the
modeling of the embedded software design. Optimization plays an important role in the modeling
of large and complex industrial embedded software, where the number of states in most of the
cases are relatively large.

5.6.4.1 Function Calls

As mentioned in Section 5.6.1.1, the function calls are inlined into a global CFA. However, if a
function is being called more than once, the merging process would inline the same CFA as many
times as the function is being called. For example in Figure 5.8, the function main calls function
foo in two occasions and the global CFA has two copies of this function. The multiple copies of
each function will preserve the locality of parameters, however, it will also significantly increase
the size of the model.

70



5.6 Semiformal Model Generator

‘ [T Ty Bleckn= T T

FunctionCall(varl=foo(x))

Block(t=0)

.
i Block(ret=ret*n; n=n-1;)

FunctionCall(var2=foo(y)) #

Pred(n<0)

Block(Return(0);) Block(a[0] = ret;)

Block(Return(ret);)

Figure 5.8: Inline by multiple function copies

An heuristic for keeping the model as simple and small as possible is to inline each function
exactly once. As aforementioned in Section 5.6.1.1, parameters and return values are handled
by adding assignments at each function call. The function return is handled by storing a unique
identification of the call site by means of a internal variable sfv_retFun. This new variable is needed
to keep track of the state to where the global CFA should return after merging the CFA functions.
Its value is updated every time the function is called.

Figure 5.9 shows the application of this optimization, where the CFA function is inlined only
once. The variable sfv_retFun decides the next state after the end of the CFA function and the
return variable to where the return value should be stored. In this example, the function foo is
being called between states / and 2. Since this is the first time that foo is being called, the value of
_sfvRetFun is 1. The second time that foo is called, between states 2 and 3, the value of sfv_retFun
becomes 2. Additionally, two new transitions (i.e., states) have to be created in each call site. In the
first transition, the sfv_retFun assignment receives the corresponding call site of function. In the
second transition, the return assignment is considered. The one time inlining of functions reduces
the final number of both states and transitions.

5.6.4.2 Removal of Skips

A further optimization to reduce the number of states is to remove continuous skip transitions. A
skip transition represents a no-operation transition from one state to the other without performing
any action (i.e., assignment or condition). This kind of transition appears when a function is called
and no parameters are being passed, or when the called function does not return any values. Figure
5.10 shows an example of a global CFA where continuous skips can be optimized. It is important
to point out that skips related to states / and O are not removed, since these states represent the
initial and final state of a function, respectively.
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Block(_sfvRetFun = 1)

‘ N A e
:

FunctionCall(varl=foo(x))

FunctionCall(var2=foo(y)) #

Block(n =y)

Block(Return(0);)

Block(_sfvRetFun = 2)

Block(Return(ret);)

Figure 5.9: Inline function once

5.6.4.3 Identification of Suitable Dynamic Operations

The combination of simulation and formal verification allows to create heuristics that are responsi-
ble to decide which operations are better suitable for each verification approach. For instance, data-
flow and dynamic operations are better suitable for the simulation approach. On the other hand,
control-flow structures and operations on input variables are better suitable for formal verification.
In case of input variables, formal verification (i.e., model checking) can handle symbolically the
whole range of input values resulting in better coverage results.

In Section 5.6.2, multiplication and division operations can be considered as a special case of
multiple additions or multiple subtractions, respectively. When the multiplier has high value to be
multiplied, this operation consumes a high amount of time. Additionally, in embedded software it
is very common to find complex structures such as

* floating point variables,

* dynamic operations (e.g., malloc, which is not part of the MISRA-C, but it might be used in
embedded software applications),

* functions that are only available in pre-compiled libraries (e.g., isdigit() from ctype.h C li-
brary), and

* inline assembly.
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Skip

Skip Skip

O = O

Skip Block(ret = x)

Block(ret = x)

Figure 5.10: Removal of skips

The state-of-the-art software model checkers focus on function summaries (see Section 3.2.2)
in order to model undefined functions. This semiformal modeling approach proposes to verify
the aforementioned complex structures at the simulation side. These structures already exist in
the simulation side and just need to be compiled with the simulation model. Thus, no complex
modeling or abstractions are required.

During the optimization phase, all the Block transitions of the global CFA are analyzed and if a
better suitable dynamic operation is found, the transition states (i.e., from and fo states) are stored
in a list of states. This list is passed to the simulation and formal generation modules, which will
handle such transition in different forms:

* The formal model generation replace the complex structure by an assignment to a flag vari-
able _sfvSimFlag = I;. This variable signalize that the formal verification engine has reached
a suitable dynamic operation (i.e., a critical state) and the verification context should be
changed to the assertion-based verification.

* The simulation model will keep the original complex structure.

Figures 5.11, 5.12 and 5.13 show the original modeling of a multiplication operation (e.g., cnt =
input * 1000;) in the global CFA and its corresponding optimizations in both formal and simulation
models.

5.6.5 Definition of Input Variables

After the optimization has been performed in the global control flow automata, the input variables
can be determined for both simulation and formal models. The read only variables (i.e., right-hand-
side) are located and added to a input variable list, which is processed in the generation phase in
the next step. The number of input variables might be higher compared to the pure assertion-based
verification approaches from the last chapter, since new variables are added during the modeling
process. For instance, all reading direct accesses to memory are considered as input variables.

73



5 Modeling of Embedded Software for the Semiformal Verification

Block(input=i_input;)

Block(input=i_input;) Block(input=i_input;)

lock(_sfvCounter=_sfvCounter-1

[Block(Return(retres);) Block(Return(retres);)

[Block(Return(retres);)

Figure 5.11: Global CFA Figure 5.12: Formal model ~ Figure 5.13: Simulation model

5.6.6 Integration of Temporal Properties

As seen in Section 3.4, the manually description of temporal properties is a shortcoming in the cur-
rent verification approaches, specially in the state-of-the-art software model checkers (e.g., CBMC,
BLAST, IMPACT), where the temporal properties have to be manually defined by means of assert
functions.

The SofTPaDS methodology allows the automatic modeling of properties for both simulation
and formal models based on FLTL specification logic. Firstly, the properties are described by
the user in text format in a separate file (i.e., props.fitl), as shown in Listings 5.1.(a) and 5.13.
Secondly, they are parsed and related to the corresponding embedded software variables and to the
procedures where these variables are used. The relation between user defined properties and the
embedded software functions is an important information that can be used as a guiding heuristic
in the interactive process between simulation and formal verification, described in Section 6.2.
Finally, the formal description is generated for the formal model (as described in Section 5.7.4)
and the monitors are generated for the simulation model (as described in Section 5.7.5.2).

P1G!(cnt==0); |

Listing 5.13: Description of FLTL properties

It is important to point out that the Proposition class (Section 5.7.5) on the simulation approach
is able to define complex properties, as for instance, properties with inequality operators (e.g.,
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G(var > 10)) (see Section 4.1.2). This feature is not supported by the formal model (Section
5.7.4), which is able only to define properties with equality operation. Therefore, the properties
defined for the semiformal methodology have to follow the restrictions of the formal approach to
keep the same syntax and semantics for both simulation and formal models.

5.7 Implementation of the Embedded Software Modeling

Initially, the C program is converted into three-address code (3-AC) by means of the CIL [29]
framework. The 3-AC representation transforms complex expressions into an equivalent series of
basic instructions. However, the conversion of the original C program into three-address format
by CIL transforms arrays and pointers to structures into indirect memory accesses by means of
[-value forms. This transformation should be avoided in order to facilitate later the modeling of
structures and arrays, as presented in Section 5.3. That is, all indirect memory accesses should
be replaced by direct memory accesses. Secondly, when a parameter is passed by reference, con-
ceptually, the actual parameter itself is passed with just a new name. Thus, any changes made to
the function parameter affect also the actual parameter. Therefore, parameters passed as reference
are transformed as static global variables by the developed reference parameter removal (RPR)
step, as shown in Figure 5.1.(c). Thirdly, the BLAST [30] front-end (Figure 5.1.(d)) is used to
compute the flow-insensitive pointer analysis (see Section 2.3.2) and to generate a control flow
automata (CFA) for every C function. The points-to analysis (i.e., information about what each
pointer points to) contains information about single pointers, double pointers and function point-
ers. Finally, the developed Semiformal Model Generator (SMG) tool (Figure 5.1.(e)) generates
both simulation and formal models from the previous analysis. SMG suggests constraints random-
ization for the input variables, which are represented by variables that are only read in the function
body. Initially, the constraints are defined covering the whole range of possible values for the input
variables, however, the user may restrict the constraints in order to generate input values for some
specific scenarios (Figure 5.1.(m)).

5.7.1 Modification on Three-address Code Generation

The CIL [29] framework® is used to convert the C program into three-address format. However,
CIL has to be modified to allow a suitable generation of three-address code for the hardware-
dependent software.

The simplify.ml file is responsible for implementing the I-value optimization in the CIL project.
This code receives an abstract syntax tree (AST) in a list form delivered from the preprocessing
phase. The list is simplified by matching and recursive analysis. Thus, the matching for structures
and arrays has to be modified in the following lines (as shown in the OCaml implementation of
CIL in Listings 5.14 and 5.15):

* Code A: The procedure simplifyLval should not be carried out in order to avoid the I-value
optimization on the right-hand-side structure field.

3The 3-AC of a C program can be generated with the option dosimplify using the command cilly —dosimplify —save-
temps file.c.
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* Code B: In order to prevent the substitution of index addressing in arrays, the matching
match simplifyLval should not be performed.

* Code C: The addresses of structure fields and array indexes are computed in a form of a base
address plus an offset. Thus, the procedure simplifyOffset should be avoided.

/+Code A/
| Lval Iv —> Lval (simplifyLval setTemp lv)

/«Code B%/
| AddrOf Iv —> begin

match simplifyLval setTemp lv with
Mem a, NoOffset —> a
| - —> d.lval Iv d_type (typeOfLval lv))

/+%Code A%/
| Lval v —> Lval lv

o - ¥ B NS O R R

end 10
1 /*Code B/
/%Code C+/ 12 | AddrOf v —> AddrOf lv
| Field(fi, off) —> Field(fi, simplifyOffset setTemp off) 13
| Index(ei, off) —> 14 /+Code C+/

let ei’ = makeBasic setTemp ei in 15 | Field(fi, off) —> Field(fi, off)

Index(ei’, simplifyOffset setTemp off) 16 | Index(ei, off) —> Index(ei, off)

17
Listing 5.14: Original CIL Listing 5.15: Adapted CIL

5.7.2 Reference Parameter Removal

The reference parameter removal (RPR)* script has five main tasks:
* Read and pre-process the source file,
¢ Jocate and collect information about the structure definitions,
* locate and collect information about the functions that have structures passed by reference,
* replace the corresponding function calls and insert the assignment blocks, and

* write out the output file.

