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Abstract

It is possible to scale control-flow analyses for higher-order languages to com-
plete, fully-fledged programming languages and consequently compute the flow
analysis of realistic programs. This dissertation gives a formal specification of
a universal flow-analysis framework for the functional programming languages
Scheme and PreScheme that covers all aspects and features of these languages.
Moreover, the dissertation proposes new implementation strategies and tech-
niques that have been developed and tested in context of an implementation
for Scheme 48. These techniques yield an efficient implementation that enables
analysis of realistic programs.

Zusammenfassung

Es ist möglich, Kontrollflussanalysen für Sprachen höherer Ordnung auf reali-
stische Programme anzuwenden. Diese Dissertation spezifiziert eine universell
verwendbare Flussanalyse für die funktionalen Programmiersprachen Scheme
und PreScheme, die alle Aspekte und Fähigkeiten dieser Sprachen abdeckt. Für
die praktische Umsetzung dieser Analyse werden neuartige Implementierungs-
strategien und -techniken vorgestellt, die im Rahmen einer Implementierung für
Scheme 48 entwickelt und erprobt wurden. Diese Techniken führen zu einer effi-
zienten Implementierung, welche die Analyse realistischer Programme erlaubt.
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Chapter 1

Introduction

It is possible to scale control-flow analyses for higher-order languages to com-
plete, fully-fledged programming languages and consequently compute the flow
analysis of realistic programs.

Only few compilers for functional languages employ a flow analysis to gain
information on the run-time behavior of a program and subsequently optimize
the program. This failure of flow analysis for functional languages in practice is
paradoxical, as a rich amount of technical literature proposes new techniques for
computing analyses, develops more precise abstractions, and finds new applica-
tions for analyses. The following observations help understanding the reasons
for this paradox:

• Technical literature considers minimalist toy languages, leaving open many
questions that arise when adapting an analysis for a real programming
language.

• There are very few reports on experience with implementation techniques
for flow analyses. Most literature only reports on prototype and proof-of-
concept implementations.

• Only few descriptions of flow analyses show how they scale to realistic
programs.

This dissertation aims at eliminating these shortcomings.
This introduction describes the problems that arise when scaling to a com-

plete language (Section 1.1). Section 1.2 motivates the need for an executable
semantic model. Section 1.3 describes the compiler architecture that is the ba-
sis for my flow analysis. A summary of the contributions (Section 1.4) and an
overview of dissertation (Section 1.5) follow.

1.1 Implementation Scalability

Research literature in the area of flow analyses for higher-order languages presents
new ideas as formal specifications with corresponding soundness proofs, accom-
panied by measurements supposed to show the relevance and usefulness of the

9



10 CHAPTER 1. INTRODUCTION

proposed ideas. It is striking that almost all measurements take place in proof-
of-concept implementations, or at best, prototype implementations. These im-
plementations have in common that they feature only a minimal subset of lan-
guage constructs and are only applied to small programs.

However, there are a few notable exceptions:

• The Bigloo Scheme compiler [Serrano, 2004] uses a special-purpose flow
analysis to optimize closure allocation [Serrano, 1995].

• The MLton compiler for Standard ML uses a flow analysis to perform a
closure conversion that translates the code to a first-order intermediate
language [Cejtin et al., 2000]. Subsequently, MLton carries out optimiza-
tions on the first-order language.

• In the past, the Chez Scheme compiler used a flow analysis to improve
the inlining optimization [Jagannathan and Wright , 1996; Ashley , 1997].
The flow-directed inlining algorithm, however, was replaced in favor of a
special inlining algorithm that does not require a flow analysis [Waddell
and Dybvig , 1997] — the developers considered a flow analysis slow and
impractical [Dybvig , 2006].

Each of these exceptions use a flow analysis geared towards a single and specific
purpose. This dissertation, however, considers a flow analysis that produces
results that are useful for more than one application: It computes the control
flow of the program and information on the values used in a program. The
analysis is more general than the analyses described above as its results can
be used to drive more than one optimization. For example, the results may be
used for an inlining optimization as well as for the elimination of run-time type
checks. Additionally, this dissertation gives a formal specification that covers
the complete PreScheme and Scheme programming languages while the cited
publications only consider the aspects of the language that are relevant for the
specific purpose of the analysis.

Defining a flow analysis for a full programming language is different from
specifying an analysis for a small and artificial language. There are three chal-
lenges for scaling a flow analysis: Adding support for complex language features,
integration with a compiler, and developing efficient implementation techniques.

Consider language features first. The challenge in supporting a complete
language lies in the interaction and dependencies of the features: It is often not
possible to treat the features independently. Procedure calls with variable arity,
for example, may allocate heap objects and thus the analysis needs to model
heap objects. The abstraction functions for heap objects, on the other hand,
rely on calls to distinguish references. For a precise model of compound heap
objects a specific representation of integers in the analysis is indispensable, and
so on.

Consequently, the analysis specified in this dissertation considers all features
of Scheme (and PreScheme) in concert. To my knowledge, this coherent and
complete specification of a general-purpose flow analysis for Scheme is novel. In
addition to the core features the specification also covers the following features:

• Procedure calls with variable arity and a precise abstraction of the rest
list.
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• Procedures that return multiple values at once.

• A precise abstraction for records, pairs, and other compound heap objects.
The analysis is able to track the values for each field separately.

• An abstraction for vectors.

• Precise abstractions for all simple value types of Scheme, such as booleans,
characters, and so on.

• An abstraction for Scheme numbers that includes all three properties:
type, value, and exactness.

• Support for most primitive operations of the Scheme 48 system and the
PreScheme compiler.

To develop, trace, and validate the semantics of the flow analysis an executable
model of the semantics is helpful (see Section 1.2).

The second challenge is the integration into a real compiler. Technical liter-
ature on flow analyses assumes that the complete program, including all depen-
dencies, is available as source code. This assumption, however, is not realistic.
The following problems must be addressed in context of a real compiler:

Libraries and run-time system Realistic programs use libraries. Libraries
often contain low-level functionality that is deeply interweaved with the
run-time system. The source code for such libraries is not always avail-
able. For example, the library code may have the form of compiled byte
code, distributed as a heap image, or the code comes as a shared library
containing machine code or foreign code. Only the program is subject to
an optimization as the compiler simply links standard library code and
the run-time system to the residual program. That is, it is not useful
to compute a flow analysis for library code or the run-time system. As
a consequence, the flow analysis has to know how calls into library code
affect the flow analysis of the program without analyzing the library itself.

External code Besides standard library code, realistic programs often involve
external code written in a different programming language. The problem is
similar to the library problem just sketched. Library code can be deployed
along with additional information for the flow analysis. External code,
however, is written by the programmer. Therefore, the programmer needs
a way to specify the behavior of the external code in the analysis.

This establishes why the description of a flow analysis for a complete program-
ming language can only the viewed in context of a real compiler. In this disser-
tation, I specify an analysis for two complete programming languages: Scheme
and PreScheme. The analysis operates as part of the transformational compiler
shipped with Scheme 48 [Kelsey and Rees, 1995].

Only few reports of flow analyses exist that investigate how well the various
implementation techniques scale to larger programs. The performance of the
analysis, however, is the main challenge. Typically, new ideas in the field of
flow analyses employ — as just discussed — toy languages and prototype im-
plementations to demonstrate the usefulness and relevance. Investigations that
get over this initial stage and consider realistic programs are rare. The few that
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do exist do not report on implementation techniques. Consequently, this work
focuses on the practical aspects of flow analysis, specifically those concerning
performance and scalability.

My implementation deals with realistic programs: It is capable of analyz-
ing the complete source code of the Scheme 48 virtual machine and substantial
Scheme programs. Naive implementations take hours, even on simple programs.
Sophisticated implementation techniques were necessary to lift the implemen-
tation from toy examples to the standard of realistic programs and compute
the analysis in reasonable time. To my knowledge, the systematic investiga-
tion of the practical aspects of a flow analysis implementation reported in this
dissertation is new.

The following ideas improve the analysis time considerably and identify two
important contributions of this dissertation:

• A systematic investigation and design of the representation for semantic
domains.

• A novel global garbage collection technique for flow analyses.

Consider the representation of semantic domains first. Choosing a represen-
tation that saves time and space is crucial for improving analysis time. Here,
the performance of the approximation relation has a key role. This relation
determines whether an abstract entity of the analysis is a proper simulation
of another abstract entity. Computing this relation for complex semantic do-
mains such as function domains is costly and occurs frequently. Consequently,
the implementation uses representations for semantic domains that are geared
towards a fast implementation of this relation. These representations allow to
short-circuit checks, cache the results of expensive checks, and enable the defi-
nition of hash functions that reduce the number of necessary checks.

Recent research introduced the idea of garbage collection to flow-analyses
that leads to improvements in precision and performance of an analysis [Might
and Shivers, 2006]. For realistic programs, however, garbage collection can be
costly. The global garbage collection technique in my implementation is a vari-
ation of Might’s and Shivers’s algorithm and considers the complete state of
an analysis. This global garbage collector allows the analysis to use a single
and global variable environment, which has two advantages: The analysis saves
space and it becomes possible to replace the expensive approximation-relation
check for the variable environment with a quick check that uses timestamps. Ad-
ditionally, the collector uses the classical idea of a marking bit that distinguishes
seen from unseen values during the traversal of the heap. This work shows how
this classic idea of garbage collection can be applied to garbage collectors for
flow analyses.

1.2 Executable semantic model

The formal specification of a flow analysis may suffer from the following intrinsic
problems: First, the specification does not correctly capture the behavior of a
program. Second, the implementation does not correctly match the specifica-
tion. This dissertation addresses these problems by developing an executable
model of the semantics. The executable model is based on PLT Redex [Matthews
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Figure 1.1: Scheme 48 native-code compiler [Kelsey and Rees, 1995; Gasbichler
and Sperber , 2007] and the flow analysis

et al., 2004], a tool that allows to specify formal semantics in form of a term
rewrite system and subsequently apply the reductions specified in the semantics.

The model describes the flow analysis as a term rewrite system. The analy-
sis semantics is accompanied by a relation that demonstrates the correctness of
the analysis by relating the analysis results with their counterpart in a concrete
program run. For a given program that serves as a test case, the model com-
putes all reduction steps in the analysis semantics and all steps in the standard
PreScheme semantics. With the correctness relation at hand, the model can
check and visualize the correctness of the analysis results. To my knowledge,
the approach to use an executable model to test the correctness of an analysis
and inspect its mode of operation is novel.

1.3 Setting the scene

The flow analysis specified in this dissertation operates on the intermediate
language of the transformation compiler [Kelsey , 1989]. The transformational
compiler is used for compiling the Scheme 48 virtual machine to C [Kelsey
and Rees, 1995] and as the optimizer for byte code in the native-code compiler
[Gasbichler and Sperber , 2007]. Figure 1.1 illustrates the compiler architecture
of Scheme 48. Consider the PreScheme compiler [Kelsey , 1997] first: This
compiler is written in Scheme and translates PreScheme code to portable C code.
The PreScheme compiler converts PreScheme code to a continuation passing
style (CPS) intermediate language, checks types, and uses the transformational
compiler to remove any dependencies on the intermediate language semantics
that C code cannot implement directly. The result is CPS code with properties
that make it simple for the back end to generate C code.
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The right-hand side of Figure 1.1 shows the compiler chain for the native-
code compiler. By default, Scheme 48 compiles Scheme programs to byte code
and runs the byte code on the virtual machine. The optional native-code com-
piler translates byte-code procedures to native code for Intel’s 386 processor
family.

Optionally, the user may optimize the byte code by using the byte-code opti-
mizer. The byte-code optimizer turns recursive calls into jumps and carries out
constant folding and various other optimizations implemented by the simplifier
of the transformational compiler. The optimizer may be viewed as a front end
and back end to the transformational compiler: The front end converts byte
code to CPS intermediate language and the back end reverses this transforma-
tion. Typically, a user would invoke both, the optimizer and the native-code
compiler, to produce efficient native code.

To this compiler architecture I have added the flow analysis specified in this
dissertation. The analysis operates on the transformational compiler’s interme-
diate language and handles both Scheme and PreScheme code. The language-
specific abstraction functions and definition of primitive operations reside in
separate modules and share a common interface.

1.4 Contributions

In summary, the main contributions of this dissertation are the following:

• A formal definition of the syntax and semantics of the transformational
compiler’s intermediate language.

• A specification for a universal flow analysis that covers all features of the
PreScheme and Scheme programming languages.

• An executable model of the flow analysis semantics.

• Implementation techniques for the analysis framework that scale and en-
able the analysis of realistic programs.

• A novel garbage-collection technique for flow analyses geared towards per-
formance.

1.5 Structure of this dissertation

This dissertation has the following structure: Chapter 2 defines the syntax
and semantics of the transformational compiler’s intermediate language. Chap-
ter 3 contains a brief overview on control flow and and data-flow analyses and
their applications. Chapter 4 defines the flow analysis framework, formulates
a correctness criterion, specifies the semantic domains, abstract functions and
primitive operations for PreScheme and Scheme. Chapter 5 describes the exe-
cutable model for the semantics. Chapter 6 describes the implementation of the
analysis, shows and discusses benchmark results, and defines the global garbage
collection. Chapter 7 summarizes the contributions of this dissertation, reviews
related work, and gives an outlook on future work.
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Appendix A explains the mathematical notation used in this dissertation.
Appendix B contains the proof for the semantic correctness of the analysis.
Finally, Appendices C and D list the transition rules for all PreScheme and
Scheme primitive operations.
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Chapter 2

Intermediate Language

The analyses developed in the following chapters operate on the intermediate
language of Richard Kelsey’s transformational compiler [Kelsey , 1989]. This
compiler performs source-to-source transformations on an intermediate language
that is based on the lambda calculus. The transformational compiler removes
dependencies of the intermediate language semantics that the target machine
cannot implement directly. For his thesis, Kelsey wrote Pascal and BASIC front-
ends and gradually transformed the intermediate representation into a form that
could easily be translated into MC68020 assembly code.

The heart of this compiler is its intermediate language and the transforma-
tion rules. In today’s Scheme 48 system this compiler plays a significant role
and hence is actively maintained. The transformational compiler is part of the
PreScheme compiler [Kelsey , 1997] that translates PreScheme code, a statically
typed subset of the Scheme programming language, to C code. The Scheme
48 virtual machine is written in PreScheme — this makes the transformational
compiler indispensable for this system. Additionally, the Scheme 48 byte-code
optimizer relies heavily on the transformational compiler’s code simplifications.

Given these facts, choosing the transformational compiler’s intermediate lan-
guage as the input language for the analysis seems advantageous: One analysis
may be used to analyze both, PreScheme code and Scheme code.

The specification of the intermediate language exists as comments in the
compiler’s source code. Additionally, a paper on the Scheme 48 native-code
compiler [Gasbichler and Sperber , 2007] gives a brief introduction of the inter-
mediate language for the purpose of describing the byte-code optimizer. This
chapter introduces the syntax and semantics of the intermediate language and
contributes a formal semantics that establishes a basis for developing a flow
analysis.

2.1 Syntax

The intermediate language is a call-by-value lambda calculus in continuation-
passing style (CPS) with the addition of constants and primitive operations.
Thus, the language consists only of a few syntactic forms: lambda expressions,
applications, variable references, and constants. Figure 2.1 summarizes the
syntax of the intermediate language expressions.

17
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lit ∈ LitLang = literals of the source language
τ ∈ Lab = set of labels
v ∈ Var = vu | vc

vu ∈ Varu = set of identifiers for user-defined variables
vc ∈ Varc = set of identifiers for continuation variables
g ∈ GVar = set of identifiers for global variables

with Varu ∩ Varc ∩ GVar = ∅

lam ∈ Lam = lamu | lamc

lamu ∈ Lamu = (λP(vu
1 . . . vu

n) call)τ

lamc ∈ Lamc = (λC(vc
1 . . . vc

n) call)τ | (λJ(vc
1 . . . vc

n) call)τ

e ∈ Exp = eu | ec

eu ∈ Expu = g | vu | lamu | lit | tcall
ec ∈ Expc = vc | lamc

prim ∈ Prim = PrimLang ∪ PrimPCall ∪ PrimCCall

primp ∈ PrimPCall =
{ call, tail-call, unknown-call,

unknown-tail-call, letrec1, letrec2 }
primc ∈ PrimCCall = {return, unknown-return, jump, let, test}
primg ∈ PrimGlob = {global-ref, global-set!}
prim l ∈ PrimLang = set of identifiers
tcall ∈ TrivCall = (prim 〈eu

1 , . . . , eu
n〉)τ

call ∈ Call = callu | callc

callu ∈ Callu =



(primu 〈c, f, a1, . . . , an〉)τ

with c ∈ Expc f ∈ Expu ai ∈ Exp

primu ∈

{
call, tail-call,
unknown-call,
unknown-tail-call

}

(letrec1 (λC (vc
1 . . . vc

n)
(letrec2 〈lc, eu

1 , . . . , eu
n〉)τ)τ ′)τ ′′

callc ∈ Callc =

{
(primc 〈c, a1, . . . , an〉)τ with c, ai ∈ Expc

(test 〈c0, c1, a〉)τ

Figure 2.1: Intermediate language

Section 2.4 extends the intermediate language to facilitate the representation
of complete PreScheme or Scheme programs. For the time being, however, a
program is just a sequence of definitions. Each definition consists of a lambda
expression or a literal expression and a global variable that names the value of
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the expression. The language distinguishes three sorts of variables syntactically.
Variables from Varu (variables in the source program) and Varc (variable intro-
duced during the CPS transformation) are lexically bound variables introduced
by lambda expressions. Global variables GVar reference the value of a definition.
That is, the intermediate language syntactically distinguishes between variables
visible only inside a lexical scope and variables that are globally visible.

Lambda expressions include an annotation that divides these expressions
into three classes, all having the same semantics. The annotation describes how
this lambda expression is used in a program: as a continuation, a user-defined
procedure, or a jump target. A user-defined procedure is the translation of
a procedure defined in the source program written by the programmer. The
CPS conversion introduces continuation lambda terms and uses them as the
continuation arguments for calls. A jump lambda is a continuation lambda
whose call sites have been identified by the compiler and it is known that all
call sites are within the same procedure. Jump lambdas are always arguments
to let or letrec calls and either return via a continuation from the procedure
they are part of or jump to another jump lambda within the procedure. These
properties make jump lambdas particularly easy to implement: Jump lambdas
become labels in the target code.

Classifying the lambda nodes by their origin as described above leads to
a partitioned CPS . This differentiation is especially useful for implementing
flow analyses that reason about the environment structure of programs [Might
and Shivers, 2007]. The formal semantics developed in this chapter take these
annotations into account to establish a basis for such analyses. However, the
annotations are not essential for the formal semantics itself.

A lambda expression consists of a parameter list and a body. The body
always consists of exactly one call. This call is a non-trivial call . Non-trivial
calls only occur as the body of lambda expressions and are the most general
form of an application. These calls consist of a primitive operation (primop for
short) which is a constant that describes the nature of the call and an argument
vector. Figure 2.1 lists all call primops.

The intermediate language includes a basic set of primops that implement
and distinguish various kinds of procedure or continuation applications. These
primops are built-in primops and establish the basic functionality of the inter-
mediate language. However, for an input language like Scheme or PreScheme
more primops are necessary. For example, a typical set of primops includes
numerical and input/output operations. Hence, each front-end to the transfor-
mational compiler defines a set of language-specific primops and each back-end
provides implementations of those primops in the target language. For the pur-
pose of this chapter, language-specific primops do not matter and only built-in
primops are of interest. Generally, calls have this form:

(prim 〈ec
1, . . . , e

c
n, e1, . . . , em〉)τ

That is, the argument vector consists of expressions (angle brackets denota a
vector) that evaluate to continuation arguments ec

i , followed by a list of argu-
ments ei that may evaluate to either continuation or user-world values. The
number of continuations for a call depends on the primop being used: An ordi-
nary procedure call always has one continuation argument — the continuation
for the call. A conditional primop, however, splits the control flow: The test
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primop, which corresponds to a Scheme if construct in the original program,
has two continuation arguments; one for each branch.

Each lambda expression, call, and variable is annotated with a label τ . Each
label is unique for a program and hence identifies a lambda expression, a certain
call, or an occurence of a variable unambiguously. To keep the presentation
clear, I willomit the labels attached to an expression when they are not relevant.
Additionally, I use τ also in a notation that resembles a function application to
improve clarity: τ(vu) denotes the label τ of the variable vu.

A call may either invoke a continuation, a jump lambda, or a user-defined
procedure. The call may either take place in a tail context or not. The primop
encodes both facts. Here is a list of all call primops:

• unknown-call This primop indicates that the compiler could not identify
the lambda expression being called. A call with this primop follows this
pattern:

(unknown-call 〈lc, eu
1 , . . . , eu

m〉)τ

The compiler only knows two things about such calls: First, this call has
a direct counterpart in the source program — it is a call to a user-defined
procedure. Hence, the operator expression eu

1 evaluates to a user-defined
procedure. Second, in the source program the call occured in the context of
another call which the CPS conversion turns into the continuation lambda
lc. Thus, the call is not a tail call.

• call Calls with this primop have the same form and properties as calls
with unknown-call. However, the expression in operator position eu is a
lambda expression.

• unknown-tail-call This primop denounces a call to an unidentified user-
defined lambda expression. These calls have this form:

(unknown-tail-call 〈vc, eu
1 , . . . , eu

m〉)τ

The procedure being called is given by the expression eu
1 . In the source

program this call appears at a tail position. Therefore, the call is a tail
call and its continuation is the variable vc.

• tail-call This primop is closely related to unknown-tail-call, but is
used for tail-calls if the compiler could determine to which lambda expres-
sion the operator expression eu evaluates.

• unknown-return This primop indicates a return via an unidentified con-
tinuation lambda given as ec.

• return A call to a continuation lambda is usually called a return via a
continuation. The form is:

(return 〈ec, e1, . . . , em〉)τ

The return primop indicates a call to an operator ec that is a continuation
lambda (but not a jump lambda). Calls to continuations, like any other
call, may have an arbitrary number of arguments. For return calls, the
continuation lambda being called is known.
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• jump This primop indicates a call to a jump lambda — that is, a lambda
within the same procedure. The CPS representation distinguishes these
calls from others because jump calls are particularly easy and fast to im-
plement.1

• let Calls that use the let primop have this form:

(let 〈lc, eu
1 , . . . , eu

m〉)τ

The let primop applies lc to the values of the expressions eu
1 through eu

n.
Hence, it binds these expressions to variables. This primop exists to fulfill
the requirement that every call has a primop.

• test The test primop implements the conditional execution of a continu-
ation. A test call always has three arguments: two continuation lambda
expressionss with zero arity (lc0 and lc1) and a test expression eu:

(test 〈lc0, lc1, eu〉)τ

To implement local recursive binding, the intermediate language uses let-
rec. The representation of letrec is a combination of two nested calls with
primops letrec1 and letrec2:

(letrec1 〈lc (λC (vu
1 . . . vu

n)
(letrec2 〈lcbody lu1 . . . lun〉)τ)τ ′〉)τ ′′

The variables to bind (vu
1 through vu

n) are represented as arguments to the
continuation of the letrec1 call. The body of the continuation contains a
call to letrec2 and represents the body of letrec in its continuation lcbody
and the values to bind as the arguments lu1 through lun. In terms of ordinary
letrec expressions the variables vu

i are the left-hand sides of the bindings, the
expressions lui the right-hand sides of the bindings, and lcbody relates to the body
of the letrec.

Besides the calls just discussed, the intermediate language has trivial calls:
These calls do not have a continuation argument and are together with variable
references and lambda expressions a further type of expressions. Non-trivial
calls may have trivial calls as their arguments, and the arguments of a trivial
call may contain further trivial call arguments. Trivial calls simply compute
values, have no side effects, and do not affect the control flow. Most trivial calls
employ a primop that is specific to the input language. The following example
is the intermediate representation of an excerpt from a PreScheme program:2

(test c_13 c_14 (address< a_15 (global-ref *from-end*)))

The conditional call test either calls the continuation c 13 or c 14. The test
expression is a trivial call to the PreScheme specific address-comparing primop
address<. The second argument to address< is also a trivial call to global-
ref, the primop that accesses a global variable.

1The C back end of PreScheme compiler implements jump calls using C’s goto construct.
2The excerpt is taken from the source code of Scheme 48’s twospace garbage collector.
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2.2 Printing CPS Programs

The following chapters present examples of programs written in the intermediate
language rather than the source language. CPS programs have a deeply nested
structure which makes them hard to read: For example, most calls have lambda
expressions as their continuation arguments, which themselves contain calls.
The transformational compiler comes with a pretty-printer that outputs the
abstract syntax tree in a more readable form. The source code presented in
course of this work always follows this representation.

Here is a very simple program written in the intermediate language:

(lambda (k x)
(test (lambda ()

(unknown-return k 42))
(lambda ()
(unknown-return k 23))

x))

In this example there is one call that uses the test primop with three argu-
ments: two continuation lambda expressions and a variable reference to x. Both
continuation nodes return via the continuation provided as the argument k and
return constants. The pretty-printer displays this program as follows:

0 (P p_0 (k x)
(test 2 ^c_1 ^c_2 x))

1 (C c_1 ()
(unknown-return 0 k ’42))

2 (C c_2 ()
(unknown-return 0 k ’23))

The first thing to note is that both continuation lambda expressions no longer
appear as arguments to the test call. The pretty-printer has inserted a label
instead: ^c 1 stands for the continuation lambda node with the identification
number 1. The leading circumflex character ^ distinguishes labels from variable
references.

The indention of the program is important. The continuation nodes have
the same level of indention as the body of the outer lambda expression: That
is, the continuations are in the scope of the outer lambda expression.

When printing lambda expressions the pretty-printer omits the lambda sym-
bol but prints the type of the term instead: P stands for user-defined procedures
denoted as λP in the syntax description of Figure 2.1, C for continuation lambdas,
and J for jump lambda. The compiler assigns a unique number to all lambda
expressions to identify them easily (p 0 in this case). The pretty-printer prints
this number to the left of each lambda expression. Additionally, user-defined
procedures may have a name. The name helps the user to identify the CPS
lambda that corresponds to the original procedure in the direct-style source
code. Hence, (λP

name (args) call) prints as follows:

id (P name_id (args)
call)
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The output for applications is straightforward. An application yields the
following output:

(prim n a1 ... am)

Each application includes the primop being used as the first form inside the
parentheses followed by a number. This number indicates the number of con-
tinuation arguments. For the test primop, this number is always two, for
procedure calls one, and for continuation returns zero.

The following PreScheme code computes the factorial of a number using the
tail-recursive loop lp:3

(define (fact n)
(let lp ((n n) (r 1))
(if (< n 2)

r
(lp (- n 1) (* n r)))))

(define (main)
(fact 10))

The pretty-printer then prints the program produced by the PreScheme front
end as follows:

22 (P main_22 (c_21)
28 (LET* (((x_26 lp_27)

(letrec1))
34 (() (letrec2 x_26 ^lp_31)))

(jump 0 lp_27 ’10 ’1)))

31 (J lp_31 (n_29 r_30)
(test 2 ^c_33 ^c_32 (< n_29 ’2)))

33 (C c_33 ()
(unknown-return 0 c_21 r_30))

32 (C c_32 ()
(jump 0 lp_27 (+ ’-1 n_29) (* n_29 r_30)))

The pretty-printer displays calls to letrec1 and letrec2 in a special condensed
form that needs some explanation. As discussed in the preceding section, the
representation for local recursive bindings involves two nested calls. The com-
piler adds an unique identifying variable —x 26 in this case — to both calls. If
some transformation in the further course of the compiler run accidently sepa-
rates these calls, this mistake may be discovered by comparing the identifying
variables of both calls. The pretty-printer displays letrec in form of a LET*.
Continuation lambda c 34 is the body of the letrec expression. The pretty-
printer prints the variables to bind in form of the tuple (x 26 lp 27) on the
left side of a LET* binding pair. An additional asterisk * after the names of the
bound variables indicates a call that is not let.

3The loop is expressed using named let (a standad Scheme macro) which combines a letrec

defined procedure with a call to that procedure.
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ς ∈ State = Eval + Apply
Eval = Call×BEnv ×VEnv × Store×Time
Apply = Proc×D∗ ×D∗ ×VEnv × Store×Time

β ∈ BEnv = Var→ Time
ve ∈ VEnv = Var×Time → D

HLoc = Lab×Time
GLoc = Var

loc ∈ Loc = HLoc + GLoc
ref ∈ Ref = Loc× LitLang

σ ∈ Store = Ref → D
proc ∈ Proc = Clo + {halt}
clos ∈ Clo = Lam×BEnv ×Time

D = Proc + Ref + BasLang + CompLang

t ∈ Time = N

Figure 2.2: CPS language semantic domains

2.3 Semantics

The classic approach for systematically designing a control flow analysis involves
abstracting the formal semantics of a programming language. The semantics
defined in this section serve as a basis for a systematic design of the control-flow
analysis (see Chapter 4).

The semantics is a small-step operational semantics which is similar to the
semantics Might and Shivers [Might and Shivers, 2007, 2006] define in prepa-
ration for their environment analysis. Therefore, many of their techniques for
flow analyses such as abstract garbage collection or environment analysis with
frame strings also work with this analysis (see Chapter 6). In fact, Might and
Shivers consider a partitioned CPS very similar to the transformational com-
piler’s intermediate language. Hence, expressing the semantics in a similar way
is a natural choice.

Figure 2.2 shows the semantic domains. The machine that executes the pro-
gram is either in an eval or in an apply state. The mode of operation is simple:
During an apply state the machine binds the parameters of the procedures to
the argument values and produces an eval state to evaluate the body (a call)
of the procedure. Hence, the machine executes the program as an alternating
sequence of eval and apply states. During an eval state the machine evaluates
the operator expression and all arguments to the call and stores these values in
an apply state tuple.

However, before considering the transition rules, consider the semantic do-
mains in Figure 2.2. The values in D are the denotable values. The exact
structure of this set is only of minor importance to the transformations carried
out by the transformational compiler. The compiler simplifies the structure of
the program but never involves the values of a program directly. Values and
types become important in later phases of the compilation and the analysis,
however. For the moment, it is sufficient to assume that the denotable values
consist of function values Proc, references Ref to values stored in a heap, basic
values BasLang (e. g. integers and characters) and compound values CompLang
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(e. g. records and vectors) that combine multiple denotable values. Section 4.4
defines the language specific semantic domains for Scheme and PreScheme.

A procedure value Proc is either a closure Clo or the halt continuation.
The halt continuation is a special procedure value that, if applied, stops the
program. A closure has three components: The lambda expression that pro-
duces the closure, a value from Time that denotes the point in time when the
closure was created, and a binding environment. For the standard semantics
defined in this section, the set Time is an ordered denumerable set of values.
Furthermore, Time includes a start time t0 and the function

tick : Time → Time

that advances time by one step.
Consider the second constituent of a closure triple: The binding environ-

ment. A binding environment maps variables to points in time — the time a
binding was established. The value bound to the variable, however, is not stored
in a binding environment but in a variable environment VEnv. A variable en-
vironment maps a variable and a binding time to value. Hence, looking up a
variable is a two-step process: First, the binding environment maps the variable
name to a binding time. The second step involves the variable environment:
Looking up the variable together with the binding time yields the value of the
variable. Hence, a variable lookup in the semantics always has this form:

ve(v, β(v)) ∈ D

Splitting the environment into a binding environment and variable environment
avoids the troubles that would arise from a recursive domain for the environ-
ment [Shivers, 1991]. (The straightforward — and recursive — definition would
be Env = Var → D where the summand for closures in D would contain an
environment: Clo = Lam×Env.)

Besides lexically bound variables, the intermediate language supports global
variables and values stored in a heap. In contrast to lexically bound variables,
global variables and heap values are mutable. In the semantics, the domain
Store models the heap. The store is a mapping from references to values. Ref-
erences Ref are comparable to pointers in a programming language and identify
a value in the heap. A reference consists of a location and a so-called selector
(which is always a literal). This partitioning makes representing compound
values such as vectors or records that reside in the heap easy: The location
identifies the compound value as a whole and a reference identifies a single
value slot within a compound value. That is, the location may be regarded as
a base pointer and the literal value as an offset.

A location either is the location of some heap value (HLoc) or the location
of a value bound to a global variable (GLoc). The locations of heap values are
identified by the label of the call, which allocates the heap space, and the point
in time the call occurs.

Distinguishing references, heap locations, and global locations may seem
overly complicated at this point, however, for the purpose of the analysis main-
taining this extra complexity is worthwhile. As discussed in Chapter 4, the flow
analysis collapses multiple distinct states in the concrete semantics into a single
abstract state. That is, a location in the abstract semantics represents multiple
locations in the concrete semantics and abstraction functions assign concrete to
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A β ve σ t lam = (lam, β, t)
A β ve σ t v = ve(v, β(v))
A β ve σ t g = σ(g,>)
A β ve σ t lit = KLang lit

A β ve σ t (prim 〈eu
1 , . . . , eu

n〉) = PLang β ve σ t prim 〈eu
1 , . . . , eu

n〉

Figure 2.3: Evaluating call arguments

abstract locations. To control the precision of the analysis the user may wish
to run the analysis with different abstractions for locations. Hence, it is advan-
tageous to separate references and locations to make exchanging the definition
of locations easier.

Consider the definition of State again. Apply states reflect the situation
just before binding the arguments of a procedure. Hence, these states include a
procedure value and the arguments to bind. Note that apply states contain two
argument vectors D∗: The first vector only contains continuation arguments,
the second contains “user-world arguments”. Recall that the conversion to CPS
adds an additional argument to each call: the continuation of the call (see
Figure 2.2). That is, there are call arguments that transport continuations, so
called continuation arguments, and call arguments that transport user-world
values, the user-world arguments. Keeping these values in separate vectors in
apply states is not vital for the semantics. It is, however, useful for the analysis:
The implementation of the frame string analysis, for example, often needs to
distinguish values by this category. Hence, keeping them separate in the first
place speeds up the analysis and makes the implementation easier to understand.

The transition rules described later in this section thread the variable envi-
ronment VEnv from eval to apply states. Thus, the variable environment is a
component of both state types. Threading the binding environments through
the semantics, in contrast, follows this scheme: Closures include a binding en-
vironment, and the transition rules ensure that this binding environment will
be used to evaluate the procedure body. Basically, this means the binding en-
vironment from the closure in an apply state flows into an eval state. Hence,
there is no need for an apply state to have a separate BEnv component.

Figure 2.3 shows the semantic function A that evaluates the arguments of a
call. Call arguments are either lambda expressions, variable references, literals,
or trivial calls. To evaluate a lambda expression or a variable reference A con-
structs a closure or finds the value in a given binding environment and variable
environment, respectively. If the variable is a global variable vg, A accesses the
store. As the intermediate language does not know about the basic values of
the source language it shifts the burden of evaluating lit to the language specific
evaluation function KLang .

Trivial calls appear as arguments of regular calls, or as arguments of other
trivial calls. Therefore, the evaluation function A needs to take them into
account. A delegates the work to PLang that is an interface to the language-
dependent part of the semantics: Each input language defines PLang for its
primops. The primops of PrimCCall and PrimPCall alter the control flow, and



2.3. SEMANTICS 27

primp ∈ PrimPCall \ {letrec1, letrec2}
((primp 〈c, f, a1, . . . , an〉)τ , β, ve, σ, t) _ (proc, 〈c′〉, d∗, ve, σ, t′) (PCallEval)

where


t′ = tick(t)
proc = A β ve σ t′ f

c′ = A β ve σ t′ c

di = A β ve σ t′ ai

primc ∈ PrimCCall \ {test}
((primc 〈c, a1, . . . , an〉)τ , β, ve, σ, t) _ (proc, 〈〉, d∗, ve, σ, t′) (CCallEval)

where


t′ = tick(t)
proc = A β ve σ t′ c

di = A β ve σ t′ ai

((prim l 〈c, a1, . . . , an〉)τ , β, ve, σ, t) _ (c′, 〈〉, 〈r〉, ve, σ′, t′) (PrimCallEval)

where


t′ = tick(t)
c′ = A β ve σ t′ c

(r, σ′) = PLang β ve σ t′ prim l 〈a0, . . . , an〉

Figure 2.4: Simple transitions for eval states.

hence may not be used in the context of a trivial call. Note that A does not eval-
uate the arguments of the trivial call; this burden is also shifted to PLang . Most
primops evaluate their arguments using A. However, some primops treat their
arguments specially. Global-ref is an example: This (Scheme and PreScheme)
primop expects a variable as its argument and accesses the global environment.
Hence, global-ref needs the unevaluated argument. Evaluating the arguments
with A before passing them to PLang would make it impossible to define such a
primop as a case for PLang .

Now the necessary machinery for writing down the state transition rules for
eval states is in place. Figure 2.4 shows the transition rules for eval states.

All three rules evaluate calls. If the primop indicates that the call moves the
control flow to a user-defined procedure then PCallEval applies. (Except if the
primop is letrec1 or letrec2 — these primops have a separate rule.) PCallE-
val decomposes the argument vector into three components: The procedure to
call f , the continuation c of the call, and the remaining arguments of the call.
In a second step PCallEval evaluates all these ingredients using the argument
evaluation function A. Finally, PCallEval constructs a new apply state using
the evaluated operator expression proc, the evaluated continuation expression
c′, and the evaluated vector of remaining arguments d∗. The rule CCallEval
works similarly. However, this rule applies to calls that use a PrimCCall primop
(except test) and subsequently decomposes the argument vector differently.
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((test 〈c0, c1, a〉)τ , β, ve, σ, t) _ (c′, 〈〉, 〈〉, ve, σ, t′) (TestEval)

where


t′ = tick(t)
r = A β ve σ t′ a

c′ =

{
A β ve σ t′ c0 iff trueish?(r)
A β ve σ t′ c1 otherwise

((letrec1 〈(λ (vc
1 . . . vc

n)
(letrec2 〈lc, eu

1 . . . eu
n〉)τ 〉)τ ′)τ ′′ , β, ve, σ, t) _ (call, β′, ve ′, σ, t′)

(LetrecEval)

where



(λC() call) = lc

ri = A β′ ve σ t′ eu
i

β′ = β[vi 7→ t′]
ve ′ = ve[(vc

i , t
′) 7→ ri]

t′ = tick(t)

Figure 2.5: Complex transitions for eval states

The primop of the call may be specific to the source language — the rule Prim-
CallEval reflects this situation. This rule shifts the burden of evaluating the call
completely to the function PLang which, as just shown, is also responsible for
evaluating calls with language specific primops. Note, that in this context PLang

returns a tuple consisting of a value r and a store σ′ — this allows the definition
of language specific primops that modify the store. Finally, PrimCallEval calls
the continuation c′ with the value r computed by PLang .

