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Dekan: Prof. Dr. Nils Schopohl
1. Berichterstatter: Prof. Dr. Wilhelm Kley
2. Berichterstatter: Prof. Dr. Konstantinos Kokkotas



iii

Zusammenfassung

Im Zuge dieser Doktorarbeit wurde ein Programm zur numerischen Simu-
lation idealer Flüssigkeiten innerhalb beliebiger gekrümmter Raumzeiten in
einer bis drei Dimensionen im Rahmen der Allgemeinen Relativitätstheorie
erstellt.

Das numerische Verfahren basiert auf einer HRSC (High Resolution Shock
Capturing) Methode. Diese wurde dahingehend modifiziert, daß Druck- und
Gravitationskräfte konsistent berechnet werden. Dadurch wird eine höhere
Genauigkeit im Falle quasi-stationärer, isentroper Systeme erreicht, ohne da-
bei den Anwendungsbereich einzuschränken, wie dies z.B. beim linearisierten
Ansatz der Fall wäre. Ferner wurde eine Reformulierung der allgemeinrela-
tivistischen hydrodynamischen Zeitentwicklungsgleichungen hergeleitet, wel-
che das Fundament des neuen numerischen Verfahrens bildet.

Am Beispiel eines nichtrotierenden und eines starr rotierenden stationären
Neutronensternmodells unter Verwendung der Cowling-Näherung (d.h. mit
zeitunabhängigem Gravitationsfeld) wurde das Verfahren erfolgreich getestet,
insbesondere wurden umfangreiche Konvergenztests durchgeführt.

Durch Störung der Anfangsdaten wurden jeweils sieben verschiedene Schwin-
gungsmoden angeregt, und mit Hilfe von Fourieranalysen deren Frequenzen
und Eigenfunktionen bestimmt. Ein Vergleich mit Ergebnissen anderer Ar-
beiten ergab eine gute Übereinstimmung, beispielsweise stimmen die Fre-
quenzen besser als 1.7%, überein, bis auf einen Fall besser als 0.8%.

Als problematisch erwies sich die Behandlung der Sternenoberfläche, d.h.
des Übergangs zum Vakuum. Hierzu wurde eine neue Methode entwickelt,
die zwar eine Verbesserung, aber noch keine endgültige Lösung des Problems
darstellt: Mit Hilfe eines speziell entwickelten Testproblems ähnlich zum Neu-
tronenstern, jedoch ohne Gebiete mit Vakuum, konnte gezeigt werden, daß
die numerischen Fehler zum größten Teil durch die Behandlung der Sterno-
berfläche verursacht werden.

Es besteht die Möglichkeit, das Programm mit einem weiteren Programm
zur Zeitentwicklung der Raumzeit bei gegebener Materieverteilung zu kop-
peln, so daß allgemeinrelativistische Simulationen ohne einschränkende Nä-
herungen durchgeführt werden können. Erste derartige Simulationen eines
nichtrotierenden Neutronensterns verliefen erfolgversprechend. Die extrahier-
ten Frequenzen stimmen besser als 1.2% mit verfügbaren Literaturwerten
überein, allerdings sind vor einer abschließenden Bewertung noch einige of-
fene Fragen zu klären.
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Introduction

The intention of this work is the development of a code for general relativistic
ideal hydrodynamics in up to three dimensions, based on regular numerical
grids and the Eulerian approach. The envisioned fields of application are sce-
narios involving compact objects where general relativistic effects are strong,
in particular the simulation of single and binary neutron star models.

Numerical simulations of compact objects are a field of active research.
The availability of gravitational wave detectors, such as Geo600 [2] and LIGO
[3], creates a demand for theoretical models of gravitational wave sources.
Potential sources include black hole and neutron star mergers, but possibly
also oscillations of single (proto-) neutron stars. Future observations of grav-
itational waves emitted by neutron star oscillations could provide insights
into the equation of state of cold nuclear matter at high densities, as de-
tailed in [6]. Recently, there is also growing evidence for direct observations
of magnetar oscillations in the soft gamma ray emission during giant flares,
see [60], which are attributed to the solid stellar crust and possibly magnetic
field modes, see [51, 52].

To meet this demand, a number of codes for general relativistic hydrody-
namics has been developed in recent years, which can be divided into general
purpose codes and codes specialised on single star oscillations in various ap-
proximations, e.g. the ones described in [5, 42, 24, 29, 31]. Currently there
exist only a few general purpose codes capable of 3D simulations in General
Relativity, e.g. [16, 23, 48], which are used in the context of supernova core
collapse [14, 15], neutron star mergers [48], neutron star collapse to a black
hole [8], as well as neutron star oscillations and instabilities [17, 22, 23, 49].
Besides those mesh based codes, there exists a relativistic smoothed particle
hydrodynamics (SPH) code [37], which is used for neutron star mergers.

Usually such codes are split into a part evolving the spacetime and one
evolving the hydrodynamic equations. The code developed during my thesis,
called “Pizza”, numerically evolves the hydrodynamic equations on an arbi-
trary spacetime. It is implemented using the Cactus computational toolkit,
see [1], which is a framework for large scale numerical simulations. For this

vii



viii INTRODUCTION

framework, there exists a generalised interface for the communication be-
tween spacetime and hydrodynamic evolution codes, in a way that both can
be developed independently and different codes can be combined. This makes
it possible to couple the Pizza code with any spacetime evolution code using
that interface, and to perform hydrodynamic simulations in General Relativ-
ity.

In a general purpose code, no specialising assumptions should be made.
However, it is possible to modify a numerical scheme such that higher accu-
racy is achieved in scenarios where certain assumptions do hold. The numer-
ical scheme I developed in the course of this work is tuned in a way that a
class of stationary solutions, containing rigidly rotating cold neutron stars,
is evolved with particular accuracy. For this, I derived a special formulation
of the hydrodynamic evolution equations.

Besides the advantage for single star simulations, the hope is that also
quasi-stationary, nearly-isentropic systems will benefit, albeit to a lesser ex-
tent. Evolving stationary solutions where gravity and pressure forces cancel
has always been slightly problematic, even in Newtonian simulations. In
Newtonian hydrodynamics, there exist a number of approaches to deal with
such systems without linearisation, see [30] and the references therein. In
general relativistic hydrodynamics, the Pizza code presents, to the author’s
knowledge, the first attempt in that direction.

A natural testbed for the hydrodynamic part of a general relativistic
code are oscillations of single neutron stars in the Cowling approximation,
that is, with a fixed spacetime metric. Recent results from 2D axisymmetric
simulations in Cowling approximation are presented in [21, 54]. Since those
results are obtained with a different numerical scheme and coordinate system,
the comparison to the ones presented here provides a meaningful validation.

This thesis is structured as follows: In the first part, some analytic back-
ground is reviewed and, more important, a special formulation of the hydro-
dynamic evolution equations is derived. In the second part, the numerical
methods used by the Pizza code are described. In particular, I present a new
high resolution shock capturing (HRSC) scheme based on the aforementioned
formulation of the hydrodynamic equations. In the third part, results from
numerical tests are shown, involving shock tubes, nonrotating and rigidly
rotating neutron stars with a polytropic or ideal gas EOS in Cowling ap-
proximation, and a specially designed testbed similar to a neutron star but
without a fluid-vacuum boundary. Finally, I give accurate frequencies and
eigenfunctions for different oscillation modes of two neutron star models.
Additionally, first simulations with coupled spacetime evolution are shown.
Basic knowledge of General Relativity and numerical methods is assumed.
Otherwise, I refer the reader to the textbooks [18, 36, 38, 46, 57, 58].



Chapter 1

Analytical background

In the following, the basic notation and fundamental equations used in this
work are introduced. For all equations, geometric units are used, i.e. units
for which G = c = 1 holds. The 4-metric of the spacetime is denoted by gab,
and the signature of gab is (−, +, +, +). Indices a, b, c, etc. generally range
from 0 to 3. In geometric units, the Einstein equations read

Gab = 8πTab (1.1)

where Tab is the stress-energy-tensor and

Gab = Rab −
1

2
Rgab (1.2)

is the Einstein-tensor. Rab is the Ricci-tensor belonging to the spacetime
metric gab. It contains derivatives of gab up to second order in space and
time. From the field equations (1.1) and the contracted Bianchi identities,
see [58], follows the local conservation of energy and momentum

∇aT
ab = 0 (1.3)

where ∇a is the covariant derivative.
In the context of this work, the matter consists of an ideal fluid, which

additionally satisfies the mass conservation law

∇a(ρua) = 0 (1.4)

where u is the 4-velocity of the fluid and ρ the restmass density in the fluid’s
rest frame. The stress-energy tensor of an ideal fluid is given by

T ab = ρhuaub + Pgab (1.5)

1



2 CHAPTER 1. ANALYTICAL BACKGROUND

where P is the pressure and h is the specific relativistic enthalpy defined as

h = 1 + ε +
P

ρ
(1.6)

with the specific internal energy ε. The fluid is further assumed to possess
either one or two internal degrees of freedom, satisfying an equation of state
(EOS) of the form

P = P (ρ, ε) or P = P (ρ) (1.7)

The numerical solution of Eqs. (1.3) and (1.4) for an arbitrary given space-
time is the goal of this thesis, while the simultaneous integration of Eq. (1.1)
for a given stress-energy tensor is left to another code.

1.1 3+1 split

The covariant formulation of the field and hydrodynamic equations is not
suitable for numerical computations. What is needed instead is a formu-
lation where a state defined on a 3-dimensional space is evolved in time.
Unfortunately, the Newtonian concept of an universal lapse of time is not
valid in General Relativity. However, one can choose a 4-dimensional coor-
dinate system such that the coordinate lines of the “time” coordinate are
timelike, and the coordinate lines of the “spatial” coordinates are spacelike.
Hypersurfaces of constant coordinate time are denoted Σt in the following.
Given such coordinates, it is possible to define quantities on Σt for which
the covariant equations yield evolution equations with respect to coordinate
time. This approach is called 3+1-split.

We will now introduce the 3+1-split variables which replace the spacetime
metric. The coordinate time is denoted by x0, the spatial coordinates by xi.
Indices i, j, k, etc. range from 1 to 3, and n is the unit vector field orthogonal
to Σt, that is nana = −1, ni = 0. Observers with worldlines tangential to n
are called normal observers throughout this work. For normal observers, Σt

locally coincides with what they would call “now”. Defining t = (1, 0, 0, 0),
we can write

ta = αna + βa (1.8)

where α is the so called lapse function, and β is the shift vector, which is
tangential to Σt, i.e. β0 = 0 and naβ

a = 0.
The lapse function α gives the ratio between the lapse of physical time

measured by a normal observer and the lapse of coordinate time. Given the
spacetime and one hypersurface, one can construct the neighbouring hyper-
surfaces using the lapse function. The shift vector field βi on the other hand
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tells us how the given 3-dimensional coordinate systems on neighbouring Σt

are connected: After transporting the coordinate system on one hypersurface
along the normal vector field n onto a neighbouring hypersurface, one has to
shift the resulting coordinate system along the shift vector βi.

Lapse and shift are gauge quantities, which can be freely specified. The
lapse function is connected to the acceleration of the normal observers via

na∇ani = ∂i ln α, nbna∇anb = 0 (1.9)

This implies that for a constant lapse function, the normal observers follow a
geodesic, i.e. they are free falling. Therefore a constant lapse is a bad choice
in most situations.

The 4-metric gab can be expressed in terms of lapse, shift, and the 3-metric
gij on Σt as

gab =

(
−α2 + βkβk βj

βi gij

)
(1.10)

Its determinant is given by

√
g ≡

√
− det(gab) = α

√
d (1.11)

where √
d ≡

√
det(gij) (1.12)

is the physical volume per coordinate volume.
Another fundamental quantity is the extrinsic curvature Kij, which is a

special case of the second fundamental form Π, which in turn is defined as
follows: Given a submanifold S of some manifold M , and vector fields u, v
tangential to S, one can split covariant derivatives as

va∇aw
b = va∇S

awb + vawcΠb
ac (1.13)

The part of the covariant derivative tangential to S is given by ∇S, which is
the covariant derivative defined on the submanifold. The orthogonal part is
given by the second fundamental form Πb

ac, which is a symmetric tensor.
Inserting the spacetime for M and a hypersurface of constant coordinate

time for S, one can write

vawcΠb
ac ≡ −viwjnbKij (1.14)

The extrinsic curvature Kij is a symmetric 3-tensor defined on Σt. It depends
only on the choice of the hypersurfaces.
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The extrinsic curvature specifies how strong the hypersurfaces of con-
stant coordinate time are bend, in the following sense: If we assume that Σt

contains a spacelike geodesic curve c(s), it follows from the geodesic equation

ċa∇aċ
b = 0, ċa ≡ dca

ds
(1.15)

together with Eqs. (1.13) and (1.14) that

ċiċjKij = 0 (1.16)

Dealing with the curvature of Σt, the extrinsic curvature tensor also con-
tains information about the derivatives of the normal vector along Σt. Given
two vector fields v, w tangential to Σt, one can write

vawb∇an
b = va(∂a(wbn

b︸︷︷︸
=0

)− nb∇aw
b) (1.17)

= viwjKij (1.18)

⇒ ∇inj = Kij (1.19)

Since Kij specifies how the direction of the normal vectors n change along
Σt, it also tells us how the physical distance of neighbouring normal observers
changes along their trajectories. Kij is therefore closely related to the deriva-
tive of the 3-metric with respect to coordinate time. One can show that

(∂0 − Lβ)gij = −2αKij (1.20)

where Lβgij is the Lie-derivative (see [38, 39]) of the 3-metric along the shift
vector. The term Lβgij accounts for the change of the metric components
due to the shift of the coordinate system along β.

We now apply the 3+1-split to the hydrodynamic quantities. The 4-
velocity of the fluid can be written as

ua = γ (na + va) , v0 = 0 (1.21)

where vi is the 3-velocity in the reference frame of a normal observer, and

γ =
1√

1− vivi

(1.22)

is the corresponding Lorentz factor. Using Eq. (1.8), one can also write

ua =
γ

α
(1, wi) (1.23)
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where
wi = αvi − βi (1.24)

is the advection speed with respect to the coordinates, i.e. wi = ui

u0 .
The quantities that will be evolved in my simulations are energy, momen-

tum, and restmass coordinate-density in the local reference frame of normal
observers. Coordinate-density means amount per volume in coordinate space,
in contrast to amount per physical volume. The mass (coordinate-) density
is given by

D =
√

dγρ (1.25)

The factor γ takes into account the Lorentz contraction, while the factor
√

d
converts physical density to coordinate-density. The energy density is given
by

E =
√

dnanbTab =
√

d
(
γ2ρh− P

)
(1.26)

For numerical simulations it is beneficial to substract the restmass density,
defining

τ = E −D =
√

d
(
γ2ρh− P − γρ

)
(1.27)

Finally, the momentum density is given by

Si = −
√

dnaTai =
√

dγ2ρhvi (1.28)

1.2 Hydrodynamic evolution equations

As shown in [33, 10], the hydrodynamic evolution equations for an ideal fluid
on a given curved spacetime can be written as a system of quasi-conservation
laws

∂0q = −∂if
i + s (1.29)

for the (quasi-) conserved quantities q = (D, τ, Si) defined in Sec. 1.1. The
flux functions f i = (f i

D, f i
τ , f

i
Sj

) are given by

f i
D = wiD (1.30)

f i
τ = wiτ +

√
gviP (1.31)

f i
Sj

= wiSj +
√

gPδi
j (1.32)

The source terms s = (0, sτ , sSi) given in [10] can be written as

sSi = −E∂iα + αP∂i

√
d + Sl∂iβ

l +
1

2
α
√

dγ2ρhvlvk∂igkl (1.33)

sτ = α
√

dPK − Sl∂lα + α
√

dγ2ρhvlvkKlk (1.34)
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This formulation, with minor changes regarding the way in which the source
terms are computed, is used in most recent general relativistic hydro codes.
For a detailed review on general relativistic hydrodynamics, see [20].