4The RPR script is called by: php RPR.php inputFile.cil.c outputFile.php.c .
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5.7.3 Generation of CFAs with BLAST

The BLAST [30] front-end® is used to compute the points-to analysis and to generate the control
flow automata (CFA)® for each C function, as seen in Figure 5.1.(d).

5.7.4 Generation of the Formal Model

After the generation and optimization of the control flow automata, as described in the previous
sections, a finite state machine has to be generated in order to provide a formal model as an input
to the SymC model checker. This formal model consists of one or more modules that work only
with variables at the Boolean level. The example shown in Listing 5.5 is used to exemplify the
formal model generation. It consists of five building blocks:

* The module construct defines the module’s name which is declared at the beginning of
the formal model. The module main models the functionality of the embedded software.
Further modules like addr, eqcheck, gtcheck and gtEqcheck are responsible for modeling of
addition/subtraction operations, equality checking, greater than checking and greater than
equal checking, respectively.

module main .

» A signal block declares all data and transition variables (i.e., latches) of the formal model.
This state variable list consists of Boolean variables representing the program counter, which
is used to encode transition states of the global CFA. They are identified with the prefix sz_.
In the following, the variable sz_d is the most significant bit (MSB). The data variables keep
their original names of embedded software and are concatenated with a bit suffix. All data
variables are signed variables. The internal variables used by the semiformal engines are
specified with the prefix sfv_, such as sfv_counter.

signal i
st_a, st_b, st_c, st_d, sfv_counter_0, sfv_counter_1, sfv_counter_2, sfv_counter_.3, :
cnt_0, cnt_1, cnt_2, cnt_3, input_0, input_1, input_2, input_3, ... : boolean; 3

* The input block lists the external input variables. Their names are defined with the prefix
i_. The input variables are assigned to data variables (i.e., same variable names without the
prefix) at the initialization phase to keep the range of values constant during the symbolic
simulation.

input I
i_input_0, i_input_1, i_input_2, i_input_3 : boolean; 2

SBLAST had a shortcoming in handling integer with more than 30 bits. An integer overflow problem is faced when
the value of the variable exceeds 1073741823 (23 — 1) due to the Ocaml functional programing language [145].
Ocaml just support 30 bits for integer variables (i.e., int). This problem has to be handled, since it is very common
in embedded software to access or to manipulate memory address with 32 bits. This shortcoming was handled by
changing the definition of integer variables to 64 bits (i.e., Int64).

®The CFA for every C function can be generated in a dot format [142] with the option -cfa-dot using the command
pblast.opt esw.i -main main -cfa-dot cfa.txt.
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¢ An init block defines the initial state of the CFA and the initialization of data variables.

init

st.a & Ist.b & Ist_c & Ist_d; // initial state
cnt_0 == false;

cnt_1 == false;

cnt_2 == false;

cnt_3 == false;

L= Y N T N

* The define block defines the valid values for the state encoding. The variables defined in this
block can also be used as output or constant variables.

define

state0 :=Ist.a & Ist.b & Ist_c & Ist.d;
state1 ;= st_.a & Ist_b & Ist_c & Ist_d;
state1_1 = Ist.a & st.b & Ist_.c & Ist_d;
state1.i_1 :=st.a & st.b & Ist_c & Ist_d;
state2 := Ist.a & Ist_b & st_c & Ist_d;

B T Y S T N

¢ The trans block describes the transition relations for each of the data and state transition
variables.

trans
next(st_a) == state1 | state1.i_1 | state6 | ( state4 & leqcheck.op );

1

2
next(st_b) == state1 | state3 | ( state4 & leqcheck.op) | state5; 3
next(st.c) == state1.i_1 | state3 | ( state4 & leqcheck.op ) | state5; 4
next(st_d) == ( state4 & eqcheck.op ) | state6; 5

6
next(cnt_3) == ( false & state3 ) | ( m3.s3 & state5 ) | (!( state3 | state5) & cnt_3); -
next(cnt_2) == ( false & state3 ) | ( m2.s2 & state5 ) | (!( state3 | state5) & cnt_2); s
next(cnt_1) == ( false & state3 ) | ( m1.s1 & state5 ) | (!( state3 | state5) & cnt_1);
next(cnt.0) == ( false & state3 ) | ( m0.s0 & state5 ) | (!( state3 | state5) & cnt_0);

* An invar block shows the connection between the modules and is composed of the initial-
ization of the external module’s inputs with current module’s output or data variables.

invar 1
m0.a0 == ( ¢cnt_0 & state5 ); 2
m1.al == (cnt_1 & state5 ); 3
m2.a2 == ( cnt_2 & state5 ); 4
m3.a3 == ( ¢cnt_3 & state5 ); 5
mO0.b0 == (true & stateb); 6
m1.b1 == ( false & state5 ); 7
m2.b2 == ( false & state5 ); 8
m3.b3 == ( false & state5 ); 9

L]

S
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* The m# modules are used for the modeling of addition or subtraction operations. The mod-
ules take two inputs, a and b. These inputs are declared in the invariant block of the module
main. The outputs s and ¢ are declared in its define block.

module m0 1
input a0, b0 : boolean; 2
define 3
s0 := (a0 " b0) " false; 4
c1 := (a0 & b0); 5
end 6

.

* The eqcheck, gtcheck and gtEqcheck modules are responsible for conditional checking.
This modules appear in the trans block of the module main when a transition from one state
to another is conditioned. As well as in an assignment, the inputs to this module have to be
declared in the invar block in the module main.

module egcheck

input a0, a1, a2, a3, b0, b1, b2, b3 : boolean;
define ;
op:=(!a0&!b0 | a0& b0)&(la1&!b1 | a1&b1)&(!a2&!b2 | a2&b2)&(!a3&!b3 | a3&b3);
end

[ T N

* The group module is responsible for the definition of the FLTL properties, which are given
by the user in text format. They are automatically integrated to the formal model. As men-
tioned in Section 2.6.2, the properties can be verified in universal (i.e., a violation of the
property) or existential (i.e., validation of the property) forms.

group esw_properties

verify universal //existential

P1 :=[LTL] G!( Imain.cnt_.0 & !main.cnt_1 &!main.cnt_2 & !main.cnt_3);
end

E N

5.7.5 Generation of the Simulation Model

The simulation model is based on the same global CFA as the formal model, however, the simu-
lation model works at word level and additionally complex structures are supported, like floating
point and data-flow arithmetic operation (e.g., multiplication and division). These complex struc-
tures are not suitable to be modeled in the formal model. As observed in Figure 5.1, the Simulation
Model Generator module generates three main modules: simulation model & testbench, properties
& critical states and semiformal manager. The first two modules are covered in this chapter and
the semiformal manager will be covered in the next chapter.

5.7.5.1 Simulation Model

The simulation model can be generated in the C language or in the SystemC specification lan-
guage. The C-language-based simulation model is executed using a microprocessor model. The
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timing reference to trigger the monitors can be more accurate (i.e., using the microprocessor clock)
or more abstract (i.e., every statement in the C program). SCTC is integrated to the testbench via
read and write interfaces to the microprocessor main memory. As aforementioned in Section 4.2,
the microprocessor model needs also to be simulated, and therefore, consumes longer verifica-
tion time. The SystemC-based simulation model has a better performance and is mainly used in
the semiformal verification approach. The semantics of the simulation model used in the hybrid
approach are not the same as those in Section 4.3. The derived SystemC simulation model (Sec-
tion 4.3) is not based on a global CFA and therefore, it is not compatible to the formal model.
Compatibility is important for the exchange of data information in the semiformal approach.

#include <systemc.h>

class ESW_SC: public sc_module {

public:
[xsnsccorkxkNTERNAL VARIABLES st st st/
sc_in<bool> clock;
sc_event esw_pc_event;

[xssskscioidokokkkCH+ FUNCTIONS settoteostessowsgsiokoskosl/
void sim_esw_sc(void);

N = N N SO FUR SR

void sfv_manager(void); 10
11
[tk kCONSTRUCTOR sttt/ 12
SC_CTOR(ESW_SC) { 13
SC_THREAD(sim_esw_sc); 14
sensitive << clock; 15

16

SC_THREAD(sfv_manager); 17
sensitive << clock; 18

} 19
[k STATE VARIABLES #swsscstestesseseste s/ 20
int PC; 21
sc_int<4> sfv_counter; 2
sc_int<4> cnt_at_main; 23
sk INPUT VARIABLES sttt/ 24
sc_int<4> input; 25
} 2

Listing 5.16: esw_sc.h definition file

Listing 5.16 depicts the definition of the header file of the simulation model. In line 2, the
ESW_SC module is created based on the sc_module base class. Typically, the ESW_SC module
contains:

* Internal variables and events are declared to be used in the modeling of embedded soft-
ware. The event esw_pc_event is used to trigger the monitors during the simulation runs.

* Process and internal functions are just declared in this file and defined in the modeling file.

* Constructor defines two main processes sim_esw_sc and sfv_manager. sim_esw_sc pro-
cess 1is responsible for modeling the optimized global CFA of the embedded software. The
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sfv_manager process is responsible to manage the interaction between assertion-based and
formal verification. This process will be discussed in the next chapter.

* Transition and data variables are used to model embedded software variables, pointers
(e.g., star_p), variables for arithmetic operations (e.g., sfv_counter) and program counter
(i.e., pc). They are defined according to the same number of bits as in the formal model, that
is, using SystemC data types sc_int<N>, where /N can be 8, 16 or 32 bits.

* Input variables are also are defined according to the same number of bits as in the formal
model.

Listing 5.17 depicts the functional description of the simulation model. Firstly, the transition
and data variables are initialized with the standard initialization used by the gcc compiler, that
is, 0. The program counter starts with the value /, which is the first state in the global CFA.
After the initialization, the wait() function is called to update the variables in the SystemC module.
Secondly, a infinity loop is defined and in its body a switch-case structure is used to describe the
finite state machine. In addition to the state transitions of the global CFA, the IDLE state keeps the
simulation engine in pending state while the formal engine is performing its computation. Thirdly,
each transition state performs the immediate notification (i.e., notify()) of the event esw_pc_event,
which is used to trigger the temporal properties. The function wait() is also called to update the
variable values. The container sfvVarUpdate is used to store the name of the updated variables,
which will be exchanged with the formal verification approach.

