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PART I - Mice deficient for TA-p63 
 
1. Summary 
 p63 is one of three members of the p53 family of transcription factors.  

Transcription of the p63 gene gives rise to two different N-terminal isoforms, one 

with (TA-p63) and one without (∆N-p63) a transactivation domain.  Analysis of 

p63 protein expression in tissues and of mice deficient for all p63-isoforms 

revealed a function of p63 in epithelial, craniofacial, and limb development.  The 

significance of p63 in epidermal development is further highlighted by the 

discovery of p63 germline mutations in severe human syndromes with limb 

defects and ectodermal dysplasia.   

 Interestingly, the interpretation of p63 function in epidermal development 

is still controversial.  On one hand, p63 is discussed as a commitment factor for 

the embryonic ectoderms to epidermal lineage, while on the other hand, it is 

suggested that p63 is a stem cell factor involved in maintenance of proliferative 

potential and regeneration of epidermal stem cells.  Furthermore, there are 

different opinions about the relative significance of TA- and ∆N-p63 in the 

commitment to epidermal lineages and in epidermal differentiation.  

 Recently, studies in mice deficient for more than one p53 family member 

were conducted to reveal potential cross-regulation between them.  Moreover, 

TA-p63 was found to be implicated in the protection of the female germline by 

inducing cell death in oocytes upon gamma-irradiation.       

 The work presented here investigates the function of TA-p63 in the 

commitment of embryonic ectoderm to epidermal lineages and epithelial 

development to resolve the controversy about the relative significance of TA- and 

∆N-p63 in this process.   Furthermore, phenotypic abnormalities observed in TA-

p63(-/-) are described.   
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2. Introduction 
 
2.1    The gene structure of p63 

The p63 (KET, p51, AIS) gene is a recently discovered homologue of the 

tumor-suppressor p53 [1-4], the most frequently mutated or inactivated gene in 

human cancer (>50% of all human cancers), and the third member of the p53-

protein family, which also includes p53 and p73 [5].   Although the general 

domain structure of p53, which includes amino-terminal transactivation, DNA-

binding and carboxyl-terminal oligomerization domains, is conserved in p63, the 

p63 gene structure is far more complex than that of p53 [1-4].  The p63 gene 

gives rise to many different transcripts by utilizing two independent promoters as 

well as alternative mRNA splicing at its 3’ end (Fig.1). 

The p63 gene is located on human chromosome 3q27-3q28 and contains 

15 exons spread over 200kb.  A promoter upstream of exon 1 gives rise to 

transcripts that contain a p53-like TA-domain.  An additional class of TA-

isoforms, TA∗-transcripts with a 39 amino acid long amino-terminal extension, 

were found in cDNA libraries from mouse embryos, rat and human tissues  [1, 

13]. Transcripts with a truncated amino terminus (∆N-p63) originate from a 

promoter located in intron 3.  While the TA-p63 isoforms are likely to act in a p53-

like manner in gene transcription, the ∆N-p63 isoforms are thought to have 

opposite effects and to function as dominant-negatives towards p53 and TA-p63 

isoforms [14].   

Besides differential promoter usage, additional p63 gene products are 

generated by alternative splicing of the carboxyl-terminus.  At least three different 

isoforms (α, β, and γ) have been detected for TA- and ∆N-p63.  While all 

carboxyl-terminal  isoforms contain the DNA-binding and oligomerization 

domains, only the longest α-isoforms contains an additional sterile α-motif (SAM) 

and transactivation inhibitory (TI) domain [15, 16].  SAM-domains are shown to 

mediate protein-protein interactions.  The TI domain is p63/p73 specific and 

located carboxyl-terminal from the SAM domain.  In transactivation assays, the TI 

domain was shown to inhibit TA-p63α transcriptional activity, possibly via an 

intramolecular mechanism [15].   
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Figure 1   Gene structure of p63.  a. Intro-exon structure of the human p63 gene.  The 15 exons 

(boxes) of p63 are spread over more than 200kb with intron sizes ranging from few hundred base 

pairs to 40kb.  Transcription of the TA/TA*-isoforms is initiated from a promoter upstream of exon 

1.  ∆N-mRNA-isoforms are initiated from a cryptic promoter in intron 3.  The splicing patterns of 

the α, β, and γ isoforms are displayed.  Arrows indicate transcriptional starts.  b. Domain structure 

of p53, TA- and ∆N-p63 isoforms with transactivation (TA), DNA binding, oligomerization, sterile 

α-motif (SAM), and transactivation inhibitory (TI) domain.  Adapted from [14]. 

 

In its structure and transcriptional activity, TA-p63γ seems to be the most 

p53-like p63 isoform.  In transactivation assays with p53 reporter genes, TA-p63β 

and γ show transcriptional activation.  Conversely,  TA-p63α had only minor 

effects on induction of reporter gene expression due to the inhibitory effect of the 

TI domain [1, 3, 15].  Furthermore, heterologous overexpression of TA-p63β and 

γ, but not TA-p63α, induces apoptosis.  While TA-p63 isoforms can exhibit p53-

like behavior in transactivation and transfection assays,  ∆N-p63 isoforms act in a 

dominant-negative manner towards p53 and TA-p63 isoforms [1].   
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2.2   Expression of p63  

TA- and ∆N-p63 isoforms differ significantly in expression level and 

pattern.  Immunohistochemical analysis of p63 expression with the pan-p63 

mouse monoclonal antibody 4A4 in humans and mice revealed strong nuclear 

staining in the basal layer of epithelial tissues such as the epidermis, cervix, 

vagina, urogenital tract, prostate, myoepithelium of the breast, and glandular 

tissue [1, 10] (Fig. 2).  Analysis of mRNA expression and protein size in these 

tissues indicate predominant presence of ∆N-p63α. 

 

 

         
 

 

 

 

 

 

 

 

 

 

 

 

epidermis

bulge

hair
bulb

p63 p63CK

Figure 2   p63 expression in the basal layer of the epidermis.  Immunofluorescence of 

newborn mouse epidermis stained with p63 (red) and pan-cytokeratin (green, inset).  bulge, the 

bulge of the hair follicle.  The dotted line indicates the border between the epidermis and the 

dermis.  Bar, 50µm.   

 

Using TA-p63 specific antibodies (6E6 and 4B2), TA-p63 was detected in 

the thyroid gland and ovary.  p63 expression was previously reported in female 

and male reproductive organs [17].  Using a ∆N-p63-specific antibody, Kurita et 

al. were able to detect ∆N-p63 in prostate, cervical, and vaginal epithelium, but 

not in testis and ovary, which stained positive with a pan-p63 (4A4) antibody, 

suggesting TA-p63-specific expression.  Indeed, TA-p63 expression in the 

ovaries could be confirmed using a TA-p63-specific antibody, while no TA-p63 

staining was detected in testis (Suh et al, submitted).  It is likely that the p63 
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staining found in testis is due to a previously observed cross-reactivity of the pan-

p63 antibody with a testis-specific protein (M. Senoo, personal communication).   

 

 

2.3 Skin morphogenesis and organization 

The skin is the body’s largest organ, and protects it against dehydration, 

temperature changes, infection, and injury.  Skin consists of the dermis and 

epidermis separated by the basal lamina.  During development, a highly 

proliferative, single-layered ectoderm covers the surface of the embryo and 

eventually differentiates into keratinocytes.  Papilla cells, derived from the dermal 

mesenchymal cells, induce hair follicle formation [18-20]  The mature epidermis 

is a stratified squamous epithelium (Fig. 3) in which proliferation is restricted to 

stem cells and transient-amplifying cells in the interfollicular basal layer and in 

the bulge of the hair follicle [21].  Stem cells in the basal layer give rise to 

stratified layers, while those in the hair follicle are required for the continuous 

renewal of hair and sebaceous glands [20].   Keratinocytes are the major cell 

type of the epidermis.  They originate from the stem cells in the basal layer and 

undergo squamous differentiation until they reach the stratum corneum.  

The stem cells in the interfollicular basal layer undergo asymmetric cell 

division into a daughter stem cell and a transient amplifying cell [22].  Transient 

amplifying cells go through additional but limited rounds of cell division, before 

they differentiate [23].  Both stem cells and transient amplifying cells are 

characterized by the expression of keratin 8 (K8) and 18 (K18).  Furthermore, 

induced by signals from the underlying mesenchyme, keratinocytes in the basal 

layer of the epidermis express keratin 5 (K5) and keratin 14 (K14).  During 

mouse embryogenesis, this process starts around day e9.5 and by day e14.5, all 

epidermal cells express K5 and K14, which is restricted to cells with proliferative 

potential and is down-regulated upon differentiation [18].                         

As cells become differentiated and move into suprabasal layers, they 

strengthen their cytoskeleton, become connected by desmosomes, and start to 

express K1 and K10 (lower and upper spinous layer), involucrin (upper spinous), 

profilaggrin   and loricin (granular layer), and filaggrin (stratum corneum).  

Filaggrin bundles keratins into macrofibrils to make them more resistant to 

mechanical stress and to give them more tensile strength [24, 25]. 
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Figure 3    Histology of skin.  Skin consists of epidermis and dermis which are separated by the 

basal lamina.  Mitotically active cells only exist in the basal layer.  As cells differentiate and move 

outward into the spinous layer, they stop dividing and start to produce cytoskeletal proteins and 

intercellular connections (desmosomes).  This process is completed when cells reach the 

granular layer where they start to produce an epidermal barrier that protects the body from 

dehydration and environmental stress before they undergo cell death.  These dead proteinaceous 

cell sacs, squames, form the stratum corneum and are eventually sloughed off.  Adapted from 

[20]. 

 

  Furthermore, glutamine- and lysine-rich proteins such as involucrin and 

loricrin are crosslinked in isopeptide bonds by epidermal transglutaminase to 

form the cornified envelope [26].  During the terminal differentiation process, cells 

in the stratum corneum undergo programmed cell death and become dead 

proteinaceous sacs (squames), which eventually detach [27].  In mice, the 

differentiation process from basal layer to squames takes between 10 and 14 

days, demonstrating the great proliferative potential of epidermal stem cells [28].    

p63 is highly expressed in the interfollicular basal layer as well as in the 

bulge and bulb of the hair follicle.  As cells differentiate and move outward to the 

surface of the skin, p63 expression is down-regulated.  Recently, p63 was 

implicated in cell adhesion and loss of p63 expression was shown to lead to loss 

of adhesion [29].  However, it is not known if downregulation of p63 expression is 

required for detachment from the basal lamina during stratification.   
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2.4   Oocyte development and TA-p63 

Around day e10 of mouse embryogenesis, primordial germ cells (PGCs) 

migrate to the gonadal ridge and thereby undergo approximately eight cell cycles 

to generate a pool of 20,000 germ cells.  In the developing female gonad, PGC 

differentiate into oogonia and further into oocytes.  At day e.13.5, oogonia enter 

meiosis, develop into primordial oocytes, and pass through the leptotene, 

zygotene and pachytene stages of prophase I before they arrest in the diplotene 

stage (dictyate arrest) of prophase I around the time of birth [30].  Just before 

birth, when primordial oocytes are in the zygotene or pachytene stage, the first 

wave of oocyte death occurs, leaving only 20-30% of the initial number of 

oocytes behind to be enclosed within follicular granulosa cells (primary follicles).  

Likely reasons for this oocyte death include growth factor depletion and errors 

during meiotic cross-overs.  For instance, it was shown that mice deficient for 

enzymes involved in DNA repair and recombination (ATM [31], msh4 and 5 [32, 

33], dmc1 [34]) undergo massive oocyte death in the last stages of prophase I. 

Furthermore, female mice lacking one X chromosome (XO) (most likely 

due to failure in chromosome pairing) and humans with Turner (XO) syndrome, 

undergo massive oocyte death in the fetal ovary [35, 36].  Stimulated by growth 

factors, the granulosa cells start to proliferate and form a larger follicle (antral 

follicle) with a cavity (antrum) filled with proteineaous fluid.  The oocyte of an 

antral follicle is still in dictyate arrest and now surrounded by several layers of 

granulose cells [37].  As the oocyte matures, it requires gonadotropic hormones 

for its survival.  At the stage of the menstrual cycle when levels of follicle 

stimulating hormone (FSH) are rising, the follicle enters into another growth 

period, before upon expression of luteinizing hormone (LH) the dictyate arrest is 

broken and the oocyte finishes meiosis I.  With increasing secretion of estrogen, 

FSH level decline while LH levels still rise, leading to ovulation of the oocyte.  

After ovulation the remains of the follicle become the corpus luteum and regress 

(Fig. 4).   
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Figure 4   Oocyte development in the ovary.  Oocytes (egg cells) are enclosed within a follicle 

of granulose cells that proliferate and form during maturation a multi-layered follicle with fluid-filled 

cavity.  Upon hormonal stimulation ovulation and the remains of the follicle form the corpus 

luteum and regress. Adapted from (http://instruct1.cit.cornell.edu/courses/biog105 /pages/ demos/ 

105/unit8/media/ovary-schematic.jpg) 

 

p63 is expressed early during development in PGCs in undifferentiated 

gonads.  In the mature ovary, p63 expression is highest in primordial oocytes 

[17].  Using antibodies specific for the TA-domain and the α-tail, we were able to 

show that TA-p63α is the predominately expressed p63 isoform (Suh et al. 

submitted).  Although p63-deficient mice lack p63 expression in PGC’s as well as 

in oocytes, ovaries from p63-deficient mice developed normally until birth and 

even further when transplanted under the renal capsule of ovariectomized adult 

female nude mice [17] (Suh et al, submitted).  These observations suggest that 

p63 is not essential for development and maturation of oocytes into primordial, 

primary, and secondary follicles, nor corpus luteum. 

 

 

2.5   Mice deficient for all p63 variants 

In 1999, two research laboratories independently generated mice deficient 

for all p63 isoforms [9, 10].  While Mills et al. generated a p63 deletion by gap 

repair gene targeting using targeting vectors isolated from previously made 

library [11], Yang et al. chose a classic homologous recombination approach to 
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specifically replace exon 6 to 8 with the neomycin resistance gene.  Both 

laboratories found that p63 knockout mice are born alive, but die within hours 

after birth due to desiccation.  The animals have severe defects in epithelial, 

craniofacial, and limb development (Fig. 5).  The epidermis of p63-deficient mice 

does not stratify and hair follicles and vibrissae are absent.  Epithelial 

appendages like mammary, sebaceous, lachrymal, and salivary glands as well 

as teeth primordia do not develop.  Other stratified epithelia such as that on the 

tongue, esophagus, and anterior portions of the stomach, cervix, and vagina do 

exist, but show aberrant differentiation.  Furthermore, the forelimbs of p63 

knockout mice are truncated and the hindlimbs are completely absent.   

 

 

a.

b.

a.

b.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5    Mice deficient for all p63-isoforms.  a. Front and side view of wild type and p63-

deficient embryos at day e17. Note forelimbs are truncated and hindlimbs are missing.   b. Wild 

type and p63-deficient embryos one day after birth (P1).  p63-/- mice have hypoplastic upper and 

lower jaws.  Eyelids, whisker pads, epidermis, vibrissae, pelage follicles and hair shafts are 

absent. (From [10]). 
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Many of the observed phenotypes including the limb defects are related to 

a lack of or insufficient epithelial differentiation and stratification.  Limb outgrowth 

and proximo-distal patterning is initiated early during embryogenesis (day e10.5) 

by signaling from the apical ectodermal ridge (AER), a thickened ectoderm that 

covers the tip of the limb bud.  In p63-deficient mice, no thickening of the 

ectoderm and formation of the AER is observed, resulting in severe limb defects.   

Although both laboratories observed similar phenotypes, the conclusions 

they drew from these observations were very different.  In their analysis of the 

epidermis of p63-deficient mice, Mills et al. detected faint staining of keratin 14 

(K14), an epidermis-specific marker that is expressed in proliferating 

keratinocytes [38], but were unable to detect markers of stratified epithelia such 

as K1, K6, or K10 [39], or markers of terminal differentiation such as loricrin [40, 

41] and filaggrin [41, 42].  From the lack of epidermal differentiation and 

stratification, as well as the absence of epidermal appendages, they concluded 

that the epidermis of p63-deficient mice does not develop beyond the stage 

observed on day e9.5.  As a result, Mills et al. postulated that p63 is essential for 

commitment to the epidermal lineage [9, 43].   

     Yang et al. came to a different conclusion in their investigation of the 

epidermis of p63-deficient mice.  Although they were not able to detect the early 

differentiation marker K5 (in a later analysis K5 was detected in the epidermis of 

p63-deficient mice from the laboratory of Frank McKeon, Pinto et al. unpublished 

observation), Yang et al. found patches of epidermal cells that stained positive 

for loricrin and involucrin [44] (Fig. 6).  Therefore, they concluded that epidermal 

differentiation and stratification occur in p63-deficient mice and that the observed 

phenotype results from a depletion of the epidermal stem cell population that lost 

its self-renewal capacity.  They suggest that high p63 expression in epidermal 

progenitor cells is required for the maintenance of their proliferative potential and 

that in p63-deficent mice, these cells have lost their self-renewal capacity  [10, 

14, 45, 46].  This hypothesis is further supported by the observation that 

conditional ablation of p63 in adult mice causes cellular senescence and 

accelerated aging [47].   
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Figure 6    Expression of differentiation markers in the epidermis of wild type and p63-
deficient mice.  Immunofluorescence micrographs of loricrin (Lori, green) and keratin (K5, red) in 

wild type (top panel) and p63-/- epidermis on day e.16.5. DNA is stained with DAPI (blue).  Bar, 

200µm.  Bottom panels show enlarged view of the insets in middle panel.  The dotted lines 

indicate the border between the epidermis and the dermis.  Scale bar is 50µm.  (From Pinto et al., 

submitted) 
 

 

2.6  TA-p63 versus ∆N-p63  

Further analysis of p63 function in skin by the laboratory of Dennis Roop 

led to the observation that, during embryogenesis, TA-p63α is the earliest 

expressed p63 isoform and that TA-p63α is essential for the commitment of the 

embryonic ectoderm to epidermal lineages as well as for the initiation of 

stratification [12]. Therefore, they concluded that the simple epithelium observed 

in the p63-knockout mouse by Mills et al. is a consequence of the lack of TA-

p63α expression.  Koster et al. found that only TA-p63α, not ∆N-p63α, was able 

to induce expression of the early differentiation markers K5 and K14 in epithelial 

cell lines of different origin.  Specifically, they generated transgenic mouse 

models expressing TA-p63α and ∆N-p63α in vivo in the single-layered epithelia 

of the bronchioles of the lung, which normally do not show p63, K5 or K14 

expression, and found that, in this system, only TA-p63α was able to induce 

squamous metaplasia expressing K5 and K14.  As with stratified epithelia during 
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development, squamous metaplasia is the result of a transition from a single-

layered epithelium to a stratified epithelium [48].  Targeted expression of TA-

p63α under the K14 promoter in the epidermis from day e8.5 induced 

hyperplasia of keratinocytes and expression of immature makers in the stratified 

layer of the epidermis, indicating a delay in the onset of squamous differentiation.  

Based on these results Koster et al. proposed that TA-p63α is required and 

sufficient for initiating commitment to the epidermal linage and stratification, but 

inhibits terminal differentiation and thereby keeps keratinocytes in an immature 

state.  They also suggest that the function of ∆N-p63α, after commitment to the 

ectodermal linage, is to offset TA-p63α in order to allow stratification and 

commitment to terminal differentiation [12, 49]. Continued expression of ∆N-p63α 

in the basal layer of stratified epithelia is essential for their self-renewal capacity 

and its downregulation is required for induction of terminal differentiation and 

stratification [12, 49]. 

Candi et al. tried to complement p63-deficient mice with expression of TA-

p63α and ∆N-p63α transgenes under the control of the K5 promoter.  Their study 

showed that the expression of ∆N-p63α led to greater epithelialization and 

expression of K14 and filaggrin than the expression of TA-p63α [50].  Expression 

profiling of Saos-2 cells with inducible expression of TA-p63α or ∆N-p63α 

showed that TA-p63α mainly regulates terminal differentiation markers such as 

K1, K10, profilaggrin and involucrin, while ∆N-p63α induced the early 

differentiation marker K14.   

 

 

2.7  Germline mutation of p63 in human syndromes 

While p63 mutations are rarely found in tumors, p63 germline mutations 

were shown to be the underlying cause of severe human syndromes with limb 

defects and ectodermal dysplasia, such as Ectrodactyly Ectodermal-Dysplasia-

Clefting Syndrome (EEC), Acro-Dermato-Ungual-Lacrimal-Tooth malformation 

(ADULT), Hay-Wells syndrome or Ankyloblepharon (AEC), Limb-Mammary 

Syndrome (LMS), Split-Hand/Foot Malformations (SHFM), and Rapp-Hodgkin 

Syndrome [51, 52].   In all of these cases p63, mutations were heterozygous and 
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likely act as dominant-negative or gain of function alleles, rather than by 

haploinsufficiency.   

In the case of EEC, nearly all mutations were amino acid substitutions in 

the DNA binding domain, which reduced the DNA-binding capacity of all-p63-

isoforms [53].  In LMS, frame-shift mutations were located in exon 13 and 14 and  

resulted in truncated protein products missing the TID and parts of the SAM 

domain of the α-isoform.  However, the β and γ isoforms are not affected from 

these mutations [52].  In AEC, missense mutations are present in the SAM 

domain that could abolish protein-protein interactions [54].  In ADULT 

syndromes, mutations affect only ∆N-p63 isoforms.  However, in one ADULT 

patient an unusual mutation in the DNA binding domain which seems to affect 

transactivation was also found [55, 56].  In less than 10% of SHFM patients, p63 

mutations were discovered with variable effects on DNA binding [52].   

In summary, most of the mutations found in these syndromes are 

clustered in the DNA binding domain (EEC) and SAM domain (AEC).  Although 

all syndromes have an overlapping spectrum of defects in ectodermal 

development affecting limbs, epidermis and its appendages, they also show 

phenotypical peculiarities which establish a clear genotype-phenotype correlation 

and reveal distinct functions of p63 and its domains in ectodermal development.  

Interestingly, many of the identified p63 point mutations are located in regions 

where p53 inactivating mutations are commonly found such as the DNA-binding 

domain [14].     

 

 

2.8  Functional interactions of p53 family members  

Although the overall gene structure of p53 with transactivation, DNA-

binding, and oligomerization domains are conserved in p63 and p73, an obvious 

role of the latter two genes as tumor suppressors was not found [14]. However, 

hints of an involvement of p63 and p73 in p53-dependent processes such as 

apoptosis are slowly emerging. As described for p63, transcription of the p73 

gene gives rise to TA- and ∆N-p73 isoforms with likely opposite functions in 

regulation of gene transcription.  Mouse embryonic fibroblasts deficient for p63 

and p73 are impaired in p53-dependent BAX, PERP, and NOXA gene 
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expression following DNA damage [57].  While p53 was still able to bind to the 

promoters of growth arrest genes such as p21/WAF and mdm2, no stable 

association with bax, PERP, and NOXA promoters was observed.   Furthermore, 

Flores et al. found that upon γ-irradiation, apoptosis in the central nervous 

systems of p63-/-;p73-/- embryos was similarly impaired as in p53-/- embryos 

[57].  Investigations of the tumor spectrum in p63+/- and p73+/-, as well as p53+/-

;p73+/-, p53+/-;p63+/-, and p63+/-;p73+/- mice showed that instead of 

lymphomas and sarcomas as seen in p53 mutants, p63 and p73 heterozygotes 

mainly developed carcinomas and showed signs of premature aging [58].  Mice 

heterozygous for p53;p63 or p53;p73 developed a more severe and aggressive 

tumor phenotype with a higher, more metastatic tumor burden.  The underlying 

cause of tumorgenesis in p63- and p73-deficient mice is unclear and analysis of 

human tumors found that, in some cases, TA-isoforms are upregulated and ∆N-

isoforms are down regulated, while others show the opposite [59, 60].  

In addition, in vitro studies showed that TA-isoforms of p63 and p73 can 

bind and transactivate a p53 reporter gene, but the significance in vivo is 

unknown [14].  High levels of ∆N-p63 in keratinocytes might act as a dominant-

negative against p53; however, upon UV-irradiation, ∆N-p63 levels decrease 

while p53 is stabilized and induces apoptosis.  In a similar fashion, ∆N-p73 might 

inhibit  the apoptotic activity of p53 in sympathetic neurons [61] 

 These studies illustrate the potential of cross-regulation of TA- and ∆N-

isoforms of each gene as well as between the family members and highlight the 

complex nature of the functional interactions among p53 family members. 
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3. Results 
 

3.1  Generation of TA-p63 deficient mice 

To investigate the function of TA-p63 in vivo, expression of all TA-p63 

isoforms was disrupted by homologous recombination in mouse embryonic stem 

(ES) cells.  TA-p63(+/-) ES cells were injected into blastocyts and implanted into 

pseudo-pregnant foster mothers to generate chimeric mice.  Chimeric mice were 

crossed with wild type mice to achieve germline transmission of the mutant TA-

p63 allele.           

The murine p63 gene is located on chromosome 16 and spreads over 

>200kb (Fig. 7).  While a promoter in front of exon 1 gives rise to TA-p63 

transcripts, a second promoter in intron 3 initiates ∆N-p63 transcription.  

