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Zusammenfassung

Nichtribosomal synthetisierte Peptide (NRP) und Polyketide (PK) stellen ei-
ne vielfältige Gruppe von Naturstoffen dar, zu der Antibiotika, Arzneimittel
gegen Krebs, Entzündungshemmer, Immunosuppressiva, Metallkomplexbild-
ner und andere Moleküle mit interessanten Eigenschaften gehören.

Die ständige Nachfrage nach neuen Wirkstoffen und die wachsende An-
zahl noch nicht erforschter Protein-Sequenzen aus Genom-Projekten verlan-
gen nach besseren Methoden, um neuartige NRP-Synthetasen (NRPS) und
PK-Synthasen (PKS) automatisiert in den Protein-Datenbanken aufzuspüren
und die Zusammensetzung ihrer Produkte effizient vorherzusagen.

Neben der Suche nach neuartigen biologisch aktiven Molekülen ist man
auch bestrebt, durch die gezielte Modifikation bekannter NRPS/PKS Bio-
synthese-Cluster maßgeschneiderte Produkte zu entwerfen. Diese Strategie
ist umso effizienter, je besser Positionen bzw. Segmente in den Enzymen
vorhergesagt werden können, die mutiert bzw. rekombiniert werden müssen,
um neue Substanzen zu erhalten.

In dieser Arbeit wurden Methoden entwickelt und etabliert, die diese bei-
den Ansätze unterstützen: Eine effiziente Suchstrategie mit Profile Hidden
Markov Models (pHMMs) wird genutzt, die das gleichzeitige Auftreten be-
stimmter enzymatischer Domänen fordert, und es so erlaubt, NRPS und PKS
in Protein-Sequenzen sicher aufzufinden.

Eine neue, auf maschinellem Lernen (Stützvektormaschinen) beruhen-
de Strategie wurde entwickelt, mit der vorhergesagt werden kann, welche
Bausteine (in der Regel Aminosäuren) in NRPS von Adenylierungsdomänen
ausgewählt werden, um im Folgenden in das Produkt eingebaut zu werden.
Dadurch wird es möglich, auf die Zusammensetzung des synthetisierten Pro-
dukts zu schließen. Diese neue Methode wurde in dem Programm NRPSpre-
dictor implementiert und steht kostenlos über www-ab.informatik.uni-

tuebingen.de/software/NRPSpredictor zur Verfügung.

Die NRPS Kondensationsdomänen verbinden die von den Adenylierungs-
domänen ausgewählten Aminosäuren durch Ausbildung einer Peptidbindung
zu einem Peptidstrang und erzeugen je nach ihrer funktionellen Varian-
te (Subtyp) unterschiedliche Produktgeometrien. In einer umfassenden Stu-
die der evolutionären Beziehungen dieser Subtypen wurden charakteristische
Sequenz-Motive und -Positionen aufgedeckt, in denen sich die verschiede-
nen Varianten unterscheiden. Eine automatisierte Vorhersage der funktionel-
len Subtypen der Kondensationsdomäne wird durch die erstellten pHMMs
ermöglicht. Die ermittelten subtypspezifischen Positionen sind hilfreich für
die gezielte Einführung von Mutationen, um einen Subtyp in einen anderen

http://www-ab.informatik.uni-tuebingen.de/software/NRPSpredictor
http://www-ab.informatik.uni-tuebingen.de/software/NRPSpredictor
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zu überführen mit der Absicht, neuartige Produkte zu erhalten.
Desweiteren wurden die Möglichkeiten der Strukturbioinformatik unter-

sucht und Molecular Modeling und Docking Simulationen durchgeführt, um
die Spezifität von Adenylierungsdomänen sowie die Auswirkungen gezielter
Punkt-Mutationen auf die Bindungspräferenzen der Adenylierungsdomänen
vorherzusagen.

Die in dieser Arbeit eingeführten Methoden sind nutzbar für die Vorher-
sage der Spezifitäten bzw. der funktionellen Subtypen anderer Enzyme unter
bestimmten Voraussetzungen, insbesondere genügend hoher Sequenzähnlich-
keit zwischen den verschiedenen Gruppen, so dass über multiple Sequenz-
Alignments homologe Positionen ermittelt werden können.



Abstract

Nonribosomal peptides (NRPs) and polyketides (PKs) are a diverse group of
natural products comprising molecules with antibiotic, antitumoral, anti-in-
flammatory, immunosuppressing, metal chelating and other interesting pro-
perties. The steady demand for novel drugs and the increasing number of
uncharacterized protein sequences issued from genome projects call for better
methods to automatically detect novel NRP synthetases (NRPSs) and PK
synthases (PKSs) in the protein databases, and to predict the composition
of their products efficiently.

Besides the search for novel biologically active molecules, research also
tries to obtain tailored products by the rational manipulation of known
NRPS/PKS biosynthesis clusters. This strategy will become more efficient,
as we are better able to predict positions to be mutated or segments to be
recombined in these enzymes.

In this thesis, we develop and establish methods that are helpful for both
strategies: predicting new and manipulating known products.

To detect NRPSs and PKSs efficiently in protein sequences, we use a
search strategy with profile Hidden Markov Models (pHHMs) that requires
the simultaneous occurrence of certain enzymatic domains specific for these
enzymes.

We present a new machine learning (Support Vector Machine)-based
strategy to predict which building blocks (mainly amino acids) are selected
for incorporation by so-called Adenylation (A) domains in NRPSs. Thus,
it becomes possible to infer the composition of the synthesized product.
This new method is implemented in the program NRPSpredictor and is
freely accessible via www-ab.informatik.uni-tuebingen.de/software →
NRPSpredictor.

The NRPS Condensation (C) domains catalyze the bond formation be-
tween the amino acids (that were previously selected by the A domains)
and may produce different product geometries according to their functional
variant (subtype). In a comprehensive evolutionary study of these subtypes,
we reveal characteristic sequence motifs and positions in which the unequal
variants differ. We make available some pHHMs, which facilitate the au-
tomated prediction of the functional C domain subtypes. The determined
subtype-specific positions will be helpful for the directed mutagenesis to turn
one subtype into another with the goal of obtaining novel products.

Moreover, we explore possibilities of structural bioinformatics using molec-
ular modeling and docking simulations to predict the specificity of A domains.
These simulations also allow for the study of directed point-mutations in

http://www-ab.informatik.uni-tuebingen.de/software/NRPSpredictor
http://www-ab.informatik.uni-tuebingen.de/software/NRPSpredictor
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these domains.
The methods introduced in this work are applicable to predicting the

specificities of functional subtypes of other enzymes under certain conditions;
in particular, a sufficiently high sequence similarity between the different
groups is required to be able to determine homologous positions via a multiple
sequence alignment.
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Chapter 1

Introduction and Motivation

1.1 History of Antibiotics

The first antimicrobial drug, Salvarsan, was invented by the German-Jewish
physician Paul Ehrlich in 1910. Although it is active only against a narrow
range of germs, it could be used to combat a number of diseases like the
then wide-spread syphilis, and represented a large step forwards for medicine
[Parascandola, 2002].

In 1935, the German Gerhard Domagk invented Prontosil a member of
the sulfonamide drug family, widely known as sulfa drugs, which are competi-
tive inhibitors of the folate synthesis in bacteria, making them the first broad
spectrum antibiotics [Parascandola, 2002]. In combination with Trimetho-
prim, a dihydrofolate reductase inhibitor, sulfonamides are still used today,
e.g. under the name Cotrimoxazole.

In 1929, the Scot Alexander Fleming discovered the bactericidal action
of a filamentous mold, Penicillium chrysogenum, contaminating his bacteria
cultures. Fleming named the active functional substance penicillin. After
impressive results on infected animals and later human subjects, and with
the beginn of World War II, penicillin was soon produced on a large scale,
with the US leading the way [Parascandola, 2002].

The discovery of the β-lactam antibiotic penicillin was the herald for the
“golden age” of natural product discovery from the 1940s to the 1950s [Clardy
et al., 2006] when many bio-active substances were discovered, including
the following antibiotics and their respective classes: tetracycline (a polyke-
tide), chloramphenicol (a phenylpropanoid), streptomycin (an aminoglyco-
side), erythromycin (a macrolid), vancomycin (a glycopeptide), ciprofloxacin
(a synthetic quinolone, thus not a natural product) and pristinamycin (a
streptogramin) [von Nussbaum et al., 2006].

In the second half of the 20th century, the need for new antibiotics has
been mainly met by semi-synthetic or totally synthetic improvement of these
natural product lead structures, and the research activity of pharmaceutical
companies in the discovery of new natural products declined [von Nussbaum
et al., 2006].



2 Introduction and Motivation

1.2 Decreasing Effectiveness of Antibiotics

Because each application of antibiotics inevitably selects for resistant bac-
teria, insensitive strains become more and more of a problem, especially if
pathogenic germs acquire multiple resistances against several antibiotics that
can normally be used for their prevention.

The much celebrated benefits of antibiotics in the last century often led
to their too overhasty prescription – it is not rare that antibiotics are ad-
ministered “prophylactically” [many sources, e.g. Malhotra-Kumar et al.,
2007].

Many studies show that about three out of four patients get a prescription
for antibiotics when they consult a physician with a common cold (cough,
coryza, hoarseness), although it is known that these symptoms are mostly due
to a viral infection. Thereby, many physicians want to protect the virally
weakened body against an additional bacterial infection. However, for a
long time, such prophylactical therapy has been proven to be inadequate
[Malhotra-Kumar et al., 2007]. In their recent study, Malhotra-Kumar et al.
[2007] have shown a direct correlation of administration of antibiotics and
the emergence of resistant bacteria in human.

Fortunately, it is coming into public awareness that antibiotics should
be taken with caution. In France, for example, the state health insurance
[Assurance Maladie, 2007] started a campaign in the media to sensitize people
to the prudent use of antibiotics.

Another important reason why more and more resistant bacteria emerge
is that certain antibiotics have been used as growth promoters in animal feeds
in subtherapeutic levels since the 1950s [Zimmerman, 1986]. It is estimated
that the amount of antibiotics used for animals is at least as large or even ten
times larger than the amount used for human therapy [Wegener et al., 1999;
Roberts, 2002], with the largest amount being used as growth promoters.

In the struggle of emerging resistance, some antibiotics like vancomycin
[McCormick et al., discovered 1956] were regarded as last-resort antibiotics
as they were efficient against already resistant pathogens like methicillin re-
sistant Staphylococcus aureus strains (MRSA) that make up already approx-
imately 40% or more of clinical S. aureus isolates in industrial countries
[Appelbaum, 2006].

However, the first pathogen, Enterococcus faecium, resistant to vanco-
mycin appeared in 1986 [Johnson et al., 1990], and an MRSA strain with
reduced sensitivity to vancomycin appeared in 1996 [Hiramatsu et al., 1997];
six years later, in 2002, the first vancomycin resistant MRSA was discov-
ered [Centers for Disease Control and Prevention (CDC), 2002; Chang et al.,
2003], carrying the vanHAX resistance gene naturally present in vancomycin
producers.

The appearance of vancomycin resistant MRSA has been anticipated, as
the conjugation of the resistance genes from enterococci to S. aureus had been
demonstrated in the laboratory [Noble et al., 1992]. A possible and likely
route of these resistance genes to human pathogens is the transmission of
resistant prokaryotes from production animals via the food chain to humans.

Indeed, avoparcin (Fig 1.1), a structural analog of vancomycin, has been
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Figure 1.1: Chemical structures of the glycopeptide antibiotics avoparcin and
vancomycin. Avoparcin had been used for more than two decades in many industrial
countries as a growth promoter in animal husbandry, ignoring that it is structurally so
similar to vancomycin that bacterial resistance to one of the two confers resistance to
the other [Witte, 1998]. As animal commensal bacteria were steadily exposed to low
concentrations of avoparcin and this drug had been found to be contaminated with
genomic DNA of the avoparcin producer (Amycolatopsis coloradensis NRRL 3218) that
was highly similar to the vanHAX gene cluster which confers vancomycin resistance, it
is likely that resistance genes were spread through the food chain to human pathogens
[Lu et al., 2004, image source: idem].
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used in many countries (except in the USA and Canada because of possible
carcinogenic effects [McDonald et al., 1997]) as a growth promoter in animal
husbandry (it was licensed in the European Community 1975 and banned in
all EU countries 1997, Donnelly et al. [1996]). Resistance to one of the two
glycopeptides confers resistance to the other [Witte, 1998]. The consumption
of avoparcin per year for use in animals was in the order of 100 to 1000 times
higher than that of vancomycin for human use (numbers refer to Denmark
and Australia, respectively [Witte, 1998]). Lu et al. [2004] report that they
found substantial amounts of DNA of the avoparcin producer Amycolatopsis
coloradensis NRPL 3218 in the drug carrying a homolog of the vanHAX
cluster, which confers resistance to vancomycin.

Given the competence for DNA uptake of many gastro-intestinal bacte-
ria [Lorenz and Wackernagel, 1994; Bertolla and Simonet, 1999] and that
continuous sublethal concentrations of antibiotics favor the development of
resistance [Grassi et al., 1980], it seems likely that intestinal bacteria have
‘just’ acquired resistance from the drug thought to inhibit their growth.

Although the USA, the EU and most industrial countries have now pro-
hibited the use of antibiotics as growth promoters since 2005/2006 [Paul Ehr-
lich Society, 2006], emerging countries like China and Chile have not yet done
so and are facing problems due to rising resistance in human pathogens,
notably due to the use of quinolones amongst other antibiotics in animal
husbandry [Cabello, 2006].

Motivated by these rising problems and recent studies which demonstrate
that the usage of antibacterial growth promoters virtually brings no net eco-
nomic gain [Collignon, 2004; Graham et al., 2007] (not counting increased
costs in the health sector), the remaining countries will hopefully ban an-
tibacterial growth promoters in the near future.

1.3 The Need for New Antibiotics

Because antibiotics have been used extensively for more than half a century
in human and animal therapy, and as animal growth promoters, a drastic
decline in the efficiency of many established antibiotics due to development
of resistance in bacteria is the consequence. Additionally, the number of new
antibiotics introduced on the market has become dramatically low. Both
trends necessarily require reinforced efforts to discover and/or develop new
antibiotics.

1.4 Possible Strategies for Discovering New

Antibiotical Drugs

Since the genome sequence of Haemophilus influenzae was published in 1995
[Fleischmann et al., 1995], the number of sequencing projects has grown
exponentially. The Genomes OnLine Database (GOLD) [Liolios et al., 2006]
currently lists 438 finished and 1089 ongoing bacterial sequencing projects,
and 37 finished and 59 ongoing archaeal sequencing projects (as of March
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13, 2007). The number of metagenome sequencing projects is 2 finished
and 73 ongoing. The genomes of virtually all severe human pathogens have
been sequenced, and the sequence information of multiple strains or related
subspecies of already sequenced pathogens (often with varying virulence)
already does or will help to understand pathogenicity better with the help
of comparative genomics.

The classic empirical approach that was applied in the “golden age” of
natural product discovery started with the empirical observation of bacterial
growth inhibition by colonies of microbes from environmental samples, fol-
lowed by the exclusion of cytotoxic compounds in eukaryotic counterscreens,
then the determination of the antibacterial spectrum, and determination of
the mode of action in the pathogen and the eukaryotic cell [Freiberg and
Brötz-Oesterhelt, 2005].

With the sequence information and annotation of bacterial model organ-
isms and pathogens, complemented by the growing genome annotation of
mammalian genomes including the human genome, this classical empirical
approach could be complemented by a rational, target-directed antibacterial
drug discovery strategy in the 1990s [Freiberg and Brötz-Oesterhelt, 2005].
Central to this approach is the belief that bacterial genomes harbor a vari-
ety of hitherto unexploited targets with the potential for being potent and
selective antibiotics against a broad spectrum of bacterial pathogens [Payne
et al., 2004; Allsop and Illingworth, 2002; McDevitt et al., 2002; Schmid,
2001]. Potential targets for new antibiotics are gene products that are con-
served and essential in a broad number of pathogens but lack a close homolog
in humans.

Unfortunately, despite significant efforts, only few genomics-derived com-
pounds are currently in clinical development or in later preclinical stages.
The reasons why many target-based screening approaches have failed to pro-
duce good lead structures are diverse (see Freiberg and Brötz-Oesterhelt
[2005] and references therein). Important problems are, according to Freiberg
and Brötz-Oesterhelt: 1. high-throughput screening (HTS) of chemical li-
braries on purified enzymes that represent potential targets yielded hits that
often lacked cell penetration; 2. most compounds in large synthetic libraries
were often too hydrophobic or too simple in structure to provide a good
starting point for antibiotics; and 3. target “screenability”, according to
HTS criteria, was sometimes more important than target quality.

At the same time, recent technology advances have led to a renaissance
in the discovery of naturally produced antibiotics from microbial sources
[Clardy et al., 2006].

In reinforced efforts, new antibiotics are being looked for in new sources
(for example, actinomycetales, from which more than two-thirds of known
secondary metabolites with antibacterial activity are derived [Challis and
Hopwood, 2003], cyanobacteria and uncultured bacteria) and old sources (for
example, streptomycetes, accounting for 70-80 % of the secondary metabo-
lites produced by actinomycetes [Challis and Hopwood, 2003]).

The renewed discovery of natural antibiotics has two main motivations
(quoting Clardy et al. [2006]):

first, “as antibiotics often reach their targets by transport rather than
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diffusion, antibiotic candidates benefit from having structural features rarely
found in the synthetic libraries of ‘drug-like’ molecules used in most high-
throughput screening facilities”; and

second, “the well-established ability to discover useful antibiotics from
natural sources suggests that continued efforts are likely to be fruitful”.

Clardy et al. [2006] review several authors that have made estimations on
the frequency of antibiotics in actinomycetes. Although 25% of the strains in
a random soil sample are antibiotic producers, most of them produce known
antibiotics classes (with the streptotricin, streptomycin and tetracycline class
being the most abundant). Vancomycin and erythromycin would be redis-
covered once in 70 000 and 200 000 strains, respectively. According to Baltz
[2005], daptomycin (on the market since 2003) was found in one of 10 million
actinomycete cultures screened.

In addition, Baltz estimates that less than one part in 1012 of the earth’s
soil surface has been screened for actinomycetes.

To further exploit this dormant reservoir of antibiotics, it will be nec-
essary to screen 108-109 strains per year. Baltz points out that this will
require a combination of high-throughput screening by modern technologies,
selection against the most common antibiotics, methods to enrich rare and
slow-growing actinomycetes, a prodigious microbial collecting and culturing
effort, and combinatorial biosynthesis in streptomycetes (that is, manipulat-
ing the synthesis of antibiotics in their producer by genetic engineering).

Baltz [2006] reports that they have engineered an E. coli K12 strain
– carrying 15 antibiotic-resistance genes – that will facilitate the sensitivity
screening for novel antibiotics classes as none of the common broad spectrum
antibiotics produced by actinomycetes will affect it.

1.5 Motivation and Scope of This Thesis

Bioinformatics already plays an important role in the discovery of new an-
tibiotics and new drugs in general. Bioinformatics helps evaluating the huge
amount of data generated by high-throughput experiments, helps comparing
different entities of data (e.g. DNA or protein sequences) to determine their
degree of similarity, and allows for predictions and simulations based on the
principles and models that could be derived from the evaluation of the data
itself or by theoretical approaches.

The classical empirical approach to discover new antibiotics described
above is now complemented by bioinformatics in several ways.

As has already been mentioned before, the target-directed drug discovery
strategy where computational comparative genomics is used to find possible
drug targets and bioinformatics is employed to evaluate the data from high-
throughput experiments.

But the new ultrafast DNA sequencing techniques (for an overview, see
Kling [2003]) like pyrosequencing (reviewed by Ahmadian et al. [2006]) allow
for the sequencing of a bacterial genome in about four days instead of one
month using the Sanger method [Bonetta, 2006; Sanger et al., 1977], which
is about to revolutionize modern biology, including drug discovery. When
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a bacterial species, e.g. from an environmental sample, has been found to
produce an interesting drug, its genome sequence can be determined quickly,
opening the possibility for a bioinformatical analysis of the drug’s anabolic
pathway by the assignment (annotation) of putative functions to predicted
gene products, which will facilitate further molecular biotechnological ma-
nipulations.

Computational comparative genomics takes a huge advantage of the ac-
celerated speed in DNA sequencing as well.

By sequencing several strains of the same bacterial species that vary in
drug resistance and/or virulence, it will be possible to understand the un-
derlying molecular principles better. Sequencing strains that produce similar
secondary metabolites – but with slight structural differences – will accelerate
the elucidation of their anabolism.

The new DNA sequencing techniques also stimulate a new field, metage-
nomics, the study and exploitation of several genomes in parallel. All the
DNA extracted from environmental samples (e.g. soil, sea water, deep sea
vents) can be sequenced, analyzed for the presence of novel species [Venter
et al., 2004; Poinar et al., 2006] and, more importantly, in drug discovery,
for the presence of new enzymes with potentially new functions. For exam-
ple, Venter et al. [2004] identified 1.2 million previously unknown genes in 1
billion base pairs sequenced from samples collected from the Sargasso Sea.

The technologic progress in DNA sequencing techniques has not been
accompanied by comparable advances in the techniques available to experi-
mentally determine the function of a gene. This is why the gap between the
number of experimentally annotated and non-annotated sequences in the
databases is growing. With this growing gap, the need for accurate function
predictions of uncharacterized genes is growing steadily in order to reduce
the number of “wet” lab experiments needed.

Even if computational prediction can often not completely replace the
biological experiment, the number of hypotheses to be tested can be reduced
in many cases.

To predict the function or at least the functional class of an unknown
protein, the most successful strategy is to look for homologous annotated
sequences in the databases, and assume that the unknown protein putatively
carries out the same function. Two sequences are “homologous” if they share
a common evolutionary origin [Berg et al., 2002], which is usually implied by
a “sufficiently high” sequence similarity or sequence identity. As a rule-of-
thumb, 30% sequence identity within a protein sequence alignment of length
∼150 amino acids [Rost, 1999] is just still “sufficiently high” but below 30%
sequence identity, the so-called “twilight zone”, where two sequences might
share such similarity by chance without being related, starts.

Once the functional class of a protein has been determined (computation-
ally or biochemically), it is often important to know exactly which substrate
is processed and exactly what the product looks like.

In natural product research, compounds called polyketides (PKs) and
non-ribosomal peptides (NRPs) play an important role, as many of the drugs
applied today belong to this class of molecules. According to Borchardt
[1999], 1 compound of 5000 molecules of typical synthetic chemical libraries



8 Introduction and Motivation

will become a drug, compared to 1 in 100 polyketides. The more than 40
polyketide drugs - including antibiotics, immunosuppressants, cholesterol-
lowering agents, antifungals, and cancer chemotherapeutics - have a sales
volume of more than US$15 billion per year.

The enzymes that synthesize PKs and NRPs (which have a similar phar-
maceutical importance) are called polyketide synthases (PKSs) and non-
ribosomal peptide synthetases (NRPSs).

How NRPSs and PKSs can be identified automatically, given unannotated
protein sequences, and how to predict their putative products, especially
those synthesized by NRPSs, are the central questions for which existing
approaches are discussed and new approaches are introduced within this
doctoral thesis.

We provide new ideas, approaches, solutions and tools to predict the
composition and order of NRPs, and highlight possible methods of further
improvement. We discuss how these strategies could be applied to PKSs, and
generalized for the prediction of functional subtypes and substrate specifici-
ties of other enzymes.

We want to contribute to the efforts of finding and understanding the
synthesis of novel natural products which are highly valuable because of
their high potential to be active as drugs against various diseases.

The burning need for new antibiotics discussed above, together with the
rapid increase of non-annotated gene sequences in the databases stemming
from genome and metagenome projects that hold hidden “treasures” to be
discovered, is a great motivation for this work.

1.6 Overview on the Chapters of This Thesis

In Chapter 2, entitled Biological Background, we will discuss the architec-
ture and functioning of NRPSs, give more examples of their products and
compare them to the related PKSs. In Chapter 3, the Technical Background
of this thesis, the reader will learn more about the different approaches and
algorithms that are of fundamental importance for the whole dissertation.
Materials and methods relevant to individual chapters are presented directly
in their chapters in dedicated sections.

The subsequent chapters report on the most important results of this
thesis project. Chapter 4 reports on a new strategy to predict the kind and
the order of the building blocks (amino acids and the like) assembled by
NRPSs, and Chapter 5 is about how the building blocks are connected with
each other, including possible modifications they are subjected to at this
step.

Chapter 6 reports the prediction of the building block selection in NRPS
using structural bioinformatics approaches, and gives an outlook how this
strategy could be continued and improved.

Chapter 7 concludes with the new predictive methods presented and their
impact on other problems, followed by an outlook what bioinformatical chal-
lenges need to be solved in the NRPS and PKS field.



Chapter 2

Biological Background

2.1 Non-ribosomal Peptide Synthetases (NRPSs)

Non-ribosomal peptide synthetases (NRPSs) are large multimodular enzymes
that synthesize a wide range of biologically active natural peptide com-
pounds, of which many are pharmacologically important. A rich collection
of them are used as drugs like antibiotics (e.g. penicillin and vancomycin),
anti-tumorals and cytostatics (e.g. bleomycin), anti-inflamatorials and im-
munosuppressants (e.g. cyclosporin A), toxins (for example α-amanitin, the
toxin of the mushroom Amanita phalloides (death cap)), or siderophores
(iron chelators, e.g. yersiniabactin from Yersinia pestis). Scientifically, it
is a challenge to discover how these structurally complex macromolecules
are synthesized by the concerted interworking of the multi-domain proteins
NRPS and polyketide synthases (PKS) that synthesize a peptide or ketide
backbone with several other modifying and “decorating” enzymes (haloge-
nases, glycosyl transferases etc.).

NRPSs belong to the family of megasynthetases, which are among the
largest known enzymes with molecular weights of up to ∼ 2.3 MDa (∼ 21,000
residues) [Wiest et al., 2002]. They possess several modules, each of which
contains a set of enzymatic domains that, in their specificity, number, and
organization, determine the primary structure of the corresponding peptide
products. For recent reviews on NRPS, see, for example, Fischbach and
Walsh [2006], Sieber and Marahiel [2005], or Lautru and Challis [2004].

A complete module contains at least three enzymatic domains, one Con-
densation (C) domain, one Adenylation (A) domain, and one Thiolation (T)
domain (illustrated in Fig 2.1). By each module, one amino acid (or hydroxy
acid) is appended to the peptide which is being synthesized. The relatively
small T domain (8-10 kDa compared to 50 kDa of C and A domains) is post-
translationally modified at a highly conserved serine, to which a phosphopan-
tetheinyl (4’-PPant) group is attached by a phosphopantetheinyltransferase
(PPTase, see Fig. 2.2).

The A domains are specific for a certain amino acid which they activate
by adenylation (see Fig. 2.3 A). This unstable amino acid-adenylate is subse-
quently transferred to the downstream T domain onto its 4’-PPant cofactor,
why the T domain may also be called peptidyl carrier protein (PCP).
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Figure 2.1: A minimal NRPS. The three enzymatic domains for Condensation (C),
Adenylation (A), and Thiolation (T) form one complete minimal module. An NRPS
assembly line which synthesizes one non-ribosomal peptide usually consists of several
NRPS proteins. The first NRPS (usually) starts with an initiation module (A–T).
Adenylation domains specifically bind a certain amino acid, activate it with an ATP
forming an amino acyl adenylate and transfer it to a thiol group of the downstream T
domain (see Fig. 2.3 A). The C domain catalyzes the peptide bond formation between
the amino acid (or already synthesized peptide) which is tethered like on a pivot arm
to 4’PPant of the upstream T domain (donor) and the amino acid at the downstream
T domain (acceptor) (see Fig. 2.3 B; owing to its function, the T domain may also
be called peptidyl carrier protein, PCP). This process is repeated until the peptide is
passed onto the last T domain of an assembly line. Frequently, there are several NRPS
enzymes that act sequentially in concert to synthesize one NRP. The last domain is
usually a Thioesterase domain which cleaves the completed peptide off the last T
domain. The number of repeats (n) in one NRPS is frequently below or around 10.
The longest known NRPS synthesizes the 18 amino acid peptaibol peptide antibiotic in
the fungus Trichoderma virens [Wiest et al., 2002]. The design of this representation
is derived from Schracke [2005] with kind permission.