#include "esw_sc.h”
void ESW_SC::sim_esw_sc(void) {
cnt_at_main = 0;

PC=1; //Always start from state 1
wait();
while (1) {

switch (PC) {

case IDLE: //IDLE state

© ® N ;R W N =

PC = IDLE, 10
break; 1
case 1: //Skip state 12
PC = 3; 13
esw_pc_event.notify(); 14
wait(); 15
break; 16

17
case 6: 18
if (cnt == input) { 19
PC =8; 20
esw_pc_event.notify(); 21
wait(); 2

} else { 23
PC=7, 24
esw_pc_event.notify(); 25
wait(); 26

} 27
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break; 28
case 8: 29
retres=0; 30
sfvVarUpdate.insert( "retres”); 31
PC=09; 32
esw_pc_event.notify(); 33
wait(); 34
break; 35
case 0: //Final state 36
PC=1,; 37
esw_pc_event.notify(); 38
wait(); 39
break; 40

} Zxswitchs/ 41

} /swhile s/ )
} /xmains/ 43

Listing 5.17: esw_sc.cpp functional description file

5.7.5.2 Properties and Critical States Definition

The properties and the critical states are defined based on the Proposition class. This class allows
wrapping arbitrary source code entities as named objects, as shown in Listing 5.18. This class is
designed with templates, which enable the definition of any variable data type. The variable to be
evaluated is passed by the parameter esw_var in line 3. The member function is_true (lines 5-6)
describes the conditional statement used to specify a proposition for the temporal property. The
assertion-based engine evaluates this functions to get the current system states.

template<typename T> class esw_prop_P1_cnt_0 : public NamedProposition {
public:
esw_prop_P1_cnt_O(const std::string& n, const T& esw_var) :
NamedProposition(n), m_esw_var(esw_var) { }
virtual bool is_true() {
return m_esw_var == (;
}
virtual esw_prop_P1_cnt_0x clone() {
return new esw_prop_P1_cnt_O(xthis);
} 10
private: 1
const T& m_esw_var; 12

}’ 13
Listing 5.18: Property definition

o = N R SO SV R

In Section 5.6.6, the user defined properties are integrated with the embedded software model.
SMG maps the variables specified by the properties with the embedded software functions where
these variables are used. This relation is used in the definition of the critical states. The critical
states are defined by the same Proposition class. Instead of checking the condition of a data
variable, the proposition class evaluates the condition of the program counter variable esw_pc, as
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shown in Listing 5.19 in the member function is_true (lines 5-8). This function checks that the
program counter variable has reached the starting state of the function error_l, which is mapped to
the state 4/ for instance. If the condition is true, the semiformal manager module is activated and
takes the control to exchange information between the simulation and formal engines.

template<typename T> class esw_dump_error_1 : public NamedProposition {
public:

1

2

esw_dump_error_l(const std::string& n, const T& esw_pc) : 3
NamedProposition(n), m_esw_pc(esw_pc) { } 4

virtual bool is_true() { 5
if (m_esw_pc ==41) {/+3_1+/ 6
esw_sc—>funcName = "error_l”; 7
esw_sc—>dump_manager_event.notify(); 8

} 9
return m_esw_pc == 41; 10

} 1
virtual esw_dump_error_1x clone() { 12
return new esw_dump_error_I(xthis); 13

} 14
private: 15
const T& m_esw_pc; 16

} 17

Listing 5.19: Critical states definition

5.7.5.3 Top Module

Listing 5.20 shows the top module of a SystemC design. Firstly, the SCTC header (lines 1-2)
is included. Secondly, the IL code generator is selected to translate the property string into its
correspondent IL code (line 12). By il_gen, the data structures are created on-the-fly from IL code.
Thirdly, the timing reference should be selected (line 15), as the event esw_pc_event. Fourthly, the
named propositions (lines 17-25), which are used in the specification of the temporal property and
in the definition of the critical states, should be registered in the design. Finally, the FLTL temporal
property should be defined into the sc_monitor_esw function.

#include "esw_props.hpp”
#include "sc_check.hpp”

int sc_main(void){
sc_clock clock(”clock”, 1, 0.5, 0.0);

// Construct test module.
esw_sc = new ESW_SC(”esw_sc”);
esw_sc—>clock(clock);

T R N S S

// Select the FSM generator. 1
select_fsm_generator(il_gen); 12

// Init checker environment. 14
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sc_init_check(esw_sc—>esw_pc_event); 15
16

// Register propositions 17
//Critical States 18
G_proposition_register[ "esw_dump”] = new esw_dump< int >("esw_dump” ,esw_sc—>PC); 19
20

//ESW properties 21
G_proposition_register[ "esw_prop_P1_cnt_at_main_input”] = 2
new esw_prop_P1_cnt_at_main_input< sc_int<4> > 23
("esw_prop_P1 _cnt_at_main_input” ,esw_sc—>cnt_at_main); 24
25

//ESW properties 26
sc_monitor_esw(”P1”,”G!(esw_prop_P1_cnt_at_main_input)”); 27
28

std::cout << 7 —— Running sc_start” << std::endl, 29
sc_start(); 30
std::cout << ” —— Running sc_quit_check” << std::endl; 31
sc_quit_check(); 2
} 33

Listing 5.20: Top module

5.8 Summary

This chapter detailed the developed modeling methodology used to generate simulation and for-
mal models automatically for a combined application of both techniques in a semiformal approach.
The user needs to provide initially the C program and the user defined temporal properties. The
initial steps are used to reduce the complexity and the degrees of freedom of the user implemen-
tation. A new methodology is provided to extract both dynamic and static verifiable models from
C programs to perform both assertion-based and formal verification. The dynamic aspects and
the data-flow arithmetic operations (e.g., multiplication and division) of embedded software are
modeled on the simulation side. On the other hand, the static features are translated to a finite
formal model and applied to formal verification. The model generation process is automatically
performed and no iteration of the user is required. Based on the described modeling methodology,
the next chapter will focus on in the interaction between simulation and formal verification by
means of the semiformal manager module.
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In the previous chapter, the approach to automatically generate both simulation and formal models
was presented. Additionally, the automated integration of properties for both simulation and formal
models was detailed. In this chapter, a semiformal verification approach is presented based on the
modeling using the control flow automata. This approach is part of the hybrid verification strat-
egy called SofTPaDS (Semiformal Verification of Temporal Properties in Hardware-Dependent
Software). Firstly, a semiformal heuristic is presented to integrate the both simulation and formal
verification approaches. Secondly, an overview about the integration of assertion-based and of
formal verification engines is presented.

6.1 Introduction

As already mentioned in Section 3.4, the classical formal techniques for software verification still
needs a large workforce to be widely applicable for industrial embedded software. They have lim-
itations of the module size that can be verified. Furthermore, simulation-based verification still has
the problem of incomplete (low) coverage. To overcome these limitations, the new hybrid veri-
fication approach combines the assertion-based verification with model checking approaches. A
new heuristic based on the generation of local formal models on-demand is proposed to overcome
the embedded software complexity. Additionally, a tracing mechanism is developed to allow the
generation of semiformal counterexample. The efficiency of the semiformal approach is evaluated
based on the coverage of user defined properties (Section 2.5.3).

6.2 On-demand Approach

As observed in Section 3.5, the main challenge in embedded software verification is how to over-
come the complexity of embedded software. An executable model can be compiled from the sim-
ulation model usually without memory problems. However, the handling of the whole embedded
software in the formal verification is mostly not tractable due to memory limitations. The tradi-
tional state-of-the-art model checkers uses predicate abstraction heuristics to overcome the state
space explosion, as shown in Section 3.2.2. In the Sof TPaDS methodology, no predicate abstrac-
tion is applied. A new heuristic based on the generation of local formal models whenever required
(i.e., on-demand) is developed to overcome the embedded software complexity. The on-demand
model generation is determined (i.e., “guided”) by the user specified temporal properties. In this
approach, the simulation engine works in a master mode and the formal verification engine works
in a slave mode.
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6.2.1 On-demand Heuristic

Figure 6.5 shows the semiformal verification approach and Listings 6.1, 6.2 and 6.3 delineate
the simulation, the formal and the manager algorithms of the semiformal verification approach,
respectively. The Sof TPaDS approach requires one global simulation model, one or multiple global
properties to be checked and one or multiple global critical states. All modules are provided
by the generation phase (i.e., SMG) (Listing 6.1.(line 2)) (Chapter 5). After the generation of
both simulation and formal models, SofTPaDS begins with the assertion-based approach (i.e.,
ABYV) performing the initialization of the simulation model and the starting of a simulation run
(Figure 6.5.(1), Listing 6.1.(lines 3-6)). ABV is responsible for finding the critical states (Figure
6.5.(2)) and the error states (Figure 6.5.(3), Listing 6.1.(lines 8-9)). Critical states indicate which
functions should be chosen to generate local formal models on demand for the symbolic simulation.
The critical states are basically the initial transition state (i.e., PC) of the local functions (Figure
6.5.(2)), which contain the variables that are defined in the global properties. These critical states
are automatically generated based on the variables of the global properties (Listing 6.1.(line 2)).
Therefore, the global properties are used as a guiding mechanism to determine which function
should be verified in the formal verification phase.
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@ Eror State Local Critical State @ Main Return

Figure 6.1: Sof TPaDS on-demand overview

As soon as a global critical state is found, the sfv_manager phase (i.e., MAN) is activated through
the notification of the event criticalStateReached (Listing 6.1.(line 11)). Firstly, sfv_manager has
to save and to change the status of the program counter (PC) to IDLE state (Listing 6.3.(line 3))
in order to keep the simulation model in a pending state. Then the system state and the property
state are saved and at the first time (i.e., sfvState = START), a local formal model for a Function
X is generated on demand. If the local formal model is bigger than an user determined threshold,
the exchange of information is aborted and the verification is continued with the simulation ap-
proach (Listing 6.3.(lines 9-12)). Otherwise, the formal verification engine is started in the next
step, as seen (Listing 6.3.(line 23-24)). This checking procedure assures a limit size of the local
model to be verified by the formal engine, avoiding a long building time of the BDDs for large
formal models. The transfer process from simulation to formal verification occurs only for the
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Sof TPaDS—FV(S.ys, Sar)

1

Ssys = Ssys.start A SAR.start; 2

while (lerrorSt) do 3

Ssys = FV.image ar(Ssys); 4

FV.checkTerminationCondition(Ssy); 5

6

SofTPaDS —SIM(Cprogram, gProp) ! Ssys = FV.image7(Ssys); 7
SMG.genGlobalModel(Cprogram, gProp); 2 PC_trace_store(Ssys); 8
ABV start(); 3 if ((|Ssys| > threshold) V (_sfvSim) 9
while ((lerrorSt) A (\TimeBound) 4 V (returnSt)) 10
A (simRuns < MaxSimRuns))do s S(S;yS,S;,R) =FV.getMinterm(Ssys); 11
ABYV.driveTestCases(); 6 if (returnSt) 12
7 sfvStatus = FIXPOINT; 13
errorSt = ABV.CheckGlobalProp(g Prop); s else 14
sfvStatus = ABV.CheckCeriticalSt(PC'); o sfvStatus = SIM,; 15
if (sfvStatus == START) 10 MAN.waitFV.notify(); 16
ABV criticalStateReached.notify(); 1 FV.wait(waitABV); 17
[/xsfv_manager() is active! /| 12 [/xsfv_manager() is active! /] 18
13 19
simRuns++; 14 FV .updateFormalModel(Ssys,5aR); 20

Listing 6.1: SofTPaDS simulation Listing 6.2: SofTPaDS formal

state variables that were updated during the simulation phase. The container sfvVarUpdate (see
Section 5.7.5) stores the names of the updated variables during the simulation and this container
signalizes which variables should be exchanged with the formal verification during the generation
of the local formal model (Listing 6.3.(line 8)). This heuristic avoids an over-constraining of the
state space in formal verification. As a result, symbolic simulation has not only a unique starting
state (as usual by simulation), but an initial state set (Figure 6.5.(4)) which will improve the state
space coverage of the semiformal verification. During the symbolic simulation, the sfv_manager
process stays in pending state waiting for the next iteration of the formal verification engine (i.e.,
FV) (Listing 6.3.(line 25)).