Figure 2.5 shows the transitions for calls using the letrec and test primops.
The conditional test primop is the only compiler specific primop that requires
knowledge about the data types of the source language. First, the rule evaluates
the test expression a and based on the value of this expression the rule calls
the consequent continuation lambda expression c0 or the alternative lambda
expression c1. To decide which continuation to call, test employs a function
named trueish?. The definition of trueish? is specific to the source language
and recognizes the values that are considered to be true in the source language
semantics. The Scheme language, for example, considers all values except #f to
be true, hence the definition for trueish? would just compare its argument value
with #f.

In contrast to the transition rules seen so far, the LetrecEval rule of Fig-
ure 2.5 transfers the machine from an eval state to an eval state. This is par-
ticularly useful in this case, because this rule sets up the environments with the
bindings of the letrec call and then continues the evaluation with an eval state
for the call in the body of letrec. Recall the special representation of letrec
in the transformational compiler’s intermediate language from Section 2.1: It
uses two nested calls to the letrec1 and letrec2 primops. The parameters of
the continuation of the outer call are the left-hand sides of the letrec bindings
and the call arguments of the inner call are the right-hand sides. The body of
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((global-ref 〈c, g〉)τ , β, ve, σ, t) _ (proc, 〈r〉, 〈〉, ve, σ, t′) (PGlobalRef)

where


t′ = tick(t)
proc = A β ve σ t′ c

r = σ(g,>)

((global-set! 〈c, g, a〉)τ , β, ve, σ, t) _ (proc, 〈〉, 〈〉, ve, σ′, t′) (PGlobalSet)

where


t′ = tick(t)
proc = A β ve σ t′ c

d = A β ve σ t′ a

σ′ = σ[(g,>) 7→ d]

Figure 2.6: Transitions for accessing the store

letrec is encoded as the continuation of the inner call, which is lc in this case.
Hence, the call in the resulting eval state is the call from in the body of lc.
The call takes place under the augmented environments β′ and ve ′. These en-
vironments include the new bindings. The introduction of this section claimed
that eval states evaluate call arguments, and apply states bind the results. The
LetrecEval rule, however, is more complex and is the result of a fusion of two
consecutive state transitions.

Figure 2.6 shows the transition rules for calls to the primops global-set!
and global-ref. Consider PGlobalSet first. This rule updates the values for
the variable vg with the value of a in store σ. This leads to a new store σ′.
Then the rule constructs an apply state for each continuation with the new
store. Since PGlobalSet is a rule that starts from an eval state, it also advances
the time.

Accessing a global variable is slightly more complex since this happens in
three different contexts: A regular call using global-ref, a trivial call using
global-ref, or call argument that is a reference to a global variable. The tran-
sition rule PGlobalRef depicts the first situation. Here, the primop global-ref
occurs as the primop to a regular call. The rule proceeds in three steps: ad-
vance the time, find the value of the global variable in the store, and call all
continuations with the value of global variable as the only argument.

The second situation concerns argument evaluation. Call arguments are
expressions and consequently a global variable may also be used as an argument.
That is, the argument evaluation function A must also be prepared to access
the store (see Figure 2.3). Finally, global-ref may also appear in a trivial call.
In this case, PLang is responsible for the evaluation. Hence, PLang must have a
case that accesses the store:

PLang β ve σ t global-ref g = σ(g,>)

The ApplyClos rule of Figure 2.7 extends the variable and binding environ-
ment with the call arguments. This rule presumes that the number of param-
eters of the lambda expression matches the number of arguments given by the
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length(c∗§d∗) = n

(((λ (p1 . . . pn) call)τ , β, tb), c∗, d∗, ve, σ, t) _ (call , β′, ve ′, σ, t) (ApplyClos)

where

{
β′ = β[pi 7→ t]
ve ′ = ve[(pi, t) 7→ (c∗§d∗)i]

Figure 2.7: Transition for apply states

continuation argument vector c∗ and the user argument vector d∗. (The oper-
ator § concatenates two vectors. See Appendix A for overview on notation.)
In a first step the rule decomposes the closure into the binding environment β
over which the lambda expression is closed, the procedure parameters pi, and
the procedure body call . The result of this transition is an eval state for call
with the extended environments. Hence, the rule first updates (in the sense
of functional updates) the binding environment β for each parameter pi. The
bound values reside in the new variable environment ve. Both environments β′

and ve ′ together then reflect the situation in which call occurs.

2.4 Complete programs

The preceding sections defined the semantics of the CPS intermediate language.
However, the semantics laid out in this chapter are merely building blocks — so
far there is no notion for a complete program. The transformational compiler
has no built-in notion of a complete program, but instead works on individual
CPS nodes. The compiler shifts the responsibility for handling complete pro-
grams to the front end. Hence, different notions are possible for different source
languages. This section reviews the notions of the PreScheme and Scheme front
ends.

2.4.1 Complete PreScheme programs

To compile a PreScheme program the user provides a Scheme 48 module defini-
tion file and the name of a procedure to the compiler. The procedure marks the
start of control. The code resides in source files tied together with a Scheme 48
module file: At compile time, the front end loads this module file and evalu-
ates the expressions at top level. The front end then translates the top level
definitions into CPS intermediate language for further treatment by the trans-
formational compiler.

Each top level definition is a pair consisting of the definition’s name and
the value being bound — in terms of the front-end this is a definition. The
front end stores some extra information such as the dependencies and the value
type of this definition with each definition. This information, however, is not of
interest for the flow analysis.

A complete description of the PreScheme semantics must include the se-
mantics for evaluating the top-level expressions: the compile-time semantics.
However, for designing a flow analysis, these semantics are of no interest. In
a first step, the compiler evaluates the top-level expressions of the program —
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that is, before the conversion to CPS intermediate representation. Consequently,
the CPS conversion translates a program with evaluated top-level expressions
to CPS rather than a source file. The flow analysis operates on the CPS repre-
sentation of the program, and thus is independent of PreScheme’s compile-time
semantics.

2.4.2 Complete Scheme programs

Scheme programs are not given in the form of a source file read by a front end.
As discussed in Section 1.3, the byte-code compiler compiles the source text to
a byte-code version of the program and the byte-code optimizer subsequently
translates byte code to CPS intermediate languages. This translation works on
a procedure basis: Given the reference to a procedure, the optimizer’s front end
generates a CPS syntax tree for this procedure.

This approach is suitable for the context of the byte-code optimizer: The
Scheme 48 compiler aims at translating the procedures of a program from byte
code to native code. The system is designed such that procedures compiled
to native code may call byte-code procedures and vice versa [Gasbichler and
Sperber , 2007].

However, this causes some problems for a flow analysis: Other procedures
referenced in this procedure need to be available to the flow analysis also in the
form of CPS intermediate language. To overcome this problem, the analysis first
traverses the byte code and builds the transitive closure over all free variables
in the procedure. The result is a list where each entry consists of a so-called
location and the code of the procedure converted to CPS. A location is a unique
reference within Scheme 48.

Another challenge comes from the fact that these procedures usually contain
references to values of arbitrary types: integers, strings, lists, records, and so on.
Besides being able to abstract literal nodes in source code to abstract values,
the abstraction functions of the analysis must also be capable of abstracting
given concrete values to abstract values. Section 4.4 discusses these abstraction
functions.

2.4.3 Treating complete programs

As the previous sections illustrate, programs consist of a set of globally accessible
definitions and a start of control. To model a complete program two additional
domains are necessary:

f ∈ Definition = GVar× Exp
prg ∈ Prog = Definition∗ × Lam

A form models a top-level notation consisting of a variable name and an ex-
pression. Note that the expressions are the right-hand sides of a definition and
are lambda expressions, literals, or variable references. The lambda node in a
prg tuple specifies the start of control and must have no arguments.

This notion defines a common denominator for representing a complete pro-
gram, leaving open one important semantic question: The dependencies among
these forms. The transformational compiler is mainly concerned with the trans-
lation of procedures and hence does not establish a semantic discipline for forms.
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However, a flow analysis always concerns a complete program. Thus, a semantic
description of the interaction of forms is indispensable.

The flow analysis assumes that it is possible to rewrite the program such
that all global bindings are bound using one letrec* [Waddell et al., 2005], a
variant of the Scheme letrec binding construct, that wraps the program:

(letrec* ((v1 e1)
...
(vn en))

(main))

letrec* allows defining mutually recursive procedures and values: The variable
vi introduced by the binding pair (vi ei) may be used on every right side of a
binding pair of the same letrec* and its body. The variable vi is initialized with
the value of the corresponding expression ei. However, there is one important
restriction: It must be possible to evaluate the right-hand sides of the bindings
in a left to right order without referring to the corresponding variable or any
binding that follows in the binding list. [Sperber et al., 2007]

Hence, the order of the definitions is important and the definitions of a
program are kept in a vector rather than a set. The PreScheme front-end
already sorts the definitions according to this restriction. When analyzing a
Scheme program, the pre-pass that finds all dependent global definitions sorts
these dependencies topologically. Thus, the pre-pass puts the definitions in the
required order.

2.4.4 Initial state

The evaluation starts with an initial state computed by the injection function
I. The initial state is an apply state that applies the main function to an empty
argument vector with the halt continuation as continuation argument:

I : Prog 7→ State
I(〈f∗, lmain〉) = 〈〈lmain , β0, t0〉, 〈〉, 〈{halt}〉, ve0, σI , t0〉

The environments β0 and ve0 are empty and t0 is the first point in time. σI

is the initial state that contains all global definitions. That is, the right-hand
side of the forms of a program are not bound as lexical variables but using the
store — because a program may mutate the global variables.

Setting up the initial store σI works by gradually extending an empty store
as follows:

σ0 = []
σi = σi−1[(gi,>) 7→ A β0 ve0 σi−1 ei ]
σI = σn

where ∀(gi, ei) = f∗i , f∗ ∈ Definition∗

This equation system assumes that the definitions f∗ with the global variables
gi are ordered ascending according to the letrec* property specified in the
preceding section. Equation i evaluates the right-hand side of the definition i,
the expression ei, under the empty binding environment, the empty variable
environment, and the preceding store σ̂i−1 using Â. This scheme corresponds
to a left-to-right evaluation of a letrec* form.
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Flow analysis of Programs

Flow analyses determine aspects of the run-time behavior and properties of pro-
grams at compile time. The results of a flow analysis are called flow information.
Generally, flow analyses fall into two categories:

• Control-flow analyses determine how the control advances through the
program at run time.

• Data-flow analyses determine which values a program may compute and
how the program passes values from one part of the program to another.

For higher-order languages, control-flow analyses are intrinsically tied to data-
flow analyses: Procedures are first-class values, and flow like other values through
the program. Hence, knowing which procedure values reach which program
points — a typical result of data-flow analysis — is a necessary prerequisite for
determining the control flow.

This chapter gives a short and informal introduction to control-flow analysis
for higher-order languages.

3.1 Control flow

A control-flow analysis computes the flow graph of a program. The flow graph
characterizes in which order the basic blocks evaluate at run-time. The basic
blocks of the intermediate language presented in Chapter 2 are procedures.
Hence, in this case the flow graph shows which procedures call which other
continuations or procedures.

The nodes of a flow graph correspond to the basic blocks. An edge encodes
to which basic block the control may transfer during a program run. It is
important to understand that the flow graph computed by a flow analysis does
not illustrate the control transfers of a particular program run. Instead, the flow
graph depicts the control transfers for all possible program runs. This property
is very important as it establishes a foundation for the compiler to reason and
subsequently to optimize a program for all possible runs.

Consider Figure 3.1 for an example: This figure shows a PreScheme program
in its intermediate representation on the left-hand side and its flow graph on the
right-hand side. The flow graph depicts continuation and jump lambdas as white
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8 (P square_8 (c_6 x_7)

(unknown-return 0 c_6 (* x_7 x_7)))

46 (P main_46 (c_45)

20 (LET* (((v_19)* (make-vector ’10 ’0))

43 ((x_42 lp_21)

(letrec1))

41 (() (letrec2 x_42 ^lp_25)))

(jump 0 lp_21 ’0 square_8)))

25 (J lp_25 (i_23 p_24)

(test 2 ^c_28 ^c_29 (< ’10 i_23)))

28 (C c_28 ()

(unknown-return 0 c_45 v_19))

29 (C c_29 ()

31 (LET* (((v_30) (unknown-call p_24 i_23))

33 ((v_32) (vector-set! v_19 i_23 v_30)))

(jump 0 lp_21 (+ ’1 i_23) p_24)))

main_46

unnamed_20

c_41

lp_25

c_29

square_8

c_31

c_28

halt

c_33

Figure 3.1: Example: flow graph

nodes, user-defined procedures as grey nodes, and the special halt continuation
with a hexagon. Consider the program first. The program computes a vector of
length ten that contains the first ten square numbers. There are two definitions
involved: A procedure square 8 that computes x2 for an argument x, and the
more complex procedure main 46.

The procedure main 46 allocates a fresh vector and binds it to v 19. Next,
the evaluation of letrec starts and binds a closure over the procedure lp 25 to
the variable lp 21. The body of the letrec is continuation lambda c 41, which
starts the recursive computation by jumping to lambda lp 25.

Now the control reaches lp 25. The body of this jump lambda contains a
call to the test primop to dispatch on the value of i 23. From this point the
control — depending on the value of i 23 — can follow two distinct paths:
Either proceed to c 28 and stop the recursive computation or continue to c 29
for the next iteration. Since the flow graph, as stated before, shows all possible
control transfers the according node has two outgoing edges — one for each
continuation.

Basically, lp 25 implements a loop that counts from 1 to 10 using the pa-
rameter i 23. The second parameter, p 24 is the procedure that computes the
number to store in the vector. A closer inspection of the loop reveals that the
first call to lp 25 passes square 8 as the value for p 24 and every subsequent
call to lp 25 just passes the value without altering. Hence, applying p 24 can
only mean applying square 8. However, the compiler fails to notice this simple
fact: The call in the body of c 31 is an unknown call.

The flow graph, however, reveals to which lambda form the control proceeds
to after the evaluation of c 29: square 8. Since the flow graph shows the
control transfers for all program runs it is safe to assume that at this call site
square 8 is the only target.
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3.2 Using control-flow information for optimiza-
tion

Compilers use flow information to drive and guide optimizations. This applies
chiefly to high-level optimizations that take place in early phases of the compi-
lation process. This section exemplifies this interplay by means of an example:
inlining, sometimes also called inline expansion.

Flow information is not a prerequisite for all optimizing program transfor-
mations. Especially low-level optimizations that operate on machine code or an
intermediate representation close to the final code often do not depend on flow
information. Optimizations that reorder machine code to exploit parallelism,
various loop transformations, or generating hints for the branch prediction mech-
anism are examples for such optimizations [Muchnick , 1997; Bacon et al., 1994;
Alfred V. Aho et al., 2007]. For high-level optimizations such as inlining [Ash-
ley , 1997] or eliminating run-time type checks [Jagannathan and Wright , 1995],
however, using flow information is advantageous.

The inlining transformation identifies which call sites call which procedures
and decides along the lines of some heuristics whether it is profitable to inline
the procedure call. That is, the transformation replaces the procedure call with a
copy of the code of the procedure being called — specialized for the arguments
of the call. If the call site occurs in the body of a loop this transformation
is especially beneficial: Without inlining, the cost that accounts for calling
the procedure accumulates with every evaluation of the loop body. An inlined
call, however, does not produce any overhead for calling a function. Thus, the
accumulated cost completely drops out.

To give a concrete example for this transformation, consider the following
excerpt of a program:

6 (P square_8 (c_2 x_7)
8 (LET* (((v_25)* (* x_7 x_7)))

(unknown-return 0 c_2 v_25)))

10 (P compute_10 (c_20 v_15 n_3)
12 (LET* (((v_24)* (- v_15 n_3))
14 ((v_27) (call square_8 v_24)))

(unknown-return c_20 v_27)))

The procedure compute 10 calls square 8 to compute the square of a number
(in the body of continuation c 12). Suppose the compiler wants to inline this
call. The first step involves deriving a version of square 8 specialized for the
arguments at this particular call site. In this case, this implies replacing the
parameter c 2 with the argument c 20 and x 7 with v 24. The result looks like
this:

6 (P square_8 (c_2 x_7)
8 (LET* (((v_25)* (* v_24 v_24)))

(unknown-return c_20 v_25)))

In a second step, the inlining transformation replaces the call with the body of
the specialized procedure:
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10 (P compute_10 (c_20 v_15 n_3)
12 (LET* (((v_24)* (- v_15 n_3))
14 ((v_25) (* v_24 v_24)))

(unknown-return c_20 v_25)))

The benefits of flow analysis for an inlining transformation are twofold: First,
the control-flow analysis determines the targets of all calls and thus widens the
range of opportunities to inline procedures [Ashley , 1997]. Second, the flow
information helps to find the most promising opportunities among all inlining
opportunities.

Consider Figure 3.1 again. The flow information is helpful in both aspects
here. The call in the body of continuation c 29 is an unknown call. That is,
the compiler was not able to determine the target of the call. By looking at the
flow graph, however, it is apparent that the call targets square 8. Here, the
flow analysis has discovered a new opportunity to inline.

Among the identified chances to inline, the inlining transformation chooses
the candidate that promises the biggest speed-up. Here, knowing if a call takes
place inside a loop is a valuable hint for the selection process. Again, a look at
the flow graph reveals this information.

3.3 Control-flow analysis for higher-order lan-
guages

Computing the control-flow information for programs in a higher-order language
such as the intermediate language of the transformational compiler is a well-
studied problem. A first approach to this problem goes back to Shivers [Shivers,
1991] who uses an abstract interpretation [Cousot and Cousot , 1977] to compute
the control and data flow. In his thesis, Shivers shows how to construct such
an abstract interpreter systematically and proves that the abstract interpreter
is a correct simulation of a standard interpreter. This section introduces the
idea of control-flow analysis by abstract interpretation informally using a small
example.

Consider the flow graph shown in Figure 3.1 again. Note that the compiler
could not identify the procedure being called at (unknown-call p 24 i 23).
The expression in operator position is p 24 — a variable. To determine the
target of this call, the closure bound to p 24 must be known.

A control-flow analysis traces the values of variables and therefore identifies
the target of the call. The mode of operation is similar to a standard interpreter
that evaluates the program. Consider the evaluation in a standard interpreter
first. The state of the interpreter consists of an expression to evaluate and
an environment that maps a variable to its value. Evaluation in the example
starts with main 46 and reaches the jump call in the body of letrec. At this
time the environment in the interpreter has the following entries: The entry
for v 19 maps to a vector and lp 21 maps to a closure created over lp 25.
The interpreter now evaluates the jump call and control moves to the procedure
lp 25 (the variable lp 21 in operator expressions evaluates to the closure over
lp 25).

The evaluation of this call adds two entries to the variable environment to
bind the arguments i 23 and p 24 of lp 24: i 23 maps to the integer zero and
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p 24 maps to the closure created over square 8. If the control now proceeds to
continuation c 29 and the call (unknown-call p 24 i 23), the evaluation of
p 24 yields the closure over square 8.

The control-flow analysis is an abstract interpreter that simulates the stan-
dard interpreter. The abstract interpreter differs from the standard interpreter
in the following aspects:

• The evaluation process always terminates. The abstract interpreter only
distinguishes a finite number of states. For example, it collapses all calls
to the loop procedure lp 25 into a single state. That is, a single state in
the abstract interpretation may simulate many states in a real program
run.

• The abstract interpreter adds each state visited during the evaluation to
the so-called visited set.

• Values are simulated by sets of abstract values.

In the end, the visited set contains the results of the simulation. For the example
above, the final visited set includes a state that simulates the evaluation of
the call (unknown-call p 24 i 23). This state contains a simulation for the
environment. Looking up p 24 in this environment then yields an abstract value
that simulates the closure over square 8. The control-flow analysis identified
the target of the call.
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Chapter 4

Analysis Framework

The formal semantics defined in Chapter 2 is the foundation for the flow ana-
lysis: Abstracting and instrumenting these semantics yields the flow-analysis
semantics. This semantics forms a precise description for obtaining the flow
information. An interpreter that implements this semantics then carries out the
task of collecting the flow information.

The abstracted semantics obeys two properties: First, the semantics is com-
putable. That is, for any given program, including programs that contain infinite
loops, the analysis terminates and delivers flow information. Second, the flow
information computed is semantically correct.

In the course of this chapter, concrete semantics refers to the program-
ming language semantics of the intermediate language as defined in Chapter 2.
Flow-analysis semantics, accordingly, is also termed abstract semantics. Each
semantic domain in the abstract semantics has a counterpart in the concrete se-
mantics. This dissertation follows the widely-used convention of distinguishing
both domains using a hat: Proc denotes the domain of procedure values in the
concrete semantics while P̂roc denotes the domain of procedure values in the
abstract semantics.

This chapter contains an explanation of the flow analysis semantics: The
semantic domains (Section 4.1), the transition rules (Section 4.2), and the se-
mantic correctness (Section 4.3). In preparation to analyze realistic programs,
Sections 4.4.1 and 4.4.2 extend the abstraction functions for PreScheme and
Scheme values and primops. Section 4.5 discusses the choice of abstraction
functions made in this chapter and identifies opportunities to render the analy-
sis more precise. To clarify the mode of operation of the analysis, Section 4.6
presents the flow information for two small example programs. Section 5 devel-
ops an executable model of the semantics used to trace and inspect the seman-
tics.

4.1 Semantic domains

The evaluation of a program under the concrete semantics may produce an in-
finite number of states. A program that contains an infinite loop, for example,
would expose this property. Thus, the semantics is uncomputable. Flow ana-
lyses, on the other hand, are practical tools for a compiler and hence must be
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computable for all input programs. The key idea for deriving a computable ver-
sion of the semantics is to keep the set of states finite. If the abstract semantics
ensures that a program can only produce a finite set of states the analysis is
computable.

An abstract state typically has more than one concrete counterparts. This is
the key idea and expands to other domains as well. This section describes how
to abstract the set of values, states and other entities in the concrete semantics
to finite sets. Of course it is essential that the abstractions are meaningful.
Section 4.3 therefore studies the semantic correctness of the abstractions defined
in this section.

Consider the domains for the concrete semantics from as already seen in
Figure 2.2:

ς ∈ State = Eval + Apply
Eval = Call×BEnv ×VEnv × Store×Time
Apply = Proc×D∗ ×D∗ ×VEnv × Store×Time

β ∈ BEnv = Var→ Time
ve ∈ VEnv = Var×Time → D

HLoc = Lab×Time
GLoc = Var

loc ∈ Loc = HLoc + GLoc
ref ∈ Ref = Loc× LitLang

σ ∈ Store = Ref → D
proc ∈ Proc = Clo + {halt}
clos ∈ Clo = Lam×BEnv ×Time

D = Proc + Ref + BasLang + CompLang

t ∈ Time = N

State is infinite if at least one of the component domains of a state has an
infinite number of elements. Time has an infinite number of elements because
the concrete semantics encode time using natural numbers.

So the first step towards a finite set of states is to define a finite set of
abstract points in time. For the time being, this informal definition of T̂ime is
sufficient:

t̂ ∈ T̂ime = finite set of abstract time

The choice of T̂ime is the most important adjusting screw for controlling the
precision of the analysis. Section 4.5 revisits this subject in depth. t̂ick is
the abstract version of tick . Note that t̂ick in contrast to tick has a second
argument: an eval state. The k-CFA time abstractions discussed in Section 4.5
uses the state to extract context information and distinguish multiple dynamic
instances of a call. Both versions of t̂ick follow this declaration:

t̂ick : (T̂ime× Êval) → T̂ime

Figure 4.1 lists all abstract semantic domains of the flow analysis. With the
exceptions of abstract values D̂ and T̂ime these domains match their concrete
counterparts. When time abstracts to a finite set of times, the other components
of a state also become finite:

• Binding environments BEnv maps a finite set of variables to a finite set
of points in time.



4.1. SEMANTIC DOMAINS 41

ς̂ ∈ Ŝtate = Êval + Âpply
Êval = Call× B̂Env × V̂Env × Ŝtore× T̂ime
Âpply = P̂roc× D̂∗ × D̂∗ × V̂Env × Ŝtore× T̂ime

β̂ ∈ B̂Env = Var→ T̂ime
v̂e ∈ V̂Env = Var× T̂ime → D̂

ĤLoc = Lab× T̂ime
ĜLoc = Var

l̂oc ∈ L̂oc = ĤLoc + ĜLoc
r̂ef ∈ R̂ef = L̂oc× LitLang

σ̂ ∈ Ŝtore = R̂ef → D
p̂roc ∈ P̂roc = Ĉlo + {halt}
ĉlos ∈ Ĉlo = Lam× B̂Env × T̂ime

D̂ = P(P̂roc + R̂ef + B̂asLang + ĈompLang)
t̂ ∈ T̂ime = finite set of abstract times

Figure 4.1: Flow analysis semantic domains

• A closure consists of a lambda form, a binding environment, and a point
in time all of which are finite. Hence, Clo and Proc are also finite.

• As B̂asLang and ĈompLang are finite, D̂ is as well.

• The set of references R̂ef is finite because the number of literals and
variables in a program of finite length must also be finite. There are also
only a finite number of heap locations ĤLoc as the number of call nodes
in a program are finite and T̂ime is also finite.

• Since there is a finite set of references, the number of entries in Ŝtore is
also finite.

• As D̂ is finite the variable environment VEnv is finite: Var is finite, T̂ime
is by definition finite, and the set of abstract values D̂ is finite as well.

Consequently, Ŝtate is finite.
In the abstract semantics denotable values are represented by sets: D̂ is now

the powerset over the summands of the denotable value domain.
Denotable values, internal run-time values not available to the program such

as environments, and syntactic categories build up the semantic domains of the
analysis. So far, these domains are unordered sets. The flow analysis, however,
is a fixed-point computation. Hence, constructing a lattice over the semantic
domains is a prerequisite.

Extending the domains to lattices is a two-step process. First, the relation
v induces a partial ordering on the elements of the set. The second step adds
elements for the top and the bottom elements to the sets. This ensures that all
subsets have a least and greatest element. Taken together, these steps establish
the lattice property [Mitchell , 1996; Burris and Sankappanavar , 1999]. The
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symbols u and t denote the meet and join operators of these lattices. Join,
meet and v for the domain types are defined as follows:

Sets Extending simple sets, such as the syntactic domains, to lattices is straight-
forward. In theses cases v is an equivalence relation for this set. Sets contain
a special least and greatest element ⊥ and > unless the set is a singleton set.
The usual intersection ∩ and union ∪ set operations constitute meet and join.

Power lattice Let A be a power lattice over a lattice B defined as A = P(B).
Least and greatest elements are defined as:

⊥A = ∅ >A = B

Comparing elements of power lattices involves using the proper order relation
vB . The definition for vB is:

A1 vA A2 = ∀b1 ∈ A1 : ∃b2 ∈ A2 : b1 vB b2

tA for power domains is defined as the union of sets. The meet operation,
however, is more complex. Again, using the proper order relation is necessary:

A1 uA A2 = {{b} ∈ (A1 ∩A2) : {b} vA A1 ∧ {b} vA A2}

Product lattice Let C be a product lattice defined as C = A×B. The least
and greatest elements are defined as follows:

⊥C = (⊥A,⊥B) >C = (>A,>B)

For product lattices, v simply extends to the components:

(a1, b1) vC (a2, b2) iff a1 vA a2 ∧ b1 vB b2

The join and meet operations work component-wise and are defined as follows:

(a1, b1) uC (a2, b2) = (a1 uA a2, b1 uB b2)
(a1, b1) tC (a2, b2) = (a1 tA a2, b1 tB b2)

Function lattice Let C be a function lattice defined as C = A → B. C’s
least and greatest elements are defined as:

⊥C = λa.⊥B >C = λa.>B

The order relation vC works element-wise:

f vC g iff ∀a ∈ dom(f) : f(a) vB g(a)

Join and meet lift the operation to the function domain and are defined as:

f tC g = λa. (f(a) tB g(a))
f uC g = λa. (f(a) uC g(a))
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Vector lattice Let A be the vector lattice defined as A = B∗. Then least
and greatest elements are defined as follows:

⊥A = 〈⊥B , . . . ,⊥B〉
>A = 〈>B , . . . ,>B〉

The relation vA works element-wise and is defined as:

〈u1, . . . , un〉 vA 〈v1, . . . , vn〉 iff ∀i : 1 ≤ i ≤ n : ui vB vi

Join and meet also work element-wise and are defined as:

〈u1, . . . , un〉 tA 〈v1, . . . , vn〉 = 〈u1 tB v1, . . . , un tB vn〉
〈u1, . . . , un〉 uA 〈v1, . . . , vn〉 = 〈u1 uB v1, . . . , un uB vn〉

Sum lattice Let C be a sum lattice defined as C = A + B. Adding new least
and greatest elements ⊥C and >C is necessary. The relation vC is defined as:

u vC v =



u vA v u ∈ A and v ∈ A

u vB v u ∈ B and v ∈ B

true u = ⊥C

true v = >C

false otherwise

Join and meet on sum lattices are defined as:

u tC v =


u tA v u ∈ A and v ∈ A

u tB v u ∈ B and v ∈ B

>C otherwise

u uC v =


u uA v u ∈ A and v ∈ A

u uB v u ∈ B and v ∈ B

⊥C otherwise

Lemma 1. The relation v is reflexive, transitive, and anti-symmetric.

Proof. Follows immediately from the definitions above.

The above definitions for v, join, and meet operations complete the defini-
tion of the semantic domains for the flow semantics.

4.2 State transition

This section defines the state transition relation _̂ of the abstract semantics.
The transitions of the concrete semantics serve as a guideline (see Section 2.3).
It is important to understand that, unlike in the concrete case, a state transition
may yield more than just one successor state.

Figure 4.2 shows the transition rules for eval states. Consider ̂PCallEval first.
The basic mode of operation is the same as in the concrete case: Â evaluates the
operator, operands, and continuation of the call under the current environments.
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primp ∈ PrimPCall \ {letrec1, letrec2}

ς̂ = ((primp 〈c, f, a1, . . . , an〉)τ , β̂, v̂e, σ̂, t̂)_̂{({p̂i}, 〈ĉ′〉, d̂∗, v̂e, σ̂, t̂′)}
( ̂PCallEval)

where



p̂i ∈ p̂roc

p̂roc = Â β̂ v̂e σ̂ t̂′ f

ĉ′ = Â β̂ v̂e σ̂ t̂′ c

d̂i = Â β̂ v̂e σ̂ t̂′ ai

t̂′ = t̂ick(t̂, ς̂)

primc ∈ PrimCCall \ {test}
ς̂ = ((primc 〈c, a1, . . . , an〉)τ , β̂, v̂e, σ̂, t̂)_̂{({p̂i}, 〈〉, d̂∗, v̂e, σ̂, t̂′)} ( ̂CCallEval)

where


p̂i ∈ p̂roc
p̂roc = Â β̂ v̂e σ̂ t̂′ c

d̂i = Â β̂ v̂e σ̂ t̂′ ai

t̂′ = t̂ick(t̂, ς̂)

ς̂ = ((prim l 〈c, a1, . . . , an〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈r̂〉, v̂e, σ̂′, t̂′)}
( ̂PrimCallEval)

where


d̂i ∈ d̂

d̂ = Â β̂ v̂e σ̂ t̂′ c

(r̂, σ̂′) = P̂Lang β̂ v̂e σ̂ t̂′ priml〈a1, . . . , an〉
t̂′ = t̂ick(t̂′, ς̂)

Figure 4.2: Simple transitions for abstract eval states

However, the operator f evaluates to a set of abstract procedure values p̂roc
here — the set of abstract closures that may occur during run time of the
program as the operators of this call. The transition rule then creates an apply
state for each abstract procedure value in p̂roc: The set of procedure values in an
apply state is always a singleton set and the states created by one invocation of
this rule only differ by this set. In the actual implementation, splitting the apply
states this way makes searching for states which apply a certain closure easier
and faster — an operation which occurs often. The remaining rules creating
apply states also obey this convention.

Transition rule ̂PrimCallEval depends on P̂Lang , the function that evaluates
the call to the language-specific primop prim l and returns an abstract value.
Thus, P̂Lang is an interface to the language-specific part of the analysis. See
Section 4.4 for a complete summary of the interface for language-specific ab-
stractions and examples for P̂Lang .

The ̂TestEval rule shown in the upper half of Figure 4.3 evaluates calls using
the test primop. An application of ̂TestEval results in two apply states, one for
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ς̂ = ((test 〈c0, c1, a〉)τ , β̂, v̂e, σ̂, t̂)_̂{(b̂i, 〈〉, 〈〉, v̂e, σ̂, t̂′)} ( ̂TestEval)

where


r̂ = Â β̂ v̂e σ̂ t̂′ a

b̂0 = Â β̂ v̂e σ̂ t̂′ c0

b̂1 = Â β̂ v̂e σ̂ t̂′ c1

t̂′ = t̂ick(t̂, ς̂)

ς̂ =
((letrec1 〈(λ (vc

1 . . . vc
n)

(letrec2 〈lc, eu
1 . . . eu

n〉)τ 〉)τ ′)τ ′′ , β̂, v̂e, σ̂, t̂)
_̂(call , β̂′, v̂e ′, σ̂, t̂′)

( ̂LetrecEval)

where



(λC() call) = lc

r̂i = Â β̂′ v̂e σ̂ t̂′ eu
i

β̂′ = β̂[vi 7→ t̂′]
v̂e ′ = v̂e t [(vc

i , t̂
′) 7→ r̂i]

t̂′ = t̂ick(t̂, ς̂)

Figure 4.3: Complex transitions for abstract eval states

each continuation of the test primop — this is independent of the abstract value
to which the test expression evaluates. The analysis assumes that the language-
specific abstract values for booleans are not precise enough to consider only one
branch.

The lower half of Figure 4.3 shows the transition rules for calls using the
letrec primop. Rule ̂LetrecEval works in the same way as its concrete coun-
terpart LetrecEval.

Figure 4.4 shows the transition rules for the primops global-ref and global-
set!. Since both rules apply to eval states, they also advance the time to t̂′.
Like its concrete counterpart, the rule ̂PGlobalRef searches the store for the
reference to the global variable reference g and calls all abstract continuations
with the result. Trivial calls may also use global-ref as a primop and the
following case for P̂Lang evaluates these calls:

P̂Lang β̂ v̂e σ̂ t̂ global-ref g = σ̂(g,>)

The rule ̂PGlobalSet updates the store for a global variable g. The rule
proceeds in three steps. First, it evaluates the argument a — the new value for
g — and the continuation argument of the call. The second step updates the
store σ̂ by merging the old value for g with its new value computed in the first
step. Finally, ̂PGlobalSet constructs apply states for each continuation of the
call to global-set!.

Â is the abstract counterpart of A, the auxiliary function that evaluates
the arguments of a call. Figure 4.5 shows Â. The only difference concerns the
return values, which are sets of denotable values now. Note that Â depends on
the language specific abstraction functions P̂Lang and K̂Lang .
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((global-ref 〈c, g〉)τ , β̂, v̂e, σ̂, t̂)_̂({p̂i}, 〈r̂〉, 〈〉, v̂e, σ̂, t̂′) ( ̂PGlobalRef)

where


t̂′ = t̂ick(t̂)
p̂i ∈ Â β̂ v̂e σ̂ t̂′ c

r̂ = σ̂(g,>)

((global-set! 〈c, g, a〉)τ , β̂, v̂e, σ̂, t̂)_̂({p̂i}, 〈〉, 〈〉, v̂e, σ̂′, t̂′) ( ̂PGlobalSet)

where


t̂′ = t̂ick(t̂)
p̂i ∈ Â β̂ v̂e σ̂ t̂′ c

d̂ = Â β̂ v̂e σ̂ t̂′ a

σ̂′ = σ̂ t [(g,>) 7→ d̂]

Figure 4.4: Transitions for accessing the abstract store

Â β̂ v̂e σ̂ t̂ lam = {(lam, β̂, t̂)}
Â β̂ v̂e σ̂ t̂ v = v̂e(v, β̂(v))
Â β̂ v̂e σ̂ t̂ g = σ̂(g,>)
Â β̂ v̂e σ̂ t̂ lit = {K̂Lang lit}

Â β̂ v̂e σ̂ t̂ (prim 〈eu
1 , . . . , eu

n〉) = P̂Lang β̂ v̂e σ̂ t̂ prim〈eu
1 , . . . , eu

n〉

Figure 4.5: Evaluating call arguments

Figure 4.6 shows the transition rule ̂ApplyClos: The transition from apply to
eval states. Like its concrete counterpart ̂ApplyClos binds the abstract values
provided in the argument vectors ĉ∗ and d̂∗ to the parameters of the lambda
expression. Binding the values consists of two stages. First, ̂ApplyClos creates
a binding environment that maps the parameters to the current time. The
second step updates the variable environment by merging the new values into the
original variable environment. Note that the concrete counterpart of ̂ApplyClos
actually updates the variable environment — that is, replaces the old values by
the new values. The successor state is an eval state which evaluates the call in
the lambda expression’s body under the updated environments.

The ̂ApplyClos rule completes the state transition rules. Now, almost ev-
erything is set up for defining the flow analysis of a program. The flow analysis
is a set containing all states visited during the computation of _̂∗ for a given
program pr . This set of states is the visited set V̂:

V̂(pr) = {ς̂I _̂∗
ς̂} ς̂I ∈ Î(pr)
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length(ĉ∗§d̂∗) = n

({((λ (p1 . . . pn) call)τ , β̂, t̂b)}, ĉ∗, d̂∗, v̂e, σ̂, t̂)_̂(call , β̂′, v̂e ′, σ̂, t̂) ( ̂ApplyClos)

where

{
β̂′ = β̂[pi 7→ t̂]
v̂e ′ = v̂e t [(pi, t̂) 7→ (ĉ∗§d̂∗)i]

Figure 4.6: Transition for abstract apply states

The function Î is the abstract counterpart of I and computes the initial abstract
state of a program:

Î : Prog→ Ŝtate

The functions Î and I are very similar. The initial state is an apply state that
applies lmain to the halt continuation. The initial binding environment β̂0 and
the initial variable environment v̂e0 are empty. The initial store σ̂I contains
references to all globally defined values in the program pr :

Î(〈f∗, lmain〉) = 〈{〈lmain , β̂0, t̂0〉}, 〈〉, 〈{halt}〉, v̂e0, σ̂I , t̂0〉

Section 2.4.3 explains how the concrete semantics constructs the initial store.
Constructing the abstract counterpart uses abstract domains and the abstract
argument evaluation function:

σ̂0 = []
σ̂i = σ̂i−1[(gi,>) 7→ Â β̂0 v̂e0 σ̂i−1 ei ]
σ̂I = σ̂n

where ∀(gi, ei) = f∗i , f∗ ∈ Definition∗

As in the concrete semantics, the forms of the program must obey the letrec*
property as stated in Section 2.4.3.