Transcripts of exon 1 are only found in TA*-p63, where as exon 2 and 3 are 

common in all TA*/TA-p63 transcripts, but absent in ∆N-p63.  While TA- and ∆N-

p63 are detectable at protein level, TA*-p63 is only found as mRNA and likely to 

be untranslated.   

 

 
 

Figure 7   Genomic organization of murine TA- and ∆N-p63.  The transcriptional start of the 

TA-p63 isoforms is in front of exon 1.  A second promoter in intron 3 gives rise to ∆N-p63 

isoforms.  Intron 1 (78.9kb), intron 3 (56kb), and intron 4 (41.6kb) are very large.  (From 

http://www.ensembl.org/Mus_musculus/geneview?gene=ENSMUSG00000022510) 

 
To generate a mouse specifically lacking TA-p63 transcripts, exon 2 and 3 

of the p63 gene were replaced by a neomycin resistance gene using homologous 

recombination.  Since the transcriptional start of ∆N-p63 is located 38kb 

downstream of exon 3, it is likely that deletion of exon 2 and 3 would not affect 

∆N-p63 promotor activity and thereby ∆N-p63 transcription.   
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3.2  The TA-p63 targeting construct 

To generate the targeting construct, a previously isolated ~15 kb phage 

clone containing exons 2 and 3 and flanking introns from a 129/SvJ genomic 

DNA library was subcloned in the pBluescript-SK(-) vector and used for 

subsequent manipulation.  To disrupt transcription of TA-p63 isoforms, a ~2.4 kb 

Spe I-Spe I fragment, containing exons 2 and 3 and adjacent intronic sequences, 

was replaced with the neomycin resistant gene (Neor) driven by the mouse 

phosphoglycerol kinase (PGK1) promoter and linked to the PGK1 poly (A) 

sequences.  Insertion of the neomycin resistant gene allows for positive selection 

of cells that have been transfected with the construct and will eliminate most non-

transfected cells.  To select against random non-homologous recombination 

events, the HSV thymidine kinase (HSV-TK) gene under the control of the MC1 

promoter was inserted at the 5’ end of the targeting construct.  
 

 

 Not I

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8   Schematic of strategy for homologous recombination of TA-p63.  Genomic 

organization of TA-p63 gene before (WT) and after (KO) disruption by homologous recombination 

using the shown target construct.  Exons 2 and 3 are replaced by neomycin resistance gene 

(PGK-NEOR).  Restriction sites, approximate size of DNA fragments, and positions of Southern 

blot probes (a and b) are indicated.   
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If the TK gene is randomly inserted into the genome and expressed in the 

presence of  modified nucleosides or nucleoside analogues like gancyclovir or 1-

[2-deoxy,2-fluoro-8-D-arabinofuranosyl]-5-iodouracil (FIAU), these compounds 

will be phosphorylated and act as competitive inhibitors of DNA polymerase or 

DNA chain terminators leading to cell death.   

In addition to these positive and negative selection markers, the final 

construct contained 1.6kb and 3.7kb of flanking genomic sequences to the region 

to be deleted to allow for homologous recombination between the wild type allele 

and the targeting vector (Fig. 8).   

 

 

3.3  Generation of TA-p63 (+/-) ES cells 

The targeting construct was linearized by SacII restriction digest and 

electroporated into J1 ES cells.  Electroporated ES cells were plated on a feeder 

layer of G418-resistant mitotically inactivated mouse embryonic fibroblasts.  

Positive selection with 300µg/ml G418 was started 24 hours after transfection 

and after another 24 hours 0.2µM FIAU was added in addition for negative 

selection.  One week after electroporation, G418 and FIAU-resistant ES cell 

clones were picked, expanded and screened by Southern blot analysis for 

homologous recombination (Fig. 9).  Out of a total of 475 screened clones, only 

two clones showed correct recombination at the TA-p63 locus (clones 224 and 

378).   
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Figure 9   Southern blot analysis of ES cell clones.   Genomic DNA was digested with BglII 

and hybridized with probes a and b depicted in Figure 7.  Arrows indicate KO and WT alleles for 

both probes, and confirm successful homologous recombination of the TA-p63 locus. Probe a 

and b, lane 1 = heterozygous, lane 2,3 = wild type.   
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For Southern blot analysis genomic DNA was isolated from expanded 

clones and digested with restriction enzyme Bgl II.  Hybridization of probe a to 

DNA fragments yields an approximately 6.2 kb and 7.5 kb for the wild type and 

targeted alleles, respectively.  To confirm homologous recombination of the 

targeting construct, positive clones were further analyzed by Southern blot 

analysis with probe b, which hybridizes to DNA fragments of approximately 8.2 

kb and 6.5 kb for the wild type and targeted alleles, respectively.   

 

 

3.4    From ES cells to mice: Chimeras and TA-p63 deficient mice 

Both independent ES cell lines were microinjected into blastocysts 

isolated from Balb/c mice and implanted into pseudo-pregnant foster mothers 

(performed by the Transgenic Core Facility of the Brigham and Women Hospital, 

Boston) to obtain chimeric mice.  The degree of chimerism of the newborn mice 

was between 70-90% as judged by coat color.  The chimeras were mated with 

wild type Balb/c mice to test if the injected ES cells contributed to the germline 

transmission of the TA-p63 mutant allele.  Germline transmission was achieved 

with several animals and heterozygous TA-p63 mice were backcrossed into a 

Balb/c background and intercrossed to obtain TA-p63(-/-) animals.  The genotype 

of mice was determined by PCR on genomic DNA from tail biopsies (Fig. 10). 
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Figure 10   PCR analysis of mouse genomic DNA.   Genomic DNA was isolated from mice tails 

and analyzed by PCR.  Representative results for wild type (+/+), heterozygous (+/-), and knock 

out (-/-) alleles are shown.  
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3.5    Characterization of p63 expression in TA-p63(-/-) mice 

Loss of TA-p63 expression at the protein level was confirmed by Western 

blot analysis of the thyroid gland from wild type and TA-p63(-/-) littermates.  

Using a TA-p63 specific mouse monoclonal antibody (4B2), no TA-p63 

expression was detected in the thyroid gland of TA-p63(-/-) mice, while in the 

thyroid gland of wild type mice a strong signal was found.  To investigate if the 

deletion of TA-p63 influenced ∆N-p63 expression, epidermal lysates from wild 

type and TA-p63(-/-) mice were analyzed with a pan-p63-antibody.  By Western 

blotting, a slight decrease of ∆N-p63 expression in TA-p63(-/-) mice compared to 

wild type and heterozygous littermates was found (Fig. 11).   
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Figure 11   Western blot analysis of TA- and ∆N-p63 expression in wild type and TA-p63 

deficient mice.   Thyroid gland and skin were isolated from wild type and TA-p63(-/-) mice and 

analyzed for TA- and ∆N-p63 expression. 
 

In addition to the thyroid gland, TA-p63 is highly expressed during early 

stages of oocyte development (primordial, primary, and early pre-antral stages), 

while it is undetectable at later stages (pre-antral and antral).  

Immunohistochemical detection of p63 in ovaries of wild type mice showed 

strong nuclear staining of early oocytes with TA-p63 specific antibodies as well 

as antibodies against all p63 isoforms.  When ovaries of TA-p63(-/-) mice were 

stained with TA-p63 specific antibody no signal was detected.  However, a pan-

p63 antibody still stained the nucleus of primordial and primary oocytes, 

suggesting that in addition to TA-p63, ∆N-p63 is also expressed in oocytes (Fig. 

12).  Because pan-p63 antibody was shown to have cross-reactivity with a 

protein expressed in testis (M. Senoo, personal communication), the possibility 

existed that this protein is also expressed in oocytes.  Investigation of pan-p63 
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staining in mice deficient for all p63 isoforms, however, revealed no detectable 

staining (E. Suh, personal communication). 

Taken together, these results confirm that exon 2 and 3 of the p63 gene 

were successfully targeted for deletion from the mouse genome, and that the 

resulting TA-p63(-/-) mice still showed expression of ∆N-p63. 
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Figure 12   Immuno-histochemistry of ovary sections of wild type and TA-p63(-/-) mice.  
Ovary sections were stained with antibodies against TA-p63 and all p63 isoforms.  Scale bar is 

150µm and 50µm, respectively.    
 

 

3.6 TA-p63(-/-) mice are born at a non-mendelian frequency 

In contrast to mice lacking both TA-p63 and ∆N-p63 (p63(-/-)) [9, 10], TA-

p63(-/-) mice show normal limb and craniofacial development (Fig. 13). Unlike 

p63(-/-) mice, TA-p63(-/-) mice have normal fur and no obvious defects in 

epidermal development compared to wild type littermates (Fig. 14).  About two 

thirds of all born TA-p63(-/-) embryos do not display gross phenotypical 

abnormalities.  However, the total number of born TA-p63(-/-) mice was lower 
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than the expected mendelian frequency (7% of all mice in heterozygous-

heterozygous and 18% in heterozygous-homozygous crosses, Table 1).  On 

average in heterozygous-heterozygous crosses 1.86 TA-p63(+/+), 3.9 TA-p63 

(+/-), but only 0.42 TA-p63(-/-) mice were born.  Homozygous-heterozygous 

crosses showed a similar reduction in the number of expected TA-p63(-/-) 

progeny with an average of 3.5 TA-p63(+/-) and 1 TA-p63 (-/-) animal per litter.   

In first 12 hours after birth approximately one third of all newborn TA-p63(-

/-) pups developed extreme bloating of the intestines followed by swelling of the 

abdomen. Ultimately, the intestines collapsed and were pressed against the 

backside of the abdominal cavity which was extremely inflated.  When the 

animals reached this stage, they suffered from breathing problems and died 

within hours.  Investigation of the intestinal tract of these animals did not reveal 

any histological abnormalities.  In humans, a developmental disease, named 

Hirschsprung disease, displays a phenotype of swollen abdomen, constipation, 

gas, and loss of appetite.  The disease is caused by the absence of enteric 

ganglion cells in the distal bowel.  However, patho-histological analysis of the 

intestine showed the presence of the ganglia. 
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Figure 13    Mice deficient for TA-p63.   Front and sagittal view of wild type and TA-p63 deficient 

embryos at day e16.5. Note wild type and TA-p63(-/-) mice are indistinguishable. TA-p63(-/-) 

display no craniofacial abnormalities and forelimbs and hindlimbs are normally developed.  
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Figure 14   Adult mice deficient for TA-p63.   Adult mice have a normal coat, nails and 

whiskers.  Unlike mice deficient for all p63 isoforms, TA-p63 (-/-) mice display no abnormalities in 

epidermal development.  

 

 

Other TA-p63(-/-) mice often displayed growth retardation starting a few 

days after birth that was probably due to insufficient feeding.  While wild type 

pups had bulging abdomens after nursing that appeared white (milk belly), TA-

p63(-/-) pups often lacked this sign of well nourishment.  Pathological analysis of 

the oral cavity and the intestinal tract did not reveal any abnormalities.  However, 

no detailed analysis of the esophagus has yet been conducted leaving 

swallowing problems as a possible explanation for the undernourishment.  

Because the TA-p63(-/-) pups were not found separated from their littermates in 

the cage, it is unlikely that they were recognized and singled out by the mother.  

In general, TA-p63(-/-) pups survived this stage and grew normally.  At the time 

of weaning, TA-p63(-/-) mice had reached the same size and approximately the 

same body weight as wild type littermates.   

The cause for the reduced frequency of TA-p63(-/-) at birth is still 

unknown.  Limited investigation of litters at day e13.5 and e16.5 did not reveal 

any abnormalities, but the limited number of animals investigated did not allow 

any definitive conclusions.  It is possible that the animals die in utero because of 

defects in early embryonic development.  Furthermore, while male TA-p63(-/-) 

mice in the Balb/c background were fertile, female TA-p63(-/-) in the Balb/c 

background never showed signs of pregnancy or carried a pregnancy to term.  

Histological analysis of ovaries of adult mice revealed that maturation of follicles 

form primordial follicle to corpus luteum occurred normally.      
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             Mating    TA-p63(+/+)    TA-p63(+/-)     TA-p63(-/-) 

female (+/-) x male (+/-) 

            (n=299) 

    30% [25%]    63% [50%]      7% [25%] 

female (+/-) x male (-/-) 

              (n=39) 

      0% [0%]    82% [50%]     18% [50%] 

female (-/-) x male (+/-) 

              (n=0) 

      0% [0%]      0% [50%]       0% [50%] 

 

Table 1   Mendelian frequency of hetero- and homozygous TA-p63-deficient mice matings.   
Homozygous TA-p63(-/-) are born at a reduced mendelian frequency.  Brackets indicate expected 

percentage.  

 

 

3.7   TA-p63(-/-) mice display normal epidermal development 

In contrast to p63(-/-) mice, TA-p63(-/-) mice undergo normal epidermal 

development  and stratification and have a fur indistinguishable from wild type 

littermates.  To analyze and compare the development of skin and its 

appendages in wild type and TA-p63(-/-) mice,  embryos were isolated, and fixed 

at embryonic day e13.5, e16.5, as well as newborns.  Furthermore, skin from 

adult mice was isolated and analyzed.  Animals were embedded, sectioned, and 

stained with haematoxylin and eosin by the Rodent Histopathology Core facility.  

Whole embryo sections of wild type and TA-p63(-/-) were further compared with 

p63(-/-) at day e16.5. 

Around embryonic day e13.5 stratification of the mouse epidermis begins, 

and cells from the basal layer differentiate and move upwards to form suprabasal 

layers.  Early in development the single layered epithelium only expresses 

keratin 8 and 18.  However, upon commitment to the epidermal cell fate, the 

early differentiation markers keratin 5 and 14 are induced.  As stratification 

continues and the epidermis acquires additional layers (spinous and granular 

layer, stratum corneum) late markers of terminal differentiation such as loricrin, 

filaggrin, and involucrin are expressed.   

Because the function of TA-p63 in commitment of the embryonic ectoderm 

to epidermal lineages and in initiation of epidermal stratification is very 

controversial, the skin of TA-p63(-/-) mice at different developmental stages was  
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Figure 15    Keratin 5 and 8 expression in the epidermis of wild type and TAp63-deficient 
mice.  Immunofluorescence micrographs of keratin 5 (red) and keratin 8 (green) in wild type (left 

panel) and TA-p63(-/-) (right panel) epidermis on day e13.5.  Magnification of area corresponding 

to insets in a, b, e, f, i, and j is shown underneath the respective micrograph (c, d, g, h, k, and l). 
Dotted lines indicate the border between the epidermis and the dermis.  Images are single 

spinning disc confocal optical sections at 20X (a, b, e, f, i, and j) and 60X (c, d, g, h, k, and l) 
magnification. Scale bar is 50µm and 15µm, respectively.    
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Figure 16    ∆N-p63 and cytokeratin expression in the epidermis of wild type and TAp63-

deficient mice.  Immunofluorescence micrographs of p63 (red) and cytokeratin (green) in wild 

type (left panel) and TA-p63(-/-) (right panel) epidermis on day e13.5.  Magnification of area 

corresponding to insets in a, b, e, f, i, and j is shown underneath the respective micrograph (c, d, 

g, h, k, and l). Dotted lines indicate the border between the epidermis and the dermis.  Images 

are single spinning disc confocal optical sections at 20X (a, b, e, f, i, and j) and 60X (c, d, g, h, k, 

and l) magnification. Scale bar is 50µm and 15µm, respectively.    
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investigated in more detail by immunostaining and compared to skin of wild type 

littermates to determine if the onset of stratification is delayed and if stratification 

on a molecular level occurs correctly.   

Although the intact epidermis of newborn mice and the coat of adults 

suggest that commitment and differentiation occurs normally, it is still possible 

that loss of TA-p63 expression alters these processes at the molecular level.   

Sections from wild type and TA-p63(-/-) mice at e13.5 were stained with 

antibodies against keratin 5, 8, and pan-cytokeratin to compare the timing of 

initiation of stratification as well as the structure of the interfollicular epidermis 

(Fig 15 and 16).  Furthermore, sections were stained with a pan-p63 antibody to 

determine if ∆N-p63 is undisturbed in expression and localization after deletion of  

exon 2 and 3 of the p63 gene.  Both TA-p63(-/-) and wild type mice show keratin 

5 and 8 staining of the basal and spinous layer.  P63 staining, as detected with a 

pan-p63 antibody, was present in wild type as well as TA-p63 (-/-) mice, 

confirming that ∆N-p63 expression in the epidermis was not affected by 

disruption of TA-p63 (Fig. 16).  However, quantification of immunofluorescence 

intensity of pan-63 staining revealed a 22% decrease in TA-p63 (-/-) mice 

compared to wild type littermates.  As expected, no TA-p63 staining was seen in 

the epidermis of TA-p63(-/-) mice. However, staining with the TA-p63 specific 

antibody also did not reveal expression of TA-p63 in the epidermis of wild type 

mice, suggesting that this isoform is not present on protein levels in this tissue.  

The organization of the epidermis is also not altered in TA-p63(-/-) mice.  

As expected for e13.5 embryos the epidermis consists of a single layer of 

palisade-like arranged basal cells that are covered by a single or double layer of 

suprabasal cells whose nuclei are turned perpendicular in relation to basal layer 

cells.  Pan-cytokeratin, keratin 5 and 8 stain consistently revealed this 

organization and showed that the thickness of the epidermis is comparable 

between wild type and TA-p63(-/-) mice at this stage.   

Next, epidermal development was compared between wild type, TA-p63(-

/-), and p63(-/-) mice.  At day e16.5 the epidermis has further stratified into 

spinous and granular layers which express keratin 1, 10, loricrin and fillagrin.  

Sections of embryos isolated at this stage were stained with early and late 

differentiation markers as well as with an antibody against all-p63 isoforms.   
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Figure 17    Keratin 5 and 8 expression in the epidermis of wild type, TAp63-, and p63-
deficient mice.  Immunofluorescence micrographs of keratin 5 (red) and keratin 8 (green) in wild 

type (left panel), TA-p63(-/-) (middle panel), and p63(-/-) epidermis on day e16.5.  Magnification 

of area corresponding to insets in a, b, c, g, h, i, m, n, and o is shown underneath the respective 

micrograph (d, e, f, j, k, l, p, q, and r). Dotted lines indicate the border between the epidermis 

and the dermis.  Images are single spinning disc confocal optical sections at 20X (a, b, c, g, h, i, 
m, n, and o) and 60X (d, e, f, j, k, l, p, q, and r) magnification. Scale bar is 50µm and 15µm, 

respectively.    
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Figure 18    p63 and loricirn expression in the epidermis of wild type, TAp63-, and p63-
deficient mice.  Immunofluorescence micrographs of p63 (red) and loricrin (green) in wild type 

(left panel), TA-p63(-/-) (middle panel), and p63(-/-) epidermis on day e16.5.  Magnification of 

area corresponding to insets in a, b, c, g, h, i, m, n, and o is shown underneath the respective 

micrograph (d, e, f, j, k, l, p, q, and r). Dotted lines indicate the border between the epidermis 

and the dermis.  Images are single spinning disc confocal optical sections at 20X (a, b, c, g, h, i, 
m, n, and o) and 60X (d, e, f, j, k, l, p, q, and r) magnification. Scale bar is 50µm and 15µm, 

respectively.    
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Figure 19    p63 and cytokeratin expression in the epidermis of wild type, TAp63-, and p63-
deficient mice.  Immunofluorescence micrographs of p63 (red) and loricrin (green) in wild type 

(left panel), TA-p63(-/-) (middle panel), and p63(-/-) epidermis on day e16.5.  Magnification of 

area corresponding to insets in a, b, c, g, h, i, m, n, and o is shown underneath the respective 

micrograph (d, e, f, j, k, l, p, q, and r). Dotted lines indicate the border between the epidermis 

and the dermis.  Images are single spinning disc confocal optical sections at 20X (a, b, c, g, h, i, 
m, n, and o) and 60X (d, e, f, j, k, l, p, q, and r) magnification. Scale bar is 50µm and 15µm, 

respectively.    
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Pan-cytokeratin, keratin 5, and keratin 8 were detectable in wild type, TA-

p63(-/-), and p63(-/-) mice (Fig. 17).  Furthermore, in mice of all three genotypes, 

the late differentiation marker loricrin was seen (Fig. 18).  While a pan-p63 

antibody strongly stained the nucleus of cells in the basal and suprabasal layer of 

the epidermis of wild type and TA-p63(-/-) mice, p63 expression was completely 

absent in the original p63(-/-) and extensive exposure only revealed background 

staining (Fig. 18 and 19).  Consistent with the observation at day e.13.5, 

quantification of immunofluorescence intensity of pan-p63 staining revealed a 

20% decrease in TA-p63 (-/-) epidermis compared to that of wild type littermates.  

With ongoing stratification, the cells in the upper layers of the skin flatten, while 

basal layer cells keep their palisade-like arrangement.  

In both wild type and TA-p63(-/-) epidermis,  this layered structure is 

intact; however, no such organization is obvious in the epidermis of p63(-/-) mice. 

Consistent with previously published data of the McKeon laboratory, the sections 

of p63(-/-) mice showed patches of skin that were multi-layered and stratified.  

However, large areas of the surface of p63(-/-) embryos were covered with a 

single-layered epithelium, which expressed keratin 5 and 8, and in some areas 

with patches, which showed loricrin staining. 

Immunohistochemical analysis of skin sections of newborn and adult wild 

type and TA-p63(-/-) mice with antibodies against keratin 5, keratin 10, 

cytokeratin, and loricrin did not reveal differences (data not shown).  As revealed 

by H&E staining, epidermal appendages like hair follicles, vibrissae, mammary, 

sebaceous, lacrymal and salivary glands as well as teeth primordia developed 

normally in the TA-p63(-/-) (Fig. 20).    

Taken together, the absence of defects in development and stratification 

of the epidermis and its appendages indicates that TA-p63 is not required for 

these processes.  The p63 staining in wild type and TA-p63(-/-) skin with the pan-

p63 antibody confirms that ∆N-p63 is the predominant isoform and mediates p63 

functions in epithelial morphogenesis that were uncovered in the original p63 

knockout mouse, independent of TA-p63  [9, 10].   
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Figure 20    H&E stain of the epidermis of wild type and TAp63-deficient mice.  Micrographs 

of H&E stained sections of wild type and TA-p63-deficient mice at day one after birth.  E- 

epidermis, D- dermis, W- whisker follicle, H- hair follicle.   
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4. Discussion 
The function of the p63 gene in epithelial, craniofacial, and limb 

development in mice was revealed by mice deficient for all p63 isoforms [9, 10].  

Now, seven years after the initial description of the p63(-/-) mice, the  

interpretation of their phenotype and the function of p63 in epidermal 

development is still controversial.  The situation is further complicated by the 

different opinions on the specific function of p63 isoforms, ∆N- and TA-p63, in 

these processes.  The experiments described in the previous section were 

conducted to directly test the involvement of TA-p63 in epidermal development 

and elucidate its specific function in mice.   

 

 

4.1 Mice deficient for TA-p63 

TA-p63(-/-) mice were generated by homologous recombination in mouse 

ES cells (Fig. 8) and successful abrogation of TA-p63 protein expression was 

confirmed by Western blotting (Fig. 11) and immuno-histochemistry (Fig. 12).   

In the absence of TA-p63, pan-p63 staining of ovaries of TA-p63(-/-) mice 

revealed expression of ∆N-p63 (Fig. 12).  Because in previous analysis 

expression of ∆N-p63 in ovaries was undetectable by Western blotting (E. Suh, 

personal communication), it is therefore possible that upon disruption of TA-p63 

expression, ∆N-p63 is up-regulated in oocytes.  Further investigations are 

necessary to better understand this phenomenon.  Moreover, analysis of p63 

expression in skin of TA-p63(-/-) mice using  the pan-p63 antibody showed that, 

in this tissue, the expression level of ∆N-p63 is reduced (Fig. 11, 16, 18, and 19).   

The modulation of ∆N-p63 expression in the epidermis and likely in 

oocytes could be due to interference of the inserted neomycin resistance gene 

with ∆N-p63 transcription.  However, the neomycin resistance gene was inserted 

38kb upstream of the transcriptional start of ∆N-p63 and the effect on ∆N-p63 

expression in skin is relatively minor (approximately 20%).  Therefore, it is more 

likely that the reduction of ∆N-p63 protein in the epidermis and possibly the 

increase in oocytes is due to cross-regulation between TA- and ∆N-p63.  

Recently, a report showed that TA-p63 binds to a p53-binding site in the 

promoter of ∆N-p63 and is capable of activating its transcription [62].  The two-
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genes-in-one structure of the p63 gene results in the translation of two different 

kinds of protein variants with the same DNA-binding domain.  Because the 

different variants are expressed at different levels in distinct tissues [14] (Suh et 

al, submitted), changes of their abundance due to loss of cross-regulation in TA-

p63(-/-) mice, could have implications for the respective functions in target gene 

regulation, development and post-natal processes.      

 Other explanations for the observed modulation of ∆N-p63 are that loss of 

TA-p63 expression has a more global effect on gene expression in a specific 

tissue and thereby indirectly affects ∆N-p63 expression.  Furthermore, it has not 

been investigated whether the loss of TA-p63 in the thyroid gland leads to 

increase or decrease of thyroid hormone levels, possibly resulting in more 

systemic defects that could influence protein expression.   

Because p63(-/-) mice die within hours of birth, an investigation of a 

function in tumor suppression by itself and in combination with p53 was limited.  