On the formal verification side, FV starts the symbolic simulation process with the cross-product
between the system and the property states (Listing 6.2.(line 2)). Secondly, it computes the suc-
cessor states of the AR-automata and checks the termination condition of the property, which is
defined as universally and existentially (Listing 6.2.(line 5)). The formal verification engine veri-
fies the system exhaustively until one of the conditions is reached (Listing 6.2.(line 9)):

* A dynamic operation or a data-flow arithmetic operation (e.g., multiplication and division)
is signalized through the internal variable _sfvSim (Figure 6.5.(5)), or

* the size of the current state set reaches the threshold limit (Figure 6.5.(6)), or
* the return transition state is reached (Figure 6.5.(8)).

At this point, FV selects one random minterm (i.e., state) and stores it onto the disk and actives
the sfv_manager module (Listing 6.2.(line 16)) to update the state of the simulation model and to
decide the further steps (Listing 6.3.(line 26)). If the formal verification reached the threshold limit
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sfv_manager()
while TRUE do
wait(MAN:.criticalStateReached);
PCBCK = ESW_SC—>PC; ESW_SC—>PC = IDLE;
if (s fvStatus == START)

funcName = MAN.getLocalFunctionName(PCBCK);
MAN.simExchangeInfo( funcN ame);
S(Ssys»Sar) = SMG.generateLocalModel( funcName,global CF A,gProp);
if (|Ssys| > thresholdModelSize)

o = N R SO VR R

ESW_SC—>PC = PCBCK; 10
else 1
sfvStatus = FORMAL,; 12

13

if (sfvStatus == SIM) 14
if (MAN.isSCTClInsideFunctionName( funcName)) 15
MAN.simExchangelnfo( funcName); 16
FV.waitABV.notify(); 17
sfvStatus = FORMAL,; 18
else 19
ESW_SC—>PC = PCBCK; 20
MAN .startGlobalCriticalState( funcN ame); 21

22

if (s fvStatus == FORMAL) 23
FV.startSymC(); 24
wait(MAN.waitFV); 25
ABV .updateSimulationModel(S,,,.5 1 ); 2%
if (fvStatus == FIXPOINT) 27
MAN . startGlobalCriticalState( funcN ame); 28
sfvStatus = START; 29
else 30
MAN.startLocalCriticalState(); 31
sfvStatus = SIM; 32

Listing 6.3: Sof TPaDS manager

or a local critical state (e.g., data-flow arithmetic operation), the sfv_manager module re-starts the
simulation (Listing 6.3.(lines 31-32)) until it reaches a local critical state (Figure 6.5.(7), Listings
6.3.(lines 22-23)). Local critical states are defined as a number 7 of transition steps (e.g., one time
step for the execution of a data-flow operation in the simulation phase). When a local critical state
is reached, sfv_manager has to certify that simulation state is still inside the local model (Listing
6.3.(lines 15-18)). If ABV is outside the local model, the simulation should continue until it finds
the new global critical state. This local interaction between simulation and formal verification will
continue iteratively until one of the engines finds the return operation of a Function X (Figure
6.5.(8)) or all the properties have been evaluated in the local function. If the formal verification
reached a local return operation, then the formal engine reached the final local state and also the
fix-point condition. The sfv_manager module will re-start the critical state for the corresponding
local function (Listing 6.3.(lines 27-29)).

When the simulation run reaches the global refurn operation of the main function, a new simula-
tion run is started. The global interaction between simulation and formal verification will continue
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until all the properties were evaluated or a maximum number of simulation runs is reached (Figure
6.5.(9), Listing 6.1.(lines 4-5)).
6.2.2 Transition from Formal to Simulation Engine

In order to determine the next state for the simulation engine, a minterm (Section 2.3.5.2) (i.e.,
state) is randomly selected from the current local state space.

@ StartState @ Global Critical State ~ ® Minterms
@ cror State Local Critical State

Figure 6.2: Formal to simulation transition

6.2.3 Semiformal Counterexample

If one of the user defined properties does not hold, it is important to the verification engineer to
have available a counterexample, that is, an execution trace that leads to the error state. In every
transition in both engines (i.e., simulation and formal), the state transition variable PC is stored
onto the disk. The simulation engine only needs to store the current PC state into the corresponding
file, as shown in Listing 6.4.(line 5). On the other hand, after computing the new image in Listing
6.2.(line 8), the PC_trace_store function is called to store the transition state variable. The formal
engine select the transition variable set (i.e., pc) from the support set (Section 2.3.5.1) (Listing
6.5.(line 5)). The transition variable set contains all possible next states for the variable PC, which
are converted to decimal format and stored in the same trace file used by the simulation engine.

switch(PC){ I
case 1: 2
PC_trace.store(PC); 3 //5(Q) is the current set of states 1
PC =2, 4 PC_trace_store(in: S(Q)) 2
esw_pc_event.notify(); wait(); 5 PC.clear(); 3
break; 6 support = supp(S(Q)); 4
case 2: 7 PC.insert(subset(pc,support)); 5
8 Store(Convert2Dec(PC)); 6
Listing 6.4: Simulation counterexample trace Listing 6.5: Formal counterexample trace
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With this information, a trace from the start state until the error state is provided, as shown in
Figure 6.3. This feature allows Sof TPaDS to provide an simple method to debug the embedded
software system.

L

©) start state Global Critical State cee.
@ Eror State Local Critical State Counterexample

Figure 6.3: Semiformal counterexample

6.2.4 Semiformal Coverage

As aforementioned in Section 2.5.3, coverage metrics are important for measuring and capturing
the efficiency of the verification process. In this approach, the temporal properties are used for
coverage measurement. The user provides a set of temporal properties that will be verified by the
semiformal approach. Some of the properties are verified by the assertion-based engine (Figure
6.4.(a)) and others are verified by the symbolic simulation engine (Figure 6.4.(b)). However, still
some properties might be uncovered (Figure 6.4.(c)) due to this semiformal approach is not com-
plete. Therefore, the total number of properties evaluated by both simulation and formal engines
represents the semiformal coverage.

@ Start State Global Critical State @ Property Coverage
@ cror State Local Critical State

Figure 6.4: Semiformal coverage
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The simulation engine is responsible for computing the semiformal coverage, since it works as a
master mode and it is responsible for concluding the semiformal verification process. The current
property state set (S4g) is also exchanged between both engines. Whenever the formal engine
exchanges information (i.e., S,ys and Ssr) (Listing 6.3.(line 26)) with the simulation engine, the
global property state set as well as the semiformal coverage measurement are updated. If the
total coverage is equal to 100%, the semiformal verification process is terminated. Otherwise, the
process is continued.

6.3 Implementation of the On-demand Approach

The semiformal model generator (SMG) in Section 5.6 automates the modeling process. The
generated simulation model and semiformal manager modules (Figure 6.5.(a)) are compiled with
standard gnu compiler and with the SystemC library. The executable model consists of various
modules, such as the simulation model, the semiformal manager and monitors (Figure 6.5.(b)).
On the other hand, the generated formal model is translated into a BDD (Figure 6.5.(c)). The
properties and the critical states are converted internally by SofTPaDS through a synthesis engine
that translates the plain text property specification into a format that can be both executed during
system monitoring and traversed during the symbolic simulation. That is, the temporal properties
have the same semantics on both assertion-based and formal verification approaches. The property
is translated to Accept-Reject automata (AR-automata) (Figure 6.5.(c)) in the form of an Inter-
mediate Language (IL). Later the IL representation is converted to a monitor in SystemC (Figure
6.5.(b)) and to a BDD (Figure 6.5.(e)) in the model checker. The AR-automata can detect vali-
dation (i.e., True) or violation (i.e., False) (Figure 6.5.(f)) of properties on finite system traces, or
they stay in a pending state if no decision can be made yet (see Section 2.4.2). The communication
between simulation and formal verification occurs through the exchange of information (Figure
6.5.(g)), where both system and property states are exchanged. When a property is not valid, the
semiformal counterexample (i.e., pc.trace file) can be analyzed to reveal the conditions that leads
to the error state (Figure 6.5.(i)). To evaluate the efficiency of the semiformal verification progress,
the semiformal coverage results (Figure 6.5.(h)) are also provided.

6.4 Merits and Shortcomings

The on-demand approach presented in this chapter allows the specification of properties with the
same semantics in assertion-based and in formal verification. To enable higher coverage results,
only the updated variables are transfered from the simulation to the formal engine. From formal to
simulation, a minterm is randomly chosen from the current formal state. The on-demand approach
is proposed as a scalable semiformal verification methodology for industrial applications.

6.5 Summary

This chapter presented a new methodology to combine both simulation and formal verification
to verify temporal properties of hardware-dependent embedded software. In the on-demand ap-
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Figure 6.5: Sof TPaDS engines overview

proach, both assertion-based and formal verification have the same semantics to specify the tem-
poral properties. Only the updated variables are transfered from the simulation to the formal en-
gine avoiding the overconstraining of the initial local formal state. From formal to simulation, a
minterm is randomly chosen from the current formal state. Semiformal coverage and semiformal
counterexample are important features used by the verification engineer to evaluate the efficiency
of the semiformal verification. The on-demand approach is designed to be scalable for industrial

applications.
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In the previous chapters, two new approaches focused on the integration of assertion-based verifi-
cation with embedded software (Chapters 4) and one new approach focused on the combination of
assertion-based and formal verification (Chapters 5 and 6) were presented aiming at the verification
of temporal properties in embedded software.

In this chapter, an industrial embedded software from the automotive area evaluates the proposed
approaches against the state-of-the-art embedded software verification techniques. The system un-
der consideration is an EEPROM Emulation Software from NEC Electronics [146], which emu-
lates the read and write requests to a non-volatile memory. This embedded software contains both
hardware-independent and hardware-dependent layers. Therefore, this system is a suitable indus-
trial application to evaluate the developed methodologies with respect to both abstraction layers.
After a brief introduction of the application, the following verification steps will be presented:

1. Design of the verification environment,
2. definition of properties from the specification, and
3. execution of the verification process.

Afterwards the results will be discussed and the merits and shortcomings of each approach will be
detailed.