In contrast to other formulations, e.g. [61], the usage of the conserva-
tive form makes it possible to apply modern HRSC schemes. However, such
methods only compute the flux terms. The source terms have to be com-
puted independently, e.g. by inserting finite difference approximations for
derivatives of the field quantities in Eqs. (1.33) and (1.34).

In stationary cases, the pressure forces are contained in the flux terms
and the gravitational forces in the source terms. Both contributions cancel,
and the net forces present in oscillations around the equilibrium are much
smaller than the equilibrium pressure or gravitational forces themselves. The
numerical error on the other hand is roughly proportional to the pressure and
gravitational forces. Since flux and source terms are computed with differ-
ent methods, the errors usually do not cancel. The net forces are therefore
computed with a big relative error.

To circumvent this problem, I constructed a new numerical scheme where
source and flux terms are treated more consistent. The new scheme is build
on a new formulation of the source terms in the evolution equations, which I
derived especially for this purpose, and which is presented in the following.

1.2.1 Preparation

To derive the new formulation of the evolution equations, we start with the
stress energy tensor of an ideal fluid:

T a
b = ρhuaub + Pδa

b ≡ Aa
b + Pδa

b (1.35)

The covariant divergence of A is given by

∇aA
a
b = ∂aA

a
b + Γa

acA
c
b − Γc

abA
a
c (1.36)

The last term can be simplified to

Γc
abA

a
c = Aa

c
1

2
gcd (∂agdb + ∂bgda − ∂dgab) (1.37)

=
1

2
Aad (∂agdb + ∂bgda − ∂dgab) (1.38)

=
1

2
Aad∂bgad (1.39)

where we have used Aad = Ada and the definition of the Christoffel symbols
Γc

ab. Together with the identity

Γa
ac =

1
√

g
∂c
√

g (1.40)
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we obtain

∇aT
a
b = ∂aA

a
b +

1
√

g
Ac

b∂c
√

g

− 1

2
Aad∂bgad + ∂bP (1.41)

=
1
√

g
∂a (
√

gAa
b)−

1

2
Aad∂bgad + ∂bP (1.42)

For solutions of the Einstein equations, ∇aT
a
b = 0 and hence

0 = ∂a (
√

gρhuaub)−
1

2

√
gρhuaud∂bgad +

√
g∂bP (1.43)

By applying a 3+1 split on this equation, one could obtain evolution equa-
tions for energy and momentum density. We will use a slightly different
strategy here and rewrite the equations locally at one point using special
functions.

1.2.2 Equilibrium functions

We now construct a set of functions labelled “equilibrium functions”, which
will become the central part of the new scheme. For an arbitrary chosen
point Q, they are defined on a neighbourhood of Q as follows:

• An advection speed which is constant in space

ŵi ≡ wi(Q) (1.44)

• The corresponding 4-velocity and Lorentz factor

ûa =
γ̂

α
(1, ŵi), ûaûa = −1 (1.45)

• A new set of fluid variables, which are identical to the original ones at
point Q, i.e.

ρ̂ = ρ, ŝ = s, P̂ = P, ĥ = h
∣∣
Q

(1.46)

• To define the new fluid variables elsewhere, we demand

ĥ
α

γ̂
= const (1.47)

ŝ = const (1.48)

Further, the new fluid variables have to satisfy the same EOS as the
original ones.
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For later use we rewrite Eq. (1.47). Constant specific entropy (1.48) implies

dĥ

dP̂
=

1

ρ̂
(1.49)

and hence
∂iP̂

ρ̂ĥ
=

dĥ

dP̂

∂iP̂

ĥ
=

∂iĥ

ĥ
= ∂i ln(ĥ) (1.50)

Eq. (1.47) therefore becomes

∂iP̂

ρ̂ĥ
= −∂i ln

α

γ̂
(1.51)

This definition is motivated by the case of a rigidly rotating isentropic star
in corotating coordinates, where we have ŵi = 0 and v̂i = βi/α. In the
Newtonian limit, h ≈ 1, α ≈ 1, |v̂| = Ωd� 1 (where d is the distance to
the rotation axis, and Ω the angular velocity), and the gravitational potential
is U ≈ α− 1. In that limit Eq. (1.51) becomes

∂iP̂ = ρ̂∂i

(
1

2
Ω2d2 − U

)
(1.52)

which is the condition for hydrostatic equilibrium in a centrifugal - gravita-
tional potential. As shown in [12], Eq. (1.47) is indeed the necessary condition
for rigidly rotating isentropic fluid bodies in general relativity.

In general, the functions defined here do not correspond to a stationary
solution. However, in generic cases they still possess a weaker property we
will exploit: As shown in the next subsections, the evolution equations (1.29)
reduce at one instant of time (almost) to simple advection equations if applied
to equilibrium functions.

1.2.3 Momentum equation

Using the previously defined equilibrium functions, Eq. (1.43) can be simpli-
fied. From Eq. (1.45) we have

α

γ̂
ûa = (1, ŵ1, ŵ2, ŵ3) = const (1.53)

and therefore

−1

2
ûaûd∂igad = − γ̂2

2α2
∂i

(
α2

γ̂2
ûaûdgad

)
(1.54)

=
γ̂2

2α2
∂i

(
α2

γ̂2

)
(1.55)

= ∂i ln

(
α

γ̂

)
(1.56)
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At point Q we have u = û and, setting index b = i, we can reformulate
Eq. (1.43) as

0 = ∂a (
√

gρhuaui) +
√

gρh∂i ln

(
α

γ̂

)
+
√

g∂iP
∣∣
Q

(1.57)

With identities (1.51) and (1.46) we obtain

0 = ∂a (
√

gρhuaui) +
√

g∂i

(
P − P̂

) ∣∣
Q

(1.58)

= ∂a (
√

gρhuaui) + ∂i

[√
g

(
P − P̂

)] ∣∣
Q

(1.59)

= ∂a

[√
gρhuaui +

√
g

(
P − P̂

)
δa
i

] ∣∣
Q

(1.60)

Inserting Eqs. (1.28), (1.11), (1.23), and ui = γvi then yields the final form
of the momentum equation

∂0Si = −∂j

[
Siw

j +
√

g
(
P − P̂

)
δj
i

] ∣∣
Q

(1.61)

The flux terms are identical to Eq. (1.32), but the source terms are now
encoded in the derivatives of P̂ . Note also this equation is only valid at
one point, unless the fluid variables are equilibrium functions themselves and
hence identical to the ones constructed around Q. In that case all steps of
the derivation above are valid everywhere and Eq. (1.61) reduces to a simple
advection equation with constant advection speed, i.e.

∂0Si = −ŵj∂jSi (1.62)

The same holds trivially for the evolution equation of the conserved rest mass
density D, since it contains only advection terms.

Note that isentropic systems which are manifestly stationary in comoving
coordinates, for example rigidly rotating isentropic stars, correspond to equi-
librium functions. This can be shown directly from Eqs. (1.61) and (1.51)
when using wi = 0, the assumption of isentropy, and the fact that Q was
arbitrary.

1.2.4 Energy equation

A similar treatment can be given for the energy equation, although it is not
possible to rewrite the source terms completely using equilibrium functions,
if one wants to avoid explicit dependence on time derivatives of lapse and
shift. As shown below, the energy equation can be written as

∂0τ = −∂i

[
τwi +

√
g

(
viP − v̂iP̂

)]
+ r

∣∣
Q

(1.63)
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where

r = −α

γ
ua

(
1

2

√
dγ2ρhvivj∂agij + P∂a

√
d

)
(1.64)

Again, if the system corresponds to an equilibrium function, the derivation
is valid everywhere and the equation reduces to an advection equation plus
the remaining terms r. These terms vanish if the 3-metric components are
constant along the fluid worldlines. For instance, this is the case for a sta-
tionary rotating star (without meridional motion) in suitable coordinates. In
the Newtonian limit with Cartesian coordinates, they can also be neglected.

To derive Eq. (1.63), we make use of the expressions

n0 =
1

α
, ni = − 1

α
βi , ni = 0 (1.65)

ua = γ (na + va) , nbub = −γ, v0 = 0 (1.66)

as well as

nc
(
nb + 2vb

)
∂agcb

= ∂a

[
nb

(
nb + 2vb

)]
− nb∂a

(
nb + 2vb

)
− (nb + 2vb) ∂an

b (1.67)

= ∂a(−1)− 2 (nb + vb) ∂an
b (1.68)

= −2

γ
ub∂an

b (1.69)

The following calculation is valid only at point Q. By contracting Eq. (1.43)
with nb, we get

0 = nb∂a (
√

gρhuaub)︸ ︷︷ ︸
a1

− nb 1

2

√
gρhuaud∂bgad︸ ︷︷ ︸

a2

+ nb√g∂bP︸ ︷︷ ︸
a3

(1.70)

a1 = −∂a (
√

gγρhua)−√gρhuaub∂an
b (1.71)

= −∂0

(√
dγ2ρh

)
− ∂i

(√
dγ2ρhwi

)
︸ ︷︷ ︸

a4

−√gρhuaub∂an
b︸ ︷︷ ︸

a5

(1.72)
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Using Eqs. (1.51) and (1.56), a2 becomes

a2 = −
(

1

γ
ub − vb

)
1

2

√
gρhuaud∂bgad (1.73)

= − 1

2γ
ub√gρhuaud∂bgad︸ ︷︷ ︸

a6

+ vi√g∂iP̂︸ ︷︷ ︸
a7

(1.74)

With Eq. (1.69), we then find

a6 + a5 = −√gρhua

(
ub∂an

b +
1

2γ
ucub∂agcb

)
(1.75)

= −√gρhua
[
ub∂an

b

+
γ

2

(
ncnb + 2ncvb + vcvb

)
∂agcb

]
(1.76)

(1.69)
= −ua 1

2

√
gγρhvivj∂agij (1.77)

a3 + a7 =
1

α

√
g∂0P −

βi

α

√
g∂iP + vi√g∂iP̂ (1.78)

=
√

dβi∂i

(
P̂ − P

)
+ wi

√
d∂iP̂ +

√
d∂0P (1.79)

= ∂i

[√
dβi

(
P̂ − P

)
+
√

dŵiP̂
]

− wiP∂i

√
d +

√
d∂0P (1.80)

= ∂i

[√
dα

(
v̂iP̂ − viP

)
+
√

dwiP
]

− wiP∂i

√
d +

√
d∂0P (1.81)

= ∂0

(√
dP

)
− P∂0

√
d− wiP∂i

√
d

+ ∂i

[√
dα

(
v̂iP̂ − viP

)
+
√

dwiP
]

(1.82)

= ∂0

(√
dP

)
− α

γ
uaP∂a

√
d

+ ∂i

[√
dα

(
v̂iP̂ − viP

)
+
√

dwiP
]

(1.83)
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Recombining these terms yields

0 = a3 + a7 + a6 + a5 + a4 (1.84)

= −∂0

[√
d

(
γ2ρh− P

)]
− ∂i

[√
d

(
γ2ρh− P

)
wi

+ α
√

d
(
viP − v̂iP̂

)]
− α

γ
ua

(
1

2

√
dγ2ρhvivj∂agij + P∂a

√
d

)
(1.85)

Using the rest mass conservation

0 = ∂0

(√
dγρ

)
+ ∂i

(
wi
√

dγρ
)

(1.86)

finally gives the desired result.

Up to this point, we have defined some “equilibrium” states for which the
evolution equations simplify to an advection equation, and used these states
to reformulate the source terms of the evolution equations. There is no
one-to-one correspondence between the equilibrium functions and stationary
solutions. However, isentropic systems which are manifestly stationary in
comoving coordinates are given by equilibrium functions.

1.3 Spacetime evolution equations

As shown by [7], the Einstein equations can be formulated as evolution equa-
tions of the 3-metric gij and the extrinsic curvature Kij, which are usually
referred to as ADM (Arnowitt, Deser, Misner) variables. In detail,

(∂0 − Lβ) gij = −2αKij (1.87)

(∂0 − Lβ) Kij = −∇i∇jα + α
(
R

(3)
ij + KKij − 2KikK

k
j −Rij

)
(1.88)

where R
(3)
ij is the Ricci-tensor belonging to the 3-metric on Σt, and Rij are

the spatial components of the 4-dimensional Ricci tensor. Using the field
equations (1.1), Rij can be written as

Rij = 8π

(
Tij −

1

2
T a

a gij

)
(1.89)
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In addition to the evolution equations, the field equations yield the constraint
equations (compare [23])

0 = H ≡ 1

16π

(
R(3) + K2 −KijK

ij
)
− nanbTab (1.90)

0 = Mi ≡
1

8π

(
∇jK

j
i −∇iK

)
+ naTai (1.91)

which have to be satisfied on every hypersurface Σt. Analytically, the con-
straints are propagated by the evolution equations, given they are fulfilled
initially. In numerical simulations however, small errors inevitably induce
constraint violations. As soon as the constraints are violated, they can grow
analytically. Wether they do depends on the specific formulation of the equa-
tions. For example, one can add various combinations of the constraints to
the evolution equations. Although it is possible to enforce the constraint
equations during evolution, it requires the solution of elliptic equations, see
[27], which is numerically expensive and very complicated in conjunction
with mesh refinement or excision techniques. Therefore, most 3D spacetime
evolution codes use unconstrained evolution.

The search for a numerically stable formulation lead to alternative formu-
lations of the original ADM system. The current state-of-the-art formulation
is the so called BSSN (Baumgarte, Shapiro, Shibata, Nakamura) system de-
scribed in [50, 11], where the evolved variables are the following:

• The conformal factor φ, defined as

e4φ = det(gij)
1/3 (1.92)

• The conformally rescaled 3-metric

γ̃ij = e−4φgij (1.93)

• The trace K of the extrinsic curvature

• The conformally rescaled trace-free part of the extrinsic curvature

Ãij = e−4φ

(
Kij −

1

3
Kgij

)
(1.94)

• Optionally, the so called conformal connection functions

Γ̃i = −γ̃ij
,j (1.95)
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There are some variants of the evolution equations for the BSSN variables,
which differ mainly in the way the constraints are used. The evolution equa-
tions used for the coupled spacetime simulations shown in Sec. 4.2 can be
found in [4]. Note that the promotion of the quantities φ,K to independent
variables creates additional, albeit trivial, constraints. For the simulations
in Sec. 4.2, they are enforced after each timestep, in contrast to the ADM
constraints.

1.4 Spherical neutron stars

The main testcase for the Pizza code is a spherically symmetric, nonrotating
static neutron star with a cold equation of state. In this work, I use sim-
ple star models where magnetic fields and the existence of a solid crust are
neglected. The structure of such stars has been investigated by [40]. In the
following I briefly review the basic equations, and provide the transformation
formulas used to obtain initial data in various coordinate systems. For the
more complicated case of rotating stars, I refer the reader to [53]. For a
general introduction to the astrophysics of neutron stars, see [47].

In spherical coordinates xi ≡ (r, ϑ, ϕ), the spacetime of a static spherical
star is given by the line element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2
(
dϑ2 + sin2(ϑ)dϕ2

)
(1.96)

or, alternatively by

gij =

e2λ 0 0
0 r2 0
0 0 r2 sin2(ϑ)

 (1.97)

α = eν (1.98)

βi = 0 (1.99)

Obviously, r is the circumferential radius. Specialising the argumentation in
Sec. 1.2 to this case, it turns out that ν = ln(α) replaces the gravitational
potential in Newtonian gravity. With the ansatz for the line element, the
field equations yield the Tolman-Oppenheimer-Volkoff (TOV) equations

m′ = 4πr2ρ(1 + ε) (1.100)

ν ′ =
(m

r2
+ 4πPr

) (
1− 2m

r

)−1

(1.101)

P ′ = −ρhν ′ (1.102)
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where m is defined by

e2λ(r) ≡
(

1− 2m(r)

r

)−1

(1.103)

So far ν is determined only up to a constant, which can be found by matching
the solution to the Schwarzschild metric in the exterior.

