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Abstract

Gene regulation plays a pivotal role at all stages of organism development, in cell differenti-

ation, and for maintaining homeostasis. Controlled spatial and temporal gene expression is

achieved by means of complex and robust regulatory networks. A key event in maintaining

such networks is the sequence specific protein-DNA recognition, which enables transcription

factors to identify their respective binding sites.

Computational and structural biologists face intriguing challenges at three different levels

when investigating gene regulation. First, the involvement of gene regulation in disease can

be addressed by studying global effects of gene regulatory networks, which are visible at the

level of systems. Furthermore, detecting the often short and variable transcription factor

binding sites (TFBSs) in genomic DNA is not a trivial task, since the prediction of TFBSs

and delineation of functional regulatory modules are conducted at the level of sequences.

Finally, there is a challenge in understanding the factors governing transcription factor-DNA

recognition, as the information needs to be collected at the molecular level. Structure-based

methods provide detailed information about protein-DNA interactions at atomic resolution.

In this work, a versatile approach for computational analysis of the different levels of gene

regulation, gradually zooming in from the global level of systems to the molecular level,

is presented. Linking information related to gene regulation from the different levels can

help in clarifying phenomena that are hard to explain using only one source of information.

First, the influence of gene regulation is analyzed at the level of systems. A set of cancer-

related target genes are identified using a novel integrative analysis pipeline. Microarray

data, immunological data, and curated biological knowledge are brought together enabling

extensive analysis of the underlying mechanisms controlling gene expression in cancer tissue.

The transcription factor AP2 is suggested to play a key regulatory role in controlling a set of

over-expressed melanoma-related genes. The computational results presented are supported

by previously reported experimental evidence.

Zooming in to the level of sequences transcription factors orchestrating the expression of

functionally related genes are identified in yeast and plant, which are two important model

organisms for studying gene regulation. The pattern-finding algorithm Gibbs sampling is

employed for discovering putative functional TFBSs in functionally related genes. The re-

sponse element ACGCGT is found to be over-represented in DNA-repair genes in yeast,

which supports the idea that the transcription factor MBP1 is involved in blocking repli-
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cation of damaged DNA. The vital regulation of stem cells is explored in plant, providing

preliminary computational evidence for TFBSs critical to stem cell differentiation.

The final transition is the step from analyzing gene regulation at the levels of systems and

sequences to studying protein-DNA interactions at atomic detail. Structural data provides an

additional source for gaining insight into the thermodynamic properties of sequence specific

binding, which eventually directs gene regulation. A computational protocol for analyzing

the effects that small base modifications have on the overall binding free energy is described.

The computationally obtained results for mutating the thymine to uracil in transcription

factor-DNA complexes agree well with previously reported experimental results, illustrating

the applicability of the protocol. This is a first step towards using molecular modeling for

constructing structure-based models of TFBSs.

Each individual level of this step-wise analysis provides crucial information needed to gain

insight into the different aspects underlying complex regulatory control mechanisms. Anal-

ysis at the level of systems and networks is crucial for understanding global effects of gene

regulation, the implications of gene regulation in disease, and for identifying sets of target

genes. Sequence-based methods are used for discovering functional binding sites in gene regu-

latory regions for such sets of related genes, responsible for directing gene expression. Finally,

structural analysis can explain ambiguities observed in sequence-based models, however, can

only be applied to a limited number of protein-DNA complexes due to high computational

requirements. An improved understanding of all aspects of gene regulation is inevitable for

identifying key factors influencing organism development and disease.
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Kurzzusammenfassung

Genregulation spielt eine entscheidende Rolle in allen Entwicklungsstadien eines Organis-

mus, bei der Zelldifferenzierung und dem Erhalt der Homöostase. Die kontrollierte räumliche

und zeitliche Expression bestimmter Gene wird dabei durch ein komplexes, aber robustes,

Netzwerk kontrolliert. Ein Schlüsselprozess der Regulation ist dabei die sequenzspezifische

Protein-DNA-Erkennung, die es Transkriptionsfaktoren erlaubt ihre jeweiligen Bindungsstellen

zu erkennen.

Die Untersuchung der Genregulation wirft interessante Fragen auf drei verschiedenen Ebe-

nen auf. Auf der obersten Ebene, der Ebene der Systeme, beschäftigt man sich dabei mit den

Auswirkungen der Genregulation auf Netzwerke als Ganzes. Diese Ebene hat wichtige Impli-

kationen für die Erforschung von Krankheiten. Die zweite Ebene, die Sequenzebene, betrach-

tet die Wechselwirkungen von Transkriptionsfaktoren mit ihren genomischen Bindestellen

und erlaubt Aussagen über regulatorische Module und deren Anordnung im Genom. Die

dritte, molekulare Ebene schließlich versucht die Protein-DNA-Wechselwirkungen ausgehend

von der dreidimensionalen Struktur von Proteinen und DNA zu erklären.

In dieser Arbeit werden eine Reihe von Ansätzen zur rechnergestützten Analyse der Gen-

regulation auf all diesen Ebenen vorgestellt, von der Systemebene bis hinab zur molekulare

Ebene. Zunächst wird dabei der Einfluss der Genregulation auf der Systemebene betrachtet.

Mit einer neuen integrativen Analyse-Pipeline werden dazu an der Entstehung von Krebs

beteiligte Gene identifiziert. Dazu wird eine ganze Reihe heterogener Datensätze integriert

und im gemeinsamen Kontext analysiert, insbesondere in Bezug auf die Genexpression in

Krebsgeweben. Es stellt sich heraus, dass der Transkriptionsfaktor AP2 eine Schlüsselrolle

in der Steuerung überexprimierter Gene in Melanomen spielt. Diese theoretisch erhaltenen

Ergebnisse unterstützen früher erzielte experimentelle Ergebnisse.

Geht man nun einen Schritt weiter hinab, zur Ebene der Sequenzen, so kann man hier an

anderen Modellsystemen, Hefe und der Ackerschmalwand, das Zusammenspiel verschiedener

Transkriptionsfaktoren in der Regulation funktionell verwandter Gene studieren. Mit Gibbs-

Sampling wurden dazu potentielle Bindestellen von Transkriptionsfaktoren identifiziert. Dabei

stellt sich insbesondere das response element ACGCGT als überrepräsentiert in regulatorische

Regionen von DNA-Reparaturgenen der Hefe heraus. Dies unterstützt die Hypothese, dass

der Transkriptionsfaktor MBP1 beim Blockieren der Replikation beschädigter DNA beteiligt

ist. In Arabidopsis thaliana, der Ackerschmalwand, wurde mit ähnlichen Methoden die Re-
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gulation der pflanzlichen Stammzellen untersucht. Vorläufige Ergebnisse deuten hier auf

die kritischen Rollen bestimmter Transkriptionsfaktoren hin und leisten einen Beitrag zur

Aufklärung der zugrunde liegenden regulatorischen Netzwerke.

Geht man schließlich eine weitere Ebene hinab, so kann man die Interaktion der Transkrip-

tionsfaktoren mit der DNA auf molekularer Ebene untersuchen. Ausgehend von strukturellen

Daten von DNA-Transkriptionsfaktor-Komplexen lassen sich die thermodynamischen Größen

bestimmen, die für die Regulation ausschlaggebend sind. Es wird ein Simulationsprotokoll

vorgestellt, dass es erlaubt, den Einfluss von Punktmutationen in der DNA auf die freie

Bindungsenthalpie zu berechnen. Die derart bestimmten Änderungen der freien Enthalpie

für Mutationen von Thymin zu Uracil in Zinkfinger-DNA-Komplexen stimmen sehr gut mit

experimentell bestimmten Werten überein. Diese Art von Studien ist ein erster Schritt zur

Vorhersage der Motive eines Transkriptionsfaktors ausgehend von seiner Struktur.

Eine solche Sicht auf die verschiedenen Ebenen des Phänomens Genregulation erlaubt ein

besseres Verständnis des gesamten Vorgangs. Jede Ebene liefert wesentliche Informationen zu

einem bestimmten Aspekt der Genregulation: die systemische Ebene erlaubt das Verständnis

der Regulation im Kontext des gesamten regulatorischen Netzwerks und erlaubt es, die Ef-

fekte der Genregulation auf komplexe Krankheitsverläufe zu untersuchen. Sequenzbasierte

Methoden erlauben das Verständnis der lokalen Feinregulation funktionell verwandter Gene.

Die molekulare Ebene schließlich erlaubt es, die Mehrdeutigkeiten sequenzbasierter Modelle

zu verstehen und vorherzusagen. Der hohe Rechenaufwand dieser Methoden beschränkt diese

Art von Modell aber derzeit noch auf kleine Studien und ausgewählte Beispielfälle.
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1 Introduction

The coordinated interaction of biomolecules is essential for achieving specificity and efficiency

of virtually all cellular processes. Gene regulation plays a central role in the cellular machinery

as it determines cell differentiation and thereby organism development. Primarily controlled

at the level of transcription, gene regulation is conducted by DNA-binding proteins known

as transcription factors (TFs). Typically, a set of TFs act in concert to ensure correct spatial

and temporal expression of a set of target genes [83]. The combinatorial aspect increases the

degree of complexity and is a key feature for precisely controllable regulatory cascades and

networks [163].

It is of outmost importance that the correct transcriptional control cascade is triggered,

especially during the early stages of organism development and in response to external fac-

tors [156, 236]. Alterations in genes, proteins, or interactions between them can lead to

dysfunctioning control and transport systems, which eventually can result in disease [6, 242].

Genetic aberrations occurring in genes coding for TFs can have wide-spread effects, due to

their critical functions they exercise at all stages of organism development. Consequently,

research efforts are typically motivated by specific biological and disease-related applications,

aiming to understand the underlying causes and their implications [144].

Gene regulation can be studied at different levels, which all provide invaluable sources of

information and guidelines for further research. The different aspects of gene regulation,

ranging from the level of biological systems to atomic detail, are introduced in the following

paragraphs. A graphical illustration of the different levels, at which gene regulation can be

studied, is shown in Fig. 1.1.

Gene regulatory networks control gene expression observed at the level of systems. Hence,

global techniques are necessary for assessing the implications of dysfunctioning proteins and

effects of therapeutic agents. Systematic perturbation of genetic networks is performed for

functional characterization [193, 112] and provides a useful tool in the drug target identifi-

cation process [42]. Global gene expression profiles are often used for diagnostic purposes by
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1 Introduction

Figure 1.1: A graphical illustration demonstrating the different levels, at which gene reg-
ulation can be analyzed. Observing gene regulatory networks at the level of
biological systems gives an overview of (top). Gene expression profiles are used
for characterizing gene function and for identifying individual TFBSs at the level
of gene regulatory sequences (middle), which is useful for reconstructing higher
level networks. Zooming in further, gene regulation can be studied at atomic
detail (bottom). Structural data of protein-DNA complexes provides insight into
specific interactions governing protein-DNA association and has proven useful for
explaining observations at the sequence level.
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studying the behavior of marker genes e.g. for determining the disease progression or cancer

type [13].

Understanding functional relationships between genes and constructing network models

of their transcriptional regulation is a challenging task. A common way to address the

individual components of regulatory networks is to analyze the involved genes at the sequence

level. Sequence-based methods aim to delineate the functional transcription factor binding

sites (TFBSs) within the relevant regulatory sequences [68] and allow for detailed studies of

effects due to mutations. Relationships between key players involved in gene regulation can be

elucidated by collecting gene expression data from several complementing experiments [112].