Figure 2.2: Posttranslational modification of T domains by phosphopantethe-
inyltransferases (PPTases) [Lambalot et al., 1996]. Enzymes of this class catalyze
the transfer of phosphopantetheine from coenzyme A to a conserved serine in the T
domain. Reprinted with kind permission from Fischbach and Walsh, c©2006 American
Chemical Society.
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The T domain changes conformations [Koglin et al., 2006] to “shuttle”
the amino acid tethered to the 4’-PPant arm from the A domain to the next
upstream (and then the next downstream) C domain, where the condensa-
tion reaction is catalyzed between one amino acid (or peptide) bound to the
(upstream) donor T domain (T1 in Fig. 2.3 B) and one amino acid bound
to the (downstream) acceptor T domain (T2 in Fig. 2.3 B), onto which the
elongated product is transfered. The growing peptide is thus handed over by
the T domains from one module to the next.

When the synthesized peptide arrives at the last T domain, it is cleaved
off and released by a Thioesterase (TE) domain at the C-terminus of the
NRPS (see Fig. 2.4). As in PKSs, TE domains in NRPS can be hydrolytic
or cyclizing [Keating et al., 2001; Kohli and Walsh, 2003], liberating a linear
or cyclic product [Samel et al., 2006].

In a few known NRPSs, the C-terminal TE domain is substituted by a
Reductase (RE) domain, as occurs in safracin biosynthesis [Velasco et al.,
2005], which catalyzes concomitant aldehyde formation and chain release.

Figure 2.3: Chemical reactions catalyzed by the A and C domains. (A) The
A domain catalyzes the adenylation of the amino acid to be incorporated and its
subsequent acylation to the downstream T domain. (B) The C domain catalyzes C-N
bond formation between the electrophilic upstream peptidyl-S-T1 and the nucleophilic
downstream aminoacyl-S-T2. Reprinted with kind permission from Fischbach and
Walsh, c©2006 American Chemical Society.
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Typically, several NRPSs are involved in the synthesis of one NRP. Nor-
mally, the first module (called the initiation module) in the NRPS assembly
line is a two-domain A–T module. In some cases, the first module has a three-
domain C–A–T organization where the so-called Starter C domain acylates
the first amino acid with a β-hydroxy-carboxylic acid (see Chap. 5 for de-
tails). More optional domains are shown in Fig. 2.5: The C domain can
be preceeded by an Epimerization (E) domain, which changes the stereo-
configuration of the amino acid bound to the upstream T domain. The C
domain right after the E domain must thus be able to catalyze the peptide
bond formation of a D-amino acid with an L-amino acid. Such C domains
are called DCL domains as opposed to the more frequent LCL domains. Al-
ternatively, a so-called Dual E/C domain can perform the same reactions as
an E domain with a subsequent DCL domain. Heterocyclization domains can
replace ordinary C domains, and catalyze the condensation reaction and a
subsequent cyclization of amino acids (cysteine, serine or threonine) with an
amide-nitrogen of the peptide “backbone”, resulting in oxazolines (e.g. in
vibriobactin) and thiazolines (e.g. in bacitracin); these can be further ox-
idized or reduced by Oxidoreductase domains [Du et al., 2000; Sieber and
Marahiel, 2005]. N-Methylation domains, which are typically found to be
integrated in A domains between their A8 and A9 motif, transfer a methyl
group on the amino group of the amino acid that is about to be integrated
[Patel and Walsh, 2001]. Furthermore, halogenation or hydroxylation may
be mediated by specialized free-standing enzymes [Vaillancourt et al., 2005].

Occasionally, dehydration is performed on serines, resulting in dehy-
droalanine [Tillett et al., 2000]. Further modifications – glycosylation or
phosphorylation – are usually performed by so-called “decorating” enzymes,
usually clustered in proximity to the NRPS genes on the chromosome [Sieber
and Marahiel, 2005].

Although the multi-domain proteins NRPS and PKS are also found in
fungal and plant genomes, most of the known sequences stem from bacte-
ria. The bacterial order Actinomycetales is known for the wealth of sec-
ondary metabolites produced by its members and comprises, among others,
the Streptomyces species and mycobacteria. The majority of all currently
known antibiotics and other therapeutic compounds are derived from strep-
tomycetes [Brédy, 2005]. Many members of corynebacteria and mycobacteria
are human pathogens which produce toxins as secondary metabolites. The
structural and functional diversity of non-ribosomal peptides and their in-
creased insensitivity to peptidases, incontrast to ribosomally synthesized pep-
tides, arises from the incorporation of unusual amino acids (both proteino-
genic and non-proteinogenic amino acids (e.g. ornithine), including D-amino
acids) and the diverse modifications of the building blocks either directly by
the NRPS assembly line or in the postprocessing by specialized enzymes (as
detailed above).
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2.2 Classification of NRPSs

NRPS can be classified according to their domain and module composition
with respect to their product composition. Three types (A, B and C) can
be differentiated: Linear NRPSs (type A), iterative NRPSs (type B) and
non-linear NRPSs (type C) [Mootz et al., 2002b].

Most of the NRPSs that have been characterized biochemically to date be-
long to type A, e.g. surfactin, bacitracin, vancomycin and daptomycin. Here,
the number of modules equals the number of amino acids in the products.
Such NRPSs are typically composed according to the scheme A–T–(C–A–
T)n−1–TE as portrayed in Fig. 2.1 and resemble a linear assembly line that
produces a product NRP of length n. Modifying domains may appear in any
of the modules.

Prominent examples for type B NRPS are gramicidin S and enniatin, or
the siderophores bacillibactin and enterobactin. In these iterative NRPSs,
different domains or whole modules are used repeatedly. For example, at
the gramicidin S synthesis, five modules are passed twice during the product
synthesis, whereas the first pentapeptide stays fixed to the TE domain until
the second round of synthesis is completed. Then the TE domain connects
the first pentapeptide to the second one in a head-to-tail manner to form a
cyclic homodimer [Schracke, 2005].

To date, type A and B are not distinguishable from each other based on
their primary structure (peptide sequence and domain order) alone [Schracke,
2005].

The third type (C) includes all those NRPSs that cannot be classified
into type A or B because of an unusual domain and/or module structure.
Syringomycin, bleomycin or the siderophores yersiniabactin and vibriobactin
are examples of type C.

2.3 Comparison of NRPSs to Polyketide Syn-

thases (PKSs)

PKSs and NRPSs share the same general logic. In PKS assembly lines,
the monomers are acyl-CoA thioesters (e.g., acetyl-CoA, malonyl-CoA, me-
thylmalonyl-CoA), which are primary metabolites in the microbial producer
cells. In analogy to the three core domains of a minimal NRPS module (C–
A–T), there are three core domains in a minimal PKS module that carry
out specific monomer recognition and binding (by the Acyltransferase (AT)
domain) and elongation (by the Ketosynthase (KS) domain) of the growing
polyketide chain which is tethered to a T domain: AT–T–(KS–AT–T)n−1–TE
is hence the prototype of the simplest PKS.

An important difference is that the monomers (acyl-CoA thioesters) are
already available in an activated form thus the task of the AT domain is only
to bind the acyl-CoA thioester specifically and mediate its transthiolation to
the 4’PPant arm of the T domain. Note that ACP (acyl carrier protein) is
synonymous with PKS T domains, as PCP is for NRPS T domains.
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Whereas NRPS elongations involve C–N bond formation as an amide
(peptide) link is forged in each condensation step, PKS elongations form
C–C bonds via Claisen condensations [Fischbach and Walsh, 2006].

There are three types (I, II and III) of PKSs, but only the first two types
correspond to each other directly; the third types are particular. The type
III PKS subgroup is distinguished from types I and II by the direct use of
malonyl-CoA rather than via malonyl-S-pantetheinyl-T. We refer to Austin
and Noel’s review [2003] on type III PKSs for details.

Like NRPS systems, several optional modifying domains are frequently
found in PKS assembly lines. Three additional catalytic domains – invariably
present in type I and II Fatty Acid Synthases (FASs) but optional in type
I and II PKSs – are Ketoreductase (KR), Dehydratase (DH) and Enoylre-
ductase (ER) domains. Exactly like in FASs, they operate sequentially: KR
→ DH → ER. The KR domain first reduces the β-ketoacyl-S -T which re-
sults from the KS-mediated condensation, then the DH domain dehydrates
to α, β-enoyl-S -T, and in the final step, the ER domain reduces the conju-
gated olefin to the saturated acyl-S -T. In this manner, these three enzymatic
groups catalyze the complete reduction of the keto group (>=O) via an al-
cohol group (>–OH) and a conjugated double bound to the alkyl (>). In
fatty acid synthesis, these three steps result in an elongation by a CH2–CH2

unit. But in PKS assembly lines, the last reduction step (ER), the second
and the last (DH → ER), or all three may be missing, therefore the com-
binatorial number of possible products increases dramatically (four possible
oxidation states for each integrated monomer). Additionally, a broad selec-
tion of PK starter units (incorporated by the first AT domain), modifying
PKS domains, the possibility of PKS-NRPS hybrid assembly lines and sev-
eral post-assembly-line tailoring enzymes increase the “space” of chemical
molecules that can/could be produced by these megasynthases. For a re-
cent review on the logic, machinery, and mechanisms of PKS and NRPS, see
Fischbach and Walsh [2006].



Chapter 3

Technical Background

This chapter describes the general concepts, methods and materials of great
importance for this whole thesis. The projects presented in Chapters 4, 5
and 6 have own Materials and Methods Sections that report on the material
and methods relevant only to the specific topic of each chapter.

The following section (3.1) on optimization theory is necessary for the
complete understanding of Support Vector Machines (SVMs) described in
Section 3.2. Readers who only want to get the basic notions of SVMs might
directly skip to Section 3.2, have a look at Figures 3.3 and 3.4, and read the
summary of SVMs in Section 3.2.8 on page 36.

3.1 Optimization Theory

In this section, we will introduce Lagrange multipliers and Karush-Kuhn-
Tucker (KKT) conditions (Section 3.1.2) which will be used to construct
the optimal separating hyperplane of Support Vector Machines presented
in Section 3.2. KKT conditions and Lagrange multipliers are important
concepts in constrained optimization problems of differentiable functions,
which will be discussed in Section 3.1.2.

3.1.1 Unconstrained Optimization

First, we want to outline a simple unconstrained case: Suppose we are given
a (differentiable) function f(x1, . . . , xn) : IRn → IR where we want to find its
extremum (its maximum or minimum). Given a definition domain D(f), a
point x̄ ∈ D(f) ⊆ IRn is called a (global) minimum of f on D(f) if f(x̄) ≤
f(x) ∀x ∈ D(f) and is called a (global) maximum of f on D(f) if f(x̄) ≥
f(x) ∀x ∈ D(f). If this is true only for a neighborhood U ⊆ D(f) around
x̄, the point x̄ is called a local minimum or a local maximum, respectively.
A necessary condition for an extremum point x̄ is that the gradient ∇f(x̄)
is zero, or, equivalently, each of the partial derivatives is zero. The problem
min

x∈D(f)
f(x) is called an unconstrained optimization problem. The function f

is called the objective function. A point x̄ ∈ D(f) with ∇f(x̄) = 0 is also
called a stationary point of f . A property of a stationary point x̄ is that
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the tangent plane of f is horizontal at x̄ (in IR2 and analogous in higher
dimensions). This implies that besides the possibility of being a local or a
global minimum or maximum, such a point may also be a saddle point (that
is, an inflection point with a horizontal tangent). An important property of
extrema (as opposed to saddle points) is that the curvature is not zero at
such points. If f is globally convex, which means that the curvature does
not change its sign for all x ∈ IRn, then the Hessian matrix (square matrix
of second partial derivatives of f) is positive semi-definite for all x (and vice
versa), which implies that there is a global minimum at x̄. Analogously, the
same is true for a global maximum of globally concave functions for which
the Hessian matrix H(x) is always negative semi-definite. If the Hessian
matrix H(x̄) is positive definite (or negative definite) only in a neighborhood
around x̄, then we cannot decide whether x̄ is a global or local minimum (or
maximum if H(x̄) is negative definite). If H(x̄) is indefinite then there is
a saddle point at x̄. In practice, however, it is often easier to calculate the
function values around x̄ to decide whether there is a minimum, maximum
or saddle point than to compute the definiteness of the Hessian matrix.

3.1.2 Constrained Optimization

As in the unconstrained case, there is the function f(x) to minimize (by
multiplying the function by −1, we can turn all minima into maxima and
vice versa). We are only interested in a restricted set of points in IRn that
satisfy a given set of side conditions called constraints.
The problem

minf(x)

under the constraints:

g1(x) ≤ 0
...

gm(x) ≤ 0

h1(x) = 0
...

hp(x) = 0

x ∈ IRn

is called a constrained optimization problem. The set of all vectors x that
satisfy all constraints is called the feasible region.

Theorem 3.1 Necessary optimality conditions for constrained prob-
lems (Karush-Kuhn-Tucker conditions)
Suppose the following five conditions are fulfilled:

1. The functions
f(x), g1(x) ≤ 0, . . . , gm(x) ≤ 0, h1(x) = 0, . . . , hp(x) = 0 : IRn → IR
are given.
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2. The point x̄ ∈ IRn is a local minimum of f on the feasible region M :=
{x ∈ IRn | g1(x) ≤ 0, . . . , gm(x) ≤ 0, h1(x) = 0, . . . , hp(x) = 0}.

3. The functions f, g1, . . . , gm are differentiable at x̄ and the functions
h1, . . . , hp are continuously differentiable at x̄.

4. The system of vectors ∇h1(x̄), . . . ,∇hp(x̄) is linearly independent.

5. There exists a vector y ∈ IRn with ∇gi(x̄)T · y < 0 ∀i ∈ I(x̄) and
∇hi(x̄)T ·y = 0 ∀i ∈ {1, . . . , p}, with I(x̄) := {i ∈ 1, . . . ,m|gi(x̄) = 0}.

Then there exist multipliers αi ≥ 0 (i ∈ I(x̄)) and β1, . . . , βp ∈ IR with

∇f(x̄) +
∑

i∈I(x̄)

αi∇gi(x̄) +

p∑
i=1

βi∇hi(x̄) = ~0.

The necessary optimality conditions 1-5 in Theorem 3.1 are called the
Karush-Kuhn-Tucker conditions (KKT condition, a result obtained indepen-
dently by W. Karush [1939], F. John [1948], and by H.W. Kuhn and J.W.
Tucker [1951]; see Fiacco and McCormick [1987]). If there are only equality
restrictions, then the optimality condition is also called the Lagrange mul-
tipliers rule. The coefficients αi (i ∈ I(x̄)), βi, . . . , βp are called Lagrange
multipliers. The function

L (x, α, β) = f(x) +
∑

i∈I(x̄)

αigi(x) +

p∑
i=1

βihi(x)

is called the (generalized) Lagrangian Function.

Theorem 3.2 Sufficient optimality condition for constrained prob-
lems (Karush-Kuhn-Tucker theory):
Suppose we are given the objective function f with the constraining func-
tions specified in Theorem 3.1 with the additional requirement that f is
convex and the constraints g1, . . . , gm, h1, . . . , hp are affine-linear. Necessary
and sufficient conditions for x̄ to be an optimum are the existence of α, β
such that

∂

∂x
L (x̄, α, β) = 0;

∂

∂β
L (x̄, α, β) = 0;

αigi(x̄) = 0 ∀i ∈ I(x̄);

gi(x̄) ≤ 0 ∀i ∈ I(x̄);

αi ≥ 0 ∀i ∈ I(x̄);

hi(x̄) = 0 ∀i ∈ 1, . . . , p;

βi ∈ IR ∀i ∈ 1, . . . , p;

with I(x̄) := {i ∈ 1, . . . ,m|gi(x̄) = 0}.

Proof: See [Fletcher, 1987, p. 218]. �
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Active Constraints

The concept of an active constraint is important in the context of Lagrangian
& KKT theory and also relevant for the Support Vector Machine theory. A
constraint gi is called active at x if gi(x) = 0. Consequently, any constraint
is active at x if x is at the boundary of its feasible region. This implies that
equality constraints are always active. Active constraints at the optimal
solution x̄ are of particular interest. If the set of active constraints at x̄
A (x̄) = {gi | gi(x̄) = 0} is known, then the remaining (inactive) constraints
can be ignored locally.

Example of an Optimization Problem with One Equality Con-
straint

In the two-dimensional case, it is often possible to solve constrained problems
graphically. The following example will help us to better understand the
idea of the Lagrangian theory. Let us take a function f(x, y) that we want
to maximize, as well as the constraint g(x, y)− c = 0 with a given constant
c. We can draw a contour plot of f as depicted in Fig 3.1. A contour line
or level curve of a function indicates where the function has a certain value,
like the contour lines on a topographical map indicating the altitude.

The point set defined by g(x, y) − c = 0 is depicted as a green curve in
Fig 3.1 and visualizes the feasible region of the given constraint optimization
problem, which actually means that our constraint optimum must lie on g’s
contour line g(x, y) = c.

Let us assume that Fig 3.1 depicts a topographical map that shows the
contour lines of a hill f(x, y) and the course of a tunnel which runs at constant
height 0 = g(x, y) − c. The constrained problem is thus to find where the
hill has its highest elevation over the tunnel, which is not necessarily its
summit (the global maximum). Assuming we follow the tunnel (green curve,
g(x, y)−c = 0) on the (2-dimensional) map, we will cross many contour lines
of f . Recall that the gradient (∇) of a function is a vector that points towards
the steepest ascent of the function and lies in the plane of the input values
of the function (in this case, the x-y plane in which our map lies). We will
continue walking along g = c as long as we still advance in the direction of the
gradient (in other words, the direction vector of our walk can be decomposed
into a positive non-zero component collinear to the gradient at the point in
which we cross f ’s contour line and one component vertical to it). The hill
has its highest elevation at the point where g = c touches a contour line of
f tangentially. This point is the maximum of the constrained optimization
problem. Geometrically, we can interpret this tangent condition by saying
that the gradients of f and g − c are parallel vectors at the constrained
maximum. We introduce a scalar β and obtain ∇f(x̄) + β∇g = ~0, which
corresponds to the multipliers rule.



3.2 Support Vector Machines 21

Figure 3.1: The concentric dashed ellipses (in blue) are contour lines (level curves) of
the function f(x, y) marking function values (“altitudes”) of d1 and d2, respectively.
The green curve corresponds to the feasible region of the constrained optimization
problem given by the contour line of function g (g(x, y) = c). The solution must be
a point for which g(x, y) = c is satisfied and f(x, y) is maximal, which is the case
at the point where the gradients (depicted as arrows) on the contour lines of both
functions are collinear. At this point, the level curves g(x, y) = c and f(x, y) = d2

touch tangentially. Image source: Wikipedia [2007].

3.2 Support Vector Machines

Support Vector Machines (SVMs) find their application in Chapter 4 on the
specificity prediction of Adenylation domains in NRPS. Here, we introduce
their principle theory.

Basically, SVMs are binary classifiers, which means that they can be used
as a decision function that will return “yes” or “no” for a given input data
point.
Vapnik and colleagues [Vapnik and Lerner, 1963; Vapnik and Chervonenkis,
1964] laid the foundations of SVMs in the 1960s by defining the optimal hy-
perplane algorithm (discussed in Section 3.2.4) for optimally separable data.
In the 1990s, SVMs received growing scientific interest after a publication by
Boser, Guyon and Vapnik [1992] on SVMs with kernels (see Section 3.2.5)
and by Cortes and Vapnik [1995] on SVMs that can handle errors in the data
sets (presented in Section 3.2.4) which turned SVMs into a very powerful and
flexible tool for the classification of real-world data.

In the subsequent years, SVMs have been applied to a growing num-
ber of problems, including (but not limited to) particle identification, ob-
ject recognition, text categorization (e.g. spam filters), hand-written char-
acter recognition, image classification, voice recognition and face detection.
Soon SVMs were also applied very broadly in the field of bioinformatics to
pattern recognition problems, including protein remote homology detection,
microarray gene expression analysis, recognition of translation start sites,
functional classification of promoter regions, prediction of protein-protein in-
teractions, and peptide identification from mass spectrometry data [Noble,
2004]. This success is due to the excellent performance of SVMs compared to
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other machine-learning algorithms. Their importance is still growing as they
are being improved and adapted to new fields; to give one cutting-edge exam-
ple, gene prediction with all predictive steps based on SVMs (see publications
by Gunnar Rätsch [2007, www.fml.mpg.de/raetsch]).

The goal of this section is to introduce the theory of SVMs to a readership
not familiar with machine-learning. Because it is still a relatively young field,
the amount of introductory and didactically well prepared literature is still
very limited. Research papers developing or applying SVMs usually refer to
previous literature which is often mathematically abstract. The two books
by Vladimir Vapnik (The Nature of Statistical Learning Theory [1995] and
Statistical Learning Theory [1998]), which are often given as references for
SVMs, present a general high-level introduction to statistical inference in-
cluding SVMs. Chris Burges [1998] published a tutorial on SVMs, and Cris-
tianini and Shawe-Taylor [2000] authored a book, An Introduction to Support
Vector Machines ; these are recommended reading. Furthermore, Schölkopf
et al. [2004] edited a book on Kernel Methods in Computational Biology
which is especially interesting in the context of this thesis in bioinformatics.
All these books and tutorials convey a very good overview over the SVM the-
ory to the reader but either they lack mathematical details in optimization
theory and kernel techniques (like Burges [1998]), or the basic ideas of SVMs
are explained only after one hundred pages or more [Vapnik, 1998; Cristian-
ini and Shawe-Taylor, 2000]. For me, the lecture by Markowetz [2003] was a
great help in my initial understanding of the idea of SVMs. Markowetz also
introduced SVMs in his impressive Master’s thesis [Markowetz, 2001] which
is very well written and recommended reading.

In the following section, SVMs are introduced in a similar way as done by
Markowetz [2001], Cristianini and Shawe-Taylor [2000] and Burges [1998] but
with an effort to be as comprehensible as possible. For example, intermediate
steps are explicitely written if they facilitate understanding.

3.2.1 Learning from Examples

A Support Vector Machine (SVM) is a function that assigns each input value
to a positive or negative class ; we also say it assigns a positive or negative
label. A typical example would be the classification of text, e.g. the decision
whether an email is spam or not. Here each email is encoded in one (high-
dimensional binary) vector where each component represents the presence
(e.g. +1) or absence (e.g. −1) of a certain word or word root in the email.
To obtain a well adapted SVM, it has to be trained on data points whose
labels are known, the so-called training data; in our example, this would be
emails that have been sorted into spam and non-spam by a knowledgeable
person, also called the expert or the supervisor in the context of machine
learning. We can represent the training data as a set

X = {(x1, y1), . . . , (xn, yn) : xi ∈ IRd, yi ∈ {−1, +1}},

where xi are the data points and yi their label, which can be either −1 or
+1. The decision function fX : IRd → {−1, +1} maps the input vectors xi

to the negative or positive class.

www.fml.mpg.de/raetsch
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3.2.2 Generalization Ability: Performance on the Test
Data

We want the SVM to generalize from the training examples to the whole
range of observations (as well as possible). The quality of an SVM will be
measured on how well it can classify new data that did not belong to the
training set. Ideally, these test data should represent the complete diversity.
This ability to achieve a small error rate (also called a small loss) on test
data is termed generalization ability. The goal in learning theory is thus
to maximize the generalization ability of the classifier, or, equivalently, to
minimize the so-called risk functional (for more details on risk minimization,
see Vapnik [1995, p. 72]).

3.2.3 Capacity: Performance on the Training Data

The capacity describes the ability of the machine to learn a given training set
without error and measures the richness or flexibility of the function class.
Chris Burges gives a nice example to illustrate capacity and generalization
ability : “A machine with too much capacity is like a botanist with a photo-
graphic memory [i.e. very high capacity] who, when presented with a new
tree, concludes that it is not a tree because it has a different number of leaves
from anything she has seen before; a machine with too little capacity is like
the botanist’s lazy brother, who declares that if it’s green, it’s a tree. Nei-
ther can generalize well.” [Burges, 1998, p. 2]. The problem arising from too
much capacity is called overfitting, the other extreme is called underfitting
and is illustrated in Fig 3.2.

3.2.4 Linear SVMs

To separate data points in the IR2 into two classes, a simple and intuitive
way is to construct a separating straight line, and a separating plane in
IR3. In higher-dimensional space we talk about hyperplanes. A separating
hyperplane is defined by its normal vector w and its offset b (the distance
by which the plane is displaced from the origin of the co-ordinate system):

Hyperplane H = {x|〈w, x〉+ b = 0}

with w ∈ IRd, b ∈ IR and 〈·, ·〉 denoting the dot product or scalar product
(exchangeable expressions). If we construct the separating hyperplane so
that w points towards the positive points, the decision function

f(x) = sign(〈w, x〉+ b)

will return +1 for points lying on the positive side of the hyperplane and −1
for points on the negative side. Obviously, there are many possible ways to
place a hyperplane that will separate the two classes. Hence, we look for the
optimal separating hyperplane (OSH). A basic assumption of learning from
examples is that new data points are believed to lie close to or in-between the
known training data. Therefore, the OSH should allow small deviations in
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?? ?

a) Too simple model,

underfitting

b) Too complex model,

overfitting

c) Trade-off

Figure 3.2: Illustration of overfitting and underfitting. Training data are shown in
the shape of two intertwining crescents (positive data points are red dots; negative
data points are blue squares). The yellow box with the question mark stands for a
data point with an unknown label. Intuitively, we would classify the new data point
within the red crescent. A very simple linear model (a) might correctly classify the new
data point but might have errors in the training data. The danger of a very complex
model (b) that quasi learns the training data by rote is that it will be too intolerant of
small acceptable deviations in the data; of the illustrated case (b), the model would
misclassify the new data point. Model (c) represents the desirable trade-off with a
good generalization that classifies the new data point correctly.

the data and be in the middle of the structures of the positive and negative
data clouds. Fig. 3.3 shows the optimal separating hyperplane, and a bad
separating hyperplane that would misclassify test examples even very close
to the training data.

When we look at Fig.3.3, the optimal separating hyperplane in (a) has a
large margin. The concept of maximal margin hyperplanes was introduced
by Vapnik and Lerner [1963], and Vapnik and Chervonenkis [1964] based
on the intuition that the larger the margin, the better the generalization
ability. In the following section, we will describe how optimal separating
hyperplanes (OSHs) can be constructed efficiently. First, we will consider
linear separable datasets and then show how these results can be generalized
to allow for errors on the training set.

Optimal Separating Hyperplanes for Linearly Separable Data

Definition 3.1 We call a training set X = {(x1, y1), . . . , (xn, yn) : xi ∈
IRd, yi ∈ {−1, +1}} separable by a hyperplane 〈w, x〉+ b = 0 if both a unit
vector w (‖w‖ = 1) and a constant b exists so that the following inequalities
are fulfilled (in which case we talk about a separating hyperplane):

〈w, xi〉+ b > 0 if yi = +1 (3.1)

〈w, xi〉+ b < 0 if yi = −1 (3.2)
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Figure 3.3: Optimal (a) and bad (b) separating hyperplane. The optimal separating
hyperplane in (a) clearly separates the data much better than hyperplane (b). The
margin in (b) is almost zero compared to the large margin in (a).