All experimental results are conducted on an Intel Pentium dual core 3Ghz, 4GB RAM with
Linux OS. The tool Valgrind [147] is used for the measurement of memory peak consumption.
SystemC 2.2 is used for the modeling and simulation of the simulation models. To check the ap-
proach with the microprocessor model, read and write interfaces are added to the memory of a
PowerPC SystemC model [148]. This microprocessor model is able to run embedded software
in the executable and linkable format (ELF) and also supports the translation of the Linux sys-
tem calls. The PowerPC-750 microprocessor model is briefly introduced in Section A.1. In the
semiformal approach, the BLAST 2.4 (Section 5.5) front-end and the CIL 1.3.6 (Section 5.3)
source-to-source transformation tool are used in the modeling phase of the embedded software.

This dissertation makes use of the frameworks SystemC temporal checker (SCTC) [19] and of
the symbolic bounded property checker SymC [20]. However, the applicability of this dissertation
results is not restricted to these tools. SymC utilizes the CUDD BDD package [149]. The static
variable ordering on the BDD faced the memory overflow problem while constructing the system
definition in the pre-processing phase of embedded software formal model. Therefore, the dynamic
variable reordering Lazy sift [150] is used.

93



7 Experimental Results

Application Layer

EEPROM Emulation Layer
(EEELib)

Data Flash Access Layer
(DFALib)

Hardware/Data Flash

Figure 7.1: NEC software

7.1 NEC Electronics EEPROM Emulation Software

The application considered in the following is an EEPROM emulation software from NEC Elec-
tronics [146]. EEPROM refers to a rewritable memory chip that holds its content without periodic
power refreshes and it can be considered as the predecessor of FLASH memory. EEPROMs are
byte addressable at the write level, whereas a block of bytes in the FLASH memory must be erased
before rewriting [151, 152]. Due to the flexibility of the EEPROM devices, NEC has developed an
EEPROM emulation software to provide the same flexibility to the embedded software applications
that work with FLASH devices.

The EEPROM emulation software uses a layered approach divided into two parts: the Data Flash
Access layer (DFALIib) and the EEPROM Emulation layer (EEELib), as shown in Figure 7.1. The
Data Flash Access Layer is a hardware dependent software layer that provides an easy-to-use inter-
face for the FLASH hardware. The EEPROM Emulation layer is a hardware independent software
layer and provides a set of higher level operations for the application level. These operations, which
are further detailed in Section 7.1.1.1, include: Format, Prepare, Read, Write, Refresh, Startupl
and Startup2. The EEELIb is a highly state driven layer. Each of these operations are defined by a
series of machine states that the emulation flow must follow to complete the process. In total, the
whole EEPROM Emulation code comprises approximately 8,500 lines of C code and 81 functions.
An overview about the complexity of this system can be seen in Figure A.2 and in Figure A.3 (see
Chapter Appendix A), which shows the function call graph and the inlined control flow graph of
the EEPROM emulation system, respectively. The provided version of this embedded software
works in a sequential mode without interrupts.

7.1.1 Functionality Overview
7.1.1.1 EEELib Operation Mode

The functionality of the EEELIb layer is determined by the tEEE_REQUEST structure as shown
in Listing 7.1. It contains all the necessary data and variables to issue an EEELib operation. The
most important among those fields in the structure are the actual command (e.g., Startupl) and the
return value of the current operation, which will be available in the variable error upon operation
completion.

The EEELIb has to be initialized first in the beginning of every application. The initialization is
performed by the EEELib_Init function and only afterwards an operation command can be issued
via the EEELib_Execute function. However, there is a set of rules that has to be followed when
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typedef struct{ !
u32:x address; // Source or destination address 2
ul6 identifier; // Data set identification 3
ul6 length; // Amount of bytes to be read or written 4
ul6 offset; // Offset within a data set to be read 5
tEEE_COMMAND command; / EEELib commands: e.g. Startupl 6
tEEE_ERROR error; // Return value: e.g. EEE_OK 7

8

} tEEE_REQUEST;

Listing 7.1: tEEE_REQUEST structure

it comes to the startup of the system. As there might be data inconsistencies contained within the
device originating from previous application runs, the validity of the data has to be taken care of.
The Startup 1 and Startup2 operations are responsible for this task. When the user application starts,
the first operation has to be either a Startup I or a Format immediately followed by a Startup 1. This
is directly wired into the code of the EEELib. The Startup2 command has to be performed after
the Starup2 operation only if there are data inconsistencies in the FLASH memory. Sometimes it
might be necessary to read data before the Startup2 operation begins. Therefore, it is possible to
execute one or multiple reads before the execution of the Startup2 operation [151, 152].

When all of the above mentioned steps have been performed, all the other operations become
unlocked. From this point onwards, any command can be given via the EEELib_Execute function.
This function derives the current command from the tEEE_REQUEST structure that is given as its
input value and transfers the machine state into the associated initial state. From this initial state on,
the EEELib_Handler takes over control. The handler is frequently called by the application control
during a loop, thus promoting state transitions until the operation is finished. Eventually, the error
variable in the tEEE_REQUEST contains the return value of the operation EEE_OK in the event
that the operation has been completed successfully. Once an operation is successfully completed
and reaches one of the finish-states, the program control returns to the application control program
which can now issue the next command. A situation can arise in which emergency data has to
be written, for instance, before the power off in the car is executed. Under these circumstances,
the time to finish an active emulation operation is not given. For that reason, the EEELib allows
to abort long lasting operations by using the function EEELib_Abort. Calling this function leaves
the data sections in a stable state and permits writing emergency data directly after aborting the
current operation. Afterwards, a library re-initialization is necessary to transfer the data sections
from stable state to a consistent state again [151, 152].

7.1.1.2 DFALib Operation Mode

The Data Flash Access library provides two types of user functions [153]:
* Operational functions control the basic FLASH operations like Read, Write, Blankcheck;
 Service functions provide service information to the user, like the software version.

Considering that the FLASH operations take long time, the required tasks are performed by a
dedicated hardware in the background without microprocessor interaction. However, the embedded
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software applications have to check if those operations are finished. The DFALib functions return
immediately after the FLASH operation was initiated, allowing the user to perform other tasks
while the operation is being executed in the background by dedicated hardware. To check the
status of the operation, the DFALib_StatusCheck command has to be used [153] by the embedded
software application.

7.2 Verification of the EEPROM Emulation Software

The first series of experiments is performed on the extracted properties from the EEPROM Emu-
lation hardware-independent layer (EEELib). The second series of experiments is performed on
extracted properties from the Data Flash Access hardware-dependent layer (DFALIb).

7.2.1 Design of the Verification Environment

The verification of the EEPROM emulation software is performed based on the EEEApp_Control
function, which is a application sample provided by NEC and which is responsible to exercise
the functionality of the emulation software. The provided function is responsible to initialize the
EEELIib (Listing 7.2, line 4), to execute the corresponding command (line 7) and to handle the
operation until it is completed (lines 9-11).

void EEEApp_Control( void ) {
tEEE_REQUEST my_EEE_Command;

EEELib_Init(); #Initialize the EEELIb first

my_EEE_Command.command = EEE_CMD_STARTUPI; /E.g. STARTUPI operation
EEELib_Execute(& my_EEE_Command);

T T N S S

while (EEE_DRIVER_BUSY == ( my_EEE_Command.error ) ) {
EEELib_Handler(); 10

} 11

} 12

Listing 7.2: EEEApp_Control function

In the verification process some delineations are considered in order to evaluate the merits and
shortcomings of the verification approaches. Different scenarios are tested, however, the following
ones are typical and suitable for the experimental validation phase.

* The input randomization constraints for the global variables are defined based on the avail-
able documentation. However, no information is provided concerning the input randomiza-
tion constraints of the hardware-software interface registers. In this case, the input random-
ization values are constrained to the range 0 — 128.

* The memory threshold limit for the SymC model checker is 5,000. This means that when
the BDD size reaches this limit, the context of the semiformal verification should be changed
from the formal engine to the simulation engine to alleviate the memory consumption.
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* The local simulation step is one time step. This means that when the formal engine reaches
the threshold limit, the simulation engine should perform one time step.

* The CBMC model checker is a bounded model checker and requires a upper bound limit for
loop structures. The bound of 20 is used.

« All the experiments were stopped after one hour! (timeout condition) if the tool did not finish
the verification.

7.2.2 Verification Results of the Hardware-independent EEELib
Layer

The first and second series of experiments show the verification results of the developed assertion-
based verification (Table 7.1) and of the developed semiformal verification (Table 7.2). The third
series of experiment presents the results using a state-of-the-art software verification tools (Table
7.3).

7.2.2.1 Properties Definition

The first step in the proposed strategy is the formalization of the specification. The property rep-
resenting the calling of operations in the EEELIb library (e.g., Read) and the several return values
that are updated by functions EEELib_Execute and EEELib_Handler (Listing 7.2, lines 7 and 10)
can be seen in Figure 7.2. EEE_OK indicates that the operation has completed successfully. The
other four values indicate that an error has occurred, namely that the data set with the requested ID
has not been found, that the data set is marked invalid, that the operation has been aborted, or that
the operation is not allowed according to the EEELIib initialization status. Any other return value
would be a violation of the property above as well as of the EEELibs functionality.

CMD_READ

ERROR

READ
OBSOLETE

MAIN_FUNCTION

Figure 7.2: Modeling of Read property

The property set from the hardware-independent EEPROM Emulation layer is specified based
on FLTL (Section 2.4.2). Each property in this set describes the basic functionality on the main

1Longer timeout conditions were also tested, however, for the test series were limited to one hour.
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EEELIib’s operations. A sample of a applied FLTL property is specified in informal and formal
modes:

* After command READ, one of the following five return values may be received: EEE_OK,
EEE_ERR READ_UNKNOWNID, EEE_ERR _READ_OBSOLETE, EEE_ERR_USERABORT,
EEE_ERR _FLOW

F (Read_Operation) —
X F (EEE_OK||[ERROR _UNKNOWN/||[ERROR_OBSOLETE|[ERROR_ABORT|[ERROR _FLOW)

The property coverage used to evaluate the verification approaches is measured based on the
return values for the corresponding EEELib operations. It is important to mention that there are
few input variables interfaces with the application layer, which can influence the verification of the
desired properties. Furthermore, the verification complexity of the function EEELib_Handler is
higher due to the high number of internal function calls compared to the function EEELib_Execute,
as can also be observed in Figure A.2.

7.2.2.2 Verification using Assertion-based Approaches

After the formalization of the specification, the properties can be integrated to the developed
assertion-based verification approaches based on a microprocessor model (Section 4.2) and on
a derived SystemC model (Section 4.3). These approaches are simulation-based approaches and,
therefore, stimuli (constrained randomization) have to be generated for all the external input vari-
ables and hardware (i.e., data flash) elements. The microprocessor model contains 18 input vari-
ables and the derived SystemC model contains 62 input variables.

In Table 7.1, three columns for each of the developed assertion-based approaches are presented.
Each of these main columns has five subcolumns:

* SR represents the number of simulation runs.