The sequence-based models of the binding sites for specific TFs are typically inadequate.

Representing the short (and often variable) TFBSs achieving the high level of selectivity

and sensitivity that TFs have, is a true challenge. In order to improve the models of the

binding sites, the interactions underlying sequence specific recognition between proteins and

DNA have been subject to structure-based studies at atomic detail [123, 166, 264]. Sequence

specificity, which is the basis for transcriptional control is achieved through structural and

chemical complementarity between a TF and its binding site.

The theoretical background, both biological and computational, needed for understanding

the work in this thesis is presented in Chapt. 2. The concepts of transcriptional control of

gene expression, the role and biochemical properties DNA-binding proteins, and the com-

plexity of regulatory networks are introduced. Furthermore, the basic theoretical concepts

of computational chemistry and molecular modeling are described. Related work, including

both experimental and the most commonly employed computational approaches, is outlined

in Chapt. 3.

Chapters 4 to 6 contain several studies, where protein-DNA interactions are the focus.

The versatile approach presented here addresses three important aspects of gene regulation,

which are illustrated in Fig. 1.1. Each of these levels are addressed individually - moving from

systems biology (top) to the atomic level analysis (bottom) - and the results are considered

from a more global point of view. First, the influence of transcription at the general level

of systems biology and networks is addressed. The next step is sequence-based studies of

biologically linked genes and proteins that play a regulatory role in a variety of organisms.

Finally, a detailed analysis including structure-based modeling of protein-DNA interactions

at an atomic resolution is presented. At each level the characteristic challenges and results are

described in detail. Furthermore, implications in disease-related research and the potential

3



1 Introduction

therapeutic aspects are discussed.

Systems biology aims at modeling whole networks, cells, tissues, or organisms [135, 273].

This clearly presents a true challenge, as most biological events are complex, multifactorial,

highly interdependent, and not yet fully understood. It is necessary to assess the effects of

a genetic alteration or a dysfunctioning transcriptional control signal at the whole-organism

level [42]. A comparison of the gene expression in different cell or tissue types (e.g. normal

and tumor) can reveal differentially expressed biologically related genes. Cancer genesis and

HIV infection are two examples of diseases with an immense impact, to which no single

therapy can be applied with success. Observations of the effects at the level of systems

biology, in combination with more detailed studies of their individual causes and stages of

progression, are inevitable for therapeutic [57, 115]. In Chapt. 4, a system for integrated

analysis of cancer-related data (CAP) [67] is presented. It demonstrates the importance of

bringing together heterogeneous data from different sources, in order to facilitate a full-picture

analysis of potential differences in gene regulation [176]. Foremost, it provides evidence for

the involvement of gene regulation in cancer development and it serves as a practical example

of how putative drug targets and diagnostic markers for certain cancer types can be identified.

Complex regulatory networks underlie each phenotypic response that can be observed at

the level of systems biology [136, 251]. The networks are highly complex, but the components

i.e. transcription factors and the binding sites in their target genes can be evaluated at the

sequence-based level. Advances in the area of bioinformatics during the last decades have

contributed to the development of a broad range of analysis tools. Three sequence-based

studies of the regulatory mechanisms controlling the expression of biologically linked sets

of target genes are presented in Chapt. 5. These studies are similar in that they all focus

on common mechanisms behind the transcriptional regulation of biologically-related genes,

however, they differ in a number of fundamental ways. Several organisms and their genomes,

Homo sapiens, Mus musculus, Saccharomyces cerevisiae [218], and Arabidopsis thaliana are

analyzed, illustrating the different challenges each organism presents and the invaluable use

of model organisms. Furthermore, the methodology by which the data sets containing the

identified target genes were collected and the size of the data sets vary. A detailed study

of the sequences of the participating genes constituting the individual building blocks of the

network is necessary. This type of step-by-step analysis facilitates the reconstruction of the

jigsaw puzzle any gene regulatory network presents [112].

Zooming in further, reaching molecular and atomic resolution, is a necessity for evaluating

4



the thermodynamics and specificity of the interactions involved in protein-DNA complex for-

mation [147, 175]. Macromolecular modeling and simulations enable studies of the flexibility

and dynamics of proteins, DNA, and RNA. Inter- and intramolecular interactions important

in protein-DNA recognition and transcriptional control can be studied in detail. The inter-

actions in ZF-DNA complexes are the focus of the structure-based studies at atomic detail

presented in Chapt. 6. The effects that base modifications exert on the binding free energy

of a protein-DNA complex are explored using both explicit and implicit solvent models. This

final part of the study serves an example of how theory and simulation hold considerable

promise in analyzing the fundamentals of physical contributions of the binding process that

eventually controls gene regulation [4].

The multitude of factors underlying transcriptional control is addressed at several different

levels in this study. In particular, the sequence-specific recognition involved in gene regulation

is addressed using integrated database annotation systems, sequence-based methods, and

finally structure-based molecular simulation approaches. The individual levels constitute key

sources of information. Sequence-based information is crucial for studying the components of

a regulatory network, whereas structure-based studies can help explaining any redundancy

observed in sequence-based models. Knitting the information together enables the levels

to profit from each other. The results indicate that efficient, reliable, and sophisticated

detection of functional binding sites ultimately relies on the intelligent integration of both

experimental data and theoretical methods. Furthermore, the theoretical models complement

experimental observations and add valuable insight into the thermodynamic properties of the

binding process and which effects they exert on the cellular level. Continuous improvement is

facilitated through feedback loops between experiments and theory. A detailed understanding

of all aspects involved in protein-DNA recognition and binding serves as a cornerstone in

disease-related research, rational drug design, and therapy.

An example resulting from successful communication and feedback between experiment

and theory is the development of engineered TFs. The immense potential residing in the

ability to control gene regulation at will clearly provides a powerful tool for many applica-

tions in biotechnology and disease therapy. Engineered TFs have potential use for correcting

abnormalities in gene expression, e.g. as gene therapy for treating cancer [50], for inhibiting

viral replication [115], and for controlling the differentiation of transplanted stem cells [16].

The zinc finger (ZF) motif is the most commonly used structural motif among eukaryotic TFs

and has been observed to play key roles in the development of diseases like cancer [74, 234].
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1 Introduction

A ZF is a modular protein domain consisting of 30 amino acid residues that specifically

recognize and bind to short subsequences (3-4 nucleotides) of DNA. The specific recogni-

tion of ZF TF binding sites has been studied in great detail, generating a vast amount of

experimentally derived sequence data [249], affinity measurements [94, 132], and structural

information [143, 199]. The ZF domain is a suitable framework for de novo engineering of

DNA specificity [9, 60, 118]. Designing protein-based drugs for gene therapy have several

advantages compared to other chemical approaches, especially when it comes to drug trans-

port, combinatorial testing, synthesis costs, delivery, and side-effects [115, 159]. Furthermore,

ZF-TFs can regulate endogenous genes, which competing methods such as antisense or RNA

interference (RNAi) can not, and the expression can be either induced or repressed [151].

A very promising approach is to fuse engineered zinc finger domains with specific sequence

recognition to a receptor domain that can be activated chemically e.g. using hormones [20].

ZF proteins have successfully been used for promoting angiogenesis by inducing the VGEF

(Vascular Endothelial Growth Factor) TF [203]. Using biological molecules (such as proteins,

peptides, DNA, and RNA) as lead compounds offer an attractive alternative to chemical

(non-biological) compounds, since toxic side-effects can be avoided.

In summary, this thesis demonstrates different methods and their combination for analyzing

gene regulation computationally. The results obtained at each individual level can profit from

information obtained at other levels. All components are required, as the ambition is to create

a complete understanding of gene regulation in order to enhance assessment of applications

in biotechnology and therapeutics.
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2 Theoretical background

Organism development, cellular responses to external factors, and maintenance are all crucial

properties for survival [246]. All cellular processes are controlled in a meticulous and exact

manner, which is the astonishing result of millions of years of evolution [5, 272]. Gene

regulatory networks are dependent on a complex interplay between molecules, where spatial

and temporal control of molecular interactions are of highest importance [83, 236].

The blueprint of life is encoded in the DNA (deoxyribonucleic acid), which is a fascinating

molecule in its simplicity, as it is built up from four basic building blocks (called nucleotides)).

DNA is constructed by two intertwined polynucleotide chains, between which complementary

base pairs (bp) are formed. The characteristic right-handed helix structure was discovered in

pioneering experimental studies by Franklin [79] and Wilkins [277]. The original diffraction

pattern from 1953 is shown in Fig. 2.1. Later the same year, Watson and Crick [270] proposed

a theoretical model of the DNA helix, which can be seen in Fig. 2.2. The DNA defines

heredity and encodes all information needed for life, however, a DNA molecule alone is

inactive (exception: catalytic nucleic acids). The functional biomolecules (actors) are the

proteins, which are capable of interacting with DNA and participate in all cellular processes.

The central dogma forms the backbone of molecular biology by providing a description of

how proteins are generated from DNA and is usually described in four steps: replication,

transcription, processing, and translation [37].

Essential to gene transcription are the specific interactions between DNA and proteins.

Hence, the following sections start with a presentation of the concepts crucial to understand-

ing the biological background, including DNA-binding proteins and their role in gene regula-

tion. The biochemical properties of proteins and DNA are introduced, in order to facilitate

the understanding of the chemistry and physics involved in the protein-DNA recognition and

binding process. Finally, the concepts of computational chemistry that have enabled theoret-

ical modeling of biomolecules, computational analysis of binding affinities, and monitoring of

thermodynamics of complexes are described.
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2 Theoretical background

Figure 2.1: The original X-ray diffraction pattern by Franklin [79], which provided a basis for
the theoretical description of the DNA helix formulated by Watson and Crick in
1953.

2.1 DNA-binding proteins

The main function of DNA is to store, replicate, and enable propagation of information

(heredity) throughout evolution [37, 259]. Proteins, on the other hand, actively carry out

functions in all cellular processes including enzymatic processes, signal transduction, trans-

port, translation, and metabolism, specific through protein-protein, protein-ligand, and protein-

DNA interactions [247]. Storage, packing, repair, protection, and transcriptional regulation of

genes are important tasks, which all are mediated through protein-DNA interactions [56, 198].

The mechanisms underlying transcriptional control of gene expression and the proteins re-

sponsible for this control are the focus of the following two subsections.

2.1.1 Gene regulation

A gene was first described as a discrete unit of heredity that influences a visible trait. Later

this description was extended to include that a gene contains the directions for making a

protein and that its expression is controlled, which is a well-known fact today. Eukaryotes and

prokaryotes differ in many aspects, e.g. genome size, number of genes, and in the complexity

of gene regulation [167, 246]. Eukaryotic gene regulation is the focus of this study, however,

the biochemistry behind specific protein-DNA interactions similar for both eukaryotes and
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2.1 DNA-binding proteins

Figure 2.2: The right-handed double-stranded DNA helix with its characteristic major and
minor grooves, as described by Watson and Crick in 1953 [270].
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2 Theoretical background

prokaryotes.

The human genome contains roughly 25.000 genes [194, 263], which are all encoded in the

genomic DNA. Most genes are split up into segments (exons), which are interspersed with

segments of non-coding DNA (introns). Regulation of gene expression is a multistep process

that occurs at several different levels in the cell: unwinding inactive DNA, transcription,

mRNA splicing, export out of the nucleus, degradation and protection of mRNA, translation,

and post-translational modification [37, 259]. Chromatin remodeling and modification are two

still not-so-well-understood processes important in gene regulation [56].