Definition 3.2 Recall that the distance of a point xi to the hyperplane
H = {x|〈w, x〉+ b = 0} is:

dxi
(w, b) = yi(〈w, xi〉+ b)

The margin γS(w, b) of a set of vectors S is defined as the minimum distance
from H to the vectors in S:

γS(w, b) = min
xi∈S

dxi
(w, b)

Formulating the Optimization Problem to Find the OSH
Given the training set X , we thus want to find the separating hyperplane that
maximizes the margin, the so-called optimal separating hyperplane (OSH) or
maximal margin hyperplane. According to this, we need to find the unit
vector w and the constant b that maximize the margin of the training set
γX (w, b):

maximize γX (w, b) (3.3)

subject to γX (w, b) > 0

‖w‖2 = 1

It is algorithmically difficult to solve the optimization problem in 3.3
because the constraints are non-linear and the objective function is non-linear
and non-quadratic. Therefore, an equivalent formulation of the problem
is needed; to construct it, we will take advantage of the scalability of the
parameters of the hyperplane equation: The equations 〈w, x〉 + b = 0 and
〈cw, x〉 + cb = 0 (with c 6= 0 and c ∈ IR) describe the same hyperplane. It
can be shown that the OSH itself is unique [Vapnik, 1998, p. 402] but using
a scaling factor c, we obtain an infinite number of equivalent representations
of the same OSH.

With γ being the size of the margin (positive values for the margin to-
wards the positive data points, negative values towards the negative data
points), consider the following:
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(〈w, xi〉+ b) ≥ γ ∀i ∈ I+ = {i | yi = +1} (3.4)

(〈w, xj〉+ b) ≤ −γ ∀j ∈ I− = {j | yj = −1}.

With a scaling factor c, this can be transformed to:

c(〈w, xi〉+ b) ≥ cγ ∀i ∈ I+ (3.5)

c(〈w, xj〉+ b) ≤ −cγ ∀j ∈ I−

We substitute with w∗ := cw, b∗ := cb, scale aptly to obtain cγ = 1 ⇐⇒
c = 1

γ
= ‖w∗‖ and also use the y-values of the data points (that are +1 or

−1 according to the class). Thus we obtain:

yi(〈w∗, xi〉+ b∗) ≥ 1 ∀i = 1, . . . , n. (3.6)

If we scale back to the plane description using the unit vector w = w∗

‖w∗‖

yi(〈
w∗

‖w∗‖
, xi〉+ b) ≥ 1

‖w∗‖ ∀i = 1, . . . , n,

we can see that data points that have exactly the distance of the margin
to the hyperplane have the distance 1

‖w∗‖ . Consequently, our optimization

problem is to maximize 1
‖w∗‖ , or equivalently to minimize ‖w∗‖, which is in

turn equivalent to minimizing ‖w∗‖2. For cosmetic reasons, we will minimize
1
2
‖w∗‖2, which will not change the solution:

minimize 1
2
‖w∗‖2 (3.7)

subject to 1− yi(〈w∗, xi〉+ b∗) ≤ 0 i = 1, . . . , n.

This is a quadratic optimization problem with linear constraints. As de-
scribed in Section 3.1.2 on constrained optimization, the Lagrange method
can be used to solve such problems. The problem is convex as the objec-
tive function is convex and the constraints describe a convex feasible region.
Therefore, we may introduce Lagrange multipliers αi ≥ 0 and combine the
optimization problem in a Lagrangian function L (w∗, b∗, α):

L (w∗, b∗, α) =
1

2
‖w∗‖2 +

n∑
i=1

αi[1− yi(〈w∗, xi〉+ b∗)].

We need to calculate the derivatives of L (w∗, b∗, α) with respect to w∗,
b∗ and α:

From
∂

∂b∗
L (w∗, b∗, α) = 0 we obtain:

n∑
i=1

αiyi = 0. (3.8)

From
∂

∂w∗L (w∗, b∗, α) = 0 we obtain: w∗ =
n∑

i=1

αiyixi. (3.9)
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If we substitute 3.8 and 3.9 into the Lagrangian L , it can be transformed as
follows and we obtain the so-called dual problem:

L =
1

2
‖w‖2 +

n∑
i=1

αi[1− yi(〈w∗, xi〉+ b∗)] (3.10)

=
1

2

( n∑
i=1

αiyixi

)( n∑
j=1

αjyjxj

)
+

n∑
i=1

αi −
n∑

i=1

αib
∗yi

+
n∑

i=1

[(
αiyixi

)( n∑
j=1

αjyjxj

)]
=

1

2

n∑
i,j=1

αiαjyiyj〈xi, xj〉+
n∑

i=1

αi −
n∑

i,j=1

αiαjyiyj〈xi, xj〉

=
n∑

i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈xi, xj〉. (3.11)

The optimization problem can thus be formulated:
Find multipliers which

maximize L (α) =
∑n

i=1 αi − 1
2

∑n
i,j=1 αiαjyiyj〈xi, xj〉 (3.12)

subject to αi ≥ 0 i = 1, . . . , n, (3.13)∑n
i=1 αiyi = 0. (3.14)

To solve the dual problem, let us first look at the addends that the double
sum will add up: α1α1y1y1〈x1, x1〉 · · · α1αny1yn〈x1, xn〉

...
. . .

...
αnα1yny1〈xn, x1〉 · · · αnαnynyn〈xn, xn〉


To get the extremum of the dual problem (3.12), we have to substitute

one αi in 3.12, e.g. α1, using the equality condition 3.14. In the next step,
the partial derivatives ∂

∂αi
for each αi have to be determined which will lead

to a system of n equations with quadratic terms for each αi. This quadratic
program (QP) can be solved efficiently with algorithms called “QP solvers”.

Once we have found the coefficients α∗
i that solve the dual problem, we

obtain the w∗ of the OSH with the maximal margin:

w∗ =
n∑

i=1

α∗
i yixi. (3.15)

The value of b∗ did not appear in the dual problem but can be derived from
the constraints 3.6 of the initial optimization problem:

b∗ = −
maxyi=−1

(
〈w∗, xi〉

)
+ minyi=1

(
〈w∗, xi〉

)
2

(3.16)
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Support Vectors
At this point, we have all necessary parameters to write down the decision
function needed to predict the classification of a new data point xnew:

f(xnew) = sign(〈w∗, xnew〉+ b∗) (3.17)

= sign
( n∑

i=1

αiyi〈xi, xnew〉+ b∗
)
. (3.18)

The optimal solution satisfies the KKT conditions of Theorem 3.2 on page 19:

α∗
i [yi(〈w∗, xi〉+ b∗)− 1] = 0 ∀i.

This equation implies that for a given data point xi, either the corresponding
αi must be zero or the term in squared brackets, which is exactly zero if the
point xi lies “on the margin”, on the so-called margin hyperplane (i.e. has
distance 1

‖w∗‖ to the OSH). Those data points are called Support Vectors.
They alone determine the position and orientation of the hyperplane; the
influence of the other points is zero. Only the support vectors have αi 6= 0.
One could even move the other points around (without crossing the margin
hyperplanes) and recalculate the hyperplane and would obtain the identical
one with the same points as support vectors. Note that some points might
lie on the margin hyperplane but these will not be support vectors because
both αi and yi(〈w∗, xi) + b∗)− 1 equal zero.

Optimal Separating Hyperplanes for Linearly Non-separable Data

The strategy of finding the optimal separating hyperplane will fail on most
real world data. This can have two possible reasons:

1. In principle, the data would be linearly separable but some noise in the
data makes it impossible to find one OSH without errors.

2. The data can not be classified by a hyperplane, as a (more complex)
curved hypersurface is necessary (non-linear separable data).

Let us look at the first case first; the second will be discussed in Sec-
tion 3.2.5 (Non-linear SVMs). The major shortcoming of the OSH is that
it does not allow for classification errors. To overcome this problem, the
constraints 3.6 must be relaxed. We will introduce the positive slack vari-
ables ξi (i = 1, . . . , n) in the constraints to penalize suboptimal and mis-
classifications:

yi(〈w, xi〉+ b)− 1 + ξi ≥ 0 ∀i = 1, . . . , n. (3.19)

The slack variables ξi measures the distance of a point that lies on the wrong
side of its margin hyperplane. We can differentiate three different cases:

ξi ≥ 1 ⇐⇒ the point lies beyond the OSH and is thus
misclassified (yi(〈w, xi〉+ b) < 0);

0 < ξi < 1 ⇐⇒ xi is classified correctly,
but lies inside the margin;

ξi = 0 ⇐⇒ xi is classified correctly,
and lies outside on or outside the margin boundary.
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Because the value for ξi of a single data point expresses its classification
error,

∑n
i=1 ξi is an upper bound of the total training error. The optimization

problem is now different because we want to maximize the margin and mini-
mize the total training error at the same time. The optimization problem of
the linear separable case (3.7) is reformulated accordingly:

minimize 1
2
‖w∗‖2 + C

∑n
i=1 ξk

i k ∈ IN (3.20)

subject to 1− yi(〈w∗, xi〉+ b∗)− ξi ≤ 0 i = 1, . . . , l.

ξi ≥ 0 i = 1, . . . , n.

The parameter C is the error weight which penalizes suboptimal and mis-
classifications. To find the optimal C, one needs to vary its value across a
wide range and determine the classification quality by cross-validation. Again
we choose to introduce Lagrange multipliers to reformulate this optimization
problem. This is possible as the problem is convex for any positive integer
k, and for k = 1 and k = 2, it is also a quadratic programming problem.
Because this approach accepts errors, it is often called the Soft Margin Gen-
eralization of the OSH as opposed to the Hard Margin OSH where no errors
were tolerated.

1-Norm Soft Margin
For k = 1, we obtain the following Lagrangian for this optimization problem:

L (w, b, ξ, α, β) =
1

2
‖w‖2+C

n∑
i=1

ξi+
n∑

i=1

αi[1−yi(〈w, xi〉+b)−ξi]−
n∑

i=1

βiξi

with αi ≥ 0 and βi ≥ 0. The Lagrange multipliers βi ensure ξi ≥ 0. If we
differentiate with respect to w, ξ and β, we obtain:

∂L (w, b, ξ, α, β)

∂w
= w −

∑n
i=1 αiyixi = 0

∂L (w, b, ξ, α, β)

∂b
=

∑n
i=1 αiyi = 0

∂L (w, b, ξ, α, β)

∂ξ
= C − αi − βi = 0

If we substitute these relations back into the objective function, we get:

maximize L (α) =
n∑

i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈xi, xj〉, (3.21)

subject to 0 ≤ αi ≤ C, 0 ≤ βi ≤ C, C − αi − βi = 0,
n∑

i=1

αiyi = 0, i = 1, . . . , n.

Note that the only difference from the corresponding optimization prob-
lem of the linear separable case (3.12) at page 27 is that αi and βi are
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upper-bounded by C. Taking βi = αi − C into account, we can write the
KKT conditions as follows:

αi[yi(〈w, xi〉+ b)− 1 + ξi] = 0 ∀i.
ξi(αi − C) = 0 ∀i.

From these two conditions, we can conclude that non-zero (=active) slack
variables can only be obtained for αi = C. Points xi with αi = C have a
distance less than 1

‖w‖ ,
1−ξi

‖w‖ to be precise, from the hyperplane. Points with
ξi 6= 0, thus 0 < αi < C lie on one of the two margin hyperplanes. Note that
by setting C to infinity we can describe the hard margin with the formulae
used for the soft margin.

Now we have described the 1-Norm Soft Margin, the 2-Norm Soft Margin
for the case k = 2 in the optimization problem 3.20 can be solved accordingly
and results in an optimization problem which is very similar to 3.21 of the
1-Norm Soft Margin. For details, please refer to Markowetz [2001, p. 43] or
Cristianini and Shawe-Taylor [2000, p. 105].

3.2.5 Non-linear SVMs

Many real world data cannot be separated linearly in a reasonable way, not
even by using soft margins. In most cases, the process by which the data were
generated simply cannot be approximated by a linear function. A loophole
is to employ a function Φ, the feature map, which maps the data points xi of
the data space L to the feature space H where a linear separation is possible.

Φ : IRd → H
xi ∈ L → Φ(xi) ∈ H

The “ideal” feature space H, the one that allows for a linear separation
of the data, may often have a much higher dimension than the data space
L. (We employ the mnemonic L and H to remember the low and high
dimensionalities.) The feature space H must be a Hilbert space, which is
a vector space in which a dot product (scalar product) is defined and has
notions of distance and of angle (for a definition, see Levitan [2002]). Chris
Burges wrote the following on Hilbert space in his tutorial on SVMs:

“The literature on SVMs usually refers to the spaceH as a Hilbert
space . . . . You can think of a Hilbert space as a generalization of
Euclidean space that behaves in a gentlemanly fashion. Specifi-
cally, it is any linear space, with an inner product defined, which
is also complete with respect to the corresponding norm (that
is, any Cauchy sequence of points converges to a point in the
space). Some authors (e.g. Kolmogorov and Fomin [1970]) also
require that it be separable (that is, it must have a countable
subset whose closure is the space itself), and some (e.g. Hal-
mos [1967]) don’t. It is a generalization mainly because its inner
product can be any inner product, not just the scalar (“dot”)
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product used here (and in Euclidean spaces in general). It is in-
teresting that the older mathematical literature (e.g. Kolmogorov
and Fomin [1970]) also required that Hilbert spaces be infinite-
dimensional, and that mathematicians are quite happy defining
infinite-dimensional Euclidean spaces. Research on Hilbert spaces
centers on operators in those spaces, since the basic properties
have long since been worked out. Since some people understand-
ably blanch at the mention of Hilbert spaces, I decided to use the
term Euclidean throughout this tutorial” [Burges, 1998].

We used the optimization problem 3.12 to obtain the coefficients α∗
i , which

we will use to obtain the w∗ and b∗ of the OSH with the maximal margin
(3.15 and 3.16), and the decision function 3.18. These contain the training
points xi only in the form of dot products. This means that we will need
to compute dot products like 〈Φ(xp), Φ(xq)〉. This can be computationally
difficult or impossible if the dimension of H becomes too large (or infinite)
as the quadratic programs (to determine the αs) become complex.

We now consider a simple example.

Example: Given a training set X = (xi, yi) of points in IR2 with labels
+1 of −1, set X =

{ ((−1
1

)
, +1

)
,

((
0
1

)
,−1

)
,

((
1
1

)
, +1

) }
. As can be seen

from Fig. 3.4, the three points cannot be separated by a hyperplane (i.e. a
straight line) in IR2. We apply now the mapping

Φ : IR2 → IR3, xi = (xi1, xi2)
t 7→ (x2

i1,
√

2xi1xi2, x2
i2)

t.

(Note that the bold subscripts refer to vector components). Fig. 3.4 shows
the entire mapping of data in L defined on the square [−1, 1]× [−1, 1] ∈ IR2.
This figure also helps us to better imagine what this mapping Φ actually
does: The image of Φ may live in a space of very high dimension, but it
is just a (possibly very distorted) surface whose intrinsic dimension is just
that of L (“intrinsic dimension” means the number of parameters required
to specify a point on the manifold [Burges, 1998]).

The mapping of the three training points will yield ((1,−
√

2, 1)t, 1),
((0, 0, 1)t,−1) and ((1,

√
2, 1)t, 1), which are marked in Figure 3.4 as red

dots for the positive points and blue squares for the negative point.

The Lagrange multipliers can be determined as α = (1, 2, 1), from which
we can derive w∗ =

∑3
i=1[αiyiΦ(xi)] = (2, 0, 0)t and the unit vector w =

(1, 0, 0)t. With Equation 3.16, we obtain b = −0.5. The maximal margin
hyperplane in the feature space is thus a plane parallel to the x2 × x3 plane
at distance 0.5 in positive x1 direction (plane is not shown in Fig. 3.4 but its
position is indicated by the dashed intersection lines). We realize that the
learning task can be solved very easily in IR3.

But how does the corresponding decision surface look like in IR2? There
is no direct way to obtain the decision function in L from the one in H. Even
if we succeed in determining an inverse mapping function Φ′, the hyperplane
in H, like in our example, might contain points with no correspondence in L.
Instead of that, we presume that a given arbitrary point x from L that lies on
the decision boundary in L also has distance 0 from the decision boundary
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Figure 3.4: Graphical representation of the points enclosed in the green bordered

square [−1, 1] × [−1, 1] in IR2 and their mapping Φ : (x1, x2)t 7→ (x2
1,
√

2x1x2, x
2
2)

t

as a colored surface in IR3. An example of three points is illustrated: Two red dots(
1
1

)
and

(−1
1

)
and one blue square

(
0
1

)
which are inseparable in IR2. When mapped to

the feature space H in IR3, the three points become separable by a hyperplane whose
position is indicated by the dashed intersection lines. The dotted lines indicate the
decision boundaries in IR2 that can be derived from the optimal separating hyperplane
in IR3 (for more details refer to the text).

in H when mapped to the feature space H.

〈w, Φ(x)〉+ b = 0
n∑

i=1

(αiyi〈xi, Φ(x)〉) + b = 0

For the example we obtain:

3∑
i=1

(αiyi〈xi, Φ(x)〉)− 0.5 = 0

⇔ 1

2
(x2

1 − 2x1x2 + x2
2)− x2

2 +
1

2
(x2

1 + 2x1x2 + x2
2) = 0

⇔ x2
1 =

1

2

⇔ x1 = ±1

2

√
2

As we can see, the hyperplane in IR3 corresponds to two separating straight
lines in IR2, indicated as dotted lines in Fig. 3.4.

The Kernel Trick

As we can see in the last example and as we stated right before it, we always
encounter the mapping function in dot products like 〈Φ(xp), Φ(xq)〉. Depen-
ding on the chosen Φ, H might possibly be high- or even infinite-dimensional,
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so working with Φ directly and calculating dot products of mapped points
xi will be difficult. An important observation to overcome this problem will
be demonstrated in the following:
Consider the two points p = (p1, p2) and q = (q1, q2) and apply the mapping
Φ on p and q: (p1, p2) 7→ (p2

1,
√

2p1p2, p
2
2) and calculate the dot product

thereon:

〈Φ(p), Φ(q)〉 = (p2
1,
√

2p1p2, p
2
2)(q

2
1,
√

2q1q2, q
2
2)

t

= p2
1q

2
1 + 2 p1q1 p2q2 + p2

2q
2
2

= (p1q1 + p2q2)
2

= 〈p, q〉2 =: k(p, q)

We see in the end, that instead of calculating this particular mapping fol-
lowed by the dot product, we can equivalently calculate the dot product of
the original points and square it. Thus we can calculate the dot product
〈Φ(p), Φ(q)〉 without applying the function Φ. Such functions that are equiv-
alent to mapping followed by a dot product in H are called kernel functions,
typically denoted by k.

So why is the usage of a kernel function a trick?
Vert et al. [2004] proposes: “Any algorithm for vectorial data that can be
expressed only in terms of dot products between vectors can be performed
implicitly in the feature space associated with any kernel by replacing each
dot product by a kernel evaluation.” This means that we do not need to
know what the feature space H actually looks like; we only need the kernel
function, which returns us a measure of similarity. As we still could do
all computations directly in H, we always keep the possibility of a geometric
interpretation of SVMs – in our case – by the optimal separating hyperplane.
Thus SVMs are more transparent than e.g. artificial neural networks.

Data Representation – Relevance of Kernel Functions
Kernel functions help us to simplify the representation of data to be analyzed
with data analysis methods. Most data analysis methods that do not use
kernels, require that the data are somehow preprocessed and presented to the
algorithm in a processable format. This preprocessing step can be understood
as a mapping of the data; consequently, SVMs in a feature space share this
general characteristic.

For example, a data set S of, say, three particular oligonucleotides could
be represented in various ways, e.g. by the biomolecules’ molecular mass, pKi,
melting temperature, GC-content, predicted secondary structure, frequency
in genomes etc. But, let us assume that we choose a representation by a
set Φ(S) containing the three oligonucleotides represented by sequences of
letters that stand for the succession of their bases. This representation can
then be processed by an algorithm that, for example, compares the sequences’
pairwise similarity. (This example is discussed by Vert et al. [2004]).

Kernel methods solve the problem of data representation differently. In-
stead of representing each data point individually, the data are compared
pairwise and their set of pairwise similarities is represented. This means
that a real-valued “comparison function” k : L × L → IR is employed and
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the resulting n × n matrix K of pairwise comparisons Ki,j = K(xi, xj) will
represent the data set S.

Significance The development of kernel functions k that represent data
(by comparing them pairwise and returning a square matrix) and the develop-
ment of algorithms (= kernel methods) that process such data representations
can be pursued completely independently. This is a great advantage because
the same algorithms can be applied on image data, molecules or sequences,
once they have been processed with adequate kernel functions that all yield
real-valued square matices. Additionally, the complexity of an algorithm
that processes kernel matrices of n × n objects will always have to process
only n2 values independent of the number of measured values associated
with each object. Moreover, the comparison of two objects and calculation
of the corresponding square matrix often is an easier task than finding an
explicit representation for each object x as a vector Φ(x) ∈ IRp. For example,
there is no obvious way to represent nucleic acid sequences as vectors in a
biologically relevant way; however, meaningful and well-established pairwise
sequence comparison methods exist.

General Definition of Kernel Functions
What are the criteria that a function must fulfill to be a kernel function k?

Definition 3.3 A function k : L×L → IR is called a positive (semi-)definite
kernel if and only if it is

1. symmetric, that is, k(x, x′) = k(x′, x) for any two objects x, x′ ∈ L,
and

2. positive (semi-)definite, that is,

cT Kc =
n∑

i=1

n∑
j=1

cicjk(xi, xj) ≥ 0

with matrix K of all elements k(xi, xj), for any n > 0, any choice of n
objects x1, . . . , xn ∈ L, any choice of vectors c ∈ IRd, and any choice of
numbers c1, . . . , cn ∈ IR respectively [Vert et al., 2004].

An “ideal” kernel function assigns a higher similarity score to any pair
of objects that belong to the same class than it does to any pair of objects
from different classes. This is the case if the implicit mapping by the kernel
function brings similar objects close together and takes dissimilar objects
apart from each other in the induced feature space.

Examples of frequently used kernels
Frequently used kernel functions are [Vapnik, 1995; Müller et al., 2001;
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Schölkopf and Smola, 2002]:

Linear kernel k(xi, xj) = 〈xi, xj〉

Radial basis function (RBF) kernel k(xi, xj) = exp

(
−‖xi − xj‖2

2σ2
0

)
Polynomial kernel k(xi, xj) = (s〈xi, xj〉+ c)d

Sigmoid kernel k(xi, xj) = tanh(s〈xi, xj〉+ c)

Convex combinations of kernels k(xi, xj) = λ1k1(xi, xj) + λ2k2(xi, xj)

Normalization kernel k(xi, xj) =
k′(xi, xj)√

k′(xi, xi)k′(xj, xj)

where s, c, d and λi are kernel-specific parameters, σ2
0 = mean‖xi − xj‖2.

3.2.6 Transductive SVMs and their Relevance to Bio-
logical Datasets

SVMs are playing an increasingly important role in the field of computational
biology. For an in-depth overview of the current research and applications
to computational biology, see Schölkopf et al. [2003, 2004].

The classical SVMs presented in the preceding sections are “inductive”
SVMs. There, the training data that are used to build the model should
ideally cover the whole problem space; the model is then used to predict
the labeling of new data points. In most biological datasets, the number of
labeled data points is rather small, but a large number of unlabeled data
points (e.g. unannotated proteins) is available. To take advantage of these
additional unlabeled data, the so-called “transductive” SVMs (TSVMs) have
been developed [Vapnik, 1998; Joachims, 1999a]. To address the problem of
learning with unlabeled data (often called “semi-supervised” or “transduc-
tive learning problem”), TSVMs assume that the missing labels of the unla-
beled data points are consistent with their positions in the hyperspace in two
aspects: (i) nearby points and (ii) points on the same structure (typically
referred to as a cluster or a manifold) are likely to share the same label [Zhou
et al., 2004]; see Figure 3.5.

3.2.7 Performance Estimates of Learning Algorithms

To assess the accuracy of any classifying algorithm there are several statistics
on the number of true positive, false positive, true negative and false negative
predictions (TP, FP, TN, FN); see Baldi et al. [2000] for a review:

Error rate = err = (FP + FN)/(FP + FN + TP + TN)

Recall = sensitivity Sn = TP/(TP + FN)

Precision = specificity Sp = TP/(TP + FP )

Matthews correlation coefficient MCC =√
TP · TN − FN · FP

(TP + FN)(TP + FP )(TN + FN)(TN + FP )
.
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(a) Sparsely Labeled Data 

unlabeled point
labeled point   1
labeled point +1

(b) Ideal Classi�cation

Figure 3.5: Illustration of the usefulness of unlabeled data points (e.g. representing
unannotated protein sequences): If only the labeled data were used for model training,
the separating hyperplane would just be a straight vertical line, separating the two
labeled crescents poorly. But if one also takes the consistency of labeled and unlabeled
data into account – as do transductive SVMs – i.e. that nearby points are likely to
have the same label as points on the same structure (here two intertwining crescents),
then the classification can be greatly enhanced. (Example taken from Zhou et al.
[2004], a redrawing from Szummer and Jaakkola [2002]).

More precisely, the error rate gives the proportion of data points that are
classified incorrectly, the recall gives the proportion of truly positive data
points that are contained in the predicted positives, the precision specifies
the proportion of TP in all data points predicted as positive. Matthews’
correlation coefficient (MCC) uses all four numbers (TP, TN, FP and FN),
is symmetric with respect to FP and FN, and may often provide a much
more balanced evaluation of the prediction than the statistics given above
[Baldi et al., 2000].
Two similar tests are widely used for determinating the above parameters:
leave-one-out (LOO) tests and x-fold cross-validations (with x typically 3, 5,
or 10). In a LOO test, the predictive model is trained on a dataset that has
been reduced by one data point. The generated model is then used to give a
prediction for the removed data point. The whole procedure is repeated for
each single data point of the set. In a, say, 5-fold cross-validation, the dataset
is divided randomly into five parts; one fifth of the dataset is removed; the
model is trained on the rest, the so-called training data; and the prediction
is made for the fifth, the so-called test data; and the procedure is repeated
for every remaining fifth of the dataset.

3.2.8 Summary of Support Vector Machines

Let us briefly summarize the essential ideas of SVMs:
Assume that we are given a series of examples (e.g. measurement readings,
protein sequences etc.), each associated with a number d of features (either
numerical or binary values), then we can treat each example simply as a
d-dimensional vector in a d-dimensional space L. If we want to construct a
binary classification of the examples, i.e. label each d-dimensional data point
as “positive” or “negative”, a simple and intuitive way would be to construct
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a separating (hyper)plane which separates the positive and negative data
points. If the data are linearly separable, a separating hyperplane can be
found which leaves a maximal margin (a “clearance”) between the two classes
of data. The data points that are closest to the hyperplane are called support
vectors. Once we have determined these points that “support the plane”, we
can write down a decision function that will assign a label to any new data
point (+ or −).

If the data are not linearly separable then the kernel “trick” is used: Let
us assume we first mapped the data to some other (possibly higher dimen-
sional) space H, using a mapping Φ. We can then determine the separating
hyperplane in the hyperspace H. We should always try to use a mapping
function Φ that puts similar data points close to each other and allows for
a linear separation in the hyperspace. Solving the equations for the optimal
separating hyperplane in the hyperspace, we observe that all formulae only
depend on the data through dot products in H, i.e. on functions of the form
Φ(xi) · Φ(xj). This encourages us to introduce a kernel function k, such
that k(xi, xj) = Φ(xi) · Φ(xj), and use it as a similarity measure for xi and
xj without explicitely knowing Φ nor the dimension of H. As an overview,
Fig. 3.6 depicts in a nutshell how SVMs with kernel functions work.