In a p53-null background, heterozygosity for all p63 isoforms showed an 

alteration of the tumor spectrum observed in p53-null only mice. Because two 

thirds of TA-p63(-/-) mice survive and develop normally, these analyses are 

possible and crosses to achieve TA-p63(-/-);p53(-/-) mice are underway.   

 

 

4.2 Normal skin development in TA-p63(-/-) mice 

One of the main incentives for making a TA-p63(-/-) mouse was to 

definitively answer the question about the relative significance and contribution of 

the two different classes of p63 isoforms, TA- and ∆N-p63, to the phenotypes 

observed in p63-deficient mice, especially in epidermal differentiation and 

stratification.   

In contrast to p63(-/-) mice, TA-p63(-/-) mice display no defect in 

epidermal development, expression of early and late differentiation markers, or 

skin morphology (Fig. 14-19).  

These observations suggest that lack of epidermal expansion and 

stratification seen in mice lacking all p63-isoforms is not attributable to TA-p63.  

Instead, these epithelial defects are likely due to absence of ∆N-p63.  Previous 

studies [10] (Pinto et al., submitted), as well as analysis presented in this work 
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(Fig. 16-18), indicate a role of ∆N-p63 in the maintenance of the proliferative 

potential and self-renewal capacity of epithelial progenitor cells.  Although the 

epidermis of p63(-/-) is only capable of limited expansion, it does undergo 

differentiation and stratification as shown by the expression of differentiation 

markers (Fig. 16-18). The limited expansion of the epidermis followed by its 

disintegration in p63(-/-) mice can be explained with the loss of proliferative 

potential and self-renewal capacity of the epidermal stem cells.  While in the wild 

type situation, epidermal stem cells are capable of undergoing nearly unlimited 

rounds of cell division (human skin is completely renewed in 21 days), epidermal 

stem cells in p63(-/-) mice lack this ability leading to terminal differentiation after 

a limited number of cell divisions.  This notion is further supported by the 

observation that depletion of p63 by shRNA in immature keratinocytes reduced 

their proliferative potential (Pinto et al, submitted) and that conditional ablation of 

p63 in adult mice leads to cellular senescence and aging [47].   

 Moreover, the normal epidermal development of TA-p63(-/-) mice 

demonstrates that TA-p63 is not, as suggested [12], involved in commitment of 

the embryonic ectoderm to an epidermal lineage, or at least not essential in this 

process.  The lack of detectable TA-p63 protein expression in the epidermis, at 

any developmental stage, further obviates a fundamental role of TA-p63 in skin 

morphogenesis.  Moreover, the development of a normal coat and skin 

morphology in adult mice demonstrates that stratification and terminal 

differentiation occur normally in the absence of TA-p63 after embryogenesis.  If 

∆N-p63 function would be to offset TA-p63 to enable stratification and terminal 

differentiation [12, 49], one would expect that in the absence of TA-p63, 

stratification and terminal differentiation would occur prematurely. 

Although the epidermis of TA-p63(-/-) appears normal, it is possible that 

that under stress conditions, such as injury, the lack of TA-p63 and/or the 

reduction in ∆N-p63 expression could influence wound healing capability of the 

epidermis [63].  Because the analysis of TA-p63(-/-) mice has only recently 

begun and the number of animals is limited, the long-term effects of disruption of 

TA-p63 are not yet understood.   
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4.3 Non-mendelian frequency, newborn death, and lack of pregnancies of TA-

p63(-/-) mice  

Despite the lack of defects in epidermal development, the total number of 

newborn mice in heterozygous-heterozygous and heterozygous-homozygous 

crosses is reduced.  While matings of wild type mice result on average in a litter 

size of eight animals, the litter size of heterozygous-heterozygous and 

heterozygous-homozygous crosses is reduced to an average of six and four 

pups, respectively.  Furthermore, the number of TA-p63(-/-) pups in these 

matings is less than expected for a gene inherited by mendelian laws.   

The general reduction in litter size in both types of crosses and the 

specific absence of TA-p63(-/-) homozygous mutants, suggests that embryos are 

lost during pregnancy and that these embryos are likely homozygous for the 

disrupted TA-p63 allele.  The loss of TA-p63(-/-) mice could be the result of 

defects during early mouse development that do not show 100% penetrance and 

is still under investigation.   

Moreover, one third of all TA-p63(-/-) homozygous mutants that are born 

subsequently die because of severe bloating of intestines and the abdomen.  

Other TA-p63(-/-) homozygous mutant often display growth retardation in the first 

weeks after birth. It is possible that both undernourishment as well as bloating 

are the result of different degrees of infections of the newborn after birth.  While 

patho-histological analysis ruled out Hirschsprung disease as cause for the 

observed defects, another possibility is that the defects are due to necrotizing 

enterocolitis.  In humans, necrotizing enterocolitis is observed in premature 

newborns and results from a weakening of the intestinal tissue by too little blood 

and oxygen flow.  Upon feeding, bacteria that populate the intestinal tract 

damage this tissue. If the tissues become necrotic, bacteria can migrate into the 

abdomen and cause severe and deadly infections.  To further investigate the 

possibility of necrotizing enterocolitis followed by bacterial invasion of the 

abdome in newborn TA-p63(-/-) mice, pregnant females will be treated with 

antibiotics during pregnancy.  In case the suspicion can be confirmed, it is 

expected that more newborn TA-p63(-/-) survive after birth. 

The observed lack of pregnancy in TA-p63(-/-) mice (Table 1) is probably 

not due to defects before ovulation, because follicle development occurs 

normally in TA-p63(-/-) ovaries.  P63 protein is expressed in the basal layer of the 
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cervical and vaginal epithelium, but only in individual cells and cell groups in the 

uterus [64].  Detailed pathological analysis of the urogenital tract of p63(-/-) 

showed that the uterus developed normally, while cervical and vaginal epithelium 

displayed a transfiguration from squamous to cuboidal cells [10].  Although a 

defect in implantation cannot be excluded, the integrity of the uterus in both p63(-

/-) and TA-p63(-/-) mice suggest that implantation should occur correctly. 

A more intriguing explanation for the observed lack of pregnancy in TA-

p63(-/-) mice, is the recent discovery of TA-p63 implication in the protection of 

the female germline (Suh et al., submitted).  Primordial and primary oocytes 

undergo TA-p63-dependent cell death upon failure to repair DNA double-

stranded breaks (DSB) induced by γ-irradiation or chemotherapeutics treatment.  

Even without external stimuli, DNA DSB occur during recombination of 

homologous chromosomes in meiosis I and must be repaired.  Errors in this 

process are thought to be the cause for the high rate of oocyte death just before 

birth [30].  If TA-p63 also plays a role in this type of oocyte death, it is reasonable 

to speculate that in TA-p63(-/-) mice oocytes may survive abortive homologous 

recombination.  Zygotes emerging from these oocytes are likely to have 

mutations from unrepaired DSB, and thus be miscarried. 

In addition, more detailed analysis of the consequence of loss of 

protection of the female germline can now be conducted and the possible 

function of ∆N-p63 in oocytes revealed.  Finally, the possible consequence of TA-

p63 disruption of the thyroid gland, its metabolism, and the overall hormonal 

balance will be investigated.         

The results presented in this work not only vitiate a function of TA-p63 in 

epidermal commitment during embryogenesis, and conclusively demonstrate the 

significance of ∆N-p63 in epidermal development and regeneration, it also 

revealed more about the function of TA-p63 in oocyte death and protection of the 

female germline.   
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PART II – Checkpoint Signaling 
 
5. Summary 
 

 A high fidelity of chromosome segregation is crucial to ensure correct 

transmission of genetic material to daughter cells.  Errors in this process result in 

aberrant chromosome numbers and can cause severe developmental defects, 

miscarriages, and cancer.  The spindle assembly checkpoint is a surveillance 

mechanism that monitors chromosome segregation, detects attachment defects, 

and delays anaphase onset until errors are corrected.  Moreover, passive 

mechanisms such as kinetochore geometry, architecture, and back-to-back 

orientation of sister kinetochores further reduce the risk of mis-attachment.  Upon 

satisfaction of the spindle assembly checkpoint, inactivation of Cdk1/cyclin B and 

cleavage of cohesin leads to chromosome separation and cell cycle progression 

into anaphase.    

 Since the identification of the first molecular components of the spindle 

assembly checkpoint over 15 years ago [3-5], many proteins were found to be 

involved in checkpoint signaling.  A highly complex protein interaction network is 

emerging that connects sister chromatid cohesion, kinetochore biology, and 

microtubule cytoskeleton with the spindle assembly checkpoint.  The conserved 

family of shugoshin proteins are one of the latest additions to this network and 

present a link between sister chromatid cohesion, checkpoint signaling, and 

microtubule dynamics.  While initial investigations in yeast and drosophilia have 

been conducted, little is known about shugoshin functions in mammalian cells.   

 The work presented here provides a detailed characterization of one of the 

key players in checkpoint signaling, BubR1, including its post-translation 

modifications and its interactions during the cell cycle.  Furthermore, the work 

provides insight into the regulation and evolution of BubR1’s localization and 

function.  Finally, the interaction of BubR1 and Sgo2 is shown to link checkpoint 

signaling and kinetochore geometry.        
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6. Introduction 
 
6.1  Chromosome segregation 

 Mitosis is an essential step of the cell cycle.  When cells divide and 

segregate their genomes to daughter cells, it has to be ensured that each 

daughter cell receives an identical set of chromosomes.  Chromosome mis-

segregation during development leads to birth defects and in most cases to 

spontaneous abortions.  Certain mis-segregations of sex chromosomes and 

trisomies of chromosomes 13, 18, and 21 are viable, but display severe 

developmental and fertility defects.  In somatic cells, aneuploidy is often found in 

solid tumors and cancer cell lines [65].  

 How cells segregate their chromosomes is a research interest for more 

than 150 years.  Pioneering work in this field has been done by Walter Flemming 

and Theodor Boveri in the late nineteenth century when they first described the 

separation of chromosomes during animal mitosis (Fig.21) [66-69].   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 21   Phases of mitosis.  Mitosis as observed by Walther Flemming in 1882.  Mitosis 

begins with the condensation of chromosomes into skein-like threads (prophase), which thicken 

and form a star-like configuration of an aster (prometaphase).  Chromosomes align at the 

equatorial plate (metaphase) followed by formation of a dyaster which moved apart and 

decondense into skein-like threads before the cell divides (telophase).  Adapted from [69] 

-38- 



                                                                                                Checkpoint signaling 

Boveri and van Hanseman found that cells from carcinomas showed 

abnormal mitotic figures and Boveri postulated that chromosomal mis-

segregation might be the cause for cancer development [70, 71].  Although these 

initial findings date back more than a century, it is still unclear today if aneuploidy 

is cause or consequence of cell transformation, making chromosome segregation 

in meiosis and mitosis the focus of many research studies.   

                                      

 

6.2     The different phases of mitosis 

Mitosis is divided into five stages that are often followed by cytokinesis 

(Fig. 22).  Cytokinesis is the physical division of the cytoplasm and even 

distribution of organelles, plasma membrane and other cellular components 

between the daughter cells [72, 73].  
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Figure 22   Cell Cycle.  Interphase is divided in G1-, S-, and G2 phase.  Chromosomes are 

replicated in S-phase and separated and segregated in mitosis.  Mitosis is divided into five 

phases followed by cytokinesis.  Adapted from [72] 

 

At prophase, the first phase of mitosis, chromatin starts to condense and 

chromosomes become visible.  Each chromosome consists of a pair of 

previously replicated sister chromatids that are bound together at the 

centromere.  Outside the nucleus the duplicated centrosomes separate and 

begin to move to the position of the future spindle poles.  Microtubules grow out 

from the centrosomes and form the mitotic spindle.  Early in mitosis, proteins are 

recruited to the centromere to assemble the kinetochore, a proteinaceous 

structure that functions as microtubule attachment center.  Most cells undergo a 
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so called open mitosis in which the nuclear envelope breaks down in the 

beginning of prometaphase.  In this open configuration, microtubules start to 

search and capture kinetochores.  When both sister kinetochores are attached to 

microtubules that emanate from opposite poles, chromosomes congress at the 

metaphase plate (metaphase).  At the beginning of anaphase, sister chromatids 

separate at the centromere and move apart to the spindle poles.  Late in 

anaphase the plasma membrane constricts, in the process of cytokinesis, and 

the spindle midzone becomes visible.  In telophase, the chromatids reach the 

spindle poles and begin to decondense and the nuclear envelope reassembles 

around then.  At the end of mitosis, the midzone develops into a cleavage furrow 

and cytokinesis occurs (Fig. 23) [72, 73].  
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Metaphase Anaphase                        Telophase

 

Figure 23   Phases of mitosis.  Scheme of chromosome alignment and segregation during 

mitosis.  In early prophase chromosomes start to condense.  Duplicated centrosomes separate 

and start to emanate microtubules.  In prometaphase the nuclear envelop breaks down and 

microtubules attach to kinetochores.  A bipolar spindle is formed and chromosome align at is 

equator in metaphase.  By early anaphase, sister chromatids have separated and move towards 

the poles, which they reach in telophase. 
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6.3 Mitotic progression 

Progression from one cell cycle phase to the next is driven by 

cyclin/cyclin-dependent kinase (CDK) complexes [74].  Precise activation and 

inactivation of these complexes is essential to ensure accurate advance though 

the cell cycle.  Entry into mitosis is controlled by the MPF (maturation or M-phase 

promoting factor), which consist of cyclin-dependent kinase CDK1 and cyclinB1 

[75, 76].  The activity of cyclinB1/CDK1 is controlled by post-translational 

modifications and subcellular localization [77-79].  Inhibitory phosphorylation of 

cyclinB1/CDK1 by Wee1 and Myt1 keeps it in an inactive state until it is 

dephosphorylated by cdc25 phosphatase [80].  Furthermore, cyclinB1 is localized 

to the cytoplasm in interphase where it is kept in an inactive state [81].  Shortly 

before onset of mitosis, cyclinB1/CDK1 is phosphorylated within the cytoplasmic 

retention signal (CRS) and accumulates in the nucleus [82].  When 

cyclinB1/CDK1 is fully activated in the nucleus, cells enter prophase.  In the early 

stages of mitosis high cyclinB1/CDK1 activity is necessary for phosphorylation of 

lamins to promote nuclear envelope breakdown, centrosome separation, spindle 

assembly, and chromosome condensation [74].  Furthermore, cyclinB1/CDK1 

phosphorylation is essential for the regulation of the activity of the anaphase-

promoting complex/cyclosome (APC/C).  APC/C is an E3-ubiquitin ligase that 

controls the transition from metaphase to anaphase and mitotic exit.  APC/C 

activity is regulated by phosphorylation and binding of an activator protein Cdc20 

[83, 84].  Although several kinases are implicated in APC/C phosphorylation [85-

88], cyclinB1/CDK1 seems to the major APC/C activator.  In a feed-back loop, 

activated APC/C-Cdc20 ubiquitinates and thereby targets cyclinB1 for 

degradation leading to mitotic exit.  Another target of APC/C is securin, a protein 

that binds and inhibits the cysteine protease separase.  Degradation of securin 

activates separase which in turn cleaves cohesin between sister chromatids 

leading to sister chromatid separation [89, 90] (Fig. 24).  To avoid precocious 

sister chromatid separation, APC/C activity is inhibited by binding of its activator 

Cdc20 to proteins of the spindle assembly complex.  The spindle assembly 

complex is a surveillance mechanism that monitors microtubule-kinetochore 

attachment and chromosome congression [91, 92].  If both criteria are fulfilled, 

Cdc20 is released, activates APC/C and drives mitotic exit.     
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Figure 24   Metaphase to anaphase transition.  Diagram depicting the metaphase to anaphase 

transition in mammalian cells.  Separase is kept in an inactive state by phosphorylation by 

Cdk1/cyclin B and binding to securin.  Upon ubiquitination and degradation of securin by APC/C-

Cdc20 and the proteasome, respectively, as well as dephosphorylation, separase is activated and 

cleaves cohesin between sister chromatids.  At the same time, APC/C-Cdc20 targets cyclin B for 

degradation leading to Cdk1 inactivation and exit from mitosis.  
 

 

6.4 Meiosis 

In meiosis a diploid germ cell undergoes two rounds of cell division which 

ultimately yielding four haploid daughter cells.  After a single round of DNA 

replication, cells enter into meiosis I in which chromatin condenses (prophase I), 

homologous chromosomes align at the metaphase plate (metaphase I), and are 

separated (anaphase I) and segregated to two daughter cells (telophase I).  

During prophase I, non-sister chromatids of homologous chromosomes pair and 

undergo crossing-over leading to genetic recombination.  Aside from 

recombination of the genetic material, crossing-overs are essential for physical 

linkage of homologous chromosomes to ensure accurate segregation in 

anaphase I.  While arm cohesion is removed from chromosomes in prophase I, 

centromeric cohesins have to be conserved until anaphase I to guarantee faithful 

segregation of sister chromatids to opposite poles in meiosis II.  In meiosis II, 

sister chromatid segregation proceeds as in mitosis [72, 73].    
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6.5 Mechanism of error prevention and correction 

The initial capture of kinetochores by microtubules is a stochastic process 

and therefore prone to error.  After nuclear envelope breakdown, microtubules 

invade the previously nuclear space in their search for kinetochores.  Depending 

on the spatial orientation of chromosomes and kinetochore, sister kinetochores 

might be captured by microtubules emanating from the same pole or from 

opposite poles.  To ensure proper chromosome segregation, sister kinetochores 

have to be attached to the mitotic spindle in a bipolar (also termed amphitelic) 

fashion with one sister kinetochore being attached to one pole, while the other 

one is attached to the other pole [93].  Early in prophase, only one kinetochore is 

attached to microtubules (monopolar attachment).  If the second kinetochore is 

captured by microtubules emanating from the opposite pole, chromosome 

segregation will occur correctly.  However, if the second kinetochore is captured 

by microtubules from the same pole (syntelic attachment), both chromatids will 

segregate to the same daughter cell resulting in aneuploidy.  In another 

configuration, both sister kinetochores are attached to opposite poles, but one of 

them is also attached to the second pole (merotelic attachment).  In this case, 

one chromatid segregates at the onset of anaphase, while the other left behind at 

the metaphase plate unable to move because of pulling forces from both poles 

(Fig. 25) [93]. 

 

 

 

 

 

 

 
 

 

bipolar/
amphitelic monopolar

syntelic merotelic

Figure 25   Types of attachment.  For accurate chromosome segregation sister kinetochores 

have to attach to microtubules emanating from opposite spindle pole (bipolar/amphitelic).  In the 

case of monopolar attachment, only one kinetochore is linked by microtubules to the spindle pole.  

Attachment of both sister kinetochores to the same pole leads to syntelic attachment.  Merotelic 

attachment results from attachment of one sister kinetochore to both poles.     

-43- 



                                                                                                Checkpoint signaling 

      Cells have developed different mechanisms to ensure accurate 

kinetochore–microtubule attachment and subsequent chromatid segregation.  

One way in which bipolar attachment is favored is by the back-to-back 

arrangement of kinetochores [94-96]. The rigid arrangement of kinetochores is 

part of a passive mechanism that, after initial attachment of a kinetochore, orients 

the other one to the opposite pole.  The mitotic kinetochore lies in a pit of the 

chromosome which further helps to avoid incorrect attachment [97].  Because of 

this hidden construction only microtubules that enter the pit have a chance to 

capture the kinetochore and the probability of this event is strongly increased if 

the kinetochore faces the pole.  Furthermore, if the first kinetochore is attached to 

a pole, its sister is not only oriented away from the pole but also shielded from 

microtubules.  This mechanism reduces the amount of syntelic attachment early 

in prometaphase after nuclear envelope breakdown when chromosomes are 

randomly distributed in the cell and are likely to be attached with both 

kinetochores to the same pole.    

Besides preventive mechanisms to avoid mis-attachment, cells also 

possess active mechanisms to detect and correct mis-attached chromosomes.  

Faulty attachments are unstable and do not prevail.  Since microtubules undergo 

constant growth and shrinkage, a feature called dynamic instability [98], they will 

shrink and disappear if the attachment is incorrect and removed.  New 

microtubules will emanate from the poles and search for and capture 

kinetochores.  If a correct attachment is made, it is stable and will persist [99].  

The sensor for incorrect attachment is a protein complex located at the 

kinetochore.  This protein complex, called the “mitotic checkpoint” or “spindle 

assembly checkpoint” senses lack of attachment and absence or reduction of 

tension across sister kinetochores.  

 

 

6.6 The Spindle Assembly Checkpoint 

 The metaphase to anaphase transition is the most crucial moment in 

mitosis.  At this transition the duplicated sister chromatids are separated and 

segregated to the daughter cells.  To ensure that all chromatids are distributed 

correctly, a surveillance mechanism has developed that delays anaphase onset 
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until all sister chromatids are aligned at the metaphase plate and attached to 

microtubules from opposite poles [93]. 

 The first molecular components of the spindle assembly checkpoint were 

discovered in genetic screens in yeast for mutants that failed to arrest in mitosis 

upon spindle damage [100-102].  These screens identified seven genes Bub1-3 

(budding uninhibited by benzimidazole), Mad 1-3 (mitotic arrest deficient), and 

Mps1 (monopolar spindle 1).  Vertebrate orthologues of Bub1 and 3 [103, 104], 

Mad1-3 [104-106], and Mps1 [107] have been found and were shown to be 

implicated in spindle assembly checkpoint control. 

  Upon the onset of mitosis, Bub and Mad proteins localize to kinetochores 

and monitor microtubule attachment and tension between sister kinetochores 

[103, 104, 106].  Precocious progression into anaphase is inhibited by direct 

binding of the APC/C activator Cdc20 to Mad2 and Mad3 (mammalian 

homologue is named BubR1) [91, 92].  This inhibitory system is so sensitive that 

a single unattached kinetochore is sufficient to delay mitotic progression for at 

least three hours [108].  Although the defects that lead to checkpoint activation 

are well known, it is difficult to decipher the specific function of each checkpoint 

protein because of the intimate connection of tension between sister 

kinetochores and microtubule attachment.  However, it seems that each 

checkpoint protein has a distinct function in checkpoint signaling.  Best 

understood is the role of Mad2, which specifically localizes to unattached 

kinetochores and leaves as soon as microtubules bind [109].  Mammalian 

kinetochores bind on average 25 microtubules and the amount of Mad2 at the 

kinetochore is inversely proportional to the number of attached microtubules.  

Localization of Mad2 to kinetochores is highly dynamic and removal of 

microtubule attachment leads to re-localization of Mad2.  Bub1 is a 

serine/threonine protein kinase that is implicated in the regulation of chromosome 

congression and cohesion [110-112].  Bub1 is required for the kinetochore 

localization of other checkpoint proteins like Mad1, Mad2, and BubR1 [113, 114].  

Bub1 participates in checkpoint mediated APC/C inhibition by phosphorylating 

Cdc20 [115]. Mad1 and Bub3 appears to act as scaffolding proteins that are 

required for the localization of Mad2, Bub1 and BubR1 to the kinetochore [116, 

117].   
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6.7 Function and structure of BubR1 

 BubR1 is shown to have checkpoint-dependent and -independent roles.  

Depletion of BubR1 by siRNA leads to override of the spindle assembly 

checkpoint.  Upon checkpoint activation, BubR1 binds Cdc20 and thereby inhibits 

APC/C [91, 92].  BubR1 is further implicated in the regulation of kinetochore-

microtubule attachment possibly by influencing Aurora B kinase activity [118].  

Depletion of BubR1 results in defects in the regulation of microtubule attachment 

by increased Aurora B kinase activity [118].  

Both in mammals and yeast, BubR1/Mad3 has an N-terminal Bub3-

binding domain that is conserved in Bub1 (61% homology on amino acid level) 

and required for kinetochore localization (Fig. 26) [103].  However, in contrast to 

yeast Mad3, mammalian BubR1 possess a C-terminal Bub1-like kinase domain 

(homology with Bub1 is 47% on amino acid level) which has been implicated in 

BubR1’s checkpoint function and is stimulated by binding of the kinesin-related 

motor protein Cenp-E [104, 119].   While BubR1 has an N-terminal KEN box, it is 

not known if the KEN box targets BubR1 for degradation by APC/C [120].   
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Figure 26   Scheme of BubR1 and Bub1 protein structure and homology.   BubR1 and Bub1 

both possess an N-terminal Bub3-binding domain and C-terminal kinase domain.  Furthermore, 

BubR1 has a KEN box at the N-terminus.   
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6.8 Sister chromatid cohesion 

From the end of DNA replication to the onset of anaphase, sister 

chromatids are linked by cohesion which is essential for accurate sister 

chromatid segregation.  Cohesion between sister chromatids is essential for 

generating tension, which is an indication of the attachment status and is 

monitored by the spindle assembly checkpoint [121].  In budding yeast, each 

kinetochore binds to a single microtubule and tension alone is sufficient for error 

detection and correction, and to achieve correct bipolar attachment [122].  

Kinetochores of mammalian cells, however, attach approximately 25 

microtubules to each kinetochore and therefore need additional, geometric 

mechanisms such as rigid back-to-back orientation to minimize mis-attachment 

[94-96].    

Chromosome cohesion is established by the cohesin protein complex 

consisting of members of the SMC (structural maintenance of chromosome) 

protein family, Smc1 and Smc3, as well as Scc1 and 3 [123, 124]. Smc1 and 3 

are thought to form heterodimers that topologically enclose the DNA in a V-

shaped structure whose ends are linked by Scc1 [125].   

