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1 Introduction 

 

Due to a steady increase in the need for innovative products in daily life, new materials, 

suitable to meet these requirements, have to be developed. The demand for new materials is 

given in all different kinds of industry. Nowadays, above all, it is of importance to find 

regenerative energies to decrease pollution, to improve the understanding of human deseases 

and traditional natural drugs, and thus provide a larger offer on human health products and 

safe and clean transport possibilities in order to improve the quality of life. 

Innovative materials for the application in new batteries and in liquid chromatography have to 

be characterized and evaluated in their suitability to cope with these requirements. 

Over the last years, the field of chromatography has undergone a tremendous progress, with 

respect to speed, proof of amounts in the nanogram range and width of application to test 

analytes. It became more important to evaluate plants and drugs and study their metabolites in 

order to lengthen human life and preserve its health. History of medicine showed the need to 

separate active substances with similar structures to rule out unwanted effects on the human 

body. However, especially in liquid chromatography, the separating interactions are not yet 

well understood, thus a larger insight in the processes taking place in the interphase of a 

chromatographic system would lead to better results in the separation, obtained from carefully 

adjusted parameters. These include the synthesis of tailor-made stationary phase materials. 

New materials are also required for further progress in fuel cell development. Nowadays, the 

need of regenerative batteries, especially in the field of automotive industry, has become to a 

well discussed issue, in order to preserve the environment and the ozone layer. Many car 

suppliers tend to develop new promising motive systems to offer a clean transport vehicle in 

the future, one of which is the hydrogen-powered car, which was already introduced a couple 

of years ago and is still the topic of further progress. However, most fuel cells are working 

under rough conditions, leading to the materials deterioration with running time. Above all, 

this is the case for the proton conducting material which is the key piece of each fuel cell. 

Therefore, new materials have to provide reliable and cheap motive abilities, driven by 

regenerative fuels, which have to cope with fuel cell conditions. 

Dynamic processes are the driving force for both, the analyte separations in liquid 

chromatography and the proton conductivity of fuel cell materials. Since they are also 

responsible for the materials quality and properties, they have to be considered in order to 

obtain information about self-diffusion and/or diffusion of molecules, parts of molecules, and 

protons, driven by external influences. 
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This work deals with the examination of both kinds of materials using solid-state and 

suspended-state NMR spectroscopy, both found to be suitable to characterize a material and 

study dynamic processes therein. 

Phosphonic acids, a new class of high-temperature proton conducting materials for fuel cell 

applications, will be evaluated with regard to their properties and local proton mobilities. The 

materials will be screened, and solid-state NMR spectroscopic experiments have to be tested 

to reveal suitable methods. Information about the proton transfer mechanism in “dry” high- 

temperature materials should be gained. 

The dynamic interactions of various analytes with different chromatographic sorbents will be 

tested under the influence of the mobile phase via suspended-state NMR spectroscopy in 

order to gain information about the separation processes in reversed phase HPLC. 

Molecularly imprinted polymers will be investigated using the same method connected with 

the saturation transfer difference technique, yielding information about molecular recognition 

mechanisms. 
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2 Background 

 

2.1 Fuel Cells 

 

Fuel cells are referred to as “green batteries” which unlike normal batteries do not discharge 

with time. They provide electricity and heat as long as they are supplied with appropriate fuel. 

Due to the chemical electrolyte processes upon operation of fuel cells, they ideally emit only 

water. Thus, a complicated water management becomes crucial. 

Independent of the type of fuel cell, they are working after the same mechanism: Two 

electrodes sandwich an electrolyte which can be liquid or solid. Oxygen is flushed at the 

cathode, hydrogen at the anode producing electricity, water, and heat. At the anode the 

hydrogen or a hydrocarbon fuel (e.g. methanol) is split into electrons and protons taking 

different pathways to the cathode. The electrons create an usable electric current, and the 

protons pass through the electrolyte to be recombined with the electrons at the cathode and 

provided oxygen to form water. For a schematic picture of a fuel cell and its electrode 

processes see figure 1. 

In membrane fuel cells namely proton exchange/polymer electrolyte membrane fuel cells 

(PEMFCs) a proton conducting polymer membrane functions as electrolyte. PEM fuel cells 

provide long lifetimes and are highly efficient which causes their suitability for the 

application in automotive industry. Their compactness makes them also good candidates for 

replacing rechargeable batteries for transportable electronic devices (e.g. laptops, PDAs). 

However, they are sensitive to fuel impurities such as carbon monoxide which causes 

poisoning of the electrode catalyst. This is mainly observed at low operation temperatures (up 

to about 80 °C). 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic picture of a PEM fuel cell showing the electrode processes [h-tec 03]. 
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2.1.1 Proton Conducting Materials 

 

Proton conducting materials suitable for the application in fuel cells are mostly polymers with 

different functional groups to accomplish the proton transport through the membrane. 

Besides, also polymer membranes containing more liquid-like proton conductors (e.g. 

phosphoric acid) are used. Since water is a by-product in all working PEM-based fuel cells, 

phosphoric acid easily is washed from the material, thereby deteriorating the materials 

conductivity. 

In the past, various polymers have been used as possible materials for PEMs. In particular, 

sulfonic acid functionalized polymers are nowadays commonly used as PEM materials, where 

Nafion, a sulfonated tetrafluoroethylene copolymer (Teflon derivative), is the most frequent 

representative. Nafion was discovered in the late 1960s by Grot et al [Grot 01] for DuPont 

company and has a proton conductivity of 10
0
 S·cm

-1
. The major disadvantage of Nafion is 

the low operation temperature of only up to 80 °C (see also 2.1.2). 

Imidazoles that constitute another class of polymers, revealed much lower proton 

conductivities than Nafion. Schuster et al. [Schuster 05] and Goward et al. [Goward 02] 

described a substantially different proton mobility mechanism than compared to Nafion. Due 

to their low conductivities, the interest in imidazoles was reduced. 

At operation temperatures below 100 °C, catalysts poisoning can only be circumvented by the 

use of very clean fuel. Especially, the use of carbohydrates (e.g. methanol) as fuel is 

problematic since even traces of carbon monoxide adsorb on platinum-based electrodes, thus 

occupying the active sites. Platinum electrodes are generally used in methanol fuel cells to 

obtain a high degree of oxidation and therefore increase the fuel cells efficiency. To prolong 

the lifetime of the electrodes, it is necessary to test membrane materials with operation 

temperatures well above 150 °C. In this respect, phosphonic acid functionalized polymers 

proved to be a promising class of materials [Miyatake 01, Meng 03, Schuster 05]. 

 

 

2.1.2 Proton Transport Mechanisms  

 

The proton transport mechanism of Nafion was previously investigated by Kreuer et al. 

[Kreuer 04]: A channel-like structured polymer allows the protons to travel through the 

membrane. This is accomplished by the attachment of the protons to water molecules, using 

those as vehicles, resulting in travelling hydronium ions. This so called “vehicle mechanism” 
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requires the “wet” state of the membrane material so that sufficient water is present to 

function as vehicle. Since a higher operation temperature above 100 °C would cause an 

evaporation of water, such materials cannot be used for high temperature applications. 

A totally different proton transport mechanism is claimed for phosphonic acids [Kreuer 04, 

Kreuer 96]. Here, the protons could travel via the hydrogen bonds of neighboured phosphonic 

acid groups. This is referred to as the “Grotthus mechanism” working in “dry” materials. See 

figure 2 for schematic pictures of the two mechanisms.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic picture of the a) vehicle mechanism and b) Grotthus mechanism. 

 

The “Grotthus mechanism” leads to a bond-breaking and bond-forming between the 

phosphonic acid groups while the proton is “hopping” to the next molecule (also termed 

“structure diffusion” [Kreuer 04]). This is considered possible when employing immobilized 

“proton-solvents” which are very mobile e.g. due to spacers. Spacers of medium length were 

found to be suitable in imidazoles and phosphonic acids in order to increase the mobility of 

the functional groups and thus enhance their aggregation leading to possible “structural 

diffusion” [Kreuer 04]. Such proton transport was found to be possible also for strong 

hydrogen bonds, whereas weaker hydrogen bonds facilitate the bond-breaking and bond-

forming reactions [Kreuer 00]. The relation between hydrogen bond strength and proton 

mobility is complex, but in general, dynamic hydrogen bonds are desired in order to enhance 

the local mobility. However, a membrane material still has to be thermally and mechanically 

stable to cope with the stress of high pressure and temperatures in a working fuel cell. 
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2.1.3 Proton Conductivity Measurements 

 

Proton conductivities can be determined by impedance spectroscopy, which uses an 

alternating current (AC) to measure the dielectric properties of a sample in a plate capacitor. 

Therefore, the sample is sandwiched by two inert electrodes (see figure 3 a and b). The 

application of an external current leads to a flow of protons through the material towards the 

other electrode. 

To determine the dielectric properties of a sample, the amplitude I0 and the phase shift θ of 

the resulting current I(t) are measured: 

)sin()( 0 θω += tItI . 

The impedance Z(ω) is the complex AC resistance, which in case of linearity can be described 

as 

)exp()(
0

0 θω i
I

U
Z −= , 

thus its real and imaginary part are functions of frequency. To reveal the samples 

conductivity, it is of importance to calculate the complex conductivity Y(ω), which is 

reciprocal to Z(ω) and can be expressed as 

)(

1
)(

ω
ω

Z
Y = .  

It is necessary to bring in information about the shape and size of the cell to determine the cell 

constant K from the surface area A and the sample thickness d 

d

A
K = , 

in order to directly obtain the specific conductivity σ(ω) 

)(
1

)( ωωσ Y
K
⋅=  

with its real part σ′ (ω) 

)(
1

)( ωωσ Y
K

′=′ . 

The specific conductivity σ(ω) is a measure of the carried charge per time, whereas the 

relative dielectric constant εr(ω) determines the charge flow per frequency cycle.  
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Figure 3: Schematic pictures of plate capacitors a) without sample and b) with dielectric 

sample in close contact [Göpel 94]. The dielectric is shown in grey. 

 

When the electrodes are not smoothly in contact to the samples surface or block the 

ion/proton flow during the measurement, a polarization of the electrodes is obtained, leading 

to a decrease in conductivity. An AC conductivity plot versus frequency generally leads to the 

observation of three typical isotherm areas (see figure 4): The low frequency regime is 

determined by the electrode polarization, the frequency-independent plateau reflects the 

wanted transport phenomena, and the high frequency regime is due to relaxation effects. In 

the direct current (DC) plateau region, which shifts to higher frequencies with increased 

temperature, due to an overall increase of energy in the system, the dynamic processes are 

determined by random mobility. At higher frequencies, correlated jumps back and forth to 

distinct sites are dominating the spectra [Barsoukov 05]. 

In order to determine the DC conductivity σDC from the isotherms of σ′ (ω), the conductivity 

values have to be derived from the part, where the conductivity is constant. If σDC is 

Arrhenius-activated, a plot of ln [σDC ⋅ T (Ω⋅cm/ K)] versus 1/T results in a straight line, where 

the activation energy EA can be obtained from the slope. 
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Figure 4: Typical conductivity plot showing three areas, a) the regime determined by 

electrode polarization, b) the DC plateau, and c) the dispersive regime. 

 

The samples conductivity can be measured in two different ways: as membrane or as pellet. 

To obtain a membrane, the sample has to be dissolved in a suitable solvent and is directly 

coated on brass electrodes which later are used for the conductivity measurement itself. Some 

materials do not form membranes and are therefore pressed to pellets. To ensure efficient 

contact to the brass electrodes, the rough surface of the pellet has to be sputtered with gold. 

However, in some cases the recycling of the material is desired. In these cases flexible carbon 

cloth electrodes loaded with platinum particles can be used to ensure the contact (see figure 5 

for a pellet with carbon cloth electrodes). 

 

 

 

 

 

 

 

 

Figure 5: Picture of a MePA pellet including black carbon cloth electrodes. 

-2 -1 0 1 2 3 4 5 6 7

-9.5

-9.0

-8.5

-8.0

-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

-4.5

lo
g
1
0
 
 (
 σ
 ' 
· 
Ω
  ·
 c
m
) 

log10  ( ν /Hz) 

70 °C 

-30 °C 

a)

b) 

c) 



2 Background: Liquid Chromatography 9

2.2 Liquid Chromatography 

 

Different types of chromatographic separation techniques are known, the electro-driven and 

the pressure-driven separation processes, with capillary electrophoresis (CE) and capillary 

electrochromatography (CEC) among the electro-driven separation techniques [Rapp 04]. 

In pressure-driven chromatography, analyte mixtures are separated due to their distribution 

between two phases, the mobile and the stationary phase. Two mainly known types of 

chromatography exist: gas chromatography (GC) for volatile samples and liquid 

chromatography (LC) for soluble samples.  

In gas chromatography, the mobile phase is a gas, that transports the analyte molecules 

through the chromatographic column. The columns inner surface is modified with an 

immobilized liquid phase. The analytes separation is due to distribution between the gaseous 

mobile phase and the liquid phase, though the mobile phase does not directly interact with the 

analyte molecules [Skoog 92]. 

In liquid chromatography, the stationary phase is packed into a column (see figure 6) and 

consists of an adsorptive material, the mobile phase is a solvent which is flowing through the 

stationary phase eluting the separated compounds. Depending on the stationary phase 

material, desired separations can be performed, leading to a differentiation of several kinds of 

liquid chromatography: adsorption, affinity, ion exchange, ion, and size exclusion 

chromatography [Meyer 99]. The separation of distinct compounds is due to various 

interactions taking place between the analyte molecules and the stationary phase leading to 

different retention times on the column. (See section 2.2.1 for further discussion of separation 

processes.) 

 

 

 

 

 

 

 

Figure 6: Picture of an HPLC column. 

