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Chapter 1

Introduction

In the last two decades substantial experimental and thealrefforts have been directed
to the investigation of the modification of the hadron praéisrin dense and hot matter.
The interest has been triggered by the expectation thatnatsige of the restoration of the
spontaneously broken chiral symmetry at finite density amdperature could be inferred
by performing and analyzing appropriate experiments. éxisected that the chiral phase
transition would manifest itself in terms of certain chasigéthe hadron properties. In par-
ticular, the relation between medium modification of therbadnasses and chiral symmetry
restoration in finite density and high temperature mattsrideen discussed for a long time.
The scalar quark condensate, which due to the spontaneeaisitg of the chiral symmetry
develops a non-zero value in vacuum, is predicted to deendh increasing density and
temperature [1, 2, 3, 4, 5, 6]. Linking the in-medium modifica of the hadron masses
directly to the change of the two-quark scalar condensaie would expect a similar de-
crease of the hadron masses with increasing density ancetatape. The prediction of a
dropping of the hadron masses in the nuclear medium drivethdogcalar condensate has
been formulated in [7] and stimulated the search for sigeatof modified hadron proper-
ties in different kinds of nuclear reactions. Heavy lon Gadin (HIC) experiments, offering
the unique opportunity to investigate the hadron propgraesupra-normal densities and
high temperature, as well as experiments with elementajggtiles on normal nuclei, due
to the expectation that signatures should be already gisibhormal matter density, have
been involved. Among the hadrons, the attention has péatiguifocused on the light vec-
tor mesons, since their direct decay to a dilepton pair sffee possibility to “detect” the
in-medium properties of hadrons using a clean probe. Dbleptand in general electro-
magnetic probes, have the advantage that, once producedtevector meson decay, they
leave the reaction zone essentially undistorted by finé stéeractions and hence carry an
undistorted signal of the properties owned by the vectorom&sthe moment of its decay.

On the other side, the in-medium modification of the spegiraperties of the vector
mesons has been extensively investigated also in the darftéadronic models [8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19]. Many-body correlationscgily induce a significant
reduction of the meson life time and thus its melting in thelear environment.

The connection between hadron properties and their inumediodification on the one
hand and the in-medium change of the non-perturbative caradigluon condensates on the



2 Introduction

other hand is not trivial. One approach which aims to esthlihis connection is the QCD
sum rule approach. An early analysis based on QCD sum rulésrmed by Hatsuda and
Lee [20] had supported the conjecture of a dropping of théovaneson masses at finite
density made by Brown and Rho [7]. However, the analysis had pedormed making the

strong assumption that the vector mesons would have zeih widnedium. Later it was

pointed out [21] that the sum rule approach has only limitestijgtive power with respect
to the specific properties of the hadrons, like their massésedr widths, since it constrains
certain integrals over the spectral distribution of therbadand does not directly constrain
the hadron mass and the hadron width separately. Ratheve# gi possible “surface” of
allowed values in the mass/width plane. In the case ofptimeson, for example, a sum
rule analysis predicts that in nuclear matter the mesontisdestrength is shifted to lower
invariant masses. However, it is not possible to deduce fioly the sum rule analysis
whether the additional strength is due to a dropping of thesoato a collisional broadening.

The first experimental observations of the modification eftimeson spectral properties
in hot and dense matter trace back to the nineties, whentdilegpectra in ultrarelativistic
heavy ion collisions have been measured by the CERES [22] and($8[23] collabora-
tions at CERN. The dilepton spectra showed a considerableneaheent over the hadronic
cocktail in the region below the vector meson peak, whiclgssted the general moving of
spectral strength downward to smaller invariant masses. thWgh¢éhe presence of spectral
strength at lower masses was connected to a dropping of tegasiaas predicted in [7, 20],
or to a spreading of the spectral function driven by the slhial broadening, as expected
from hadronic model calculations [24], could not be cladfi®y the comparison with the ex-
perimental data, mainly due to the low mass resolution ofitita in the region of the vector
meson peak. Recent higher resolution measurements ofatilspectra in heavy ion colli-
sions performed by the NA60 collaboration [25] and the CERHBRlgoration [26] seem to
favor an in-medium broadening of tipemeson over a mass shift.

A second set of heavy ion experiments have been performedat laboratory energies
(1.0 AGeV) by the DLS collaboration at BEVALAC [27, 28]. Alsnb this case the low mass
region of the dilepton spectra was underestimated by taahsplculations, in contrast to
similar measurements for the-p and p+d systems. As opposed to the ultrarelativistic case,
the situation did not improve when the in-medium spectratfions or the dropping mass
scenario were taken into account [29, 30, 31]. However,i;ghergy regime which probes
the high density/low temperature phase the situation isgyt be improved significantly
with the already existing and forthcoming measurementhefHADES collaboration at
GSI [32, 33].

The aim of this thesis is to perform a systematic study of thmedium properties of
the vector mesons and their influence on dilepton emissitreavy ion collisions at inter-
mediate energies. For this purpose we proceed as folloves:wigr determine the and w
meson spectral functions in nuclear matter. The self entbi@fythep andw mesons acquire
in nuclear matter due to the excitation of resonance-halpdas calculated within the ex-
tended Vector Meson Dominance (eVMD) model developed if. [Béssible non-resonant
contributions to the vector meson self energies are disduas well. Then we turn to the
analysis of dilepton production in HICs and investigate tacktextent different hypotheses



for the in-medium properties of tigpandw mesons affect the shape of the dilepton spectra.
The production of lepton pairs in intermediate energy heamycollisions is described with
the Tlbingen Relativistic Quantum Molecular Dynamics (RQMpsport code combined
with the eVMD model. In a first step, in-medium modificatiorighee vector meson proper-
ties are introduced either in terms of a dropping mass ormgef a collisional broadening.
Subsequently, the vector meson spectral functions detedniithin eVMD are included
in the calculation of the dilepton spectra. Hence, dilegioyduction as well as in-medium
vector meson properties will be described with the samenpetexrs. The effect the different
in-medium scenarios have on the dilepton production ralleb@ianalyzed. Finally, all the-
oretical calculations are compared with the available HA&Iata for the C+C reaction at 2
AGeV.

The thesis is organized as follows: in Chapter 2 we briefly sanza the main outcome
of different experiments performed in order to study thenedium modifications of the
vector meson properties. Results from heavy ion collisigreexnents as well as from meson
photoproduction and proton induced experiments are re@ofthis short chapter is rather
a prelude aimed to display the status of our present unaelista of the problem that is
studied in the rest of this work.

In Chapter 3 the main sources of dilepton production in heamycollisions at interme-
diate energies are listed and the theoretical expressaovrtbdir dilepton rate are given. In
this Chapter, the eVMD model is introduced.

Chapter 4 is devoted to the calculation of the in-medium spkftinctions of thep andw
mesons within the eVMD model and to the discussion of thecetiepossible non-resonant
contributions to the vector meson self-energies.

The general features of the Quantum Molecular Dynamicspar model as well as the
particular realization of the Tubingen RQMD model are disedsin Chapter 5. The theo-
retical description of dilepton production within the coméd QMD and the eVMD models
and the implementation of the in-medium vector meson sakftinctions in the dilepton
spectra calculations are thereby described. Dileptontspeace calculated in vacuum and
medium using the various in-medium scenarios and compartétHADES data.

Conclusions and a summary are finally given in Chapter 6.
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Chapter 2

Dileptons and vector mesons:
Experimental status

2.1 Ultrarelativistic HICs

First dilepton spectra have been measured in the 1990s at CEBMYthe CERES [22] and
HELIOS-3 [23] Collaborations. The CERES Collaboration obserat central nucleus-
nucleus A-A) collisions exhibited a strong enhancement of low masgpthle production

as compared to the proton-nucleysA). Whereas the-A data could be well reproduced
by the so-called hadronic “cocktail” (final state hadron aecwith known abundances),
the latter strongly underestimated tAeA spectra. A similar enhancement of the low-mass
dileptons over the cocktail was also observed by the HELB3Ssllaboration.

Since inA-A collisions at SPS energies several hundreds of pions adeiped, one pos-
sible argument was that the observed increase of dileptwa peer the cocktail could be
attributed to thet"m — ¢*¢~ annihilation channel. Therefore, many theoretical groups
included this channel in their calculation. Neverthelésgas found that, when using vac-
uum meson properties, the theoretical results were stdisagreement with the data. All
of them underestimated the experimental mass spectra im#éss region @ — 0.6 GeV.

It was suggested that vector meson in-medium propertiek dmiresponsible for the ob-

served enhancement. For the in-medium vector mesons botlitbpping mass” scenario,

conjecturing a direct link between hadron masses and th&k goadensate and thus to the
restoration of chiral symmetry, and the “melting” scenaas the effect of a dressing of the
mesons induced in medium by many-body correlations, watede However, it was found

thatboth scenarios, despite the different physics they suggestd cmscribe the observed

phenomena equally well.

A first clarifying answer to this ambiguous situation came006 thanks to the mea-
surement of the dimuon spectrum in In-In collisions at 158Aperformed by the NA60
Collaboration [25]. The spectrum, obtained with an unpreogetl mass resolution, results
to be a mirror of the in-mediurp meson spectral function under the conditions of ultrarela-
tivistic heavy ion collisions. The NA60 data seem to rule @ntive dropping mass scenario
but support the picture of modified vector meson spectraitians as predicted by hadronic
many-body theory [35, 36]. At a first glance, the comparisbthe NA60 data to thermal
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fireball calculations using in-medium electromagnetiesatequired a normalization of the
integrals of the theoretical spectra to the data in the massvalM < 0.9 GeV [25]. The
underlying problem was that in the calculations the absojiglds were overestimated by
~ 20%, although the shape of the predicted in-medpmspectral function described the
experimental spectra quite well [36]. The discrepancy ddd solved by an increase of the
transverse fireball expansion which reduces the firebatiife and consequently tipecon-
tribution. Moreover, for a correct determination of the @bse yields, other sources which
contribute to the dimuon spectrum besidesghmeeson decays should be taken into account.
It results that the addition of QGP emission, correlatedmhdecays and# contributions
leads to a satisfactory overall description of the expenit@edata. The further inclusion of
in-mediumw decays improves the agreement between data and theory mabe region
M =0.7—-0.8 GeV [36].

Recently, the CERES Collaboration has reported on a new measntrefe" e pro-
duction in central Pb+Au collisions at 158 AGeV performedhnaihe upgraded CERES
experiment at CERN-SPS [26]. The new set of data presents aovegpmass resolution
in the resonance region with respect to the previous set [Bomparison to model calcu-
lations the data favour models including a substantial @dimm broadening of the meson
spectral function over an in-medium dropping vector mesassn

2.2 HICs at intermediate energies

At lower bombarding energies first dilepton spectra havenbreeasured by the DLS col-
laboration at BEVELAC [27, 28]. Theoretical calculationssbd on transport approaches,
although able to describe reasonably well figp data for 1- 5 GeV incident energies,
strongly underestimated the dilepton yield of thAGeV C+C and Ca+Ca reactions in the
invariant mass region 0.15M¢¢ <0.65 GeV. As opposed to the case of ultrarelativistic heavy
ion collisions, neither the inclusion of in-medium spekfranctions for the vector mesons
nor the insertion of a dropping of the vector meson mass defaensity according to the
Brown-Rho scaling law could solve the discrepancy betweethtnaretical calculations and
the experimental data [29, 30]. This led to the so called Du&fe. Other scenarios like an
eventual in-medium modification of thpmass have been excluded as a possible resolution
of this puzzle. Decoherence effects have been proved tortialfyesuccessful in explaining
the difference between the DLS data and the theoreticalilzgions [38]. In lack of a clear
theoretical explanation of the DLS data for dilepton praducin 1-2 AGeV heavy ion col-
lisions, the high-precision dilepton measurements withHHADES detector at GSI play a
crucial role in order to shed light on this puzzling situatio

The dilepton measurements of the DLS Collaboration in C+C ard@at 1 AGeV [27]
suffered from too low mass resolution in the vicinity of legeak in order to make precise
statements on th@ in-medium width. However, there is no doubt that the expia@aneof the
DLS data requires a substantial broadening ofatepectral function. The analysis of [38]
showed that the DLS data are compatible with a rather largadth of 'St ~ 150+ 300
MeV. The first data from HADES [33] will be analyzed in Chapter 5
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2.3 Reactions with elementary projectiles on nuclei

Complementary to the heavy ion experiments areythacleus ang-nucleus reactions. Ex-
perimental constraints on the in-mediwrandp spectral function can presently be derived
from the CBELSA/TAPSY+ A) experiments [39], th@+ A measurements at KEK [40, 41]
and the recent+ A measurements from the CLAS Collaboration [42] at JLab.

CBELSA/TAPS investigated in-medium modifications of theneson by studying the
w — 1Py decay mode via the reactign- A — w+ X — 1y + X’. The results obtained for
a Nb nucleus have been compared to measurements on tatdét, which were taken as a
reference. To partially reduce the numberofiecays occurring outside the target nucleus
a kinematic cut on the 3-momentum of ttkemeson|p,,| < 0.5 GeV has been applied. But
still only a fraction of thew mesons decays inside the medium. Tl invariant mass
for the Nb data present a significant excess on the low-mdssddithew peak not seen
in the LH, data. The still present vacuum decays have been elimingtedabching the
right hand part of the Nb invariant mass spectrum to the dita and by subtracting the
two spectra from each other. The different assumptionsHersubtraction of decays of
the w mesons in vacuum are reflected in the systematic uncertafiyther details can
be found in Ref. [39]. The CBELSA/TAPS collaboration reportsimmedium mass of
Mmedium= [722"5(stay "2°(sysh] MeV at an estimated average nuclear density .6p@
consistent with a scaling of the mass bym = mg(1— 0.14p/po). The width is found to be
I =55 MeV and is dominated by the experimental resolution [39].

At KEK the E325 collaboration measured the invariant magsisp ofet e~ pairs pro-
duced in proton-induced nuclear reactions. They inves®ypossible modification of the
spectral shapes of the vector mesons in nuclear matter tyisgithe direcp, w, @ — e*e~
decay modes via the reactigph-A — V + X — ete” + X' (V = p,w, ) using a 12 GeV
proton beam on a carbon and a copper target [41]. The intariass spectrum was fitted
with the combinatorial background and known hadronic sesyp — e"e~, w — e'e,

@ — ete ", n — efeyandw — ete 10, evaluating the combinatorial background with the
event-mixing method. A significant excess was found on therwass side of theo peak,
whereas the high-mass tail of thecould be reproduced with the expected shapes. Later,
the effect of a possible in-medium modification of the vectwson masses was investi-
gated. We briefly summarize the procedure and refer to [4Xlither details. The spectral
shapes of the andw mesons were modified by determining the pole mass with theular

m; /my = 1—ap/po according to the density at the decay pdirfitting again the entire
mass region with the same procedure as before, the vadu@.092+ 0.002 was extracted.

Finally, the CLAS collaboration at JLab measured the invdriaass spectra af" e~
pairs from photoproduction reactions with the purpose tiols{possible in-medium modi-
fication of the vector meson properties from #ee~ originating from thep, w, ¢ — ete™
decays. The reaction studiedjis A —V +X — ete” + X' (V = p, w, ®). The measurements
have been carried out at photon energies fi§m- 0.6 — 3.8 GeV on light (C) and heavier
(Fe) targets [42]. The experiment found no signatures foassshift but a collisional broad-
ening of thep meson. In terms of & = my(1— aps/po) scaling law, the extracted value

For details on the determination of the decay point we ref¢41].
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P ()
Experiment a | T [MeV] a | T [MeV]
TAPS 0.14 55
E325 0.092+0.002 rvac 0.092:0.002 | vac
CLAS 0.02t002 | 1764195 (C),

217.7%145 (Fe)

Table 2.1: Values for the total vector meson width and for the parametentering in them{, = my (1 —
aps/po) scaling law for the vector meson mass extracted by diffezgperiments.

for the parameten is 0.02+ 0.02, i.e. consistent with zero. The values obtained foipthe
meson width are 1764 9.5 MeV for the carbon and 2174 14.5 MeV for the iron target.
The outcome of the mentioned experiments is summarizeddle 2al.



Chapter 3

Elementary sources for dilepton
production

At energies of a few AGeV the main sources for dilepton preéiducare the decay of light
mesons and the decay of nucleon resonances.

Phenomenological expressions for the dilepton decay ohtdiferent light mesons have
been derived in Ref. [43]. There various decay modes of thwvatesonp, w, andg(1020
(=V), of the pseudoscalar mesorisn, n’ (= P), and of the scalar mesorfg(980) and
a0(980) (= 9 have been analyzed: direct decays modes ¢ ¢, Dalitz decays of pseu-
doscalar mesonB — y¢* ¢~ and scalar mesorS — y/*/¢~, Dalitz decays with one me-
son in the final state¥ — P¢*¢~ andP — V/"¢~ and decays to four-body final states
V — PP(T¢~, P — PP(T¢~, andS— PP/¢~. The analysis showed that in the low mass
region of the dilepton spectrum (up to theneson mass) the two dominant mesonic contri-
butions are the Dalitz decays of th andn mesons. On the other side, the direct decay of
the vector mesons dominates the region around the vectammpesk.

Relativistic phenomenological expressions for the dilepdecay rates of nucleon res-
onances with arbitrary spin and parity have been derived in[R¢]. There the dilepton
decay rates of the nucleon resonances with masses below h&&\been estimated using
the eVMD model for the transition form factors.

In this Chapter we briefly summarize the results of [43] and.[3Fhey constitute the
basic ground for the investigations and developments pteden the following chapters of
this work. Regarding [43], we limit ourselves to report thedtetical expressions for the
dilepton rates of the mesonic decay modes which give the mmbicontributions. Notice
that ther® — y¢* ¢~ andn — y¢* ¢~ channels are explicitly included in the applications to
dilepton production in HICs performed later on in this workheTdirect decay of vector
mesons, on the other side, is not explicitly included dueht adoption of a resonance
modell Nevertheless, for the sake of completeness, we also répexpressions for the
vector meson direct decays.

LAt this stage of our treatment, this statement may soundeanclt will become clear after the resonance
model has been introduced and discussed in Chapter 4.
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3.1 Dilepton decay rates of light pseudoscalar mesons

This Section is devoted to the discussion of meson deRaysy/™ ¢~ whereP = 1° andn.
The corresponding diagram is shown in Fig. 3.1. These denaythe dominarg™ e~ modes

Y

Y (K)

Figure 3.1: Decay of a pseudoscalar meson into a photon and a virtuabphot

for ™°- andn-mesons and are related to the experimentally measuredistopdecays. The
uncertainties in the estimates originate only from the yokmown transition form factors

in the time-like region. Theyy* transition form factor is in reasonable agreement with the
one-pole Vector Meson Dominance (VMD) model predictiord][4 he one-pole VMD ap-
proximation for thePyy* transition form factors is in agreement with the quark congntules
which predict for these form factors~a 1/t asymptotics [45]. However, before addressing
in particular the® — y¢* ¢~ decay, we would like to show in a more extended way the deriva-
tion performed in [43] of some useful kinematic relationsethsimplify the calculations of
the decay rates to final states with a dilepton pair. Thesgioak will be often used in the
course of this work.

3.1.1 Relation between the decayd — M'y* and M — M’¢* ¢~

Let us consider decayd — M’/*¢~ whereM is a mesonM'’ is a photon, a meson, or two
mesons, and" ¢~ is an electron-positron or muon-antimuon pair. The resulttieh follow
are valid, however, for arbitrary staté. The decayM — M'/* ¢~ proceeds through two
steps:M — M'y* andy* — ¢7¢~, wherey* is a virtual photon whose mas4 is equal to the
invariant mass of the dilepton pair.

The matrix element of the physical procéds— M’y for a real photory has the form

M = Mg, (K) (3.1)
whereg,(K) is a photon polarization vector. The matrix elemédt is defined also a? =
M?2 =£ 0 for virtual photonsy*. As a consequence of the gauge invariance, it is transverse
with respect to the photon momentum
The decay ratt — M’y* can formally be calculated as

dr (M — M'y*) = \/_Z —Ow (;%%dq)mrl (3.3)
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where,/sis the mass of the decaying meson arid the number of particles in the sta¢.
The phase space in Eq. (3.3) is defined in the usual way

K dp

dq)k(\/§7 my,...,Mk ) 2E
|

5P — le. . (3.4)

Here, P is the four-momentum of the mesdn , P> = s, and p; are the momenta of the
particles in the final state, including the virtual photgn In Eqg. (3.3), the summation over
the final states and averaging over the initial states of #waying meson is performed. The
limit M2 — 0 gives the decay rate of the physical prodeiss> M'y.

TheM — M'/*¢~ decay rate is given by

1 (2m?
dr(M — M¢t¢7) 2\/_2{7\/[“57\/[\, Juiv® M4(2 )3n+6d n+2 (3.5)

wherejy, is the lepton current. The ternyi* comes from the photon propagator, &,
is the phase space nfparticles in the stat®’ and of the/™ ¢~ pair.

The valuel (M — M’/ ¢7) can be related to the decay ratg — M'y*) andrl (y* —
¢t¢7). The width of the virtual photon can be formally evaluatedreswidth of an anal-
ogous massive vector particle. The direct calculationfopered in detail in Appendix B,
gives

MF(W—MW*):%(MZJFZmZ) 1_‘:\/'—”'22 (3.6)

whereny is the lepton mass and is the fine-structure constant. The expression for the
product of two dilepton currents, summed up over the findestaf the/™ ¢/~ pair, has the
form

16Tt0(

ky
3 i’ = 2 (M 2mP) g+ ) 37)

wherek is the total momentum of the pair. Factorizing theody invariant phase spaée,

d¢k(\/§, my, ..., nl() = dq)kf].(\/éa my,...,Mk_2, M)dMZCDZ(Ma M1, n'k) ) (39)

one obtains from Egs. (3.3), (3.5), and (3.6) with the heliggs. (3.7) and (3.9) the following
expression

_ _ dM?
dI‘(M—>l\/I'£+€ ) =dI[ (M — My )MI (y* — £¢ )W (3.10)
2Eq. (3.9) can be proved by inserting the unity decomposition
1= [ d*qdMPa(c? - M2)3' (-~ s~ o) (3.8)

into Eq. (3.4)
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The factordM?/(TtM#) has the form of a properly normalized Breit-Wigner distribatfor
a zero-mass resonance.
The two-body phase space in Eq. (3.9) has the form

Dy(v/s, My, M) = "p*(\[s’f;nl’m” (3.11)
where
P (V& my mp) = V5 (mlwz)z)ff_ e (3.12)

is the momentum of the particles 1 and 2 in the c.m. frame.

Itis clear from the factorization shown in Eq. (3.10) thabnder to derive expressions for
the decay ratelsl — M’¢* ¢~ with dileptons in the final state, what one has to determitiesis
matrix element of the processbb— M’y*. Once this matrix element has been calculated,
the result for decay ratdd — M’/ ¢~ follows automatically. One has just to substitute in
Eqg. (3.10) the expression fofl" (y* — ¢+¢7) given by Eq. (3.6). Keeping this in mind, we
consider now the processg$— yete~ andn — y/*¢~, which give important contributions
to the dilepton spectra in HICs.