In vertebrate mitosis, cohesins are released in a two-step process.  In 

prophase and prometaphase cohesins are removed from chromosome arms in 

an Aurora B kinase and Polo-like kinase 1 dependent manner [126, 127].  

Centromeric cohesion is maintained until anaphase onset and its removal is 

APC/C-dependent.  Upon satisfaction of the spindle assembly checkpoint, 

APC/C is activated leading to the degradation of securin and activation of the 

cysteine protease separase [89, 90].  Separase cleaves Scc1 and thereby opens 

the cohesin ring which releases sister chromatids [128].   

Besides the cohesin complex, other proteins have been identified that are 

involved in protection of centromeric cohesion.  Genetic screens in Drosophila 

found the Ord and Mei-S332 genes [129, 130].  While no homologs have been 

identified for Ord, Mei-S332 was recently shown to be related to gene family in 

yeast, called shugoshins (Sgo’s) [112, 131, 132].  As with Mei-S332, the lack of 

shugoshins leads to precocious separation of sister chromatids and mis-

segregation in meiosis I and mitosis [112, 131, 132].   
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6.9     The Shugoshin protein family 

The first member of the shugoshin family, Mei-S332, was discovered in 

1976 [133] and further characterized in 1992 as a gene involved in sister-

chromatid cohesion [129].  However, since the homology of shugoshins (Sgo’s) 

is low and restricted to a coil-coil region at the N-terminus and a basic region at 

the C-terminus, no homologs in other organisms were found until 2004 [112].  

While Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis 

elegans, and Xenopus laevis only possess one Sgo gene, Schizosaccharomyces 

pombe, mammals and plants possess two Sgo genes [112, 129, 134].  Sgo1 and 

2 localize to the inner kinetochore/centromere from prophase until metaphase 

and are undetectable by anaphase onset [112, 134].  Mei-S332 is removed from 

kinetochores at the metaphase to anaphase transition by phosphorylation by 

Polo-like kinase 1 [135].  Furthermore, yeast and mammalian Sgo1 are shown to 

be degraded by APC/C [112, 134].  Deletion of Sgo1 in yeast leads to loss of 

centromeric cohesion in anaphase I and subsequently non-disjunction of sister 

chromatids in meiosis II.  During meiosis I, Sgo1 localizes to centromeric 

chromatin and protects the meiosis-specific cohesin subunit Rec8 (Scc1 in 

mitosis) from cleavage by separase.  S. cerevisiae possess only one Sgo, which 

is expressed and functions in mitosis and meiosis [131].  In S.pombe, however, 

Sgo1 seems to function specifically in meiosis, while Sgo2 has been implicated in 

both mitosis and meiosis.  Deletion of Sgo2 results in a low degree of non-

disjunction of homologous chromosomes in meiosis I and mis-segregation of 

sister chromatids in mitosis [112].  In mammals, both Sgo1 and 2 are expressed 

in mitosis and their depletion by siRNA leads to loss of cohesion, sister chromatid 

mis-segregation, and mitotic arrest [134, 136].  The loss of centromeric cohesion 

in mitosis after depletion of Sgo1 depends on the prophase cohesin removal 

pathway which acts on chromosome arms and can be suppressed by expression 

of non-phosphorylatable Scc3 [137].  Taken together, the observations from 

Sgo1 deletion in yeast and Sgo1 depletion in mammalian cells suggest that Sgo1 

protects centromeric cohesion by different mechanisms: in meiosis by preventing 

separase cleavage of Scc1 and in mitosis by circumventing phosphorylation- 

induced dissociation of Scc3 [137].  

Interestingly, in yeast as well as in mammals shugoshin localization to 

centromeric regions depends on Bub1, suggesting a possible connection 
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between protection of centromeric cohesion and the spindle assembly checkpoint 

[112, 138, 139].  Furthermore, a screen in S.cerevisiae for genes involved in 

sensing tension across sister kinetochores in mitosis identified Sgo1 [140].  Sgo1 

mutants are unable to detect lack of tension and complete mitosis instead of 

arresting in metaphase upon spindle assembly checkpoint activation.  However, 

Sgo1 mutants undergo a checkpoint-dependent mitotic arrest upon loss of 

microtubule-kinetochore attachment.  In addition, Sgo1 mutants showed a defect 

in chromosome segregation that could be rescued by delaying anaphase onset.  

A role for Sgo1 in tension sensing is further supported by the observation that 

mammalian Sgo1 bundles microtubules and is involved in microtubule dynamics 

[134].  It is possible that Sgo1 only interacts with microtubules in the absence of 

tension, while with bi-orientation and tension, kinetochores are pulled apart and 

the physical interaction of microtubules with Sgo1 is abolished at the inner 

kinetochore/ centromere [140].  Another link to the tension-sensing branch of the 

spindle assembly checkpoint comes from the observation that Aurora B kinase 

phosphorylates the Drosophila homolog of Sgo1, Mei-S332 [141].  

Phosphorylation of Mei-S332 seems to be required for stable binding of Mei-

S332 to centromeres. Aurora B kinase is a member of a conserved family of 

kinases that is involved in sensing lack of tension between sister kinetochore and 

removing microtubules from kinetochores that are not under tension [142-145].  

Loss of Aurora B kinase activity leads to defects that appear to be caused by 

altered tension [146].  Because the loss-of-function phenotypes of Mei-

S332/Sgo1 and Aurora B kinase are similar, and Aurora B kinase is required for 

stable association of Mei-S332/Sgo1 with the kinetochore, it is likely that both 

proteins function in the same pathway.   

Recent reports found that yeast and mammals shugoshins interact with 

protein phosphatase 2A (PP2A) at the centromere [136, 147, 148].  In yeast, 

centromere localization of PP2A in meiosis depends on Sgo1 [136, 147], while in 

mitotic mammalian cells Sgo2 is required for centromere localization of PP2A, 

which in turn targets Sgo1 to centromeres [136].  PP2A seems to protect 

cohesion by preventing phosphorylation of Rec8 in meiosis and Scc3 in mitosis.    
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7. Results 
 

7.1   Characterization of BubR1 protein 

To investigate BubR1’s function, a monoclonal antibody against BubR1 

was developed and used for characterization of BubR1 by Western blotting and 

immunofluorescence.  Protein expression and modifications of BubR1 in 

interphase and under mitotic arrest was analyzed.  HeLa cells were synchronized 

in interphase by double thymidine block and placed under checkpoint arrest with 

the spindle-damaging agents nocodazole or Taxol.  Nocodazole depolymerizes 

microtubules leading to loss of attachment and tension. Taxol stabilizes 

microtubules and abolishes microtubule dynamics leaving microtubule-

kinetochore attachment intact, but abolishes tension across sister kinetochores. 

Cells from these two conditions as well as after nocodazole wash-out were lysed 

and samples were analyzed by SDS-PAGE electrophoresis and Western blotting 

using anti-BubR1 antibody (Fig. 27).     
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Figure 27   BubR1 Western blot.   Under thymidine arrest in interphase, BubR1 appears as a 

single band of approximately 120kDa.  Upon nocodazole-induced mitotic arrest, BubR1 exhibits a 

gel-mobility shift and a second slower migrating band appears.   
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Figure 28   BubR1 Western blot of lambda phosphatase treated lysates.   HeLa cells were 

arrested in interphase with thymidine and in mitosis with Taxol.  Treatment with lambda-

phosphatase abolished the observed mobility shift of BubR1.   
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In interphase (thymidine arrest), BubR1 migrates as a single band of 

approximately 120kDa.  Upon checkpoint activation, a slower migrating band 

appears which disappears as cells progress in cell cycle after nocodazole is 

washed out.  To determine if the mobility shift of BubR1 in extracts from HeLa 

cells under mitotic arrest was due to phosphorylation, lysates were treated with 

lambda phosphatase to dephosphorylate all proteins.  The dephosphorylated 

lysates were analyzed by SDS-PAGE electrophoresis and Western blotting using 

anti-BubR1 antibody.  Treatment with lambda phosphatase abolished the mobility 

shift of BubR1, suggesting that the mobility shift in BubR1 is due to 

phosphorylation (Fig. 28). 
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Figure 29   BubR1 localization throughout the cell cycle.   Micrographs of anti-BubR1 (red) 

immunofluorescence at different cell cycle stages.  a. In interphase BubR1 localizes to the 

cytoplasm.  b-e.  Upon onset of mitosis, BubR1 binds to kinetochores and persists beyond the 

induction of anaphase.  f. In telophase BubR1 is found at the midbody.  Microtubules are green, 

DNA is blue.  Images are maximum projection of z-stacks of deconvolved spinning disc confocal 

optical sections every 0.267µm through the entire spindle. Scale bar is 3µm. 

 

The subcellular localization of BubR1 at different cell cycle stages in HeLa 

cells was investigated by immunofluorescence.  During interphase BubR1 

localizes to the cytoplasm.  In early prophase BubR1 binds to kinetochores and 
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stays on throughout mitosis.  At the metaphase-to-anaphase transition, BubR1 

intensity at kinetochores is reduced but remains detectable.  Late in telophase 

BubR1 is found at the midbody (Fig. 29) 

 
    
7.2 Immunoprecipitation of BubR1 from mitotically-arrested HeLa cells 

In order to better understand the function of BubR1 in spindle assembly 

checkpoint signaling, BubR1 was immunoprecipitated and precipitates were 

analyzed for post-translational modifications and associated proteins.  For 

immunoprecipitation (IP), HeLa cells were synchronized in mitosis by addition of 

Taxol and collected by mitotic shake-off.   
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Figure 30   BubR1 immunoprecipitation.   a. Coomassie blue-stained SDS-PAGE gel of BubR1 

and control IP.  Arrows indicate the regions of the gel from which Sgo2, BubR1, Bub1, Cdc20, 

Bub3 were identified by mass spectrometry, as well as the non-cross-linked light chain of the 

antibody.  b. Table denoting protein coverage as a percentage of amino acid content of BubR1 

and selected BubR1 interacting proteins, as well as the number of unique and total tryptic peptide 

matches as determined by mass spectrometry.     

  

After lysis, anti-BubR1 antibody cross-linked to protein G Sepharose for 

BubR1 precipitation or protein G Sepharose alone as a control were added to the 

lysate.  Precipitates were separated by SDS-PAGE electrophoresis and analyzed 

by Western blotting as well as Coomassie stain (Fig. 30a).   

-52- 



                                                                                                Checkpoint signaling 

Mass spectrometric (µLC-FTICR MS/MS) analysis of the Coomassie gel 

was carried out by Dr. Scott Gerber in Dr. Steven Gygi’s laboratory.  In the mass 

spectrometric analysis of the BubR1 IP, only proteins specifically identified in the 

BubR1 IP lane and not in the control IP lane were further investigated.  BubR1 

was identified with a total number of peptides of 124 of which 37 peptides were 

unique (Fig. 30b).  Furthermore, known BubR1 interacting proteins like Bub1, 

Cdc20, Bub1, and Bub3 were found [92], confirming the approach as suitable for 

investigation of BubR1 interacting partners.  In addition, novel BubR1 interacting 

proteins such as Sgo2 were identified.   

 Besides the identification of interacting proteins, BubR1 itself was 

investigated for post-translational modifications especially phosphorylation.  For 

phosphorylation analysis, immunoprecipitated BubR1 was independently 

digested with three different proteases (trypsin, chymotrypsin, and glu-C) to 

achieve maximum protein coverage.  In this analysis 13 individual 

phosphorylation sites on BubR1 were identified (Table 1).  The amino acid 

sequence of human BubR1 (accession number AAC06260) was submitted to 

online phosphorylation predictions programs (NetPhos 2.0 [149] Scan site [150]) 

for in silico identification of phosphorylation sites and prediction of upstream 

kinases.   

The NetPhos 2.0 program predicts the likelihood for any serine (S), 

threonine (T), or tyrosine (Y) in a given amino acid sequence to be a true 

phosphorylation site [149].  Each S/T/Y amino acid residue in the sequences is 

scored with a value from 0 to 1, with 0.5 being the threshold.  If a site has a score 

just above the threshold, it is unlikely that the site is phosphorylated in vitro.  The 

phosphorylation sites identified in BubR1 by mass spectrometry in general 

received a high score.  Although S435, S1043, and S720 were identified with 

high confidence as phosphorylated in vivo by mass spectrometry, S435 and 

S1043 scored just below the threshold (0.494 and 0.477, respectively) and S720 

received a score of only 0.249, indicating that these sites are unlikely to be 

phosphorylated.      
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TSESITSNEDVS*PDVCDEFTGIEPLSEDAIITGFR – S574
LELTNETSENPTQSP*WCSQYR – S720
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Table 1  Phosphorylation sites identified in BubR1.   Peptide sequence, cross-correlation 

scores, and mass measurement accuracy (MMA) in parts per million (ppm) of identified 

phosphorylated peptides.  The phosphorylated amino acid residue is indicated with an asterisk.    

 

 Scan Site searches protein sequences for amino acid motifs that are 

phosphorylated by specific protein kinases (Fig. 31) [150].  The amino acid motif 

is a sequence of amino acids surrounding the phosphorylated residue that is 

recognized by a specific kinase.  The probability that an amino acid is found in 

the motif at a certain position was determined by oriented peptide library 

technique and expressed as a selectivity value.  Using Scan Site with medium 

stringency, only one of the identified phosphorylation sites of BubR1 was found 

and predicted to be phosphorylated by basophilic serine/threonine kinases.   

 The comparison between in silico prediction and in vivo detection of 

phosphorylation sites emphasizes the difficulties of in silico prediction of protein 

phosphorylation sites and their corresponding kinases.  Although many serine, 

threonine and tyrosine residues in the BubR1 sequence yield high scores for 

potential phosphorylation sites using NetPhos 2.0 and ScanSite, only a few of 

them were found phosphorylated in vivo and not every one of them received a 

high score.        

 

-54- 



                                                                                                Checkpoint signaling 

 
 

Figure 31   Phosphorylation sites in BubR1 as predicted by Scan Site.   The amino acid 

sequence of BubR1 was entered into the Scan Site server and analyzed with medium stringency 

for kinase-specific phosphorylation sites.  
 

 

7.3 Differential quantification of BubR1 phosphorylation sites and interacting 

proteins by SILAC 

To assess the functional significance of BubR1 modifications and 

interactions in interphase and mitosis, a differential labeling strategy termed 

SILAC (“stable isotope labeling with amino acids in cell culture”) was employed 

[151, 152].  SILAC is based on the metabolic incorporation of “heavy” amino 

acids into cells to substitute the natural distribution of isotopes of carbon and/or 

nitrogen with heavier stable isotopes (13C, 15N).  In an experiment, two different 

cell populations to be compared are grown in media containing either “light” or 

“heavy” versions of L-arginine and L-lysine for at least six doublings to achieve 

complete incorporation of these essential amino acids.  Heavy and light amino 

acids exhibit virtually identical chemical, metabolic, and analytical properties, but 

are readily distinguished during analysis by mass spectrometry.  The labeled and 
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unlabeled cell populations can be differentially treated or otherwise manipulated 

for comparative purposes, then mixed, lysed and analyzed.  Quantification of 

protein abundance in both states is performed by comparing the peak heights in 

mass spectra of the light and heavy peptide.   

For assessing cell cycle dependent changes in BubR1 phosphorylation 

and protein-protein interactions, HeLa cells were grown in media containing 

“heavy” (U-13C6 -arginine and U-13C6
15N2 -lysine) and “light” (normal isotopic 

distribution) amino acids.  The “light” population was arrested in mitosis with 

Taxol, while the “heavy” population was arrested with thymidine in interphase 

(Fig. 32).  Equal numbers of cells from both populations were mixed, lysed, and 

BubR1 was immunoprecipitated using anti-BubR1 antibody.  Precipitates were 

analyzed by SDS-PAGE electrophoresis and Coomassie stain and submitted for 

mass spectrometric analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

Interphase Mitotic arrest

anti-BubR1

mix cells
& lyse

??
BubR1

?

?
BubR1

?

Trypsin digest and
FT-MS/MS

Light Arg & LysHeavy Arg & Lys

Figure 32   Scheme of SILAC strategy to identify mitosis-specific interactors and 
phosphorylation sites of BubR1.   HeLa cells were labeled with “light” and “heavy” amino acids 

and arrested in mitosis or interphase, respectively.  Equal numbers of cells from both conditions 

were mixed, lysed, and BubR1 was immunoprecipitated.  BubR1 immunoprecipitates were 

analyzed by SDS-PAGE gel electrophoresis, trypsin digested, and analyzed by µLC-FTICR 

MS/MS.  

 

Quantification of the relative intensities of BubR1 peptides showed that the 

total cellular amount of BubR1 found in interphase and during mitotic arrest was 

comparable (Fig. 33a).   However, the amount of BubR1-bound Sgo2 was 
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strongly reduced in interphase compared to mitosis (ration of 1: 30.36) (Fig. 33b).  

Quantification of known BubR1-interacting proteins revealed that Bub1 also 

specifically interacts with BubR1 in mitosis, while Cdc20 and Bub3 are 

associated with BubR1 in interphase as well as in mitosis (Fig. 33c).  
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Figure 33   Quantification of BubR1 and interacting proteins.  FTMS1-spectra of two peptides 

of immunoprecipitated BubR1 (a) and co-precipitated Sgo2 (b).  The relative intensities of the 

“heavy” (interphase = I, orange) and “light” (mitotic arrest = MA, green) versions of both BubR1 

peptides are comparable, while co-precipitated Sgo2 peptides show a decrease in the relative 

intensity of the “heavy” versus the “light” peak.  c. Fold-changes in BubR1 interaction of co-

precipitated Cdc20, Bub3, Bub1 and Sgo2 SILAC peptide pairs in mitotic-arrest versus 

interphase. 

 

The SILAC analysis of the phosphorylation status of BubR1 in interphase 

and mitosis yielded quantitative data for the non-phosphorylated species of all 

previously identified phosphorylated peptides.  Furthermore, for many peptides, 

the corresponding phosphorylated species was also identified and quantified.  

The results are summarized in Table 2.  Although the phosphorylated form of the 

peptide containing S435 and S574 was not detected, the peak intensity of the 

non-phosphorylated form did not change between interphase and mitosis, 

suggesting that only a small portion of the protein is phosphorylated at those 
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residues in mitosis or that the ratio of phosphorylated to non-phosphorylated 

peptide does not change between interphase and mitotic arrest.  The ratio of 

phosphorylated and non-phosphorylated peptide under mitotic arrest and in 

interphase showed large, reciprocal differences for S670 and S1043.  These 

sites seem to be specifically phosphorylated in mitosis and are therefore 

potentially important for BubR1’s function in mitosis.  The non-phosphorylated 

form of a peptide containing a cluster of phosphorylation sites (amino acid 672-

693) that was previously identified as singly-, doubly-, and even triply-

phosphorylated, also exhibited a significant difference in abundance in mitosis 

versus interphase (22:1).  Although several of these phosphorylated forms were 

identified in the SILAC experiment, their heterogeneity and multiplicity of forms 

resulted in dilution to below an acceptable signal-to-noise threshold for 

quantification.  Other sites, such as S543 and S720, were also more abundant in 

their phosphorylated form in mitosis and in their non-phosphorylated in 

interphase, although these ratios were lower.  Although this analysis yielded 

information about the relative abundance of the phosphorylated and non-

phosphorylated form of these peptides in interphase and under mitotic arrest, 

their absolute abundance can not be determined using the SILAC approach.  

      

  ami

N/AS676-S689

134/1S670

N/AS574

7/1S543

N/AS435

phosphorylated peptide
mitotic arrest/interphase

no acid
locus 

unphosphorylated peptide
mitotic arrest/interphase

98/1

12/1S720

S1043

1/22

1/114

1/1.1

1/5.2

1/1.2

1/105

1/17

 

 

 

 

 

     
 

Table 2   Quantification of BubR1 phosphorylation sites during mitotic arrest and 
interphase.   Ratios of peak intensities of phosphorylated and unphosphorylated peptides of 

BubR1 in mitosis and interphase.   

 

Taken together, these results indicate that certain sites in BubR1 are 

phosphorylated in mitosis as well as interphase, while other ones seem to be 

specifically phosphorylated in mitosis.  It is likely that mitosis-specific interactions 
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of BubR1 depend on post-translational modifications.  Furthermore, mitosis-

specific modifications and interactions might influence BubR1’s behavior during 

the cell cycle, affecting nuclear import, kinetochore localization, and checkpoint 

signaling.  

 

 

7.4 Investigation of BubR1 phosphorylation by mutagenesis 

The function of BubR1 phosphorylation sites was investigated using a site-

directed mutagenesis approach.  The cDNA of BubR1 was cloned into a 

retroviral expression vector (pMX) and the codons corresponding to the identified 

phosphorylation sites were mutated to code for alanine instead of serine or 

threonine (Fig. 34).  Furthermore, codon 670 to 689 were deleted from the cDNA 

to completely remove the cluster of phosphorylation sites.  In order to distinguish 

between endogenous and heterologous expressed BubR1, a six-myc-tag was 

added to the N-terminus of the BubR1 coding sequence.  The cell pools were 

synchronized in interphase with thymidine and with Taxol in mitosis and analyzed 

by Western blotting and immunofluorescence.  

 

 

 

 

 

 

 

 
 

∆670-695

1050
P P P P P

S435 S543 S574

S670-S689
S720 S1043

6myc ∆

1050
P P P A PPPPPPP A A

S435 S543 S574 S670

S676- 689
S720 S1043

6myc

S670A/S720A/S1043A

Figure 34   Schema of BubR1 mutants.   Scheme of BubR1 protein structure with 

phosphorylation sites.  Upper drawing shows BubR1 triple point mutant with S670A, S720A, and 

S1043A.  Lower drawing describes the deletion amino acid 670 to 689 of BubR1.    

 

 The phosphorylation-dependent mobility shift of endogenous BubR1 

observed upon mitotic arrest was recaptured in heterologously expressed 6myc-

BubR1.  Western blot analysis of different single, double and triple point mutants 

also exhibited a mobility shift.  However, deletion of codon 670 to 689 abolished 
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the mobility shift leading to the same migration behavior of BubR1 in mitosis as in 

interphase (Fig. 35).  This observation suggests that one or more sites in this 

cluster of serine or threonine residues are responsible for the observed mobility 

shift.  The deletion included S670 which is one of the sites found to be 

specifically phosphorylated in mitosis.  Neither the S670A single point mutation, 

the double point mutation S670A/S1043A, nor the triple point mutations 

S670A/S720A/S1043A influenced 6myc-BubR1 migration behavior.  Therefore, it 

is likely that sites found in S676-S689 by themselves or in combination with S670 

are responsible for the mobility shift.    

 

 

   

 
G1/S

6myc-BubR1

S670A
S720A

S670A
S1043A

S670A
S720A/S1043AWild-type

P

MG1/SM G1/S M G1/SM MG1/S

∆670-689

 
 
 
 
Figure 35   Western blot of 6myc-BubR1.   Cell populations of wild type and mutant 6myc-

BubR1 were synchronized in interphase and mitosis and analyzed by SDS-PAGE electrophoresis 

and Western blotting.  Single, double and triple point mutants of BubR1 showed migration 

behavior like wild type BubR1.  Deletion of amino acids 670 to 689 abolished the 

phosphorylation-dependant mobility shift. 

 

 
To investigate the influence of BubR1 phosphorylation on sub-cellular 

localization, cells were transduced with wild type and mutant BubR1 and 

analyzed by immunofluorescence.  6myc-tagged wild type and point-mutated 

BubR1 behaved like endogenous BubR1 in that it localized in interphase to the 

cytoplasm and to kinetochores from early prophase on.  The 670-689 deletion 

mutant was also cytoplasmic in interphase and localized in prophase to the 

kinetochore.  However, upon congression of chromosomes in metaphase, the 

deletion mutant departed from kinetochores and did not bind again to 

kinetochores during later stages of mitosis (Fig. 35).  While phosphorylation of 

amino acid residues in the cluster is not required for initial binding of BubR1 to 

the kinetochore, it seems to be necessary for the continuation of kinetochore 

localization upon congression. Localization of wild type, point mutants and the 

deletion mutant to the midbody in telophase was not observed.   
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Figure 35   Immunofluorescence micrographs of endogenous and heterologous BubR1.   
First panel down shows endogenous BubR1 localization at different mitotic phases.  

Heterologous expressed BubR1 as well as BubR1 point mutants localize to the cytoplasm in 

interphase and to kinetochores in mitosis (second panel down). Deletion of amino acids 670 to 

689 abolishes kinetochore localization of BubR1 upon congression (last panel down). 

  

 Interestingly, this localization pattern was reminiscent of that of another 

checkpoint protein, Bub1 [103].  In interphase, Bub1 is found in the nucleus and 

binds early in prophase to kinetochores where it stays on until congression.  As 

chromosomes attach to the spindle and align under tension on the metaphase 

plate, Bub1 leaves the kinetochore (Fig. 36).  Bub1 and BubR1 exhibit significant 

sequence homology in the N-terminal Bub3 binding domain and in the C-terminal 

Bub1-like kinase domain. Kinetochore localization of both proteins depends on 

their interaction with Bub3 via an N-terminal interaction domain. 
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Figure 36   Immunofluorescence micrographs of endogenous Bub1 and BubR1 and 
heterologous BubR1 deletion mutant.   Localization of endogenous BubR1 (first panel down), 

Bub1 (second panel down), and heterologous 6myc-BubR1∆670-689 (third panel down) at 

different mitotic phases. Note Bub1 is of the kinetochore upon congression.    
 