The abstract semantics just defined establishes the foundation for a practical
implementation of the flow analysis in a compiler: Computing the flow analysis
means computing the visited set. To make this more concrete, Figure 4.7 shows
pseudocode for actually computing the analysis. This pseudocode only serves
as an aid in understanding how the analysis works: Chapter 6 discusses the
implementation aspects in depth. prog in the pseudocode denotes the abstract
syntax tree of the input program.

The algorithm is a work-list algorithm. The central data structures are an
ordinary first-in, first-out queue that holds the states to visit (named unvisited
in the code) and the set of visited states: visited. In a first step, the program
fills unvisited with the initial state computed by Î. The program then enters
a loop which runs as long as the queue contains states to visit. If the queue
contains a state, the algorithm removes this state from the queue, includes it
in the visited set and computes its successor states. The successor states may
either be new, unvisited states or states the analysis already discovered. The
algorithm adds only unvisited states to the queue and therefore checks whether
the unvisited queue or visited set contain successor state in question. Here, it is
important to use the relation v to compare states: v is called the approximation
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(define (analyze prog)
(let ((initial-states Î(prog))

(unvisited (make-queue)))
(for-each (lambda (s) (enqueue! unvisited s))

initial-states)
(let lp ((visited ∅))
(if (queue-empty? unvisited)

visited
(let* ((s (dequeue! unvisited))

(new-visited visited ∪ {s})
(successors (s _̂)))

(for-each
(lambda (ns)
(if (not (and (find-in-set ns new-visited v)

(find-in-queue ns unvisited v)))
(enqueue! unvisited ns)))

successors)
(lp new-visited))))))

Figure 4.7: Pseudocode for computing the analysis

relation. Consider two abstract states û and v̂ for which û v v̂ holds. Then,
v̂ is said to approximate û. That is, if û is a valid abstraction (see the next
section for a formal definition) of some concrete state u, then v̂ is also a valid
abstraction of u (see Theorem 2 in Appendix B). Note that v is defined for all
entities in the flow analysis.

Searching the visited set for a state that approximates the state just created
is called the termination check . This check ensures that only states that contain
new information — states, which are not approximated by any state in the
visited set — are scheduled for a further state transition. Hence, this check
prevents that the analysis considers the same information over and over again.

In a practical setting the termination check dominates the run time of the
analysis. Therefore, the termination check is a crucial to the analysis implemen-
tation (see Chapter 6). The algorithm terminates when the unvisited queue
is empty and returns the set of visited states.

4.3 Semantic correctness

So far the concrete semantics has served as a template for developing the ab-
stract semantics. Recall that the abstract semantics must obey two properties:
The semantics must be computable and the flow-analysis results must be a sim-
ulation of all actual program runs. The abstract semantics is computable: The
set of abstract states is finite.

This section addresses the second property — the semantic correctness of the
flow analysis. As discussed in Section 3, the results of a flow analysis is useful
for high-level program optimizations. These optimizations draw conclusions on
the run-time behavior of a program on the basis of flow-analysis results. Hence
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it is necessary to establish a formal understanding how the flow-analysis results
relate to the run-time behavior of a program.

In preparation for the proof, a formal definition for the run-time behavior
according to the concrete semantics is necessary: The set of states visited during
the evaluation defines the behavior. For a program pr the visited set V(pr) is
defined by:

V(pr) = {ςi _∗ ς} ςi ∈ I(pr)

For formulating the central semantic correctness theorem, one further in-
gredient is necessary: A relation that connects concrete states and values with
their abstract counterparts:

RState : State× Ŝtate → {true, false}

Given a concrete and an abstract state, RState computes whether the abstract
state is an abstraction of the concrete state. Essentially, semantic correctness
means semantic correctness relative to connection defined by RState — it is
the correctness relation of the flow analysis. Basically, relating states yields
to checking the relation for the state components. Hence, this section defines
correctness relations for abstract values and environments. All the relations
have the name R with a subscript indicating what type of objects it relates.
Where it is non-ambiguous the subscript may be left out.

Consider the definition of RState :

((prim 〈e1, . . . , en〉)τ , β, ve, σ, t) RState ((prim 〈e1, . . . , en〉)τ ′ , β̂, v̂e, σ̂, t̂) iff
τ = τ ′ ∧
β RBEnv β̂ ∧
ve RVEnv v̂e ∧
σ RStore σ̂ ∧
t RTime t̂

(proc, d∗, c∗, ve, σ, t) RState ({p̂roc}, d̂∗, ĉ∗, v̂e, σ̂, t̂) iff
proc RProc p̂roc ∧
d∗ RD∗ d̂∗ ∧
c∗ RD∗ ĉ∗ ∧
ve RVEnv v̂e ∧
σ RStore σ̂ ∧
t RTime t̂

This definition extends R on the components of a state: An abstract eval state
corresponds to a concrete eval state if both states concern the same call expres-
sion and if both environments are abstractions over their concrete counterparts.
For apply states, the situation is similar: However, in addition checking the
variable environment it is necessary to determine whether the argument vector
and the operator is a proper abstraction for proc.

For each domain X̂ the top value > bX of the abstract domain represents all
values from the concrete counterpart:

x RX > bX = true x ∈ X

Elements of Proc are either the special halt continuation or closures. Hence,
the definition of RProc distinguishes two cases:
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RProc : Proc× P̂roc → {true, false}

halt RProc halt = true
((λ(v1 . . . vn) call)τ , β, t) RProc ((λ(v1 . . . vn) call)τ ′ , β̂, t̂) iff

τ = τ ′ ∧
β RBEnv β̂ ∧
t RTime t̂

The case for the halt continuation is easy: In both lattices there is exactly one
value for halt and RProc relates them. Moreover, RProc relates closures from
the same lambda expression. RProc includes the binding environments in the
check. This allows to distinguish multiple closures created over the same lambda
term at different points in time.

Denotable values abstract to a set of abstract values. Thus, RD requires
that the set of abstract values contains a representative for the concrete value:

RD : D× D̂ → {true, false}

proc RD d̂ iff ∃v̂ ∈ d̂ : proc RProc v̂

ref RD d̂ iff ∃r̂ef ∈ d̂ : ref RRef r̂ef ref ∈ Ref , r̂ef ∈ R̂ef
b RD d̂ iff ∃v̂ ∈ d̂ : b RBVal v̂ b ∈ BasLang , d̂ ∈ B̂asLang

c RD d̂ iff ∃v̂ ∈ d̂ : c RCVal v̂ b ∈ CompLang , b̂ ∈ ĈompLang

Basic and compound values are not part of the concrete or abstract semantics
because they are specific to the input language. Thus, the rest of this chapter
assumes that corresponding definitions of R for these value types exist.

An abstract reference simulates a concrete reference if the selector matches
and if the abstract location models the concrete location:

RRef : Ref × R̂ef → {true, false}

(loc, lit1) RRef (l̂oc, lit2) iff
lit1 = lit2 ∧
loc RLoc l̂oc

For locations, the correctness relation distinguishes between heap locations
and global variable locations. The correctness for global locations goes back to
comparing the global variable names. For heap locations, RLoc checks if the call
nodes are identical and if the concrete time models the abstract time:

RLoc : Loc× L̂oc → {true, false}

g1 RGLoc g2 iff
g1 = g2

(τ, t) RHLoc (τ ′, t̂) iff
τ = τ ′ ∧
t RTime t̂

Equipped with the correctness relation for references, locations, and deno-
table values defining the correctness relation for stores becomes possible. The
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correctness relation for stores is analogous to the correctness relation for varia-
ble environments. For each entry in the concrete store there must be an entry in
the abstract store for which the abstract denotable values simulate the concrete
value:

RStore : Store× Ŝtore → {true, false}

σ RStore σ̂ iff ∀ref ∈ dom(σ) : ∀r̂ef ∈ R̂ef : ref RRef r̂ef ⇒ σ(ref ) RD σ̂(r̂ef )

Arguments to a call are vectors of denotable values and RD∗ extends RD to
the vector elements:

RD∗ : D∗ × D̂∗ → {true, false}

〈d1, . . . , dn〉 RD∗ 〈d̂1, . . . , d̂n〉 iff ∀0 ≤ i ≤ n : di RD d̂i = true

RBEnv decides whether an abstract binding environment is an abstraction
of a given concrete environment. This requires checking whether the abstract
binding environment closes over the same variables as its concrete counterpart
and checking whether the time stamps are related:

RBEnv : BEnv × B̂Env → {true, false}

β RBEnv β̂ iff ∀v ∈ dom(β) : β(v) RTime β̂(v)

A variable environment maps tuples of variables and time stamps to deno-
table values. In principle the correctness relation checks if for all entries the de-
notable values relate according to RD , i. e. if the abstract variable environment
binds the variable to suitable representatives of the concrete values. However, in
abstract variable environments, time stamps are abstract points in time. Thus,
multiple entries in the concrete environment may collapse into a single entry
in the abstract environment. Therefore, RVEnv compares all abstract entries
where concrete and abstract time are related:

RVEnv : VEnv × V̂Env → {true, false}

ve RVEnv v̂e iff ∀(v, t) ∈ dom(ve) : ∀t̂ ∈ T̂ime : t R t̂ ⇒ ve(v, t) RD v̂e(v, t̂)

The flow analysis as presented is not tied to a specific time abstraction:
various implementations with varying resolutions exists (see Section 4.5). Hence,
RTime does not assume a particular T̂ime implementation and leaves the actual
definition open:

RTime : Time× T̂ime → {true, false}

For an example, assume that the analysis runs with the simple time abstraction
Time0 that abstracts all concrete points in time to a single abstract time. RTime

for this time abstraction is defined by:

t RTime0 t̂ = true

In general, the time abstraction must ensure that the following two conditions
hold:

t RTime t̂ ⇒ tick(t) RTime t̂ick(t̂)
t RTime t̂ ∧ t̂ v t̂′ ⇒ t RTime t̂′
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All correctness relations implicitly obey the following conditions. Assume a
concrete lattice L and its abstract counterpart L̂:

⊥L RL ⊥bL = true
l RL >bL = true
where l ∈ L, l̂ ∈ L̂

That is, the top value > represents all possible concrete values.
The correctness relation R now facilitates the formulation of the semantic

correctness:

Theorem 1 (Semantic correctness). For ς ∈ V(pr) there exists ς̂ ∈ V̂(pr) such
that ς R ς̂.

Proof. The proof works by induction over the state transitions and is included
in Appendix B.

4.4 Language-specific abstractions

To complete the analysis specification this section presents the abstract value
domains and primop state transitions for analyzing Scheme and PreScheme
programs.

The interface between the language independent core of the flow analysis
and the language-specific part are the following semantic domains:

• Basic values such as integers, characters, and boolean values belong to
B̂asLang .

• Compound values such as records, vectors, and arrays belong to ĈompLang .

Together with procedure values, these three domains form the sum domain for
denotable values. The core semantics, however, does not need to have knowledge
on values from B̂asLang and ĈompLang : The semantics merely defines how
these values flow as call arguments through the program. Hence, it is easy
to parameterize the analysis for different source languages converted to the
intermediate language by running it with suitable definitions of B̂asLang and
ĈompLang .

Literals and return values of primops are the source for basic and compound
values in a program. The core semantics delegates the evaluation of literals and
primops to the auxiliary functions K̂Lang and P̂Lang :

• K̂Lang lit is a function that evaluates the literal lit and returns a suitable
abstract representative.

• P̂Lang β̂ v̂e t̂ prim 〈a1, . . . , an〉 evaluates a call to the primitive operations
prim with the given arguments.

Note that P̂Lang is responsible for evaluating the primop call in the context of a
regular call (see ̂PrimCallEval in Figure 4.2) as well as in the context of trivial
calls (see Figure 4.5).

Hence, the interface for defining the language-specific parts of a flow analysis
consists of four parts: The definition of domains for basic and compound val-
ues, and abstract evaluation functions for literals and primops. The following
sections present two instances of this interface.



4.4. LANGUAGE-SPECIFIC ABSTRACTIONS 53

4.4.1 Abstracting PreScheme values

PreScheme [Kelsey , 1997] offers a rich set of distinct basic value types and
two compound value types. This section introduces abstractions for analyzing
PreScheme programs.

Basic values PreScheme knows the following basic value types: integer, float,
boolean, character, string, a null type which has no values at all, an unit type
with exactly one value, an “undefined” value type, two distinct types for input
and output ports, the “external” type for values imported from a C program
and the address type that represents memory addresses. Recall that PreScheme
is a Scheme dialect that was designed to translate to C easily.

While it would be perfectly legal to abstract all types of concrete basic values
to a single sort of abstract values, the result would be unnecessarily imprecise. A
more precise abstraction distinguishes the values by their type. Thus, B̂asLang

is a sum lattice and each summand domain stands for a basic value type. For
PreScheme the definition of B̂asLang reads as follows:

B̂asLang = ̂Integer + ̂Address + Ŝtring + . . .

The implementation described in Chapter 6 deals with all value types of PreScheme.
In this section I will focus on the domains for integers and addresses as these do-
mains demonstrate the abstraction techniques also used to model the remaining
domains.

Consider integer numbers first. Evaluating an integer literal directly yields
its value. That is, the precise value is available to the flow analysis — it is
safe to assume that the abstract representative for this number has exactly one
concrete counterpart. However, primop applications may also return integer
values. Here, determining the precise value is not possible in general: For
example, a primop may return an integer value that encodes the status of some
I/O operation or the length of a file. The simplest solution involves representing
all concrete integer values by one abstract representative. However, this solution
is unnecessarily imprecise — whenever possible, the analysis should preserve the
precise information.

A more suitable abstraction for integer values distinguishes between values
known to be precise and a representative for imprecise values. The semantic
domain for abstract integers reads as follows:

LitInt = N
̂Integer = LitInt ∪ {⊥Int ,>Int}

̂Integer uses the literal values to represent precise abstract integers. The least
element ⊥Int and the greatest element >Int represent imprecise integer values.
Now, distinguishing whether an integer î ∈ ̂Integer is precise or imprecise is
straightforward:

precise (̂i) iff î ∈ LitInt

imprecise (̂i) iff î ∈ {⊥Int ,>Int}
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The approximation relation v for abstract integers takes ⊥Int and >Int into
account:

î v ĵ =


î = ĵ î, ĵ ∈ LitInt

true î = ⊥Int

true ĵ = >Int

Each precise integer only represents itself and >Int represents all abstract in-
tegers. Recall that D̂ is a power lattice and thus abstract values are sets.
Considered together with the definition of v on power lattices (see Section 4.1),
the abstraction for integers now has the desired properties. For example, the
following inequality holds because each element in the set on the left-hand side
has a counterpart in the set on the right-hand side that represents it:

{23} v {23, 42}

Thus, the abstract denotable value on the left-hand side represents the value on
the right-hand side. >Int , however, represents all abstract integer values. Thus,
the imprecise integer represents all precise integers:

{23, 42} v {>Int}

K̂Lang yields a precise abstract integer while P̂Lang always abstracts to >Int .
That is, an integer literal value flows through the program as a precise values
until it reaches a primop — then the precision degrades. This principle —
distinguish precise and imprecise values — is also used for the domains that
model characters, floats, and boolean values.

PreScheme offers functions for manipulating the memory on a low level. The
type system distinguishes addresses from integer numbers using a separate type
for addresses. From the perspective of the analysis, addresses are similar to
integer values. However, preserving the exact value is less useful in this case.
Thus, the analysis collapses all concrete memory addresses down to a single
abstract address:

̂Address = {âddr}

Figure 4.8 summarizes the abstract semantic domains for PreScheme basic
values: The domains listed build the summands for B̂asLang .

Compound values Compound values combine multiple distinct values into
a single compound value. PreScheme offers two sorts of compound values:
Records and vectors. Hence, the semantic domain ĈompLang decomposes into
two summands allowing the analysis to distinguish records and vectors:

ĈompLang = V̂ector + R̂ecord

Vectors Vectors in PreScheme have a fixed length and the static type system
ensures that all elements of the vector are of the same type. During a program
run, the length and type remain fixed. The programmer references the entries
of a vector by integer indices. For the flow analysis, vectors pose a problem: As
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LitBool = all boolean literals
LitChar = all char literals
LitFloat = all float literals
LitInt = all integer literals
LitSym = all symbol literals

̂Address = {âddr}
̂Boolean = LitBool ∪ {⊥Bool ,>Bool}

Ĉhar = LitChar ∪ {⊥Char ,>Char}
F̂loat = LitFloat ∪ {⊥Float ,>Float}
̂InPort = {înport}
̂Integer = LitInt ∪ {⊥Int ,>Int}

N̂ull = {n̂ull}
̂OutPort = {ôutport}

Ŝtring = {ŝtring}
̂Undefined = {ûndef }

Ûnit = {ûnit}

Figure 4.8: Abstractions for PreScheme basic values

discussed before, integer values may not always be known precisely. That is,
tracking the accesses to a certain field of a vector becomes impossible in general.
Therefore, a conservative analysis has only one option to model vectors: Merge
the values of all vector entries into a single abstract denotable value.

A further problem with vectors arises from the fact that vectors may contain
arbitrary denotable values. That is, a naive model for vectors leads to a recursive
domain for D̂:

V̂ector = ̂Integer× D̂

Here, the integer summand holds the vector length and the abstract denotable
value is the union of all fields — introducing a recursion. To avoid a recursive
definition a closer look at the implementation of vectors in the concrete seman-
tics is helpful: A vector is a continuous memory region stored in the heap. That
is, the value of a vector in the program is really a reference to a block of loca-
tions in memory. This, however, is easy to model in the flow analysis using the
store. Consider this definition for abstract vectors:

V̂ector = ̂Integer× R̂ef

This definition does not introduce a recursion into the domain equation for D̂.
Now, vectors are tuples consisting of an integer denoting the vector length and
a reference. The reference points to a value in the store denoting the vector
elements — collapsed into a single value.

The primop make-vector allocates a new vector and initializes it with the
null value. Figure 4.9 shows the abstract transition rule for make-vector. The
argument l indicates the length of the vector and i serves as a type sample:
All entries of the new vector have the same type as i. The initial value for the
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ς̂ = ((make-vector 〈c, l, i〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈{r̂ef v}〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

l̂ = Â β̂ v̂e σ̂ t̂′ l

r̂ef v = ((τ, t̂′), vector)
r̂ef e = ((τ, t̂′), elem)
σ̂′ = σ̂ t

[
r̂ef v 7→ {(l̂, r̂ef e)}, r̂ef e 7→ {n̂ull}

]

ς̂ = ((vector-set! 〈c, v, i, n〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂als = Â β̂ v̂e σ̂ t̂′ v

n̂ew = Â β̂ v̂e σ̂ t̂′ n

v̂ref = {û : û ∈ v̂als ∧ û ∈ R̂ef ∧ (ĵ, r̂ef ) ∈ σ̂(û)}
σ̂′ = σ̂ t

⊔
((τi,bti),s)∈dvref [((τi, t̂i), elem) 7→ n̂ew ]

Figure 4.9: PreScheme vector operations

elements of a vector is always null, however. The transition rules first advances
the time to t̂′, evaluates the continuation argument c, and the argument l. Then,
the rule creates two references for the location (τ, t̂′): r̂ef v uses the selector
vector and is the reference to the value that represents the vector as a whole.
r̂ef e uses the selector elem and identifies the value that represents the vector
elements. Finally, the transition rule adds both references to the store and
produces an apply state for the continuation procedures using the reference
r̂ef v as the argument.

There are two primops that deal with vectors. Vector-ref returns the
element stored at a given index of a vector, and vector-set! overwrites a value
stored in a vector. Vector-ref only returns a value and has no side effect, and
therefore is only used as a primop for trivial calls. Thus, the evaluation function
for primops P̂Lang has a case for vector-ref:

P̂Lang β̂ v̂e σ̂ t̂ vector-ref〈v, i〉 =
⊔

((τ,bt′),s)∈dvref σ̂(((τ, t̂′), elem))

where v̂ = Â β̂ v̂e σ̂ t̂ v

v̂ref = {û : û ∈ v̂ ∧ û ∈ R̂ef ∧ (ĵ, r̂ef ) ∈ σ̂(û)}

The argument v for vector-ref denotes the vector. The denotable value v̂

contains the abstract representatives for this vector. The set v̂ref is the subset
of v̂ that contains all references to vector values. These references have vector
as their selector since these are references to the vector as a whole. Exchanging
the selector of these references with elem yields references that point to the
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elements of the vector. Finally, the rule joins the abstract values retrieved from
the store into one abstract value and returns this value.

Note that the rules ignores the index: The abstraction merges all element
values into a single abstract value. Consequently the analysis looses precision
when the program stores values in a vector. The analysis does not confuse
vectors created at different call sites, though. Locations for heap values consist
of a label and a point in time: The label identifies the constructor call and the
time allows to distinguish dynamic instances of the constructor call. That is,
every constructor call has its own store entry and, if there are multiple dynamic
instances of this constructor call, each distinguishable call has its own entry.

Mutation of a vector works similarly but is more complex since this involves
adding a transition rule. Figure 4.9 shows the transition rule for vector-set!.
This rule evaluates the continuation argument c, the vector argument v, and the
new value for the element n. Among the values in v̂ only references to vectors
are to be considered: v̂ref contains these references. The rule then updates the
store for each of this references replacing the selectors by elem.

Records A PreScheme program may define an arbitrary number of record
types. The compiler translates these records directly to C structs. A record
type definition introduces a new distinct record type with a fixed number of
fields accompanied by selector and mutator functions that access or update a
specific field of the record. Here is the record definition for a record which stores
two-dimensional Cartesian coordinates as an example:

(define-record-type point :point
(make-point x y)
(x integer point-x set-point-x!)
(y integer point-y set-point-y!))

The record has two fields, both of type integer, accessible with the selector
procedures point-x and point-y. Set-point-x! and set-point-y! overwrite
the values in a record’s x and y fields with a new value. The procedure make-
point is the record constructor that, given initial values for the fields, returns
a new instance of the record.

The compiler maintains a table of all record types and the relevant infor-
mation about the record fields, such as name and type. Each record type has
an unique name — a literal symbol. Unlike in full Scheme, symbols are not
denotable values in PreScheme. The compiler introduces symbols into interme-
diate language programs as named constants (see below for an example). To
the analysis, knowing the fields of a record is important when creating fresh
instances of records. The function rfields maps a record type name to the set
of field names for this record type:

rfields : LitSym → P(LitSym)

For the point record defined above, rfields returns the following:

rfields(:point) = {x, y}

There are three primops that deal with records:
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(make-record type)
(record-ref rec type field)
(record-set! rec value type field)

The arguments named type and field are symbols and the argument named
rec is an instance of a record. Make-record must not be confused with the
constructor of a specific record type. It allocates heap space for a fresh instance
of a record with the given type and initializes the fields with null. The record
constructor is a generated procedure that calls make-record to allocate memory
and record-set! to initialize the fields. The selectors and mutators are gener-
ated procedures that use record-ref to access a record field and record-set!
to update a field, respectively. For both primops, the argument field specifies
the field to access or update.

Note that the type and field arguments to the record primops are always
symbols introduced by the compiler when generating the constructor, selector,
and mutator procedures. That is, the analysis knows the values for this ar-
guments precisely and this improves the precision of the record abstraction.
The improved precision arises from two sources: First, the field name is always
known. That is, the analysis may keep the abstract values for the fields sepa-
rately and thereby avoid to confuse these values with values from other fields.
Second, the exact type information allows distinguishing instances of records by
their type. Consequently, the analysis does not merge values from one record
of type A with values from another record of type B. Considered together, this
means that the analysis merges values from the same field of possibly distinct
concrete record instances, which are of the same type, but never confuses these
values with the value for other fields or record types.

The abstraction for a record is the product lattice R̂ecord. That is, an
abstract record is a tuple consisting of a literal denoting the record type and a
mapping from field names to references:

R̂ecord = LitSym × (LitSym → R̂ef)

Like the definition of V̂ector, this definition avoids recursion on D̂.
Creating a fresh record using make-record adds entries for the record as a

whole and the fields to the store — which is a side-effect. Hence, make-record
may not be used in a trivial call and there is an transition rule for make-record.
Figure 4.10 shows the transition rule. Consider the parts of the transition rule
that extend the store. The rule extends the store with a reference to the record
as a whole: r̂ef . For each field that belongs to the record the rule adds a
reference using the field name as the selector. Initially, the field references the
least element in D̂ — the empty set. In PreScheme make-vector calls malloc
and therefore the initial value of the record fields is unspecified. The record
implementation, however, always generates constructors that call record-set!
immediately after malloc and initialize the fields. That is, PreScheme programs
are not able to observe the fact that the fields are uninitialized right after being
created. Hence, it is safe to model the initial value with ⊥bD. The value returned
by make-record consists of n̂ull and a reference since, as stated above, allocating
memory for the record may fail.

Accessing a field of a record goes back to finding the reference for this field
in the store. Here is the case of P̂Lang for the primop record-ref:
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ς̂ = ((make-record 〈c, tSym〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈r̂es〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

r̂es = {r̂ef , n̂ull}
r̂ef = ((τ, t̂′), record)
f̂ =

⊔
fn∈rfields(tSym)

[
fn 7→ ((τ, t̂′), fn)

]
σ̂′ = σ̂ t

[
r̂ef 7→ {(tSym , f̂)}

]
t

⊔
br∈rng( bf)

[
r̂ 7→ ⊥bD]

ς̂ = ((record-set! 〈c, r, tSym , fSym , n〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

r̂ = Â β̂ v̂e σ̂ t̂′ r

n̂ew = Â β̂ v̂e σ̂ t̂′ n

r̂ef = {û : û ∈ r̂ ∧ û ∈ R̂ef ∧ (tSym , f̂) ∈ σ̂(û)}
σ̂′ = σ̂ t

⊔
((τi,bti),s)∈cref

[
((τi, t̂i), fSym) 7→ n̂ew

]
Figure 4.10: PreScheme record operations

P̂Lang β̂ v̂e σ̂ t̂ record-ref〈r, tSym , fSym〉 =
⊔

((τ,bt′),s)∈cref σ̂(((τ, t̂′), fSym))

where r̂ = Â β̂ v̂e σ̂ t̂ r

r̂ef = {û : û ∈ r̂ ∧ û ∈ R̂ef ∧ (tSym , f̂) ∈ σ̂(û)}

The argument r evaluates to an abstract value that includes references to
records. The record type expected by this record-ref is given as the argu-
ment tSym and is always a symbol. Therefore, the analysis knows the expected
type precisely and filters r̂ for references to records of the type tSym — the result
is the set r̂ef . Replacing the record selector in the references of r̂ef with the
field name in question (given as the symbol fSym) yields the set of references to
the field values. Joining the values from the store for these references yields the
return value.

Updating a field requires a transition rule (see Figure 4.10). First, the ar-
gument r evaluates to an abstract value which includes abstract references to
records — these are the references to be considered. Using the exact informa-
tion about the expected type given by the argument tSym the analysis places
an additional restriction on the references r̂ef : Only references to records with
type tSym are considered. Updating the store works by joining the store with
functions from the references (with the selector changed to the field name fSym)
to the new value n̂ew .
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Primops Altogether, PreScheme offers about 80 primitive operations all mod-
eled in the flow analysis. The largest group (about 70 primops) among these
primops are very simple primops. The fl+ primop is an example for this class
of primops. Fl+ adds two floating point numbers and returns the result:

P̂Lang β̂ v̂e σ̂ t̂ fl+〈e0, e1〉 =

{
{f1 + f2} ei = {fi} ∧ fi ∈ LitFloat

>Float otherwise

Appendix C lists all PreScheme primops supported by the flow analysis.

Multiple return values Like Scheme, PreScheme allows the programmer
to define procedures that return multiple values. Also, some primops return
multiple values. Open-input-file is an example: Given the name of the file to
open, the primop returns an input port and an integer indicating the status of
the I/O operation just carried out. Calling such procedures and primops works
as in regular Scheme: The special syntactic forms call-with-values [Kelsey
et al., 1998] and receive [Stone, 1999] split the return values and bind them
to variables separately.

The PreScheme back end eliminates all calls to procedures or primops with
multiple return variables from the program by expanding the parameter list of
the continuation with extra parameters for the supplementary values returned.
This technique only works if the continuation of the call is a lambda node.
Hence, the front end enforces this restriction and rejects all programs that do
not obey this condition. The static type system features tuple types to represent
the type of a procedure with multiple return values.

This makes support for a distinct value type for multiple return values su-
perfluous: All continuations have the matching numbers of parameters. To the
flow analysis, however, multiple return values pose a problem: P̂Lang is designed
to return a single value. Thus, defining abstractions for these primops requires
a different approach: Each primop with multiple return values demands its own
transition rule. The following rule specifies the open-input-file primop:

prim l = open-input-file

ς̂ = ((prim l 〈c, a〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈{înport}, {>Int}〉, v̂e, σ̂, t̂′)}

where

{
t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

The rule is a specialization of ̂PrimCallEval (see Figure 4.2) and transitions
from an eval states to apply states corresponding to the invocation of contin-
uations d̂. Besides open-input-file, there are a few more primops requiring
similar rules. Appendix C.3 contains a complete list of these primops.

4.4.2 Abstracting Scheme values

The flow analysis also handles ordinary Scheme code. As stated earlier, the
core of the analysis is only loosely coupled to the denotable values used in
the programs — that is, the analysis does not need to know the structure of
the domain D̂ to analyze a program using values from D̂. Hence, the literal
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LitBool ::= all boolean literals
LitChar ::= all char literals
LitSym ::= all symbol literals
LitInt ::= all integer number literals
LitRat ::= all rational number literals
LitReal ::= all real number literals
LitComplex ::= all complex number literals

̂Boolean = LitBool ∪ {⊥Bool ,>Bool}
Ĉhar = LitChar ∪ {⊥Char ,>Char}

̂EmptyList = {êmpty}
Êof = {êof }
̂InPort = {înport}
̂OutPort = {ôutport}
̂RecType = LitInt

Ŝtring = {ŝtring}
̂Symbol = LitSym ∪ {⊥Symbol ,>Symbol}

̂Undefined = {ûndef }
̂Unspecific = { ̂unspecific}

̂NumType = {integer, rational, real, complex,⊥NumType ,>NumType}
̂Exactness = {exact, inexact,⊥Exact ,>Exact}
̂NumValue = LitInt + LitRat + LitReal + LitComplex

̂Number = ̂NumType× ̂Exactness× ̂NumValue

Figure 4.11: Abstractions for Scheme basic values

abstraction function Â and the primop evaluation function P̂Lang need to be
re-defined to prepare the analysis for Scheme.

In this this Section, I define a value domain D̂ suitable for deriving a pre-
cise analysis of Scheme programs and discuss the Scheme abstraction functions
and some of the additional state transitions for complex Scheme primops. A
complete listing of the primop semantics is included in Appendix D.

Basic values Figure 4.11 shows the summands of the domain B̂asLang : For
each distinct basic value type there is a corresponding domain. The domains
for booleans, characters, ports, strings and the undefined value work exactly as
their PreScheme counterparts and use the same abstraction techniques.

Input operations such as read-char either return a character read from a
port or the end of file value [Kelsey et al., 1998]. Scheme has a distinct value
that signals the end of a file. There is only one value of this type in Scheme 48
and consequently the abstract domain for this value type Êof is a singleton set.

The abstract values from ̂Undefined are not denotable values in Scheme.
The special undefined value exists in the Scheme 48 to reflect bound but unas-
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signed global variables. The flow analysis must be able to simulate the situation
just described. Thus, undefined has the abstract counterpart ûndef which flows
through the program like other basic values.

Primitive operations with side effects usually do not return a value. For tech-
nical reasons, however, every primop application in the Scheme implementation
has to return a value. If there is no meaningful value to return, primops return
the unspecific value. In contrast to undefined, unspecific is denotable (if useless).
The following interaction in the Scheme 48 REPL serves as an example:

> (if #f 42)
#{Unspecific}

The abstract counterpart for the unspecific value is ̂unspecific. The ̂Unspecific
domain contains just this value.

Note that the empty list has a distinct type. The analysis uses the domain
̂EmptyList for the empty list.

Number values Scheme arranges the numerical types in a so-called numeric
tower in which each numerical type is a subset of the type above [Kelsey et al.,
1998]. The types are: integer, rational, real, and complex. Integer are the
smallest type and each integer number is also a rational number, a real number,
and a complex number. The primitive operations on numbers work for all
subtypes and the type of the return value depends on the argument types.

For example, given an integer and a rational number, the + operation returns
a rational number — the largest type of the arguments types. For optimization
purposes, obtaining detailed information on the number types is useful: If the
flow analysis proves that the arguments of a numeric primop at some point in
the program only contains numerical values of a certain types then the compiler
may replace the general version of the primitive operation, which contains a
dispatch on the argument types, with a faster specific version that omits the
check.

Besides the number type, numerical values in Scheme have one additional
property that encodes whether the value is derived from an exact or inexact
operation. A value arisen from the evaluation of a literal, for example, is always
an exact value. The primop for division, however, does not return an exact
result in all cases. Thus, the value returned from a division may be marked as
being inexact. Note that the exactness of a number is orthogonal to its type.

That is, a Scheme number has three orthogonal characteristics: type, ex-
actness, and value. The flow analysis models all of these characteristics and
thus can often compute precise information on the number values used in a pro-
gram. Elements from ̂Number represent concrete Scheme numbers and consist
of type information (specified by ̂NumType) exactness information given by

̂Exactness, and a value from ̂NumValue:

̂NumType = {integer, rational, real, complex,⊥NumType ,>NumType}
̂Exactness = {exact, inexact,⊥Exact ,>Exact}
̂NumValue = LitInt + LitRat + LitReal + LitComplex

̂Number = ̂NumType× ̂Exactness× ̂NumValue
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If Â evaluates the literal node 42, for example, the analysis simulates this
with the value

(integer, exact, 42)

In this case type, value, and exactness are known precisely and the abstract
representative reflects this. In contrast to the evaluation of literals, the ab-
stract counterpart of an arithmetic operation such as * can not compute the
precise value of the result in general. That is, such an operation returns the
abstract integer that represents all possible integers: >NumVal . So, for a call to
* with exact integer arguments the primop evaluation function P̂Lang returns
the following abstract value:

(integer, exact,>NumVal)

That is, the analysis preserves the precise exactness and type information. In
fact, the Scheme standard requires many arithmetic primops to preserve the
exactness. Appendix D lists these Scheme primops.

This machinery, however, is not yet sufficient to model numbers correctly.
For an example, consider the addition of numbers. Adding the rational number
1/2 to itself yields the result 1 — a number that may be represented as a
rational or an integer. There is no simple rule to determine the number type
of the result value. Consequently, the analysis can not compute the type of
the return value, because this requires exact knowledge about the argument
values — which may not be available. To cope with this problem, the analysis
computes an abstract value which contains multiple abstract numbers. For the
addition of 1/2 mentioned above, the following abstract value represents the
return value:

{(integer, exact,>NumVal), (rational, exact,>NumVal)}

That is, there a representative for all integer and all rational numbers. Clearly,
(>NumType , exact,>NumType) would also be a valid abstraction. However, >NumType

is a unnecessary imprecise abstraction since this discards the knowledge that this
abstract value will not contain a number of type real or complex.

Computing the correct type and exactness characteristics of a number when
applying an arithmetic primop requires a few auxiliary functions. Consider the
auxiliary functions for the number types first.

The type of the result values for almost all arithmetic operations depends
on the types of the arguments. The function ntypes computes the set of number
types found in a denotable value or in an argument vector:

ntypes(d̂) =
⊔
{nt : (nt , e,nv) ∈ d̂}

ntypes(〈d̂0, . . . , d̂n〉) =
⊔

0≤i≤n

ntypes(d̂i)

As stated before, the relationship between the types of the argument values
and the result value type is not simple. So the return value type is not always
the greatest type found in the argument values — in fact any smaller type must
also be considered. The relation ≺ orders the representatives for types from

̂NumType by their size:

⊥NumType ≺ integer ≺ rational ≺ real ≺ complex ≺ >NumType
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The ≺ relation facilitates defining a function cntypes that returns the set of all
type that are smaller than a given type:

cntypes(nt) = {nt ′ ∈ ̂NumType | nt ′ ≺ nt} nt ∈ ̂NumType
cntypes(NT ) =

⊔
nt∈NT

cntypes(nt) NT ∈ P( ̂NumType)

To determine the exactness of the resulting value, these primops use the
auxiliary function exact?. Applied to an abstract value or an argument list
exact? detects whether all abstract numbers — regardless of their type — are
exact:

exact?(d̂) ⇔ ∀ (nt , e,nv) ∈ d̂ : e = exact

exact?(〈d̂0, . . . , d̂n〉) ⇔ ∀ 0 ≤ i ≤ n : exact?(d̂i)

Akin to exact?, inexact? determines whether an abstract value or a vector of
abstract values contains only number values known to be inexact:

inexact?(d̂) ⇔ ∀ (nt , e,nv) ∈ d̂ : e = inexact

inexact?(〈d̂0, . . . , d̂n〉) ⇔ ∀ 0 ≤ i ≤ n : inexact?(d̂i)

With the machinery for exactness and number types in place, it is now
possible to define the arithmetic primops. Here is the transition rule:

ς̂ = ((+ 〈c, a0, a1〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈r̂〉, v̂e, σ̂, t̂′)}

where



d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

âi ∈ Â β̂ v̂e σ̂ t̂′ ai

t̂′ = t̂ick(t̂, ς̂)
r̂ = {(nt , e,>NumVal) : nt ∈ cntypes(ntypes(〈â0, â1〉))}

e =


exact exact?(〈â0, â1〉)
inexact inexact?(〈â0, â1〉)
>Exact otherwise

This transition rule first advances the time to t̂′ and evaluates the call ar-
guments in the usual manner using Â. For + the exactness of the return values
depends on the exactness of the argument values. The auxiliary functions exact?
and inexact? first determine whether the evaluated arguments d̂i consist exclu-
sively of exact or inexact values. If this is the case, it is safe to say that the
resulting value is either exact or inexact. If the arguments have mixed exact-
nesses, however, the analysis is not able to detect the exactness and uses >Exact .
Bear in mind, that even when used with a polyvariant set of abstract times, the
analysis merges the argument values for multiple dynamic instances of a call.
For an example, consider the following scenario in a concrete program run: At
some point in time the program calls the function in question with exact argu-
ment values, and at a later point in time the program calls the same function
with inexact argument values. Clearly, the function will be either called with
exact or inexact numbers, but never with numbers of mixed exactness. Hence,
>Exact is the correct abstraction for the exactness of the return value.