A Support Vector Machine is:

1. a hyperplane with a maximal separating margin in the feature space,

2. constructed in the input space via a kernel function,

3. used as a decision function to classify data into two classes.

separating

hyperplane

Figure 3.6: A non-linear separation of vectors (data points) in the input space (original
space) is mediated by a kernel function. This is equivalent on a one-to-one basis to
a linear separation of the vectors in the feature space using the dot product. Image
source: Markowetz [2003].
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3.3 Sequence Analysis and Comparison

3.3.1 BLAST

The Basic Local Alignment Search Tool (BLAST, Altschul et al. [1997]) is an
algorithm for searching protein or nucleic acid sequences in a database that
are similar to a given query sequence. BLAST is probably the most widely
used program in bioinformatics. The most typical scenario where BLAST
can be used is in the study of an unknown protein or gene sequence, where it
is often very helpful to be able to find the most similar sequences. If the bio-
logical function of the best hit (the most similar sequence) is known, then it
can often be informative for the protein/gene of unknown function. However
it is necessary that the region of high similarity spans almost the entire length
of the target and query sequences. For example, proteins that share only one
or a few homologous domains might be involved in different processes and
perform different functions. Nevertheless, if the user is aware of that, the
BLAST results can also be helpful in this case. The major BLAST imple-
mentations are available from the NCBI [National Center for Biotechnology
Information, McGinnis and Madden, 2004] and from Washington University
in St. Louis [Gish, 2006] and include the following dedicated programs:

• blastn accepts a DNA query and searches it against a DNA database
(specified by the user).

• blastp accepts a protein query to be compared against a selectable
protein database.

• Position-specific iterated BLAST (PSI-BLAST) is a more recent BLAST
version; it is used for detecting distant relatives of a protein. In the first
phase, a profile (a PSSM, see next section) is derived from the align-
ment of the best hits in a normal blastp search. The protein database
is then queried using this profile. Normally, the profile will be more
general than the initial single query sequence and thus will return more
matching proteins. A new profile is then created from the hits found
and the process is repeated until convergence, when no more proteins
are included at each iteration. More information about profiles can be
found in the next section.

• blastx accepts a DNA query, translates it into all six reading frames
and searches the corresponding six amino acid sequences against the
protein database.

• tblastn searches a protein query against the DNA database which has
been previously translated into all six reading frames.

• tblastx is suited for a DNA query and a DNA database but translates
the query and the database into all six reading frames.

The translated BLAST versions are especially useful if one suspects a protein
coding sequence in the query and/or target database sequences, knowing that
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not all protein coding sequences have been correctly predicted and may be
absent in the protein databases.

Like many search algorithms, the BLAST algorithm also employs the
seed-and-extend paradigm to speed up searches. Given a query sequence of
length L, BLAST extracts all contained words of length w (there are L−w+1
such words in the query). For amino-acid sequences, the default is w = 3
(shown in Fig. 3.7) and 11 for nucleotide sequences. The list of words is
then expanded by all variations of each word (so-called neighborhood words)
that have a score greater than a threshold T using a scoring matrix such as
PAM250 [Dayhoff et al., 1978] or BLOSUM62 [Henikoff and Henikoff, 1992].
For typical parameter values, this results in about 50 words per residue of
the query sequence [Pertsemlidis and Fondon, 2001] (part (a) in Fig. 3.7).
Then, the high-scoring word list is compared to the sequence database and
exact matches are identified (part (b) in Fig. 3.7). Finally, for each word
match, the alignment is extended in both directions to generate alignments
that score higher than the score threshold S (part (c) in Fig. 3.7). Besides the
original publications on BLAST by Altschul et al. (1990; 1997), the tutorial
by Pertsemlidis and Fondon [2001] on the principles, workings, applications
and potential pitfalls of BLAST, and the book by Korf et al. [2003] are very
recommended reading.

3.3.2 Detecting and Searching for Motifs in Protein
Sequences

Position Specific Scoring Matrices (PSSMs)

A position specific scoring matrice (PSSM), also called a position weight
matrix (PWM) or a profile, is a commonly used representation of motifs
(patterns) in biological sequences. The concept of a sequence motif was first
introduced by Doolittle [1981], and Gribskov et al. [1987] introduced the
“profile”, the first description of a PSSM. Here we present PSSMs as they
are revised by Durbin et al. [1998]:

For protein sequences, a PSSM W is usually a 20 x l matrix, where l is
the length of the motif and the rows correspond to the twenty proteinogenic
amino acids. W can be generated from a set of aligned sequences without
gaps. A matrix entry wkj of W is calculated as the log-odds ratio of the
observed and expected frequencies of residue ak at position j in the motif
wkj = log

obsj(ak)

exp(ak)
where obsj(ak) is the frequency of residue k at position j in

the alignment and exp(ak) is set to 1
20

for all residues. This approach causes
difficulties as soon as some observed frequency is set to zero, because this
results in a matrix entry of minus infinity. Because of this, the PSSM is over-
fitted to the training data that was used to build the PSSM, since whenever
a certain residue is observed at a position where it did not occur in the
training dataset, the over-fitted PSSM returns minus infinity and therefore
makes it impossible to consider the subsequence an instance of the motif.
This situation can be avoided by introducing pseudo-counts which are added
to all observed frequencies. The simplest approach to this is the Laplace rule,
according to which the value 1 is added to all counts to avoid zero entries
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Figure 3.7: Illustration of the BLAST algorithm. (a) Given a query sequence
of length L, BLAST derives a list of contained words of length w, where w = 3
for amino acid sequences (shown) and 11 for nucleotide sequences. This word list
is then expanded to include all high-scoring matching words, keeping only those that
score more than the neighborhood word score threshold T when scored using a scoring
matrix such as PAM250 or BLOSUM62. For typical parameter values, this results in
about 50 words per residue of the query sequence. (b) The high-scoring word list is
compared to the sequence database and exact matches are identified. (c) For each
word match, the alignment is extended in both directions to generate alignments that
score higher than the score threshold S. Image source: Pertsemlidis and Fondon
[2001].
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[Durbin et al., 1998]. The motif can then be searched in a given sequence
by evaluating the score S =

∑l−1
j=0 wkj starting from each position in the

sequence between 0 and N − l, where N is the length of the sequence in
which the motif is looked for.

Profile Hidden Markov Models for Sequence Families

A common strategy for the identification of a specific type of domain is to
use profile Hidden Markov Models (pHMMs), which are statistical models
extracted from multiple sequence alignments. In contrast to simple sequence
motifs of fixed length, i.e. PSSMs (described in the previous paragraph),
pHMMs are suited for identifying motifs that are interrupted by segments
of variable length, and are used to characterize position-specific sequence
similarities within a family of proteins. A collection of pHMMs for a wide
array of domains and domain families is availabe from the database Pfam
[Bateman et al., 2004] and TIGRFAMs [Haft et al., 2003]. The pHMM
implementation HMMER [Durbin et al., 1998, hmmer.janelia.org] and self-
written Perl and BioPerl scripts [www.perl.org; Stajich et al., 2002] were
used to search for NRPS in the genome sequences and biosynthesis clusters,
and to extract single domains from a given protein sequence.

Besides HMMER, SAM [Karplus et al., 1998; Karchin and Hughey, 1998]
and Meta-MEME [Grundy et al., 1997] are also popular implementations of
profile HMMs.

A concise introduction and tutorials to pHMMs can be found in the book
by Durbin et al. [1998], on the SAM website [www.soe.ucsc.edu/research/
compbio/sam.html] or on the author’s professional web site linked at en.

wikipedia.org/wiki/Christian_Rausch.

3.4 Phylogenetic Reconstruction

Phylogeny (or phylogenesis) is the origin and evolution of a set of taxa,
usually a set of species. Phylogenetics is the science that has the goal of
reconstructing the phylogeny of the species etc. under study. Phylogenetic
approaches are applied in Chapter 5 where the evolutionary relationship of
the Condensation domains of NRPS is reconstructed.

There are two principally different approaches for phylogenetic recon-
struction, distance and character based reconstruction:

• Distance based methods first compute all pairwise distances for a given
set of biological data (e.g. molecular sequences) and then compute a
tree that represents these distances as closely as possible.

• Unlike distance based methods, which “condense” all sequence informa-
tion into a single number (the pairwise distance), the character based
methods attempt to infer the phylogeny based on all the individual
characters (nucleotides, amino acids, or 1/0 for the presence or absence
of phenotypic characteristics).

hmmer.janelia.org
www.perl.org
www.soe.ucsc.edu/research/compbio/sam.html
www.soe.ucsc.edu/research/compbio/sam.html
en.wikipedia.org/wiki/Christian_Rausch
en.wikipedia.org/wiki/Christian_Rausch
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Both types of methods require an alignment of the sequences for which the
phylogeny is to be reconstructed so that the corresponding positions are
standing in the same column. The two main approaches that belong to the
character based methods are maximum parsimony and maximum likelihood.
In maximum parsimony based methods, we search for the best tree topol-
ogy that minimizes the number of substitutions needed to explain the sites
(alignment positions) of considered sequences. Maximum likelihood methods
are probabilistic methods of inference. They use explicit models of molecular
evolution and allow for rigorous statistical inference. However, like maximum
parsimony methods, they are very computer intensive.

3.4.1 Character Based Methods

Maximum Parsimony

The maximum parsimony method in phylogenetic reconstruction follows a
principle that is often applied in scientific model building: The simplest
model that can explain all observations is mostly better than more complex
models, as long as no further findings require the formulation of a new model.
The most parsimonious tree is hence the one that explains the evolution
of a set of aligned sequences by a minimal number of character changes
(mutation events) in the sequences, originating from a common ancestor with
mutations at each branching point of the tree. To determine the parsimony
of a given tree, the different aligned sequences are assigned to the leaves
of the tree. Then the so-called Small Parsimony Problem is to find how
to label the interior nodes of a given tree and to calculate a scoring of the
whole tree which will allow to compare the parsimony of different trees.
Whereas the Small Parsimony Problem can be solved efficiently using the
Fitch algorithm [Fitch, 1971], the problem of actually finding the tree with
the lowest parsimony score for a given alignment of sequences is NP-hard. To
solve this problem, the so-called Large Parsimony Problem, one would need
to consider all (2n−5)!! = 3 ·5 ·7 · . . . · (2n−5) possible (unrooted) trees that
all represent different relationships between n species (taxa). (Note that the
double factorial grows very rapidly, e.g. for n = 10 taxa, ≈ 2 · 106 exist and
for n = 15 taxa, ≈ 7.9 · 1012 unrooted trees exist). The techniques applied
to solve the Large Parsimony Problem are thus mostly heuristic algorithms
which are not guaranteed to find the optimal solution. However, the branch
and bound strategy can be applied to reduce computational costs for the
calculation of the optimal solution. The idea behind branch and bound is to
avoid calculating all possible trees. The tree is built up stepwise, successively
adding leaf edges to the tree while each leaf represents a sequence. Keeping
in mind that a new tree with one additional leaf edge can never have a lower
parsimony score, and that one can agree on a maximal global parsimony
score and ignore trees that one would obtain by adding more leaf edges. The
maximal global parsimony score can be obtained from a tree calculated using
a heuristic algorithm. For details on the application of branch and bound
to parsimony, refer to Hendy and Penny [1982]. For an introduction to
phylogenetic reconstruction using parsimony, see the lecture notes by Huson
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[2007] and for more details see the book by Felsenstein [2004].

Maximum Likelihood Estimation (MLE)

Like maximum parsimony, MLE requires that the sequences a1, . . . , an for
which the phylogeny has to be reconstructed are given as a multiple alignment
A. Moreover, a model of evolution M that assigns a certain probability to
each possible nucleotide (or amino acid) substitution, has to be chosen. The
goal of MLE methods in phylogenetic reconstruction is then to find a phylo-
genetic tree T with edge lengths ω that maximize the likelihood P(A | T, M)
of generating the sequences a1, . . . , an at the leaves of T . The chosen model
of evolution is essential to obtain the correct tree. A simplistic model for
protein sequences would be the Poisson model, which considers all changes
between amino acids to occur at the same rate. However, programs imple-
menting phylogenetic reconstruction using MLE use more advanced models,
like an instantaneous rate matrix that is derived from an updated Dayhoff
empirical substitution matrix [Dayhoff et al., 1978], called the JTT model
of evolution [Jones et al., 1992]. As is the case for the maximum parsimony
score of a single given tree (the Small Parsimony Problem), the likelihood of
being the optimum tree can also be computed efficiently using Felsenstein’s
recursive algorithm (1973) for MLE. As with maximum parsimony, to find
the optimal MLE tree, the entire tree space would have to be searched, which
is NP-hard. Again, branch and bound techniques can be used to find an ex-
act solution with a lowered computational burden. However, for larger taxa
sets (n > 20) heuristic search techniques have to be used. For a digest on
models of evolution and MLE, see Huson [2007] or for more details, consult
Durbin et al. [1998, Chap. 8] or Felsenstein [2004].

3.4.2 Distance Based Methods

As stated above, the first step of distance based methods is to calculate all
pairwise distances which are stored in the distance matrix. From the mul-
tiple sequence alignment of all sequences, the normalized Hamming distance
may be calculated for each sequence pair. This simply counts all mismatching
positions over all aligned positions (ignoring gap-only positions of pairs of se-
quences from the multiple alignment). To account for conservative substitu-
tions in protein sequences, it is possible to count substitutions by amino acids
with similar physico-chemical properties or amino acids with a positive score
according to a substitution matrix (for example BLOSUM62 constructed by
Henikoff and Henikoff [1992], the de facto standard for many protein align-
ment programs [Eddy, 2004]). Unless one is studying very closely related
sequences, the Hamming distances need to be corrected using, for example,
the Jukes-Cantor distance transformation [Jukes and Cantor, 1969] to ac-
count for several mutations that may have occurred at one site but would be
underestimated by the Hamming distance alone. More sophisticated models
of evolution than the Jukes-Cantor model exist. For example, more advanced
models of DNA evolution differentiate between transitions (purines can be
substituted by purines, and pyrimidines by pyrimidines) and transversions
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(a purine is substituted by a pyrimidine or vice versa). Popular algorithms
that reconstruct a tree from a given distance matrix are UPGMA [Sokal and
Michener, 1958] and Neighbor-Joining [Saitou and Nei, 1987]. For details
on distance based tree reconstruction methods, refer to Durbin et al. [1998,
Chap. 7] and/or Felsenstein [2004, Chap. 11]. As well, Huson [2007] provides
a concise presentation of the topic and its most important algorithms.

3.4.3 Modeling the Rate of Evolution at Different Sites

In some cases, the rate of amino acid substitution may be assumed to be the
same for all positions in the alignment. In general, however, this does not
reflect reality, since the substitution rate is usually higher at positions of lower
functional importance. A more realistic model is achieved if the substitution
rate is taken to vary among sites according to the gamma distribution [Gu
and Zhang, 1997].

The variation of substitution rate r among sites can be described as
f(r) = βα

Γ(α)
e−βrα−1 where the gamma function Γ(α) is defined by Γ(α) =∫ ∞

0
e−ttα−1dt. In the gamma distribution, β is a scaling factor. The shape of

the distribution is determined by the gamma parameter α. The larger α is,
the weaker the rate variation: for α = ∞, the rate is constant for all sites; for
α > 20, the distribution is bell-shaped, with most sites having intermediate
rates and few showing very high or low rates; for α = 1, the rate follows
the exponential distribution, indicating that it varies extensively from site
to site. If α < 1, the rate distribution is skewed to the right, which implies
that most variation comes from a few positions, while the other sites are
practically invariant because they show a substitution rate close to zero [Nai
and Kumar, 2000]. An appropriate α has to be estimated for each dataset.

Many methods of phylogenetic reconstruction offer an estimation of pa-
rameter α which determines the shape of the Γ distribution as an option.
Typically, four gamma-rate categories can be chosen to approximate the dis-
tribution.

3.4.4 Assessing Tree Topologies With Bootstrapping

Bootstrapping is a resampling technique where data points, columns of the
alignment in our case, are drawn from the dataset with replacement to form a
new dataset of the same size. As a prerequisite, the columns of the alignment
are assumed to evolve independently [Felsenstein, 2004]. This resampling is
done a pre-defined number of times and a phylogenetic reconstruction method
is applied to these multiple datasets.

In general, a topology is taken as reliable if tree reconstruction results in
the same topology for at least 95% of the datasets generated by bootstrap-
ping. This is a quite strict approach and it has been shown that subclades
of a tree may be accepted as being significant if they are supported by only
70% of the trees [Hillis and Bull, 1993].



Chapter 4

Specificity Prediction of
Adenylation Domains Using
Transductive SVMs

4.1 Overview

In this chapter, we present a new support vector machine (SVM)-based ap-
proach to predict the substrate specificity of subtypes of a given protein
sequence family (published 2005 [Rausch et al.]). We demonstrate the use-
fulness of this method on the example of aryl acid-activating and amino
acid-activating Adenylation domains (A domains) of nonribosomal peptide
synthetases (NRPS). The residues of gramicidin synthetase A that are 8 Å
around the substrate amino acid and the corresponding positions of other
Adenylation domain sequences with 397 known and unknown specificities
were extracted and used to encode this physico-chemical fingerprint into nor-
malized real-valued feature vectors based on the physico-chemical properties
of the amino acids. The SVM software package SVMlight was used for training
and classification, with transductive SVMs to take advantage of the infor-
mation inherent in unlabeled data. Specificities for very similar substrates
that frequently show cross-specificities were pooled to the so-called composite
specificities , and predictive models were built for them. The reliability of the
models was confirmed in cross-validations and in comparison with a currently
used sequence-comparison-based method. When comparing the predictions
for 1230 NRPS A domains that are currently detectable in UniProt, the
new method was able to give a specificity prediction in an additional 18%
of the cases compared with the old method. For 70% of the sequences, both
methods agreed; for < 6%, they did not, mainly on low-confidence predic-
tions by the existing method. None of the predictive methods could infer
any specificity for 2.4% of the sequences, suggesting completely new types
of specificity. The new prediction method is implemented on a freely-usable
webserver reachable at www-ab.informatik.uni-tuebingen.de/software/
NRPSpredictor.

http://www-ab.informatik.uni-tuebingen.de/software/NRPSpredictor
http://www-ab.informatik.uni-tuebingen.de/software/NRPSpredictor
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4.2 Motivation

The Adenylation domain (A domain) of NRPS specifically recognizes and
activates one amino acid (or hydroxy acid) that will subsequently be ap-
pended to the nascent peptide chain by other NRPS domains (see Chapter 2
for details). Based on the crystal structure of the phenylalanine activat-
ing A domain of the NRPS gramicidin synthetase A (GrsA), Conti et al.
[1997] determined ten residue positions that are crucial for substrate binding
and catalysis. These residues are within a radius of ∼ 5.5 Å around the
phenylalanine bound in the active site. The predictive method described by
Stachelhaus et al. [1999] and Challis et al. [2000] is based on the high struc-
tural conservation of the binding pocket with a root mean square deviation
(RMSD) of the Cα atoms of < 1 Å [di Vincenzo et al., 2005], reflected by
a relatively high mutual sequence similarity of 26% to 56% [Marahiel et al.,
1997] of NRPS A domains. Therefore, Stachelhaus et al. [1999] and Challis
et al. [2000] concluded that the ten decisive residues of GrsA will line up
with the corresponding positions of other A domains in a multiple sequence
alignment, and can be extracted to form a ‘specificity-confering code’. The
specificity of uncharacterized A domains can then be inferred based on the
‘code’ of domains with known specificity [Challis et al., 2000] or based on
consensus sequences for each specificity [Stachelhaus et al., 1999]. In this
chapter, we present a new method for predicting the specificity of A domains
by machine learning, using the physico-chemical fingerprint of the residues
lining the active site of the enzymatic domain (8 Å around the bound sub-
strate). The generality of the approach makes it applicable to the prediction
of functional subspecificities of other classes of enzymes which share a con-
served structure but catalyze different substrates (see the Conclusion at the
end of this chapter at page 58). We use a state-of-the-art technique for en-
coding of residues into feature vectors for machine learning based on the
physico-chemical properties of the amino acids, and use an up-to-date train-
ing dataset of A domains with known specificity that we have compiled from
the literature.

4.3 Materials and Methods

4.3.1 Acquisition of a Collection of A Domains with
Known Specificity

The HMMER package [Durbin et al., 1998, hmmer.janelia.org, see also
3.3.2 for an introduction] and self-written Perl scripts were used to search
for NRPSs in the protein databases UniProt/TrEMBL/Swiss-Prot [Apweiler
et al., 2004; Boeckmann et al., 2003], requiring the occurrence of a complete
NRPS module with at least one Condensation domain, one A domain (AMP-
binding) and one peptidyl carrier domain (Pfam [Bateman et al., 2004] ac-
cession numbers PF00668, PF00501, PF00550). The same software was also
used to extract the AMP domains from NRPS sequences to generate Profile
Hidden Markov Models (HMMs) of parts of domains and to extract certain

hmmer.janelia.org
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positions of subdomains that were aligned against HMMER profiles. The
programs ClustalW [Thompson et al., 1994], T-Coffee [Notredame et al.,
2000], and MUSCLE [Edgar, 2004a,b] were used for generating multiple se-
quence alignments that were then manually checked for good alignment of
core sequences, structural ‘anchors’ and putative constituents of binding
pockets. Specificity annotations of extracted A domains were either obtained
directly from the literature or by following references (PubMed links, gene
name, organism, authors etc.) given in database entries of proteins.

4.3.2 Extraction of Homologous Positions of A Do-
mains

The “Biochemical Algorithms Library” (BALL) [Kohlbacher and Lenhof,
2000] and a simple Python script were used to extract residues that have
at least one atom at a given distance from the bound phenylalanine in the
GrsA-Phe crystal structure (PDB ID 1AMU, [Conti et al., 1997]). In a multiple
alignment of different A domains with the protein sequence of GrsA-Phe,
the residue positions that lined up with certain residues in GrsA-Phe were
extracted; we ensured that all extracted residues lie in conserved, gap-free
segments to allow for a reliable inference of their structural and functional
relevance (see Figure 4.1 for illustration).

4.3.3 Processing the Collection of A domains for Ma-
chine Learning

Starting with the current set of A domain sequences with known specificity
(Section 4.3.1), the 34 residues at a distance of up to 8 Å from the bound
phenylalanine in GrsA were extracted and duplicate sequences were removed;
sequences with similar specificities (see Results and Discussion in this chap-
ter) were clustered to composite specificities . Clusters comprising fewer than
five sequences were discarded.

4.3.4 SVMs

For the classification of data, Transductive SVMs (TSVMs) were used (see
Section 3.2.6 for details). The performance of the generated models was
evaluated applying the statistics described in Section 3.2.7.

Initially, we evaluated our models for the different composite specificities
using both x-fold cross-validation (3-, 5-, and 10-fold, each repeated three
times with randomized splits) and LOO. Since both tests yielded extremely
similar results, here we report only on the results of the LOO, the most fine
grained form of cross-validation. A more thorough evaluation of the accu-
racy would require two levels of cross-validation (i.e. nested cross-validation)
[Markowetz and Spang, 2005]. However, as the models considered here are
relatively simple and do not allow for strong fitting of the data, using a
straight LOO test is sufficient for our purposes.
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Feature Representation Based on Physico-Chemical Properties of
Amino Acids

From each A domain, we extracted a signature of 34 amino acids. This con-
sisted of all residues with at least one atom ≤ 8 Å from the bound substrate.
Residues of the A10 core motif (NGK, K=Lys517) [Marahiel et al., 1997] were
not included because they are extremely highly conserved and do not vary be-
tween different specificities. We encoded each amino acid by normalized real
values representing their physico-chemical properties. We used amino acid
indices from AAindex [Kawashima and Kanehisa, 2000; Tomii and Kanehisa,
1996; Nakai et al., 1988] and Neumaier et al. [1999] to describe:

• the number of hydrogen bond donors [Fauchere et al., 1988],

• polarity (three different indices) [Zimmerman et al., 1968; Radzicka and
Wolfenden, 1988; Grantham, 1974],

• volume [Tsai et al., 1999],

• secondary structure preferences for beta-turns, beta-sheets and alpha-
helices [Chou and Fasman, 1978],

• hydrophobicity with a three-dimensional vector [Neumaier et al., 1999],
and

• the isoelectric point [Zimmerman et al., 1968].

We standardized the values in such a way that the interval of ±1 standard
deviation (calculated from the value distribution of each AAindex file) was
projected onto the interval of ±1.
StandardizedV alue = IndexV alue−MeanIndexV alue

StandardDeviation
, and thus obtained a vector

of 408 features for each A domain. The choice of these properties is discussed
in the Section Results and Discussion of this Chapter (4.4.4).

SVM Implementation

In this study, we used the program package SVMlight [Joachims, 1999b,
svmlight.joachims.org] for training SVM models on data and classification
of data. This program also implements algorithms for training large transduc-
tive SVMs (TSVMs). The algorithm proceeds by solving a sequence of opti-
mization problems, lower-bounding the solution using a form of local search.
For details, see Joachims [1999a]. SVMlight can efficiently compute LOO
testing; LOO provides “almost unbiased” estimates for error rate, recall (=
sensitivity Sn), and precision (= specificity Sp) [svmlight.joachims.org].

Choice of the Optimal Kernel Function and Parameters

SVMlight provides linear, polynomial, radial basis (RBF) and sigmoid ker-
nel functions. Two parameters, C and j, need to be chosen independently
from the choice of the kernel function. The parameter C is the penalty

svmlight.joachims.org
svmlight.joachims.org
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that is assigned to erroneous training points that cannot be classified cor-
rectly. If the features are normalized as described above, one can put C = 1
as a starting point for a grid search around this value (in this study C ∈
{ 1

32
, 1

16
, . . . , 1, 2, . . . , 32}). The cost-factor j determines how training errors

on positives examples outweigh errors on negative examples (see Section 3.2
for details). The usual initial estimation j0 (see Morik et al. [1999]) of the
cost-factors by the proportion of negative to positive training examples was
also used in this study, with values of j0 in the order of 10, depending on the
ratio of the dataset. To determine the optimal value for j, a grid search was
applied as well with j ∈ { 1

32
j0,

1
16

j0, ..., 1j0, 2j0, ..., 32j0}. The non-linear ker-
nel functions have additional parameters. The RBF kernel function has an
additional parameter σ, with σ2 ≈mean(||xi − xj||2), that is approximately
the mean of the squared Euclidian distances of all pairs of data points. To
be precise, SVMlight uses a parameter γ for the RBF kernel, with γ = 1

2σ2 .
The approximation given above can then be used as starting point for a grid
search to find the best value for σ2. In this study, the same factors as for the
optimization of C and j were used, multiplied by the initial approximation
of γ.

Multiclass Problem

After having trained the SVM models for each composite specificity, it is
necessary to combine the predictions of all models to one single prediction for
the “large” and “small” clusters. The most widely used method (according
to Vert et al. [2004]) is to combine the scores (= distance from the classified
point to the hyperplane) by a max rule: the SVM that outputs the largest
score is used to assign the specificity to the unknown sequence. If all single
SVMs return “negative”, then no final prediction will be possible. This
does not necessarily mean that the unknown sequence has a very “exotic”
specificity, but possibly that the single model of the actual specificity might
give a false negative answer. Because the quality of the single models differs,
we decided to multiply the scores by the squared MCC value of the model.
As the MCC is a quality measure close to 1 for very good models, and
decreases with the reliability of the models, this allows for a reasonable scaling
of the scores. In the relatively rare case of several “positive” answers, the
one with the highest scaled score will be used in the evaluation of the overall
predictive error of the combined model. However, the predictive program
(NRPSpredictor) will list all models that return a positive value.