It is possible that the specific localization pattern of BubR1 and Bub1 is 

determined by post-translational modifications.  Sequence comparison of BubR1 

and Bub1 revealed that many serines of the cluster region found in BubR1 are 

conserved in Bub1 (Fig. 37).  However, the surrounding residues are not 

conserved.  Therefore it is possible that amino acid substitutions of the residues 

surrounding serines created or destroyed kinase motifs leading to specific 

phosphorylation patterns. 

 

 
BubR1:    670 – SPI I EDS–REATHSSGFSGS – 689

Bub1:    655 – SPIQEKSPKQALSSHMYSAS – 689
SPI E S ++ A S + S S 

 

 
Figure 37   Sequence alignment of the cluster regions in BubR1 and Bub1.    Mostly serines, 

but not neighboring amino acids in the cluster region of BubR1 are conserved in Bub1, making it 

unlikely that the same kinases will phosphorylate both proteins in this region.   
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Furthermore, heterologous expression of BubR1 mutants in HeLa cells did 

not influence cell cycle progression or mitotic arrest upon treatment with spindle 

poisons.  Because BubR1 mutants were introduced into HeLa cells by retroviral 

transduction, it is likely that the low levels of heterologous expressed mutant 

protein did not efficiently compete with the approximately ten-fold higher 

endogenously expressed BubR1 (data not shown). 

 

 

7.5 BubR1 and Bub1 domain swap 

Bub1 localizes to kinetochores from prophase until congression in 

metaphase. It has been shown that the N-terminus of Bub1 (N-Bub1) by itself 

binds to kinetochores and stays there as long as full-length Bub1 [103]. To test if 

the duration of N-Bub1 localization to the kinetochore can be altered by addition 

of the C-terminus of BubR1, which includes the cluster of phosphorylation sites 

(amino acid 670-689), both were fused.  Moreover, to determine if a change in 

duration in kinetochore binding is due to phosphorylation in the cluster region, the 

N-terminus of Bub1 was also fused to the C-terminus of BubR1 lacking amino 

acids 670 to 689 (Fig. 38).  
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Figure 38   Scheme of swapping constructs.   Depicted are schemes of BubR1, Bub1, as well 

as fusion constructs.  The relative location of BubR1 phosphorylation sites is indicated.             
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While endogenous Bub1 was easily detected by anti-Bub1 antibodies at 

the kinetochore, heterologously expressed Bub1 was found in the nucleus but no 

kinetochore staining was observed in mitosis.  However, heterologously 

expressed N-Bub1 localized correctly in interphase to the nucleus and in mitosis 

to the kinetochore until congression.   Upon onset of mitosis the fusion constructs 

bound to the kinetochore and stayed at the kinetochore beyond congression and 

was easily detected on anaphase kinetochores.  N-Bub1/C-BubR1∆670-689 

localized to the cytoplasm in interphase and initially to kinetochores in prophase, 

however, it was absent from kinetochores upon congression (Fig. 39).   
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Figure 39   Immunofluorescence micrographs of swapping constructs.   N-Bub1/C-BubR1 

like BubR1 localizes to kinetochores beyond the onset of anaphase. N-Bub1/C-BubR1∆670-689, 

however, initially binds to kinetochores in prophase but leaves upon congression.   

 

 

7.6 Kinases involved in BubR1 phosphorylation 

Several kinases including Cdk1, Polo-like kinase 1, and Aurora B kinase 

are involved in regulating mitotic processes and progression [74, 143, 153].  

Different strategies were applied to investigate if one of these kinases is involved 

in BubR1 phosphorylation.   
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Figure 40   Immunofluorescence micrographs of endogenous BubR1.   Treatment of HeLa 

cells with control or polo-like kinase 1 siRNA did not influence BubR1 localization.  However, 

depletion of Aurora B kinase abolished kinetochore localization of BubR1 upon congression.   

 

In a first attempt, HeLa cells were treated with Aurora kinase [146] and 

Cdk1 inhibitor [154] followed by investigation of BubR1’s subcellular localization 

by immunofluorescence.  While treatment with Cdk1 inhibitor had no effect on 

BubR1 localization, the Aurora kinase inhibitor abolished binding of BubR1 upon 

congression.  Although the Aurora kinase inhibitor targets both Aurora kinase A 

and B, the observed phenotypes are thought to be dependant on Aurora B rather 

than Aurora A kinase [146].  However, to demonstrate that BubR1 localization 

depends on Aurora B and not Aurora A kinase, Aurora kinase B was specifically 

depleted from HeLa cells by siRNA. As with inhibition of Aurora kinases, 

depletion of Aurora B kinase abolished BubR1 localization at kinetochores upon 

congression (Fig. 40).  Depletion of polo-like kinase 1 from HeLa cells had no 

influence on BubR1 localization.    
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 The effect of kinase inhibition on BubR1’s phosphorylation-dependant 

mobility shift upon mitotic arrest was investigated by Western blotting.  HeLa 

cells transduced with wild type 6myc-BubR1 and 6myc-BubR1∆670-689 were 

arrested in mitosis with Taxol and treated with Aurora kinase and Cdk1 inhibitor.  

6myc-BubR1∆670-689 did not exhibit a phosphorylation-dependent mobility shift 

upon mitotic arrest and treatment with either inhibitor did not influence 6myc-

BubR1∆670-689 migration behavior.  Wild type 6myc-BubR1 did show a mobility 

shift upon mitotic arrest, which was reversed by treatment with Aurora kinase 

inhibitor but not with Cdk1 inhibitor (Fig. 41).    
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Figure 41   Western blot analysis of 6myc-BubR1 and 6myc-BubR1∆670-689 treated with 

kinase inhibitors.  HeLa cells transduced with 6myc-BubR1 or 6myc-BubR1∆670-689 were 

arrested in mitosis with Taxol and treated with Aurora kinase and Cdk1 kinase inhibitor.   

 
 
 To prove that BubR1 is a direct target of Aurora B kinase, BubR1 was 

immunoprecipitated from interphase HeLa extracts and used as a substrate in in 

vitro kinase assay with purified human Aurora B kinase and γ-32P-ATP.  Because 

BubR1 is a kinase itself and tightly associated with Bub1, a control reaction 

without addition of Aurora B kinase was done.  To ensure that Aurora B kinase 

was active under the experimental conditions, purified histones were used as 

substrates in a positive control.  Both histones and BubR1 were phosphorylated 

by Aurora B kinase as judged by labeling with γ-32P, but no auto-phosphorylation 

or phosphorylation of co-precipitating kinases was detected under the conditions 

used (Fig. 42).   
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Figure 42   In vitro kinase assay with Aurora B kinase.  Immunoprecipitated BubR1 was 

phosphorylated with or without Aurora B kinase in the presence of α-32P-ATP.  
 

 Taken together, these observations from kinase inhibitor studies, siRNA, 

and in vitro kinase assays, it is likely that Aurora B kinase phosphorylates BubR1 

in vivo.  As observed with Aurora kinase inhibitor and Aurora B kinase siRNA, 

deletion of the amino acids 670- 689 abolished BubR1’s mobility shift and 

induced early departure of BubR1 from kinetochores upon congression.  This 

suggests that Aurora B kinase phosphorylates BubR1 in the cluster region and is 

responsible for BubR1’s extended kinetochore localization.   

 

 

7.7   Confirmation of BubR1-Sgo2 interaction 

 Sgo2 is one of the newly identified BubR1-interacting proteins that 

specifically binds to BubR1 in mitosis.  Sgo2 is a member of the conserved family 

of shugoshin proteins.  Sgo2 is implicated in sister chromatid cohesion and 

chromosome congression in yeast, flies, and mammals [112, 134, 155].  To 

further analyze the interaction between BubR1 and Sgo2, the Sgo2 coding 

sequence was cloned into the pMX vector for retrovirus production and HeLa cell 

populations expressing 6myc-Sgo2 were established. 

To demonstrate that the interaction of BubR1 and Sgo2 is specific and 

direct, 6myc-Sgo2 was immunoprecipitated from Taxol arrested lysates and 
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precipitates were analyzed by mass spectrometry.  One concern with regards to 

the BubR1-Sgo2 interaction was that BubR1 tightly binds Bub1 and Bub1 is 

required for the inner kinetochore localization of Sgo1 and Sgo2 in yeast [112].  

Therefore it could be possible that the interaction between BubR1 and Sgo2 is 

mediated by Bub1.  In the mass spectrometric analysis of the Sgo2 precipitate, 

the only checkpoint protein associated with Sgo2 was BubR1, confirming that the 

interaction with BubR1 is specific and direct and not mediated by Bub1.  

Furthermore, peptides corresponding to different subunits of protein phosphatase 

2A and tubulin were detected in Sgo2 immunoprecipitates (Table 3).   

 

 

212157%Tubulin 

4418.3%SET protein

225.8%PP2a r56epsilon

338.4%PP2a r56alpha

8826%PP2a r55alpha

121220.9%PP2a r65alpha

682723.6%BubR1

966249.1%Sgo2

total 
peptides

# of unique 
peptides

protein 
coverage

protein

212157%Tubulin 

4418.3%SET protein

225.8%PP2a r56epsilon

338.4%PP2a r56alpha

8826%PP2a r55alpha

121220.9%PP2a r65alpha

682723.6%BubR1

966249.1%Sgo2

total 
peptides

# of unique 
peptides

protein 
coverage

protein

 

 

 

 

 

 
 

 

Table 3   Sgo2-interacting proteins.   Protein coverage as a percentage of amino acid content 

of Sgo2 and selected Sgo2-interacting proteins, as well as the number of unique and total tryptic 

peptide matches as determined by mass spectrometry.   
 

PP2A is a recently described shugoshin interactor which is involved in 

protection of centromeric cohesion [136, 147, 148].  The observed interaction 

with tubulin is intriguing, because mammalian Sgo1 was reported to bind and 

induce microtubule polymerization [134].     

 

 

7.8 Characterization of Sgo2 protein 

In yeast, Sgo2 is expressed in meiosis and mitosis and localizes to 

pericentromeric regions from prophase until the onset of anaphase [112].  To 

examine Sgo2 localization and expression during mammalian mitosis, a 

polyclonal antibody against human Sgo2 was made.   
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For Western blot analysis, HeLa cells were synchronized in interphase by 

double thymidine block and in mitosis with Taxol.  Cells were collected, lysed and 

proteins separated by SDS-PAGE electrophoresis and detected by Western blot.    
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Figure 43   Sgo2 Western blot.   a. In interphase Sgo2 migrates as a single band of 

approximately 135kDa.  During mitotic arrest, Sgo2 is shifted to a slower migrating form.  b. 
Lambda-phosphatase treatment reverses the gel-mobility shift of Sgo2 upon mitotic arrest. 

 

   Interphase extracts show Sgo2 as a single band of approximately 135kDa.  

Upon mitotic arrest, Sgo2 exhibits a gel-mobility shift and migrates slower (Fig. 

43a).  Lambda phosphatase treatment of mitotic extracts reverses Sgo2’s 

mobility shift, indicating that Sgo2 is phosphorylated during mitotic arrest and 

therefore migrates more slowly (Fig. 43b).   

 Sgo2’s subcellular localization during mitosis in HeLa cells was analyzed 

by immunofluorescence.  Although endogenous Sgo2 was detectable in 

interphase by Western blotting, no Sgo2 signal was seen by 

immunofluorescence in interphase.  Upon onset of mitosis, Sgo2 localizes to 

kinetochores where it stays until the onset of anaphase and then disappears (Fig. 

44).  To more specifically define where Sgo2’s resides at the kinetochore, cells 

expressing 6myc-Sgo2 were co-stained for Sgo2 and different kinetochore 

markers.  Sgo2 co-localizes with the inner centromere protein Aurora B kinase 

and human auto-antibodies from CREST patients, it partially overlaps with 

BubR1 and Bub1, and is found inside of the outer kinetochore proteins Hec-1 

and Cenp-F (Fig. 45) [156].  This staining pattern is consistent with Sgo2 

localization to pericentromeric chromatin in yeast.     
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Figure 43   Sgo2 localization through-out the cell cycle.   Micrographs of anti-Sgo2 (red) 

localization during pro- (a), prometa- (b), meta- (c), and anaphase (d) in HeLa cells.  Upon onset 

of mitosis, Sgo2 binds to kinetochores until the onset of anaphase.  Microtubules are green, DNA 

is blue.  Images are maximum projection of z-stacks of deconvolved spinning disc confocal 

optical sections every 0.267µm through the entire spindle. Scale bar is 3µm.    
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Figure 45   Sgo2 kinetochore localization.  Micrographs of 6myc-Sgo2 (green) and Aurora B, 

CREST, BubR1, Bub1, Hec1, and Cenp-F (all in red) at kinetochores.  Images are single 

deconvolved spinning disc confocal optical sections. Scale bar is 1µm.    
 

 

7.9 Depletion of Sgo2 by siRNA 

To examine Sgo2 function in vivo, Sgo2 was depleted from HeLa cells by 

siRNA transfection.  SMARTpool™ Sgo2 siRNA was obtained from Dharmacom, 

which is guaranteed to be Sgo2-specific and to reduce expression by at least 
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75%.  To test the efficiency of Sgo2 depletion, HeLa cells were transfected with 

Sgo2 siRNA and Sgo2 expression was analyzed 30 hours after transfection by 

Western blotting.  As a control for experimental conditions and effects of siRNA 

transfection, control cells were transfected with a point-mutated Sgo2 siRNA that 

should not show any effect on expression of Sgo2.  To be able to compare 

protein expression in control and Sgo2-depleted samples, lysates from equal 

number of cells were loaded onto the gel and blotted for Sgo2 expression.  

Afterwards, the blot was stripped and re-probed with an antibody against actin to 

confirm equal loading.   

While Sgo2 protein was detectable in lysates from control siRNA 

transfected cells, it was absent in lysates of cells transfected with Sgo2 siRNA 

indicating that the Sgo2 siRNA very efficiently reduces Sgo2 expression to 

undetectable levels (Fig. 46).  Sgo2 protein was also undetectable by 

immunofluorescence in Sgo2-depleted cells, while control transfected cells 

showed kinetochore staining.  Because the polyclonal Sgo2 antibody detects 

Sgo2 protein with higher affinity by Western blotting than by 

immunofluorescence, analysis of Sgo2 expression after siRNA transfection by 

Western blotting is more reliable.   

 

 

 

 

 
 

 

 

control
siRNA

Sgo2
siRNA

Sgo2

actin

Figure 46   Efficiency of Sgo2 depletion by siRNA.  Lysates of HeLa cells transfected with 

control and Sgo2 siRNA were blotted for Sgo2 and actin expression.   

 

 

7.10 Sgo2 depletion induced mitotic arrest in HeLa cells 

To investigate the effects of Sgo2 depletion by live-imaging in vivo, HeLa 

cells stably expressing GFP-histone 2B (HeLaGfpH2B cells) were transfected with 

Sgo2 siRNA.  24 hours after siRNA transfection, live-imaging of the cells was 

started and cells were imaged for the next 36 hours (Fig. 47).     
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Figure 47   Live-imaging of Sgo2 siRNA transfected HeLaGfpH2B cells.  Non-transfected 

HeLaGfpH2B cells or HeLaGfpH2B transfected with control siRNA rapidly advance though mitosis, 

while those transfected with Sgo2 siRNA arrest in mitosis and die. Live-imaging was performed 

by time-lapsed spinning-disk confocal fluorescence microscopy.  Time is indicated in each frame 

in minutes.  Z-series were collected every 15 min.  For each time point, 12 focal planes were 

collected using a 1 µm step size.  Maximum z-projections of all focal planes are shown. 
 

Unlike untransfected HeLaGfpH2B cells or HeLaGfpH2B cells transfected with 

control siRNA, which rapidly advance through mitosis, Sgo2 siRNA-transfected 

HeLaGfpH2B cells underwent aborted chromosome congression followed by a long 

phase of mitotic arrest in which their chromosomes were dispersed.  Finally, the 

cells died as judged by hypercondensed chromatin aggregates.  

To further analyze the effect of Sgo2 depletion on cell cycle progression, 

HeLa cells were transfected with Sgo2 siRNA.  30 hours after transfection, these 

cells were analyzed by propidium iodide staining and FACS for cell cycle 

progression (Fig. 48a).  The FACS profile of Sgo2-depleted cells was compared 

to profiles of cells transfected with control siRNA and Sgo1 siRNA [134].  While 

control siRNA transfected cells showed a normal cell cycle distribution with 

62.7% in G1/S, 18% in G2/M, and only 2.3% in the sub-G1 population,  Sgo1-

depleted cells display a strong increase in the G2/M (31.9%) and sub-G1 (10.1%) 

population (Fig. 48b). This phenotype correlates with published observations that 

cells transfected with Sgo1 siRNA arrest in mitosis with defects in chromosome 

alignment and sister chromatid cohesion and eventually exit mitosis and die 

[134].  Sgo2-depleted cells also showed an increase in the G2/M fraction to 
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27.3% and in the sub-G1 to 7.9%, which corresponds to the mitotic arrest 

followed by cell death observed by live-imaging (Fig. 48b).   
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Figure 48   FACS analysis of control, Sgo1, and Sgo2 siRNA transfected HeLa cells.  a. 
FACS profile of DNA content of Sgo1 and Sgo2 siRNA transfected HeLa cells indicate mitotic 

arrest and increase cell death.  b. Table denoting percentage of cells with sub-G1, G1/S, and 

G2/M DNA content.  

 

 

7.11 Chromosome mis-alignment and tension defects in Sgo2 siRNA cells 

 The mitotic arrest phenotype in HeLa cells upon depletion of Sgo2 was 

examined in greater detail by high-resolution imaging.  HeLa cells were 

transfected with control and Sgo2 siRNA and 30 hours later stained with anti-

tubulin and CREST antibodies.  While in control siRNA-transfected cells 

chromosomes aligned at the metaphase plate with bipolar attached sister 

kinetochore (standard deviation of the angles of the axis through kinetochore 

pairs to the spindle axis was 8.7 degrees, n=153 pairs), chromosomes in Sgo2-

depleted cells did not align but showed a scattered distribution (standard 

deviation of 56.7 degrees, n=194 pairs) (Fig. 49).   

Furthermore, the mitotic spindle was elongated in Sgo2-depleted cells and the 

spindle pole-to-pole distance was increased to 16.2µm (min 13.04 µm, max 22.1 

µm, n=29 cells) compared to 11.4µm in control cells (min 9.47 µm, max 13.16 

µm, n=13 cells) (Fig. 50a).  Normally, upon congression of chromosomes at the  
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Figure 49   Depletion of Sgo2 causes chromosome mis-alignment and loss of tension.  
Immunofluorescence micrographs of mitotic HeLa cells transfected with control (a) and Sgo2 

siRNAs (b) for 30 hours.  Chromosomes are stained with TO-PRO-3 iodide (blue), tubulin with 

anti-tubulin antibodies (green), and kinetochores with CREST antibodies (red).  In control cells, 

chromosomes align at the metaphase plate, while Sgo2-depleted cells arrest in mitosis with 

unaligned chromosomes.  The images shown are maximum z projections of deconvolved 

spinning disc confocal optical sections every 0.267µM through the entire spindle.  Scale bar is 

3µm. 

 

metaphase plate, the mitotic spindle adopts a spherical shape because of 

various forces that are applied on the chromosomes.  On the one hand, poleward 

flux of the microtubules lattice [157] and kinetochore poleward motion [158] pull 

chromosomes poleward, while on the other hand kinetochore movement away 

from the pole [158] and astral microtubule ejection forces [159] push 

chromosomes towards the metaphase plate.  Because sister kinetochores are 

connected by centromeric chromatin, the results of these opposing forces is net 

tension between sister kinetochores upon bipolar attachment and congression.  

In a metaphase cell, all forces are balanced, resulting in a compression of the 

mitotic spindle to a spherical shape, minimization of the spindle pole distance, 

and stretching of the centromeric chromatin between sister kinetochores.  

Therefore an elongated spindle is commonly regarded as a sign of loss of 

tension between sister kinetochores.   

 To confirm that the increase in spindle length in Sgo2-depleted cells is a 

result of loss of tension, the distance between CREST foci in Sgo2-depleted and 

control HeLa cells was measured.  While in control cells the distance between 

paired kinetochores was on average of 1.59µm (min 1.12µm, max 2.12µm, 
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n=153 pairs), in Sgo2-depleted cells this distance was markedly reduced 

(average 0.97µm (min 0.598µm, max 1.65µm, n=194 pairs)) (Fig. 50b).  Together 

with the increased spindle length, the reduction in inter-kinetochore distances in 

Sgo2-depleted cells was consistent with a loss of tension across the kinetochore 

typically due to defects in microtubule attachment or kinetochore structure [157-

159]. 
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Figure 50   Spindle length and kinetochore distance in Sgo2-depleted cells.  Histograms of 

spindle length (a) measured in 13 control and 29 Sgo2-depleted cells and distance between sister 

kinetochores (b) measured in 153 kinetochore pairs in control cells and 194 pairs in Sgo2-

depleted cells.  Error bars in d and e show standard deviation.  

 
 
7.12 Microtubule attachment defects in Sgo2 siRNA cells 

To assess whether the loss of tension in Sgo2-depleted cells was due to 

lack of or unstable microtubule attachment, HeLa cells were transfected with 

control and Sgo2 siRNA and extracted with high calcium to remove all non-

kinetochore microtubules.  Calcium treatment depolymerizes all non-kinetochore 

microtubules as well as non-attached kinetochore-microtubules, leaving only 

correct and stably attached kinetochore-microtubules behind.  Calcium extracted 

cells were fixed and stained with anti-tubulin and CREST antibodies.  In both 

control and Sgo2 siRNA transfected cells, the mitotic spindle was intact after 

calcium treatment suggesting that microtubules stably attach to kinetochores in 

Sgo2-depleted cells (Fig. 51).  However, Sgo2-depleted cells displayed a large 

number of syntelically-attached chromosomes (5.3 per cell) and an increase in 

monotelically-attached chromosomes (1.1 per cell).  As expected, control siRNA 

treated cells showed predominantly bipolar microtubule attachments and no 

detectable syntelic attachments.  While monotelic attachment occurs in early 
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mitotic cells, syntelic attachment is extremely rare in mitotic cells and is generally 

a property of meiosis [160, 161].  If syntelic attachment occurs, it is immediately 

detected by the spindle assembly checkpoint and removed by Aurora B kinase.  

To further investigate the increase in syntelic attachment and because BubR1 is 

implicated in the regulation of Aurora B kinase activity, Aurora B kinase activity at 

kinetochore in control and Sgo2 siRNA cells was determined.  Therefore control 

and Sgo2-depleted cells were stained with an antibody against phosphorylated 

Serine 7 of Cenp-A, an Aurora B kinase target.  Comparison of the averaged 

fluorescence intensity, however, did not reveal a significant difference between 

control and Sgo2 siRNA, suggesting that Aurora B kinase activity is not altered in 

Sgo2-depleted cells. 
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Figure 51   Mis-attachment in Sgo2-depleted cells.   Immunofluorescence micrographs of 

control (a) and Sgo2-depleted (b) mitotic HeLa cells 30 hours after siRNA transfection.  Before 

fixation, non-kinetochore microtubules were depolymerized by calcium treatment.  Tubulin is 

stained with anti-tubulin antibodies (green) and kinetochores are revealed with CREST auto-

antibodies (red).  Inset in (a) shows bipolar kinetochore-microtubule attachment and syntelic 

attachment in (b). Locations of the insets are indicated by arrows. All images are maximum z-

projections of deconvolved spinning disc confocal optical sections every 0.267µm through the 

entire spindle. Scale bar is 3µm.    

 

Since kinetochore-microtubules appear intact in Sgo2-depleted cells, the 

observed reduction in tension could be a consequence of mis-attachment rather 

than a lack of attachment.  

 To directly test if kinetochores are attached to microtubules after Sgo2 

siRNA transfection, cells were stained with an anti-Mad2 antibody.  Mad2 is a 

marker for microtubule attachment and its localization to kinetochores is reduced 
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or lost upon microtubule attachment to the kinetochore.  Upon microtubule 

attachment, Mad2 leaves the kinetochore.  While Mad2 staining was readily 

detectable in control transfected prometaphase cells in which chromosomes 

were not fully attached and or aligned (Fig. 52a), Mad2 was absent from 

kinetochores in control metaphase cells that had reached congression (Fig. 52b).  

Although chromosomes are not aligned in Sgo2 siRNA cells, no Mad2 stain was 

detectable, confirming that kinetochores are attached to microtubules and that a 

lack of attachment is not the cause of the loss of tension in Sgo2-depleted cells 

(Fig. 52c and d).  
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Figure 52   Mad2 staining in Sgo2-depleted cells.   Micrographs of anti-Mad2 (red) and anti-

tubulin (green) immunofluorescence in control (a,b) and Sgo2-depleted (c,d) cells. All images are 

maximum z-projections of deconvolved spinning disc confocal optical sections every 0.267µm 

through the entire spindle. Scale bar is 3µm. 