 

In high performance liquid chromatography (HPLC) the mobile phase is pumped with high 

pressures through the separation column while the analyte is dissolved in small amounts of 

the same solvent and injected directly. The dynamic distributional equilibrium and thus the 
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separation behaviour of the analyte on the stationary phase can be varied by switching the 

polarity of the solvent, even by mixing solvents. The application of polar solvents with non-

polar stationary phases is referred to as reversed-phase HPLC (RP-HPLC) in which silica-

based materials are widely used among other materials. (See section 2.2.2 for further 

discussion of reversed phases.) On the contrary, normal-phase HPLC (NP-HPLC) uses polar 

stationary phases (e.g. pure silica) and non-polar solvents. 

The HPLC setup is given in figure 7. The major parts are solvent storage, high pressure pump, 

injector, column, and detector.  

 

 

 

 

 

 

 

 

 

 

Figure 7: Schematic picture of the HPLC setup. 

 

 

2.2.1 Separation Processes 

 

In RP-HPLC, the separation generally is due to the distribution of analyte molecules between 

mobile and stationary phases due to their polarity (partition LC). The interactions taking place 

are often referred to as “hydrophobic interactions” of non-polar analyte with the non-polar 

chromatographic sorbent. However, numerous interactions and their effects on the separation 

cannot be ruled out since a chromatographic system is very sensitive to the change of various 

parameters. 

The separation of compounds is due to interactions taking place with the stationary phase 

yielding different retention times tR of the analyte molecules. A measure for the residence 

time in both phases is determined by the distribution coefficient K 
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with the concentration of analyte in the stationary phase cstat and the mobile phase cstat, and 

the retention factor k 

mob

stat

n

n
k =  

with nstat as the number of analyte molecules in the stationary and nmob in the mobile phase in 

an equilibrated system. The dynamic partition equilibrium and thus the retention behaviour of 

the analytes can be changed by varying the chromatographic parameters, like the solvent 

composition, temperature, and flow rate. 

 

 

 

 

 

 

 

 

 

Figure 8: Schematic picture of a chromatogram. 

 

A schematic picture of a chromatogram is given in figure 8. The dead time t0 is an intrinsic 

property of a chromatographic setup, which is given by the time that is needed by the analyte 

to enter the column after injection. The retention time tR of a compound is given as the time 

between injection and detection, also depending on the column length, temperature, and flow 

rate of the mobile phase. In order to compare different columns despite their length and flow 

rates, tR can be corrected by the dead time t0 yielding the dimensionless capacity factor k′ 

0

0

t

tt
k R −=′ . 

In order to separate two analytes, tR and thus k′ have to be different. The ratio of k′ can be 

used to yield information about the separation behaviour, giving the selectivity α 

12

1

2 , kk
k

k
′≥′

′

′
=α . 

The quality and efficiency of a chromatographic column can be expressed by the number of 

theoretical plates N existing in a column where a high number stands for a better separation. It 

can be altered by the packing material and procedure. The height equivalent to a theoretical 
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adsorption retention time 
component tR1 

dead time t0 

peak area 

retention time 
component tR2 



  2 Background: Liquid Chromatography 12

plate H is given as the distance in which the partitional equilibrium adjusts once. It can be 

determined by the column length L and N: 

N

L
H = . 

H depends on the flow rate u of the mobile phase and some transport mechanisms and can be 

expressed by the so-called van Deemter equation: 

uC
u

B
AH ⋅++= . 

The resulting van Deemter plot (see figure 9) consists of three graphs, each of which standing 

for one transport phenomenon (A: scattering diffusion, B: diffusion along the column, and C: 

matter exchange). The van Deemter curve shows a minimum indicating the optimal flow rate 

uopt at which the separation should be performed. 

The analyte molecules, transported through the column by the mobile phase, can take 

different pathways on the packing material which leads to a certain time gradient until all 

analyte molecules are eluted from the column. This effect is called scattering diffusion (see 

figure 10) and is enhanced by differences in particle size. In a porous stationary phase 

material, the matter transport in the pores is just determined by diffusion since the mobile 

phase cannot move in the pores. Here, the analyte molecule can interact with the stationary 

phase or diffuse back into the mobile phase. 

These transport phenomena generally lead to band broadenings (e.g. “tailing”) in the 

chromatogram yielding worse separations [Meyer 99]. This can be circumvented by the 

application of smaller flow rates and/or non-porous particles [Schauff 03]. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Van Deemter plot showing the “height equivalent to a theoretical plate” H curve 

from different transport phenomena (A scattering diffusion, B diffusion along the 

column, C matter exchange). Uopt indicates the optimal flow rate. 
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Figure 10: Schematic picture of the scattering diffusion. The red arrows indicate possible 

flow pathways between the phase particles (grey). 

 

 

2.2.2 Stationary Phase Materials 

 

Stationary phases for RP-HPLC mainly consist of pure polymer phases or silica-based 

materials, which can be surface-modified with organic molecules in order to change their 

polarity.  

Pure polymer materials contain a major disadvantage, namely their lower pressure-stability 

and thus shorten the lifetime of the phase due to first deformation and second destruction of 

the particles. Therefore, they are limited to applications in low-pressure systems. 

However, in RP-HPLC generally high pressure throughput is needed to obtain fast 

separations. Silica-based chromatographic sorbents are pressure-stable and known as particle 

and monolith materials. Both are widely used in chromatography.  

Silica particles can be porous or non-porous (see figure 11 a) [Schauff 03]. Porous particles 

provide larger surfaces, thus such phases are highly loadable with analyte molecules. 

Disadvantages are the long retention times and band broadenings due to diffusion in the 

pores, whereas non-porous particles contain the advantage for fast separations. However, 

stationary phases, consisting of non-porous particles, have quite low loadabilities, resulting in 

effective materials for mainly analytical applications. Particles can be densly packed into 

columns leading to efficient analyte transport through the column. The particle size 

determines the pressure in the column which is higher for smaller particles, restricting the 

flow rate. To avoid scattering diffusion in a separation, all particles in a column should 

exhibit the same size. However, this is not always easy to accomplish by synthesis [Fischer 

04, Schauff 03]. 
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Figure 11: SEM picture of a) non-porous silica particles and b) an organic monolith. 

 

Monoliths (see figure 11 b) are porous materials consisting of a single bead, the monolith, 

which is directly synthesized in a chromatography column to fit its size and therefore cannot 

be easily exchanged. The analyte is flushed through the pore network of the monolith. 

However, to rule out diffusion, a large pore network is advantegeous for an efficient matter 

transport [Courtois 06]. The decisive advantage of monolith phases is the low backpressure 

which is provided by the single bead [Miyabe 04, Roper 95]. 

Silica based materials are sensitive to acids and bases which is due to the reversibility of the 

sol-gel synthesis. The sol-gel synthesis produces silica [Stöber 68] and can be carried out in 

the acidic or basic medium. Thus the materials can “dissolve” in acids or bases leading to 

holes in the beads what can be partially circumvented by efficient organic modification.  

Two different types of inorganic particle modification procedures are known, the covalent 

attachment of organic molecules via spacers to the surface and the surface coating with 

polymers. Both yield chromatographic sorbents which are highly applicable in RP-HPLC. 

Covalent modifications are generally more complicated and sometimes difficult to perform 

[Meyer 04] whereas coatings are easliy done in a solution polymerization step [Fischer 03, 

Schauff 03]. Coatings were first introduced by Partch et al [Partch 98, Bachmann 00] in order 

to prevent the destruction of silica when performing LC in the basic medium and to rule out 

interactions of analytes with residual silanol groups. 

Since covalent modification of solid supports is performed using organosilanes, monomeric or 

polymeric stationary phases can be obtained by this procedure where the first is yielded from 

the reaction with a monofunctional silane, the latter from a trifunctional silane. The advantage 

of polymeric phases is due to their higher surface loading, and thus a more efficient coverage 

of the silica surface can be achieved. 

The solid support of a chromatographic RP material (e.g. silica, titania) does not participate in 

the separation process. The organic modification is basically the interacting phase and can be 
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described as a immobilized solution, namely an interphase (see figure 12). But residual silanol 

groups also play an important role in the separation process. 

 

 

 

 

 

 

 

 

 

Figure 12: Schematic picture of an interphase, where the silica support is indicated as matrix. 

The analyte molecule (red) interacts with the stationary phase (black). 

 

 

2.2.2.1 Characterization of Stationary Phases 

 

Chromatographic RP materials can be characterized by infrared (IR) spectroscopy [Srinivasan 

04] and solid-state NMR spectroscopy (see chapter 2.3 for solid-state NMR theory) yielding 

information about the solid support and the organic modification. The composition of silica 

can be monitored using 
29
Si NMR spectroscopy since distinct silyl species can be resolved 

[Maciel 80]. A nomenclature for the silyl species was first given by Engelhardt et al 

[Engelhardt 87] (see figure 13). 
13
C NMR spectroscopy can be used to characterize the 

organic modification of solid inorganic supports [Bayer 83]. Especially covalent 

modifications and thus a proof for the successful attachment of spacers can easily be 

monitored via NMR spectroscopy. 
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Figure 13: a) {
1
H}-

29
Si CP MAS NMR spectrum of non-porous silica particles and  

b) nomenclature of silyl species. 

 

However, information also has to be gained about the particle size and the quality of the 

coating since both are important factors to obtain good separations. This can be achieved by 

scanning electron microscopy (SEM) (see figure 14 a for an example).  

However, even though SEM is a powerful technique, light microscopy provides a much 

cheaper and faster method to screen large amounts of samples. For this, the particles are 

brought onto a microscope slide, and the background is coloured with ink (see figure 15) 

[Schetter 03]. An immersion oil light microscope can be used to observe the particles. The 

particle size can be extracted by comparison with a reference material (see figure 14 b for an 

example) [Fischer 04, Schauff 03].  
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Figure 14: a) SEM picture of coated silica particles and b) light microscope picture of silica 

particles (coloured with ink). 

 

 

 

 

 

 

 

 

Figure 15: Schematic picture of the method to colour silica particles on a microscope slide. 

 

 

2.2.2.2 Molecularly Imprinted Polymers 

 

Materials which are able to separate analyte molecules due to a specific binding interaction 

are highly desirable in biological and environmental applications. Molecular recognition of 

so-called guest molecules is achieved by molecular imprinting of polymers [Dirion 03]. 

Molecularly imprinted polymers (MIPs) are widely used in separation techniques, above all in 

solid phase extraction (SPE) where target molecules are specifically “filtered” from a mixture. 

In contrast to pure chromatographic sorbents, ideal MIPs firmly bind their target molecules 

which will be exclusively washed by suitable solvents from the material after the binding 

step.  

A highly specific binding is desired which leads to a special preparation technique in order to 

obtain suitable MIPs. MIP materials consist of pure polymers or coated silica-based materials, 

as particles or monoliths. However, the polymer will be imprinted by its polymerization in the 

presence of template molecules which are later the desired targets. Then the polymer is 
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crushed and rinsed with a suitable solvent in order to remove the template. The leftover is a 

material with a special imprint of the target molecule where it is supposed to rebind 

specifically from a mixture of various analyte molecules (see figure 16) [Welsch 05].  

Since a high permeability is desired, the optimization of efficient materials porosity is 

necessary for each polymer and template which leads to time-consuming synthesis. This can 

be circumvented by the use of a substrate on which another polymer, containing the active 

sites, is grafted [Viklund 00]. The imprinted polymer then will form a shell around a 

preformed substrate which comprises already well-defined pore networks. 

However, in aqueous solutions the hydrophobic surface of the organic polymer generally 

leads to non-specific binding due to hydrophobic interactions. Further, also unrelated non-

polar compounds can bind to the MIP which has to be ruled out since the material will be 

blocked by undesired molecules and thus deteriorate. The MIP can generally be restored by 

washing procedures but sometimes has to be exchanged completely [Dirion 03]. 

 

 

 

 

 

 

 

 

 

Figure 16: Schematic picture of a target molecule that rebinds at the imprint of a MIP. The 

principle is shown on the example of a polymer from EDMA and MAA with 9-

ethyleneadenine as target. 
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2.3 Solid-state NMR Spectroscopy 

 

While the signals in liquid-state NMR spectroscopy are mostly well resolved, solid-state 

NMR lineshapes often experience severe broadenings due to internal interactions present.  

The most famous is the dipolar coupling which is caused by the spatial proximity of nuclear 

spins of the same kind (homonuclear) or different kinds (heteronuclear). Both lead to 

broadened peaks in the spectrum and can be circumvented by the application of additional 

techniques. Broadenings due to heteronuclear dipolar couplings can mostly be averaged out 

by Magic Angle Spinning (MAS) which will be presented in chapter 2.3.1 [Grant 96]. 

Nuclei with spin I ≥ 1 possess an electric quadrupole moment Q that interacts with an electric 

field gradient (EFG) caused by the electrons of the molecule. This literally means that a 

quadrupolar nucleus “feels” a change in the molecular surroundings by the change of the EFG 

[Schmidt-Rohr 94]. Quadrupolar nuclei and the arising advantages and disadvantages will be 

discussed further on the example of 
2
H (I = 1) in chapter 2.3.3.  

 

 

2.3.1 Magic Angle Spinning 

 

Anisotropic interactions among nuclear spins are generally averaged by the rapid tumbling 

motion of the molecules in solution-state NMR spectroscopy (Brownian motion). In solid-

state NMR, anisotropic interactions (e.g. dipolar and quadrupolar) have a great influence on 

the resulting signal line shape. Various molecular orientations lead to many different 

resonance frequencies so that the resulting line shape is severely broadened.  

This broadening can be overcome by a special technique called Magic Angle Spinning (MAS) 

[Lowe 59] in which the rotor is tilted at an angle of θ = 54.74°, the magic angle, with respect 

to the external magnetic field and spun around its axis (see figure 17).  

 

 

 

 

 

 

Figure 17: Rotor tilted in the magic angle. 
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Since the dipolar coupling is given by the equation 

3

2 1cos3

R
B ilok

−
=

θ
µ , 

the overall expression will result in 0, if 01cos3 2 =−θ .  