4.4 Results and Discussion

4.4.1 A Current Set of Annotated Specificities

Because the large majority of NRPS sequences deposited in public sequence
databases are poorly annotated, and the annotation quality and syntax dif-
fers from author to author, keyword-based search strategies in an automated
manner are infeasible. Therefore, we first manually collected all 160 A do-
main sequences used by Stachelhaus et al. [1999]. We then scanned the
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Specificity Occurrence Specif. Occur. Specif. Occur.
3-me-Glu 1 Dhb 15 Phe 11

4pPro 1 Dhpg 8 Phg 1
Aad 10 Dht 4 Pip 5
Abu 2 D-lyserg 1 Pro 16
Aeo 1 Gln 8 Sal 2
Ala 34 Glu 12 Ser 22

Ala-b 3 Gly 12 Ser-Thr 2
Ala-d 1 His 1 Tcl 1

Alaninol 1 Hpg 19 Thr 24
Arg 5 Hyv-d 1 Trp 3
Asn 14 Ile 11 Tyr 14
Asp 12 Iva 7 Val 27
Bht 7 Leu 31 Valhyphaa 1
Bmt 1 Lys 5 Vol 1
Cys 23 Lys-b 2
Dab 4 Orn 10

Table 4.1: Distribution of the 397 Adenylation domains with known specificity on
their substrates: Besides the proteinogenic amino acids in three letter code there are
the following known rare specificities: 3-me-Glu 3-methyl-glutamate, 4pPro 4-propyl-
proline, Aad 2-amino-adipic acid, Abu 2-amino-butyric acid, Aeo 2-amino-9,10-epoxy-
8-oxodecanoic acid, Ala-b β-alanine, Ala-d D-alanine, Alaninol, Bht beta-hydroxy-
tyrosine, Bmt (4R)-4[(E)-2-butenyl]-4-methyl-L-threonine, Dab 2,4-diamino-butyric
acid, Dhb 2,3-dihydroxy-benzoic acid, Dhpg = Dpg 3,5-dihydroxy-phenyl-glycine, Dht
dehydro-threonine = Dhbu = 2,3-dehydroaminobutyric acid, D-lyserg D-lysergic acid,
Hpg 4-hydoxy-phenyl-glycine, Hyv-d 2-hydroxy-valeric acid, Iva iso-valine, Lys-b β-
lysine, Orn ornithine, Phg phenyl-glycine, Pip pipecolic acid, Sal salicylic acid, Tcl
(4S)-5,5,5-trichloro-leucine, Valhyphaa valine or hydrophobic aa, Vol valinol.

UniProt/TrEMBL/Swiss-Prot protein database [Apweiler et al., 2004; Boeck-
mann et al., 2003] with profile HMMs for complete NRPS modules. We
required modules to be complete (one Condensation, one A and one T (pp-
binding) domain), so we could avoid extracting very similar enzymes, such as
acyl-CoA ligases. For the 245 detected sequences, we followed the PubMed
[www.pubmed.gov] literature references in the UniProt entry or tried to find
the associated articles via PubMed (searching for gene name, organism, au-
thors etc.). Thus we were able to find 227 additional A domain sequences.
We joined this dataset with the sequences of J. Ravel’s NRPS BLAST server
[Challis et al., 2000] and finally obtained a set of 397 A domains with known
specificity (fully listed in the Supplementary Data). We required the speci-
ficity annotation to be based on experimental evidence, either by an ATP-
PPi-exchange reaction [Miller and Lipman, 1973] or, when the specificity
was inferred by the co-linearity rule based on the ordered composition of the
peptide product, that the inference was confirmed by an unambiguous match
with a known “specificity-conferring code” [Stachelhaus et al., 1999; Challis
et al., 2000] of another A domain. The number of occurrences of the different
specificities in these 397 A domain sequences are depicted in Table 4.1.

www.pubmed.gov
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Figure 4.1: Illustration of the residues that have been taken into account for the
predictive methods by Stachelhaus et al. [1999] and the method presented here. A
phenylalanine is depicted with the residues of a gramicidin synthetase A activation
domain which constitute the active site and are at a certain distance to the bound
substrate (PHE). (a) The ten residues (green) that are in direct contact with the
substrate phenylalanine (ball and stick representation) are shown. These 10 residues
are the basis for the specificity prediction method by Stachelhaus et al. [1999]. (b)
The same ten residues as in (a) are depicted but in the space filling representation.
(c) The residues in green (at a distance of up to 5.5 Å from phenylalanine) are sur-
rounded by all 34 residues (purple) at a distance of up to 8 Å from phenylalanine. The
predictive method described here is based on these 34 amino acids and encodes them
by their physico-chemical properties. Representations were created using BALLView
[Moll et al., 2005, 2006].

4.4.2 Inferring Functional and Structural Relevance of
Residues in a Structurally Conserved Context

When comparing firefly luciferase (another AMP-binding enzyme that ac-
tivates luciferin) and GrsA, a structure-based alignment reveals that 67%
of the alpha-carbon positions are conserved to within 3 Å. The RMSD is
2.6 Å, although both enzymes share only 16% sequence similarity [Stachel-
haus et al., 1999; Conti et al., 1997; di Vincenzo et al., 2005]. However, the
RMSD, calculated over the Cα atoms enclosed in a sphere of radius 9 Å cen-
tered at the GrsA residue Asp235 in the active site, is 0.95 Å [di Vincenzo
et al., 2005]. Owing to the much higher similarity between GrsA and other
NRPS A domains (between 30 and 80% [Turgay et al., 1992]), the conforma-
tion of their mainchains is likely to be even more similar, particularly around
the substrate binding pocket. Therefore, in a multiple sequence alignment of
other NRPS A domains with GrsA, those residues that align with the residues
that line the active site can be expected to be involved in the specific sub-
strate recognition and binding of the homologous A domain. To make sure
that we included all residue positions that might have an interaction with
the substrate, or might be influenced by or adapted to the residues that in-
teract directly with the substrate, we decided to extract all residues up to a
distance of 8 Å from the substrate in GrsA. A steric cell of 8 Å was likewise
used by Lilien et al. [2004] for an energy simulation of the GrsA active site.
In Fig. 4.1, we illustrate the residues at a distance up to 5.5 Å and 8 Å in
direct and indirect contact with the substrate phenylalanine, respectively.
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4.4.3 Clustering of Sequences with Similar Specifici-
ties

For a reliable prediction of specificities, the ideal is to have a training set
of sequences for each distinct specificity. In reality we often find A do-
mains with considerably high side specificities that either lead to alternate
peptide products that differ at the corresponding position, such as in the
case of tyrocidine: in the tyrocidine biosynthesis operon (Bacillus brevis,
TYCB BREPA, Mootz and Marahiel, 1997), the A domain TycB m3 acti-
vates L-tryptophan with 100% relative activity (in an ATP-PPi-exchange re-
action), and L-phenylalanine with 48%, but is annotated as L-phenylalanine
activating because (D-)phenylalanine is found in the product. It is also
possible that in biochemical specificity tests (ATP-PPi-exchange reaction
with recombinant A domains), a considerable side specificity might be de-
tected but the alternative substrate is not incorporated in vivo because of,
for example, sterical reasons in the further processing of the nascent pep-
tide: the A domain of BarD of the barbamide (bar) biosynthetic gene cluster
has 100% specificity for leucine and valine, and 80% for trichloroleucine,
but the in vivo incorporation of valine was experimentally excluded [Chang
et al., 2002]. Because considerably high side specificity might exist, we ad-
dressed this problem by clustering specificities for amino acids with very
similar physico-chemical properties. For this clustering we also took obser-
vations of Challis et al. [2000] into account. They analyzed the predicted
binding pockets of most A domains known to date. Based on the “code”
of eight amino acids closest to the substrate, they pointed out that speci-
ficities for physico-chemically similar substrates often only differ in single
residues [Challis et al., 2000]. An experimentally verified example is the di-
rected mutagenesis of Ala322Gly in GrsA increasing its specificity to Trp
[Stachelhaus et al., 1999]. We decided to consider two different kinds of clus-
terings: grouping specificities into a few large clusters and into more small
clusters. Forming larger clusters, i. e. putting together more closely related
specificities into one composite specificity has the advantages of (i) obtaining
larger positive datasets for SVM training (yielding models that are more re-
liable), (ii) covering a larger spectrum of sequence variations, (iii) covering a
larger subspace in the hyperspace, (iv) lowering the risk of overfitting, and
finally, (v) allowing for recognition of new substrates that are very similar to
the substrate specificities in the cluster. However, forming smaller clusters
by clustering similar specificities only where necessary (e. g. Phe/Trp, see
above) has the advantage of allowing for more concrete/precise predictions,
but at a higher risk of overfitting owing to a reduced number of positive
training data. Table 4.2 and Figure 4.2 illustrate which specificities have
been clustered.
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L arge C lusters Small C lusters 
  

Gly (12), Ala (20) 
tiny size, hydrophilic, 
transition to aliphatic Gly (12), Ala (20), 

Val (22), Leu (22), 
Ile (7), Abu (2), 

Iva (7) 

apolar, aliphatic side chains Val (22), Leu (22), 
Ile (7), Abu (2), 

Iva (7) 

aliphatic, branched 
hydrophobic side chain 

Ser (13) Serine specific 

Thr (16) Threonine specific 
Ser (13), Thr (16), 

Ser/Thr (1), 
Dhpg (7), Hpg (13) 

aliphatic chain or phenyl group 
with -OH 

Dhpg (7), Hpg (13) 
polar, uncharged 
(hydroxy-phenyl) 

Phe (11), Trp (3) unpolar aromatic ring Phe (11), Trp (3), 
Phg (1), 

Tyr (12), Bht (6) 
aromatic side chain 

Tyr (12), Bht (6) polar aromatic ring 

Asp (8), Asn (13) 
Asp-Asn-hydrogen bond 

acceptor 

Glu (9), Gln (6) 
Glu-Gln-hydrogen bond 

acceptor 

Asp (8), Asn (13), 
Glu (9), Gln (6), 

Aad (7) 

aliphatic chain ending with 
H-bond donor 

Aad (7) 2-amino-adipic acid 

Cys (17) 
polar, uncharged (aliphatic chain 

with -SH group at the end) - - 

Orn (8) 
Orn  and hydroxy-Orn 

specific Orn (8), Lys (3), 
Arg (5) 

long positively charged side 
chain (aliphatic chain with -NH2 

group at the end) Arg (5) Arg-specific 

Pro (16), Pip (4) 
cyclic aliphatic chain with polar 

-NH2
+ group Pro (16) Pro-specific 

Dhb (9), Sal (2) 
hydroxy-benzoic acid derivates 

(no amino group) 
No small cluster, no 
separation possible - 

Table 4.2: Clustering amino acids with similar physico-chemical properties and/or
similar substrate binding pockets [Challis et al., 2000] into composite specificities.
The numbers in parenthesis denote the counts of domains with unique 8 Å sequences.
Please note that the division of large into small clusters was not always possible owing
to the small amount of available training data. Please also see Figure 4.2.
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Figure 4.2: Venn diagram grouping amino acids by common physico-chemical prop-
erties according to Taylor [1986]. The colored sets show how similar amino acids have
been clustered to composite specificities of A domains. To get larger clusters, several
smaller clusters were joined as indicated by red lines connecting colored sets. This
clustering is based on conclusions by Challis et al. [2000] on cross-specificities of A
domains and our own groupings according to physical-chemical properties. An asterisk
indicates rare non-proteinogenic amino acids. For abbreviations, see Table 4.1.
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4.4.4 SVMs: Particularities

Feature Representation Based on Physico-Chemical Properties of
Amino Acids

From each A domain, we extracted the signature of 34 amino acids at ≤ 8 Å
from the bound substrate (see the Materials and Methods Section in 4.3).
Each amino acid was encoded by 12 different values representing its physico-
chemical properties, obtaining a vector of 408 features for each sequence.
Chemical properties chosen were the number of hydrogen bond donors, the
polarity and the hydrophobicity of the residues, and the isoelectric point;
physical properties were volume and preferences to appear in different sec-
ondary structures. We chose these properties because they are the key factors
in deciding how well a given substrate might bind to the defined set of residues
and thus make sense, biologically, chemically and physically. If the positions
of the active site residues are given and fixed in space (as we conclude they
are here) then these properties describe the inside of the active site keyhole
well. If for any reason (e.g. a very large / different substrate) the binding
pocket structure is altered, then we expect to see residues that have a dif-
ferent secondary structure preference at the positions that we extract from
the profile alignment. Therefore, it also makes sense to encode the secondary
structure preferences.

SVM Implementation

In this study, we based our predictions on SVMs that implement the intuitive
idea of separating two data “clouds” by a geometric plane (see Materials
and Methods Section at 4.3 for details), as implemented in SVMlight. We
used an innovative variant of SVMs, so-called transductive SVMs, that not
only take the labeled training data into account but also integrate unlabeled
data, in our case, sequences with unknown specificity. We tried different
kernel functions in our experiments, including linear, polynomial, radial basis
and sigmoid functions. In a grid search, we determined the optimal kernel
parameters using SVMlight’s built-in leave-one-out test functionality. For
linear and radial kernel functions (RBF) we got the best results (for error
rate, specificity, sensitivity and MCC), varying from case to case. When
the linear kernel was equally good or better, then we preferred it over the
RBF kernel for simplicity of the models, otherwise we chose the RBF kernel.
After the determination of the optimal kernel function and parameters, we
gathered 646 uncharacterized A domain sequences from UniProt [Apweiler
et al., 2004], as described in Materials and Methods at 4.3.
For each cluster of composite specificity, we prepared a feature file with the
sequences belonging to this specificity labeled +, all other sequences with
different but known specificity labeled −, and the uncharacterized sequences
labeled 0 (i.e. unlabeled). We used SVMlight in transductive mode to build
models. With a self-written Perl script, we ran LOO cross-validation to
check error rate, recall (sensitivity), precision (specificity) and MCC. For
each cluster, we trained a TSVM, as described above, to obtain a model for
each composite specificity.
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SVM Quality Assessment

The number of available positive training data points varied between the dif-
ferent clusters and was sometimes quite small. Although the quality of mod-
els in machine learning depends on the amount of training data available,
previous findings show that, besides the highly conserved overall structure
of the binding pocket common to all A domains, the composition of residues
lining the active site of sequences with the same specificity are even more
conserved [Stachelhaus et al., 1999], which should allow one to obtain rela-
tively good models. In a rigorous quality assessment of the generated models
(Table 4.3), we could show that most SVM models yield good to very good re-
sults (Matthews correlation coefficients 0.85-1). Some yield very poor results,
such as the SVM with the composite specificity for Phe=Trp=Phg=Tyr=Bht
(MCC = 0.85) or for Gly=Ala (MCC = 0.84). An explanation for the low
performance of the model for very large aromatic amino acids could be that
there exist a few, but spatially very different configurations of the binding
pocket, for which it is impossible to generate one discriminative model. The
problems with the glycine/alanine model could lie in the small size of the
substrates; as Challis et al. [2000] already suggested, there might be many
degenerate solutions to activate these substrates. Similarly, the quality of the
model for proline specificity is poor. As Lautru and Challis [2004] pointed
out, only 4-5 residues at the top of the selectivity pocket are likely to be
in direct contact with proline’s relatively compact side chain, based on ho-
mology modelings of the binding pockets. We obtained bad performance for
models that aimed at distinguishing between phenylalanine/tyrosine and all
other amino acids, because there are sequences known, like tyrocidine syn-
thetase TycC M3, with specificities for both Tyr and Trp, and others that
have a specificity for Phe and Trp. A tabular overview of all results of the
quality assessment of the models is shown in Table 4.3. As the predictive
quality of the models was estimated by LOO tests on the set of sequences
with known specificity (training data), one needs to check if the test data
(sequences with unknown specificities) are drawn from the same distribution.
To check this, we compared the mean pairwise distance of the training data
with the mean pairwise distance between training and test data. The mean
of the Euclidian distance within the training data was 18.9 (SD: 2.9) and the
mean distance between training and test data was 18.8 (SD: 2.5). Because
both distributions are very similar, it is safe to assume that the performance
of our models on the test data will be similarly good. To finally obtain one
model for all “large” and all “small” clusters, we score the results of differ-
ent models using the returned distance of the data point to the hyperplane
multiplied by the square of the MCC. This scaling makes sense because the
MCC reflects the reliability of each model (see 4.3.4). Our “large” clusters
cover 282 of the 300 specificities; the “small” clusters cover 273 sequences.
We ran a LOO test on both multi-class models. The “large” cluster model
gave 260 correct predictions and 30 incorrect predictions, and ten times, it
gave no prediction, corresponding to a total error rate of 13%, or 7.8% on the
sequences that the models were trained for. The “small” cluster model gave
231 correct predictions and 44 incorrect predictions, and did not decide for 25
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sequences, corresponding to an error rate of 23%, or 15%, respectively. Given
the set of 300 unique 8 Å signature sequences, we also evaluated the perfor-
mance of a sequence-based model that used the 34 amino acid signatures.
To get a first overview of the clustering of the 34 amino acid sequences, we
built a phylogenetic tree (using a Maximum Likelihood method (the princi-
ple is described in Section 3.4.1; implementation used: IQPNNI by Vinh and
von Haeseler [2004])), visualized with SplitsTree [Huson and Bryant, 2006,
www.splitstree.org]. For the tree, see the Supplementary Data Section
in 4.7. When we analyze the tree, we see – overall – a clustering of similar
specificities. Looking at details, we detect some “incompatible” specificities
in some subtrees, e.g. in one where most A domains of the fungus Tricho-
derma virens TEX1 gene (Uniprot accession no. Q8NJX1) cluster despite
their different specificities. The reason might be that by increasing the num-
ber of amino acid positions from 8 or 10 to 34, we also capture more of the
species’ phylogenetic signal. We also tested the performance of a BLAST
search [Altschul et al., 1997; for introductory information see Section 3.3.1]
using the 300 sequences with known specificity as our database. Using the
closest BLAST match to infer the specificity, 233 sequences would have been
annotated correctly, corresponding to an error rate of 22.3%. This indicates
that BLAST could be helpful especially for rare specificities and, therefore,
we plan to integrate it in a future version of the NRPSpredictor. However,
the BLAST strategy is inferior to the SVM strategy because it cannot build
a generalizing SVM model for a specificity, but only finds the closest se-
quence(s). To assess the accuracy of the predictions on “new” sequences,
which are not very similar to the others with known specificity, we re-trained
models only with sequences with a certain minimum distance and still got
acceptable results (see the Supplementary Data Section in 4.7). To further
examine the reliability and usefulness of our new method, we applied our
prediction program to all 1230 Adenylation domains in the June 2005 ver-
sion of UniProt [Apweiler et al., 2004] (the proteins were extracted from
the database as described in Section Materials and Methods of this chapter
at 4.3). We compared the consistency of our predictions with the predic-
tions based on the “specificity-conferring code”. (To automate this method
by Stachelhaus et al., we automatically extracted the code of the 10 amino
acids and scored it against the collection of 10 amino acid codes of known
specificities, requiring the identity of at least seven of the ten positions for a
“match”). For 70% of the sequences, both predictors gave consistent predic-
tions, which underlines the usefulness of our approach. The new SVM-based
method could predict the specificities for 18% of the sequences, where the
sequence-based method by Stachelhaus et al. [1999] cannot. However, there
are 2.4% for which neither method gives a prediction. For 1.5%, only the
traditional method could give a prediction. About 8.8% of the sequences are
inconsistently classified by the old and the new method; of them, 3% are rare
specificities that the SVMs were not trained for.

www.splitstree.org
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An illustration of these comparisons are shown in Figure 4.3. If we accept
only ≥80% matches for a positive “Stachelhaus” prediction, we observe that
the number of sequences for which no predictor can say anything increases by
2.5% and the specificities that can only be predicted by the TSVMs increase
by 8%. We also observe that the number of inconsistent predictions drops
by 6.5%, the number of sequences only predicted by the Stachelhaus method
drops by 1% and the number of consistent predictions decreases by 4%. We
interpret this observation by saying that the Stachelhaus predictions at 70%
are less reliable and give rise to more inconsistent predictions.

4.5 Conclusion

During the past decade, SVM-based machine learning has been extensively
applied within the field of bioinformatics, e.g. to the classification of genes
and proteins, predictions along the DNA or protein strand and microarray
gene expression, and to other problems (for a recent review, see, for example,
Noble [2004]). Here we describe a new application of SVMs to functional
subtyping of the substrate specificities of a class of enzymes based on the
physico-chemical fingerprint of the residues that form the substrate binding
pocket. To take advantage of the abundant amount of unannotated data, we
use an implementation of TSVMs [Joachims, 1999a] first introduced by Vap-
nik in 1998. TSVMs have been shown to be superior to inductive SVMs in a
similar application, the prediction of receptor binding compounds based on
three-dimensional properties of the molecule [Schölkopf et al., 2003; Weston
et al., 2003], where also a large number of unlabeled data were avaliable. Our
results prove a high reliability of the predictions, even though the currently
available amount of training data is relatively low, leaving room for further
improvement with a growing number of annotated A domains. When ap-
plying our method and the sequence-based method [Stachelhaus et al., 1999;
Challis et al., 2000] to a set of over one thousand Adenylation domains cur-
rently detectable in UniProt [Apweiler et al., 2004], in summary, the new
method can predict the specificities for 18% more sequences than the old
one, while being consistent within the 70% that both methods predict. For
2.4% of the sequences, none of the methods can make any prediction. More-
over, the inconsistent predictions, where both methods disagree, have a large
amount of “Stachelhaus” predictions at 70% identity. This illustrated that
there is still a large amount of sequences for which a prediction is very un-
certain or impossible. Interestingly, we can observe that in those “difficult”
sequences, the ratio of eukaryotic sequences is more than two times higher
than it is on average, indicating that the eukaryotic A domains might have
developed alternative substrate binding patterns. In cases where both meth-
ods give consistent predictions, the method by Stachelhaus et al. gives a more
concrete prediction, since it decides for one specificity, whereas our method
decides for one composite specificity that usually stands for more than one
substrate. Nevertheless, we would like to emphasize that the combination
of the “old” and our method gives a new powerful prediction tool that can
be directly used by the scientists working in the field. Our results confirm
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5.2%
Consistent (70% ident.)

3.2%

Consistent (80% ident.)
7.2 %

Consistent (90% ident.)

54 %

Consistent

(100% ident. with known

Stachelhaus code)

Inconsistent: no rare aa (5.7%)
Inconsistent: rare aa (3%)

Prediction only by Stachelhaus (1.5%)

18%

Prediction only by SVMs

No prediction at all (2.4%)

Figure 4.3: Results of a comparison of the new SVM-based method with the
sequence-based prediction method based on the “specificity-confering code”
by Stachelhaus et al. [1999] and Challis et al. [2000]: (For simplicity, we refer
to the latter as the “Stachelhaus method”). Of 1230 Adenylation domains (with
HMMER automatically extracted from the June 2005 version of UniProt), 70% or
858 obtained consistent predictions by both predictors (white sectors). For most of
these consistent predictions – 54% of the total (or 666) – the Stachelhaus method
was based on an exact match with a known “specificity-conferring code”; the others
had at least a 70% match. To 2.4% (or 29 sequences), none of the predictors could
assign any specificity (no match ≥ 70%, diagonal hatches). Eighteen percent or 217
sequences could be classified only by the SVMs and not by the Stachelhaus method
(light gray sector), and 18 A domains (1.5%) could not be classified by the SVMs
but by the Stachelhaus method (cross-hatched); two of them are rare specificities.
The Stachelhaus predictions for the rest are mainly based on 70% matches to known
specificity “codes”. For 108 sequences (8.8%), the predictions were inconsistent but 38
of them (3% of the total, gray sector) had matches to rare amino acids that were not
used for training the SVMs. The remaining 70 incompatible predictions were mainly
based on ≤ 80% identity matches with known “specificity-conferring codes” (black
sector).
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the applicability of the SVM-based strategy for substrate specificity predic-
tion, and that it should also be considered for the prediction of the subtypes
of other enzymes e.g. nucleotidyl cyclases, protein kinases, lactate/malate
dehydrogenases and trypsin-like serine proteases, a selection used by Han-
nenhalli and Russell [2000].

4.6 Availability of the Program

An implementation of the described method, called NRPSpredictor, is freely
available to the NRPS community as an online resource via our server reach-
able at:

www-ab.informatik.uni-tuebingen.de/software/NRPSpredictor.

The web-interface (see Fig. 4.4) allows one to upload or paste in the (multi-)fasta
file(s) of the protein sequence(s) to be analyzed. The Adenylation domains
are automatically extracted, as well as the residues of the “specificity-confering
code” and the residues 8 Å around the substrate. The predictions of each
model for each cluster of composite specificity are given, as well as the best
matches of the “specificity-confering code” to known specificities. The results
are presented as an HTML output as well as a short text-based report and
a tabular output that can be viewed with a spreadsheet program (Fig. 4.4).
The HTML interface is dynamically generated by a web framework [Biegert
et al., 2006]. A sophisticated, job tracking facility based on a database al-
lows monitoring the progress of several jobs running simultaneously. Also,
by providing a fixed URL for each submitted job, the user still can access the
results several days (currently nine) later. A detailed discussion of the web
interface’s architecture is described by Biegert et al. [2006]. The command-
line version of the NRPSpredictor, which is internally called via the web
interface, consits of several Perl scripts and uses the program packages HM-
MER and SVMlight. A free copy can be obtained from the author on request
[Rausch et al., 2005].

4.7 Supplementary Data

A table and text files of all 397 annotated A domain sequences gathered
and used in this study as training data, a phylogenetic tree of their 34 amino
acid signature sequences, all automatic predictions for 1230 A domains of the
June 2005 version of UniProt, the kernel parameters used for model training
and the results of a test of the effect of sequence redundancy reduction are
freely available at NAR Online on the website of the article [Rausch et al.,
2005].
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Figure 4.4: Screenshot of NRPSpredictor’s web frontend showing the Results
page of the analysis of enterobactin synthetase component F (UniProt [Wu et al.,
2006] entry name ENTF SHIFL). The report contains one section for each detected
A domain in the sequence, beginning with an alignment of the core region (pos.
198-334) and the region around the conserved Lys517 of the GrsA A domain, the
consensus sequence of the profile HMM used for the sequence extraction and the
corresponding region of the query sequence. Conserved “anchor” regions are colored
in the alignment, the 10 positions defined by Stachelhaus et al. [1999] are highlighted
in red and positions additionally contained in an 8 Å sphere around the active site
center of 1AMU (GrsA A domain) are highlighted in green. In the following subsection,
the extracted residues 8 Å around the substrate and the 10 amino acid code are
listed. The Predictions subsection lists the classifiers that returned a positive score
for a “large cluster” (assuming that several amino acids have the same properties)
and those that returned a positive score for a “small cluster” (assuming that only few
amino acids have the same properties). Note that a positive score means that the
corresponding SVM has classified the data point as positive. The given score is the
product of the point’s distance to the hyperplane times the squared MCC confidence
value of the SVM. The last part of the results page gives the alignments of the 10
residue code with the 10 residue codes of all sequences with known specificity in
the database, requiring at least 7/10 identical residues. The pairwise alignments are
scored with a BLOSUM62 substitution matrix [Henikoff and Henikoff, 1992; Eddy,
2004]. The Simple Output and CSV Output pages give the results in a condensed
text form without the alignments. The latter output is in tabular form and notes
possible inconsistencies between the SVM based prediction and the prediction by the
“Stachelhaus method”. The Input page (not shown) allows pasting in or uploading of
one or more NRPS sequences in plain or FASTA format. An automatically generated
Job-ID is proposed which can be changed and which allows the user to identify the job
in the job tracking menu on the left-hand side. Once the job is started, an individual
URL is generated for each Job-ID, which can be bookmarked to pick up the results
later. The NRPSpredictor is reachable via www-ab.informatik.uni-tuebingen.
de/software/NRPSpredictor.
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Chapter 5

Phylogeny, Evolution and
Functional Subtypes of
Condensation Domains

5.1 Overview

The peptide bond formation in NRPS is catalyzed by the Condensation (C)
domain. Various functional subtypes of the C domain exist: An LCL do-
main catalyzes a peptide bond between two L-amino acids, a DCL domain
links an L-amino acid to a growing peptide ending with a D-amino acid,
a Starter C domain (first denominated and classified as a separate subtype
here) acylates the first amino acid with a β-hydroxy-carboxylic acid (typi-
cally a β-hydroxyl fatty acid), and Heterocyclization (Cyc) domains catalyze
both peptide bond formation and subsequent cyclization of cysteine, serine
or threonine residues. The homologous Epimerization (E) domain flips the
chirality of the last amino acid in the growing peptide; Dual E/C domains
catalyze both epimerization and condensation.

