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Preface 
 
All four chapters in the “results and discussion” section of this thesis have been 

published before or have been submitted for publication. At the beginning of each 

chapter, it is indicated which experiments were done by the author of this thesis and 

who else contributed to the presented work. 
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1 Introduction 
 

1.1 The immune system 

 

The immune system is a complex network of specialised cells and organs. The main 

function of the immune system is to protect the organism from invading pathogens but 

also from altered cells such as tumour cells. In most cases our immune system is able to 

control infections. This control is based on the ability of the immune system to 

distinguish between self, altered-self and foreign. Non-self substances invading the 

body can trigger the immune system. These substances which can be, for example parts 

of foreign cells, bacteria or viruses are called antigens (antibody generating). These 

antigens contain epitopes recognised by the immune system. Antigenic peptides are 

presented to the immune system by a specific set of self markers, the major 

histocompatibility complex (MHC) molecules which are expressed by nearly all normal 

body cells. The phenomenon that the immune system does not react against “self” 

structures is called immunological tolerance. Defects in this tolerance result in 

autoimmunity. The immune system is also able to recognise alterations on the surface of 

malignant “self” cells. This phenomenon is called tumour immunosurveillance. 

The immune system is composed of two major parts, the adaptive and the innate 

immune system. The innate immune system is our first line of defence against 

pathogens and infectious agents. The elements of the innate immune system include 

anatomical barriers, soluble molecules and cellular components. Cellular components of 

the innate immune system are granulocytes, macrophages, monocytes, mast cells and 

natural killer (NK) cells. These cells are able to eliminate invading pathogens without 

prior sensitization or activation. Characteristics of the innate immunity are that the 

defence mechanisms are for the most part constitutively present and ready to be 

mobilised upon infection. In addition, it is not antigen specific, but recognises a variety 

of organisms due to certain surface molecules. Recent studies have shown that NK cells 

participate also in cancer immunosurveillance. In the following chapter NK cell biology 

is described in detail. The adaptive immune system is the second line of defence. In 

contrast to the innate immune system, it needs prior sensitization to develop an antigen-

specific immune response. In addition, it has a memory and can protect more efficiently 
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against re-exposure to the same pathogen. The two parts of the immune system have 

distinct features, but they also influence each other.  

 

1.1.1 The history of NK cells  

 

In 1975, NK cells were first identified in mice as a distinct subpopulation of 

lymphocytes responsible for the “unspecific” and MHC-unrestricted cytolytic 

background activity. At this time they were described to be able to kill tumour cells 

without prior sensitization [1-4].  

In 1985/6, Kärre, Ljunggren and colleagues found that NK cells selectively reject 

syngeneic MHC class I-deficient tumours efficiently in contrast to the MHC class I 

positive variant [5,6]. This MHC class I-dependent recognition was described as 

“missing self” hypothesis [7] which means that healthy autologous cells with an 

adequate self MHC class I expression are protected from NK cytotoxicity due to their 

MHC class I expression. In contrast, when cells lose the MHC class I expression, e. g. 

after viral infection or malignant transformation [8,9], NK cells do not receive any 

inhibitory signal. These MHC class I-deficient cells are then attacked by NK cells. 

These findings postulated the existence of MHC class I-specific inhibitory receptors on 

NK cells which subsequently were described in the early 1990s. But the “missing self” 

hypothesis failed to explain, why non-malignant cells with low or no MHC class I 

expression (such as human erythrocytes expressing no MHC class I molecules or resting 

cells with low expression of MHC class I molecules) are spared by NK cytotoxicity and 

why tumour cells were killed which express sufficient amounts of MHC class I 

molecules.  

In the late 1990s, after the molecular characterisation of several activating NK 

receptors, the “induced self” recognition model was introduced [10-12]. This model 

expanded the “missing self” model in the way that NK cells are not only triggered as a 

consequence of loss of inhibitory signals, but that they also require activating signals. It 

explains that the induced expression of activating ligands in transformed or stressed 

cells such as tumour cells or virus-infected cells is necessary to activate NK cells.  
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Figure 1.1. NK cell inhibition and activation. (A) A normal cell with adequate MHC 
class I expression and no or only low expression levels of NKG2D ligands leads to the 
inhibition of NK cells. This mechanism protects healthy cells from lysis by NK cells. 
(B) Upon viral infection or malignant transformation, cells may down-regulate MHC 
class I molecules on the cell surface and the expression of NKG2D ligands is induced. 
Subsequently, NK cells get strong activating signals together with low or no inhibitory 
signals leading to activation. After activation, NK cells release lytic granules containing 
perforin and different granzymes which lyse the target cell. KIR, killer 
immunoglobulin-like receptor; MHC, major histocompatibility complex; NK, natural 
killer; NKG2DL, NKG2D ligand. 

 

Altogether, the reactivity of NK cells is determined by a balance between activating and 

inhibitory signals [13]. Normal cells express MHC class I molecules and no or only few 
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activating NK cell ligands resulting in an inhibition of NK cells, whereas altered or 

stressed cells activate NK cells in the absence of MHC class I molecules and the 

induced expression of activating ligands. These mechanisms are illustrated in Figure 

1.1. 

 

1.1.2 NK cell characteristics 

 

In humans, NK cells are defined as CD3-CD56+ lymphocytes and they represent about 

15% of all peripheral blood lymphocytes. They can be divided into two major 

subpopulations, CD56dim and CD56bright cells. The CD56dim population predominates in 

the blood (about 95% of NK cells) and at sites of inflammation. In addition, this 

population is characterised by a high cytotoxic activity and expression of killer cell 

immunoglobulin (Ig)-like receptors (KIR) and Fc gamma receptor III (CD16). The 

CD56bright cells are mainly cytokine producers with low cytotoxicity and no or low 

CD16 expression and predominate in lymph nodes (about 75% of NK cells) [14-16]. 

They are considered to represent a precursor stage of terminally differentiated CD56dim 

NK cells. CD56 is not expressed in mice. But similar to human NK cells murine NK 

cells can be classified according to the expression level of the tumour necrosis factor 

receptor superfamily (TNFRSF) member CD27. CD27high NK cells are cytokine 

producers and predominate in lymph nodes [17,18] but they also have a high cytolytic 

potential. A new suggestion is to define human and mouse NK cells by their expression 

of the activating NK receptor NKp46 which is almost exclusively expressed by NK 

cells [19]. 

 

The main effector mechanism of NK cells is, as their name implicates, cell-mediated 

cytotoxicity. Upon activation NK cells release their cytotoxic granules that contain 

perforin and different granzymes resulting in a perforation of the target cell and 

subsequent apoptotic death induced by the granzymes [20,21]. But there are also some 

members of the TNFRSF involved in the killing of sensitive targets such as tumour 

necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), Fas ligand (FasL) 

and TNF receptor (TNFR)-1 [20,21]. The cytokines interleukin (IL)-2, IL-12, IL-15 and 

interferon (IFN)-α/β produced by other lymphocytes increase the activation of NK cells 

and augment their cytolytic activity against tumour cells [22]. After activation, NK cells 

also produce certain cytokines and chemokines like IFN-γ, granulocyte macrophage 
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colony-stimulating factor (GM-CSF), TNF, monocyte chemotactic protein (MIP)-1α 

and RANTES (regulated upon activation, normal T cell expressed and secreted) [23-

25]. Information from in vivo studies indicates that IFN-γ derived from NK cells is of 

major importance for shaping an immune response [24]. 

 

1.1.3 NK cell receptors 

 

In contrast to T and B lymphocytes, NK cells do not recognise foreign antigens, but an 

altered cell surface of “self” cells. NK cells do not have the possibility of genetic 

recombination to generate antigen-specific receptors, but they have a large repertoire of 

germ-line encoded inhibitory and activating receptors. These receptors mainly belong 

either to the immunoglobulin superfamily (IgSF) or to the C-type lectin superfamily 

(CLSF). Many Ig-like NK receptors like the killer-cell Ig-like receptors (KIRs), the Ig-

like transcripts (ILTs), or the natural cytotoxicity receptor (NCR) NKp46 are encoded in 

the leukocyte receptor complex (LRC), whereas the C-type lectin-like receptors 

(CTLRs) are encoded in the natural killer gene complex (NKC) [26,27].  

 

1.1.3.1 Inhibitory receptors 

 

The major inhibitory NK receptors are members of the KIR family in humans, the C-

type lectin-like Ly49 receptors in mice and CD94/NKG2A (natural killer group 2, 

member A) lectin-like receptors expressed both in humans and mice [28-30]. The KIR 

family consists of at least 15 functional genes that are highly polymorphic and that are 

expressed on overlapping NK cell subsets and a subset of memory T cells [31-34]. They 

are described to recognize the classical human MHC class I molecules, human 

leukocyte antigen (HLA)-A, -B and -C. The number and type of KIR genes present in 

different individuals varies significantly resulting in a different and specific KIR 

expression pattern in each individual.  

The mouse Ly49 receptors were the first identified MHC class I inhibitory receptors 

[35,36]. The Ly49 genes are polymorphic and, similar to the KIRs, expressed on 

overlapping NK cell subsets and memory T cells. The receptors are specific for allelic 

subsets of MHC class I molecules [33,36].  
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The heterodimer NKG2A/CD94 binds to the non-classical MHC molecule HLA-E in 

humans and to Qa-1b in mice, and is a broad detector of MHC class I expression 

[37,38]. NKG2A/CD94 can be detected on about 50% of the NK cells and on a subset 

of memory CD8+ T cells.  

After ligand binding to inhibitory receptors the tyrosine of the immunoreceptor 

tyrosine-based inhibition motif (ITIM) in the cytoplasmic tail of the receptors is 

phosphorylated. This leads to a recruitment of Src homology 2 (SH2) domain-

containing phosphatases such as SHP-1 or -2 (SH2-containing protein tyrosine 

phosphatases) causing an inhibition of NK cells [29]. Each NK cell normally expresses 

at least one inhibitory receptor which is randomly chosen out of the receptors encoded 

in the germ-line. If developing NK cells do not receive any inhibitory signal, but 

express MHC class I specific inhibitory receptors they become hyporesponsive [39,40]. 

 

1.1.3.2 Activating receptors 

 

In humans, important activating NK receptors are the CTLR NKG2D and the NCRs 

NKp30, NKp44 and NKp46 [41,42]. The NCRs are almost exclusively expressed on 

NK cells. NKp46 and NKp30 are expressed on all NK cells, whereas NKp44 expression 

is restricted to activated NK cells [43]. The self ligands for the NCRs remain still 

unknown, but it was shown that NKp46 and NKp44 bind to the hemagglutinins of 

influenza virus [44] and other viral structures [45]. Blocking studies with anti-NCR 

antibodies revealed the important role of these receptors in the lysis of tumour cells 

[46].  

NKG2D is one of the most important activating NK receptors. Its ligands are inducibly 

expressed after cell stress, viral infection and malignant transformation. NKG2D and 

NKG2D ligands (NKG2DL) will be discussed later in detail. 

The Fc gamma receptor III (CD16) plays also an important role in NK cell activation 

because it mediates antibody-dependent cellular cytotoxicity (ADCC) [14,47].  

There exist several other activating NK receptors, but their immunological function and 

signalling pathways are mostly insufficiently understood. The leukocyte adhesion 

molecule DNAX accessory molecule-1 (DNAM-1), also known as CD226, recognises 

ligands on tumour cells, the poliovirus receptor (CD155) and Nectin-2 (CD112) [48]. 

2B4, another activating NK receptor, binds to CD48 which is up-regulated on cells 
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infected with Epstein-Barr virus and highly expressed by cells of the haematopoietic 

lineage [49]. The CTLR NKp80 binds to the genetically linked, myeloid specific CTLR 

AICL [50]. Other surface molecules which are implicated in NK cell activation and 

tumour cell lysis are NTB-A, CD18/CD11 (β2 integrins), CD2 and the toll-like receptors 

(TLR) [51-53]. 

Most of the activating receptors of NK cells have no signalling motif in their 

cytoplasmic tail. Instead they associate with adaptor molecules via charged amino acids 

in their transmembrane regions. CD16 [54], NKp30 [55] and NKp46 [56] signal via 

association with CD3ζ and FcεRIγ. NKp44 [43] binds to DNAX activating protein of 12 

kDa (DAP12) which contains an immunoreceptor tyrosine-based activation motif 

(ITAM) sequence. Upon activation it becomes phosphorylated and recruits zeta-chain-

associated protein of 70 kDa (ZAP70) and Syk.  

The KIR, Ly49 and NKG2 families, mainly consisting of inhibitory receptors, also have 

some activating members binding to MHC class I molecules [57-59]. Examples are 

KIR2DS and KIR3DS in humans, Ly49D and Ly49H in mice and CD94/NKG2C in 

humans and mice. These receptors have, in contrast to the inhibitory receptors, no ITIM 

motif but charged amino acids in their transmembrane region to recruit the ITAM-

bearing adapter molecule DAP12 [13,41]. Surprisingly, these activating receptors bind 

to the same ligands as their inhibitory counterparts but their affinity to MHC class I 

molecules is lower [13,60]. The immunological relevance of these receptors remains to 

be elucidated. 

 

1.1.4 The activating NK receptor NKG2D 

 

NKG2D is a homodimeric C-type lectin-like activating receptor encoded in the NKC on 

chromosome 6 in mice and 12 in humans [10,42]. NKG2D is evolutionary conserved in 

contrast to its ligands. It is genetically linked to the NKG2 receptor family [61] but 

NKG2D has no significant similarity to other NKG2 members and should be considered 

as a distinct receptor due to its unique biology. An interesting feature of NKG2D is the 

multitude of ligands, whereas other NK receptors have only one or two binding 

partners. The homodimer of NKG2D binds to the α1 and α2 domain of its ligands as 

shown in Figure 1.2 for the binding to ULBP3.  
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Figure 1.2. Crystal structure of NKG2D binding to its ligand ULBP3.  The human 
NKG2D homodimer (in blue and red) binds to the α1 and α2 domain of the human 
NKG2D ligand ULBP3 (in green). The structure was created using the software 
proteinexplorer (http://www.proteinexplorer.org), PDB file, 1kcg [62]. ULBP3, UL16-
binding protein 3.   

 

NKG2D is expressed on almost all NK cells, CD8+ αβ T cells and γδ T cells, but only 

on a few CD4+ αβ T cells in humans [10] which can be expanded in patients with 

rheumatoid arthritis or tumours [63,64]. In addition, NKG2D is expressed on subsets of 

natural killer T (NKT) cells.  

In mice, NKG2D expression on T cells differs from humans since only a portion of γδ T 

cells, activated and memory CD8+ T cells express this receptor [65,66], whereas all 

mouse NK cells express NKG2D.  

NKG2D expression can be modulated by different cytokines. On human NK cells it is 

up-regulated by IL-15 [67,68]. Transforming growth factor (TGF)-β [69,70] and IL-21 

[71] were shown to down-modulate NKG2D expression.  

At the moment, NKG2D is the best-characterised activating NK receptor. It associates 

via charged amino acids in the cytoplasmic tail with the adapter protein DNAX 

activating protein of 10 kDa (DAP10). Association with DAP10 can trigger cytotoxicity 

in NK cells. In mice, an alternative splice variant of NKG2D, NKG2D-S, can also 

associate with DAP12 [72,73] triggering cytotoxicity and cytokine release. DAP10 has 

in contrast to DAP12 no ITAM motif, but a cytoplasmic YxxM motif, which recruits 

phosphatidylinositol 3-kinase (PI3K) after phosphorylation at its tyrosine residue 

eventually resulting in the activation of NK cell cytotoxicity [74].  
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1.1.5 NKG2D ligands 

 

NKG2D has a multitude of ligands. In humans, two families of NKG2DL exist, the 

MHC class I-related molecules A and B (MICA and MICB) and the UL16-binding 

proteins (ULBPs). MICA and MICB are non-classical MHC molecules, closely related 

to each other and encoded by tandem genes near the HLA-B locus [10]. The MIC 

proteins consist of MHC class I-like α1, α2 and α3 domains (Figure 1.3), but they do 

not associate with β2-microglobulin and they are TAP-independent [75,76].  

 

 

Figure 1.3. Crystal structure of NKG2DL. The structure of MICA (left) as an 
example for the family of the MHC class I chain related (MIC) molecules consists of an 
α1, α2 and α3 domain which are very similar to MHC class I proteins. ULBP3 as an 
example for the UL16 binding proteins (ULBPs) lacks an α3 domain, but the α1 and α2 
domains have a comparable structure to MICA. NKG2D binds to the α1 and α2 platform 
of the NKG2D ligands. The structures were created using the software proteinexplorer 
(PBD file MICA, 1hyr [76], ULBP3, 1kcg [62]). MICA, MHC class I chain related 
protein A; ULBP3, UL16-binding protein 3. 

 

Members of the ULBP family were identified by their binding capacity to the human 

Cytomegalovirus (HCMV) protein UL16 [77] and due to their relationship to the mouse 

retinoic acid early inducible (Rae)1 proteins [78]. Therefore, they are named retinoic 

acid early inducible transcript (RAET)1 proteins. The ULBP gene cluster on the long 

arm of chromosome 6 consists of at least six functional genes (ULBP1-4, RAET1G and 

RAET1L) and four pseudogenes [78-80], however the binding of RAET1L to NKG2D 

needs to be confirmed. ULBPs are also members of the MHC class I family, but they 
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share no sequence homology with MIC molecules. They consist of an α1α2 platform 

domain lacking an α3 domain (Figure 1.3). Some of them are linked to the plasma 

membrane by a glycosylphosphatidylinositol (GPI)-anchor (ULBP1-3 and RAET1L), 

whereas ULBP4 and RAET1G have a transmembrane domain and a cytoplasmic tail 

[62,77,81]. The NKG2DL are highly polymorphic, especially the MIC molecules with 

over 70 distinct alleles identified [79,82]. ULBP1, ULBP2, RAET1G and MICB bind to 

the HCMV glycoprotein UL16 resulting in an intracellular retention, whereas MICA, 

ULBP3 and ULBP4 do not bind to UL16 [77,83-85]. MICA surface expression, except 

for the allelic variant MICA*08 which lacks the cytoplasmic tail, is inhibited by the  

HCMV protein UL142 [86]. 

 

NKG2DL synonym plasma membrane anchoring NKG2D binding affinity 
[ref.] 

MICA - transmembrane domain 0.9 µM [87] 

MICB - transmembrane domain 0.8 µM [88] 

ULBP1 RAET1I GPI-anchor 1.1 µM [89] 

ULBP2 RAET1H, 
ALCAN GPI-anchor ? 

ULBP3 RAET1N GPI-anchor ? 

ULBP4 RAET1E, 
LETAL transmembrane domain ? 

RAET1G - transmembrane domain ? 

RAET1L - GPI-anchor ? 

Table 1.1. Human NKG2DL. All human NKG2DL are listed with their synonyms and 
their plasma membrane anchoring. In addition, the binding affinity to NKG2D is 
indicated. Table adapted from [90]. GPI, glycosylphosphatidylinositol; MIC(A/B), 
MHC class I chain-related protein A/B; NKG2DL, NKG2D ligands; RAET1, retinoic 
acid early inducible transcript; ULBP, UL16-binding protein. 

 

In mice, NKG2DL are the retinoic acid early inducible 1 (Rae1) proteins [91,92], the 

distantly related minor histocompatibility antigen H60 [91,92] and murine UL16-

binding protein-like transcript 1 (Mult1) [93,94]. The MIC molecules have no 

homologues in mice. Until now, five isoforms of the mouse GPI-anchored Rae1 

proteins are known called Rae1-α, -β, -γ, -δ and -ε.  All mouse NKG2DL are distantly 

related to MHC class I molecules but do not associate with β2-microglobulin and are 

TAP independent. Structurally, mouse NKG2DL are most similar to ULBPs. 
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NKG2DL plasma membrane anchoring NKG2D binding affinity [ref.] 

Rae1α GPI-anchor 690 nM [95] 

Rae1β GPI-anchor 345 nM [95] 

Rae1γ GPI-anchor 586 nM [95] 

Rae1δ GPI-anchor 726 nM [95] 

Rae1ε GPI-anchor ? 

H60 transmembrane domain 26 nM [95] 

MULT1 transmembrane domain 6 nM [93] 

Table 1.2. Mouse NKG2DL. All mouse NKG2DL are indicated with their plasma 
membrane attachment and their binding affinity to NKG2D if known. GPI, 
glycosylphosphatidylinositol; MULT1, murine UL16-binding protein-like transcript 1; 
NKG2DL, NKG2D ligands; Rae1, retinoic acid early inducible 1.  

 

 

Figure 1.4. Human and mouse NKG2DL.  In the upper panel the human NKG2DL 
are shown. The members of the MHC class I chain-related proteins MICA and MICB 
and the UL16-binding proteins ULBP1-4, RAET1G and RAET1L. In the lower panel, 
the mouse NKG2DL Rae1, H60 and MULT1 are shown. They are differently expressed 
by the mouse strains BALB/c and C57B1/6. MIC(A/B), MHC class I chain related 
protein A/B; MULT1, murine UL16 binding-like transcript 1; NKG2DL, NKG2D 
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ligand; Rae1, retinoic acid early inducible 1; RAET1, retinoic acid early inducible 
transcript 1; ULBP, UL16-binding protein. 

All NKG2DL form a similar tertiary structure as evident from crystallographic analyses 

(Figure 1.3) allowing them to bind in a comparable way to the NKG2D homodimer 

[62,76,96]. However binding affinities of the different NKG2DL to NKG2D vary over a 

broad range [78,95,97]. 

 

1.1.6 NKG2D ligand expression 

 

NKG2D ligands are normally not expressed or only at low levels in healthy tissues. But 

after heat shock, toll-like receptor (TLR)-signalling, viral infection, DNA damage and 

ultraviolet (UV) radiation they are up-regulated [75,98,99]. MICA and MICB 

expression is induced by stress stimuli and they are often expressed on the cell surface 

of epithelial tumours, on melanoma cells, hepatic carcinomas, and some haematopoietic 

malignancies, but they are normally absent from the healthy tissue [75,100-102]. Their 

normal tissue expression is restricted to the intestinal epithelia probably due to the 

neighbouring bacterial flora [75]. MIC molecule expression was also detected on LPS-

stimulated macrophages, activated T cells, HCMV-infected fibroblasts, mycobacteria-

infected dendritic cells and tissues exposed to autoimmune attack. This shows that MIC 

molecules are induced by many stimuli [63,75,98,103-105]. In contrast to the MIC 

molecules, ULBP transcripts are detectable in many tissues [77,79]. But their protein 

expression pattern has to be further addressed. They are frequently over-expressed in 

primary tumours, including colon, lung, stomach and breast carcinomas [22]. ULBP1-3 

expression was also detected on B cells and, donor-dependent, on monocytes and 

granulocytes [106].  

In mice, expression of Rae1 molecules was first described in brains of mouse embryos 

[107]. They may be involved in embryonic development as they are expressed only in 

early embryos especially in the brain, whereas in adult tissues they are mostly silent 

[91,107,108]. Murine NKG2DL are expressed on thymocytes and on Concanavalin A-

activated splenocytes of BALB/c mice [92] and Rae1 proteins were induced on 

macrophages through TLR stimulation [109]. Rae1 and H60 proteins were shown to be 

absent in normal skin, but transcripts were induced by treatment with phorbol-12-

myristate-13-acetate (PMA) and were present in papillomas and carcinomas of tumour-

bearing mice [110].  
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Generally, NKG2DL in humans and mice are up-regulated in non-tumour cell lines by 

genotoxic stress and activation of the major DNA damage checkpoint involving ATM 

(ataxia telangiectasia, mutated) and ATR (ATM and Rad3-related) kinases [111]. In 

addition, the expression of ligands on tumour cell lines could be suppressed by down-

regulation of ATM indicating that ligand over-expression in tumour cells may be due to 

chronic DNA damage response [99].  

 

The expression pattern of NKG2DL suggests that they signal danger to the immune 

system. This signalling activates the immune system and should lead to protection from 

infections or “altered” cells developing into tumours. The question why there are so 

many different NKG2DL has to be addressed further. There are some possible 

explanations for the multitude of different ligands. One explanation is that the diversity 

has been driven by a competition between the immune system and pathogens. Another 

possibility is that cancer was responsible for the diversity. There is also experimental 

evidence that the binding affinities are different for NKG2D and also tissue-specific 

functions have to be considered [90]. 

 

1.1.7 Implications of NK cells for cancer immunosurveillance 

 

In humans, most evidence for a role of NK cells in tumour surveillance is derived from 

correlative studies. In an 11-year follow-up study, it was found that a low NK-like 

cytotoxicity of peripheral blood lymphocytes correlates with an increased risk for 

cancer [112]. The general NK cell: tumour cell ratio found in tumours is too low to 

induce NK cell elimination of tumour cells in vitro, but possibly, in vivo fewer numbers 

of NK cells are sufficient especially against smaller tumours [113]. NK cells are not 

found in large numbers in advanced human neoplasms indicating that they normally do 

not home efficiently in malignant tissues. After activation with cytokines, NK cells are 

much more efficiently able to infiltrate tumours [114]. The infiltration of tumours with 

NK cells has been shown to be a positive prognosis marker in different carcinomas 

[115-117]. It is shown that myeloid leukaemia patients have a remarkable increase in 

survival and protection from relapse when they receive alloreactive NK cells in the 

course of allogeneic haematopoietic stem cell transplantation. This requires that the 

patient lacks HLA class I ligands for the inhibitory KIR receptors of donor NK cells 

[118,119].  
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In mice exist many reports indicating a role of NK cells in the immunosurveillance of 

tumours. Most of these studies were performed by implanting syngeneic tumour cells in 

mice. These mice were genetically deficient either in NK cells or NK cell functions or 

NK cells were depleted by antibodies [18,22]. It was demonstrated by different groups 

that NK cells play a role in the growth of transplantable tumours. Depletion of NK cells 

in such a model leads to more aggressive tumour growth and metastasis. Ectopic 

expression of the murine NKG2D ligands Rae1-β and H60 in tumour cell lines result in 

a potent rejection by syngenic mice [120,121]. NK cells and CD8+ T cells are 

responsible for the rejection and the rejection is dependent on functional NKG2D [121-

123]. Transgenic mice expressing the NKG2D ligand Rae1-ε either ubiquitously or in a 

tissue-specific way show a systemic down-regulation of NKG2D resulting in defects of 

the innate immune system. These mice have higher tumour susceptibility and immune 

suppressed NK cells. Sustained NKG2D ligand expression, as it is the case for tumours 

expressing these ligands, can lead to a systemic down-regulation of NKG2D resulting in 

immunosuppression [122]. Mice expressing MICA under the H2-Kb promoter also 

showed a down-modulation of NKG2D mainly due to cell-bound MICA and impacts 

tumour immunity as apparent in the failure of rejecting NKG2DL-expressing RMA 

cells [123]. Another strategy to improve NK cell function is administration of cytokines 

or chemokines such as IL-2, IL-12, IL-15 and IFN-α/β after tumour transplantation 

resulting in a better elimination of tumours [18,22,24,124]. After their activation, NK 

cells are able to produce certain cytokines and chemokines like IFN-γ, GM-CSF, TNF-α 

[23]. The release of IFN-γ leads to stimulation and maturation of DC via an IFN-γ 

dependent signal cascade to the IL-12 producing DC1 phenotype and finally in a strong 

and protective CD8+ T cell response [125,126]. Experiments in mice lacking IFN-γ, 

perforin or recombination activating gene (RAG) 2 result in a higher incidence for 

tumours as compared to control mice. These results support the theory that NK cells and 

cytotoxic lymphocytes (CTLs) are important in tumour immunosurveillance [127-133]. 