We now investigate the behaviour of the solution near the stellar surface,
which is a problematic region for numerical computations. Near the surface,
we have

ε→ 0, ρ→ 0, P → 0, h→ 1 (1.104)

In this limit, the first two TOV equations become

m′ = 0 (1.105)

ν ′ =
m

r2

(
1− 2m

r

)−1

(1.106)

Note Eq. (1.102) is the same as Eq. (1.51), and hence Eq. (1.47), for the
case γ = 1. Therefore h′ = −ν ′ 6= 0 at the surface. For the polytropic case
where h = 1 + Γε, it follows that the specific energy density approaches zero
linearly, i.e.

ε′ = −ν ′

Γ
(1.107)

The behaviour of pressure and density follows from

ρ ∼ ε
1

Γ−1 , P ∼ ε
Γ

Γ−1 (1.108)

For the case Γ = 2, the density has kink at the surface, whereas the pressure
is smooth.

For the numerical simulations shown in Sec. 3 and 4, we also need the
metric in cylindrical and Cartesian coordinates. The components of the 3-
metric with respect to new coordinates x̄i are obtained by the transformation
rule

ḡkl =
∂xi

∂x̄k
gij

∂xj

∂x̄l
(1.109)

For cylindrical coordinates x̄i ≡ (s, z, ϕ) = (r sin(ϑ), r cos(ϑ), ϕ), a straight-
forward calculation yields

gc
ij =

1 + s2f szf 0
szf 1 + z2f 0
0 0 s2

 (1.110)
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where f =
(
e2λ − 1

)
/r2. The metric determinant becomes

√
d = eλs (1.111)

Note that the volume element
√

d becomes zero at the axis. This could lead
to numerical problems if no precaution is taken, as discussed later.

For Cartesian coordinates, we obtain

gc
ij = 1 + f

x2 xy xz
xy y2 yz
xz yz z2

 (1.112)

and √
d = eλ (1.113)

By reparameterising the radial coordinate, it would be possible to obtain a
diagonal metric in Cartesian as well as in cylindrical coordinates. However,
for the purpose of testing the code, it is desirable to use a metric tensor where
all components are non-zero.



Chapter 2

Numerical methods

In this chapter the numerical methods for relativistic hydrodynamics devel-
oped or used for this work are described. For the sake of brevity, I focus on
the aspects that one would need to know in order to reproduce my results,
and discuss technical details of the Pizza code only on a general level.

2.1 Time integration via Method of Lines

The “Method of Lines” is a procedure to separate the time discretisation
from the spatial discretisation for systems of partial differential equations of
the general form

∂tq(x, t) = g(x, q, ∂iq) (2.1)

where q can be a scalar or vector, and g could as well contain higher spatial
derivatives of q. Suppose we already performed a discretisation in space,
using a finite difference or finite volume method, obtaining a system of the
form

∂tq = L[q] (2.2)

where q is a discrete state vector, and L is a numerical approximation for
g. The equation above is nothing but a large system of ordinary differential
equations, which can be solved with standard methods.

For the star simulations in Sec. 3, a 2nd order Runge-Kutta method
(method of Heun, see [45]) is used, which works as follows: To evolve a state
qn in time over a timestep ∆t, resulting in a new state qn+1, one computes

qa = qn + ∆tL[qn] (2.3)

qb = qa + ∆tL[qa] (2.4)

qn+1 =
1

2

(
qn + qb

)
(2.5)

17
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The Method of Lines has several advantages over traditional schemes
which perform time and space discretisation simultaneously: The resulting
scheme will be considerably simpler to implement due to the modular char-
acter; as a consequence, it is also easier to optimise; it is trivial to switch
to another time integration scheme; last but not least, the evolution system
can easily be split into several parts, for example a hydrodynamic and a
spacetime part.

After choosing a time integrator, one still has to specify a suitable time-
step. If explicit schemes are used for time integration, the timestep has to
satisfy the condition

∆t < σ
∆x

vm

(2.6)

to allow for a stable evolution. Here, vm is the maximal signal propagation
speed, defined with respect to coordinate times and distances, ∆x is the grid
spacing, and σ is the Courant factor. The Courant factor depends on both
the spatial discretisation and the time integrator. For complex schemes, it
usually has to be determined empirically.

For the simulations in Cowling approximation, vm is determined by the
hydrodynamic evolution equations. The maximum signal propagation speed
for this system is given in [23, 10]. Without Cowling approximation, the
timestep is further restricted by the propagation speed of gravitational sig-
nals. In that case, a fixed timestep ∆t = σ∆x/c will be used. In principle,
the coordinate velocity of gravitational signals is not exactly the speed of
light, but in practice, the differences are absorbed in the Courant factor.

2.2 Space discretisation scheme

In this section, I give a prescription which allows one to modify a standard
HRSC scheme such that source and flux terms in the hydrodynamic evolu-
tion equations are treated more consistently, utilising the formulation of the
evolution equations shown in Sec. 1.2. This scheme is the unique feature of
the Pizza code and a central part of this work.

2.2.1 Original scheme

First I describe the scheme to be modified, restricting the discussion initially
to one dimension for simplicity. It is a standard finite volume HRSC scheme
on a regular grid; see [57, 30] for an introduction to the field. The evolved
quantities are the cell averages qn of q. The time derivatives of the cell
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averages are written as

∂0qn = − 1

∆x
(Fn+ 1

2
− Fn− 1

2
) + sn (2.7)

sn =
(
0, sτ

n, s
S1
n , sS2

n , sS3
n

)
(2.8)

where lower indices n refer to quantities defined in cell n and indices n− 1
2
,

n+ 1
2

to quantities defined at the left and right cell boundaries. The numerical
fluxes Fn± 1

2
are approximations to the flux functions f at the cell boundaries.

Fn± 1
2

and sn are computed as described below, where Yn = (ρ, ε, wl)n denotes
a set of primitive variables obtained from qn.

1. Assume constant states inside the cells and define left and right states
at the cell boundaries

Y r
n− 1

2
= Y l

n+ 1
2
≡ Yn

2. Refine this model by assuming piecewise linear states, where the slopes
are computed with a slope limiter function L

Ȳ r
n− 1

2
≡ Y r

n− 1
2
− 1

2
L(∆Yn− 1

2
, ∆Yn+ 1

2
)

Ȳ l
n+ 1

2
≡ Y l

n+ 1
2

+
1

2
L(∆Yn− 1

2
, ∆Yn+ 1

2
)

∆Yn− 1
2
≡ Y r

n− 1
2
− Y l

n− 1
2

We demand that a globally linear state is modelled exactly, i.e. L has to
satisfy L(a, a) = a. The purpose of L is to avoid spurious oscillations
near shocks, see [57]. Some choices for L are shown in Sec. 2.2.4.

3. Compute numerical fluxes at the resulting discontinuities using an ap-
proximative Riemann solver R

Fn± 1
2

= R(Ȳ l
n± 1

2
, Ȳ r

n± 1
2
)

For the trivial Riemann problem, where both states are the same, R
should be exact, i.e. R(Y, Y ) = f(Y ).

4. Compute the source terms from

sn = s(Yn, (Kij)n, αn, (β
i)n, (Dj

√
d)n,

(Djgik)n, (Djα)n, (Djβ
i)n)

where D is a linear finite difference operator for the first derivative.
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Values of lapse, shift and 3-metric needed at the cell boundaries are obtained
by linear interpolation. If the fluid has only one internal degree of freedom,
i.e. P = P (ρ), the evolution equation for τ is redundant and therefore not
computed.

The contributions for the other dimensions are computed the same way.
All contributions, including the source terms, are added together and then
used for the time integration via the Method of Lines.

2.2.2 Modification of the standard scheme

The modification I applied to the scheme changes only steps 1 and 4. In this
context we can regard piecewise linear reconstruction as a refinement step to
an initial model. Instead of using piecewise constant functions as the initial
model in step 1, we now use piecewise equilibrium functions, constructed
around the cell centres. Step 1 is thus replaced by

Y r
n− 1

2
≡ Ŷn(xn− 1

2
), Y l

n+ 1
2
≡ Ŷn(xn+ 1

2
) (2.9)

Ŷn(xn)
!
= Yn (2.10)

where the function Ŷn has to satisfy identities (1.44) to (1.48) with Q = xn.
The second part of the modification changes the computation of the source

terms in step 4. Using the new formulation of the evolution equations derived
in Sec. 1.2, we obtain the source terms by finite differentiation of the hat
terms in Eqs. (1.61) and (1.63) as follows:

sS1
n =

1

∆x

[√
gP̂n

]x
n+1

2

x
n− 1

2

(2.11)

sτ
n =

1

∆x

[√
gv̂1

nP̂n

]x
n+1

2

x
n− 1

2

+ other dimensions

+ r
(
Yn, (Djgik)n ,

(
Dj

√
d
)

n
, (D0gik)n ,

(
D0

√
d
)

n

)
(2.12)

Here, Dj is the 2nd order accurate central finite difference operator. Note
that numerical expressions D0gij for the time derivatives of the metric are
needed in the computation of the energy equation. I assume they are given,
either because the Cowling approximation is used, or because the code is
coupled to a metric evolution code which computes the time derivatives.

2.2.3 Benefit of the modification

By design, the modified scheme has the following property: For each isen-
tropic solution that is manifestly stationary in comoving coordinates, there
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is a corresponding numerical state which is exactly preserved, up to trunca-
tion errors, for any resolution. The corresponding numerical state is the one
whose cell averages qn are set to the values at the cell centres of the physical
state.

Proof: As noted in Sec. 1.2.3, the physical state assumed above corre-
sponds to an equilibrium function Ŷ G with ŵi ≡ 0. For the corresponding
numerical state defined above, the equilibrium functions constructed by the
modified scheme around the different cell centres perfectly agree with Ŷ G

and hence with each other. In particular, there are no gaps between them at
the cell boundaries, i.e.

Y r
n± 1

2
= Y l

n± 1
2

= Ŷ G(xn± 1
2
) ⇒ ∆Yn± 1

2
= 0 (2.13)

Therefore step 2 (linear reconstruction) has no effect:

Ȳ r
n− 1

2
= Y r

n− 1
2
− 0 , Ȳ l

n+ 1
2

= Y l
n+ 1

2
+ 0 (2.14)

The Riemann problem hence reduces to the trivial one where both states are
the same, and, up to truncation errors, the numerical fluxes are given by

Fn± 1
2

= R(Ŷn± 1
2
, Ŷn± 1

2
) = f(Ŷn± 1

2
) (2.15)

=
(
0,
√

gv̂1P̂ ,
√

gP̂ , 0, 0
)

n± 1
2

(2.16)

where we have used ŵi = 0 and omitted the superscript G. In the compu-
tation of ∂0qn, the hat terms in Eqs. (2.11), (2.12), and (2.16) do cancel.
The same holds for the contributions of the other dimensions which have
been omitted again. The remaining term r in Eq. (2.12) also vanishes due
to wi = 0 and the assumption of stationarity. Hence we obtain ∂0qn = 0 up
to truncation errors, finishing the proof.

An illustration of the reconstruction scheme in various situations is given
in Fig. 2.1. Note that in flat space and Cartesian coordinates, the equilibrium
functions become constant and the method reduces to the original one.

The class of solutions which are preserved exactly is very narrow. How-
ever, it is plausible to assume a significant benefit also for systems that are
close to this class, in the sense that pressure and gravitational forces are par-
tially balanced and the system is nearly isentropic. It needs to be stressed
that in contrast to the possible benefits, the scheme itself is not limited to
quasi-stationary scenarios. In the derivation of Eqs. (1.61) and (1.63), no
approximations are needed. Regarding the new reconstruction scheme, the
only difference is that the states which are modelled most accurately in step 1
are equilibrium states instead of constant states.
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(a) piecewise constant
+linear reconstruction

(b) piecewise equilibrium
+linear reconstruction

(c) piecewise equilibrium
+linear reconstruction

(d) piecewise equilibrium
+linear reconstruction

real profile

Figure 2.1: Illustration of the modified reconstruction scheme on the exam-
ple of a polytropic gas at rest in a homogeneous gravitational field. Plotted
is the specific energy density. (a) Standard piecewise constant/linear re-
construction. (b) Piecewise equilibrium + linear reconstruction if the true
profile is close to equilibrium. (c) Same case if the system is in equilibrium.
(d) Same case if the profile is homogeneous, thus far from equilibrium. The
fluxes themselves are not captured very well, but the flux differences are still
exact (zero) in this particular example. However, the source terms, which
are proportional to the height of the sawtooth, are dominant in this case
anyway.

Heuristically, one might argue that the new scheme is the natural ex-
tension of the HRSC methods developed in flat space to problems involving
gravitation, since HRSC methods are based on the solution of Riemann prob-
lems, and the key feature of the Riemann problem is not that the left and
right states are constant in space, but that they are constant in time. This
property is used frequently, for example in the construction of the HLLE
approximate Riemann solver. With gravitation, a discontinuity separating
two equilibrium states is more similar to the original Riemann problem than
two constant states in this respect. However, it is currently unknown wether
the new scheme behaves better or even worse than the original one in general
scenarios.
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2.2.4 Implementation details

So far, a general class of schemes was described. In the following I state the
detailed choices used for the actual implementation of the scheme.

As an approximative Riemann solver, the HLLE flux described in [25, 19]
is used, given by

R =


f

(
ql

)
v− ≥ 0

v+f(ql)−v−f(qr)+v+v−(qr−ql)

v+−v−
v− < 0 < v+

f(qr) v+ ≤ 0

(2.17)

where v− and v+ are the minimum and maximum signal propagation speeds.
They are estimated from the extremal eigenvalues of the Jacobian ∂f/∂q
given in [23, 10]. This method is known to be robust, and it is also very fast,
since the eigenvectors of the Jacobian are not required, in contrast to other
methods. As a downside, the scheme is slightly more diffusive.

The slope limiter employed for most of the simulations is the “mono-
tonized central-difference” method given by

L(a, b) =


min

(
2a, 2b, 1

2
(a + b)

)
a, b > 0

max
(
2a, 2b, 1

2
(a + b)

)
a, b < 0

0 ab ≤ 0

(2.18)

Other implemented choices are the “MinMod” limiter, defined by

L(a, b) =


min(a, b) a, b > 0

max(a, b) a, b < 0

0 otherwise

(2.19)

and the geometric mean

L(a, b) =

{
ab

a+b
ab > 0

0 ab ≤ 0
(2.20)

2.2.5 Stellar surfaces

In the preceding discussion I have not taken into account the possibility of
fluid-vacuum boundaries, e.g. stellar surfaces, which are a frequent source
of problems in numerical hydrodynamics. The main difficulties are the fol-
lowing: First, the computation of the primitive variables from the conserved
ones degenerates for ρ = 0. Second, the change of density inside a numerical
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cell is comparable to the density itself at the surface. If the change was due
to a discontinuity at a shockwave, a HRSC scheme would yield good results
because it has built-in analytical knowledge about shocks. But since the
change is due to gravitational forces the numerical scheme is ignorant about,
the results will be quite wrong.

The usual way of treating the surface is to use an artificial atmosphere,
which means to enforce a minimum density and set the velocities to pre-
scribed values in low density regions. Unfortunately, this approach would
break the exact preservation of stationary solutions that would otherwise be
achieved by the modified scheme. As a remedy, the new scheme also allows
for a new treatment of surfaces, as described in the following.

First, a cutoff density ρv is introduced. If the density drops below ρv in a
cell after one evolution step, the advection speed wi is set to zero. The density
is only forced to be nonnegative. In addition, a polytropic EOS is used if
ρ < ρcold, where ρcold is another parameter. This allows one to compute the
primitive variables without encountering numerical problems in low density
regions.

Second, fluxes between two cells with densities above and below ρv are
computed by assuming that the state at the boundary is given by the equi-
librium function of the cell with higher density. If the denser cell has zero
advection speed, the flux and source contributions belonging to this bound-
ary cancel (see Sec. 2.2.3). The cell at the surface is therefore kept in a
one-sided equilibrium. Only the interactions with interior cells can cause
any acceleration. States which are exactly preserved inside the star are not
disturbed by the surface treatment. Fluxes between cells with densities be-
low ρv are not computed at all. This also saves computation time compared
to artificial atmosphere methods, since vacuum regions are not evolved.