3.1.2 Decay modes® — yete~ andn — y/te-
The effective vertex for th® — yy decay has the form

whereP =10,n andA, is the photon field. The matrix element for the de@ay- yy* with
a virtual photory* has the form

M = —ifpyFry(M?)erokees (KKl (k1) (3.14)

wherek is the virtual photon momenturk{= M?), k; is the real photon momenturké(= 0),
andFpy(t) is the transition form factdPyy*“. The comparison of the — y¢*¢~ decay width
with the decay width of a physical proceBs— yy allows to write [44]

dr(P—yrte) (p(/30M)\° 22 ey A2
[Py _2(p*(\/§70’0)> |Foy (M) |"MT (v — ¢1¢ )HM4 (3.15)

where,/s = p is the pseudoscalar meson mass.
The form of Eq. (3.15) can be understood with the followingsiderations:

e the termMT (y* — ¢/~ )dM?/(TiVi%) originates from the decomposition (3.10) and its
value is given by Eq. (3.6);
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e the factor 2 occurs due the identity of photons in the ddeay vy;

¢ the product of the cubic term and the absolute square of tine flactor gives the ratio
between the squares of the matrix element (3.14% at M? andk? = 0, multiplied by
the ratio between the two-particle phase spaces. Moresgigmne has

M2 o /P (/50,M))2 2
\M\kﬁz_hg N < p*(fS,o,o)) Fon(M)] (329

and
®2(v/5,0,M) _ p'(+/50,M) (3.17)
CDZ(\/é? 07 O) p*(\/§7 07 0> . |

The quark counting rules [45] imply that the form facfay,(t) behaves as- 1/t at
t — . The experimental data are described reasonably well byntm®pole formula
_ "
A3 —t

Fon() (3.18)

with Ap = 0.75+ 0.03 and 077+ 0.04, respectively, for the®- andn-mesons [46]. The
formula reproduces the asymptotics required by quark aogimtiles. Such a monopole fit
can naturally be interpreted in terms of the vector mesonigiance. The values of thiep’s
are close to the andw meson masses.

3.2 Decays of the-, w-, and ¢-mesons to/ ™/~ pairs

The diagram for th&/ — ¢/~ decays withv = p, w, and@is shown in Fig. 3.2. In terms

e (1)
e (1)

Figure 3.2: Direct decays of vector mesons into electron-positron andrrantimuon pairs.

of the vector meson fieldg, the electromagnetic current has the form [47]

uy

ju= —eg o

3In Eq. (3.16) we make use &by (0) = 1.

(3.19)
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wheremy are the vector meson masses and —|e| is the electron charge. THsU(3)
predictions for the coupling constant,: g, :gp=1:3: f are in good agreement with
the ratios between the valugs= 5.03, g, = 17.1, andgy = —12.9 extracted from the*e~
decay widths of th@, w and@ mesons with the use of the known expression

2
rv - )= o (1+2ﬁ) ot (My, e, | (3.20)

3% mg

with p* defined in Eq. (3.12).

3.3 Dilepton decay rates of nucleon resonances

This Section is devoted to the description of decBys N/ /¢~ with R being a resonance
with arbitrary spin and parity and a nucleon. The corresponding diagram is shown in
Fig. 3.3. We proceed as follows: in Section 3.3.1 the gereqatession for th&® — N/ ¢~

Figure 3.3: Decay of a nucleon resonance to a nucleon and a dilepton pair.

decay width in terms of helicity amplitudes is provided. Thedicity amplitudes are then

written in terms of three scalar functions called covarfann factors. An explicit expression
for the covariant form factors is given in Section 3.3.2 witthe vector meson dominance
model. After a discussion about the shortcomings of theengector meson dominance
model the extended vector meson dominance model is inteaduEinally, values for the

resonance decay widths determined within the eVMD modegjaen.

3.3.1 They*N — R helicity amplitudes

Let us start with the electromagnetic transition currertvieen the nucleon and a nucleon
with spinJ resonance which has the form

Ju(paAes PA) = €,y (P AT g U(PA) (3.21)
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wherem, and m are massesp, and p are momenta), andA are helicities of the reso-
nance and the nucleos,= —v/4m is the electron chargey = 1/137. In the resonance
rest frame p, = (m,,0,0,0), p= (E,0,0,—K). The spinomg, g (P:,A«) is the generalized
Rarita-Schwinger spinor that describes fermions with | +% > % It is symmetric with
respect to the indicd3;...3; and traceless. The spinors are normalized by

u(p,Au(p,A) = 2m,

(—)'Og,...4 (P AUy g (P As) = 2m, . (3.22)
The matrlce§[(3 ) B stand for the normal- and abnormal parity resonantes, {, %+, g_,

(the upper sign) and® =17 37 57 (the lower sign). Thg*N — R helicity amplitudes

are given by

(TN = =3P P& (0) =
= e, g (P A)TE o u(p e (). (3.23)
Hereagy)(q) are the photon polarization vectors which have the form
Q) = 5(0.F1-1.0).
V2
el (q) = 1(k 0,0,w) , (3.24)

whereq = p. — p= (©,0,0,k) is the momentum transfer witlf = M2. These vectors are
transversalqusﬁ‘)(q) =0, and normalized by

A) sV
e (@) e (o) = —Buv - (3.25)
The nucleon and photon energies and the photon momentum are

_ mE4nP—M?

m2 + M2 — n?
= = — 27
w m. , (3.27)
k = pf(m,mM), (3.28)

with p* defined in Eq. (3.12). In terms of the helicity amplitude®83.theR — Ny* decay

width reads: "

FR=NY) =gz 2J-|—1 Z

| < AN|TIIA, > 2. (3.29)

There exist six helicity amplitudes, three with positMés and three with negative,’s. The
P-invariance of the electromagnetic interactions givesmaragtry relation for the amplitudes
with opposite signs of the helicities:

<I=NJT| = A=Ay >=F < IA[TAN > . (3.30)
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Using this property of the helicity amplitudes one obtamsR — Ny* decay width in terms
of the three helicity amplitudes:

K 2
MR—Ny)=_-—— .~ MITIIN, > 2. 3.31

Once the width™ (R — Ny*) is known, the factorization prescription described in Sec-
tion 3.1.1 can be used to find the dilepton rate

dMm?2

dr (N* — Nete ) = (N* — Ny )MT (y* — e+e_)W ,

(3.32)

whereMT (y* — e*e™) is the decay width of a virtual photoyi into the dilepton pair with
invariant mas#, given by Eq. (3.6)

The main notations and kinematic relations have thus beecifsgrl. Our main concern
is now the determination of the helicity amplitudesAAy|T|JA, > of Eq. (3.31). In the
expression (3.23) for the helicity amplitudes the unknowardities are thg*N — Rvertices

FI(BT.)..BM To discuss the decomposition of the vertices it is appadptio separate the case of

resonances with spih> % from the case of resonances with spia %

SPIN J > % RESONANCES As we have already mentioned, resonances with arbitrary spin have
three independent helicity amplitudes in tyié&\ — R transitions. This means that there are three
independent scalar functions to fix the vertices. These functions aigenatically from the decom-
position of theRNy* vertex in terms of covariants. The procedure is analogous to the deciimmpos
of the ppy* vertex in the electron-proton elastic scattering. As shown in many textbesekseg.g.
[48]), the ppy* can be expressed in terms of the Dirac and Pauli form fadfe(g?) andF»(q?), as
schematically shown in Fig. 3.4.

io""qy

Fy(q*)| u(p)

Figure 3.4: Decomposition of the on-shell electromagnetic vertex f@ii@c fermion in terms of the Dirac
and Pauli form factor§; (g?) andF»(g?). If the fermion is a strongly interacting particle such as foton,
the form factors reflect the non-local structure that resiaim the strong interaction.

In our case, the generBNy* vertexréf)_ﬁlu can be decomposed over the Lorentz vectors and the
Dirac gamma matrices [49, 50, 51, 34] by writing it first as

+ +
r[(Bl‘)..Bm =0Op,--0p 4 r[(3|p) (3.33)

4In Eq. (3.33), the symmetrization over the indi@as..., B is assumed.
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and then expandingéﬁ) over a minimal set of covariants. Gauge invariance for on-shell particles
requires that

+
Gy, =0 (3.34)

which restricts the form of the vertex to a superposition of three covarfadlsi.e.

3
re. = kzlréﬁ“‘ﬁ((i) . (3.35)

The valueszk(i) are scalar functions af and are calledovariant form factorsin this representation,

the Dirac structure of the transition amplitudes is fully separated off andessed by thd éi)k

matrices. The choice for the covariam‘ﬁ)k (k=1,2,3) is not unique. The various sets used in the
literature [49, 50, 51, 34] can be, however, related to each other witle sdgebra. We report below
the set of gauge invariant covariants used in Ref. [34].

For the normal-parity case, the matrid'q(:;ﬁ)i (i =1,2,3) have the form

réﬁ” = M (dgYu— A%s)Ys - (3.36)
ré;)Z = (9Pu—9-Pgsy)¥s , (3.37)
Mo’ = (G0 — aPTp)¥s (3.38)

wherey,, andys are defined in Appendix A = %(p* +p). For the abnormal-parity case, the matrices
réﬁ)' (i = 1,2,3) have been taken as

r(*)k _ r(+)

k
b =Ty (3.39)

SPINJ = % RESONANCES The verteﬂ'lﬂi) (I =0) can also be expanded like in EqQ. (3.35). There

are two matricesi;?ﬁr)i (i = 1,2) for the normal-parity cas# = %_,

et = (v d4q)ys (3.40)
2 = (P-ayu—Pud)ys, (3.41)

and two matrices for the abnormal-parity cdSe= %+,
F = rikys (3.42)

The vertex dimensions aﬂéf)_w ~1, réﬁ ~1/m1, andF™t) ~ 1/mi+L,

The helicity amplitudes can be calculated in terms of thewdant form factorst:k(i) from
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Eq. (3.23). Using the following notations for these amplia®

(+)
) _ /3 1
S% = <J2 T 21>,

(&)
) _ /41 1
5, = <J2 T +21>,

(=)
¢ <J% T —%o>, (3.43)

) o+ +
the matrix elements connectn@é ), S(% )
50]:

et to Fl(i), Fz(i), Féi) can be found to be [34,
2

Nl

SPINJ > 3 RESONANCES

435
2(xm
BN I émi)
id})
2
F22m.m, FEmemo/2am? Fliii
+
\/%2(m(¢m)+'\42) smem. \/EZMZ Fz(i) ’
2ne 2t - 10 B3 F3

where

m. = m.+m,
A5 = mm 4+M?.

The coefficients}\l(i) are defined as

3m. L2 23+ 1)
)\l(i):e4(im)\/m?F—M2k' 1 @D (3.45)

with J =1+ 3. Notice that

8:(%_)(”]*7m) = _'S(%+>(M7_m) )
3(%’)(m*,m) - +S<%”(m*,—m),
¢ m.m = —¢(m.-m) (3.46)

SThese amplitudes describe, respectively, the doublefipimo-spin-flip, and single-spin-flip transitions.
Forl =0, the amplitud%(si) should be set equal to zero.
2
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SPINJ = 3 RESONANCES

+
57 ) A ( 2M2 - mem > < i ) (3.47)
+ - + : '
iﬁd%) m. \ —2mm; —mm, S5

The coefficientgxéi) are defined by

AL :e\”/‘*é,/n@—MZ. (3.48)

An explicit expression for the covariant form fact(ﬁ&%i), Fz(i) and F:,fi) can be found
assuming vector meson dominance.

3.3.2 Extended VMD model

The vector meson dominance model connects the hadronit@tegnetic current with the
fields of light vector mesons such @sw or ¢, which have the same quantum numbers as the
photon, namely spid = 1, parityP = —1 and charge conjugatidb= —1. The connection

is obtained by assuming that, to a very good approximatios htadronic electromagnetic
current is a linear combination of the vector meson figlgdand has the form [47]

Jﬁm: —e Z ﬁVLl : (3.49)
V=p,w,¢
Heremy are the vector meson masses apdthe corresponding dimensionless coupling
constants. As already mentioned in Section 3.2,3b€3) symmetry predicts for the cou-
pling constants the relatiagy : g, : gp=1:3: ;—g The magnitude offp, g, andg, can be
determined by measuring the leptonic decays of the vectsonge The valueg, = 5.03,
0w = 17.1, andg, = —12.9 extracted from th¥ — e*e~ decays of the, w, andg mesons
are in good agreement with tisJ(3) predictions.
The VMD model has been extensively used to interpret thegplaostd electroproduction
of hadrons. For example, it describes well the electromiagpen form factor:

Fo(cP) = 2 m (3.50)

g M-
with fome being the coupling constant of the effective Lagrangian

1 —
Lorm = —Efpmﬁanpﬁ(”B 0 uit))

=~ Fom(POTi @ It 4+ p 0 @ T 4 p T 0 ) (3.51)
g - S . . - .
where 0 , = 9, — 9 .. The normalizatior(0) = 1 implies
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The standard vector meson dominance with the ground-staieand@ mesons predicts
monopole form factors with /g? asymptotics at> — c. Such asymptotics is, according to
the quark counting rules [52], valid for the electromagneton form factor.

The description of the resonance decafR® — Ny*) is usually based on the VMD model.
The decays of th&l* resonances proceed through both prendw mesons. Thé& decays,
on the other hand, proceed exclusively throughgimeeson. The approach is schematically
depicted in Fig. 3.5. The vector meson couplings with thelemcresonance&ﬁﬁRk are

Figure 3.5: Decay of nuclear resonances to dileptons in the VMD modek RNy transition form factors
contain contributions from the andp mesons.

defined by th& -matrix element of th& N — R process
. k A
< INJTAY >= Z fnRiB:.. (P M) Gy -0y T U(P. VR (@) (3.53)
where the verticeEéﬁ)k are the same as for the photon, aﬁﬂ) (k) is the polarization vector
of the vector mesok with momentuny and helicityAy, .

The combination of Egs. (3.53) and the VMD current field idgn(B.49) allows to cal-
culate the photo- and electroproduction amplitudes

< INTIANy > ngVNngqu 7z

Up,..p (P2 ), 1T PN e (@) . (3.54)

The comparison with the expression for the helicity ampgktsi (3.23) shows that the
covariant form factors have the form

VNRk
z o 1- M2/n‘€, (3.55)

The A resonance form factors have only contributions fromghmaeson family. If the
covariant form factor§k(i)(M ) are known, the coupling constanftéﬁNRk for the A reso-
nances can be found from equation

oak =~ gres{ R M2 =mp) ] (3.56)

m
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The nucleon resonancék receive contributions from the andw mesons. The couplings
with the nucleon resonances are calculated as residuesipkgo®sition for isospin projec-
tionslz = +3 andlz = —3:

g — —
o= —opoes{ A (M2 = md)s=*2 — R (M2 = ng)>= 2
(£) Gw () /p12 et () g2 1 (3.57)
fanin = _z_nﬁjres{':k (M2 = 1g)'5=+2 + R (M2 = g2 |

The VMD model gives, in principle, an unified description bétradiative and mesonic
decays and of the photo- and electroproduction of hadroogieder, two inconsistencies of
the standard VMD model have been pointed out [34, 53].

First shortcoming of the standard VMD. We saw that the standard vector meson domi-
nance predicts monopole form factors withgt asymptotics at? — «. The electromag-
netic nucleon form factors demonstrate experimentallypaldibehaviour. The quark count-
ing rules for the Sachs form factors pred@# (g?) ~ Gu(g?) ~ 1/q* atg? — . The VMD
model with the ground-stag@, w-, and@-mesons cannot describe the nucleon form factors
at low values ofg? (the isovector charge radius is underestimated) and givesritrast to
the pion incorrect asymptotic behaviour. In order to solws problem, it was proposed
[54, 55, 56, 57] to include in the current (3.49) excitedesaif the vector mesoms, p”, ...
etc. The VMD model extended in this way has been nameended VMeVMD) model.
The eVMD model yields for the nucleon form factors the caresymptotic behaviour. In
addition, the minimal extension of the VMD model improveg ttescription of thepry
transition form factor that falls off asymptotically agdf [53].

For theRNy transition form factors, in which we are interested, thedéad VMD model
provides wrong asymptotics too. The quark counting rulesliot the following asymptotics
for the helicity amplitudes

+ 1

S(g ) = O(m) ;
= _ 1
1

Second shortcoming of the standard VMD. The VMD model should give, in principle, an
unified description of the radiativ@ Ny and the mesoni®&NV decays. However, the stan-
dard VMD model underestimates the mesonic branching rafiearious baryon resonances
if coupling constants extracted from the radiative branghare used as input. The reso-
nanceN*(1520), for example, is a case for which both, tN¢1520) — Np andN (1520 —
Ny widths are known with a relatively high precisio®(N(1520) — Np) = 15+ 25%,
B(N(1520 — Ny) = 0.46--0.56 % (py mode) 0.30+ 0.53 % (y mode). The standard
VMD model, as it has been used for example in [58], leads tovarsgnconsistency: using
the coupling constanty15o9np = 7.0 extracted from the mesonid(1520 — Np decay,
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| R | Niuso| MNis2o| MNisss | Nieso | Nieso| MNiz2o| Dizz2| Dis2o| BDizoo | Dioos |
RN N
frRnp < 26 7.0 <20 0.9 6.3 7.8 15.3 2.5 5.0 12.2 ‘

fono 1.3 3.8 1.8 | <08| 3.9 2.2 10.8 0.7 2.7 21 |

Table 3.1: The coupling constantizy, derived from theR — Np mesonic decays are compared to the coupling
constantsfgNp fixed from the radiativeR — Ny decays. The numerical valudgn, are taken from Ref. [9],
with exception of thé\(1232) resonance for which the theoretical value from [14] is giged of theN (1440
andN(1535 resonances where the results of the calculations of theeudh Ref. [53] are given. The table is
taken from Ref. [53].

the branching ratio for the radiative decay is found to be tovthree times larger than the
experimental value. Analogous overestimations are obsefor almost all otheN andA
resonances for which the experimeritgd andNy data are available. Table 3.1 summarizes
the results.

It is clear that a more accurate description of radiativeagie®f the baryon resonances
requires a model, VMD based, which takes into account theecbasymptotics of thBNy
transition form factors and which is able to describe bothRh- Ny radiative decays and
theR — Np(w) mesonic decays with treameparameters.

In Ref. [34] the eVMD model has been used for the descriptiotheftransition form
factor of the baryon resonances. As already mentioned asie lwea of the eVMD model is
to include in the current (3.49) excited states of the vetesong’, p”, ... etc. This results
in the addition of new free parameters with respect to thedstad VMD model, namely the
couplings of the', p”, ..., to the resonanceﬂi)Rk, fé,jf,\)mk, ...) and to the photorgyy, gy,
...). However, the constraints (3.58) can be used to reduceumbear of free parameters of
the model. Thus, the eVMD model provides the correct asytigstof theRNy transition
form factorsab initio. Moreover, the model provides an unified description of phand

electroproduction data and the vector meson decays of tiyeaesonances.

We report below the main steps that lead to the expressidmeafdvariant form factors
Fl(i), Fz(i) and Fgfi) in terms of the free parameters of the eVMD model. For thippse,
we separate the case of resonances with 3@% from the case of resonances with spin

1

SPIN J > % RESONANCES Taking into account ths?tl(i) = O((—M?)!-1/2) at M? — —oo, One
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gets the asymptotics of the covariant form facﬂégﬁ)(Mz) atM? — —oo:

2y 1
Fi(M%) = O((_MZ)H-Z)’
() n2y 1
1
+
R (m2) = 0(7(_,\,'2)”3)- (3.59)
These constraints can be resolved with a minimal set of parameters to give
oy oo+
' (1 -m2/mp)
(+)
(£) (2 Coo
EF) (M2) = , 3.60
R R ET o0
+
Fg(i)(Mz) _ Céo) )
51— M2/

Here,CiEji) are free parameters of the extended VMD model3 is the total number of the vector

mesons. For each form factor, the quark counting rules reduce theemwhfree parameters from
| +3to 2 fork=1andto 1 fok = 2,3. The knowledge of the four parameté]%), Cff), C%), and
C%) is therefore sufficient to fi}l?k(i)(Mz). In the zero-width limit, the multiplicative representation
(3.60) is completely equivalent to an additive representation of Eq. (32886prding to the known

theorems of complex analysis of rational functions.

(#)

SPINJ = % RESONANCES For the two helicity amplitudes(li) andc; ", the constraints to the
2 2

asymptotics are given by Egs. (3.58). Taking into account)tbjat: O((—M?)1/2) at M? — —oo,

one gets .
Fi5 (M?) = O ) - (3.61)

The general representation for the covariant form factors in the%pﬁse has the form

F&) (M2) = Co’ ' (3.62)
“ M1 (1—M2/me)

The parameter@ﬁ:) of the extended VMD model, entering Egs. (3.60) and (3.6&)eh
been determined in [34] from the fit to the photo- and electvdpction data [59, 60, 61,
62, 63] and the vector meson decay amplitudes of the nuckesonances [59, 64, 65, 66,
67]. The number of the vector mesons required for each igsoimnnel to ensure the
correct asymptotic behavior depends on the total spin ohtleéeon resonance. For spin-
resonances, one neelds 3 excited vector mesons with the same quantum numbers. The
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nucleon resonances considered in [34] have spifrem % to % It means that at most 6
excited vector mesons for each isotopic channel are neetled.following masses have
been used: 0.769, 1.250, 1.450, 1.720, 2.150, 2.350 (in GE\& numbers appearing on
the 1 and 3 - 5 positions are masses of the phygicaksons according to the PDG [59].
For discussions on the possible existence of vector mesithsnasses around 1.250 GeV
see [43] and [34]. The last mass was set equal to 2.350 GeWhfestamate. In principle the
inclusion of the heavy vector mesons can also be considsraglaenomenological approach
to obtain a physically correct asymptotic behaviour of threrf factors. However, the results
on the dilepton emission do anyhow not depend strongly orexaet numerical values of
the masses of the excited vector mesons, since the dilepengyespectrum extends only
slightly above 1 GeV for the nucleon resonances with massabaut 2 GeV. The authors
assumed further a degeneracy betweengland w families. The strange mesons are
decoupled in the eVMD model from the nucleons due to the’®alk.

For the nucleon resonance decays into the vector mesoraytihers used the data from
PDG [59]. When these data are not available, the Manley anesBalesults (MS) of the
multichannelriN partial wave analysis [64] were used. In other cases, theg tiee quark
model predictions by Koniuk (K) [66] with 50% errors and)d MeVY/2 errors if the values
are close to zero. In a few cases, the results of the multiediaiN partial-wave analysis of
Longacre and Dolbeau (LD) [65] with 50% errors and quark nhpdedictions of Capstick
and Roberts (CR) [67] were used, when other results did not agtie¢he most recent PDG
constraints to the total vector meson decay widths. The PRX{GMS data were included
to thex? with greater weights. In [34] details on the fitting proceslare given separately
for each one of the 25 resonances considered. We restrggloas to list the sources used
to fix the couplings of the resonances which enter in the taioms that will be presented
in Chapter 4 and Chapter 5 of this work. For a more complete gier of the fitting
procedure as well for the discussion on the relative sigrhefgghoto- and electroproduc-
tion amplitudes and amplitudes for the nucleon resonancaydento the vector mesons we
address the reader to Ref. [34].