* T'C shows the number of test vectors that are driven by the constraint randomization func-
tions.

* V} is the verification time in seconds. In case of the developed SystemC model approaches,
the speedup (i.e., sup) compared to the microprocessor model is indicated in brackets.

* Mem represents the consumed memory peak in mega bytes.

» (Cp is the property coverage is used as a coverage metric and it describes the percentage of
the return values that are evaluated. In brackets, the first number (i.e.,v;) indicates the total
number of return values to be evaluated and the second number (i.e.,v;) shows how many
return values are covered by the verification process.

The results in Table 7.1 show that the memory peak was less than 1 MB to the derived SystemC
model. The approach based on the microprocessor model consumed more than 2 MB due to
the co-simulation of the microprocessor model. Its verification time was also longer, up to 104
seconds, due the microprocessor model co-simulation overhead. On the other hand, the derived
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Microprocessor model
Property SRT TC? Vid M3 Cp®
Read 421 8497 104.51 2.3 100 (7/7)
Write 15,654 313,064 Timeout 23 62.5 (8/5)
Startupl 2 40 1.95 23 100 (4/4)
Startup2 134 2,977 37.82 23 100 (5/5)
Prepare 205 4,170 50.70 23 100 (6/6)
Refresh 15,542 310,832 Timeout 23 | 71.43(715)
Format 15,129 310,007 Timeout 23 83.33 (6/5)
Derived SystemC model
Property SRI TC? Vid M3 Cp®
Read 744 23,198 0.08 (1,306) | 0.21 100 (7/7)
Write 59,156,742 | 1,774,702,260 Timeout 0.21 62.5 (8/5)
Startupl 26 782 0.01 (195) 0.2 100 (4/4)
Startup2 73 5,414 0.11 (344) 0.21 100 (5/5)
Prepare 105 3,470 0.03 (1,690) | 0.21 100 (6/6)
Refresh | 63,345,665 | 1,900,782,188 Timeout 0.21 | 71.43 (7/5)
Format | 24,353,295 807,766,585 Timeout 0.21 | 83.33 (6/5)

! Simulation runs 2 Test vectors 3 Memory peak (MB)
5 Verification time(s.) and (speedup) 6 Property coverage (%) and (v; = total /
vg = covered)

Table 7.1: Results of the developed assertion-based approaches

SystemC model approach required less than 1 second of verification time and resulted in a speedup
of up to 1,690 (on average 884). However, the timing reference used with the microprocessor
model approach is the same clock used for the microprocessor model. This feature enables the
determination of the exact time condition in which the property was evaluated, as shown in the
following example:

sc_check::F(Read_Operation_Returning ERROR_FLOW):true:500419 ns

where the return ERROR_FLOW for the Read operation was evaluated at 500419 ns after the ini-
tialization of the system. This information cannot be provided by the derived SystemC model,
since this approach uses an abstract event timing reference to triggern the temporal checker.

As observed in subcolumn property coverage (C'p), the two assertion-based approaches pre-
sented similar coverage results. For the properties Write, Refresh and Format the timeout condition
was reached and the 100% coverage could not be achieved. The non covered return values were
located in the function EEELib_Handler due to its higher complexity, that is, corner case states did
not allow the coverage of some of the return values (e.g., ERROR_ABORT) for the aforementioned
properties.

7.2.2.3 Verification using the Semiformal SofTPaDS Approach

The proposed assertion-based approaches could not cover all defined properties in the previous
sub section (see Table 7.1) due to timeouts. Therefore, the same properties is investigated with the
semiformal SofTPaDS approach focusing on better coverage results.

Figure 7.3 presents an overview on the application of the semiformal approach. As aforemen-
tioned in Section 7.2.2.1, the functions EEELib_Handler and EEELib_Execute are responsible to
update the return values of the desired property. In this sense, these functions are defined by the
Semiformal Model Generator tool (Section 5.2) as global critical states. Therefore, the local for-
mal models are generated on demand once the simulation run reaches the initial state of these local
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functions (Figure 7.3.(2)). Whenever the simulation run reaches the return state of the function
main, a new simulation run is started from the initial state with different constraint random values
for the input variables.

Table 7.2 presents the results of the verification of EEELib with the developed semiformal SofT-
PaDS approach. This table contains two columns for the verification results, namely, generation of
the semiformal models based on 16 and 32 bits. The first column has six subcolumns:

* SR represents the number of simulation runs;

* Spc shows the number of test vectors that is driven by the constraint randomization func-
tions;

* SF)em represents the consumed memory peak in mega bytes;
* SFx indicates the number of interactions between simulation and formal engines;
¢ 1/ is the verification time in seconds.

» ('p is the property coverage that describes the percentage of the return values that are eval-
uated. In brackets, the first number (i.e.,v;) indicates the total number of return values to be
evaluated and the second number (i.e.,v3) shows how many return values are covered by the
verification process. Considering the covered return values, the number in square brackets
([Scp]) shows the number of return values covered by the simulation engine and the curly
bracket ({ F-p}) represents the number of return values covered by the formal engine.

Global Critical State ee=. Simulation Runs

@  Froperties Local Critical State M wain Return
(return values)

Figure 7.3: Semiformal verification process for EEELib properties

As can be observed in column SofTPaDS§-32, a local formal model with 32 bits wide variables
is generated for the local function EEELib_Execute. However, during the definition of BDDs,
SofTPaDS-32 reached the timeout limit due the modeling of data variables using 32 bits for
both critical states (i.e., EEELib_Handler and EEELib_Execute). The modeling of the local for-
mal model with data variable using 16 bits allowed the semiformal verification for the critical
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state EEELib_Execute to be processed. However, the pre-processing phase for the local model
EEELib_Handler presented also timeout limitations. Therefore, this critical state was verified only
with the assertion-based engine.

The semiformal approach consumes up to 90 MB mainly due to the symbolic simulation memory
consumption by SymGC. Its verification time was up to 3,000 seconds. Based on the user defined
property, simulation and formal engines can interact up to 765 times. As observed in sub column
property coverage (Cp), for all the properties the formal engine could cover three return values
from a total of four in function EEELib_Execute (Figure 7.3.(3)). The remained return values was
covered by simulation in both local functions (Figure 7.3.(5)).

SofTPaDS-16 SofTPaDS-32

Property SRI! Stc? SFrtem’ | SFx* Vi Cp(v1/v2)Scp]{Fcp}® Vil Result

Read 10,311 900,190 86.3 96 1,060.97 100 (7/7) [4] {3} Timeout | Building BDD

‘Write 50,274,615 702,477,602 87.1 110 Timeout 62.5 (8/5) [2] {3} Timeout | Building BDD
Startupl 18 1,570 77.3 19 272.03 100 (4/4) [1]1 {3} Timeout | Building BDD
Startup2 341 29,118 87.8 298 1,185.24 100 (5/5) [2] {3} Timeout | Building BDD
Prepare 456 37,610 87.3 123 64.97 100 (6/6) [3]1 {3} Timeout | Building BDD
Refresh 53,566,543 802,818,278 87.3 167 Timeout 71.43 (7/5) [2] {3} Timeout | Building BDD
Format 850 70,107 87.1 765 2,928.44 100 (6/6) [3] {3} Timeout | Building BDD

' Simulation runs 2 Test vectors 3 Memory peak (MB) 4 Simulation-Formal interaction 5 Verification time (s.)
6 Property coverage (%) and (v1 = total / va = covered) 7 Covered by simulation 8 Covered by formal

Table 7.2: Results of the developed Sof TPaDS approach

SofTPaDS required longer verification time compared to the proposed simulation-based ap-
proaches in Table 7.1. For the property Format, SofTPaDS achieved better coverage results.
On average, for this hardware-independent software layer the semiformal verification approach
is as suitable as the assertion-based verification to verify temporal properties. This can be ex-
plained due to the impossibility to apply the formal engine also to complex local functions such as
EEELib_Handler. In this case, the assertion-based engine is as efficient as in the assertion-based
methodologies in the previous section. In the worst verification case, where all local models are
too complex to be generated, the semiformal verification will work as a standalone assertion-based
approach.

7.2.2.4 Verification using BLAST, CBMC and SymC Model Checkers

To compare the results of the developed approaches, the EEELib layer is verified with two state-of-
the-art formal software verification tools BLAST [30] and CBMC [87]. The specification language
SpC [111] is used to specify the complex temporal properties for both verification tools. For
instance, the specification code for the aforementioned READ property can be seen in Listing A.1.
The description of the property is as hard as implementing a finite state machine that represents the
property, since there are no temporal operators available in this specification language.

After performing the verification process, it was not possible for all the properties to finish
the verification process with BLAST model checker due to abort exceptions (as shown in Table
7.3), which it is presumed to be caused by its internal theorem prover. BLAST has limitations
in verifying embedded software with bitwise operations, for instance. CBMC spent for all the
properties more than 1 hour in unwinding C loops. To assure the timeout limit, for instance, the
Read property was tested during 24 hours and the CBMC could not terminate the unwind process.
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Therefore, CBMC faced time limit problems. In the experiments, the limit of 20 for unwinding
loops was used. A limit of 5 was also tested without different results. In addition, all the input
variables have to be manually constrained in order to avoid false reasoning. CBMC presented
limitations concerning infinite loops, which are typical structures in embedded software systems.

BLAST CBMC
Property Vil Result Vil Result
Read 2,001 Exception | Timeout | Unwind
Write 1,115 | Exception | Timeout | Unwind
Startupl | 1,358 | Exception | Timeout | Unwind
Startup2 | 1,428 | Exception | Timeout | Unwind
Prepare 674 Exception | Timeout | Unwind
Refresh 489 Exception | Timeout | Unwind
Format 355 Exception | Timeout | Unwind

! Verification time (s.)

Table 7.3: Results of the state-of-the-art BLAST and CBMC model checkers

Additionally, the standalone SymC model model checker is evaluated. The NEC system has in
total 4209 transition states that are modeled using a PC variable with 13 bits. The data and input
variables are modeled in 8, 16 or 32 bits and the results can be observed in Table 7.4. The first
column shows the number of bits used in the modeling. Second and third columns present the
number of input and data variables, respectively. The last column shows the result achieved by this
approach.

Bits | Input Data Al Result
8 752 11,480 | Timeout | Building BDD
16 1,504 22,960 | Timeout | Building BDD
32 3,008 | 45,920 | Timeout | Building BDD

! Verification time (s.)

Table 7.4: Results of the standalone SymC approach

The results shows that even the formal model with 8 bits was too complex to the SymC model
checker and that after one hour, the building BDD phase was not completed. For instance, only
the pre-processing phase for a model with 8 bits for the property READ took more than 23,000
seconds by SymC. This represents more than 6 hours in the pre-processing phase. The first image
computation needed additionally more than 5 hours. Therefore, the timeout limit was reached. In
general, this standalone formal verification approach is not efficient to verify large and complex
embedded software systems. Compared to the state-of-the-art model checkers, SymC is still less
efficient, since the aforementioned SymC results are based on a formal model with 8 bits and the
software verification tools BLAST and CBMC are based on modeling with 32 bits. Due to this
limitation, this approach will be not considered anymore in the further analysis.