Transcriptional regulation is carried out by a set of DNA-binding proteins, called tran-

scription factors (TFs). The protein-DNA interactions are highly specific [264] and enable

the TFs to recognize and bind to short transcription factor binding sites (TFBSs), typically

located near the genes in non-coding genomic DNA. The non-coding DNA was first dismissed

as non-functional, however, it became clear already at an early stage that these regions are

involved in and responsible for regulatory processes by activating or silencing the surrounding

genes [68, 187].

The regions where TFBSs are located are referred to as regulatory regions [81, 267]. Specif-

ically, the closest (to the gene) region on the DNA is the proximal promoter and the more

distant is a cis-regulatory element [43, 82, 30, 275]. The main differences between human

and yeast promoters are graphically illustrated in Fig. 2.3. A set of basal TFs are responsible

for recruiting and binding the transcription initiation complex (TIC), also enabling the RNA

polymerase to bind to the promoter [8]. The TIC binds to the promoter at the location of

the TATA box (shown in Fig. 2.3). The cis-regulatory regions contain a more diverse set of

TFBSs and constitute the required key to the expression pattern of the affected genes [30].

The TF-cis-regulatory complex can be located several kilobases (kb) away from the transcrip-

tion start site (TSS), however, the flexibility of the DNA molecule enables protein-protein

interactions between these two TF complexes, thereby directing transcription [27, 82, 259].

A huge leap forward has been taken from the early studies of single genes to the large-

scale analysis technologies that are available today. The efficient sequencing of the genomes

from various organisms [263] has contributed to high-throughput analysis of gene expression

profiles and functional analysis of proteins, which present an ever increasing body of available

data. A good starting point is to study less complex (from a transcriptional point of view)

model organisms, and then to transfer knowledge gained to a more complicated system such

as human [112, 136, 218].
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Proximal
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Enhancer

or UAS

Intron

a) H. sapiens gene

b) S. cerevisiae gene

-200 -30-10 to –50 kb +10 to +50 kb

-100-1 kb

Figure 2.3: An illustration of typical regulatory elements and the differences (length and
complexity) between a) H. sapiens and b) S. cerevisiae promoters and genes.
The transcription start site (TSS) is indicated by an arrow.

Computational methods for analyzing and visualizing experimental data enable studies

of most aspects of gene regulation. Tools exist for identifying genes, promoters, and cis-

regulatory elements in DNA [28, 43, 82, 153, 157, 275]. Furthermore, algorithms have been

developed for identifying co-expressed genes in gene expression data [88]. Eukaryotic tran-

scription is a complex network of control mechanisms, where combinatorial control, syn-

ergy, activation, repression, feedback loops, and feed-forward loops are familiar character-

istics [163, 167]. The complexity of the regulatory network controlling transcription in an

organism is a good measure of the complexity of the corresponding organism [251]. Further-

more, it has been observed that many more TFs are involved in controlling the expression

of one eukaryotic gene (compared to a prokaryotic gene), which implies that a more complex

regulatory network is required in eukaryotes [53]. The regulation is context-dependent and

the observed complexity ensures that an individual gene or groups of genes are expressed in

the right cell type at the right time [75]. This spatial and temporal control of gene expression

allows the organism to respond to external signals in an efficient way [268].

2.1.2 Transcription factors

The two main types of TFs are (i) TFs responsible for sequence specific recognition of the

TFBSs within the cis-regulatory regions, and (ii) the set of basal TFs, except RNA poly-
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merase itself, that bind to the proximal promoter and constitute the TIC. The underlying

biochemical principles of protein-DNA binding are the same, however, this work is focused

on the first type of TFs.

TFs typically have two functional domains, a DNA binding domain (DBD) and an activa-

tion domain. The DBD can recognize a specific DNA sequence and thereby bind to its target

TFBS with high affinity [53]. The activation domain, on the other hand, is typically respon-

sible for making protein-protein interactions with other surrounding TFs that also bind to

the cis-regulatory element or to the TIC.

The TFBSs in the cis-regulatory regions are short DNA sequences, typically 5 to 12 bps

long. Often several TFBSs are clustered within a cis-regulatory region and form functional

modules [122, 267]. This enables a defined set of TFs to come together in a specific orientation

and act in concert [30]. The combinatorial logic ensures a defined set of genes, e.g. all required

for a cellular process, to be expressed simultaneously. Furthermore, these functional regions

of non-coding DNA have been conserved throughout evolution, hence detection by sequence

alignment is usually helpful [28, 68].

Estimates have proposed that about 6-7% of all eukaryotic proteins are TFs [36]. Classi-

fication of TFs into structural families is usually done according to the structural properties

of the DBD [165, 190]. Fig. 2.4 illustrates three of the most common classes A) ZF (zinc

finger), B) HTH (Helix-Turn-Helix), and C) bZip (basic leucine zipper).

Studies indicate that about 20% of all eukaryotic TFs belong to the ZF class [51]. ZF

proteins acquire DNA-binding ability by Zn(II) complexation. In the ZF domain of the

Cys2His2-type, each finger is about 30 amino acids long and forms a basic ββα-fold. The Zn

ion is tetrahedrally coordinated by the two Cys and His residues, as illustrated in Fig. 2.5. The

side chains of the α-helix in positions -1, 2, 3, and 6 (with respect to the start of the α-helix)

contact four DNA bps mainly on one strand in the major groove of the TFBS [71, 192, 280],

as shown in Fig. 2.6. The ZF domain is highly modular and can be linked to other ZF

domains using a linker peptide. The individual subsites overlap with one bp. The ZF-TF

Zif268 (or early growth factor (EGR1), PDB code: 1AAY [71]) consists of three ZF domains

and recognizes a 10 bp consensus sequence. The primary contacts between the side chains

of Zif268 and the DNA bases are illustrated in Fig. 2.6. The DNA major groove is slightly

widened, however, the DNA helix is not significantly bent upon binding.
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Figure 2.4: There are several structural families among DBDs in TFs. Three of the most
common ones are the: A) Zinc Finger (ZF) family, which is illustrated by the
three ZF domains of the Zif268 TF (PDB code: 1AAY [71]) that are linked to
each other like train cars. Each ZF domain (here illustrated with different colors:
red, yellow, and blue) recognizes a four bp long subsite (one bp overlap) of the
10 bp consensus sequence of the DNA (grey). The zinc ions are colored orange.
B) The helix-turn-helix (HTH) motif is found in the DBD of the Lac repressor
protein (PDB code: 1JWL [21]), which binds to two half sites of DNA. C) The
yeast TF GCN4 (PDB code: 1YSA [70]) has a basic leucine zipper (bZip) motif
(colored green).
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Figure 2.5: The ZF motif (grey) is one of the most common structural motifs in DNA-binding
proteins. In the Cys2His2 ZF-class, two Cys side chains (C) from the β-sheets
and two His side chains (H) from the α-helix tetrahedrally coordinate the zinc
ion (orange).

Figure 2.6: The primary contacts and the binding mode of the ZF-TF Zif268 are illustrated
here. The recognition helices of the ZF motif are represented as cylinders. The
contacts between the protein side chains (at positions -1, 2, 3, and 6 with respect
to the start of the α-helix) and the DNA bases, are illustrated as arrows.
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2.2 Protein-DNA recognition

2.2 Protein-DNA recognition

Protein-DNA binding is a reversible process and the binding affinity (strength) varies greatly

between different complexes. This facilitates induction, repression, and fine-tuning of gene

expression. The affinity of the non-covalent association depends on the structural and bio-

chemical complementarity of the two interacting molecules.

A general recognition code systematically describing the interaction preferences between

protein side chains and DNA nucleotides, would be of great use in rational design of artificial

TFs. The existence of such a code was hypothesized at an early stage [137, 188, 226]. However,

the idea was dismissed as the first set of experimental protein-DNA structures had been solved

and no simple one-to-one correspondence could describe the observed interactions [49, 173,

248]. Several studies, which address the specific recognition and aim to construct models of

the interaction, using the framework of ZF-TFs (illustrated in Fig. 2.6) have followed [25, 40,

59, 189, 279]. It can be concluded that specific preferences between amino acid side chains

and nucleotides do exist, however, some of the defined preferences are degenerate and are

applicable to only one structural class of protein-DNA complexes [24, 165, 190].

The main physical and biochemical aspects that are important for understanding how

specific protein-DNA binding is facilitated are introduced in the following sections. The

factors governing and opposing complex formation are discussed in terms of thermodynamics

and types of interactions that can be found in protein-DNA complexes.

2.2.1 Physical properties of proteins and DNA

The nucleotides are the monomeric units of the helical DNA polymer (which is about 20

Ångström (Å) in diameter). Each nucleotide unit consists of a pentose (deoxyribose), to

which a phosphate group and a nitrogen-containing base are attached. The negatively charged

DNA backbone is an alternating sugar-phosphate sequence, where the deoxyribose sugars are

joined at both the 3’- and 5’-hydroxyl groups to phosphate groups. An illustration of the

DNA backbone is provided in Fig. 2.7. The DNA chain elongation takes place at the 3’ end of

the DNA strand, where new phosphodiester bonds are formed. There are five different types

of bases: adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U) displayed in

Fig. 2.8. A and G are the larger purine bases, whereas C and T are the smaller pyrimidine

bases. U is an additional pyrimidine base, which occurs in RNA (ribonucleic acid) but not

in DNA. U is similar to T but has a single hydrogen at the position of the methyl group in
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Figure 2.7: The sugar-phosphate (denoted S and P respectively) backbone is negatively
charged. The complementary bases (B) form a ladder-like structure.

Figure 2.8: The five different bases Adenine (A), guanine (G), cytosine (C), thymine (T), and
uracil (U). Possible base pairs are A-T and G-C in DNA, whereas A-U and G-C
occur in RNA.

the base T.

The bases are hydrophobic and form complementary bps through hydrogen bonds, which

are shown as dotted lines in Fig. 2.9. Possible bps are A-T and G-C (additionally, A-U in

RNA). The edges of the bps form unique patterns of hydrogen bond donors and acceptors in

the DNA major groove (facing upwards in Fig. 2.9) [129]. The profile of the edges of the bases

is unique for all possible bps (A-T, T-A, G-C, and C-G) in the major groove, whereas in the

minor groove, it is only possible to distinguish between A-T/T-A and G-C/C-G bps. The

major groove is wider (12 vs. 6 Å) and deeper (8.5 vs. 7.5 Å) than the minor groove. Most

TFs bind to the major groove, as it is wider and presents a unique pattern for specificity,

but some make contacts with both grooves in order to increase the overall stability of the

complex.

Proteins are polypeptides - a chain of amino acid residues connected by peptide bonds.
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2.2 Protein-DNA recognition

Figure 2.9: Intermolecular hydrogen bonds (dotted lines) in the bps stabilize the DNA double
helix. The edges of the bps form a pattern of hydrogen bond acceptors and donors
that can be recognized by amino acid side chains of TFs. The pattern is unique
for each bp (A-T, T-A, G-C, and C-G) in the major groove (up), whereas it is
only possible to distinguish an A-T bp (top) form an G-C bp (bottom) in the
minor groove (down) [9]. The sugar-phosphate backbone is independent of the
bp sequence.
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The side chains of the amino acids differ in length and physical properties, such as charge

and hydrophobicity. Under biological conditions (in water and at physiological pH and tem-

perature) proteins fold and form structural motifs. The DBD in TFs is the structural motif

that recognizes and binds to DNA [190], as illustrated in Fig. 2.4. The α-helix is a common

structural motif in DBDs [165], from which the side chains responsible for DNA recognition

can extend into the DNA grooves. The negatively charged sugar-phosphate DNA backbone

is independent of the nucleotide sequence and attracts positively charged side chains (such

as Arg and Lys) of the TFs.