N(1535)%7: The experimental values féy, , are from Ref. [68]. TheNp modes, /; is
taken from PDG. Th&lp modeds, is taken from MS. The> meson models); is set equal
to zero.

N(1650)%_: TheNp modes, /, is taken from PDG. The mods, is taken from PDG.
TheNw modes are from K.

N(1520)§_: The experimental values fd; , andAg/, are from Ref.[68]. The modes
dy1/> andds, are taken from K. The modg, is taken from PDG.

N(1440)%+: The experimental values fdy /, are from Ref.[68]. The modp / is taken
from PDG. The value of the modg, is taken from K.

N(1720)%+: The Np mode p;/, from MS and the modes» from LD seems to be

overestimated in view of the PDG valﬂél'}@f) = 1142 MeV*/2 for the totalNp width. The
modespy />, P3/2 and 3/, are taken from K. Thé&lw modes from K are included to the fit.

6The Okubo-Zweig-lizuka (OZI) rule states that processeh wisconnected quark lines in the initial or
final state are suppressed.
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N(1680)§+: The experimental values fak;, and Az, are from Ref. [68]. TheNp
modef, , is from K. The modeds/, andps/, are from PDG. Thé&w modes are from K.

A(16203 : PDG values are used.

A(l?OO)§_: K values are used for the modég, andds/>. The PDG absolute value is
used for thesz,, mode.

A(1232)§+: The data in the space-like region on the magnetic tramsfbaon factor are
from Refs. [61, 60, 62]. Into the fit the experimental resuftRefs. [69, 70, 71, 63, 72, 73]
for the ratioGc/Gm and of Refs. [63, 72, 70, 73] for the ratlee /Gy are included. The
amplitudesAz > andAy , atM = 0 are given by PDG.

A(1905)g+: CR values are used for tfemodes and PDG for thgs ,-mode.

A(1950)%+: PDG gives an upper limit of 6 Me¥/? for the totalNp width. MS and K
results are above this limit, therefore the estimates of GR baen used.

In Table 3.2 we show the paramet@fgit) of the extended VMD model for the above
listed nucleon resonances. The eVMD model results for thoveneson decay amplitudes
of the nucleon resonances are listed in Tables 3.3 and $1dllyithe dilepton widths of the
nucleon resonances are shown in Table 3.5.



c

A}

IS

S

S

o

S|  Resonance JP Cio Ci1 Coo Cso

) " =

5 N*(1535) : 0.979 0.006

= 1.787 -0.062

S| N*(1650 3 0.232 -0.186

8 -0.394 0.157

g N*(1520 %_ 2.186 -1.236 -1.976 -0.159

? -0.220 1.899 -0.316 -0.249

5| Ne(1440 7 0.863 1.023

& 0.084 -0.699

% N*(1720 %+ 0.000 0.608 0.187 -5.312

W 0.051 -0.304 0.194 1.630
N*(1680) 5" 2.487 -0.700 -2.116 -0.797

-0.793 4.929 0.735 -6.297

A(1620) 3 -0.155 -0.081
A(1700 %_ -0.630 -0.298 1.080 -0.473
A(1232) %+ 1.768 0.025 -1.096 -0.926
A(1905 o -0.209 0.090 0.157 -1.145
A(1950 %+ 0.867 -1.250 -0.138 1.619
Table 3.2: Residue@}ki) of the extended VMD model, entering Egs. (3.60) and (3.62yits GeV !*+1 wherel = J — % TheN* residues are shown in two rows for the
proton and neutron resonances, respectively.
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Resonance  Ref. Np Np Np \/I't,\?pt) Nw Nw Nw Mo
S1/2 ds/2 S1/2 ds/2
N*(1535 3" VMD -2.13 -0.25 2.15 1.43 0.05 1.43
MS -1.7+0.5 -1.3+0.6 2.240.6
PDG -2.0+:0.9 <27
N*(1650 3" VMD -1.45 1.04 1.78 -0.97 -0.02 0.97
MS 0.0+1.6 2.2£0.9 2.2+0.9
PDG +16+12 3.4£1.0 3.6+0.9
di/o ds/» S3/2 dy/o ds/» S3/2
N*(15203" VMD -0.37 -0.17 -5.14 5.16 -0.02 0.03 0.28 0.29
MS 0 0 -5.1+0.6 5.14+0.6
PDG -4.940.6 4.9+0.6
P1/2 P3/2 P1/2 P3/2
N*(1440%" VMD -0.29 0.61 0.67 0.00 0.00 0.00
PDG +3.7+22 <6
P1/2 P3/2 f3/2 P1/2 P3/2 fa/2
N*(17203" VMD 11.03 -2.56 1.02 11.37 5.29 -2.09 0.14 5.69
MS 18+5 0 0 18+5
PDG 1142
f1/2 fa/2 P3/2 f1/2 f3/2 P3/2
N*(168035" VMD -1.35 -1.23 -2.62 3.20 0.09 0.40 0.58 0.71
MS 0 -1.40.6 -2.8+0.7 3.3+0.7
PDG -2.0+0.6 -2.8+1.4 3.4+1.1

Table 3.3: Predictions of the extended VMD model for the partial widbhthe N* resonance decays into thendw meson channels, inclusive of the sign of the amplitudes

The data quoted by PDG [59] and the results of the multichamiNepartial-wave analysis MS [64] are given for comparison. Wigths are in MeV.
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Resonance Ref. Np Np Np \/ VS
S1/2 ds/2
A(16205 VMD 4.05 -0.02 4.05
MS 6.2+0.9 -2.4+0.2 6.6+0.8
PDG 4.2+1.4 -2.2£15 4.9£15
di/o ds/> S3/2
A(17003 VMD -1.66 0.66 6.67 6.91
MS 0 0 6.8:2.3 6.8+2.3
PDG +6.7+2.4 11+3
f1/2 f3/2 P3/2
A(19053" VMD -1.40 -0.46 17.46 17.53
MS 0 0 16.8:1.3 16.8+1.3
PDG 20+6 > 17
f1/2 f3/2 h3/2
A(19501" VMD 1.28 -2.38 0.28 2.72
MS 0 11.4£0.5 0 11.4+0.5
PDG <6

Table 3.4: Thep meson modes of th& resonances. The notations are the same as in Table 3.3.
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Resonance Mere [KEV ] e [keV]
N*(15353 2.01 1.87
5.30 4.85
N*(16503 3.23 0.79
2.00 0.31
N*(15203 6.02 0.73
4.42 0.41
N*(1440%" 1.40 0.22
0.56 0.05
N*(17203" 7.93 7.77
3.14 2.77
N*(16803" 2.58 0.43
1.47 1.13
A(16203 1.33 0.88
A(17003 6.10 1.65
A(12323" 5.02 0.04
A(19053" 10.51 10.36
A(19501" 3.18 0.81

Table 3.5: The decay widths of the nucleon resonances intaetlee andptu— pairs. The first line of théN*

resonances with= 1/2 refers to the proton, the second one to the neutron resesanc
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Chapter 4

Vector mesons Iin the medium

The in-medium properties of hadrons are generally expdeissterms of the self energy.
The self energy determines the spectral function of theiepasicle in the medium. As
long as the self energy shows only a moderate energy depesdée real part o can be
interpreted in terms of a mass shift while the imaginary garterates the in-medium width.
To leading order in density the self energy is determinedheyforward scattering length
of the hadron with the surrounding particles. Sinceghmucleon ando-nucleon scattering
lengths are unknown from the experimental side, these digsnhave to be determined
theoretically.

This Chapter is devoted to the description of the properhes thep and w mesons
acquire when they are embedded in the nuclear medium. Aftierducing some basic con-
cepts in Section 4.1, we apply in Section 4.2 the Nucleon Resmn Dominance (NRD)
model to calculate the forward scattering of vector mesansuzleons and then determine
the in-medium spectral functions of theandw mesons. The nucleon resonance dominance
model is not a field theory in the strict sense where corredipgnFeynman diagrams are
evaluated, but an effective model which has, however, samiésity to a field theory based
on Feynman diagrams with the intermediate resonances is-thannel of vector meson
and nucleon scattering (see Fig. 4.1). The model assumiegetttar meson production runs
over the excitation of nucleon resonances. Such an appmastapplied in many previ-
ous investigations of vector mesons properties in the ancteedium [74, 75, 76, 18, 17].
The present approach differs with respect to previous tigagsons by the fact that in the
NRD+eVMD model the corresponding couplings of resonancasitteon and vector meson
are of relativistic form and kinematically complete. Thelusion of possible non-resonant
contributions to the forward vector meson-nucleon scatjeand the influence of in-medium
resonances on the vector meson self energies are discusSedtion 4.3 and Section 4.4
respectively. Finally, in Section 4.5 we briefly report thaimfeatures of the analysis that
led to the conjecture of the “dropping mass” in-medium sderfar the vector mesons.
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Figure 4.1: Resonance contribution to tipdN scattering amplitude.

4.1 In-medium spectral functions

The spectral function of a patrticle is defined as the imagipanrt of the propagator. In
vacuum the spectral functions of tpeand w mesons depend only on their invariant mass
and the spectral distribution of the longitudinal and trxeamsal modes are the same. In
nuclear matter, instead, the acquired self energy depamisately on both the energy
and the three-momentum of the vector mesoV = p,w. Moreover, the transverse and
longitudinal propagation modes receive different in-nu@dimodifications. This results in a
different spectral distribution of the longitudinal andrisversal modes or, in other words, in
a transversal and longitudinal spectral function:
A0 p) = — 2 im =Y (%, p) |
Tt <p2 _ m% + Rezi;)t(T/L)(pq p))Z +1Im zs)t(T/L)(pO, p)Z

(4.1)

Heremy is the pole mass of the vector mesa!T/b is the transverse or longitudinal part
of the total self energy of the vector meson which can be deosed into a vacuum self
energyz\(,o) and an in-medium pa&"/(p°, p):

2T (0% p) = 2 () + 20/ (1%,p) - (4-2)

The vacuum self energ&f/o) is determined by the corresponding vacuum width
0= = —myr®m), 0= —o. (4.3)

Here FP{(M) andF$(M) are essentially given by the dominating decay widths ofghe
meson into two pions and of thke meson into three pions respectively.
The two pion decay width of the meson is parameterized as

tot ngy _ tot Mo [ kn(M, My, Mpy) ° 2
) = rgtmy) G (G ) oM and) (@)

wheré ky(M, my, my) = p*(M, my, my) is the momentum of the pions in the rest frame of the
decayingp having mas#; my, is the physicap mass andfg"(mp) =150 MeV the on-shell

1 p* has been defined in Section 3.1.1, Eq. (3.12).



4.2 In-medium self energy: resonant contribution 33

decay width. Eg. (4.4) can be understood as follows: theggng@ependence of the width
around threshold is determined by the orbital angular maumeih of the Tut system in the
p — Tutdecay as

(M) ~ (kn(M,mn, mn)>2'+l, (4.5)

where one power df;;is due to the two-body phase space and the remaining powegnsaie
from the square of the matrix element of the process. Sinee th Tutdecay proceeds as
a p-wave?, one hast'g’t ~ k3. Despite its simplicity, Eq. (4.4) contains precisely tnemy
dependence of the imaginary part of heneson vacuum self energy that comes out of a one
loop calculation.

The three pion decay width of tlie meson can be calculated according to the two-step
processn — prt— 3rtas proposed by Gell-Mann, Sharp, and Wagner [77]. The quores
ing result can be parametrized in the simple form

2 3
it = rimy) e (Yoo o oy @6)

with m, the physicato mass and'i9'(m,,) = 8.4 MeV the on-shell decay width.
In the following we will determine the in-medium part of thelfsenergyzy .

4.2 In-medium self energy: resonant contribution

To lowest order in the nuclear densipg the self energyy of a vector mesow in iso-
topically symmetric nuclear medium is determined by theiantV N forward scattering
amplitudeAyn

dspN
2E (21'[)
Herep= (p° p) andpn = (En, p) are the 4-momenta of the vector mesband the nucleon,
whereV refers either to @° or aw meson. Due to isosymmetry of the medium the self
energyZy for p* mesons is the same as fot meson. The forward scattering amplitude
Ay n is the same for protorN(= p) and neutronN = n) scattering. The integral in (4.7)
runs over the nucleon momenta within the Fermi volume, dshbere byF. By performing
the integration in the rest frame of nuclear mageis simply the Fermi sphere with Fermi
momentumpg determined by nuclear matter dengoy

2

v (p%p,ps) = /AVN P, PN) 2 (4.7)

The amplitudeAy is expressed as the sum over resonances of amplitudes ¢orargs
scattering of Breit-Wigner form

A — — 2JR+1 8TIS rR_>Nv(S p )
e Z s—MZ+iVaRY(s)

2We remind that the pion is a pseudoscalar partides 0, and thep meson is a vector particldp = 1.
Therefore in thgp — 1T decay angular momentum conservation imposegtthgystem to be in a state with
relative orbital angular momentuls= 1.

(4.9)
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In (4.9)s= (pn + p)? = W2 is the running mass squared of the baryon resonakgdts spin,
Mg its pole mass anklis the c.m. momentum in théN scattering. The width g_nv (S, p2)
refers to the decay of the baryon resonance to a nucleon aect@ vneson with fixed mass
squaredp? = M2. The widthr'i9%(p) is given by®

MY (W) = Mronn(W) + MRoNp () + TRoNw (W) + MR (4.11)

and refers to the decays of the resonaRe¢®t modified by the medium, in particular, with
the vacuum spectral functions for the decay products.

This represents the lowest order approximation in the tatiom of the medium contri-
bution Xy to the total self energgdt = >y + Z\(,o) of the vector mesoN'. In the next order
the medium modification of the resonance spectral funcholuding the modification of the
resonance width due to the modifications of the productseféisonance decay should be
taken into account. This leads to a self-consistency pnoble

Let us now discuss each term of thie.s. of Eq. (4.11) separately:

e 'r_.nri(M) is the energy dependeNtrt partial decay width scaled according to tha
phase space and the Blatt-Weisskopf suppression factor:

ﬂ) o (62 + G
Or &2 402

M2 (Int1)
i) = M) 0 ) o (e m)

(4.12)
whereq = q(Y, my, My) andgy = g(Mg, My, My;) are the pion (or nucleon) three-momenta
in the rest-frame of the resonance with massidMg respectively antl; is relative or-

bital angular momentum of tiérmt system. The parametdiin the cutoff function has

tot 2
a valued = 0.3 GeV for theA(1232 resonance andf = (Mg — my — Mi)? + m
for the higher baryon resonances.

e rR_np(M) is the energy dependeNp partial decay width given by

- B (H=mn)?
Rone()= [ AMTR ok M)AR(M) (4.13)

wherel r_.np (M, M) stands for the width of a resonance with mpsecaying into a
nucleon and @ meson with fixed magsl and

1 mprg" (M)
(M2 —1mg)2+ (mplF(M))?
is the vacuum spectral function of tipemeson. The integration ovéy, is motivated

by the fact that th¢p meson, being an unstable particle, does not exist as astimpto
state. The physical situation one has to evaluate is rdtleesrie showed in Fig. 4.2.

Ap(M) (4.14)

3In the case of thé\* (1535 resonance thin decay channel contributes 4045% of the total width and
Eq.(4.11) reads :

M) = Mronre(H) + TR () + TR-Np (H) + TRoNeo(K) + 3R - (4.10)
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Figure 4.2: Decay of a resonance into a nucleon and two pions via an ietdiatep meson.

e Nr_Nw(M) is the energy dependeNiw partial decay width. AA — Nw decay would
violate isospin conservation. Therefore one has.ne(1) = O for all resonances of
the A family. For resonanceR = N* one has:

(H—mmy)?

MR-Nw(H) :/9m% dM2T RNeo(H M)Aw(M) (4.15)

wherelr_nw(K, M) stands for the width of a resonance with mpsfecaying into a
nucleon and @ meson with fixed madisl and

1 Mol g (M)
M) = 7 g2+ (m BT 2 (419

Is the vacuum spectral function of themeson.

e Finally, 3 g = M'®Y(MR) — Fronn(MR) — TroNp(MR) — TrNw(MR) ensures the nor-
malization of the total width at the resonance pole mass. ifitieduction of this
term is due to the fact that in some cases the sum of the clsacmesidered does not
exhaust the total width.

At this point it is clear that the widthr_.nv (S, p?) appearing in Eq. (4.9), (4.18)(4.15)
is the key quantity which has to be determined in order to l@@eess to the vector meson
spectral functions in nuclear matter. As already shown ingB#z8, the width r_.nv (S, p?)
can be expressed in terms of the helicity amplituﬁ§$%,s% of theR— NV decay

, ka%+%+%)
rRﬁNv(S, p ) = % (ZJR+ 1) . (4.17)
These amplitudes have been parameterized within thewistati approach developed in
Ref. [34] and presented in Chapter 3.
The transverse and longitudinal self energigsand; can be then obtained by the

following substitutions in (4.17)

2 1 in?

2002 p2 4+ 2) (A3 p2)LTCOSE  HosiTE (4.18)
3" 3 3 3 3 3 2 3 2

2 .
§(A§+A§+S§)—>28§c0§6+(A§+A2%)sm26, (4.19)

[[*SH N

4sospin symmetry implieBa+_np = 50 A —Npo andln-_Np = 30 N+ NpO-
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N P Lan| A I Lo |

N*(1535 3  Su [ A(1620 53  Sm
N*(1650 3  Su | A(1700 3 Das
N*(1520 3~ Dis | A(1232 37 Pa
N*(1440 17 Py | 581909 3T Fss
N*(1720 3" P |A@1950 1T Fe
N*(1680 3 Fus

Table 4.1: List of the resonances included in the calculation of thechglamplitudes entering into Eq. (4.17).

where@ is the polar angle of vector meson momentum in the c.m. sysidm polarization
averaged self energy, reads then

2+

2y 3

(4.20)
The resonances included in the calculation of the widsh,nv (S, p2) are listed in Ta-
ble 4.1. The same relativistic approach and the same setabéamresonances used for
this calculation has been successfully applied to dileptmhvector meson production pp

collisions [53, 78, 79].

42.1 Results

In the following we discuss first the results of the non selfigistent approach. Analogous
lowest order calculations have been performed e.g. in R&J. [1

p-meson spectral function

Fig. 4.3 shows the@ spectral function in nuclear matter at nuclear saturatemsdy po =
0.16 fm~3. Longitudinal (') and transverseq") spectral functions are found to be rather
similar. This means that unpolarized spectral functions lma used in the calculations of
dilepton spectra.

We observe a slight upwards mass shift ofphend a substantial broadening. At low mo-
menta the spectral functions show a clear two peak struethieh vanishes with increasing
vector meson momentum. The results shown in Fig. 4.3 areatitgtive and quantitative
agreement with previous calculations based on the resenaondel assumption [18]. Al-
though the various approaches are based on different wagssiribe the corresponding
transition form factors, eVMD in the present case, and patars are partially fixed in a
different way, this fact demonstrates the stability of tesemtial features predicted by these
types of models.

The emerging two-peak structure can be understood as fllealue and sign of the
self energyl1Zy depend on the pole positions of the particular resonandethe Ivector
meson mass is small, the invariant mass of vector meson picison is below the pole
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Figure 4.3: Longitudinal ) and transversel() p spectral functions in nuclear matter at saturation derfigity
various moment® (in GeV). The shaded area shows the vacuum spectral function

masses of the relevant nucleon resonances. Thereforeahgare of the vector meson self
energy is negative. This is a typical example for level rejaul (vector meson plus nucleon
and nucleon resonance). Consequently, the faotér m@, — 03y)? in the denominator of
the vector meson spectral function, Eq. (4.1), is small @nexqual to zero. Thus the first
peak in the spectral function emerges at a vector meson massda05 GeV. The major
contribution which generates the first peak comes from\ti@520) which is in agreement
with the findings reported in Ref. [18]. If the vector meson msguared lies in the vicinity
of its vacuum vaIuem%, the invariant mass of vector meson plus nucleon lies abwedle
masses of the relevant nucleon resonances and the reaf gagt\veector meson self energy
is positive. Therefore we obtain the second peak in the sgddianction at a vector meson
mass slightly aboven,. At high vector meson momenta the invariant mass of vect@ome
plus nucleon is always above the pole masses of the releval#an resonances. As a result
the spectral function has only one single peak slightly almy.

The dependence of the meson spectral function on the nuclear density is shown in
Fig. 4.4. The figure displays the unpolarized spectral foncdf ap meson at rest in the
frame of the surrounding medium @§ and at ¢ nuclear density. With increasing density
we observe a further shift of strength away from the origpae mass, i.e. the first branch
in the spectral distribution is slightly enhanced and evsfiex to lower masses, while the
second peak is slightly shifted upwards and additionalbadened.

In this context it should be noted that the resonance moaeligions stand in contrast
to the coupled channel calculations of Ref. [11] which predasignificant medium depen-
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Figure 4.4: Unpolarizedp meson spectral function at rest in nuclear matter at saparaensity and twice
saturation density. The shaded area displays the vacuurtragfenction.

dence of thep, neither concerning a mass shift nor a broadening. The nefasdhe much
less pronounced shift to lower masses resulting from thecagh of [11] lies mainly in
the much weaker coupling to th¢* (1520 found in [11]. For this resonance the value of
MNnp ~ 2 MeV [11] has to be compared gy, ~ 25 MeV from [34, 18]. The latter value is,
however, in agreement with PDG [80] and the Manley/Sales&lysis [64].

w-meson spectral function

For the w we observe a behaviour which is qualitatively similar tottbhthe p-meson.
Fig. 4.5 shows theo spectral function in nuclear matter at nuclear saturatemsdy. Longi-
tudinal (') and transverseq" ) spectral functions are again found to be rather similar. In
both cases the pole mass is slightly shifted upwards and thés substantially broadened
around its quasi-particle pole. At we obtain an in-mediurm width of 300 Me\?

As in the case of th@, the coupling to low lying resonances leads to the appearanc
of a first peak in the spectral function which lies aroun8-00.55 GeV. With increasing
momentum this peak is washed out and disappears finally.

The first branch in the spectral distribution is mainly geted by theN*(1535 reso-
nance. As discussed in detail in Refs. [34, 78], in the NRD+eMhiidlel a strondN* (1535 Nw
coupling is implied by the available electro- and photopicitbn data. However, thdw de-
cay of this resonance has not been measured directly, arefdgreinput from quark model
predictions had to be used to fix the entire set of eVMD modehpaters. Nevertheless,
within such a procedure a stromg (1535Nw coupling seems practically unavoidable. In
pp— ppw production the larg&l*(1535Nw decay mode leads to substantial contributions

5The width has been evaluated-ag8zS"(my, p = 0)/m, .
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in a kinematical regime where the is far off-shell, i.e. at small invariant masses. This
is reflected in an enhancement in the cross section arouedhibid [78]. Existing data
[81, 82, 83] do, however, not rule out such a behaviour. Aaerlasspection of the experi-
mentally observed background contributions may provideartant information concerning
this question.