The relevance of NK cells for controlling de novo tumourigenesis was demonstrated by 

treating NK cell-depleted mice with the chemical carcinogen methylchloanthrene 

(MCA). The depletion of NK cells resulted in a higher incidence for spontaneous 

tumours [134]. Another hint for the involvement of NK cells in immunosurveillance 

came from experiments showing that mice lacking perforin, IFN-γ, IFN-γR or signal 

transducer and activator of transcription (STAT) 1 establish more MCA-induced 

tumours compared to wildtype counterparts [129,131,135]. NK cells and γδ T cells are 
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also capable in rejecting spontaneously arising MHC class I-deficient B cell lymphomas 

via perforin-mediated cytotoxicity [136]. In another approach, mice were treated with 

MCA in combination with neutralising anti-NKG2D antibodies. Here, mice have a 

higher incidence for sarcoma meaning that NKG2D plays an important role in the 

protection from de novo tumourigenesis of MCA-induced sarcomas [137]. NKG2D is 

mainly responsible for the activation of perforin-mediated cytotoxicity as perforin-

deficient mice do not show a detectable NKG2D phenotype, whereas IFN-γ- and 

TRAIL-deficient mice do. It has further been shown that NKG2D is involved in the 

tumour immunosurveillance of MHC class I positive tumours expressing the NKG2DL 

Rae1 compared to appropriate tumours without NKG2D ligands in vitro and in vivo. 

Under certain circumstances memory T cells are primed against the transplanted 

tumour, which eliminate tumour cells even when they do not express NKG2DL any 

longer [120,121]. Blocking of NKG2D enhances the growth and metastasis of tumours 

expressing endogenously or ectopically NKG2DL [121,138]. In experiments analysing 

the effects of cytokines to NK cell mediated tumour metastasis suppression it has been 

shown that IL-2 and IL-12 promote NK cell perforin-mediated activity mainly via the 

NKG2D pathway. In contrast, IL-18 functions via FasL in suppressing tumour 

metastasis, independently of NKG2D such as TRAIL-mediated apoptosis which is also 

NKG2D independent [124].  

Taken together, these results suggest that NKG2D is critically involved in tumour 

immunosurveillance. Main features of this activating receptor are the broad expression 

on lymphocytes with the capacity for cell-mediated cytotoxicity and a large family of 

stress inducible ligands [139]. 

 

1.1.8 Tumour immune evasion  

 

Different mechanisms are known how tumour cells evade the immunosurveillance by 

NK cells [140]. In some leukaemia cell lines the MHC class I molecules are up-

regulated and provide therefore a stronger inhibitory signal to NK cells [141]. Patients 

with haematological malignancies sometimes have abnormal NK cell numbers, 

phenotypes and functions [142,143,143]. The question is why tumours develop when 

they express ligands for the NK cell activating receptor NKG2D. An explanation is that 

these tumours may survive because they are able to balance the activating and inhibitory 

signals to NK cells and other immune cells and are therefore tolerated by the immune 
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system [144]. Various leukaemias and other tumours secrete high amounts of soluble 

NKG2D ligands [145,146]. The surface density of the NKG2D ligands is reduced by the 

shedding and therefore the tumour cells are less immunogenic. Patients with epithelial 

tumours expressing MIC molecules have reduced expression levels of NKG2D on 

tumour-infiltrating and peripheral blood T and NK cells [145]. This effect is 

accompanied by up-regulated levels of soluble MICA (sMICA), soluble MICB 

(sMICB) and soluble ULBP2 (sULBP2) which are released by metalloproteases from 

tumour cells [146,147]. Soluble MICA causes the down-regulation of NKG2D which 

results in impaired NK and T cells [145,148]. The release of sMICA depends on the 

disulphide-isomerase Erp5 which induces a large conformational change before 

proteolytic cleavage [149]. Soluble MICB and sULBP2 which are found in patients with 

haematopoietic malignancies do not alter NKG2D expression levels in vitro but the 

NKG2D ligand shedding reduces surface densities and therefore the immunogenicity of 

the tumour cell [147,150]. Different tumour cells like leukaemia cells and glioblastomas 

release the potent immunosuppressive molecule transforming growth factor-β (TGF-β). 

It strongly down-regulates NKp30 and to a lesser extent NKG2D [69]. TGF-β has been 

shown to impair NK cell function via down-regulation of NKG2D in lung cancer and 

colorectal cancer patients whereas other receptors are not affected [151]. TGF-β is also 

involved in the immune escape of glioma cells by down-regulating NKG2D on NK and 

T cells. In addition, the NKG2DL MICA, ULBP2 and ULBP4 are down-modulated by 

TGF-β [70,152]. NKG2D and NKp46 are also down-regulated by L-kynurenine, a 

tryptophane catabolite generated by indolamine 2,3-dioxygenase (IDO) which has been 

found in various tumours correlating with tumour progression [153].  

Taken together, soluble NKG2DL, IDO and TGF-β appear to represent important 

players in tumour-mediated immunosupression of NKG2D-mediated 

immunosurveillance and therefore are attractive targets for future immunotherapeutic 

strategies. A summary of these immune escape mechanisms is shown in Figure 1.5. 
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Figure 1.5. Immune evasion mechanisms of tumour cells.  NK cells release soluble 
NKG2D ligands through proteolytic cleavage. This leads to a down-regulation of these 
ligands on the surface of the tumour cell. In addition, the released soluble MICA down-
regulates NKG2D on the surface of NK cells. TGF-β and L-kynurenine, released by 
tumour cells also down-regulate NKG2D [69,70,153]. TGF-β can also suppress the 
expression of the NKG2DL MICA and ULBP2 by reducing the mRNA levels [152]. 
MICA, MHC class I chain related molecule A; NK, natural killer; ULBP, UL16-binding 
protein; TGF, transforming growth factor. 
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1.2 Metalloproteases 

 

Secreted proteins are often derived from integral plasma membrane proteins. These 

proteins are post-translationally hydrolysed from the cell surface by proteases or 

phospholipases depending on the type of the membrane anchor of the protein. Secretion 

of proteins through proteolytic release is limited to type I and type II transmembrane 

proteins with the cleavage site generally located close to the membrane surface. The 

proteolytic cleavage occurs in a stalk region between the transmembrane domain and 

the globular extracellular domain releasing the bulk of the protein into the extracellular 

milieu, often in an fully functional form [154]. Some GPI-anchored proteins are also 

released by proteolysis, e. g. the folate-receptor [155], but more often they are released 

by the action of phospholipase C or D (e. g. shedding of alkaline phosphatase) [156]. 

Shedding of cell surface proteins results in a down-regulation of the protein on the cell 

surface and to the generation of a soluble form with identical or different properties. 

Receptors and receptor ligands, ectoenzymes, cell adhesion molecules and other 

proteins are released by the activity of different proteases from the cell surface. The 

majority of secretases are metalloproteases. Within this family the “a disintegrin and 

metalloprotease” (ADAM) proteins are the largest group [157]. They will be discussed 

in detail in the following chapter. 

 

1.2.1 “A Disintegrin and Metalloprotease” (ADAM) proteins 

 

1.2.1.1 Structure and properties of ADAMs 

 

ADAM (a disintegrin and metalloprotease) proteins are multidomain proteins and 

belong to the superfamily of zinc proteases. This superfamily is subdivided into 

gluzincins, metzincins, inuzincins, carboxypeptidases, and DD-carboxypeptidases due 

to the primary structure of their catalytic sites [158]. The metzincin family consists of 

serralysins, astacins, matrixins, and adamalysins [159]. Members of the adamalysins are 

ADAMs, class III snake venom metalloproteases (SVMP) and ADAM-TS (ADAMs 

with thrombospondin motif) proteins, which can be distinguished structurally from each 

other (Figure 1.6). Adamalysins and matrixins, including the matrix metalloproteases 



Introduction                                                                                                                     21 

(MMP), are similar in their metalloprotease domain, but the adamalysins differ by an 

additional integrin receptor-binding disintegrin domain (Figure 1.6).  

 

 

Figure 1.6. Structure of ADAMs and related proteins. The metzincin family of 
proteases is characterised by a metalloprotease domain with a zinc atom responsible for 
their proteolytical activity. The subfamily of Adamalysins consists of snake venom 
metalloproteases (SVMP), a disintegrin and metalloprotease (ADAM) proteins and 
ADAMs with thrombospondin-like domain (ADAM-TS). In contrast to the membrane-
tethered matrix metalloproteases (MT-MMP) which belong to the matrixins, they 
contain a disintegrin domain.  

 

The ADAMs are the largest family of membrane-tethered proteases which shed 

membrane proteins [157]. They were originally associated with sperm-egg fusion. More 

recently, they have been linked to other biological processes, such as cell migration and 

adhesion and activation of signalling pathways by shedding membrane bound cytokines 

and growth factors. Sometimes ADAMs are also called the MDC family, indicating the 

presence of a metalloprotease, a disintegrin and a cysteine-rich domain [160]. Up to 

know more than 30 members of the ADAMs are known in mammals. Some ADAMs 

are restricted to testis and/or associated structures (ADAM2, 7, 18, 20, 21, 29, 30 and 

32) whereas other members of this family are more broadly expressed (ADAM8, 9, 10, 

11, 12, 15, 17, 19, 22, 23, 28, and 33). In humans 20 adam genes have been identified.  
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ADAM Function Localisation Synonyms 
ADAM2 sperm-egg binding and fusion Sperm fertilin-β, PH-30β 

ADAM7  Testis EAP-1, GP-83 

ADAM8 immune function (neutrophil 
infiltration, CD23 shedding) 

macrophage, 
neutrophil MS2, CD156 

ADAM9 

myogenesis, osteogenesis, cell 
migration, shedding of HB-EGF, 
TNF-p75 receptor, cleavage of 

APP, digestion of fibronectin and 
gelatin 

Somatic 
MDC9, MCMP, 

Meltrin gamma, IGF 
binding protein-5 

ADAM10 

neurogenesis, digestion of collagen 
IV, gelatin and myelin basic 

protein, cleavage of delta, APP, 
L1, and CD44, shedding of HB-

EGF 

Somatic MADM, Kuzbanian, 
SUP-17 

ADAM11 tumour supressor gene (?) Brain MDC, MDC1 

ADAM12 

myogenesis, osteogenesis, muscle 
formation, digestion of IGFBP-3 
and -5, collagen IV, gelatin and 

fibronectin, shedding of HB-EGF 

Somatic 
Meltrin alpha, 

MCMP, MLTN, 
MLTNA 

ADAM15 
blood vessel function, expression 
in arteriosclerosis, digestion of 

collagen IV and gelatin 
Somatic 

Metargidin, 
MDC15, AD56, 

CRII-7 

ADAM17 

cleavage of pro-TNF alpha, TGF 
alpha, TNF-p75 receptor, ErbB4, 
TRANCE and HB-EGF, cleavage 

of APP, Notch, L-selectin and 
CD44 

Somatic TACE, cSVP, 
ADM-4 

ADAM18  Testis tMDC III(mac) 

ADAM19 
myogenesis, osteogenesis, 

formation of neuron, digestion of 
neuregulin 

Somatic Meltrin beta, 
FKSG34(gene) 

ADAM20 spermatogenesis Testis - 
ADAM21 ? Testis - 
ADAM22 ? Brain MDC2 Alpha/Beta 
ADAM23 ? brain, heart MDC3 

ADAM28 
digestion of myelin basic protein 

and IGFBP-3, immune 
surveillance 

testis, lung, 
lymphocytes, 

pancreas, uterus 

eMDC II, MDC-Lm, 
MDC-Ls 

ADAM29 ? Testis svph1 
ADAM30 ? Testis svph4 
ADAM32 ? Testis - 

ADAM33 
mutation in bronchial asthma 

patients, cleavage of APP, KL-1 
and insulin B chain 

Somatic - 

Table 1.3. List of the human a disintegrin and metalloprotease (ADAM) family. All 
human ADAM family members identified until know are shown in the table. Their 
function, localisation and their synonyms are described. HB-EGF, heparin-binding 
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epidermal growth factor; TNF, tumour necrosis factor; APP, amyloid precursor protein; 
IGFBP, insulin-like growth factor binding protein; TGF-α, transforming growth factor-
α; TRANCE, TNF-related activation induced cytokine. ADAMs with metalloprotease 
active site sequences are underlined. Data are from [160,163] and 
(http://www.people.virginia.edu/%7Ejw7g/Table_of_ADAMs.html).  

 

It was shown that several ADAMs have two or more splice variants, resulting in 

different lengths of the cytoplasmic tail, different subcellular or tissue specific 

localisations or different activities [160]. For example, ADAM12 exists in a membrane 

bound form and in a shorter version without transmembrane domain secreted from the 

cell [161]. ADAM10 is also alternatively spliced and exists as a membrane bound and 

secreted form [162]. 

ADAMs are type I transmembrane proteins with the catalytic domain being localised on 

the extracellular side of the membrane. Besides that, they have a signal sequence and a 

prodomain at the N-terminus. The signal sequence directs the protein into the secretory 

pathway, whereas the prodomain inhibits the active site through a cysteine switch 

before activation [164]. This cysteine switch allows the coordination of the active site 

zinc atom by a conserved cysteine residue in the prodomain. The maturation of ADAMs 

occurs in the trans-Golgi network with the help of proprotein convertases as furin or 

others [165]. They are supposed to cleave the prodomain at a conserved Rx(R/K)R 

motif and after cleavage of the prodomain the zinc atom can switch the coordination to 

the metalloprotease domain resulting in catalytic activity [166-168]. But there are also 

some ADAM family members which may undergo autocatalytic activation; for 

ADAM8 and ADAM28 it was shown that an active metalloprotease domain is required 

for activation of the protease [169,170]. The prodomain has an additional function as it 

is required for the proper folding of the protein especially the metalloprotease domain, 

e.g. ADAM10 and ADAM17 proteins lacking a prodomain have no protease activity 

[166,171]. Taken together, the prodomain is important for maintaining the latency of the 

enzymes and it serves as an intramolecular chaperone for the active site and ensures the 

delivery through the secretory pathway.  
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Figure 1.7. Crystal structure of the catalytic domain of ADAM17 and the snake 
venom metalloproteinase Adamalysin II.  The crystal structure of ADAM17 (PDB 
file: 1bkc) is shown here with a hydroxamate-based inhibitor bound to the active site of 
the protein [172] together with the catalytic domain of the snake venom 
metalloproteinase Adamalysin II with a peptidomimetic inhibitor (PDB file: 2aig) [173]. 
The catalytic domains of these two proteins have very high similarities. ADAM, a 
disintegrin and metalloprotease. The structures were created using the software 
proteinexplorer (http://www.proteinexplorer.org). 

 

All ADAMs contain a metalloprotease domain which can induce ectodomain shedding 

and can cleave extracellular matrix (ECM) proteins. Most ADAMs have a characteristic 

HExxHxxGxxH zinc-binding motif in this domain [174]. But about 60% of all ADAMs 

have mutations in this motif resulting in loss of proteolytic activity [163,175]. The 

catalytic site is highly conserved within the metzincins, but there are some differences 

in structure determining substrate specificity and differential sensitivity to protease 

inhibitors [159]. The structure of the catalytic domain of ADAM17 in comparison to the 

structure of the SVMP Adamalysin II is shown in Figure 1.7. In catalytically active 

ADAMs, three conserved histidine residues ligate the catalytic zinc atom, whereas the 

glutamic acid residue promotes catalysis by positioning and activating a water molecule 

to attack the peptide backbone of the substrate [174]. Twelve of the known human 

ADAMs (ADAM8, 9, 10, 12, 15, 17, 19, 20, 21, 28, 30 and 33) contain a functional 

metalloprotease active site sequence indicating protease activity, although this has not 

been shown for ADAM20, 21, and 30 [163]. Surprisingly, no apparent consensus 

recognition sequence for cleaving membrane-anchored substrates exists. This suggests 

that secondary structures, the distance of the stalk region to the membrane, distal sites 
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and auxiliary factors contribute to cleavage-site selection of membrane-bound substrates 

[157,160].  

Next to the metalloprotease domain there are three other domains: the disintegrin 

domain, the cysteine-rich domain and the EGF-like domain, which are suggested to 

promote interactions with other molecules in vitro and in vivo [176]. The disintegrin 

domain in ADAMs is about 90 amino acids long and unique among all cell surface 

proteins [177]. It is named for its presence in the SVMPs, where it is involved in 

binding of the platelet integrin receptor and functions as a potent inhibitor of platelet 

aggregation [178]. The disintegrin domain of the SVMPs contains a RGD consensus 

sequence within a 13 amino acid stretch called the disintegrin loop. ADAMs, except for 

ADAM15, do not have this RGD consensus sequence, but instead they have aspartic 

acid-containing sequences in the disintegrin loop which can bind to the α4/α9 subfamily 

of integrin receptors including fibronectin, vascular cell adhesion molecule (VCAM)-1, 

mucosal vascular addressin cell adhesion molecule (MAdCAM)-1, and tenascin-C 

[160,179,180]. All ADAMs, except for ADAM10 and ADAM17, contain this general 

ADAM disintegrin loop motif. Many ADAMs also have the RxxxxxxDEVF sequence 

in the disintegrin domain responsible for association with α9β1 integrins supporting 

integrin-mediated cell-adhesion [181,182].  

The cysteine-rich and the EGF-like domain are not very well understood. Some 

ADAMs have sequences similar to viral fusion peptides in the cysteine-rich domain, but 

no experimental proof exists that they play a role in membrane fusion. It is more likely 

that they improve the binding capacity of the disintegrin domain and their specificity 

[160]. The cysteine-rich domain of ADAM12 has been suggested to interact with 

syndecans and β1 integrins [183], whereas the cysteine-rich domain of ADAM13 was 

shown to be important for specifying the protease-dependent biological response in vivo 

[176]. The cysteine-rich domains of ADAM10 and ADAM17 differ from those of other 

ADAMs [184]. The EGF-like domain consists of a sequence motif of about 50 amino 

acids with six cysteine residues and a β-sheet structure, a sequence also found in all 

ErbB-binding growth factors and in extracellular matrix proteins [185].  

Most of the ADAMs have a transmembrane domain followed by a cytoplasmic tail, 

which differs significantly both in length and in sequence between the different ADAM 

family members [160]. The cytoplasmic tail of many ADAMs contains the PxxP motif 

for binding SH3 domain-containing ligands [186-188]. In addition, the cytoplasmic tail 

has phosphorylation sites for serine-threonine and/or tyrosine kinases and can be 
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phosphorylated under certain conditions [160]. This phosphotyrosines can serve as 

ligands for SH2 domain containing proteins [160]. For many ADAMs interactions with 

different kinases and other intercellular proteins were shown. The ability of ADAMs to 

release a substrate can be modulated by phosphorylation of the cytoplasmic tail or 

through binding of accessory proteins resulting in a different cell surface expression, an 

altered localisation in a specific membrane domain, or a change in the ability to cleave 

substrates in response to specific stimuli [160]. 

 

1.2.1.2 Regulation of ADAMs 

 

ADAMs can be regulated at different stages of the protein synthesis and maturation 

process. A Foxm1 knockout mouse model was shown to have a 90% reduced ADAM17 

expression indicating a role of the transcription factor FoxM (Forkhead Box M) 1 in the 

expression of ADAM17 in vivo [189]. Other reports describe that TGF-β is involved in 

the expression of ADAM12 [190], TNF-α in the expression of ADAM8 [191] and 

intracellular reactive nitrogen species and hydrogen peroxide in the expression of 

ADAM9 [192]. The first prerequisite for ADAM activation is the cleavage of the 

prodomain. This occurs either in an autocatalytic manner or is accomplished by 

proprotein convertases as described before. The intracytoplasmic localisation of 

ADAMs is probably regulated through the binding of adapter proteins to the 

cytoplasmic tail or its phosphorylation as described above.  

 

ADAM shedding occurs constitutively and is enhanced in response to a variety of 

stimuli. Protein kinase C (PKC) regulates ADAM activation. Phorbol esters such as 

PMA activate PKC which then activates different members of the ADAM family [193]; 

for example a direct interaction of PKCδ and ADAM9 is involved in PMA-induced 

heparin-binding epidermal growth factor (HB-EGF) shedding [194]. The association of 

PKCε with ADAM12 induces translocation of the protease to the cell surface [195]. 

Other studies found an involvement of the mitogen activated protein (MAP) kinase 

pathways in the PMA-stimulated release of HB-EGF; for example PMA stimulation of 

cells can lead to an increase in extracellular-signal regulated kinase (ERK) 

phosphorylation in combination with an increased shedding [196]. After PMA 

stimulation, the cytoplasmic tail of ADAM17 is phosphorylated via the MAP kinase 
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ERK which directly associates with this protease [197] and induces translocation of 

ADAM17 to the cell surface [198]. But it was also shown that even a mutated form of 

ADAM17 lacking its cytoplasmic tail is activated after PKC stimulation [199] 

indicating that there exist additional mechanisms to activate ADAM17 via PKC. Agents 

supporting calcium influx also induce ADAM mediated shedding. These reagents such 

as ionomycin lead to an increased calcium concentration in the cell and therefore to an 

activation of the cell. But they do not affect the PMA-induced shedding and vice versa 

PKC inhibitors have no effect on the shedding induced by calcium modulating agents 

[200]. 

 

Mature proteolytically active ADAMs can be regulated by the proteinacious tissue 

inhibitors of metalloproteases (TIMPs). In vertebrates there exist four TIMPs (TIMP-1, 

-2, -3, and -4) which all inhibit MMPs potently through binding to the active site in a 

1:1 stoichiometric fashion [201]. The different TIMPs vary in their tissue expression 

and their ability to inhibit MMPs [201,202]. TIMP-1, -2 and -4 are all secreted, whereas 

TIMP-3 is matrix-associated [203]. They are endogenous regulators of MMPs but they 

are not entirely selective for MMPs. TIMP-3 has been shown to inhibit ADAM17 and 

ADAM12, whereas ADAM10 is inhibited by TIMP-1 and TIMP-3 [204-206]. There 

exist also some ADAM family members which are not sensitive to TIMPs [207]. It was 

shown that TIMP-3 inhibits tumor growth in vivo [208], but many primary tumors 

(gastric, pancreatic, renal, lung, breast, colon, and brain) lack detectable levels of TIMP-

3 due to aberrant DNA hypermethylation correlating with disease progression [209-

211].  

 

1.2.1.3 ADAMs and diseases 

 

Membrane proteins shed by members of the ADAM family are involved in the 

pathogenesis of diseases; examples are rheumatoid arthritis, where it was shown that 

TNF-α mainly released by ADAM17 is in part responsible for the inflammation [157], 

Crohn’s disease and Alzheimer’s disease. In cardiac hypertrophy the new ADAM 

inhibitor KB-R7785 blocks the shedding of HB-EGF and the transactivation of the EGF 

receptor during vasoactivation of cardiomyocytes has some beneficial effects when used 

to treat chronic cardiac hypertrophy in animal models [212]. ADAMs are also thought 
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to play an important role in development and progression of cancer because they are 

involved in the release of many cytokines, growth factors, their receptors and cell-

adhesion molecules [180]. Tumour cells depend on the autocrine release of growth 

factors and there exist some studies describing the implication of ADAMs in the release 

of growth factors and in adhesion and motility of tumour cells [160]. In addition, they 

are thought to play key roles in different steps of cancer progression [213]. Many 

ADAMs are over-expressed in cancers including ADAM8, ADAM9, ADAM10, 

ADAM12, ADAM15, ADAM17, ADAM19 and ADAM28 [163], but for most of them 

the function and implication in cancer development and progression in still unknown. 

Up-regulated ADAM10 expression is observed for cancers of oral cavities [214], 

stomach [215], ovary [216], uterine [216], colon [217], prostate [218,219] and for 

leukaemia [218]. Down-regulation of ADAM10 with oligonucleotides or treatment with 

anti-ADAM10 antibodies reduces proliferation of carcinoma cells [214,220]. ADAM10 

is also involved in the release of L1, a protein involved in the motility and invasion of 

lymphoma, lung carcinoma, and melanoma cells and which is responsible for enhanced 

tumour dissemination by increasing cell migration in ovarian and uterine cancer 

[216,221,222]. ADAM17 is over-expressed in cancers of the breast [223], ovary [224], 

kidney [225], colon [226] and prostate cancer [227]. Inhibition of TGF-α shedding by 

ADAM17 reduced the size of xenografts in nude mice [228] and anti-ADAM17 

antibodies decreased cell proliferation in breast cancer cell lines [223]. In addition, it is 

assumed that ADAMs are involved in angiogenesis of tumours because they release 

membrane-tethered pro- and antiangiogenic factors [229].  

There exist different classes of ADAM inhibitors which might be used in diseases. 