The return value r̂ consists of multiple abstract numbers, one for each num-
ber type. ntypes computes the set of all number types appearing in the argument
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vector. cntypes then completes the set by adding all smaller number types. The
result is a set of types which includes all types starting at integer up to the
greatest number type found in the arguments.

The transition rule for + is a typical example for an arithmetic primop.
Many other primops work in a similar way or only exhibit minor differences and
therefore do not require further explanations. Appendix D lists a subset of the
arithmetic primops supported by the flow analysis.

Compound values The Scheme 48 system knows the following compound
values: cells, pairs, records, and vectors. Cells are a simple mechanism for
indirection: The constructor make-cell creates a fresh cell filled with an initial
value and returns the cell. Cell-ref takes a cell and extracts the value stored
in the cell. Cell-set! updates the value in a given cell overwriting the old
value. Thus, cells may also be considered as records or vectors with exactly one
field. The Scheme 48 system uses cells to store the values of lexical variables
that are subject to destructive updates. That is, if the program modifies the
value of a variable using set! the system binds the variable to a fresh cell and
replaces every variable reference to a call to cell-ref and every set! to a call
to cell-set!.

All compound values in Scheme 48 have an uniform representation as so-
called stored objects (or stobs for short) in the virtual machine. A stored object
is a heap value with a header identifying the value as a stob. Stobs have a field
that encodes the Scheme type this stob belongs to. The rest of the stob data is
specific to the type: A stob representing a cell only contains one further value
slot to hold the cell’s value. Pair stobs include two value slots for the car and
cdr values. Vector stobs contain a field for the length of the vector and space
for the vector elements. Record stobs consist of a slot for the record type and a
slot for each field.

For example, the code for creating a pair using the call (cons 42 23) trans-
lates to

(make-stob ’0 ’42 ’23)

in the intermediate language. Make-stob is the primop that creates a fresh stob
and returns it. The integer literal 0 encodes the stob type — zero stands for
pairs. Further arguments are the initial values for the stob fields. Note that the
integer encoding the stob type is always immediate and is fixed for the life-time
of the stob. Thus, the analysis always exactly knows the type of the stob created
by make-stob. The primitive operations stob-ref and stob-set! extract a
single field from a stob or modify a field.

The flow analysis represents stored objects by values from Ŝtob, defined by
the following domain equation:

Ŝtob = Lit∗Lang × (LitInt → R̂ef)

That is, an abstract stob is a tuple consisting of a vector and a function. The
vector contains literal values and stores meta information on the stob value such
as the stob type. The vector always has at least one entry for the stob type.
For better readability, I will write the name of the stob type in typewriter font
instead of the type number. The remaining elements of the vector encode other
information that is specific to the stob type: Records, for example, also contain
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a record type and vectors contain length information. The second component
of the tuple simulates the fields of the stob as a function. Given an index this
function returns the abstract reference for the field value.

Consider the following example. The call (make-stob ’0 ’23 ’42) at label
τ and occurring at analysis time t̂ creates an abstract stob that encodes a pair.
This stob has the following structure:

(〈pair〉,
[
0 7→ (τ, t̂), 1 7→ (τ, t̂)

]
)

Like the representation of PreScheme records and vectors this representation
does not introduce a recursive domain. The values that belong to a stob are
not part of the stob, the stob merely contains references to field values. Three
entries in the store belong to the stob shown above:

σ̂(((τ, t̂), stob)) = {(〈pair〉,
[
0 7→ (τ, t̂), 1 7→ (τ, t̂)

]
)}

σ̂(((τ, t̂), 0)) = {(integer, exact, 23)}
σ̂(((τ, t̂), 1)) = {(integer, exact, 42)}

The first entry represents the stob itself as indicated by the selector stob and
for each field there is a separate store entry. Note how the selector distinguishes
values stored under the same abstract heap location. The representation of
stobs includes a function that maps each field name to the reference in the store
that contains the value of the field. Two reasons motivate this choice.

The function mapping field names to references makes the stob representa-
tion independent of the abstract function used for references in the analysis.
Recall that references as discussed in this dissertation consist of a location and
a selector. That is, given a location and the set of selectors for a stob the set of
references for this stob is easy to construct. Depending on the purpose of the
analysis, the user may want to run the analysis using a more (or less) precise
store abstraction. In such an abstraction the correlation between the references
to a stob and the references for the stob fields may not be obvious.

The second reason is technical. From an implementation perspective, know-
ing the values reachable in the store through a given stob turns out to be very
useful: The implementation of the flow analysis uses a garbage collector to
improve the speed and precision of the analysis (see Chapter 6). During the
analysis of large programs, garbage collections occur often and are run-time in-
tensive. That is, the run time of the garbage collector is critical to the complete
run time. The novel implementation technique for such a garbage collector de-
picted in Chapter 6 borrows ideas from a marking garbage collector and directly
uses the references to efficiently trace reachable values.

Figure 4.12 shows the three transitions rules for make-stob. The first tran-
sition rule applies when make-stob is used to create a pair or a cell, the second
if the stob is a record and the last rule concerns vectors. The rules are very
similar. All these rules advance the time, evaluate the continuation argument
c, and evaluate the arguments ai, the initial field values.

Consider the make-stob rule for vector stobs first. As in the PreScheme case,
the analysis merges all values from all fields into a single abstract value. The
reason is simple: For most accesses to vectors, the analysis cannot determine
the exact index. Thus, it makes no sense to keep these values in separate fields
in the first place. The argument s denotes the vector length. The abstract stob
stores this information along with the stob type in the first component of stob
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tInt 6∈ {vector, record}
ς̂ = ((make-stob 〈c, tInt , a1, . . . , an〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈{r̂ef }〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂i ∈ Â β̂ v̂e σ̂ t̂′ ai

f̂ =
⊔

1≤i≤n

[
i 7→ ((τ, t̂′), i)

]
r̂ef = ((τ, t̂′), stob)
σ̂′ = σ̂ t

[
((τ, t̂′), i) 7→ v̂i

]
t

[
r̂ef 7→ {(〈tInt〉, f̂)}

]
tInt = record

ς̂ = ((make-stob 〈c, tInt , rtInt , , a1, . . . , an〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈{r̂ef }〉, v̂e, σ̂, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂i ∈ Â β̂ v̂e σ̂ t̂′ ai

f̂ =
⊔

1≤i≤n

[
i 7→ ((τ, t̂′), i)

]
r̂ef = ((τ, t̂′), stob)
σ̂′ = σ̂ t

[
((τ, t̂′), i) 7→ v̂i

]
t

[
r̂ef 7→ {(〈record, rtInt〉, f̂)}

]
tInt = vector

ς̂ = ((make-stob 〈c, tInt , s, a1, . . . , an〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈{r̂ef }〉, v̂e, σ̂, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂i ∈ Â β̂ v̂e σ̂ t̂′ ai

f̂ = [0 7→ ((τ, t̂′), elements)]
r̂ef = ((τ, t̂′), stob)
σ̂′ = σ̂ t

[
((τ, t̂′), elements) 7→

⊔
1≤i≤n

v̂i

]
t

[
r̂ef 7→ {(〈vector, s〉, f̂)}

]
Figure 4.12: Transition rules for make-stob



68 CHAPTER 4. ANALYSIS FRAMEWORK

tuple. The rule augments the store with an entry for the field using the selector
0 and also adds the entry that denotes the vector as a whole. The reference to
this value is also the value used as the argument for the subsequent application
of the continuation.

For cells and pairs (first rule of Figure 4.12) the situation is similar. How-
ever, this rule adds an entry for each field value. Like in the virtual machine
implementation, the flow analysis uses an index to identify a field and never
merges abstract values from distinct fields. It may, however, merge values from
the same fields of distinct stob instances.

The second rule of Figure 4.12 concerns records. I will discuss this rule in
the context of the other record-related primops later in this section.

The primop stob-ref extracts a given field of a stob. Figure 4.13 shows the
transition rule for this primop. Note that stob-ref takes four arguments: The
continuation of the call c, the stob value a1, an integer literal iInt that identifies
the field to access, and the stob type expected tInt . The virtual machine uses
the stob-type argument to detect type errors. If a1 evaluates to a stob value
that does not match the type tInt this raises a type error. For example, a call to
stob-ref implementing car that is called with a record must result in a type
error. Hence, stob-ref compares the type of the stob to access with the type
passed as arguments and eventually raises an error.

In the abstract semantics this check does not make sense since the abstract
values passed to stob-ref may contain false positives. The type information
is, however, useful to the analysis. Like the field name, the stob type is always
given in form of a literal and consequently the analysis knows the exact value.
This allows the transition rule for stob-ref to filter all abstract stob values
for stob values of the matching type and merge the values from the fields in
question.

Besides stob-ref there is also stob-indexed-ref which is the basis for
implementing Scheme procedures like vector-ref that take an index argument
computed at run time. See Appendix D.2 for the transition rule of stob-
indexed-ref.

Records A program may define an arbitrary number of distinct record types.
The Scheme 48 virtual machine represents all these record types as stobs marked
with the stob type record. This distinguishes records from other stobs, but does
not yet distinguish between record types. To achieve this, the virtual machine
uses a field in the stob data to store information on the record type. This field
contains another record of a special type, a record type record. Note that in
Scheme 48 there is more than one record library (e. g. SRFI 9 records [Kelsey ,
1999] and the built-in records). All these record systems are implemented in
terms of the fundamental record type used in the virtual machine — the stob
marked with record. In this work, the term record type always refers to this
fundamental record type unless declared the opposite.

Record-type records store information on a record type such as an unique
type id, the number of fields, a type name, and a procedure to print records.
Programs — except for low-level code such as the debugger — usually do not
have access to the record-type records.

Consider the following example for records and record-type records. To
define a new record type in Scheme, the programmer uses define-record-type:
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tInt 6∈ {vector, record}
ς̂ = ((stob-ref 〈c, a1, tInt , iInt〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈r̂〉, v̂e, σ̂, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂ ∈ Â β̂ v̂e σ̂ t̂′ a1

r̂ef = {û : û ∈ v̂ ∧ û ∈ R̂ef ∧ (〈tInt〉, f̂) ∈ σ̂(û)}
r̂ =

⊔
((τ, bt′′),s)∈cref σ̂(((τ, t̂′′), iInt))

tInt 6= {vector, record}
ς̂ = ((stob-set! 〈c, a1, tInt , iInt , a2〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂ = Â β̂ v̂e σ̂ t̂′ a1

n̂ew = Â β̂ v̂e σ̂ t̂′ a2

r̂ef = {û : û ∈ v̂ ∧ û ∈ R̂ef ∧ (〈tInt〉, f̂) ∈ σ̂(û)}
σ̂′ = σ̂ t

⊔
((τ ′, bt′′),s)∈cref

[
((τ ′, t̂′′), iInt) 7→ n̂ew

]
Figure 4.13: Accessing a stob field

(define-record-type pare :pare
(kons kar kdr)
pare?
(kar kar set-kar!)
(kdr kdr set-kdr!))

This definition creates a constructor, a type predicate, and selector and mutator
functions for this record type. Also, it creates a new record-type record and
binds it to :pare:

> :pare
#{Record-type 47 pare}
> ,inspect
#{Record-type 47 pare}

[0: resumer] #t
[1: uid] 47
[2: name] ’pare
[3: field-names] ’(kar kdr)
[4: number-of-fields] 2
[5: discloser] ’#{Procedure 1237 [...]}

During a pre-pass, the analysis finds all references to such record-type records
and generates a list of all record-type records used in the program. Most of the
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N = checked-record-ref

ς̂ = ((N 〈c, a1, tInt , iInt〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈r̂〉, v̂e, σ̂, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂ = Â β̂ v̂e σ̂ t̂′ a1

r̂ef = {û : û ∈ v̂ ∧ û ∈ R̂ef ∧ (〈record, tInt〉, f̂) ∈ σ̂(û)}
r̂ =

⊔
((τ ′, bt′′),s)∈cref σ̂(((τ ′, t̂′′), iInt))

N = checked-record-set!

ς̂ = ((N 〈c, a1, tInt , iInt , a2〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂ = Â β̂ v̂e σ̂ t̂′ a1

n̂ew = Â β̂ v̂e σ̂ t̂′ a2

r̂ef = {û : û ∈ v̂ ∧ û ∈ R̂ef ∧ (〈record, tInt〉, f̂) ∈ σ̂(û)}
σ̂′ = σ̂ t

⊔
((τ ′, bt′′),s)∈cref

[
((τ ′, t̂′′), iInt) 7→ n̂ew

]
Figure 4.14: Scheme record operations

information stored in a record-type record is irrelevant for the purpose of the
analysis. Thus, the flow analysis represents record types simply by their unique
type id (see the definition of ̂RecType in Figure 4.8).

The virtual machine checks all accesses to record fields and raises a type
error if the record if not of the expected record type. Thus, accessing the field
of a record consists of two checks. First, the virtual machine checks whether
the value in question is a stob that represents a record. If this is the case, the
second check matches the record-type field against the expected record type.
The primitive operation checked-record-ref returns the value of a record field,
and the mutator primop checked-record-set! updates a field of a record.

Figure 4.14 shows the transition rules for the primitive record operations.
Both rules are very similar to the rules for stob-ref and stob-set!, but also
take the record type into account. Both rules evaluate a1 — the record value —
and restrict the abstract values to references to stob values that represent a
record of the matching type tInt : r̂ef contains these references. The transition
rule for checked-record-ref joins the values stored under the references in
r̂ef and produces an apply state that applies the continuation to the joined
value. The transition rule for the mutation primop checked-record-set! joins
the values stored under the references in r̂ef with the new value given as the
argument a2.
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Procedures with variable arity Scheme procedures may have variable arity.
For an example consider the following procedure definition:

(lambda (x y . more)
(+ x y (apply + more)))

This procedure has two mandatory arguments, x and y, and the rest list argu-
ment more. The dot in the argument list indicates that the following argument
is the rest list argument. The procedure must be called with at least two argu-
ments. For a call with more than two arguments, the Scheme system allocates
a fresh list containing the remaining arguments and binds this list to more for
the call.

Adding support for the rest list argument to the flow analysis raises some
technical problems. First, the intermediate language must be able to distinguish
lambda terms with a fixed number of arguments from n-ary lambda terms.
Second, the transition rule ̂ApplyClos (see Section 4.2) becomes considerably
more complex since it needs to match the arguments against the parameters
and eventually creates a rest list.

The CPS transformation only introduces lambda expressions with a fixed
number of arguments. So, only user-defined procedures may be n-ary. The
superscript n marks a lambda term as being n-ary:

(λnP(vu
1 . . . vu

n) call)τ

For lambda expressions marked this way, the last element of the argument list
vu

n is always the rest list argument. A procedure without mandatory argument
consequently only has one argument for the rest list.

To allocate a fresh list for the remaining arguments of a call ̂ApplyClos uses
the auxiliary function ̂listify-args. Given a vector with n evaluated arguments,
an index k into this vector, and an abstract state this function augments the
store with a list containing the elements from k to n of the argument vec-
tor. ̂listify-args returns the updated store and the reference to the rest list:

̂listify-args : D̂∗ × N× Âpply → D̂× Ŝtore

̂listify-args(〈v0, . . . , vn〉, k, ς̂) = ({ŝtobk}, σ̂′)

where
̂stobn+1= {êmpty}

ŝtobi = ((τ(ai), t̂), stob)
ĉari = ((τ(ai), t̂), 0)
ĉdri = ((τ(ai), t̂), 1)
σ̂′ = σ̂ t

⊔
k≤i≤n

[
ŝtobi 7→ {(〈pair〉, [0 7→ ĉari , 1 7→ ĉdri ])}

]
t

⊔
k≤i≤n

[
ĉari 7→ v̂i

]
t

⊔
k≤i≤n

[
ĉdri 7→ ̂stobi+1

]
with(

(prim 〈a0, . . . , an〉), β̂′′, v̂e ′′, σ̂′′, t̂′′
)

_̂ ς̂

Note that ̂listify-args expects an eval state as its third argument — this state
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is the predecessor of the apply state calling ̂listify-args. By construction every
apply state except for the initial states has an eval state as its predecessor: _̂
never goes from an apply state to an apply state and _̂ creates a separate apply
state for each closure an operator expression evaluates to (see Section 4.2). Con-
sidered together, all apply states which are not initial states must have exactly
one predecessor which is an eval state.

̂listify-args uses the predecessor state to generate fresh store references. The
labels of the call arguments τ(ai) together with the time of the apply state
provide the location. This choice ensures a high grade of precision: The la-
bel discriminates different call sites in the program and the abstract time may
disambiguate dynamic instances of the same call.

The return value of ̂listify-args is a tuple consisting of a reference to the first
pair in the list ŝtobk (or êmpty) and the store augmented with the new pairs.

Equipped with this auxiliary function, the version of ̂ApplyClos for n-ary
procedures looks like this:

length(ĉ∗§d̂∗) ≥ n− 1

ς̂ = ({((λnP(p1 . . . pn) call)τ , β̂, t̂b)}, ĉ∗, d̂∗, v̂e, σ̂, t̂)_̂(call , β̂′, v̂e ′, σ̂′, t̂)

where


(r̂, σ̂′) = ̂listify-args((ĉ∗§d̂∗), n, ς̂)
β̂′ = β̂[pi 7→ t̂]
v̂e ′ = v̂e t

⊔
1≤j<n

[(pj , t̂) 7→ (ĉ∗§d̂∗)j ] t [(pn, t̂) 7→ r̂]

This additional rule only applies to closures over n-ary lambdas. Technically,
the original ̂ApplyClos must also be modified to exclude exactly those closures.
The rule for n-ary procedures uses ̂listify-args to wrap the arguments in the
concatenated argument vector ĉ∗§d̂∗ that exceed the argument count n into the
rest-list argument r̂. Calling ̂listify-args may result in an updated store σ̂′.
Then, the rule proceeds as its counterpart ̂ApplyClos: It updates the binding
environment to reflect the new binding time for pi and merges the new argument
values — including the rest list — into the variable environment.

Complete programs As described in Section 2.4.2 the input to the analysis
is not source code but rather a Scheme procedure. The byte-code optimizer
converts this procedure to a single CPS node. However, the optimizer does
not pay attention to the free variables of the procedure it is translating. That
is, the flow analysis must first close the program over these variables. There-
fore the analysis traverses the byte-code of the procedure in a pre-pass (using
the Scheme 48 byte-code parser) and builds the transitive closure over all free
variables. The result is a mapping from locations to Scheme values.

The fact that the program is given in form of Scheme values poses an ad-
ditional problem: So far, there is only an abstraction function that creates
abstract value on basis of literal nodes — that is, on basis of some source
code. The source code, however, that led to the Scheme values referenced in
the program in general, is not available. Here, a second abstraction function is
necessary: The abstraction function Ŝ turns a concrete Scheme value into its
abstract counterpart:

Ŝ : DScheme → (D̂ + Lam)
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The mode of operation for Ŝ is as follows: If the value is a procedure1, then
Ŝ uses the byte-code optimizer to convert the byte code of the procedure to
a CPS representation. That is, Ŝ returns a lambda node. Converting other
values, such as characters, symbols, booleans, integers, rational numbers, real
numbers, complex numbers, and the EOF object yields an abstract value of the
corresponding abstract value type.

For compound values referenced in the program the situation is more compli-
cated: These values abstract to references into the store which holds the actual
values. Here, the implementation differs from the analysis as presented so far.
Abstract locations in the implementation really are a sum domain of calls, global
variables, and heap locations in the Scheme heap. That is, the analysis injects
the heap location used by the Scheme 48 directly into the domain of abstract
locations. The store created by this pre-pass is the initial store of the analysis.

To abstract the fields of a compound value, the pre-pass calls Ŝ recursively.
For a Scheme pair, for example, Ŝ returns a reference to a stob and augments
the store with entries for the stob, car, and cdr. This technique also works for
records: As described in the preceding paragraphs there is a record-type record
for each record type. Among other things, the record-type record also stores the
number of fields, which allows Ŝ to sweep over all record fields and abstract the
field values. For vectors, Ŝ abstracts all the elements in the Scheme vector and
joins them into an abstract value. The implementation is also able to abstract
cyclic data in a meaningful way.

4.5 Precision and T̂ime

The flow analysis as defined in Section 4.2 lacks a clear definition of the set of
abstract times T̂ime, but imposes only a loose condition a time abstraction:
T̂ime must be finite to ensure termination.

The choice of a time abstraction is crucial for the precision and performance
of the analysis. Recall that the flow analysis may fold many concrete states into
a few abstract states. Consequently, the precision degrades.

T̂ime, however, not only influences the size of the state space, but gener-
ally the number of abstract values, binding environments, and the merging of
information in variable environments and stores. For example a variable en-
vironments maps tuples of variables and points in time to denotable values.
Assume that T̂ime is a singleton set. Consequently, the variable environment
does not distinguish variable values on basis of time: For each variable in the
program the environment only maintains a single entry. That is, all values
bound to a certain variable throughout a program run are merged in this single
entry. For an abstraction distinguishing multiple abstract points in time, in
contrast, the environment contains multiple entries for a single variable — each
with a different point in time. Section 4.6 contains a concrete example for this
behavior.

As depicted in the semantics, the flow analysis is decoupled from a particular
implementation of T̂ime. For the experiments conducted to study applications
of the flow analysis in the transformational compiler I used the well-studied k-

1Note that bS only abstracts procedures defined at top level, because the binding environ-
ment in these cases is known to be empty.
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CFA time abstractions [Shivers, 1991]. Understanding the flow analysis results
requires basic knowledge on these time abstractions. Thus, the following sections
give a brief overview on the k-CFA analysis hierarchy.

4.5.1 k-CFA time abstractions

The time abstractions based on k-CFA use call strings to define points in time.
In the execution of a program, the call sites stored on the call stack form the
current call string. Thus, a call string denotes a sequence of call nodes, which
are a sequence of syntax tree nodes. Semantically, a call string contains the
context in which a call or evaluation takes place.

In his thesis, Shivers [Shivers, 1991] applies call strings to the flow analysis
of programs to derive context information. This information forms the basis
for a series of time abstractions with varying precision and performance —
the k-CFA analysis hierarchy. As in the concrete execution of a program, the
analysis maintains a string that lists the call sites visited during the abstract
interpretation of a program. This context information is the foundation for
T̂ime: The current time of two states in the abstract interpretation is equal if
for both states the context information is equal. That is, the call strings are
identical.

The k in k-CFA denotes how much of the available context information is
used when comparing the context. In 1CFA only the latest entry in the call
string is relevant for the comparison of context information. For a 0CFA, the
analysis uses no context information at all. Thus, a 0CFA does not distinguish
between different points in time: The set of abstract points in time is a singleton
set.

0CFA is a monovariant analysis (or a context-insensitive analysis), and
1CFA is polyvariant or context-sensitive.

Before discussing the implications of these abstractions, consider the formal
definitions for a 0CFA and 1CFA implementation of T̂ime. As mentioned,
0CFA is a singleton set, and thus the definition reads as follows:

T̂ime0 = {t̂0}

The 0CFA t̂ick function is a constant function that ignores the arguments t̂ and
ς̂ and just returns t̂0:

t̂ick0 : (T̂ime0 ×Eval) → T̂ime0

t̂ick0(t̂, ς̂) = t̂0

1CFA uses exactly one item of the call string as context information, that is
a single call. Thus, the calls of a program form T̂ime1:

T̂ime1 = Call

Recall that only transitions from eval states call t̂ick and pass the eval state
as a supplementary argument to t̂ick (see 4.2). That is, the call that is subject
of the eval call contains the context information. t̂ick1 simply extracts the call
from the eval state:

t̂ick1 : (T̂ime1 ×Eval) → T̂ime1

t̂ick1(t̂, ς̂) = call where ς̂ = (call , β̂, v̂e, t̂)
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While it is possible to define time abstractions with k > 1 that involve more
context information computing the analysis in these cases becomes impracti-
cable. A 0CFA is computable in polynomial time. A 1CFA, however, already
needs exponential time, and recent research implicates that k-CFA for greater k
is also exponential in time [van Horn and Mairson, 2007]. Note, however, that
even if 1CFA is exponential in time, computing 1CFA for realistic programs is
often practical.

The 0CFA and 1CFA time abstractions are suitable for the applications con-
sidered in this dissertation. For further applications, however, it may be useful
to employ different time abstractions. Note that the flow analysis as defined is
not tied to k-CFA. It already lays the foundations for implementing more com-
plex time abstractions such as the Cartesian product algorithm [Agesen, 1995]
or polymorphic splitting [Jagannathan and Wright , 1998].

4.6 Flow analysis examples

This section exemplifies the flow analysis with two small examples, both com-
puted using the implementation described in Chapter 6.

0CFA example Figure 4.6 shows the PreScheme factorial program in its
intermediate representation and the state transitions of a 0CFA flow analysis
for this program. Each node in the graph corresponds to a state in the visited
set of the analysis. The states are numbered consecutively, the prefix letter “E”
indicates an eval state and “A” an apply state. The table in Figure 4.6 contains
detailed information about the states. The first column displays the name of
the state. The “state” column shows the state with its components. Note that
the table does not show the binding and variable environments explicitly, but
assigns a name to each intermediate environment. Using the “changes” column
and the graph the development of a particular environment are traceable. For
apply states, the “changes” column shows how this application affects binding
and variable environments. For eval states, this column shows which expression
evaluates under which environments. The “transition” column denotes which
transition rule applies for the state in this particular row.

As t̂ick is a constant function the “changes” column in the table does not
list the calls to t̂ick that take place in each eval state.

Follow the graph from its root node A1. The state E2 evaluates the letrec,
sets up the binding and variable environments and creates the eval state E3
which corresponds to the call in the body of letrec. In this state, the analysis
evaluates the literal arguments to exact integers and the subsequent apply state
A4 binds these values in the variable environment v̂e4. Under this environment,
the analysis evaluates the call to the test primop in E5. As specified by thêTestEval rule, this transition results into two apply states — one state for each
branch of test.

The right branch starting at A6 represents the trivial case of the recur-
sion. Lambda c 33 calls a continuation to communicate the return value. The
unknown-return primop for this call denotes that the compiler could not iden-
tify the continuation being called. The analysis, however, tracks the variable
environment and thus discovers that the lambda returns via the halt continua-
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tion bound in state A1. Hence, A9 applies the halt continuation and therefore
is a terminal state.

The left branch evaluates the recursive call to lambda lp 31 in E10. Note
that the evaluation of the trivial call arguments yields the inexact abstract
integer value >Int . The variable environment v̂e5 extended in the subsequent
apply state A11 thus merges the abstract values for the variables n 29 and r 30
that accumulate the values of the recursion.

The abstract states A4 and A11 apply the same abstract closure at the same
abstract point in time. A11 is, however, not an approximation of A4 because
A11’s argument vector d̂∗ is not weaker than A4’s argument vector in the sense of
v. This also applies to the variable environments. Hence, the analysis schedules
A11 for the unvisited queue and thereby evaluates the body of lp 31 a second
time.

Following the second evaluation of lp 31 either leads to the final state A16
or another eval state for the evaluation of the recursive call. Consider A16 first.
Like A9, this call applies the halt continuation, but this time also passes the
value >Int to the continuation. This is the expected behavior for a conservative
analysis: A16 taken together with A9 gives the set of all values that may occur
as the argument of the halt continuation.

The series of state transitions reaches the recursive call again in E17. E17,
however is not an approximation of E10: While the constituents for the binding
environment and time are weaker in the sense of v, the variable environment is
not. v̂e5 6v v̂e4: For (n 29, t̂0), (r 30, t̂0) the environment v̂e5 includes the values
>Int but v̂e4 does not. Hence, the analysis considers the recursive call a third
time and applies the closure over lp 31 again. The state E19 that evaluates the
body of lp 31, however, is a state that is already member of the visited set.
Comparing E19 with E12 yields that E19 is weaker than E12: The bindings
environments are equal in the sense of v as well as the variable environments.
Thus, the analysis stops here. In summary, the results of the analysis are:

• The continuation called at the call site (unknown-return c 21 c 30) is
the halt continuation, because the continuation argument in the corre-
sponding states E8 and E15 evaluates to {halt}. The argument is an
integer.

• The arguments for the lambda expression lp 31 are always integers.

1CFA example Figures 4.17 and 4.18 show the 1CFA flow analysis of the
PreScheme factorial program. For this program, 1CFA computes a flow analysis
with the same number of states as the 0CFA. Basically, the analysis proceeds
as in the 0CFA case and computes the same result.

The 1CFA variant, however, distinguishes six different points in time. As
discussed in Section 4.5, the 1CFA abstraction uses a call string of length one
to measure time. That is, the last call visited during the state transition serves
as the point in time. The following table shows the calls and the matching
abbreviations t̂i used in the table of Figure 4.18:
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t̂′ Call site
t̂0 —
t̂1 (letrec1 ^c_28)

t̂2 (jump lp_27 ’10 ’1)

t̂3 (test ^c_33 ^c_32 (< n_29 ’2))

t̂4 (unknown-return c_21 r_30)

t̂5 (jump lp_27 (+ ’-1 n_29) (* n_29 r_30))

Consider the eval states of the analysis. t̂′ denotes the value computed by
t̂ick when applied to the current state and the current time. Note how the time
is tied to the call node, not the eval state. The states E5 and E12 serve as
examples. Both states correspond to the evaluation of exactly the same test
primop call in the program. Thus, both states deal with the same piece of
syntax and hence in both cases the time t̂′ is the same: t̂3.

Unlike 0CFA, the 1CFA does not necessarily merge the arguments of un-
related calls. The program contains two calls to lp 31: The first call resides
in the body of continuation lambda c 34 with the arguments 10 and 1. The
second call is the body of continuation c 32 and computes the arguments using
two trivial calls.

Since the variable environment in a 0CFA contains at most one entry for a
variable, multiple bindings coming from different calls merge into a single entry.
Thus, the variable environment v̂e5 of Figure 4.6 has the following entries:

(c21, t̂0) 7→ {halt}
(lp27, t̂0) 7→ {(λC

31, β̂4, t̂0)}
(n29, t̂0) 7→ {10,>Int}
(r30, t̂0) 7→ {1,>Int}

Note that here the analysis merges the values for n 29 and r 30 even though
the values originate from different calls. The 1CFA variable environment v̂e4,
from Figure 4.18 for the same state (A11), however, distinguishes both values
on basis of their different times t̂2 and t̂5:

(c21, t̂0) 7→ {halt}
(lp27, t̂1) 7→ {(λC

31, β̂4, t̂1)}
(n29, t̂2) 7→ {10}
(r30, t̂2) 7→ {1}
(n29, t̂5) 7→ {>Int}
(r30, t̂5) 7→ {>Int}

Now, consider the states evaluating the calls to lp 31: the states E3, E10,
and E17. In E3 the time advances to t̂2, in E10 and E17 to t̂5. Thus, the
successor states update the binding environments for these times. In A4, the
binding environment β̂5 reads as follows:

c21 7→ t̂0
lp27 7→ t̂1
n29 7→ t̂2
r30 7→ t̂2
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The states A11 and A18, however, create binding environments β̂6 and β̂7 which
map the binding time for n 29 and r 30 to t̂5. That is, the subsequent evaluation
of variables taking place in the successor eval states access the proper entries
of the variable environment and do not confuse the values with values of other
dynamic instances of the call.



Chapter 5

Executable Semantic Model

This chapter develops an executable model of the semantics which, I used to test,
inspect, trace, and visualize the semantics described in the previous chapters.

The actual implementation (see Chapter 6) has some properties that make it
hard to trace the analysis and judge whether the semantics and the behavior of
the analysis are synchronous. The executable model of the semantics, however,
is easy to trace and visualizes the mode of operation. Each transition rule and
metafunction defined in the semantics has a counterpart in the model which
makes it easy to validate that the model exactly works like the mathematical
formulation. The mode of operation is as follows: A test case for the model
considers a program pr and computes V(pr) and V̂(pr). Then, the model checks
whether Theorem 4.3 holds. That is, it checks whether each state of a concrete
program execution has a counterpart in V̂ such that R for these states yields
true.

The implementation differs from the model in the following aspects:

• To improve the performance, the implementation uses complex data struc-
tures to represent the semantic domains.

• The implementation is tightly coupled to the compiler and setting up
programs as test cases is complicated.

• The results of an analysis are stored in data structures that are inconve-
nient to inspect and validate.

The PLT Redex tool [Matthews et al., 2004] facilitates executing semantics for-
mulated as a term rewrite system. I use PLT Redex to model the semantics.
The model consists of the following parts:

• A grammar for the intermediate language.

• Implementations of all concrete domains as terms and a formulation of
the concrete state transition relation _ as a reduction relation on terms.

• Implementations of all abstract domains as terms and a formulation of the
abstract state transition relation _̂ as a reduction relation on terms.

• A straightforward implementation of the correctness relation R.
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• An extensive test suite for all reduction relations and metafunctions.

• Code for exporting the state transitions in V and V̂ in form of a GML
file [Himsolt , 1995] — a file format for describing graphs — that allows
visualizing state transitions with an external program.

5.1 Example trace

Before turning to some aspects of the implementation of the executable seman-
tics, consider the following example: Figure 5.1 shows the evaluation of 5! in
PreScheme (see Figure 4.6 for the source code) in both the concrete and the
abstract semantics. Both graphs in Figure 5.1 were produced by the executable
model: Rectangle nodes depict the states visited by the concrete evaluation and
oval nodes depict abstract states. Grey nodes denote apply states (again, ap-
ply state names start with the letter A) and white nodes are eval states (their
names start with the letter E). Dashed lines illustrate the correctness relation:
For every abstract state ς̂ connected by a dashed line to a concrete state ς the
correctness relation ς R ς̂ holds.

The abstract states in Figure 5.1 correspond to the states shown in the 1CFA
example of the previous section (see the table in Figure 4.18). Both runs start
with the initial state A1 that applies the main procedure to an empty argument
vector and halt — the flow analysis and the program run start in sync.

Recall that lambda lp 31 is the core of the loop that computes the factorial.
The body of this lambda checks whether the end of the recursion has been
reached and either calls a continuation that in turn calls lp 31 recursively or a
continuation that returns the factorial number.

The state table in Figure 4.18 shows that the flow analysis contains three
apply states for lp 31: A4, A11, and A18. In the real program run, however,
there must be five applications of lp 31 for the factorial of five. The states are
A5, A9, A13, A17, and A21.

Consider the control flow starting at the abstract state A4 — this is the first
application of lp 31. Here, the flow analysis knows the exact values for the
literal integer arguments. Then, the analysis evaluates the body of lp 31 under
the updated environments. This happens in states E5 and E6, respectively.
Note that the abstract evaluation of the test primop follows both branches and
hence E5 has two subsequent states. Its concrete counterpart E6 only calls the
continuation for the alternative branch. That is, the abstract states A6, E8 and
A9 characterize a situation that does not take place in a concrete program run.

The second application of lp 31 in the flow analysis starts with A11. The
arguments for this application derive from the evaluation of primops and hence
contain >Int . Therefore, A11 is more abstract than the first apply state for lp -
31. In fact, A11 is a correct abstraction for all applications of lp 31 that occur
in the concrete program run. This also applies to all abstract states derived
from A11: The states that characterize the evaluation of the alternative branch
E12, A14, E17, and A18 are the abstract counterparts for the recursive calls to
lp 31.

In the concrete eval state E22 test evaluates to true. This ends the recursion
and returns the computed value by applying the halt continuation (abstract
apply state A16 and concrete state A25).
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Figure 5.1: Semantic correctness for the PreScheme factorial program
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Finally, note that this visualization makes checking the semantic correctness
easy: Each concrete state has a dashed connection to an abstract state.

5.2 Implementation with PLT Redex

The implementation of the executable semantic model consists of about 2,000
lines of Scheme code, more than half of which are test cases. The grammar of
the intermediate language as specified in Figure 2.2 translates directly into a
grammar description for PLT Redex. This section shows the complete code of
the grammar definition interweaved with explanations.

5.2.1 Grammar definition

The special form language defines a grammar as a list of productions. Each
production is a pair consisting of a non-terminal name and a S-expressions for
the right-hand side of the production. Additional S-expressions are treated
as alternatives. Note that terms in PLT Redex always have the form of S-
expressions. The definition of the grammar starts as follows:

(define cps-language

(language

;;; labels

(label number)

;;; each state has a unique id

(id number)

;;; variables

(var-name (variable-except call trivcall

Lambda-c Lambda-u Lambda-j

VEnv BEnv Time

Clos halt

Apply Eval

Literal))

(var (LVar var-name))

(gvar (GVar var-name))

The label of a term is an unique integer that identifies the term unambiguously.
The labels establish the basis for an intensional equality predicate.1

I will discuss the production id in context of the syntax for states. The def-
inition above uses the two special non-terminal symbols number and variable-
except provided by Redex. Number matches all numbers and variable-except
matches all symbols except the ones specified. Here, variable-except prevents
that the program contains one of the specified reserved names as a variable name.

The grammar of Figure 2.2 has disjoint sets for local and global variable
names. The model, however, uses one set for variable names and distinguishes
references by embedding the variable name into the forms (LVar ...) and
(GVar ...).

The next part of the grammar specifies the terms of the CPS intermediate
language:

1The implementation (see Chapter 6) compares the nodes in the abstract syntax tree using
pointer comparison to implement intensional equality.
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(literal (Literal number) (Literal true) (Literal false)

(Literal string))

(prim-proc-call call tail-call unknown-call unknown-tail-call)

(prim-cont-call return unknown-return jump let)

(prim-lang-call + - * < >)

(prim-global global-ref global-set!)