N
|

A (M,p) [GeV?]

N
|

T

0 05 1 05 1
M [GeV]

Figure 4.5: Longitudinal L) and transverseT() w spectral functions in nuclear matter at saturation deffisity
various moment (in GeV). The shaded area shows the vacuum spectral function

The nuclear matter density dependence ofdhmeson spectral function is shown in
Fig. 4.6. The figure shows the unpolarized spectral funciibrest atpp and 2o nuclear
density. As in the case of tippmeson we observe a shift of the second peak which belongs
to the originalw pole towards higher masses with increasing density whéditst peak is
shifted to lower masses.

4.3 In-medium self energy: non-resonant contributions

Up to now we have not discussed possible non-resonant botims to the forward vector
meson-nucleon scattering. The reason is twofold: firstlpfed cannot fix the non-resonant
amplitudes with the same accuracy as the resonant onesnd@gdbwe fix them with the
available accuracy, we would find that non-resonant ang#guapproximately cancel each
other in the sum. For example, in the case ofghmeson there exist the Compton scattering
amplitude, which gives a positive contribution to the reattf thep meson self energy, and
the amplitude due to meson exchange, which gives a negative contribution tbét lgtter

is of the same origin as the attractive part\afl interaction). The unknowppo coupling
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Figure 4.6: Unpolarizedw meson spectral function at rest in nuclear matter at saaraensity and twice
saturation density. The shaded area displays the vacuurtragfenction.

constant can be extracted from the width of fe— Tt T 1t 1T decay if one assumes that
this decay goes over an intermedipfe state.

Details on the calculation of the two contributions from CaampscatteringX“°™PY) and
o-exchange Y°¢*°") are given in Appendix C.1. For the estimate shown in Fig. €’ t
correspondindNNp tensor coupling antiNo coupling strength were taken from the Bonn
one-boson-exchange model [84] for nucleon-nucleon saagténne = 19.8, gnne = 10).
The error band foE9—¢*¢hjs due to the relatively large uncertainty in the faudecay of the
p meson

BRP? — i) = (1.84+0.9) x 107° .

However, from Fig. 4.7 one sees that the two contributioosif€ompton scattering°mPYy
and o-exchange Y° € are of different sign and comparable magnitude. For thenmea
values of the branching ratBR(p® — 11T 1t 117) they almost cancel out completely and
changes of th@ meson spectral function are insignificant.

To account for non-resonant contributions to thepectral function within the present
scheme we assume axwo coupling three times larger than that fgvo which is motivated
by the comparison with the two pion coupling. TR&w vector coupling gnnew = 15.9) is
again taken from the Bonn potential [84].

4.3.1 Results
p meson spectral function

The influence of the non-resonant contributions omptheeson spectral function is displayed
in Fig. 4.8 and Fig. 4.9. Fig. 4.8 shows the longitudinal aaeh$verse spectral function
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Figure 4.7: Non-resonant contributions fpomeson self energy from Compton scattering amplitude ($iolé)
and from the amplitude due to exchangedomeson (unshaded region). The region corresponds to theierro
the branching rati®r(p® — " ) = (1.84+0.9) x 1075,

in nuclear matter at nuclear saturation density, while &i§.shows the unpolarized spectral
function of ap meson at rest in nuclear matter at saturation density ancketeaturation
density. The spectral distributions obtained from calitoies which take into account the
non-resonant contributions to the forward vector mesariemn scattering are compared to
the corresponding ones, presented in Section 4.2, obthimmdalculations which take only
resonant contributions into account. As can be seen, thi#i@ddf non-resonant contribu-
tions does not appreciably modify themeson spectral function.

w-meson spectral function

In the case of theo the influence of non-resonant contributions is found to beenpwo-
nounced than in the case of tpeas shown in Fig. 4.10 and Fig. 4.11. The non-resonant
contributions tend to increase the repulsive mass shifti@tat pole and they strongly sup-
press the first peak in the spectral function. However, ttaditgtive features of the spectral
distributions are not changed.

Comparing with other works, it should be mentioned that inghee resonance model
approach of Ref. [74] no such additional peak has been olker/Be w meson spectral
functions obtained within the coupled-channel approadiedf [11] and within the coupled-
channelK-matrix of Ref. [19] have qualitative similarity with thoseofn the present ap-
proach.

All approaches come practically to the same conclusionsiparard mass shift, a broad-
ening of thew and the appearance of an additional branch iruilspectral function.

This branch appears at the same position and is in both casesaged by thil*(1535).
However, in all approaches thesurvives as a quasi-particle, at least at moderate desisitie
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Figure 4.8: Longitudinal L) and transverseT() p spectral functions in nuclear matter at saturation density
for various moment® (in GeV). Dashed lines stand for the resonance approximasiolid lines represent
calculations where non-resonant contributions have bestaded as well. The shaded area shows the vacuum
spectral function.

up topo, i.e. there the spectral function is still dominated by trembranch corresponding
to the originalw pole. The predictions for the density dependence of thetspdanction
are similar on a qualitative level, i.e. when going from ondwto times nuclear density the
suppression of the branch corresponding towole is of similar size.

However, on a quantitative level the models come to diffecamclusions. While the
broadening of thevis similar in Refs. [11] and [19] the mass shift is much largeRef. [11]
(Am, ~ 46 MeV atpp) than in Ref. [19] Am, ~ 10 MeV atpp). In the present case the in-
medium modifications of the» meson are even more pronounced compared to [11, 19], i.e.
the broadening and the upwards mass shift are lafgag, ¢~ 75 MeV atpo).

A comparison to predictions from QCD sum rules [85, 86] turasto be difficult since
the w properties depend strongly on higher order condensates r8les leave space for
upward and downward mass shifts and the parameters retateé higher order terms in
the operator product expansion have finally to be fixed fropeerents [86]. Moreover, in
these approaches it is assumed thatdheaintains its quasi-particle properties. However,
due to the distinct two-peak structure of the present splkdistributions it is not possible to
assign a common mass shift to @muasi-particle pole.
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Figure 4.9: Unpolarizedp meson spectral function at rest in nuclear matter at saparaensity and twice
saturation density. Dashed lines stand for the resonanqmeximation, solid lines represent calculations where
non-resonant contributions have been included as well shhded area displays the vacuum spectral function.
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Figure 4.10: Longitudinal ) and transverseT() w spectral functions in nuclear matter at saturation density
for various moment® (in GeV). Dashed lines stand for the resonance approximasiolid lines represent
calculations where non-resonant contributions have bestaded as well. The shaded area shows the vacuum
spectral function.
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Figure 4.11: Unpolarizedw meson spectral function at rest in nuclear matter at sauardensity and twice
saturation density. Dashed lines stand for the resonanqmeximation, solid lines represent calculations where
non-resonant contributions have been included as well shhded area displays the vacuum spectral function.

4.4 In-medium resonances: role of self-consistency

As the next step, we took into account the changes induceldayntmedium vector mesons
on the total width of the nucleon resonances. This leads étf-&@snsistent determination of
the self energies of the vector mesons in nuclear matter.

The first iteration corresponds to the determination of #l€energies of the andw
mesons from Egs. (4.2-4.9) considering vacuum spectratifums for the decay products of
each nucleon resonance in Eq. (4.9). Thus, one assumebel@gtay of each resonance is
not modified by the medium. In fact, the results shown in thevious sections correspond
to this first iteration, if considered in the context of a shsistent calculation.

In the second iteration, one determines the total width efrtbicleon resonances from
EQ. (4.11) inserting this time the in-medium spectral fiores of the vector mesons obtained
from the first iteration and calculates again the self emsrgf the vector mesons with the
use of Egs. (4.2-4.9). Thus, one includes the modificatidh@fesonance width due to the
modifications of the resonance decay products.

The procedure is repeated until convergence. We foundhbatdnvergence is obtained
already after the third iteration.

As a side result of our self-consistent calculation, we fimat the widths of the nucleon
resonances are enhanced in medium due to the fact that ttor wezson spectral functions
show a significative spectral strength at small invariangsea. A similar outcome emerged
from the analysis performed in Ref. [9].

The resulting unpolarized vector meson spectral functemesshown in Fig. 4.12 and
Fig. 4.13 for thep andw meson respectively. They refer to saturation density. Weenie
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that the self-consistent calculation leads predominatatha reduction of the lower mass
peak. This result is in qualitative agreement with the figdiof Ref. [18], where the role of
a self-consistent iteration scheme on ph@eson spectral function has been investigated.
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Figure 4.12: Unpolarized spectral functions of tipemeson in nuclear matter at saturation density for various
momentap (in GeV). Modification of the resonance width due to the madiiion of the spectral properties of
the vector mesons are taken into account and a self-contststieulation is performed. The shaded area shows
the vacuum spectral function.
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Figure 4.13: Unpolarized spectral functions of thkemeson in nuclear matter at saturation density for various
momentap (in GeV). The broadening of the nucleon resonance widtheded by the in-medium spectral
properties of the vector mesons is taken into account anif-esesistent calculation is performed. The shaded
area shows the vacuum spectral function.
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4.5 Dropping mass scenario

As already anticipated in the introduction, the search fgnatures of a dropping meson
mass was mainly triggered by the theoretical works of BrowhRino [7] and of Hatsuda and
Lee [20] published at the beginning of the '90s. The mean tiased analysis of effective
Lagrangians performed by Brown ad Rho suggested that the messses decrease with the
density according to a scaling law that was named, afterutigoes, “Brown-Rho scaling”
and reads

o= _To_ My (4.21)
frn My My My
Here fr; is the pion decay constantyy the nucleon massy, andm, the p andw meson
masses respectivelyy, my, m;, ny, denote the correspondent density dependent quantities.
Since one hasy/my ~ 0.8 atp = po, Eq. (4.21) implies that the vector meson masses
should decrease to 80% of their vacuum value already atedEtndensity.
This scaling law found support in the QCD sum rule calculaiparformed by Hatsuda

and Lee [20], who extracted the medium dependence of thestrtange vector meson masses
as

Moo _1_(018+006" . (4.22)
Mo w Po
However, in deriving Eq. (4.22) the resonance part of thenadium spectral density was
parametrized, in analogy to the vacuum case, by a deltaium@tarrow width approxima-

tion)

pv (o) ~ (0§ — M%) + continuum, (4.23)

which means that Eq. (4.22) was obtained engalid in the limit of narrow meson width.

This issue was later investigated by Leupetdal.[21] who replaced the delta function
parametrization by a schematic Breit-Wigner spectral fionct This analysis pointed out
that QCD sum rules do not give any stringent prediction for@gdmg of vector masses
when taking into account a possible broadening of the mesadiisv A significant broaden-
ing of the strength distributions is, however, expecteddyrbnic model calculations and, at
least for thep meson, experimentally confirmed by the measurements of A& Nollabo-
ration [25]. We recall that the same measurement seemsdmutla simple dropping mass
scenario for thep meson.



Chapter 5

Dilepton production in HIC

5.1 The QMD transport model

The Quantum Molecular Dynamics (QMD) model is a microscajyinamicaln-body ap-
proach to heavy ion reactions which simulates the whole &vution of the nucleus-
nucleus collision on an event by event basis. The ability MORto simulate individual
collision events significantly facilitates the contactiwaictual collision experiments and has
been a main reason for extensive usage of this approachrifmooting theory with experi-
ment.

Many versions of the QMD approach have been developed, nidsem being rooted
in the code originally developed by Aichelin and coworke8g][ Extensions to relativis-
tic kinematics have been made, most notably Relativisticnfuma Molecular Dynamics
(RQMD) [88, 89] and further extensions towards ultrarelatig collisions, named UrQMD
[90, 91], have been widely applied to relativistic nuclealtisions and have had considerable
success in reproducing many aspects of the data.

For our investigation of dilepton production in heavy iorllistons at intermediate en-
ergies we employ a particular realization of the QMD modetently used in Tubingen:
the Tubingen Relativistic Quantum Molecular Dynamics (Tiglen RQMD). The Tubin-
gen RQMD transport code [92] applied for the present invasitigs is based on relativistic
kinematics but not formulated covariantly. Thus, desgiednalogy in the name, it differs
from the RQMD model originally developed by Sorge et al. [88esides the code used

1The Relativistic Quantum Molecular Dynamics (RQMD), agyorally developed by Sorge et al. [88],
represents a fully covariant description of a clasdi¢garticle system based on Dirac's Constrained Hamilton
Dynamics [93]. TheN-body Hamiltonian is thereby expressed by -2 1 constraintsg,

2N-1

H= ; G (5.1)

where the firsiN constraints are given by the mass-shell conditions andetimainingN — 1 constraints serve
to fix the world lines of the particles, i.e. to ensure worltelinvariance and causality. A final time constraint
which does not enter the Hamiltonian fixes an overall evoilutime of the system.

The complete set of— 1 constraints generates the equations of motions for cealbnconjugate coordi-
nates and momenta,

ddl/dT:{H’qiu} ) de/dT:{vai“}v (5.2)
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here, a fully covariant RQMD code has been developed by thengéh group in the early
1990s [89] and has even been extended to the applicationabi/igtic scalar-vector mean
field dynamics [94] going thereby beyond the the original RQBiproach of Ref. [88].
However, the application at low relativistic energies (S&ealed insignificant differences
between the two approaches, QMD with relativistic kineog#nd full RQMD, what con-
cerns physical observables, in the latter case, howevaheprice of extensive numerical
effort. Therefore the present as well as most previous tigasons on particle produc-
tion are based on the standard QMD (relativistic kinema@égproach. The only mesons
included dynamically are the pions, but heavier mes#&ns)( p, w, ...) are treated pertur-
batively. The model is particular suited for studies of subshold meson production at SIS
energies. It has been extensively applied to kaon produatisubthreshold energies [95, 96]
and has also been used for dilepton production [38]. Foratterlapplication, the Tibingen
model has been extended to include all nuclear resonantemasses below 2 GeV, in total
11 N* and 10A resonances [38].

We present below some basic aspects of the QMD model. Foraaetailed description
we refer to Ref. [87]. The particular realization of the Tigen RQMD model used for the
description of dilepton production in heavy ion collisiomsl be discussed later.

5.1.1 Basic structure of QMD

In the following the QMD approach is sketched in its originah-relativistic formulation.
In QMD each nucleon is represented by a coherent state obthe f

2\¥* w2
Wi (X, 1i,pist) = (E) et ghbx (5.3)
characterized by the 6 time dependent parametérs pi(t). The width L is related to

the extension of the wave packet in the phase space and is&egtant in the calculations
(L = 4.33f?).2 The nuclear wave function is assumed to be the direct pramuctoherent

states (5.3)

W= [lwixri,pit) . (5.4)

Thus the standard QMD neglects antisymmetrization. Thepeoational time scales like
(Ap+AT)4, beingAr and Ap the number of nucleons of the target and projectile nucleus
respectively, if a Slater determinant is used, while in QMBdales Iike(Ap+AT)2. First
successful attempts to simulate heavy ion reactions witis\anmetrized states have been
performed within the Fermionic Molecular Dynamics (FMDY[®8, 99, 100, 101] and the

where{-,-} denotes the Poisson bracket. To compute the evolution ofytbem, i.e. integrating the set of
above equations of motion (5.2), one must determine theawkiLagrange multiplier;(t). While Hamilton
Constrained Dynamics provides the most exact solutionribee relativistioN-body problem, the numerical
effort is prohibitively large since the computational tiseales withN3.

2The width of a coherent state= L (t) increases as function of time if propagated with the frea@tihger
equation. In the QMD approach the width is kept constant,nespreading of the wave function is allowed.
This is motivated by the observation that otherwise theeugchs a whole would spread in coordinate space as
a function of time.
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Antisymmetrized Molecular Dynamics (AMD) [102, 103, 104jpmoaches. In both real-
izations the system is represented by a Slater determimainth& equations of motion are
derived from the time-dependent variational principle.eTWMD approach, though origi-
nally launched for applications in nuclear collision dynesn has become one of the most
promising quantum many-body approaches for nuclear strectudies. It permits the use
of realistic nuclear forces and tames the repulsive haré lbpuse of the unitary correlation
operator method [105, 106]. AMD differs from FMD mainly inathstochastic terms have
been added to the equation of motion so that many configmsatan appear through the
reaction dynamics. The introduction of two-nucleon calis is similar to QMD.

3 AMD has been successfully applied to fragmentation reastisuch as central colli-
sions in the energy region of several tens of MeV/nucleotidgbit and heavy systems [107,
108]. While these treatments are much better grounded i bizsory, they are relatively
complicated to apply and, as a result, their applicatione lh@en considerably more limited
relative to the range of observables calculated with thezZBwinn and QMD approaches.
Moreover, these refinements, though conceptually impgréae less urgent in the context
of high energy collisions where these quantum effects aedpparent.

The initial values of the parameters are chosen in QMD in suefay that the ensem-
ble of At + Ap nucleons gives a proper density distribution as well as agrranomentum
distribution of the target and projectile nuclei.

The Wigner transform of the coherent states (5.3) are Gansgn momentum and coor-
dinate space. The Wigner distribution functigrof the nucleon reads:

1 .

fi (X7 p7t) = (2.,_[)3 /e_lp.X12qu(X+X12/27t) l'IJI*(X - X12/27t) d3X12 (55)
1 v 022 (2L

— F (x=ri(t)¢ e (P—pi(t)"3 . (56)

Then-body Wigner distributionf V) is the direct product of the Wigner distributions of the
n coherent states. Therefore the single particle densitgandinate space

N
p(x,t) = Z\é(X—Xi)/f(N)(Xl,...XN,pl,...pN,t)dSDJ_...dsde?’Xl...dSXN (5.7)
i=

results N = Ap + A7)

Ap+Ar Ap+AT /9 3/2 _(x_ri(1)?
e

PO="3 Wi(r,)* = > ECa (5.8)

The equations of motion of the many-body system are cakdlay means of a varia-
tional principle. For the coherent states (5.3) and a Hamidin of the formH = ; Ti +

3A technical difference originates due to the antisymmatiim. The antisymmetrization implies that the
wave packet centroids cannot be interpreted as the pasiind momenta of nucleons. Rather, the physical
coordinates are introduced as nonlinear functions of timdraiels [103] and the two-nucleon collisions are
performed by using these physical coordinates. There thpaaa Pauli-forbidden phase-space regions coor-
dinates into which the physical coordinates will never erfte any values of the centroid variables. These
regions are regarded as Pauli-blocked and not allowed dssfata of a collision. Another difference from
QMD is the fact that the physical momentum in AMD is the momemicentroid of a Gaussian phase space
distribution, while the momentum variable in QMD usuallypresents the definite momentum of a nucleon.
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%Zij Vij, whereTi is the kinetic energy and; the mutual interaction between two nucleons,
the variation yields [87, 90, 109]:

ri = &—l- Up, Z(Vij> = Opi(H) (5.9)

J

'i:—Dri Vij :_Dri H (5.10)
Y J;< i) (H)

with (Vij) = [ d3 d3x; @7 WiV (%, xj)Yig;. These are the time evolution equations which
are solved numerically. Thus the variational principlddsethe same time evolution of the
parameters;, p; as one would obtain by moving the centroids of the wave fonc(b.3)
according to the classical Hamilton equations:

d(H)

The expectation value of the QMD Hamiltonian
2
(H) = 2m +ZZ/1‘ Xi, Pi, )VJf (xipit)d x.d3x d3p. dspj (5.12)

R

is obtained by the convolution of the distribution functoia and f; with the mutual inter-
actionV'l between the nucleorisand j. The potentiaV'l contains a contact Skyrme-type
interaction supplemented by a phenomenological momen&pardjencb’”s", a finite range
Yukawa-type potentia¥; /" and an effective Coulomb interactitffo"

| |
Vi — VSkyrme+ VY{Jk +VCjouI (5.13)
The Yukawa potential
i exp{—[xi —xj|/H}
Vo=t ) 5.14
YUk ST I — x|/ (5.14)

mainly serves to improve the surface properties and theliggatif the initialized nuclei
when used in heavy ion collisions. The Coulomb interactiamben the nucleons is taken
into account through the effective potential:

ij effe2

—_— 5.15
Coul — |X| _X]| ( )

where the effective chard& s = (Zr +Zp)/(Ap + A7) is attributed to all nucleons.
The Skyrme-type potential, written in the form of two-peleiinteractions, reads:

Vdhyrme= 180X —X}) +1,8(x —x}) (Pl )Y~2(xi) +taln®(L+ta(pi —pj)2)3(x; —x;) . (5.16)

Let us clarify the form of expression (5.16). For simplicitee neglect the momentum de-
pendent part of the interaction and discuss only the statit g_et us start with the local
Skyrme-type interaction

Vskyrme(X1, X2, X3) = t18(X1 — X2) 4+ 128(X1 — X2)8(X1 — X3) . (5.17)
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The folding over the Wigner distributionfs and f; yields the expectation value:

/f xi, pi,t) i (xj,pj, ) V@ (xi, %) b d; d*pi &®p; (5.18)

IJk /f Xlapla XJ7p17 )fk(xk7pk7t)
vV (xi, xj, i) d®x d®x; dBx d®pi Ppj ¥py (5.19)

whereV (2 andVv @ are the two- and three-body parts of the interaction defin&ji (5.17).
Performing the integration one sees that the two-body piadefior the particlei, U'(? =
Y i (V12)), can be written as

U'® =ty ply(ri) (5.20)

where the interaction densipy(r;) is
o (r-)=—;e (ri—rj)“/L (5.21)
e ("L)3/21 i

As we have seen, the interaction density arises due to tldengplof the two Gaussian
wave packets with fixed width in coordinate space. This dertsas the same form as
the single particle density (5.8), but omits the nucleorhatlbcationj and has twice the
width of the single particle density. The three-body pcnaﬂrfbr the particlei, U'(® =

ik i kA (VK3 can be approximated as afunctlor‘pmt ) [87]:

3 <ri—rj>2 +(rj—rg)?

3
u'® ~t, (3) 32 ; e Ot [p,nt( )}2. (5.22)
L ik [kt

The quadratic density dependence of the three particle (8r22) may be generalized to
arbitrary exponents for the density:

U‘(3>th[pim(ri)]2 - ty[p}m(ri)}y. (5.23)

This is important for the investigation of the influence whdifferent compressibilities, i.e.
different equations of state, have on observables. Themever, the interpretation &' (®
as three-body interaction is no longer valid.