Synthetic small molecule inhibitors of catalysis and the proteinacious tissue inhibitors 

of metalloproteases (TIMPs) are more specific. Members of the small molecule 

inhibitors are the hydroxamate-based inhibitors that bind to the active site of ADAMs 

and MMPs. The crystal structure of ADAM17 in combination with a hydroxamate-

based inhibitor (see Figure 1.7) presumably suggests that these inhibitors replace a Zn-

coordinating water molecule in the active site [172]. Broad range metalloprotease 

inhibitors, such as Batimastat and Marimastat, were tested in several preclinical and 

clinical settings to inhibit different MMPs [230]. But most of them are not specific for 

MMPs and inhibit ADAMs to the same extent or even better. For example ADAM17 is 

inhibited more by Batimastat than several other MMPs [205,231]. The broad range 

metalloprotease inhibitor Batimastat (BB94) (BB94 structure is shown in Figure 1.8) 
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was used in different clinical trials. In a phase I study with patients having malignant 

pleural effusions, intrapleural Batimastat reduced the need for pleural aspirations, 

whereas in other studies intraperitoneally administered Batimastat had no positive 

effects [232]. Unfortunately, the clinical development of many broad-range 

metalloprotease inhibitors was not successful due to side effects, many caused by 

inhibition of MMPs [233]. 

 

ADAM expression in cancer function in cancer inhibitors 

ADAM8 lung, kidney, brain migration Batimastat 

ADAM9 breast, pancreas, stomach, 
skin, liver, lung 

cell adhesion and 
invasion, integrin 

binding 
CGS 27023 

ADAM10 
oral cavity, stomach, ovary, 
uterine, colon, leukaemia, 

prostate 

L1 shedding, cell 
growth and 
migration 

GI254023X, 
GW280264X, 
INCB3619, 

INCB7839, XL784, 
TIMP-1, TIMP-3 

ADAM12 brain, breast, liver, stomach, 
colon 

HB-EGF shedding, 
cell growth KB-R7785, TIMP-3 

ADAM15 breast, prostate, stomach, 
lung cell growth ? 

ADAM17 breast, ovary, kidney, colon, 
prostate 

TGF-α shedding, 
cell growth 

GW280264X, 
INCB3619, 

INCB7839, TIMP-
2, TIMP-3 

ADAM19 brain, kidney ? Batimastat 

ADAM28 lung, breast, kidney IGFBP-3 cleavage, 
cell growth 

KB-R7785, TIMP-
3, TIMP-4 

Table 1.4. ADAM family members, their expression in human cancers and 
inhibitors. ADAM family members are shown which are involved in cancer 
development and progression. ADAMs are described with their expression and function 
in different cancers. Inhibitors capable of reducing ADAM activity are also shown. HB-
EGF, heparin-binding epidermal growth factor; IGFBP-3, insulin-like growth factor 
binding protein-3; TGF-α, transforming growth factor-α; TIMP, tissue inhibitor of 
metalloproteases. The table was adapted from [163].  

 

But there exist also inhibitors which discriminate better between ADAM family 

members and MMPs. ADAM9 is efficiently inhibited by CGS27023 [234]. 

GW280264X reportedly blocks proteolytic activity of both ADAM10 and ADAM17 
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with comparable efficiency, whereas GI254023X is about 100-fold more effective in 

blocking ADAM10 than ADAM17 (structures are shown in Figure 1.8) [235].  

 

Figure 1.8. Structure of the hydroxamate-based metalloprotease inhibitors. The 
broad-range metalloprotease inhibitor Batimastat and the two ADAM-specific inhibitors 
GW280264X and GI254023X are based on the hydroxamate structure. GI254023X 
preferentially blocks ADAM10, whereas GW280264X has a comparable affinity to 
ADAM10 and ADAM17. The structure of Batimastat is adapted from [236] and the 
structures of GW280264X and GI2540023X from [235]. ADAM, a disintegrin and 
metalloprotease protein. 

 

Some of these inhibitors are already in preclinical testing [237,238]. Two of them were 

developed to target the ErbB family, important regulators of cell proliferation and 

survival, via inhibition of ADAM10 and ADAM17, the main sheddases involved in the 

release of the ErbB ligands including EGF, TGF-α, and HB-EGF and of the respective 

receptors resulting in truncated constitutively active receptors [185]. INCB7839, 

reduces the release of Her-2 in vitro and in vivo and and was shown to decrease the 

amount of circulating Her-2 ectodomain in healthy volunteers in a phase I clinical trial 

[239]. INCB3619 is capable of preventing the functional activation of ErbB ligands 

through inhibition of ADAM10 and ADAM17 in a mouse model and is currently being 

evaluated in a clinical trial [238]. Another small molecule inhibitor targeting ADAMs is 
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XL784. It inhibits ADAM10 but also MMP2 and was originally developed as an 

anticancer compound. Now it is tested for administration in the pathogenesis of diabetic 

nephropathy due to its efficacy in preclinical models of renal failure [240]. These 

studies demonstrate that there exist some hopeful efforts to use selective ADAM 

inhibitors for treating different cancers and other diseases where ADAMs are involved. 

Apparently they only have minor side effects in contrast to their broad-range 

progenitors [241]. 

 

1.2.1.4 TACE 

 

ADAM17 is also called TNF-α converting enzyme (TACE) which is one of the most 

well known members of the ADAM family. In addition, it was the first ADAM with a 

known substrate. ADAM17 is essential for the proteolytic release or activation of 

growth factors and cytokines, including epithelial growth factor ligands and TNF-α 

[213]. It releases, as the name indicates, soluble TNF-α from cells by cleavage within 

the extracellular domain of the membrane bound proform [242,243]. TACE is also 

involved in the cleavage of many other transmembrane proteins as TGF-α, L-selectin, 

the TNF receptors I and II, interleukin-6 receptor and APP which was shown in cells or 

mice with a deletion in the zinc-binding metalloprotease domain resulting in an inactive 

form of the protease [157]. Mice with the germ-line mutation in the metalloprotease 

domain of the adam17 gene exhibit perinatal lethality or die within 2 to 3 weeks after 

birth [242,244]. Their phenotype is described with open eyelids, stunted vibrissae, and 

wavy hair. Histological studies revealed also defects in epithelial maturation and 

organization [244]. The structure of TACE was analysed by X-ray crystallography 

[172]. Comparison to structures of several closely-related SVMPs reveals that the 

catalytic domain consists of a highly conserved fold, with α-helices packed above and 

below a central β-sheet as shown in Figure 1.7 [172]. In addition, the core structure is 

also very similar to that of MMP family members even if some loops have different 

conformations. After binding of the substrate peptide chain in the active site cleft of 

ADAM17, the substrate forms hydrogen bonds with the “north” site of the cleft. The 

catalytic zinc atom is located near the centre of the active site cleft and catalyses the 

cleavage of the peptide bond [172]. ADAM17 has a ubiquitous expression and is up-

regulated in inflammation implicating that it plays a major role in cytokine biology 
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[245,246]. As mentioned before, it is up-regulated in a broad range of tumour cells. 

ERK, a MAP kinase, can phosphorylate the cytoplasmic domain of ADAM17 in vitro at 

threonine 735. Stimulation with PMA also leads to an increase in ADAM17/ERK 

association and ERK-dependent phosphorylation [198]. 

 

1.2.1.5 ADAM10 

 

ADAM10 exhibits about 35% sequence identity to ADAM17 in the catalytic domain 

suggesting that both proteins have similar structures. It was the first ADAM family 

member shown to have a proteolytic activity and was originally purified from bovine 

brain based on its ability to cleave myelin basic protein [247]. The drosophila 

melanogaster homologue of ADAM10, Kuzbanian (kuz), is involved in the 

development of the nervous system, muscle and haematopoietic cells due to its ability to 

cleave Notch, a receptor that controls cell fate determination in a broad range of tissues 

[248-250]. In addition, ADAM10 seems to be involved in the cleavage of the Notch 

ligand Delta. ADAM10 was also shown to be responsible for the cleavage of APP as α-

secretase, ephrin-A2, and HB-EGF [160]. ADAM10 has a broad somatic expression and 

is alternatively spliced resulting in a secreted and a membrane-bound form [162]. 

ADAM10 deficient mice die by day 9.5 of embryogenesis with pronounced defects in 

the neural and cardiovascular systems [251]. As mentioned before, ADAM10 is highly 

expressed in some types of tumours [218].  
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1.3 Aim of the thesis 

 

The activating natural killer (NK) cell receptor NKG2D is expressed on NK cells and 

CD8 T cells and mediates immunosurveillance of stressed, infected and malignant cells. 

NKG2D ligands (NKG2DL) are expressed on malignant cells due to genotoxic stress 

allowing recognition and elimination of tumours by NK cells via NKG2D-mediated 

activation. However, there are many human tumours expressing considerable amounts 

of NKG2DL. This rises the question what mechanisms are employed by these tumours 

to prevent elimination by the NKG2D-mediated activation of NK cells and CD8 T cells. 

One such mechanism is thought to be the proteolytic shedding of NKG2DL by tumour 

cells. It was already shown that the NKG2DL MICA and MICB, type I transmembrane 

proteins, are released by metalloproteases from the cell surface of tumour cells. MICA 

shedding leads both to a reduced cell surface density of MICA on the tumour cell and to 

a systemic down-regulation of NKG2D on NK cells and CD8 T cells [145-147]. The 

aim of this thesis was to characterise molecular mechanisms of tumour-associated 

NKG2DL shedding and to identify the proteases involved in this process. 

 

Firstly, the release of the NKG2D ligand ULBP2 should be analysed. ULBP2 is a 

representative of the family of GPI-anchored UL16-binding proteins. Here it should be 

investigated, whether ULBP2 is also shed from the cell surface of tumour cells and 

which mechanisms are accountable for the ULBP2 release. Further, presence of soluble 

ULBP2 should be analysed in sera of cancer patients. 

 

Secondly, the yet unknown protease(s) responsible for MICA shedding should be 

characterised. To this aim, the MICA cleavage site and the characteristics of the MICA 

sheddase(s) should be analysed. The identification of the proteases responsible for 

MICA shedding would open the possibility to target them therapeutically by inhibitors 

or siRNA. This should enhance the immunogenicity of the tumour due to an increased 

expression of NKG2D ligands and a recovery of NKG2D-mediated reactivities of NK 

cells and CD8 T cells. 
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2 Results and discussion 
 

2.1 Proteolytic Release of Soluble UL16-Binding Protein 2 from 

Tumour Cells  

 

This chapter has been published in Cancer Research 66:2520-2526 (2006) by the 

following authors: 

 

Inja Waldhauer and Alexander Steinle. 

 

The author of this thesis performed all experiments. 

 

2.1.1 Abstract 

 

The MHC-class I-related ligands of the immunoreceptor NKG2D are frequently 

expressed by tumour cells and stimulate tumour immunity mediated by CD8 T cells and 

NK cells. In humans, NKG2D ligands (NKG2DL) are encoded by the MHC-encoded 

MIC and non-MHC-encoded ULBP families of proteins. Recently, we and others 

demonstrated that tumour cells release soluble MICA thereby counteracting NKG2D-

mediated tumour immunosurveillance. Here, we now report that UL16-binding protein 

2 (ULBP2) molecules are likewise released from tumour cells in a processed soluble 

form and that soluble ULBP2 (sULBP2) can be detected in sera of some patients with 

haematopoietic malignancies. Tumour cell-derived sULBP2 as opposed to cell-bound 

ULBP2 does not down-regulate NKG2D on NK cells. Unexpectedly, the 

glycosylphosphatidylinositol-anchored ULBP2 molecules are not released by 

phospholipases, but by the action of metalloproteases. Proteolytic shedding of both 

NKG2D ligands MICA and ULBP2 by tumour cells was strongly enhanced after PMA-

treatment and paralleled by a markedly reduced susceptibility to NKG2D-mediated 

cytotoxicity. Shedding of MICA and ULBP2 can be blocked by the same inhibitors 

suggesting the involvement of related metalloproteases. Thus our data suggest that 

reducing NKG2DL surface densities is due to a common cleavage process executed by 
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metalloproteases that promotes escape of tumours from NKG2D-mediated 

immunosurveillance. 

 

2.1.2 Introduction 

 

The C-type lectin-like NKG2D receptor is expressed by most NK cells, CD8 αβ T cells 

and γδ T cells in humans [1]. In association with the adaptor protein DAP10 NKG2D 

transduces signals that activate or costimulate effector functions of these cytotoxic 

lymphocytes [1-3]. A peculiarity of NKG2D consists in the multitude of ligands that are 

not constitutively expressed but rather are induced subsequently to harmful events like 

genotoxic stress or infection [3-6]. Of note, NKG2D ligands (NKG2DL) are also 

frequently expressed on malignant cells, but absent from the respective benign tissues 

rendering the NKG2D/NKG2L-system an interesting target for tumour immunotherapy 

[7, 8]. In fact, recent studies in mice strongly support a stimulatory role of NKG2D for 

tumour immunity. NKG2DL expression is induced by carcinogens and genotoxic stress, 

and tumour cell lines transduced with mouse NKG2DL were readily eliminated in vivo 

due to NK and CD8 T cell activity and induced tumour immunity against the parental 

cell line [6,9,10]. Human NKG2DL belong to the two families of MHC class I-related 

MIC and ULBP molecules, respectively [5]. The MHC-encoded MICA and MICB 

molecules exhibit a highly restricted expression on healthy tissue in vivo, but are 

broadly expressed on epithelial tumours and haematopoietic malignancies [7,8,11]. 

Targeting cytotoxic lymphocytes towards MICA-expressing tumours is counteracted by 

proteolytic shedding of MICA molecules [12,13]. In addition, soluble MICA and TGFα 

have been reported to systemically down-regulate NKG2D expression on cytotoxic 

lymphocytes providing another route of escape from NKG2D-mediated [12,14-16]. 

Considerably less is known about the expression and regulation of ULBP molecules that 

differ from MIC molecules by the lack of an α3 domain. Like MIC molecules, ULBPs 

are expressed by many tumour cell lines and some haematological malignancies [8,17]. 

However, knowledge of expression of ULBP in vivo remains scarce. In contrast to MIC 

molecules, ULBP1-3 have been shown to be linked to the cell membrane by a 

glycosylphosphatidylinositol (GPI)-anchor similarly to their mouse counterparts, the 

RAE-1 molecules [5,17]. Previously, release of soluble ULBP2/ALCAN from some 

tumour cells in vitro has been reported [18], but neither the molecular mechanism of 

ULBP2 release nor its functional implications have been addressed. Here, we report that 
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ULBP2 molecules are released from tumour cells by metalloproteases and can be 

detected in sera of patients with haematopoietic malignancies. 

 

2.1.3 Materials and Methods 

 

Cells and Sera. Cell lines C1R, Jurkat, Molt4, HL60, K562 were cultured in 10% FCS-

RPMI 1640, HCT116, SW756 in 10% FCS-DMEM, 293T in 10% FCS-IMDM, and 

C1R-transfectants in 10% FCS-RPMI 1640 with 1.8 mg G418/ml. NKL cells were 

cultured in 10% FCS-RPMI 1640 with 200 U/ml IL-2 (Proleukin, Chiron, CA). Human 

patient sera were obtained after written informed consent and with approval of the local 

ethics committee. 

 

Reagents. Anti-NKG2D (clone 139), anti-NKG2D-PE (clone H106.771), anti-ULBP2 

(clone 165903), polyclonal anti-ULBP2, and ULBP2-Fc were from R & D 

(Minneapolis, MN). Anti-mouse IgG1-PE conjugate (clone X40) and anti-CD80-FITC 

conjugate (clone BB1) were obtained from BD Biosciences (San Jose, CA). Soluble 

human PE-coupled NKG2D tetramers and anti-ULBP2 BUMO1 were produced as 

described elsewhere [4]. Rabbit anti-goat HRP conjugate was from Jackson 

ImmunoResearch Laboratories (West Grove, PA), anti-mouse IgG2a-HRP from 

Southern Biotechnology Associates (Birmingham, AL), and goat anti-mouse IgG-

coated microspheres from Bangs Laboratories (Fishers, IN). Hydroxamate-based broad 

metalloprotease inhibitors MMP Inhibitor III (MMPI III) (Merck, Darmstadt, Germany) 

and Batimastat (BB94) (kind gift of Klaus Maskos, Max-Planck-Institute for 

Biochemistry, Martinsried, Germany) were used. BB94 was dissolved in 

dimethylformamide (DMF) and added as 1/200 volume to cultures. 

Phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus cereus, Brefeldin 

A and PMA (Phorbol 12-myristate 13-acetate) were obtained from Sigma (St. Louis, 

MO).  

 

Flow cytometry. Cells were incubated with the anti-ULBP2 BUMO1 or mouse IgG1 at 

10 µg/ml and then, after washing, with goat anti-mouse-PE conjugate (1:200) as 

secondary reagent, or, alternatively, with PE-labelled soluble human NKG2D tetramers 

at 10 µg/ml. Samples were analyzed on a FACScan (BD Bioscience, San Jose, CA). 

Specific fluorescence intensities (SFI) were calculated by subtracting the Mean 
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fluorescence intensity (MFI) of the isotype control from the MFI of the specific 

antibody. 

 

NKG2D down-regulation assay. NKL cells were co-cultured for 24 h with irradiated 

C1R transfectants at 1:1 ratio or with concentrated supernatants of C1R transfectants. 

Afterwards, cells were stained for NKG2D expression with NKG2D-PE or the 

respective isotype control. Co-cultured C1R transfectants were excluded from 

histogram analysis by staining with FITC-conjugated anti-CD80. After washing 

samples were analyzed on a FACScan. 

 

NKG2D binding assay. Goat anti-mouse IgG-coated microspheres were incubated with 

50 µg/ml anti-ULBP2 mAb BUMO1 or anti-MHC class I W6/32, respectively [8]. After 

washing, microspheres were resuspended with concentrated supernatants of C1R-

ULBP2 transfectants. Then, washed microspheres were stained with PE-conjugated 

NKG2D or H2-Kd tetramers [4], respectively, and fluorescence assessed by flow 

cytometry on a FACScan. 

  

ELISA. For the detection of soluble ULBP2 (sULBP2), two monoclonal anti-ULBP2 

mAb binding non-overlapping ULBP2 epitopes were implemented. Plates were coated 

with the anti-ULBP2 mAb BUMO1 at 1 µg/ml in PBS, then blocked by addition of 50 

µl of 2% BSA for 1 h at 37°C and washed. Afterwards, ULBP2-Fc (R & D) and the 

samples were added and the plates were incubated for 2 h at 37 °C. For analysis of 

patient samples, sera were diluted 1:3 in PBS prior to addition to the plates. After 

incubation, plates were washed and the detection mAb anti-ULBP2 (R & D) at 1 µg/ml 

in 1% BSA-PBS was added for 2 h at 37 °C. Plates were then washed and anti-mouse 

IgG2a-HRP (1:10000 in 3.25 % BSA-PBS) was added for 1 h at 37°C. Plates were then 

washed and developed using the Tetramethylbenzidine Peroxidase Substrate System 

(KPL, Gaithersburg, MD). The absorbance was measured at 450 nm. Results are shown 

as means with SD of triplicates. The ELISA procedure for sMICA has been previously 

described [8]. 

 

Immunoblot analysis. Samples were separated by 15% SDS-PAGE. Where indicated, 

samples were treated before with peptide:N-Glycanase F (PNGaseF) (New England 

Biolabs, Beverly, MA) for 1 h at 37 °C according to the manufacturer’s instructions. 
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Gels were blotted to Hybond-ECL membranes (Amersham, Little Chalfont, UK), 

blocked with TBS containing 5% non-fat dried milk, and then analyzed with 0.1 µg/ml 

anti-ULBP2 serum. Binding of anti-ULBP2 was detected with a rabbit anti-goat HRP-

conjugate and chemiluminescence reagent (Pierce Biotechnology, Rockford, IL). 

 

Chromium release assay. Cytotoxicity of NKL cells against 293T cells was assessed in 

a 2 h 51Cr release assay. For NKG2D blockade, NKL cells were pretreated with mAb 

139 and mAb139 was also added to the assay medium (10 µg/ml). Where indicated, 

293T were pretreated with 10 µg Brefeldin A/ml and 100 ng PMA/ml 12 h and 11.5 h, 

respectively, prior to labelling with 50 µCi of 51Cr (Amersham, Freiburg, Germany) for 

1 h at 37 °C, and subsequently washed three times before the assay. Calculation of % 

lysis: 100 x (experimental release – spontaneous release): (maximum release – 

spontaneous release). Data are means of triplicates. 

 

2.1.4 Results 

 

Tumour cell lines release soluble ULBP2 

The recent description of proteolytic release of MICA from tumour cells [12,13] and its 

implications for tumour immune evasion prompted us to investigate a similar 

mechanism for the second family of human NKG2DL, the ULBP. We chose to 

investigate release of ULBP2 as a representative of the GPI-linked ULBP molecules. To 

this aim, we established a highly sensitive ULBP2 sandwich-ELISA detecting soluble 

ULBP2 (sULBP2) down to a concentration of 20 pg/ml (Figure 2.1a). Using this 

ELISA, we analyzed culture supernatants of ULBP2-transfected C1R cells and detected 

high concentrations (~10 ng/ml) of sULBP2 within 16 hours of culture (Figure 2.1b). 

Supernatants of mock-transfected C1R cells that express about 100fold less ULBP2 

endogenously [8] as well as supernatants of ULBP1- and ULBP3-transfected gave rise 

to only weak signals underlining the specificity of the ELISA (Figure 2.1b). In 

supernatants of several hematopoietic and non-hematopoietic cells lines expressing 

endogenous ULBP2, concentrations of sULBP2 roughly paralleled ULBP2 cell surface 

levels (Figure 2.1c).  
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Figure 2.1. Soluble ULBP2 is released by tumour cells. (a) ULBP2 sandwich-ELISA. 
Serial dilutions of recombinant ULBP2-Fc were analyzed in a sandwich of anti-ULBP2-
specific mAb BUMO1 and mAb 165903. (b) Supernatants of C1R cells stably 
transfected with ULBP1, ULBP2, ULBP3, MICA*01, and vector alone were analyzed 
by ULBP2 ELISA after 16 h culture in fresh medium. ULBP surface expression of the 
various C1R-ULBP transfectants has previously been shown [8]. (c) Supernatants of 
various cell lines endogenously expressing ULBP2 (SFI of ULBP2 surface expression 
in brackets) were analyzed by ULBP2 ELISA after 36 h culture in fresh medium. The 
data shown in a-c are means of triplicates with standard deviations of a representative 
experiment from a total of three. (d) ULBP2 immunoblot of fourfold concentrated 
supernatants or lysates of C1R-ULBP2 cells. Supernatants were from PI-PLC-treated or 
untreated C1R-ULBP2 cells. Samples were treated with N-glycanase (PNGase F) before 
SDS-PAGE where indicated. 

 

Next, we assayed ULBP2 in lysates and supernatants of C1R-ULBP2 cells by 

immunoblotting and detected molecular species of about 30-35 kDa with a diffuse 

appearance most likely due to heterogeneous glycosylation. In line with this 

presumption, pretreatment of the C1R-ULBP2 lysate with PNGase F resulted in a 

distinct band of lower molecular weight corresponding to the expected size of mature 

ULBP2 protein (~24 kDa) (Figure 2.1d). Deglycosylated sULBP2 detected in the C1R-

ULBP2 supernatant was of even lower apparent molecular weight suggesting enzymatic 

processing of the membrane-bound protein. ULBP2 is attached to the cell membrane by 

a GPI-anchor which previously was shown by treatment of ULBP2-transfected cells 
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with PI-PLC [17]. Enzymatic release of several GPI-linked proteins by phospholipases 

has been reported [19]. Therefore we treated C1R-ULBP2 transfectants with PI-PLC to 

analyze phospholipase-shed ULBP2 molecules. Unexpectedly, PNGase F-treated 

supernatants of PI-PLC-treated C1R-ULBP2 cells contained an additional band of 

higher molecular weight corresponding to the ULBP2 species in cell lysates suggesting 

that the naturally released sULBP2 is not generated by the activities of phospholipases 

(Figure 2.1d). 

 

ULBP2 molecules are released by metalloproteases 

To address an involvement of metalloproteases in the shedding of ULBP2, we treated 

C1R-ULBP2 cells with metalloprotease inhibitor III (MMPI III) and observed a 

pronounced reduction of ULBP2 release correlating with increasing concentrations of 

the inhibitor (Figure 2.2a). Similar data were obtained using the broad metalloprotease 

inhibitor batimastat (BB94) that has previously been tested in phase I/II trials in cancer 

patients. To verify that shedding by metalloproteases is not a peculiarity of C1R-ULBP2 

transfectants, we treated Jurkat and 293T cells with MMPI III and BB94, respectively, 

and also found a dose-dependent reduction of ULBP2-levels in the respective 

supernatants (Figure 2.2b and data not shown). Next, we investigated sULBP2 levels in 

supernatants of C1R-ULBP2 cells that were treated with bacterial phospholipase PI-

PLC and detected ~1.3 fold higher sULBP2 concentrations compared to supernatants of 

mock-treated cells (Figure 2.2c). Whereas physiological ULBP2 shedding was largely 

inhibited by BB94, there was only a slight reduction of sULBP2 levels in the 

supernatants of PI-PLC-treated C1R-ULBP2 cells suggesting that BB94 does not affect 

the activity of phospholipases. Altogether these data demonstrate that ULBP2 is 

released from tumour cells by metalloproteases, not by phospholipases.  
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Figure 2.2. ULBP2 is released by metalloproteases. (a) C1R-ULBP2 cells were 
incubated for 16 hours with MMPI III or BB94 at various concentrations and, 
subsequently, supernatants analyzed by ULBP2 ELISA. (b) Jurkat cells were incubated 
for 20 hours with BB94 at various concentrations and, subsequently, supernatants 
analyzed by ULBP2 ELISA. (c) Soluble ULBP2 was determined in supernatants of 
C1R-ULBP2 cells treated with PI-PLC and/or BB94 for 2 hours at 37°C by ULBP2 
ELISA. (a-c) Concentrations of sULBP2 in supernatants of untreated cells were set as 
100%. Data shown are means of triplicates with standard deviations of one 
representative experiment from a total of three. 