 

 

7.13 Sister chromatid cohesion in Sgo2 siRNA cells 

Because Sgo2’s paralog Sgo1 is required for maintenance of centromeric 

cohesion in yeast and mammals, it is possible that Sgo2 is also involved in this 

process and that loss or weakening of centromeric cohesion is the underlying 

cause for the loss of tension.  Therefore, Sgo2- and control depleted cells were 
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stained with CREST antiserum and an antibody to the outer kinetochore protein, 

Hec1.  In the case of intact centromeric cohesion, Hec1 stain would be on either 

side of CREST stain, while upon loss of cohesion only one Hec1 focus would be 

next to CREST.   

When control and Sgo2-depleted cells were analyzed at 30 hours for the 

status of centromeric cohesion, all kinetochores in control cells (Fig. 53a) and 

98.8% of all kinetochores in Sgo2-depleted cells (Fig. 53b) were paired, 

indicating that centromeric cohesion is intact in the absence of Sgo2.  However, 

48 hours after transfection, sister kinetochores are largely separated in Sgo2-

depleted cells as indicated by an unpaired distribution of Hec1/CREST focus 

(Fig. 53c), while in control cells kinetochores were still paired (data not shown).   
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Figure 53   Centromeric cohesion in Sgo2-depleted cells.   Immunofluorescence micrographs 

of control and Sgo2-depleted mitotic HeLa cells stained with antibodies to Hec1 (red) and CREST 

(green) to assess the status of cohesion between sister kinetochores after 30 hours (a,b) and 48 

hours (c) after siRNA transfection. Insets shown cohesion between sister kinetochore in control 

and Sgo2 siRNA transfected cells 30 hours after transfection and loss of cohesion 48 hours after 

Sgo2 siRNA transfection.  Images are maximum projection of z-stacks of deconvolved spinning 

disc confocal optical sections every 0.267µm through the entire spindle.  Scale bar is 3µm. Insets 

are single spinning disc confocal optical sections. Scale bar is 1µm. 

 

 

7.14 Distortions in the inter-kinetochore of Sgo2-depleted cells 

Although centromeric cohesion is intact in Sgo2-depleted cells 30 hours 

after siRNA transfection, the inter-kinetochore axis between two sister 

kinetochores frequently displayed distortions (147 axial distortions in 43 Sgo2-

deficient cells) (Fig. 54), a phenomenon that was not evident in control cells (2 in 
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28 control cells).  These distortions often, but not exclusively, occurred in 

chromosomes that were positioned around the spindle poles where syntelically-

attached chromosomes often cluster. 
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Figure 54   Distortion in the inter-kinetochore axis of Sgo2-depleted cells.   
Immunofluorescence micrographs of Sgo2-depleted mitotic HeLa cells stained with antibodies to 

Hec1 (red) and CREST (green).  Insets show high magnification of marked regions.  Micrographs 

on the right display distortions of the inter-kinetochore axes of chromosomes from Sgo2-depleted 

cell. Image on the left is a maximum z projection of deconvolved spinning disc confocal optical 

sections every 0.267µM through the entire spindle.  Scale bar is 3µM.  Insets and micrographs on 

the right are single planes.  Scale bar is 1µM.   

 

To determine if the distortions are due to syntelic attachment and 

independent of Sgo2 depletion, syntelically-attached chromosomes were 

experimentally induced in wild type cells.  To do this, HeLa cells were treated 

with monastrol, a drug that induces monopolar spindles by inhibiting the Eg5 

kinesin and spindle pole separation, for 2 hours [162].  Afterwards, monastrol 

was washed out and the cells were treated with Aurora B kinase inhibitor to 

prevent correction of mis-attachment, and with the proteasome inhibitor MG132 

to prevent cells from exiting mitosis [163].  In a monopolar spindle most 

chromosomes display monotelic attachment and removal of monastrol leads to 

spindle pole separation and formation of a bipolar spindle.  If Aurora B kinase is 

inhibited, mis-attachment cannot be corrected and syntelic attachment occurs 

with increased frequency.   
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Figure 55   Syntelic Chromosomes in Control and Sgo2-depleted Cells.  Immunofluorescence 

micrographs of control (a) and Sgo2-depleted (b) mitotic HeLa cells.  Cells are stained with 

antibodies against Hec1 (blue), CREST (red), and tubulin (green). Panels on the left show 

magnification of syntelically-attached chromosomes in control and Sgo2-depleted cells.  Images 

are maximum z-projections of deconvolved spinning disc confocal optical sections every 0.267µm 

through the entire spindle. Scale bar is 3µm.  Magnifications of the right are deconvolved single 

spinning disc confocal optical sections. Scale bar is 1µm.    

 

After monastrol wash-out, wild type cells rapidly formed a bipolar spindle 

with most chromosomes aligned at the metaphase plate and only a few 

remaining syntelically-attached at the spindle poles (Fig. 55a).  The inter-

kinetochore axis of the syntelically-attached chromosome appeared straight with 

Hec1 and CREST staining being aligned in the same plane.  In Sgo2-depleted 

cells, however, many chromosomes did not congress at the metaphase plate 

(Fig. 55b). Analysis of syntelic chromosomes showed that the inter-kinetochore 

axis of many but not all syntelically-attached chromosomes was distorted with 

Hec1 and CREST staining not being aligned.   
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Although syntelic attachment per se is not responsible for inter-

kinetochore distortions, it is possible that the loss of Sgo2 alone is not sufficient 

to induce inter-kinetochore axial distortions and that an additional stress like 

microtubule attachment is necessary.  To determine the overall relationship 

between microtubule attachment and inter-kinetochore axial distortions, control 

and Sgo2-depleted cells were treated with nocodazole, a microtubule-

depolymerizing drug. High amounts of nocodazole efficiently remove all 

microtubules including attached kinetochore-microtubules.   
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Figure 56   Effects of nocodazole treatment on the mitotic spindle.  Immunofluorescence 

micrographs of mitotic HeLa cells treated with 125ng/mL of nocodazole for 30, 60 or 120 min and 

stained with antibodies against CREST (green) and tubulin (red). Images are maximum z-

projections of deconvolved spinning disc confocal optical sections every 0.267µm through the 

entire spindle. 

 

The concentration of nocodazole and time of treatment necessary to 

depolymerize all microtubules in HeLa cells was titrated and depolymerization 

was confirmed by staining with anti-tubulin antibodies.  Exposure of HeLa cells to 

a nocodazole concentration of 125ng/mL for 30 min was determined to be 

sufficient to depolymerize all kinetochore- and non-kinetochore-microtubules 

(Fig. 56). 

To determine if inter-kinetochore axial distortions are influenced by 

microtubules, HeLa cells were transfected with control and Sgo2 siRNA and after 

30 hours treated with 125ng/mL nocodazole for 30 min. Depolymerization of all 

microtubules had a general effect on the inter-kinetochore structure in control 

siRNA transfected cells.  In about 48.8% of all sister kinetochores were 

connected by a straight axis, 23.6% had a curved appearance, the remaining 

27.6% were too compressed to be judged (Fig. 57a and b).  In Sgo2-deficient 
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cells, the number of curved axes was increased to about a third of the total 

number (Fig 57c and d), but none of these curved axes approached the severe 

distortions seen in the Sgo2-deficient cells in vivo.   
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Figure 57   Effects of nocodazole on kinetochore structure in control and Sgo2 siRNA 
transfected cells.  Immunofluorescence micrographs of mitotic HeLa cells transfected with 

control (a,b) and Sgo2 siRNA (c,d) 30  hours after transfection.  Cells were treated with 125 

ng/mL nocodazole for 30 min and stained with antibodies against CREST (green) and Hec1 (red).  

Kinetochores were visually scored for their appearance in three categories (compressed, straight, 

and curved).  Images are maximum z projections of deconvolved spinning disc confocal optical 

sections every 0.267µm through the entire spindle. Scale bar is 3µm.  Images in the table are 

deconvolved single spinning disc confocal optical sections. Scale bar is 1µm.       
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7.15 Kinetochore-microtubule interactions in a monopolar spindle 

As an additional test of the effects of Sgo2 depletion on inter-kinetochore 

axial rigidity and thereby kinetochore-microtubule interactions, kinetochore-

microtubule interaction in a monopolar spindle upon Sgo2 depletion were 

investigated by analyzing the Mad2 distribution.   

 Monopolar spindles were generated by exposing control and Sgo2 siRNA 

transfected HeLa cells to the Eg5 inhibitor monastrol.  In accordance with 

published results [162, 164], treatment of control siRNA transfected HeLa cells 

with monastrol generated monopolar spindles with radial-arranged chromosomes 

that displayed little or no Mad2 staining of the kinetochore nearest the pole and 

strong Mad2 staining on the sister kinetochore facing away from the pole (Fig. 

58a and b).  
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Figure 58   Kinetochore-microtubule interactions in a monopolar spindle.  Micrographs of 

control (a,b) and Sgo2-depleted (c,d) cells treated with monastrol and stained with antibodies to 

Mad2 (red) and CREST antibodies (green).  Origins of the resulting monopolar spindle are 

denoted with an asterisk.  Images on the right are magnifications of the boxed regions.  All 

images are maximum z projections of deconvolved spinning disc confocal optical sections every 

0.267µm through the entire spindle. Scale bar in images on the left is 3µm and in magnifications 

1µm. Histograms on the left displays quantification of Mad2 staining patterns among sister 

kinetochores in Eg5-inhibited mitotic HeLa cells transfected with control (c) or Sgo2 siRNAs (f).  
Error bars show standard deviation. 
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 As Mad2 intensity at kinetochores is inversely proportional to the number 

of attached microtubules, this bimodal distribution of Mad2 staining of sister 

kinetochores suggests that chromosomes attach in a monopolar fashion to 

microtubules.   

Monopolar spindles also formed in Sgo2-depleted cells after monastrol 

treatment.  However, the majority of chromosomes showed little or no staining of 

Mad2 on either sister kinetochore (Fig. 58d and e).  Visual scoring of Mad2 

staining on kinetochores that were, in addition, labeled with CREST antibodies  

found that in control cells, 91% of all sister kinetochores (n=219) had one Mad2-

positive kinetochore, while those in Sgo2-depleted cells (n=219) showed only 

73% of sister kinetochores with a single Mad2 focus.  The percentage of 

kinetochore pairs with two Mad2-positive foci was 8.7% in control cells and 

0.41% in Sgo2-depleted cells.  Strikingly, the percentage of Mad2-negative 

kinetochores was increased from 0% to 26.7% in Sgo2-depleted cells, 

suggesting an overall increase in microtubule attachment (Fig. 58c and f). 
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Figure 59   Quantification of Mad2 staining intensity in a monopolar spindle.  Graphical 

presentation of distribution of Mad2 pixel intensity in control (red) and Sgo2-depleted (green) 

HeLa cells.   

 

 To quantitatively measure the decrease in Mad2 staining in Sgo2-depleted 

cells, the pixel intensity of the Mad2 staining at the kinetochores of control and 

Sgo2-depleted cells was determined and yielded an overall shift to lower intensity 

values (Fig. 59).   
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7.16 Microtubule dependent re-localization of Sgo2 

 To further investigate Sgo2’s physical association with microtubules, a 

microtubule pelleting assay was performed.  HeLa cells were arrested in mitosis 

with Taxol, lysed and cellular tubulin was polymerized with Taxol in the presence 

of ATP or AMP-PNP (a non-hydrolysable analogue of ATP).  Polymerized tubulin 

was pelleted by high-speed centrifugation.  Microtubule pelleting in the presence 

of ATP leads to co-sedimentation of conventional microtubule binding proteins, 

while the addition of AMP-PNP induced rigor binding of microtubule associates 

motor proteins and pelleting of both motor and conventional microtubule binding 

proteins. The initial lysate, pellet, as well as supernatant after pelleting, were 

analyzed by Western blot for Sgo2 binding.  After pelleting of microtubules, Sgo2 

was only found in the pellet and not in the supernatant, suggesting that most 

Sgo2 is in fact bound to tubulin (Fig. 56).   
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Figure 60   Western blot of Sgo2 on sample from tubulin pelleting assay.  Western blot of 

endogenous Sgo2 protein before pelleting (lysate), and after in pellet and supernatant with ATP 

or AMPPNP.  Same amount of lysate before and after pelleting are loaded (lane: lysate and 

supernatant).  

 

 After determining that Sgo2 interacts with microtubules by co-precipitation 

and in the microtubule pelleting assay, the localization of Sgo2 under different 

microtubule attachment conditions was analyzed.  Upon depolymerization of 

tubulin by nocodazole, Sgo2’s distribution along the inter-kinetochore axis 

appeared radically altered.  Rather than having an axial distribution as seen in 

prometaphase and metaphase cells, Sgo2 localized as a single focus to the inner 

centromere (Fig. 61b).  The same type of localization behavior of Sgo2 was 

found very early in prophase before nuclear envelope breakdown and 
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microtubule attachment (Fig. 61a).  To assess if the axial distribution of Sgo2 in 

prometa- and metaphase was induced by microtubule attachment or tension 

across kinetochores, HeLa cells were treated with Taxol to specifically abrogate 

tension across the kinetochores without disturbing microtubule attachment.  

Under this condition, Sgo2 displayed the same axial distribution as in metaphase 

(Fig. 61c and d).   
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Figure 61  Sgo2 Localization Under Different Attachment Conditions. Immunofluorescense 

micrographs of cells stably transduced with a 6myc-Sgo2 retrovirus.  Cells shown are treated with 

nocodazole (b), Taxol (d), monastrol (e) to create different kinetochore-microtubule attachment 

conditions or untreated in different cell cycle stages (prophase (a), metaphase(c)).  Cells are 

stained with anti-myc antibody (red) and CREST auto-antibody (green).  Next to each 

micrograph, one representative kinetochore is enlarged to show the relative position of Sgo2 and 

CREST.  Line scans compare the distribution of the relative fluorescence intensity of Sgo2 (red) 

and CREST (green) across the sister kinetochores.  Images are maximum z projections of 

deconvolved spinning disc confocal optical sections every 0.267µm through the entire spindle. 

Scale bar is 3µm.  Images of single kinetochores are deconvolved single spinning disc confocal 

optical sections. Scale bar is 1µm. 
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 The mechanism for kinetochore orientation based on a rigid inter-

kinetochore axis by Oestergren hypothesizes that the attachment of the first 

kinetochore orients the second to the opposite pole [95].  To determine if Sgo2 

responds to this initial attachment event, Sgo2 localization upon monopolar 

attachment was analyzed by treatment of HeLa cells with monastrol.  

Significantly microtubule attachment to one sister kinetochore induced the 

spreading of Sgo2 from the inner centromere to the inner kinetochore covering 

an area overlapping with CREST staining (Fig. 57e). 

 Taken together, these data indicate that in the absence of microtubule 

attachment, there is a general loss of the axial structure of the inner kinetochore, 

and this loss of structure correlates with the redistribution of Sgo2 from an axial 

pattern to the inner centromere.  Furthermore, monopolar attachment of 

microtubules to one kinetochore was sufficient to redistribute Sgo2 along the 

inter-kinetochore axis, confirming that attachment and not tension induces Sgo2 

relocalization.   
 

 

7.17 Interaction of BubR1-Sgo2  

To elucidate the significance of the BubR1-Sgo2 interaction, the inter-

dependency of their kinetochore localization was investigated.  Later, HeLa cells 

were transfected with targeting control, Sgo2, or BubR1 siRNA for 30 hours, fixed 

and stained with antibodies against BubR1 and Sgo2.    

After 30 hours, Sgo2 expression in Sgo2 siRNA transfected cells was 

reduced to undetectable levels.  However, BubR1 was still detectable at 

kinetochores, suggesting that Sgo2 is not required for kinetochore localization of 

BubR1 (Fig. 62a and b).  In the reverse experiment, BubR1 was depleted from 

HeLa cells by siRNA, leading to a checkpoint override and early exit from mitosis 

even under conditions of checkpoint activation.  To arrest BubR1 siRNA 

transfected cells in mitosis, cells were treated with MG132 proteasome inhibitor 

two hours before fixation and stained with an anti-Sgo2 antibody.  After BubR1 

depletion, Sgo2 fluorescence at kinetochores was strongly reduced but not 

abolished due to incomplete BubR1 depletion (Fig. 60c and d).  Because BubR1 

is highly expressed, it is difficult to completely deplete cells of BubR1 and 

quantification showed that after siRNA transfection, BubR1 expression is only 
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reduced to about 20%.  Nevertheless, the results suggest that kinetochore 

binding of Sgo2 is dependent on BubR1.   
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Figure 62   Interdependency of BubR1, Bub1 and Sgo2 Localization. Immunofluorescence 

micrographs of control (a) and Sgo2-depleted (b) mitotic HeLa cells stained with anti-BubR1 

antibodies (red).  Immunofluorescence micrographs of control (c,e) and BubR1- (d) or Bub1- (f) 
depleted mitotic HeLa cells stained with anti-Sgo2 antibodies (red).  DNA is stained with TO-

PRO-3 iodide (blue).  Images are maximum z-projections of deconvolved spinning disc confocal 

optical sections every 0.267µm through the entire spindle.  Scale bar is 3µm.   

 

In yeast, Sgo2 localization to kinetochores requires the checkpoint protein 

Bub1.  To determine if that is also the case in mammalian cells, Bub1 was 

depleted by siRNA and cells stained with anti-Sgo2 antibody (Fig. 60 e and f).  

Like yeast, mammalian Sgo2 depends on Bub1 for kinetochore localization.   
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8. Discussion 
 In meiosis and mitosis, the equal distribution of sister chromatids to 

daughter cells is crucial and therefore monitored by a sophisticated surveillance 

mechanism, termed the spindle assembly checkpoint.  If errors occur during 

chromatid segregation, daughter cells with aberrant chromosome numbers will 

accrue, leading to chromosomal instability, developmental defects, and possibly 

cancer.  Moreover, chromosome mis-segregation during meiosis and early 

stages of development often result in miscarriage or severe developmental 

defects [165].  To avoid these errors, the spindle assembly checkpoint has to 

function with extremely high fidelity in every cell division [93].  Since its initial 

description 15 years ago, the number of proteins involved in spindle assembly 

checkpoint signaling is constantly increasing and an even more complex protein 

interaction network has begun to emerge. 

  

 

8.1 Expression and post-translation modifications of BubR1 

 BubR1 is constitutively expressed throughout the cell cycle.  During 

mitosis and mitotic arrest, BubR1 becomes phosphorylated and localizes to 

kinetochores.  To investigate the connection between posttranslational 

modifications and the subcellular localization of BubR1, the protein was 

subjected to mass spectrometry based phosphorylation profiling and validated by 

mutagenesis.   

 Quantification of BubR1’s phosphorylation status in interphase and under 

mitotic arrest revealed that BubR1 is specifically phosphorylated on certain 

residues during mitosis.  Moreover, a region (amino acid 670-689) in BubR1 was 

identified whose phosphorylation mediated the subcellular localization and 

possibly the function of BubR1 upon anaphase onset.  Even though site-specific 

point mutations in BubR1 did not affect BubR1 localization and migration 

behavior in Western blots, deletion of this cluster region did.  Furthermore, 

Aurora B kinase was determined to be the regulating kinase responsible for 

phosphorylation of the cluster region (amino acid 670-689) of BubR1.  This 

observation correlates with findings in Saccharomyces cerevisiae that implicate 

homologs of Aurora B and Polo-like kinase in Mad3 phosphorylation [166].  

Furthermore, Aurora B kinase activity has been previously shown to be at least 
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partially regulated by BubR1 [118], suggesting that functional or physical 

interaction between both protein is essential for their function in spindle assembly 

checkpoint signaling. 

 

 

8.2 Evolution of protein function by post-translational modifications? 

The early departure of BubR1-∆670-689 upon congression is reminiscent 

of the localization behavior of another checkpoint protein, Bub1.  In mammals, 

both proteins show extensive sequence homology, but they differ in the duration 

of their kinetochore localization.  While deletion of the cluster region (amino acid 

670-689) of BubR1 leads to its Bub1-like departure from the kinetochore upon 

congression, addition of this region to N-Bub1 permits it to remain bound beyond 

anaphase onset.                                                                                  

Comparison of the sequence homology of human Bub1 and BubR1 shows 

that both proteins are more similar to each other than to their yeast homologs.  

Yeast Bub1 and Mad3, the yeast homolog of BubR1, also display a high degree 

of homology to each other, although the kinase domain of Bub1 is absent in 

Mad3.  It is likely that both genes evolved by gene duplication from a common 

ancestral gene and acquired independent functions in checkpoint signaling by 

changes in the primary amino acid sequence and the post-translational 

modification pattern.  The loss of the Bub1-like kinase domain in yeast Mad3 

over time could be due to the simpler structure of kinetochore and mitotic 

machinery in yeast that requires a less extensive checkpoint mechanism for error 

detection and correction.  For instance, in budding yeast a single microtubule 

attaches to each kinetochore making biorientation largely, if not completely, 

dependent on tension and not kinetochore geometry [122].  With increasing 

complexity of the mitotic process during evolution, the kinase-dependent and –

independent functions of the Mad3 C-terminus might have become essential for 

the integrity of the spindle assembly checkpoint leading to its conservation.   

Importantly, no role for yeast Mad3 beyond the checkpoint has been 

established.  However, BubR1 is localized to kinetochore after anaphase onset, a 

process that is dependent on BubR1’s C-terminal domain that is lost in yeast 

Mad3.   It is therefore possible that BubR1’s post-checkpoint functions are 
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determined by this region.  A role for yeast Mad3 beyond checkpoint signaling is 

unknown.    

 

 

8.3 Sgo2 is a novel BubR1 interacting protein 

One of the newly identified mitosis-specific, BubR1-interacting proteins is 

Sgo2.  Because of its implication in yeast kinetochore biology and checkpoint 

signaling [112], Sgo2 was a desirable candidate for further investigation.   

 From early prophase until congression, Sgo2 localizes to the inner 

kinetochore.  Depletion of Sgo2 by siRNA leads to a strong mitotic arrest 

followed by cell death (Fig. 46 and 47).  The observed arrest is likely due to 

activation of the spindle assembly checkpoint by lack of tension between sister 

kinetochores (Fig. 49 and 49).  This is supported by the observation that ablation 

of the spindle assembly checkpoint in Sgo2 siRNA cells by expression of N-Bub1 

[103] or treatment with Aurora kinase inhibitor [146] abolishes the arrest (data not 

shown).  After an extended period of time in mitotic arrest, loss of cohesion was 

observed in Sgo2-depleted cells (Fig. 52) implicating Sgo2 in the protection of 

centromeric cohesion.  However, the loss of cohesion occurs late and could 

therefore be a secondary effect.  Recently, Sgo2 was reported to be required for 

centromeric localization of PP2A in mammalian cells [131, 136, 147].  

Furthermore, PP2A was implicated in the protection of centromeric cohesion 

[131, 136, 147].  Given that several PP2A subunits were identified as Sgo2-

interacting proteins (Table 3), it is possible that the observed loss of cohesion in 

Sgo2-depleted cells is secondary to loss of PP2A at centromeres.     

While kinetochore-microtubule attachment was intact after Sgo2 depletion, 

a strong increase in syntelic and a minor increase in monotelic attachment were 

observed (Fig. 50 and 51).  Normally, monotelic attachment is seen early in 

mitosis after nuclear envelope breakdown when microtubules begin to invade the 

nuclear space.  However, as mitosis progresses, chromosomes become bipolarly 

attached.  Syntelic attachment, on the other hand, is rarely seen in mitotic cells, 

because it is immediately detected by the spindle assembly checkpoint and 

removed by Aurora B kinase.  Despite Aurora B kinase function being intact, it 

appears that the increase in syntelic attachment in Sgo2-depleted cells may be 

beyond the capacity of an Aurora B-mediated correction mechanism.  However, 
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no changes in Aurora B kinase activity were observed, suggesting that upon 

depletion of Sgo2 the frequency of syntelic attachment was increased over the 

capacity of Aurora B kinase to correct it. 

Moreover, the dependency of Sgo2 kinetochore localization on Bub1 and 

BubR1 expression was investigated (Fig. 62).  As in yeast [112], depletion of 

Bub1 by siRNA resulted in loss of Sgo2 from kinetochores.  Furthermore, down-

regulation of BubR1 expression also reduced the levels of Sgo2 at kinetochores, 

while depletion of Sgo2 from HeLa cells had no effect on BubR1 localization.  

Although both Bub1 and BubR1 are required for Sgo2 localization, it appears that 

they mediate this function by different mechanisms.  BubR1 seems to mediate 

Sgo2 localization by physical and possible functional interaction, as indicated by 

the interaction studies, while Bub1’s function in Sgo2 localization is solely 

indirect.       

 

 

8.4 Sgo2’s function in maintenance of a rigid kinetochore structure 

Closer examination of the kinetochore structure of Sgo2-depleted cells 

revealed distortions of the inter-kinetochore axis, especially in chromosomes 

clustered around the spindle poles (Fig. 53).  Because syntelic chromosomes 

often reside around the spindle poles, the interdependency of both phenomena 

was investigated.  However, when syntelic attachment was induced in wild type 

cells, the inter-kinetochore axis was straight, while in Sgo2-depleted cells syntelic 

attached chromosomes often, but not always, showed distortions (Fig. 54).  Thus 

the distortions in Sgo2-deficient kinetochores are not the product of syntelic 

attachment per se, but more likely the consequence of a particular condition of 

the inter-kinetochore axis due to the depletion of Sgo2.  One explanation for the 

inter-kinetochore axial distortions in the Sgo2-depleted cells is that they reflect a 

loss of the rigid, back-to-back orientation of sister kinetochores that, upon 

monotelic binding, actively positions the sister kinetochore to the opposite spindle 

pole to enhance bipolar attachment and reduce the incidence of syntelic 

attachments. 