In general scenarios this method leads to results which are plain wrong
at the surface, like it is the case with artificial atmospheres. It is difficult
to estimate theoretically how this crude treatment of the surface affects the
simulation as a whole; this question will be tackled in the section on numerical
results.

It might seem as if a vacuum-aware piecewise equilibrium reconstruction
procedure would be the straightforward solution to the aforementioned prob-
lems. The equilibrium functions can easily and correctly be extended into
vacuum regions. However, in more than one dimension the task of finding
the equilibrium function corresponding to a given cell averaged density would
become quite complex.

For the simulations shown in this work, yet another tweak was applied to
the low density regions: The mass flux out of cells with ρ < ρv is limited in
a way such that the density cannot drop below zero after one timestep. The



2.3. OTHER INGREDIENTS 25

correction is not important for the evolution; it just removes a small drift of
the conserved mass which would be present otherwise. For the interpretation
of other errors, it is advantageous if the mass is conserved exactly.

2.3 Other ingredients

Although the numerical scheme is the most important part of any hydrody-
namic evolution code, many other ingredients are needed to actually perform
a simulation. In the following, some of them are described.

2.3.1 General design

The largest part of an evolution code usually consists of routines providing
the infrastructure, like memory allocation or disk input/output. The Pizza

code is build inside the framework of the Cactus computational toolkit [1],
which provides some core functionality such as memory management for
grid variables, a sophisticated scheduler, handling of parameter files, and,
most importantly, parallelisation support. One goal of Cactus is to ease
modularisation. Different tasks are implemented as modules (called thorns
in the Cactus terminology), which can interact with each other via standard
interfaces.

There already exist a number of thorns, implementing for example the
saving of data, the Method of Lines with different time integrators, fixed
mesh refinement, or rotating star initial data. Also the Pizza code, which
implements the hydrodynamic evolution scheme described in Sec. 2.2, is a
Cactus thorn. Other thorns written for this work are PizzaTOV, which com-
putes initial data for spherical neutron stars, PizzaTOY, which sets up initial
data of the toy model described in Sec. 3.3.1, PizzaRecycle, which extracts
oscillation mode eigenfunctions (see Sec. 2.3.4), PizzaStar, which provides
boundary conditions and runtime analysis for single star simulations, and
PizzaShock which does the same for shock tube tests. All these thorns use
a thorn PizzaBase, which provides the EOS as well as utility routines like
conversion between primitive and conserved hydrodynamic variables.

The code is written in the C++ programming language described in [56].
Special care was taken to achieve a sensible degree of internal modularisation
and abstraction. For this, the language features of C++, in particular the
object-oriented approach, turned out to be very useful.

An example for the benefits of C++ is the treatment of vector and matrix
operations, which are frequently needed in the Pizza code. For this task, a
small library implementing fixed-size vectors and matrices was written. It
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also defines a notation of co- or contravariant vectors and metric tensors as
well as useful arithmetic operators. Using this library, the implementation
of a term z = bivjgij can be written as

z = b * (v * g);

It is not possible to perform illegal operations this way, like multiplying two
covariant vectors or to add a covariant to a contravariant vector.

A (trivial) example for abstraction and modularisation is the treatment
of the EOS. It is accessed exclusively via a general set of routines, which
are not specific to a particular EOS. To change the EOS, one only needs to
modify those routines and nothing else.

The usage of C++ language features also proved extremely useful to
detect coding errors already during the compilation stage. Although it is
sometimes claimed that C++ results in slower code than Fortran, one has
to take into account how often a simulation has to be performed until all
errors are eliminated. In the author’s opinion, a well structured coding style
is more important than a minor performance increase.

For simulations with coupled spacetimes evolution, I use Pizza in con-
junction with the BSSN MoL thorn developed at the Albert Einstein Institute
Potsdam, which integrates the BSSN equations in time. To compute the
constraint violation in this case, I also use a thorn ADM Constraints. Both
thorns were usable with the Pizza code without the need for any modifica-
tions, which demonstrates the usefulness of the modularisation philosophy
behind Cactus.

As important as the simulation itself is the postprocessing of the data.
Because this is a very tedious task for large scale simulations, I automated
the process. After each simulation, a single command is used which produces
a set of HTML pages viewable with any internet browser. For star simula-
tions, these pages show the time evolution and corresponding Fourier spectra
of various quantities at a given sample point, frequency peaks detected in the
spectra, 1D-cuts along the coordinate axes, 2D cuts in the coordinate planes,
the evolution of global quantities like conserved mass, a log file of the simu-
lation, and the simulation parameters. This is achieved by combining Linux
shell scripts, gnuplot scripts to produce 1D plots, scripts for the OpenDX vi-
sualisation package to produce 2D cuts, a C++ program for Fourier analysis
and peak search, and PHP programs to produce the web pages. The time
needed for the implementation of this framework was more than balanced
by the time savings during postprocessing. More importantly, this approach
raises the probability that numerical artifacts are detected.
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2.3.2 Numerical evolution schedule

In the following, an overview on the numerical evolution schedule is given.
The main loop performs the time integration, using the Method of Lines
described in Sec. 2.1. For this, it is convenient to define two groups of
variables. Evolved variables, Ev thereinafter, are the ones directly evolved in
time by computing their time derivatives, whereas derived variables (Dv) are
variables which are recomputed from the evolved ones after each evolution
substep.

The evolution thorns Pizza and BSSN MoL together provide the time
derivative for all evolved variables. The time derivatives are then used by an-
other module, MoL, to perform the time integration. The process is outlined
by the pseudo code below. The actual implementation inside the Cactus

framework looks very different, although it does the same.

InitialData(Ev,Dv) \\initialise ALL variables

while (t<Tfinal)

{

RuntimeAnalysis(t,Ev,Dv) \\save interesting quantities

dt = Timestep(Dv,Ev) \\compute timestep

MoL_Update(dt,Ev,Dv) \\Perform evolution step

t = t + dt

}

The Timestep function computes the timestep as described in Sec. 2.1. In
MoL Update(Dv,Ev) the state is evolved over one timestep dt using the time
integrator of choice. For the example of the 2nd order Runga-Kutta scheme
described in Sec. 2.1, the routine does the following:

MoL_Update(dt, Ev, Dv)

{

MoL_PreStep(Ev,Dv)

MoL_Substep(dt,Ev,Dv,Ev1,Dv1)

MoL_Substep(dt,Dv1,Ev1,Ev2,Dv2)

Ev = (Ev + Ev2) / 2

MoL_PostStep(Ev,Dv)

}

In MoL PostStep, the derived variables are recomputed and boundary con-
ditions are applied. MoL PreStep will be discussed later. The function
MoL Substep performs a forward Euler step with stepsize dt, that is
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MoL_Substep(dt, Ev, Dv, Ev1, Dv1)

{

dEv = MoL_RHS(Ev,Dv)

Ev1 = Ev + dt*dEv

MoL_PostStep(Ev1,Dv1)

}

In MoL RHS, numerical estimates for the time derivatives of the evolved vari-
ables are computed. MoL RHS and MoL PostStep call the following functions,
which do the main work:

MoL_RHS (Dv,Ev)

{

Pizza_RHS(Dv,dEv)

BSSN_RHS(Dv,Ev,dEv)

return dEv

}

MoL_PostStep(Dv,Ev)

{

BSSN_Symmetry_BC(Ev)

BSSN_Compute_ADM(Ev,Dv)

Pizza_BC(Ev)

Pizza_Compute_Upper_Metric(Dv)

Pizza_Recover_Primitives(Ev,Dv)

Pizza_Compute_T_ab(Dv)

}

Here, Pizza RHS computes the time derivatives of the conserved hydrody-
namic variables as described in Sec. 2.2. For this, it only needs the primitive
variables ρ, ε, wi and the spacetime variables α, βi, gij, and

√
d. When evolv-

ing with a two-parametric EOS and coupled spacetime evolution, it would
also require the time derivative of the 3-metric to compute the correspond-
ing terms in Eq. (1.64). However, the terms containing the time derivatives
are not implemented yet, restricting the coupled spacetime simulations to
one-parametric, e.g. polytropic, EOSs.

In BSSN RHS, the time derivatives of the BSSN variables are computed.
For this, the stress energy tensor Tab is required in addition to the spacetime
variables. This routine also applies outer boundary conditions to the time
derivatives of the BSSN variables.
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In Pizza BC, boundary conditions are applied to the conserved hydrody-
namic variables. The BC are problem-specific and will be described in the
corresponding sections. In BSSN Symmetry BC, symmetry boundary condi-
tions, like equatorial or octant symmetry, are applied to the BSSN variables.

The function BSSN Compute ADM computes the standard ADM variables
gij, Kij. In Pizza Compute Upper Metric

√
d and gij are computed. The

latter is only needed in Pizza Recover Primitives, where the primitive
variables are computed from the evolved ones as described in Sec. 2.3.3.
Additionally, the routine applies corrections in low density regions, e.g. stel-
lar surfaces, as described in Sec. 2.2.5. If corrections are applied, the con-
served quantities are recomputed from the primitives, ensuring that con-
served and primitive variables are in a consistent state everywhere after
Pizza Recover Primitives.

The stress energy tensor Tab is computed in Pizza Compute T ab. Note
that Pizza and BSSN MoL communicate only via the stress energy tensor
provided by Pizza and the metric variables provided by BSSN MoL. This ap-
proach makes it easy to replace either module by a different one, if available.

For clarity, lapse and shift were not explicitly mentioned in the pseudo-
code so far. They are neither evolved nor derived variables, but gauge vari-
ables which can be arbitrarily chosen. During the MoL-substeps, they stay
fixed. Lapse and shift are set by BSSN MoL according to the chosen gauge
condition. This happens in MoL PreStep, i.e.

MoL_PreStep(Dv,Ev)

{

Lapse = BSSN_Compute_Lapse(Ev,Dv)

Shift = BSSN_Compute_Shift(Ev,Dv)

}

For simulations in Cowling approximation, the BSSN routines are deactivated
and the 3-metric, lapse, and shift are constant in time.

2.3.3 Reconstruction of primitive variables

One of the most time consuming parts of the Pizza code is the computation
of the primitive variables. Since the variables ρ, ε, vi are needed during the
evolution, they have to be computed from the numerically evolved variables
D, τ, S. Unfortunately, there is no analytic expression of the primitive vari-
ables in terms of the evolved ones. They have to be obtained by numerically
solving the nonlinear equations (1.25), (1.27), and (1.28). This is usually
done by casting the equations into a root finding problem in terms of one
of the primitive variables. In [35], the pressure is used as the independent
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variable. I use the specific enthalpy h instead, which has some minor techni-
cal advantages. For example the initial bracketing of the root takes a simple
form. In detail, the primitive variable reconstruction used in the Pizza code
works as follows. First we define some useful quantities by

z ≡ γv , v ≡
√

vivi (2.21)

ri ≡ Si

D
, r ≡

√
riri (2.22)

s ≡ τ

D
, d ≡ D√

d
= γρ (2.23)

It is trivial to show the identities

r = zh, γ2 = 1 + z2, γ − 1 =
z2

γ + 1

We have

s = γh− 1− P

γρ
(2.24)

= γh− 1− 1

γ
(h− 1− ε) (2.25)

=
1

γ

((
γ2 − 1

)
h− γ + 1 + ε

)
(2.26)

=
1

γ

(
z2h− z2

γ + 1
+ ε

)
(2.27)

For given evolved variables, we can now write the primitive variables as
functions of h alone, i.e.

γ(h̃) =

√
1 +

r2

h̃2
(2.28)

ε(h̃) = γ(h̃)s− r2

h̃2

(
h̃− 1

γ(h̃) + 1

)
(2.29)

ρ(h̃) =
d

γ(h̃)
(2.30)

vi(h̃) =
ri

h̃γ(h̃)
(2.31)

where the tilde is used to distinguish between the function argument h̃ and
the actual enthalpy h. Inserting ρ(h) and ε(h) into the equation of state
results in

0 = f(h), where f(h̃) ≡ h̃− h(ρ(h̃), ε(h̃)) (2.32)
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This is a root finding problem in h̃ which can be solved numerically. However,
there is not always a physical solution. The physical regions in the space of
evolved variables are bounded by the requirements ρ > 0 and ε > 0. The first
is trivially satisfied if D > 0, which is silently assumed in the following. For
the latter, it is instructive to look at the case of dust, that is P = ε = 0, h = 1.
From Eq. (2.24), we then obtain

s = γ − 1 =
√

1 + r2 − 1 ⇔ r2 = s(s + 2) (2.33)

A lower value of s would mean ε < 0, hence we have to demand

r2 ≤ s(s + 2) (2.34)

The other way around, it is easy to show that h > 1 if Eq. (2.34) holds.
Another special case is given for zero velocities, vi = 0. We than have
γ = 1, r = z = 0 and hence

ρ = d, ε = s, h = h(d, s) (2.35)

Using only γ ≥ 1, it is easy to show that ε ≤ s and ρ ≤ d. Assuming
∂εh > 0, ∂ρh > 0, it follows that h < hm ≡ h(d, s). Therefore, the solution
of Eq. (2.32) is located in the interval [1, hm] if condition (2.34) is satisfied.

For a one-parametric equation of state, i.e. h = h(ρ), the reconstruction
procedure is almost the same. We only need to replace Eq. (2.32) by

f(h̃) ≡ h̃− h(ρ(h̃)) (2.36)

This means that τ and hence the energy equation is not used anymore. Also,
condition (2.34) is not needed in this case, since ε is now determined by ρ
via the EOS, and ε ≥ 0 is always satisfied.

Using these prerequisites, the root is computed using the Regula Falsi
iterative method. The iteration is stopped if |f(h̃)| ≤ ah̃, where a is the
desired accuracy in h̃. For the simulations shown here, a value of a = 10−10

is used.
I choose the Regula Falsi method instead of a derivative root solving algo-

rithm like Newton-Raphson because when using a tabulated EOS (which is
not implemented yet), the computational benefits are questionable while the
code becomes more complex. In practice, the Regula Falsi method converges
very fast, for the stellar simulations typically after 3 iterations.

From Eqs. (2.30) and (2.31), it is obvious that the accuracy of ρ and vi

is comparable to the accuracy of h̃. For low velocities the accuracy of ρ will
be even better. In the case of a one-parametric EOS the accuracy of ε is
comparable to a, since ε is then determined from ρ using the EOS.
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For a two-parametric EOS on the other hand, the accuracy of ε can
be very bad, namely if the first and the second term in Eq. (2.29) nearly
cancel. This is the case if z2 � ε, which means that the kinetic energy
dominates the internal one. To require a better accuracy in h̃ would not
cure the problem, because the evolved variables have errors too, which are
amplified by the cancellation of terms. For star oscillations, this problem
luckily manifests itself only near the star surface, where ε goes to zero. Since
ε cannot be determined accurately in low density, medium velocity regions
anyway, a parameter ρcold was introduced, and a polytropic EOS is used if
d < ρcold. This prevents low density regions to produce excessive errors in
the temperature which would in turn affect denser neighbouring regions.

2.3.4 Mode recycling

To extract eigenfunctions of stellar oscillation modes, I use a technique called
mode recycling, which is also used in [17]. In a first run, several modes
are excited at once by applying a trial perturbation. A first guess of the
eigenfunction for some variable z is obtained by numerically computing the
integral

1

T

∫ T

0

(z(t)− z0)e
iωmtdt (2.37)

where ωm is the mode frequency extracted from an earlier run, z0 is the
ground state. This way the Fourier transform for a single frequency is ob-
tained at each point. The integration is performed during the evolution using
the midpoint approximation, that is, we simply add up the integrand for ev-
ery timestep. Since one oscillation period is typically resolved by more than
thousand timesteps, there is no need to use higher order integration methods.

The eigenfunction is used in a new simulation to perturb the initial data,
which yields a better guess due to lesser interferences of other modes. For
infinite evolution times, the presence of other modes should have no influence
on the results of the Fourier transform. In practice, the evolution times are
finite and other modes are not filtered out completely during the Fourier
transformation. This is particularly disturbing for the computation of node
locations, because near the node, the mode of interest is easily dominated by
such errors.