Desirable, the spinning frequency has to exceed the magnitude of the interaction frequency in 

order to average the interaction completely resulting in narrow lines. In most cases this is not 

possible since the maximum spinning frequency of commercial probeheads is nowadays in 

the range of 30-50 kHz. However, a moderate signal narrowing can still be achieved by 

applying lower spinning speeds. 

 

 

2.3.1.1 Rotor Synchronization and Spinning Sidebands 

 

With each rotation of the rotor, namely the rotor period τR, the resulting signal is refocussed 

which leads to the fact that the free induction decay (FID) consists of a series of rotational 

echoes (see figure 18). 

When the data acquisition only takes place at the echo maxima (rotor synchronized), a single 

peak will result after the fourier transformation, and the anisotropic interactions will be 

averaged out. Acquisition of non-synchronized data points will lead to a set of spinning 

sidebands spaced by the MAS spinning frequency, arising from not fully averaged anisotropic 

interactions by MAS. The sidebands at low MAS spinning frequencies will show an envelope 

which resembles the static powder pattern so that information about the anisotropy of 

interactions can be extracted. However, fast MAS would combine the intensity of the 

sidebands under an intense center band and would consequently lead to small spinning 

sidebands. 

 

 

 

 

 

 

 

Figure 18: Free induction decay under MAS showing rotor echoes. 
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2.3.2 Basic NMR Experiments 

 

2.3.2.1 One-pulse Experiment 

 

The simplest NMR experiment is the so called one-pulse experiment (see figure 19) in which 

a single 90° pulse is applied on one kind of nuclei (e.g. 
1
H).  

 

 

 

 

 

Figure 19: Sequence of the one-pulse experiment. 

 

When a sample is brought into the external magnetic field (B0), the nuclear spins will align 

along z (B0) due to the Zeemann interaction that causes the splitting of the spins energy states 

in large magnetic fields. Consequently, all spins precess around the z-axis with the Larmor 

frequency, while the total magnetization is a vector which aligns along z in the undisturbed 

system. 

Applying a 90°(x) pulse on an equilibrated system flips the magnetization from the z-axis into 

the xy-plane where the spins precess depending on their resonance frequencies. After the 

pulse is switched off, the magnetization returns to the z-axis with a rate given by the 

longitudinal relaxation time T1. Meanwhile the spins precess in the xy-plane with the 

transverse relaxation time T2 to destroy the coherent state [Grant 96]. 

 

 

2.3.2.2 Cross Polarization Experiment  

 

Since NMR is a relatively insensitive method, the low natural abundance of some NMR 

nuclei (e.g. 
13
C, n.a. = 1.1%) causes problems in the acquisition. Especially for 

13
C, the 

magnetogyric ratio γ (
13
C) is just a quarter of the γ (

1
H) leading to prohibiting long acquisition 

times. 

The time spent on the acquisition of well resolved spectra with reasonable signal-to-noise 

ratios can be significantly reduced by applying the cross polarization (CP) technique [Pines 

72, Pines 73], which is normally combined with moderate MAS rates. It increases the 
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intensity in the spectrum by transferring the NMR properties of a high γ and abundant nucleus 

(e.g. 
1
H) to the low γ nucleus in a double resonance experiment (see figure 20) [Stejskal 94].  

 

 

 

 

 

 

Figure 20: Pulse sequence of the CP technique, a double resonance experiment. The 

abundant spins I are decoupled during acquisition. 

 

The 
1
H magnetization is locked along the y-axis by applying a continuous weak 90°(y) rf 

pulse. The 
1
H spins precess around the y-axis with their resonance frequency: 

ω(
1
H) = γ(

1
H)B1 

Another 90°(x) pulse is applied on 
13
C which causes both nuclei to precess around y. During 

the contact time the polarization is transferred from the protons to the carbons by 

heteronuclear dipolar interactions. The magnetization transfer during the contact time can 

only be accomplished if the Hartmann-Hahn match is valid: 

γ(
1
H)B1(

1
H) = γ(

13
C)B1(

13
C). 

Since the transfer strongly depends on dipolar couplings, one is forced to apply lower MAS 

frequencies. However, moderate spinning speeds are still desired to receive narrow lines. 

 

 

2.3.2.3 Solid-echo Experiment 

 

Free induction decays (FID) in solid-state NMR can be tremendously short yielding very 

broad lines. Occasionally, most of the FID is already decayed prior to the start of the 

acquisition. Here, switching delays of the NMR console have to be taken into account, as well 

as the dead time of each probehead: The applied rf pulses are much stronger than the resulting 

weak signals leading to a dead time in which the coil “rings” from the strong pulse while the 

FID cannot be recorded.  

This loss of FID can be circumvented by the application of echo pulse sequences (see figure 

21) in which a suitable refocussing pulse is applied after the initial 90° pulse and a following 
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delay τ. During the delay τ the spins evolve in the xy-plane and are refocussed after 2τ by a 

second pulse to form an echo. 

The Hahn echo experiment uses a 180° pulse to generate the echo which is suitable for 

interactions like the heteronuclear dipolar coupling and the chemical shift [Hahn 50]. 

However, interactions like the quadrupolar and homonuclear dipolar coupling are refocussed 

by a 90° pulse which is phase shifted by 90° to the initial pulse [Schmidt-Rohr 94]. This 

solid-echo experiment is particularly interesting for the acquisition of 
2
H spectra since 

molecular reorientations during the echo delay lead to characteristic changes in the line shape 

and thus yield information about molecular correlation times [Macho 01]. For further 

discussion please see section 2.3.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Experimental sequence of the a) Hahn echo experiment and the b) solid-echo 

experiment. The grey shaded areas indicate the dead time. 

 

 

2.3.3 
2
H NMR Spectroscopy 

 

Quadrupolar nuclei with spins I ≥ 1 possess an intrinsic electric quadrupole moment Q, which 

interacts with an electric field gradient (EFG) tensor of the molecule caused by surrounding 

electrons. The quadrupolar coupling constant cQ then is given as 

h

qQe
cQ

2

= . 

2
H NMR is a well-known and established method to study molecular dynamics since the 

lineshape is influenced by the position of the EFG tensor yielding information about the 

molecular geometry [Macho 01, Schmidt-Rohr 94, Spiess 83]. For deuterons the quadrupolar 

coupling constant Q is rather small, and cQ is normally in the range of 125-130 kHz. 

Rotation of the molecule causes a change of an EFG tensor which influences the resulting 

quadrupolar coupling, leading to characteristic lineshapes in static 
2
H spectra (see figure 22 

a) 

b) 
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for an example). In intermediate motional regimes, a loss in signal intensity is evidenced if 

the frequency of molecular motion is interfering with the quadrupolar frequency ωQ due to 

their similar time scales. The degree of interference is characterized by the reduction factor R. 

In these regimes, even superpositions of distinct deuteron patterns can be observed, reflecting 

the two extreme limits [Villanueva 06, Rössler 90]. 

 

        

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Simulated static 
2
H spectra demonstrating the effect of a change in a) motional 

correlation time τc and b) reduction factor R on the lineshape [Spiess 85].  

c) Schematic picture of the cone model. 

 

The low natural abundance of deuterons (n.a. = 0.0155%) usually requires the enrichment of 

samples, e.g. by dissolving them in suitable deuterated solvents. The selective deuteration of 

acidic protons via simple exchange establishes a decisive advantage. 

Under MAS conditions, the quadrupolar coupling information is completely lost in favour of 

chemical shift resolution. The experiments can easily be performed but the magic angle has to 

be set properly since even the slightest misadjustment will have a great influence on the 

resulting linewidth. However, information about the molecular dynamics can still be 

extracted, though to a smaller extent. In particular, both the linewidth and peak intensities are 

good indicators for dynamics showing severe linebroadenings and the decrease of intensity 

when shifting from the slow dynamic limit to an intermediate regime where the mobility is in 

the range of the quadrupolar coupling constant. This leads to an almost complete loss of 

signal at this point.  
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Activation energies for distinct dynamic processes can be obtained from an Arrhenius plot of 

the linewidth versus the inverse temperature.  

The decrease and eventually complete loss of signal strongly depends on the motional 

correlation time τc of the species present in the system. If all molecules move with the same 

rate k (≈ 1/τc), a minimal signal at τc ~ cQ can be observed. Since in disordered systems (e.g. 

polymers), motional processes are less defined, the moving species will most likely 

experience a broad distribution of correlation times (see figure 23) [Wehrle 87]. In this case, 

no pronounced minimum is found. 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Simulation of a Gaussian motional correlation rate distribution P(Ω) on the 

example of PC4 [Wehrle 87]. The reduction factor R(Ω) is characterized by the 

loss in spectral intensity. The distribution in the total spectrum is governed by both 

factors P(Ω)R(Ω), yielding a signal intensity which differs from the true 

distribution P(Ω). 

 

Due to selective deuteration of the acidic sites, it is possible to use 
2
H NMR spectra for a 

more thorough assignment of proton spectra since these often do not show a sufficient 

resolution. The higher resolution in deuteron spectra is caused by spin dilution and smaller 
2
H 

dipolar couplings. Another advantage is the similarity of chemical shift in 
1
H and 

2
H spectra 

even of hydrogen bonds so that they can be easily compared.  
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2.4 Suspended-state HR-MAS NMR Spectroscopy and its Application in 

Chromatography 

 

Suspended-state high resolution magic angle spinning (HR-MAS) NMR spectroscopy is a 

hybrid technique between solid-state and liquid-state NMR spectroscopy [Moka 97, Tomlins 

98]. It comprises the advantages of both techniques, yielding well resolved spectra even for 

samples that do not dissolve in any solvent [Händel 03]. 

Solid samples can be characterized by preparing a slurry in suitable solvents, transfer them to 

a rotor, and directly measure them under moderate MAS frequencies. By the increase in 

mobility of the solid via swelling, the 
1
H homonuclear dipolar interactions and thus the 

linewidths decrease, yielding narrow lines. Eventually, even spectral resolution of emulsions 

can be increased comparing liquid-state NMR to suspended-state NMR (see figure 24 for an 

example) [Tseng 00]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: 
1
H a) liquid-state and b) suspended-state HR-MAS NMR spectra of a skin lotion. 

 

Many attempts have been made to study the numerous interactions taking place in a 

chromatographic separation process via NMR spectroscopy since chromatograms only show 

the sum of all interactions, and the retention mechanisms are still not fully understood. In 

solid-state NMR spectroscopy the chromatographic sorbent (eventually with rebound analyte) 

can be investigated. Liquid-state NMR spectroscopy gives an insight in the analyte, dissolved 

in the mobile phase. However, both techniques lack of picturing the complete process which 

is given as a sensitive system of the analyte, the mobile phase, and the stationary phase. 
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On the contrary, suspended-state HR-MAS NMR spectroscopy showed to be suitable to 

monitor the chromatographic processes since the chromatographic sorbent can be suspended, 

and the analyte can be dissolved in the mobile phase. The addition of solvent allows the alkyl 

chains of the stationary phase to increase their mobility transforming into the interphase. 

Thus, interactions between stationary phase and the analyte, in the interphase, can directly be 

mimicked [Hellriegel 04, Händel 03, Skogsberg 04, 06]. However, some differences towards 

chromatography have to be considered: The solid to liquid ratio is somewhat different in 

NMR spectroscopy since the rotor offers limited space, and the flow rate cannot be a part of 

the NMR model [Pages 06]. 

 

 

2.4.1 Saturation Transfer Difference Experiment 

 

A special suspended-state 
1
H HR-MAS NMR experiment, the saturation transfer difference 

technique (STD), was developed by Mayer et al. It is generally used to investigate receptor-

ligand interactions taking place at the active sites of proteins [Mayer 99]. 

Macromolecules (e.g. polymers) can be selectively saturated by irradiation with a train of 

shaped pulses (see figure 25 for pulse sequence), and a complete saturation of the polymer is 

yielded due to efficient spin diffusion [Raitza 98]. The saturation then is transferred to ligands 

or analyte molecules, interacting/binding with the polymer. These saturated analyte molecules 

dissociate in a time scale, where the degree of saturation depends on the time the molecules 

were bound to the macromolecule (see figure 26). In solution the analyte can be studied by 

NMR spectroscopy yielding narrow lines. However, since it still memorizes the saturation for 

some time, 
1
H peaks of molecules which were in contact with the polymer are reduced in 

intensity. 

 

 

 

 

 

 

Figure 25: Pulse sequence of the STD NMR experiment. 
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Figure 26: Schematic picture of the saturation transfer from the polymer (red) to the analyte 

(grey). 

 

In order to obtain spectra only showing the saturation effects on analyte molecules, a 

difference experiment is performed. The spectrum of a non-saturated system is substracted 

from a saturated system by an appropriate phase cycle after each scan. This can be achieved 

by the acquisition of one spectrum with on-resonant and one spectrum with off-resonant 

irradiation. Both irradiation frequencies have to be set properly, the on-resonance frequency 

has to be set in some distance of the analyte signals or sidebands to prevent incident, direct 

saturation of the analyte. However, the pulse still saturates the polymer due to its broad 

background signal. On-resonance frequencies can be set in the range of ∼ -1 ppm, off-

resonance frequencies in the range of ∼40 ppm [Meyer 03]. An additional spinlock filter (see 

figure 24) suppresses the background signal of the polymer in the difference spectrum. 

In the difference spectrum, 
1
H peaks can be observed, which are increased in intensity due to 

the analytes adsorption to the macromolecule. Thus, information about the affinity of analyte 

molecules to interact with a certain polymer can be obtained. 
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3 Structure and Dynamics of Phosphonic acids 

 

Since phosphonic acids are promising materials for high temperature fuel cell applications 

they were investigated in this study. The main work focussed on the properties of the 

phosphonic acid groups, namely on their dynamics and anhydride formation. 

 

3.1 Characterization of Phosphonic acids 

 

3.1.1 Methylphosphonic acid 

 

Methylphosphonic acid (MePA) is a crystalline, colourless, and strongly hygroscopic 

compound.  