(lam-cont (Lambda-c label (var-name ...) pcall))

(lam-user (Lambda-u label (var-name ...) pcall))

(lam-jump (Lambda-j label (var-name ...) pcall))

(exp lam-cont lam-jump lam-user var gvar literal call-triv)

(exp-cont lam-cont lam-jump var gvar literal call-triv)

(exp-user lam-user var gvar literal call-triv)

(pcall call-user call-cont)

(call-user (Call label prim-proc-call exp ...)

(Call label prim-lang-call exp ...)

(Call label prim-global exp ...)

(Call label letrec1

(Lambda-c label (var-name ...)

(Call label letrec2 lam-cont exp ...))))

(call-cont (Call label prim-cont-call exp ...)

(Call label test lam-cont lam-cont exp))

(call-triv (Trivcall label prim-lang-call exp ...))

The above defines the syntax for literals, the names of the primops, lambda
expressions, call expressions, and expressions. Only boolean, number, and string
literals are supported in the model. Also, the set of primops is limited to the
core primops for calls and the basic arithmetic and comparison primops. The
ellipsis operator ... specifies that the last symbol before ... may occur zero
or more times.

Lambda expressions and calls are lists that have a tag and a label as their
first elements. The tag for lambda expressions is a terminal symbol that denotes
whether the expression is a continuation, jump, or user-defined lambda. For calls
there is only the single tag Call as the primop identifies the category the call
belongs to.

Figure 5.2 shows the definition for the procedure lp 31 used in the exam-
ple of the previous section (see Figure 4.17 for the complete source code of the
PreScheme factorial program). For this example, I created the code manually.
However, connecting the front end of the transformational compiler to the se-
mantic model is straightforward. The special form term (provided by Redex)
introduces a term and behaves similar to the Scheme quasiquote functionality:
Comma escapes the quote and evaluates the expression followed by comma.

The presentation continues with the part of the grammar that defines the
syntax for terms representing the domains of the concrete semantics. The
first part deals with the binding environment (benv), the variable environment
(venv), and the store (store):

(benv-entries (var-name time) ...)

(benv (BEnv benv-entries ...))
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(define ps-factorial-c32

(term (Lambda-c 32 ()

(Call 321 jump (LVar lp27)

(Trivcall 322 + (Literal -1) (LVar n29))

(Trivcall 323 * (LVar n29) (LVar r30))))))

(define ps-factorial-c33

(term (Lambda-c 33 ()

(Call 331 unknown-return (LVar c21) (LVar r30)))))

(define ps-factorial-lp31

(term (Lambda-j 31 (n29 r30)

(Call 310 test

,ps-factorial-c33

,ps-factorial-c32

(Trivcall 311 < (LVar n29) (Literal 2))))))

(define ps-factorial-main22

(term (Lambda-c 22 (c21)

(Call 220 letrec1

(Lambda-c 221 (lp27)

(Call 222 letrec2

(Lambda-c 223 ()

(Call 224 jump (LVar lp27) (Literal 5) (Literal 1)))

,ps-factorial-lp31))))))

Figure 5.2: Representing a program in the executable semantics

(venv-entries (var-name time value) ...)

(venv (VEnv venv-entries ...))

(store-entries (ref value))

(store (Store store-entries ...))

The corresponding domains BEnv, VEnv, and Store in the semantics are
function domains. The model represents the functions as terms containing se-
quences of tuples. Each tuple consists of a key and a value. Note that it would
also be possible to represent the functions as Scheme procedures: This, how-
ever, has the disadvantage that a trace of the reduction relation would contain
opaque Scheme values and the result would be less traceable. The next section
shows the metafunctions — functions from terms to terms — that operate on
the terms representing functions.

A number wrapped in the form (Time ...) represents the elements of the
domain Time:

(time (Time number))

The following code defines the rules for terms representing basic values,
procedure values, references, and locations:

(bool (Bool true) (Bool false))

(int (Int number))
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(closure (Clos lam-cont benv time)

(Clos lam-user benv time)

(Clos lam-jump benv time))

(proc closure halt)

(value proc int bool ref)

(ref (Ref loc literal))

(loc hloc gloc)

(hloc (HLoc label time))

(gloc (GLoc var-name))

The model supports boolean values and integers as basic value types. That is,
the domain BasLang has two summands:

BasLang = Boolean + Integer

All value terms are lists with a tag that identifies the domain the value belongs
to.

Finally, the terms representing the states from the domain State can be
defined:

(eval (Eval id id call-user benv venv store time)

(Eval id id call-cont benv venv store time))

(apply (Apply id id proc (value ...) (value ...) venv store

time))

(state eval apply)

A state is a list with a tag for the state type and all components of the state
tuples. Eval and apply states have two additional components that contain
numeric ids. The first number identifies the state and the second number is the
id of its predecessor. The ids simplify tracing transitions and facilitate exporting
the transitions as a directed graph.

This completes the grammar rules necessary to model the concrete semantics.
The next part of the grammar definition considers the abstract semantics:

(abenv-entries (var-name atime) ...)

(abenv (ABEnv abenv-entries ...))

(avenv-entries (var-name atime avalue) ...)

(avenv (AVEnv avenv-entries ...))

(astore-entries (ARef avalue) ...)

(astore (AStore astore-entries ...))

(atime (ATime number))

(abool (ABool bot) (ABool true) (ABool false) (ABool top))

(aint (AInt bot) (AInt number) (AInt top))

(aclosure (AClos lam-cont abenv atime)

(AClos lam-user abenv atime)

(AClos lam-jump abenv atime))

(aproc aclosure halt)

(dvalue aproc abool aint aref)
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(avalue (AValue dvalue ...))

(aref (ARef aloc literal))

(aloc ahloc agloc)

(ahloc (AHLoc label time))

(agloc (AGLoc gvar))

(aeval (AEval id id call-user abenv avenv astore atime)

(AEval id id call-cont abenv avenv astore atime))

(aapply (AApply id id avalue (avalue ...) (avalue ...) avenv

astore atime))

(astate aeval aapply)))

The domains of the abstract semantics are modeled like their concrete counter-
parts. Note that productions for basic value domains ̂Integer and ̂Boolean
now contains terms that represent the least and greatest values of the lattice.

The production dvalue models a denotable values. The terms matching
avalue represent the abstract values of the domain D̂. That is, a set of denotable
values represented as a sequence.

This completes the definition of the grammar. The following section shows
the metafunctions that operate on terms just described.

5.2.2 Metafunctions

Metafunctions are functions from terms to terms. The model uses metafunctions
heavily to accomplish the following operations:

• extract parts of a CPS term.

• search and update the binding environment, the variable environment,
and the store.

• join abstract values with t.

• implement the argument evaluation functions A and Â, the literal eval-
uation functions KLang and K̂Lang , and the primop evaluation functions
PLang and P̂Lang .

• implement the approximation relation v.

• implement the correctness relation R.

This section shows most of the metafunctions used in the executable model.
The following metafunctions operate on CPS terms and extract parts of

terms. Call-cont-exp extracts the expression that evaluates to the continua-
tion from a call node:

(define-metafunction call-cont-exp

cps-language

((Call label_1 prim-proc-call_1 exp_1 exp_2 ...)

exp_1)

((Call label_1 prim-lang-call_1 exp_1 exp_2 ...)

exp_1)

((Call label_1 test lam-cont_1 lam-cont_2 exp_1)

(lam-cont_1 lam-cont_2))
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((Call label_1 prim-cont-call_1 exp_1 exp_2 ...)

exp_1))

The syntax for defining metafunctions resembles the Scheme macro system. A
metafunction is a list of rules, where each rule consists of a left-hand side — the
pattern — and a right-hand side that is the expression to evaluate if the pattern
matches. The code for call-cont-exp consists of four rules. The Redex pattern
language supports ellipses and binding matching subpatterns to variables as
indicated by the suffixes 1, 2, and so on. In the first rule the pattern is (Call
label 1 prim-proc-call 1 exp 1 exp 2 ...) and the right-hand side is the
term exp 1. That is, if this pattern matches the metafunction returns the
term matching the subpattern exp 1. Usually the right-hand side is a term,
however, the programmer may use unquote , and specify a Scheme expression
that evaluates to a term instead. Furthermore, there is a similar metafunction
call-op-exp that extracts the expression in operator position.

The next metafunction, call-args-exps, extracts the argument list of a
call node omitting the expressions in continuation and operator position:

(define-metafunction call-arg-exps

cps-language

((Call label_1 prim-proc-call_1 exp_1 exp_2 exp_3 ...)

(exp_3 ...))

((Call label_1 prim-lang-call_1 exp_1 exp_2 ...)

(exp_2 ...))

((Call label_1 prim-cont-call_1 exp_1 exp_2 ...)

(exp_2 ...)))

There are three kinds of lambda expressions and the following metafunctions
provide a common way of extracting the body and parameter list:

(define-metafunction lambda-body

cps-language

((Lambda-c label_1 (var-name_1 ...) pcall_1)

pcall_1)

((Lambda-u label_1 (var-name_1 ...) pcall_1)

pcall_1)

((Lambda-j label_1 (var-name_1 ...) pcall_1)

pcall_1))

(define-metafunction lambda-params

cps-language

((Lambda-c label_1 (var-name_1 ...) pcall_1)

(var-name_1 ...))

((Lambda-u label_1 (var-name_1 ...) pcall_1)

(var-name_1 ...))

((Lambda-j label_1 (var-name_1 ...) pcall_1)

(var-name_1 ...)))

To compare CPS nodes by their label the model uses the comparison predicates
call=? and lambda=?. Here is the definition of call=?:

(define-multi-args-metafunction call=?

cps-language

(((Call label_1 any ...) (Call label_1 any ...))

#t)
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((any any)

#f))

This definition uses define-multi-args-metafunction a variant of define-
metafunction that allows the definition of metafunctions with multiple argu-
ments. Lambda=? is analog to call=?.

Variable names and literals do not have a label and the corresponding meta-
functions var=? and literal=?, and thus these functions compare the whole
term:

(define-multi-args-metafunction var=?

cps-language

((var-name_1 var-name_1) #t)

((var-name_1 var-name_2) #f))

The binding environment is a sequence of tuples. Each tuple is called an
entry and consists of a variable and a point in time. The following metafunctions
search a binding environment for a given variable:

(define-multi-args-metafunction benv-key=?

cps-language

((var-name_1 (var-name_2 time_1))

,(and (term (var=? var-name_1 var-name_2))

(term time_1))))

(define-multi-args-metafunction benv-lookup

cps-language

(((BEnv benv-entries_1 ...) (LVar var-name_1))

,(my-find (lambda (entry)

(term (benv-key=? var-name_1 ,entry)))

(term (benv-entries_1 ...)))))

These metafunctions use a comma to unquote and evaluate a Scheme expression
that generates the term to return. Benv-key=? checks whether a given entry
matches the variable var-name 1. Benv-lookup searches the binding environ-
ment for an entry using the auxiliary Scheme function my-find, which is defined
as follows:

(define (my-find p lst)

(let lp ((lst lst))

(if (null? lst)

#f

(or (p (car lst))

(lp (cdr lst))))))

The semantics uses β(v) to retrieve the binding time of v from the binding
environment β. In the model this is expressed as (benv-lookup benv (LVar
v)) where benv is a representation for β.

Here is the metafunction that implements the update of a binding environ-
ment:

(define-multi-args-metafunction benv-update

cps-language

(((BEnv benv-entries_1 ...) (LVar var-name_1) time_1)

,(if (term (benv-lookup (BEnv benv-entries_1 ...) (LVar var-name_1)))

(term (BEnv ,@(map (lambda (entry)
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(if (term (benv-key=? var-name_1 ,entry))

(term (var-name_1 time_1))

entry))

(term (benv-entries_1 ...)))))

(term (BEnv ,@(append (term (benv-entries_1 ...))

(term ((var-name_1 time_1)))))))))

The term β[x 7→ t0] in mathematical notation translates to (benv-update benv
(LVar x) (Time 0)) in the model. To update the binding environment benv-
update creates a new term that represents the updated environment. The up-
date proceeds as follows: If the binding environment already contains an entry
for the variable x (the variable to update) benv-lookup uses map to traverse all
entries and replace the entry for x — leaving the other entries untouched. If the
binding environment has no entry x, benv-update appends a new entry.

The metafunctions for variable environments and store work analogously,
therefore I only present the metafunctions for variable environments:

(define-multi-args-metafunction venv-key=?

cps-language

((var-name_1 time_1 (var-name_2 time_2 value_1))

,(and (term (var=? var-name_1 var-name_2))

(term (time=? time_1 time_2))

(term value_1))))

(define-multi-args-metafunction venv-lookup

cps-language

(((VEnv venv-entries_1 ...) (LVar var-name_1) time_1)

,(my-find (lambda (entry)

(term (venv-key=? var-name_1 time_1 ,entry)))

(term (venv-entries_1 ...)))))

Like binding environments, variable environments are sequences of entries. Each
entry is a tuple that consists of a variable name and a point in time that together
form key and a value. The metafunction venv-key=? compares the key of an
entry to a given variable name and time. Venv-key? returns the value stored
in this entry if the key matches or returns #f if the key does not match. Venv-
lookup uses my-find to search all entries.

In the semantics, ve(v, β(v)) returns the value of the variable v in the variable
environment ve and the binding environment β. This translates to

(venv-lookup venv (LVar v) (benv-lookup benv (LVar v)))

in the executable model.
Venv-update updates a variable environment and relates to ve[(v, t) 7→ d]

in the semantics:

(define-multi-args-metafunction venv-update

cps-language

(((VEnv venv-entries_1 ...) (LVar var-name_1) time_1 value_1)

,(if (term (venv-lookup (VEnv venv-entries_1 ...) (LVar var-name_1) time_1))

(term (VEnv ,@(map (lambda (entry)

(if (term (venv-key=? var-name_1 time_1 ,entry))

(term (var-name_1 time_1 value_1))

entry))

(term (venv-entries_1 ...)))))
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(term (VEnv ,@(append (term (venv-entries_1 ...))

(term ((var-name_1 time_1 value_1)))))))))

The mode of operation is similar to benv-update. That is, venv-update gen-
erates a new term that represents the updated environment.

The transition rules usually update the variable environment for all call argu-
ments. Therefore venv-update/params folds venv-update over the arguments:

(define-multi-args-metafunction venv-update/params

cps-language

((venv_1 (var-name_1 ...) time_1 (value_1 ...))

,(fold-right (lambda (var.value venv-term)

(let ((var (car var.value))

(val (cadr var.value)))

(term (venv-update ,venv-term (LVar ,var) time_1 ,val))))

(term venv_1)

(zip (term (var-name_1 ...)) (term (value_1 ...))))))

The metafunction benv-update/params works analogously.
The semantic function A evaluates the arguments of a call. Its counterpart

in the model is the metafunction arg-eval:

(define-multi-args-metafunction arg-eval

cps-language

((benv venv store time (Literal number_1))

(Int number_1))

((benv venv store time (Literal true))

(Bool true))

((benv venv store time (Literal false))

(Bool false))

((benv_1 venv store time_1 lam-cont_1)

(Clos lam-cont_1 benv_1 time_1))

((benv_1 venv store time_1 lam-user_1)

(Clos lam-user_1 benv_1 time_1))

((benv_1 venv store time_1 lam-jump_1)

(Clos lam-jump_1 benv_1 time_1))

((benv_1 venv_1 store time var_1)

(venv-lookup venv_1 var_1 (benv-lookup benv_1 var_1)))

((benv venv store_1 time (GVar var-name_1))

(store-lookup store_1 (Ref (GLoc var-name_1) (Literal "top"))))

((benv_1 venv_1 store_1 time_1

(Trivcall label_1 prim-lang-call_1 exp_1 ...))

(eval-primop benv_1 venv_1 store_1 time_1

(prim-lang-call_1 exp_1 ...))))

The last argument to arg-eval is the expression to evaluate. Arg-eval dis-
patches on the type of expression and evaluates literals and lambda expressions
directly. Note that A evaluates literals directly: In the executable models both
functions are fused together and the cases of KLang become cases of A.

Arg-eval uses the auxiliary functions venv-lookup and store-lookup to
find the corresponding value for a variable. Note that trivial calls are also



5.2. IMPLEMENTATION WITH PLT REDEX 95

expressions evaluated by A. The last rule deals with trivial calls and delegates
the evaluation to eval-primop the counterpart of PLang in the model.

Â evaluates arguments in the abstract semantics and has the following coun-
terpart in the model:

(define-multi-args-metafunction aarg-eval

cps-language

((abenv avenv astore atime (Literal number_1))

(AValue (AInt number_1)))

((abenv avenv astore atime (Literal true))

(AValue (ABool true)))

((abenv avenv astore atime (Literal false))

(AValue (ABool false)))

((abenv_1 avenv_1 astore atime var_1)

(avenv-lookup avenv_1 var_1 (abenv-lookup abenv_1 var_1)))

((abenv avenv astore_1 atime (GVar var-name_1))

(astore-lookup astore_1 (ARef (GLoc var-name_1) (Literal "top"))))

((abenv_1 avenv astore atime_1 lam-cont_1)

(AValue (AClos lam-cont_1 abenv_1 atime_1)))

((abenv-1 avenv astore atime_1 lam-user_1)

(AValue (AClos lam-user_1 abenv_1 atime_1)))

((abenv_1 avenv astore atime_1 lam-jump_1)

(AValue (AClos lam-jump_1 abenv_1 atime_1)))

((abenv_1 avenv_1 astore_1 atime_1

(Trivcall label_1 prim-lang-call_1 exp_1 ...))

(aeval-primop abenv_1 avenv_1 astore_1 atime_1

(prim-lang-call_1 exp_1 ...))))

Aarg-eval works similiar to arg-eval but operates on abstract environments
and returns abstract values. As its concrete counterpart aarg-eval also evalu-
ates literals directly.

When evaluating arguments the semantics always evaluates all call argu-
ments. The following metafunctions evaluate a vector of expressions:

(define-multi-args-metafunction eval-arg-list

cps-language

((benv_1 venv_1 store_1 time_1 (exp_1 ...))

,(map (lambda (exp)

(term (arg-eval benv_1 venv_1 store_1 time_1 ,exp)))

(term (exp_1 ...)))))

(define-multi-args-metafunction aeval-arg-list

cps-language

((abenv_1 avenv_1 astore_1 atime_1 (exp_1 ...))

,(map (lambda (exp)

(term (aarg-eval abenv_1 avenv_1 astore_1 atime_1 ,exp)))

(term (exp_1 ...)))))

The metafunction avalue-join is the implementation of t for D̂ in the model:

(define-multi-args-metafunction avalue-join
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cps-language

(((AValue dvalue_1 ...) (AValue dvalue_2 ...))

(AValue

,@(lset-union (lambda (dval-1 dval-2)

(and (term (dvalue-weaker<? ,dval-1 ,dval-2))

(term (dvalue-weaker<? ,dval-2 ,dval-1))))

(term (dvalue_1 ...))

(term (dvalue_2 ...))))))

The Scheme procedure lset-union joins two sets that are given in the form of
lists and uses the given equivalence predicate to compare values from both sets.
The equivalence predicate in the example above is constructed using the meta-
function dvalue-weaker<? — the implementation of v for denotable values.
Dvalue-weaker<? is defined as follows:

(define-multi-args-metafunction dvalue-weaker<?

cps-language

((halt halt) #t)

(((AClos any_1 abenv_1 atime_1) (AClos any_2 abenv_2 atime_2))

,(and (term (lambda=? any_1 any_2))

(term (atime-weaker<? atime_1 atime_2))

(term (abenv-weaker<? abenv_1 abenv_2))))

(((AInt number_1) (AInt number_1)) #t)

(((AInt bot) (AInt any)) #t)

(((AInt any) (AInt top)) #t)

(((ABool bot) (ABool any)) #t)

(((ABool any) (ABool top)) #t)

(((ABool true) (ABool true)) #t)

(((ABool false) (ABool false)) #t)

(((ARef (GLoc var-name_1) (Literal "top"))

(ARef (GLoc var-name_1) (Literal "top")))

#t)

(((ARef (HLoc label_1) (Literal string_1))

(ARef (HLoc label_1) (Literal string_1)))

#t)

((any any) #f))

In this definition, the case that considers abstract closures is interesting: Here,
dvalue-weaker<? uses the metafunction atime-weaker<? to compare two
points in time and abenv-weaker<? to compare two binding environments. The
model uses a 0CFA time abstraction by default and therefore atime-weaker<?
is defined by:

(define-multi-args-metafunction atime-weaker<?

cps-language

(((ATime any) (ATime any)) #t))

Checking whether an abstract binding environment approximates another envi-
ronment in the sense of v involves checking all entries:

(define-multi-args-metafunction abenv-weaker<?
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cps-language

(((ABEnv abenv-entries_1 ...) (ABEnv abenv-entries_2 ...))

,(every (lambda (entry-term-1)

(my-find (lambda (entry-term-2)

(term (abenv-entry-weaker<? ,entry-term-1

,entry-term-2)))

(term (abenv-entries_2 ...))))

(term (abenv-entries_1 ...)))))

The definition above relates to the following definition for v on binding envi-
ronments:

β̂ v β̂′ ⇔ ∀v ∈ dom(β̂) : β̂(v) v β̂′(v)

There are a few more metafunctions needed that implement v for abstract
values, variable environments, stores, and states:

(define-multi-args-metafunction avalue-weaker<?

cps-language

(((AValue dvalue_1 ...) (AValue dvalue_2 ...))

,(every (lambda (dval-term-1)

(my-find (lambda (dval-term-2)

(term (dvalue-weaker<? ,dval-term-1 ,dval-term-2)))

(term (dvalue_2 ...))))

(term (dvalue_1 ...)))))

(define-multi-args-metafunction avenv-entry-weaker<?

cps-language

(((var-name_1 atime_1 avalue_1) (var-name_2 atime_2 avalue_2))

,(and (term (var=? var-name_1 var-name_2))

(term (atime-weaker<? atime_1 atime_2))

(term (avalue-weaker<? avalue_1 avalue_2)))))

(define-multi-args-metafunction avenv-weaker<?

cps-language

(((AVEnv avenv-entries_1 ...) (AVEnv avenv-entries_2 ...))

,(every (lambda (entry-term-1)

(my-find (lambda (entry-term-2)

(term (avenv-entry-weaker<? ,entry-term-1

,entry-term-2)))

(term (avenv-entries_2 ...))))

(term (avenv-entries_1 ...)))))

(define-multi-args-metafunction state-weaker<?

cps-language

(((AApply id_1 id_2 avalue_1 (avalue_2 ...) (avalue_3 ...) avenv_1

astore_1 atime_1)

(AApply id_3 id_4 (avalue_5 ...) (avalue_6 ...) avenv_2 astore_2 atime_2))

,(or (= (term id_1) (term id_3))

(and (term (avalue-weaker<? avalue_1 avalue_4))

(term (atime-weaker<? atime_1 atime_2))

(term (avalue-vector-weaker<? (avalue_2 ...) (avalue_5 ...)))

(term (avalue-vector-weaker<? (avalue_3 ...) (avalue_6 ...)))

(term (avenv-weaker<? avenv_1 avenv_2))

(term (astore-weaker<? astore_1 astore_2)))))

(((AEval id_1 id_2 call-user_1 abenv_1 avenv_1 astore_1 atime_1)
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(AEval id_3 id_4 call-user_2 abenv_2 avenv_2 astore_2 atime_2))

,(or (= (term id_1) (term id_3))

(and (term (call=? call-user_1 call-user_2))

(term (atime-weaker<? atime_1 atime_2))

(term (abenv-weaker<? abenv_1 abenv_2))

(term (avenv-weaker<? avenv_1 avenv_2))

(term (astore-weaker<? astore_1 astore_2)))))

(((AEval id_1 id_2 call-cont_1 abenv_1 avenv_1 astore_1 atime_1)

(AEval id_3 id_4 call-cont_2 abenv_2 avenv_2 astore_2 atime_2))

,(or (= (term id_1) (term id_3))

(and (term (call=? call-cont_1 call-cont_2))

(term (atime-weaker<? atime_1 atime_2))

(term (abenv-weaker<? abenv_1 abenv_2))

(term (avenv-weaker<? avenv_1 avenv_2))

(term (astore-weaker<? astore_1 astore_2)))))

((any any) #f))

The metafunction above uses the auxiliary metafunction avalue-vector-weaker<?,
not shown here, to compare vectors of abstract values.

Finally, the model also defines metafunctions that implement the correctness
relation R. Consider the cases for integers and booleans first:

(define-multi-args-metafunction correctness-int

cps-language

(((Int number_1) (AInt number_1)) #t)

(((Int any) (AInt top)) #t)

((any any) #f))

(define-multi-args-metafunction correctness-bool

cps-language

(((Bool true) (ABool true)) #t)

(((Bool false) (ABool false)) #t)

(((Bool any) (ABool top)) #t)

((any any) #f))

The correctness relation for denotable values searches the abstract values for an
abstract counterpart that is considered a correct abstraction in the sense of R:

(define-multi-args-metafunction correctness-avalue

cps-language

((proc_1 (AValue dvalue_1 ...))

,(any (lambda (dval)

(term (correctness-proc proc_1 ,dval)))

(term (dvalue_1 ...))))

((int_1 (AValue dvalue_1 ...))

,(any (lambda (dval)

(term (correctness-int int_1 ,dval)))

(term (dvalue_1 ...))))

((bool_1 (AValue dvalue_1 ...))

,(any (lambda (dval)

(term (correctness-bool bool_1 ,dval)))

(term (dvalue_1 ...))))

((ref_1 (AValue dvalue_1 ...))

,(any (lambda (dval)

(term (correctness-ref ref_1 ,dval)))
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(term (dvalue_1 ...))))

((any any) #f))

The metafunction correctness-venv checks whether an abstract variable en-
vironment is a valid abstraction of a given concrete one. According to the
specification of R every value in the concrete variable environment must have
an abstract counterpart:

(define-multi-args-metafunction correctness-venv-entry

cps-language

(((var-name_1 time_1 value_1) (var-name_2 atime_1 avalue_1))

,(or (not (and (term (var=? var-name_1 var-name_2))

(term (correctness-time time_1 atime_1))))

(term (correctness-avalue value_1 avalue_1))))

((any any) #f))

(define-multi-args-metafunction correctness-venv

cps-language

(((VEnv venv-entries_1 ...) (AVEnv avenv-entries_1 ...))

,(every (lambda (entry)

(every (lambda (aentry)

(term (correctness-venv-entry ,entry ,aentry)))

(term (avenv-entries_1 ...))))

(term (venv-entries_1 ...))))

((any any) #f))

There are a few more correctness metafunctions involved for checking binding
environments, stores, vectors with call arguments. These metafunctions are
straightforward to define and I therefore omit the presentation. With these
metafunctions at hand, the correctness relation for states is defined as:

(define-multi-args-metafunction correctness-state

cps-language

(((Eval id_1 id_2 any_1 benv_1 venv_1 store_1 time_1)

(AEval id_3 id_4 any_2 abenv_1 avenv_1 astore_1 atime_1))

,(and (term (call=? any_1 any_2))

(term (correctness-benv benv_1 abenv_1))

(term (correctness-venv venv_1 avenv_1))

(term (correctness-store store_1 astore_1))

(term (correctness-time time_1 atime_1))))

(((Apply id_1 id_2 proc_1 (value_1 ...) (value_2 ...)

venv_1 store_1 time_1)

(AApply id_3 id_4 (AValue aproc_1) (avalue_3 ...) (avalue_4 ...)

avenv_1 astore_1 atime_1))

,(and (term (correctness-proc proc_1 aproc_1))

(term (correctness-avalue-vector (value_1 ...) (avalue_3 ...)))

(term (correctness-avalue-vector (value_2 ...) (avalue_4 ...)))

(term (correctness-venv venv_1 avenv_1))

(term (correctness-store store_1 astore_1))

(term (correctness-time time_1 atime_1))))

((any any) #f))
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5.2.3 Reduction relations

With the metafunctions in place everything is set up to formulate the actual
reduction relations on terms. The following code shows the concrete state tran-
sition _ from apply to eval states:

(define concrete-transition

(reduction-relation

cps-language

(--> (Apply id_1 id_2 (Clos any_1 benv_1 time_1) any_2 any_3

venv_1 store_1 time_2)

(Eval ,(next-id) id_1

(lambda-body any_1)

(benv-update/params benv_1 (lambda-params any_1) time_2)

(venv-update/params venv_1 (lambda-params any_1) time_2

,(append (term any_2) (term any_3)))

store_1 time_2)

ApplyClos)

The Redex macro reduction-relation defines a new reduction relation as a
list of rules. Each rule starts with -->, followed by a pattern to match (again,
the pattern may include ellipses and pattern variables), and a result term. In
the example above, the pattern matches any concrete apply state and produces
a new eval state. The metafunction next-id produces a fresh state id. Benv-
update/params and venv-update/params are also metafunctions that update
the binding environment and variable environments for multiple variables at
once. The reduction relation needs a case for every concrete transition rule
specified in Section 2.3. The remaining transition rules from eval to apply states
all work very similar and I therefore present only the counterpart of PCallEval
as an example:

(--> (Eval id_1 id_2 (Call label_1 prim-proc-call_1 exp_1 ...)

benv_1 venv_1 store_1 time_1)

,(let* ((new-time (term (time-tick time_1)))

(op-exp

(term (call-op-exp

(Call label_1 prim-proc-call_1 exp_1 ...))))

(op (term (arg-eval benv_1 venv_1 ,new-time ,op-exp)))

(cont-exp

(term (call-cont-exp

(Call label_1 prim-proc-call_1 exp_1 ...))))

(cont (term (arg-eval benv_1 venv_1 ,new-time ,cont-exp)))

(args-exps

(term (call-arg-exps

(Call label_1 prim-proc-call_1 exp_1 ...))))

(args (term (eval-arg-list benv_1 venv_1 store_1

,new-time ,args-exps))))

(term (Apply ,(next-id) id_1 ,op (,cont) ,args venv_1

store_1 ,new-time)))

PCallEval)

...

This reduction rule uses metafunctions shown above to decompose a call into
the expressions in operator, continuation, and argument position. To evaluate
the expressions it uses the argument evaluation functions arg-eval and eval-
arg-list also shown above.
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The executable semantic model contains a second reduction relation that
models the transition relation _̂ of the abstract semantics. Again, I show the
transition rule from apply to eval states and one example of a rule from eval to
apply states. Here is the counterpart of ̂ApplyClos:

(define abstract-transition

(reduction-relation

cps-language

(--> (AApply id_1 id_2 (AValue (AClos any_1 abenv_1 atime_1))

(avalue_1 ...) (avalue_2 ...)

avenv_1 astore_1 atime_2)

,(let* ((call (term (lambda-body any_1)))

(params (term (lambda-params any_1)))

(new-benv (term (abenv-update/params

abenv_1 ,params atime_2)))

(all-args (append (term (avalue_1 ...))

(term (avalue_2 ...))))

(new-venv (term (avenv-update/params

avenv_1 ,params atime_2 ,all-args))))

(term ((AEval ,(next-id) id_1 ,call ,new-benv ,new-venv

astore_1 atime_2))))

AbsApplyClos)

Note that resulting eval state is wrapped in an additional pair of parentheses:
The reduction relation for abstract states returns a sequence of terms, each term
denoting a state. The implementation of ̂PCallEval shows this clearly:

(--> (AEval id_1 id_2 (Call label_1 prim-proc-call_1 exp_1 ...)

abenv_1 avenv_1 astore_1 atime_1)

,(let* ((new-time (term (atime-tick atime_1)))

(args-exps

(term (call-arg-exps

(Call label_1 prim-proc-call_1 exp_1 ...))))

(op-exps

(term (call-op-exp

(Call label_1 prim-proc-call_1 exp_1 ...))))

(cont-exp

(term (call-cont-exp

(Call label_1 prim-proc-call_1 exp_1 ...))))

(args

(term (aeval-arg-lost abenv_1 avenv_1 ,new-time

,args-exps)))

(proc

(term (aarg-eval abenv_1 avenv_1 ,new-time ,op-exps)))

(cont

(term (aarg-eval abenv_1 avenv_1 ,new-time ,cont-exp))))

(term ,(map (lambda (p)

(term (AApply ,(next-id) id_1 (AValue ,p)

(,cont) ,args

avenv_1 astore_1 ,new-time)))

(term (filter-aprocs ,proc)))))

AbsPCallEval)

This rule decomposes the call and evaluates the expressions in continuation,
operator, and argument position. The result of the evaluation of the operator
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expression is an abstract value. The metafunction filter-aprocs filters all
procedure values — abstract closures or the halt continuation. The reduction
rule then loops over the procedure values and creates an apply state for each
value.

5.2.4 Generating traces

Redex provides a function called traces that computes reduction steps: Given
an initial state and an reduction relation, traces finds all terms and displays
an interactive graph showing how the reduction relation proceeds.

Figure 5.3 shows a screenshot of the state transition graph computed by
traces. The transition uses the reduction rule for the concrete semantics and
the following initial state (see Figure 5.2 for the source code):

(define ps-factorial-initial-state

(term (Apply 1 0 (Clos ,ps-factorial-main22 (BEnv) (Time 0))

(halt) ()

(VEnv) (Store) (Time 0))))

Computing the trace for the abstract semantics is more complex. First, the
abstract transition relation _̂ may produce more than one successor state. Sec-
ond, the termination check poses another challenge: The new states must be
checked against the set of visited states V̂. The flow analysis only considers
states not already included in V̂ (in the sense of v) as candidates for further
state transitions.

Consequently, traces is not sufficient for computing the abstract state tran-
sition. The following procedure computes the flow analysis and exactly works
as the procedure analyze shown in Figure 4.7:

(define (flow-analyze initial-state)

(let ((unvisited (make-queue)))

(enqueue! unvisited initial-state)

(let lp ((visited ’()))

(if (queue-empty? unvisited)

(reverse visited)

(let* ((s (dequeue! unvisited))

(new-visited (cons s visited))

(successors (apply-reduction-relation

abstract-transition s)))

(for-each

(lambda (ns)

(if (not (or (term (find-in-set

,ns ,new-visited))

(term (find-in-set

,ns ,(queue->list unvisited)))))

(enqueue! unvisited ns)))

(if (null? successors) ’() (car successors)))

(lp new-visited))))))

The procedure flow-analyze applies the basic Redex function apply-reduction-
relation to compute a single transition step for _̂ (specified by abstract-
transition). This reduction yields a term that contains multiple states. Flow-
analyze splits the terms and checks whether the resulting states have been al-
ready visited by calling the metafunction find-in-set. Only unvisited states
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Figure 5.3: Screenshot of PLT Redex showing a trace
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go into the queue unvisited. The return value of flow-analyze is a Scheme
list that contains all terms visited during the analysis. The definition of find-
in-set is as follows:

(define-multi-args-metafunction find-in-set

cps-language

((astate_1 (astate_2 ...))

,(my-find (lambda (s)

(term (state-weaker<? ,s astate_1)))

(term (astate_2 ...)))))

Given a state astate 1 and sequence of states (astate 2 ...) the above func-
tion checks if the sequence already contains a state that approximates astate 1.

Having computed the visited sets V and V̂, the implementation may check
the correctness of the analysis. The Scheme procedure check-correctness is
an implementation of Theorem 4.3 and uses correctness-state (the imple-
mentation of RState ) to compare the concrete and abstract states:

(define (check-correctness real-visited flow-visited)
(every
(lambda (cstate)
(printf "~%Considering concrete state:~%~a" cstate)
(any (lambda (astate)

(let ((abstracts?
(term (correctness-state ,cstate ,astate))))

(printf " ~a for ~a~%" abstracts? astate)
abstracts?))

flow-visited))
real-visited))

The trace viewer of PLT Redex is designed to show a single trace of one re-
duction relation. In this case, however, there are two traces to show which are
connected by the correctness relation. Hence, the standard trace can not dis-
play the results. The code for presenting the graph in Redex is tightly coupled
to applying the reduction relation. Thus, it seemed more promising to use an
external graph viewer to inspect the graphs. For this reason, I added function-
ality to export the terms as a GML file depicting the graphs and the correctness
relation. Each state becomes a node with the complete term as its label. The
numeric ids of the states define the edges between nodes and the correctness
relation adds edges between concrete and abstract states. The traversal of the
visited set is implemented as a simple reduction relation itself that generates a
hash table that encodes the graph. To layout and inspect the graph I used the
yEd graph drawing software [Wiese et al., 2001].



Chapter 6

Implementation

Polyvariant control-flow analyses for programs of realistic sizes are expensive to
compute. A straightforward implementation of the flow-analysis semantics as
presented in the preceding chapters is almost unusable when applied to input
programs of more than 1,000 lines of code: Scalability is the main challenge. As
part of this work, I developed a sophisticated implementation of the analysis.
The implementation is fast enough to analyze programs with thousands of lines
in a few minutes. The implementation is about 15,000 lines of Scheme code.
It handles the complete CPS intermediate language of the transformational
compiler and the primops that are specific to Scheme and PreScheme.

This chapter gives an overview of the implementation and discusses imple-
mentation techniques used to improve the performance of the analysis.

6.1 Abstract syntax

Before turning to the implementation of the semantic domains of the domains
a closer look at the representation of the abstract syntax tree is necessary. The
transformational compiler uses a regular term structure geared towards effi-
ciency. There are five types of nodes: literals, variables, variable references,
lambda terms, and calls. Operations on the abstract syntax tree are carried out
using side effects and destructive updates. Moreover, the program representa-
tion has the following properties:

• Each binding in the program has a unique variable name.

• Each variable and lambda node has an unique integer that may be used
as a hash key.

• Every node has a pointer to its parent node (the parent of a call is a
lambda node unless the call is trivial). This allows navigating the syntax
tree quickly.

• Each variable node maintains a list of pointers to its references in the
program.

• Each variable node contains a field pointing to its binder.

105
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This representation enables substantial performance increases in a com-
piler [Kennedy , 2007].

The semantics assigns an unique label τ to each term, that allows compar-
ing terms intensionally. In the context of the implementation assigning labels is
superfluous: Each node is an instance of a record and comparing nodes inten-
sionally is via eq?.

6.2 Semantic domains

For the analysis, a memory efficient representation is almost as important as a
time efficient representation. Even for small programs the set of visited states
may grow quickly to a few thousand states and require large amounts of memory
(see Section 6.5).

This section identifies which operations occur frequently on which domains
and discusses representations for these domains such that the common opera-
tions run fast.