7.2.2.5 Merits and Shortcomings

The verification results of a hardware-independent layer was presented in this section. Compared to
the state-of-the-art model checkers, neither the two assertion-based nor the semiformal approaches
presented exceptions nor limitations in the initialization of the verification process. The developed
assertion-based approaches were suitable to verify most of user defined properties. The semiformal
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approach improved the coverage of one set of properties, but on the average SofTPaDS was as
suitable as the developed assertion approaches. However, Sof TPaDS requires longer verification
time due to the symbolic simulation compared to the derived SystemC model and do not able to
provide real-time information compared to the approach with microprocessor model. Therefore,
SofTPaDS is not well suitable for the verification of hardware-independent software.

7.2.3 Verification Results of the Hardware-dependent DFALib Layer

Section 7.2.2 presented the verification results of the hardware-independent layer EEELib. This
section shows the series of experiments for the verification of the Data Flash Access hardware-
dependent layer (DFALIb).

The first series of experiments show the verification results of the developed assertion-based
verification approaches, that are, the microprocessor model and the derived SystemC model (Table
7.5). The second experiment shows the results of the developed semiformal verification Sof TPaDS
(Table 7.6). The third series of experiments represents the results using state-of-the-art formal
verification tools BLAST and CBMC (Table 7.7).

7.2.3.1 Properties Definition

The property set from the Data Flash Access layer is specified based on FLTL (Section 2.4.2). A
sample of the FLTL properties is as follows:

(F Startup2 — X GW(F LT M Sgey, == Valuex))

This safety property defines when a specific operation (e.g., Startup2) is called from the applica-
tion layer, the DFALIib lower layer should not assign an illegal setting value to a hardware register.
These registers are updated by the function DFALib_BasFct_SetFLTMS, which is deeply located in
the DFALIb layer, as exemplified in the following function sequence call:

EEELib_Handler —> DFALIib_StatusCheck —> DFALib_BasFct_StatusCheck —>
DFALib_BasFct_ResetHW —> DFALib_BasFct_WriteSecReg —> DFALib_BasFct_FlashEnvDeact —>
DFALib_BasFct_WriteSecReg —> DFALib_BasFct_Wait —> Eee_Basic_EnconSec_BCResult —>
Eee_Basic_EnconSec_BCNextBlock —> DFALib_BlankCheckBW —> DFALib_BasFct_FlashFunc —>
DFALib_BasFct_SetupHardware—>DFALib_BasFct_FlashEnvAct—>DFALib_BasFct_WriteSecReg —>
DFALib_BasFct_WriteSecReg—> DFALib_BasFct_InitDataRead—> DFALib_BasFct_SetFLTMS —>
DFALib_BasFct_Wait —> DFALib_BasFct_ConDataRead —> DFALib_BasFct_ConDataReadToggle —>
DFALib_BasFct_SetFLAP —> DFALIib_BasFct_EndDataRead —> DFALib_BasFct_SetDisMode —>
DFALib_BasFct_Wait —> DFALib_BasFct_WriteSecReg —> DFALib_BasFct_InitRetryCircuit —>
DFALib_BasFct_WriteSecReg—>DFALib_BasFct_WriteSecReg—>DFALib_BasFct_SetFLTMS —>
DFALib_BasFct_SetFLAP —> DFALib_BasFct_WriteSecReg

The operations Startupl, Startup2, Read and Write are responsible for updating the hardware
registers specified by the property. In total, 40 properties were evaluated, which corresponds to 10
properties for each of the aforementioned four operations.

It is important to point out that this hardware-dependent software layer (i.e., DFALIb layer) has
to consider more test cases for the hardware-software interface variables (e.g., the pointers that
enable direct accesses to the hardware, which are commonly used to set the hardware registers).
Therefore, the properties in this layer are highly influenced by the hardware-software interfaces.
This feature is the main difference compared to the hardware-independent software layer EEELib.
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7.2.3.2 Verification using Assertion-based Approaches

The developed assertion-based verification approaches based on a microprocessor model (Section
4.2) and on a derived SystemC model (Section 4.3) are evaluated in this section to verify properties
that are located in deep state spaces in embedded software. In Table 7.5, two columns for each of
the developed assertion-based approaches are presented. Each of these main columns has five sub

columns:

* SR represents the number of simulation runs;

* T'C shows the number of test vectors that are driven by the constraint randomization func-

tions;

* V} is the verification time in seconds and the speedup compared to the microprocessor model

is indicated in brackets.

* Mem represents the consumed memory peak in mega bytes;

* (Cp is the property coverage that describes the percentage of the return values that are eval-
uated. In brackets, the first number (i.e.,v;) indicates the total number of return values to be
evaluated and the second number (i.e.,v2) shows how many return values are covered by the

verification process.

Microprocessor model
Property SRT TC? A M3 Cp®
Read 14,613 294,255 Timeout | 2.3 40 (10/4)
Write 14,290 285,798 Timeout | 2.3 0 (10/0)
Startupl 14,346 286,907 Timeout | 2.3 0 (10/0)
Startup2 8,983 261,592 Timeout | 2.3 60 (10/6)
Derived SystemC model
Property SRT TC? VP2 M3 Cp®
Read 18,402,162 584,168,599 Timeout | 0.21 | 10 (10/1)
Write 38,298,899 | 1,148,966,970 | Timeout | 0.21 0 (10/0)
Startupl | 37,328,378 | 1,121,287,312 | Timeout | 0.21 | 10 (10/1)
Startup2 1,140,394 95,426,266 Timeout | 0.21 | 10 (10/1)
!'Simulation runs 2 Test vectors > Memory peak (MB)

3 Verification time (s.) and (speedup)
6 Property coverage (%) and (v1 = total / v2 = covered)

Table 7.5: Results of the developed assertion-based approaches

The results in Table 7.5 show that the consumed memory peak was less than 1 MB for the derived
SystemC model approach. The approach based on the microprocessor model consumes more than
2 MB due to the co-simulation of the microprocessor model. As observed in the sub column
property coverage (C'p), both assertion-based approaches presented low coverage results. These
results can be explained due to the high influence of the hardware-software interfaces over the user
defined properties. On average, the microprocessor model approach presented better results due to

its low number of input variables.
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7.2.3.3 Verification using the Semiformal SofTPaDS Approach

As aforementioned in Section 7.2.3.1, the function DFALib_BasFct_SetFLTMS is responsible to
update the hardware register of the desired property. In this sense, this function is defined by the
Semiformal Model Generator tool (Section 5.2) as a global critical state. Therefore, this local
formal model is generated on demand once the simulation run reaches the initial state of this local
function (Figure 7.4.(2)).

Table 7.6 presents the results of the verification of DFALib with the developed semiformal SofT-
PaDS approach. This table contains one column for the verification results with six sub columns:

* SR represents the number of simulation runs;

* Stc shows the number of test vectors that are driven by the constraint randomization func-
tions;

* SFhem represents the consumed memory peak in mega bytes;
* SF'z indicates the number of interactions between simulation and formal engines;
¢ 1/ is the verification time in seconds.

* (Cp is the property coverage that describes the percentage of the return values that are eval-
uated. In brackets, the first number (i.e.,v;) indicates the total number of properties to be
evaluated and the second number (i.e.,v;) shows how many properties are covered by the
verification process. Considering the covered return values, the number in square brack-
ets ([Scp]) shows the number of properties covered by the simulation engine and the curly
bracket ({ Fop}) represents the number of properties covered by the formal engine.

—

@ ~< Function DFALib_SetFLTMS  (5)
~ / \
S ~< @ (4) 3)\
~ 5 ) ‘
~< e !

- - - N /
- = N 7
@ Start State Global Critical State ===. Simulation Runs
@ rroperties Local Critical State @ M™ain Return

Figure 7.4: Semiformal verification process for DFALib properties

As can be observed in column SofTPaDS-32, a local formal model with 32 bits wide variables
was generated for the local function DFALib_BasFct_SetFLTMS. The semiformal approach con-
sumed up to 68 MB mainly due to the memory consumption of the symbolic simulation performed
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by SymC. Its verification time was up to 316 seconds. Based on the property, simulation and
formal engines could interact themselves up to 2 times. The low number of interactions was due
to the coverage of the properties, as observed in sub column property coverage (C'p). Due to the
symbolic representation of the input variables, in the second interaction, the formal engine was
able to cover all the user defined properties.

SofTPaDS-32
Property | SR'[ Spc” [ SFyenm’ | SFz'[ Vi° | Cp(v1/v2)Scp]{Fcr}®
Read 16 1435 67.70 2 172.97 100 (10/10) [0] {10}
Write 788 68456 66.89 2 109.06 100 (10/10) [0] {10}
Startupl 87 7478 67.10 2 316.51 100 (10/10) [0] {10}
Startup2 17 1438 59.46 2 84.42 100 (10/10) [0] {10}

! Simulation runs 2 Test vectors > Memory peak (MB)
4 Simulation-Formal interaction > Verification time (s.)  © Property coverage (%) and (v1
=total / vg = covered) 7 Covered by simulation ~ ® Covered by formal

Table 7.6: Results of the developed SofTPaDS approach

Compared to the proposed simulation-based approaches in Table 7.5, Sof TPaDS was able to
achieve 100% of property coverage with less simulation runs and less application of test cases. It
improves the property coverage up to nine times relative to the simulation-based verification tool
(e.g., comparison between Read property results: derived SystemC model approach with coverage
of 10% and SofTPaDS approach with coverage of 100%).

7.2.3.4 Verification using BLAST and CBMC Model Checkers

In this evaluation, the same specification language (SpC) and conditions presented in Section
7.2.2.4 are considered. As it can be observed in Table 7.7, BLAST faced abort exceptions for
all the properties and was not able to finish the verification process. CBMC spent for all the prop-
erties longer than timeout limit in unwinding C loops. Therefore, time limit problems were faced.

BLAST CBMC
Property Vi ! Result A Result
Read 98.10 | Exception | Timeout | Unwind
Write 97.09 | Exception | Timeout | Unwind
Startupl | 75.12 | Exception | Timeout | Unwind
Startup2 | 43.34 | Exception | Timeout | Unwind

! Verification time (s.)