The 
1
H MAS NMR spectrum shows two peaks, at 11.2 ppm for the acid protons and 1.5 ppm 

for the methyl group (see figure 27). The strong shift to high fields of the acid protons signal 

indicates the presence of considerable strong hydrogen bonds in the sample. With increasing 

water uptake, an additional signal at 9 ppm starts to rise reflecting adsorbed water. This will 

be further detailed in chapter 3.2.2. 

Since a crystal structure could not be obtained by now, due to the strong hygroscopicity of 

MePA, the molecular structure was confirmed by a 
1
H-

1
H DQ NMR spectrum (see figure 28). 

 

 

 

 

 

 

Figure 27: 
1
H MAS NMR spectrum of MePA. 

 

Figure 28: 
1
H-

1
H DQ MAS NMR spectrum of MePA. 
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The 
31
P MAS NMR spectrum of MePA at room temperature shows one peak at 37.5 ppm 

resulting from the phosphonic acid group (see figure 29). It indicates that the acid groups in 

MePA do not form condensation at room temperature, but after annealing the sample at 120 

°C for 4 days, an additional signal at 30.7 ppm reveals anhydride formation of the acid groups 

[Lee]. 

 

 

 

 

 

 

 

 

Figure 29: 
31
P MAS NMR spectra of MePA (black) and annealed MePA (blue) indicating the 

“free” acid and the anhydride. 

 

 

3.1.2 Polyvinylphosphonic acid Ionomer 

 

A polybenzimidazole (PBI) membrane containing a polyvinylphosphonic acid (PVPA) 

ionomer is an industrial product for the application in fuel cells. The membrane containing the 

ionomer and the pure ionomer were characterized independently. 

The membrane is a brown-coloured flexible material whereas the pure ionomer is yellowish 

and brittle. The ionomer is strongly hygroscopic and thus water-soluable. In contrast, the 

membrane does not dissolve but rather swells while being stirred in water. 

In the 
1
H MAS NMR spectrum three peaks at 10.7 ppm (acid protons), 6.2 ppm (adsorbed 

water), and 2.2 ppm (vinyl backbone) could be observed (see figure 30). The nature of the 

ionomer can be derived from the 
31
P MAS NMR spectrum where a distribution between the 

two peaks at 33 ppm and 19 ppm is visible (see figure 31). The broad high frequency signal 

was assigned to PVPA, the narrow low frequency signal to vinylphosphonic acid (VPA). 

Since a distribution between both signals is conspicuous, it is concluded that oligomers are 

also present in the sample. 

 

 

20 22 24 26 2830 3234 3638 4042 44 4648 50 
(ppm) 

CH3 P

O

OH

OH
CH3P

O

OH

OCH3 P

O

OH



3 Structure and Dynamics of Phosphonic acids 31

The 
1
H and 

31
P MAS NMR spectra of the membrane containing the ionomer show the same 

peaks including a broad background from the PBI protons in case of the 
1
H spectrum. The 

{
1
H}-

13
C CP MAS NMR spectrum is shown in figure 32. 

 

 

 

 

 

 

 

 

 

Figure 30: 
1
H MAS NMR spectrum of PVPA ionomer. 

 

 

 

 

 

 

 

 

 

Figure 31: 
31
P MAS NMR spectrum of PVPA ionomer. 

 

 

 

 

 

 

 

 

 

 

Figure 32: {
1
H}-

13
C CP MAS NMR spectrum of PVPA ionomer. 
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3.1.3 Polyvinylbenzylphosphonic acid 

 

Polyvinylbenzylphosphonic acid (PVBzPA) consists of a meta- and para-isomer mixture (see 

figure 33 for the structure). It is a brownish non-hygroscopic sample which can be dissolved 

in methanol [Markova]. 

 

Figure 33: a) Para- and b) meta-isomers of PVBzPA. 

 

The 
1
H MAS NMR spectrum of PVBzPA shows peaks at 8.6 ppm, 7.2 ppm, and 3.2 ppm 

which were assigned to the acid protons, the aromatic ring protons and the polyvinyl 

backbone protons (see figure 34). In the 
31
P MAS NMR spectrum a single signal at 27 ppm 

for the acid is visible which can be converted into two signals at 27 ppm and 20 ppm by 

annealing the sample at 200 °C for 18 hours (see figure 35). The peak at 20 ppm most 

probably reflects the condensation product. 

The {
1
H}-

13
C CP MAS NMR spectrum is given in figure 36. 

 

 

 

 

 

 

 

 

 

 

Figure 34: 
1
H MAS NMR spectrum of PVBzPA. 
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Figure 35: 
31
P MAS NMR spectrum of PVBzPA. 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: {
1
H}-

13
C CP MAS NMR spectrum of PVBzPA. 

 

 

3.1.4 Polyphosphazenephosphonic acid 

 

Polyphosphazenephosphonic acid (PPPA) is a strongly hygroscopic colourless sample 

[Allcock 02]. Two different batches were investigated: The first contained two phases, a 

rather viscous, and a crystalline fraction (see figure 37). The crystals were manually separated 

from the viscous, amorphous material revealing differences in the solid-state NMR spectra. 

However, a complete separation could not be accomplished. 
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Figure 37: Picture of the crystalline and the amorphous phase in PPPA, both indicated by red 

arrows. 

 

The 
1
H MAS NMR spectra for the two phases and the structure are given in figure 38. Two 

sets of peaks are visible at ∼8 ppm (acid) and ∼3 ppm (spacer). The difference between the 

crystalline and the amorphous phase can be clearly seen since the peaks are much broader for 

the viscous sample. The observed chemical shifts of both spectra are in good agreement, the 

signals assigned to the spacer and the lower frequency peak of the acid resonating at about 7 

ppm. A splitting of the low frequency set of peaks can be observed for the crystalline phase. 

However, the 
1
H chemical shift of the samples higher frequency peak differ. The acid group 

of the crystalline phase resonates at 8.6 ppm and the one of the amorphous phase at 9.2 ppm. 

Due to the uncomplete separation of phases, it is assumed that the peak at about 7 ppm can be 

assigned to the viscous sample. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: 
1
H MAS NMR spectra of the crystalline (blue) and the amorphous (black) phase of 

PPPA. 
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The peak at 1 ppm in the 
31
P MAS NMR spectrum (see figure 39) was assigned to the 

polyphosphazene backbone, the acid groups to either the signals at 27 ppm and 24.5 ppm 

(viscous phase) or 24 ppm (crystalline phase), respectively. The mere presence of the signal at 

27 ppm for the viscous compound is anticipated for a pure amorphous phase. It is known from 

PVPA that phosphonic acid anhydride resonates at lower frequencies than the acid itself with 

a 
31
P chemical shift difference of about 10 ppm [Lee]. A similar shift difference was also 

observed for MePA, PVBzPA, and siloxane phosphonic acid. Then, in PPPA the resonance at 

∼24 ppm most likely does not result from condensation. The second peak for the acid 

probably points out two phosphonic acid groups with different magnetic surroundings in the 

crystal. However, the presence of amorphous and crystalline phase in the sample indicate its 

poorly defined condition. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: 
31
P MAS NMR spectra of the crystalline (blue) and the amorphous (black) phase 

of PPPA. 

 

The second batch of PPPA consists of a purely amorphous sample. It is a whitish, strongly 

hygroscopic, and firm compound. The 
1
H and 

31
P MAS NMR spectra were quite similar to 

those of the viscous sample in the first batch but showed broader peaks, in general indicating 

the amorphous nature of the sample. 
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3.1.5 Polyvinylbenzylphosphonic acid / Polyetheretherketon Blockcopolymer 

 

Polyvinylbenzylphosphonic acid / polyetheretherketon ABA blockcopolymer is a greenish 

coloured powder that is only soluble in DMSO.  

Its structure and 
1
H MAS NMR spectrum are shown in figure 40. The four peaks at 8.9 ppm, 

7.2 ppm, 3.8 ppm, and 1.3 ppm were assigned to the acid protons, the aromatic ring protons, 

the CH2 protons, and the methyl protons respectively. 

The single peak at 26 ppm observed in the 
31
P MAS NMR spectrum (see figure 41) indicates 

no anhydride formation in the sample. 

The {
1
H}-

13
C CP MAS NMR spectrum is given in figure 42. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: Structure and 
1
H MAS NMR spectrum of PVBzPA/PEEK copolymer. 

 

 

 

 

 

 

 

 

 

Figure 41: 
31
P MAS NMR spectrum of PVBzPA/PEEK copolymer. 
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Figure 42: {
1
H}-

13
C CP MAS spectrum of PVBzPA/PEEK copolymer. 

 

 

3.1.6 Siloxanephosphonic acid 

 

Siloxanephosphonic acid (SPA) is a viscous, colourless, and highly hygroscopic compound 

[Steininger 06]. It consists of cyclic oligosiloxanes (n = 3-5) containing spacers with one 

phosphonic acid group at the end of each spacer (see figure 43). 

The corresponding 
1
H MAS NMR spectrum shows three peaks at 10 ppm, 1.3 ppm, and 0.2 

ppm, respectively, which were assigned to the acid protons, the spacer protons and the methyl 

protons (see figure 43). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: Structure and 
1
H MAS NMR spectrum of SPA (n = 4). 
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The 
31
P MAS NMR spectrum strongly suggests the presence of anhydride even at room 

temperature, indicated by the signals at 32 ppm and 22 ppm where the high frequency signal 

is the “free” acid group (see figure 44). 

The {
1
H}-

13
C CP MAS NMR spectrum is given in figure 45. 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: 
31
P MAS NMR spectrum of SPA. 

 

 

 

 

 

 

 

 

 

Figure 45: {
1
H}-

13
C CP MAS NMR spectrum of SPA. 
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3.2 Water Uptake Studies 

 

Some phosphonic acids show a pronounced affinity to anhydride formation even at room 

temperature, while other samples can be forced to condensate upon annealing.  

However, the occurring condensation reflects a significant obstacle on the way to high proton 

mobilities especially at higher temperatures. If we prefer dry structural diffusion to be 

responsible for the phosphonic acid proton conductivity above 100 °C, condensation most 

probably prevents the proton transport by both reducing the amount of charge carriers and 

hampering the formation of hydrogen bridges.  

The effects of anhydride formation were examined in more detail by water uptake studies for 

PVPA. Small sample amounts were stored for several days in open aluminum containers over 

various saturated salt solutions in Erlenmayer flasks equipped with stoppers, thus 

equilibrating the samples in different well-defined water atmospheres [Greenspan 77]. The 

respective water uptake was measured by weight, Karl Fischer analysis [Fischer 35], and 

solid-state NMR spectroscopy.  

 

 

3.2.1 Polyvinylphosphonic acid 

 

The 
31
P MAS NMR spectrum of pure PVPA [Bingöl 06] exhibits signals at 33 ppm and 24 

ppm, respectively, that were assigned to “free” phosphonic acid groups and the condensated 

form. A dried sample of PVPA leads to three signals in the 
1
H MAS NMR spectrum at ∼10.6 

ppm for the acid protons, 6 ppm for adsorbed water and 2.2 ppm for the polyvinyl backbone 

protons (see figure 46 and 47 for assigned 
1
H and 

31
P spectra). 

 

 

 

 

 

 

 

 

 

Figure 46: 
1
H MAS NMR spectrum of PVPA. 
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Figure 47: 
31
P MAS NMR spectrum of PVPA. 

 

When PVPA is stored in well-defined water vapor atmospheres, an uptake of water is 

monitored via NMR spectroscopy. The corresponding 
31
P MAS NMR spectra (see figure 48) 

clearly indicate that the amount of condensation is reduced by water uptake, while it increases 

by drying PVPA.  

The comparison of the 
1
H MAS NMR spectra of the PVPA samples (see figure 49) reveals 

that only one peak in the spectra changes significantly upon water uptake. The high frequency 

signal narrows and shifts to lower frequencies with uptake of water until it finally reaches the 

chemical shift of adsorbed water. This is most likely due to the adsorption of water at the 

acidic phosphonic acid groups forming hydration shells [Pereira 01]. The 
1
H chemical shift is 

much more sensitive to the water load in the sample than the 
31
P shifts. Unexpectedly, the 

chemical shift and the observed integral of the adsorbed water peak at ∼6 ppm remains 

unchanged for all samples. Since uptaken water is most likely adsorbing at the phosphonic 

acid groups, it can be assumed that “free” water is already trapped within the PVPA backbone 

during synthesis. This is supported by an annealed sample still showing the peak at 6 ppm. 

 

 

 

 

 

 

 

 

 

Figure 48: 
31
P MAS NMR spectra of PVPA samples which were stored in different water 

atmospheres. Relative humidities are given in the right corner. 

(ppm) 

-15-5 51525 35 45 5565 75 

P-OH

P-O-P 

48 121620 24 28 323640 44 48 52 

(ppm) 

3.4% 
33% 
75% 



3 Structure and Dynamics of Phosphonic acids 41

 

 

 

 

 

 

 

 

 

Figure 49: 
1
H MAS NMR spectra of PVPA samples which were stored in different water 

atmospheres. Relative humidities are given in the right corner. The red arrow 

indicates the water peak at ∼6 ppm. 

 

A freeze-dried PVPA sample was directly measured yielding a 
1
H chemical shift and a degree 

of condensation comparable to a sample stored in a water vapor atmosphere of 20% indicating 

the strong hygroscopicity of PVPA. 

The 
1
H and 

31
P spectra were deconvoluted employing both DM-Fit [Massiot 02] and 

WinNMR [Bruker]. The integrated fraction of adsorbed water is consistent with the data 

obtained from weight analysis and Karl Fischer titration [Kaltbeitzel]. The amount of water in 

PVPA could be estimated from the assumed linear relation between the observed 
1
H chemical 

shift H

obsδ and the proton fraction of uptaken water H

OHx 2
: 

H

OH

H

OH

H

PA

H

PA

H

obs xx
22

δδδ ⋅+⋅= ,  

where H

PAδ  and H

OH 2
δ  are the 

1
H chemical shifts of the acid and water protons respectively, and 

H

PAx  is the proton fraction in the acid. A plot of the water uptake in PVPA derived from the 

chemical shifts and gravimetric studies is given in figure 50 [Kaltbeitzel].  
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Figure 50: Plot of the water uptake in PVPA. The data were obtained from solid-state NMR 

spectroscopy and gravimetry. 