 

Proteolytic shedding of ULBP2 is enhanced by PMA 

To further characterize the ULBP2 shedding activity, we investigated the short-term 

effect of PMA-treatment on ULBP2 release. Whereas most members of the matrix 

metalloproteinase family (MMP) are released as soluble enzymes and thus are not 

expected to respond to PMA-mediated activation of Protein Kinase C (PKC), an 

enhanced proteolytic activity has been reported for members of the membrane-bound  

“A Disintegrin and Metalloprotease” (ADAM) proteins following PMA-treatment [20].  
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Figure 2.3. PMA stimulates shedding of ULBP2 and MICA. (a) C1R-ULBP2 cells 
(left) or C1R-MICA*01 cells (right) were pre-incubated with 5µM BB94. After 20 min 
cells were incubated with various concentrations of PMA for six hours and 
subsequently supernatants analyzed by ULBP2 ELISA or MICA ELISA, respectively. 
(b) C1R-ULBP2 cells were incubated with or without 100 ng/ml PMA for different 
times and, subsequently, supernatants analyzed by ULBP2 ELISA. (a, b) Data are 
means of triplicates with standard deviations. (c) Flow cytometric analysis of 293T 
stained with BUMO1 and soluble NKG2D tetramers, respectively. 293T cells were 
pretreated with Brefeldin A (BFA) and PMA (filled histogram), BFA alone (black line), 
or untreated (grey line). Dotted lines represent control stainings with irrelevant IgG1 
(BUMO1) or MHC class I tetramer. (d) Cytotoxicity assay of untreated 293T cells 
(filled circles) or 293T cells pretreated with BFA (filled triangles) or BFA and PMA 
(open triangles) using NKL cells. NKG2D-blockade abrogated lysis of 293T cells by 
NKL completely (open circles). 
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We detected up to five-fold increased concentrations of sULBP2 in the supernatants of 

PMA-treated C1R-ULBP2 cells as compared to solvent-treated cells (Figure 2.3a). 

Enhancement of ULBP2 shedding was dependent on the PMA-concentration and could 

largely be blocked by addition of BB94. We wondered whether shedding of MICA 

succumbs to the same mechanisms as ULBP2 shedding. Therefore we also treated C1R-

MICA transfectants with PMA and analyzed sMICA levels in the culture supernatants 

with our previously described MICA sandwich-ELISA [8]. It turned out that also MICA 

shedding is induced by PMA-treatment and inhibited by BB94 (Figure 2.3b). We then 

investigated the kinetics of PMA-induced ULBP2 shedding and observed that sULBP2 

in supernatants of PMA-treated C1R-ULBP2 cells was about fourfold increased as early 

as 15 min after begin of treatment as compared to mock-treated cells (Figure 2.3c). 

Conversely, PMA-induced shedding resulted in a decrease of ULBP2 and overall 

NKG2DL surface levels of Brefeldin A pretreated 293T cells (Figure 2.3c). Reduced 

NKG2DL surface levels were paralleled by a marked reduction in NKG2D-mediated 

NK lysis of 293 T cells (Figure 2.3d). 

 

Soluble ULBP2 in sera of patients with malignant diseases 

Soluble MICA has been detected in many sera of patients with haematopoietic and 

epithelial malignancies [8,12,13,16,21]. Accordingly, we analyzed sera of patients with 

leukaemias and gastrointestinal tumours for elevated levels of sULBP2.  Four out of 23 

sera from leukaemic patients contained substantial levels of sULBP2 (range: 0.09-0.72 

ng/ml) including patients with T-NHL, AML and CML (Figure 2.4a). Interestingly, 

high levels of sULBP2 in a patient with T-NHL correlated with the previously described 

pronounced ULBP2 surface expression on the respective malignant cells [8]. In 

contrast, 19 sera of patients with gastrointestinal malignancies and 14 of 15 sera from 

healthy donors contained no detectable sULBP2. Previous studies reported NKG2D-

downregulation by cell-bound and soluble MICA [12,16,21]. We investigated a similar 

phenomenon for ULBP2. Upon co-cultivation of the NKG2D expressing cell line NKL 

with C1R-ULBP2, a pronounced down-regulation of surface NKG2D was observed, but 

upon co-cultivation with control C1R-neo transfectants (Figure 2.4b). When we treated 

NKL cells with supernatants of both C1R-neo and C1R-ULBP2 cells, we did not 

observe NKG2D down-regulation though C1R-ULBP2 supernatants contained sULBP2 

at ~100 ng/ml and (Figure 2.4c). We verified that our tumour cell-derived sULBP2 was 

capable to interact with NKG2D by immobilizing ULBP2 from the supernatants of 
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C1R-ULBP2 cells on protein A-coated microspheres and staining with fluorochrome-

conjugated NKG2D tetramers (Figure 2.4d). Accordingly, pretreating NKL cells with 

sULBP2 (100ng/ml) for 24 h did not affect cytotoxicity of NKL cells against 293T cells 

(data not shown). 

 

 

Figure 2.4. Soluble ULBP2 in sera of leukaemic patients. (a) Four of 23 sera from 
patients with leukaemia and one of 14 sera from healthy donors, but none of 19 sera 
from patients with gastrointestinal malignancies contained sULBP2 at detectable levels 
(> 0.05 ng sULBP2/ml serum). Soluble ULBP2-containing sera were from patients 
UPN1, UPN3, UPN12, and UPN20 with T-NHL, AML, sAML and CML, respectively 
[8]. Data are means of triplicates.  (b) NKG2D expression by NKL cells after co-culture 
with C1R-ULBP2 or C1R-neo cells, respectively. NKG2D surface expression of NKL 
cells was determined by flow cytometry using mAb 139 after 24 hours incubation with 
irradiated C1R-neo (filled histograms) or C1R-ULBP2 transfectants (open histograms, 
dark lines). Isotype control stainings are light lines. (c) NKL cells were incubated for 24 
h with concentrated supernatants from C1R-neo cells (filled histograms) or from C1R-
ULBP2 cells containing 100 ng/ml sULBP2 (open histograms, dark line). Isotype 
control stainings are light lines. (d) Microbeads coated with mAb BUMO1 were 
incubated with supernatants from C1R-ULBP2 (right) or C1R-neo cells (left), 
respectively, and stained with NKG2D tetramers (dark lines) or H2-Kd tetramers (light 
lines). As additional controls, W6/32 coated microbeads were incubated with C1R-neo 
and C1R-ULBP2 supernatants and stained with NKG2D tetramers (filled histograms). 

 

2.1.5 Discussion 

 

Shedding of the human NKG2DL MICA has recently been described as a novel 

immune escape mechanism of tumours [12,13,16,21]. Here, we investigated tumour cell 
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shedding of ULBP2 as a representative of GPI-anchored NKG2DL. A previous study 

reported release of ULBP2 by several tumour cell lines and proposed shedding by 

phospholipases [18]. We however find that ULBP2 shedding is, at least for the most 

part, executed by metalloproteases and not by phospholipases. Shedding of both MICA 

and ULBP2 is susceptible to the same set of metallprotease inhibitors and inducible by 

PMA suggesting the involvement of the same or related metallproteases (Figure 2.3b 

and data not shown). PMA-inducible shedding has been reported for a variety of other 

cell surface proteins like TNF-α, TGF-α and HB-EGF that are shed by members of the 

ADAM family of transmembrane metalloproteases, e. g. ADAM17 [20]. Current work 

in our laboratory investigates involvement of ADAMs in the shedding of NKG2DL.  

 

Proteolytic shedding of membrane proteins may either regulate cell surface expression 

levels and/or promote release of biological active soluble isoforms. For NKG2DL, 

regulation of cell surface expression is of crucial importance, since NKG2DL surface 

levels critically determine the susceptibility to NKG2D-stimulated cytolysis [9,17]. We 

demonstrate that PMA-induced shedding of ULBP2 results in markedly reduced 

ULBP2 surface levels and paralleled by reduced NKG2DL surface densities as well as 

impaired NKG2D-mediated NK lysis. Further, soluble MICA from sera of tumour 

patients has also been described to cause a systemic impairment of anti-tumour 

cytotoxicity by down-regulation of NKG2D on peripheral CD8 T cells and NK cells 

[12,16,21]. With regard to sULBP2, we did not observe down-regulation of NKG2D on 

NK cells using concentrations of tumour-cell derived soluble ULBP2 that were well 

above the concentrations in sera of patients with leukaemia. Interestingly, we did not 

detect sULBP2 in sera of patients with gastrointestinal tumours whereas sMICA was 

broadly detected in sera of patients with gastrointestinal and other tumours 

[12,13,16,21]. Though this may indicate that ULBP2 is primarily expressed and shed by 

malignant hematopoietic cells, several tumour cell lines of epithelial origin have also 

been reported to express ULBP molecules [17,22]. However, expression of ULBP by 

epithelial tumours in vivo has yet to be shown.  

In summary, we here report that soluble ULBP2 molecules originate from tumour cells 

by metalloproteolytic cleavage and are detectable in sera of some patients with 

leukaemia. Shedding of ULBP2 reduces NKG2DL surface levels and may impair 

immunogenicity of tumour cells. Further studies have to address the molecular 

mechanics of ULBP2 cleavage, the relevance of ULBP shedding for tumour immunity, 
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and the potential of sULBP as novel parameter for diagnosis and/or prognosis in 

leukaemia. 
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2.2 TGF-β and metalloproteinases differentially suppress 

NKG2D ligand surface expression on malignant glioma 

cells  

 

This chapter has been published in Brain 129:2416-2425 (2006) by the following 

authors:  

 

Günter Eisele, Jörg Wischhusen, Michel Mittelbronn, Richard Meyermann, Inja 

Waldhauer, Alexander Steinle, Michael Weller and Manuel A. Friese. 

 

The author of this thesis performed all ULBP2 sandwich ELISAs in Figure 2.8B. 

 

2.2.1 Abstract 

 

NKG2D ligands (NKG2DL) are expressed by infected and transformed cells. They 

transmit danger signals to NKG2D-expressing immune cells leading to lysis of 

NKG2DL-expressing cells. We here report that the NKG2DL MICA/B and ULBP1-3 

are expressed in human brain tumours in vivo, while expression levels are low or 

undetectable in normal brain. MICA and ULBP2 expression decrease with increasing 

WHO grade of malignancy, while MICB and ULBP1 are expressed independently of 

tumour grade. We further delineate two independent mechanisms that can explain these 

expression patterns: (i) Transforming growth factor-β (TGF-β) is upregulated during 

malignant progression and selectively down-regulates MICA, ULBP2 and ULBP4 

expression while MICB, ULBP1 and ULBP3 are unaffected. (ii) Cleavage of MICA and 

ULBP2 is reduced by inhibition of metalloproteinases (MP), whereas no changes in 

expression levels of other NKG2DL were detected. Consequently, NKG2DL-dependent 

NK cell-mediated lysis is enhanced by depletion of TGF-β or inhibition of 

metalloproteinases. Thus escape from NKG2D-mediated immune surveillance of 

malignant gliomas is promoted by the inhibition of MICA and ULBP2 expression via an 

autocrine TGF-β loop and by metalloproteinase-dependent shedding from the cell 

surface. These data define MICA and ULBP2, in contrast to other NKG2DL, as 

particularly important in glioma immune escape and show a differential regulation of 
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human NKG2DL expression as part of the immunosuppressive properties in human 

malignant gliomas. 

 

2.2.2 Introduction 

 

NKG2D was identified as an activating receptor on natural killer (NK) cells mediating 

responses to stress-induced ligands [1]. NKG2D exerts additional roles in innate 

immunity by activating γδ T cells [2] and in adaptive immunity by providing 

costimulatory signals to CD8+ αβ T cells [3,4]. Triggering of NKG2D initiates a 

perforin-mediated cytolytic response against virally infected and tumourigenic cells [5]. 

To accomplish its specific targeting, NKG2D interacts with different MHC class I-

homologous ligands. In humans, these are MHC class I-chain related molecules A 

(MICA) and MICB [6], UL16-binding proteins (ULBP)1-3, ULBP4/RAET1E and 

RAET1G [7-9]. Distinct expression patterns indicate that the various NKG2DL are not 

simply redundant in function [10]. With the exception of intestinal epithelia normal 

cells in adults show absent or low level NKG2DL expression [11]. In pathological 

conditions, however, NKG2DL expression is often up-regulated, as described for 

epithelial tumours, gliomas and infected cells [1-3,12-14]. NKG2DL are induced by 

genotoxic stress and blocked DNA replication, conditions known to activate a DNA 

damage response pathway [15]. NKG2D is down-regulated by transforming growth 

factor-β (TGF-β) [16-18]. TGF-β production has been associated with the growth and 

malignant progression of a large variety of tumours including gliomas [17,19-21] and 

interferes with several mechanisms of anti-tumour immune responses [22]. 

Tumour cells may also evade NKG2D-mediated immune surveillance by shedding MIC 

und ULBP molecules via metalloproteinases (MP) [23-26]. This is of particular interest 

since MP inhibitors are clinically available. Currently there are three known classes of 

metalloproteinases: MMP (matrix metalloproteinase), ADAM (a disintegrin and 

metalloproteinase) and ADAM-TS (ADAM with thrombospondin). Glioma cells are 

known to release high levels of MMP [27-30]. The MMP family is comprised of 25 

structurally related proteinases either secreted into the extracellular milieu or tethered to 

the cellular surface [31]. MMP expression and activation is increased in almost all 

human cancers compared with normal tissue [32] and they have been implicated in 

tumour invasion and metastasis due to their ability to degrade the extracellular matrix 

barrier [33,34]. The related ADAMs protein family consists of 40 different members 
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[35]. ADAMs regulate the tumour-related EGFR and ErbB2 signalling pathways 

[36,37] and are overexpressed in a variety of cancers. In gliomas, expression of ADAM 

12 is upregulated with increasing grade of malignancy [38]. Whereas ADAMs are 

transmembrane proteins, ADAM-TS are secreted. Currently 19 different ADAM-TS are 

known, all of which are characterized by a metalloproteinase, a disintegrin and a C-

terminal thrombospondin-like domain [39]. ADAM-TS4 has been found to be 

responsible for brevican cleavage in glioma cells and may therefore be critical in 

mediating invasiveness [40]. However, MP do not only clear the path for invading 

tumour cells, but also regulate the availability of a large variety of cell surface 

molecules including proteinase inhibitors, adhesion molecules, growth factor binding 

proteins, cell surface receptors and immunoregulatory proteins [32,37,39]. Of note, both 

TGF-β and MP expression are upregulated with increasing grade of glioma malignancy 

[38,41-44] indicating a prominent role in the malignant properties. 

Here we show that gliomas of different grades of malignancy express the NKG2DL 

MICA, MICB and ULBP1-3 in vivo. In the LNT-229 glioma cell line, they are 

differentially suppressed by TGF-β at the mRNA level and selectively cleaved from the 

cell surface by MP. The elucidation of these mechanisms discloses novel avenues for 

the therapeutic induction of anti-tumour immune responses. 

 

2.2.3 Materials and methods 

 

Human tissue specimens. To study the expression of MICA/B, ULBP1-3, TGF-β1 and 

-β2 in the normal human brain, 18 white matter tissue samples from a normal brain bank 

were investigated. Further, 20 cases each of gliomas of the WHO grades II (diffuse 

astrocytoma), III (anaplastic astrocytoma) and IV (glioblastoma) were studied. 

 

Cell lines and transfectants. The human malignant glioma cell line LN-229 was 

originally provided by Dr. N. de Tribolet (Lausanne, Switzerland) and renamed LNT-

229 for clarification (T for Tübingen). The cells were maintained in DMEM 

supplemented with 2 mM L-glutamine (Gibco Life Technologies, Paisley, UK), 10% 

FCS (Biochrom KG) and penicillin (100 IU/ml)/streptomycin (100 µg/ml) (Gibco). The 

generation of LNT-229 TGF-β1/2 siRNA cells has been described [17].  
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Antibodies and flow cytometry. The following mAbs were used for the assessment of 

cell surface expression or the blocking of NKG2D, NKG2DL, CD3 and CD56: MAB 

139 IgG1 anti-NKG2D and ILU01 polyclonal goat anti-human ULBP2 were from R&D 

Systems (Wiesbaden, Germany), HIT3a IgG2a anti-CD3-FITC and B159 IgG1 anti-

CD56-PE from BD Pharmingen (Heidelberg, Germany), AMO1 IgG1 anti-MICA, 

BAMO1 IgG1 anti-MICA/B, BAMO3 IgG2a anti-MICA/B, BMO2 IgG1 anti-MICB, 

AUMO1 IgG1 anti-ULBP1, BUMO1 IgG1 anti-ULBP2, CUMO1 IgM anti-ULBP3 

have been published before [14] and CUMO3 IgG1 anti-ULBP3 was newly generated. 

Cells were blocked with 2% BSA and incubated with the specific mAb or matched 

isotype antibodies (5 µg/ml) for 30 min on ice. Specific binding was detected with PE-

conjugated goat anti-mouse IgG (Sigma, Deisenhofen, Germany). Fluorescence was 

measured in a Becton Dickinson FACScalibur. Specific fluorescence indices (SFI) were 

calculated by dividing mean fluorescence obtained with specific antibody by mean 

fluorescence obtained with control antibody. 

 

Immunohistochemistry. Immunohistochemistry was performed on paraffin-embedded 

samples using the Benchmark system (Ventana, Strasbourg, France). After blocking of 

endogenous peroxidase, anti-MICA (AMO1, IgG1, 1:25), anti-MICB (BMO2, IgG1, 

1:50), anti-ULBP1 (AUMO1, IgG1, 1:100) and anti-ULBP3 (CUMO3, IgG1, 1:25) 

antibodies were applied. Binding specificity was controlled by IgG1 isotype controls 

(DakoCytomation, Hamburg, Germany). For visualization, I-View horseradish-

peroxidase conjugated streptavidine was applied, followed by diaminobenzidine/H2O2.  

For ULBP2, samples were immersed in citrate buffer and irradiated in a microwave 

oven. Endogenous peroxidase was blocked and standard porcine serum was applied to 

prevent non-specific binding. Polyclonal goat anti-human ULBP2 antibody (clone 

ILU01, R&D Systems) was followed by biotinylated rabbit anti-goat immunoglobulins 

(DakoCytomation). Diaminobenzidine was used as chromogen. All sections were 

counterstained with haematoxylin. Using an Olympus BX50 microscope, two raters 

quantitated expression levels by the following scale: 0 signifies absence of detectable 

staining, 1 corresponds to single positive cells in a focal pattern, 2 denotes positive cells 

in diffuse patterns, 3 indicates up to 20% of positive cells, 4 was allotted when the 

percentage was between 20% and 50%, 5 was given for more than 50% of positive 

cells.  
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Purification of peripheral blood lymphocytes (PBL) and isolation of NK cells. PBL 

were prepared by density gradient centrifugation (Biocoll, Biochrom KG, Berlin, 

Germany) and depletion of plastic-adherent monocytic cells. PBL were cultured on 

irradiated RPMI 8866 feeder cells to obtain polyclonal NK cell populations [45].  

 

Real-time PCR. Total RNA was prepared using RNAeasy (Qiagen, Hilden, Germany) 

and transcribed according to standard protocols. cDNA amplification was monitored 

using SYBRGreen chemistry on the ABI PRISM 7000 Sequence Detection System 

(Applied Biosystems, Weiterstadt, Germany). Primers and conditions for 18S rRNA, 

MICA/B and ULBP1-3 have been published [46]. Primer sequences for ULBP4 were 

forward: 5´-CTGGCTCAGGGAATTCTTAGG-3´ (573-593), reverse: 5´-

CTAGAAGAAGACCAGTGG ATATC-3´ (665-643). Relative induction levels (rI) of 

NKG2DL were calculated by the formula  

rI = 2 – [(threshold cycle NKG2DL - threshold cycle 18S) 
sample

 – (threshold cycle NKG2DL - threshold cycle 18S) 
untreated 

cells
]. 

 

Soluble MICA and ULBP2 ELISA. Glioma cell supernatants were analysed in 

sandwich ELISAs for soluble MICA (sMICA) using anti-MICA mAb AMO1 and 

BAMO3  or for soluble ULBP2 (sULBP2) using anti-ULBP2 mAb BUMO1 and 

165903 (R&D) as previously described [24,26].  

 

Inhibition of metalloproteinase activity. The broad spectrum MP inhibitors GM6001 

(N-[(2R)-2 hydroxyamido-carbonylmethyl)-4-methylpentanoyl]-L-tryptophan 

methylamide) (Chemicon, Hampshire, UK) and MMP inhibitor III (Merck, Darmstadt, 

Germany) were dissolved at 50 mM into DMSO and used at 10 µM working 

concentrations. 

 

Cytotoxicity assay. Cytotoxicity was assessed in 4 h 51Cr release assays in the absence 

or presence of various mAb. The antibody concentrations for the blocking experiments 

were 10 µg/ml. NK cells were pretreated with normal human IgG to prevent antibody-

dependent cellular cytotoxicity before they were co-incubated for 4 h with 1 x 104 51Cr-

labeled target cells per well at various effector:target (E:T) ratios. Spontaneous 51Cr 

release was determined by incubating the target cells with medium alone. Maximum 

release was determined by adding NP-40 (2%). The percentage of 51Cr release was 
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calculated as follows: 100 x ([experimental release – spontaneous release]/[maximum 

release – spontaneous release]). 

 

Statistics. The experiments shown were repeated at least three times with similar 

results. Where indicated, analysis of significance was performed using the two-tailed 

Student’s t-test with P<0.05 considered significant and P<0.01 considered highly 

significant (Excel, Microsoft, Redmond, WA). For the assessment of in vivo expression 

levels, the scores for the relative staining intensities were compared between the various 

tumour entities using the Kruskal-Wallis test.  

 

2.2.4 Results 

 

NKG2DL expression in human gliomas in vivo 

We examined gliomas with different WHO grades of malignancy (Kleihues and 

Cavenee, 2000) for the expression levels of NKG2DL using immunohistochemistry 

(Figure 2.5). In normal central nervous system tissue specimens white matter showed in 

general undetectable or very low NKG2DL expression levels on cells exhibiting 

features of reactive astrocytes. In contrast, WHO grade II astrocytomas displayed an 

almost uniformly upregulated expression of MICA/B and ULBP1-3 on tumour cells 

(Figure 2.5B-F). MICA expression levels decreased in gliomas of higher grades of 

malignancy (Figure 2.5B). In contrast, MICB (Figure 2.5C) and ULBP1 (Figure 2.5D) 

showed no significant downregulation. ULBP2 expression was strongest again on WHO 

grade II astrocytomas whereas expression levels were lower in grade III anaplastic 

astrocytomas and very low in grade IV (Figure 2.5E). The percentage of ULBP3-

positive cells was generally lower than the other NKG2DL in gliomas of all grades. 

However, the general pattern was similar with ULBP3 expression being very low or 

even absent on normal brain and upregulated in WHO grade II astrocytomas (Figure 

2.5F). ULBP3 expression remained elevated in grade III gliomas and was only slightly 

decreased in grade IV gliomas. The findings from 18 normal brain specimens and from 

20 cases each of grade II, III and IV gliomas are summarized in Table 2.1. 
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Figure 2.5. NKG2DL expression in human gliomas in vivo. Normal white matter 
(upper left quadrant in each group of four), WHO grade II astrocytoma (upper right), 
WHO grade III astrocytoma (lower left) and glioblastoma (WHO grade IV) (lower 
right) were stained with either isotype control (A, representative IgG1 isotype control is 
depicted) or specific MICA (B), MICB (C), ULBP1 (D), ULBP2 (E) or ULBP3 (F) 
antibodies.  
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Table 2.1. Tumour grade dependence of NKG2DL expression in human gliomas in 
vivo. 

 
The relative staining intensities for MICA, MICB, ULBP1, ULBP2 and ULBP3 were 
rated on a scale ranging from 0 to 5 and compared between white matter tissue samples 
from a normal brain bank (NB, n=18) and gliomas of WHO grades II, III and IV (n=20 
each; not significantns; P<0.05*; P<0.01*; P<0.001*). 
 

TGF-β-mediated suppression of MICA and ULBP2 inhibits NKG2D-mediated 

tumour cell lysis 

We and others have previously reported an inhibitory effect of TGF-β on MICA 

expression [17,24,25] and a positive effect of TGF-β on MMP expression and activity 

[47]. To further characterize the role of endogenous glioma cell-derived TGF-β in the 

regulation of NKG2DL expression, we used LNT-229 cells transfected with siRNA 

targeted against TGF-β1 and TGF-β2 [17]. Real-time PCR revealed a marked induction 

of MICA, ULBP2 and ULBP4 mRNA transcripts in TGF-β1/2 siRNA cells whereas the 

levels of MICB, ULBP1 and ULBP3 remained unaltered (Figure 2.6A). To correlate 

the changes in NKG2DL mRNA expression induced by TGF-β with changes at the 

protein level, we performed flow cytometry using antibodies specific for the respective 

NKG2DL. Consistent with the mRNA data, MICA and ULBP2 expression on the cell 

surface of TGF-β1/2 siRNA cells was increased by factors of 5.0±1.0 and 2.4±0.2 

whereas no change was observed with MICB, ULBP1 or ULBP3. One representative 

out of three experiments is shown in Figure 2.6B. For ULBP4, there is currently no 

specific antibody available. The re-exposure of TGF-β1/2 siRNA cells to exogenous 

TGF-β repressed the induction of MICA, ULBP2 and ULBP4 mRNA (Figure 2.6C) 

and also decreased the cell surface expression of MICA and ULBP2 by 40±8% and 

20±1% (Figure 2.6D; n=3).  
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Figure 2.6. NKG2DL mRNA expression and protein levels at the cell surface: 
modulation by siRNA targeting TGF-β1/2. (A) MICA, MICB, ULBP1, 2, 3 and 4 
mRNA expression was assessed in control or TGF-β1/2 siRNA cells by real-time PCR. 
(B) MICA, MICB, ULBP1, 2 and 3 expression at the cell surface of control (closed 
profiles) and TGF-β1/2 siRNA cells (open profiles) was assessed by flow cytometry. (C) 
TGF-β1/2 siRNA cells were untreated or treated with TGF-β2 (10 ng/ml) for 48 h and 
assessed for MICA, ULBP2 and ULBP4 mRNA expression. (D) TGF-β1/2 siRNA cells, 
untreated (closed profiles) or treated (open profiles) with TGF-β2 (10 ng/ml) for 7d, 
were analyzed accordingly. Data in A and C are expressed as the relative gene 
expression compared with control transfectants in A or untreated TGF-β1/2 siRNA cells 
in C set to 1. Data represent mean values ± SEM from three independent experiments. 
In B and D SFI values are indicated in the upper right corner and are representative of 
three independent experiments. 