In this chapter, we report on the reconstruction of the phylogenetic re-
lationship of NRPS C domain subtypes and analyze in detail the sequence
motifs of recently discovered subtypes (Dual E/C, DCL and Starter domains)
and their characteristic sequence differences, mutually and in comparison
with LCL domains. Based on their phylogeny and the comparison of their
sequence motifs, LCL and Starter domains appear to be more closely related
to each other than to other subtypes, though pronounced differences in some
segments of the protein account for the unequal donor substrates (amino vs.
β-hydroxy-carboxylic acid). Furthermore, on the basis of phylogeny and the
comparison of sequence motifs, we conclude that Dual E/C and DCL do-
mains share a common ancestor. In the same way, the evolutionary origin
of a C domain of unknown function in glycopeptide (GP) NRPSs can be de-
termined to be an LCL domain. In the case of two GP C domains which are
most similar to DCL but which have LCL activity, we postulate convergent
evolution.

We systematize all C domain subtypes including the novel Starter C do-
main. With our results, it will be easier to decide the subtype of unknown
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C domains as we provide profile Hidden Markov Models (pHMMs) for the
sequence motifs as well as for the entire sequences. The determined speci-
ficity conferring positions will be helpful for the mutation of one subtype into
another, e.g. turning DCL to LCL, which can be a useful step for obtaining
novel products.

5.2 Background and Motivation

As depicted in Fig. 2.1, besides the Adenylation (A) domain and the Thi-
olation (T) domain, the third of the three compulsory domains in NRPS is
the Condensation (C) domain, which catalyzes the elongation reaction of the
peptidyl chain tethered to the phosphopantetheinyl arm of the upstream T
domain to the amino acid bound to the downstream T domain [reviewed
by Lautru and Challis, 2004]. This is why the first module of an NRPS
usually does not contain a C domain, but only the second module has the
domains C–A–T. The exceptions are C domains, which we name Starter
C domains; these acylate the first amino acid with a fatty acid (with a β-
hydroxy-carboxylic acid actually, as we will discuss below). Chain elongation
is terminated by the action of a thioesterase (TE) domain, which is usually
the final domain of the last module in the assembly line. (For more details,
refer to Chapter 2, Biological Background).

In this chapter, we report on the functional variants (subtypes) and ho-
mologs of the Condensation (C) domain of NRPS. All C domain sequences
of this study were extracted from NRPS that were detected in all avail-
able completely sequenced bacterial genomes and a comprehensive collection
of annotated biosynthesis clusters. Besides A domains (and thioesterase II
domains; see Sieber and Marahiel [2005]) C domains also show specificity
for their substrates (see below). An in-depth deep understanding of their
function is thus crucial for re-engineering NRPS to produce novel bioactive
compounds. In practice, it has been shown that it is possible to engineer syn-
thetic systems for the production of novel products: Stachelhaus et al. [1995]
demonstrated that domain swapping, which is the recombination of domain-
coding regions of desired specificity to a synthetic fusion protein, worked to
create new variants of surfactin and is thus one possibility, although only
one amino acid position in the product was varied, which did not alter its
activity, and the total yield was very low (0.5 % of the wild-type yield).

Because C domains have been shown to have non-negligible specificity
for the amino acid that is activated by the downstream A domain, swapping
whole modules or insertion/deletion seems to be more promising, provided
that the integrity of the functional domains is carefully maintained and the
modules are dissected in their linker regions [Mootz et al., 2000, 2002a]. Nev-
ertheless, reduced catalytic efficiency and product yield is a serious problem.
A less invasive strategy involves the manipulation of the domains’ specificity
by point mutations as demonstrated by Eppelmann et al. [2002] for the A
domain. Therefore, an in-depth knowledge of all functional subtypes and
homologs of the C domains is indispensable. In this chapter, we reconstruct
their phylogeny and reveal the sequence motifs of all subtypes and homologs,
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and their mutual differences. The insights gained will be helpful in future
attempts to turn one sub-specificity into another, e.g. changing the stereos-
electivity of the C domain.

Furthermore, we have analyzed the C domains and Epimerization (E) do-
mains of glycopeptide NRPS. In these proteins, two Condensation domains
preceded by former (now inactive) Epimerization domains have gained op-
posite stereoselectivity, probably due to convergent evolution, for which we
accumulate evidence. Additionally, we discuss the origin of a C domain (of-
ten referred to as an X* domain) at the C-terminus of glycopeptide NRPS,
which is thought to be inactive.

Current Knowledge of Subtypes LCL,
DCL, Cyc, and

Dual E/C

The C domain has two binding sites: one for the electrophilic donor sub-
strate (the acyl group of the growing chain) and one for the nucleophilic
acceptor substrate (the activated amino acid). The condensation reaction
involves catalysis of a nucleophilic attack by the amino group of the amino-
acyl adenylate bound to the downstream T domain on the acyl group of the
growing peptide chain which is bound to the upstream T domain [Finking
and Marahiel, 2004; Sieber and Marahiel, 2005; see Fig. 2.3]. The accep-
tor site of the C domain was shown to exhibit a strong stereoselectivity and
significant side chain selectivity. The selectivity towards a specific side chain
seems to be less pronounced at the donor site which, however, exhibits strong
stereoselectivity [Lautru and Challis, 2004].

In particular, C domains succeeding an E domain are expected to show
specificity towards the configuration (L or D) of the C-terminal residue that is
bound at the donor site because the preceding E domain does not specifically
catalyze the epimerization from L to D but provides a mixture of configura-
tions. It is the role of the C domain to select the correct enantiomer [Finking
and Marahiel, 2004]. Moreover, the C domain represents some kind of se-
lectivity filter in that it supports the selection of the correct downstream
nucleophile and prevents product mixtures [Sieber and Marahiel, 2005].

C domains immediately downstream of E domains were shown to be
D-specific for the upstream donor and L-specific for the downstream ac-
ceptor, thus catalyzing the condensation reaction between a D- and an L-
residue. These C domains were termed DCL-catalysts because of this behavior
[Clugston et al., 2003].

Accordingly, LCL-catalysts promote the condensation of two L-amino
acids. Both LCL- and DCL-catalysts possess a conserved His-motif in their
active site. The consensus sequence of this motif is HHxxxDG where x de-
notes any residue (see Fig. 5.1, motif 3, or the magnification in Fig. 5.3).
The second His-residue seems to be essential for the catalytic function of the
domain [Sieber and Marahiel, 2005].

As a third type of C domain, so-called Dual Epimerization/Condensation
(E/C) domains have recently been identified. This finding was based on the
observation of NRPS which had products that contained D-residues although
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the NRPS itself did not show an E domain in the corresponding module.
Biochemical experiments supported the hypothesis that Dual E/C domains
exist which are DCL-catalysts with epimerase activity [Balibar et al., 2005].
In the assembly line, a Dual E/C domain follows directly after a C-A-T
module which activates and incorporates an L-amino acid. The module which
contains the Dual domain also activates an L-amino acid. Then the Dual
domain catalyzes the epimerization of the L-residue into D configuration and
subsequently promotes the condensation of those two residues. In addition to
the active site His-motif which is found in all C domains, Dual E/C domains
exhibit a second His-motif, HHxxxxxGD, which is located close to the N-
terminus of the domain [Balibar et al., 2005] (It is partly located on motifs
C1 & C2; see Fig. 5.1 or for a magnification Fig. 5.4).

C domains may be replaced by Heterocyclization (Cyc) domains which
catalyze both peptide bond formation, and subsequent cyclization of cys-
teine (Cys), serine (Ser) and threonine (Thr) residues. The five-membered
heterocyclic rings which result from this reaction are important for chelating
metals or interaction with proteins, DNA or RNA. Cyc domains are struc-
turally related to C domains and are supposed to be evolutionary specialized
C domains [Sieber and Marahiel, 2005]. In Cyc domains, however, the active
site His-motif is replaced by another conserved motif, DxxxxD (see Fig. 5.3).
Keating et al. [2002] found that the aspartate (Asp, D) residues are critical
for both condensation and heterocyclization.

5.3 Results and Discussion

5.3.1 Collected C Domain Sequence Data and Their
Phylogenetic Tree

A total of 481 Condensation domains (including their homologs, Epimeraza-
tion and Heterocyclization domains) were extracted from 182 (non-identical)
NRPS and 31 NRPS/PKS hybrid sequences found in 62 bacterial genomes
out of the 256 bacterial genomes screened, employing pHMMs as described in
Section 5.5, Materials and Methods (Note that only one genome was consid-
ered for our analysis if sequences of several strains of the same species were
available, which reduced the number of genomes containing NRPS or ‘hy-
brid NRPS/PKS’ from 62 to 43). Altogether, 108 C domains were obtained
from 42 NRPS sequences from gene clusters downloaded from the UniProt
database. After removing doublets, all 525 non-identical C domains and ho-
mologs obtained were multiply aligned and phylogenetic trees were built. The
resulting tree topology was clearly dominated by the functional categories
that are known for C domains (as described in the previous section), rather
than species phylogeny or substrate specificity alone. The four main functions
are: 1. condensation performed by ordinary C domains; 2. condensation and
subsequent heterocyclization catalyzed by Heterocyclization (Cyc) domains;
3. epimerization followed by condensation, both of which are catalyzed by
a Dual E/C domain; 4. Starter domains (see below) which are found on
initiation (= first) modules and acylate the subsequent amino acid.
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Figure 5.1: Core motifs C1 through C3 of C domain subtypes LCL, Starter, DCL

and Dual E/C domains. Compared to Marahiel et al. [1997], motifs are extended in
both directions to include more significantly conserved positions. Yellow bars indicate
significant specificity determining positions between LCL, Starter and DCL domains;
those with red stars on top are the most significant positions. Numbers above the
letter stacks indicate residues of functional and structural importance referred to in
Subsection 5.3.4 “Key Residues in Condensation Domains” and Table 5.1. Motifs C4
through C7 are shown in Fig. 5.2.
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Figure 5.2: Core motifs C4 through C7 of C domain subtypes LCL, Starter, DCL

and Dual E/C domains. Also see Fig. 5.1.
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Figure 5.3: Sequence logos representing the PSSMs which were constructed for the

active site motif C3 (starting ∼ at pos. 133) of the LCL Condensation domain (top,
based on 238 sequences) and the Heterocyclization domain (bottom, based on 45
sequences).

Figure 5.4: Sequence logo representation of the PSSM which was generated for
the N-terminal His-motif found in Dual C/E domains at pos. ∼ 16 (based on 56
sequences).

Ordinary C domains may further be classified into LCL-catalysts and DCL-
catalysts according to the stereochemistry of their substrates. The existence
of all these functional subtypes is reflected by the phylogeny. Fig. 5.5 shows
a phylogenetic tree for subsets of each C domain subtype, as the whole tree
of 525 taxa is far too large to be displayed here (see Supplementary files 5.1
and 5.2). The tree of all taxa showed a similar topology, perfectly reflecting
the functional categories.

5.3.2 Description of a New C Domain Subtype: The
Starter C Domain

When analyzing the Condensation (C) domain phylogeny, it became apparent
that some domains did not cluster with the known C domain subtypes. A
closer look at the location of these deviating C domains revealed that all of
them were the very first C domain of the corresponding NRPS assembly line.
The remaining C domains of these assembly lines appeared in other subtrees
in the phylogeny.

Included in this set of starter C domains are those stemming from the bio-
synthesis clusters for the lipopeptides surfactin [Arima et al., 1968], lichenysin
[Horowitz and Griffin, 1991], fengycin [Tosato et al., 1997] and arthrofactin
[Morikawa et al., 1993]. These lipopeptides are characterized by a β-hydroxyl
fatty acid which is connected to the first amino acid of the peptide chain
[Konz et al., 1999].

The peptide synthetases involved in the production of these lipopeptides
all have a C domain as their very first domain. This C domain is supposed
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Figure 5.5: Phylogenetic tree of all C subtypes (LCL,
DCL, Starter, Dual E/C,

Epimerization and Heterocyclization domains). The phylogeny was reconstructed using
phyml, employing the JTT model of amino acid substitution and a gamma-distributed
rate variation with four categories. The support values are based on 100-fold bootstrap-
ping. For further analysis, the different subtypes were examined separately. While Cyc
and Dual E/C domains could be identified by means of their characteristic sequence
motifs (see Section Materials and Methods/Predicting Functional Subtypes), LCL- and
DCL-catalysts were either distinguished according to their domain structure or by their
position in the phylogenetic tree. By this, 275 domains of all 525 C domains were clas-
sified as being LCL-catalysts, 69 were DCL-catalysts and 42 were Starter C domains
(see next section).
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to serve as an acceptor for a fatty acid which is transferred from an acyl-
transferase [Konz et al., 1999]. This acylation process has also been observed
for surfactin [Cosmina et al., 1993] and fengycin biosynthesis [Tognoni et al.,
1995]. Moreover, common to the Starter C domains of these biosynthesis
clusters is their low sequence similarity to the remaining C domains of the
same biosynthesis cluster [Konz et al., 1999].

The same has been observed for the synthesis of the acidic lipopeptide
CDA in Streptomyces coelicolor [Hojati et al., 2002] and the recently identi-
fied lipopeptide produced by protein NP 960354.1 of Mycobacterium avium
[Eckstein et al., 2006].

The Starter C domain of the pristinamycin cluster appears to diverge
from this pattern at the first view. The C domain is the first domain of
the polypeptide SnbC but the biosynthesis of pristinamycin is initiated by
SnbA, which contains an A domain that activates 3-hydroxypicolinic acid
(3-hydroxypyridine-2-carboxylic acid, “2-hydroxy-6-azabenzoate”) but lacks
a T domain [de Crécy-Lagard et al., 1997]. SnbA is homologous to EntE,
which contains an A domain specific for 2,3-dihydroxybenzoate (DHB) and
which is involved in the biosynthesis of enterobactin [Rusnak et al., 1989]. A
similar organization can be found in actinomycin biosynthesis. The process
is initiated by AcmA, which activates 4-methyl-3-hydroxyanthranilic acid
(MHA, 4-methyl-3-hydroxy-2-aminobenzoate) [Schauwecker et al., 1998]. In
conclusion, what the C domains of SnbC, AcmB and EntF have in com-
mon is that they catalyze bond formation between a derivative of salicylic
acid (2-hydroxy-benzoate) and an α-amino acid. Assured by the fact that
these Starter C domains match significantly well with the pHMM built from
the Starter C domain sequences that process β-hydroxy fatty acids, we com-
pared salicylic acid with β-hydroxy fatty acids. Because both are β-hydroxy-
carboxylic acids with no amino-substituent at the α position, as α-amino
acids would have, we assume that this is the structural characteristic rec-
ognized by the prototype of Starter C domains. The pHMM built from all
Starter C domains in our dataset (together with the pHMMs of the other
domains) presents a powerful instrument for exploring and understanding
tricky NRPS domain-product relations (for references to the files, refer to
the Supplementary Data Section (5.7).

Note that Formylation domains as found, for example, at the N-terminus
of linear gramicidin synthetase subunit A [Schönafinger et al., 2006] are not
C domains but belong to the Pfam “formyl transferase” domain family.

5.3.3 Characteristic Sequence Motifs of LCL,
DCL,

Starter C Domains and Dual E/C Domains

The different core motifs in Condensation domains have first been described
by de Crécy-Lagard et al. [1995] and recompiled by Marahiel et al. [1997]
but have never been updated since then. The core motifs of the C domain
homologs, the Epimerization and Heterocyclization domains are listed in the
publication by Marahiel et al. [1997] but the sequence motifs of the recently
discovered DCL domains [Clugston et al., 2003; Luo et al., 2002] as well as the
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Dual E/C domains [Balibar et al., 2005] have never been comprehensively
analyzed. Moreover the Starter C domain has not yet been recognized in the
literature as a proper separate subtype.

The sequence motifs represented in Figures 5.1 and 5.2 are an improve-
ment on the C domain core motif consensus sequences published by Marahiel
et al. [1997] which, at that time, were based on much fewer sequences and
did not differentiate between the C domain subtypes. The motifs are repre-
sented as sequence logos [Crooks et al., 2004] which make it easier to identify
variably conserved positions compared to simple consensus sequences. We
adhere to the core motifs identified by Marahiel et al. [1997], and also show
the surrounding “landscape” if there are highly conserved positions nearby,
especially if they are important for distinguishing between the C domain
subtypes. The motifs were built on the basis of 40 verified and 198 predicted
LCL sequences, in which “predicted” means that they were classified based
purely on their position in the phylogenetic tree while “verified” sequences
were checked individually, taking into account their position in the succession
of neighboring NRPS domains, the presence of discriminative unique motifs
(see the Materials and Methods Section in 5.5) and/or literature informa-
tion. For the DCL motifs, 23 verified and 46 predicted sequences were used;
7 verified and 35 predicted sequences were used for the Starter domains; 9
verified and 47 predicted sequences were used for the Dual E/C domains.

5.3.4 Key Residues in Condensation Domains Derived
from the Literature

Based on three publications, four residues are likely to be essential for the
catalytic activity of the C domain. The most important residue is the 2nd
His of the active site His-motif [Stachelhaus et al., 1998]. Furthermore, six
residues have been identified as being structurally important or as playing
a role in correct folding of the domain. In the following, these residues are
presented, grouped by their role; the numbering is according to their linear
occurrence on the peptide; see Figures 5.1 and 5.2. This information is also
presented in Table 5.1 where the sites are sorted by their relative position in
the domain.

Residues Important for Correct Folding

#2 Arg67 (R) in TycB1 [Bergendahl et al., 2002]

#3 His146 in TycB1 (1st His of active site His-motif) [Bergendahl et al.,
2002]

#7 Trp202 (W) in TycB1 [Bergendahl et al., 2002]

Residues of Importance for Catalytic Activity of the Domain

#4 His 126 (2nd His of the active site His-motif) in VibH [Keating et al.,
2002; Roche and Walsh, 2003; Bergendahl et al., 2002]
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#9 Trp264 (W) is catalytically important in VibH according to Keating
et al. [2002], but the corresponding position is not conserved in any of
the C domain subtypes LCL, DCL or Starter.

#10 Asn335 (N) in VibH [Roche and Walsh, 2003]

#6 Gly131 (G of the active site His-motif) in VibH [Roche and Walsh,
2003]

Residues of Structural Importance

#1 Arg62 (R) in TycB1 [Bergendahl et al., 2002]

#5 Asp130 (D) in VibH [Keating et al., 2002; Roche and Walsh, 2003;
Bergendahl et al., 2002]

#8 Arg263 (R) in VibH [Keating et al., 2002] = Arg278 (R) in EntF [Roche
and Walsh, 2003]

No. in
Fig. 5.1
& 5.2

Importance: Position is homologous to:

1 structure Arg62 (R) in TycB1 [Bergendahl et al., 2002]
2 folding Arg67 (R) in TycB1 [Bergendahl et al., 2002]
3 folding His146 in TycB1 (1st His of active site His-

motif) [Bergendahl et al., 2002]
4 catalytic activity His126 (2nd His of the active site His-motif) in

VibH [Keating et al., 2002; Roche and Walsh,
2003; Bergendahl et al., 2002]

5 structure Asp130 (D) in VibH [Keating et al., 2002;
Roche and Walsh, 2003; Bergendahl et al.,
2002]

6 catalytic activity Gly131 (G of the active site His-motif) in
VibH [Roche and Walsh, 2003]

7 folding Trp202 (W) in TycB1 [Bergendahl et al., 2002]
8 structure Arg263 (R) in VibH = Arg278 (R) in EntF

[Keating et al., 2002; Roche and Walsh, 2003]
9 catalytic activity Trp264 (W) in VibH according to Keating

et al. [2002], but absent in LCL, DCL and
Starter C domains

10 catalytic activity Asn335 (N) in VibH [Roche and Walsh, 2003]

Table 5.1: Residues of importance for catalytic activity, structure or correct
folding. Residues for which the importance has been previously determined are listed,
giving their numbers, their role and the bibliographic reference of the appropriate
mutation study. The numbering is according to the numbering in Figures 5.1 and 5.2.
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5.3.5 LCL vs. DCL

LCL and DCL domains do not differ significantly in any of the residues identi-
fied as being of catalytic or structural importance (except residues No. 9 and
No. 10). However, using methods described in Section 5.5, Materials and
Methods, on page 80, 20 positions in which LCL and DCL have significant
differences according to SDPpred [Kalinina et al., 2004] could be detected,
plus 5 additional high scoring positions within the extended motifs according
to FRpred [Fischer et al., 2006]. When comparing the different motifs, motif
C4 differs noticeably between LCL and DCL subtypes. The same is true for
the region downstream of C4 (after the mutually very conserved TRP at pos.
184 in VibH coordinates) where a moderately conserved motif LPxDxxRP is
seen in LCL which is completely absent in DCL (see Supplementary file 5.3).

5.3.6 LCL vs. Starter domain

While not being conserved at residues No. 5, No. 7, No. 9, and No. 10, all
remaining 6 functionally important residues are highly conserved throughout
the putative Starter domains. When comparing LCL and Starter domains, 18
discriminative positions were found by SDPpred and 5 more were found in
the motifs by FRpred. Those positions are highlighted in Figures 5.1 and 5.2.
Common to these residues is the fact that they seem to be highly conserved
among extender (=LCL) domains but show no conservation among Starter C
domains. When we compare C domain sequence motifs, it is apparent that
motifs C2 and C4, despite being well conserved in LCL, are unconserved in
Starter domains, which presumably can be explained by the much broader
structural range of substrates processed by Starter domains.

5.3.7 What the Phylogeny Tells Us about the Rela-
tionship of DCL vs. Dual E/C and LCL vs. Starter
Domains

The phylogenetic trees in Figures 5.5 and 5.6 and the tree on 525 taxa in
the Supplementary file 5.2 show that Dual E/C and DCL domains share a
common ancestor. From the phylogenetic trees it also appears that the closest
common ancestor of LCL domains and the closest common ancestor of Starter
C domains are more closely related to each other than to other subtypes,
based on the distances in the trees. However, these observations are not
supported by an edge with high bootstrap value separating the LCL/Starter
C domain subtrees from the other subtrees. On the other hand, comparing
sequence motifs confirms this assumption, though pronounced differences in
some segments of the protein (especially in motifs C2 and C3, as can be seen
in Fig. 5.1) account for the unequal donor substrates (amino vs. β-hydroxy-
carboxylic acid).

To get more certainty on the assumed relation of DCL versus Dual E/C
domains and LCL versus Starter domains, we tested the reliability of the
phylogenies depicted in Fig. 5.5 and Fig. 5.6 by repeating the reconstruction
on biased profile alignments. These biased alignments were generated by
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Figure 5.6: Phylogenetic trees of all C subtypes (LCL,
DCL, Starter, Dual E/C,

Epimerization and Heterocyclization domains). Compared to Fig. 5.5, this tree
additionally includes all C domains of glycopeptide antibiotic biosynthesis clusters (in
dashed boxes in the upper part of the tree).

producing MUSCLE profile-profile alignments in a step-wise manner, assuming
evolutionary relationships of the different domain subtypes that are contra-
dictory to what the original trees suggest. The topology of the resulting trees
still supports the shared ancestry of LCL and Starter C domains as well as of
Dual E/C and DCL domains. In addition, we generated an alignment using
DIALIGN [Morgenstern, 1999], which is a non-progressive alignment method,
and subsequently reconstructed a PHYML-tree based on this alignment. Here
also, the Dual E/C and DCL domains are grouped together, as are LCL and
Starter C domains.

Especially in motif C5, Dual E/C and DCL domains are very similar to
each other and dissimilar to LCL and Starter domains. This observation of
the relationship between the four subtypes is consistent with the stereochem-
istry of the substrates, bearing in mind that Dual E/C domains function as
DCL because the substrate L-amino acid is first epimerized by the intrinsic
epimerization activity of the domain [Balibar et al., 2005].

Within the subtrees of DCL and LCL domains, the tree topology reflects
the species phylogeny of the bacteria rather than substrate specificity of
any kind. We analyzed this by reconstructing phylogenies for DCL domains
and LCL domains separately to be able to see the topology within these
subtypes in more detail (data not shown). The reconstructed phylogenies
did not give any evidence that would support the hypothesis that C domains
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Figure 5.7: Modular organization of NRPSs involved in glycopeptide synthesis.
Domains marked in light gray (Completstatin) are inactive and corrupt. Moreover, E
domains in ComB and StaB are also thought to be inactive.

cluster according to their specificity towards the condensated amino acids.
This analysis, however, is based on the complete C domain sequence. A
strategy to investigate whether C domains exhibit substrate specificity would
involve predicting putative specificity determining positions using entropy
and/or conservation based approaches (e.g. SDPpred, FRpred), or inferring
of putative active site residues by homology with the VibH structure (as done
by Rausch et al. [2005] for the Adenylation domain).

5.3.8 Enigmatic NRPSs of Glycopeptide Antibiotics

Glycopeptide antibiotics are a subgroup of nonribosomal peptide antibiotics
of which the best known representatives are probably vancomycin and tei-
coplanin. To date, all identified glycopeptide antibiotics are produced by
actinomycetes. They interrupt cell wall formation of gram-positive bacteria
by binding to the D-Ala-D-Ala termini of the growing peptidoglycan, thereby
inhibiting the transpeptidation reaction. All glycopeptide antibiotics consist
of a heptapeptide backbone which is synthesized by NRPS. Modification
reactions involve extensive cross-linking of the aromatic side chains to rigidify
the molecule [Bischoff et al., 2001a,b]. The modular organization of some
NRPSs which were identified in glycopeptide-producing actinomycetes are
depicted in Fig. 5.7.

All these NRPSs comprise seven modules. They show an identical do-
main composition, with the exceptions of module M3 in the A47934 (sta),
and M3 and M6 in complestatin (com) clusters which contain an E domain
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not present in the other clusters. The M3-E domain, however, is assumed to
be inactive [Sosio et al., 2003], while the presence of an E domain in com M6
has not been reported elsewhere so far. We were able to detect it with an
hmmpfam scan using our specific E domain pHMM (available as Supplemen-
tary file 5.5). All six NRPSs contain a domain X* of unknown function. Until
now, it has been characterized as an atypical C or E domain but its role in
glycopeptide synthesis remains to be clarified. In general, it is assumed that
the stereochemistry of an NRPS product can be predicted from its domain
structure. In the case of the known glycopeptides, the domain organization
implies the stereochemistry NH2-L-D-L-D-D-L-L-COOH, provided that the
E in module M3 is inactive and that the X* domain does not function as an
E domain. This stereochemistry is inconsistent with the chemically deter-
mined structure of the products: NH2-D-D-L-D-D-L-L-COOH [Sosio et al.,
2003]. The assumption is that the A domain of the first module activates
a D-amino acid. For the cep cluster, however, Trauger and Walsh [2000]
showed that the A domain of M1 prefers L-Leu over D-Leu in a 6:1 ratio;
but on the other hand, they could not show which stereoisomer is processed
further. This suggests the existence of an unknown E domain that acts on
the L-Leu activated by M1. With the discovery of Dual E/C domains, a new
possible strategy arises for the incorporation of a D-residue by the first mod-
ule. However, no Dual E/C domain could be detected in any of the available
glyco-NRPSs. Alternatively, one could imagine an external racemase as is
found in the cyclosporin cluster [Hoffmann et al., 1994], which provides a
D-Leu that can be incorporated directly.

Having gained knowledge about the differences between LCL, Starter and
DCL domains as described above, we examined all glyco-NRPSs. When we
reconstructed the phylogeny of C domains including all homologous domains
from glyco-NRPSs, it was staggering to find that all C domains were clustered
in the DCL subtree and the X* domain clustered in the LCL subtree (see
Fig. 5.6). This finding could be confirmed by analyzing all instances of the C
domain motifs found in these domains. How could this be interpreted, given
the fact that M4 and M7 C domains clearly act as LCL domains, as we can
tell by the stereochemistry of the products? Our hypothesis is that those
C domains are former DCL domains that have developed LCL activity by
convergent evolution. Accumulating supportive evidence is possible: When
we look at the phylogeny of the C domains, the sequences of the com cluster
from Streptomyces lavendulae are always most distant from the others and
more closely related to the hypothetical common ancestor, implying that
they can serve as a model for the archetype of glyco-C domains. It is likely
that in the archetype, all C domains were true DCL catalysts, supposing that
the E domains which are still present in com modules M4 and M7 were still
active.