 

 

3.2.2 Methylphosphonic acid 

 

MePA samples were stored in well-defined water vapor atmospheres. The analysis of the 

corresponding 
1
H MAS NMR spectra was performed, since MePA does not show 

condensation at room temperature, and only slight fraction of condensation after prolonged 

annealing.  

It is clearly visible from the 
1
H MAS NMR spectra (see figure 51) that an additional signal at 

about 9 ppm arises with a relative humidity of 43%. At even higher water uptakes it further 

narrows and shifts towards 6 ppm whereas the initial signal at 11.2 ppm vanishes. While 

MePA stored in 43% relative humidity still was a solid powder, MePA with 75% showed 

already the viscosity of a liquid. 

 

 

 

 

 

 

 

 

Figure 51: 
1
H MAS NMR spectra of MePA stored in atmospheres with different humidities: a) 

43%, b) 75%, c) 84%, d) 97%. 
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3.3 Dynamic processes 

 

Since the aim of the study is the understanding of the proton mobility in PEMs operating at 

high temperatures, it is crucial to relate structural proton transport details with bulk mobility. 

In particular, it is desired to establish non-vehicular, “structural diffusion” mechanism as the 

source of proton mobility.  

All prospective phosphonic acid based PEM materials were investigated by 
1
H, 

2
H, and 

31
P 

solid-state NMR spectroscopy.  

Unfortunately, we were not able to monitor particular dynamic behaviour in phosphonic acids 

by 
31
P NMR. Rather 

1
H and 

2
H NMR spectra were acquired at different temperatures, thereby 

yielding information about the dynamics of protons involved in hydrogen bonding.  

Here, we focus on three different materials, namely MePA, PVBzPA, and PVPA ionomer, 

representing distinct structures, which will be compared with respect to their properties and 

dynamics [Schauff 06]. 

 

 

3.3.1 
1
H NMR Spectroscopy 

 

The 
1
H MAS NMR spectra of MePA, PVBzPA, and PVPA ionomer at different temperatures 

are shown in figure 52. In all samples the acidic 
1
H signal was sufficiently resolved and 

therefore could be assigned to the high frequency region of the spectrum. 
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Figure 52: 
1
H MAS NMR spectra of the samples a) MePA, b) PVPA ionomer, and c) PVBzPA 

at different temperatures. 

 

All samples do not show significant changes in the 
1
H chemical shift of the acid group with 

increasing temperature. Small changes occur because the strength of hydrogen bridges in 

most systems decrease with higher temperatures. The finding is consistent with protons that 

populate equivalent sites. 

At room temperature, the acidic protons of MePA have a 
1
H chemical shift of 10.4 ppm, the 

ones of PVPA ionomer 10.8 ppm, whereas the acidic protons of PVBzPA resonate at 8.6 

ppm. Consequently, in MePA and PVPA ionomer the exchangeable protons are in similar 
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chemical environments and reveal rather strong hydrogen bonds while the acid protons in 

PVBzPA form weaker hydrogen bonds.  

In the 
1
H NMR spectra of PVBzPA at higher temperatures a splitting of the acidic proton 

signal can be observed that is probably caused by the meta- and para-isomer mixture present 

in the material. 

The motion of protons in MePA was deduced from the 
1
H linewidths depending on 

temperature since this sample showed the best chemical shift resolution. However, the value 

of about 3 kJ/mol, obtained from the slope of an Arrhenius-type plot, just resembles an 

apparent activation energy, since it appears to be rather small. It is reported in literature [Ye 

06, Lee] that the activation energies of hydrogen bonds in O-H functional groups are in the 

range of about 20-40 kJ/mol. In contrast, our result indicates that the acidic protons in MePA 

do not show any mobility which is also supported by 
2
H NMR data (see section 3.3.2).  

 

 

3.3.2 
2
H NMR Spectroscopy 

 

Since 
1
H NMR spectroscopy often does not yield well resolved peaks, 

2
H NMR spectroscopy 

can be performed instead. 

In the next sections 
2
H NMR spectra of the samples MePA, PVBzPA, and PVPA ionomer 

under fast and slow MAS and in static condition will be shown. 

 

 

3.3.2.1 
2
H MAS NMR Spectroscopy 

 

2
H MAS NMR spectra of MePA, PVBzPA, PVPA ionomer, and PPPA were acquired in a 

rotor synchronized fashion at high MAS frequencies. All spectra exhibit only one 
2
H signal 

that is assigned to the acidic protons. The temperature dependent rotor synchronized 
2
H MAS 

NMR spectra are given in figure 53. 

Since PPPA is a highly viscous sample, only rotor synchronized MAS spectra were obtained 

due to the high mobility of the material preventing spinning sidebands. For all other samples 

(MePA, PVBzPA, and PVPA ionomer) the spinning sideband spectra, which were recorded in 

a non rotor synchronized way at low MAS frequencies, are presented in figure 54. 
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Figure 53: Rotor synchronized 
2
H MAS NMR spectra of the samples a) MePA, b) PVPA 

ionomer, and c) PVBzPA at different temperatures. Red arrows indicate the point 

where τc ∼ cQ. 

 

In contrast to PVPA ionomer, MePA and PVBzPA do not show a complete intensity 

reduction in the temperature dependent rotor synchronized nor in the spinning sideband MAS 

NMR spectra. This strongly suggests a broad distribution of correlation times especially for 

MePA and to a lower degree for PVBzPA. Therefore, we have to consider the activation 

energies extracted from the 
2
H linewidth versus temperature as apparent energies. 

Nevertheless, these values can still be used for comparison of the samples.  

An apparent activation energy of 27 kJ/mol was obtained for MePA, 38 kJ/mol for PVPA 

ionomer, and 19 kJ/mol for PVBzPA. Since activation energies of temperature-activated 

processes in hydrogen bonds are generally in a range up to 120 kJ/mol [Goward 02], the 

obtained values for MePA and PVBzPA most probably indicate that the deuteron mobilities 

cannot be described by a single thermally activated process. This emphasizes that the 
1
H 

linewidth does not reflect proton mobility. 

With respect to the correlation time distribution, one can assume that the high value for PVPA 

ionomer ensues from a well-defined motional process of the deuterons and its strong 

hydrogen bonds, whereas a somewhat smaller apparent activation energy is noticed for 

MePA. The smallest value is observed for PVBzPA, which is most probably due to its much 

weaker hydrogen bridges and a preaveraging effect, evidenced in the spinning sideband 

spectra of PVBzPA.  

The spinning sideband 
2
H NMR spectra of MePA and PVBzPA show very stable sideband 

patterns that do not change their shape over temperature and only collapse when the overall 

mobility of the sample increases due to melting. This phenomenon is an indicator for rigid 

hydrogen bond systems in both samples. 

Comparing the spinning sideband spectra of MePA and PVPA ionomer, a similar quadrupolar 

frequency can be observed, whereas PVBzPA shows a much more narrow set of sidebands. 

Values and further discussion will be given in section 3.3.2.2 since exact frequencies can just 

be obtained by static 
2
H NMR spectroscopy. 
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Figure 54: SSB 
2
H MAS NMR spectra of the samples a) MePA, b) PVPA ionomer, and c) 

PVBzPA at different temperatures. The highlighted area indicates the point where 

τc ∼ cQ. 

 

 

3.3.2.2 
2
H Static NMR Spectroscopy 

 

The 
2
H NMR static lineshapes were monitored over a temperature range of 220 K to 300 K 

for PVPA ionomer (see figure 55) and from 230 K to 340 K for MePA (see figure 56). The 

static NMR spectra for PVBzPA are not given since we were not able to receive a reasonable 

signal-to-noise ratio, probably due to the very low degree of deuterons in the acid groups with 

respect to the polymer backbone.  

At room temperature, a narrowing of the 
2
H lineshape in the PVPA ionomer sample is 

obtained which at higher temperatures leads to a single sharp peak. Even at low temperatures 

a typical Pake pattern could not be observed, most probably due to a poorly defined sample 

condition. In fact, the ionomer is represented by a broad statistical distribution of poly-,  

oligo-, and monomers. However, similar spectra were found for well-defined PVPA [Lee], 

indicating a general structural property in PVPA. The low-temperature spectra of PVPA 

ionomer could in principle be simulated assuming a tetrahedral two-site jump of the deuterons 
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(see figure 57). Nevertheless, a respective simulation of the high-temperature spectra was not 

possible, yielding indication for at least two motional mechanisms, one of which reflects the 

two-site jump (broad pattern), the other a fast movement (averaged peak). 

 

 

 

 

 

 

 

 

 

 

Figure 55: Static 
2
H NMR spectra of PVPA ionomer at different temperatures. 

 

 

 

 

 

 

 

 

 

 

 

Figure 56: Static 
2
H NMR spectra of MePA with simulated line (blue) at two different 

temperatures. 

 

On the contrary, MePA shows a typical Pake pattern with a small asymmetry parameter (η ≈ 

0.1), which does not change significantly over a temperature range of 110 K. In good 

agreement with the 
1
H NMR data (see section 3.3.1), this clearly implies the lack of deuteron 

mobility. When heating above 340 K, an additional sharp signal, rising from the centre of the 

Pake pattern, was observed, reflecting the melting of MePA. This is supported by the 

spectrum at 380 K where a single sharp line is left (data not shown).  
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The quadrupolar frequencies of MePA and PVPA ionomer are in the range of 120 kHz, 

whereas the obtained ωQ of PVBzPA at the same temperature only amounts to 40 kHz, hence 

only 1/3. This pre-averaging is reminiscent to a rotation around a three-fold axis, most likely 

around the C-P bond. 

 

 

 

 

 

 

 

 

 

Figure 57: Simulation of a tetrahedral two-site jump using the NMR-WEBLAB [Macho 01]. 
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3.4 Proton Conductivity Measurements 

 

Plots of the frequency dependent AC proton conductivity σAC (T) for MePA, PVBzPA, and 

PVPA ionomer are given in figure 58. All measurements were performed at similar 

temperatures like the NMR experiments in order to receive comparable data. The samples 

were pressed to pellets since MePA and PVPA ionomer do not form membranes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 58: Frequency dependent AC conductivity plots of a) MePA, b) PVBzPA, and c) PVPA 

ionomer. 

 

Unlike MePA and PVBzPA, the AC conductivity plot of PVPA ionomer shows typical 
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NMR observations of high proton mobilities. Moreover, the sample contains low molecular 

weight compounds with high boiling points which may allow vehicular transport. From an 

Arrhenius-type plot of DC conductivity versus inverse temperature, an activation energy of 

70 °C
60 °C
50 °C
40 °C
30 °C
20 °C
10 °C
  0 °C
-10 °C
-20 °C
-30 °C

-2 -1 0 1 2 3 4 5 6 7
-9.5

-9.0

-8.5

-8.0

-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

-4.5

lo
g
1
0 (
 σ
′ Ω
  c
m
) 

log10 ( ν/Hz) 

70 °C
60 °C
50 °C
40 °C
30 °C
20 °C
10 °C
0 °C

-10 °C
-20 °C
-30 °C 

-2 -1 0 1 2 3 4 5 6 7
-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

lo
g
1
0
 ( σ
′ Ω
  c
m
) 

log10(ν / Hz) 

-2 -1 0 1 2 3 4 5 6 7

-8.5

-8.0

-7.5

-7.0

-6.5

-6.0

-5.5

lo
g
1
0(
σ
′ Ω
  c
m
) 

log10(ν / Hz)

 70 °C 
 60 °C 
 50 °C 
 40 °C 
 30 °C 
 20 °C 
 10 °C 
    0 °C 
-10 °C 
-20 °C 
-30 °C  

a) b) 

c) 



3 Structure and Dynamics of Phosphonic acids 53

about 75 kJ/mol was obtained, where the linear fit covers several orders of magnitude of 

conductivities and thus indicates a single motional process present in the sample.  

On the other hand, the isotherms of MePA show an odd behaviour, that is at some 

temperatures distinct DC plateaus are not visible, but strong indications of electrode 

polarization are observable (see figure 58 a). Since we cannot rule out the presence of water in 

the sample pellet, this is most likely due to melting and evaporation of water, thereby 

deteriorating the electrode contacts. However, for some temperatures the DC proton 

conductivities of up to 10
-5
 S⋅cm

-1
 could be extracted (see figure 59 a). For molten MePA 

(110 °C to 180 °C, closed system) conductivities of up to 10
-1
 S⋅cm

-1
 were obtained (see 

figure 60) [Steininger], yielding an apparent activation energy of about 36 kJ/mol (low 

temperature regime). However, the low proton mobilities, as observed by NMR spectroscopy 

suggest that the proton conductivity does not reflect an intrinsic property of the sample but 

rather is due to traces of adsorbed water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 59: DC proton conductivity plots of a) MePA, b) PVBzPA, and c) PVPA ionomer. 
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The isotherms in the plot of σAC (T) for PVBzPA indicate bad electrode contacts during the 

measurement, similar to the observation made for MePA (see figure 58 b). This effect is also 

visible in the DC conductivity plot, where a turning point at around 20 °C indicates 

evaporation of small molecular compound(s) (see figure 59 b). In fact, when pressing the 

pellet, an acrid smell of the originally odourless PVBzPA was noticed, letting us assume that 

the material is not pressure stable. The overall AC conductivity is very low with values up to 

10
-9
 S⋅cm

-1
. Indeed, this is consistent with the 

1
H and 

2
H NMR data indicating low proton 

mobilities. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 60: Plot of proton conductivity obtained from dried MePA in a closed system at 

different temperatures. 