In nuclear matter, where the density is constant, one cate®lthe potentials with the
distribution functions assuming an infinite homogeneogssrithution. Thus the interaction
density (5.21) as used e.g. in (5.20) and (5.22) can be reghlag the position independent
nuclear matter density. In nuclear matter the potentiatiasfore the form:

U :o(-([fo)JrB (§0> +5-1n (s-(A6)2+1)-<£) . (5.24)

The parameterg andts of the Yukawa interaction have been adjusted in order to give
the best preservation of the nuclear surface, obtaipiadl.5 fm andt; = —6.66 MeV [87].
The parameters, 3,y,0, € in Eq. (5.24) are determined in order to reproduce simutiasky
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K (MeV) a (MeV) B (MeV) y 5 (MeV) e (GeV2) EOS
200 -390 320 1.14 1.57 500 soft
380 -130 59 2.09 1.57 500 hard

Table 5.1: Parameter sets for the potential used in the QMD model.

the correct momentum dependence of the nucleon-nucleisabpbtential [110, 111] as
well as the saturation densitpd = 0.16 fm—3) and the binding energyeg = —16 MeV)

for a given incompressibilitk. Two different equations of state are commonly used: a hard
equation of state with a compressibility ©E=380 MeV and a soft equation of state with a
compressibility ok =200 MeV [112, 113]. The standard values of the parametgsy, d, €
used in the QMD model can be found in Ref. [87, 109]. For conepless, we list them in
Table (5.1).

Stochastic collisions of particles are included by stadddonte Carlo procedures. The
collision probabilities are determined by a geometricatimal distance criterium, in anal-
ogy to the cascade models: two particles collide if theirimum distanced, i.e. the min-
imum relative distance of the centroids of the Gaussianmguheir motion, in their c.m.
frame fulfills the requirement:

d<dyp= %, Otot = 0(+/S, collision type) . (5.25)
where the cross section is assumed to be the free crossrsettibe regarded collision
type N—N, N—A, ...). For each collision the phase space densities in thédtates are
checked in order to assure that the final distribution in psgEce is in agreement with the
Pauli principle < 1). The phase space densifyat the final states'and 2 is measured and
interpreted as a blocking probability. Thus, the collismonly allowed with a probability of
(1—f1)(1—f5). If the collision is not allowed the particles remain at tteiginal momenta.

The main steps to perform the simulation of a single evert @D can be summarized
as follows:

Initialization: Projectile and target nuclei are initialized accordingnaratial Wigner dis-
tribution functionf (r,p,t = 0). This distribution is constrained by the requirements to
reproduce the ground state properties of the two nuclegngisdly radii and binding
energies.

Propagation: For each time step the particles (nucleons and eventuadiguoed baryon
resonances and mesons) are propagated according to theaqfamotions (5.11)
with a given Hamiltoniar{H).

Collisions: Within the considered time step, two particles close in dowte space such
that condition (5.25) is fulfilled can potentially perforntallision. For each potential
collision one checks whether its final state is Pauli-blacké# this is the case, the
momenta of collision partners are kept unchanged — i.e. @dision does not occur
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—, otherwise the momenta are changed according to the angjatabution of this
particular channel.

5.2 Tubingen RQMD

In order to study dilepton production in heavy ion collisspthe Tibingen RQMD transport
code [92] has been extended and all nucleon resonances a#h Ioelow 2 GeV have been
included [38]. These are altogether i1 and 10A resonances. The corresponding masses
and decay widths are listed in Tables 5.2 and 5.3.

The various resonance states can be populated either inrbagryon collisions, or in
pion absorption processes, or in the decay of a higher ostmmance. In the Tubingen
RQMD model the following inelastic channels can lead to theitakion of a resonance
in a baryon-baryon collisionNN — NA1232, NN — NN*, NN — NA*, NN — A12321232,

NN — A123N*, NN — A123A* andNR— NR. Here theA;,32is explicitly listed, whereas
higher excitations of thA resonance have been denoted\asR andR’ denote two generic
resonances. In addition, all possible elastic baryondraopllisions are taken into account
in RQMD. Elastic scattering is considered on the same fodtoingll the particles involved.
Matrix elements for elastic reactions are assumed to beame $or nucleons and nucleon
resonances. Thus elashidikandRRcross sections are determined from the elgspor np
cross sections, depending on the total charge. Regardimgatastic cross-sections, the pro-
duction cross sections for tE1232) and theN*(1440 resonances in thdN — NA1232,
NN — NN*(1440 andNN — Aj232A1232 reactions are taken from from [114]. These cross
sections were determined within the framework of a one-basa@hange model. For the
higher lying resonances the parametrizations for the mtolucross-section are taken from
Refs. [90, 115]. In [90], an effective parametrization bagedimple phase space considera-
tions has been employed and free parameters have beendumguttimental measurements.
Thus, inelastic collisions are considered according te#pression [90]:

<Pf> 2
01234~ ~—-|M 5.26
12234~ "0 || (5.26)
wherep; and<pf> are the momenta of the incoming and outgoing particles ircémer of
mass frame. In the case that the outgoing particles areespaloticles with a well-defined
mass(ps ) has the standard expression:

(pr) = ps = p"(v/S Mg, Ma) (5.27)

with p* defined in Eq. (3.12). In the case that one of the final partsceresonance, i.e. an
unstable particle, the phase space is averaged over thespornding spectral function

(pr) = / D" (v/5. M, 1) dV(1) (5.28)

whered\Wk(l) is the resonance Breit-Wigner distribution. In the geneaakcthat both final
states in Eq. (5.26) are resonangasis averaged over both resonances

(Pr) = [ P (VB M) dVik() AWk () (5.29)
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Res. Mass [MeV] IMot [MeV] Nw Np NTT NTUT A1232TT N144gT NN
N1440 1440 200 <107% (9 0.45 =) 140 10 50 - -
N1520 1520 125 0.08 -) 26.63 (-) 75 18.75 31.25 - -
N1is35 1535 150 2.05 =) 4.62 =) 82.5 7.5 - 7.5 52.5
N1650 1650 150 0.94 =) 3.17 =) 97.5 7.5 15 7.5 7.5
Nig75 1675 140 0.003 (- 3.50 ) 63 77 - - -
N1680 1680 120 0.50 =) 10.24 (24) 78 18 - - -
N1700 1700 100 - -) - (5) 10 45 35 - 5
N1710 1710 110 - =) - (5.5) 16.5 22 22 11 22
N1720 1720 184 (150) 32.4 =) 129.3 (37.5) 22.5 67.5 15 - -
N1900 1870 500 - (275) - (25) 175 - 25 - -
N1990 1990 550 - =) - (82.5) 27.5 137.5 165 82.5 -

Table 5.2: List of N* resonances which are included in the QMD transport modet tahle shows the resonance masses and the total and paditiad wf the included
decay channels in MeV. The valuesitj, andl'y, are given at the resonance pole masses. The values in lwaskekll as the other decay channels are taken from [90]
and used for the reaction dynamics.



Res. Mass [MeV] I ot [MeV] Np NTT D130 N144gT
A1237 1232 115 ~0 2 (- 115 — —

N1600 1700 200 - ) 30 110 60
N1620 1675 180 16.4 ) 45 108 27
A1700 1750 300 47.7  (30) 60 165 45
A1900 1850 240 - (36) 72 72 60
N1905 1880 363 (280) 307.3 (168) 56 28 28
A1910 1900 250 - (100) 87.5 37.5 25
N1920 1920 150 - (45) 22.5 45 375
A1930 1930 250 - (62.5) 50 62.5 75
N1950 1950 250 - (37.5) 112.5 50 50

Table 5.3: List of A resonances which are included in the QMD transport moded.table shows the resonance masses and the total and p#dtlad of the included decay

channels in MeV. The values 6f, are given at the resonance pole masses. The values in lwacketkll as the other decay channels are taken from [90] anbfasthe
reaction dynamics.

2At the resonance polEy, is practically zero for thé;,3,> due to vanishing phase space. However,gimeson coupling constants of this resonance, in partichéar t
magnetic one, are large [34] and thus fhes, has non-vanishing off-shell contributions.

andy usbuigny z's
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The integrations are performed over kinematically defineits. A in Eq. (5.26) is the
matrix element of the cross section and the proportionaigy accounts for possible overall
(iso-)spin coefficients. For most of the cases we use exprestor the matrix elements from
Ref. [90]. However, when parameterizations of the matrixneets are given in Ref. [115],
we make use of these expressions.

The cross-section for the reactioNR — NR is determined from the known channels
NN — NRandNN — NR by

0.5(| Mun—NRIZ + [ Mun—nr[2)2(20r +1)
16mp;s

ONR-NR = | {pf) - (5.30)
In Eg. (5.30) is an isospin coefficient, depending on the resonance tyyoelradenotes the
spin of R.

For all resonances we use mass-dependent widths in exgeg5128)-(5.30), namely

3 /2.1 52\ 2
P m+6)
MW =rr{ — - | . 5.31
w-re(2) (5 (5.3
In (5.31) p and p; are the c.m. momenta of the pion in the resonance rest fraaieated
at the resonance running and pole mass, respectidely0.3 is chosen for thé;,3> and
0= \/(mR— my — My)2 4 F2/4 for all other resonances.
Backward reactions, e.N\R— NN, are treated by detailed balance

[P12l?

P12
03412~ = 4|20172_)374 (5.32)

where the proportionality sign is due to overall (iso-)sfaictors.

The resonances as well as the pions originating from themylare dynamically treated,
l.e. in a non-perturbative way.

Pion-baryon collisions are treated as two-stage procgssedirst the pion is absorbed
by a nucleon or a baryon resonance forming a new resonarteevwsth subsequent decay.
The pion absorption by nucleons is treated in the standayd[9%& 92, 115] and the pion
absorption by resonances is proportional to the partiahygleddth of the reverse process
[115]

et — 2k +1 4 s(Tr_gn)?
T 2+ ) (24D pP (s—mR)2 S

The decay of baryon resonances is treated as proposed in176118, 119], i.e. the
resonance life time is given by the spectral function

Ta(k) = 4mdﬁ‘;§“> . (5.34)

(5.33)

Here we use constant widths when considering resonancgsiéldae decay channels which
are taken into account are listed in Tables 5.2 and 5.3 tegetith their corresponding
branching ratios. For the mass system under consideratompultiplicities are reasonably
well reproduced by the present description. E.g. inclugiveross sections in C+C reactions
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measured by the KaoS collaboration [120] can be reproduygeithd present description
within error bars.

As mentioned, nucleons, pions and baryon resonances wibkaadelow 2 GeV are the
dynamical hadronic degrees of freedom included in RQMD. bfitaxh to them, the Tubin-
gen RQMD model includes th& ands baryons as well as thé™, n, p, w and@ mesons
treating them perturbatively, as generally done for sugsthold particleé. To treat a particle
perturbatively means to neglect the feedback of this gartin the overall reaction dynam-
ics. In this method, the dynamical degrees of freedom araffietted by the production of
one of these mesons. The method allows to artificially endaétmescorresponding production
cross sections in the simulation in order to collect the sgaey statistics. The production
of the particle occurs every time energy conservation aldvand the produced particle is
assigned a “probability to exist”, i.e. of having been indiggoduced, determined by the
ratio of its production cross section to the total two-bodgttering cross section. For details
regarding the treatment of the strange particles in RQMD \ier the reader to Ref. [96].

Concerning the, the fit of [121] is in good agreement with the excluspp — ppn
production data from COSY [122] around threshold. Thus is tlaise the cross section from
[121] is used and the production through the decay of nuadlesonances is neglected. As a
consistency check, thgyield obtained by the two production mechanigiis — NNn and
NN — RN — NNn has been compared and it was found that both lead to almagtadin
yields in heavy ion reactions [38]. To avoid double countamdy one of the channels should
be included. In line with experimental data [123] for than iso-spin factor of

a(pn— pnn) = 6.50(pp— ppn) (5.35)

is assumed. Thg absorption runs over the dominating channet N — N*(1535. The
corresponding) production cross sections in C+C collisions are consistétht thve experi-
mental results of Ref. [124].

5.3 Dileptons within the Ttbingen RQMD model

In the energy range of a few AGeV one can identify three mansgs of processes that lead
to dilepton emission: decays of light unflavoured mesonsageofN* andA resonances and
nucleon-nucleon bremsstrahlung. Dilepton productionugh the bremsstrahlung mecha-
nism has in detail been studied by the Giel3en group in [12%5]tHfe energy range of interest
in this work bremsstrahlung contributes in a significant wayhe dilepton spectrum only
at small invariant masses. By far the dominant contributi@ssilt from diagrams which
involve the excitation of an intermediateresonance. Within the present framework the
inclusion of such contributions would, however, lead to aldle counting and therefore we
omitted up to now [53, 38, 126] and also omit in this work egplbremsstrahlung contribu-
tions.

However, it has been pointed out [127] that in a recent catmn performed by the
Rossendorf group [128] the contribution of tha bremsstrahlung was found to be up to a

4f the threshold for hadron production in elementBiM reactions exceeds the heavy ion laboratory energy
one speaks about subthreshold production.
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factor four larger than in Ref. [125] and of comparable sizéhasorresponding contribution
running via intermediat@ resonances. The issue is at present a topic of debate.

We describe below the realization within the RQMD model oégibn emission origi-
nated by decays of light unflavoured mesons and decays adomucksonances. The contro-
versy about the nucleon-nucleon bremsstrahlung conioibig more extensively discussed
in Section 5.3.3.

5.3.1 Dilepton decays of light mesons

Atincident energies of few AGeV the cross sections for mekba:-n,n’, p, w, @ production
are small and these mesons do not play an important role inlythamics of heavy ion
collisions. Their production can thus be treated pertivbt The decay of a meson to a
dilepton pair takes place through the emission of a virthatpn. The differential branching
ratios for the decay of a meson to a final std&f e~ can be written as

dr(u, M).’M,T[H@efx
M7
ot (W)

with pthe meson mass arM the dilepton mass. As already mentioned in Chapter 3, three
types of such decays have been considered: direct dédayse’ e, Dalitz decaysm —
yete , M — m(n)ete  and four-body decay9/ — mmete . The comprehensive study
on the decay of light mesons to a dilepton pair performed 8) howed that, assuming a
nucleon resonance dominance model for the productignaridw mesons, the remaining
decay channels that are most important quantitatively &vi ion collisions at 1 and 2
AGeV aret® — yete™ andn — yete . Thet® — yete™ andn — yete™ decay rates are
given by expression (3.15) of Section 3.1.2. For theve includen absorption from the
dominating channel + N — N*(1535 explicitly. Since chiral perturbation theory predicts
practically no modification of the in-mediummass [129], we do not include a possible
mass shift.

dB(, M) TeTe X , (5.36)

5.3.2 Dilepton decays of nucleon resonances

In terms of the branching ratios for the Dalitz decays of theybn resonances, the cross
section fore" e~ production from the initial stat¥’ together with the final statd X can be
written as

X'—=NXe"e™ (v/S—mx)? X'—RX R—VN—Ne"e~

dMm2 M2 di2 2 dMm2

Here,p is the running mass of the baryon resonaRaeith the cross sectiodo(s, u)xl—’XR
anddB(p, M, pg)R"VN—Ne'e” js the differential branching ratio for the Dalitz decRy—
Ne"e~ through the vector mesan

dB(u M)R—>VN—>Ne+e* dl_(|.1 M)R—>VN—>Ne+e*/dM2
. FTVE = . = , (5.38)
Mot(K)
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with the Dalitz decay widthdr (p, M)R=YN=Ne"e” /qM2 of the resonance given by (3.32)
and the total width R, () of the resonance given by (4.11). Thus Eq. (5.37) describes
baryon induced and pion induced dilepton production, ilee initial state can be given
by two baryonsX’ = NN, NR RR or it runs through pion absorptiod’ = N. In the
resonance model both processes are treated on the sanmg fopthe decay of intermediate
resonances.

For the description of the dilepton production through lbargesonances we consider the
same set of resonances which has successfully been appliexidescription of dilepton and
vector meson production ipp collisions [53, 78, 79]. It includes only the well estabksh
(4«) resonances listed by the PDG [80] and is smaller than theplienset of resonances
included in the RQMD model.

5.3.3 Discussion: Nucleon-Nucleon Bremsstrahlung

Dilepton production in elementary nucleon-nucleon remdihas been studied within micro-
scopic models by various authors [125, 128, 130]. In theuatan of theNN — NNe"e™
cross section two major channels have been taken into accoun

e pure nucleonic bremsstrahlung, i.e. diagrams with inteliate nucleons. For the
following let us distinguish the isospin dependences in

pp— ppee (5.39)
np— npe'e" (5.40)
e diagrams with intermediat& resonances

NN — NA — NNefe™ . (5.41)

Among the authors of Refs. [125, 130] there exists an agreeimattheA channel (5.41)
is the dominant one. Fqgpp collisions it turned out to be almost one order of magnitude
larger than the channel (5.39) and fgp collisions about a factor 3 larger than the channel
(5.40). The results of [125] show clearly that at the thresnbenergies considered in [125],
1.04 GeV, 2.09 GeV and 4.88 GeV, in all cases the dominantibotibn arises from the
intermediate state consisting of theisobar resonance. In fact, the total yields are almost
equal to the contribution of th& amplitude alone [125].

The contribution of the nucleonic bremsstrahlung to the toass dilepton spectra is
relativelysmall and can therefore be safely neglected in transpartilegions (see below).

A contradictory behavior was found in [128]. There the char{f.40) was found to be
of comparable size as the corresponding contribution fnatermediated’s. This finding
stands in particular in contradiction to the work of Shyand a&fosel [125]. This is quite
puzzling since [128] uses exactly the same meson-nucletice® (including the same en-
ergy dependence) as [125] to evaluate the correspondiggaaies. Also the photon-nucleon
vertices are the same. It is therefore unclear, how a fougditarger cross section for the
channel (5.40) can be obtained. This discrepancy is cuyrenter discussion.
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Realization in transport calculations. The diagram with intermediat® states can be fac-
torized into the reactioNN — NA with subsequenf Dalitz decayA — Ne"e~. Such
processes are standardly included in transport calcaktito add the corresponding contri-
bution (5.41) is therefore double counting.

The pure nucleonic bremsstrahlung can be added withoutcékpt running into the
double counting problem. However, taking the cross sestioom [125], it is significantly
smaller than the\ Dalitz and can therefore be neglected, as done e.g. by thanJeéib
RQMD group.

Other transport groups [30, 58] included the bremsstrahlung in the soft photon ap-
proximation. In such an approximation very similar crosstis@s to the ones calculated
in [125, 130] are obtained (see [127]). The bremsstrahlung has been discarded by them
on the basis of its smallness in comparison toAH2alitz decay contribution.

In this respect, a remark can be made based on results psgvublished by the dif-
ferent groups. In Ref. [38] dilepton production jrp and pd reactions in the energy range
T =15 GeV has been analyzed. There no explicit nucleonic breatdahg contribution
has been taken into account. The corresponding spectre@oded in Figs. 5.1 and 5.2. At
low energiesT = 1.04 andT = 1.27 GeV, the theoreticgdd — et e~ X cross sections signif-
icantly underestimate the experimental data. Such a strndgrestimation does not emerge
for the pp — e"e~ X cross sections, nor it does at higher energies, at whichcanyien
contribution becomes dominant at low invariant masses. dis@epancy between theoret-
ical calculations and experimental spectra observed ipthgpectra leaves therefore room
for the conjecture that a channel, which has the propertgmigosignificant inpn collisions
and negligible inpp collisions, is not accounted for in the theoretical caltiales. Being the
large pn bremsstrahlung of [128] a possible candidate for such areiawe conclude that
the results of [38] are not openly incompatible with the hynesis of [128].

A similar enhancement of thpd data over the model results in the mass region of the
n decay was found in the analysis performed by the UrQMD gr@@}. [Note that in [30]
explicit pn bremsstrahlung was included in the soft-photon approxan&t The authors
concluded thapn bremsstrahlung is relatively unimportant.

On the other side, the same reactions have been analyzed.ifb&efThe authors took
explicitly into accountpn bremsstrahlung using the soft photon approximation [134 a
discardedppbremsstrahlung. They found that the DLS datadoththe ppandpd reactions
were reasonably well described within their approach [58 hard to think that a similar
agreement could be reached under the assumption thaintbeemsstrahlung contribution
would be enhanced by a factor four, as expected from the sezd®ns given in Ref. [128].

SThere are still cases in which the simple addition of the @nicic bremsstrahlung at the level of the cross
sections would be incorrect. In models fixing the resonanaktDdecays by fitting available experimental
data exclusively within a resonance model, like e.g. the 8viModel, a proper treatment would require the
coherent addition of the pure nucleonic contribution toréssnant one and a refitting of the couplings.

6To extrapolate to the case of hard and massive virtual psp@phase space correction was applied by
multiplying the cross section with the ratio of the phasecspategrals with/without virtual photon. Further
details can be found in Ref. [30].
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Figure 5.1: The differentialpp — eTe~ X cross sections at various proton kinetic energies are cadpa the
DLS data [28]. (Figure taken from [38]).
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5.3.4 Numerical realization

In this Section we give technical details concerning the waey contribution of nucleon
resonances to the dilepton yield is operatively extracted.

As already mentioned in Section 5.2, the various nucleoon@sces are produced and
propagated in the RQMD transport code. In the course of tliepggation, resonances can
scatter elastically and inelastically. The included ssatg channels have been already listed
in Section 5.2. At the beginning of each time sti¢fparyon-baryon collisions are performed.
The process can lead to the production of new resonanceshs sdsorption of resonances
previously present. Resonance decays are eventually pedoat the end of the time step.
The probability for a resonance to decay is estimated as

dt

?deC: 1 - eﬁ YRTR 5 (542)

whereyr represents a Lorentz factor and is the resonance life time (5.34). Knowing
the decay probability, whether a resonance decays or nbersdecided by application of
standard Monte Carlo techniques. Those resonawbésh decayare stored. In particular,
the resonance running mass, the components of its 3-momeantd the local baryon density
at the decay point are stored. For these resonances theodilepanching is calculated
from (5.38).

Thus, dilepton production is determined in terms of dileptates. Advantages and dis-
advantages of this approach will be discussed in Sectio,5a88 some of the arguments
will be better understood after the implementation ofglendw meson in-medium spectral
functions has been described.

5.3.5 Implementation of thep and w meson in-medium spectral func-
tions

In Section 3.3.1 we saw that, due to the P-invariance of thetemagnetic interaction, the
resonances with arbitrary spin have only three indepertuditity amplitudes in thg N —

R transitions. Therefore there are three independent sttadations to fix the vertices. We
showed that the three scalar functions arising from them@osition of they*N — R vertex
over the Lorentz vectors and the Dirac matrices are funstimfrthe mass squared? of
the virtual photon and are called covariant form factorsthineVMD model each of these
covariant form factors is expressed as a linear superpogiti the contributions from the
intermediate vector mesons of thendw family:

R M2 =y ag (5.43)
|

wherek = 1,2, 3 stands for each of the form factofs;) denotes states of normal and ab-
normal parity respectively and the sum is over the interatednesons. The amplitude

Mk,l ki miz_imiri — M2 (5.44)
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represents the contribution of ti8 vector meson to the form factor of tyfre The residues
hl(f) contain the parameters of the model.

In this representation, the insertion of the in-medium prtips of thew and p vector
mesons is straightforward. In the medium, the transitioplaadesMéii) (i=pw,...)are
directly modified by the vector meson self energies and read

(5.45)

M) _p@® MR |
K=V TR g+ R4 il mE - M2

We include the self energy contributions for the groundesi@ndw mesons in the transition.
For the excites statgs,p”,... the self energies are unknown and thus we keep for these
states their vacuum properties.