 

The changes in the expression levels of MICA, ULBP2 and ULBP4 resulted in an 

increase in NK cell-mediated lysis of TGF-β1/2 siRNA cells (Figure 2.7). The increased 

glioma cell lysis by polyclonal NK cells was partially blocked by either neutralizing 

MICA or ULBP2 mAb. The incubation with both mAbs was equivalent to a blocking 

NKG2D mAb.  
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Figure 2.7. MICA and ULBP2 enhance NK cell lysis in TGF-β1/2 siRNA cells. 
Control or TGF-β1/2 siRNA cells untreated or treated with anti-MICA (AUMO1), anti-
ULBP2 (BUMO1), with both antibodies or anti-NKG2D (MAB 139) (10 μg/ml) were 
used as target cells in a standard 4 h 51Cr release assay using polyclonal NK cells as 
effectors. Data are expressed as specific lysis at different E:T ratios. One representative 
experiment of three is shown. Each data point was generated from triplicates. 
Coefficients of variation ranged below 5% for each data point.  

 

Selective and TGF-β-independent shedding of MICA and ULBP2 by 

metalloproteinases inhibits NK cell-mediated lysis.  

As shown previously [47], TGF-β promotes MP expression (especially MMP-2 and -9) 

in glioma cells. Since NKG2DL surface expression can be modulated on a post-

translational level by proteolytic cleavage [23-26,48,49], we asked whether shedding of 

sMICA and sULBP2 was reduced in TGF-β1/2 siRNA cells [17], thus contributing to the 

enhanced surface expression of MICA and ULBP2 on these cells. With control cells, 

inhibition of MP activity by exposure to the broad spectrum MP inhibitors GM6001 and 

MMP inhibitor III enhanced the expression levels of MICA 2.4-fold (±0.1) and of 

ULBP2 1.4-fold (±0.1) at the cell surface whereas no significant changes were detected 

in MICB, ULBP1 and 3 expression (Figure 2.8A, upper panel, Table 2.2 and data not 

shown; n=3). A transcriptional effect of the inhibitor on NKG2DL mRNA levels was 

ruled out by real-time PCR (data not shown). Parallel experiments were also performed 

to study the effects of MP inhibition in the TGF-β1/2 siRNA cells. Despite the reduced 
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levels of MMP-2 and -9 activity in TGF-β1/2 siRNA cells, MP inhibition superinduced 

the expression levels of MICA 1.3-fold (±0.03) and of ULBP2 1.5-fold (±0.05) (Figure 

2.8A, lower panel, Table 2.2; n=3). Further, immunoblotting of cell culture supernatant 

showed that the basal level of sMICA released by TGF-β1/2 siRNA cells was markedly 

enhanced compared with the control cells paralleling higher surface expression (data not 

shown). While these findings demonstrate that the cleavage of NKG2DL is not 

mediated by TGF-β-dependent proteases, the release of sMICA and sULBP2 from 

LNT-229 control and TGF-β1/2 siRNA cells in cell culture supernatant could 

nevertheless be reduced by ~ 50% for sMICA and ~ 80% for sULBP2 when GM6001 

was added, as shown by MICA- and ULBP2-specific ELISA (Figure 2.8B).  

 

 

Figure 2.8. MP inhibition modulates NKG2DL expression in glioma cells. (A) 
MICA/B and ULBP1-3 levels at the cell surface of LNT-229 control or TGF-β1/2 siRNA 
cells exposed to GM6001 for 48 h were determined by flow cytometry. One 
representative experiment of three is shown. SFI represent specific fluorescence indices 
and are calculated by dividing mean fluorescence obtained with specific antibody by 
mean fluorescence obtained with isotype-matched control antibody. (B) Levels of 
sMICA (upper panel) and sULBP2 (lower panel) were analyzed by ELISA, using 
supernatants from LNT-229 control or TGF-β1/2 siRNA cells exposed to GM6001 (10 
µM) for 48 h (n=3). Note the logarithmic scale.  
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Table 2.2. MP inhibition enhances MICA and ULBP2 surface expression. 

 
MICA/B and ULBP1-3 levels at the cell surface of LNT-229 control transfectants or 
TGF-β1/2 siRNA cells exposed to GM6001 for 48 h were determined by flow cytometry. 
Mean fold inductions of three independent experiments and SEM are shown. While 
there is no effect for MICB, ULBP1 and 3, MICA and ULBP2 are consistently 
upregulated. The degree of induction on control transfectants and TGF-β1/2 siRNA cells 
was similarly for ULBP2 (P=1.0, ns) but significantly stronger on controls for MICA 
(P<0.05). 
 

Next we assessed the functional consequences of reduced NKG2DL shedding in a 51Cr 

release assay using target glioma cells pre-treated with GM6001 for 48 h. As expected, 

MP inhibition enhanced the NK cell-dependent killing of LNT-229 control glioma cells.  

 

Figure 2.9. MP inhibition enhances the immunogenicity of glioma cells.  
(A) LNT-229 control or TGF-β1/2 siRNA cells were untreated or exposed to GM6001 
(10 µM) for 48 h before they were subjected to a standard 4 h 51Cr release assay using 
polyclonal NK cells as effectors. Data are expressed as specific lysis at different E:T 
ratios. (B) Glioma cells untreated or treated with GM6001 (10 µM) for 48 h were used 
as targets in a standard 4 h 51Cr release assay in the absence or presence of control IgG 
or anti-NKG2D (10 μg/ml each), using polyclonal NK cells as effectors. Data are 
expressed as specific lysis at an E:T ratio of 80. One representative experiment of three 
is shown. Each data point was generated from triplicates. Coefficients of variation 
ranged below 4% for each data point.  
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Further, the high constitutive NKG2DL expression in TGF-β1/2 siRNA cells resulted in 

massive target cell lysis that was superinduced by GM6001 when E:T ratios were low 

and lysis conditions presumably suboptimal (Figure 2.9A). The co-exposure of LNT-

229 control or TGF-β1/2 siRNA cells to blocking NKG2D mAb attenuated the lysis of 

glioma cell targets (Figure 2.9B).  

 

Other activating molecules that may also be regulated by MP activity do not seem to 

play a decisive role in this context since the enhanced lysis of GM6001-pretreated 

glioma cells was nullified by NKG2D mAb. However, a difference in susceptibility 

towards NK cell-mediated lysis between LNT-229 control and TGF-β1/2 siRNA cells 

persisted in the presence of NKG2D mAb, suggesting that other mechanisms interfering 

with NK-cell mediated killing are also regulated by TGF-β [16]. 

 

2.2.5 Discussion 

 

NKG2DL are expressed almost de novo in gliomas in vivo and may thus label tumour 

cells for recognition by NKG2D-expressing immune effector cells (Figure 2.5, Table 

2.1). However, MICA and ULBP2 expression levels are downregulated close to or to 

baseline levels in grade IV tumours. This implies that the immunogenicity of gliomas 

decreases with increasing grade of malignancy, possibly due to a selection process 

favouring the survival of less immunogenic glioma cells. Surprisingly, elevated MICB 

and ULBP1 expression levels do not change during the course of malignant progression 

and ULBP3 was only slightly downregulated in grade IV gliomas. Due to the lack of a 

suitable antibody, ULBP4 expression could not be assessed in vivo. Interestingly, all 

examined NKG2DL were expressed at low levels also on single astrocytes in normal 

brain, with scores ranging from 0.8 for ULBP3 to 1.6 for MICB on our scale. These 

astrocytes showed reactive changes which were considered as morphological alterations 

induced by mortal agony. Since NKG2DL are known to be stress-inducible, their 

expression on astrocytes undergoing reactive changes might be due to terminal hypoxia-

induced stress in these patients.  

It remains unclear whether high cellular NKG2DL expression confers any survival 

advantage during the development of gliomas. Most likely, the blood-brain barrier that 

becomes disrupted in high-grade gliomas but is still intact in lower grade astrocytomas 
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[50] will hamper immune cell infiltration into the brain and thus prevent the NKG2D-

mediated elimination of low grade astrocytomas.  

Our study identifies two largely independent mechanisms which can explain the 

different NKG2DL staining patterns in malignant gliomas and their role in escaping 

NKG2D-mediated anti-tumour immunity. The association between increasing grade of 

malignancy and elevated expression of immunosuppressive molecules such as TGF-β 

has already been documented [17,41-43]. The mechanisms by which TGF-β undermines 

anti-tumour immune surveillance [22,51] might involve effects on co-stimulatory 

signals using NKG2D as the target molecule [17,18]. Our previous studies had indicated 

that there is an activation potential for immune cells when NKG2DL are highly 

expressed on glioma cells [3]. However, TGF-β counteracts these mechanisms by 

enhancing the expression of the inhibitory receptor CD94/NKG2A and by 

downregulating the activating receptor NKG2D on CD8+ T and NK cells [3,16,52]. 

Here we show that TGF-β additionally down-regulates the transcription of the human 

NKG2DL MICA, ULBP2 and ULBP4 (Figure 2.6). Interestingly, TGF-β does not 

interfere with MICB, ULBP1 and ULBP3 mRNA and cell surface expression (Figure 

2.6), suggesting that the yet uncharacterized promoters may not respond to TGF-β 

dependent transcription factors such as SMADs or that their mRNAs are selectively 

stabilized. Blocking experiments revealed additive functions of MICA and ULBP2 in 

triggering NKG2D, indicating that NKG2DL at the surface of transformed cells may 

contribute to anti-tumour immune responses in an additive manner (Figure 2.7). Indeed, 

the effect of blocking both MICA and ULBP2 equalled that of blocking the receptor. 

These observations suggest a prominent role for the NKG2DL MICA and ULBP2 in 

glioma immune surveillance while the other ligands may exert their immune stimulatory 

functions under different conditions. By promoting the reduction of NKG2DL on the 

cell surface, tumour cells may efficiently escape innate immune recognition by reducing 

an induced-self danger signal [53,54]. Collectively, these observations confirm that 

TGF-β is central to the malignant progression of glial tumours and a principle target for 

the treatment of gliomas [55]. Anti-TGF-β therapies may therefore not only relieve the 

immune dysfunction in human glioblastoma patients, but also act on the tumour cells, 

restoring MICA, ULBP2 and ULBP4 expression to the levels required for an effective 

anti-glioma immune response.  

Furthermore, TGF-β dependent MP are essential for the migratory and pro-invasive 

phenotype of glioma cells [17]. A direct targeting of MP would also appear to be 



Results and discussion                                                                                                   83 

justified, not only to impede glioma cell migration and invasion, but also to reduce the 

proteolytic shedding of NKG2DL. Yet again, MP inhibition by the broad spectrum 

inhibitors GM 6001 or MMP inhibitor III selectively enhanced the expression of MICA 

and ULBP2 on the surface of LNT-229 cells but not of other NKG2DL (Figure 2.8A). 

In parallel, the levels of sMICA in glioma cell supernatant were reduced by ~50% 

(Figure 2.8B) while mRNA levels remained unchanged (data not shown). The fact that 

MP inhibition predominantly enhanced the cell surface expression of MICA and 

ULBP2 (Figure 2.8A) may be due to the MP equipment of LNT-229 cells and to the 

low expression level of MICB in these cells. A complete prevention of MICA shedding 

was not achieved, implicating the involvement of proteases that are unaffected by the 

inhibitors used. Both GM6001 and MMP inhibitor III inhibit MMP-1, MMP-2 and 

MMP-3 with GM6001 acting on MMP-8 and MMP-9 as well, while MMP inhibitor III 

further blocks MMP-7 and MMP-13. Effects of these inhibitors on ADAMs or ADAM-

TS are likely, but have not been investigated.  

Of note, the relative reduction in sMICA and sULBP2 levels upon treatment with an 

MP inhibitor did not differ between LNT-229 control and TGF-β1/2 siRNA cells (Figure 

2.8B). Since we have previously shown that down-regulation of TGF-β1/2 by siRNA 

results in a striking reduction in MMP-2 and -9 expression and activity, the modulation 

of NKG2DL surface expression must depend on different MP [17]. 

We also show that the enhanced NKG2DL expression upon exposure to MP inhibitors 

translates into an increased immunogenicity of glioma cells (Figure 2.9A, B). Of note, 

at high E:T ratios, a reduction of NKG2DL shedding could not enhance the lysis 

TGF-β1/2 siRNA cells any further implicating that the levels of NKG2DL expression 

achieved in these cells may already have been sufficient to fully activate the NKG2D 

pathway. Still, the inhibition of MP is a promising option for TGF-β-independent 

tumours and may also lead to synergy with anti-TGF-β strategies. 

Taken together, our in vitro data implicate that the TGF-β-mediated transcriptional 

repression of MICA and ULBP2 together with the MP-mediated selective shedding of 

these NKG2DL may be a major factor contributing to the immune escape of higher 

grade gliomas. This suggested mechanism is strongly supported by the 

immunohistochemical finding of tumour-specific MICA and ULBP2 becoming 

downregulated with increasing grade of malignancy. The virtually complete blocking of 

NKG2D-mediated NK cell lysis of glioma cells by the combination of anti-MICA and 

anti-ULBP2 antibodies (Figure 2.7) strongly suggests that further NKG2DL only play a 
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subordinate role in glioma biology. The two mechanisms outlined here are particularly 

attractive since clinically applicable concepts for the inhibition of TGF-β [56] and of 

MP have already been developed and could thus be applied here in a novel context. 
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2.3 Tumour-associated MICA is shed by ADAM proteases  

 

This chapter has been submitted for publication by the following authors: 

 

Inja Waldhauer, Dennis Goehlsdorf, Friederike Gieseke, Toni Weinschenk, Andreas 

Ludwig, Stefan Stevanovic, Hans-Georg Rammensee, and Alexander Steinle 

 

The author of this thesis performed all experiments except the determination of the c-

terminus of sMICA in Figure 2.10A, B (Dennis Göhlsdorf, Toni Weinschenk), the 

generation of the MICA mutants (Dennis Göhlsdorf) and the generation of the pSuper-

ADAM10 construct (Friederike Gieseke). 

 

2.3.1 Abstract 

 

The immunoreceptor NKG2D promotes immunosurveillance of malignant cells and 

protects the host from tumour initiation by activating NK cells and costimulating CD8 T 

cells. NKG2D-mediated recognition of malignant cells by cytotoxic lymphocytes is 

enabled through the tumour-associated expression of NKG2D ligands (NKG2DL) 

resulting from cellular stress. Shedding of NKG2DL is thought to constitute a major 

countermechanism of tumour cells to subvert NKG2D-mediated immunosurveillance. 

Here, we report that the prototypical NKG2DL MICA is released by proteolytic 

cleavage in the stalk of the MICA ectodomain where deletions, but not alanine 

substitutions, impede MICA shedding. Small compound-mediated stimulation and 

inhibition of MICA shedding adduced characteristics that indicated an involvement of 

‘a disintegrin and metalloproteinase’ (ADAM) family members. Accordingly, silencing 

of the related ADAM10 and ADAM17 proteases inhibited MICA shedding by tumour 

cells. Collectively, our data demonstrate that ADAM10 and ADAM17 are critically 

involved in the tumour-associated proteolytic release of soluble MICA. Hence, 

therapeutic blockade of ADAM10 and ADAM17 appears promising for cancer 

treatment by targeting both growth and immune escape of tumours. 
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2.3.2 Introduction 

 

In recent years, the NKG2D/NKG2DL-system has emerged as a novel tumour 

immunosurveillance mechanism [1-3]. NKG2D is a homodimeric, C-type lectin-like 

receptor expressed by virtually all human NK cells, CD8 αβ T cells and γδ T cells and, 

in association with the adaptor protein DAP10, transduces activating signals which 

stimulate cytotoxicity and cytokine secretion [4,5]. Human NKG2DL belong to the 

families of MHC-encoded MIC molecules (MICA, MICB) and non-MHC-encoded 

UL16-binding proteins (ULBP) (ULBP1-4, RAET1G, RAET1L) [5,6], and typically are 

not expressed by healthy tissue but rather are induced subsequently to harmful events 

such as cellular stress or viral infection [5-8]. In tumour cells, MICA and other 

NKG2DL are up-regulated by genotoxic stress dependent on the activity of the DNA 

damage-detecting protein kinase ATM (ataxia teleangiectasia mutated) [1]. Genotoxic 

stress often occurs in precancerous lesions and many established tumours and, 

accordingly, MIC molecules are broadly expressed on epithelial tumours and on some 

haematopoietic malignancies [1,9-11] suggesting that they act as ‘immuno-alerters’ of 

malignant transformation. Studies in mice demonstrated a potent stimulatory role of 

NKG2D in tumour immunity: NK and CD8 T cells readily eliminated tumour cells 

ectopically expressing NKG2DL in a NKG2D-dependent manner, thereby even 

inducing tumour immunity against the parental tumour cells [12-14]. Further, NKG2D 

also protects mice from tumour initiation [15,16].  

In established MICA-expressing human tumours, NKG2D-mediated 

immunosurveillance is antagonized by the release of soluble MICA (sMICA) resulting 

in a reduction of the overall surface density of NKG2DL on tumours, a systemic 

NKG2D down-regulation on NK cells and CD8 T cells, and the expansion of 

immunosuppressive intra-tumoural CD4+NKG2D+ T cells [17-20]. Elevated levels of 

sMICA have been reported for sera of cancer patients with a broad variety of different 

malignancies [10,11,18,20,21].  

Previously, we reported that release of sMICA from tumour cells is impaired by 

metalloprotease inhibitors pointing to an involvement of members of the families of 

matrix metalloproteases (MMPs) and ADAMs [20]. Whereas MMPs are largely 

implicated in destruction of extracellular matrix, many ADAMs are membrane-tethered 

proteases that shed transmembranous proteins including cytokines, growth factors and 

cell-adhesion molecules from the cell surface [22-24]. In particular, ADAM10 and 
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ADAM17 play an eminent role in the shedding of ectodomains. Their catalytic domains 

are highly related, and, consequently, they share some of their substrates such as 

amyloid precursor protein (APP) and TNF [22,24,25]. They are frequently 

overexpressed in tumours and are thought to play key roles in different steps of 

tumourigenesis [24,26]. 

 Based on our observations that shedding of MIC molecules is blocked by 

metalloprotease inhibitors, we set out to characterize the proteolytic activities resulting 

in MICA release. We anticipated that molecular characterization of the responsible 

protease(s) may identify new promising targets in the quest for more efficacious 

immunotherapies of cancer. 

 

2.3.3 Materials and Methods 

 

Transfectants. 293T and HeLa were stably transfected with MICA*01 cDNA using 

FuGene HD reagent (Roche), C1R with cDNA of MICA mutants by electroporation as 

described [20]. MICA mutants were generated from full-length MICA*01 cDNA (all in 

RSV.5neo) using Quikchange-Kit (Stratagene, La Jolla, CA) and the following 

oligonucleotides: 

1D  5´-GGAAAGTGCTGGTGCTTCAGACATTCCATGTTTCTG-3´ 

  5´- CAGAAACATGGAATGTCTGAAGCACCAGCACTTTCC-3´ 

2D  5´-CTCTGCCCTCTGGGTGGCAGACGTTCCATG-3´ 

5´-CATGGAATGTCTGCCACCCAGAGGGCAGAG-3´ 

3D  5´-CTGCCCTCTGGGGCTGTTGCTGCTGC -3´ 

5´-GCAGCAGCAACAGCCCCAGAGGGCAG -3´ 

1M   5´-CTGCCCTCTGGGAAAGCGGCGGCGGCTCAGAGTCATTGGCAG-3´   

5´-CTGCCAATGACTCTGAGCCGCCGCCGCTTTCCCAGAGGGCAG-3´  

2M  5´-GGGAAAGTGCTGGTGCTTGCGGCTCATTGGCAGACGTTCCAT-3´    

5´-ATGGAATGTCTGCCAATGAGCCGCAAGCACCAGCACTTTCCC-3´  

3M 5´-GTGCTGGTGCTTCAGAGTGCTGCGCAGACGTTCCATGTTTCTGC-3´  

5´-GCAGAAACATGGAATGTCTGCGCAGCACTCTGAAGCACCAGCAC-3´  
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4M  5´-GTGCTTCAGAGTCATTGGGCGGCATTCCATGTTTCTGCTG-3´,  

5´-CAGCAGAAACATGGAATGCCGCCCAATGACTCTGAAGCAC-3´  

5M  5´-CAGAGTCATTGGCAGACAGCCGCTGTTTCTGCTGTTGCTGCTG-3´ 

5´-CAGCAGCAACAGCAGAAACAGCGGCTGTCTGCCAATGACTCTG-3´ 

6M  5´-GGCAGACATTCCATGCTGCTGCTGTTGCTGCTGC-3´ 

5´-GCAGCAGCAACAGCAGCAGCATGGAATGTCTGCC-3´ 

C1R-MICA transfectants were grown in RPMI 1640 with 1.8 mg G418/ml, and 293T-

MICA*01 and HeLa-MICA*01 cells in IMDM with 1.5 mg G418/ml. For proliferation 

analysis, 293T-MICA cells were labeled with 5 µM CFSE 48 h after transfection, 

washed, and cultured for four additional days before flow cytometric analysis. 

 

Reagents. PE-labelled human NKG2D tetramers, anti-MICA mAb AMO1, and anti-

MICA/B mAb BAMO1 and BAMO3 were previously described [8]. Antibodies specific 

for human ADAM10 (mAb 163003) and human ADAM17 (mAb 111633) were from 

R&D systems (Minneapolis, MN). HRP-goat anti-mouse Ig, HRP-streptavidin, and PE-

goat anti-mouse Ig were from Jackson ImmunoResearch Laboratories (West Grove, 

PA), HRP-goat anti-mouse IgG2a from Southern Biotechnology Associates 

(Birmingham, AL). MMPI III, TIMP2 and BIM I were from Merck (Darmstadt, 

Germany), BB94 was provided by Klaus Maskos, Max-Planck-Institute for 

Biochemistry, Martinsried, Germany. BB94 was dissolved in dimethylformamide and 

added in a 1/200 volume to cultures. ADAM-specific metalloprotease inhibitors 

GW280264 and GI254023 were previously described [27]. PMA was from Cell 

Signaling (Danvers, MA) and CFSE from Sigma (St. Louis, MO). 

 

Flow cytometry. Cells were incubated with indicated antibodies at 10 μg/ml and then, 

after washing, with PE-goat anti-mouse Ig (1:200) as secondary reagent or, 

alternatively, with PE-labeled sNKG2D tetramers at 10 µg/ml. Samples were analyzed 

on a FACScan (BD Bioscience, San Jose, CA). Specific fluorescence intensities (SFI) 

were calculated by subtracting the mean fluorescence intensity (MFI) of the isotype 

control from the MFI of the specific antibody. 
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ELISA. Sandwich ELISA for sMICA based on mAb AMO1 and BAMO3 has been 

previously described [10]. Results are shown as means with SD of triplicates.  

 

Immunoblot analysis. Samples were separated by 10% SDS-PAGE. Gels were blotted 

to Hybond-ECL membranes (Amersham, Little Chalfont, UK), blocked with TBS 

containing 5% non-fat dried milk, and then analyzed with BAMO1 followed by a goat 

anti-mouse HRP-conjugate or with HRP-conjugated streptavidin, and developed with 

Super Signal West Pico Chemiluminescent Substrate  (Pierce Biotechnology, Rockford, 

IL). 

 

Determination of carboxyterminus of sMICA. Supernatants from C1R-MICA were 

concentrated, dialyzed, and treated with peptide:N-Glycanase F (New England Biolabs, 

Beverly, MA) according to manufacturer’s instructions. Deglycosylated sMICA was 

immunprecipitated with mAb BAMO3, separated on a 12.5 % SDS-PAGE and stained 

with Coomassie Blue. Soluble MICA was excised from the gel, digested with V8 

protease (Roche) in the presence of H2O18, and resulting fragments analyzed by 

MALDI-MS. 

  

RNA silencing. For transient knockdown of human ADAM10, oligonucleotide 5´-

ACAGTGCAGTCCAAGTCAA-3´ and its reverse complement, separated by a 9-nt 

hairpin spacer (ttcaagaga), were inserted into pSuper-puro [28]. 293T-MICA cells were 

transfected with pSuper construct using FuGene HD. For direct delivery of siRNA, 

293T-MICA and HeLa-MICA cells were transfected with ADAM17 and/or ADAM10 

ON-TARGETplus SMARTpools using DharmaFECT1 (Dharmacon). 

ADAM17:   5’-GAAGAACACGUGUAAAUUAUU-3’ 

5’-GCACAAAGAAUUAUGGUAAUU-3’ 

5’-UAUGGGAACUCUUGGAUUAUU-3’  

5’-GGAAAUAUGUCAUGUAUCCUU-3’ 

ADAM10:  5’-CAUCUGACCCUAAACCAAAUU-3’ 

   5’-CAAGGGAAGGAAUAUGUAAUU-3’  

5’-GAACUAUGGGUCUCAUGUAUU-3’  

5’-CGAGAGAGUUAUCAAAUGGUU-3’  

As a control ON-TARGETplus siCONTROL non-targeting pool was used. 
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Real-time RT-PCR. Total RNA was isolated using TriZol (Invitrogen, Karlsruhe, 

Germany) followed by DNAse I (Promega, Madison, WI) digestion and reverse 

transcription using M-MLV Reverse Transcriptase (Promega). Resulting cDNA was 

amplified using ADAM10, ADAM17, MICA and 18S rRNA specific primers using 

SYBRGreen chemistry on the ABI PRISM 7000 Sequence Detection System (Applied 

Biosystems, Weiterstadt, Germany). The ΔCT method was used for relative 

quantifications. Oligonucleotide sequences (forward, reverse) were for 18S rRNA: 5’-

CGGCTACCACATCCAAGGAA-3’, 5’-GCTGGAATTACCGCGGCT-3’; MICA: 5’-

CCTTGGCCATGAACGTCAGG-3’, 5’-CCTCTGAGGCCTCRCTGCG-3’;   

ADAM10: 5’-CTGGCCAACCTATTTGTGGAA-3’, 5’-

GACCTTGACTTGGACTGCACTG-3’; ADAM17: 5’-

GAAGGCCAGGAGGCGATTA-3’, 5’-CGGGCACTCACTGCTATTACC-3’. 