6.2.1 Representing time

By default the implementation uses a 1CFA time set (see Section 4.5). Recall
how the semantics advances time: Only transitions from eval states advance the
time with t̂ick . Transitions from apply states just pass the current time to their
successor state. Since the 1CFA point in time is defined as the last dynamic
call that occurred, t̂ick goes back to returning the call being subject of the eval
state. Thus, 1CFA points in time are of a distinct record type that contains a
pointer to the call node in the syntax tree:

(define-record-type time-1cfa :time-1cfa
(really-make-time call-site uid)
time?
(call-site time-call-site)
(uid time-uid))

The additional uid field exists to ease debugging: A smart constructor adds an
unique number to each time record. The external representation of a time record
prints this number instead of the call node because this is significantly shorter
and easier to read. Computing v for time goes back to check the intensional
equality of the wrapped call nodes.

Representing the 0CFA time set is trivial because T̂ime is a singleton set in
this case. Thus, a distinct record type with exactly one instance suffices.

6.2.2 Representing the binding environment

Consider how binding environments in the executable model of the semantics
work: The binding environment maps variables to points in time. Each transi-
tion from an apply state augments a binding environment by one or more new
entries. Adding an entry yields a new binding environment that — besides the
new entry — shares all entries with the original binding environment. Bind-
ing environments are created whenever the Â evaluates a lambda expression.
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That is, the number of binding environments created is linked to the number of
distinct closures and may be large.

Searching the binding environment to find the binding time of a variable
occurs frequently because it is a part of the evaluation of a variable. Typically,
binding environments do not have too many entries: Each application adds one
entry for each parameter of a lambda expression. During my experiments, I
rarely encountered programs where the number of entries in a binding environ-
ment exceeded one hundred entries.

A further consideration concerns the approximation relation v for binding
environments (see Section 4.1). During the termination check the flow analysis
compares a state with the states in the visited set using v. This, in turn, may
involve checking the approximation relation for binding environments: Eval
states contain a binding environment, and v on sum lattices works summand-
wise. Comparisons of apply states also imply comparing binding environments
if the apply states contain abstract closures. Computing v for two binding
environments is costly: This means traversing all elements in the domain of one
environment and comparing the images from both environments using v.

I have experimented with three implementations for binding environments
based on tables, search trees, and association lists. While hashtables provide a
fast access the model is intrinsically stateful. Extending a binding environment
for one new entry goes back to copying the complete hashtable and updating
a single entry in the copy — which is very space inefficient. Search trees have
similar problems. Here, a very simple representation turned out to be the most
successful: sorted association lists.

The association list that holds the environment entries resides in a record
that represents the binding environment. The list is sorted by the unique id
assigned to each variable (see Section 6.1). This allows the procedure that im-
plements v to step linearly through both lists simultaneously and compare every
point in time for each variable. Comparison of binding environment therefore
has in linear complexity.

6.2.3 Representing variable environments

The interactions between the garbage collector of the analysis and the variable
environment require special attention. Thus, I will discuss the representation
of the variable environment in conjunction with the garbage collector (see Sec-
tion 6.4.3).

6.2.4 Representing abstract values

The domain for denotable values D̂ is a powerset over the sum of each abstract
value type. An abstract value type either belongs to a core value type —
procedure values from P̂roc or references from R̂ef — or to a language-specific
value type (B̂asLang and ĈompLang). This section describes the interface of the
analysis that enables the user to introduce new abstract value types. However,
before considering language-specific value domains, I will discuss the core value
types: procedure values and references.

A procedure value from P̂roc is either an abstract closure or the halt con-
tinuation. Both domains are easy to represent using records. The halt contin-
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uation gets a new record type without fields for which only one instance exists.
Closure records have a field for each element of the triple (a lambda node, a
binding environment, and a point in time).

Abstract references consist of a literal node and an abstract location (see
Section 4.1). The implementation wraps both constituents into a new record
type. Abstract locations, in turn, also have their own record type. This allows
distinguishing heap locations from global variable locations.

None of the core transition rules needs specific knowledge of the language-
specific abstract value types; the rules merely pass values from caller to callee.
However, this does not apply to the evaluation of literal nodes, the termination
check, and the garbage collector:

• The evaluation function K̂Lang recognizes literal nodes and evaluates these
literals.

• The termination check compares a possibly new state with the states from
the visited set. These states include language-specific abstract values in
their argument vectors and variable environments. Thus, it is necessary
to compute the approximation relation v for all abstract value types.

• Abstract values may contain references to other values. A garbage collec-
tor (see Section 6.4) that traces reachable values must know how to trace
language-specific abstract values.

To define a new abstract value domain the user provides procedures that im-
plement the functionality mentioned above. Such a definition consists of the
following parts:

• A symbol, which serves as an unique type name.

• A procedure implementing v for this value domain.

• A type predicate that recognizes values of the new domain.

• A constructor that primops call to generate a new language-specific value.

• A procedure for evaluating literals (if the value type has literals).

• A so-called GC follow procedure that returns the references of an abstract
value.

Here are two examples for such definitions:

Example #1: Boolean values Figure 6.1 shows the implementation of the
Scheme boolean value type. The domain for boolean values consists of the ele-
ments {⊥Bool , true, false,>Bool}. In practice, bottom is not necessary. Hence,
the implementation only creates three records using really-make-basic-value
and binds them to the-scheme-true, the-scheme-false, and the-scheme-
boolean-top. The code uses the records of type basic value as a common
representation. The type field of a basic value record contains the type name
(boolean in this case) and distinguishes value types. A common representation
simplifies printing and inspecting basic values.

Make-scheme-boolean is the constructor for boolean values that primops
use to create abstract booleans. Given a Scheme boolean the procedure returns
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(define the-scheme-true
(really-make-basic-value ’boolean #t))

(define the-scheme-false
(really-make-basic-value ’boolean #f))

(define the-scheme-boolean-top
(really-make-basic-value ’boolean ’top))

(define (make-scheme-boolean value . ignore)
(cond
((eq? #t value) the-scheme-true)
((eq? #f value) the-scheme-false)
(else the-scheme-boolean-top)))

(define (scheme-boolean<? bool-1 bool-2)
(or (eq? bool-2 the-scheme-boolean-top)

(and (eq? bool-1 the-scheme-true)
(eq? bool-2 the-scheme-true))

(and (eq? bool-1 the-scheme-false)
(eq? bool-2 the-scheme-false))))

(define-absval-type boolean
make-scheme-boolean
value-from-literal
(make-type-predicate-proc ’boolean)
scheme-boolean<?
#f)

Figure 6.1: Defining an abstract value type for boolean values

the corresponding element of the abstract domain. Primops use make-scheme-
boolean also to construct the top value of the domain — the value that repre-
sents true and false. Scheme-boolean<? is the implementation of v on values
of ̂Boolean.

Define-absval-type registers the new value type under the name boolean
with the analysis. Internally, the analysis stores the given procedures under
that name in a table. The procedure value-from-literal (not shown in the
figure) mentioned here is the evaluation function for boolean literals (K̂Lang in
the semantics): Given a literal node it checks whether the node is a boolean
literal and calls make-scheme-boolean to create a value if applicable. The
last argument of define-absval-type indicates whether abstract values of this
domain may contain references to other values. (For booleans this is not the
case.)

Computing v With the definitions of the approximation relation for language-
specific value domains, the implementation composes v for all summands of D̂.
Given two sets d̂1 and d̂2 from D̂ the procedure denotable-value<? computes
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d̂1 v d̂2 according to the specification shown in Section 4.1: The procedure
checks whether each element of d̂1 has a counterpart in d̂2 such that v holds for
the elements. Thus, v on D̂ goes back to computing the approximation relation
on the summands of D̂, implemented as single-denotable-value<?:

(define (single-denotable-value<? v-1 v-2)
(cond
((and (proc? v-1) (proc? v-2))
(proc<? v-1 v-2))
((and (user-defined-abs-value? v-1)

(user-defined-abs-value? v-2))
(abs-value<? v-1 v-2))
((and (abs-reference? v-1) (abs-reference? v-2))
(abs-reference<? v-1 v-2))
((and (abs-compound? v-1) (abs-compound? v-2))
(abs-compound<? v-1 v-2))
(else #f)))

This procedure checks whether the given values belong to the core value types
(procedure values or references), abstract compound values (discussed in the
next paragraph), or one of the language-specific value domains and delegates the
check to the corresponding implementation of v. User-defined-abs-value?
identifies language-specific values by applying all registered type predicates to
the value. The procedure abs-value<? calls the user defined implementation
of v for the value type in question. The predicate abs-compound? identifies
compound values and delegates the check to the corresponding comparison pro-
cedure abs-compound<?, which, in turn, may delegate the check further to an
implementation provided by the user.

Example #2: Cells A cell is a heap object and its abstract counterpart
therefore is a reference to an object in the abstract store. That is, cells belong
to the domain of abstract compound values ĈompLang . This section describes
the implementation of cells within the analysis as an example for such value
domains.

Figure 6.2 shows the code that defines the value type for cells. The code uses
abstract compound records. Abstract compounds are a common representation
of compound values offered by the analysis framework to simplify and unify
the implementation. For explanatory reasons the example code uses abstract
compounds but does not use the common procedures offered by the analysis.

Make-scheme-cell creates a new instance of an abstract compound value
that simulates a Scheme cell. The argument cell-contents is an abstract
value that denotes the initial contents of the cell. To modify the store according
to the specification of stob creation (see Figure 4.12) make-scheme-cell uses
the auxiliary procedure allocate-stob. Allocate-stob carries out a series of
update operations on the given store:

• Create (and return) an abstract reference r̂ef stob of the call node id, the
time time, and the selector name stob.

• Create an abstract reference r̂ef content from id, time, and the selector
name cell-contents.
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(define cell-type-name (enumerand->name (enum stob cell) stob))

(define (make-scheme-cell store id time cell-contents)

(allocate-stob store id time

cell-type-name (no-sub-type)

(list (cons ’content cell-contents))))

(define (scheme-cell? thing)

(and (abs-compound? thing)

(eq? cell-type-name

(abs-compound-discriminator thing))))

(define (scheme-cell-ref store refs)

(apply union-dvalues

(map (lambda (ref)

(store-lookup store (make-abs-reference

(abs-reference-location ref)

’content)))

refs)))

(define (scheme-cell-set store ref new-val)

(store-update store (make-abs-reference

(abs-reference-location ref)

’content)

new-val))

(define (scheme-cell<? c-1 c-2)

(let ((s-1 (cdr (assq ’store (abs-compound-values c-1))))

(r-1 (cdr (assq ’content (abs-compound-values c-1))))

(s-2 (cdr (assq ’store (abs-compound-values c-2))))

(r-2 (cdr (assq ’content (abs-compound-values c-2)))))

(denotable-value<? (store-lookup s-1 r-1)

(store-lookup s-2 r-2))))

(define-absval-compound-type cell-type-name

make-scheme-cell

(lambda ignore #f)

scheme-cell?

scheme-cell<?

scheme-cell-gc-follow)

Figure 6.2: Defining an abstract value type for cells
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• Extend the store with the reference r̂ef content and the value cell-contents.

• Create a fresh abstract compound record with the following contents: The
type field is filled with cell-type-name to indicate the stob type. An
association list that consists of the valid selector names and the references
to the store entries that hold the values for these stob fields.

• Finally, allocate-stob extends the store with the reference r̂ef stob and
the abstract compound value and returns this reference.

Adding an abstract compound record allocate-stob breaks the invariant that
the store contains only denotable values. As mentioned in Section 4.4.2 this
happens on purpose: The information stored in an abstract compound is very
useful for implementing the garbage collector as will become clear in Section 6.4.

The procedure scheme-cell-ref returns the value stored in a cell. Techni-
cally, arbitrary types of abstract values may occur as arguments to cell-ref.
Scheme-cell-ref therefore narrows down the arguments to a set of references
to abstract cells. With the described representation this is simple: First identify
all abstract references in the set and among those find references to cells — this,
in turn, may be accomplished by looking at the reference that consists of the
location of the original reference and the stob selector. If the store returns an
abstract compound that represents a cell for this reference, the reference will
be considered. Scheme-cell-ref searches the store with these references and
retrieves a number of denotable values that union-dvalues merges into a single
value.

The code uses the macro define-absval-compound-type to register the
new value domain with the analysis. Besides the procedures just described, this
macro call also includes the GC follow procedure for cells bound to scheme-
cell-gc-follow. This procedure merely extracts the reference used to store
the content of a cell from an abstract compound record. Since cells do not have
a literal form the definition passes a procedure that returns #f instead of a real
implementation.

6.2.5 Implementing the visited set

An efficient implementation of the visited set is critically important for the
efficiency of the analysis in total. Recall how the analysis proceeds for executing
a single state transition (see Figure 4.7): Starting from a state the analysis
computes the successor states. For each of the successor states the analysis now
carries out the termination check: It checks whether it visited this state — or
a state that approximates this state — before. Only if this is not the case, the
state will be considered for further state transitions. Hence, the termination
checks need to compare a state against the states in the visited set using the
approximation relation v. The implementation of the visited set addresses this
task using the following techniques:

• Separate visited sets According to the specification of v only apply states
may approximate apply states and only eval states approximate eval states.
Hence, the implementation keeps apply and eval states in separate sets.

• Order of checking Checkingv for state tuples works component-wise: If all
components of a state tuple are related by v, the approximation relation
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holds for the whole state. Therefore, it makes sense to order the checks
for the components such that the checks for components that are cheap
happen first and expensive checks are carried out later.

• Indexed sets The subset of states to compare the new state with should be
as small as possible and include only candidates that have a high chance
of being related by v. An index to find these states quickly is necessary.

• Cache expensive checks Some computations of v are intrinsically expen-
sive. As mentioned in Section 6.2.2, binding environments qualify for this
category. To avoid the re-computation a cache for the results is necessary.

Consider the idea of sets with an index first. Both sorts of states have at least
one component for which the approximation relation is cheap to compute. This
component serves as an index. For eval states this is the call node component.
Nodes in the syntax tree are compared by their label and this, in turn, works
by pointer comparison.

Indexing apply states is a more complicated. Here, the component that
contains the procedure value is the index: A procedure values is either the
halt continuation or an abstract closure. For apply states the lambda node of
the abstract closure serves as the index. (A special case is necessary to index
applications of the halt continuation.) Note that using the lambda node as the
index also justifies the decision to have exactly one procedure value per apply
state. Multiple procedure values — especially abstract closures over distinct
lambda terms — would seriously complicate indexing apply states.

Eq hashtables Visited sets are implemented as hashtables. As discussed, for
both sorts of states a node in the abstract syntax tree serves as the index. That
is, a hash function for nodes in the syntax tree is necessary. Eq hashtables use
the memory address of the object as a basis for computing the hash value. For
the purpose aspired, eq hashtables would be optimal because they allow finding
the relevant states in a large visited set very quickly while requiring almost no
effort for computing the hash function.

Unfortunately, Scheme 48 did not have a eq hashtables at its disposal. Hence,
in preparation for an efficient visited set I extended the Scheme 48 virtual ma-
chine with support for eq hashtables (called id tables in the implementation).1

The flow analysis algorithm in Figure 4.7 also checks whether the successor
state has an approximation in the queue of states not visited yet — called the
state queue. This queue may be very long (see Section 6.5). Therefore, state
queues also use the implementation techniques as the visited set. In the imple-
mentation, state queues are a specialized form of visited sets with additional
procedures to enqueue and dequeue states.

These considerations and preparations are the basis of my implementation
of the visited set. In summary, the visited set is a record with fields that hold
id tables for eval and apply states. The tables use the call node of an eval state
and the lambda node of an apply state as the index, respectively.

1Eq hashtable require support from the garbage collector. By default Scheme 48 uses a
two-space garbage collector that copies live values from the old heap space to new heap space.
The id-table mechanism rehashes all entries of all tables after each garbage collection to
reflect the new addresses. Recent research shows implementation techniques that also work in
connection with a generational garbage collector and promise a better performance [Ghuloum
and Dybvig, 2007].
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6.3 Description of flow information

Section 4.4.2 briefly introduced the abstraction function Ŝ that returns the
abstract counterpart of a given Scheme value. This abstraction function is
necessary because initially Scheme programs are not passed in the form of source
code to the analysis: The user passes a Scheme procedure and then starts the
analysis. The process of creating abstract values with Ŝ is as follows:

• For procedure values Ŝ uses the byte-code optimizer to convert the byte
code of the procedure to CPS nodes. That is, Ŝ reconstructs the source
code.

• For other value types Ŝ returns the abstract counterpart directly without
creating source code first.

Note that Ŝ operates on the transitive closure of all values referenced in the
procedure passed to the analysis. This, however, causes serious problems in
practice. Consider the following Scheme procedure:

(define (foo n)

(if (even? n)

42

(error "Error: n is not even" n)))

This procedure either returns 42 or uses the Scheme function error to raise
an error and abort the program. The program seems to be simple and the
analysis should be simple too.

Consider how Ŝ proceeds on foo: It finds the reference to error and converts
it to CPS source code. Error, however, is part of a complex exception system,
so the pre-pass must consider this system too: This involves the abstraction
of record types that represent exceptions and more procedures. The exception
system, in turn, is implemented using call-with-current-continuation and
the pre-pass must consider this procedure. Now, the code involved gets even
more complex because call-with-current-continuation contains references
to many complicated procedures of the Scheme 48 run-time system and even
the debugger.

Thus, an analysis of the small procedure foo would involve large parts of
the run-time system and become very complex. Most of the flow information
computed, however, is not relevant as the run-time system and the standard
libraries are not subject to an optimization.

One solution to this problem considers modular or componential flow analy-
ses as used by Flanagan to implement a static debugger for Scheme code [Flana-
gan, 1997; Flanagan and Felleisen, 1999]. This approach formulates the flow
analysis in form of a constraint system that uses simple equations. The equa-
tions are derived from the source code and a compression algorithm reduces the
size of the constraint system. Thus, it is possible to pre-compute a compressed
constraint system. Analyzing a program then consists of deriving the equations
for the programs and loading the pre-computed set of equations. However, the
equation system still must be solved altogether.

Flanagan’s approach does not work with the analysis as specified in this
dissertation for two reasons: First, the analysis is specified as an abstract inter-
pretation. Second, the flow information for the library still needs to be derived
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from the source code. An alternative approach considers contracts. Contracts
work like assertions, however, have a clear formal underpinning in higher-order
languages [Findler and Felleisen, 2002]. Recent research shows that contracts
may serve as the source for flow information [Meunier et al., 2006]. However,
the connection between contracts and flow information is indirect: Contracts
primarily exist to maintain assertions and not to describe flow information of
libraries.

In the context of a partial evaluator for C called Tempo [Consel et al., 2004]
Consel et al. use a syntactic description for the behavior of external functions.
If the source code of a C function is not available to the partial evaluator, for
example because the function belongs to the standard library, the user may
instead specify a piece of C code that behaves in the partial evaluation like the
real code [Consel et al., 1998].

The analysis specified in this dissertation uses a similar approach and offers
the following techniques to specify the flow behavior of library code:

Replacement code Ŝ turns procedures into CPS code using the byte-code
optimizer. The user, however, may define a procedure directly as CPS
code and Ŝ uses this code instead of converted code. This makes is possible
to define a replacement for a procedure for use in the analysis.

Flow primops Calls in the replacement code can use all primops supported
by the analysis. Additionally, there is a special set of flow primops that
directly create abstract values or modify the store.

The implementation described in this chapter uses the above techniques to
describe the flow behavior of the most important Scheme library functions. The
changes required for supporting this techniques in the implementation are as
follows:

• Definitions of replacements reside in a table that maps procedure values
to the corresponding replacement code.

• Ŝ must be changed to consult the table before converting a procedure to
CPS code.

• The analysis needs an additional evaluation function that evaluates flow
primops.

Examples Consider the following Scheme code that defines the replacement
code for call-with-current-continuation:

(define vcall/cc

(let ((k (make-cont-vvar ’k-callcc))

(esc (make-user-vvar ’proc)))

(make-user-vlambda

(list k proc) #f (vlambda-proto matched)

(make-vcall ’call

(vector (make-vref k)

(make-vref proc)

(make-vref k))))))
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The Scheme functions make-cont-vvar, make-user-vvar, make-vref, make-
user-vlambda, and make-vcall are simplified constructors for CPS nodes.
Defining call-with-current-continuation in terms of CPS code is straight-
forward and therefore the replacement code consists only of a single user-defined
procedure. The procedure has two arguments: A continuation argument with
the name k-callcc and an argument proc for the procedure to call. (vlambda-
proto matched) selects how the analysis matches the arguments. Matched in-
dicates the standard protocol: The argument count must exactly match the
parameter count.2 The body of the procedure contains a call to proc with the
current continuation k as the argument.

The second example is the replacement code for error:

(define verror

(let ((x (make-user-vvar ’err-msg))

(k (make-cont-vvar ’k-err)))

(make-user-vlambda

(list k x) #f (vlambda-proto raw)

(make-vcall ’halt (vector (make-vref k) (make-vref x))))))

Again, the replacement code defines a user-defined procedure. The body of this
procedure uses the flow primop halt. This flow primop directly controls the
analysis and ensures that successor state is an apply state applying the halt
continuation halt.

6.4 Analysis with Garbage Collection

The correctness relation for the flow analysis allows false positives. That is,
an abstract value may include a representative for a concrete value that never
occurs in any concrete program run.

This property can be the source of confusion. Consider how the variable
environment works: Applications extend the variable environment with new
values. Thereby the analysis merges the new argument values with values from
previous applications. Thus, if a program contains multiple distinct calls to
the same lambda expression the variable environment merges the values from
all calls even though the calls are completely unrelated. A polyvariant time
abstraction such as 1CFA overcomes this problem to some extent because it
distinguishes calls by their context. However, polyvariance does not eliminate
the problem completely since the number of points in time is still finite.

One important observation in this context concerns the lifetime of abstract
entities. In contrast to values in a concrete program run abstract values have an
unlimited lifetime. Might and Shivers were the first to describe this observation
and propose the concept of garbage collection for abstract values [Might and
Shivers, 2006]. That is, during a flow analysis a garbage collector checks which
abstract values in the variable environment and the store are reachable through
the state under consideration and removes unreachable values from the variable
environment and the store.

Might and Shivers claim that the benefits of garbage collection are twofold:
First, the flow analysis is more precise since it avoids merging unrelated infor-

2Replacement code may use raw to turn off argument matching completely. This is neces-
sary to replace procedures with variable arity.
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mation. Second, garbage collection may improve the performance of an analysis
since the flow analysis deals with less abstract values and visits less states.

With these prospectives in mind I extended my analysis implementation
to include a garbage collector extending and adapting Might’s and Shivers’s
garbage collection algorithm. It turned out that writing a correct and efficient
implementation of the garbage collection algorithm is one of the most challeng-
ing parts of the implementation. Early versions of the collector were very close
to Might’s and Shivers’s definition. However, the analysis with the garbage col-
lector actually ran significantly longer — for large programs with large amounts
of abstract values the running time for garbage collection even dominated the
total analysis time. This was especially the case for complex programs which
yield more than 40,000 states (without garbage collection). Note that this effect
is not noticeable with the small programs considered by Might and Shivers.

The following sections introduce a global garbage collector. This collector is
a variation of Might’s and Shivers’s original collection algorithm (which I call
the local garbage collector) that works well for large programs. The differences
are as follows:

• The global collector affects the state under consideration and all states in
the state queue while the local collector only considers a single state.

• The local collector restricts the variable environment of the successor state.
The global collector uses a single variable environment and distinguishes
versions of this environment using an efficient timestamp mechanism.

Note that the global collector is a method that primarily aims at improving the
analysis speed — increasing the precision comes second. In particular, the global
collection does not ensure a specific level of precision as the local collection. For
example, Might and Shivers use the precision guarantees of the local collection
to analyze the structure of binding environments [Might and Shivers, 2006].
Here, they exploit that the reachability of values in the analysis corresponds to
the reachability of values in the concrete program run. In the global collector,
the benefits to precision are almost unpredictable because the collector also
takes the states from the queue into account. Hence, the set of live values in an
analysis using the global collector does not correspond to the set of live values
during a concrete program. In that sense, an analysis with global collection is
less expressive. The global collector is, however, useful to improve the analysis
time of larger programs.

Also the global collector makes it easy to borrow ideas from real garbage
collectors that improve the running time of the collector significantly. In the
preceding chapters and sections some preparations and design choices geared
towards the garbage collector were already made. This section weaves this
strands together and reports on implementation techniques for flow analysis
garbage collectors.

6.4.1 Semantics with global garbage collection

The global garbage collector has the following mode of operation: First, the
transition from apply to eval states checks whether a garbage collection is nec-
essary and possibly invokes the collector. Garbage collection consists of two
phases: Starting from a set of live objects, the root set, the collector traces all
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length(ĉ∗§d̂∗) = n

ς̂ = ({((λ (p1 . . . pn) call)τ , β̂, t̂b)ω}, ĉ∗, d̂∗, v̂e, σ̂, t̂)ω′_̂(call , β̂′, v̂e ′, σ̂gc , t̂)ω′′

( ̂ApplyClosGC)

where


β̂′ = β̂[pi 7→ t̂]
(v̂egc , σ̂gc) = collect(ς̂ t R̂S, v̂e, σ̂, {(p1, t̂), . . . , (pn, t̂)}, ∅)
v̂e ′ = v̂egc t [(pi, t̂) 7→ (ĉ∗§d̂∗)i]

Figure 6.3: Transition from apply states with garbage collection

bindings and references that are reachable. The second phase then restricts the
variable environment and store to the reachable bindings and references. This
section establishes a formal understanding of the collection mechanism.

A few preparatory changes to the semantics are necessary. To ease the
discrimination of objects in the abstract semantics, that are of interest for the
garbage collector, objects now include a so-called GC id that identifies them
unambiguously:

ĜCId = N

The important property of GC ids is uniqueness ensured by the function fresh-gcid :

fresh-gcid : → ĜCId

Each application of this function yields a fresh member of ĜCId that has never
been returned by any application of fresh-gcid before.

The following objects in the semantics are of interest for the garbage collec-
tor: eval and apply states, closures, references, and compound values. These
values are called GC relevant. The corresponding semantic domains now include
an additional component for the GC id:

Êval = Call× B̂Env × V̂Env × Ŝtore× T̂ime× ĜCId
Âpply = P̂roc× D̂∗ × D̂∗ × V̂Env × Ŝtore× T̂ime× ĜCId
Ĉlo = Lam× B̂Env × T̂ime× ĜCId

For states and abstract closures the GC id is written as a subscript ω instead
of a tuple component. References do not require an id. Compound values such
as vectors, records, and cells require a GC id.

Each transition rule assigns a new GC id to the resulting state using fresh-gcid .
Since this change to the transition rules (see Chapter 4) is straightforward I do
not list the modified rules. Adapting the semantic functions P̂Lang , K̂Lang , and
Â is straightforward: Each function now assigns a fresh GC id if it creates a new
GC-relevant value. The argument evaluation function Â serves as an example:

Â β̂ v̂e σ̂ t̂ lam = {(lam, β̂, t̂)ω} where ω = fresh-gcid

Adding GC ids completes the preparations for the garbage collector. In
a programming language implementation a shortage of heap space triggers a
garbage collection. The analysis performs a garbage collection when the analysis
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collect : P(Ŝtate)× V̂Env × Ŝtore× P(Var× T̂ime)× P(R̂ef) →
V̂Env × Ŝtore

collect(R̂S, v̂e, σ̂, b̂inds, r̂efs) =
(v̂e | lcve , σ̂ | lbσ) if

∃(v, t̂) ∈ b̂inds : v̂e(v, t̂) 6v ⊥bD ∨
∃r̂ef ∈ r̂efs : σ̂(r̂ef ) 6v ⊥bD

where 〈〈ς̂i : ς̂i ∈ R̂S〉, ∅, ∅, ∅〉 ∗ 〈〈〉, Ŝ, lcve , lbσ〉
(v̂e, σ̂) otherwise

Figure 6.4: Garbage collection

extends a variable environment — that is, during the transition from an apply
state to an eval state. Here, the analysis runs the risk of mixing new live
values with old values that may have been unreachable until now. Therefore,
the transition rule ̂ApplyClosGC shown in Figure 6.3 replaces the original rulêApplyClos (see Figure 4.6 for the original rule).̂ApplyClosGC uses the collect function to run the garbage collector. This
function restricts the variable environment v̂e and store σ̂ of theapply state to
the entries that are reachable from the root set. The root set consists of the
apply state itself and the queue of states that the analysis has not visited yet
(see Figure 4.7). This queue, however, is not part of the semantics because
the queue is primarily needed in the implementation — the semantics as a
conditional rewrite system can do without. To formally specify the garbage
collector with the state queue nevertheless, I assume that all states of the queue
at the time of a transition from an apply state reside in the set R̂S.

In addition to the root set, the variable environment, and the store ̂ApplyClosGC
also passes a set containing tuples of variables and points in time to collect . Each
tuple consists of a variable bound by the lambda expression and the time of the
state. That is, a tuple corresponds to an entry in the variable environment that
must be updated when binding the arguments — these are the entries in the
variable environment that may merge the new values with existing values.

Figure 6.4 shows collect . This function decides whether a garbage collec-
tion is necessary and either restricts the variable environment and store to the
entries reachable through the root set R̂S or returns the unmodified variable
environment and store. The operation | carries out the restriction of functions
(see Appendix A) and computes the restricted variable environment lcve and
store lbσ.

Checking whether a garbage collection is necessary works as follows: The set
b̂inds contains the entries in the variable environment v̂e that will be updated
by this apply state. If the variable environment v̂e contains no information for
these entries — v̂e maps the entries to ⊥bD — it is clear that no merging would
occur. Hence, collect checks whether each of the given bindings from b̂inds maps
to ⊥bD and runs a garbage collection if this is not the case.

Finding the reachable entries precedes the restriction. The relation ∗ com-
putes transitive reachability to determine the live variable environment entries
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 : (Ŝtate + D̂)∗ × P(ĜCId)× P(Var× T̂ime)× P(R̂ef) →
(Ŝtate + D̂)∗ × P(ĜCId)× P(Var× T̂ime)× P(R̂ef)

ω 6∈ Ŝ
(〈(lam, β̂, t̂′)ω〉§Û , Ŝ, lcve , lbσ) (Û ′, Ŝ ′, l′cve , lbσ) ( ̂GCClosU)

where


Ŝ ′ = Ŝ ∪ ω

l′cve = lcve t {(v, t̂) : v ∈ FV (lam) ∧ t̂ = β̂(v)}
Û ′ = Û§

〈
d̂i : d̂i ∈

⊔
v∈FV (lam)

v̂e(v, β̂(v))
〉

ω ∈ Ŝ
(〈(lam, β̂, t̂)ω〉§Û , Ŝ, lcve , lbσ) (Û , Ŝ, lcve , lbσ) ( ̂GCClosS)

ω 6∈ Ŝ
(〈(call , β̂, v̂e ′, σ̂′, t̂′)ω〉§Û , Ŝ, lcve , lbσ) (Û ′, Ŝ ′, l′cve , lbσ) (ĜCEval)

where


Ŝ ′ = Ŝ ∪ ω

l′cve = lcve t {(v, t̂) : v ∈ FV (call) ∧ t̂ = β̂(v)}
Û ′ = Û§

〈
d̂i : d̂i ∈

⊔
v∈FV (call)

v̂e(v, β̂(v))
〉

ω 6∈ Ŝ
(〈(p̂rocω, ĉ∗, d̂∗, v̂e ′, σ̂, t̂′)ω′〉§Û , Ŝ, lcve , lbσ) (Û ′, Ŝ ′, lcve , lbσ) ( ̂GCApply)

where

{
Ŝ ′ = Ŝ ∪ ω′

Û ′ = Û§p̂rocω§
〈
âi : âi ∈

⊔
ĉi

〉
§
〈
âi : âi ∈

⊔
d̂i

〉
ω ∈ Ŝ

(〈ς̂ω〉§Û , Ŝ, lcve , lbσ) (Û , Ŝ, lcve , lbσ)
d̂ ∈ B̂asLang ∨ d̂ = halt

(〈d̂〉§Û , Ŝ, lcve , lbσ) (Û , Ŝ, lcve , lbσ)

(〈r̂ef 〉§Û , Ŝ, lcve , lbσ) (Û§〈âi : âi ∈ σ̂(r̂ef )〉, Ŝ, lcve , lbσ t r̂ef ) (ĜCRef)

d̂ω ∈ ĈompLang ω 6∈ Ŝ

(〈d̂ω〉§Û , Ŝ, lcve , lbσ) (Û ′, Ŝ ′, lcve , l′bσ) ( ̂GCCompound)

where



Ŝ ′ = Ŝ ∪ ω

r̂efs = gc-follow(d̂ω)
Û ′ =

〈
d̂i : d̂i ∈

⊔
br∈drefs σ̂(r̂)

〉
§ Û

l′bσ = r̂efs t lbσ
Figure 6.5: Reachability relation
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and live store entries. Figure 6.5 shows the definition of the reachability rela-
tion  . The relation simulates the collector used in the implementation. The
relation relates tuples that correspond to the states of the garbage collector. A
state consists of four components:

• The first component, the unvisited queue Û , is a vector that contains the
unvisited states and unvisited abstract values.

• The second component, the seen ids Ŝ, is a set of GC ids. This set contains
all states and abstract values, that have already been visited during the
garbage collection.

• The third component, the live entries lcve , is a set of tuples. Each tuple
consists of a variable and a point in time. These are the reachable variable
environment entries.

• The fourth component, the live references lbσ, is a set of abstract references.
These are the reachable store entries.

Before turning to the details of the reachability relation, I sketch the overall
mode of operation of the relation: The garbage collection starts with an initial
state that consists of empty sets for the live entries and references, an empty
set of seen ids, and the states from the root set in form of a vector. In each
step the reachability relation extracts the first element from the vector Û and
checks whether the seen id set Ŝ contains the GC id of this element. If the
garbage collection already considered this value, the relation ignores this value
and proceeds with the next value from the vector Û . The relation reaches its
fixpoint when the vector for unvisited states and values is empty. For each type
of new state or abstract value extracted from Û the relation has a separate
case. These cases add elements to Û , add GC ids to Ŝ, and extend the sets
of live environment entries and references. The process stops when Û is an
empty vector. That is, the relation describes a breadth-first search using Û like
a queue.

Consider the cases of the reachability relation shown in Figure 6.5. These
cases correspond to Might’s and Shivers’s relation for touching values T̂ [Might
and Shivers, 2006]. This formulation, however, also takes the store into account
and explicitly manages a queue of unvisited values — a preparation for the
implementation.

The rules use a variable environment v̂e and a store σ̂. This variable envi-
ronment and store will be restricted in the final phase of the collection.

The case ̂GCClosU considers closures whose GC id is not in Ŝ and the casêGCClosS examines closures the collector has already visited. For closures that
have already been visited the relation simply proceeds with the next element in
the Û vector. For unvisited closures the relation first computes the free variables
of the lambda expression. The corresponding entries in the variable environment
must be live. Therefore, ̂GCClosU adds these entries to lcve . However, if these
entries are reachable, the abstract values stored for this entry are also reachable
and yield new reachable abstract values. Consequently, ̂GCClosU appends a
vector with the abstract values found in the variable environment to Û .

The case ̂GCEval considers eval states and is similar to ̂GCClosU. Again,
free variables indicate live variable entries and the corresponding abstract values
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in the variable environment are reachable and therefore require further inspec-
tion. Apply states do not contain expressions and therefore only add new values
to Û . These values are the procedure values being applied and the argument
vectors d̂∗ and ĉ∗.

Right under the case for apply states, Figure 6.5 shows two cases without
names. The left case concerns states that have been visited before. The case
on the right-hand side is responsible for basic values and the halt continuation:
These values are uninteresting for the garbage collector and the rule just skips
these values in Û . This case, however, is necessary because the cases that extend
Û (such as ̂GCApply) simply add all values to Û without checking whether the
type of the values is relevant for the collector. Filtering the abstract values be-
fore adding them to Û would make the cases ̂GCClosU, ̂GCEval, and ̂GCApply
more complex to read and understand.

If the first element in Û is an abstract reference case ̂GCRef applies. This
reference is assumed to be live and the rule therefore adds this reference to lbσ.
The abstract values in the store identified by the reference are subject to further
inspection by the reachability relation and therefore become part of Û .̂GCCompound is the most interesting case. This case considers compound
values and exploits the representation of compound values (see Sections 4.4.1
and 4.4.2). Recall that compound values hold information specific to the value
type (e. g. the vector length or a record type) and an abstract reference for each
field. That is, the garbage collector can extract the necessary information from
the compound value:

• The collector adds all references that belong to the compound value to
the set of live references.

• With the references at hand the collector traces the abstract values reach-
able through the compound value and adds them to Û .

• A compound value is equipped with a GC id. That is, if the collector
discovers this compound value again it can cut off the search without
examining the fields.

The case ̂GCCompound does exactly this. The function gc-follow is the counter-
part of gc-follow (see Section 6.2.4) and returns the set of abstract references
a compound value uses to store the field values.

6.4.2 Abstract values with GC marks

The reachability relation and the collection function collect define the garbage
collector in a form appropriate for an efficient implementation. This section
describes how to turn the specification into code.

The reachability relation memorizes the GC ids of objects already encoun-
tered using the set Ŝ. All cases of  check whether the GC id of the object
in question is a member of Ŝ. In the implementation Ŝ exists in this form:
Each state or abstract value contains an additional component, the so-called
GC mark, that distinguishes seen from unseen objects. A GC mark is a record
with just one field that stores the GC time.

The GC time advances only when the analysis runs a garbage collection.
Figure 6.6 shows the code for GC marks. To check whether an object was
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(define-record-type gc-mark :gc-mark

(really-make-gc-mark time)

gc-mark?

(time gc-mark-time set-gc-mark-time!))

(define (make-gc-mark)

;; The initial value -1 ensures that this mark

;; is unseen on the first GC.

(really-make-gc-mark -1))

(define *gc-time* 0)

(define (tick-gc-time!)