Furthermore, under conditions of Aurora B kinase inhibition, chromosomes 

in Sgo2-depleted cells did not congress during recovery from monastrol arrest, 

while wild type cells achieved bipolar attachment (Fig. 54), possibly due to 
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increased syntelic microtubule attachment.  It is likely that in the presence of 

Sgo2, inter-kinetochore rigidity leads to the orientation of the unattached 

kinetochore away from this spindle pole and thereby shields it from further 

microtubule attachment to that pole.  However, if Sgo2 is depleted, the inter-

kinetochore axis exhibits greater flexibility and the unattached kinetochore can be 

captured by microtubules emanating from the same spindle pole.    

Because not every chromosome in Sgo2-depleted cells shows distortions, 

it is possible that loss of Sgo2 only weakens the inter-kinetochore structure and 

that forces applied to kinetochores by microtubules are necessary to induce 

distortions.  Investigation of the kinetochore structure in control- and Sgo2 siRNA 

transfected cells treated with nocodazole revealed that under non-attachment 

conditions, even in wild type cells the inter-kinetochore axis of 23.6% of all 

kinetochores is not straight but curved (Fig. 56).  Taken together, these 

experiments suggest that the severe distortions of the inter-kinetochore axis seen 

in the Sgo2-deficient cells are likely due to forces imparted by microtubules 

through syntelic or merotelic attachment, possibly coupled to interactions of non-

kinetochore microtubules emanating from the poles.  Sgo2 could be required for 

inducing rigidity into the kinetochore axis upon kinetochore-microtubule 

attachment that orients the unattached kinetochore away the pole from which the 

microtubule originated.   

The findings of Sgo2’s interaction with tubulin and the modulation of its 

localization by microtubule attachment status suggest that Sgo2’s function in 

kinetochore rigidity could be microtubule-dependant.  Moreover, mammalian 

Sgo1 was discovered in a screen for factors that stimulate microtubule formation 

[134].  Thus a close relationship between initial microtubule attachment, Sgo2 

localization, and rigidity status of the inter-kinetochore axis is emerging.   

The lack of inter-kinetochore rigidity in Sgo2-depleted cells, its loss in the 

absence of microtubule attachment even in wild type cells, and the observed 

relocalization phenotype of Sgo2 upon attachment point to a role of Sgo2 in 

mediating inter-kinetochore rigidity upon microtubule attachment.  In the absence 

of microtubule attachment, the inter-kinetochore axis is quite flexible, possibly in 

order to favor an initial microtubule attachment.  After this initial attachment, the 

axis becomes more rigid and distortions or curvature are no longer observed.  At 

this point, Sgo2 spreads from localizing to a single focus to an axial distribution 
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and thereby possibly induces rigidity that protects the unattached kinetochore 

from becoming syntelically-attached.  Accordingly, in the absence of Sgo2, a high 

flexibility of the inter-kinetochore axis persists, leading to increased attachment 

and thereby mis-attachment in both a bipolar and monopolar spindle.  The more 

severe phenotype seen in monopolar spindles is probably due to a denser spatial 

distribution of microtubules and a higher number of unattached kinetochores.  In 

control cells, the unattached kinetochore is aligned with the attached kinetochore 

and the kinetochore-microtubules and thereby shielded from syntelic attachment.  

However, in Sgo2 cells the unattached kinetochore can diverge from this 

alignment and be captured by other microtubules.   

This proposed function of Sgo2 in determining the rigidity of the inter-

kinetochore axis is consistent with a model of kinetochore geometry introduced 

by Oestergren over 50 years ago [95].  This model suggested that, after initial 

attachment of microtubules to one sister kinetochore, the rigid back-to-back 

orientation of sister kinetochores orients the unattached kinetochore to the 

opposite pole and thereby reduces the risk of syntelic attachment.  While in 

Saccharomyces cerevisiae such a mechanism is not necessary, because only 

one microtubule attaches to each kinetochore, in higher organisms, each 

kinetochore is captured by many microtubules.  Thus, kinetochore geometry is an 

additional and necessary mechanism to obviate attachment errors and mis-

segregation.  The findings presented in this work are consistent with Sgo2 

playing an essential role in this process.   
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9. Materials 
 

9.1 Reagents 

All standard chemicals were obtained from Sigma.  
13C6-arginine        Cambridge Isotope Labs  
13C6

15N2-lysine        Cambridge Isotope Labs 
4',6-Diamidino-2-phenylindole dihydrochloride (DAPI)  Sigma  
32PαdCTP        ICN 
Affi-Gel 10       Bio-Rad 
APS        Bio-Rad    
Aurora B kinasae      Gift from Bedrick Gadea 
Aurora B kinase inhibitor ZM447439    Gift from Tim Mitchison 
Benchmark Protein Ladder Prestained     Invitrogen  
Benchmark Protein Ladder     Invitrogen  
Bisacrylamid        National Diagnostics  
BL21 competent bacteria     Novagen 
Bovine serum albumin (BSA)    Sigma 
Complete mini EDTA-free protease inhibitors  Roche  
Coomassie Brillant Blue R250     Sigma  
DAB detection kit      Vector 
Desoxynucleosid-5‘-triphosphate (dNTPs) for PCR   Roche  
DH5α competent bacteria     ATCC 
Dimethyl pimelimidate (DMP)     Pierce  
DMSO        Sigma 
Dulbecco’s modified Eagle’s medium (DMEM)   Invitrogen 
Dulbecco’s modified Eagle’s medium (SILAC)   Invitrogen 
Ethidium Bromide       Bio-Rad 
Fetal bovine serum (FBS)     Hyclone 
Fetal bovine serum (dialyzed)    Hyclone 
Fetal bovine serum (ES grade)    Hyclone 
FIAU         Moravek Biochemicals 
Fisetin        Sigma 
Formaldehyde 37%      Sigma 
G418        Invitrogen 
Gelatin       Sigma 
Glutathione Sepharose 4 Fast Flow   Amersham Bioscience 
Glycerophosphate      Sigma 
Hematoxylin       Fischer 
HEPES sodium salt      Sigma 
Lambda phosphatase      NEB 
LB        Harvard Medical School 
LB agarose plates     Harvard Medical School 
Leukemia inhibitory factor (LIF)    Chemicon 
MG132       Calbiochem 
MgAMPPNP       Sigma 
MgATP       Sigma  
MgGTP       Sigma    
Mirus293        Mirus 
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MOPS buffer       Invitrogen 
Nocodazole       Sigma 
Non-fat dry milk powder      Stop&Shop 
Novex gels       Invitrogen 
Oligofectamine      Invitrogen 
Oligonucleotide-primers      IDT  
Opti-MEM I       Invitrogen 
P10 resin        BioRad 
pBluescript-SK(-)      Stratagene 
PEG1500        Roche 
Penicillin-streptomycin (100U/ml and 100µg/ml)  Invitrogen 
pGEX4T3       Amersham Bioscience 
Polybrene         Sigma 
Primary antibodies: 
 Aurora B      Abcam 
 Bub1       ImmunQuest 
 Cenp-F      Bethyl Laboratories 
 CREST      ImmunoVision 
 Cytokeratin      Abcam 
 Hec1       GeneTex 
 Keratin 5      Covance 

Keratin 8 Troma I, Hybridoma bank, 
University of Iowa 

 Loricrin      Covance 
 Tubulin      Sigma 
 Mad2       Abcam 
Propidium iodide       Sigma 
Proteinase K       Roche 
Protein G-Sepharose      Amersham Bioscience  
Puromycin        Sigma     
pZero vector        Invitrogen 
Restriction enzymes      NEB  
RNase A        Roche  
Seakem LE agarose      Biozym  
SDS, 20%       Bio-Rad 
Secondary antibodies: 
 Anti-mouse HRP     Jackson Laboratory 
 Anti-rabbit HRP     Jackson Laboratory 
 Anti-human Alexa Fluor®488   Molecular Probes 
 Anti-human Alexa Fluor®568   Molecular Probes 
 Anti-mouse Alexa Fluor®488   Molecular Probes 
 Anti-mouse Alexa Fluor®568   Molecular Probes 
 Anti-mouse Alexa Fluor®594   Molecular Probes 
 Anti-mouse Alexa Fluor®674   Molecular Probes 
 Anti-rabbit Alexa Fluor®488   Molecular Probes 
 Anti-rabbit Alexa Fluor®568   Molecular Probes 
 Anti-rabbit Alexa Fluor®594   Molecular Probes 
 Anti-rabbit Alexa Fluor®647   Molecular Probes 
 Anti-rat Alexa Fluor®488    Molecular Probes 
Sepharose4B       Amersham Bioscience 
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Sgo2 siRNA (SmartPool)      Dharmacom  
Silencer siRNA construction kit    Ambion 
SOC media       Gibco 
Sodium fluoride      Sigma 
Sodium molybdate       Sigma  
Sodium pyrophosphate      Sigma 
Sodium tartrate      Sigma 
Sodium vanadate      Sigma 
SuperSignal West Pico substrate kit   Pierce  
Taxol        Sigma 
TEMED       Bio-Rad 
Tetracycline        Sigma 
Thymidine       Sigma 
TO-PRO-3 iodide       Molecular Probes  
Triton-X100        Sigma 
Trypsin-EDTA       Invitrogen 
Tween20       Bio-Rad 
 

 
9.2 Materials 

Coverslips        VWR 
Centricon       Millipore 
Electroporation cuvettes       Bio-Rad  
Gel blotting paper      VWR 
Hybond N+ nitrocellulose membrane    Amersham Bioscience  
Hyperfilm ECL       Amersham Bioscience  
Nitrocellulose membrane      BioRad    
 
 
9.3 Kits  

Expand High Fidelity PCR System    Roche  
Expand Long Template PCR System   Roche 
HiSpeed Plasmid Maxi Kit      Qiagen 
QIAprep Spin Miniprep Kit     Qiagen 
QIAquick Gel Extraction Kit     Qiagen 
QIAquick PCR Purification Kit     Qiagen 
QuikChange® Site-Directed Mutagenesis Kit   Stratagene  
RadPrime labeling kit      Invitrogen 
Restriction enzymes      New England Biolabs  
Silencer siRNA Construction Kit    Ambion 
T4-DNA-ligase       New England Biolabs 
 
 
9.4 Instruments 

Analytical balance AG204     Mettler  
Axiocam HRcm       Zeiss  
Axioskop mot 2 plus      Zeiss  
Bio-Rad Mini Gel system      Bio-Rad 
Centrifuge 5415 D       Eppendorf  
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Centrifuge       Beckman 
Dissection scope MZ6     Leica 
Electrophoresis chamber MS-8210   Aladin Enterprise  
Electroporation Gene Pulser     Biorad  
Heatable magnetic stirrer       Corning  
Heating block        VWR  
Incubators        Forma Scientific Inc. 
Kodak T-MAX developer     Kodak 
Light microscope TE100     Nikon          
NuPAGE Novex Gel system     Invitrogen   
PCR Express      Hybaid  
pH-meter 140      Corning   
Phosphor-Imager      BioRad 
Phosphor-Imager screen     BioRad 
Power supply Power Pac 200     BioRad  
Rotor SW28        Beckman  
Semi-dry transfer cell      Biorad  
Shaking incubators      Forma Scientific Inc.  
SmartSpec™3000      BioRad 
Sonifier B12 Branson      Sonic Power Company  
Spinning disk confocal      Perkin Elmer 
TE2000U inverted microscope     Nikon 
UV-box        VWR 
Vortexer Vortex Genie 2      Scientific Industries  
Water treatment system Milli-Q     Millipore  
Waterbath        Precision 
 
 
9.5  Software  

AutoDeBlur deconvolution      Media Cybernetics 
MetaMorph software      Molecular Devices 
 
 
 
9.6  Buffers  

Alkaline buffer     0.4M NaOH 
       1.5M NaCl 
 
BRB80 buffer     80mM PIPES pH 6.8  

1mM MgCl2  
1mM EGTA  

 
Coommassie brilliant blue solution   0.1% (w/v) Coomassie R250 
       40% Methanol 
       10% Acetic acid 
 
Cross-linking buffer      50mM Na-HEPES pH6.8 
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Denhardts (100x)     2% BSA (Sigma Fraction V) 
       2% Ficol 
       2% Polyvinylpyrrolidone 
       3x SSPE buffer 
 
Destaining solution      40% Methanol 
       10% Acetic acid 
 
Electroporation buffer    20mM HEPES pH7.0 
       137mM NaCl 
       5mM KCl 
       0.7mM Na2HPO4 

       6mM glucose 
       0.1mM beta-mercaptoethanol 
 
HEPES saline buffer    121mM NaCl 

5.4mM KCl 
0.44mM KH2PO4 
0.3 mM Na2HPO4
5.56 mM glucose 
20mM Hepes 
Phenol Red 
290 mmol/kg osmolarity  
pH 7.3 

 
Hybridization buffer     10% Dextran sulfate 
       0.375 M Na2HPO4   

       0.125 M NaH2PO4   
1X Denhardts  
1% SDS  

 
Microtubule stabilizing buffer (MTSB)   BRB80 + 4 mM EGTA 
 
Mounting media     90% Glycerol 
       100mM Tris pH8 
 
PBS       10mM NaH2PO4
       10mM Na2HPO4 
       150mM NaCl 
 
PBST       PBS + 0.2% TritonX-100 
 
PHEM       60mM Pipes 

25mM Hepes 
10mM EGTA 
4mM MgSO4 

 
Sample buffer (2x)     100mM Tris pH6.8 
       1.43M beta-mercaptoethanol 
       4% SDS 
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       20% glycerol 
       0.7mg/ml Bromphenol blue 
 
SDS-PAGE running buffer (10x)   1.92M Glycine 
       0.25M Tris pH8.3 
       1% SDS 
 
 
SSC buffer (20x)      3M NaCl 

0.3M sodium citrate 
pH 7.0 

 
SSPE buffer (20x)      3M NaCl 

0.2M NaH2PO4  
20 mM EDTA  
pH 7.0 

 
TAE (50x)      2M Tris-acetate 
       100mM EDTA 
 
Tail/ES cell lysis buffer    100mM Tris pH8   
       200mM NaCl    
       5mM EDTA    
       0.2% SDS 
       50µg/ml Proteinase K 
 
 
Taq- PCR buffer (10x)    100mM Tris pH8.3 
       500mM KCl 
       0.01% gelatine 
       autoclave and filter 
    
TBS (1x)      50mM Tris  
       150mM NaCl 
 
TBST (1x)      1x TBS + 0.1% Tween20 
 
TE buffer      10mM Tris pH8 
       1mM EDTA 
 
Transfer buffer (10x)    1.92M Glycine 
       0.25M Tris pH8.3 
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10. Methods 
 

10.1 Molecular biology methods 
10.1.1 Polymerase Chain Reaction (PCR)  

Reactions were performed in 50µl volume using the Expand Long 

Template or Expand High Fidelity PCR system from Roche according to 

according to manufacturer’s instructions. 

 

10.1.2 PCR purification and gel extraction  

PCR purification and gel extraction were performed using the Qiagen 

QIAquick PCR Purification Kit and QIAquick Gel Extraction Kit according to 

manufacturer’s instructions. 

 

10.1.3 Restriction enzyme digest 

 Restriction enzymes were purchased from New England Biolabs (NEB).  

Enzyme concentration and buffer conditions were used as suggested by the 

manufacturer.  Circular plasmid DNA was digested for 1hr at the recommended 

temperature.  PCR products were usually digested overnight at the 

recommended temperature.  

 

10.1.4 Ligation of DNA fragment 

 For ligation of DNA fragment, T4-DNA-ligase was purchased from NEB.  

Ligation reactions were performed in a 10µl volume containing 1µl 10x T4-Ligase 

buffer, 1µl digested backbone, 7µl digested insert, and 1µl T4-DNA-ligase.  The 

reaction was incubated overnight at 16°C and transformed the next day into 

bacteria.   

 

10.1.5 Cloning 

 After PCR amplification of the gene of interest with gene-specific primers 

containing overhanging ends with restriction enzyme recognition sequences, the 

PCR product was purified and digested with the appropriate restriction enzymes.  

The vector backbone was also digested with restriction enzymes.  Backbone and 

PCR products were separated by agarose gel electrophoresis and extracted from 
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the gel.  PCR product and backbone were ligated, the ligation mix was 

transformed into bacteria, and plated onto LB agarose plates.  After overnight 

incubation at 37°C, colonies were picked, and grown in liquid culture overnight.  

The next day, plasmid DNA was purified and analyzed by restriction digest for 

insertion of the PCR product into the vector backbone.    

 

10.1.6   Transformation of bacteria  

For transformation competent bacteria (DH5α or BL21) were incubated 

with circular plasmid DNA or ligation mixtures for 30 min on ice, heat-shocked for 

1 min at 42°C, recovered on ice for 2 min, and plated onto LB-Agar plates with 

appropriate antibiotics.  When ligation mixtures were transformed, the bacteria 

were grown for 1hr at 37°C in SOC media before plating. The LB-Agar plates 

were incubated overnight at 37°C.    

 

10.1.7 Plasmid DNA preparation from bacteria 

Plasmid DNA was prepared from bacteria using QIAprep Spin Miniprep Kit 

or HiSpeed Plasmid Maxi Kit from Qiagen according to manufacturer’s 

instructions.     

 

10.1.8 Mutagenesis 

Mutagenesis was carried out using the QuikChange® Site-Directed 

Mutagenesis Kit from Stratagene according to manufacturer’s instructions.  

Mutations were verified by DNA sequencing.   

 

10.1.9 DNA sequencing 

 DNA sequencing was performed by the Dana-Farber/Harvard Cancer 

Center DNA Resource Core.  Plasmid DNA and primers were submitted at the 

suggested concentration and volume.   

 

10.1.10 SDS-PAGE 

Discontinuous, denaturing SDS-polyacrylamid-gelelectrophoresis was 

performed using the Bio-Rad Mini Gel system or NuPAGE Novex Gel system 

from Invitrogen  [166-168].   
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For the Bio-Rad Mini Gel system, gels were poured with 4% stacking.  The 

percentage of the resolving gel was chosen according to the size of the protein of 

interest.  For the NuPAGE Novex Gel system, 4-12% BisTris gels were 

purchased. 

 

Resolving gel 8.5% 10% 12% 15% 

H2O 4.6ml 4ml 3.4ml 2.4ml 

1.5M Tris/HCl pH 8.8 2.5ml 2.5ml 2.5ml 2.5ml 

30% Acrylamide 3ml 3.35ml 4ml 5ml 

10% SDS 0.1ml 0.1ml 0.1ml 0.1ml 

10% APS 0.1ml 0.1ml 0.1ml 0.1ml 

TEMED 0.01ml 0.01ml 0.01ml 0.01ml 

 

Stacking gel 4% 

H2O 6.2ml 

0.5M Tris/HCl pH 6.8 2.5ml 

30% Acrylamide 1.1ml 

10% SDS 0.1ml 

10% APS 0.1ml 

TEMED 0.01ml 

 

Protein samples were mixed 1:1 with 2x sample buffer, incubated for 10 

min at 100°C, and spun down for 1 min at 13000rpm.  Bio-Rad Mini Gels were 

run in home-made 1x SDS-PAGE buffer, NuPAGE Novex Gel were run in 1x 

MOPS buffer (Invitrogen).  Proteins were separated at constant voltage (100V for 

Bio-Rad Mini Gel, 200V for NuPAGE Novex Gel).  

 

10.1.11 Coomassie brilliant blue staining 

After SDS-PAGE gel electrophoresis, the gel was placed in Coommassie 

brilliant blue solution and incubated for 1hr at room temperature, with rocking.  

The staining solution was then exchanged against de-stain solution and further 

incubated for about 3hr at room temperature, with rocking.  To completely clear 
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the background, the gel was further incubated in 8% acetic acid overnight at 

room temperature, with rocking.    

 

10.1.12 Western Blot 

For immuno-detection, proteins were transferred to a nitrocellulose 

membrane using a wet-blot method [169].  For the transfer, a sandwich was 

assembled consisting of a pad, two pieces of Whatman paper, gel, nitrocellulose 

membrane, two pieces of Whatman paper, and another pad.  The sandwich was 

placed into the transfer apparatus with the membrane facing the anode and the 

proteins were transferred at constant 100V for 1hr at room temperature.  When 

the transfer was completed, the membrane was removed from the sandwich, 

rinsed with 1x TBS, and blocked for at least 30 min in 5% milk in TBST.  After 

blocking, the membrane was incubated with primary antibody diluted in 5% milk 

in TBST for 1hr at room temperature or overnight at 4°C.  The membrane was 

washed 3x15 min with TBST and incubated with secondary antibody for 1hr at 

room temperature.  After washing 3x1 min with TBST, it was quickly rinsed with 

water before proceeding to chemiluminescence.  For chemiluminescence, the 

SuperSignal West Pico substrate kit from Pierce was used.  Equal amounts of 

both solutions were mixed and placed on the membrane for 1 min.  The 

membrane was placed inside a sheet protector, bubbles and excess liquid was 

removed, and the membrane was exposed to an X-ray film.  The film was 

developed in Kodak T-MAX developer.  

 

10.1.13 Immunohistochemistry 

Immunohistochemistry was performed on paraffin slides prepared by the 

Rodent Histopathology Core of the Harvard Medical School.  Before staining, 

section were deparaffinized by sectional incubation in xylene (4x 3 min), 100% 

ethanol (2x 2 min), 95% ethanol (2x2 min), and stored in PBS.  To reveal the 

antigen, sections were placed in 10mM citrate buffer pH6.0 and microwaved at 

constant temperature (199F) for 30 min.  Afterwards, slides were cooled down in 

citrate buffer and transferred to PBS.  Sections were blocked with 1% BSA in 

PBS for 30 min at room temperature, incubated with primary antibody in 1% BSA 

in PBS overnight at 4°C and washed twice for 5 min with PBST.  For 
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immunofluorescence detection, sections were incubated with fluorescent labeled 

secondary antibody in 1% BSA in PBS for 1hr at room temperature.  DNA was 

stained by DAPI for 1 min at room temperature before slides were mounted and 

nail-polished for long-term storage.  For DAB detection, sections were incubated 

with biotinylated secondary antibody for 1hr at room temperature, washed twice 

with PBS, incubated with Vectorstain Elite ABC reagent for 5 min, and developed 

with peroxidase substrate solution for 2- 10min.  Sections were counterstained 

with Hematoxylin, mounted and nail-polished for long-term storage. 

 

10.1.14 Immunoprecipitation 

 For immunoprecipitation cells were collected and lysed in 150mM NaCl, 

50mM Tris pH7.2, 1mM MgCl2, 0.5% Triton-X100 with protease inhibitors 

(Roche) and phosphatase inhibitors (1mM glycerophosphate, 1mM sodium 

pyrophosphate, 1mM sodium vanadate, 1mM sodium fluoride, 1.15mM sodium 

molybdate, 4mM sodium tartrate).  The lysate was cleared by centrifugation for 

30 min at 20,000xg and 4°C.  For pre-clearing, Sepharose4B was added to the 

lyaste and incubated for 3 hours with rotation at 4°C.  The lysate was centrifuged 

again for 5 min at 1,000xg at 4°C and transferred to a new tube.  Antibody 

chemically-crosslinked to protein G-Sepharose or protein G-Sepharose was 

added to the lysate for overnight incubation with rotation 4°C.  Sepharose beads 

were collected by gravity and washed three times with lysis buffer and twice with 

PBS.  Proteins were eluted in sample buffer at 95°C and resolved by SDS-PAGE 

gel electrophoresis.  After staining with Coomassie blue, the gel was trypsin 

digested and analyzed by microcapillary reverse-phase liquid chromatography–

hybrid ion trap/Fourier transform ion cyclotron resonance mass spectrometry by 

Dr. Scott Gerber.   

 

10.1.15 Immunofluorescence  

 For immunofluorescence staining, HeLa cells were plated on 12mm 

coverslips and grown overnight.  The next day the media was aspirated and cells 

were fixed with 3% formaldehyde in PBS for 7 min at room temperature.  After 

fixation, cells were washed four times with PBST (PBS/0.1% Triton-X100) and 

blocked with 3% milk or 1% BSA in PBST for 30 min at room temperature.  Cells 
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were incubated with primary antibody for 1hr at room temperature, followed by 

washing three times with PBST and incubation with secondary antibody for 30 

min at room temperature.  The cells were three times washed with PBST and 

DNA stained with Hoechst 33258 diluted in PBST to 1µg/ml or for confocal 

imaging with TO-PRO-3 iodide (Molecular Probes) for 1 min at room 

temperature.  

 Afterwards, cells were washed with PBST and coverslips were mounted onto 

microscope slides and sealed with nail polish.  For Aurora B, Bub1, BubR1, 

Cenp-F, CREST, Hec1, Sgo2 and tubulin staining, cells were extracted for 30sec 

with microtubule stabilizing buffer (MTSB) + 0.5% TritonX-100 before fixation and 

fixed with 3% formaldehyde.  For Mad2 staining cells were lysed in PHEM + 

0.5% Triton X-100 for 5 min and then fixed in 1% formaldehyde for 20 min. For 

calcium depolymerization of microtubules, CaCl2 was added to a final 

concentration of 5mM to MTSB + 0.5% TritonX-100 or PHEM + 0.5% TritonX-100 

for 5 min before fixation.   