Structural adaptation and biochemical complementarity are two features crucial to complex

formation, which are achieved through conformational changes of both molecules [63, 221,

255]. The DNA is flexible and often distorted when bound to a TF [62], which is illustrated

by the two examples displayed in Fig. 2.10. The Catabolite gene Activator Protein (CAP)

distorts DNA to a 90◦ bend, whereas the tandem Zif268 TF (six-subunits) wraps the DNA

without causing helix distortion. An induced conformational change, resulting in bending or

twisting of the helix, can expose the necessary contact points for high affinity binding. G-C

rich regions in genomic DNA are less flexible than A-T rich regions, since G-C bps contain 3

hydrogen bonds (one more than A-T bps, as shown in Fig. 2.9).

2.2.2 Specificity through protein-DNA interactions

Sequence specificity is necessary for recognition of TFBSs in genomic DNA sequences. The

biochemical properties of the DNA backbone are independent of the base sequence, whereas

the bp edges and the helix flexibility are dependent on the nucleotide sequence. Structural

and thermodynamic studies of various protein-DNA complexes have contributed to a rich

source of information on protein-DNA interactions. The interactions are either direct or

indirect , which both contribute to the protein-DNA affinity [95, 227, 240].

The side chains of the protein and the nucleotides of the DNA molecule allow for a wide

range of direct interaction possibilities. Electrostatics play an important role in the direct

interaction governing protein-DNA complex formation, as the biomolecules are charged and

surrounded by water. The direct interactions can be obtained by analyzing structural data

for protein-DNA complexes and are used for creating statistical pair-wise interaction poten-

tials [141, 168].

The direct contacts can be further classified as specific or non-specific. The specific inter-

actions enable TFs to recognize and bind to certain target TFBSs in genomic DNA. These
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Figure 2.10: Conformational changes of either the DNA helix or the TF are common upon
complex formation. A) The Catabolite gene Activator Protein (CAP) shown in
blue, PDB code: 1CGP) bends DNA (grey) with 90◦. B) A tandem Zif268 on
the other hand (a six-subunit ZF protein shown in red, PDB code: 1P47), wraps
around the DNA helix without bending it.
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are either formed between the edges of the DNA bps and the amino acid side chains, or be-

tween the bp edges and the protein backbone. Non-specific interactions, on the other hand,

are independent of the DNA sequence and are formed between the DNA backbone and the

protein backbone or the DNA backbone and the amino acid side chains.

Hydrogen bonding is an example of intermolecular interactions that contribute directly to

the binding specificity. The unique pattern of hydrogen bond donors and acceptors on the bp

edges in the major groove form anchor points for intramolecular hydrogen bonds (described in

Fig. 2.9). The hydrogen bonds can be of different type: single, bidentate, and complex [166].

A single hydrogen bond is formed between one atom in the protein and one atom in the

base. A hydrogen bond of the bidentate type is formed if one atom of the protein interacts

simultaneously with two atoms of one base, or if two atoms of the protein interact with two

atoms of one base. Finally, a complex hydrogen bond is formed if two or more hydrogen

bonds are formed between two (or more) atoms of the protein and two or more nucleotides

in the DNA molecule.

There are also water-mediated hydrogen bonds that facilitate additional specific long-range

interactions, which are crucial in the recognition process and for forming complex networks

at the interaction surface [119]. Structure-based studies have shown a relationship between

resident water molecules and important protein-DNA interaction points [278].

Hydrophobic interactions are highly important, since all interactions in the cells take place

between molecules that are solvated by water. Complex formation is promoted by shielding

hydrophobic residues, hence these residues are commonly found in the interior of folded

proteins or at the binding interfaces of biomolecular complexes.

The positively charged protein side chains Arg, Lys, and His are common in DBDs, since

they can form ionic bonds with the negatively charged DNA sugar-phosphate backbone.

The indirect contributions to the binding energy are far less understood and present a chal-

lenging problem to analyze and evaluate [72]. These include the influence of conformational

changes on the internal energies of the two molecules, desolvation, distortion, and further

macromolecular changes that occur upon complex formation [241, 240]. It is essential to re-

gard all different types of interactions, since it has been shown that no individual interaction

alone can explain the binding specificity [123, 166, 169]. In many cases, not even combinations

of the different types are sufficient [285]. Hence, the contribution of the indirect interactions

can not be neglected and remains to be explored [59, 189, 279]. Open questions include the

interdependence between neighboring bps in the DNA and amino acids in the protein [22, 39],
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synergy between neighboring DBDs (e.g. ZF units) [47, 113, 180, 138], flexibility of the pro-

tein and the DNA helix [93, 177, 191], hydration at the interface [63, 204, 225, 256, 278], and

the role of counterions [178, 202, 262].

2.2.3 Thermodynamics of binding

Protein-DNA binding is a multistep process [264], in which the two molecules first get together

by diffusion. Subsequent binding occurs if they have chemical and structural complementarity

at their interaction surfaces. The binding process is directly dependent on several factors:

for example the concentration of the two interacting molecules, solvation, temperature, and

the concentration of counterions in the solution [204].

The Gibbs free energy (G) of a system is dependent on the internal energy (enthalpy H),

the internal microscopic disorder (entropy S), and the temperature (T ) [148]. The change in

Gibbs free energy is a thermodynamic quantity, which is defined by

∆G = ∆H − T∆S.

The relative enthalpic and entropic contributions determine the sign of the ∆G (a negative

sign indicates a spontaneous process), eventually determining if a certain protein and a DNA

sequence form a complex. Ionic (charged) interactions, desolvation effects (polar and non-

polar interactions), hydrogen bonds (direct and water-mediated), and van der Waals forces

belong to the enthalpic contributions. The entropic contributions to ∆G originate from

desolvation effects, losses in degrees of freedom of side-chains, and losses in degrees of freedom

due to limited molecular flexibility i.e. translational and rotational motion relative to the

binding partner (these are typically constant).

Gibbs free energy determines how much work is attainable for a given process and is defined

by

∆G = −RT · lnKd

where R is the gas constant and T the absolute temperature (measured in Kelvin). ∆G is

measured in kJ/mol (SI units), however, often given in kcal/mol. The dissociation constant

Kd is a measure of the binding strength between the two interacting molecules and is defined

by

Kd = 1
Ka

= k2

k1
= [A][B]

[AB]
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where k1 is the rate of dissociation, and k2 is the rate of association between the two

molecules A and B. Kd is inversely proportional to the association constant Ka. If a high

concentration of the molecules A and B is required for complexation, the strength of the

binding is low. TFs typically have a Kd in the range from 10−8 to 10−11 (nM range).

The relative binding free energy (∆∆G) between two complexes with different affinities

(∆G1 and ∆G2) is defined as

∆∆G = ∆G2 − ∆G1 = −RT · lnKd2

Kd1

The ∆G for a complex (thereby also the ∆∆G) is dependent on several types of interactions,

which will be discussed in detail in the following section.

2.2.4 Types of interactions

The interactions governing and opposing binding vary in strength and abundance between dif-

ferent protein-DNA complexes [189]. Covalent bonds are strong bonds (50 to 110 kcal/mol)

and occur when one or more electrons are shared between two intramolecular atoms (e.g.

the peptide bonds in the protein backbone). The non-covalent bonds are weaker (1 to 5

kcal/mol) than covalent bonds and therefore the interaction is easily reversible. These bonds

occur both intermolecularly (between two molecules forming a complex, e.g. in protein-DNA

and protein-protein complexes) and intramolecularly (within a protein e.g. secondary struc-

tures). The non-covalent interactions differ in their nature, strength, number, and optimum

distance [148]. The most important ones for complex formation are the electrostatic inter-

actions and hydrophobic interactions. Electrostatic interactions play a role in all charged

interactions, which include ionic bonds, hydrogen bonds, and van der Waals interactions.

Affinity high enough for complexation is achieved if the total sum of different types of inter-

actions favors binding. Note that all weak bonds typically have an effect at short distances

of a few Ångström only.

Electrostatic interactions (EES) arise between two charges (i and j) and are described by

Coulomb’s law. Equal charges repel, whereas opposite charges attract. The electrostatic

interactions are proportional to the product of the electrical charges (qi and qj) and

inversely proportional to the distance between the charges (rij) and the permittivity of

vacuum (ε0).

EES = 1
4πε0

· qiqj

rij
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A partial charge is formed due to an uneven charge distribution inducing partially

positively and negatively charged areas around the atom. Ionic bonds, hydrogen bonds,

and van der Waals interactions are all electrostatic interactions, which are important

for biomolecules solvated in water.

Ionic bonds are among the strongest non-covalent bonds and one bond can account for up

to 5 kcal/mol of the binding energy. An ionic bond (salt bridge) is formed by favorable

electrostatic interactions between two oppositely charged ions. At pH 7 the acidic (Asp

and Glu) and basic amino acid residues (Arg and Lys) have ionized side chains. An

example of a salt bridge is illustrated in Fig. 2.11 (A). Carboxyl groups have lost a

proton and carry a charge of -1 (which is delocalized over the two oxygen atoms), while

amino groups have gained a proton and carry a charge of +1 (which is delocalized over

the three hydrogen atoms). Ionic bonds (red dotted line) are typically about 2.7-3.0 Å.

Hydrogen bonds are almost as strong as ionic bonds and can account for up to 5 kcal/mol per

bond. A hydrogen bond is formed between a donor and an acceptor group. The donor

group contains a ploarized hydrogen, which it then shares with the acceptor group. To

facilitate this the donor group is a strongly electronegative heteroatom (such as O, N,

and F). The electron cloud of the hydrogen is decentralized towards the electronegative

hydrogen bond donor leaving the hydrogen with a positive partial charge. This positive

charge can attract the free electron pair of another heteroatom, which becomes the

hydrogen bond acceptor , as illustrated in Fig. 2.11 (B). The strength of the hydrogen

bond is highly dependent on the distance and the angles between the involved atoms.

The optimum distance between the hydrogen bond donor and the acceptor in water is

2.8-3.2 Å, which is approximately 2.0 Å between the hydrogen and the acceptor (red

dotted line in Fig. 2.11 (B)). The optimal geometry is achieved if the angle α is 150-

180◦, and the angle β is 100-180◦ (blue dotted lines). A special type of hydrogen bond

is the water-mediated hydrogen bond. If the hydrogen bond donor and acceptor

lie to far apart to interact directly, a water molecule (H2O) can bridge the distance

between them. Water-mediated hydrogen bonds can cause some water molecules to

become “trapped” between the molecules at the interaction interfaces [278].

van der Waals interactions occur between temporarily induced dipoles carrying a free elec-

tron pair. These interactions are also called electrodynamic interactions, as dipole

oscillations occur within the interacting molecules. The van der Waals forces are typi-
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Figure 2.11: Favorable electrostatic interactions lead to the formation of ionic bonds between
charged groups. The carboxyl group is negatively charged at pH 7, whereas the
amino group is positively charged (shown in A). A hydrogen bond is formed
between a hydrogen attached to a highly electronegative hydrogen bond donor
atom, thus carrying a partial positive charge, and the free electron pair of a
hydrogen bond acceptor, as shown in B. The optimal geometry is important to
the strength of the hydrogen bond (details described in the text).

cally weaker than both ionic and hydrogen bonds, contributing with about 1 kcal/mol

to the binding energy.