(set! *gc-time* (+ 1 *gc-time*)))

(define (seen-gc-mark? gc-mark)

(= (gc-mark-time gc-mark) *gc-time*))

(define (seen? thing)

(cond

((state? thing)

(seen-gc-mark? (state-gc-mark thing)))

((abs-closure? thing)

(seen-gc-mark? (abs-closure-gc-mark thing)))

((abs-compound? thing)

(seen-gc-mark? (abs-compound-gc-mark thing)))

(else #t)))

(define (have-seen-gc-mark! gc-mark)

(set-gc-mark-time! gc-mark *gc-time*))

Figure 6.6: Implementation of GC marks

visited before the collector calls the procedure seen?, which extracts the GC
mark of a state, closure, or compound value and compares the GC time in this
record with the current GC time stored in the global variable *gc-time*. If
both are equal, the collector already visited this object during this collection.
To register an object as seen, the collector calls have-seen-gc-mark! to update
a GC mark to hold the current GC time.

I borrowed this idea from the implementation of garbage collectors for pro-
gramming languages: Distinguishing live objects from unreachable objects using
a marking bit is a popular technique and was originally introduced by the first
Lisp implementations [Jones and Lins, 1996]. In the context of a flow analysis
the marking bit becomes an integer, which eliminates the need for reseting the
marking bit. This approach is simpler and faster than traversing the complete
abstract data just to reset one bit.

Note that the garbage collector for the flow analysis continues with a re-
stricted variable environment and a restricted store and leaves the old variable
environment and store untouched.

The representation of the remaining components of a state tuple is straight-
forward. The vector Û becomes a regular queue. For the sets of live variable
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environment entries lcve and live references lbσ hash tables are a suitable represen-
tation because testing for the membership of an element is fast. This operation
is important during the last phase of the collection because it restricts the va-
riable environment and the store.

The garbage collector often computes the free variables of an expression.
Garbage collection may occur frequently with the result that the garbage col-
lector spends a lot of time traversing the syntax tree and computing sets of free
variables. This, however, is easy to fix: The implementation manages an id
table (see Section 6.2.5) that maps syntax nodes to sets of free variables. The
procedure free-variables computes the free variables using the id table as
a cache. That is, for each syntax node the collector computes the set of free
variables exactly once.

Figure 6.7 shows an excerpt from the implementation of the global garbage
collector.3 The procedure garbage-collect starts the collection with the given
root set, the variable environment, and the store. The global variable *live-
binds* is the id table that holds the live variable environment entries (these en-
tries are called abstract bindings in the implementation). Garbage-collect adds
all states in the root set to the queue of unvisited values unvisited-values.
The procedure trace! implements the case analysis of the reachability relation.
Figure 6.7 only shows the cases for closures and compound values. The code
corresponds directly to the formal specification of Figure 6.5: The set Ŝ exists in
form of the GC marks that trace! checks and updates. Register-live-bind!
is the correspondent of adding a live entry to lcve . The operations on Û directly
turn into the queue operations enqueue! and dequeue!.

6.4.3 Garbage Collection and variable environment

So far a discussion on the representation of the variable environment has been
postponed because of the complex interplay of variable environments and garbage
collection. After having discussed the garbage collector it is now time to consider
an implementation strategy for the variable environment. The representation is
geared towards the global garbage collector.

Shivers shows that variable environments grow monotonically [Shivers, 1991]:
Transitions from apply states always join an existing variable environment with
new entries. Shivers exploits this observation by using a timestamp mechanism
and a single global variable environment. The timestamp (an integer) replaces
the component for the variable environment in each state. The entries of a
variable environment reside in a list that is globally accessible. Extending a va-
riable environment implies the following operations: First, the implementation
updates the global table to hold the new entry or the new abstract value. Sec-
ond, the time on the timestamp clock advances. Checking whether two states
were created with the same variable environment now is trivial since it is only
necessary to compare the timestamps: An earlier timestamp indicates a younger
variable environment and thus also is smaller in the sense of v.

The advantages of the timestamp approach in comparison with a naive im-
plementation that associates a table or association list with each state are as
follows:

• Saves spaces. There is just one global table for all states.
3For a better readability I elide all code that is related to the registration of store references.



6.4. ANALYSIS WITH GARBAGE COLLECTION 125

(define (trace! unvisited-queue venv store val)

(cond

[...]

((abs-closure? val)

(if (not (seen-gc-mark? (abs-closure-gc-mark val)))

(let* ((node (abs-closure-node val))

(free-vars (free-variables node)))

(have-seen-gc-mark! (abs-closure-gc-mark val))

(for-each

(lambda (var)

(let* ((bind-time (lookup-binding-env

(abs-closure-benv val) var))

(bind (make-abs-bind var bind-time))

(val (lookup-variable-env venv bind)))

(register-live-bind! bind)

(for-each (lambda (sv)

(enqueue! unvisited-queue sv))

val)))

free-vars))))

((abs-compound? val)

(let ((follow-proc (abs-compound-gc-follow-proc val))

(gc-mark (abs-compound-gc-mark val)))

(if (not (seen-gc-mark? gc-mark))

(let ((reachable (follow-proc val)))

(have-seen-gc-mark! gc-mark)

(for-each (lambda (v)

(enqueue! unvisited-queue v))

reachable)))))

[...]))

(define (garbage-collect root-set venv store)

(tick-gc-time!)

(set! *live-binds* (make-abs-bind-set))

(let ((unvisited-values (make-queue)))

(for-each (lambda (v)

(enqueue! unvisited-values v))

root-set)

(let lp ()

(if (queue-empty? unvisited-values)

*live-binds*

(let ((abs-val (dequeue! unvisited-values)))

(trace! unvisited-values venv store abs-val)

(lp))))))

Figure 6.7: Excerpt from the garbage collector
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• Comparison is fast. Comparing two variable environments using v occurs
frequently during the termination check.

The timestamp approach, however, has one small drawback that concerns
the interpretation of the information stored in the visited set: With the time-
stamp implementation described above it is no longer possible to reconstruct the
variable environment as it was at the time a certain state transition occurred.
During the inspection of a certain state it may be possible to observe entries or
abstract values in the variable environment that were not present at the time
the flow analysis carried out the state transition. This may be confusing for the
user, especially when stepping through the transitions retroactively or during
the process of debugging. However, the abstract values bound to the (relevant)
variables that are evaluated during an eval state may be reconstructed by look-
ing at the successor state: The successor is an apply state that contains the
result of the variable evaluation in its argument list.

For the analysis of realistic programs the timestamp approach is ideal. Using
the timestamp approach in the presence of a garbage collector, however, yields
the following problem: The variable environment only grows monotonically until
a collection occurs. The collection removes unreachable entries from the variable
environment and consequently the restricted variable environment is not larger
in the sense of v. Subsequent updates of the variable environment then again
add values: These values are either known, that is a non-collecting environment
would already contain this value or these are new values. It is important to
distinguish both types of updates to ensure termination. Thus, the variable
environment keeps multiple sets of abstract values for each entry: A set always
contains all values since the last garbage collection.

The variable environment consists of two parts: An eq hashtable that stores
all entries and record type that wraps an integer number — the timestamp. The
clock for timestamps advances only when the analysis merges new values into
the environment. If the analysis updates an environment with a value for which
the corresponding entry already contains an approximation the time does not
advance. That is, the timestamp counts the number of updates that add new
information to the environment.

Each entry in table corresponds to an entry in the variable environment and
contains an association list that maps a GC time to the abstract value. The
GC time is a counter that tracks the number of garbage collections performed.
Assume that no garbage collector occurred so far, then an entry in the variable
environment is a list with one element:

’((0 #{Apsval integer 23} #{Apsval integer 42}))

This entry maps the GC time zero to the abstract PreScheme values for the
(exact) integer numbers 23 and 42. If the analysis updates the environment
with >Int this adds information to the environment and the timestamp clock
advances. The resulting entry contains the new value for GC time zero:

’((0 #{Apsval integer 23} #{Apsval integer 42} #{Apsval integer #f}))

The string #{Apsval integer #f} is the external representation of >Int . If the
garbage collector is turned off or no collection is necessary only the entry for
GC time zero grows. Thus, the variable environment corresponds to the original
timestamp approach.
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Assume that the analysis performs a garbage collection and the entry of the
example above becomes unreachable. First, the GC time advances from zero
to one. Also assume that the entry depicted above becomes unreachable. The
variable environment represents this situation by adding a new entry that maps
the value to ⊥ (represented as the empty list) for GC time one:

’((1) (0 #{Apsval integer 23} #{Apsval integer 42} #{Apsval integer #f}))

Thus, if the analysis evaluates the variable that corresponds to this entry under
the current GC time the variable environment returns ⊥. Subsequent updates
of this variable merge the new value with the ⊥ value from the latest GC time.

6.4.4 Splitting the root set

An analysis of a large program often leads to a situation as follows: The visited
set contains many entries (a few thousand states), garbage collection occurs
frequently (almost on every second state transition), and the queue of unvisited
states is long (a few hundred states). Computing the reachability relation is ex-
pensive because the heap (variable environment and store considered together)
contains many abstract values and the root set is also large. Recall that the
states in the unvisited queue belong to the root set. This means that from
collection to collection the root set changes only slightly: Many states from the
state queue still reside in the queue and belong to the root set. The garbage
collector, however, computes the reachable relation for all states and therefore
traces a large portion of the root set again and again.

A simple idea to avoid this situation goes back to splitting the root set into a
number of sets — each set contains exactly one state from the original root set.
Then the collector computes each reachability relation separately, and stores
the result along with the state in the state queue. This approach, however,
is difficult to implement: Instead of a single set of live entries the result now
consists of a sequence of such sets. That is, to restrict the variable environment
it is necessary to search all these sets for an entry. Plus, these sets require a
considerable amount of memory.

I have implemented the split root sets just described. The experiments I
conducted with this technique lead to the following results: The improvement
in performance accounts for five percent in average. Here, investigating more
sophisticated implementation techniques is necessary.

6.5 Experimental results

The tables in Figures 6.8 and 6.9 show the analysis times for some Scheme pro-
grams of the Gambit benchmark suite [Feeley , 1998]. Most of the benchmark
programs are Scheme versions of the classical Lisp benchmark programs intro-
duced by Richard Gabriel [Gabriel , 1985]. The columns of the table show the
following information:

size The size of the program given as the number of user-defined procedures
and the number of continuation lambda expressions.

GC The garbage collection policy and the number of collections performed
during the analysis. The interval policy performs a garbage collection on
every tenth transition from an apply state.
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name size∗ GC states checks queue time

never — 126 337 6 0.33
ack 2/15 demand 6 71 84 3 0.20

interval 9 86 141 10 0.20

never — 146 337 6 0.36
ctak 8/29 demand 5 118 200 2 0.30

interval 11 118 200 2 0.33

never — 185 700 5 0.66
cpstak 7/17 demand 11 146 408 5 0.70

interval 13 139 362 5 0.63

never — 89 250 5 0.20
fib 2/11 demand 9 85 217 5 0.30

interval 8 89 242 5 0.23

never — 350 1,619 11 0.11
fibc 8/35 demand 9 154 314 3 0.50

interval 27 292 1,048 10 0.11

never — 536 2,375 12 1.40
primes 6/49 demand 59 550 2,690 15 2.62

interval 47 538 2,392 11 2.15

never — 173 647 5 0.50
tak 2/18 demand 13 168 601 5 0.60

interval 16 175 664 5 0.60

never — 397 1,750 8 1.01
takl 3/35 demand 16 348 1,302 5 1.20

interval 32 352 1,361 5 1.25

never — 224 355 4 0.53
array 8/40 demand 9 224 355 4 0.76

interval 23 270 540 8 0.90

never — 1,399 8,316 18 0.68
destruc 12/111 demand 59 862 2,783 22 0.65

interval 127 1,501 9,469 10 1.56

never — 583 1,055 8 0.23
fft 8/108 demand 27 714 1,763 8 0.40

interval 53 605 1,225 8 0.35

never — 2,851 33,707 33 1.80
deriv 11/125 demand 93 1,087 4,656 31 0.79

interval 67 786 2,335 28 0.43

never — 62 39 3 0.10
divrec 2/11 demand 6 114 39 3 0.13

interval 6 100 39 3 0.12

never — 947 3,941 12 0.34
triangl 6/93 demand 24 602 1,457 7 0.26

interval 53 592 1,460 10 0.25

never — 10,619 190.6 46 20.03
trav 39/295 demand 308 5,871 52.3 49 8.52

interval 597 6,840 78.8 44 13.15

∗ The number of user-defined procedures and continuation lambda expressions.

Figure 6.8: Analysis times for Scheme programs 1
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name size GC states∗ checks† queue time

never — 8,966 180.2 47 9.42
pi 22/265 demand 140 2,164 13.3 23 1.87

interval 222 2,526 17.6 29 2.27

never — 3,358 35.6 29 1.72
pnpoly 3/164 demand 62 1,056 4.8 16 0.62

interval 53 599 1.6 20 0.34

never — 7,626 103.8 56 8.61
paraffins 30/273 demand 525 5,147 47.7 61 12.23

interval 342 4,058 34.5 89 7.91

never — 375 0.9 6 0.12
mbrot 8/58 demand 19 301 0.5 6 0.14

interval 48 533 2.0 10 0.23

never — 1,920 21.6 23 1.16
nqueens 10/80 demand 158 1,379 10.4 23 1.26

interval 120 1,385 10.5 10 1.70

never — 6,573 103.6 58 6.47
ray 37/359 demand 99 2,004 8.0 14 1.77

interval 112 1,246 4.1 10 0.73

never — 193 0.2 5 0.40
perm9 11/62 demand 9 184 0.2 5 0.60

interval 49 540 1.6 10 0.26

never — 62,241 3,045.4 184 298.88
maze 79/825 demand 503 7,933 62.4 30 11.79

interval 991 11,205 159.2 10 25.62

never — 10,494 205.8 86 23.80
lattice 46/305 demand 1,224 9,122 175.7 144 40.54

interval 417 4,874 46.7 79 8.13

never — 4,623 44.0 30 3.48
puzzle 22/319 demand 136 2,519 12.7 15 1.92

interval 289 3,276 16.4 10 2.55

never — 12,734 217.7 81 21.90
boyer 26/342 demand 1,426 13,105 246.6 188 44.51

interval 724 8,677 106.6 135 16.60

never — 26,161 682.6 118 60.90
simplex 32/647 demand 506 5,554 41.2 47 18.89

interval 960 11,025 146.4 121 59.34

never — 56,690 2,284.1 229 239.80
matrix 99/734 demand 6,204 43,005 1,802.2 329 545.53

interval 3,114 36,333 1,194.6 280 251.20

never — 13,485 2,229.6 110 19.66
graphs 60/408 demand 1,336 10,985 1,508.6 202 67.70

interval 1,068 12,267 2,024.8 178 51.88

never — 51,575 1,855.7 213 378.13
earley 97/828 demand 3,606 28,895 715.4 383 581.54

interval 1,953 22,957 434.4 279 249.82

∗ The number of user-defined procedures and continuation lambda expressions.
† The number of checks divided by 103.

Figure 6.9: Analysis times for Scheme programs 2
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name size states checks queue time [min]
Twospace GC 37/2202 125,307 6,534 467 6.57
Scheme 48 VM 185/11,082 785,668 42,354 2,257 218.54

Figure 6.10: PreScheme benchmarks

states The number of visited states.

checks The number of state comparisons using v. Note the numbers in ta-
ble 6.9 are divided by 103.

queue The maximum number of states waiting in the queue.

time The total analysis time in seconds. The times for the small benchmark
programs of table 6.8 are the average of three runs.

The analysis ran on Scheme 48, version 1.8, including the patch for eq hashtables
(see Section 6.2.5). Scheme 48 ran with a total of 2 GB heap space using a single
core on a MacPro with two Intel Dual-Core Xeon processors running at 2.66
GHz. The analysis used the following configuration:

Collector Global garbage collector with marking.

Time A 0CFA time abstraction.

Variable environment Global variable environment using timestamps (as de-
scribed in Section 6.4.3).

Binding environment Based on sorted association lists (as described in Sec-
tion 6.2.2).

Visited set Based on eq hashtables (as described in Section 6.2.5).

State queue State queue using eq hashtables.

Relation cache Configured to cache the last 200 comparisons of binding en-
vironments.

Figure 6.10 shows two benchmark results for substantial PreScheme programs:
The Twospace Garbage Collector of Scheme 48 and the complete virtual ma-
chine itself. The size of these programs is measured after the transformational
compiler inlined the single-use procedures. Therefore the number of user-defined
procedures may appear low. Note that the time in this table is given in minutes.

The benchmark results suggest the following conclusions: The cost for garbage
collection is significant, especially for larger analyses. For some programs the
cost of garbage collection outweighs the time saved by a smaller state space.
The benchmarks show that the coherence between the effect garbage collection
and analysis time is complex: Some benchmarks, such as maze, boyer, and
paraffins, profit from garbage collection above average. Here, the collector
reduces the state space considerably. For other programs (i. e. nqueens and
graphs) the state space is almost as big as in an analysis without collection.

The criterion that decides when to perform a garbage collection has a large
influence on the overall time. Consider the results for the “on demand” strategy:
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Especially for larger analyses such as matrix, earley, and lattice, the number
of collections is high: Often the number of collections doubles in comparison
with the interval strategy which runs the collector on every tenth transition.
That is, collections occur at a frequency higher than every tenth state. In fact,
many of the benchmark programs run a collection on every transition from an
apply state. This occurs often with programs that use lists. The analyses for
such programs usually contains many abstract references to pairs and traversing
a list yields to many merges in the variable environment, which consequently
triggers a garbage collection. In summary, running the collector in an interval
of ten state transitions seems to be a middle course that improves the speed of
the analysis for almost all test cases. Furthermore, the analysis does not run
risk of spending too much time on garbage collection.

Consider the number of termination checks carried out for the benchmarks.
The number of checks for the Scheme benchmark are much higher than the
checks carried out during the analysis of PreScheme programs — even though
the PreScheme programs are larger and more complex then the Scheme pro-
grams. This effect is due to the size of hashtable used in the implementation of
the visited set: The PreScheme benchmarks use a very large hashtable with 217

entries while the hashtable for the Scheme benchmarks only has 215 entries.
Note that analyses that have a many waiting states in unvisited queue such

as matrix and earley only benefit below average from the garbage collector.
Many states in the queue means that the root set is large and therefore leads
to longer collection times. Furthermore, the set of reachable values is larger if
many states wait in the queue. These properties make garbage collection less
effective.

In summary, the benchmarks show that the analysis of realistic and complex
programs benefits from garbage collection. The benefits are satisfying even
though the effort necessary to implement an efficient collector is high.

6.6 Testing and Debugging

Testing and debugging a flow analysis is troublesome. The experimental re-
sults show that even for small programs the state space grows very quickly.
An additional problem arises from the fact that tracking the relation between
cause and effect is especially complicated: The cause of a problem, such as a
wrong abstract value returned by an erroneous abstraction function may be in-
troduced early in the analysis but may surface and cause a problems in a very
late phase of the analysis. Here, systematic debugging techniques [Zeller , 2005]
are indispensable. I used the following tools to test and debug the flow analysis
implementation:

Log and transition graph In debug mode, the implementation writes an
extensive log file. This log includes all relevant information such as the transi-
tion rules applied, the results of argument evaluation, regular snapshots of the
variable environment and store, a trace of the termination check, and the code
under consideration. An analysis of Twospace-GC (see previous section), for
example, has about 125,000 states and produces a 700 mega-byte log file. It
is important to navigate the log easily and search the log for certain values,
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program labels, or states. Therefore, the analysis assigns an unique id to each
state, closure, binding environment, and variable environment.

Also, the analysis generates a graph that depicts the state transitions ev-
ery fifty states: The graph is given as GML file which may be viewed using
yEd [Wiese et al., 2001]. Given a failed state the graph facilitates searching
backwards through the transitions and helps finding the source of the problem.

Finding similar states Errors that cause the analysis to loop infinitely are
hard to find and often go back to small mistakes in the implementation of v.
To identify the problem I developed a tool called state-diff that searches the
visited set for states that have a high chance of being related by v. The tool
lists all relevant differences that cause the approximation check to fail. The
additional information printed by state-diff, however, almost doubles the size of
the log file.

Assertions Almost every abstraction function and every function that oper-
ates on the variable environment, the store, or the visited set uses assertions
heavily to recognize a problem as soon as possible. The implementation in-
cludes its own Scheme macro for assertions that allows to check pre-conditions,
post-conditions, and includes many options to report failures. Using assertions
proved to be very helpful for the development.

Test suite The analysis contains a test suite that covers the basic function-
ality such as store operations, argument evaluation, and variable environment
operations. Tests that involve a complete program and analysis are complicated
to set up and check: It is almost impossible to check all aspects of the infor-
mation computed by the analysis. Here, only spot tests are feasible. Such tests
check the following: Does the visited set contain states for each point in the
program that is supposed to be visited? Do the argument vectors of the apply
states contain the expected values? Do the primops return the correct abstract
values?

These techniques proved helpful to identify a lot of problems during devel-
opment. Still, debugging and testing the flow analysis was among the most
time-consuming and work-intensive parts of this dissertation.



Chapter 7

Conclusion

This dissertation shows how to scale control-flow analyses for higher-order lan-
guages up to complete, fully-fledged programming languages and compute the
flow analysis of realistic programs.

7.1 Review

The flow-analysis framework operates on the intermediate language of Scheme
48’s transformational compiler. In a first preparatory step, Chapter 2 defines an
operational small-step semantics for the intermediate language. The semantics
focuses on procedure application and omits the definition of denotable values.
This semantics is the basis for the systematic design of computable abstract
semantics that specify the flow analysis. The abstract semantics consists of
three parts: core semantics and semantics for PreScheme and Scheme. The
semantics for the core of the intermediate language merely deals with procedure
application, the global variable environment, and the basic primitive operations
that implement local recursion and conditional evaluation.

The abstract semantics for PreScheme and Scheme add the definitions for de-
notable values and primitive operations that are necessary to cover the PreScheme
and Scheme language. The specifications include support for procedure calls
with variable arity, multiple return values, precise abstraction for heap objects
such as records, pairs, and vectors, abstractions for all simple value types, and
most primitive operations of the Scheme 48 system and the PreScheme compiler.
These coherent and complete specifications of the flow-analyses for PreScheme
and Scheme are a core contribution of this dissertation. The analyses compute
the control flow and detailed information on the values used in the program.
Thus, the analysis results may be used to drive several optimizations.

A correctness relation defines the semantic correctness of the flow analysis
by relating entities of the concrete semantics with abstract entities that are
a valid abstraction. To test, trace, and inspect the specification of the flow
analysis I use an executable model of the semantics. The model implements the
concrete semantics, the flow-analysis semantics, and the correctness relation as
a term rewrite system. For a given program the model computes all reduction
steps of both semantics and relates the results using the correctness relation.
Thus, testing, tracing, and visualizing and the mode of operation of the analysis
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becomes possible. This model is a core contribution of this dissertation and an
important preparatory step for the implementation of the analysis in the real
compiler.

The implementation developed as part of this dissertation operates as part of
the transformational compiler, supports all features of PreScheme and Scheme,
and is capable of analyzing realistic programs. Performance is the main chal-
lenge for such an implementation. This dissertation contributes a systematic
investigation and design of the representations for the semantic domains and a
global garbage-collection technique for flow analyses. Both, sophisticated rep-
resentations and the garbage collector improve the performance of the analysis.
The novel global garbage collector always considers the complete state of the
analysis and enables an efficient implementation of the variable environment
using timestamps.

7.2 Future work

The flow analysis implementation in Scheme 48 opens a wide range of oppor-
tunities for investigations on applications of flow-analysis results under realistic
conditions:

Flow language This dissertation describes the flow language, the language
for describing flow information syntactically, only briefly and in an ad-hoc man-
ner. This idea, however, needs further investigation and a theoretical founda-
tion. Currently, users can specify the flow behavior of a procedure (or a whole
library) in terms of the flow language. More interesting, however, is the follow-
ing question: Is it possible to derive the a flow language description from flow
information actually computed by the analysis? Certainly, this process would
require abstracting the computed flow information to achieve a version that car-
ries less information and results in a more concise (but still correct) description.
There are two uses for generating a readable description automatically: First,
the analysis could suggest this description to the user for an interactive refine-
ment. Second, the analysis could generate simple descriptions for libraries. Such
a description could be stored in a file and reused for each program that uses
this library. The result would be a system similar to Flanagan’s componential
analysis with constraint compression [Flanagan and Felleisen, 1999].

For abstracting flow information, Dubé’s techniques for a demand-driven
analysis may be helpful [Dubé, 2002]. Additionally, developing an abstraction
based on the systematic construction of Galois connections [Nielson et al., 2005]
should be considered.

Executable model The executable model of the semantics as presented in
Section 5 does not model the complete flow-analysis semantics of PreScheme
as it does not include all primops and some value types. A complete model,
however, is desirable as it would allow tracing realistic test cases or even serve
as debugging aid.

Currently the executable model checks the correctness relation and simply
returns a boolean. However, if the check returns false information on the circum-
stances that lead to the negative result are desirable. This would be especially
helpful to test new abstraction functions.
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Generating graphs that show the traces of both semantics and the connection
via the correctness relation currently involves manual work. To ease this process
it would be helpful to connect the model to a graph-drawing software that
supports layered graphs.

Applications Flow analysis is not an end in itself. The information acquired
by the analysis are useful to program optimization. Currently, the implementa-
tion only uses flow information for inline expansion [Jagannathan and Wright ,
1996; Ashley , 1997] and the sophisticated super-β inlining [Might and Shivers,
2007]. My implementation of inline expansion, however, is not complete: It
computes a large set of chances to inline and implements the actual inline ex-
pansion but lacks an appropriate heuristics for deciding which inlining chances
to take. I conjecture that using flow information for this decision may be helpful.

For the native-code compiler an analysis that allows to eliminate the type
checks of primitive operations seems promising. The work of Jagannathan and
Wright [Jagannathan and Wright , 1995] shows that, on basis of flow information,
the number of necessary type checks can be reduced significantly. In this context,
revisiting Shivers’s type recovery algorithm [Shivers, 1991] is also interesting.
Also, flow analysis can discover opportunities for an unboxing optimization.

Implementation The implementation of the analysis for Scheme 48 could be
improved along the following lines:

Storing the analysis results in a file is desirable for pragmatic reasons. For
large analyses this would save time when developing applications that use these
results.

Debugging the analysis involves reading very large log files that are hard to
navigate. Here, a graphical debugging tool that makes it easy to follow state
transitions, inspect and compare environments, or even check given correctness
conditions would be a relief.

Multi-core processor system started becoming a standard in recent years.
The current implementation does not benefit from this development as the un-
derlying Scheme implementation does not support multiprocessor system. A
recent development version of Scheme 48, however, uses multiple threads at
operating-system level to evaluate Scheme code and therefore benefits of multi-
core processors [Frese, 2006]. I conjecture that the analysis could benefit from
a parallel evaluation. The worklist algorithm at the core of the analysis is
straightforward to parallelize and the implementation uses very few mutable
shared data structure that must be synchronized.

The analysis of the source code for Scheme 48 virtual machine (about 20,000
lines of code) consists of 750,000 states. This amount of states is close to the
limits of the current implementation. The heap space required during the ana-
lysis amounts to 2 GB and 4 GB in total for both heap spaces of Scheme 48’s
two-space collector. Using, the Scheme 48 on a 64-bit system, however, is no
relief: Each Scheme value doubles in size and as a result even more memory is
necessary. Thus, a better implementation of id tables that works with the new
generational garbage collector of Scheme 48 is necessary. This would enable
to apply the analysis to programs that are larger and more complex than the
virtual machine.
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Appendix A

Notation

The notation used in this work generally follows the notation used in [van
Leeuwen, 1990] and [Nielson et al., 2005].

Vectors Vectors are ordered sequences of a fixed length that may be accessed
with a 1-based index. 〈a1, . . . , an〉 denotes a vector of length n. The operator §
concatenates the elements of a vector:

〈a1, . . . , an〉§〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉

The elements of A∗ are vectors (of unspecified length) of elements in A. A
lowercase letter with a star is a member of A∗, i. e. a∗ ∈ A∗. The function map
applies a function to each member of a vector and returns a new vector with
the results. v ↓ i accesses the element at index i in vector v.

〈ei : P (ei)〉 creates a vector with elements ei; for each element ei for which
the predicate P (ei) holds. The order of the elements is unspecified as well as
the length of the vector.

Functions The syntax [a1 7→ b1, a2 7→ b2, . . .] denotes the construction of a
function that maps ai to bi. [] denotes the empty function for which dom([]) = ∅
holds. f [a 7→ b] constructs a new function by extending f :

f [a 7→ b](x) =

{
b x = a

f(x) otherwise

The | operator restricts the domain of a function to parameters given in a set:

f |R ⇔ [xi 7→ f(xi)] ∀xi ∈ dom(f) ∩R

137



138 APPENDIX A. NOTATION



Appendix B

Semantic Correctness

This chapter contains the proof of the semantic correctness of the flow analysis
as defined by the correctness relation R (see Section 4.3).

In preparation for the proof, four lemmas are necessary. The first lemma
states that merging abstract values does not affect the correctness:

Lemma 2. If d R d̂, d ∈ D, d̂, d̂′ ∈ D̂ then d R (d̂ t d̂′).

Proof. Since d R d̂ there exists an abstract value v̂ ∈ d̂ such that d R v̂ and
this value also exists in d̂ t d̂′.

The following lemma states that updating the concrete and abstract vari-
able environments with a variable and point in time preserves the semantic
correctness:

Lemma 3 (Updating variable environments). Let ve ∈ VEnv, v̂e ∈ V̂Env,
t ∈ Time, t̂ ∈ T̂ime, d ∈ D, and d̂ ∈ D̂ such that t R t̂ and d R d̂. If ve R v̂e
and

ve ′ = ve[(v, t) 7→ d]
v̂e ′ = v̂e t [(v, t̂) 7→ d̂]

then ve ′ R v̂e ′.

Proof. From v̂e t [(v, t̂) 7→ d̂] follows that v̂e ′(v, t̂) = v̂e(v, t̂) t d̂ which by
Lemma 2 means that ve(v, t) R v̂e ′(v, t̂). By ve R v̂e it is clear that

∀(v, t) ∈ dom(ve) : ∀t̂ ∈ T̂ime : t R t̂ ⇒ ve(v, t) R v̂e(v, t̂)

Both facts considered together give ve ′ R v̂e ′.

The transition rules for apply states also extend the binding environments.
When extending the binding environments for a variable, the resulting binding
environments are related by R:

Lemma 4 (Updating binding environments). Let β ∈ BEnv, β̂ ∈ B̂Env,
t ∈ Time, and t̂ ∈ T̂ime such that t R t̂. If β R β̂ and

β′ = β[v 7→ t]
β̂′ = β̂[v 7→ t̂]

it follows that β′ R β̂′.
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Proof. By β R β̂ it is clear that ∀u ∈ dom(β) : β(u) R β̂(u). By t R t̂ it follows
that β′(v) R β̂′(v). Considered together, this means β′ R β̂′.

Updating the concrete and abstract stores yields new concrete and abstract
stores which are connected by the semantic correctness relation R :

Lemma 5 (Updating the store). Let ref ∈ Ref , r̂ef ∈ R̂ef , d ∈ D, and d̂ ∈ D̂
such that ref R r̂ef and d R d̂. If σ RStore σ̂ and

σ′ = σ[ref 7→ d]
σ̂′ = σ̂ t [r̂ef 7→ d̂]

then it follows that σ′ RStore σ̂′.

Proof. From σ̂ t [r̂ef 7→ d̂] follows that σ̂′(r̂ef ) = σ̂(r̂ef ) t d̂ which by Lemma 2
means that σ(ref ) RStore σ̂′(r̂ef ). By σ RStore σ̂ it is clear that

σ RStore σ̂ iff ∀ref ∈ dom(σ) : ∀r̂ef ∈ R̂ef : ref RRef r̂ef ⇒ σ(ref ) RD σ̂(r̂ef )

holds. Both facts considered together show that σ′ RStore σ̂′ holds.

The next lemma states that under matching environments the argument
evaluation functions yield the correct result:

Lemma 6 (Argument evaluation). Let β ∈ BEnv, β̂ ∈ B̂Env, ve ∈ VEnv,
v̂e ∈ V̂Env, σ ∈ Store, σ̂ ∈ Ŝtore, t ∈ Time, and t̂ ∈ T̂ime such that β R β̂,
ve R v̂e, σ R σ̂, and t R t̂. Then:

(A β ve σ t e) R (Â β̂ v̂e σ̂ t̂ e)

Proof. Case analysis for e:

1. Evaluating a lambda expression: e ∈ Lam, e = lamτ

A β ve σ t e evaluates to the closure (lamτ , β, t). Â β̂ v̂e σ̂ t̂ e evalu-
ates to the abstract denotable value {(lamτ , β̂, t̂)} which directly leads to
(lamτ , β, t) RProc (lamτ , β̂, t̂) because β R β̂ and t R t̂ hold by premise.

2. Evaluating a lexical variable reference: e ∈ Var, e = v

A looks up the value of v using β and ve: ve(v, β(v)). Â looks up the
values in the abstract counterpart: v̂e(v, β̂(v)). By the premise β R β̂ it
is clear that β(v) RTime β̂(v). Since ve R v̂e it is also clear that for all
t RTime t̂ the abstract variable environment stores the correct abstract
values: ve(v, t) RD v̂e(v, t̂).

3. Evaluating a reference to a global variable: e ∈ GVar, e = g

A finds the global variable g in the store σ: σ(g). Â consults the abstract
store σ̂: σ̂(g). By the premise σ R σ̂ the condition σ(g) R σ̂(g) holds.

4. Evaluating a literal: e ∈ LitLang , e = lit

The semantics of the intermediate language does not include literals.
Therefore the evaluation of literals is shifted to the language-specific eval-
uation function KLang and K̂Lang . The abstract literal evaluation function,
however, must obey KLang lit RD K̂Lang lit .
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5. Evaluating a trivial call: e ∈ TrivCall, e = (prim 〈eu
1 , . . . , eu

n〉)τ

The primitive operation used in trivial calls are specific to the input lan-
guage. Thus, they are not considered in the intermediate language and
shifted to the evaluation functions PLang and P̂Lang . The definitions of
these functions must ensure that

(PLang β ve σ t prim 〈e1, . . . , en〉) RD (P̂Lang β̂ v̂e σ̂ t̂′ priml〈e1, . . . , en〉)

holds. Note, that trivial calls by definition do not have side effects and do
not affect the control flow. Thus, the stated condition is sufficient.

The approximation relation v relates elements from abstract domains. In-
tuitively, if for an abstract entity ξ̂ (an abstract value, environment, or state)
ξ R ξ̂ holds and there is an abstract entity ξ̂′ such that ξ̂ v ξ̂′ then one would
expect ξ R ξ̂′ to hold as well. The next seven lemmas prove this property for
binding environments, procedure values, locations, references, denotable values,
variable environments, and stores.

Lemma 7 (Correctness and approximation of binding environments). Let β ∈
BEnv and β̂, β̂′ ∈ B̂Env. Then:

β R β̂ ∧ β̂ v β̂′ ⇒ β R β̂′

Proof. By definition, β̂ v β̂′ is equivalent to

∀v ∈ dom(β̂) : β̂(v) vTime β̂′(v)

That is, dom(β̂) ⊆ dom(β̂′). Recall the premise for time abstractions stated in
Section 4.3:

t RTime t̂ ∧ t̂ v t̂′ ⇒ t RTime t̂′

These two facts considered together give

∀v ∈ dom(β̂) : β(v) RTime β̂′(v)

which is the definition of β RBEnv β̂′.

Lemma 8 (Correctness and approximation of procedure values). Let proc ∈
Proc and p̂roc, p̂roc′ ∈ P̂roc. Then:

proc R p̂roc ∧ p̂roc v p̂roc′ ⇒ proc R p̂roc′

Proof. The interesting cases are:

1. proc = halt and p̂roc = halt. From, p̂roc v p̂roc′ it is clear that p̂roc′ =
halt or p̂roc′ = >Proc . For both cases proc R p̂roc′ holds.

2. proc ∈ Clo and p̂roc ∈ Ĉlo. Since proc R p̂roc the closures are over
the same lambda expressions (by definition of RProc). Then, p̂roc′ must
be an abstract closure (or >Proc) over the same lambda term since v on
syntactic domains is equality. Let β̂′ be the binding environment and the
time t̂′ of p̂roc′.

Then, RProc considers the components of an abstract closure:
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(a) The lambda nodes for proc, p̂roc, and p̂roc′ are identical, as just
discussed.

(b) By definition of v for product lattices and the premise p̂roc′ v p̂roc′

β̂ v β̂′ follows. From proc R p̂roc also β R β̂ follows. This establishes
the premises for applying Lemma 7 from which β R β̂′ follows.

(c) By the premises for time abstractions (see Section 4.3), it is clear
that t R t̂′.

Lemma 9 (Correctness and approximation of locations). Let loc ∈ Loc and
l̂oc, l̂oc′ ∈ L̂oc. Then:

loc R l̂oc ∧ l̂oc v l̂oc′ ⇒ loc R l̂oc′

Proof. The interesting cases are:

1. loc ∈ GLoc. So that loc R l̂oc holds, l̂oc must be a global location
l̂oc ∈ ĜLoc. Then, loc and l̂oc go back to global variables — a syntactic
domain. Here, v is equality and from l̂oc v l̂oc′ it follows l̂oc = l̂oc′.

2. loc ∈ HLoc. Then, l̂oc ∈ ĤLoc. By definition of RHLoc the call con-
stituents of loc and l̂oc must be identical. On the syntactic domain Call

v is defined as equality and hence l̂oc and l̂oc′ must contain the same call.
By premise for time abstraction (see Section 4.3) the time constituent
obeys t R t̂′. Considered together, this yields loc R l̂oc′.

Lemma 10 (Correctness and approximation of references). Let ref ∈ Ref and
r̂ef , r̂ef ′ ∈ R̂ef . Then:

ref R r̂ef ∧ r̂ef v r̂ef ′ ⇒ ref R r̂ef ′

Proof. RRef considers the constituents of references: A location and a selector
from LitLang . Since literals are a syntactic domain, v on LitLang is equality

and therefore the literal in ref , r̂ef , and r̂ef ′ are identical. From r̂ef v r̂ef ′ and
the definition of v on product lattices, for the l̂oc in r̂ef and the l̂oc′ in r̂ef ′

r̂ef v r̂ef ′ follows. This establishes the premises for Lemma 9 and both facts
considered together yields ref R r̂ef ′.