As in Ref. [38, 126] we also consider scenarios where the idiane properties of the
vector mesons are based on different model assumptionglypansimple Brown-Rho or
Hatsuda-Lee scaling of the vector meson masses [7, 20] aollisianal broadening of the
vector meson widths. In the latter case the self energiegiaea by

Imst = —my (I (M) + ¢ (o, M)
Re&W! = 0. (5.46)

In Egs. (5.46) the energy dependence due to the two-, regglgahree-pion decay of the
vector meson is kept in the vacuum contribution to the totalthy while the collisional
broadening due to the interaction with the surrounding emts is absorbed into a density
and energy dependent part. The issue of the energy dependérice collisional width
will be discussed in detail in Section 5.4. The Brown-Rho sgpis introduced through the
replacemeniny — mj; = my(1— a%), as done e.g. in [132]. In particular, in this case one
has

2
Re — (n\,—a%> e (5.47)

As usual, the mass shift entering into the real part can hestatj by the parameter. Like

in the case of full spectral functions the self energy conembs enter into the amplitudes
(5.45). In this context it is important to note that the mamifion of the amplitudes (5.45)
leads to acoherentsummation of thgg andw in-medium contribution to the transition form
factors (5.43).

Doing so, this approach goes beyond the standard — evernelf-stransport approach
where spectral properties are treated at the level of crosti@es[29, 133, 134]. The latter
always leads to an incoherent summation of the contribstitom different hadrons.

The self energy appearing in Eq. (5.45) is a functty(M, |p|, ps) of the vector meson
running mass, of the modulus of its 3-momentum in the nuclester rest frame and of the
local density of the surrounding matter. In the rest frdthef a resonanc® with massy,
decaying into a nucleon and a vector meson of midsthe modulugp*| of the momentum
of the meson is fixed by energy conservationpgfis the momentum of the resonanien
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the c.m. frame. of the colliding nuclei and/gr = pR/\/pEpL 2 is its velocity, the vector
meson momentum ih is given by the Lorentz transformation

[p[* = (YRIVRIE* + YR} )+ PF° (5.48)

where
pp = |p*|cosd (5.49)
pT = |p*|sin® (5.50)

with 8 being the polar angle of the mesonlifi if one chooses the z-axis of this frame
pointing in the direction ofr. Since|p*| is fixed, in terms of th& frame variables one has
S0t = 519UM, cos, pg) and the decay amplitude averaged over the angles is:

M(R— Ny)(1LM, pg) = /+1 Ac0S8) - R, Ny") (1L M, cosB, pe) . (5.51)

1 2
Eqg. (5.51) is implementable in the framework of QMD. For eee$onance, QMD provides
the values of the 3-momentum components (necessary tarpettie Lorentz boost), of the
mass (distributed over a Breit-Wigner) and of the local dgri the surrounding matter at
the point of the decay.

As discussed in Ref. [18], the excitation of particle-holegan the meson spectral func-
tion generates resonance-nucleon scattering terms iresomance self energy and thus the
in-medium broadening of the resonance. We have seen thigomuesonances are dynami-
cally treated in the RQMD model and resonance-nucleon scagtes explicitly performed.
Thus, the in-medium broadening of nucleon resonanceses tialto account in the transport
approactdymamically’ No in-medium spectral functions of the vector mesons anefbee
included in the total width () appearing in the denominator of (5.38).

An observable tightly connected to a correct treatment efrétssonance dynamics in
HIC transport calculations is provided by the pion multfl. As previously mentioned,
inclusivett cross sections in C+C reactions measured by the KaoS Coltabo[420] can
be reproduced by the present description within error bélhés gives, at least on a global
level, manifest credit to our treatment.

5.3.6 Advantages and disadvantages of the present approach

Some of the advantages of our approach have been explitsityssed. Others could be
deduced from the content which has been exposed. Howeveg l@tter overview we
summarize them here in a compact list:

In simpler terms the argument can be qualitatively expassefollows: the broadening of a nucleon
resonance corresponds to a smaller value of its life timenédium, the occurrence of absorption processes
shortens the mean life time of a resonance: whereas in vaitaaiisappearance is exclusively due to its decay,
in medium the resonance can disappear also due to absorfti@bsorbed resonance is removed and replaced
by a new particle. The resonance will not appear among thedt@sonances which decay, therefore it will
not contribute to the dilepton branching.
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o 8Dilepton rates are calculated in the framework of a micrp&chadronic model: the
eVMD model. We have therefore direct access to the expresgsibtheamplitudes
determining the contribution of the intermediate vectorsoreto the transition form
factors. In-medium properties can thus be included at thel lef these amplitudes
(see (5.45)). It follows that we are able to resolvedbkerentsummation of thep and
w meson in-medium contributions. Note that the coherent satominvolves the ac-
count for interference terms between the two vector mesimsse interference terms,
naturally present in a proper quantum mechanical treatraemiabsent in approaches
operating at the level of cross sections.

e The vector mesons play in the eVMD model the role of interratvirtual particles
intheRNe e~ vertices. They are therefore fully treated as virtual pées.

e The approach representsiaifieddescription of dilepton and vector meson production
as well as their in-medium modifications. The same modelmpatars govern all these
interconnected processes.

A drawback of our approach is that the dynamical propagaiicthe vector mesons is
neglected. In particular, in-medium properties are detgeoh by the local density at the
decay point of the nucleon resonance, whereas in a dynatngzment a vector meson
would propagate within a system in evolution. Thus the weimteractions determining its
in-medium properties would occur at a density typical of plesition reached by the vector
meson in the evolving system. Eventually, some vector nesould escape the fireball and
decay in vacuum. Unfortunately, the formidable task ofudahg consistently full off-shell
particles characterized by their (in-medium) spectratfiom in a dynamical approach has
not been done yet. Note that, analogously, no explicit dyocainpropagation of the vector
mesons is present in the fireball models successfully applieSPS energies for the study
of vector meson in-medium properties (see e.g. [14, 24, 36]jhose models, in-medium
effects enter in the expression for the dilepton rates too.

5.4 Results

In this Section we provide theoretical calculations of thiepton emission in heavy ion

collisions at intermediate energy. In particular, we addrihe reaction C+C at 2 AGeV for
which experimental data have been already published by theE$ collaboration. The

main purpose is to compare calculations that include intome@ffects in a more traditional

way, i.e. via Brown-Rho scaling of the vector masses and eogpicollisional broadening

of the decay width, with results which are obtained ugrendw mesons described by the
in-medium spectral functions presented in Chapter 4 of tluskw Particular emphasis is
also put on remaining — and rarely discussed — model uno&gsiwhich are inherent in a
transport theoretical treatment.

8Discussed in Section 5.3.5
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In the transport calculation the reaction has been treaedimmal bias collisions with
respective maximal impact paramebgfax = 6.0 fm. For the nuclear mean field a soft mo-
mentum dependent Skyrme force (K=200 MeV) is used [87] wipiabvides also a good
description of the subthreshoKi™ production in the considered energy range [95]. In or-
der to compare to the HADES data, dilepton events origingited the different considered
sources have been generated in the phase space. Aftersgneer the experimental mo-
mentum resolution, the acceptance filter function proviolethe HADES collaboration has
been applied. Events with opening anfle. < 9° have been rejected, according to the
treatment of the experimental data. The spectrum is thenalared to the corresponding
multiplicity.

Vacuum

We start by addressing the results obtained without anytiaddl medium effects concerning
the dilepton production. In Fig. 5.3 the dilepton spectrumtamed within the vacuum for-
mulation of the NRD+eVMD model is compared to the HADES da@].[3he experimental
data are slightly underestimated in the mass regr< M < 0.4 GeV and overestimated
in the region of the vector meson peak. Indeed, already thgpadson with DLS data had
shown that the eVMD model in its pure vacuum formulationsfail describing dilepton pro-
duction in heavy ion collisions [38]. However, the vacuunicatation is a good reference
point to isolate, where possible, those sources which damtiy contribute to the spectrum
in a certain invariant mass region. Once the dominant seurage been identified, it is in-
teresting to look separately at their modifications due tma@dium-effects. For this purpose
we also show separately in Fig. 5.3 the contributions to ffeesum of the decays of the
pseudoscalan andT® mesons and all the* as well as theé\ resonances. In addition, the
A(1232 — Nete decay channel is explicitly shown. In what follows, we willestigate
the modification of the Dalitz decays of the baryon resonaRce Nete~ when in-medium
properties of th andw mesons are taken into account. Since we introduce no inumedi
modifications of the® — yete~ andn® — ye*e~ channels, the contribution to the dilep-
ton spectrum due to the’ andn Dalitz decay will remain unchanged in the course of our
analysis.

Collisional broadening

Let us now turn to the introduction of in-medium effects adtog to the standard treatments
and address first to Fig. 5.4 where the HADES data are compauieaiculations where the
possible broadening of the vector meson spectral funchomedium is effectively taken
into account through the introduction of a collisional vidi®". We present calculations
where a linear parametrization of the typ!(p) = MY+ p/pol < (po) has been used to
estimate the vector meson in-medium widti'(p). Fig. 5.4(a) refers to the assumption
F5(po) = 200 MeV andr §'(po) = 60 MeV, which reflects the estimates of the CLAS and
TAPS experiments for the collisional broadeningpandw meson respectively. Fig. 5.4(b)
refers to the assumptidr{(po) = 250 MeV, I'$'(po) = 125 MeV, which reflects the esti-
mates emerged from the analysis performed in [38]. We obsgsuppression of the peak
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Figure 5.3: The dilepton spectrum in C+C reaction at 2.0 AGeV as predibtethe vacuum NRD+eVMD
model is compared to the HADES data [33]. The contributiorthef different types of sources taken into
account in the calculation is explicitly shown.

T T [ T T T [ T T T [ T T T [ T 1T T T [ T T T [ T T T [ T T T [ T 1T

-2 -2
10 En E 1 En E
(@ — QMD+evMD E 0 (b) — QMD+evMD | 3
= HADES ] = HADES ]
3l e N esvee B 3 e nsvete N
107 oover : 107 oYl g
< F \ - T —>yee B > F \ - M ->yee B
% af e sum over N B 8 4l . L R sum over N )
o, 10 ; : \\.\_._ --- sum over a+IA_ é = 10 ; : f\-\\___ --- sum over alg ?
s E : \l '\ N A1232—> Nee E 2 E ll ‘ ! A1232_> Nee E
3 RO 1 T sl ]
P Pl . 3 Z210¢ N E
> el T A e i © el NN ]
o i} HAREEPTPPRPEL a - i PRREETEFPPRPEE I L B 4
: : ~~ = -6 I : |
= Lo VTR T Z1W0E
~ [ \ i o EE ! 3
[ H \ ] ~ [ ; 3
7k : \ 71 F :
10 i 3 10 3
[ | ' 3 :(: | -
[ i L i Fe i .
-8 51 P T R R 1\- Loy 8Ll o e b :
10002 04 06 08 1 100 ""02 04 06 08 1
M [GeV] M [GeV]
(@) (b)

Figure 5.4: Dilepton spectrum in C+C collisions at 2.0 AGeV for diffeteralues of the in-mediunp and
w widths. Left panel:ry'(po) = 200 MeV andr{3'(po) = 60 MeV. Right panel:r§(po) = 250 MeV and
[%(po) = 125 MeV.

with respect to the vacuum case, more pronounced in casbgb)(&). However, in both
cases, the experimental data are still overestimated dfdua 0.7 GeV, due to the still sig-
nificant contribution of théN*(1535. Note that the Dalitz decay of this resonance plays a
dominant role in the determination of the dilepton spectmrthe region of and just below
the vector meson peak, as separately shown in Fig. 5.5. li®@one side the HADES data
seem to favour a less pronounced contribution ofNfEL535 resonance in this region, on
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the other side dilepton production datag#p collision have been well described under the
same model assumptions for the coupling toti¢1l535). We see therefore that the contri-
bution of theN*(1535) Dalitz decay, which is significant in elementary reactiond thus in
vacuum, is partially reduced in heavy ion collisions duetaniedium effects.

Energy dependence of the collisional width

Before proceeding, we would like to discuss an approximatibich has been made. In the
calculations shown in Fig. 5.4 the collisional broadeniag been included in first approx-
imation by making no additional assumption what conceresethergy dependence of the
in-medium width, i.e. assuming that the collisional wid@shthe same energy dependence
as the vacuum width [38, 126]. This approximation is rathrade, but linked to the limits
which such a schematic inclusion of in-medium effects earwith it. Obviously a micro-
scopic calculation of the exact energy dependence of thisionlal broadening is equivalent
to a full model calculation of the in-medium spectral fuoati The estimated energy depen-
dence would be theoretically consistent but rather modetddent.

To investigate the consequence of this approximation orharsatic level, we extract
in the following a possible energy dependence of the coliagi broadening on the basis
of qualitative considerations and look at the influence that different choice has on the
shape of the dilepton spectrum. For this purpose, we at&rithe collisional broadening
which a vector meson acquires to an absorption process ofpe® + N — R— 11+ N. To
simplify, we approximate the corresponding phase spacbdyplase space for the process
(M+my) — (mr+ my) and assume that the resonance decay proceedp-asge. This
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leads to:

m/+rm)<p*(M+m\|,mN,rm)>3 (5.52)

coll __rcoll
Y (M, p) =Ty (myv,p) <M+m\1 p*(My + M, My, M)

with p* defined in Eqg. (3.12). As one can see, in this approximatienvéctor meson
threshold is shifted fromrB, to my for thep meson and from & to my for the w meson.

The choice affects the shape of #hevidth much stronger than the shape of theidth.
The influence of the choice of the energy dependence of thisioohl width is illustrated in
Fig. 5.6 for the casp = 2po and forl" 5 (po, M) = 250 MeV andr'(po, M) = 125 MeV.
In particular for thew meson the shift of the threshold leads to a large enhanceshére w
width at lower invariant masses. However, we have to conside in our calculations the in-
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Figure 5.6: Left panel: Imaginary part op meson self energy-Imzp(p,M) = my[5'(p,M) in vacuum
(full line) and atp = 2pg for Fg’t(Po, mp) = 250 MeV (dashed and dashed-dotted lines). Right panel:itmag

nary part of thew meson self energy- Imz%(p,M) = m,S(p, M) in vacuum (full line) and ap = 2p, for
%%, my,) = 125 MeV (dashed and dashed-dotted lines). For both paretsashed line corresponds to the
assumption that the collisional width has the same energgritience as the vacuum width. The dashed-dotted
line corresponds to the assumption that the collisionatiwiihs the energy dependence (5.52).

medium vector meson widths enter in the expressions fop thied w meson contributions
to the covariant form factors, see Egs. (5.43), (5.44) amd]5 whose modulus squared
determine the widthr (R — Ny*)(3.32). Thus, only in the case that the different choice for
the energy dependence of the in-medium vector meson widtltas appreciable differences
in the corresponding covariant form factors, these diffees will be visible in the dilepton
spectrum.

Let nowrz;[l] (M) be thep meson in-medium width with an energy dependence analogous

to the vacuum width anﬂ;m (M) thep meson in-medium width with an energy dependence
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according to Eq. (5.52). In correspondence we set

FY = TE (5.53)
Mg —imol 5 (M) — M2
F2 = m . (5.54)

M2 — impl 52 (M) — M2

Analogously, for they meson we set:

FY = mgl’ (5.55)
m, — imwr(*n[ ](M) — M2
2 = s . (5.56)

M2 — imel 512 (M) — M2

We refer now to theo meson. The considerations we make are, however, valid aisbdp
meson. Sinc&érz)m)2 appears in the denominator |<Ft£,”|2 (i=1,2), we can in general say
that in the region wher2 > ;1Y we havelF.2|2 < |F.Y2. Consequently, in the region
where the strict inequality is valid, the widi{R — Ny*) will decrease. However, we have
to notice that the mass region where the strict inequ#sFF&fﬂ2 < |F(£)l} % (or |F(£)2] 2> ]Fc[)l} |2
) holds is smaller than the mass region whéﬁg] > r:;m (FZ,[Z} < FZ)[l]) since\Fg]\2 ~
IFY 12 ~ 1 when(mg, — M2)2 > (meT )2 (i = 1,2). Thus, this region is typically restricted
to the region around the vector meson peak. Concerning utmeson,l'f,[z] and I'Z,m are
practically identical in the region of the vector meson peak, as can be seen fron5 eig.
Therefore we do not expect differences bet\NéﬁﬁH2 and |Fpm|2. In the case of theo
mesonrz)[z] andI'Z,[l] do slightly differ in the peak region, although the main eliinces are
not in this region but at lower masses, approximately fraghdly abovemy; up to slightly
above 3ny, due to the different thresholds. As result, we see only liiifidrences, localized
around the peak, betwe¢R/? |2 and|F’ 2. This is illustrated in Fig. 5.7 where the form
factors|F.'|2 and |F}/|2 (i = 1,2) are shown for the cage= 2p, and 94 (po,mp) = 250
MeV , I'9%(pg, my,) = 125 MeV2? The dilepton spectrum resulting from the addition of a
collisional broadening of the vector meson widths accagdm(5.52) is shown in Fig 5.8.
We observe that the contribution of theresonances, which couple only to theneson, is
practically the same in the two cases. Slight differencessaible only in the contribution
of theN* resonances around the vector meson peak. The differereesoae evident in the
case of larger values of the widths, Fig. 5.8(b). Howevegnem this case, the total spectra
differ at most by a factor 1.5

Let us conclude this discussion with a final comment. For aistent evaluation of the

energy dependence resulting frafm- N — R — 11+ N processes, one should indeed sum

Per constructioﬂFp[l] 2 and\Fp[z] % coincide at the peak. The same consideration holds fawtimeson.

10In addition one should also consider the interference terfrttse kindFA'}F(E]. These terms can drive either
a constructive or destructive interference and theretdeeriot possible to comment on their effect in general
within a simple scheme as done for g |2 and|Fg'] |? terms.

HHere we refer to the maximum value of the ratio of the two spect
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Figure 5.7: Left panel: modulus squared of tipemeson contribution to the covariant form fact65|2 in
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Figure 5.8: Dilepton spectrum in C+C collisions at 2.0 AGeV for diffeteralues of the in-mediunp and

w widths and different choices for the energy dependenceeottiiision width. The thick lines refer to an
energy dependence estimated from¥he N — R — 11+ N as discussed in the text. The thin lines correspond
to the same calculations shown in Fig. 5.4 and are shown fopecison. Left panell:'g"(po) =200 MeV and

' (po) = 60 MeV. Right panelf (po) = 250 MeV and™{3'(po) = 125 MeV.

up over all important resonances coupling to Y¥he N system, each taken with a different
weight according to its relative coupling strength, ancedeine for each mode the corre-
sponding angular momentum dependence ofrtNescattering amplitude. Moreover, the
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invariant mass squared of the intermediate resonance viimsd= (py -+ p)? which leads

to a dependence on the 3-momentprof the vector meson. It is then clear that the steps
to complete this procedure are analogous to what has alteaely presented in the previ-
ous section where spectral functions for the vector meswe haen calculated. In fact, the

V +N — R— 11+ N channel is one of the processes consistently included icalaulation

of the spectral functions, since thiztchannel is one of the channels entering in the expres-
sion of the total width of the resonance. Already from thmgie argument the importance
of using realistic spectral functions can be inferred.

Dropping mass scenario

As the next step we investigated the effect of a dropping nrassedium scenario a la
Brown-Rho. Thus, we performed calculations for an in-medigenario that differs from
the previous one by the additional assumption that the veaeson mass scales with the
density according to av, = my(1—apg/po) law, with a = 0.2. The results are shown
in Fig. 5.9 where Fig. 5.9(a) refers to the cholgg(po) = 200 MeV, $'(po) = 60 MeV
and Fig. 5.9(b) to the choidgy(po) = 250 MeV, 5! (po) = 125 MeV. The inclusion of a
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Figure 5.9: Dilepton spectrum in C+C collisions at 2.0 AGeV for diffetesalues of the in-mediump andw
widths when an in-medium vector meson mags=my (1—apg/po) is introduced. Left paneITtpOt(po) =200
MeV andl3'(po) = 60 MeV. Right panell”?(pg) = 250 MeV and™{5'(po) = 125 MeV.

dropping in-medium vector meson mass results in a glob#l shihe vector meson spec-
tral strength to lower masses. Thus, the correspondingédhieal spectrum is enhanced at
lower invariant masses with a resulting sizeable overedion of the experimental data in
the Q4 <M < 0.7 GeV region. At the same time, the experimental data arerastimated
in the region around and above the vector meson peak. Thiseigadthe lack of spectral
strength around the (vacuum) vector meson peak inducedebgrtipping of the vector me-
son “pole” mass to lower values. It is interesting to notd,tha higher energies, a recent
comparison of the dropping mass scenario to new high resnl@ERES data has pointed
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out a similar underestimation of the vector meson peak [Z&re, however, the analysis
focused only on the in-medium meson. Concerning the low mass regiog, <M < 0.4
GeV, the presence of additional strength moves the speaiaser to the experimental data
atM ~ 0.3— 0.4 GeV. However, the regiom; < M < 0.3 GeV remains slightly but sys-
tematically underestimated. In summary, one can concloaeat naive Brown-Rho scaling
Is too schematic in order to explain the low mass region. Tihding is consistent with
previous theoretical analyses of the DLS data at 1 AGeV [R933].

In-medium spectral functions

Let us now pass to the introduction of in-medium vector mgs@perties determined by
the in-medium self energies of the vector mesons calculaidn NRD+eVMD. First,
we present in Fig. 5.10(a) the dilepton spectrum obtainedrthep and w mesons are
described by the spectral functions determined negledtingedium modification of the
nucleon resonance widths. These spectral functions camisdered as “first iteration”
spectral functions. They induce a depletion of the thecakB8pectrum in the mass region
0.45< M < 0.75 GeV not supported by the data. The result can be betterstodd with
the help of Fig. 5.11, where the corresponding in-medpeand w meson contributions to
the nucleon resonance covariant form factors are shoyn=apg andp = 2pg for a vector
meson at rest in the nuclear medium (dashed lines). The esnlyghaviour of the vector
meson self energies are reflected in the in-medium form faethich do not present any-
more the simple Lorentzian-like shape typical of the vacudmparticular, we observe a
minimum positioned at & < M < 0.6 GeV between two maxima atD< M < 0.5 GeV
andM ~ 0.8 GeV!? The particular shape of the in-medium form factor is deteediby the
behaviour of both the real and imaginary part of the self gnadowever, switching off the
real part of the self energy, we observed that the depletiesgnt in the form factor between
approximatelyM ~ 0.5 GeV andVl ~ 0.7 — 0.8 GeV is mainly determined by the large value
of the imaginary part of the self energy in this region. Theelais shown in Fig. 5.12. The
increase is due to the coupling to the important resonameasely theN*(1520) for the p
meson and th&l* (1535 for the w meson. The corresponding bump structure is a typical
feature of this class of models coupling the vector mesordomance-hole states.