 

An overview of proton conductivities for various compounds containing phosphonic acid 

functional groups is given in figure 61. In contrast to the measurements of the three samples 

discussed before, these were conducted under a water pressure of 10
5
 Pa leading to overall 

higher proton conductivities [Steininger]. The plot shows quite good properties, especially for 

PPPA, whereas SPA reveals much lower conductivities, probably due to its high degree of 

anhydride formation. 
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Figure 61: Proton conductivity plot of several phosphonic acids. 
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3.5 Conclusion 

 

It was demonstrated that the water uptake in phosphonic acid samples could be monitored 

almost quantitatively via 
1
H chemical shifts. Also, the reversibility of phosphonic acid 

anhydride formation was observed using 
31
P MAS NMR spectroscopy, thereby proving the 

versatility of even simple NMR experiments. 

1
H and 

2
H NMR spectroscopy have been successfully utilized to gain information on both, the 

nature of hydrogen bonds and proton/deuteron mobilities in phosphonic acid groups. 

Variable temperature 
1
H MAS NMR spectra of MePA, PVPA ionomer, and PVBzPA showed 

no significant chemical shift changes, and thus suggest proton populating equivalent sites. 

Qualitative hydrogen bond strengths could be obtained, decreasing from PVPA ionomer to 

PVBzPA. 

Rotor synchronized and spinning sideband 
2
H MAS NMR spectra revealed a well defined 

motional process for PVPA ionomer, but correlation time distributions in MePA and 

PVBzPA. 

MePA did not show proton/deuteron mobility due to a network of rigid hydrogen bonds 

present in the sample, as established from apparent activation energies, obtained from 
1
H and 

2
H MAS NMR spectra, and from the observation of temperature-independent spinning 

sideband patterns and static 
2
H NMR spectroscopy.  

The 
1
H MAS NMR spectra of PVBzPA revealed rather weak hydrogen bonds, and the 

protons/deuterons proved to be rather immobile, even though the phosphonic acid groups are 

attached to the backbone via spacers. Thus, PVBzPA and MePA are structurally rather 

different, yet both immobile. 

In contrast, PVPA ionomer revealed the strongest hydrogen bonds as well as highest proton 

mobility. The strong temperature-dependence of the 
2
H NMR spectra indicates the presence 

of a single motional correlation time. At low temperatures the static spectra most likely 

exhibit the presence of a tetrahedral two-site jump, whereas at higher temperatures an 

additional fast motion sets in.  

These findings can be expressed in figure 62. The scheme illustrates that PVBzPA contains 

the weakest hydrogen bonds, whereas MePA and PVPA ionomer possess stronger hydrogen 

bridges. Thus, highest proton mobilities would be expected for PVBzPA since weaker 

hydrogen bonds are easier to break and therefore facilitate the reorientation of structural units. 

The 
1
H chemical shifts indicate a stronger hydrogen bond network in MePA and PVPA 

ionomer, which are assumed to be rather rigid. 



3 Structure and Dynamics of Phosphonic acids 57

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 62: Scheme relating hydrogen bond strength and proton mobility of the samples 

MePA, PVBzPA, and PVPA ionomer. The 
1
H chemical shifts are given as 

indicators for hydrogen bond strength. 

 

However, unlike the mobile PVPA ionomer, low proton mobilities were observed for 

PVBzPA and MePA, demonstrating that there is no simple connection between hydrogen 

bond strength and proton mobilities. In addition, subtle packing differences must be present in 

MePA and PVPA ionomer, and the “spacer concept” is not necessarily valid in phosphonic 

acid funtionalized polymers.  

This study shows that information about local dynamics present in a sample can be gained by 

application of simple of 
1
H and 

2
H NMR experiments.  

CH3 P

O

OH

OH

10.4 ppm 

*
*

P OH
OH

O

n
 

10.8 ppm 

*
*

CH2
P OHOH
O

n
 

8.6 ppm 

Hydrogen bond strength 

Expected local mobility 

Observed local mobility 

*
*

CH2
P OHOH
O

n
 

CH3 P

O

OH

OH

*
*

P OH
OH

O

n
 



                                                          4  Investigation of Chromatographic Stationary Phases 58 

4 Investigation of Chromatographic Stationary Phases 

 

4.1 Characterization of Stationary Reversed Phases 

 

4.1.1 C18 Phase 

 

The structure of a monomeric C18 functionalized phase is given in figure 63. The {
1
H}-

13
C CP 

MAS NMR spectrum (see figure 63) shows several peaks for the organic ligand at 1.4 ppm 

(methyl groups), 18.3 ppm (C1 and C18), 23.7 ppm (C2 and C17), 30.2 ppm (C4 to C15), and 

33.8 ppm (C3 and C16). The peak at 1.4 ppm which was assigned to the methyl groups is 

quite broad, thus comprises the CH3 functionalities at the silane and an endcapping on the 

silica surface. Endcappings are generally present in commercial phases since they are desired 

to prevent unfavourable interactions with residual silanol groups (see figure 64). 

 

 

 

 

 

 

 

 

 

 

 

Figure 63: {
1
H}-

13
C CP MAS NMR spectrum of a monomeric C18 phase. 

 

This is supported by the {
1
H}-

29
Si CP MAS NMR spectrum (see figure 65). Silyl species can 

be observed at –110.2 ppm for Q
4
, at -101.3 ppm for Q

3
, and at 13.3 ppm for M groups. The 

M species are due to both, the methyl groups at the silane and the endcapping procedure. 

Further, Q
2
 species cannot be observed which suggests that a quite complete crosslinkage of 

silanoles was achieved. 
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Figure 64: Schematic picture of endcappings (-Me) which “cover” residual silanol groups 

(Si-OH) on the silica surface. 

 

 

 

 

 

 

 

 

 

Figure 65: {
1
H}-

29
Si CP MAS NMR spectrum of a monomeric C18 phase. 

 

Basically three peaks are visible in the 
1
H HR-MAS NMR spectrum of the C18 phase in a 

mixture of 80% water and 20% acetonitrile (D2O/ACN-d3), at 0.04 ppm, 0.82 ppm, and at 

1.27 ppm which were assigned to Si-CH3 groups, C18, and C1-C17 respectively (see figure 

66). The peak at 4.63 ppm is the residual water peak, the one at 2.06 ppm originates from 

residual protonated ACN. 

A 
1
H double quantum filtered (DQF) MAS NMR spectrum can yield information about the 

mobility in a C18 phase (see figure 67). The same peaks as in the 
1
H HR-MAS NMR spectrum 

can be observed at a slightly different chemical shift for Si-CH3 since no solvent influences 

are present. In particular, the peak for the carbon chain changes in intensity upon increase of 

recoupling time, which confirms the higher mobility of the chain whereas methyl groups are 

more rigid. 
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Figure 66: 
1
H suspended-state HR-MAS NMR spectrum of a monomeric C18 phase in 80% 

D2O and 20% ACN-d3. 

 

 

 

 

 

 

 

 

 

 

Figure 67: 
1
H DQF MAS NMR spectrum of a monomeric C18 phase with recoupling times of 

one rotor period (black), two rotor periods (red), and three rotor periods (green). 

 

 

4.1.2 C30 Phase 

 

A polymeric C30 phase was investigated by Raitza et al [Raitza 98, 00]. The {
1
H}-

13
C CP 

MAS NMR spectrum (see figure 68) shows peaks at 12 ppm (C1), 14 ppm (C30), 23 ppm 

(C29), 24 ppm (C2), major peaks at 30 ppm and 32.5 ppm (C4-C27), and a shoulder at 35 

ppm (C3 and C28) [Raitza 98]. The main chain (C4-C27) reveals a splitting in two peaks 

which has been found to originate from chain clusters at different mobilities where the peak at 

30 ppm is assigned to mobile gauche conformations and the signal at 32.5 ppm to rigid trans 
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conformations (see figure 69) [Raitza 00]. This finally leads to a shape selectivity for the 

separation of trans/cis isomers in chromatography [Albert 96, Strohschein 98]. 

C30 phases were developed in order to perform demanding separations of carotenoid isomers 

[Sander 94] but also have proven suitable to separate tocopherols [Strohschein 98] (see 

section 4.3.1 for further investigations). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 68: {
1
H}-

13
C CP MAS NMR spectrum of a polymeric C30 phase. 

 

a a
b

SiO2

a ≈ 32 Å        b ≈ 112 Å
 

 

Figure 69: Schematic picture of the brush-type model showing a C30 functionalized silica 

surface with a) rigid (trans) and b) mobile (gauche) alkyl chains. 
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4.1.3 Polyethylene-co-acrylic acid 

 

Polymeric polyethylene-co-acrylic acid (PEAA) phases were developed by Meyer et al 

[Meyer 04] in order to achieve similar separation properties as C30 phases though higher 

overall loadabilities. A {
1
H}-

13
C CP MAS NMR spectrum of a PEAA with an acid mass 

fraction of 5% reveals signals at ∼8 ppm (C1), ∼23 ppm (C2), ∼30 ppm and ∼33 ppm (C9), 

∼43 ppm (C8 and C10), ∼73 ppm (C3-C6) (see figure 70) [Meyer 04, 06]. It seems obvious 

that a similar splitting in trans and gauche moieties is observed for C9 like for the centre chain 

in the C30 phase, thus the PEAA phase should also exhibit shape selective recognition 

capabilities. 

 

 

 

 

 

 

 

 

 

 

Figure 70: {
1
H}-

13
C CP MAS NMR spectrum of a polymeric PEAA phase. 

 

 

4.1.4 Molecularly Imprinted Polymer Particles 

 

A molecularly imprinted particulate, organic polymer, using 2,4-dichlorophenoxyacetic acid 

(2,4-D) as template in a solution of methanol and water, and an imprinted particulate polymer, 

using pure acetic acid in toluene as template, were provided by cooperation partners 

[Zurutuza]. Both were synthesized by radical polymerization from 4-vinylpyridine and 

ethyleneglycol dimethacrylate. The first will be referred to as MIP, the second as NIP (non-

imprinted polymer) since the rebinding of 2,4-D was investigated.  
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4.1.5 Molecularly Imprinted Polymer Monolith 

 

A monolithic molecularly imprinted polymer and a non-imprinted polymer of the same kind 

were provided by the cooperation partner [Courtois 06 b]. The MIP, polymerized from 

methylacrylic acid (MAA) and ethylene dimethacrylate (EDMA), was grafted on a 

trimethylolpropane trimethylacrylate (TRIM) based core. It was synthesized in the presence 

of bupivacaine yielding imprinted monoliths [Courtois 06 a, b]. The NIP was synthesized in 

the same manner but in the absence of the template.  

Both samples were prepared to fit in a 4 mm rotor suitable for solid-state NMR spectroscopy. 

The {
1
H}-

13
C CP MAS NMR spectra reveal similar signals, thus confirming the chemical 

equivalence of both materials (see figure 71). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 71: {
1
H}-

13
C CP MAS NMR spectrum of a TRIM based MIP. 
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4.2 Study of Dynamics in Methylphenyl succinimide/ C18 Phase System 

 

In chromatography, the variation of different parameters is necessary to obtain optimized 

separations. Attempts have been made to model the chromatographic separation process in a 

suspended-state HR-MAS NMR experiment also by varying similar parameters and thus 

observing the influences in the spectra. 

Methylphenyl succinimide (MePhSucc) is an organic compound containing a prochiralic CH2 

group. The 
1
H HR-MAS NMR spectrum of a 0.1 molar solution of MePhSucc in 80% D2O 

and 20% ACN-d3 shows basically three sets of peaks which were assigned to the methyl 

group at 1.68 ppm, to the CH2 group at 3.02 ppm, and the aromatic ring at ∼7.3 ppm (see 

figure 72). However, the CH2 signal reveals a splitting to a doublet of doublet due to its 

prochirality yielding narrow lines. 

 

 

 

 

 

 

 

 

 

 

Figure 72: 
1
H HR-MAS NMR spectrum of methylphenyl succinimide solution in 80% D2O and 

20% ACN-d3. The red arrow indicates the CH2 signal. 

 

Addition of a chromatographic sorbent, namely an endcapped, monomeric C18 phase, to the 

analyte solution led to the observation of a CH2 peak doubling (see figure 73). Surprisingly, 

the original signal kept its linewidth and stayed at the same chemical shift whereas the second 

peak showed a severe broadening and moved to lower frequencies. The chemical shift of the 

broad peak is at ∼2.77 ppm, and the narrow peak stayed at ∼3.02 ppm for a 0.1 molar analyte 

solution. 

Since this could not be explained in a rather simple way, additional studies were performed 

via suspended-state NMR spectroscopy in a closeby chromatographic system. MePhSucc 

solutions in D2O/ACN-d3 mixtures were investigated under the influence of the C18 stationary 
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phase described before. H2O/ACN is a common solvent composition for mobile phases in RP-

HPLC, and therefore suspended-state investigations can yield valuable insight in the 

interactions taking place. In order to prevent suppression of the analyte by the solvent signals, 

generally deuterated solvents are chosen, the amount of which is limited due to the fact that 

the rotor only contains about 60 µl per measurement. 

 

 

 

 

 

 

 

 

 

 

Figure 73: 
1
H suspended-state HR-MAS NMR spectrum (CH2 peak) of a 0.1 molar MePhSucc 

solution (80% D2O and 20% ACN-d3) in a) absence (black line) and b) presence 

(blue line) of C18 phase. 

 

Indeed, the variation of parameters like the mobile phase composition and concentration 

showed rather large influences on the CH2 signal. When decreasing the analyte concentration 

in a fixed mobile phase composition of 80% D2O/ 20% ACN-d3, the broad peak shifted 

towards the high frequency signal until it turned in one final peak for an analyte concentration 

of 0.01 mol/l (see figure 74). The final peak was quite narrow but did not yet reveal the same 

linewidth of the initial peak not influenced by stationary phase. It was not possible to decrease 

the concentration any further, due to the relatively low sensitivity of NMR. However, 

surprisingly, the narrow highfrequency peak also shifted, but in a rather strange manner. At an 

analyte concentration of 0.05 mol/l it shifted towards higher frequencies whereas at even 

lower concentrations it shifted back towards lower frequencies. It did not reach its initial 

chemical shift, but revealed a chemical shift of ∼3.04 ppm [Schauff 04].  