In a similar way, we can trace back the origin of the X* domain: in the
com cluster (and only there) it is followed by remnants of an Adenylation
domain (which has several larger insertions and deletions; see Supplementary
file 5.4). This tells us that the X* domain used to be the first domain of a
new module followed by an Adenylation domain.

The assumption that the diverged C domains of modules M4 and M7
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would have adopted mutations at positions that we have previously deter-
mined as “specificity determining positions” was disproved. Probably, a few
spontaneous mutations in the DCL domains relaxed the stereo-selectivity;
supposing that this altered stereochemistry of the product resulted in a
highly selective advantage (arising from a vancomycin-like product), the loss
of the functional E domains in M3 and M6 would have been a selective gain.
Comparing all M4 and/or all M7 C domains with all DCL domains using
SDPpred did not reveal any significant positions; comparing them against
the other glyco-C domains gave thirty positions. As all glyco-C domains
are very closely related and differences between them might also reflect sub-
strate selectivity (not only stereo-selectivity) or different inter-domain inter-
acting residues, we cannot decide which of them confers the altered stereo-
selectivity. One point to notice, however, is a (positively charged) His in all
M4 glyco-C domains at position 6 in the extended motif C2 where an (un-
charged polar) Gln is highly conserved in other DCL domains. This position
has also been selected by FRpred as a significant (=subtyping) position. The
other positions do not represent mutations in highly conserved residues (data
not shown). It would be necessary to check their significance experimentally
with mutation studies. It would also be helpful to compare the aberrant
sequences with more glyco-C domains, but others are – unfortunately – not
publicly available.

However, although we could not discover which altered positions are re-
sponsible for the functional shift from DCL to LCL in glyco-C domains, in-
teresting experimental questions can be formulated based on our findings.
For example, one could think of mutational studies with the goal of altering
the stereo-selectivity of a DCL domain and to determine the relevant residues
experimentally. A starting point could be, for example, the M6 C domain of
any glyco-NRPS. This C domain is the last to incorporate a D-amino acid
and is preceded by an active E domain. Its position towards the end of the
assembly line might be an advantage in the attempt to turn its function into
a LCL domain (together with the inactivation of the preceding E domain),
because the altered product would only need to be processed by one further
module. Thus, the risk of a lowered efficiency (lowered yield) of the assembly
line would be reduced, because less domains would be in contact with the
structurally modified product.

5.3.9 Glycopeptide-AB Module M7 vs. LCL

The second His of the His-motif in motif C3 which is important for catalysis
is replaced by Arg (R). Also, the Gly of the His-motif is not present but is
replaced by Arg in all but one X* domain. Note, however, that while the
second active site His is invariant in C domains, Gly138 is not.

SDPpred predicted 13 specificity determining residues when comparing
M7-X* to LCL-domains of Streptomyces species. Only three of these coincide
with residues of functional importance: His126, Arg278 and Asn335. Fur-
thermore, a C terminal region could be detected in which M7-X* and LCL

differ strikingly.



5.4 Conclusion 79

The concordance of M7-X* with the most highly conserved residues of
Streptomycete LCL domains supports the phylogenetically based suggestion
that M7-X* is an inactive LCL domain.

5.4 Conclusion

In this chapter, we present the evolutionary relationship of homologs of the
NRPS Condensation domain, which include enzymatic domains catalyzing
Epimerization, Heterocyclization, Condensation and Epimerization with sub-
sequent Condensation in one domain (called the Dual E/C domain). The
Condensation domain itself appears in three subtypes according to the stereo-
chemistry of the substrates catalyzed: LCL domains, which condense two
L-aminoacids, DCL domains, which condense a D-amino acid (N-terminal
part of the growing peptide) with an L-amino acid, and Starter C domains
(an expression that we coin here) which connect a β-hydroxy-carboxylic acid
(e.g. β-hydroxyl fatty acid) with an L-amino acid. The phylogeny of C
domain homologs is reconstructed using NRPS sequences (including hybrid
NRPS) from completely sequenced genomes (43 genomes contained NRPSs)
and selected biosynthesis clusters, involving 525 non-identical C domain se-
quences. The sequence motifs of LCL, DCL and Starter domains have been
extracted and are presented as sequence logos: for LCL domains, this repre-
sents an update of consensus sequences published by Marahiel et al. [1997];
DCL and Starter domain motifs are analyzed and mutually compared for the
first time. For comparison, we also present the homologous motifs for Dual
E/C domains, which were first described by Balibar et al. [2005].

We have investigated the “mysterious” evolutionary origin of C domains
in glycopeptide antibiotic synthesis clusters and have discovered that two of
the six C domains present in these glyco-NRPSs appear in the DCL subtree of
the phylogenetic tree and show all DCL sequence motifs, although they clearly
have LCL activity. This suggests that they might be an example of convergent
evolution. Even though this is probably a rare event, its possibility has
to be kept in mind when uncharacterized C domains are to be classified,
e.g. using pHMMs provided as Supplementary files 5.5-5.7 (see Section 5.7).
Furthermore, we found that a C domain-like segment of glyco-NRPS, called
X*, is related to the LCL domains and is followed by remnants of an A domain,
implying an additional complete module in the ancestor of glyco-NRPS.

Roongsawang et al. [2005] have already performed a study of the phy-
logeny of C domains which compares the three C domain subtypes. How-
ever, this study shows no awareness of the Dual E/C domain, which has since
been discovered. Moreover, we used a much more comprehensive dataset of
C domain subsequences (525, as opposed to Roongasawang et al.’s 162) com-
piled from all complete bacterial genomes and biosynthesis clusters. Because
Roongasawang et al. omitted Dual E/C domains, their conclusions need to
be revised, as we have shown.
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5.5 Materials and Methods

5.5.1 Genomes and Sequences

The protein sequences and GenBank entries for all completely sequenced
bacterial genomes available to date were obtained from the NCBI FTP site
[ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria]. In total, the genomes
of 256 bacterial species were downloaded and screened for NRPS protein
sequences (including NRPS/PKS hybrids). Additional protein sequences of
PKS and NRPS which are part of known secondary metabolite biosynthesis
clusters were obtained from the UniProt database [Wu et al., 2006]. NRPSs
were retrieved from 14 known biosynthesis clusters, of which 13 came from
Actinomycetes and one from Pseudomonas (see Supplementary file 5.8).

5.5.2 Identification NRPSs in Protein Databases and
Extraction of Their Enzymatic Domains

We employed the strategy of searching for the concurrent occurrence of sev-
eral profile Hidden Markov Models to gather the multidomain protein NRPSs
and NRPS/PKS hybrids from the protein databases and to extract their en-
zymatic domains (see Technical Background, Section 3.3.2 on page 41 for
details).

To identify a protein sequence as an NRPS, the occurrence of at least
one complete NRPS module with one C domain, one A domain and one
T domain was required (Pfam accession numbers PF00668, PF00501 and
PF00550), with an E-value threshold of 0.1 (thus we accepted missing free-
standing starter modules containing only A and T domains, or had to add
free-standing starter modules manually, as in the case of the biosynthesis
clusters).

The Pfam pHMM Condensation (PF00668) recognizes both the Conden-
sation (C) and Epimerization (E) domains of NRPS. The intention, however,
is to be able to distinguish between these two domain types. Therefore C
domain and E domain specific pHMMs were generated from a multiple se-
quence alignment (MSA) of Epimerization domains and non-Epimerization
domains, both of which were recognized by the Pfam C pHMM. To obtain
a set of Epimerization domains, all NRPS sequences with complete modules
were extracted from all bacterial protein sequences in the Uniprot database
[Wu et al., 2006] as described above. Whenever two consecutive C domains
followed by an A domain were detected with Pfam pHMMs, the “first C”
domain was extracted. That way, we obtained a set consisting mainly of E
domains (151 of 237 sequences). By phylogenetic subtyping (as described
below), we determined the E domain sequences from the phylogenetic tree
of the “first C” domains, which were forming a distinct subtree. The E
and non-E sequences were aligned with MUSCLE [Edgar, 2004a,b], and spe-
cific pHMMs were build for them with hmmbuild and hmmcalibrate from
the HMMER package (As a control, it was not possible to detect E do-
mains in the 771 “second C” domains). The domain sequence covered by our
own pHMMs for C and E domains is identical with that of the Pfam Con-

ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria
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densation pHMM; in other words, it extends from four positions before our
extended C1 motif to the fourth position after the extended C5 motif (these
motifs were first revealed by de Crécy-Lagard et al. [1995] and reviewed by
Marahiel et al. [1997]). Phylogenetic reconstruction is always based on this
part of the C domain (see Figures 5.1 and 5.2). To extract the complete
N-terminal part of the C domains, we followed the dissections applied by
Roche and Walsh [2003] and checked the secondary structure with Quick2D
[toolkit.tuebingen.mpg.de/quick2_d] of the MPI Bioinformatics Toolkit
[Biegert et al., 2006].

5.5.3 Generation of Multiple Sequence Alignments

The quality of a reconstructed phylogenetic tree crucially depends on the un-
derlying multiple sequence alignment. All sequence alignments in our study
were generated using MUSCLE [Edgar, 2004a,b]. The alignment algorithm can
be divided into three stages. First, a progressive alignment is built based
on a UPGMA guide-tree. In the second stage, the underlying guide-tree is
iteratively improved, yielding a new progressive alignment. The third stage
involves refinement of the tree: Based on the tree, bipartitions of the dataset
are produced and their profiles are extracted and realigned to each other.
Thus, the finally generated alignment is not solely based on a single guide-
tree, which is why we can rule out that the phylogenies reconstructed on the
basis of these alignments merely reflect the guide-tree used in the first step
of the algorithm.

5.5.4 Predicting Substrate Specificity

C domains catalyze the condensation of two amino acids, thus, they have
two binding sites: the acceptor and the donor site. To be able to investigate
whether the substrate specificity of one of these sites influences the phylogeny
of the domain, the specificity of the upstream and downstream A domains
in the assembly line was predicted with the NRPSpredictor (described in
Chapter 4 and in [Rausch et al., 2005]) and stored for each C domain.

5.5.5 Predicting Functional Subtypes

Functional subtypes may be distinguished on the basis of sequence features,
domain architecture or clustering behavior during tree reconstruction. Con-
densation and Heterocyclization domains may be recognized by the sequence
motif they exhibit at their active site. The occurrence of a sequence motif
within a longer sequence can be detected with the help of a position specific
scoring matrix (PSSM) (see Section 3.3.2).

PSSMs were generated and applied for detecting the active site His-motif
of the C domain and the DxxxxD-motif of the Heterocyclization domain.
These were used to discriminate between the two subtypes. The His-motif
was built from 86 sequences and the Cyc motif from 15 sequences. Sequence
logos representing the information content of these two datasets are shown

toolkit.tuebingen.mpg.de/quick2_d
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in Fig. 5.3. All sequence logos were created with the application WebLogo
[Crooks et al., 2004].

The PSSMs were only applied to a region of 100 residues, which was
expected to contain the active site. In addition, a PSSM was generated for
the N-terminal His-motif found in Dual E/C domains. It was constructed
from 55 sequences which had been identified as Dual E/C domains by their
clustering behavior in the phylogeny and by additional visual inspection of
the alignment. The PSSM was applied for validation purposes to make sure
that this N-terminal His-motif was unique to Dual E/C domains and could
not be found in any other C domain subtype. A sequence logo representation
of it is depicted in Fig. 5.4.

Predicting whether a C domain is a LCL- or a DCL-catalyst was estab-
lished according to the observed domain organization of the modules in an
NRPS sequence (DCL-catalysts were first described by Luo et al. [2002]). It is
assumed that the role of a module with the domain structure C-A-T-E is the
activation and epimerization of a residue that is in the L-stereo-configuration
with the intention of incorporating a D residue into the final product. Along-
side this, a C domain directly following an E domain is expected to be se-
lective for residues in D-configuration, which is why it was assigned to the
DCL-type. All other C domains were assumed to be LCL-catalysts. Classi-
fication as a DCL-catalyst is supposed to be fairly reliable. A false positive
should only occur if the preceding epimerase turns out to be nonfunctional.
The LCL classification, however, is prone to errors when the respective C
domain is the very first (N-terminal) domain in the protein. In this case, the
type of condensation reaction can only be determined if the order in which
the proteins act in the assembly line is known. To overcome this problem, we
checked all assignments with the classification suggested by the phylogeny.

If the order of the subunits is unknown, temporarily incorrect assignments
can only be revised later in the analysis.

5.5.6 Analysis of Multiple Sequence Alignments for
Specificity Determining Positions

In a set of homologous enzymes, we may find subsets that all contain se-
quences with one distinct substrate specificity. These subsets of common
function are called subtypes and often vary at certain positions, whereas the
same positions may be conserved within a given subtype. Li et al. [2003] call
these specificity-determining residues (SDR); Kalinina et al. [2004] refer to
them as specificity determining positions (SDP). To determine SDPs from an
alignment, calculating each column’s mutual information is a possible way,
as described by Li et al. [2003] and Kalinina et al. [2004]. For the reseach
project presented in this chapter, SDPs were determined using the freely
accessible SDPpred server [Kalinina et al., 2004]. Here, the mutual informa-
tion is based on so-called smoothed frequencies, which allow residues with
similar physico-chemical properties to be substituted. In addition to that,
the significance of the mutual information of each position is estimated by
calculating Z-scores and evaluating their significance. Predictions by SDP-
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pred were compared with the highest scoring positions predicted by FRpred
[Fischer et al., 2006, toolkit.tuebingen.mpg.de/frpred], which combines
a mutual information term with a conservation score.

5.5.7 Reconstruction of Phylogenetic Trees

Several methods were applied for reconstructing phylogenetic trees from the
multiple sequence alignments that were generated for each domain type.
Trees presented in this chapter were reconstructed using protein sequences,
as amino acid sequences are preferred to nucleotide sequences because they
are more conserved and are not influenced by compositional bias like G+C
content and codon usage. In addition, the mathematical model for the evo-
lutionary change of amino acid sequences is much simpler than that of nu-
cleotide sequences, which reduces the risk that the phylogeny is based on
wrong evolutionary assumptions, since just a suitable substitution matrix has
to be selected [Nai and Kumar, 2000]. The amino acid substitution matrix
employed in this study was the Jones-Taylor-Thornton (JTT) matrix [Jones
et al., 1992]. (A short overview of methods for phylogenetic reconstruction
can be found in the Biological Background in Section 3.4.) To model the
substitution rate, which is usually higher at positions of lower functional im-
portance, the gamma distribution has been used [Gu and Zhang, 1997, for
technical details, see Section 3.4.3].

Apart from PHYLIP [Felsenstein, 2006], all methods used in this study
offer an estimation of the parameter α which determines the shape of the Γ
distribution as an option. Whenever a gamma distributed rate variation was
assumed, four gamma-rate categories were used to approximate the distri-
bution. Several tree reconstruction methods were applied to each dataset to
determine whether different methods yield different topologies, which in turn
would indicate that the proposed topologies are unreliable. As a distance-
based method, the Neighbor-Joining (NJ) method [Saitou and Nei, 1987] was
applied. The distances were calculated with the program protdist and NJ
was performed with neighbor, both available from the PHYLIP package. For
NJ, only uniform substitution rates were used. As a maximum likelihood
method, the programs IQPNNI [Vinh and von Haeseler, 2004] and PHYML

[Guindon and Gascuel, 2003] were applied.

Bootstrapping [Felsenstein, 1985] was performed to test the reliability of
the topologies (see Technical Background in Section 3.4.4 for the principles
of bootstrapping).

Using the PHYLIP package, bootstrap datasets were generated with seq-

boot and used as input data for neighbor. PHYML also offers an option that
allows a bootstrap analysis of the original data. This results in a set of
trees which can be visualized as a consensus network using SplitsTree4

[Huson and Bryant, 2006]. Specifying a cutoff value allows a clearer view of
the bootstrap tree/network where only those edges which are supported by
boostrap values higher than the cutoff are included.

toolkit.tuebingen.mpg.de/frpred
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5.5.8 Detection of Sequence Motifs and Their Repre-
sentation

The program meme [Bailey and Elkan, 1994, meme.sdsc.edu] was used to
detect the sequence motifs in C domains. Meme discovers one or more motifs
in a collection of unaligned DNA or protein sequences. The C domain sub-
types were aligned using MUSCLE [Edgar, 2004a,b], the multiple alignments
were visualized using JalView [Clamp et al., 2004] and the motifs found by
meme were extracted (cut out). It was ascertained that the C domain motifs
described by Sieber and Marahiel [2005] were included as well as remark-
able sequence positions in proximity to the motifs, such as single conserved
residues or positions which were important for discerning the subtypes. The
dissected motif sequences were used to create pHHMs with HMMER and also
to create sequence logos using seqlogo by Crooks et al. [2004]. Sequence lo-
gos were preferred over consensus sequences, as they provide a more precise
description of sequence similarity and reveal significant features of the align-
ment which are otherwise difficult to perceive. For sequence logos, positions
with > 10% gaps were removed. The sequence logos of all C domain motifs
created with seqlogo are available online as Supplementary file 5.9.

5.6 Contribution

The first ideas for the research project described in this chapter arose dur-
ing the Master’s thesis project of Ilka Hoof [Hoof, 2006] that I supervised.
After Ilka had finished her Master’s thesis, she continued collaborating with
me on the project as a student assistant. Ilka gathered the sequences and
constructed and analyzed the phylogenetic trees. I analyzed the subtype
determining residues, constructed and interpreted the sequence logos, and
continued the investigations on the glyco-NRPS. I wrote our findings in a
manuscript for publication with the participation of Ilka in several sections.
The paper has been published [Rausch et al., 2007]. I have reworked and
adapted the publication text for this chapter.

5.7 Supplementary Data

Supplementary data for this chapter are freely available online at the web-
site of the publication by Rausch et al. [2007, www.biomedcentral.com/

1471-2148/7/78].

Supplementary file 5.1 — Phylogenetic tree of all 525 C domain
sequences in this study, reconstructed using phyml

File name: all525C E tree.nex.zip; zipped Nexus file (file name extension
.nex.zip, to be unpacked and opened with SplitsTree [Huson and Bryant
[2006], www.splitstree.org]).

meme.sdsc.edu
www.biomedcentral.com/1471-2148/7/78
www.biomedcentral.com/1471-2148/7/78
www.splitstree.org
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Supplementary file 5.2 — Phylogenetic tree of all 525 C domain
sequences in this study, reconstructed using phyml

File name: all525C E tree.pdf; PDF file.

Supplementary file 5.3 — Comparison of the logos generated from
the pHMMs for the thee subtypes (LCL, Starter and DCL domains)
using LogoMat-P [Schuster-Böckler et al., 2004]

File name: HMMLogos LCL Starter DCL.pdf; PDF file.

Supplementary file 5.4 — HMMER outputs of glyco-NRPS: fossils
in ComC and ComD

File name: GP-fossils.zip; ZIP file containing two text files.

Supplementary file 5.5 — Profile HMMs of the four complete C
domain subtypes (LCL, Starter, DCL, Dual) which can be used to
detect and distinguish between the subtypes.

File name: Condensation-hmms.hmm.zip; zipped text file (file name exten-
sion .hmm to be used with the program package HMMER [hmmer.janelia.
org].

Supplementary file 5.6 — Aligned full length Condensation do-
mains in this study

File name: complete aligned Cdoms.zip; zipped sequence file (aligned protein
sequences in FASTA format).

Supplementary file 5.7 — Profile HMMs of all seven motifs of all
subtypes (LCL, Starter, DCL, Dual)

File name: Motifs LCLstarterDCLdual.hmm.zip; zipped text file (file name
extension .hmm to be used with the program package HMMER hmmer.

janelia.org.

Supplementary file 5.8 — List of NRPSs from known biosynthesis
clusters used in this study

File name: known NRPS used.pdf; PDF file.

Supplementary file 5.9 — Sequence logos of all C domain motifs
created with weblogo (Crooks et al. (2004)

File name: allLogos.zip; ZIP file containing image files in the PNG file format.

hmmer.janelia.org
hmmer.janelia.org
hmmer.janelia.org
hmmer.janelia.org
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Chapter 6

Structural Bioinformatics of
the NRPS Adenylation
Domain: An Outlook

6.1 Overview and Motivation

In this chapter, we explore how structural bioinformatics can help us to un-
derstand and predict the substrate preference of uncharacterized Adenylation
domains better. Here, our ultimate goal is to predict the specificity of an
A domain by building a structural model of it, and to use virtual screen-
ing to find out which proteinogenic and non-proteinogenic amino acids and
other aryl acids could be its potential substrate(s). This approach is espe-
cially attractive as it does not depend on A domain sequences with annotated
specificity, in contrast to the machine learning approach presented in Chapter
4 or the phylogenetic subtyping of Chapter 5.

6.2 Results and Discussion

6.2.1 Homology Modeling of NRPS Adenylation Do-
mains

The first idea was to build a homology model for the uncharacterized A do-
main (target) using the structure of the gramicidin synthetase A phenylala-
nine adenylating domain (GrsA-PheA, PDB code 1AMU) as template, which
could then be used in a molecular docking simulation as a macromolecule,
using a series of NRP building blocks as ligands.

We chose NosD1 (involved in nostopeptolide synthesis in the cyanobac-
terium Nostoc sp. GSV224) as a template that is known to be TYR-specific,
which had been determined biochemically by an ATP-PPi-exchange reaction
using purified recombinant protein [Hoffmann et al., 2003]. (For simplicity,
we will talk about GrsA and NosD1 in the following but we always refer to
their first Adenylation domains). NosD1 appeared to be a good test candi-
date to start with because it has a high, though typical, sequence similarity to
GrsA (from motif A3 to A7 [Marahiel et al., 1997] it has 46% sequence iden-
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tity and 61% similarity). NosD1 also has no gaps in the alignment with the
“core” region from pos. 198-334 (with respect to 1AMU) and only one differ-
ence in the ten amino acid “Stachelhaus code” [Stachelhaus et al., 1999; Chal-
lis et al., 2000] compared to GrsA. (SER instead of TRP at pos. 239). In the
NosD1 structure model obtained with MODELLER 8 [Eswar et al., 2006] as
described in the MODELLER Tutorial [salilab.org/modeller/tutorial]
(side chain prediction with SCWRL3 [Cantutescu et al., 2003]; see Materials
and Methods in 6.3.2), all active site residues were found to be displaced in
one direction by a few Ångströms. However, in a realignment of the two PDB
structures (res. 235-517 and 219-521 in GrsA and NosD1 respectively) with
FATCAT (a rigid pairwise structure alignment) [Ye and Godzik, 2003, 2004],
the two structures were found to be significantly similar, with an RMSD of
0.42 Å. Fig. 6.1 depicts the superimposed ten active site positions of GrsA
and the NosD1 model, and Fig. 6.2 also shows the superimposed backbones
of the two structures (res. 235-517).

Homology models of Adenylation domains using the GrsA A domain
(1AMU) as their template have been reported previously [Ackerley et al., 2003;
Lautru and Challis, 2004; di Vincenzo et al., 2005; Schwecke et al., 2006].
The goal of those publications was manual or semi-automatic docking of the
putative substrates of the modeled structures. The purpose of the model
constructed here however, was to find methods of fully automated docking
and scoring of the best fitting substrates.

The similarity between the modeled structure of NosD1 and the structure
of GrsA is obvious from the very low RMSD and visual inspection (see Figures
6.1 and 6.2) and the substrate binding could be readily studied with such a
model. However, the objective of MODELLER is to build a structural model
satisfying the spatial restraints of the whole protein. If one tries to model a
(target) structure which is more distantly related to the template structure
one has to expect that, in order to model exterior (and often functionally
unimportant) loops, thus obtaining a higher overall score, the active site
pocket might be slightly deformed, although this might not correspond to
its real conformation. Consequently, one has to be particularly careful when
docking to homology-modeled structures.

The three related structures, GrsA, firefly luciferase and DhbE (the latter
two catalyze very different substrates), all share 16% sequence identity on
average and have an average RMSD over the Cα atoms of the entire super-
imposed structures of 2.6 Å. However, the average RMSD, calculated over
the Cα atoms enclosed in a sphere of radius 9 Å centered at the GrsA residue
Asp235 in the active site, is 0.95 Å [di Vincenzo et al., 2005]. In fact, it
is a known phenomenon that the active sites of enzymes tend to be struc-
turally more conserved during evolution (reported, for example, by Irving
et al. [2001]). This is the reason, why di Vincenzo et al. [2005] were able to
perform docking simulations on homology models built at a sequence iden-
tity to the template of only 25-30% (eukaryotic freestanding Adenylation
domains).

Based on the almost exact conservation of the active site topology in
our modeling experiment and the findings by Irving et al. and di Vincenzo
et al., and the information from Kohlbacher, we decided to perform docking

http://salilab.org/modeller/tutorial
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Figure 6.1: Superposition of the ten active site residues of GrsA (colored by atom
type) and the NosD1 structure model (yellow). The depicted substrate (blue) is a
tyrosine activated by NosD1, while GrsA activates phenylalanine. Where GrsA has a
tryptophan (pos. 239), NosD1 has a serine that probably forms a hydrogen bridge
with the hydroxyl group of the bound tyrosine. (Both hydroxyl groups are shown in
ball representation for illustration).
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Figure 6.2: Superposition of positions 235 to 517 of GrsA (blue) and the modeled
NosD1 A domain (red), which include the ten active site residues (which are repre-
sented as in Fig. 6.1 with the bound substrate in green). Both structures, depicted as
tubes, deviate only by 0.42 Å RMSD. The hetero-atoms forming ATP, Mg2+, SO2−

4

and a buried water molecule are shown as space-filling van der Waals models.
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wild type T278M/A301G mutant

PHE -31.9 kJ/mol -31.1 kJ/mol
LEU -24.6 kJ/mol -23.9 kJ/mol

Table 6.1: Estimated free energies of binding between phenylalanine and leucine,
and the GrsA wild type structure and its T278M/A301G mutant. According to the
biochemical experiment [Stachelhaus et al., 1999], PHE has a higher affinity for the
wild type structure than for the mutant structure and vice versa for LEU. The free
binding energy estimation did thus not return the expected relations for the docking
experiment using the mutant structure – the obtained energy values are the same
within the error margins for the two macromolecules only depending on the ligand.
Different possible explanations for these results are discussed in the text. However,
the binding topology obtained from the docking experiments is expected to be very
close to the actual one, based Fig. 6.3 and Fig. 6.4.

experiments directly on the GrsA structure, into which we introduced in
silico mutations to “simulate” other A domains (see next section).

6.2.2 Molecular Docking Simulations on in silico Mu-
tated GrsA A Domains Using AutoDock

We used the atom-based docking simulation program AutoDock 3 [Morris
et al., 1998] for our molecular docking studies about the structure of GrsA
(for more information about this program and on the parameters used, see
the Materials and Methods section of this chapter). We decided to construct
a double mutant GrsA as done by Stachelhaus et al. [1999] in wet lab experi-
ments (Thr278→Met/Ala301→Gly). Stachelhaus et al. [1999] have predicted
and proven biochemically that the mutant specifically activates Leu at 100%
relative activity and Phe only at 40%, compared to 10% vs. 100% relative
activity of the wild type (at comparable absolute activities for the preferred
substrate). The single mutations were introduced with BALLView [Moll
et al., 2005, 2006] (see the Materials and Methods Section of this chapter for
details).

Four docking experiments have been undertaken: Phenylalanine (from the
wild type structure) and leucine have been docked onto the wild type struc-
ture and the mutant structure (Thr278→Met/Ala301→Gly), respectively.
The estimations of the free energies of binding – presented in Table 6.1 – are
plausible for the docking experiment on the wild type structure even though
one would expect a greater difference in the values. The energies obtained
for the docking simulations on the mutant structure, however, are identical
to the values obtained for the simulations on the wild type structure (within
the error margins of docking experiments). These results do not correspond
to the biochemical experiments by Stachelhaus et al. [1999].