Hydrophobic interactions are slightly weaker than hydrogen bonds. Water molecules are

polar and form an ordered pattern of interactions (a network of hydrogen bonds),

whereas non-polar molecules are incapable of doing this. Therefore, shielding non-

polar patches of molecules from the surrounding water will contribute positively to

complex formation by decreasing the entropy of the system.

2.2.5 Binding affinity

The binding free energy (∆G) is proportional to the statistical probability that a certain

TF binds to a specific DNA sequence. The probability can be obtained using the partition

function (sum-over-states), which describes the statistical properties of a system. In classical

statistical mechanics the partition function is expressed as an integral, since the microstates

are uncountable. In the case of discrete DNA binding sites the partition function can be

represented as a sum. If the microstates that the system can occupy are denoted x (x =

1, 2, 3, ...), as illustrated in Fig. 2.12, and the energy of a system in microstate x is denoted

Ex, then the partition function Q is defined as

Q =
∑

x

e−βEx

where
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2.2 Protein-DNA recognition

Figure 2.12: The partition function describes the statistical properties of a system. In the
case of TFBSs in DNA, the partition function is described as the sum (Z) of
e−βEx (where Ex is the binding energy) over all discrete microstates (x).

β ≡ 1
kBT

and kB is the Boltzmann constant.

The statistical representation provides a means to calculate thermodynamic properties of

the system. The probability Pi to find a system in any given microstate i is given by

Pi = 1
Q
· e−βEi

which is also known as the Boltzmann factor. The partition function Q is used for nor-

malization (ensuring that the probabilities add up to 1) which gives the probability Pi at

equilibrium.

The average binding energy (< E >) for a protein over all possible binding sites x is defined

as

< E > =
∑

x

Px · Ex = −
∑

x

(Px · lnPx) − lnQ

The exact probability distribution Q could be obtained for each TF if it were possible to

measure the binding affinities to all possible binding sites i. However, for practical reasons

this is usually approximated from a small set of experimental measurements. The relative

binding free energy (∆∆G) is the difference between two probability distributions (U and

W ), which is defined as

E(Ux,Wx) ≡ −∑

i

Px · log Ux

Wx

If the two distributions are similar for the states with high probability, their relative entropy

is close to zero. This formalization defines the relationship between the specificity and the

interaction energy in protein-DNA recognition. A low interaction energy indicates a high

probability that the binding site will be selected.
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2.3 Computational chemistry

Important advances in the field of computational chemistry are the result of merging classical

mechanics with current knowledge of physical properties of biomolecules [175]. The introduc-

tion of mathematical energy functions and recent increase in computational power enabled

the first complex calculations and simulations of small molecules, which sequentially lead to

simulations of more complex biomolecules. Theoretical models of molecular systems facilitate

studies of structural and dynamical properties of biomolecules, and have laid the foundation

for simulations of biological systems and phenomena.

The basic theory of molecular mechanics and dynamics is introduced in the following two

subsections, however, the reader is referred to excellent literature [148, 206, 205, 221] for more

detailed descriptions. Computational alchemy , a commonly adopted technique nowadays, is

outlined in the third and final subsection. These concepts are required for Chapt. 6.

2.3.1 Molecular mechanics

There are a few essential ingredients to molecular mechanics theory, the description of a

structure (atomic coordinates), their relations (connectivity), and an empirical energy func-

tion with its parameters defining the potential energy (E) of the molecule [148]. The Born-

Oppenheimer approximation reduces the complexity significantly by separating the movement

of the nucleus from that of the electrons [7]. This separation is possible since the mass of the

nuclei is far greater than the mass of the electrons surrounding the nuclei, leading to highly

different velocities. The Born-Oppenheimer approximation enables energy calculations of

macromolecules with up to 105 atoms. Biomolecules are then approximated as a system of

point masses (atoms) that are connected by springs (bonds).

The potential energy of a system is calculated as the sum of a set of individual energy

terms. Several energy functions exist, a typical molecular mechanics energy function (such as

the AMBER force field [266]) consists of the following terms: a bond length potential (Ebond),

a bond angle potential (Eang), a torsional potential (Etor), a Lennard-Jones potential (ELJ),

and a Coulombic potential (ECoulomb). Thus, the total potential energy (E) is defined as

E = Ebond + Eang + Etor + ELJ + ECoulomb

The three first terms of the force field contribute to the bonded energy, whereas the

Lennard-Jones and the Coulombic terms define the non-bonded polar (van der Waals) and
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non-bonded electrostatic (ionic) energies, respectively. Each term is described in more detail

in the following.

The bonds are represented using harmonic potentials (Ebondij
), in which the displacement

from the optimal bond length (lij − lij0
) and a force constant (kij) define the strength of the

bond between to atoms i and j.

Ebondij
=

∑

bonds

kij

2 (lij − lij0
)2

The bond angle is represented by a similar term (Eangijk
), in which the potential is set for

the optimal angle (θijk0
) between three atoms ijk using a force constant (kijk).

Eangijk
=

∑

angles

kijk

2 (θijk − θijk0
)2

A rotational barrier for a bond between two groups of atoms (ijkl) is represented using

a torsional potential (Etorijkl
). An example of a periodic rotational barrier (where n is the

periodicity) is the preference of the two methyl groups of ethane to stay in staggered rather

than eclipsed conformation. The height of the barrier is defined by the constant Vijkl and

the angle is defined by ωijkl.

Etor =
∑

torsions

Vijkl

2 (1 + cos(nωijkl − ωo
ijkl))

The van der Waals interactions are represented using an attractive-repulsive Lennard-Jones

potential (ELJ), which models electrodynamic repulsion at short interatomic distances and

attraction between two atoms i and j at long interatomic distances. The ε is the dielectric

constant, σij is the equilibrium interatomic distance, and rij the actual interatomic distance.

ELJ =
N
∑

i=1

N
∑

j=i+1
(4ε[(

σij

rij
)12 − (

σij

rij
)6])

Finally, the Coulombic potential (ECoulomb) among all pairs of charged particles in the

system, defines the energy between two point charges qi and qj , which is dependent on the

distance rij .

ECoulomb = 1
4πε0

N
∑

i=1

N
∑

j=i+1

qiqj

rij
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2.3.2 Molecular dynamics

Molecular dynamics (MD) is Newton’s Law of Motion (Fi = miai) applied on an atomic

level [148]. A force Fi is exerted on each atom in the system. The force is a product of the

mass (m) and acceleration (ai) of the atom. The system’s motion is propagated through time

and space according to the second order differential equation of Newton’s Law of Motion:

d2r
dt2

= −∆V (r)
m

= F
m

= a

The equation has to be solved numerically, since no analytical solution exists for the general

case. It is solved simultaneously for each atom in the system to obtain its new positions

and velocities at finite time steps t + δt. For a more detailed explanation of MD and its

applications, the reader is referred to other excellent literature sources [44, 148]. Being able

to follow the relative positions of the atoms as a function of time has opened the doors for

studying the dynamics and flexibility of a molecule (or of a complex of molecules).

2.3.3 Treatment of solvent

In order to obtain reliable theoretical simulations of biological processes in aqueous solution

accurate methods for calculating solvation free energies are required [204, 225, 256, 278].

Charged and polar groups are present in all biological macromolecules and DNA is one of

the strongest polyelectrolytes, with approximately one electron charge per 1.7 Å [170] of the

backbone. Hence, the electrostatic interactions in protein-DNA complexes are very important

in aqueous solution. The developed methods for simulating the properties of the solvent vary

widely in complexity and the ease of calculation. The molecular modeling package AMBER

7 [44] allows for both explicit and implicit treatment of the solvent.

Explicit solvent

Explicit solvent models typically yield good agreement with experimental data. However,

they are computationally demanding for macromolecules like proteins and DNA, due to the

often many thousands of water molecules needed for representing the solvent around the

solute. Effects such as solvent-solute hydrogen bonds and charge screening, are important

biomolecular effects [287] that are taken into account by these models. A commonly used

explicit solvent model is the three-centered water molecule e.g. the transferable interaction

potential three-point model (TIP3P) [125].
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Implicit solvent

Implicit solvent models offer attractive alternatives as they consider the bulk properties of

the solvent as a continuum and allow for shorter computation times [91, 139, 243]. The

free energy of solvation, ∆Gsolv, is the free energy change required to transfer a molecule

from vacuum into solvent medium. The ∆Gsolv can be partitioned into electrostatic, van der

Waals, and cavitation free energies between the molecule and the solvent.

∆Gsolv = ∆Gelec + ∆GvdW + ∆Gcav

The electrostatic contribution to the solvation free energy (∆Gelec) is important for biomolec-

ular systems. In 1920, Born derived an expression for transferring an ion with a defined radius

a and charge q from vacuum into solvent medium with the dielectric constant ε.

∆Gelec = − q2

2a
(1 − 1

ε
)

This expression laid the basis for the Generalized Born (GB) models of the electrostatic

contribution to the solvation free energy [148]. The GB model comprises a system of particles

with Born radii ai, charges qi, and interparticle distances rij . The induced response (polar-

ization) of the solvent is modeled using the dielectric constant ε. Still and co-workers [243]

defined an approximate expression for the free energy of solvent polarization for an arbitrary

charge distribution of N charges:

∆Gelec = − 1
8π

( 1
ε0

− 1
ε
)

N
∑

i=1

N
∑

j=1

qiqj

fGB

fGB is a smoothing function dependent on the interatomic distances (rij) atomic radii (aij).

The function is defined by fGB =
√

r2
ij + a2

ije
−D, where aij =

√
aiaj and D = r2

ij/(2aij)
2.

Choosing the proper dielectric constant for various simulations is a controversial issue

in literature [224]. For proteins and DNA dielectric constant ε is in the range of 2-4 and

the solvent surrounding the solute has a relatively high dielectric constant of approximately

80 [78].

The non-electrostatic contribution (∆GvdW + ∆Gcav) to the solvation free energy is often

described with surface area correction, which is proportional to the solvent accessible surface

area (SASA), and an additional constant.

∆GvdW + ∆Gcav = γA + β
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2.3.4 Calculation of relative binding free energies

The ability to study the structural differences on the molecular level and theoretically esti-

mate the effects of structural modification on the binding energy is a powerful method with

numerous potential areas of application in current research [205, 206]. Experimental analysis

of relative binding free energies has generated thermodynamical data of protein-DNA bind-

ing and specificity [40]. Calculations of binding free energies complement experimental data

and provide new insight into the macroscopic properties of biochemistry and thermodynam-

ics [215]. Furthermore, the relative contributions of the different components of ∆G can be

studied in detail [120]. Theoretical calculations of the relative binding free energies serve as a

cornerstone in disease research and rational drug design, however, accurate scoring functions

remain a challenge.

Calculation of absolute binding free energies (∆G) is a difficult task, mainly due to the

relatively large conformational changes that usually occur upon complex formation [205,

206]. In contrast, calculating relative binding free energies (∆∆G) for structurally similar

complexes is feasible. Performing such computational and non-physical transformations,

usually referred to as computational alchemy [102], is a commonly adopted technique for

studying what effects structural modifications have on the binding affinity. Thermodynamic

cycles and thermodynamic integration are the basis for these calculations and are described

in more detail here.