We assume that an excess of analyte (0.1 mol/l) in the system leads to a possible intrapment 

of the analyte molecules between the alkyl chains of the stationary phase leading to two 

separate peaks of two different species (entrapped analyte and “free” analyte) whereas at 

lower concentrations the molecules could perform a fast exchange. 
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Figure 74: 
1
H suspended-state HR-MAS NMR spectra of a a) 0.1, b) 0.05, and c) 0.01 molar 

solution of MePhSucc in 80% D2O and 20% ACN-d3 in presence of C18 phase. 

 

 

 

 

 

 

 

 

 

 

Figure 75: 
1
H suspended-state HR-MAS NMR spectra of 0.1 molar MePhSucc solutions in 

D2O/ACN-d3 mixtures of a) 80%/20%, b) 70%/30%, c) 50%/50%, and d)40%/60% 

in presence of C18 phase. 

 

The change of the mobile phase composition, thus the polarity of the solvent, at a fixed 

concentration of 0.1 mol/l led to a similar phenomenon (see figure 75). With higher organic 

fractions in the mobile phase, the broad peak shifted towards higher frequencies whereas the 

narrow highfrequency peak shifted towards lower chemical shifts until both merged to a 

single signal. The final peak, yielded from a solvent composition of 40% D2O and 60% ACN-

d3, reveals a chemical shift at about 2.96 ppm which indicates the strong influence of mobile 

phase polarity on the analyte. Chemical shift influences on solvent peaks depending on the 

composition of the solvent are already known from liquid-state NMR spectroscopy and can be 

checked in special NMR tables for 50% mixtures [Bruker b]. However, the chemical shift 
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change depends on the analyte, and the stationary phase should also have an influence on the 

sensitive system revealing changes in the chemical shift. 

The results obtained from different mobile phase compositions are most likely due to polarity 

effects on the analyte. Since MePhSucc is a non-polar molecule, it will be attracted by non-

polar solvents and interact hydrophobically with the C18 chains of the stationary phase. At a 

mobile phase composition of 80% D2O and 20% ACN-d3, a part of the analyte molecules 

certainly is pushed among the C18 chains since the solvent is more polar. The analyte 

molecules will probably stay within the stationary phase and thus no exchange will happen 

yielding a broadened peak of “immobilized” molecules. However, since more analyte 

molecules than active sites at the sorbent are present in the experiment, some molecules are 

forced to stay in solution. These resonate in a narrow signal at higher frequencies. When the 

polarity of the mobile phase is changed to a more non-polar composition, an exchange 

between “free” and interacting analyte is more likely to take place. Thus the signals merge to 

a single which shifts to lower frequencies [Schauff 04]. The final shift of this peak will most 

probably be the centre between the initial two peaks. Nevertheless, at a certain point of 

solvent polarity, the single narrow peak can also be caused by analyte molecules which only 

stay in solution and do not interact with the chromatographic sorbent at all. 

However, a completely different explanation can be given when considering the most recent 

results of Gritti et al [Gritti 05, 06]. They investigated C18 stationary phases of another 

company using RP-HPLC and found the existence of three adsorption sites present in the 

material at room temperature. The amount of adsorption sites reduced to only two with 

increase of temperature and thus with increase of chain mobility. They assumed this to be due 

to the disappereance or non-accessibility of the third site after the chain structure changes. It 

was concluded that the adsorption behaviour of low-molecular weight compounds on C18 

phases is complex, thus several distribution constants must be present [Gritti 06]. 

Application of C18 phases (see figure 76) in pure water is known to tie up the chains, thus 

generally deteriorates the phase. We then must assume that a mere change in solvents polarity 

must also have a tremendous influence on the C18 chains. It might be possible that analyte 

molecules interacting with more than one adsorption site could be observed by the 
1
H HR-

MAS NMR experiment. At a mobile phase composition of 80% D2O and 20% ACN-d3, the 

chains should have clustered already to a certain degree, thus appear “frozen” and open all 

possible adsorption sites among which might be one of particular strength. Analyte molecules, 

which adsorb at this particular site, would then interact stronger with this site, leading to the 

additional broadened peak of “immobilized” molecules in the spectrum. Decrease of the 
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solvents polarity then most probably leads to a new arrangement of the C18 chains, thus 

blocking an adsorption site probably by sterical hindrance, leading to the loss of one peak in 

the spectrum. Since the broad peak vanishes, we must assume that it is the strongest 

adsorption site which is no longer accessible. However, a chromatographic separation is 

generally driven by somewhat weaker interactions since the elution of all compounds is 

desired. This leads to the assumption that a high quality separation is not possible on a C18 

phase in pure water due to the strong adsorption phenomena which is also supported by the 

general application of water/non-polar solvent mixtures. 

 

 

 

 

 

 

 

 

 

Figure 76: Schematic picture of a monomeric C18 phase. The stationary phase (white) is 

attached at the solid silica matrix (coloured). 

 

To rule out eventual errors, in particular referencing mistakes, the measurements were 

performed several times. Exact referencing was performed externally by the application of 3-

(trimethylsilyl) propane sulfonic acid Na salt (TSPSA) for each solvent composition (see 

experimental details section). The organic salt of trimethylsilane (TMS) had to be used since 

the organic fractions in the mobile phases were generally quite low. 
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4.3 Dynamic Studies using STD NMR Spectroscopy 

 

In several cases, simple solutions to explain the separation behaviour of stationary phases 

interacting with analytes cannot be given.  

STD NMR spectroscopy was performed to gain further insight in the chromatographic system 

of different reversed phase materials interacting with tocopherol homologues. Furthermore, 

two MIP/analyte systems were investigated using the same technique. 

 

 

4.3.1 Interaction of Tocopherol Homologues with Reversed Phases 

 

Vitamin E is an important antioxidant and radical scavenger which showed anticarcinogenic 

effects in several studies [Biesalski 97] and can be found in most vegetable oils and nuts. 

Tocopherol constitutes a major part in vitamin E and consists of four different homologues, 

namely α-, β-, γ-, and δ-tocopherol.  

Preceding studies revealed the superiority of C30 phases to separate all four tocopherol 

homologues [Strohschein 98] which is surprising since they cannot be separated on all 

stationary phases due to their structural similarity (see figure 77).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 77: Structures of the tocopherol homologues. 
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To obtain a closer understanding of the separation process and estimate the influence of shape 

selectivity on the separation, the interaction behaviour of β- and γ-tocopherol on three 

different RP materials was investigated using 
1
H STD HR-MAS NMR spectroscopy. 

A monomeric C18 phase, a polymeric C30 phase, and a polymeric PEAA phase [Meyer 06] 

were compared with respect to their interaction strength to β- and γ-tocopherol. HPLC of each 

system was performed in methanol as mobile phase yielding the respective chromatograms 

which are given in figure 78. The chromatograms on C18 and C30 were obtained from 

analytical HPLC [Krucker 04], whereas the chromatogram on PEAA was obtained from 

capillary-HPLC [Grynbaum 06], though the retention order is still comparable. 

For all phases, the same retention order, namely δ - γ, β - α, is observable. However, a full 

separation can be performed on the C30 phase (see figure 78 a), whereas only a slight 

separation of β- and γ-tocopherol is achieved on PEAA (see figure 78 b). The C18 phase was 

not capable to separate β- and γ-tocopherol (see figure 78 c). 
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c) 

 

 

 

 

 

 

 

 

Figure 78: Chromatograms of the tocopherol separation in methanol on a a) C30 phase, b) 

PEAA phase, and c) C18 phase. Analytical HPLC was performed on a) and c) and 

capillary-HPLC on b). 

 

The tocopherols only differ in the amount and sterical order of their methyl groups, located at 

the aromatic ring. Since the aromatic ring of α-tocopherol contains three methyl groups, and 

δ-tocopherol only contains one methyl group, we must assume a difference in hydrophobicity 

of these two homologues, thus revealing stronger interactions for α-tocopherol leading to its 

later elution from the chromatographic column. β- and γ-tocopherol both contain two methyl 

groups at the aromatic ring indicating their elution in the middle band. However, since the 

sterical order of their methyl groups is not alike, they might be separated due to shape 

selectivity.  

1
H HR-MAS NMR spectra of β- and γ-tocopherol dissolved in methanol-d4 reveal the 

structural difference of both homologues (see figure 79). The CH2 group (b) of γ-tocopherol 

resonates at ∼2.65 ppm, whereas the CH2 signal for β-tocopherol experiences a lowfrequency 

shift due to the neighboured methyl group. The opposite shift behaviour is the case for the 

aromatic proton signals at ∼6.32 ppm (γ-tocopherol) and ∼6.44 ppm (β-tocopherol) 

respectively. 

The 
1
H STD HR-MAS NMR spectra of β- and γ-tocopherol in the presence of each phase 

respectively are given in figure 80. The peak intensities of the well-resolved signals were 

integrated and compared in table 1. Surprisingly, intensity differences could be seen from 

distinct tocopherol protons revealing the suitability of STD NMR spectroscopy to unveil 

closer information about the part of molecule adsorbing at the stationary phase. Since the 

substantial interaction sites are expected to be present in the aromatic region (structural 

difference of β- and γ-tocopherol) and the alkyl chain (hydrophobic interactions) of the 

γ, β 

δ 
tocol 

min 

α-acetate 

25 

75 

100 

125 

150 

0 

30 10 20 0 

50 

mAU 



                                                          4  Investigation of Chromatographic Stationary Phases 72 

tocopherols, peak b at the heterocycle is referenced to an integral of one. However, only a 

qualitative assumption can be made from the obtained values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 79: 
1
H HR-MAS NMR spectra of a) β-tocopherol and b) γ-tocopherol in MeOD-d3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 80: 
1
H suspended-state STD HR-MAS NMR spectra of β- and γ-tocopherol solutions 

in MeOD-d3 in presence of a) C30 phase, b) PEAA phase, and c) C18 phase. 
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Table 1: Relative integrals of proton peaks derived from the 
1
H STD HR-MAS NMR spectra of 

β- and γ-tocopherol in MeOD-d3 in pure solution (*) and in presence of the three 

phases respectively. 

 

For comparison and as a proof of principle, the first two lines in the table show integrals of 

pure tocopherol solutions without stationary phase. It is clearly visible, that the integrals of β- 

and γ-tocopherol peaks are identical, leading to an identical behaviour in the pure solution. 

However, addition of the C30 phase causes a difference in peak intensity of both homologues. 

An increase of intensity was observed for the aromatic ring protons in β-tocopherol compared 

to γ-tocopherol whereas the alkyl chain showed the opposite. A similar effect could be 

observed in the case of PEAA, though to a smaller extent. Besides, addition of this phase 

reveals a different behaviour of the tocopherols alkyl chain. Predictably, the tocopherols show 

similar peak integrals in the presence of the C18 phase.  

Since the STD experiment yields difference spectra (see section 2.4.1), the obtained 
1
H STD 

HR-MAS NMR spectra reveal the most intense peaks for parts of analyte molecules which 

show the strongest interaction with the stationary phase. 

Due to these observations, assumptions can be derived from the obtained NMR data described 

before. The aromatic region of the tocopherol homologues seems to interact with the C30 and 

PEAA phases, where the strongest interaction is observed for the C30 phase, which also 

reveals the largest difference on the homologues. A somewhat weaker interaction is observed 

for the tocopherols in the presence of PEAA, and no interaction in presence of the C18 phase. 

Since the spectra of β-tocopherol in comparison to γ-tocopherol show the strongest 

interactions for the aromatic methyl protons, we can assume that β-tocopherol will most 

probably elute later from a C30 phase than γ-tocopherol. These results match the information 

obtained from chromatography. 

a b c d e

β -tocopherol* 0.5 1.0 3.1 1.1 6.5

γ -tocopherol* 0.5 1.0 3.2 1.1 6.5

β  + C30 2.2 1.0 9.6 1.4 37.6

γ  + C30 1.1 1.0 7.6 2.4 51.1

β  + PEAA 1.4 1.0 8.1 1.8 32.1

γ  + PEAA 0.8 1.0 6.1 1.7 22.0

β  + C18 0.7 1.0 6.2 2.0 41.7

γ  + C18 0.7 1.0 5.5 2.6 42.1
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In order to explain the retention behaviour of both tocopherol homologues on a C30 phase, we 

suggest that β-tocopherol (methyl groups are arranged on opposite sides of the aromatic ring) 

is able to penetrate deeply between the C30 chains whereas γ-tocopherol (methyl groups are 

located on one side of the aromatic ring) might penetrate in a more askew way, thus 

interacting weaker and eluting earlier. 

 

 

4.3.2 Interaction of Particulate MIP with 2,4-Dichlorophenoxyacetic acid 

 

An imprinted particulate polymer (MIP) was investigated with respect to its selective affinity 

to its template 2,4-dichlorophenoxyacetic acid (2,4-D). It was compared to the same polymer 

which was imprinted with acetic acid (NIP).  

A 
1
H HR-MAS NMR spectrum was aquired on a buffered solution of 2,4-D in 50% MeOD-d3 

and 50% D2O yielding four sample peaks at 7.37 ppm, 7.18 ppm, and 6.8 ppm, and at 4.49 

ppm, which were assigned to the aromatic protons and the CH2 group respectively (see figure 

81). For clarity, an enlarged section of the aromatic signals is provided. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 81: 
1
H HR-MAS NMR spectrum of a buffered 2,4-D solution in 50% MeOD-d3 and 

50% D2O. 

 

The 
1
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peaks at 7.47 ppm and 7.27 ppm (aromatic protons), and at 4.49 ppm (CH2), indicating the 

interaction of the side chain and part of the aromat with the NIP (see figure 82 a). However, 

upon addition of MIP to the analyte solution, four peaks are observable in the spectrum (see 

figure 82 b), namely at 7.43 ppm, 7.23 ppm, and 6.87 ppm (aromatic protons), and at 4.46 

ppm (CH2). Even though the intensity of all analyte signals in the STD spectra is quite weak, 

which is most probably due to the large water peak present, we assume that this additional 

peak present in the STD spectrum belongs to an aromatic proton which reveals selective 

binding to the MIP. Besides, we can conclude, that also non-specific binding is present due to 

the observed peaks of the 2,4-D in presence of the NIP. 