The inclusion of the in-medium properties of the nucleonasices in the determination
of the vector meson spectral functions reduces the valuheofmhaginary part of the self
energy in this region (see Fig. 5.12). In the case ofubhraeson, for example, the reduction
atM = 0.57 GeV is about a factor 2.5. As a consequence, the correspgpfadm factors,
shown in Fig. 5.11, are enhanced. This has an effect on tle¢ d¢the dilepton spectrum.
The dilepton spectrum obtained using self-consistenutatied spectral functions is shown
in Fig. 5.10(b). The inclusion of the in-medium propertiésh® nucleon resonances in the
determination of the vector meson spectral functions mthestheoretical spectrum closer to
the experimental data in the mass regiofB3< M < 0.75 GeV. This shows the importance of
taking into account in-medium modifications of the nucleesonances to evaluate the vector

12The exact positions of the minimum and the maxima, espgaidithe maximum at loweM, vary with
the density. This is the reason why we indicate “regions'tfi@se positions.
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Figure 5.10: Dilepton spectrum in C+C collisions at 2.0 AGeV resultingrfrthe inclusion op- andw-meson
spectral functions calculated within the NRD+eVMD modeheTspectral functions affect the branching ratios
for the Dalitz decays of the baryon resonances, as explain#ue text. The left panel corresponds to the
inclusion of vector meson self energies determined fromuwat nucleon resonance properties. The right
panel corresponds to the inclusion of vector meson selfj@gecalculated in a self-consistent iteration scheme
in which the in-medium modification of the nucleon resonangdths induced by the in-medium spectral
functions of the vector mesons is taken into account.
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meson in-medium properties resulting from the excitatiomuzleon resonance-nucleon hole
states. However, some data points remain underestimatad.refluction of the theoretical
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Figure 5.11: Left panel: modulus squared of tipemeson contribution to the covariant form factﬂ?,i,\z,

at p = po (thin lines) andp = 2pg (thick lines). The shaded area shows the vacuum valqépqﬁ. Right
panel: modulus squared of toemeson contribution to the covariant form facti,|?, atp = po (thin lines)
andp = 2po (thick lines). The shaded area shows the vacuum valu€,gf. For both panels the dashed
lines correspond to vector meson self energies calculated ¥acuum nucleon resonance properties. The full
lines correspond to vector meson self energies calculatedself-consistent iteration scheme in which the
in-medium modifications of the nucleon resonance widthsded by the in-medium spectral functions of the
vector mesons are taken into account.

spectrum due to the inclusion of in-medium effects for thet@emesons can intuitively be

understood in terms of absorption processes of vector niseshith reduce the number of

vector mesons and, consequently, the dilepton yield. kgtbnse, the underestimation of
the experimental data suggests that the NRD+eVMD model giseditoo strong absorption

of vector mesons.

Concerning the mass regidh > 0.4 GeV, although the agreement with the experimental
data is not perfect, the level achieved can be considereteaipple if one evaluates the
underlying theoretical challenge: the calculation préseémere represents a parameter-free
determination of the in-medium dilepton spectrum. We ojgevéthin an approach which
attempts to describsimultaneously with the same model parametéispton and vector
meson production as well as their in-medium modificatiortse Task is complicated by the
current uncertainties especially on tR&lw couplings due to the lack of experimental data
on e.g.R— Nw decay modes. One possible reason for the present undeagstinof the
experimental data can of course lie in those poorly comsttheVMD model parameters, in
particular theRNw couplings. The probably most relevant case isNt€L535 resonance,
with its strong coupling to thedx meson predicted by the eVMD model though a decay of
this resonance thlw has not been measured yet. Another possible reason can hected
to the fact that in particular th@ meson spectral function does not result to be normalized
in the mass region of our interest. The violation of nornatlan ranges from about 30% at
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Figure 5.12: Left panel: Imaginary part of the meson self energy in vacuum (dashed-double-dotted line),
at p = po (thin lines) and ap = 2pg (thick lines). Right panel: Imaginary part of the meson self energy

in vacuum (dashed-double-dotted linelpat pg (thin lines) and ap = 2pg (thick lines). For both panels the
dashed lines correspond to vector meson self energieda@dirom vacuum nucleon resonance properties.
The full lines correspond to vector meson self energiesutatied in a self-consistent iteration scheme in which
the in-medium modifications of the nucleon resonance witlittisced by the in-medium spectral functions of
the vector mesons are taken into account.

p = po to about 45% ap = 2po.13 In principle, this is not an inconsistency, since spectral
functions should obey the sum rule in the entire invarianssmange (up t = o) and
not necessarily already in the finite mass interval in whiehwork. On the other side, one
would expect high invariant mass regions not to influencaisagantly the results we can
extract for lower masses in the framework of phenomeno&doev energy models.

Regarding the low mass regiam; <M < 0.4 GeV, the introduction of in-medium spec-
tral functions does not provide a solution for the undenesation of the experimental data.
On the contrary, due to the finite value of the imaginary pathe self energy am ~ 0 for
high vector meson three-momerggImZi®(M = 0) # 0 for p # 0), at high momenta we
have|FR, (M = 0)|2 < 1 with a consequent reduction of strength. We can therefamelade
that to explain the low mass region one has to take into a¢auther effects. It has been
shown in Ref. [38] that the account for decoherence effediamres the theoretical spec-
trum in the low mass region. The inclusion of such effectsravea matter of this work,
therefore we do not discuss them here and refer the readef.t{8Bffor the description of
the decoherence as an in-medium effect. Surely, it will beresting to take the effect of a
partial loss of quantum coherence in medium into accounttaré investigations. For the
sake of completeness, we would like to mention that theqaaily significant contribution
from pnbremsstrahlung of Ref. [128] has recently been suggestefd@ssile candidate for
the solution of the DLS puzzle [127]. To our present knowksdipe discrepancy between
the results of [128] and previous works [125, 130] has nohlm@rified yet, therefore we do
not comment further on this.

Bntegral evaluated in the mass region up 16 GeV.
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Chapter 6

Summary and Conclusions

Combining a nucleon resonance dominance model with an extienelctor meson domi-
nance model we have determined the in-medium modificatidnishathep and w mesons
experience in nuclear matter due to a finite baryon densitgdtition, non-resonant contri-
butions to the vector meson self energies have been inagstigFor both vector mesons we
find a substantial broadening of the width and a significaiit ehspectral strength down
to smaller invariant masses. In particular at small momehtacoupling of thgp meson to
theN* (1520 N~ state and of thex meson to thé\*(1535N 1 state leads to a pronounced
double-peak structure in the spectral function. In a firgirapimation the vector meson
spectral functions have been calculated from vacuum noalesonance properties. Going
beyond this first approximation, we took into account thenedium modification of the
nucleon resonance widths induced by the in-medium modificatof thep andw mesons,
which appear among the resonance decay products. This teadself-consistent itera-
tive calculation of the vector meson spectral functionse $alf-consistent iteration scheme
mainly reduces thal*(1520N~1 andN*(1535N ! peaks.

As the next step, we investigated the influence which in-omadmodifications of the
vector meson properties have on the dilepton productianiraheavy ion collisions. The
dilepton spectrum has been calculated exemplary for thetioeaC+C at 2.0 AGeV for
which experimental data have been recently released by MRES$ collaboration. This en-
ergy range is complementary to the ultrarelativistic regggince it probes nuclear matter at
high net baryon densities and moderate temperatures, difgjeton measurements at the
SPS (NA60, CERES) and at RHIC (PHENIX) probe the electromagmesiponse at low
net baryon densities and high temperatures, most likelg ae¢ hadronic but partonic mat-
ter. Thus the present investigations are restricted to nateleelativistic energies where the
medium is dominated by nucleons and their excitationsnueleon resonances. We investi-
gated several possible in-medium scenarios. First, wadea in-medium effects following
standard treatments, namely a schematic collisional ler@ad of the vector meson width
and a dropping of the vector meson mass according to a Browrs&dimg law.

Within the schematic collisional broadening scenario wd fhrat the experimental data
are still slightly overestimated in the region around thetee meson peak when values of
M (Po) = 250 MeV andr(po) = 125 MeV for the total vector meson width at satura-
tion density are used. Thereby we assumed that the in-medidths of the vector mesons
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increase linearly with density. We discussed the approt@nanade when assigning an en-
ergy dependence to the vector meson width. We, however,adifinad too large differences
among the various possibilities. Nevertheless, we wanbitatput the theoretical limitations
which such a schematic treatment carries with it.

In the in-medium scenario according to which the vector mesasses decrease linearly
with density (Brown-Rho scaling) we find that, even when thdéisiohal broadening of the
vector meson widths is additionally taken into accountdiesponding dilepton spectrum
overestimates the experimental data at invariant masdew ltiee vector meson peak and
underestimates them in the region around and above therwraegopn peak. This is a conse-
guence of the global shift of the spectral strength down welanvariant masses predicted
by this scenario, with a consequent lack of spectral streimghe region of the vector meson
peak.

In a next step, we went beyond the schematic inclusion ofealiom effects and included
the vector meson in-medium properties consistently, heéetims of the in-medium self en-
ergies microscopically calculated by combining the nucleesonance dominance and the
extended vector meson dominance models. Doing so, we dtfentpe first time to achieve
a consistent theoretical description of dilepton specased on a unified model for vector
meson and dilepton production as well as their in-mediumifivadions. This surpasses the
standard treatments, where the value of the total width atemglensity enters as an input
parameter and scaling laws for the width are based on asgumstr educated guesses. We
find that self energies determined from vacuum nucleon gsm properties give a poor
description of the experimental data in the invariant maggon 045< M < 0.75 GeV. On
the contrary, the self-consistent iteration scheme givessonable description of the data in
the same mass region. This demonstrates the importanceladiing in-medium resonance
properties in a consistent way for the determination of thetar meson spectral functions.
Taking into account the large uncertainties in the cougliofthe nucleon resonances, es-
pecially to thew meson, and the fact that this stands as a parameter-freenitedéon of
the in-medium dilepton spectrum, the result can be consitlas satisfactory. However, the
comparison to data suggests that the in-medium scenariicprd within the present ap-
proach is still too strong. For the low mass region of theplde spectrumri; <M < 0.4
GeV) we find that the inclusion of in-medium spectral funo®f thep andw mesons do
not improve the theoretical result and experimental dateane slightly underestimated.

In summary, we believe that the present investigationsigeo&n essential step towards
the understanding of dilepton spectra in heavy ion coliisiand vector meson properties
in matter. Forthcoming data, in particular for heavy systemill certainly help to further
reduce still existing model uncertainties.
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Notation

Units and metric. We use unit$s = c= 1 .The metric signature is
gl.lV = (_'_7 T _> .

Indices. Greek indices take valugs=0,...,3, while spatial indices are denoted by Latin
letters,i, j,... = 1,2,3. Repeated upper and lower Lorentz indices are summed oyer, e
ABH = zﬁ:OAuB“. Controvariant vectorsdenoted by superscripts, are written as

A= (AP A) = (A0, AL A2 A3) |

whereagovariant vectorsdenoted by subscripts, are defined by

Au=gnA’ = (A% -A) .
A scalar product of two four vectors is defined by

A-B=AB'=A'B,=AB°-A.B.
The space-time four-vector is
=0 x) = (t,%)
and the four-momentum is given by
p'=(p".p) = (E.p).

The components of the controvariant four-gradient are tehioy

oH= %p = (%,—D) :

With our choice of signature the four-momentum operatoeesented on functions of the
coordinates agh = +io*, sop? = id/0x° =id/dt andp' = id' = —id; = —id/0x. Therefore
p' = —i0' with O' = 3/0x' = d; or, in vector notationp = i andd = d/dx. Finally, we
also use the Feynman slash notation: for a four-vetowe defineX = ay*. In particular,

aZV“au
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Dirac matrices. Diracy matrices satisfy

WY =Wy +yv =297 (A1)
Thereforey? = 1 and, for each, (y)2 = —1; \° is hermitian while, for each y' is antiher-

mitian, _ _
W) =y, ¥)'=-v,
or, more compactlyy)" = yPyWP. The matrixy® is defined as
P = YRR
and satisfies

V)P=1 (»'=y, {Y¥=0.

We also define

0" = VY. (A2)

A particular usual representation of thhenatrix algebra is the so calledandard represen-

tationin which |
p- (33 V(39 0.

The Pauli matrices are
01 0 —i 1 0
1 2 __ 3 _
=5 o) =(1 o) 7= 5)-

ool =38 +iglkgk.

and satisfy

In the calculation of cross sections and decay rates we a#ted to evaluate traces of prod-
ucts ofy matrices. As a consequence of the commutation algebra {#eg)can be evaluated
without ever explicitly calculating a matrix product. Sonmeful trace identies are:

Tr[laxal =4, (A.3)
Trace of an odd number gf/'s vanishes , (A.4)
Trigd | =4a-b, (A.5)
Trid P ¢ d] = 4[(a-b)(c-d) - (a-c)(b-d)+(a-d)(b-c)] (A.6)
Trlys] =0, (A.7)
Triys A 8] =0, (A.8)
Trlys & B ¢ d] = digypoato’cd® (A.9)

whereg g = +1(—1) for y,v,A,0 an even (odd) permutation of02,3 and 0 if two
indices are the same.
Other useful results for simplifying trace calculations:ar

w o= 4, (A.10)
way = -24, (A.11)
ARy = 4a-b), (A.12)

VWABg = -2¢p4. (A.13)
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Fermions. For fermions, we use the covariant normalization in whichhage E parti-
cles/unit volume. Thus, we have the orthogonality relation

uTu® = 2B, VWS = 2E8

withr,s=1 2. It follows that

Zu(s)(p)ﬂfs><p> = p+m,
s=1.2

Z VI (VS (p) = p—m. (A.14)
s=12

Electromagnetism. The electron charge is denoted gyande < 0. As is customary in
particle physics, we use the Heaviside-Lorentz system u$ dor electromagnetism. This
means that the fine structure constant 1/137 is related to the electron charge by

B e
4mhe ’

or simplya = €/(4m) when we seti =c = 1.
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Appendix B
The y* — ¢7¢~ decay width

We want to calculate the dilepton decay width of a massiveuai) photory*. Let beM the
photon mass. In the rest frame of the decaying virtual phdtendecay ratg* — ¢/~ is
given by

dry*—¢+¢7) = oM Z|ﬂ|2 ) dCDz (B.1)

whered®, denotes the differential two-body phase space. The canepg Feynman
diagram is shown in Fig. B.1, where the various factors nesaledmpute the amplitudd
are shown in detail.

Figure B.1: Feynman diagram for thg' — ¢/~ decay.

Applying the Feynman rules, one has:

4 = —ieg)(K)U(p1, HVV(p2. &) . (B.2)

To obtain the unpolarized decay width, we must avera@jé over the polarization of the
initial virtual photon and sum over the spins of the final tey:

yAr=¢ zss“zupl, V(P2 )V pz, )Y u(pr. S (8.3)
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The factor% is due to averaging over the initial virtual photon phototapi@ations. Using
the completeness relation for a massive vector particle

Z Sﬁ(k)ey\( —Ow + k:izv ) (B.4)
)
where the sum is over the three polarization states of theimgagector particle, one obtains
— 410
SR = 5t ) 0o 9V P2 9)¥Tp2. )V

- %mz{—mpl,s>y“v<pz,wv?pz,s/)vuu(pl,s)

1_
+QU(D1,S) kV(pz,S/)\sz,S/) kU(pl,S)} . (BS)
The second term vanishes due to current conservation. Tihersgpmpleteness relation,
(A.14), allows the sum overu andw states to be performed and one finds
— 4100
Z A2 = =T+ m)¥(P2 — M)W + O}

— 4Tm{—Tr[p1y“ Bovu—m Vyul}
———" ~~~

-2 4
410

= 5 {2Tr{p1 o] +4m7 Tr(Laxal}
—— N——

4p1-p2 4

— 8oy po) + 1607) (8.6

where we made use of the trace theorems (A.4), (A.11), (A(20%) and (A.3). Conserva-
tion of 4-momentum at the vertex impoke- p; + p2. Therefore one has

k=M? = (p1+p2)?=pi+ P3+2p1-po =2 +2p1 - P2

= P1-P2= o mf .
Introducing (B.7) in (B.6) we finally obtain
2
Z|;4|2: 4E8{M e+ 2n) = 16m{MZ g} . (B.8)
Substituting in Eqg. B.1, one obtains:
1 4a
ot 2
dr(y —707) = e (M2 + +2m2) da, . (B.9)

Due to the angle independence of the matrix elements, tHe artggration simply leaves us
with the integrated two-body phase space, so that

1 4a

o 3 —(M24+2nm7) D, . (B.10)

ry —¢707)=
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The two-body phase space is

T 4me
Do (M, My, my) = S\ 1- M—f . (B.11)
Substituting (B.11) in (B.10) one finds
_ a 4me
YA ):W(M2+2m§) —M—zf (B.12)
or equivalently
a 4
Mr(y*ﬁz+e—)—§(|\/|2+2m§) —M—f. (B.13)
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Appendix C

Non-resonant contributions to the
forward VN scattering

C.1 The Compton-like contribution

We want to evaluate the vector meson-nucleon forward soagtemplitude for the Compton-
like scattering process shown in Fig. C.1. The Compton-liketedng corresponds to non-
resonans- andu-channel vector meson-nucleon scattering. To leadingrandgensity, the
forward scattering amplitude determines the contributmmhe vector meson self energy
in nuclear matter due to the excitation of nucleon-nucleole lstates. The corresponding
vector meson self energy diagram is depicted in Fig. C.2. Mereestrict ourselves to
the calculation of the unpolarized forward scattering amge, treating thgp andw meson
separately.

V(k) V(K) V(k) V(K)

\Y V73 N

A\ 4
\Y V4 -z

p+k p—k
(@) (b)
Figure C.1: Feynman diagram for thidV — NV Compton-like scattering.

C.1.1 wmeson

We describe theodNN vertex according to the interaction Lagrangian

OLwNN = GuNNPY YA, (C.1)



90 Non-resonant contributions to the forwaftt scattering

A\ k
A\ W
A\ P
k:\ p+k Y
A\ \
A\
A\
A\ \\\ k
A\ p—
p k \
\\\\ k\\

Figure C.2: Vector meson self energy in matter to lowest order in derthityto the/ N Compton-like scatter-
ing.

whereA,, denotes the> meson field andp the nucleon field. Th&Nw vector coupling is
taken from the Bonn one-boson-exchange model [84] for nuetealeon scatterin@fne =
159).

Let A be the amplitude for the process depicted in Fig. C.1(a)#pthe the amplitude
for the process depicted in Fig. C.1(b), which differs frore thne of Fig. C.1(a) for the
exchange of the initial and final state vector meson. Noteftindorward scattering one has
K =kandp = p. The two amplitudes\; and 2% are related by crossing symmetry, so
that one has\; = M3 (k — —k). Therefore, it is enough to calculate only one of the two
amplitudes. We will perform the calculation 8f;.

Application of the Feynman rules gives:

%“ngNV“)“(S><p>s9)*<k>s&”<k>vv (€2)

wheremy denotes the nucleon mass and the 4-momentum assignmettig fagoing and
outgoing particles are the ones shown in Fig. C.1(a). Perfaythe average over the nucleon
spins and the photon polarizations one has:

iy = 0 (p) (igenny’)

=553 >W (gan) U () (el (9
N p+ K+m (€3
:_igszNégsv (ke Z_(S WWV“ (p) -

The sum over the photon polarizations and the nucleon spinde evaluated with the
help of the completeness relation for a massive vectorghariiB.4) and of the spinor com-
pleteness relation (A.14) respectively. We then arrivéatfollowing expression:

94, = —igéNNé< Gup + kﬂ;“) (p+k)12—m,%, TH(B+mu)y’ (+ K-+ M)y
1

_ 1
= 0o g s ap ke BT M) Ya(B+ Kt M) (C.4)

~ighng o i g T KB Kemy) K
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Here we appositely separated the contribution proportitantine gy, term of the complete-
ness relation (B.4) from the contribution proportional te Kk, term. We perform this
separation in order to show that the latter contributiothalgh not vanishing for the single
amplltudele or 5, it does vanish in the sum of the two amplltudm 1 M. Thisis a
consequence of current conservation. The consideratioangletely identical to the one
reported in many textbooks when treating the classical Comgtattering (see e.g. [135]).

Let us now evaluate the two traces of Eq. (C.4) with the help®tiace properties (A.3)—
(A.6), (A.10) and (A.11):

Tr[(B+ M) Yu( Bt K+ ma)V] = =2 Tr{( B+ my) (B+ K—2m))]

—2(¢+E0+4mN
=2 Tr[&;}zﬁ—i— P K—2m] (©5)
= —2[4(p-k) — 4ng]
= —8[(p-k) -]
TrI(B-+ ) KB+ K-mw) K =Tr[B KB I B K KK+ KK
K2 2
= 4[(p-K)* — MRK* + (p-k)?]
+4K2(p- k) + 4mgk?
=4(p-K)[2(p-k) +K’]
(C.6)
where we useg? = n¥, and KK = k. Substituting in (C.4) we obtain:
— . -k
i = +IgéNN%m{—8[(p-k> —nﬁ]+4(pkz )[Z(p-k)+k2]} - (C7)
Hence
1 —8[(p-k) —n? K
= =g ﬁ,NN{ I[<(2p+2)p-k il +4(pk2 )} . (C.8)
Using crossing symmetry we obtaivly:

The sum of the two amplitudes gives the unpolarized forwasadtering amplitude for
the w meson Compton-like scattering:

—8[(p-k) —nmg] _ 8[(p-K)+mi] ,(p-K) ,(p-K
k21 2p-k kx—2p K K2 K2
i Ly e - -| (c.10)
U0 Okvky
_ 8 5 2(p-k)?+ gk
T 3YN T a2

— — 1
M+ Mo = égéNN
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We had already anticipated that a cancellation between dheilutions proportional to
the kyk, term of the photon completeness relation would occur in the 30, + M. The
cancellation can be directly read from Eg. (C.10).

C.1.2 pmeson
We describe theNN vertex according to the interaction Lagrangian

gpNN

SLENN = ljJG“VljJFW (C.11)

where
W — gHAY — gV AH | (C.12)

A, denotes the rho meson fielfl, denotes the nucleon fieldy is the nucleon mass and the
NNp tensor couplinggnne = 19.8) is taken from the Bonn potential [84]. The derivative
coupling leads to a momentum dependence optkbl vertex. This can be explicitly shown
by decomposing the vector meson field in terms of creatioreamehilation operators

3 .
Au(X) = / (2Tr)d3—k\/2_Ek;[£E‘M(k)a( e gV (k)aly, | € (C.13)

and writing down the corresponding expressiotf8f:

Fv = 0pA, —0vA,
d3k —ikx
= /(2n3¢fz{ pk(=iky)e

[’ ()ap (—iky) € —'kX+s( " (kyaly, y (+iky) €7}

3 .
= /(2T[)d3—\/2_Ek ;{—i ey (k) — kveg\)(k)]a(x),k e X
kel (k) — kel (k)Jaly, , €% (C.14)

+e0" (K)afy, y (+iky) €

Thus,Fy can be written as
Fv = / % EN (Kan e ™ +EQ (k)al, & (C.15)
W (enRy2E ; w Ak v U900k -

when we define

EQ (k) = —ifkel” (k) — kel (k)]

B (k) = +i kel (k) — kel (K)] -

The expression for the meson Compton-like scattering amplitude can be written down
using the standard Feynman rules, provided that one agsitims external vector meson line
the termEg)) in place of the standard polarization veca((;xr). For analogy, in the following

we will call the tensoEﬁC) “polarization tensor”.