Thermodynamic cycle

The thermodynamic cycle approach can be used for calculating the theoretical values of

∆∆Gs. A thermodynamic cycle defines the relationship between experimentally measured

and computationally calculated free energies (∆Gs). The thermodynamic cycle depicted

in Fig. 2.13 is useful for calculating relative binding free energies for a protein binding to

two different DNA sequences (one original and one modified sequence, DNA and DNAM ,

respectively) in solvent (aq).

As the free energy (∆G) is a state function, the sum of the energies traversing the cycle

has to be zero (disappear). Thus, the ∆∆G can be expressed as:

∆∆G = ∆G2 − ∆G1 = ∆G′′ − ∆G′

Since only the final states are considered, the transformation itself may be non-physical

(“alchemical”). The quantities ∆G1 and ∆G2 are measurable in the laboratory, whereas ∆G′
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Figure 2.13: The illustrated thermodynamic cycle describes the relationship between free en-
ergies that are measurable in the laboratory (∆G1 and ∆G2) and computation-
ally feasible transformations (∆G

′

and ∆G
′′

). Simulating the binding process
(represented by ∆G1 and ∆G2), compared to the small structural transforma-
tion from protein−DNA into protein−DNAM (represented by ∆G

′

and ∆G
′′

),
is by far much more computationally intensive.

and ∆G′′ are not. In contrast, the non-physical pathways ∆G′ and ∆G′′ involve less structural

reorganization of the system and are likely to be more reliable from a computational point

of view and can be calculated theoretically [148].

Thermodynamic integration method

The thermodynamic integration (TI) method is commonly adopted by computational chemists

and molecular modelers in order to calculate the difference in free energy caused by a modi-

fication of the system (e.g. the ∆G′ or ∆G′′ transformations).

The starting system for the TI method is a hybrid system describing both the starting

(unperturbed, λ = 0) and the ending system (perturbed , λ = 1). The mixing parameter λ

is used for describing the step-wise transformation going from λ = 0 to λ = 1, which is

illustrated in Fig. 2.14. The relative free energy (∆∆G) between two systems resulting from

a certain transformation is obtained by comparing the ∆Gs.

The ∆G between the two states is defined by the following integral:

∆G ≡ G(λ=1) - G(λ=0) =
1
∫

0

〈δV/δλ〉λdλ

The integral can be numerically estimated by calculating the sum of ensemble averages of

the change in potential energy V (〈δV/δλ〉) between consecutive windows i and i + 1 of λ,

using the following equation

∆G ≈
n
∑

i=1
δGi(λi → λi+1) =

n
∑

i=1
wi〈δV/δλ〉λi
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Figure 2.14: The relative free energy (∆∆G) between two systems is obtained by comparing
the two individual ∆Gs, which are obtained during the transformation going
from λ = 0 to λ = 1.

In practice, this estimation is achieved by performing an equilibration (for adjusting the

structure at the new λi) followed by a simulation (for sampling the ensemble average δV /δλ)

at discrete value of λ going from 0 to 1. The 〈δV /δλ〉 between two intermediate steps of λ is

estimated (sampled) using MD. At each quadrature point (λi) the 〈δV /δλ〉 value is multiplied

by a weight wi that is symmetrical around λ = 0.5. Several methods exist for estimating the

integral e.g. the trapezoidal rule [2, 44].

Ipsa Scientia Potestas Est

Sir Francis Bacon
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3.1 Experimental techniques

Rapid technological development, both in terms of efficiency and resolution, has lead to an im-

provement of experimental methods for analyzing protein-DNA interactions. These methods

range from being time-consuming small-scale experiments, such as X-ray crystallography, pro-

viding atomic details of the interactions in a specific complex [71], to large-scale experiments

analyzing the expression profiles of thousands of genes simultaneously [112]. Theoretically,

the larger the collection of binding site data for a certain TF, the more statistically represen-

tative the TFBS should be. In practice, however, the experiments are typically performed

in vitro and experimental artifacts (such as experimental design or not enough sampling of

binding sites) introduce noise or bias into the TFBS models [149, 244]. Optimizing the com-

promise between the coverage and the qualitative aspects of each of the methods remains a

key challenge.

Numerous studies with the primary aim to analyze protein-DNA interactions and specific

binding preferences have been undertaken. Experimental approaches generate an ever grow-

ing body of data available for analysis. The data used in this work comes from a variety

of such experiments and provides the basis for all computational approaches presented in

Chapters 4 to 6. Here follows a brief description of the most commonly used experimental

methods for obtaining both large-scale expression data related to gene regulation and binding

specificities of individual TFs.

In situ labeling using microarrays is a technique for studying the expression of thousands of

genes simultaneously [160, 220]. Labeled single-stranded probes hybridize with comple-

mentary mRNA sequences, which enables the quantitative detection of the transcrip-

tome (the transcribed genes) in a sample. Genes with a similar expression pattern in

response to an external signal are often assumed to be biologically related, e.g. for ex-

ample controlled by a similar regulatory mechanism, and can be extracted and further
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analyzed [41, 90].

Reporter constructs are employed for analyzing the functionality of whole regulatory re-

gions. Systematic deletion of DNA fragments in connection to a reporter system, will

indicate how essential a certain fragment is for the correct expression of a certain gene

and how the expression is affected by modifications made to the regulatory regions.

Band-shift assays and gel retardation studies [86, 84] are often used in combination with

methods for identifying the TF that binds to a certain DNA sequence, e.g. chromatin

immunoprecipitation (ChIP) [117, 209]. Thereby, a quantitative measure of the binding

affinity can be obtained.

SELEX and Phage display are two selection experiments for finding a set of preferentially

bound DNA sequences [48, 49]. These methods are especially useful for analyzing the

level of conservation at each position of the TFBS, since a statistical profile can be

derived from the obtained binding sitess [213].

Titration experiments Titration is a standard chemical laboratory method for determining

the concentration [mol/L] of a known reactant. A thermodynamical measure of the

binding affinity can be obtained by doing titration experiments for a certain TF. The

binding strength of the complex is defined by the dissociation constant (Kd). In 2001,

Bulyk et al. [40] presented a new technology, in which microarrays are employed in

order to obtain such Kd:s for several TFs binding to different DNA sequences.

Structural methods: X-ray and NMR Two methods enabling studies of protein-DNA inter-

actions at atomic detail are X-ray crystallography [210] and nuclear magnetic resonance

(NMR) [73]. The two methods differ in a number of aspects. X-ray crystallography

provides higher resolution, requires crystals, and is possible for large molecules, whereas

NMR can be used for studying molecules in solution, provides information of flexibility,

but is restricted to smaller molecules (30 kDa).

3.2 Computational approaches

A vast amount of experimental gene expression data, genomic sequences, and structural data

collected in databases [11, 26, 200], has provided the fuel required for computational anal-

ysis of several different types of data sets. Theoretical and computational methods provide
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means for extracting valuable information from such experimental data and contribute to

the formalization of hypotheses. Connecting experiments with computational models, and

thereafter refining these models through tight feedback coming from further experimental

verification is essential for improving the models.

A diverse set of computational milestones, important in all aspects of specific protein-DNA

interactions, are presented in the following sections. The two main topics are sequence-based

and structure-based methods, which reflect the categorization of the related work presented

over the years. Common to all methods is to represent specific interaction preferences between

proteins and DNA, thereby modeling the interactions and binding affinity. This is important

in order to enable detection and discovery of TFBSs on a genomic scale and to understand the

effects mutations have on the binding affinity in protein-DNA complexes. The TFBS models

serve as a key component for elucidating potential transcriptional mechanisms, function,

and for modeling regulatory networks. The potential arising from the ability to reliably

predict functional and high-affinity binding sites is enormous and a trend towards integrating

sequence-based and structure-based information has been observed [105].

3.2.1 Sequence-based methods

The immense amount of sequence data available for several organisms has led to a rapid

development of sequence-based analysis tools. The genomic DNA sequences are interesting

from a gene regulatory perspective, since these contain the information needed to direct

transcription. The TFBSs are short sequences, typically located in the non-coding DNA

close to the affected gene. Predicting genes for various organisms is clearly a non-trivial

task [194]. Biological information, e.g. the presence of signals around the TSS, bp statistics

(coding vs. non-coding regions), CpG islands, and the presence of TFBSs [27, 98, 274],,

for predicting promoters. A detailed analysis of the promoter structure provide clues about

potential regulatory networks and common biological functions for groups of genes [201].

Representation and discovery of TFBSs are closely related challenges [244]. Reliable models

for detecting TFBSs are needed e.g. for promoter prediction. The most basic representation

of a TFBS is the consensus sequence, which is a sequence stating the most preferred nucleotide

at each position of the binding site for a certain TF [244], see Table 3.1 for an example. Such

a consensus sequence, is usually obtained by aligning a collection of known binding sites,

thereby constructing a representative consensus sequence, which presents the most likely

nucleotide at each position. The consensus sequence (used as a regular expression) was the
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Table 3.1: Two sequence-based representations of the same TFBS. The consensus sequence
and the position specific scoring matrix (PSSM) representations of the Zif268 TF.

Position 1 2 3 4 5 6 7 8 9 10

Consensus T G C G T G G G C G

PSSM A 5 7 0 2 0 31 0 0 13 0
C 3 0 98 0 2 0 0 0 76 0
G 5 93 0 98 14 69 100 100 0 100
T 87 0 2 0 84 0 0 0 11 0

first TFBS representation to be used for scanning sequences on a genomic scale [34, 80, 245,

260]. However, a consensus sequence is not a satisfying representation of a TFBS, since it

usually allows for variations in some of the positions. The position specific scoring matrix

(PSSM) is a refinement of the consensus sequence, since it captures the statistical occurrence

(frequency) of each nucleotide at each position of the binding site. An example of a PSSM is

illustrated in Table 3.1. PSSMs are derived in a similar manner as consensus sequences, i.e.

by collecting and aligning known binding sites, and can be represented as a sequence logo

shown in Fig. 3.1 [282]. In a sequence logo the total height of the bases at each position is

the information content (IC) of the position, and the height of each individual base is the

proportion of that base of the total height. The IC of a position i in a TFBS is defined as:

IC(i) =
T
∑

b=A

P (b, i) × ln P (b,i)
Pref (b)

where P (b, i) is the probability to observe base b at position i in the binding site. The

IC is the average specific binding energy, as defined above, and will be zero if the bound

probabilities are the same as the prior probabilities (i.e. a non-specific position has zero IC).

Consensus sequences and PSSMs can be used for efficient scanning of genomic DNA se-

quences for potential binding sites. However, these models are very sensitive and suffer from

severe problems in specificity, often predicting a high number of false positive TFBSs [244].

The reliability of the models are in many cases limited by the number of experimentally

verified sites and the lack of a quantitative measure of the sites that have been shown to be

functionally active.

Sites contributing to a PSSM can also be derived in a purely computational fashion. This

approach is based on the observation that TFBSs are enriched in regulatory sequences [76,

158].