 

 

 

 

 

 

 

 

 

 

 

Figure 82: 
1
H suspended-state STD HR-MAS NMR spectra of a buffered 2,4-D solution in 

50% MeOD-d3 and 50% D2O in presence of a) NIP and b) MIP. 

 

 

4.3.3 Interaction of MIP Monolith with Bupivacaine 

 

Bupivacaine is a local anaesthetic, which was applied as template for the imprinting process 

on the monolith since it is soluble in water and organic solvents [Courtois 06 a, b]. The 

hydrochloric salt of bupivacaine was used as analyte in the recognition study for simplicity. 

The molecular recognition of bupivacaine on grafted MIP and NIP monoliths was 

investigated using the STD HR-MAS NMR technique in order to reveal the imprinting quality 

and the selectivity of the respective binding sites. 

The 
1
H HR-MAS NMR spectrum of a 0.1 molar solution of bupivacaine in ACN-d3 is given 

in figure 83, revealing peaks at 0.91 ppm (methyl groups), 1.31 ppm, 1.50 ppm, and 1.73 ppm 
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(alkyl chain), 2.77 ppm and 3.18 ppm (heterocycle), 7.07 ppm (aromatic ring), and 8.24 ppm 

(NH group). 

 

 

 

 

 

 

 

 

 

 

 

Figure 83: 
1
H HR-MAS NMR spectrum of a bupivacaine solution in ACN-d3. 

 

Since grinding of the MIP monolith would probably lead to a partial destruction of the 

imprinted sites, the rotor was directly filled with a complete piece of monolith, and the analyte 

solution was added afterwards. 

The 
1
H STD HR-MAS NMR spectra of bupivacaine in presence of MIP and NIP respectively 

still showed all analyte peaks at a similar chemical shift (see figure 84). However, upon 

comparison of the integrals of both spectra, referenced on signal a, which was set to an 

integral of one, considerable differences could be observed. The extracted data (see table 2) 

reveal larger intensities for the bupivacaine protons located at the aromatic ring and the NH in 

presence of MIP compared to NIP which indicates a stronger binding of the aromatic side of 

bupivacaine to the MIP. On the contrary, larger integrals are observed for the alkyl chain 

protons in presence of the NIP. To express this more clearly, the aromatic part of bupivacaine 

seems to interact stronger with the MIP whereas its alkyl chain interacts stronger with the 

NIP. This is a suprising observation, which leads to a considerable difference of the 

recognition behaviour between the imprinted and non-imprinted polymers yielding the 

assumption that, in the MIP, the selective binding is exceeding the non-selective interactions. 

Hence, the polar groups of the MAA form a specific binding site for the bupivacaine 

[Courtois 06 b]. The bupivacaine is most likely to interact hydrophobically with the NIP, thus 

the alkyl chain shows the highest saturation in the STD NMR spectrum. 
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Figure 84: 
1
H suspended-state STD HR-MAS NMR spectra of bupivacaine in ACN-d3 in 

presence of a) NIP and b) MIP. 

 

Table 2: Relative integrals of proton peaks derived from the 
1
H suspended-state STD HR-

MAS NMR spectra of bupivacaine in presence of NIP and MIP. 

 

NIP 2,5 5 1 2 6 2
MIP 5 8,5 1 2 4 1
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4.4 Conclusion 

 

It was shown that 
1
H suspended-state HR-MAS NMR spectroscopy is a suitable technique to 

study the dynamic behaviour of interphase systems. Sensitive systems of mobile and 

stationary phase with analytes were investigated in order to gain information about mutual 

influences leading to valuable insight in interaction and retention mechanisms.  

The influence of mobile phase composition and concentration on the analyte was shown on 

methylphenyl succinimide. Two possible dynamic schemes were suggested. 

Suspended-state STD HR-MAS NMR spectroscopy was also applied on different systems and 

showed its suitability to locate the active sites of analyte molecules interacting with 

macromolecules.  

In particular, the shape selectivity of C30 and PEAA phases could be monitored. The 

rebinding and molecular recognition quality of molecularly imprinted polymers could also be 

tested using this technique. However, further experiments on the MIP monolith revealed 

problems arising from the STD NMR experiment showing that the obtained results are not 

always reproducible. The technique is not suitable for all polymer/analyte systems due to the 

possibility of accidental direct saturation of the analyte. A mere irradiation on the polymer, 

distant from the analyte resonances, has to be achieved. 

To increase the experience on interpreting the obtained results, suspended-state HR-MAS 

NMR spectroscopy of additional chromatographic systems should be performed.  
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5 Summary 

 

New materials, suitable for the application in reversed phase liquid chromatography and fuel 

cell membranes, were characterized regarding their structure and dynamic properties using 

solid-state and suspended-state NMR spectroscopy. Both methods were found to be suitable 

to study the dynamic behaviour, the first to observe intrinsic mobilities of phosphonic acids, 

the second to monitor interaction processes taking place in a chromatography-like system. 

 

Several phosphonic acids, which are promising materials for high temperature fuel cell 

membranes, were investigated with respect to proton mobility and transport applying various 

solid-state NMR methods. In addition, water uptake and its effects on anhydride formation 

were studied on samples that were equilibrated with saturated salt solutions. For PVPA 

substantial, reversible anhydride formation was found, while MePA did not show 

condensation. Variable temperature 
1
H MAS NMR spectroscopy of PVPA ionomer, MePA, 

and PVBzPA revealed single proton sites. Their chemical shifts indicate stronger hydrogen 

bonds in PVPA ionomer and rather weak bonds in PVBzPA. Since 
2
H NMR spectroscopy 

allows for the observation of quadrupolar tensor reorientation, static as well as MAS 
2
H NMR 

spectra were recorded, revealing information about deuteron mobilities, especially for PVPA 

ionomer, MePA, and PVBzPA. It was found, that PVPA ionomer shows high proton mobility, 

despite rather strong hydrogen bonds. Low proton mobilities were observed for both MePA 

and PVBzPA, though the hydrogen bond strength in MePA is similar to that of PVPA 

ionomer, while PVBzPA possesses weaker hydrogen bridges. 

These results show that the relation between hydrogen bond strength and proton mobility is 

complex. In particular, this work demonstrates that the application of simple 1D 
1
H and 

2
H 

NMR experiments provides easy access to information about proton/deuteron mobility on 

short time scales, needed for an identification of materials with high intrinsic proton 

conductivities. 

 

Stationary phases for reversed phase liquid chomatography were characterized by solid-state 

NMR spectroscopy, and their influence on different analytes was studied using suspended-

state HR-MAS NMR spectroscopy. Suspended-state HR-MAS NMR spectroscopy showed to 

be suitable to model the separation process of analytes on chromatographic sorbents. For this, 

the stationary phase was suspended in a solution of analyte dissolved in mobile phase.  
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MePhSucc showed a peak doubling of the CH2 group in presence of monomeric C18 phase, 

leading to the coexistence of a narrow and a broadened peak. Thus, the dynamic interactions 

of MePhSucc towards the stationary phase, and under the influence of the mobile phase, could 

be directly observed using 
1
H HR-MAS NMR spectroscopy. Changing the mobile phase 

concentration and composition caused a shift of the broadened peak towards the narrow CH2 

signal, resulting in the fusion of both. These effects were explained by two different theories, 

one of which substantiates with polarity differences, the other with the winding up of the C18 

alkyl chains. 

Separating interactions were also investigated using the suspended-state STD HR-MAS NMR 

technique that unveiled the part of analyte molecule interacting with the chromatographic 

sorbent. The shape selectivity of C30 and PEAA phases, known from HPLC, could be 

confirmed by 
1
H STD HR-MAS NMR spectroscopy on the example of β- and γ-tocopherol. 

The spectra of the tocopherol homologues in presence of the C30 phase revealed the largest 

interaction differences, thus showing similarity to the retention order observed in HPLC.  

Furthermore, the molecular recognition of a particulate and a monolithic MIP towards their 

respective template molecules was investigated using 
1
H STD HR-MAS NMR spectroscopy. 

The obtained data proved superiority of the respective MIP over the NIP, and definite 

knowledge of the interaction site at the analyte molecules could be gained. Differences 

between specific and non-specific binding could be observed. 

However, continued investigations of chromatographic and molecular recognition systems 

may aid further interpretation of the obtained results and thus the understanding of such 

separation and rebinding mechanisms. 
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6 Experimental Details 

 

Phosphonic acids 

 

Samples and chemicals: 

Most samples were provided by cooperation partners participating in the DryD project. PVPA 

ionomer was donated by PEMEAS GmbH, Frankfurt. Methylphosphonic acid was 

commercially obtained from Acros Organics. Deuteriumoxide and methanol-d4 were obtained 

from Merck, Darmstadt. 

 

NMR spectroscopy: 

All MAS NMR experiments were carried out in 2.5 mm double bearing rotors made from 

ZrO2 at spinning speeds ranging from 10 to 25 kHz. Most of the 
1
H, 

13
C, and 

31
P NMR 

experiments were performed on a Bruker ASX 500 MHz spectrometer with respective 

frequencies of 500.13 MHz for 
1
H, 125.758 MHz for 

13
C and 202.456 MHz for 

31
P. The pulse 

length was 2.5 µs for all nuclei. Some of the 
1
H and all 

2
H MAS NMR experiments were 

carried out on a Bruker DRX 700 MHz spectrometer with respective frequencies of 700.13 

MHz for 
1
H and 107.474 MHz for 

2
H. The pulse length again was 2.5 µs for all nuclei. 

Static 
2
H NMR experiments were performed on a Bruker DSX 300 MHz spectrometer in a 

static probehead equipped with a 7 mm coil. The 
2
H frequency is 46.072 MHz, and the pulse 

length was 4.2 µs. 

The data used for Arrhenius plots to extract activation energies was temperature calibrated 

with respect to the MAS frequency using Sm2Sn2O7 [Langer 99]. 

 

Deuteration: 

All samples, except PVBzPA, were deuterated by dissolving them in D2O at room 

temperature and freeze-drying them afterwards. PVBzPA underwent the same procedure but 

with deuterated methanol as solvent instead. 

 

Proton conductivity measurements: 

Pellets were formed for all samples using a standard press for KBr pellets. To ensure the 

contact of the brass electrodes to the rough surface of the pellets, E-TEK carbon cloth 

electrodes loaded with platinum particles were used. Proton conductivity measurements were 
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performed by dielectric spectroscopy in a two-electrode geometry using a SI 1260 

impedance/gain-phase analyzer.  

The conductivities were measured in a temperature range of –30 °C to +70 °C in steps of 10 

°C at different frequencies. For each temperature the saturation point was determined to yield 

the actual conductivity at the certain temperature. 

  

Water uptake studies: 

The experimental setup is explained in chapter 3.2. 

 

 

Chromatographic Stationary Phases 

 

Samples and chemicals: 

The two MIP samples were provided by the cooperation partners of the AquaMIP project. The 

monomeric C18 and polymeric C30 phases were donated by Bischoff Chromatography GmbH, 

Leonberg. PEAA was provided by Meyer [Meyer 04, 05], and the tocopherols were ordered 

from CalBiochem, USA. Methylphenyl succinimide, TSPSA, and all deuterated organic 

solvents were commercially obtained from Acros Organics. Deuteriumoxide was obtained 

from Merck, Darmstadt. 2,4-D was commercially available from Aldrich. Bupivacaine was 

donated by AstraZeneca, Sweden. The deuterated TRIS buffer was obtained from Cambridge 

Isotope Labs, GB. 

 

NMR spectroscopy: 

All solid-state NMR experiments were carried out in 4 mm or 7 mm (
29
Si) double bearing 

rotors made from ZrO2 on Bruker DSX 200 MHz and ASX 300 MHz spectrometers with 

resonance frequencies at 50.312 MHz and 75.468 MHz for 
13
C and at 39.75 MHz and 59.63 

MHz for 
29
Si respectively. The pulse length for 

13
C was 3.5 µs, and the contact time of 

1
H-

13
C 

CP was 2-5 ms. The pulse length for 
29
Si was 7 µs, and the contact time for {

1
H}-

29
Si CP was 

5 ms. 

The 
1
H HR-MAS NMR experiments were all performed in 4 mm HR-MAS rotors on a Bruker 

ARX 400 MHz spectrometer. The 
1
H pulse length was 9.5 µs. Stock solutions were made 

from all analytes in the particular mobile phase respectivley. The rotors were then carefully 

filled with each, ∼5 mg of stationary phase and ∼68 µl of analyte solution, and spun up to 4 

kHz. In case of the MIP monoliths the samples were measured in complete pieces of ∼5 mg. 
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Chemical shift referencing was performed externally on the applied solvent compositions for 

each experiment respectively using 3-(trimethylsilyl) propane sulfonic acid Na salt (TSPSA) 

as an internal standard. For this, TSPSA was dissolved in the given solvent composition, and 

the chemical shift of the methyl protons was determined. 

 

HPLC: 

The tocopherols were separated on a C30 column with an isocratic mobile phase mixture of 

96% methanol and 4% water with a flow rate of 1 ml/min [Krucker 04 a, b]. The tocopherol 

homologues were separated on a PEAA column, using an isocratic mixture of 90% methanol 

and 10% water with a flow rate of 5 µl/min [Grynbaum 06 a, b]. 

Analytical HPLC was performed on an Agilent HPLC system, equipped with binary pump, 

degasser, and UV detector (Agilent Technologies, Waldbronn). HyStar NT 2.0 (Bruker 

Daltonik GmbH, Bremen) and Agilent ChemStation were used as control software. 

Capillary HPLC was performed on a ternary modular capillary HPLC pump (Waters, USA) 

with a Bischoff Lambda 1010 UV detector (Bischoff Analysentechnik und –geräte GmbH, 

Leonberg). HyStar NT 2.3.b74 was used as control software.  
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