For the excitation of oscillations using an extracted eigenfunction, it is
sufficient to perturb the velocity, since the oscillations of density and velocity
are typically phase shifted by π/2. For typical simulations, the eigenfunctions
converge after two of the iterations described above.



Chapter 3

Numerical tests

In this chapter, I present numerical tests which demonstrate that the Pizza

code is working as intended and well suited for single star simulations. In par-
ticular, convergence tests for three different test cases are performed, which
also yield error estimates for the computation of stellar oscillation frequencies
shown in Sec. 4.

3.1 Shocktube tests

A standard test for HRSC methods is the so called shock tube, which is
nothing but a Riemann problem, i.e. the initial data consists of two con-
stant states separated by a discontinuity plane. The spacetime is set to flat
Minkowski space, and standard coordinates are used, i.e. gij = δij, α = 1,
βi = 0. The exact solution of this problem is analytically known, see [34, 41].

Since the spacetime is flat, this test only validates the correct imple-
mentation of special relativistic terms, everything related to gravitation and
gauge conditions remains unchecked. For example, the remaining source
terms (1.64) in the energy equation vanish. Also the offdiagonal terms in gij

are zero in Minkowski space.

In flat space, the modified scheme used by the Pizza code is identical to
the standard scheme it is based on. Therefore, I only studied one particular
shock problem to validate the correct implementation of the scheme; it is not
the aim of this section to investigate the behaviour of the standard scheme
in general.

33
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3.1.1 Problem setup

The specific shock tube problem used for the numerical tests is given by:

ρL = 10 ρR = 1 (3.1)

PL = 13.3 PR = 10−10 (3.2)

vL = 0 vR = 0 (3.3)

where the subscripts L and R refer to the left and right states, and geo-
metric units are used. The EOS for the test is the ideal gas EOS given
by P = (Γ − 1)ρε, with Γ = 5/3. The solution of this problem contains a
shockfront, a contact discontinuity, and a rarefaction wave. The velocities
are mildly relativistic (v < 0.8c). The exact solution, needed for comparison,
is computed using a code provided by [28].

To perform tests in 3D and high resolution without using excessive com-
putation time, shear periodic boundary conditions are used together with a
numerical grid which is small in all but one direction. In detail, if the grid
size is given by the index range [0..N−1]× [0..n−1]× [0..n−1] (not including
ghost zones), the boundary conditions are:

qj,(n−1+l),i = q(j−kx),(l−1),i, qj,−l,i = q(j+kx),(n−l),i (3.4)

qj,i,(n−1+l) = q(j−ky),i,(l−1), qj,i,−l = q(j+ky),i,(n−l) (3.5)

where l ∈ 1..g and g is the number of ghost zones. In x-direction, flat
boundary conditions are assumed, i.e.

qN−1+l,i,j = qN−1,i,j (3.6)

q−l,i,j = q0,i,j (3.7)

The grid spacing is uniform and equal for all dimensions.
The physical problem setup should have the same shear periodic sym-

metries. This determines the angle of the shockfront, which is therefore
parametrised by

z = x
kx

n
+ y

ky

n
(3.8)

3.1.2 Convergence tests

To test the basic functionality of the code, I evolve the shock tube problem
described in Sec. 3.1.1 in 1D for various resolutions. For this, the 3D code is
used, which is done by simply not computing derivatives in the unused direc-
tions. As a slope limiter, the MC-method described in Sec. 2.2 is used. As
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Figure 3.1: Convergence for the shock tube problem in 1D, when using the
MC slope limiter. Shown is the rest mass density for various resolutions,
after evolution time t = 0.36.

time integrator, a 3rd order Runge-Kutta method is applied, with a Courant-
factor of 0.35. The results are shown in Figures 3.1 to 3.3. One observes a
tendency to smear out the contact discontinuity. This is a known feature
of the HLLE approximative flux, caused by the underlying assumptions (see
[57]).

However, the main result of this test is that the numerical solution is
converging to the exact one. To investigate the convergence quantitatively,
the following measure on the final state is used:

δρ =

∑
i |ρi − ρe

i |∑
i ρ

e
i

(3.9)

where ρe
i is the exact solution (which is given in tabulated form) interpolated

to xi. In the same way, errors for P and v are defined. Fig. 3.4 shows the
errors versus the resolution. The data does roughly follow a convergence
law, with a convergence order in the range 0.9..1. This is nearly the 1st
order convergence behaviour expected for problems with discontinuities.

To validate the correct behaviour of the code in more than one dimension,
the test above is repeated in 3D with a shock that runs along the space
diagonal. In detail, n = kx = ky = 2. Figures 3.5 to 3.7 show the results,
which are very similar to the 1D case. Also the quantitative convergence
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Figure 3.2: Like Fig. 3.1, but displaying the pressure.
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Figure 3.3: Like Fig. 3.1, but showing the velocity.
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Figure 3.4: Numerical errors as defined in Eq. (3.9), for the 1D shock tube
with the MC slope limiter. The fitted convergence orders are 0.89 (error of
ρ), 1.0 (error of P ), and 1.0 (error of v).

behaviour shown in Fig. 3.8 is almost the same as for the 1D case: Again
the convergence order is in the range 0.9..1. A direct comparison between
1D and 2D is given in Fig. 3.9.

So far, only the MC slope limiter was used. The results for the MinMod
and geometric mean slope limiters are comparable, as shown in Fig. 3.10. Re-
garding the resolution of contact discontinuity and shock front, the MinMod
limiter is slightly inferior to the other two for the given setup.
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Figure 3.5: Convergence for the shock tube problem in 3D, when using the
MC slope limiter. Shown is a cut along the x-axis of the rest mass density
for various resolutions, after an evolution time t = 0.36. d is the distance to
the initial discontinuity.
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Figure 3.6: Like Fig. 3.5, but showing the pressure.
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Figure 3.7: Like Fig. 3.5, but displaying the velocity.
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Figure 3.8: Numerical errors as defined in Eq. (3.9), for the 3D shock tube
with the MC slope limiter. The fitted convergence orders are 0.90 (error of
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limiters for the 1D shock tube. The resolution is 600 points.
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3.2 Polytropic neutron star tests

The main test problems for the Pizza-code are single neutron stars, in par-
ticular a nonrotating and a rigidly rotating stellar model, whose oscillations
are also investigated in [21, 54]. For both of them, the initial data obeys a
polytropic EOS given by

P

ρp

=

(
ρ

ρp

)Γ

(3.10)

where Γ and ρp are constants. This EOS is also used during the time evo-
lution. Since it is a one-parametric EOS, the energy equation is redundant
and therefore not used in the time integration. The case of a two-parametric
EOS will be discussed Sec. 3.4.

For the tests shown in this section the Cowling approximation is used,
i.e. the metric is kept fixed. This is not a physical approximation, but useful
to study the hydrodynamic evolution code alone, without interferences from
the metric evolution code.

3.2.1 Spherical star model

The first stellar testbed is a nonrotating static neutron star, called model N in
the following, whose parameters are summarised in Table 3.1. The structure
of such stars was already discussed in Sec. 1.4. Oscillation frequencies for
model N can be found in [21, 54].

To construct initial data, the TOV equations (1.100) to (1.102) are inte-
grated numerically using a 4th order Runge-Kutta-Fehlberg scheme (see [45])
with adaptive step size control. Since Eq. (1.102) degenerates at the surface,
the integration is stopped shortly below, and the location of the surface is
computed using approximation (1.107). After solving the TOV equations,
the initial data is transformed to the coordinate system of choice as shown
in Sec. 1.4.

Fig. 3.11 shows the density profile of the star. Another important quantity
is the sound speed, which is shown in Fig. 3.12.

Due to its spherical symmetry, model N can be considered as a 1-, 2-
(axisymmetric) or 3-dimensional problem. Numerically this is realised with
one and the same evolution code by just not computing derivatives along one
(ϕ) or two (ϑ, ϕ) directions. Vectors and tensors remain 3-dimensional.

As coordinate systems, I choose spherical coordinates for the 1D case,
cylindrical coordinates for the 2D axisymmetric case, and Cartesian coor-
dinates for the full 3D problem. I use coordinates which are not adapted
to the shape of the star since the code is designed for general setups. As a
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Figure 3.11: Density profile of star model N. r is the circumferential radius.
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Figure 3.12: Profile of the sound speed for star model N. r is the circumfer-
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Model N Model R

Name in [54] BU0 BU3

Rotational frequency 0 590 Hz

Rotational period ∞ 1.69 ms

Polar/equatorial radius 1 0.85

Equatorial circumferential radius 14.16 km 15.38 km

Gravitational mass 1.400 M� 1.503 M�

Central restmass density ρc 7.9056 · 1017 kg/m3

Central soundspeed 0.45 c

Γ 2

ρp 6.1760 · 1018 kg/m3

Table 3.1: Summary of stellar models N and R. The EOS is a polytrope given
by Eq. (3.10). M� is the solar mass.

bonus, cylindrical coordinates allow for bigger timesteps and shorter compu-
tation times in 2D axisymmetric simulations than spherical ones. To save
further computation time, octant symmetry is applied in 3D and equatorial
symmetry in 2D.

In the 2D axisymmetric case, reflective boundary conditions are applied
at the symmetry axis. Severe numerical problems could arise from the fact
that the volume element

√
d gets zero at the axis. Therefore, cells located

on the axis have to be avoided. Otherwise, divisions by zero would occur
during the computation of the primitive variables from the conserved ones.
For the 2D simulations, I use a grid for which the axis is aligned with the cell
boundaries, not the cell centres. For the space discretisation scheme, the axis
is not a problem since it uses primitive variables, which do not degenerate at
the axis. Only when computing the final fluxes, the volume element

√
d is

used, but in a multiplication, not a division. Therefore,
√

d = 0 on the axis
only results in vanishing fluxes across the axis, which is the correct result.
However, since

√
d on the cell boundaries is obtained by interpolation, the

value used in the flux computation is not zero. But due to the reflective
boundary condition, the fluxes across the axis will be zero anyhow.

3.2.2 Rotating star model

The second testbed is a rigidly rotating neutron star, called model R, as
summarised in Table 3.1. Rigid rotation means that the physical distance
between any two fluid elements does not change in time; there is no shear
or meridional motion. The rotation frequency (defined with respect to an
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observer at infinity) is far from the mass shedding limit, but already in the
upper range of observed pulsar frequencies. The fastest rotating known pul-
sar, discovered by [26], spins at 716 Hz. As shown in Fig. 3.13, the profile of
the star is significantly oblate. The surface velocity at the equator is around
0.24 c, corresponding to a Lorentz factor of 1.03.

For the evolution, I use a shift vector which is constant in time and cor-
responds to coordinates corotating with the initial data. Note this is only
possible for rigid rotation, if the metric is supposed to stay fixed. I choose
corotating coordinates because in that case there is no advection, i.e. wi = 0.
Since the accuracy of the advection terms is not improved by the new scheme
in any way, there would otherwise be no exact preservation of the equilibrium
state, at least when using Cartesian coordinates. In cylindrical or spherical
coordinates, the evolution scheme would still be exact in nonrotating coordi-
nates. However, the method of treating the surface yields exact results only
for corotating coordinates.

To compute the initial data, a customised version of the RNS code de-
scribed in [55] is used. The main modification, besides technical adaptions
to the Pizza code, was the possibility to transform to cylindrical coordi-
nates, thus allowing for 2D axisymmetric simulations in the same manner as
for model N. I also added the option to enforce Eq. (1.47) by recomputing
the density from the lapse function and the velocity.
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Figure 3.13: Profile of star model R. Colour coded is the specific energy
density. The yellow line marks the surface. The black lines are isolines of the
effective potential ln (α/γ), which are also lines of constant specific energy
inside the star. Shown is a quadratic region of 15 × 15 km in coordinate
space.
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3.2.3 Equilibrium preservation

As shown in Sec. 2.2.3, the scheme should have no discretisation errors if
applied to the unperturbed star models N or R, independent of the resolution.
To test this, I evolve model N with the extremely low resolution (defined as
R/∆x, where R is the stellar radius and ∆x the grid spacing) of 10 cells over
a time of 100 ms.

It turns out that the state is indeed preserved to an accuracy near machine
precision. The maximum change in rest mass density is generally below
10−14ρc, and the maximum velocity below 10−15c. This is the case in one,
two and three dimensions (and also for the ideal gas case, see Sec. 3.4).
Fig. 3.14 shows the time evolution of the radial velocity and density at some
point inside the star.

When increasing resolution, the tiny amplitude of the noise remains nearly
unchanged, which is a strong hint that it is caused in fact by truncation errors
and not discretisation errors.

For the rotating model R, small oscillations with δρ/ρ ≈ 10−5 occur. This
is because the initial data obtained with the RNS code satisfies Eq. (1.47) only
to an accuracy around 10−5. After enforcing Eq. (1.47) in the initial data,
the rotating model is preserved as accurately as the nonrotating one by the
evolution scheme.

The errors present in simulations with the unmodified standard HRSC
scheme behave qualitatively different, as shown in Fig. 3.15. After some
time, the fluid flow develops unphysical, vortex-like structures, as shown
in Fig. 3.16, with typical velocities in the range 0.001..0.01c. Additionally,
the star immediately starts to oscillate with a small amplitude. The results
for the unmodified scheme were obtained at an early stage of the code de-
velopment and might contain bugs. However, the perfect preservation of
equilibrium is clearly impossible with standard schemes.

Taken by itself, the perfect preservation of equilibrium is not very useful.
However, assuming a smooth transition for the magnitude of numerical errors
when departing from equilibrium, there will exist a region where the benefits
are still substantial. As will be shown in the next sections, this region does
include star oscillations.
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Figure 3.14: Evolution of the radial velocity (Top) and density (Bottom) at
r = 7 km, ϑ = π/4, for a polytropic, axisymmetric 2D-simulation of model
N with a resolution of 102 cells. The relative density change is comparable
to the machine precision εn ≈ 2.22 · 10−16, which is the smallest number
where 1 + ε > 1 holds numerically. The corresponding plots for 1D and 3D
simulations are qualitatively the same.



48 CHAPTER 3. NUMERICAL TESTS

-0.0006

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0  10  20  30  40  50  60

v r
 / 

c

T / ms

Figure 3.15: Results obtained with the unmodified HRSC scheme described
in Sec. 2.2.1. Shown is the evolution of the radial velocity for a polytropic
simulation of Model N with a resolution of 502 points.
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Figure 3.16: Conserved momentum density Si after 60 ms, for the same
simulation as in Fig. 3.15.
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3.2.4 Oscillations

To excite oscillations, I apply the following perturbation to the initial data:

∆ρ = ρA
r

R
Y 0

l (ϑ) (3.11)

where A is a constant, r is the coordinate radius and R the stellar radius. In
addition, the density is globally rescaled such that the total conserved mass
remains unchanged. Finally, the other fluid variables are recomputed from
the density, using the EOS.

For nonrotating stars, the eigenfunctions have the same angular depen-
dency as the perturbations, i.e. spherical harmonics, whereas the radial part
of the perturbation does not correspond to any particular eigenfunction.
Therefore, several modes are excited at once. Since I use boundary con-
ditions which enforce equatorial symmetry, only modes with even l can be
excited.

Throughout this work, the radial modes will be denoted (in order of
increasing frequency) by F, H1, H2, etc. The nonradial axisymmetric modes
will be called lf,lp1,

lp2, etc., where l indicates the angular dependency.
To extract frequencies, I use the time evolution of the radial velocity vr for

radial modes and the velocity in ϑ-direction, vϑ, for l=2 modes, on a suitable
sample point inside the star. Fig. 3.17 shows a typical result for a perturbed
star. Several modes are excited, and the higher modes are damped away
more quickly. Since analytically there exists no damping within the Cowling
approximation, it has to be purely numerical. As will be shown in Sec. 3.3.2
and Sec. 3.2.5, the damping is caused mainly by the treatment of the stellar
surface.