Table 7.7: Results of state-of-the-art BLAST and CBMC model checkers

7.2.3.5 Merits and Shortcomings

The verification results of a hardware-dependent layer was presented in this section. The state-of-
the-art model checkers presented exceptions and limitations in the initialization of the verification
process. The developed assertion-based approaches were not suitable to verify most of user defined
properties due to the high dependence of hardware-software input interfaces. The semiformal
approach improved the coverage compared to the simulation-based approaches and could verify
deeper states in hardware-dependent software, which could not be achieved by formal verification
tools.
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7.3 Discussion of the Results

In this chapter, both developed assertion-based and semiformal verification approaches presented
merits and shortcomings. Figure 7.5 and Figure 7.6 present an overview about the verification
time and coverage, respectively, for the property Read in both layers of the NEC system. Com-
pared to the state-of-the-art verification approaches, the proposed methodologies are suitable to
verify complex temporal properties in a complex industrial application scenario. The state-of-the-
art approaches presents both timeout conditions and exceptions, as shown in Figure 7.5. There-
fore, no coverage results could be measured. Furthermore, the automation of temporal proper-
ties specification using the PSL/FLTL flavors allows a simple and efficient way to describe the
temporal properties, compared to the state-of-the-art form (see Listing A.1). The assertion-based
verification is quite efficient in the verification of temporal properties at the hardware-independent
software layer, as shown in Figure 7.5 and Figure 7.6. The derived SystemC model keeps the func-
tionality of the original embedded software and can speedup the verification process compared to
the approach with a microprocessor model. On the other hand, at hardware-dependent software,
where the number of software-hardware interfaces might be higher, the pure assertion-based ver-
ification presents lower capacity in the verification of temporal properties. Those shortcomings
are addressed by the developed SofTPaDS semiformal verification approach, as shown in Fig-
ure 7.5.(EEELib) and Figure 7.6.(EEELib). SofTPadS presents better results to verify hardware-
dependent software where the user defined properties have high influence of hardware-software
input interfaces (Figure 7.6.(DFALIib)). In this case, the formal engine outperforms with better
results due to its symbolic representation, where all possible input values are considered. On the
other hand, the semiformal verification approach is as suitable as the assertion-based verification
(Figure 7.6.(EEELIb)) approaches to verify temporal properties in hardware-independent software,
however, it requires longer verification time. In the worst verification case, where all local mod-
els of the hardware-independent software are too complex for the formal engine, the semiformal
verification will work as a standalone assertion-based approach.
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Figure 7.5: Verification time for property Read Figure 7.6: Coverage results for property Read

Based on the presented results in Sections 7.2.2 and 7.2.3, and on the proposed verification
strategy (Section 1.5), the direct verification of the C program running on a microprocessor model
is better suitable to verify temporal properties in real scenarios in hardware-independent software
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(e.g., EEELib layer). For the same software layer and when no microprocessor model is available,
the abstracted derived SystemC model approach is able to speed up the verification time. On the
other hand, at the hardware-dependent software layer when a high number of hardware-software
interfaces is found, the combination of assertion-based and symbolic simulation presented suit-
able coverage results compared to the simulation-based approaches and could verify deeper states,
which could not be achieved by formal verification tools.
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Today, embedded software is playing an important role in the development of embedded systems.
Such systems are frequently used in safety critical applications (e.g., automotive) where failures
are unacceptable. Therefore, the verification of complex systems needs to regard both hardware
and embedded software modules. Additionally, when industrial application scenarios are consid-
ered, the main challenges in embedded software verification are how to overcome the complexity
of embedded software and how to automate its verification process. These difficult tasks were
addressed in this dissertation.

This dissertation extends the consolidated experience with methodologies that are based on tem-
poral properties and formal verification. This work demonstrates firstly how to combine temporal
assertions with simulation, which is suitable to be applied in the existing design flows, due to the
experience of the verification engineers with conventional verification approaches. Thus, the for-
malization of the requirements by means of temporal properties improves the understanding about
the design and the assertions can be re-used later in formal verification.

However, simulation-based verification still has coverage limitations. Furthermore, the classical
formal techniques for software verification still need a large workforce to be widely applicable
for industrial embedded software. They are limited to the module size that can be verified. To
overcome these limitations, the new hybrid verification approach developed in this dissertation
combines the assertion-based verification with formal verification. Assertion-based verification
is used to locate critical states of a system. These states are basically the initial states of local
functions containing the variables specified by the property. In the formal phase, formal verification
performs the state space traversal on critical states until a threshold limit is reached or a simulative
operation (e.g., multiplication or division) is found. Then, a state is selected out of this state set to
re-start the simulation phase. This semiformal approach goes deeper into the system compared to
classical formal techniques and improves the coverage relative to the simulation-based verification
approach.

8.1 Technical Contributions

In order to tackle the the aforementioned challenges, this dissertation provides the following tech-
nical solutions:

* Assertion-based approaches

— The SystemC hardware temporal checker (SCTC) was extended with more abstract
timing references (e.g., events) in order to trigger the execution of assertion monitors;

— Assertions specified for SCTC allows to check more abstract structures of the embed-
ded software design;
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— New interfaces allows the monitoring of the embedded software variables and functions
that are stored in a microprocessor memory model;

— Automation of the instrumentation process of a C program and of the integration of
user defined properties for the verification with the microprocessor model approach;

— Derivation of a SystemC simulation model from the original C code in order to integrate
directly with the SCTC,;

— Integration of a virtual memory to model the hardware dependencies.

* Modeling of embedded software
— Transformation of the indirect memory accesses into direct memory accesses during
the three-address code transformation;

— Transformation of structure parameters passed by reference into static global variables
by the reference parameter removal (RPR);

— Modeling of functions, arrays, logic operators, state/data variables and pointers in a
global control flow automata by means of the developed semiformal model generator
(SMG);

— Development of optimization heuristics for function calls, skips removal and dynamic
operations to reduce the number of states (i.e., complexity) in the modeling of the
embedded software design;

— Automated integration of temporal properties;

— Automated definition of the critical states based on the user defined properties;
— Automated generation of the formal model;

— Automated generation of simulation model and its testbench environment.

* Semiformal approach
— Development of a new hybrid verification approach Sof TPaDS (Semiformal Verification
of Temporal Properties in Hardware-Dependent Software).

— Development of a new heuristic based on the generation of local formal models on-
demand to overcome the embedded software complexity;

— Generation of a tracing mechanism to allow the generation of semiformal counterex-
ample;

— Evaluation of the developed approaches based on the property coverage;

In total, two assertion-based approaches (i.e., microprocessor model, derived SystemC model)
and one semiformal approach (i.e., on-demand) were proposed and presented in this dissertation.

8.2 Scientific Contribution

This dissertation extends the conventional verification with methodologies that are based on tem-
poral properties and formal verification. This work proposes firstly to combine temporal asser-
tions with embedded software and secondly to combine assertion-based and formal verification ap-
proaches. The developed methodologies, compared to the state-of-the-art verification approaches,
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are suitable to verify complex temporal properties in complex industrial application scenarios and
to be applied in the industrial design flow.

The assertion-based verification is quite efficient in the verification of temporal properties at the
hardware-independent software layers (section 7.2.2). The direct verification of the C program
running on a microprocessor model is better suitable to verify temporal properties in real scenar-
10s. The derived SystemC model keeps the functionality of the original embedded software and
can speedup the verification process compared to the approach with microprocessor model. On the
other hand, at hardware-dependent software level (section 7.2.3), where the user defined proper-
ties are influenced by the hardware-software input interfaces, the pure assertion-based verification
presents lower capability in the verification of temporal properties. Sof TPadS demonstrates better
results to verify local functions that contain a high number of input interfaces in deep state spaces.
In this case, the simulation engine enables to reach deep state spaces and the formal engine is able
to explore deep local regions.

8.3 Possible Future Work

In this dissertation, first steps have been carried out in order to verify temporal properties in com-
plex industrial embedded software. However, further questions are raised and some topics are still
interesting for further research, including

* Integration of the semiformal approach with satisfiability modulo theories (SMT) [91] to
increase the amount of formal verification;

* Support of concurrent software modules (e.g., interrupts and threads) with the integration of
SofTPaDS with the microprocessor model approach;

* Development of new heuristics to choose a state (i.e., minterm) when switching from formal
verification to simulation;

* Development of new heuristics to perform the modeling abstraction and the guiding between
simulation and formal engines, and

* Validation of the developed approaches in industrial field.
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A Appendix

A.1 SystemC PowerPC Microprocessor Model

To implement the verification of embedded software with a microprocessor model approach, the
PowerPC 750 (PPC) written in SystemC was used. This microprocessor model is time and func-
tionally accurate compared to a real PowerPC 750 microprocessor [148]. The software can be
cross-compiled into an Executable and Linkable Format (ELF). This model also supports the trans-
lation of the Linux System Calls. This PowerPC SystemC model is a super scalar processor and
composed of the following units (Figure A.1): Floating Point Unit (FPU), Branch Unit (BU), Sys-
tem Register Unit (SRU), Load/Store Unit (LSU), two Integer Units (IUs), Instruction and Data
Cache (L1), Fetch Unit (FU), Branch Prediction Unit (BPU) and Dispatch Unit (DU). The original
PPC model was extended: External main memory model to store the embedded software; System-
on-a-Chip Bus to support features of AMBA-Bus; Multi-cores capability to enable the design of
complex systems.
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Figure A.1: Overview of the PowerPC-750 microprocessor model
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A.2 Property in SpC Format
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global int bp = 0; global int bp_post_a = 0; global int bp_post_b = 0;

global int bp_post_c = 0; global int bp_post_d = 0; global int bp_post_e = 0;
global int nextt = —1;

event {

pattern { my_EEE_Command.command = EEE_CMD_READ; }

action { bp=1; }

event {# EEE_OK

after

pattern { dummy_var_fmgl = 1; }

action { nextt = (bp == 1)?1:0; bp_post_a = (bp == 1)?1:0; }
}

event { #EEE_ERR_READ_UNKNOWNID

after

pattern { Eee_Basic_Error( EEE_LERR_READ_UNKNOWNID ); }
action { nextt = (bp == 1)?1:0; bp_post_b = (bp == 1)?1:0; }
}

event { #EEE_ERR_READ_OBSOLETE

after

pattern { Eee_Basic_Error( EEE_LERR_READ_OBSOLETE ); }
action { nextt = (bp == 1)?1:0; bp_post_c = (bp == 1)?1:0; }
}

event { # EEE_.ERR_USERABORT

after

pattern { dummy_var fmg2 =1; }

action { nextt = (bp == 1)?1:0; bp_post_d = (bp == 1)?1:0; }
}

event { # EEE_LERR_FLOW

after

pattern { dummy_var fmg =1; }

action { nextt = (bp == 1)?1:0; bp_post_e = (bp == 1)?1:0; }
}

event {

pattern { main_return = 1; }

guard { (bp==0)]| ((bp==1) && ((bp_post.a==1)|| (bp_post.b==1) || (bp_postc==1) ||

(bp-post.d ==1) || (bp_poste==1)) && (nextt==1)) }

}

Listing A.1: Read property in SpC format
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A.3 Function Call Graph
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Figure A.2: NEC function call graph
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A.4 Control Flow Automata
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Figure A.3: NEC control flow automata
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