 

2.3.4 Results 

 

Efficiency of MICA shedding depends on the length of the MICA stalk 

Our previous work indicated that tumour cell-derived sMICA comprises the entire 

MICA ectodomain and is derived from membrane-bound MICA by metalloproteolytic 

cleavage [20]. To further characterize the generation of tumour cell-derived sMICA, 

carboxytermini of sMICA purified from supernatants of C1R-MICA cells were 

determined by MALDI-MS after proteolytic digestion in presence of H2O18 (Figure 

2.10A). Carboxytermini of sMICA mapped to the stalk region (Ser 274 to Ala 291) 

connecting the MICA α3 domain and the transmembrane domain (Figure 2.10B) 

supporting the notion that sMICA is generated from transmembranous MICA by 

proteolytic cleavage atop of the plasma membrane. To further characterize MICA 

cleavage, MICA mutants with deletions or alanine substitutions of the MICA stalk were 

generated (Figure 2.10B) and stably transfected into C1R cells. All MICA mutants with 

alanine substitutions were expressed on the cell surface at nearly the same level as 

wildtype MICA. In contrast, only surface expression of mutant 1D was at wildtype 

levels, whereas surface expression of mutant 2D was markedly reduced and mutant 3D 

barely detectable (Figure 2.10C and data not shown). Similar results were obtained 

when mutants were analyzed for NKG2D binding using sNKG2D (soluble NKG2D) 

tetramers indicating that MICA mutants expressed at the cell surface were not 

conformationally altered (Figure 2.10C). Subsequently, we analyzed supernatants of 
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transfected C1R cells for sMICA using our previously established MICA ELISA [10] 

(Figure 2.10D). Whereas alanine substitutions in the MICA stalk did not substantially 

affect MICA shedding, sMICA levels in supernatants of C1R cells expressing mutants 

1D and 2D were strongly reduced. These results demonstrate that sMICA is generated 

by proteolytic cleavage in the stalk region and that the respective protease(s) do(es) not 

recognize a specific sequence motif within the stalk, but rather is (are) sensitive to 

shortenings of the stalk.  

 

Figure 2.10. MICA cleavage in the stalk region is dependent on length, but not 
sequence of the stalk. (A) Tumour cell-shed sMICA (asterisk, middle lane) from N-
glycanase-treated supernatants of C1R-MICA*04 cells was immunoprecipitated with 
mAb BAMO3 for mass spectrometric analysis. E. coli-produced sMICA*01 (left lane) 
and a mock-immunoprecipitation (right lane) are controls. (B) Sequence of the MICA 
stalk connecting the α3 and the transmembrane domain (TM) where vertical arrows 
indicate carboxytermini of shed sMICA*04 as determined by mass spectrometry (upper 
line). Lower lines depict mutant MICA sequences with deletions (1D to 3D) or alanine 
substitutions (1M to 6M), respectively, transfected into C1R cells. (C) MICA mutants 
on stably transfected C1R cells were stained with anti-MICA mAb AMO1 (filled 
histograms), isotype control IgG1 (grey lines), or sNKG2D tetramers (solid lines). SFI 
for AMO1 stainings are given. (D) Soluble MICA in supernatants of C1R cells stably 
expressing MICA mutants was determined after 16 h of cultivation using a sMICA-
specific sandwich ELISA.  
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MICA is shed from the cell surface by an ADAM-like proteolytic activity  

Next, we attempted to define the cellular compartment where MICA shedding occurs. 

Hence, cell surface proteins of 293T-MICA cells were biotinylated and, subsequently, 

both cell lysates and supernatants analyzed for biotinylated MICA at different time 

points. Importantly, biotinylated MICA was found not only in cell lysates, but also in 

supernatants, indicating that sMICA is shed from the cell surface (Figure 2.11).  

 

Figure 2.11. MICA is shed from the cell surface. (A,B) 293T-MICA were surface-
biotinylated and cultivated for up to 36 h before MIC molecules in cell lysates (A) or  
culture supernatants (B) were immunoprecipitated by mAb BAMO3. Biotinylated 
MICA or total MICA molecules were then detected with streptavidin-HRP (SA-HRP) 
and anti-MIC mAb BAMO1, respectively. 

 

Next, we evaluated several broad range metalloprotease inhibitors for their ability to 

inhibit MICA shedding. Matrix metalloprotease inhibitor III (MMPI III) strongly 

suppressed MICA shedding by C1R-MICA without affecting cell viability (Figure 

2.12A). Similar results were obtained for the inhibitors BB94, MMPI II, GM6001 ([29] 

and data not shown). In contrast, TIMP2 (tissue inhibitor of metalloproteases-2), a 

natural and selective inhibitor of MMPs which does not inhibit ADAMs [30], did not 

affect MICA shedding (Figure 2.12B). Previously, we had shown that MICA shedding 

is stimulated by PMA (phorbol 12-myristate 13-acetate), a characteristic feature of 

ADAM17-mediated shedding [31]. Since PMA is a potent activator of protein kinase C 

(PKC), we investigated the impact of the PKC-inhibitor Bisindolylmaleimide I (BIM I) 

on PMA-stimulated MICA shedding. To this aim, we treated C1R-MICA with PMA 

and BIM I, and analyzed supernatants for sMICA levels (Figure 2.12C) and monitored 

cell surface MICA by flow cytometry (Figure 2.12D). In fact, PMA-stimulated 
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shedding was inhibited by BIM I in a dose-dependent manner and, at highest BIM I 

concentrations, reduced to levels of constitutive MICA shedding, whereas BIM I had no 

effect on MICA shedding of control-treated C1R-MICA cells.  

 

Figure 2.12. Chemical inhibition of MICA shedding reveals characteristics of 
ADAM-dependent proteolysis. (A, B) MICA shedding by C1R-MICA is repressed by 
the broad metalloprotease inhibitor MMPI III in a concentration-dependent manner (A), 
but not by the natural MMP-specific inhibitor TIMP2 (B). Cellular viability was 
monitored by propidium iodide staining. (C) PMA-stimulated shedding of MICA by 
C1R-MICA was efficiently blocked by pre-incubation with the PKC inhibitor BIM I. 
(D) PMA-stimulated MICA shedding and the BIM I-mediated inhibition is mirrored by 
alterations of cell surface MICA levels on C1R-MICA. C1R-MICA pre-treated with 
various concentrations of BIM I were cultured with (grey histograms) or without PMA 
(open histograms) and stained with mAb AMO1. (E, F) PMA-induced MICA shedding 
by C1R-MICA was potently inhibited by the ADAM-protease inhibitor GW280264X 
(F), but only inefficiently by the selective ADAM-protease inhibitor GI254023X, 
whereas both substances equally inhibited constitutive MICA shedding. Levels of 
sMICA were determined by sMICA-ELISA and PMA was always used at 100 ng/ml, 
except in (D) (50 ng/ml). 
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Since our results pointed to the involvement of ADAMs in MICA shedding, we studied 

the effect of ADAM-specific hydroxamate-based metalloprotease inhibitors on MICA 

shedding. The inhibitor GW280264X reportedly blocks proteolytic activity of both 

ADAM10 and ADAM17 with comparable efficiency, whereas GI254023X is about 

100-fold more effective in blocking ADAM10 than ADAM17 [27]. PMA-stimulated 

MICA shedding of C1R-MICA cells was inhibited by GW280264X in a dose-dependent 

manner (Figure 2.12F). In contrast, GI254023X inhibited constitutive shedding, but 

only marginally affected PMA-stimulated shedding (Figure 2.12E). In all experiments, 

MICA shedding was efficiently blocked by the broad range metalloprotease inhibitor 

BB94 (data not shown). Collectively, these data suggested that MICA shedding is 

governed by one or several membrane-bound proteases with ADAM-like activities such 

as ADAM10 and ADAM17.  

 

ADAM10 and ADAM17 mediate MICA shedding  

To directly address an involvement of ADAM10 and ADAM17 in MICA shedding, we 

transiently silenced expression of ADAM10 and/or ADAM17 in 293T-MICA and 

HeLa-MICA transfectants by RNA interference. First, we suppressed ADAM10 by 

transfecting a plasmid expressing an ADAM10 siRNA (pSuper-ADAM10) in 293T-

MICA. Down-regulation of ADAM10 was detected by real-time PCR, immunoblotting 

and FACS in pSuper-ADAM10-transfected, but not in control-transfected cells (Figure 

2.13). Concomitantly to ADAM10 suppression, constitutive MICA shedding by 293T-

MICA cells was strongly reduced as detected by MICA ELISA (Figure 2.13D). 

Noteworthy, levels of MICA transcripts and MICA surface expression remained 

unaltered (Figure 2.13). To assess whether reduced sMICA levels may be due to an 

impaired proliferation as a consequence of ADAM10 knockdown, pSuper-transfected 

cells were labeled with CFSE and analyzed after four days of culture (Figure 2.13E). 

No difference in proliferation was observed between controls and ADAM10-

knockdown cells. 
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Figure 2.13. ADAM10 silencing impairs constitutive MICA shedding. (A-C) 
ADAM10 siRNA-expression in 293T-MICA down-regulates ADAM10 transcripts (A), 
total cellular ADAM10 (B), and cell surface ADAM10 (C). Relative copy numbers of 
ADAM10 and MICA transcripts in 293T-MICA 48 h after transfection with pSuper or 
pSuper-ADAM10 and untreated 293T-MICA were determined by real-time PCR after 
normalization with 18S rRNA (A). Total cellular ADAM10 protein was determined in 
lysates of 293T-MICA 72 hour after transfection and untreated 293T-MICA cells by 
immunoblotting (B). Surface expression of MICA or ADAM10 (grey histograms) was 
determined 72 h after transfection. Stainings of untreated 293T-MICA (thick lines) and 
with isotype controls (thin lines) are overlayed (C). (D) Soluble MICA released from 
293T-MICA transfected with pSuper or pSuper-ADAM10 was determined in medium 
used for culture from 72 h to 75 h post-transfection and compared to 3 h culture 
supernatants of untreated 293-MICA. (E) Transient ADAM10 knock-down did not 
result in altered proliferation of 293T-MICA. 293T-MICA were transfected with pSuper 
plasmids, labelled with CFSE, and analysed four days later for surface ADAM10 and 
CFSE intensity.  

  

In a second approach, we transfected 293T-MICA cells with pools of siRNA targeting 

ADAM10 and/or ADAM17, respectively, to further analyze an involvement of 

ADAM10 and ADAM17 in MICA shedding. Successful siRNA-mediated suppression 

of ADAM expression was again confirmed by real-time PCR and flow cytometry 

(Figure 2.14).  
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Figure 2.14. ADAM17 mediates PMA-stimulated MICA shedding. (A) Transfection 
of 293T-MICA with siRNA pools specific for ADAM10 and/or ADAM17 results in 
markedly reduced levels of ADAM10 (upper) and ADAM17 transcripts (middle), but 
not MICA transcripts (lower). Relative levels of transcripts of ADAM10, ADAM17 and 
MICA in 293T-MICA were determined 48 h after transfection with siRNA pools of 
ADAM10 and/or ADAM17, and a control siRNA pool and compared to levels in 
untreated 293T-MICA by real-time PCR and normalization with 18S rRNA. (B) 
Transient knockdown of ADAM10 and/or ADAM17 in 293T-MICA and HeLa-MICA 
by transfection of siRNA results in decreased levels of cell surface ADAM10 and/or 
ADAM17. Stainings of MICA, ADAM10 and ADAM17 (grey histograms) 72 h after 
transfection with non-targeting siRNA (control), ADAM10 siRNA, ADAM17 siRNA, 
or a mixture of ADAM10/ADAM17 siRNA are overlayed with stainings of untreated 
cells (thick lines) and isotype controls (dotted lines). (C, D). Levels of sMICA were 
determined in supernatants 72 to 75 h post-transfection (C) and after subsequent PMA-
treatment (100 ng/ml) at 75 h post-transfection (supernatants of 75 to 77.5 h post-
transfection) (D). AD, ADAM; wt, wildtype. 

 

In 293T-MICA cells constitutive MICA shedding was significantly reduced upon 

knockdown of ADAM10 or a combined knockdown of ADAM10 and ADAM17 
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knockdown, whereas PMA-stimulated shedding was markedly reduced when either 

ADAM10 or ADAM17 were silenced (Figure 2.14). Targeting ADAM10 or ADAM17 

in HeLa-MICA cells also resulted in a reduced cell surface expression of both ADAM 

family members (Figure 2.14B). Suppressing ADAM10 resulted in a reduced 

constitutive MICA shedding, but did not affect PMA-stimulated MICA shedding, 

whereas silencing ADAM17 reduced PMA-stimulated shedding and constitutive 

shedding. A combined suppression of ADAM10 and ADAM17 reduced both 

constitutive as well as PMA-stimulated MICA shedding (Figure 2.14). Altogether, 

these results demonstrate that both ADAM10 and ADAM17 are critically involved in 

MICA shedding by tumour cells. 

 

2.3.5 Discussion 

 

MICA shedding is considered a principal mechanism of tumour cells to escape from 

NKG2D-mediated immunosurveillance in humans. MICA shedding not only results in a 

reduction of MICA surface density on tumour cells, but also was shown to systemically 

down-regulate NKG2D on cytotoxic effector cells and to promote expansion of 

immunosuppressive, intra-tumoural CD4+NKG2D+ T cells [10,18-20]. Thus, inhibition 

of MICA shedding is expected to represent an effective way to improve anti-tumour 

immunity. Intelligent targeting of the MICA shedding process requires a thorough 

elucidation of the underlying molecular mechanisms. Previously, we had already shown 

that shedding of MICA as well as shedding of NKG2DL MICB and ULBP2 can be 

blocked by broad range metalloprotease inhibitors [29]. However, the nature of the 

proteolytic activities ultimately resulting in release of MICA was not addressed.  

 Here, we report several lines of evidence that ADAM10 and ADAM17 act as principal 

sheddases of tumour-cell associated MICA: (i) MICA cleavage occurs at the surface of 

tumour cells, (ii) MICA is cleaved within the juxtamembranous stalk, (iii) MICA 

cleavage is dependent on the length, but not on the sequence of the stalk, (iv) MICA 

shedding is inhibited by broad range metalloprotease inhibitors, but not by MMP-

specific TIMP2, (v) MICA shedding is induced by PKC, (vi) constitutive and induced 

MICA shedding is variably affected by ADAM-specific inhibitors GI254023X and 

GW280264X, (vii)  MICA shedding is suppressed upon silencing of ADAM10 and/or 

ADAM17. 
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All these findings are in accord with well-known characteristics of ADAM activities: 

ADAMs typically release cell surface proteins through cleavage within the stalk region 

proximal to the membrane and select their substrates not by recognition of consensus 

sequences, but rather are guided by secondary structures also involving length and 

accessibility of the stalk [25,32]. Activation of PKC has been found to increase ADAM-

mediated cleavage events [31]. ADAMs are often up-regulated by tumour cells and are 

critically involved in promoting tumour growth and metastasis. In tumour cells, 

ADAM10 and ADAM17 provide growth factors by cell surface shedding and thus are 

essential in promoting cellular growth [22,26,31]. Hence, targeting ADAM10 and/or 

ADAM17 in malignant disease appears promising. In vivo, activity of ADAMs as well 

as MMPs is inhibited by TIMPs. There exist four TIMPs which block MMPs and 

ADAMs through binding to the active site, except TIMP2 which does not affect 

ADAMs [30]. It was shown that TIMP3 inhibits tumour growth in vivo [33], but many 

primary tumours lack detectable levels of TIMP3 due to aberrant DNA 

hypermethylation and this correlates with disease progression [34].  

 Small synthetic hydroxamate-based inhibitors also are able to inhibit ADAMs by 

blocking the active site [25]. Hydroxamate-based inhibitors such as BB94 and 

Marimastat were previously used in clinical trials [35,36], but turned out to be 

inefficient or caused side effects, presumably by inhibition of MMPs [37]. There now 

exist novel compounds such as GI254023X, GW280264X, INCB7839 and INCB3619 

which preferentially inhibit ADAM family members, including ADAM10 and 

ADAM17 [27,38]. The latter are main sheddases of ErbB receptor ligands such as EGF, 

TGFα, and HB-EGF, important regulators of cell proliferation and survival [22,31]. To 

assess the impact on ErbB-mediated tumour growth, INCB3619 is currently evaluated 

in preclinical testing [38].  

Our present study shows that suppression of ectodomain shedding by ADAM10 and 

ADAM17 also interferes with NKG2DL shedding from tumour cells and thereby is 

expected to hinder escape from NKG2D-mediated immunosurveillance. Hence, it is of 

great interest to determine whether treatment with these novel ADAM-specific 

inhibitors also results in an enhanced tumour immunity against NKG2DL-bearing 

tumours. Recently, Spies and colleagues demonstrated that the thioreductase ERp5 

plays an essential role in MICA shedding [39] presumably by chaperoning 

conformational alterations of surface MICA that may render MICA susceptible for 

proteolytic cleavage. Presently, it is unclear how activities of ADAMs and ERp5 
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interrelate in the MICA shedding process, but one may envision that chaperoning 

functions of ERp5 prepare surface MICA for proteolytic shedding by ADAMs. Further 

studies, e. g. in animal models are necessary to establish whether targeting ADAMs or 

ERp5 in vivo can diminish MICA shedding to such an extent where anti-tumour 

NKG2D reactivity is restored.  

Taken together, our study provides strong evidence that ADAM10 and ADAM17 are 

principal MICA sheddases on tumour cells and therefore represent attractive molecular 

targets in efforts to improve the efficacy of immunotherapeutic cancer regimen. 
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2.4 Mutual activation of natural killer cells and monocytes 

mediated by interaction between the human NK receptor 

NKp80 and the myeloid-specific receptor AICL 

 

This chapter has been published in Nature Immunology 7:1334-1342 (2006) by the 

following authors: 

 

Stefan Welte, Sabrina Kuttruff, Inja Waldhauer and Alexander Steinle. 

 

The author of this thesis performed the AICL Immunoblots (Figure 2.21f). 

 

2.4.1 Abstract 

 

Receptors encoded by the natural killer gene complex (NKC) (e.g. NKG2D) govern 

reactivity of natural killer (NK) cells. However, the function and ligand(s) of the NKC-

encoded human NK receptor NKp80 remain elusive. Here we demonstrated that NKp80 

binds to the genetically linked orphan receptor AICL, which like NKp80 is absent in 

rodents. We defined AICL as a myeloid-specific activating receptor that is up-regulated 

by Toll-like receptor stimulation. AICL-NKp80 interactions promoted NK cell-

mediated cytolysis of malignant myeloid cells. In addition, during cross-talk between 

NK cells and monocytes, NKp80 stimulated the release of pro-inflammatory cytokines 

from both cell types. Thus, by specifically bridging NK cells and myeloid cells, NKp80-

AICL interactions may contribute to the initiation and maintenance of immune 

responses at sites of inflammation. 

 

2.4.2 Introduction 

 

Originally, natural killer (NK) cells were primarily considered to be innate immune 

effector cells capable of spontaneously destroying infected or transformed cells [1]. NK 

cells detect malignant or virus-infected cells through the recognition modes of ‘missing-
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self’ and ‘induced-self’, which regulate cytokine secretion and cytotoxicity and 

ultimately lead to the elimination of harmful cells [2,3].  

Emerging evidence now also attributes to NK cells an important role in the initiation 

and modulation of adaptive immune responses [4,5]. Specifically, by providing an early 

source of interferon-γ (IFN-γ), NK cells are instrumental in initiating T helper type 1 

(TH1) T cell responses [6]. However, the molecular and cellular events involving NK 

cells at the initiation of adaptive immune responses remain unclear. In this regard, the 

cellular cross-talk between NK cells and myeloid cells is currently of major interest, 

since it is thought to crucially program subsequent immune responses. Several studies 

demonstrated a mutual activation of NK cells and dendritic cells (DCs), in which both 

soluble factors and cell contact-dependent events have been implicated [5,7-10]. Other 

recent reports also define a reciprocal activation between human NK cells and 

monocytes and macrophages [11,12]. Like NK-DC interactions, the stimulatory cross-

talk between NK cells and monocytes is partially cell contact-dependent; hence an 

involvement of hitherto undefined receptors was postulated [12]. 

NK cell activation is balanced by inhibitory signals provided by MHC class I-specific 

NK receptors (which allow detection of ‘missing-self’) and activating signals received 

by several immunoglobulin-like and C-type lectin-like receptors like NKG2D (which 

allows detection of ‘induced self’). In humans, a number of activating NK receptors 

including NKp30, NKp44, NKp46, NKp80 and NKG2D has been characterized, but 

apart from NKG2D, the unidentified nature of the corresponding cellular ligands 

strongly hampers further advances in understanding their role in NK cell-mediated 

immunoregulation and immunosurveillance [3,13].  

NKG2D and NKp80 (also called KLRF1) are both C-type lectin-like homodimeric 

receptors encoded within the human NKC [14-17]. NKG2D is expressed by virtually all 

human NK cells, γδ T cells and CD8+ T cells and, together with the adaptor protein 

DAP10, assembles into an activating immunoreceptor complex [3,14]. Upon 

recognition of its MHC class I-related, stress-inducible ligands encoded by the MIC and 

ULBP genes, NKG2D stimulates NK cytotoxicity and cytokine secretion [14,18]. Since 

NKG2D ligands are inducibly expressed in cells subjected to genotoxic stress and are 

associated with malignant transformation, the hypothesis was put forward that NKG2D 

may detect and orchestrate the elimination of harmful infected or transformed cells 

[3,14,19,20]. In fact, recent studies illustrate that NKG2D provides protection from 

spontaneous tumors in vivo [21,22]. 



Results and discussion                                                                                                   109 

In comparison, much less is known about NKp80 which, unlike NKG2D, has been 

reported to be expressed exclusively on NK cells [16]. In fact, NKp80 was described 

during the course of a search for novel NK cell-specific surface markers [26]. Like 

NKG2D, NKp80 stimulates NK cell cytotoxicity and induces Ca2+ influx in human NK 

cells upon triggering by appropriate antibodies [16]. In contrast to NKG2D, NKp80 

lacks charged amino acids in its transmembrane domain (thereby disfavouring 

association with activating adaptor proteins like CD3ζ, DAP12, DAP10 or FcεRIγ) and 

consensus activation motifs in its cytoplasmic domain. Also in contrast to NKG2D, 

NKp80 lacks a homologue in rodents [17]; this distinction may have impeded 

investigation of NKp80 function in vivo. Recently, two studies of non-human primates 

confirmed that NKp80 is an NK cell-specific stimulatory receptor [23,24]. However, 

these reports also were limited by the unknown identity of NKp80 ligand(s).  

Driven by the knowledge that characterization of NKG2D ligands profoundly improved 

our understanding of NK cell activation, we set out to identify ligand(s) of NKp80, the 

only known NKC-encoded activating receptor exclusively expressed on human NK 

cells. Here, we identified the NKC-encoded orphan receptor AICL (also called 

CLEC2B) as a ligand of NKp80. Using newly generated AICL-specific monoclonal 

antibodies we showed that AICL is a novel myeloid-specific receptor expressed by 

monocytes, macrophages and granulocytes. Cross-linking of both NKp80 and AICL 

stimulated secretion of pro-inflammatory cytokines, and in co-cultures of NK cells and 

monocytes, cytokine release was partially dependent on NKp80 engagement. Hence, 

our findings suggest that the NKp80-AICL interaction is involved in the activating 

cross-talk between NK cells and myeloid cells, and thus may influence the initiation and 

maintenance of immune responses in humans. 

 

2.4.3 Materials and Methods 

 

Cells. Peripheral blood leukocytes of healthy donors were isolated according to the 

guidelines of and as approved by the local ethic committee and cultured in X-Vivo 15 

(Cambrex) with 10% FCS. NK cells were purified by the NK cell isolation kit II and 

monocytes by the CD16+ Monocyte Isolation Kit (for NK co-culture), by the Monocyte 

Negative Isolation Kit (for cytokine secretion assays), or by CD14 microbeads (all from 

Miltenyi). Cell purity was between 90-98%. Granulocytes were isolated as described 

[40]. Monocytes were differentiated to macrophages with 50 ng/ml hM-CSF. Cytokines 
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were from R&D Systems except hIL-15 and hIL-2 (PromoCell). Monocytes were 

cultured 24 h with 1 µg/ml LPS from S. typhimurium, 50 µg/ml poly(I:C) (Sigma), 1 

µM S-[2,3-bis(palmitoyloxy)propyl]-cysteine-(Lys)4
 (Pam2Cys SK4; EMC 

Microcollections), and 10 ng/ml R-848 (S. Bauer, Munich). NK cells and CD16+ 

monocytes were co-cultured at 4×105 cells/well for 12 h at a 1:1 ratio (total 8×105 

cells/well) with 100 U IL-2/ml. IL-15 and IL-18 (both at 10 ng/ml), and F(ab’)2 of 

5D12, 7F12, or NP (4-hydroxy-3-nitrophenylacetyl)-specific IgG1 (all at 10 µg/ml), 

respectively, were added where indicated. CD56+ cells were stained for intracellular 

IFN-γ, and CD14dim16+HLA-DRbright cells for intracellular TNF. To calculate monocyte-

dependent increases in frequencies of IFN-γ-producing NK cells, monocyte-dependent 

increase in presence of NP-specific IgG1 (Fab’)2 was set as 100% ((%IFN-γ-producing 

NK cells with monocytes) - (%IFN-γ-producing NK cells without monocytes) = 100%). 

Increase in frequencies of TNF+ monocytes by co-cultivation with NK cells was 

calculated accordingly. 

 

NKp80- and AICL-specific monoclonal antibodies. Splenocytes of mice repeatedly 

immunized with NKp80-ED or AICL-ED, respectively, were fused with 

P3X63Ag8.653 myeloma cells as described [41]. Hybridoma supernatants were 

screened with mixtures of Jurkat-neo or Jurkat-NKp80 transfectants and mixtures of 

AICL-ED or LLT1-ED-coated microspheres by immunofluorescence. Immunoglobulins 

were purified from supernatants with Protein A (Biorad). 5D12, 10E4 and 12D11 

antibodies are NKp80-specific, 7F12 and 7G4 antibodies are AICL-specific, and all 

antibodies are of IgG1 isotype. Antibodies were labeled using Alexa Fluor 647 

carboxylic acid-succinimidyl ester according to the manufacturer’s protocol (Molecular 

Probes). (Fab’)2 fragments were generated by pepsin digestion und purified from 

endotoxin by Triton 114 extraction [42]. Endotoxins in mAb and (Fab’)2 preparations 

were tested using a Limulus amebocyte lysate assay (QCL-1000, Cambrex) and were 

below 0.1 EU/µg antibody. 