The regulatory regions are extracted and used as input for algorithms searching for sta-
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Figure 3.1: The PSSM can be converted into a sequence logo using the information content
(IC) at each position. A well conserved position is represented with 2 bits of
information, whereas zero IC means that no base is preferred over the others at
that position. The sequence logo of Zif268 (the consensus sequence and PSSM
are showed in Table 3.1) is illustrated in this picture.

tistically over-represented motifs of a given length [244, 252, 275]. Gibbs sampling [146],

ANN-Spec [281], and Multiple Expectation maximization for Motif Elicitation (MEME) [10]

are good examples of motif discovery tools. An over-represented motif is represented as a

PSSM and is considered to be a fairly good representation of the true binding site [244].

The identification of genomic sequences, which have been conserved throughout evolution

(comparative genomics), received considerable attention as a means for refining the search

space for the sampling algorithms. Genomic sequences from two or more species are used for

cross-species comparisons to find conserved regions, which are more likely to be functional as

TFBS than other less conserved regions. This approach - phylogenetic footprinting - restricts

the search to conserved regions and has improved the motif discovery process immensely and

eventually led to a more efficient way for delineating potential regulatory mechanisms [28,

68, 268]. The evolutionary distance between the compared species is important. H. sapiens

and M. musculus are about 60 Myrs apart, which appears to be enough time for the genomes

to show differences in the non-coding sequences and share reasonable similarity of functional

sequence elements [55, 288].

Additional biological knowledge has been integrated into the prediction methods in order

to enhance the usefulness and reliability of the predictions. The simultaneous detection of

binding sites of functionally related TFs, helps in the identification of so called regulatory

modules [142, 267, 274]. Selecting a set of target genes, for which a common regulatory mech-

anism is to be expected, is a well-explored possibility to improve the discovery of individual

functional TFBSs [197, 218, 267] and combinatorial regulatory modules consisting of several
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cooperating TFBSs [97, 128]. Obtaining functional clusters of genes using microarrays is a

commonly applied technique and shows good results [41, 110]. This approach of combining

functional with regulatory analysis is useful in many aspects [54, 100, 112].

The methods discussed above all rely on the PSSM models for detecting the TFBSs and

regulatory modules. It has been shown that the most basic assumption used by the sequence-

based methods, that the nucleotides contribute additively to the binding energy, is incor-

rect [22, 39]. The assumption about additivity is, however, a good approximation for some

TFs. Attempts to model dependencies between neighboring bases, by including higher-order

effects into the models have been reported [14, 133, 284] and show an improvement over

additive models. The binding of one TF domain (e.g. in multi-ZF proteins) is dependent

on the binding of the other neighboring domains [47, 113]. Furthermore, synergy effects

also occur between TFs that do not bind to each other when binding to a regulatory DNA

sequence [97, 99].

The representation and discovery of TFBSs, the analysis of regulatory regions, the con-

struction of potential regulatory modules, and the analysis of functionally related genes has

undergone a remarkable improvement and has provided means for studying regulatory net-

works in a wide range of organisms [112, 197, 251]. Sequence-based methods have a few clear

limitations. Side Chain flexibility at the binding interface, differences in molecular conforma-

tion and stability, and hydration at the binding interface are hard to model, thus typically

not included in sequence-based approaches.

3.2.2 Structure-based methods

The sequence-based models used for representing the TFBSs are still being questioned for

their correctness and applicability. The whish to define a general, or at least a family specific,

recognition code explaining specific protein-DNA interactions (discussed in Sect. 2.2), further

pushed for the integration of additional experimental data and biological knowledge into the

TFBS models [105]. The information residing in structural data, immediately appeared to be

the missing link when going from experimental observations to the formulation of hypotheses

regarding the interactions [126]. The contacts between the TF side chains and the nucleotides

in the binding site can be studied at atomic resolution by analyzing protein-DNA co-crystal

structures [71, 166, 130]. Such structural data provide insights into the complex network

of intermolecular interactions, however, provides no information about the dynamics of the

contacts.

38



3.2 Computational approaches

Threading approaches

Structure-based methods aim to establish empirical contact potentials between protein and

DNA from structural data [141, 168]. These potentials are similar to potentials used for

threading and evaluating protein structures [171]. These knowledge-based interaction poten-

tials are used to describe the interaction preferences and can be used for efficient scanning

of genomic DNA sequences. The underlying contact probabilities are collected from a data

set containing structures of TF-DNA complexes representing different structural families of

TFs [165]. Pair-wise contact tables are generated by regarding contacts within a certain

radius as described in Fig. 3.2. By studying mutant structures, it is possible to retrieve infor-

mation about how flexible some of the interacting residues and bases are [177]. An approach

to structurally align the protein-DNA interfaces in order to uncover spatial relationships and

comparing the geometry of the interfaces for better prediction was presented recently [233].

One limitation is that some TF families are not represented, due to difficulties associated with

experimental protein purification. The structure-based empirical potentials in combination

with defined contact tables can be used for predicting TFBSs on a genome-wide scale and

have shown to be superior to sequence-based PSSMs [141, 168]. The additivity approxima-

tion is often adopted, but dependencies between the interactions can be modeled to some

extent [23]. The main advantage of the structure-based approaches is that amino acid-base

propensities and structural orientations are included in the models [195, 285]. The empir-

ical potentials can be established for subsets of the data (e.g. TF families) or for defining

different types of interactions, such as specific (amino acid-base) and non-specific (amino

acid-backbone). A disadvantage is that crucial water molecules at the interface are typically

neglected by these potentials, as they are usually excluded in the extraction of the contact

tables and construction of the empirical potentials.

Molecular modeling approaches

Molecular modeling holds great promise for addressing the main three issues where the

sequence- and non-dynamic structure-based approaches fail, namely structural re-arrangements

(flexibility), interdependence (non-additivity) [285], and hydration effects at the protein-DNA

interface [58, 147]. Molecular dynamics simulations allow for analysis of the flexibility and

thermodynamics of a protein-DNA complex over a short period of time, rather than the

rigid snapshots that structural data provides [140]. These flexible models can theoretically
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Figure 3.2: Statistical potentials are obtained by generating pair-wise amino acid base con-
tact tables from structural data. All contacts between an amino acid side chain
(red) and bases (blue) within a maximum radius (r) are used for generating the
statistical potential.

be considered a more truthful representation of the biophysical reality of the interactions,

however, suffer severely from high computational requirements. Approximations imply a

decreased accuracy, but are possible for several aspects. For biomolecular simulations such

approximations contribute to the necessary speed-up of the computations, thereby enabling

large-scale evaluation of several complexes. Restrictions in the flexibility by applying force

constraints during the simulations [72], trying a set of specified conformations by means of

side chain placement and structural alignment [233], or restricting the search space by Monte

Carlo/Umbrella sampling [148, 221] are commonly employed techniques.

Simulations of fully flexible systems in explicit solvent are time-consuming but possible for

investigating individual complexes [92, 127]. The effects that small chemical modifications,

made to functional groups of the nucleotides or the amino acid side chains, have on the binding

affinity can be studied in this way [134, 215, 228]. Observing the resulting conformational

changes or the changes in relative contributions to the binding free energy provide useful

insights into the physical reality of the direct and indirect interactions [120]. Furthermore, it

allows for a detailed analysis of the hydration by monitoring essential water molecules trapped

at the interface [256]. A further commonly adopted technique is to use an implicit solvent
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model [139] for estimating the solvation free energies (discussed in Sect. 2.3.3). Implicit

solvent models are suitable for analyzing the effects of larger modifications, such as whole

amino acid side chain mutations or bp mutations. As computations using approximate models

are faster than explicit models they can be used for analyzing a larger set of complexes.

Molecular dynamics is a time-consuming and computer intensive way to improve the current

understanding of protein-DNA binding. Nevertheless, it seems to provide some missing clues

about the thermodynamics and flexibility that are impossible to retrieve form other data [72,

105]. Choosing the appropriate approximations is highly dependent on the type of study and

should be considered a problem-specific decision.

To acquire knowledge, one must study; but to acquire wisdom, one must observe.

Marilyn vos Savant
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Each year 10.9 million people are diagnosed with cancer and 6.7 million people die from

various types of cancer worldwide [1]. Normal regulation of genes permits the development

and differentiation of healthy organisms, whereas abnormal gene regulation can lead to serious

diseases such as cancer.

Tumor suppressor genes (proto-oncogenes) are genes normally present in cells, where they

exert essential physiological functions. Genetic alterations, such as mutation, translocation,

or amplification, can turn these into oncogenes. For example, oncogenes can possess the

ability initiate cell division and disturb the normal cell cycle control mechanisms, which can

lead to an uncontrolled cell proliferation. Several key TFs have been identified as oncogenes,

thereby playing an active role in tumor progression. Cancer is considered to be a gene regu-

latory disease, since cancerous cells are controlled by abnormal gene regulatory mechanisms.

Analyzing the causes underlying cancer genesis for different cancer types, can be performed

on a large-scale basis at the level of systems. A wide range of experimental techniques,

targeting different aspects of tumor development, are used for this purpose. Not only genetic,

but also environmental factors, such as radiation and toxins, are known to be involved in

cancer development. In general, any one defect is not enough to initiate cancer on its own,

the defects that cause cancerous cell growth are typically accumulated over time.

The enormous impact of cancer has governed an intensive research interest and the mul-

tifactorial nature of cancer has led to a rapid increase in the volume of experimental data

related to cancer. It is important to view the differences between normal and pathological

gene regulation at the level of systems, in order to understand the gene regulatory networks

that control gene expression.

Analysis of heterogeneous cancer-related data presents a major challenge to computational

biologists. Here, a novel approach for analyzing cancer-related data at the level of systems

is described, which has proven useful for shedding light on the cancer genesis process. It is

demonstrated that differential gene expression correlates with antibody response in several
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human cancer types and provides evidence for the involvement of gene regulation in cancer

development. Thereby, putative target genes involved in the development of several cancer

types, including melanoma and breast cancer, are identified. Understanding the different

stages of progression from normal to cancerous tissue has important implications for early

diagnosis and target gene identification [254].
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4.1 Integrative analysis of cancer-related data using CAP

4.1.1 Introduction

Gene regulation precisely controls cell growth and division in living organisms. Normally,

replication of the genetic material occurs in a highly organized step-by-step fashion, in which

repair enzymes ensure that the daughter cells receive the complete genetic material from

the parent cell. Strict control mechanisms monitor the subsequent cell division. Specific

DNA-binding proteins, the TFs, play essential roles at each checkpoint of the cell cycle.

Cells carrying damaged DNA that cannot be repaired or do not fulfil the criteria at each

checkpoint, receive signals to undergo programmed cell death (apoptosis). Cancerous cells

show a deviant behavior by being able to escape these apoptosis signals. The normal cell cycle

regulation is often disrupted in cancer. A failure to repair damaged DNA or to prevent it

from being replicated leads to the accumulation of genetic defects, which eventually can lead

to the development of tumors. Most types of cancers result from several co-occurring events,

such as genetic alterations, disturbance of signal transduction, or failure of immunological

surveillance [176].

The multifaceted aspects of cancer development are reflected in the heterogeneous data

that is stored in cancer-related databases throughout the community (a selection is listed in

Table 4.1). These databases usually focus on specific fields of cancer research, whereas the

complexity of cancer genesis requires an integrated analysis of these data.