Lemma 11 (Correctness and approximation of denotable values). Let d ∈ D
and d̂, d̂′ ∈ D̂. Then:

d R d̂ ∧ d̂ v d̂′ ⇒ d R d̂′

Proof. From the premise d R d̂ and the definition of RD it is immediately clear
that ∃v̂ ∈ d̂ : d R v̂. So, the obligation is to prove that this value also exists in
d̂′. D̂ is a power lattice and therefore from the premise d̂ v d̂′ it is clear that

∀b̂1 ∈ d̂ : ∃b̂2 ∈ d̂′ : b̂1 v b̂2
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So, there exists an abstract value v̂ ∈ d̂ for which d R v̂ and there exists a
value in d̂′ such that v̂ v v̂′. By Lemmas 8, 9, and 10 it is clear that v R v̂′

for v being a procedure value, location, or reference. For language specific basic
values (v ∈ BasLang) this is a premise.

Lemma 12 (Correctness and approximation of variable environments). Let
ve ∈ VEnv and v̂e, v̂e ′ ∈ V̂Env. Then:

ve R v̂e ∧ v̂e v v̂e ′ ⇒ ve R v̂e ′

Proof. From the premise ve R v̂e it follows that

∀(v, t) ∈ dom(ve) : ∀t̂ ∈ T̂ime : t R t̂ ⇒ ve(v, t) RD v̂e(v, t̂)

Thus, the proof obligation is to show that for all points in time t̂ ∈ T̂ime
such that t R t̂ and all variables v there v̂e(v, t̂) RD v̂e ′(v, t̂) holds. From the
definition of v on function lattices and the premise v̂e v v̂e ′ it is clear that

∀(v, t̂) ∈ dom(v̂e) : v̂e(v, t̂) vD v̂e ′(v, t̂)

This, however, is the premise for applying Lemma 11 and hence v̂e R v̂e ′ follows.

Lemma 13 (Correctness and approximation of stores). Let σ ∈ Store and
σ̂, σ̂′ ∈ Ŝtore. Then:

σ R σ̂ ∧ σ̂ v σ̂′ ⇒ σ R σ̂′

Proof. The proof for this lemma can be adapted mutatis mutandis from Lemma 12.

The preceding seven lemma faciliate formulating the theorem that connects
the semantics correctness R with the approximation relation v for states. This
theorem is necessary for proving the central semantic correctness theorem.

Theorem 2 (Correctness and approximation of states). Let ς ∈ State and
ς̂ , ς̂ ′ ∈ Ŝtate.

ς R ς̂ ∧ ς̂ v ς̂ ′ ⇒ ς R ς̂ ′

Proof. Ŝtate is a sum lattice and by definition of v and definition of RState ,
ς̂ v ς̂ ′ only holds if ς̂ , ς̂ ′ ∈ Êval or ς̂ , ς̂ ′ ∈ Âpply. Thus, the proof considers the
following cases:

1. ς ∈ Eval and ς̂ , ς̂ ′ ∈ Êval. That is:

ς = (callτ , β, ve, σ, t)
ς̂ = (callτ ′ , β̂, v̂e, σ̂, t̂)
ς̂ ′ = (callτ ′′ , β̂′, v̂e ′, σ̂′, t̂′)

The correctness relation RState requires that all constituents of an eval
state obey their respective correctness relations. From ς R ς̂ follows
callτ = callτ ′ . From ς̂ v ς̂ ′ follows that the calls from ς̂ and ς̂ ′ are
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related by v. Call is a syntactic domain and hence v for calls is equality.
Thus, the call constituents of ς̂ and ς̂ ′ are identical.

From ς R ς̂ it follows that β RBEnv β̂, ve RVEnv v̂e, and σ RStore σ̂.
From ς̂ v ς̂ ′ it follows that β̂ v β̂′, v̂e v v̂e ′, and σ̂ v σ̂′. This establishes
the premises of Lemma 7, 12, and 13.

For the time constituent of the eval states t RTime t̂′ follows by premise
(see Section 4.3).

2. ς ∈ Apply and ς̂ , ς̂ ′ ∈ Âpply. That is,

ς = ({proc}, d∗, c∗, ve, σ, t)
ς̂ = ({p̂roc}, d̂∗, ĉ∗, v̂e, σ̂, t̂)
ς̂ ′ = ({p̂roc′}, d̂′∗, ĉ′∗, v̂e ′, σ̂′, t̂′)

The correctness relation RState requires that all constituents of an ap-
ply state obey the correctness relations. From ς R ς̂ it follows that
proc RProc p̂roc, ve R v̂e, and σ RStore σ̂. From the premise ς̂ v ς̂ ′

follows p̂roc v p̂roc′, v̂e v v̂e ′, and σ̂ v σ̂′. This establishes the premises
necessary for applying Lemma 8, 12, and 13.

For the time constituent of the apply states t RTime t̂′ follows by premise
(see Section 4.3).

For vectors R works element-wise: d∗ RD∗ d̂∗ holds if for all elements di

from vector d∗ di RD d̂i holds. From the premise d̂∗ v d̂′∗ follows that
d̂i v d̂′i for all elements d̂i from d̂∗. That is, the premises for applying
Lemma 11 hold for each element of the argument vectors ĉ∗ and d̂∗.

Equipped with this theorem and these lemma, it is now possible to formulate
and prove the main correctness theorem:

Theorem 3 (Semantic correctness). For ς ∈ V(pr) there exists ς̂ ∈ V̂(pr) such
that ς R ς̂.

Proof. The theorem follows by induction over the state transitions.
The base case considers the initial states: ςi = I(pr) and ς̂i = Î(pr). Thus,

V(pr) = {ςi} and V̂(pr) = {ς̂i}. By inspection of the definitions for I and Î it
is clear that ςi R ς̂i.

The obligation is to prove that if ς _ ς ′ an abstract state ς̂ ′ with ς ′ R ς̂ ′

exists. There are two cases to consider: First, V̂(pr) may contain an abstract
state ς̂ ′′ such that ς̂ ′ v ς̂ ′′. Then, theorem 2 applies and ς R ς̂ ′′ follows. In
the second case there exists no element ς̂ ′′ in V̂(pr) that ς̂ ′ v ς̂ ′′. That is,
the abstract successor state ς̂ ′ will be freshly added to V̂(pr). Then for ς̂ ′ the
condition ς R ς̂ ′ must hold. This obligation follows by inspecting the cases and
transition rules.

The cases are:

1. Let ς = ((primp 〈c, f, a1, . . . , an〉)τ , β, ve, σ, t) and primp ∈ PrimPCall \
{letrec1, letrec2}. By induction hypothesis, V̂(pr) contains an abstract
state ς̂ = ((primp 〈c, f, a1, . . . , an〉)τ , β̂, v̂e, σ̂, t̂) such that ς R ς̂. For ς
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the transition rule PCallEval applies: ς _ ς ′. For ς̂ the transition rulêPCallEval applies: ς̂_̂ς̂ ′. The obligation is to prove ς ′ R ς̂ ′.

Both transition rules advance time using tick and t̂ick respectively. Recall
the prerequisite for the time abstractions stated in Section 4.3:

t RTime t̂ ⇒ tick(t) RTime t̂ick(t̂)

Thus, for the points in time t′ and t̂′ in the successor states the condition
t′ RTime t̂′ holds.

PCallEval and ̂PCallEval evaluate the operator expression f and the con-
tinuation expression c:

proc = A β ve σ t′ f

p̂roc = Â β̂ v̂e σ̂ t̂′ f

c′ = A β ve σ t′ c

ĉ′ = Â β̂ v̂e σ̂ t̂′ c

By lemma 6 it is clear, that proc R p̂roc and c′ R ĉ′ hold.

Furthermore, both transition rules evaluate the call arguments ai using A
and Â:

di = A β ve σ t′ ai

d̂i = Â β̂ v̂e σ̂ t̂′ ai

Again, by lemma 6, di R d̂i.

In summary, t′RTime t̂′, procR p̂roc, c′R ĉ′, and di R d̂i hold. Considered
together with the premises ve R v̂e and β R β̂ and the continuation of R
on vectors (see Section 4.3), all constituents of the apply states resulting
from the transition are related. Thus,

(proc, 〈c′〉, d∗, ve, σ, t′) R ({p̂i}, 〈ĉ′〉, d̂∗, v̂e, σ̂, t̂′)

with p̂i ∈ p̂roc holds. Consequently, ς ′ R ς̂ ′.

2. Let ς = ((primc 〈c, a1, . . . , an〉)τ , β, ve, σ, t). The transition rules CCallE-
val and ̂CCallEval apply. The proof for this case can be adapted mutatis
mutandis from case 1.

3. Let ς = ((prim l 〈c, a1, . . . , an〉)τ , β, ve, σ, t). The transition rules Prim-
CallEval and ̂PrimCallEval apply. The proof for this case can be adapted
mutatis mutandis from case 1.

4. Let ς = ((test 〈c0, c1, a〉)τ , β, ve, σ, t). By induction hypothesis, V̂(pr)
contains an abstract state ς̂ = ((test 〈c0, c1, a〉)τ , β̂, v̂e, σ̂, t̂). The tran-
sition rules TestEval and ̂TestEval apply. Thus, ς _ ς ′ and ς̂_̂{ς̂0, ς̂1}.
The obligation is to show that ς ′ R ς̂0 ∨ ς ′ R ς̂1 holds.

The concrete machine goes into the following apply state:

ς ′ = (c′, 〈〉, 〈〉, ve, σ, t̂′)
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c′ is the result of the evaluation of c0 or c1 and depends on the value of a:

r = A β ve σ t′ a

c′ =

{
A β ve σ t′ c0 iff trueish?(r)
A β ve σ t′ c1 otherwise

The abstract machine creates two apply states:

ς̂0 = (b̂0, 〈〉, 〈〉, v̂e, σ̂, t̂′)
ς̂1 = (b̂1, 〈〉, 〈〉, v̂e, σ̂, t̂′)

where b̂i = Â β̂ v̂e σ̂ t̂′ ci.

Note that for the binding environments, variable environments, and the
continuation and user-world arguments the following holds: βR β̂, veR v̂e,
〈〉 R 〈〉. Furthermore, both transistion rules advance the time. Following
the argumentation seen in case 1, for the points in time t′ in the successor
states t′ R t̂′ holds.

There are two cases to distinguish:

(a) Let c′ = A β ve σ t′ c0. In this case c′ R b̂0 holds and consequently
also ς ′ R ς̂0.

(b) Let c′ = A β ve σ t′ c1. In this case c′ R b̂1 holds and consequently
also ς ′ R ς̂1.

Note that either case 4a or case 4b applies. Considered together, this
means ς ′ R ς̂0 ∨ ς ′ R ς̂1.

5. This case considers eval states with calls to letrec such as the following:

ς =
((letrec1 〈(λ (vc

1 . . . vc
n)

(letrec2 〈lc, eu
1 . . . eu

n〉)τ 〉)τ ′)τ ′′ , β, ve, σ, t)

By induction hypothesis, V̂(pr) contains an abstract state

ς̂ =
((letrec1 〈(λ (vc

1 . . . vc
n)

(letrec2 〈lc, eu
1 . . . eu

n〉)τ 〉)τ ′)τ ′′ , β̂, v̂e, σ̂, t̂)

such that ς R ς̂. The transition rules LetrecEval and ̂LetrecEval apply:

ς _ ς ′

ς̂ _̂ ς̂ ′

The obligation is to prove ς ′ R ς̂ ′.

Both transition rules advance the time to t′ and t̂′ and by the premises
for time abstractions t′ R t̂′ holds.
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Like transitions for apply states, LetrecEval and ̂LetrecEval extend the
binding and variable environments and bind variables vi to the values on
right-hand side ri and r̂i respectively:

β′ = β[vi 7→ t′]
ve ′ = ve[(vc

i , t
′) 7→ ri]

ri = A β′ ve σ t′ eu
i

β̂′ = β̂[vi 7→ t̂′]
v̂e ′ = v̂e t [(vc

i , t̂
′) 7→ r̂i]

r̂i = Â β̂′ v̂e σ̂ t̂′ eu
i

By Lemma 4 β′ R β̂′ is true. Because t′ R t̂′ and ve R v̂e and Lemma 6,
ri R r̂i holds for all i. Consequently, by Lemma 3 ve ′ R v̂e ′ follows. These
facts considered together give:

(call , β′, ve ′, σ, t′) R (call , β̂′, v̂e ′, σ̂, t̂′) ⇔ ς ′ R ς̂ ′

6. Let ς = ((global-ref 〈c, g〉)τ , β, ve, σ, t). By induction hypothesis, V̂(pr)
contains an abstract state

ς̂ = ((global-ref 〈c, g〉)τ , β̂, v̂e, σ̂, t̂)

such that ς R ς̂. For ς the transition rule PGlobalRef applies and for ς̂

the rule ̂PGlobalRef applies. Thus, the resulting states are apply states.

Both rules advance the time using tick and t̂ick and by the argumentation
laid out for case 1, t′ R t̂′ holds. By Lemma 6 it is clear that the continua-
tion argument c evaluates to the correct procedure values. Since σ R σ̂ by
induction hypothesis, σ(g) R σ̂(g) follows. That is, the arguments of the
abstract apply state simulate the arguments of the concrete apply state.
These facts considered together give ς ′ R ς̂ ′.

7. Let ς = ((global-set! 〈c, g, a〉)τ , β, ve, σ, t). By induction hypothesis,
V̂(pr) contains an abstract state

ς̂ = ((global-set! 〈c, g, a〉)τ , β̂, v̂e, σ̂, t̂)

such that ς R ς̂. The obligation is to prove ς ′ R ς̂ ′. Both rules advance
time and by premise t′ R t̂′ holds. Both transition rules evaluate the
continuation argument c and the expression a:

proc = A β ve σ t′ c

p̂roc = Â β̂ v̂e σ̂ t̂′ c

d = A β ve σ t′ a

d̂ = Â β̂ v̂e σ̂ t̂′ a

By Lemma 6 it is clear that proc R p̂roc and d R d̂. Both rules update
the store:

σ′ = σ[(g,>) 7→ d]
σ̂′ = σ̂ t [(g,>) 7→ d̂]
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Since d R d̂ and σ R σ̂ hold, the premises for Lemma 5 are given and
σ′ R σ̂′ holds. That is, all constituents of the resulting apply states are
related by R and hence ς ′ R ς̂ ′ follows.

8. Let ς = (((λ(p1 . . . pn) call)τ , β, tb), c∗, d∗, ve, σ, t). By induction hypoth-
esis, V̂(pr) contains an abstract state

ς̂ = ({((λ (p1 . . . pn) call)τ , β̂, t̂b)}, ĉ∗, d̂∗, v̂e, σ̂, t̂)

such that ς R ς̂. The obligation to show is that for ς _ ς ′ and ς̂_̂ς̂ ′ the
condition ς ′ R ς̂ ′ holds.

The transition rules ApplyClos and ̂ApplyClos apply. Both rules extend
the binding and variable environment for the t and t̂ and variables pi:

β′ = β[pi 7→ t]
ve ′ = ve[(pi, t) 7→ (c∗§d∗)i]

β̂′ = β̂[pi 7→ t̂]
v̂e ′ = v̂e t [(pi, t̂) 7→ (ĉ∗§d̂∗)i]

Since the prerequisites for Lemma 3 and Lemma 4 are given, the following
holds for the updated environments: β′ RBEnv β̂′ and ve ′ RVEnv v̂e ′.
Consequently, ς ′ R ς̂ ′ follows.
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PreScheme Primops

Realistic PreScheme programs such as the Scheme 48 virtual machine use al-
most all available primops. Hence, the flow analysis needs abstract evaluation
functions for these primops to approximate their behavior.

C.1 Primops with one return value

The following table documents the PreScheme primops that simply compute
and return a single value. The table sorts the primops by their return-value
type. Most of the primops can occur in trivial and in regular calls.

For trivial calls, the following formula for P̂Lang serves as a template. N
denotes the primop name from the table, and R̂ the corresponding return value:

P̂Lang β̂ v̂e σ̂ t̂N〈a0, . . . , an〉 = {R̂}

If a primop from the table occurs in a regular call, i. e. in a lambda body, this
transition rule applies:

ς̂ = ((N 〈c, a1, . . . , an〉)τ , β̂, v̂e, σ̂, t̂)_̂{({ĉi}, 〈〉, 〈{R̂}〉, v̂e, σ̂, t̂′)}

where

{
t̂′ = t̂ick(t̂, ς̂)
ĉi ∈ Â β̂ v̂e σ̂ t̂′ c

Name N Argument Types Description
Primops returning the abstract integer value R̂ = >Int :

* int× int integer multiplication
+ int× int integer addition
- int× int integer subtraction
address->integer addr memory address as integer

number
ashl int× int arithmetic shift left
ashr int× int arithmetic shift right
bitwise-and int× int bitwise and

149
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Name N Argument Types Description
bitwise-ior int× int bitwise or
bitwise-xor int× int bitwise exclusive or
byte-ref addr read byte from memory address
char->ascii char convert character to ASCII code
close-input-port inport close input port
close-output-port outport close output port
force-output outport flush port buffers
lshr int× int logical shift right
quotient int× int quotient of integer division
remainder int× int remainder of integer division
string-length string length of a string
word-ref addr read word from memory address
write-block outport× addr× int write memory contents to port
write-char char× outport output a char to port
write-integer int× outport output an integer to port
write-string string× outport output a string to port

Primops returning the abstract float value R̂ = >Float :
fl* float× float multiplication for floating point

numbers
fl+ float× float addition for floating point

numbers
fl- float× float subtraction for floating point

numbers
fl/ float× float division for floating point

numbers
flonum-ref addr read floating point from

memory address
Primops returning the abstract char value R̂ = >Char :

ascii->char int return char for ASCII code
string-ref string× int return a char from string by

index
Primops returning the abstract boolean value R̂ = >Bool :

< int× int integer comparison
= int× int integer equality
address< addr× addr address comparison
address= addr× addr address equality
char<? char× char character comparison
char=? char× char character equality
eq? any× any pointer equality
fl< float× float floating point comparison
fl= float× float floating point equality
memory-equal? addr× addr× int Compare bytes strings in

memory
null-pointer? any check for null pointer
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Name N Argument Types Description
Primops returning the abstract null value R̂ = n̂ull :

null-pointer Return null value
Primops returning the abstract input port value R̂ = înput:

stdin return standard input port
Primops returning the abstract output port value R̂ = ôutput:

stderr return standard error port
stdout return standard output port

Primops returning the abstract string value R̂ = ŝtring:
error-string string× outport output error message to stderr
make-string int allocate new string

Primops returning the abstract unit value R̂ = ûnit :
abort stop the program
copy-memory addr× addr× int block copy memory
deallocate-memory addr free memory
deallocate addr free memory
string-set! string× int× char set character in string
unspecific create the unspecific value

Primops returning the abstract address value R̂ = âddr :
address+ addr× addr add addresses
address-difference addr× addr subtract addresses
allocate-memory int allocate fresh memory
integer->address int convert integer to address

C.2 Primops for compound values

PreScheme has two compound value types: records and vectors. Section 4.4.1
explains the representation of these values in the store. This section summarizes
the equations from Section 4.4.1.

Vectors The primop vector-ref retrieves an element from the vector and
appears in context of a trivial call:

P̂Lang β̂ v̂e σ̂ t̂ vector-ref〈v, i〉 =
⊔

((τ,bt′),s)∈dvref σ̂(((τ, t̂′), elem))

where v̂ = Â β̂ v̂e σ̂ t̂ v

v̂ref = {û : û ∈ v̂ ∧ û ∈ R̂ef ∧ (ĵ, r̂ef ) ∈ σ̂(û)}

The following transition rules specify the creation and mutation of vectors:
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ς̂ = ((make-vector 〈c, l, i〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈{r̂ef v}〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

l̂ = Â β̂ v̂e σ̂ t̂′ l

r̂ef v = ((τ, t̂′), vector)
r̂ef e = ((τ, t̂′), elem)
σ̂′ = σ̂ t

[
r̂ef v 7→ {(l̂, r̂ef e)}, r̂ef e 7→ {n̂ull}

]

ς̂ = ((vector-set! 〈c, v, i, n〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂als = Â β̂ v̂e σ̂ t̂′ v

n̂ew = Â β̂ v̂e σ̂ t̂′ n

v̂ref = {û : û ∈ v̂als ∧ û ∈ R̂ef ∧ (ĵ, r̂ef ) ∈ σ̂(û)}
σ̂′ = σ̂ t

⊔
((τi,bti),s)∈dvref [((τi, t̂i), elem) 7→ n̂ew ]

Records Three primops deal with records in PreScheme: make-record cre-
ates a new instance of a record, record-set! updates a field, and record-ref
returns the value of a given field. Here is specification for these primops (taken
from Section 4.4.1):

ς̂ = ((make-record 〈c, tSym〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈r̂es〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

r̂es = {r̂ef , n̂ull}
r̂ef = ((τ, t̂′), record)
f̂ =

⊔
fn∈rfields(tSym)

[
fn 7→ ((τ, t̂′), fn)

]
σ̂′ = σ̂ t

[
r̂ef 7→ {(tSym , f̂)}

]
t

⊔
br∈rng( bf)

[
r̂ 7→ ⊥bD]
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ς̂ = ((record-set! 〈c, r, tSym , fSym , n〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

r̂ = Â β̂ v̂e σ̂ t̂′ r

n̂ew = Â β̂ v̂e σ̂ t̂′ n

r̂ef = {û : û ∈ r̂ ∧ û ∈ R̂ef ∧ (tSym , f̂) ∈ σ̂(û)}
σ̂′ = σ̂ t

⊔
((τi,bti),s)∈cref

[
((τi, t̂i), fSym) 7→ n̂ew

]
The primop record-ref occurs in trivial calls and therefore is a case of P̂Lang

instead of a transition rule:

P̂Lang β̂ v̂e σ̂ t̂ record-ref〈r, tSym , fSym〉 =
⊔

((τ,bt′),s)∈cref σ̂(((τ, t̂′), fSym))

where r̂ = Â β̂ v̂e σ̂ t̂ r

r̂ef = {û : û ∈ r̂ ∧ û ∈ R̂ef ∧ (tSym , f̂) ∈ σ̂(û)}

C.3 Primops with multiple return values

The primops open-input-file and open-output-file open a file specified by
a file name for read and write access, respectively. Both primops return a port
and an integer indicating the status of the I/O operation:

prim l = open-input-file

ς̂ = ((prim l 〈c, a〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, r̂, v̂e, σ̂, t̂′)}

where


t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

r̂ = 〈{înport}, {>Int}〉

prim l = open-output-file

ς̂ = ((prim l 〈c, a〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, r̂, v̂e, σ̂, t̂′)}

where


t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

r̂ = 〈{ôutport}, {>Int〉}

Read-char reads and consumes a single character from an input port. Peek-
char also reads a single character but does not consume the character read.
Both primops return the character read, a boolean value that is true if the the
I/O operation has reached the end of the file, and an integer indicating the I/O
status:
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prim l ∈ {read-char, peek-char}
ς̂ = ((priml 〈c, a〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, r̂, v̂e, σ̂, t̂′)}

where


t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

r̂ = 〈{>Char}, {>Bool}, {>Int}〉

Read-integer works like read-char, but reads an integer from a port:

prim l = read-integer

ς̂ = ((prim l 〈c, a〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, r̂, v̂e, σ̂, t̂′)}

where


t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

r̂ = 〈{>Int}, {>Bool}, {>Int}〉

Given an input port (a1), an address (a2), and a number of bytes (a3) the primop
read-block reads the specified number of bytes directly into the memory:

priml = read-block

ς̂ = ((priml 〈c, a1, a2, a3〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, r̂, v̂e, σ̂, t̂′)}

where


t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

r̂ = 〈{>Char}, {>Bool}, {>Int}〉
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Scheme Primops

The Scheme 48 system (version 1.7) has about 160 primitive operations imple-
mented as instruction codes for the virtual machine. The CPS code derived
from Scheme byte-code programs, however, only uses a subset of these primops.
For example, primops that directly manipulate the stack, the memory repre-
sentation of Scheme values, or environments do not occur in CPS programs.
These primops are reserved for use by the standard byte-code compiler and the
optimizer when translating a CPS program back to byte code.

Apart from these low-level primops there is a subset of primops that serve
rather special purposes such as primops that access and manipulate the current
continuation or access the low-level I/O system in the virtual machine. Typ-
ically, there are just a few library routines that employ these primops. The
current-cont primop which returns the current continuation is an example:
Only the implemenation of call-with-current-continuation needs to access
the current continuation. Thus, there is exactly one library procedure that uses
this primop. In these cases the analysis uses the syntactical description (see Sec-
tion 6.3) to specify the semantics. Consequently, it is not necessary to specify
a transition rule or a P̂Lang clause for these primops.

For the implementation described in Chapter 6 I identified the relevant pri-
mops. The table below documents these primops. Most of the primops can
occur both in trivial and in regular calls. For trivial calls, the following formula
serves as a template:

P̂Lang β̂ v̂e σ̂ t̂N〈a0, . . . , an〉 = {R̂}

Here, N is a primop name from the table below and R̂ is the return value for
this primop as listed in the table. If the primop occurs in a regular call, the
following transition rule applies:

ς̂ = ((N 〈c, a1, . . . , an〉)τ , β̂, v̂e, σ̂, t̂)_̂{({ĉi}, 〈〉, 〈{R̂}〉, v̂e, σ̂, t̂′)}

where

{
t̂′ = t̂ick(t̂, ς̂)
ĉi ∈ Â β̂ v̂e σ̂ t̂′ c

155
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Name N n Description
abstract boolean value: R̂ = >Bool

char? 1 recognize character
complex? 1 recognize complex number
eof-object? 1 recognize EOF object
integer? 1 recognize integer number
number? 1 recognize number
rational? 1 recognize rational number
real? 1 recognize real number
exact? 1 check exactness of number value
char<? 2 compare characters
char=? 2 equality for characters
eq? 1 check for object identity
string=? 2 string equivalence
< 2 compare number values
<= 2 compare number values
= 2 equality for number values
location-defined? 1 check whether a certain binding is defined
stob-has-type? 2 check stored object for type
immutable? 1 check if stob field is mutable
unassigned-check 1 check whether binding ist initialized

abstract char value: R̂ = >Char

string-ref 2 index string at given position
scalar-value->char 1 return char by its Unicode id

abstract string value: R̂ = ŝtring
make-string 2 create new string
reverse-list->string 2 a common operation in the reader

exact abstract integer number R̂ = (exact, integer,>NumVal)
ceiling 1 real to integer conversion
truncate 1 real to integer conversion
floor 1 real to integer conversion
numerator 1 numerator of a rational number
denominator 1 denominator of a rational number
string-hash 1 compute hash value of a string
string-length 1 length of a string
bit-count 1 number of bits in an integer
byte-vector-length 1 length of a byte vector
arithmetic-shift 1 shift an integer n bits left or right
bitwise-and 2 combine integers bitwise with and
bitwise-ior 2 combine integers bitwise with inclusive or
bitwise-xor 2 combine integers bitwise with exclusive or
bitwise-not 1 bitwise not of an integer
byte-vector-ref 2 access a field of a byte vector
stob-len 1 number of fields in a stored object
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Name N n Description
inexact abstract real number R̂ = (inexact, real,>NumVal)

log 2 compute logarithm
exp 1 compute exponent en

sin 1 compute sinus function
cos 1 compute cosinus function
tan 1 compute tangent function
asin 1 compute asinus function
acos 1 compute acosinus function
atan 1 compute atangent function

inexact abstract real number R̂ = ̂unspecific
collect 0 force garbage collection
string-set! 3 destructively update character in string
add-finalizer! 2 connect value with finalization procedure
byte-vector-set! 3 destructively update byte in byte vector
make-immutable! 1 make binding immutable

inexact abstract real number R̂ = ûndef
unassigned 0 return special undefined value

D.1 Arithmetic Primops

This section lists the transition rules for the arithmetic primops of Scheme
supported by the flow analysis. For a discussion of the representation of abstract
numbers see Section 4.4.2. The arithmetic primops may appear in trivial calls
and regular calls. To save space I elided the definition of these primops as clauses
for P̂Lang . However, deriving these clauses from the transition rules listed below
is straightforward.

The following arithmetic primops retain the exactness of the arguments.
That is, if the arguments are exact, the result is also exact.

N ∈ {+, *, -, expt}
ς̂ = ((N 〈c, a0, a1〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈r̂〉, v̂e, σ̂, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

r̂ = {(nt , e,>NumVal) | nt ∈ cntypes(ntypes(d̂))}

e =


exact exact?(d̂)
inexact inexact?(d̂)
>Exact otherwise

The division operation / has a special rule:

ς̂ = ((/ 〈c, a0, a1〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈r̂〉, v̂e, σ̂, t̂′)}

where


t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

r̂ = {(>NumType ,>Exact ,>NumVal)}
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The number-theoretic primops quotient and remainder retain the precision
but always return integer:

N ∈ {quotient, remainder}
ς̂ = ((N 〈c, a0, a1〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈r̂〉, v̂e, σ̂, t̂′)}

where



d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

t̂′ = t̂ick(t̂, ς̂)
r̂ = {(integer, e,>NumVal)

e =


exact exact?(d̂)
inexact inexact?(d̂)
>Exact otherwise

D.2 Primops for compound values

Section 4.4.2 explains the abstractions used to model Scheme 48’s compound
value types. This section summarizes the specification for these primops that
deal with stobs.

Creating stobs make-stob creates a new stob value. There are three cases to
distinguish: The first transition rule creates a record stob, the second a vector
stob, and the third cases applies for the remaining stob types (pairs, cells, etc):

tInt = record

ς̂ = ((make-stob 〈c, tInt , rtInt , , a1, . . . , an〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈{r̂ef }〉, v̂e, σ̂, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂i ∈ Â β̂ v̂e σ̂ t̂′ ai

f̂ =
⊔

1≤i≤n

[
i 7→ ((τ, t̂′), i)

]
r̂ef = ((τ, t̂′), stob)
σ̂′ = σ̂ t

[
((τ, t̂′), i) 7→ v̂i

]
t

[
r̂ef 7→ {(〈record, rtInt〉, f̂)}

]
tInt = vector

ς̂ = ((make-stob 〈c, tInt , s, a1, . . . , an〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈{r̂ef }〉, v̂e, σ̂, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂i ∈ Â β̂ v̂e σ̂ t̂′ ai

f̂ = [0 7→ ((τ, t̂′), elements)]
r̂ef = ((τ, t̂′), stob)
σ̂′ = σ̂ t

[
((τ, t̂′), elements) 7→

⊔
1≤i≤n

v̂i

]
t

[
r̂ef 7→ {(〈vector, s〉, f̂)}

]
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tInt 6∈ {vector, record}
ς̂ = ((make-stob 〈c, tInt , a1, . . . , an〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈{r̂ef }〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂i ∈ Â β̂ v̂e σ̂ t̂′ ai

f̂ =
⊔

1≤i≤n

[
i 7→ ((τ, t̂′), i)

]
r̂ef = ((τ, t̂′), stob)
σ̂′ = σ̂ t

[
((τ, t̂′), i) 7→ v̂i

]
t

[
r̂ef 7→ {(〈tInt〉, f̂)}

]

Accessing a stob field There are three different primops that return the
value of a stob field. Checked-record-ref accesses a field of a record stob and
checks the record type as well as the stob type.

N = checked-record-ref

ς̂ = ((N 〈c, a1, tInt , iInt〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈r̂〉, v̂e, σ̂, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂ = Â β̂ v̂e σ̂ t̂′ a1

r̂ef = {û : û ∈ v̂ ∧ û ∈ R̂ef ∧ (〈record, tInt〉, f̂) ∈ σ̂(û)}
r̂ =

⊔
((τ ′, bt′′),s)∈cref σ̂(((τ ′, t̂′′), iInt))

The implementation of vector-ref uses the primop stob-indexed-ref to ac-
cess an element of the vector. As discussed in Section 4.4, the analysis is not
able to track the exact value for integer values used as indices. Consequently,
stob-indexed-ref ignores the index jInt and retrieves the value stored under
the selector 0 which collapses all concrete values into a single abstract value:

tInt = vector N = stob-indexed-ref

ς̂ = ((N 〈c, a1, tInt , iInt , jInt〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈r̂〉, v̂e, σ̂, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂ ∈ Â β̂ v̂e σ̂ t̂′ a1

r̂ef = {û : û ∈ v̂ ∧ û ∈ R̂ef ∧ (〈tInt〉, f̂) ∈ σ̂(û)}
r̂ =

⊔
((τ, bt′′),s)∈cref σ̂(((τ, t̂′′), 0))

If the stob is neither a record nor or a vector the following rule applies:
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tInt 6∈ {vector, record}
ς̂ = ((stob-ref 〈c, a1, tInt , iInt〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈r̂〉, v̂e, σ̂, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂ ∈ Â β̂ v̂e σ̂ t̂′ a1

r̂ef = {û : û ∈ v̂ ∧ û ∈ R̂ef ∧ (〈tInt〉, f̂) ∈ σ̂(û)}
r̂ =

⊔
((τ, bt′′),s)∈cref σ̂(((τ, t̂′′), iInt))

Setting a stob field There are three primops that set a field of a stob.
Checked-record-ref deals with stob that represent records:

N = checked-record-set!

ς̂ = ((N 〈c, a1, tInt , iInt , a2〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂ = Â β̂ v̂e σ̂ t̂′ a1

n̂ew = Â β̂ v̂e σ̂ t̂′ a2

r̂ef = {û : û ∈ v̂ ∧ û ∈ R̂ef ∧ (〈record, tInt〉, f̂) ∈ σ̂(û)}
σ̂′ = σ̂ t

⊔
((τ ′, bt′′),s)∈cref

[
((τ ′, t̂′′), iInt) 7→ n̂ew

]
Mutating vectors works similar but uses stob-indexed-set! primop which has
an additional index jInt :

tInt = vector N = stob-indexed-set!

ς̂ = ((N 〈c, a1, tInt , iInt , jInt , a2〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂ = Â β̂ v̂e σ̂ t̂′ a1

n̂ew = Â β̂ v̂e σ̂ t̂′ a2

r̂ef = {û : û ∈ v̂ ∧ û ∈ R̂ef ∧ (〈tInt〉, f̂) ∈ σ̂(û)}
σ̂′ = σ̂ t

⊔
((τ ′, bt′′),s)∈cref

[
((τ ′, t̂′′), iInt) 7→ n̂ew

]

The primop stob-set! deals with the remaining stob types:
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tInt 6= {vector, record}
ς̂ = ((stob-set! 〈c, a1, tInt , iInt , a2〉)τ , β̂, v̂e, σ̂, t̂)_̂{({d̂i}, 〈〉, 〈〉, v̂e, σ̂′, t̂′)}

where



t̂′ = t̂ick(t̂, ς̂)
d̂i ∈ Â β̂ v̂e σ̂ t̂′ c

v̂ = Â β̂ v̂e σ̂ t̂′ a1

n̂ew = Â β̂ v̂e σ̂ t̂′ a2

r̂ef = {û : û ∈ v̂ ∧ û ∈ R̂ef ∧ (〈tInt〉, f̂) ∈ σ̂(û)}
σ̂′ = σ̂ t

⊔
((τ ′, bt′′),s)∈cref

[
((τ ′, t̂′′), iInt) 7→ n̂ew

]

D.3 Procedures with rest list argument

Scheme procedures have a fixed number of mandatory arguments and an op-
tional rest list argument. This section summarizes the specification of the ad-
ditional transition rule for n-ary procedures which is discussed in Section 4.4.2.

length(ĉ∗§d̂∗) ≥ n− 1

ς̂ = ({((λnP(p1 . . . pn) call)τ , β̂, t̂b)}, ĉ∗, d̂∗, v̂e, σ̂, t̂)_̂(call , β̂′, v̂e ′, σ̂′, t̂)

where


(r̂, σ̂′) = ̂listify-args((ĉ∗§d̂∗), n, ς̂)
β̂′ = β̂[pi 7→ t̂]
v̂e ′ = v̂e t

⊔
1≤j<n

[(pj , t̂) 7→ (ĉ∗§d̂∗)j ] t [(pn, t̂) 7→ r̂]

The transition rule requires the auxiliary function ̂listify-args. Given an argu-
ment vector with n elements, an index, and a state ̂listify-args augments the
store with a list that contains the elements from k to n of the argument vector.

̂listify-args : D̂∗ × N× Âpply → D̂× Ŝtore

̂listify-args(〈v0, . . . , vn〉, k, ς̂) = ({ŝtobk}, σ̂′)

where
̂stobn+1= {êmpty}

ŝtobi = ((τ(ai), t̂), stob)
ĉari = ((τ(ai), t̂), 0)
ĉdri = ((τ(ai), t̂), 1)
σ̂′ = σ̂ t

⊔
k≤i≤n

[
ŝtobi 7→ {(〈pair〉, [0 7→ ĉari , 1 7→ ĉdri ])}

]
t

⊔
k≤i≤n

[
ĉari 7→ v̂i

]
t

⊔
k≤i≤n

[
ĉdri 7→ ̂stobi+1

]
with(

(prim 〈a0, . . . , an〉), β̂′′, v̂e ′′, σ̂′′, t̂′′
)

_̂ ς̂



162 APPENDIX D. SCHEME PRIMOPS

D.4 Multiple return values

Calls to functions with multiple return values directly translate to calls using
the unknown-tail-call-with-values primop and have the following form:

(unknown-tail-call-with-values cont proc receiver)

Here, proc is a procedure without arguments that returns n values and re-
ceiver is a procedure with n arguments called with the return values from
proc. That is, this primop performs two procedure calls: A call to proc and
subsequently a call to receiver — a behavior not compatible with the idea
of CPS. To the flow analysis unknown-tail-call-with-values poses a prob-
lem since the analysis relies on CPS to assign a name to all intermediate values.
The transition rule for unknown-tail-call-with-values (abbreviated as utc-
with-value) must reestablish this condition first. The transition rule reads as
follows:

N = utc-with-values p = (λP() call)τ ′ r = (λP(a1, . . . , an) call)τ ′′

ς̂ = ((N 〈c, p, r〉)τ , β̂, v̂e, σ̂, t̂)_̂{((let 〈c′′〉), β̂, v̂e, σ̂, t̂)}

where


c′ = (λC(b1 . . . bn) (unknown-call 〈c, r, b1, . . . , bn〉)τ1)τ2

c′′ = (λC() (unknown-call 〈c′, p〉)τ3)τ4

τi = fresh labels
bi = fresh variables

This rule is an eval -to-eval transition that translates the unknown-tail-
call-with-values into CPS by connecting the value producing lambda p and
value receiving lambda r with a new continuation lambda c′.
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