 

Antibodies. PE-conjugated anti-NKp46 and anti-CD56 were from Immunotech, CD14-

FITC and isotype control from Immunotools, CD14-PE-Cy7 and isotype control from 

BioLegend, anti-NKp46 and anti-TREM-1 from R&D Systems, anti-FLAG M2 from 

Sigma, anti-penta-His from Qiagen, and goat anti-mouse-Ig-PE conjugate from Jackson 

Laboratories. The anti-NP IgG1 mAb was a kind gift from Jörg Kirberg, Max-Planck-
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Institute for Immunobiology, Freiburg, Germany. All other antibodies were from BD 

Biosciences. 

 

Cytotoxicity, degranulation and cytokine analysis. Cytotoxicity was analyzed in a 4 h 

51chromium-release assay as described [41]. Degranulating NK cells were quantified 

by analysis of surface CD107a after 6 h incubation with plate-bound antibody in the 

presence of 10 µg/ml Brefeldin A (Sigma) as described [43]. Likewise, frequencies of 

cytokine-producing NK cells were determined by intracellular staining with PE-anti-

IFN-γ after 6 h incubation with plate-bound antibody in the presence of 10 µg/ml 

Brefeldin A and 100 U IL-2/ml. Ionomycin (Sigma) and PMA (Cell Signaling 

Technology) were used at concentrations of 1 nM and 10 ng/ml, respectively. TNF 

levels in supernatants of purified NK cells stimulated for 24 h with plate-bound 

antibody and 100 U IL-2/ml were determined using ELISA CytoSets from BioSource. 

TNF in supernatants of purified monocytes was measured after 24 h stimulation with 

plate-bound, endotoxin-low antibody. 

 

Soluble ectodomains (ED) of C-type lectin-like receptors. Ectodomains of NKp80 

(Gln64 through Tyr231), AICL (Lys26 through His149), LLT1 (Ala61 through 

Val191), and CD161 (Ile66 through Ser225) were expressed in 293T cells transfected 

with the corresponding cDNA containing an N-terminal BirA-tag and C-terminal c-

myc- and six-histidine-tags. EDs were isolated from supernatants of 293T-transfectants 

by affinity chromatography with anti-c-myc columns and biotinylated using BirA 

Ligase [41] and purified by size exclusion chromatography. Before use, biotinylated 

EDs were either immobilized on streptavidin-coated microspheres (Bangs Laboratories) 

or tetramerized using PE- or APC-labeled streptavidin (Molecular Probes). 

 

SPR measurements. Using a BIAcore X apparatus (BIAcore AB) AICL ectodomains 

were immobilized to CM5 chips by amine coupling. In kinetic analyses (flow rate: 50 

µl/min), RU from the control flow cell (imLLT1-ED) were subtracted from RU of the 

AICL-derivatized surface (black traces) with overlayed gray traces representing fitting 

of a 1:1 Langmuir model to the association and dissociation phases. In steady-state 

analyses (15 µl/min) RU from the AICL-derivatized surface were corrected by RU from 

the non-derivatized control cell. Raw data were analyzed and illustrated using the 

BIAevaluation software (BIAcore AB). 
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Immunoblot analysis. Immunoblotting was performed as previously described [44]. 

Treatment with Peptide:N-Glycanase F (PNGaseF) (New England Biolabs) was for 1 h 

at 37°C. Samples were blotted and analyzed with 30 µg 7F12/ml.  

 

Statistical analysis. Statistical analysis was done either using the two-tailed unpaired 

Student’s t test or the nonparametric two-tailed Mann-Whitney Rank Sum test both with 

α = 0.050 and SigmaStat 3.1 software (Systat Software). P-values less than 0.04 were 

considered significant. 

 

Real-time RT-PCR. Total RNA was prepared using TRIZOL (Invitrogen) and reverse 

transcribed by SuperScript II (Invitrogen). cDNA was amplified with NKp80, AICL and 

18S rRNA-specific primer pairs in duplicates (40 cycles, 95°C for 15 s, 60°C for 1 min) 

using SYBRGreen chemistry on the ABI PRISM 7000 Sequence Detection System 

(Applied Biosystems). Primers were designed to flank an intron, where possible, and 

specificity was validated using cloned cDNA. Data analysis was by the ΔCT method for 

relative quantification. Similar amplification efficiencies for NKp80, AICL and 18S 

were demonstrated by analyzing serial cDNA dilutions with values of the slope of log 

cDNA amount vs. ΔCT of < 0.1. Oligonucleotide sequences (forward; reverse) were 

18S rRNA: 5´-CGGCTACCACATCCAAGGAA-3´; 5´-GCTGGAATTACCGCGGCT-

3´; NKp80: 5´- TTCAGTGACGTTGCACTGGT-3´; 5´- 

CTCCCTGAGAAACCAACAGGA-3´; AICL: 5´-TACCAAATCGTTTGGCATGA-3´; 

5´-CTGCAAATCCATTTTCTTTCG-3´. Purity of PCR products was analyzed on 3% 

agarose gels. 

 

Transfectants. Jurkat cells were transfected by electroporation with an NKp80-hybrid 

cDNA encoding the cytoplasmic and transmembrane domains of human CD69 (Met1 

through Gly70), the NKp80 ectodomain (Gly85 through Tyr231), and a C-terminal 

FLAG-tag followed by a six-histidine-tag in RSV.5 neo. COS-7 cells were transiently 

transfected using FuGene6 (Roche) with an AICL hybrid cDNA encompassing the 

cytoplasmic domain of mouse CD3ζ (Arg52 through Arg164), the transmembrane 

domain of mouse Ly-49A (Ser40 through Met90), the AICL ectodomain (Lys26 

through His149), and a C-terminal FLAG-tag followed by a six-histidine-tag in RSV.5 
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neo or with a bicistronic expression vector with full-length cDNA of AICL or LLT1 

(first cistron) followed by the EGFP cDNA (second cistron). 

 

2.4.4 Results 

 

NKp80 stimulates NK cell degranulation and cytokine release 

To analyze NKp80 expression and function, we generated a panel of NKp80-specific 

monoclonal antibodies by immunizing mice with the NKp80 ectodomain (NKp80-ED). 

The tagged NKp80-ED construct was expressed in 293T cells and purified from 

supernatants by affinity chromatography (Figure 2.15). 

 

 

Figure 2.15. Recombinant soluble ectodomains (ED) of various C-type lectin-like 
receptors. (a) SDS-PAGE of soluble CD161-ED, NKp80-ED, LLT1-ED, and AICL-
ED affinity-purified from supernatants of transfected 293T cells. (b) SDS-PAGE of 
soluble AICL-ED untreated (–) or treated (+) with PNGase F. 

 

Specificity of the resulting NKp80-specific antibodies 5D12, 10E4, and 12D11 was 

verified in binding analyses using microsphere-immobilized NKp80-ED and NKp80-

transfected Jurkat cells (Figure 2.16). In accord with previous reports, the NKp80-

specific antibody bound to nearly all freshly isolated human NK cells [16] (Figure 

2.17a). We also noted that the CD56bright NK subset, which is a primary source of 

monokine-stimulated NK cell cytokine production [25], also expressed high amounts of 

NKp80. NKp80 expression has also been reported to be expressed on CD3+CD56+ cells 

from some donors [16]. Accordingly, we found NKp80 on varying fractions of 

CD56+CD3+ cells (range 29-61%, median 43%) (Figure 2.17b). 
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Figure 2.16. Specificity of NKp80-specific antibodies 5D12, 10E4, and 12D11. (a) 
5D12, 10E4, and 12D11 binding to microsphere-immobilized NKp80 (imNKp80) 
(filled histograms) and imLLT1 (open histograms). (b) 5D12, 10E4, 12D11, and anti-
FLAG binding to a mixture of Jurkat cells transfected with the FLAG-tagged NKp80-
CD69 hybrid cDNA and NKp80-hybrid-negative Jurkat transfectants (grey histograms). 
Black line represents the isotype control staining. 

 

However, we also detected NKp80 on a substantial proportion of γδ T cells. This 

expression varied widely among individual donors (range 16%-70%, median 26%), and 

likely accounted for the few NKp80+ CD56–CD3+ T cells (Figure 2.17b). In contrast, B 

cells, monocytes, and other T cells subsets including CD4+ and CD8+ αβ T cells 

(CD3+CD56–) were devoid of surface NKp80, as were all tested cell lines (data not 

shown). These findings were supported by real-time RT-PCR analyses, which revealed 

a high abundance of transcripts encoding NKp80 in NK cells (Figure 2.18).  

The impact of NKp80 triggering on cytokine release by NK cells has not yet been 

addressed. To investigate the consequences of NKp80 triggering on NK cell effector 

functions independently of other NK receptors, we incubated freshly purified NK cells 

with plate-bound anti-NKp80 NKp80 cross-linking triggered secretion of TNF (Figure 

2.17c). Simultaneous stimulation with anti-NKp80 and anti-NKp46 further amplified 

TNF secretion. Similar results were obtained when assessing NK cell IFN-γ production 

(Figure 2.17d). 
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Figure 2.17. NKp80 stimulates granule exocytosis and cytokine secretion. (a) 
Expression of the indicated molecules on the surface of human resting NK cells was 
determined by flow cytometry. Plots depict freshly isolated PBMC where CD3+ cells 
were excluded by electronic gating. (b) Frequencies of NKp80+ cells among indicated 
subpopulations from eight healthy donors. Medians are indicated by horizontal bars, and 
each dot depicts one individual donor. (c-f) Freshly purified NK cells were incubated 
with the indicated plate-bound antibodies. (c) Concentrations of TNF in culture 
supernatants were determined by ELISA. Results depict means of triplicate samples, 
and error bars represent s.d. Results are representative of 3 independent experiments. (d, 
e) Frequencies of IFNγ+ cells (d) and CD107a+ cells (e) among CD56+ NK cells were 
determined by flow cytometry. Results are shown as means of triplicates with s.d. (f) 
Representative analysis of CD107a+ NK cells after stimulation with indicated 
immobilized antibodies or K562 cells. Percentages of CD107a+ cells of all CD56+ NK 
cells (upper right quadrant) are depicted. Results in (d-f) are representative of 6 
independent experiments. 

 

In accordance with published data on NKp80-mediated stimulation of NK cell 

cytotoxicity [16], we observed that immobilized anti-NKp80 also induced enhanced cell 
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surface exposure of CD107a (also called lysosomal-associated membrane protein 

(LAMP-1)) which is indicative of NK cell degranulation, in a manner similar to anti-

NKp46, again with a pronounced cooperative effect of simultaneous ligation of both 

receptors (Figure 2.17e, f). 

 

 

Figure 2.18. Abundance of AICL and NKp80 transcripts in leukocyte 
subpopulations. (a, b) CD3+CD8+ (CD8+ T cells), CD3+CD4+ (CD4+ T cells), CD3+γδ 
TCR+ (γδ T cells), CD19+ (B cells), CD66b+ (granulocytes), CD14+ (monocytes) and 
CD3–CD56+ (NK cells) cells were sorted from the peripheral blood of a healthy donor. 
ΔCT values for NKp80 (a) and AICL (b) transcripts were calculated by normalization 
with 18S RNA and relative copy numbers were determined by setting the ΔCT value of 
B cells as 1. 
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NKp80 engages AICL 

Further elucidation of the immunological relevance of NKp80-mediated NK cell 

activation necessitated the identification of NKp80 ligands (NKp80-L). We attempted to 

identify NKp80-L bearing cells by using BWZ.36 cells expressing NKp80-CD3ζ 

reporter constructs, because ligands of the NKC-encoded mouse Nkrp1 receptors were 

previously identified using BWZ.36 cells expressing Nkrp1-CD3ζ reporter constructs 

[26,27]. These reports revealed that mouse Nkrp1 receptors and their ligands, called C-

type lectin-related (Clr) molecules, are all encoded in close genetic linkage within the 

NKC [17,26,27]. 

Because this strategy failed to identify NKp80-L expressing cells, we considered the 

possibility that, like Nkrp1-Clr receptor-ligand pairs, the orphan genes encoding Lectin-

Like Transcript 1 (LLT1) and Activation-Induced C-type Lectin (AICL), which are 

located in close proximity to the gene encoding NKp80 in the human NKC, might be 

ligands of NKp80 (Figure 2.19a). In fact, while this work was in progress, LLT1 was 

reported as a ligand of the single human representative of the Nkrp1 receptor family, 

NKR-P1A (also called CD161) [28,29]; this receptor-ligand pair is also genetically 

linked within the NKC. In contrast to CD161, no known mouse homologues of NKp80 

or for AICL have been identified [17]. Hence, to directly assay a possible interaction 

between NKp80 and AICL or LLT1, we produced soluble ectodomains of AICL 

(AICL-ED) and LLT1 (LLT1-ED) using stably transfected 293T cells (Figure 2.15). 

AICL-ED or LLT1-ED, respectively, were immobilized on streptavidin-coated 

microspheres and directly tested for binding to fluorochrome-labeled NKp80-ED or 

CD161-ED tetramers, respectively, via flow cytometry. As expected, CD161-ED-

tetramers bound immobilized LLT1, although staining was fairly weak, indicating a low 

affinity interaction in agreement with recent reports [28,29] (Figure 2.19b). In contrast, 

NKp80-ED-tetramers did not bind to LLT1, but exhibited strong binding to 

immobilized AICL (Figure 2.19b). Similar results were obtained in a ‘reverse’ setting 

in which immobilized NKp80-ED specifically interacted with AICL-ED-tetramers 

(Figure 2.19c). These data suggest that AICL, but not LLT1, is a ligand for NKp80. 
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Figure 2.19. NKp80 engages AICL. (a) Scheme of a subregion of the human NKC 
with KLRF1 and CLEC2B encoding NKp80 and AICL, respectively. Ly49L marks the 
centromeric end of the NKC. Boxes and arrows represent genes and transcriptional 
orientation, respectively. (b) Staining of immobilized sAICL-ED (imAICL) (black fill), 
imLLT1 (black line) or imNKp80 (dashed line) with indicated tetramers. (c) Staining of 
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imNKp80 (black fill), imCD161 (black line), imAICL (dashed line, left panel) or 
imLLT1 (dashed line, right panel) with indicated tetramers. (d) Kinetics of binding of 
sNKp80-ED (0.12, 0.25, 0.5, 1.0, 2.0 µM) to immobilized AICL-ED as described in 
Methods. RU, resonance units. (e) Affinity of NKp80 to AICL was determined by 
injecting sNKp80-ED (0.05, 0.1, 0.2, 0.25, 0.5, 1.0, 2.0 µM) over immobilized AICL 
(left panel). Dotted trace indicates control injection (2µM sCD161-ED) and arrow 
averaged interval for a best-fit curve (right panel) (f) Binding of sAICL-ED tetramer to 
NKp80 after pre-incubation with 5D12 (gray line) and 10E4 (dashed line), IgG1 isotype 
control (black fill), or to imAICL (black line). (g) Left, binding of sAICL-ED tetramers 
to NK cells after pre-incubation with 10E4 (gray fill) and IgG1 control (black fill) or of 
sCD161-ED tetramers (black line) to NK cells. Right, surface NKp80 detected by 5D12 
(black fill) and isotype control (black line). (h) Binding of sNKp80-ED tetramers to 
imAICL after incubation with 7F12 (black line) and 7G4 (gray line) or IgG1 isotype 
control (black fill). Staining of imNKp80 served as negative control (dotted line). (i) 
Binding of indicated reagents to COS-7 cells transfected with indicated bicistronic 
EGFP constructs after pre-incubation with indicated antibodies. Data (b-i) are 
representative of at least two independent experiments. 

 

Using surface plasmon resonance (SPR) technology, we determined the affinity of the 

NKp80-AICL interaction. Soluble NKp80 ectodomains bound to immobilized AICL-

ED with an intermediate association rate (kon = 1.6 × 104 M-1s-1) and dissociated 

relatively rapidly (koff = 6.7 × 10-2 s-1) (Figure 2.19d). The affinity for the NKp80-

AICL interaction calculated from on- and off-rates (KD,calc = 4.1 µM at 25°C) is 

comparable to the affinity determined during steady-state analyses (KD ~ 2.3 µM at 

25°C) (Figure 2.19e). Pre-incubation of NKp80-ED-coated microspheres with various 

NKp80-specific antibodies blocked binding of AICL-ED-tetramers (Figure 2.19f). 

Importantly, AICL-ED-tetramers also stained freshly isolated NK cells and binding was 

blocked by pre-treatment of NK cells with NKp80-specific antibodies, demonstrating 

that AICL is a natural ligand of NKp80 (Figure 2.19g). 

 

AICL is a myeloid-specific surface receptor  

A single study reported differential expression of AICL mRNA expression in T and B 

lymphocytes, monocytes and granulocytes [30]. By real-time PCR, we confirmed that 

AICL transcripts were most abundantly expressed in granulocytes, and found these 

more prominently in NK cells and γδ T cells than in αβ T cells or B cells (Figure 2.18). 

However, due to a prior lack of AICL-specific antibodies, AICL protein expression was 

not examined in previous studies. Thus, to explore AICL expression, we generated 

AICL-specific antibodies by immunizing mice with AICL-ED. Two antibodies, 7F12 

and 7G4, bound immobilized AICL-ED, but not LLT1-ED, NKp80-ED or CD161-ED; 

these antibodies also stained COS-7 cells transiently transfected with AICL-Ly49A-
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CD3ζ hybrid constructs, in which transmembrane and cytoplasmic sequences of AICL 

were replaced by those of mouse Ly49A (transmembrane) and mouse CD3ζ 

(cytoplasmic) sequences (Figure 2.20, and data not shown). 

 

Pre-incubation of microsphere-immobilized AICL with 7F12, but not with 7G4, 

reduced binding of NKp80-ED tetramers indicating that 7F12 partially hinders the 

NKp80-AICL interaction (Figure 2.19h). Importantly, NKp80-ED tetramers also bound 

AICL expressed on the surface of transfected COS-7 cells, and addition of 7F12 

interfered with binding (Figure 2.19i and Figure 2.20). 

Next, we analyzed AICL surface expression on various cell lines, and detected AICL on 

the surface of myeloid cell lines U937, THP-1 and MEG-01 (Figure 2.21a and Table 

2.3). U937 cells, which expressed the highest amounts of AICL, also bound high 

amounts of NKp80-ED tetramers, and pre-incubation with 7F12 markedly reduced 

NKp80-ED binding (Figure 2.21b). 

In contrast to myeloid cell lines, AICL was not detectable on non-myeloid 

hematopoietic or on non-hematopoietic cell lines (Figure 2.21a and Table 2.3) 

suggesting that AICL is preferentially expressed on the surface of myeloid cells. 

 

Thus, we analyzed AICL expression on peripheral blood leukocytes and observed 

specific binding of 7F12 and 7G4 to monocytes, macrophages and granulocytes, but not 

to T cells, B cells, or NK cells (Figure 2.21c, d and Figure 2.20). Among monocytes, 

the CD14dimCD16+ subset, which is a major source of TNF [31] exhibited substantially 

higher AICL surface expression than the CD14brightCD16– subset (Figure 2.21d).  

 

We also assessed AICL expression on DCs, because the cellular cross-talk between NK 

cells and DCs has attained much interest [5]. Interestingly, AICL expression decreased 

when monocytes were differentiated in vitro to immature DCs (Figure 2.21e) indicating 

that NKp80-AICL interactions may not be involved in the interaction of NK cells with 

monocyte-derived DCs. A previous report suggested that NKp80-L may be expressed 

on activated T cells, because NK cell-mediated cytotoxicity against PHA-activated T 

cells was partially reduced by addition of NKp80-specific antibodies [42]. However, we 

were unable to detect AICL on the surface of activated T cells (Table 2.4). Myeloid-

specific AICL expression was surprising given that a previous report [30] and our 

analyses detected AICL transcripts also in lymphocytes. 
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Figure 2.20. (a) 7F12 and 7G4 binding to microsphere-immobilized AICL (imAICL) 
(solid line), to imNKp80 (dashed line), and to a 2:1 mixture of imNKp80-microspheres 
and imAICL-microspheres (gray histograms). (b) Staining of 7G4 of freshly isolated T 
cells (CD3+), NK cells (CD56+) and B cells (CD19+) (filled histogram). Open 
histograms represent isotype control stainings. (c) NKp80-ED tetramer binding to COS-
7 cells transiently transfected with an AICL-Ly49A-CD3ζ hybrid after pre-incubation 
with or without 7F12. NKp80-ED tetramer binding to mock-transfected COS-7 cells is 
indicated. AICL-hybrid expression was monitored by staining with the FLAG-specific 
antibody M2. Percentages of stained cells (upper left quadrant) are given. 
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Figure 2.21. AICL is a myeloid-specifc receptor. (a) Staining with AICL-specific 
antibody 7F12 (black fill) or IgG1 isotype control (gray line) on myeloid cell lines U937 
and THP-1 and the T cell line Jurkat, as determined by flow cytometry. (b) Binding of 
NKp80-ED tetramers to U937 cells with and without pre-incubation with 7F12 (gray 
fill) or IgG1 isotype control (black fill). Negative control, staining with PE-conjugated 
streptavidin (black line). (c) Staining of freshly isolated granulocytes and in vitro 
matured macrophages with AICL-specific antibody 7G4 (black fill) and IgG1 isotype 
control (gray line). (d) Expression of indicated molecules on the surface of freshly 
isolated monocytes. Gray cells in right panel depict cells within R2 in left panel. (e) 
AICL expression on purified monocytes at day 0 (black fill) or after 6 days culture with 
GM-CSF and IL-4 (gray line). IgG1 isotype control stainings at day 0 (dashed line) and 
day 6 (gray fill) are indicated. (f) AICL in lysates of indicated cell lines (left), freshly 
isolated monocytes and lymphocytes (PBLs) (right) was detected by immunoblotting 
with 7F12. Lysates were deglycosylated with PNGase F where indicated. Recombinant 
AICL-ED is included as positive control. Data (a-f) are representative of at least two 
independent experiments. 
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Therefore we analyzed AICL protein in whole cell lysates using 7F12 and detected 

AICL in lysates of U937 cells and monocytes, but not in lysates of non-myeloid cell 

lines or lymphocytes (Figure 2.21f). Together these data define AICL as a myeloid-

specific surface receptor capable of binding NKp80 on NK cells. 

 
Table 2.3. AICL surface expression on human primary cells and tumour cell lines. 
Primary cells and tumour cell lines were analyzed by flow cytometry for reactivity with 
AICL-specific antibodies 7F12 and 7G4. Mean fluorescence intensity (MFI): to 10 (-); 
10 to 15 (+/-); 15 to 50 (+); 50 to 200 (++), above 200 (+++). nd (not done). 
 

 
Cells 

 
Histotype 7F12 7G4 

 
Resting NK cells  - - 
Activated NK cells  - - 
Resting T cells  - - 
PHA blasts  - - 
Resting B cells  - - 
Monocytes  + + 
LPS-activated monocytes  ++ ++ 
Granulocytes  + + 
Macrophages  + + 
immature monocyte-derived 
DC 

 -/+ nd 

mature monocyte-derived DC  - nd 
    
YT NK cell line - -/+ 
NKL NK cell line - - 
CEM T leukemia - - 
MOLT4 T leukemia - - 
Jurkat T leukemia - - 
HBP EBV-transformed B cell line - - 
LCL 721.221 EBV-transformed B cell line - - 
WT51 LCL - - 
T1 B-LCL 721.174xCEMR.3 - - 
C1R EBV-transformed B cell line - - 
RPMI 8866 EBV-transformed B cell line - - 
K562 erythroleukemia - - 
THP-1 acute monocytic leukemia + + 
MEG-01 chronic myelogenous 

leukemia ++ ++ 

U937 human histiocytic lymphoma +++ +++ 
HL60 acute promyelocytic 

leukemia - - 

NB4 acute promyelocytic 
leukemia - - 

293T embryonic fibroblasts - - 
AML-01 acute myeloid leukemia - - 
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BV173 chronic myeloid leukemia - - 
KYO-1 chronic myeloid leukemia -/+ -/+ 
CaCo-2 colon carcinoma - - 
MelJuso melanoma - - 
Ma-Mel-8a melanoma - - 
HCT116 colon carcinoma - - 
SW756 cervix carcinoma - - 
MG63 osteosarcoma - - 
WEHI-3B mouse myelomonocytic 

leukemia - - 

    
 

AICL triggers monocyte cytokine release 

Ligands of Toll-like receptors (TLRs) modulate the cell surface expression of various 

immunoreceptors, including TREM-1, CD80 and CD83 [32]. Hence, we determined 

whether TLR stimulation modulated AICL surface expression. AICL was markedly up-

regulated within 24 h of exposure of monocytes to the TLR ligands LPS, poly (I:C), 

R848, or Pam2Cys SK4 (Figure 2.22a and data not shown). In accord with the lack of 

TLR9 expression by human monocytes stimulation with the TLR9 ligand CpG DNA 

did not affect AICL surface expression. 

Next, we determined whether AICL ligation could stimulate monocytes. Like 

stimulation with LPS or with TREM-1-specific antibodies, AICL cross-linking 

enhanced monocyte TNF production (Figure 2.22b). In addition, LPS exerted a strong 

additive effect on AICL-stimulated TNF release (Figure 2.22c). 
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Figure 2.22. AICL is up-regulated by TLR stimulation and stimulates TNF release. 
(a) Freshly purified monocytes stimulated for 24 h with indicated TLR ligands were 
stained with AICL-specific antibody 7F12 (black fill) or IgG1 isotype control (dotted 
line). Stainings of mock-treated monocytes with 7F12 (gray line) or IgG1 isotype 
control (black line) are shown. (b) TNF in supernatants of freshly isolated monocytes 
cultivated for 24 h with indicated plate-bound antibodies was measured by ELISA. (c) 
TNF in supernatants of freshly isolated monocytes stimulated for 24 h with indicated 
plate-bound antibodies in the presence (open bars) or absence of LPS (black bars) was 
measured by ELISA. In b and c means of triplicates are shown, error bars represent s.d. 
All results are representative of at least 3 independent experiments. 
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NKp80 promotes lysis of AICL+ target cells 

 

 

Figure 2.23. NKp80-AICL interaction promotes NK cell-mediated cytolysis of 
myeloid cells. (a-c) Cytotoxic activity of freshly purified NK cells was measured during 
a 4 h 51chromium-release assay (a, b) Lysis of U937 cells in presence of indicated 
antibodies. Results are representative of four (a) and two (b) independent experiments. 
(c) Lysis of LPS-activated, CD14+ monocytes in the presence of indicated antibodies. 
Results are representative of two independent experiments with cells from different 
donors. F(ab’)2 fragments were used in all experiments. NK cells in (a-c) were from 
different donors with data depicted as means of quadruplicate (a, b) or triplicate (c) 
samples. Errors bars represent s.d. 