There are several possible explanations for these findings, including propo-
sitions for future investigations: As we can see from Figures 6.3 and 6.4 we
can be confident that our docking experiments yield the right binding topolo-
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Figure 6.3: Visualization of the results of the docking experiments. The upper
image shows the docked phenylalanine in the wild type GrsA Adenylation domain.
Below, the image shows the result of the docking experiment with leucine and the
T278M/A301G mutant structure. The carboxyl group of the bound amino acid always
forms a salt bridge to the lysine at position 517 in GrsA (in the foreground in yellow)
and the amino group forms a salt bridge to the aspartate 235 (in the background in
blue). Behind the phenyl ring of the bound PHE in the upper picture, one can see
the aromatic (red) tryptophan 239 which – in the lower picture – is partly covered
by the hydrophobic methionine 278 in the mutant structure. The alanine 301 in the
wild type structure is located directly below the phyenyl ring of the ligand (colored in
magenta as a polar side chain); its replacement, glycine 301 is visibly smaller in the
mutant structure.
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Figure 6.4: Stick models of the docked ligands phenylalanine (blue tones) and leucine
(yellow/orange). The dark-blue PHE is shown how it is actually found in the wild type
GrsA crystal. The positions of all backbone atoms overlap very well, which reflects the
postulated conserved binding mode of all amino acids in Adenylation domain homologs
by salt bridges formed to the conserved Asp235 and Lys517. Note that the docking
program (AutoDock) useses random start positions for the ligands at the beginning of
the procedure.

gies of the substrates, at least in a good approximation. The carboxyl group
of the docked amino acid is always positioned in a way that it can form
a salt bridge to the Lys517 (in Fig. 6.3 in the foreground in yellow), and
the amino group can form a salt bridge to the Asp235 (blue in the back-
ground). The peptide backbones of the docked substrate amino acids are in
the same orientation as the backbone of the PHE bound in the wild type
crystal structure (see Fig. 6.4). All these observations suggest that the dock-
ing simulation is successful. However, our results would suggest that the
T278M/A301G mutant has still a higher affinity for PHE, which is wrong
according to Stachelhaus et al.’s results. We want to recall that during the
docking simulation the side chains of the macromolecule are kept fixed and
only the ligand is flexible. Of course, this is not optimal because the side
chains in the active site will adapt to the ligand during the binding process.
Moreover, the function for the estimated free energy of binding calculated
by AutoDock is the result of a trade-off between computational efficiency
and precision [Morris et al., 1998]. Thus it might return imprecise results.
Consequently, we need an approach which allows us to model conformational
flexibility in the macromolecule, at least in its active site, and we need a reli-
able scoring function for the binding affinities and catalytic efficiencies of the
wild type and mutant enzymes that we will construct. Ideas for achieving
this will be discussed in the next section.

6.2.3 Using SCWRL3 to Model the Side Chain Con-
formations in the Active Site of Wild Type and
Mutated GrsA A Domains with Docked Sub-
strates

AutoDock 3, which was used for the docking studies presented in the pre-
vious section, did not allow for the modeling of conformational flexibility in
selected sidechains in the target macromolecule. Autodock 4, which now of-
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fers this possibility, was not available during the course of this study, so we
decided to use SCWRL3 [Cantutescu et al., 2003] for our simulations instead.
SCWRL3 is a program which predicts the conformations of the side-chains of
the amino acids of a protein structure, given the coordinates of the protein’s
peptide backbone (the Cα atoms). For a brief introduction to the strategy
of SCWRL3, see the Materials and Methods section of this chapter; for full
details, see Cantutescu et al. [2003]. The reason why we tried SCWRL3 for
a docking simulation is the advantage that both the ligand and the macro-
molecule consist of amino acids (we ignored the fact that the ligands can be
non-proteinogenic or carboxylic acids). Moreover, the “peptide backbone” of
the ligand can be regarded as it would be in a normal SCWRL3 run. There-
fore, we simply added the ligand (PHE, LEU or another ligand) after the
C-terminal amino acid in the original pdb file to make it part of the main
chain of the protein. The docking process with SCWRL3, with the backbone
atoms of the amino acid being kept still, took only a few seconds on a normal
PC compared to ten minutes up to one hour for a complete AutoDock run.

We have inspected the orientations of the amino acid side chains of the lig-
and and the macromolecule in detail. When we prepared the macromolecule
for the docking with AutoDock, we had removed the phenyl ring of the
bound PHE, leaving only the coordinates of an alanine as a “frame” during
the SCWRL3 run to avoid a bias towards the conformation of the active site
of the wild type GrsA domain with the bound PHE. We have now superim-
posed the coordinates of the wild type PDB coordinates and the coordinates
obtained from the docking with SCWRL3 and AutoDock. Fig. 6.5 illustrates
exemplarily the bound ligands (PHE) and the active site TRP239 of the wild
type macromolecule. It becomes obvious that the simplification to keep the
active site side chains fixed during the docking procedure is largely subop-
timal: The prediction of the active site and PHE ligand side chains with
SCWRL3 returned a conformation (yellow in Fig. 6.5) which is very similar
to the one found in the actual crystal structure (1AMU, blue) and different
from the conformation used in the AutoDock docking experiment. It actu-
ally appears that this conformation is an example of T-shaped π-π stacking;
the phenyl ring stands perpendicular, slightly tilted over the indole ring of
the tryptophan residue of the macromolecule at a distance of 3.5 Å as ex-
pected for this kind of aromatic stacking [Thomas et al., 2002]. One more
indication that the active site conformation used for docking with AutoDock
is sub-optimal.

The strategy to employ a side chain prediction (SCWRL3) is promising
because it is much faster than a docking with AutoDock and it allows for side
chain flexibility of the ligand and the macromolecule residues. Future work
will be to develop a more complex energy function than the one implemented
in SCWRL3, which is currently been done in Oliver Kohlbacher’s working
group and to look for a suitable energy function to evaluate the catalytic
activity of the ligand-macromolecule complexes obtained by SCWRL3.
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Figure 6.5: Three superimposed visualizations of the phenylalanine ligand (as a stick
model) and tryptophan 239 of the macromolecule (as stick model on the left, as
space-filling model on the right). Blue: coordinates of 1AMU. Yellow: After running
SCWRL3 on the coordinates of 1AMU with the phenylalanine ligand appended to the
peptide chain of the macromolecule so that SCWRL3 can also optimize its side chain
orientation. Red: The ligand as positioned after docking with AutoDock, and the
macromolecule TRP side chain as obtained by an SCWRL3 side chain prediction while
leaving the PHE of 1AMU without the phenyl ring in the active site. The phenyl ring of
the phenylalanine and the indole ring of the tryptophan apparently form a T-shaped
π-π stacking according to their distance (3.5 Å) and orientation.

6.3 Materials and Methods

6.3.1 Introducing Point Mutations in silico

Using BALLView

The side chains of the wild type that differ from the mutant structure were
removed, the name of the residue was changed in the properties menu and
hydrogens were added to all side chains, a process in which BALLView recon-
structs incomplete side chains using the most frequent rotamer which does
not interfere with other side chains.

Using SCWRL3

SCWRL3 [Cantutescu et al., 2003] offers a different way of replacing certain
amino acid side chains but preserving the coordinates of the backbone. The
program accepts a template structure and the sequence of a target structure
as input. Side chains at positions where the template and target differ are
replaced according to the given sequence information. The side chain orien-
tations of these mutant positions, as well as of preserved positions written
in upper case in the sequence file, are modeled by the program (see next
section).

6.3.2 Side-Chain Conformation Prediction Using
SCWRL3

Methods for homology modeling of protein structures, ab initio protein struc-
ture prediction and protein design applications typically predict the coordi-
nates of the peptide backbone (the Cα atoms). In the next step, a fast and
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Figure 6.6: The main features of a grid map: The ligand can be seen in the center
of the grid map, buried inside the active site of the protein. In the case shown, the
grid map encompasses the whole protein. The grid spacing is the same in all three
dimensions. Reprinted with kind permission from Morris et al. [2001].

accurate side-chain conformation prediction is needed. SCWRL3 is an algo-
rithm that solves the combinatorial problem encountered in the side-chain
prediction problem by using results from graph theory. In this method, side
chains are represented as vertices in an undirected graph. Any two residues
that have rotamers with nonzero interaction energies are considered to have
an edge in the graph. The resulting graph can be partitioned into connected
subgraphs with no edges between them. These subgraphs can in turn be
broken into biconnected components, which are graphs that cannot be dis-
connected by the removal of a single vertex. The combinatorial problem
is reduced to finding the minimum energy of these small biconnected com-
ponents and combining the results to identify the global minimum energy
conformation [Cantutescu et al., 2003].

6.3.3 Molecular Docking Simulations with AutoDock

Principles of AutoDock

AutoDock3 [Morris et al., 1998] is an atom-based molecular docking simula-
tion program. AutoDock achieves a rapid energy evaluation by precalculating
grid-based molecular affinity potentials. For each atom type in the substrate
molecule, a separate three-dimensional grid map is generated by assigning the
energy of the interaction of a single probe atom to the grid point. Fig. 6.6
illustrates the main features of a grid map.

In a similar way, a grid for the electrostatic potential is calculated. For
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the ligand, a rigid root is defined from which rotatable bonds extend. The
program implements different search methods (simulated annealing, genetic
search algorithms and local search), from which the Lamarckian genetic algo-
rithm was used in this study. This algorithm starts the docking process with
a random population of a limited number of individuals. These individu-
als represent molecules with uniformly distributed random values for torsion
angles, quaternions and translation vectors. The values for torsion angles,
quaternions and translation vectors represent the genes of an individual and
can be inherited by the upcoming population. Some of the ligands undergo
a local search before the energy of each individual is calculated to determine
how many offspring it will produce in the following generation. Finally, a
two-point crossover and mutations are performed on random members of the
population, resulting in new ligand positions and conformations. Addition-
ally, elitism is normally used to let some individuals with the best energies
survive unchanged into the next generation.

Parameters Used with AutoDock in the Presented Study

The macromolecule was prepared as follows: First, the side chain confor-
mation was predicted using SCWRL3, setting the coordinates of the bound
PHE (having the phenyl ring removed) in the structure as frame file. Then
we followed the recommendations in AutoDock’s User Guide: Polar hydro-
gens were added using protonate and the energetically optimal orientation
of the hydrogen bonds was predicted using pol h and the configuration file
PROTON INFO.kollua polH from the Amber 7 package of molecular simula-
tion programs [Case et al., 2005]. Finally, partial charges (Kollman charges)
and solvation parameters were added using q.kollua and addsol from the
AutoDock package [Morris et al., 1998]. The ligand coordinates were taken
from the GrsA structure (1AMU); the PHE structure (ligand) was either taken
as is, or changed into another amino acid with BALLView as described in
the previous section.

The grid spacing was 0.2 Å with 40 intervals in the x- and y- dimension
and 84 in the z-dimension, providing a grid box which included the entire
binding site of the enzyme, and enough space for the ligand translational
and rotational walk. The grid was centered at (32.20 Å, 98.48 Å, 33.23 Å),
the active site pocket center (determined with AutoDockTools [autodock.
scripps.edu → AutoDockTools]).

For each docking simulation, 200 runs were performed with a maximum
number of 27 000 genetic algorithm operations, generated on a single popu-
lation of 100 individuals. The maximum number of energy evaluations was
set to 250 000. Other parameters for the docking were: a random starting
position and conformation, a maximal mutation of 2 Å in translation and
50◦ in rotations, an elitism of 1, a mutation rate of 0.02, a crossover rate
of 0.8 and a local search rate of 0.06. Simulations were ranked according to
the estimated free energy of binding between the protein and the ligand, a
summation of intermolecular energy terms, and the torsional free energy.

autodock.scripps.edu
autodock.scripps.edu
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6.4 Conclusion and Outlook

We have demonstrated that techniques available from structural bioinforma-
tics can provide useful insights into the molecular functioning of Adenylation
domains of which the structure is unknown. Necessary steps in the future will
be to look for better energy functions to evaluate complexes of Adenylation
domains with bound substrates obtained by docking or by prediction of the
side chains with programs like SCWRL3, with the goal of improving the pre-
diction of the principally activated substrate. Therefore it will be necessary
to apply different available program packages to predict the binding affinities,
for example, to try the Amber 9 package [Case et al., 2005] or Liaison [Zhou
et al., 2001; Schrödinger, Inc., 2003]. It would also be worthwhile to compare
SCWRL3, which uses a simple repulsive steric energy term, with a program
that uses a more sophisticated energy function such as a piece of software
which is currently being developed by Nora Toussaint in Oliver Kohlbacher’s
group. Moreover, one should try the recently released AutoDock 4 dock-
ing program [autodock.scripps.edu] which now allows side chains in the
macromolecule to be flexible and uses a new free-energy scoring function.
The docking program Glide [Friesner et al., 2004; Halgren et al., 2004] from
Schrödinger, Inc. (Portland, OG, USA) and other docking programs could
be used for comparison.

Additionally it would be worthwhile to do more homology modeling of
A domains with MODELLER 9 and other programs, for example Prime
[Schrödinger, Inc.], putting a high emphasis on the preservation of the geom-
etry of the binding pocket.

Once we will have established a working model for predicting the binding
affinity, we will need to simulate the kinetics of the whole adenylation process
with the goal of getting realistic estimations of the substrate turnover rates.
Because the part of the active site that catalyzes the adenylation is highly
conserved in all subtypes and is (supposably) independent from the part that
coordinates the ligand amino acid side chain, there is hope that the turnover
rate can be estimated from the binding affinity.

autodock.scripps.edu


Chapter 7

General Conclusions

Chapter 7 concludes on the new predictive methods presented and their im-
pact on and applicability to other problems, followed by an outlook what
bioinformatical challenges need to be solved in the NRPS and PKS field.

7.1 Concluding Remarks on the Results

In this thesis, we have presented two important steps towards predicting
the ordered composition of novel non-ribosomal peptides (NRPs) based on
the sequence of their synthetases (NRPSs): First, we use machine learning
(SVMs) to predict which amino acid is selected by a given Adenylation (A)
domain for incorporation into the NRP (Chapter 4). We implement this
approach in our free program NRPSpredictor. Then, by means of phyloge-
netic functional subtyping and profile Hidden Markov Models which we make
available, we are able to predict the subtype of the following Condensation
(C) domain which allows us to determine the stereo-configuration of the in-
corporated amino acids (Chapter 5). The knowledge of the exact subtype
of a C domain may also be informative for determining the order in which
several NRPSs in one biosynthesis cluster act in concert, if it is found at an
N-terminus of an NRPS. If the C domain is a Starter C domain, its NRPS
will be the first in the assembly line. A DCL domain is expected to succeed
an E domain, an LCL domain is not. If the NRP product is known, then the
building block-to-domain assignment is further facilitated.

In Chapter 6, we have highlighted that predicting the A domain specificity
with the aid of structural bioinformatics techniques (molecular modeling and
docking) can be very helpful, especially if the NRPSpredictor gives no predic-
tion or only at low confidence (which can be expected for rare specificities, or
domains which exhibit an alternative binding mode which is often observed
for eukaryotic sequences). However, more work is necessary to obtain more
meaningful binding energy estimations.
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7.2 Impact and Applicability of the Devel-

oped Methods on the Substrate Speci-

ficity Prediction of Enzymes

The general strategies that we have pinpointed in this thesis are applicable to
the prediction of functional subtypes of other enzyme families under certain
requirements: The concept of machine learning of the physico-chemical fin-
gerprint as implemented by the NRPSpredictor (Chapter 4) can be applied
provided that the protein sequences of the different subtypes share a suffi-
ciently high sequence identity to justify the assumption that the active site
topology is conserved to make sure that homologous positions contribute to
the specificity/functional subtype in an analogous manner. The most impor-
tant factor is a high sequence conservation within the parts that constitute
the active site. For an estimation of the relationship between sequential and
structural similarity, refer to Rost [1999]. Ideally, one would need at least
one resolved structure of the proteins of the homologous family, which will be
used to determine the residues within a certain radius of the active site. If no
structure is available, the functionally important (subtyping) positions may
be inferred using entropy and/or conservation based approaches like those
described by Fischer et al. [2006] and Kalinina et al. [2004].

Several possible applications have been listed in Section 4.5. In his Mas-
ter’s thesis project, Marc Röttig [2006] applied the (generalized) NRPSpre-
dictor strategy successfully to different subtypes of glycosyltransferases and is
currently further developing this “Active Site Classification” (ASC) method
[Röttig et al., 2007].

Functional classifications may also be facilitated with phylogenetic meth-
ods and the detection of sequence motifs as shown in Chapter 5 for the C
domains. However, the trees obtained by phylogenetic reconstruction may
simply reflect the species phylogeny if the functional subtyping signal is only
carried by a few positions in the peptide as is the case with the A domain. In
a comprehensive analysis of the phylogeny of PKS and NRPS domains [Hoof,
2006], we could observe that both signals are frequently superimposed.

7.3 Future Challenges in NRPS/PKS Research

The biosynthetic factories of NRPS, PKS and post-assembly-line tailoring
enzymes are still far from being fully understood. Molecular structures are
now available for most NRPS/PKS domains, which greatly helps the under-
standing of their molecular functioning. Even so, the individual domains still
bring surprises like the recently discovered Dual E/C domains [Balibar et al.,
2005]. But understanding the substrate selection of and the communication
between the domains is the great challenge ahead. The publication by Koglin
et al. [2006] that elucidated the “shuttle” function of the T domain, which
interacts with the A, C, E and TE domains, and the publications by Minowa
et al. [2007] and Thattai et al. [2007] that explored the co-evolution of in-
teracting C- and N-terminal domains in NRPS/PKS and PKS (respectively)
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are important for answering this question. But, more bioinformatics and
wet-lab studies are still necessary to find out which positions/regions in the
protein are relevant for the efficient recognition and transfer of the correct
substrate to the next domains/modules. In preparation for these statistical
and biochemical studies, it will be necessary to establish a comprehensive
analysis tool and a database of PKSs, NRPSs and their domains with anno-
tated functions and specificities. Such a tool, combined with an annotated
database, could integrate all currently available predictive methods of the
NRPS/PKS field and would be very helpful for researchers in the field.

The common way to predict the substrate of the AT domain in PKS is
currently to look for distinctive sequence motifs (see Haydock et al. [2005]
and references therein). Using the recently published structure of the KS–AT
didomain [Tang et al., 2006] with the NRPSpredictor strategy, one could im-
plement an automated prediction for the AT domain substrate specificity. In
an analogous manner, one should try to further elucidate the substrate speci-
ficity of KS, C and TE domains using the available structures and statistic
evaluations of their sequence alignments for identifying specificity determin-
ing positions. Of course, additional crystal structures of NRPS and PKS
domains, especially co-crystallizations of interacting domains, would boost
our understanding of the molecular mechanisms. This would also allow us to
further improve the predictive methods further.

The more we increase our understanding of those machineries that are
“both elegant and admirably efficient” (citing Fischbach and Walsh [2006]),
the more successful will our attempts be to engineer NRPS/PKS systems
that produce novel compounds with interesting properties.
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of Two Assemblies of Related Genomes. In Proceedings of the
German Conference on Bioinformatics 2004 in Bielefeld, vol. 53 of
Lecture Notes in Informatics, Gesellschaft für Informatik, Germany,
pages 3–12.

To facilitate research in comparative genomics, sequencing
projects are increasingly aimed at assembling the genomes of
closely related organisms. Given two incomplete assemblies
of two related genomes, the question arises how to use the
similarity of the two sequences to obtain a better ordering
and orientation of both assemblies. In this paper, we formal-
ize this question as the Optimal Syntenic Layout problem,
show that it is in general NP-hard, but that it can be solved
well in practice using an algorithm based on maximal graph
matching. We illustrate the problem using different assem-
blies of two strains of Bdellovibrio bacteriovorus.

2. Christian Rausch, Tilmann Weber, Oliver Kohlbacher, Wolfgang Wohl-
leben and Daniel H. Huson. Specificity Prediction of Adenylation
Domains in Nonribosomal Peptide Synthetases (NRPS) Us-
ing Transductive Support Vector Machines (TSVMs). Nucleic
Acids Research (2005), volume 33, pages 5799-5808.

We present a new support vector machine (SVM)- based ap-
proach to predict the substrate specificity of subtypes of a
given protein sequence family. We demonstrate the useful-
ness of this method on the example of aryl acid-activating
and amino acid-activating Adenylation domains (A domains)
of nonribosomal peptide synthetases (NRPS). The residues
of gramicidin synthetase A that are 8 Å around the substrate
amino acid and corresponding positions of other Adenylation
domain sequences with 397 known and unknown specificities
were extracted and used to encode this physico-chemical fin-
gerprint into normalized real-valued feature vectors based on
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the physico-chemical properties of the amino acids. The SVM
software package SVMlight was used for training and classi-
fication, with transductive SVMs to take advantage of the
information inherent in unlabeled data. Specificities for very
similar substrates that frequently show cross-specificities were
pooled to the so-called composite specificities and predictive
models were built for them. The reliability of the models
was confirmed in cross-validations and in comparison with a
currently used sequence-comparison- based method. When
comparing the predictions for 1230 NRPS A domains that are
currently detectable in UniProt, the new method was able to
give a specificity prediction in an additional 18% of the cases
compared with the old method. For 70% of the sequences
both methods agreed, for < 6% they did not, mainly on low-
confidence predictions by the existing method. None of the
predictive methods could infer any specificity for 2.4% of the
sequences, suggesting completely new types of specificity.

3. Efthimia Stegmann, Christian Rausch, Sigrid Stockert, Daniel Burkert
and Wolfgang Wohlleben. The Small MbtH-like Protein En-
coded by an Internal Gene of the Balhimycin Biosynthetic
Gene Cluster is not Required for Glycopeptide Production.
FEMS Microbiology Letters (2006), volume 262, pages 85–92.

The balhimycin biosynthetic gene cluster of the glycopeptide
producer Amycolatopsis balhimycina includes a gene (orf1 )
with unknown function. orf1 shows high similarity to the
mbtH gene from Mycobacterium tuberculosis. In almost all
nonribosomal peptide synthetase (NRPS) biosynthetic gene
clusters, we could identify a small mbtH-like gene whose func-
tion in peptide biosynthesis is not known. The mbtH-like
gene is always colocalized with the NRPS genes; however,
it does not have a specific position in the gene cluster. In
all glycopeptide biosynthetic gene clusters the orf1 -like gene
is always located downstream of the gene encoding the last
module of the NRPS. We inactivated the orf1 gene in A. bal-
himycina by generating a deletion mutant. The balhimycin
production is not affected in the orf1 -deletion mutant and
is indistinguishable from that of the wild type. For the first
time, we show that the inactivation of an mbtH -like gene
does not impair the biosynthesis of a nonribosomal peptide.

4. Lalitha Voggu, Steffen Schlag, Raja Biswas, Ralf Rosenstein, Christian
Rausch, and Friedrich Götz. Microevolution of Cytochrome bd
Oxidase in Staphylococci and Its Implication in Resistance
to Respiratory Toxins Released by Pseudomonas. Journal of
Bacteriology (2006), volume 188, pages 8079–8086.

Pseudomonas aeruginosa and Staphylococcus aureus are op-
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portunistic pathogens and frequently coinfect the lungs of
cystic fibrosis patients. P. aeruginosa secretes an arsenal of
small respiratory inhibitors, like pyocyanin, hydrogen cyanide,
or quinoline N-oxides, that may act against the commensal
flora as well as host cells. Here, we show that with respect
to their susceptibility to these respiratory inhibitors, staphy-
lococcal species can be divided into two groups: the sensi-
tive group, comprised of pathogenic species such as S. aureus
and S. epidermidis, and the resistant group, represented by
nonpathogenic species such as S. carnosus, S. piscifermen-
tans, and S. gallinarum. The resistance in the latter group
of species was due to cydAB genes that encode a pyocyanin-
and cyanide-insensitive cytochrome bd quinol oxidase. By
exchanging cydB in S. aureus with the S. carnosus-specific
cydB, we could demonstrate that CydB determines resis-
tance. The resistant or sensitive phenotype was based on
structural alterations in CydB, which is part of CydAB, the
cytochrome bd quinol oxidase. CydB represents a prime ex-
ample of both microevolution and the asymmetric pattern of
evolutionary change.

5. Christian Rausch, Ilka Hoof, Tilmann Weber, Wolfgang Wohlleben and
Daniel H. Huson. Phylogenetic Analysis of Condensation Do-
mains in NRPS Sheds Light on Their Functional Evolution.
BMC Evolutionary Biology (2007), volume 7, page 78.

Background: Non-ribosomal peptide synthetases (NRPSs)
are large multimodular enzymes that synthesize a wide range
of biologically active natural peptide compounds, of which
many are pharmacologically important. Peptide bond forma-
tion is catalyzed by the Condensation (C) domain. Various
functional subtypes of the C domain exist: An LCL domain
catalyzes a peptide bond between two L-amino acids, a DCL

domain links an L-amino acid to a growing peptide ending
with a D-amino acid, a Starter C domain (first denominated
and classified as a separate subtype here) acylates the first
amino acid with a β-hydroxy-carboxylic acid (typically a β-
hydroxyl fatty acid), and Heterocyclization (Cyc) domains
catalyze both peptide bond formation and subsequent cy-
clization of cysteine, serine or threonine residues. The ho-
mologous Epimerization (E) domain flips the chirality of the
last amino acid in the growing peptide; Dual E/C domains
catalyze both epimerization and condensation. Results: In
this paper, we report on the reconstruction of the phyloge-
netic relationship of NRPS C domain subtypes and analyze
in detail the sequence motifs of recently discovered subtypes
(Dual E/C, DCL and Starter domains) and their character-
istic sequence differences, mutually and in comparison with
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LCL domains. Based on their phylogeny and the comparison
of their sequence motifs, LCL and Starter domains appear
to be more closely related to each other than to other sub-
types, though pronounced differences in some segments of
the protein account for the unequal donor substrates (amino
vs. β-hydroxy-carboxylic acid). Furthermore, on the ba-
sis of phylogeny and the comparison of sequence motifs, we
conclude that Dual E/C and DCL domains share a common
ancestor. In the same way, the evolutionary origin of a C do-
main of unknown function in glycopeptide (GP) NRPSs can
be determined to be an LCL domain. In the case of two GP C
domains which are most similar to DCL but which have LCL

activity, we postulate convergent evolution. Conclusions:
We systematize all C domain subtypes including the novel
Starter C domain. With our results, it will be easier to de-
cide the subtype of unknown C domains as we provide profile
Hidden Markov Models (pHMMs) for the sequence motifs as
well as for the entire sequences. The determined specificity
conferring positions will be helpful for the mutation of one
subtype into another, e.g. turning DCL to LCL, which can
be a useful step for obtaining novel products.

6. Daniel H. Huson, Tobias Dezulian, Markus Franz, Christian Rausch,
Daniel C. Richter and Regula Rupp (all authors have contributed equally).
Dendroscope: An Interactive Viewer for Large Phylogenetic
Trees. BMC Bioinformatics (2007), accepted.

Background: Research in evolution requires software for
visualizing and editing phylogenetic trees, for increasingly
very large datasets, such as arise in expression analysis or
metagenomics, for example. It would be desirable to have
a program that provides these services in an efficient and
user-friendly way, and that can be easily installed and run
on all major operating systems. Although a large number of
tree visualization tools are freely available, some as a part of
more comprehensive analysis packages, all have drawbacks in
one or more domains. They either lack some of the standard
tree visualization techniques or basic graphics and editing
features, or they are restricted to small trees containing only
tens of thousands of taxa. Moreover, many programs are
difficult to install or are not available for all common operat-
ing systems. Results: We have developed a new program,
Dendroscope, for the interactive visualization and navigation
of phylogenetic trees. The program provides all standard
tree visualizations and is optimized to run interactively on
trees containing hundreds of thousands of taxa. The pro-
gram provides tree editing and graphics export capabilities.
To support the inspection of large trees, Dendroscope offers



107

a magnification tool. The software is written in Java 1.4 and
and installers are provided for Linux/Unix, MacOS X and
Windows XP. Conclusions: Dendroscope is a user-friendly
program for visualizing and navigating phylogenetic trees, for
both small and large datasets.
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