 

10.1.16 Microscopy  

 All images were collected as Z-stacks with 0.267µm spacing using a 

100X, 1,35NA objective on a Nikon TE2000U inverted microscope with spinning 

disk confocal (Perkin Elmer) and processed using AutoDeBlur deconvolution and 

MetaMorph software.  To determine the number of paired and single 

kinetochores, cells were stained with CREST autoimmune serum and the anti-

Hec1 antibody.  Z-stacks though the entire spindle were collected and 

deconvolved.  For spindle length and kinetochore distance measurements, cells 

were stained with CREST and tubulin antibodies.  Spindle length was determined 

on maximal intensity projections of z-stacks.  Kinetochore distance was 

measured on single planes.  Mad2 intensity was measured in a circular area of 

fixed size though all planes of the kinetochore, each plane was background-

subtracted and values added together.  Values up to 400,000 were binned every 

10,000 pixels, while values above 400,000 were binned every 100,000 pixels.  

The moving average over three neighboring bins was calculated for graphical 

display.  P63 intensity was measured in a circular area of fixed size in every cell, 

background-subtracted, and values were averaged. 

-106- 



                                                                                              Methods and Materials 

10.1.17 Lambda phosphatase treatment 

Dephosphorylation of all serine, threonine, and tyrosine residues was 

carried out by addition of lambda-phosphatase to lysates.  50µl of lysates were 

supplemented with 2mM MnCl2 and 400 units of lambda phosphatase and 

incubated at 30°C for 30 min.   

 

10.1.18 Antigen preparation 

 Using sequence specific primers with overhanging ends containing 

restriction enzyme recognition sites, four regions of approximately 800 to 900bp 

of the BubR1 and Sgo2 cDNA were amplified cloned into the pGEX-4T3 vector 

for bacterial expression of GST-fusion proteins.  By sequencing, confirmed 

clones were transformed into BL21 bacteria.  For protein expression, bacteria 

were grown in liquid culture in LB medium at 37°C until OD600 reached 0.5 to 0.6.  

At that point IPTG was added to a final concentration of 1mM and bacteria were 

incubated at 37°C for three more hours.  Afterwards, bacteria were collected by 

centrifugation and lysed in 2X sample buffer.  Lysed proteins were resolved by 

SDS-PAGE gel electrophoresis and revealed by Coomassie blue staining.  The 

gel was destained, equilibrated in deionized water to remove acetic acid and 

methanol, and ground into fine particles.  Gel particles were resuspended in PBS 

and used for mice injection.   

 

10.1.19 Antibody purification  

 For purification of polyclonal antibodies, GST-fused antigens used for 

immunization against Sgo2 were purified using Glutathione Sepharose 4 Fast 

Flow resin.  After binding of bacterial expressed GST-tagged Sgo2 antigens to 

the resin for 3 hours at 4°C with rotation, it was washed three times (50mM Tris 

pH8, 100mM NaCl, 1mM EDTA).  The recombinant protein was eluted from the 

resin using 10mM reduced glutathione in 50mM Tris pH8 and concentrated using 

Centricons.  Purified and concentrated antigene was coupled to Affi-Gel10 resin 

according to manufacturer’s instructions.  The serum containing the polyclonal 

antibody was diluted with 50mM Tris pH8 and incubated with the antigen-coupled 

resin overnight at 4°C rotating.  The next day, the resin was washed and 

antibodies were eluted from the resin using glycine-HCl pH 2.5.  After 
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neutralization, the purified antibody was dialyzed against PBS and concentrated 

using Centricons.    

 

10.1.20 Cross-linking 

Directed cross-linking of antibodies to ProteinG-Sepharose4B beads was   

performed using dimethyl pimelidate dihydrochloride (DMP).  Antibody from 

hybridoma cell culture was adjusted to a concentration of 1mg/ml and incubated 

with ProteinG-Sepharose4B overnight at 4°C with rotation.  Antibody-ProteinG-

Sepharose4B beads were washed three times with PBS and equilibrated with 10 

bed volumes cross-linking buffer (50mM Na-HEPES, pH 6.8).  Beads were 

washed three times with 2 bed volumes DMP solution (5µg DMP/ 1ml of 300mM 

Na-HEPES), followed by three times incubation in DMP solution for 10 min at 

room temperature.  The cross-linking reaction was stopped by incubating the 

beads with 50mM ammonium bicarbonate.  Then the beads were washed once 

with cross-linking buffer and once with PBS and stored at 4°C.   

 

10.1.21 In vitro  Kinase assay 

 Recombinant Aurora B kinase was diluted in to a concentration of 

37.5µg/ml in kinase dilution buffer (20mM HEPES-KOH pH 7.7, 50mM HCl, 1mM 

DTT) to make a 15X kinase stock.  Histones were diluted to a final concentration 

of 1mg/ml in GF buffer (10mM HEPES-KOH pH 7.7, 300mM KCl, 1mM DTT).  

Immuno-precipitated BubR1 from 3 million cells was washed with GF buffer.   For 

the kinase reaction 1µl kinase stock and immuno-precipitated BubR1 or 1µl 

histones were mixed in kinase buffer (20mM HEPES-KOH pH7.7, 5mM MgCl2, 

1mM EGTA, 1mM DTT, 50µM ATP, 2µCi γ-32P-ATP in a total volume of 25µl.  

The kinase reaction was incubated at 30°C for 20 min and terminated by adding 

2x Sample buffer.  Proteins were resolved by SDS-PAGE gel electrophoresis and 

the dried gel was exposed overnight at -80°C to X-ray film. 

 

10.1.22 Generation of TA-p63 targeting construct 

For the specific deletion of TA-p63 isoforms in the mouse genome without 

disruption of ∆N-p63 isoform expression, a targeting construct was designed to 
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replace exon 2 and 3 as well as the intermediated intron with a neomycin 

resistance gene (Neor).  

The targeting construct was prepared by cloning genomic p63 sequences, 

a positive as well as a negative selection marker into pBluescript-SK(-).  For 

manipulation of the genomic p63 sequences, a ~15 kb long NotI-NotI fragment 

containing exon 2 and 3 and flanking intronic regions of p63 was subcloned from 

of a previously identified phage clone from a 129/SvJ genomic library into the 

pZero vector (Invitrogen).  In the first step of cloning the targeting construct, the 

HSV thymidine kinase (HSV-TK) gene under the control of the MC1 promoter 

was cloned via SacII and NheI into the SacII and SpeI sites of pBluescript-SK(-) 

(Stratagene).  Ligating the NheI site into the SpeI site destroyed both sites.  Then 

the genomic p63 clone was digested with BstBI and SalI and cloned into the ClaI 

and SalI sites of pBluescript-SK(-)-(HSV-TK) leading to the destruction of the 

BstBI/CalI sites.  A~2.4 kb fragment containing exon 2 and 3 and flanking regions 

of p63 was deleted from the construct by SpeI digest.  A neomycin resistance 

gene (Neor) driven by the mouse phosphoglycerol kinase (PGK1) promoter and 

linked to the PGK1 poly (A) sequences with NheI sites on the 5’ and 3’ end was 

ligated into the SpeI sites of the constructs destroying the SpeI/NheI sites.  After 

completion of cloning, the construct was sequenced to confirm that it did not 

contain any mutations.  For electroporation, the constructed was linearized by 

SacII digest.  The final targeting construct consists of HSV-TK gene on the 5’ 

prime end, a 1.6kb short arm homologous to genomic DNA upstream of exon 2, 

the Neor, and a 3.7kb long arm homologous to genomic DNA downstream of 

exon 3.   

 

10.1.23 Isolation of genomic DNA from ES cells 

ES cells were plated onto 12-well plate without feeder cells and grown 

until confluency.  When cells were confluent, media was removed and lysis buffer 

with proteinase K was added to the well and incubated overnight at 37°C.   On 

the next day an equal volume of 100% isopropanol was added and placed on a 

rotating shaker until DNA precipitated.  DNA threads were spooled out, washed 

with 70% ethanol, dissolved in 250µl TE buffer, and incubated at 55°C overnight.   
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10.1.24 Isolation of genomic DNA from mice tail 

Mice tails were cut and incubated in lysis buffer with proteinase K overnight at 

55°C.   On the next day an equal volume of 100% isopropanol was added and 

tubes were vortexed until DNA precipitated.  DNA threads were spooled out, 

washed with 70% ethanol, dissolved in 250µl TE buffer, and incubated at 55°C 

overnight.   

 

10.1.25 Polymerase Chain Reaction (PCR) for genotyping 

Reactions were performed in 25µl volume containing 0.4µM of each primer 

(TAKO4,5,6), 0.1mM of each dNTP, 1.5mM MgCl2 , 1X PCR buffer, 15-30ng 

genomic DNA, and 2.5U Taq polymerase.   

Following conditions were used for the PCR: 

Initial denaturation 95°C  5 min        1Cycle                 

Denaturation  95°C  30s  

Annealing  60°C  30s  30 Cycles 

Elongation   72°C   30s                 

Final elongation  72°C              7 min                1 Cycle 

 

TAKO4 ATCTAGCAGCAAGATTAACAA 

TAKO5  GGGAACTTCCTGACTAGGG 

TAKO 6 GCATAGTTCCTACGTTTCAC 

 

10.1.26 Southern Blot analysis 

For Southern Blot analysis genomic DNA was digested with BglII 

overnight at 37°C.  The next day, DNA was resolved on a 0.8% agarose gel and 

stained with Ethidium Bromide.  Gel was acid treated with 0.25N HCl for 10 min 

and neutralized in alkaline buffer for 10 min.  DNA was transferred from the gel 

onto Hybond N+ membrane by capillary transfer overnight at room temperature.  

After transfer, the membrane was rinse in 2XSSC buffer and pre-hybridized for at 

least 2 hours at 65°C.  Labeled probe was added and hybridized to the DNA 

overnight at 55°C.  The membrane was washed with washing buffer three times 

for 15 min at 65°C and exposed to the phosphor-imager screen for 2 hours or 

film overnight at -80°C.   
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10.1.27 Random Prime labeling of Southern Blot Probe 

The PCR-generated Southern Blot Probe was labeled with 32PαdCTP 

using a RadPrime labeling kit from Invitrogen.  25ng of DNA probe was diluted 

into 17µl water and mixed with 16µl 2.5x RadPrime buffer, 2.4µl 125µM dNTP’s 

(without dCTP), and 4µl 32PαdCTP (>3000 Ci/mmol).  The mixture was boiled for 

90s and immediately placed on ice.  When the tube was chilled, 1µl Klenow 

enzyme was added to the reaction and incubated for more than 30 min at room 

temperature.  The labeling reaction was stopped by the addition of 2µl of 

2%SDS. 

The labeled probe was purified from unincorporated dNTP’s by spin dialysis.  To 

do this, the cap of a 0.5ml tube was cut off and using 26 gauge needle a hole 

was poked into the bottom of tube.  Approximately 30µl of spin dialysis glass 

beads were added to the tube to cover the bottom and the tube was filled up to 

the top with P10 resin.  The column was packed by centrifugation for 3 min and 

15s at 3000rpm.  The stopped labeling reaction was loaded onto the column and 

spun for 4 min at 3500rpm.  The eluted probe was diluted with 300µl TE buffer, 

boiled for 5 min, and snap-cooled in an ice bath before addition to the 

membrane.   
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10.2 Cell biology methods 
10.2.1  Cell culture 

HeLa, HeLa-H2B-GFP, and NSO-1 cells were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM) with 10% fetal bovine serum and penicillin-

streptomycin (100U/ml and 100µg/ml), at 37°C in a humidified atmosphere with 

5% CO2. 

 

10.2.2 SILAC 

For SILAC experiments, HeLa cells were grown in arginine- and lysine-

free DMEM with 10% dialyzed fetal bovine serum and penicillin-streptomycin 

(100U/ml and 100µg/ml) supplemented with either 50mg/l 13C6
15N2-and 50mg/L 

13C6-arginine (Cambridge Isotope Labs) or normal lysine and arginine for at least 

six cell doublings.  The extent of incorporation was verified as ≥ 95% by mass 

spectrometric analysis of multiple peptides from several proteins of heavy-only, 

SDS-PAGE- fractionated whole cell lysates.   

 

10.2.3 Cell synchronization 

HeLa cells were synchronized in interphase by addition of 2mM thymidine 

for 18 hours.  Thymidine was washed out and cells were grown in DMEM with 

10% FBS for 8 hours, before they thmidine was added again for 18 hours.   

For arrest in mitosis, HeLa cells were synchronized by a double thymidine 

block in interphase.  After thymidine wash-out, cells were cultured in DMEM with 

10% FBS for 3 hours before addition of 100nM Taxol or 100ng/ml nocodazole for 

18 hours.   

 

10.2.4 Drug treatments 

The Aurora B kinase inhibitor ZM447439 was used at a final concentration 

of 2µM.  In addition the proteasome inhibitor MG132 was added at a final 

concentration of 10µM to prevent cells from precociously exiting mitosis. Fisetin, 

a Cdk1 inhibitor, was added to a final concentration 10µM.   
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10.2.5 siRNA transfection 

HeLa cells were transfected with duplex siRNAs at 50% confluency.  

Oligofectamine and siRNA were separately diluted in Opti-MEM I and incubated 

for 20 min at room temperature.  Oligofectamine and siRNA were combined and 

incubated for another 20 min.  Cells were washed with Opti-MEM I media and 

Oligofectamine/siRNA mixture was added for 4 hours.  Afterwards, the 

transfection mixture was replaced with DMEM with 10% FBS.  Cells were 

analyzed for down-regulation of protein expression 30 hours and 48 hours after 

start of transfection,.  

Sgo2 SmartPool siRNA was obtained from Dharmacom.  All other siRNAs were 

synthesized using the Silencer siRNA construction kit from Ambion according to 

manufacturer’s instructions.  The Sgo2 control siRNA was based on the Sgo2 

sequenced and contained point mutations (5’-AATAATGCCATGTTGTGGTGC-

3’).  Primers for siRNAs against Sgo1, Bub1, and BubR1 were designed based 

on published sequences (Sgo1 [133], BubR1 [117], Bub1[138]).   

 

10.2.6 Retrovirus packing and transduction 

Retroviral particles were produced in the GPG-293 packing cell line, which 

was maintained in DMEM media supplemented with 10% FBS, 1µg/ml 

tetracycline, 2µg/ml puromycin, and 300µg/ml G418.  The gene of interest was 

cloned into the retroviral packing vector pMX and the vector was transfected into 

GPG-293 cells using Mirus293 transfection reagent.  For transfection, GPG-293 

cells were grown on a 10cm dish to 50% confluency and pre-fed with DMEM 

media with 10% FBS one hour before transfection.  800µl Opti-MEM media was 

mixed with 24µl Mirus reagent and incubated for 20 min at room temperature.  

8µg of plasmid DNA was added and incubated for another 20 min before addition 

to the cells.  Media was exchanged on the next morning (day 2) and on day 3.5.  

Media containing retroviral particles was collected on day 5, 7, and 9.   

For transduction, HeLa cells were incubated with retroviral supernatant 

supplemented with 8µg/ml polybrene for 6 hours.   
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10.2.7 Generation of murine embryonic fibroblasts (MEFs) 

For ES cell feeder layers, murine embryonic fibroblasts were prepared 

from mice expressing neomycin resistance gene (Neor).  To accomplish this, 

pregnant females were sacrificed 13.5 to 15.5 days post coitum, the uterus was 

isolated, and individual embryos were dissected out.  The embryos were rinsed 

several times in PBS.  Under the microscope, the head and inner organs were 

removed from the embryo and the carcass was placed in 2.5ml 0.25% trypsin-

EDTA for 10 min at 37°C.  The trypsinized cells were filtered through a 100µm 

cell strainer into 15ml DMEM + 10%FBS and plated onto a 10cm dish.  When 

cells reached confluency, they were split in a 1:5 ratio or frozen away.  

 

10.2.8 Generation of MEF feeder layers for ES cells 

 To avoid differentiation, murine ES cells are grown on mitotically 

inactivated MEF feeder layers.  For each electroporation experiment, 18 T-175 

flasks of MEFs were grown.  Frozen MEFs were thawed out under shaking in a 

water bath at 37°C, diluted into 25ml of MEF media, and spun down at 1000rpm 

for 5 min to remove the DMSO.  The media was aspirated and the pellet 

resuspended in 50ml of MEF media and plated into two T-175 flasks.  When cells 

reached confluency, MEFs were rinsed twice with HEPES saline and trypsinized 

with 2ml 0.25% trypsin+2ml HEPES saline for 2-3 min at 37°C.  MEFs were 

pipetted up and down for complete resuspension, transferred to a 15ml tube, and 

centrifuged at 100rpm for 5 min.  Afterwards, media was aspirated, cells 

resuspended in MEF media and plated to 3 new T-175 flasks.  MEFs were 

cultured at 37°C and 5% CO2. For mitotic inactivation, cells were trypsinized as 

described above and 6 T-175 flasks were pooled into one 50ml Falcon tube.  

MEFs were γ-irradiated using a Cobalt source for 3500rads and frozen down in 

aliquots of 1/4 or ½ T-175 flasks.   

 

10.2.9 J1 ES cell culture 

ES cells were cultured on mitotically inactivated MEF feeder layers.  One 

day before thawing of ES cells, a T-75 flask was coated with 5ml of 0.2% gelatin 

for 5 min.  After 5 min, the gelatin was aspirated and one vial of mitotically 

inactivated MEFs in ES media was plated on the gelatin.  The next day, one vial 
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of J1 ES cells was thawed out under shaking in a water bath at 37°C, diluted into 

10ml of ES cells media supplemented with leukemia inhibitory factor (LIF), and 

spun down to remove the DMSO.  The media was aspirated from the MEFs and 

ES cells, the ES cells were resuspended in 10ml, and plated onto the MEFs.  ES 

cells were cultured at 37°C and 5% CO2.  When ES cells reached 50-60% 

confluency, they were split. ES cells were rinsed twice with HEPES saline, 1ml of 

0.25% trypsin was added, and cells were incubated for 90s at 37°C.  Using a 

plugged Pasteur pipet, the ES cells were dissociated by pipetting up and down 

and returned for another 2 min to 37°C.  ES cells were resuspended in 7ml ES 

media plus LIF, centrifuged for 5 min at 1000rpm, media was aspirated, and ES 

cells were plated onto five T-75 flasks containing MEF feeder layers.  ES cells 

were fed each day with ES media plus LIF.   

 

10.2.10 Freezing of ES cells 

For freezing,  ES cells were trypsinzed as described above, spun down, 

media was aspirated, and cells equal to one T-75 were resuspended in 2.5ml of 

ES media plus LIF.  An equal volume of 2x freezing media was added to the cells 

and 1ml of this mixture was aliquoted into freezing vials on ice.  Freezing vials 

were transferred to a Styrofoam box and placed at -80°C.  After two days, vials 

were transferred to liquid-nitrogen for long-term storage.   

 

10.2.11 Electroporation of ES cells 

The day before electroporation, MEF feeder cells were plated on to eight 

gelatin-treated 10cm dishes.  One hour before electroporation, ES cells were fed 

with fresh ES media plus LIF and fresh electroporation buffer was prepared.  For 

the electroporation, ES cells were trypsinzed as described above, the pellet was 

washed once more with ES media plus LIF, and ES cells were collected by 

centrifugation at 1000rpm for 5 min.  The cell pellet was resuspended in 10ml 

electroporation buffer and the cell number was counted.  ES cells were 

centrifuged at 1000rpm for 5 min and resuspended in electroporation buffer at a 

concentration of 1X107 cells/ml.  The linearized targeting construct was added to 

the ES cells at a final concentration of 25µg/ml.  Into each electroporation 

cuvette, 0.8ml of ES cell/DNA mixture was added.  ES cells were electroporated 
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at 25µF and 400V.  Afterwards, ES cells were transferred to 6ml of media and 

2ml were plated onto 10cm dished with MEF feeder cells in fresh ES media plus 

LIF.   ES cells were incubated for 24 hours at 37°C and 5% CO2, before 300µM 

G418 was added to the culture.  48 hours post-transfection, 0.2µM FIAU was 

added in addition to G418.  ES cells were cultured in ES media plus LIF, G418 

and FIAU until picking of colonies was started.   

 
 
10.2.12 Picking of ES cells colonies 

Picking of ES cell colonies started 7 days after electroporation.  On the 

day before, MEF feeders were plated on 24-well plates coated with gelatin.  One 

hour before picking, ES cells were fed with ES cell media plus LIF and G418.  

Clones were identified by eye and circled with a marker on the bottom of the 

plate.  The media was aspirated from the ES cells and replaced with HEPES 

saline.  Under a dissection scope in a tissue culture hood, ES cell colonies were 

dislodged from the plate, pipetted up, and resuspended in a round-bottom 96-

well plate containing 0.25% Trypsin-EDTA.  Trypsinized cells were plated onto 

MEF feeders in 24-well plates.  When ES cells reached 80% confluency, ES cells 

were trypsinzed, 2/3 of the cells were mixed with 2x freezing media and frozen 

down and the remaining 1/3 was plated onto a 12-well dish without gelatin or 

feeder for harvesting DNA. 

   

10.2.13 Expansion of ES cells clones for blastocyte injection  

 Clones that were positive for homologous recombination were expanded 

for injection into blastocytes at the Transgenic Core Facility of the Brigham and 

Women’s Hospital, Boston.  ES cell clones were thawed out on feeder cells into 

one well of a 6-well dish and grown until they reached 80% confluency.  They 

were then trypsinized and replated into a T-75 flask with feeder cells.  When the 

T-75 flask was confluent, ES cells were frozen down into six aliquots. One day 

before injection, one vial of ES cells was thawed out into two wells of a 6-well 

plate only treated with gelatin.  On the day of the injection, ES cells were pre-fed, 

trypsinized, once washed with ES media with LIF, collected by centrifugation at 

1000rpm for 5 min, and resuspended on 1ml of ES cell media plus LIF.   
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10.2.14 Monoclonal antibody 

For immunization mice were challenged every 21 days with the antigen of 

interest.  After three injections, mice were bled and the serum was tested for 

immune response.  Positive animals were injected one more time and four days 

later used for fusion.  The day before the fusion, macrophage feeder cells were 

prepared.  To do this, mice were euthanized and the skin was removed from the 

peritoneal cavity.  5ml cold 0.34M sucrose solution was injected with a 27 gauge 

needle intraperitoneal.  Macrophages were dislodged from the peritoneal cavity 

by shaking the mouse.  Afterwards the sucrose solution containing the 

macrophages was collected with an 18 gauge needle and diluted into DMEM 

media containing 10% FBS.  In general, macrophages from one mouse were 

plated over five 96-well plates.  For the fusion, NSO-1 myeloma cells were fed 

and dislodged from the plate by clapping in the morning.  After a few hours 

recovery, the cells were collected, counted, and wash with serum-free DMEM.  

The spleen was removed from the animal and disrupted under agitation and up 

and down pipetting in serum-free DMEM.  The cell suspension was filtered 

though a 40µm mesh net into a 50ml Falcon tube to remove cell debris and the 

cell number was determined.  NSO-1 myeloma and spleen cells were mixed in a 

1 to 4 ratio and collected by centrifugation.  The media was aspirated and the cell 

pellet mixed and disturbed by tapping the Falcon tube.  In a 37°C water bath, 

0.5ml of PEG1500 was slowly added to the cells over 60s.  For the next 90s cells 

were incubated in the water bath under slow swirling.  PEG1500 was diluted out 

by addition of 20ml serum-free DMEM over 2 min to 5 min while incubating the 

cells in a 37°C water bath.  The first 5ml of DMEM was added drop by drop.  

After the fusion, the cell suspension was diluted into 150ml HAT media and 

plated over 10 96-well plates containing macrophage feeder cells (150µL per 

well).  After 7 to 10 days clones were screened by immunofluorescence for 

antibody expression.  Positive clones were sub-cloned and expanded.   

 

10.2.15 Polyclonal antibody 

For immunization mice were challenged every 21 days with the antigen of 

interest.  After three injections, mice were bled and the serum was tested for 
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immune response.  Positive animals were euthanized and blood was collected.  

After coagulation, serum was removed and stored at -80°C.   

 

10.2.16 FACS 

 30 hours after transfection with control, Sgo1, or Sgo2 siRNA, cells were 

collected and fixed in 70% ethanol.  Total cellular DNA content was determined 

by flow cytometric analysis after washing fixed cells in PBS, followed by 

incubation with 250 µg/ml RNAse A and 10 µg/ml propidium iodide in PBS for 1hr 

at room temperature.  Cells stained with propidium iodide were analyzed on a 

FACScalibur flow cytometer (Becton-Dickinson, San Jose, CA) using Cellquest 

software.   

 

10.2.17 Microtubule pelleting assay 

 For microtubule spindown, Taxol arrested HeLa cells were collected, lysed 

and the lysate was cleared of debris by a high speed spin.  Cleared lysates were 

supplemented with 0.5mM MgGTP, 2mM MgATP, or 2mM MgAMPPNP, and 

warmed to room temperature.  20µM Taxol was added and the lysates were 

incubated at 37°C for 30 min.  Afterwards, polymerized tubulin was pelleted 

though a 1M sucrose cushion in BRB80 buffer, containing 0.5mM MgATP and 

10µM Taxol.  Lysate, supernatant and pellet were analyzed by Western Blot.      
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