 

Previous studies demonstrated that NKp80 stimulates NK cytotoxicity in redirected 

lysis assays when cross-linked by NKp80-specific antibodies [16,23,24]. However, due 

to the unknown nature of NKp80-L, the importance of NKp80-dependent cytotoxicity 

in a biologically relevant setting could not be assessed. Here, we addressed the impact 
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of NKp80 on NK cell cytotoxicity towards myeloid cells expressing AICL. U937 cells 

express high amounts of AICL, but also of ligands for the activating NK receptor 

DNAM-1 [33]. 

 

Accordingly, freshly isolated NK cells strongly lysed U937. U937 lysis was partially 

blocked by anti-NKp80 10E4, suggesting that NKp80 markedly contributes to NK cell-

mediated cytolysis of U937 cells (Figure 2.23a). Furthermore, addition of either 7F12 

or soluble NKp80 also reduced NK cytotoxicity against U937 cells (Figure 2.23b). In 

contrast to U937 cells, non-malignant myeloid cells like monocytes express low 

amounts of AICL and DNAM-1 ligands and are largely resistant to NK cell-mediated 

cytolysis (data not shown). However, after 24 h of LPS treatment, in two out of four 

donors, we observed moderate NK cell-mediated cytolysis of autologous monocytes, 

which was inhibited by treatment with NKp80- and AICL-specific antibodies (Figure 

2.23c and data not shown). These data indicate that TLR-mediated activation may 

render monocytes susceptible to NKp80-dependent NK cell-mediated cytolysis. 

 

NKp80-dependent NK-monocyte cross-talk 

A recent report [12] described a bi-directional activation pathway between NK cells and 

monocytes that results in secretion of IFN-γ and TNF by NK cells and monocytes, 

respectively. It was suggested that this mutual activation may occur at sites of 

inflammation, particularly during chronic inflammatory autoimmune diseases when 

activated CD56bright NK cells and monocytes are prominent [12]. Co-culture of NK cells 

and monocytes in the presence of monokines results in increased secretion of pro-

inflammatory cytokines by NK cells and monocytes, and this increase is partially 

dependent on cell contact [12]. However, the receptors involved in this cell contact-

dependent NK cell-monocyte cross-talk remain unidentified. 

Here we here adopted this same experimental system to confirm that co-culture of 

freshly isolated autologous NK cells and monocytes results in increased frequencies of 

IFN-γ-secreting NK cells and TNF-secreting monocytes, respectively, as compared to 

cultures of either NK cells or monocytes alone (Figure 2.24). In accordance with 

previous studies, CD56bright NK cells were more prone to produce IFN-γ than CD56dim 

NK cells [25] (Figure 2.24b and Table 2.4). Importantly, addition of IL-15 and IL-18 

monokines was essential to induce cytokine secretion.  
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Figure 2.24. NKp80-dependent stimulation of cytokine release. (a-c) Frequency of 
IFN-γ-producing NK cells after 12 h culture with autologous CD14dimCD16+ 
monocytes. (a) Representative analysis of NK cells cultured with monocytes (Mono) or 
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monokines (IL) in the presence of indicated antibodies. Stimulation with PMA and 
ionomycin served as a positive control (right panel). Percentages of IFN-γ+ cells of all 
CD56+NK cells (upper right quadrant) are indicated. (b) Frequency of IFN-γ+CD56dim 
NK cells (black bars) or IFNγ+CD56bright NK cells (open bars) after culture with 
monocytes, monokines or both. (c) Change in frequency of IFN-γ+ NK cells after co-
culture with monocytes in the presence of monokines and indicated antibodies. (d-f) 
Frequency of TNF+CD14dimCD16+ monocytes after 12 h culture with autologous NK 
cells. (d) Representative analysis of monocytes cultured with NK cells in the presence 
of monokines and indicated antibodies. Stimulation with LPS served as a positive 
control (right panel). Percentages of TNF+ cells of all HLA-DR+ monocytes (upper right 
quadrant) are indicated. (e) Frequency of TNF+ monocytes after culture with NK cells, 
monokines or both. (f) Change in frequency of TNF+ monocytes after culture with NK 
cells in the presence of monokines and indicated antibodies. In c and f the frequency of 
cytokine-producing cells after culture with isotype control IgG1 is set as 100% (for 
details see Methods). All data are means of triplicate (a, donor 6) or quadruplicate (b-f, 
donor 3) samples, and errors bars represent s.d. P-values were calculated using the two-
tailed Student’s t test and * indicates a significant difference (P < 0.001) to the IgG1 
isotype control. 

 

To investigate whether NKp80-AICL interactions may contribute to this cell contact-

dependent NK cell-monocyte cross-talk, we added F(ab’)2 fragments of the NKp80-

specific antibody 5D12 and/or the AICL-specific antibody 7F12 to NK cell-monocyte 

co-cultures. Blockade of NKp80-AICL interactions strongly reduced the monocyte-

dependent increase in NK cell IFN-γ secretion, demonstrating that NKp80-AICL 

interactions are crucially involved in the activating NK-monocyte crosstalk (Figure 

2.24a, c). Although the frequencies of IFN-γ-secreting CD56bright NK cells varied 

widely between various donors (range 3.8% to 40.2%), NKp80 blockade always 

resulted in a strong reduction of responsive cells (Table 2.4). Similarly, frequencies of 

IFN-γ-secreting CD56dim NK cells (range 1.7% to 25.2 %) were markedly reduced in 

four out of five donors analyzed. In contrast, 7F12 did not significantly affect IFN-γ-

secretion by NK cells, presumably due to its inefficient blocking capability. Conversely, 

enhanced TNF secretion by monocytes co-cultured with NK cells ranged between 5% 

and 62%. In four out of five donors TNF secretion was notably reduced when NKp80 

was blocked (Figure 2.24d, f and Table 2.4). These results indicate that NKp80 

engagement also influences cell contact-dependent TNF secretion by monocytes. 

Finally, a contribution of NKp80 to monocyte-induced IFN-γ secretion by NK cells was 

also observed in a setting where experimental addition of monokines was substituted 

with LPS treatment of monocytes (Figure 2.25). 
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Table 2.4. Frequencies of IFNγ+ NK cells and TNFα+ CD14dimCD16+ monocytes in NK-
monocyte co-cultures. Data represent percentages of IFNγ+ NK cells (columns 2-11) and 
TNFα+ CD14dimCD16+ monocytes (columns 12-16) in 12h NK-monocyte co-cultures from six 
unrelated donors with monokines IL-15 and IL-18 (IL) or without monokines (columns 6, 11, 
16). Significant reductions of frequencies in presence of 7F12, 5D12 or 7F12/5D12 as compared 
to control IgG1 (endotoxin-low (Fab’)2 –fragments were used throughout) are marked by: *, p < 
0.04 or **, p < 0.001 (p-values were calculated using the two-tailed Student’s t test). Data are 
means of n = 3 (Donor 1, 2, 4, 6) or n = 4 (Donor 3) or n = 6 (Donor 5) ± s.d. nd = not done. 
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Figure 2.25. Frequencies of IFN-γ-producing NK cells after 12 h co-culture with 
autologous CD14dimCD16+ monocytes in the presence of LPS. (a) Top, representative 
analysis of NK cells cultured with monocytes and 0.1 µg/ml LPS in the presence (right 
panels) or absence (left panels) of neutralizing anti-IL-12 (α-IL12) and in the presence 
of anti-NKp80 5D12 or an isotype control IgG1. Bottom, various controls. Percentages 
of IFN-γ+ CD56bright NK cells (upper right quadrant) are given. 5D12 and corresponding 
IgG1 control were F(ab’)2 –fragments and all antibodies were used at 20 µg/ml. (b) 
Frequencies of IFN-γ+ CD56bright NK cells after co-culture with monocytes in presence 
of LPS as described in (a). All data are means of pentaplicates, errors bars represent s. 
d. P-values were calculated using the Mann-Whitney Rank Sum test and * indicates a 
significant difference. The experiment in (b) is representative of 2 independent 
experiments. 
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2.4.5 Discussion 

 

NK cell activity is governed by the complex interplay of multiple activating, inhibitory 

and co-stimulatory receptors [3]. Hence, a thorough understanding of NK cell biology 

requires the functional definition of these various receptors and their ligands. 

Identification of MHC class I-related ligands and characterization of their stress-

inducible regulation was key to understanding NKG2D function [14] and its role in 

immunosurveillance of viral infections and malignancies as well as in the pathogenesis 

of autoimmune diseases [3,19]. Like NKG2D, NKp80 is a homodimeric NKC-encoded 

activating NK receptor without a known inhibitory counterreceptor [16,17]. In contrast 

to NKG2D, NKp80 is predominantly expressed on NK cells and is absent in rodents. 

Hence, characterization of NKp80 ligands would likely aid the attempt to further 

decipher human NK cell biology. 

We here identify AICL as a ligand of NKp80 and provide the first characterization of 

AICL as a myeloid-specific, activating receptor. AICL shares several features with 

TREM-1 including myeloid-specific expression, up-regulation in response to TLR 

stimulation and down-regulation during differentiation from monocytes to immature 

DCs [32]. In fact, AICL transcripts are among the most prominently down-regulated 

transcripts during in vitro generation of DCs from monocytes [34]. Like TREM-1, 

cross-linking of AICL triggered TNF release by monocytes, which was further 

enhanced by LPS stimulation [32]. However, unlike AICL, TREM-1 is a member of the 

immunoglobulin superfamily with yet unidentified ligands, is not expressed on 

CD14dimCD16+ monocytes and contains a positively charged amino acid in the 

transmembrane domain that allows pairing with the ITAM-bearing adaptor protein 

DAP12 [32]. The cytoplasmic domain of AICL is rather short (7 amino acids) and the 

transmembrane domain lacks charged residues, suggesting that AICL does not associate 

with DAP10, DAP12 or FcεRIγ adaptor proteins. 

Recently, association of the distant AICL relative CD69 with sphingosine-1-phosphate 

receptor 1 has been reported [35]. In ongoing studies we will attempt to identify AICL-

associated proteins and to assess a potential association between AICL and human 

sphingosine-1-phosphate receptors. Similarly, the signal transducing elements 

associated with NKp80 have not yet been defined. Moretta and colleagues originally 

reported that tyrosine phosphorylation of NKp80 was detected upon treatment of NK 
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cells with pervanadate, but immunoprecipitation experiments failed to identify NKp80-

associated signaling molecules [16]. 

Certainly, it will be important to determine whether NKp80-AICL interactions influence 

NK cell reactivity and immune responses in vivo. Since both receptors have no 

corresponding sequence homologues in rodents, addressing this issue in vivo remains 

difficult. Here we provide in vitro data that can be conceptualized in two non-exclusive 

ways. First, we show that expression of AICL, which engages NKp80, increased 

susceptibility of myeloid cells to NK cell-mediated cytolysis. However, whereas 

malignant U937 cells were strongly lysed by NK cells, NK cell-mediated cytolysis of 

autologous LPS-activated monocytes was considerably lower or even absent depending 

on the donor. NK cell-mediated killing of infected monocytes and macrophages has 

been reported [36], and in these situations TLR-induced AICL expression may aid in 

the elimination of macrophages and other myeloid cells exposed to or infected by 

pathogens. Second, we demonstrated that secretion of pro-inflammatory cytokines in 

co-cultures of NK cells and monocytes in the presence of monokines was strongly 

augmented by NKp80 engagement, and that NKp80-AICL interactions account, at least 

in part, for the previously described cell contact-dependency of the activating cellular 

cross-talk [12]. Since this reciprocal activation involves multiple cytokines and possibly 

several receptor-ligand interactions, it is not unexpected that it was not completely 

blocked by anti-NKp80 treatment. Of the two AICL-specific antibodies generated, 7G4 

does not block NKp80 binding, and 7F12 only partially inhibits NKp80 binding as 

judged from binding assays with recombinant proteins. This may account for the 

inefficient inhibition of cytokine production in NK-monocyte co-cultures by 7F12. 

However, our data do not exclude the possibility that a second unidentified NKp80-L on 

monocytes may also contribute to this cross-talk. 

Our data establish the affinity of the NKp80-AICL interaction in the range of 2-5 µM. 

Affinities of other NKC-encoded homodimeric C-type lectin-like receptor-ligand pairs 

are not available for comparison. Reported affinities for NKC-encoded NK receptors 

interacting with MHC class I molecules or MHC class I-related molecules vary between 

10 nM and 100 µM [17] (e.g. kinetic data of NKG2D-MICA interactions are similar to 

those of NKp80-AICL interactions [37]). 

Yokoyama and colleagues were the first to describe the genetic linkage of certain 

receptor-ligand pairs within the NKC [27]. This observation aided the recent 

characterization of LLT1 as ligand of human CD161 [28,29], as well as the 
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identification of AICL as ligand of NKp80 presented here. In light of these findings, it 

is tempting to speculate that other adjacent genes (e.g. those encoding DCAL1 and 

CD69) located within this NKC subregion may encode receptor-ligand pairs. Whereas 

the NKC of mice contains genes encoding several inhibitory and activating Nkrp1 

receptors, the single human Nkrp1 homologue NKRP1A is an inhibitory receptor [17]. 

Since Nkrp1 receptors and their Clr ligands in mice are clustered in a subregion of the 

NKC orthologous to the human NKC subregion encoding NKRP1A, LLT1, NKp80, 

and AICL, NKp80 may be a human equivalent of an activating mouse Nkrp1 receptor. 

Interestingly, transcripts for Clr-b and Clr-g, ligands of the inhibitory Nkrp1d and the 

activating Nkrp1f receptors, respectively, were reported to be expressed by myeloid 

cells [27]. However, lack of specific antibodies impeded detailed characterization of Clr 

protein expression. It has been proposed that the tight genetic linkage of Nkpr1-Clr 

receptor-ligand pairs reflects genetic strategies of ancient histocompatibility systems 

[27]. At least for humans, our analyses of AICL expression as well as our studies of 

LLT1 expression (J. Pfeiffer and A.S., unpublished observations) show that these 

ligands are specifically expressed by distinct subsets of hematopoietic cells, suggesting 

that these NKC-encoded receptor-ligand pairs may have evolved to orchestrate immune 

interactions between various leukocyte subpopulations. 

In contrast to the activating receptor NKG2D, which is thought to alert NK cells 

towards ‘dangerous’ (e.g. infected or malignant) cells by detecting stress-induced self-

ligands [3,19], NKp80 may mediate cell contact-dependent communication between NK 

cells and myeloid cells during early phases of infection or during chronic inflammatory 

reactions. Recent studies indicate that NK cells are activated by mycobacteria-infected 

monocytes and respond to Plasmodium-infected erythrocytes in concert with monocytes 

and macrophages [11,38,39]. Hence, addressing an involvement of the NKp80-AICL 

interaction in the immune control of these pathogens is of immediate interest. 

In summary, here we identify the orphan AICL as a ligand of the human activating NK 

receptor NKp80 and characterize AICL as a myeloid-specific activating receptor 

(Figure 2.26). We provide evidence that NKp80 engagement by AICL not only 

promotes cytolysis of myeloid cells, but is also critically involved in the mutual 

activation of NK cells and monocytes. 



Results and discussion                                                                                                   135 

TLR ligands

Cytolysis

NK cell

NKp80

TNFα
IFNγ

GM-CSF
IL-8?

Monocyte

AICL

+

+

TNFα

NK cell

NKp80

TNFα
IFNγ

GM-CSF
IL-8?

Monocyte

AICL

+

+

TNFα

pathogen

 
 

Figure 2.26. Activating cellular cross-talk between NK cells and monocytes is 
partially dependent on the NKp80-AICL interaction. AICL is a physiological ligand 
of the NK receptor NKp80. AICL is specifically expressed only on cells of the myeloid 
linage and is markedly induced by TLR ligands (e.g. LPS-containing pathogens). Cross-
linking of AICL stimulated TNFα-release by monocytes and the NKp80-AICL 
interaction promoted lysis of AICL-expressing cells by NK cells. Finally resulted 
NKp80 blocking in a reduced sectretion of pro-inflammatory cytokines, i.e IFNγ from 
NK cells and TNFα from monocytes. Therefore the activating cellular cross-talk 
between NK cells and monocytes is partially dependent on the NKp80-AICL 
interaction. 
 
To our knowledge, this is the first report describing a cellular cross-talk between human 

NK cells and monocytes mediated by cell-type specific receptors. Therefore these 

findings may provide insight into communication within the innate immune system in 

acute and chronic inflammatory situations, and may aid in the elucidation of processes 

of innate immune defense against human pathogens. 
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3 Summary 
 

The immunoreceptor NKG2D promotes immunosurveillance of malignant cells and 

protects the host from tumour initiation by activating NK cells and costimulating CD8 T 

cells. MICA and other ligands of NKG2D are frequently expressed by tumour cells. 

Human tumour cells are thought to avert NKG2D-mediated-immunosurveillance by 

shedding MICA and other NKG2D ligands (NKG2DL). 

This thesis shows that the GPI-anchored NKG2DL ULBP2 is released from the cell 

surface of tumour cells by the action of metalloproteases similarly to the type I 

transmembrane proteins MICA and MICB. In addition, soluble ULBP2 was detected in 

the serum of patients with hematopoetic malignancies. Shedding of MICA and ULBP2 

from tumours was induced by activation of protein kinase C (PKC) and was inhibited 

by the same compounds suggesting that ULBP2 and MIC molecules are released by the 

same or closely related proteases. 

Further, the molecular mechanisms of MICA shedding were defined to characterise the 

proteases involved. Amino acid deletions in the membrane-proximal stalk region of the 

MICA ectodomain greatly impaired MICA shedding, whereas amino acid substitutions 

had no significant effect. Further, MICA shedding was blocked by specific inhibitors of 

“a disintegrin and metalloprotease” (ADAM) proteases and was markedly reduced when 

ADAM10 and/or ADAM17 were down-regulated by RNA-interference.  

Altogether, these data demonstrate that ADAM10 and ADAM17 are critically involved 

in the proteolytic release of soluble MICA by tumours and thereby likely contribute to 

tumour immune evasion. Therefore, therapeutic blockade of ADAM10 and ADAM17 

activities may represent a novel attractive approach to improve the efficacy of 

immunotherapeutic cancer treatment. 
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Zusammenfassung 
 

NKG2D ist ein aktivierender NK-Zell Rezeptor und ein kostimulierender Rezeptor auf 

CD8 T Zellen. Die Expression der NKG2D Liganden (NKG2DL) wird durch Zellstress, 

virale Infektion und im Zuge maligner Transformation induziert und ermöglicht so dem 

Immunsystem die Erkennung und Elimination von veränderten und potentiell 

„gefährlichen“ Körperzellen (z. B. Tumoren). Die Freisetzung von löslichen NKG2D 

Liganden durch Metalloproteasen wird als ein wichtiger Mechanismus der Tumorzellen 

zur Vermeidung einer Immunantwort erachtet. 

In dieser Arbeit konnte gezeigt werden, dass auch der NKG2DL ULBP2, wie z. B. die 

MIC-Moleküle MICA und MICB, in löslicher Form von der Zelloberfläche von 

Tumorzellen freigesetzt wird. Lösliches ULBP2 konnte im Serum von Leukämie-

Patienten nachgewiesen werden. Die Tumor-assoziierte Freisetzung sowohl von ULBP2 

als auch von MICA ließ sich durch Aktivierung der Protein Kinase C verstärken und 

durch die gleichen Inhibitoren blockieren. Dies führte zu der Schlussfolgerung, dass 

sowohl die MIC Moleküle als auch ULBP2, als Vertreter der GPI-verankerten ULBPs, 

durch die gleichen oder nah verwandte Proteasen freigesetzt werden.  

Zur Identifizierung dieser Proteasen wurde beispielhaft der NKG2D Ligand MICA 

gewählt. Es konnte gezeigt werden, dass MICA in der Stielregion, die sich zwischen der 

Transmembranregion und der Ektodomäne befindet, gespalten wird. Wichtig für die 

Freisetzung ist nicht die Aminosäuresequenz, sondern die Länge dieser Stielregion. Des 

Weiteren konnte die Bildung von löslichem MICA durch Inhibitoren, die spezifisch 

gegen Mitglieder der ADAM (eine Disintegrin und Metalloprotease) Proteasen gerichtet 

sind, verringert werden. Die aufgrund dieser Experimente getätigte Annahme, dass 

ADAM10 und ADAM17 an der Freisetzung von löslichem MICA beteiligt sind, konnte 

in zwei unabhängigen Versuchsansätzen durch transiente Expressionssuppression dieser 

ADAMs in zwei Tumorzelllinien bestätigt werden.  

Zusammenfassend konnte gezeigt werden, dass die Metalloproteasen ADAM10 und 

ADAM17 an der Freisetzung von löslichem MICA von Tumorzellen beteiligt sind und 

somit einen interessanten Ansatzpunkt zur Verbesserung der Immuntherapien von 

Tumoren bieten. 
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4 Abbreviations 
 

Ab  antibody 
ADAM  a disintegrin and metalloprotease 
ADAM-TS ADAM with trombospondin motif 
ADCC  antibody dependent cellular cytotoxicity 
AML  acute myeloid leukemia 
APC  allophyocyanin 
APP  amyloid precursor protein 
ATM  ataxia telangiectasia, mutated 
ATR  ATM and Rad3-related 
BIM I  Bisindoylmaleimide I 
BB94  Batimastat 
BFA  Brefeldin A 
bp  base pairs 
BSA  bovine serum albumin 
CD  cluster of differentiation 
cDNA  complementary desoxyribonucleic acid 
CLSF  C-type lectin-like superfamily 
CML  chronic myeloid leukemia 
CTL  cytotoxic lymphocyte 
CTLR  C-type lectin-like receptor 
DC  dendritic cell 
DAP10  DNAX activating protein of 10 kDa 
DAP12  DNAX activating protein of 12 kDa 
DMEM  Dulbecco’s Modified Eagle’s medium 
DMF  dimethylformamide 
DMSO  dimethyl sulfoxide 
DNA  desoxyribonucleic acid 
DNAM-1 DNAX accessory molecule-1 
ECL  enhanced chemiluminescence 
ECM  extracellular matrix 
ELISA  enzyme-linked immunosorbent assay 
ER  endoplasmic reticulum 
ERK  extracellular-signal regulated kinase 
FasL  Fas ligand 
FCS  fetal calf serum 
FITC  fluorescein 5-isothiocyanate 
FoxM1  Forkhead Box M1 
G418  neomycin 
GPI  glycosylphosphatidylinositol 
GM-CSF granulocyte macrophage colony-stimulating factor 
HCMV  human Cytomegalovirus 
HLA  human leukocyte antigen 
HB-EGF heparin-binding epidermal growth factor 
HRP  horse radish peroxidase 
IFN  interferon 
Ig  immunoglobulin 
IGFBP  insulin-like growth factor-binding protein 
IgSF  Ig superfamily 
IL  interleukin 
ILT  Ig-like transcripts 
IMDM  Iscove’s modified Dulbecco’s medium 
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ITAM  tyrosine-based activation motif 
ITIM  tyrosine-based inhibiton motif 
kDa  kilo Dalton 
KIR  Killer cell Ig-like receptor 
LPS  lipopolysaccaride 
LRC  leukocyte receptor complex 
mAb  monoclonal antibody 
MAdCAM mucosal vascular addressin cell adhesion molecule 
MALDI matrix associated laser desorption/ionisation 
MAP  mitogen activated kinase 
MCA  methylchloanthrene 
MFI  mean fluorescence intensity 
MHC  major histocompatibility complex 
MIC(A/B) MHC class I chain related protein A/B 
sMICA  soluble MICA 
sMICB  soluble MICB 
MIP  monocyte chemotactic protein 
MMP  matrix metalloprotease 
MMPI  MMP inhibitor 
MP  metalloprotease 
mRNA  messenger RNA 
MULT1 murine UL16-binding protein-like transcript 1 
NCR  natural cytotoxicity receptor 
NK  natural killer 
NKC  natural killer gene complex 
NKG2  natural killer group 2 
NKG2DL NKG2D ligand 
PAGE  polyacrylamide gel-electrophoresis 
PBS  phosphate-buffered saline 
PCR  polymerase chain reaction 
PE  phycoerythrin 
PI3K  phosphatidylinositol 3-kinase 
PI-PLC  phosphatidyinositol-specific phospholipase C 
PKC  protein kinase C 
PMA  phorbol-12-myristate-13-acetate 
PNGaseF peptide:N-Glycanase F 
RAG  recombination activating gene 
Rae1  retinoic acid early inducible 1  
RAET1  retinoic acid early inducible transcript 1 
RANTES regulated on activation, normal T cell expressed and secreted 
RNA  ribonucleic acid 
RPMI  Roswell Park Memorial Institute 
rRNA  ribosomal ribonucleic acid 
RT-PCR reverse transcriptase PCR 
SDS  sodium dodecyl sulfate 
SFI  specific fluorescence intensity 
SH2  Src homology 2 
SHP  SH2-containing protein tyrosine phosphatases 
STAT  signal transducer and activator of transcription 
sULBP  soluble ULBP 
sAML  secondary AML 
SVMP  snake venom metalloprotease 
TACE  TNF-α converting enzyme 
TBS  tris-buffered saline 
TGF  transforming growth factor 
TIMP  tissue inhibitors of metalloproteases 
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TLR  toll-like receptor 
TNF  tumour necrosis factor 
TNFRSF TNF receptor superfamily 
T-NHL  T-cell non-Hodgkin’s-lymphoma 
TRAIL  TNF-related apoptosis-inducing ligand 
TRANCE TNF-related activation induced cytokine 
ULBP  UL16-binding protein 
UPN  unique patient number 
UV  ultraviolet 
VCAM  vascular cell adhesion molecule 
ZAP70  zeta-chain-associated protein 70 kDa 
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