(C.16)
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Again, we are interest in the calculations of the forwardteceng amplitude. We there-
fore setk’ =k, p’ = p. As for the case of the meson, we will calculate the amplitudi;
and derivelM, from crossing symmetry. We find:

3= 0 () ( Gt (P L PG ) (EF (9 (€.17)

2my

and

N1 1
N?%% Y prr—mE

X% 3 0¥ (p)a™(p+ K+my)aul® (p)

%1l EX(
~ it 33 (g, 3 5 KEW K
i2
xS TR — PV (B K ma) (Y —Vy)u (p)
. gzNN 111
= g 32475k Y B8 KERK
X Tr[(B+mn) (Y'Y = VY (B+ K+ mu) (WY —y'y)] (C.18)

The second line of (C.18) is obtained from the first line by Xy substituting the expres-
sion (A.2) of thea™ andco*¥ Lorentz tensors. The use of the spinor completeness nelatio
(A.14) leads then to the third line.

Let us now derive the “completeness relation” for the “piaiation tensor”:

Y Er" (0EW) ;[krsé“*w kpet <>] [kpev (k) — ket (k)
— ek, zsp el (k) — kek 3 e (ke (k) (C.19)

—koky 3 V" (e () + Kok, T M (K (K) -
A A

We have now to substitute the completeness relation (B.4a forassive vector particle.
As can be easily seen from (C.19), a mutual cancellation oekpgessions obtained by
substitution of the term of (B.4) proportional to the vectoesan momentum occurs. We
find:

Z ETp Euv = ke (—pv) — Keky (—Gpy) — KoKu(—Gw) + Koky (—Grp)
= — [krkpgpv — keky Qo — KoKuGrv + kkagT}.J . (C.20)

Thus, in this case, the two amplitud@ and 4% are each separately gauge invariant quan-
tities.
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Substituting (C.20) in (C.18) we obtain:

— gpNN 1 1
~ 32m32p- kr k2~
{ keku Tr[( B+ ) (Vo — WY') (B+ K+my) (VY — YW
—keky Tr[(B+ M) (Y Yu— YY) (B+ K+mn) (WY —y'W)]
—koky Tr[( B+ M) (WY — YPW) (B4 K+my) (WY — YW
+hoky Tr [(B+mn) (Y — YY) (B+ K+mn) (WY —y'VW)] }
gpNN 1 1
32m2 32p- k+k2
{Tr[(B+mn) (Ko —w K) (B+ K+my) (K — Y K)]
+Tr[(p+my) (— kvu+vu K) (Bt K+mn) (Y K= k)]
FTr[(B+mn) (= K+ Kw) (B+ K+mn) (K — ¥’ K)]
+Tr [(B+m) (Yu K= Kw) (B+ K+mn) (W K= k] 3. (C.21)

The four traces are identical. Thus:

— gpNN 1 1
32m2 3 2(p- k)+k2
4Tr[(p+mN)(kvv Yo K) (B4 K+my) (K =y’ K)]
gpNN 1 1
8ng, 3 2(p- k)+k2
Tr (P Kpw— Py K+my Ky —myw K) x
(rﬁ Ky — By’ K+ Ky — Ky K+my Ky’ —mny’ K) ]
B gpNN 1 1
8m2 32(pkrke”
[pkyvpkyv B Kw gy’ k+k2pkyvyv_pkyvkyvk
— B KB KY'+ By K By’ K=K oy Ky’ + B K Ky K
R Ky Ky — R Ky K—mRve KR+ miw kY K]
(C.22)
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The expression can be simplified using the properties (A(£0).3) andkKK = k?. One finds:

PRy pKY =4(p-k) BK,

BKw By K=-2pKPK .

K% B Ky’ =42 p K,

BKw Ky K=—2PKKK=—-2pK ,
P KPRy =-2pKPBK,

By K By’ K=4(p-k) BK ,

K By Ky = —2k2 pK

By KKy K=K pyy’ K=4Kk% pK |,
M Ky Ky = —2m K K= —2mgk?
M Ky K=4md K K=4mgk? |
NVv W mzkzyvy —4m2k2
M Ky K= —2m§ KK= —Znﬁkz : (C.23)

—— —IgpNN 1 1

8mg, 3 2(p- k)—|—k2
Tr(4(p-K) PK+2 PK P K+4K? p K+2k? pK

+2 PK P K+4p-k p K+ 2K p K+4K% p K

—2m,%,k2—4m§,k2—4mﬁk2—2rr§,k2]
—IgpNN 1 1

8mg, 3 2(p- ENZE
{8(p-K)Tr[p K+ 12Tr[p K — 120K Tr [1g.a] +4Tr[p KB K } .

(C.24)

The traces can be easily calculated using the trace ide=n(iti.3—A.6). We find:
— gpNN 1 1

M = "8 32(p k) k2
{32(p-k)?+48k*(p- k) — 48R k? + 16 [(p- k)2 — mE k% + (p-K)?] }
g 1 1
- 8‘;:2’\'32[3 ke 164(p-k)* —64nRi® +-48K(p-K)}
AN 1 1
- T:ZN§2(p-k) @ 16{4(p-K)* — 4y’ +3K*(p-k) }
g 2
= ﬁ%N 3 2(p- k e {4(p-k)*— 4ngk*+3Kk*(p-K) } . (C.25)
Hence
My = — gpNNZ ! A(p-K)2 — a3 k2 + 3k%(p-k C.26
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The expression fof, can be obtained a& = M (k — —k). Thus:

v gzNN
My =2
N

: +kz{4(|0-k)2—4m§,k2—3k2(p-k)} . (C.27)

2
3-2(p-k)

The unpolarized forward scattering amplitude for themeson Compton-like scattering

is then:

- 2 2 12
M]_—}—Mzz gPNNngZmﬁlk +(p k)

7 3 T 4(p. 17 (C.28)
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C.2 Theo-exchange contribution

In this Section we evaluate the vector meson-nucleon fahwaattering amplitude for the
process involving the exchange obameson shown in Fig. C.3. The process corresponds
to non resonarttchannel vector meson-nucleon scattering. To leadingrandgensity, the
forward scattering amplitude determines the contributemthe vector meson self energy in
nuclear matter. The corresponding vector meson self engigjyen by the tadpole diagram
shown in Fig. C.4. The diagram describes the excitation ofemncnucleon hole states due
to the exchange of @ meson.

V(k) V(K"
\atkt\ ’55"”4’
s T -
Yol
|
N(p) N(p')

Figure C.3: Feynman diagram for thdV — NV scattering proceeding via the exchange ofraeson.

n =
=

Figure C.4: Vector meson self energy in matter to lowest order in derthity to the exchange ofameson.

TheoNN coupling is described by the interaction Lagrangian
OLoNN = GonNPYO (C.29)

whereo andy denote the sigma meson and nucleon fields respectively. dumding gonn
is taken from the Bonn potential [84].
The interaction Lagrangian describing the coupling betwtbec meson and the vector
mesonV (V=p,w) is
SLovy = —g"% FWEWG (C.30)
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where
FHW = gHAY — oV AH | (C.31)

AH denotes the vector meson field amg is theo meson mass used as a scaling mass in the
oVV Lagrangian in order to makgy,yy dimensionless. The determination of the coupling
constantgsyy has been discussed in Section 4.3. The a priori unknown diggv@ has
been assumed such that the corresponding vector mesangedfy is attractive, in analogy

to the attractive part dIN interaction. This follows naturally if one thinks at tbeexchange

as an effective & exchange process where the intermediate states are dethinpistates

of energies higher than the vector meson mass. Foptheeson an example of such a
process with an intermediate particle-hole state is shown in Fig. C.5(b). On the basis of
this argument, the same assumption has been made is Ref. [136]

p p p p
\\\\ ’/,/ \\\\ /,/’
MRS 2” s .?

S w 4 RS P
N 2 S w 4
?::::‘ > ___=.’/
| ' m | |

N N N

() (b)

Figure C.5: The 2rexchangeN interaction (a) and the correspondipgneson self energy in nuclear matter

(b).

Application of Feynman rules leads to the following expre@sgor the unpolarized for-
ward scattering amplitudé/(= k, p’ = p):

— 11 . . [ S S * \V)
iA=5323 (‘g%) (Gon) g 20 (AU (PEL" (OEWM () (C:32)

with Ef@)*(k), EW®X) (k) defined in (C.16) . The factor 2 is due to the symmetry of the
diagram of Fig. C.3 under the exchange of the initial and fitetlesvector mesons. Since
p' = pwe haveq= p' — p= 0. Thus, performing the sum over the states with the help of
the spinor completeness relation (A.14), we find:

= _ :ovv 11 (A)x )
Iﬂl - |W90NN§¥Tr[p+mN] ZEHV (k)E“v (k)
_ govv W)
= —j=— OJoNN = 3 m%4mN ZE E (k) (C.33)

where we used the trace identities (A.3) and (A.4) to obtaénsiecond line .
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Let us now evaluatg , E5* () W™ (k) separately:

3 Ew (OB = 3 () ey ()~ kol () (=) (60" () — K'e )
A

_ Z[kzs\(,”*(k)s"m(k) +k2€£l)\)*(k)€“()\)(k)]
A

= 2k22sv“ '™ (k)

= ZKZZS k)g"%e (k)

= 2k29“°zsv (Keg) (k)
A

kvko

k2 a
2 k2

= 2k°[— gV°gvo+k2]

= 2K?[—4+1]

= —6k?. (C.34)

= 29" [~Qvo + 5

Substituting (C.34) in (C.33) we obtain:

i7— g‘NV Gonn 5 m% Ay (—6K2) . (C.35)
Hence
— 1
q- g;‘é Y gonn 2 4 2Kk2 (C.36)

Is the unpolarized forward scattering amplitude.
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Zusammenfassung

Motiviert durch die Erwartung, dass eine Signatur fir dieediéirherstellung der spontanen
Symmetriebrechung im chiralen Sektor in geeigneten Erpenrten gefunden werden kon-
nte, wurde in den letzten beiden Jahrzehnten sowohl thechedls auch experimentell an
den Eigenschaften von Hadronen in hei3er und dichter Magesfiorscht. Man erwartet, daf3
sich durch den chiralen Phasentibergang die Hadronenelgdten andern wirden, ins-
besondere wird die Beziehung zwischen MediummodifikatiashemHadronenmassen und
der Restauration der chiralen Symmetrie in Materie endti@iehte und hoher Temper-
atur seit langem diskutiert. Nach den Vorhersagen wird Kalage Kondensat, das durch die
spontane chirale Symmetriebrechung einen Vakuumerwgstuert erhalt, mit zunehmender
Dichte und Temperatur abnehmen [1, 2, 3, 4, 5, 6]. Bringt marMidiummodifikationen
der Hadronenmassen direkt mit der Anderung des skalareddfsates in Verbindung, ware
eine dhnliche Abnahme der Hadronenmassen mit zunehmenclgend Temperatur zu
erwarten, wie von Brown und Rho vorgeschlagen [7]. Diese ldgtrdie Suche nach Signa-
turen in verschiedenen Kernreaktionen an. ExperimenteSoiitverionenstdf3en bieten die
Moglichkeit, Hadroneneigenschaften bei hohen Tempezatund Dichten weit oberhalb
der normalen Dichte zu untersuchen. Aul3erdem werden daduExperimente, in denen
elementare Hadronen mit Kernen zur Kollision gebracht eeyeingesetzt. Die Anstren-
gungen im Bereich der Hadronen wurden hauptséchlich aufedthten Vektormesonen
konzentriert, da deren direkter Zerfall zu Dileptonenpaatie Moglichkeit bietet, die Medi-
umeigenschaften von Hadronen in einem fast ungestortentiBeskanal zu untersuchen.

Nachdem die Suche nach Mediummodifikationen von Vektormasdhren historischen
Ursprung in der Verbindung von Absenkung der Vektormesoresmse mit der Skalierung
des chiralen Kondensates hatte, wurden auch Modifikatideerspektralen Eigenschaften
der Vektormesonen im Kontext von Hadronenmodellen umfakaatersucht. Durch Vielkor-
perkorrelationen (dressing) wird oft eine signifikante Radwng der Teilchenlebensdauern
bewirkt, was in einem “Schmelzen” der Mesonen in Kernenltiest

Die Verbindung zwischen Hadroneneigenschaften und ihreditdnmodifikationen ein-
erseits und den Anderungen des nichtperturbativen Quack@Qiuonkondensates durch ein
Medium andererseits ist nichttrivial. Einen Ansatz dafildén Analysen basierend auf
QCD-Summenregeln [20], die die Vermutung der Absenkung dsktdrmesonenmassen
bei endlicher Dichte (Brown and Rho [7]) unterstitzen, jedocbh mit relativ hohen Un-
sicherheiten verbunden sind.

In [21] wurde gezeigt, dass die Summenregeln nur begrenétgidhkeiten fur Vorher-
sagen in Bezug auf die spezifischen Eigenschaften wie dieeMuaes die Breite der Hadro-
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nen haben, da Integrale Uber die spektrale Verteilung dekarda laufen. Damit kann
man Masse-Breite-Korrelationen eingrenzen, d.h Regionamier fiktiven Masse-Breite-
Ebene. Im Fall dep Mesons beispielsweise sagt die Analyse nach den Summémrege
raus, dass die spektrale Starke der Mesonen in Kernmatekieineren invarianten Massen
verschoben wird. Es ist jedoch allein anhand der Summelaregigsen nicht moglich zu
bestimmen, ob diese zusatzliche Starke durch Absenkungaese oder Stol3verbreiterung
entsteht.

Die erste experimentelle Beobachtung der Modifikation spékt Eigenschaften degs
Mesons in heil3er und dichter Materie geht zurtick auf das 1890, als Dileptonenspek-
tren in ultrarelativistischen Schwerionenstéf3en von deREE [22] und HELIOS [23]
Kollaborationen am CERN gemessen wurden. Die gemessengutd@ienspektren zeigten
eine deutliche Erhdhung relativ zu Standardquellen (hadroocktail) in der Region un-
terhalb des Vektormesonpeaks, was eine generelle Vebgoigeder spektralen Starke zu
kleineren invarianten Massen nahelegte. Es konnte jedoathdlen Vergleich von theo-
retischen Berechnungen und experimentellen Daten nichéigekerden, ob die spektrale
Starke bei kleineren Massen mit einer Absenkung der Masgerin [7, 20] vorausgesagt,
oder einer Ausdehnung der Spektralfunktion durch Stolsegdsung, wie in Rechnungen
hadronischer Modelle erwartet [24], verbunden ist, waghsdichlich durch die Auflésung
bei kleinen Massen in der Region um den Vektormesonpeak ¢pediar. Neuere Mes-
sungen der Dileptonenspektren in SchwerionenstoRen rharkd Auflosung, die von der
NAG60 [25] und der CERES [26] Kollaboration gemacht wurden gustiitzen das Szenario
einer Mediumverbreiterung dgsMesons anstelle einer Massenverschiebung.

Eine zweite Reihe von Schwerionenexperimenten wurde bdrigeren Energien von
1.0 AGeV im Laborsystem von der DLS Kollaboration am BEVALAZ7[ 28] durchge-
fahrt. Auch in diesem Fall wurden die Dileptonenspektrerd@n Region kleiner Massen
von den Transportrechnungen unterschatzt, im Gegensaihrdichen Messungen an den
elementarerp+ p und p+ d Systemen. Diese Situation verbessert sich nicht wie ina-ultr
relativistischen Fall, wenn man Mediumspektralfunktioroeler ein Szenario der Massen-
absenkung bertcksichtigt [29, 30]. In diesem Energiebbraier die Phase hoher Dichte
und niedriger Temperatur untersucht, wird die experimenkage jedoch mit den schon ex-
istierenden Daten und den zukinftigen Messungen der HAD&!&oration an der GSI [32,
33] signifikant verbessert werden.

In dieser Arbeit wurde eine systematische UntersuchungvderVektormesonen im
Medium erhaltenen Eigenschaften und ihres Einflusses aWilieptonenspektrum in Schw-
erionenstdlRen durchgefihrt. Die zeitliche Dynamik den&asionenreaktionen wurde mit-
hilfe des Relativistischen Quanten—Molekular—DynamilariBportmodells (RQMD) beschrie-
ben.

Die Mediumeigenschaften dprund w Mesonen in Kernmaterie wurden durch ein Nuk-
leonresonanzmodell kombiniert mit einem Vektormesonaamz-Modell (VMD) bestimmit.
Man geht dabei von der Annahme aus, dass die dominanterei\éakneffekte durch die
Ankopplung der Vektormesonen an Nukleonloch-ResonanedungenRN1) beschrieben
werden kénnen. Die Ankopplung elektromagnetischer Strémeadronen erfolgt im Rah-
men des etablierten VMD-Modells tber intermediare Vekesonen. In dieser Arbeit wurde
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das in Tubingen erweiterte VMD-Modell benutzt. Zusatziweérden nicht-resonante Bel-
trage zur Selbstenergie der Vektormesonen berlcksichigtbeide Vektormesonen wurde
eine Verbreiterung und eine signifikante Verschiebung gek8alstarke zu kleinen invari-
anten Massen gefunden. Die Kopplung gédesons an deN*(1520N~! Zustand und des
w Mesons an dehl*(1535N~1 Zustand fiihrt insbesondere bei kleinen Impulsen zu einem
ausgepragten Doppelpeak in der Spektralfunktion. Zueusti@n die Spektralfunktionen der
Vektormesonen aus Vakuumeigenschaften der Nukleonrezenaerechnet. Als nachstes
wurden Mediumodifikationen der Nukleonresonanzbreiteddrch Mediumodifikationen
der p und w Mesonen induziert werden, berlcksichtigt. Dies fuhrt :eeiselbstkonsis-
tenten Berechnung der Spektralfunktionen der Vektormeasateenun die Selbstenergie der
Mesonen von der Mediumbreite der Nukleonresonanzen abhdiegwiederum durch die
mesonische Selbstenergie bestimmt wird. Diese selbgtkente Berechnung wird iterativ
gefuhrt. Das iterative Schema beeinflusst hauptsachleltdiebnisse bei kleinen Massen
und reduziert die Hohen dé&r* (1520N~1 undN*(1535N~! Peaks.

Im folgenden Schritt wurde der Einfluss von Mediummodifiga@n der Vektormeson-
eigenschaften auf die Dileptonenproduktion untersuchs Dileptonenspektrum wurde ex-
emplarisch fur die Reaktion C+C bei 2.0 AGeV berechnet, fuvdikurzem experimentelle
Daten von der HADES Kollaboration veréffentlicht wurderuetst wurden Mediumeffekte
in einem Standardverfahren behandelt, wobei eine scherhatiStoR3verbreiterung der Vek-
tormesonbreite und eine Absenkung der Vektormesonmassprechend des Brown-Rho
Skalengesetzes eingeschlossen wurden.

Das schematische Szenario der Sto3verbreiterung ergsbdiaExperimentaldaten in
der Masseregion der Vektormesonpeaks leicht Ubersch&men, wenn man dichteab-
héngige Mediumbreiten der Vektormesonen (Mf(po) = 250 MeV undr§'(po) = 125
MeV bei Nuklearer Sattigungsdichf®) annimmt. Wir diskutieren desweiteren Naherun-
gen, die durch die Energieabhangigkeit der Vektormesatetmétig sind. Besonderer Wert
wurde dabei darauf gelegt, die theoretischen Beschréankumgieuzeigen, die eine derartige
schematische Herangehensweise mit sich bringt.

In dem — relativ naiven — Mediumszenario, worin die Vektosor@nassen linear mit
der anwachsenden Dichte absinken (Brown-Rho scaling), vafdnglen, dass das experi-
mentelle Dileptonenspektrum bei invarianten Massen hatbrdes Vektormesonpeaks Uber-
schatzt und in der Region des und Uberhalb des Vektormeskhpeterschatzt wird, auch
wenn zusatzlich eine StoRRverbreiterung berticksichtigtvidieses Verhalten ist eine Konse-
guenz der von diesem Szenario vohergesagten Verschiebu&gpdktralstrarke zu kleineren
invarianten Massen mit dem daraus folgenden Mangel an &&tiéirke in der Region des
Vektormesonpeaks.

Als letzten Schritt gehen wir Gber die schematische Behagditon Mediumeffekten
hinaus und bericksichtigen die Mediumeigenschaften vdwovimesonen in einer konsis-
tenten Weise durch die mikroskopische Berechnung der Selbagtie im Medium im Rah-
men des Nukleonresonanzmodells kombiniert mit Vektormdsminanz. Zum ersten Mal
wird hier versucht, eine konsistente theoretische Bedulmngi des Dileptonenspektrums
basierend auf einem einheitlichen Modell fur Vektormesonend Dileptonen-Produktion
sowie ihrer Mediummodifikationen durchzufiihren. Das Uiiféirtlie Standardverfahren, in
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denen die totale Breite bei gegebener Dichte als Paramatgrsatzt wird und die Skalierung
der Breite in Abhangigkeit der Dichte nur als Annahme eingeht

Wir erhalten als Ergebnis, dass die Selbstenergie, die ansvdkuumeigenschaften
der Nukleonresonanzen bestimmt wird, eine unzureichendetBeibung der Experimental-
daten im Bereich der invarianten Massen vo#s< M < 0.75 GeV liefert. Das selbstkon-
sistente Schema kann jedoch die Daten in derselben Magsegemessen beschreiben.
Dies zeigt, dass die Berlicksichtigung der Mediumeigensehaler Nukleonresonanzen bei
der Bestimmung der Spektralfunkionen der Vektormesonefegiedeutung hat. In An-
betracht der groRRen Unsicherheiten in den Kopplungen dé&fteldoresonanzen insbheson-
dere an dasy Meson und der Tatsache, dass diese BerechnungamaeneterfreidBestim-
mung des Dileptonenspektrum im Medium darstellt, kann daglihis als zufriedenstel-
lend angesehen werden. Dennoch lasst der Vergleich mitxgerimentellen Daten darauf
schlie3en, dass die Mediummodifikationen, die in dem vedetsn Ansatz vorhergesagt
werden, eventuell zu stark sind. Im Bereich kleiner Massgn<{ M < 0.4 GeV) finden wir,
dass die Einbeziehung der Mediumspektralfunktionerpdardw Mesonen das theoretische
Ergebnis nicht verbessern und die Experimentaldaten reachtlunterschatzt werden.

AbschlieRend kann man feststellen, dass eine konsistakteskopische Beschreibung
der Vektormesoneigenschaften im nuklearen Medium im Ralioedransportrechnungen
einen wesentlichen Schritt zu einem besseren Verstan@ni®ieptonenspektren liefert.
Zukunftige experimentelle Daten, vor allem flr Reaktionelnvgerer Kerne, werden sicher-
lich dazu beitragen, noch bestehende Modellunsicherheiéiter einzuschranken.
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