Using the mode recycling technique described in Sec. 2.3.4, it is possi-
ble to excite single modes selectively. Fig. 3.18 shows the 2p1-oscillation. A
prominent feature, which is generally found for small oscillation amplitudes
(A < 0.001), is that the decay of the amplitude is almost perfectly exponen-
tial. This indicates that the numerical errors responsible for the decay are
proportional to the perturbation from equilibrium.

As shown in Fig. 3.19, other modes can be suppressed almost completely,
at least for good resolutions above 150. For lower resolutions, this is not
always the case, especially for the rotating model.

Since many numerical artifacts cannot be detected by looking at time-
series at a sample point, 2D cuts of the final state are plotted automatically
for every simulation. Fig. 3.20 shows the velocity field at the end of a typical
simulation. The only visible artifacts are small spots of slightly increased
velocity at the surface.
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Figure 3.17: Results of a 3D simulation of star model N, with a resolution
of 473 points. The initial data was perturbed with l = 2, A = 0.001. Shown
are time evolution and corresponding Fourier spectrum of the velocity in ϑ-
direction on the space diagonal at r = 7 km. The vertical lines mark mode
frequencies for the same star model as reported by [21].
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Figure 3.18: Results of a 2D simulation of model N, with a resolution of 1892

points. The initial data was perturbed using the eigenfunction of the 2p1-
mode which was obtained via mode recycling. Shown is the time evolution
of the velocity in ϑ-direction at r = 7 km, ϑ = π/4. The dashed line is an
exponential fitted to the maxima of the oscillations.
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Figure 3.19: Fourier spectrum corresponding to Fig. 3.18. Before applying
the Fourier transformation, the exponential decay was divided out, resulting
in a slightly sharper peak.
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Figure 3.20: Velocity field after an evolution time of 10 ms, for a 2D simu-
lation of model N. The initial data was perturbed with the 2f -eigenfunction.
The resolution is 1892 points. Colour coded is the physical velocity in units
of c, the arrows represent the coordinate velocity.

Considering the crude treatment of the stellar surface, such artifacts are to
be expected. However these artifacts are not a problem since their magnitude
is completely tolerable. In general, the maximum velocities at the surface
are bounded by the oscillation amplitude. This is different for codes using
artificial atmospheres. In that case, regardless of the oscillation amplitude,
there is typically a minimum amount of noise at the surface.

To study the robustness of the numerical scheme, I carried out a simu-
lation with an extremely low resolution of 103 points. The original scheme
would in that case be unable to obtain meaningful results at all. With the
new scheme, this is different, as shown in Fig. 3.21. The numerical damping
is of course much higher now, which allows one to observe how the system
neatly settles down to its equilibrium state. As shown in Fig. 3.21, the oscilla-
tion amplitude spans eight orders of magnitude without any visible changes.
In fact, the numerical noise becomes important for oscillations with velocities
as low as 10−14c. This behaviour is a design feature of the scheme and not
caused by the high damping at low resolution; it can be observed at higher
resolutions as well.
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Figure 3.21: Results obtained with a resolution of only 103 points in 3D, for
star model N and a polytropic EOS. The initial data was perturbed with
l = 0, A = 0.001. (a) Time evolution of the radial velocity vr at r = 7 km
on the space diagonal. (b) Radial velocity divided by an exponential decay
(τ = 1.07292 ms) fitted to its maxima. Note the higher modes are damped
away almost instantaneously.
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The ability to evolve very small oscillations as well as large ones might be
useful for studies of nonlinear phenomena, where ideally the transition from
a clearly linear to the nonlinear regime should be investigated, with a good
signal-to-noise ratio for the whole range of amplitudes.

3.2.5 Convergence tests

In this section, I study the convergence behaviour of the new scheme, for
oscillations of the nonrotating neutron star model N. This is particularly
important since the convergence properties have not been investigated ana-
lytically.

For this task, I performed simulations of single oscillation modes, excited
via mode recycling, using various resolutions. I choose the radial F - and
H1-modes, which allows for a direct comparison between 1D,2D, and 3D
simulations. Using a single mode also makes it possible to fit a damped
oscillation of the form

y(t) = y0e
−t/τ cos(2πft) (3.12)

to the evolution of the velocity components at some sample point. This yields
a more precise measure of the frequency than using a Fourier spectrum. Also
the exponential decay time is determined this way, providing a quantitative
measure of the numerical damping.

As it turns out, the convergence behaviour for the star model is quite
complex. The main difficulty is that the numerical damping strongly depends
on the threshold density parameter ρv of the surface treatment scheme: At
a resolution of N = 142 points in 2D, the damping speed roughly doubles
when increasing ρv by a factor of six, starting from 4.2 · 10−4ρc. Lowering ρv

however does not decrease the damping further, but the scheme gets unstable
at some point. This proves that the surface treatment causes a significant
part of the damping. Before doing convergence tests, it is necessary to set
up a rule how to choose ρv for a given resolution. The following rule, which
has been found empirically and which is used for all simulations shown here,
guarantees stability and keeps the numerical damping near its minimum: For
a resolution N , set ρv = 6 · 10−2ρc/N .

The second complication only affects the 1D case: The frequency error
and the damping timescale strongly depend on the location of the star surface
inside the surrounding cell. This was found by slightly changing the grid
spacing such that the surface is located at different locations inside the same
cell. The results are shown in Fig. 3.22. At a resolution of 142, the frequency
error varies between −2% and 0.5%, and the damping timescale τ between
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Figure 3.22: Dependency of the frequency error and numerical damping on
the location of the star surface relative to the numerical grid, for the H1-mode
of model N, evolved in 1D. For all simulations, the surface was located in the
same cell, and the resolution was r/∆x ≈ 142, where ∆x is the grid spacing
and r the star radius. The x-axis gives the distance from the star surface (in
equilibrium) to the position xl of the left face of the grid cell containing the
surface. The vertical line marks the case where the density at the cell centre
equals the density threshold parameter ρv. Top: Frequency error, estimated
using the frequency f0 computed in high resolution (1133 points). Bottom:
Numerical damping time in units of the oscillation period To.
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22 and 220 oscillation periods. The worst case occurs when the density at the
centre of the cell containing the surface just reaches the threshold parameter,
and the best case when the surface coincides with the cell boundary.

Due to this issue, no satisfying convergence could be observed in 1D at
first; the location of the surface relative to the grid is effectively random when
changing the resolution while keeping the computational domain fixed, and
the influence of the location is comparable to the one of the resolution. To
overcome this problem and compare the same case in different resolutions,
the grid spacing for the 1D convergence test shown in the following was
chosen in a way that the star surface is always located at a position near the
left cell boundary, 0.05∆x away from it. I have to stress that without this
adjustment, the 1D simulations expose bigger errors which are quite irregular
as a function of resolution. In 2D and 3D, no such adjustment was necessary,
because in that case the surface crosses many cells, and since cylindrical or
Cartesian coordinates are used, it does so at different locations inside the
cells. Hence the irregularities are averaged away to some extend.

Fig. 3.23 shows the variation of the mode frequencies for different reso-
lutions. The frequencies seem to converge, but clearly not following a power
law. This might indicate that the regime where only the errors with the
lowest convergence order are dominant starts at higher resolutions than the
ones investigated, or that the errors induced by the surface treatment simply
do not follow a power law.

Nevertheless, I estimate the errors δf/f due to the finite resolution below
1% for N > 50, and below 0.5% for N > 1000. The real error might be
smaller, but without a recognisable convergence law, one cannot tell. This
estimate will also be used for the low order nonradial modes.

As shown in Fig. 3.24, the damping times do roughly follow a power law
with a convergence order in the range 1.6− 1.8 (2D/3D) and 2.3 in 1D. The
big difference between 1D and 2D/3D may be due to the aforementioned
special adjustment of the grid spacing applied in 1D. For infinite resolutions,
the convergence order should not depend on the mode, as it seems to be
the case for the F - and H1-modes in 2D. However, the resolutions are finite
and ideal convergence behaviour cannot be expected. Also the differences
between the F - and H1-mode is small.



3.2. POLYTROPIC NEUTRON STAR TESTS 57

-2 %

-1.5 %

-1 %

-0.5 %

0 %

0.5 %

1 %

1.5 %

2 %

 10  100  1000

(f
-f

0)
 / 

f 0

Resolution

F mode, 2D
F mode, 3D

H1 mode, 2D
H1 mode, 1D

Figure 3.23: Convergence behaviour of the frequencies for the F - and H1-
modes of model N. f0 is the frequency obtained from a 1D simulation with
a resolution of 1133. In detail f0 = 2.6845679 kHz for the F -mode and
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Figure 3.24: Convergence of the numerical damping timescale τ in units of
the respective oscillation period To, for the F - and H1-modes of model N.
The straight lines are fits of the convergence law τ = a∆x p to the data.
The convergence order is p = 1.62 (H1-mode, 2D), p = 1.80 (F -mode, 2D),
p = 1.61 (F -mode, 3D), and p = 2.34 (H1-mode, 1D). Note: the damping
time for the highest resolution 2D F -mode run could not be determined due
to insufficient evolution time (10 ms).
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3.3 Toy model tests

The convergence tests for star model N clearly show that the treatment of the
star surface has a significant influence on the numerical errors. To separately
investigate the numerical errors caused by the evolution scheme itself and the
ones caused by the crude treatment of the star surface, I introduce another
testbed without a fluid-vacuum boundary.

3.3.1 Toy model

The toy model testbed consists of an artificial, unphysical metric (i.e. not a
solution of the Einstein equations) which is periodic in all directions, and a
fluid which is at equilibrium in the artificial gravitational potential. In detail,
the artificial metric is given by:

α = 1− (1− αc)
d∏

i=1

1

2
(1 + cos(πxi/L)) (3.13)

gij = δij , βi = 0 (3.14)

where d is the dimensionality of the problem. Note that in stationary space-
times, the lapse function (shown in Fig. 3.25) takes over the role of the
Newtonian gravitational potential. The computational domain is [0..L]d and
reflecting boundary conditions are applied, which are compatible with the
symmetries of the problem. The density profile is obtained from Eq. (1.47)
by setting wi = 0 and prescribing a central density ρc such that ρ = ρb > 0
at the outer boundaries. The EOS is the same polytrope as for the star
testbeds. I choose the parameters in a way that the system mimics a neutron
star with respect to the magnitude of “gravitational” and pressure forces. In
detail, L = 15 km, αc = 0.82, and ρc = 7 · 1017 kg/m3. It follows that
ρb = 0.026 ρc. Fig. 3.26 shows a comparison of the profile to the one of
model N.

For the numerical tests d = 1 and d = 2 are used with the same 3D-code
as for the star testbeds, by assuming translational symmetry in the unused
direction(s). Note that in contrast to the spherical star test, d = 1 and d = 2
yield physically different systems.

3.3.2 Convergence

Using the toy model described in the previous section, I study the convergence
behaviour of the evolution scheme itself, without interference from the surface
treatment.
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Figure 3.25: Lapse function of the toy model, plotted over a wide range to
show its symmetries. The computational domain covers only one quadrant
of the cell at the origin.
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Figure 3.26: Profile of specific energy density ε for the toy model in com-
parison to the one of star model N. Both are plotted along the x-axis. The
profile of the toy model is mirror symmetric not only at the origin but also
around x = 15 km, and contains no vacuum.
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Figure 3.27: Convergence of the frequency for the lowest (known) mode of
the 1D and 2D toymodels. Shown is the relative difference to the ”true”
frequency f0 obtained by fitting convergence law Eq. (3.15) to the data. The
fit results are f0 = 2.181 kHz, p = 1.74 in 1D and f0 = 1.257 kHz, p = 1.93
in 2D. The lowest resolution (N = 15) was excluded for the fitting.

As for the star model tests, single modes are excited via mode recycling. I
use the lowest mode excited by some trial perturbation, which has a frequency
of 2.181 kHz for the 1D model, and 1.257 kHz for the 2D model. The excited
oscillation amplitudes are small, with typical velocities of 10−4 − 10−5c.

The frequencies obtained for the different resolutions follow the conver-
gence law

f = f0 +
a

Np
(3.15)

where N is the resolution and p = 1.74 in 1D, or p = 1.93 in 2D respectively.
Fig. 3.27 shows the fit of Eq. (3.15) to the numerical results. In comparison
with the star model, the frequency errors not only follow a recognisable
convergence law, but they are also smaller. The damping times shown in
Fig. 3.28 also follow a power law, with a convergence order of p = 3.24 in 1D
and p = 3.12 in 2D. Again, this is much better than for the star simulations.

The comparison between the toy and the star models, and the problems
in 1D for the latter, prove that the numerical error of the star simulations
is mainly caused at the star surface. Any effort to improve the effective
accuracy has to start with a more sophisticated way of treating the surface.
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Figure 3.28: Convergence of the numerical damping timescale τ (in units of
the oscillation period To) for the lowest (known) mode of the 1D and 2D
toymodels. The convergence orders obtained from the fits (straight lines) to
the convergence law τ = bN−p are p = 3.24 (1D) and p = 3.14 (2D). The
lowest resolution (N = 15) was excluded for the fitting.

3.4 Evolution with the energy equation

In this section, I investigate the behaviour of the new scheme in simulations
of stars with the 2-parametric ideal gas EOS, which is given by

P (ρ, ε) = (Γ− 1)ρε (3.16)

For the ideal gas case, there is an additional degree of freedom in the evolution
system compared to the polytropic case. Nevertheless the evolution has to
evolve adiabatically unless shocks are present, i.e. the specific entropy along
fluid worldlines cannot change. If the system is isentropic in the beginning,
it has to stay isentropic. Assuming that for small amplitude star oscillations,
no shocks will form, the deviation from isentropy is therefore an additional
measure for the numerical accuracy.

An important difference to the polytropic case is that the presence of
entropy gradients due to numerical errors can lead to convective movements.
This will be most visible in the numerical results for nonrotating stars, for
which stationary solutions with mass flows in the meridional plane exist.
These can be easily driven by convection since only the kinetic energy has
to be provided; there is no restoring force. In the rotating case on the other
hand, the Coriolis force counteracts movements in the meridional plane.
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The actual behaviour of the numerical scheme with the ideal gas EOS
was studied mainly for simulations of model N. Although this model is con-
structed using a polytropic EOS, it is also an isentropic equilibrium state
when using the ideal gas EOS. This is because polytropes are the curves of
constant specific entropy for the ideal gas EOS with the same constant Γ.
Therefore, the ideal gas EOS with Γ = 2 is used to evolve model N.

To measure the constancy of specific entropy, one can use the constant
ρp characterising the polytropic EOS as a variable to parametrise the fluid
state, defining

ρp =

(
P

ρΓ

) 1
Γ−1

(3.17)

For adiabatic evolution, ρp has to stay constant along fluid worldlines, and
globally constant in the isentropic case of model N.

As shown in Sec. 2.2.3, isentropic stationary equilibrium states, like model
N, should be preserved exactly even for the case of a 2-parametric EOS like
the ideal gas. Various simulations for models N and R in 1D (possible only
for model N), 2D, and 3D proved that the Pizza code indeed preserves the
initial data as well as for the polytropic case. Results for a very low resolution
are shown in Fig. 3.29.

To produce some errors, I excite oscillations with an amplitude of δρ/ρ ≈
10−4, assuming that oscillations of this magnitude do not lead to the for-
mation of shocks. Fig. 3.30 shows the violation of isentropy for different
resolutions in 2D, after an evolution time of 20 ms. Obviously, the change
of ρp is most prominent at the surface and near the axis of axisymmetry.
With increasing resolution, the errors are concentrated more sharply at the
surface, but the magnitude decreases only slowly.

Another significant feature shown in Fig. 3.30 are the large scale vor-
tices in the velocity field, which start to develop after a typical timescale
of 5 ms. The velocity profile corresponds to a nearly stationary flow; the
density profile stays constant up to 0.5% for N = 50, and up to 0.1% for
N = 200.

I suppose the vortices are caused by small entropy gradients inside the
star (not the ones at the surface), which are induced by the numerical errors.
However, this issue has to be investigated further before drawing a conclusion.
In a simulation of the rotating model (with a resolution of N = 200), no
vortices formed, as predicted.

For model N and a resolution of N = 200, the oscillation frequencies
extracted from the Fourier spectrum agree very well with the results obtained
with the polytropic EOS shown in Sec. 4.1.1. The differences are δf/f =
0.5% for the F -mode, 0.1% for the H1-mode, and 0.2% for the H2-mode.
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Figure 3.29: Equilibrium preservation for model N when using the ideal gas
EOS for the evolution. The resolution is 102 cells in 2D. Top: radial velocity
at r = 7 km, ϑ = π/4. Bottom: Relative change of ρp defined by Eq. (3.17).
For adiabatic evolution, ρp has to stay fixed.
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Figure 3.30: Relative change of ρp after 20 ms evolution of model N with
the ideal gas EOS. Resolution is 502 (Top) or 2002 (Bottom). The arrows
represent the coordinate velocity.
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If not at the surface, there should be at least a reasonable convergence
behaviour in the interior of the star. To investigate the convergence, I study
the violation of adiabaticity at a sample point inside the star for three reso-
lutions. It turns out that with increasing resolution, the isentropy violation
follows a convergence law for approximately 1 ms, and behaves more complex
for longer evolution times. Fig. 3.31 shows the deviation from adiabatic evo-
lution. The error converges roughly with second order accuracy during the
first millisecond. Afterwards, the convergence does not follow a power law,
but the error converges faster than second order, at least for the investigated
resolutions.

Although ρp is preserved to good accuracy inside the star, one has to
relate its change to the oscillation amplitude, i.e.

a ≡ δρp

ρp

(
δρ

ρ

)−1

(3.18)

has to be small for adiabatic oscillations. For the simulations shown in
Fig. 3.31, the relative change of restmass density is around 10−4. From
this, we obtain a < 1.4 · 10−2 for N = 50, a < 2 · 10−3 for N = 100, and
a < 6 · 10−5 for N = 200. Hence the oscillation is adiabatic to good accuracy
inside the star. Note however that near the surface, the oscillation is not
adiabatic at all, i.e. a > 1.

Results for the 1D case are shown in Fig. 3.32. The error is comparable
with the 2D case. Also for 3D simulations the results are very similar, but
the errors near the axis of axisymmetry visible in Fig. 3.30 disappear. This
indicates that those errors are caused by the degeneration of the cylindrical
coordinates near the axis, which is not present in Cartesian coordinates.

A possible explanation for the more irregular long term behaviour of the
adiabatic deviations would be that different types of errors interact and form
a nonlinear system. The deviation from adiabatic evolution depends on the
deviation of the system from stationarity, for which the the numerical scheme
gives exact results. For the neutron star tests, deviations from stationarity
are given by oscillations, but also by convective movements induced by en-
tropy gradients, which in turn are caused by the deviation from adiabatic
evolution. With increasing resolution, the system will settle to its stationary
ground state more slowly, which by itself leads to a greater deviation from
adiabaticity after a given evolution time. On the other hand, the errors in
adiabaticity for a given deviation from stationarity will get smaller with in-
creasing resolution. The net error after long evolution times is therefore the
result of a complex interplay of several effects. However, this model still has
to be substantiated quantitatively.
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Figure 3.31: Change of the polytropic constant ρp at r = 7 km, ϑ = π/4
during evolution with the ideal gas EOS. Shown are results for different
resolutions in 2D. The plots for N = 100 has been scaled by a factor of 4,
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Figure 3.32: Change of the polytropic constant ρp at r = 7 km during
evolution with the ideal gas EOS. Shown are results for different resolutions
in 1D. The plots for N = 100 has been scaled by a factor of 4, the one for
N = 200 by a factor of 16.
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For the ideal gas case, there are still many open questions. First, it
should be investigated how the adiabaticity of the evolution depends on the
oscillation amplitude. Second, the convergence tests shown for the polytropic
case have not been repeated yet for the ideal gas case due to time constraints.
For this, one would also need to use different quality measures than for the
polytropic case to accommodate to the presence of convective movements.

The tests shown here deal with small deviations from stationarity, and
contain no shock waves. To study the behaviour in highly dynamical systems
with strong gravitational forces, there is still need for a testbed (maybe using
artificial spacetimes) with known solutions. HRSC schemes are specially
designed to handle shocks, but only in flat space. One should therefore study
the propagation of shocks along a star profile, at least in 1D. The shock tube
tests in flat space cannot assure the correct treatment of shocks in strong
gravitational fields.
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Chapter 4

Neutron star oscillations

As a first application, after the convergence and stability of the code has been
established, I investigate oscillations of rotating and nonrotating neutron
stars in the Cowling approximation. Additionally, I present first results with
coupled spacetime evolution for a nonrotating star, although this is ongoing
work.

4.1 Frequencies and Eigenfunctions

In this section, I present the frequencies and eigenfunctions of the seven
lowest order axisymmetric oscillation modes with l = 0 and l = 2, in Cowling
approximation, for the stellar models N and R.

For both models, the mode frequencies can also be found in [21, 54],
where a code called ToniK is used. In contrast to Pizza, the ToniK code
uses a standard HRSC scheme, a spherical coordinate system, and the arti-
ficial atmosphere method to treat the surface. Hence the comparison of the
frequencies provides a meaningful validation for both codes.

The eigenfunctions are not available in the literature; with the ToniK

code, only the frequencies were extracted. For comparison, I use (unpub-
lished) eigenfunctions provided by [13], which have been obtained with the
CoCoNuT code described in [17, 16], but using the Cowling approximation.

4.1.1 Frequencies

To obtain the frequency of a given mode, it was selectively excited by means
of the mode recycling procedure described in Sec. 2.3.4. If only one mode is
present in the evolution, the frequency can be extracted more accurately by
a fitting procedure than by using a Fourier spectrum. For this, the damped

69
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oscillation given by Eq. (3.12) is fitted to the time evolution of the velocity
at a suitable sample point (at which the mode has no node).

Although the frequencies are measured with respect to the coordinate
time, they are identical to the physical frequencies measured by normal ob-
servers at infinity, where the spacetime is asymptotically flat. This is because
in the chosen coordinates, the spacetime is manifestly stationary. Imaginary
light signals starting at point A at regular intervals with respect to coordi-
nate time arrive at point B in the same interval with respect to coordinate
time. Since the lapse function was normalised to a value of 1 at infinity,
the coordinate time at infinity is equal to the proper time of a normal ob-
server. Thus the frequency measured with respect to coordinate time equals
the physical frequency a normal observer at infinity would see.

Tables 4.1 and 4.2 show the frequencies of the seven lowest order modes.
The errors originating from the fitting procedure are generally negligible
compared to the simulation errors. For the H3- and 2p2-modes of model
R however, the excitation of other modes could not be suppressed strongly
enough to allow for the fitting procedure above. Instead, the frequencies were
obtained from the Fourier spectrum. The error due to its finite resolution is
included in the error estimates stated in Table 4.2.

My estimates for the frequency errors are based on the convergence tests
shown in Sec. 3.2.5, in particular Fig. 3.23. For this, one also has to consider
that for higher order modes a better resolution is needed to achieve the
same accuracy, since the distances between the nodes are smaller, and the
eigenfunctions concentrate near the problematic star surface.

Compared to the results from [21], the mode frequencies agree very well.
By far the biggest difference of 1.7% is found for the 2f -mode, which is still
inside the error range given by [21]. For the available frequencies computed
with the CoCoNuT code, shown in Table 4.3, the maximum deviation of 0.7%
is even smaller.

For the rotating model, low frequency modes at 0.80±0.1 kHz and 0.38±
0.1 kHz occurred in addition to the previously described modes. A spectrum
featuring the 0.80 kHz mode is shown in Fig. 4.1. The only known low
frequency modes for isentropic stars in Cowling approximation are rotation
modes, i.e. modes for which the Coriolis force is the restoring force. For
a discussion of r-modes, see [32]. The eigenfunctions corresponding to the
unknown modes have not been extracted yet and their frequencies for model
R are not available in the literature. Therefore, the identity of these modes
remains unclear.

For some reason, the suppression of the unknown modes via mode recy-
cling is difficult when the H3- or 2p2-modes have been excited. The amplitude
ratio of 9% in Fig. 4.1 is the best suppression achieved so far.
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Resolution Mode f/kHz δf/f f1/kHz (f1 − f)/f

1D 1133 F 2.6846 0.5 % 2.706 0.80 %

1D 1133 H1 4.5457 0.5 % 4.547 0.03 %

1D 1133 H2 6.3343 0.5 % 6.320 −0.23 %

1D 1133 H3 8.0970 0.5 % 8.153 0.69 %

2D 189 2f 1.8786 1.0 % 1.846 −1.7 %

2D 189 2p1 4.0919 1.0 % 4.100 0.20 %

2D 189 2p2 6.0068 1.0 % 6.019 0.20 %

Table 4.1: Best results for the oscillation frequencies f of model N, and
comparison to the frequencies f1 as published in [21]. δf is the estimated
frequency error, compare Sec. 3.2.5. According to [21], the error of f1 is in
the range 1–2%.

Mode f/kHz δf/f f1/kHz (f1 − f)/f

F 2.5626 1.0 % 2.579 0.64 %

H1 4.3911 1.0 % 4.385 −0.14 %

H2 6.2333 1.0 % 6.234 0.01 %

H3 8.0877 1.6 % 8.096 0.10 %
2f 1.8893 1.0 % 1.857 −1.7 %
2p1 3.8111 1.0 % 3.814 0.08 %
2p2 5.5000 1.9 % 5.521 0.38 %

Table 4.2: Like Table 4.1, but for model R. All simulations were performed in
2D with a resolution of Rp/∆x ≈ 149 , Re/∆x ≈ 175, where Rp and Re are
the star’s polar and equatorial coordinate radius and ∆x is the grid spacing.

Resolution Mode f/kHz δf/f f2/kHz (f2 − f)/f

1D 1133 F 2.6846 0.5 % 2.700 0.57 %

1D 1133 H1 4.5457 0.5 % 4.567 0.47 %

2D 189 2f 1.8786 1.0 % 1.891 0.66 %

2D 189 2p1 4.0919 1.0 % 4.121 0.71 %

Table 4.3: Oscillation frequencies f of model N in comparison to the frequen-
cies f2 obtained with the CoCoNuT code.
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Figure 4.1: A Fourier spectrum of vϑ for model R, which shows an unidenti-
fied low frequency mode.

4.1.2 Eigenfunctions

In the following, the eigenfunctions of the low order oscillation modes are
shown, which have been extracted during the simulations performed to com-
pute the frequencies shown in the previous section.

The error of the numerically extracted eigenfunctions depends mainly on
two factors. First, it depends on the accuracy of the simulation itself, which
depends on the resolution. Second, since the Fourier transform is taken only
over a finite time interval, the presence of other modes induces an error. The
time interval is restricted not only by the evolution time, but also by the
numerical damping timescale of the mode.

For most simulations, the unwanted modes could be suppressed almost
completely, like in Fig. 3.19. Only for the H2-, H3- and 2p2-modes of the
rotating star model, other modes are still present, with amplitudes up to 9%
of the main peak in the Fourier spectrum.

To get an impression of the accuracy of the eigenfunctions, I extracted
the H1-mode in 1D with a medium and a very high resolution. The results
are shown in Fig. 4.2. Obviously a good convergence is already reached for
the resolution of 47 points. Only at the last point inside the star, the velocity
eigenfunction shows a significant drop for the medium resolution. This is a
typical feature of the surface treatment scheme, which is also present for the
other modes. Note this only means the surface velocities are damped in time
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average. As shown in Fig. 3.20, also increased surface velocities occur during
the oscillation.

The radial F -, H2-, and H3-mode eigenfunctions of model N are shown
in Fig. 4.3 to Fig. 4.5. The nodes are closer together for the higher modes,
and the gradients near the troublesome stellar surface are steeper. Because
of this, the simulation of even higher order modes would become numerically
very demanding with a general purpose code.

As stated in [59, 53], perturbative calculations for nonrotating star models
predict that the eigenfunctions separate into an angular and a radial part.
In detail, the density eigenfunction δρ can be written as

δρ(r, ϑ) = δρ(r)Y 0
l (ϑ) (4.1)

This provides us with an additional check for the accuracy of nonradial
modes: The cuts of the eigenfunctions along ϑ = 0 and ϑ = π/2 should be
identical up to a factor f = Y 0

l (0)/Y 0
l (π/2). For the l = 2 modes, f = −2.

The cuts for the 2f -, 2p1-, and 2p2-modes of model N are shown in Fig. 4.6,
4.8, and 4.10. Indeed, the eigenfunctions are compatible with Eq. (4.1) to
a good accuracy. Not surprisingly, the deviations are smaller for the lower
order modes.

The 2D-eigenfunctions of the nonradial modes of model N are shown in
Fig. 4.7, 4.9, and 4.11. The location of the density eigenfunction nodes cannot
be determined very accurately near the origin and the crossing of nodes, since
the gradient of the real eigenfunction is zero at these points and the slightest
error in the eigenfunction can significantly shift the node position. Apart
from this inaccuracy, the nodes behave like expected from Eq. (4.1).

The eigenfunctions for the rotating model R are shown in Fig. 4.13 to
Fig. 4.25. In the rotating case, no separation into angular and radial functions
is expected. For the rotation rate of model R, such a separation is not even
approximately given, as one can see from the location of the nodes. Another
difference to the nonrotating case is that the higher order quasiradial modes
are concentrated towards the rotational axis, and that the velocity fields are
mainly parallel to the axis.
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Figure 4.2: Convergence of extracted eigenfunctions on the example of the
radial H1-mode, obtained from a 1D simulation. The eigenfunctions are
plotted in arbitrary units, r is the circumferential radius. Evolution time
was 20 ms.
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Figure 4.3: Velocity and density Eigenfunctions of the F -mode, obtained
from a 1D simulation with a resolution of 1133 points and 10 ms evolution
time. The eigenfunctions are plotted in arbitrary units, r is the circumferen-
tial radius.
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Figure 4.4: Like Fig. 4.3, but showing the H2-mode.
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Figure 4.5: Like Fig. 4.3, but showing the H3-mode.
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Figure 4.6: Velocity and density eigenfunction of the 2f -mode of model N,
plotted along the x- and z-axis in arbitrary units. The cuts along the x-axis
are scaled by a factor of −2 with respect to the ones along the z-axis. r is
the circumferential radius. The results are obtained with a resolution of 1892

in 2D.
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Figure 4.7: Eigenfunctions of the 2f -mode of model N, computed with a
resolution of 1892 in 2D. Colour coded (in arbitrary units) is the eigenfunction
of the rest mass density change. The solid line in the middle marks the node
of the density eigenfunction, the other two lines correspond to ±1% of the
maximum norm of the eigenfunction. The distance of these lines from the
node correlates with the accuracy of the extracted node location. The arrows
show the velocity eigenfunction times the (equilibrium) rest mass density.
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Figure 4.8: Like Fig. 4.6, but displaying the 2p1-mode.

Figure 4.9: Like Fig. 4.7, but displaying the 2p1-mode.
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Figure 4.10: Like Fig. 4.6, but displaying the 2p2-mode.

Figure 4.11: Like Fig. 4.7, but displaying the 2p2-mode.
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Figure 4.12: Like Fig. 4.6, but depicting the F -mode of model R. Also, the
cuts along the x- and z-axis are scaled the same.

Figure 4.13: Like Fig. 4.7, but displaying the F -mode of the rotating model
R. The resolution is Rp/∆x ≈ 149 , Re/∆x ≈ 175, where Rp and Re are the
star’s polar and equatorial coordinate radius and ∆x is the grid spacing.
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Figure 4.14: Like Fig. 4.12, but displaying the H1-mode.

Figure 4.15: Like Fig. 4.13, but displaying the H1-mode.
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Figure 4.16: Like Fig. 4.12, but displaying the H2-mode.

Figure 4.17: Like Fig. 4.13, but displaying the H2-mode. The location of the
nodes in the lower right part is highly inaccurate since the eigenfunctions
almost vanish in this region.
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Figure 4.18: Like Fig. 4.12, but displaying the H3-mode.

Figure 4.19: Like Fig. 4.13, but displaying the H3-mode. The eigenfunctions
have very small amplitude in the lower right part and the extracted node
location in this region is meaningless. The waviness of the outermost node is
most probably an artifact due to the presence of other modes in the evolution.
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Figure 4.20: Like Fig. 4.12, but displaying the 2f -mode.

Figure 4.21: Like Fig. 4.13, but displaying the 2f -mode.
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Figure 4.22: Like Fig. 4.12, but displaying the 2p1-mode.

Figure 4.23: Like Fig. 4.23, but displaying the 2p1-mode.
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Figure 4.24: Like Fig. 4.12, but displaying the 2p2-mode.

Figure 4.25: Like Fig. 4.13, but displaying the 2p2-mode.
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For the F -, H1-,
2f -, and 2p1-modes of model N, eigenfunctions computed

with the CoCoNuT code have been provided by [13]. A comparison to the
results with Pizza is shown in Fig. 4.26 to Fig. 4.29. For the F -, H1-, and
2p1-modes, the eigenfunctions agree very well. Only near the surface, the
velocity eigenfunctions obtained with the CoCoNuT code expose overshoots
in contrast to the Pizza code. This is due to the distinctive features of
the surface treatment described in Sec. 2.2.5 and the artificial atmosphere
method used by the CoCoNuT code: The former tends to damp velocities near
the surface, while the latter generates a lot of noise at the surface (which does
not mean it does not damp the oscillations).

While the bulk properties of the 2f -mode eigenfunctions agree reasonable
well, there is a significant deviation near the centre of the star. The reason is
unclear, but one reason might be that the CoCoNuT code is using spherical co-
ordinates, which often induce problems at the origin due to the degeneration
of the equations at r = 0.

As mentioned, the density eigenfunctions for nonrotating stars separate
into a radial and an angular part. Due to regularity conditions, the radial
part should go to zero at the origin if the angular part is not constant, i.e.
for nonradial modes. This indicates that the 2f -mode density eigenfunction
obtained by the Pizza code is more realistic. It does not go to zero as well,
but the amplitude at the origin is only 7 · 10−4 of the maximum amplitude.

Although the eigenfunctions shown here are computed within the Cowling
approximation, they already provide a qualitative picture of the oscillations.
An exception is the 1f -mode (not shown here), which corresponds to a star
oscillating up and down as a whole in the fixed gravitational potential. Quan-
titatively, the Cowling approximation is very bad, since the frequencies with
evolved spacetime already differ by factors up to 2, as will be shown in the
next section. A comprehensive comparison for a whole range of rotation rates
between the case with and without the Cowling approximation can be found
in [17].

To study linear oscillations of nonrotating stars, it is surely more effec-
tive to use a perturbative approach and decompose the perturbations into
spherical harmonics, like it is done for example in [42, 29, 31, 5]. From the
eigenfunctions shown in this section, it is obvious that this approach works
well only for nonrotating or slowly rotating stars, since the angular depen-
dency in the rotating case does not correspond to a single spherical harmonic
any more. On the other hand, it is computationally less demanding to incor-
porate the gravitational field in the perturbative framework.
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Figure 4.26: Comparison of the radial F -mode eigenfunctions of model N,
as obtained with Pizza and CoCoNuT codes. The eigenfunctions are plotted
in arbitrary units along the equatorial plane. The velocities are the physical
ones, and r is the circumferential radius. The resolution is 1133 points in
1D for the Pizza simulation, and 140 × 60 points in (r, ϑ) for the CoCoNuT

simulation.
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Figure 4.27: Like Fig. 4.26 but for the H1-mode eigenfunctions.
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Figure 4.28: Like Fig. 4.26, but showing the 2f -mode eigenfunctions. The
resolution of the Pizza result is 1892 points in 2D.
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Figure 4.29: Like Fig. 4.28, but displaying the 2p1-mode eigenfunctions.
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4.2 Coupled spacetime evolution

In this section, I present first results with coupled spacetime evolution. These
are preliminary results, which only demonstrate that the coupling is techni-
cally working, and leads to a stable evolution; there are still some open
questions. To evolve the spacetime, I use a module available for the Cactus

computational toolkit called “BSSN MoL”. The coupling to the hydrodynamic
part is described in Sec. 2.3.1. Any other code which accepts the stress en-
ergy tensor as input and provides the metric as output could be used instead.
It is beyond the scope of this work to describe how the spacetime evolution
code works internally, see [4] for details.

For simulations with coupled spacetime evolution, there are some impor-
tant practical differences to simulations using the Cowling approximation.
First, there are no proper outer boundary conditions for the spacetime evo-
lution equations available. Therefore, the outer boundary has to be pushed
as far out as possible in order to minimise its influence. The only practical
way to do this in Cartesian coordinates is to use mesh refinement.

Second, there currently exists no genuine twodimensional spacetime evo-
lution code for the Cactus framework, so all simulations have to be performed
in 3D, even for the study of axisymmetric oscillations.

The third complication arises from the fact that even for a stationary
spacetime, the coordinate system can change, depending on the gauge condi-
tions. Ideally, the whole analysis should be based upon coordinate indepen-
dent quantities like physical distances and proper times. Such analysis is a
nontrivial task; for the tests presented here, coordinate based measures will
be used. However, this is not a severe restriction since the coordinate system
remains quite stationary in practice. Nevertheless, one has to be careful with
the interpretation of frequencies measured with respect to coordinate times,
since the lapse function is not fixed anymore.

As a first test of the coupling to the spacetime evolution, I evolved model
N with the polytropic EOS for 40 ms. For this, fixed mesh refinement was
used. The mesh refinement is implemented by the Carpet code [43], which
is a part of the Cactus toolkit. For a description of the method see [44];
I only note that it is designed in a way which requires no changes to the
evolution code. For the simulation, the star is covered by an inner grid with
a resolution of 473 grid points per stellar radius. The inner grid is covered
by a second grid, which is twice as big and twice as coarse.

As gauge condition for the lapse function, a variant of the “1+log” slicing
using the K-driver method is applied, which is described in [4, 9]. This con-
dition is an approximation for maximal slicing (K = 0); it was constructed
to provide a numerically stable slicing condition. In practice, it results in an
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evolution equation for the lapse. The shift vector is simply set to zero. As
outer boundary conditions for the spacetime, Sommerfeld (radiation) bound-
ary conditions are applied. Both the gauge conditions and the spacetime
boundary conditions are set by the BSSN MoL code.

As shown in Fig. 4.30, the star immediately starts oscillating, with a
small amplitude. This is to be expected since in contrast to the hydro code,
the spacetime evolution code uses a standard finite difference scheme, which
cannot exactly preserve the physical equilibrium state.

Although the oscillation is mainly radial, it contains a small nonradial
component, whose magnitude is around 1% compared to the radial one. This
is the case even on the space diagonal, where it should vanish completely
because the initial data, the numerical grid and the numerical scheme are
invariant under coordinate exchange. All 3D simulations performed for model
N with the Pizza code in Cowling approximation did respect that symmetry.
This indicates that there might be a coding error either in the spacetime
evolution code, or in the mesh refinement code, or in the interaction between
the two and Pizza, which breaks the symmetry.

As visible in the Fourier spectra for the velocities shown in Fig. 4.31, the
oscillation is dominated by two radial modes. In the spectrum for the ϑ-
velocity, two different peaks corresponding to nonradial modes occur. These
can only be seen because the ϑ-velocity is zero for the dominant radial os-
cillation; In the spectrum for the radial velocity, the nonradial modes are
invisible.

For the interpretation of the extracted frequencies, one has to study the
evolution of the lapse function; see also the discussion in Sec. 4.1.1. The lapse
function chosen by BSSN MoL is is almost constant in time, with a relative
change smaller than 5 · 10−4. Compared to the lapse function of the initial
data, which is normalised to 1 at infinity, it is smaller by a global factor of
0.99779. The frequencies with respect to coordinate time have to be divided
by the same factor to obtain the frequencies observed at infinity.

The resulting frequencies are shown in Table 4.4. For comparison, we
can use the values given in [17]. Those results have been obtained using
the conformal flatness (CFC) approximation for the spacetime, which is de-
scribed in [62]. For radial oscillations of a spherically symmetric star, the
CFC approximation is exact, so at least the radial mode frequencies should
agree. The difference to the frequencies given in [17] is indeed small. On
the other hand it is possible that the good agreement is a coincidence, since
the influence of the outer boundary location has not been investigated yet.
Future simulations with more refinement levels will answer that question.

As one can see from Fig. 4.32, the density profile stays constant up to
0.1%, which is quite satisfactory. A closer look at the time evolution of
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Figure 4.30: Radial velocity at r = 7 km on the space diagonal, for a simu-
lation of model N with coupled spacetime evolution.
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Figure 4.31: Fourier spectrum for the radial velocity shown in Fig. 4.30 and
for the velocity in ϑ-direction. The latter has been scaled by a factor of
100 relative to the one for the radial velocity. The vertical lines mark the
frequencies given in [17].
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Mode F H1
2f 2p1

f/kHz 1.4407 3.9375 1.5735 3.6987

f1/kHz 1.458 3.971 1.586 3.726

(f1 − f)/f 1.2 % 0.9 % 0.8 % 0.8 %

Table 4.4: Mode frequencies f obtained for a simulation of model N with
coupled spacetime evolution (see main text), in comparison to the values f1

given in [17].

the density, as in Fig. 4.33, reveals a small linear drift in addition to the
oscillation. Such a drift is not necessarily an error; it could be caused by a
deformation of the coordinate system induced by the gauge choices. However,
also the central density, which is a coordinate independent quantity, shows
a drift of 1.16 · 10−3 over the evolution time of 40 ms. The 3-metric shows a
drift as well, but one order of magnitude smaller. For example, looking at
gxx on the space diagonal, one observes a relative change around 1.2 · 10−4.

An important measure for the errors of a spacetime simulation is given
by the constraint equations (1.90) and (1.91), which have to be satisfied for
a physical spacetime. The evolution of the constraints is shown in Fig. 4.34
and 4.35. Interestingly, the momentum constraint is rapidly decreasing for
some time. Closer investigations revealed that the decrease of the norm is
caused globally, while the linear increase at later times originates mainly
from the refinement boundary.

To my knowledge, there is no theoretical model that relates the magnitude
of the constraint violations to the errors of physical quantities like oscillation
frequencies. However, the average violation of the Hamiltonian constraint
should at least be small compared to the density scale of the system given by
the central density of the star. For the given evolution time of 40 ms, this is
indeed the case. The interpretation of the momentum constraint violation is
even more difficult. The quantity Mi/ρc has the dimension of a velocity; it
should at least be small compared with the speed of light. In average, this is
the case. On the other hand, it is not small compared to the fluid velocities
that occur during the oscillations. From the current data, it is difficult to
decide how strong the influence of the constraint violations really is. At least,
they do not grow exponentially.

From Fig. 4.36, which shows the constraint violation in the x-y-plane, it
is clearly visible that the constraints are violated mainly at the refinement
boundary and near the surface of the star. The question wether constraint
violations of the observed magnitude are an usual error caused by the mesh
refinement procedure, or wether the corresponding code contains an error, is
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Figure 4.32: Results for a 3D simulation of model N with coupled spacetime
evolution. Shown is a cut in the xy-plane. Colour coded is the change of
restmass density in units of the central density. The arrows represent the
momentum density. The yellow box marks the boundary of the fine grid
(including two ghost cells).
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Figure 4.33: Change of restmass density at r = 7 km on the space diagonal.

still under investigation.
Recapitulating, the Pizza code in conjunction with the BSSN MoL space-

time evolution code is able to evolve a spherically symmetric star at least over
a time of 40 ms, with no sign of developing instabilities. It remains station-
ary to an accuracy around 0.1%. The oscillation frequencies extracted so far
agree up to 1.2% with values given in the literature. However, the influence
of the outer boundary has to be investigated by extending the computa-
tional domain. There seems to be a bug in the spacetime evolution or mesh
refinement code which breaks the symmetry of the system under coordinate
exchange, although the asymmetry is small. The magnitude of the constraint
violations is not alarming, although their concentration at the mesh refine-
ment boundary needs closer investigation. Finally, there is still need for a
simulation with higher resolution to confirm that the code converges and to
estimate the frequency errors.
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Figure 4.36: Constraint violation in the xy-plane, after an evolution time of
40 ms. Colour coded is the quantity H/ρc, the arrows correspond to Mi.
The constraints are computed independently on both refinement levels, the
plotted values are taken from the finer grid where available.
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Summary

In this work, I presented a modified high resolution shock capturing scheme
for general relativistic ideal hydrodynamics, which is optimised for, but not
confined to, quasi-stationary, nearly isentropic spacetimes such as rigidly ro-
tating cold neutron stars. Together with the evolution scheme I implemented
a new method of handling the stellar surface. The modification of the scheme
is based on a reformulation of the source terms in the hydrodynamic evolution
equations which I derived especially for this purpose.

It could be demonstrated that the new scheme is well suited to study
oscillations of single neutron stars. The advantages over existing nonlinear
codes are the following: First, the unperturbed background model is pre-
served almost perfectly for rigidly rotating isentropic stars. Second, it is also
possible to study oscillations of very small amplitude, which could be use-
ful for studies of nonlinear phenomena, where the transition from a clearly
linear to the nonlinear regime should be investigated. Third, the method of
handling the stellar surface is not introducing significant noise, in contrast
to artificial atmosphere methods.

As an application of the scheme, I studied axisymmetric oscillation modes
of rigidly rotating and nonrotating neutron star models in the Cowling ap-
proximation. In particular I extracted the frequencies and also the twodimen-
sional eigenfunctions, which are not available in the literature. I provided
solid error estimates for the results on stellar oscillations by carrying out
extensive numerical convergence tests. The frequency errors for practical
resolutions around 50 points per stellar radius are approximately 1%, which
is quite satisfactory for such kind of codes. The most prominent error is the
numerical damping, which converges away with nearly second order accuracy.

A comparison of mode frequencies for two of the stellar models studied
in [21] confirms these results. Also frequencies and eigenfunctions obtained
in Cowling approximation with the code described in [16] agree well with
my results. The only exception is the 2f -mode eigenfunction, which differs
significantly near the star’s centre; there are analytical hints that my results
for this mode are more realistic.
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So far I have only studied rigid rotation. For differential rotation, the
background model would not be preserved perfectly any more (this requires
corotating coordinates). However, assuming a smooth transition between the
rigid rotation case and the extremely differentially rotating case, there will
be a regime where my scheme still has substantial benefits.

Using a new testbed similar to a neutron star, but without a fluid-vacuum
boundary, it could be shown that most of the errors in the star simulations
are caused by the treatment of the stellar surface, and not by the evolution
scheme itself; especially the damping is much lower without a surface and
converges away with 3rd order.

In the author’s opinion, the standard method for treating the surface,
namely enforcing an artificial atmosphere, leads to a comparable amount
of damping. For simulations of stellar oscillations, increasing the accuracy
of the evolution scheme itself does not automatically lead to a significant
improvement, since the error is determined by the complex interplay between
evolution scheme and surface treatment. Instead, a better algorithm for
treating the surface is clearly needed.

First tests of the coupling to a spacetime evolution code gave satisfactory
results. However, there are still some open questions regarding the influence
of the outer boundary, the violation of the constraints, and the reason for a
small violation of the symmetry under coordinate exchange.

A future application of the code is the study of oscillation modes of ro-
tating and nonrotating stars with coupled spacetime evolution in 3D. This
includes nonaxisymmetric oscillations, in particular the r-mode spectrum.
Additionally, the effects of differential rotation could be investigated, which
is of some interest since young neutron stars are assumed to rotate differen-
tially.

Another application of the code might be the merger of neutron stars. A
binary system prior to the final merger phase does not belong to the class of
spacetimes the new scheme is evolving perfectly, but is roughly similar to it
in the sense that pressure and gravitational/centrifugal forces are partially
balanced. Therefore it is possible that the new scheme has slight benefits
also in this scenario.
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