Data integration and modeling is a true challenge in bioinformatics and the essential key

to being able to answer questions at a systems biology level [46]. The cancer-associated

protein system (CAP), which was developed in this work [67], is a novel integrated database

and analysis tools for cancer-related data. CAP was designed to enable simultaneous and

integrated analysis of data originating from several information sources representing different

aspects of cancer development. User-specific experimental data can be imported into CAP,

where it is automatically annotated with information from external sources and predictions

from integrated bioinformatic tools. The data contained within CAP can be accessed through

a web-interface, through which it can be viewed and edited by the user. A further important

function is statistical analysis of the user-defined data sets. The results of such analyses can

be rendered as graphs and exported as tables for further use.

The correlation between the immune response, genetic alterations, and gene regulation in

cancer has been hypothesized. CAP facilitates the analysis of such complex relationships and
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Table 4.1: Data sources integrated into CAP and their URLs.

Data source URL

Cancer GeneticsWeb (CGW) http://www.cancerindex.org/geneweb/
CIDB http://www2.licr.org/CancerImmunomeDB/
LocusLink http://www.ncbi.nlm.nih.gov/LocusLink/
NCBI http://www.ncbi.nlm.nih.gov/
NCI60 http://genome-www.stanford.edu/nci60/
RefSeq http://www.ncbi.nlm.nih.gov/RefSeq/
SEREX http://www.licr.org/SEREX.html
SWISS-PROT http://www.ebi.ac.uk/swissprot/

was used for analyzing two different cancer-related data sets. The obtained results indicate

that there is a correlation between immunogenicity and over-expression.

Here follows a description of the overall design of CAP and a brief description of its abilities.

The results of the analysis will be presented in more detail. CAP is publicly accessible at

http://www.bioinf.uni-sb.de/CAP/ and described in detail in [67].

4.1.2 Materials and methods

The main computational challenge in developing CAP is the integration of heterogeneous

data, in order to facilitate an analysis process that covers several aspects of cancer devel-

opment. The content of CAP originates from several sources, the main contributing ones

and their URLs are listed in Table 4.1. There are three main types of information sources:

experimental data, external sequence information, annotations, and predictions. How these

have been combined is illustrated in Fig. 4.1.

Data sources

Two major sources of genomic and proteomic information are the NCBI’s Reference Sequence

Project (RefSeq) [200] and the SWISS-PROT database [11]. RefSeq provides non-redundant

cDNA, genomic DNA, and protein sequences, whereas the focus of SWISS-PROT is protein

sequences. Both sources provide a rich body of sequence specific annotations including mu-

tations, polymorphisms, structural domains, post-translational modifications, function, and

subcellular localization.

Tumor specific antibodies can be detected using the experimental method SEREX (sero-

logical analysis of recombinant cDNA expression libraries [257]). SEREX-related information
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CAP

Predictions

External Data Sources

User-Defined Exp. Data

(SEREX)

PSORT

SubLoc

SVMHC

SWISS

PROT
SEREXNCBI CGW

Results

Correlate SEREX w/

• Expression data

• Gene alterations

Figure 4.1: An overview of how different data sources have been integrated in CAP in order
to facilitate analysis of heterogeneous data.

in CAP comes from own experiments [52] and the SEREX database, which is now contained

within the Cancer Immunome Database (CIDB, Table 4.1).

CGW provides information about genetic abnormalities, e.g. mutations, which is related

to different genes and listed according to tumor type. The information used in these studies

was obtained from CGW and the status of CAP as of December 1, 2003. External database

information is updated on a regular basis.

Predictions

Bioinformatics provides a fast mean to computational analysis of both gene and protein

sequences. A number of different tools, including prediction of protein subcellular localization,

function, and MHC class I epitopes, have been integrated into CAP. The information retrieved

from external resources is by no means complete; hence these prediction methods are useful

for assigning missing features with a fairly high reliability.

The subcellular localization and function of a protein is important information for under-

standing potential interaction partners, the participation in metabolic pathways, and role in

cell-signaling cascades. The two prediction methods integrated into CAP, are PSORT [182]

and SubLoc [108]. The accuracies of the predictions have improved significantly during the
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Figure 4.2: An illustration of a part of the CAP data model. The sequence class is a gen-
eralization of protein and NA sequences. Annotations of different types can be
linked to the sequences. Sequences can be linked to other sequences (e.g. protein
to gene), which enables flexible queries across the CAP data model.

past few years [66], the most recent advances are not integrated in CAP to date but can be

used externally [104]. Predicting protein function is not a trivial task, regarding the wide

spectrum of possible functions, the existence of multitask proteins, and the various ways of

defining function. Protein function is predicted by ProtFun [121] and the annotations are

added to the CAP database. The presence of putative T-cell epitopes in a protein serves as

good candidates in the development of cancer therapies. The prediction of such epitopes is

performed using SVMHC [65], which has been integrated into CAP.

Data model and data inspection

The CAP data model was designed to facilitate fast and flexible analysis of different types of

heterogeneous biological data. The model is described using the unified modeling language

(UML) [214]. A part of the CAP data model is shown in Fig. 4.2. Protein and gene sequences

are at the center of the model and can be of two types, either experimental (e.g. from a

SEREX experiment) or reference (e.g. SWISS-PROT). The linking to external databases,

shown in Fig. 4.3, facilitates fast import and frequent up dates of the content in CAP. An

important feature of the data model is that each sequence can be assigned different types of

annotations, such as experimental information or results from prediction methods. The key

concept in CAP is to integrate heterogeneous cancer-related data and methods to keep track

of links between different types of sequences and the annotations belonging to these.

The homogeneous data model allows for a fast and flexible analysis and generic analy-
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Figure 4.3: External information is extracted and used for annotating sequences in the CAP
database. CAP is linked to external databases like RefSeq and SWISS-PROT,
which provide valuable sequence information.
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sis tools for statistical analysis of the database content. New data can be imported and

the data can be grouped into experiment specific data sets. Furthermore, CAP provides a

palette of options for analyzing individual sequences or sets of sequences in detail. Statistical

information, including chromosomal distribution of genes, protein function, and subcellular

localization, can be generated, rendered, and exported for any data set of interest.

4.1.3 Results

The applicability of CAP is exemplified by two large-scale analysis processes. As a first

example, the connection between genetic alterations and immunogenicity is analyzed. The

second example illustrates how the correlation between immunological data and gene expres-

sion data can be analyzed using CAP. These two examples highlight the usefulness of CAP by

integrating several important aspects of cancer. The second indicates a correlation between

disturbance of the gene regulatory mechanisms and immunogenicity in cancer.

In order to analyze the relationship between gene products carrying known mutations and

the development of an autoimmune response in different cancer types, data was collected from

SEREX [257] experiments and Cancer GeneticsWeb (CGW), see Table 4.1 for links. A total of

723 genes in CAP have been found by SEREX experiments, 17 genes and two splice variants

out of these overlap with CGW. Regarding only those where the cancer types agree in both

SEREX and CGW, seven genes were extracted. The genes TP53 and GSTT1 (glutathione

S-transferase theta 1), were among these seven, and are known to carry specific mutations or

polymorphisms. Interestingly, TP53 has previously been found to cause an immune response

and carry mutations in both colon and breast carcinoma [6, 234]. Mutations in TP53 have

been found is several further cancer types, however, no immune response has been shown. As

for GSTT1, antibody responses occur in patients with breast cancer. This tumor is associated

with specific GSTT1 polymorphisms [179]. However, these types of polymorphisms also occur

in other tumors including head and neck cancer without an antibody response [45]. Other

examples of genes include NME2/NME1 (protein NM23B/A expressed in non-metastatic

cells 2/1), HSPCA (heat shock 90kD protein 1), Ki-67 (MKI67), and MIF (macrophage

migration inhibitory factor). NME1 and NME2 have been reported as immunogenic and

over-expressed in malignant colon carcinoma [172], HSPCA in renal cell carcinoma [185],

Ki-67 in melanoma [103, 101], and MIF in melanoma [231].

In the second application of CAP for analyzing cancer-related data, the correlation between

over-expression and an autoimmune response was analyzed. The gene expression data of the
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NCI60 microarray project was used for extracting over-expressed genes. The NCI60 data set

(link in Table 4.1) contains the expression profiles of 8,000 genes from 60 cancer cell lines.

These cell lines are also used by the National Cancer Institute (NCI) for screening potential

cancer drugs. Two criteria have to be met for genes to be considered over-expressed, the

genes have to show at least a two-fold expression level and have measured expression levels

in at least four of the 60 cell lines. In total, 319 genes occur in both CAP and the NCI60

data set; 277 of these genes were over-expressed in at least one of the NCI60 cell lines, while

69 were over-expressed in at least 10% of the cell lines. A total of 13 genes are found to

be immunogenic in SEREX experiments, are over-expressed in at least three tumor specific

cell lines, and are of the same cancer type. These 13 genes and SEREX related information

are presented in Table 4.2. There are five genes related to melanoma (COL9A3, HEXB,

RRBP1, SLC2A11, and TIMP3) that are immunogenic and over-expressed. Furthermore,

the list contains genes from other common cancer types such as breast, colon, lung, and renal

cancer.

4.1.4 Discussion

The immune response plays an important role in disease development, since it is the body’s

own defense mechanisms. One of the new approaches to the treatment of cancer is to up-

regulate the activity of the immune system in order to allow it to better control carcinogenesis

(also known as immunotherapy [3]). It has been hypothesized that the antigens causing the

immune response stem from genes that are altered by tumor-specific mutations or have a

changed expression profile in a certain tumor (reviewed in [176]).

The analysis of the current data suggests that immunogenic antigens in cancers are likely

to occur as a result of over-expression. There is no clear evidence to be seen, that an im-

mune response is triggered due to genetic alterations, such as mutations or polymorphisms.

The analysis presented in this work is by no means complete and further experimental anal-

ysis is needed, therefore these results should not be interpreted as rules regarding cancer

development. Furthermore, genetic aberrations in certain chromosomal regions and changes

in gene-expression of such regions have been identified for certain cancer types [18]. Over-

expressed genes have also been suggested as attractive therapeutic targets [289].

The two applied examples illustrate that CAP facilitates this kind of integrative analysis

of large-scale cancer-related data originating from the fields of genetics, proteomics, and im-

munology. As new experimental techniques are developed and the body of data grows, it
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Table 4.2: SEREX-related information for the 13 genes found in the same cancer type in both
SEREX experiments and over-expressed in the NCI60 data. For a number of genes
several related SEREX clones were found.

Abbreviation Gene name RefSeq id SEREX clone SEREX tumor

Melanoma

COL9A3 collagen, type IX, alpha 3 NM 001853 Hom.TsMe3-89 melanoma
HEXB hexosaminidase B (beta NM 000521 Hom.TsMe2-12 melanoma

polypeptide)
RRBP1 ribosome-binding protein 1 NM 004587 TE53 unclassifiable

homolog 180kDa
TM-76 melanoma

SLC2A11 solute carrier family 2 NM 030807 Mz19-64 melanoma
(facilitated glucose
transporter), member 11 NY-SAR-47 fibrosarcoma

TIMP3 tissue inhibitor of NM 000362 Mz19-3 melanoma
metalloproteinase 3

Breast cancer

P8 p8 protein (candidate of NM 012385 NY-BR-89 malignant breast
metastasis 1)

TP53 tumor protein p53 (Li- NM 000546 NY-Co-13 colorectal
Fraumeni syndrome) adenocarcinoma

NY-BR-94 malignant breast
NW-F14 malignant colon
NW-F93 malignant colon

CENPF centromer protein F, NM 016343 MOC-SW-139 malignant colon
350/400ka (mitosin)

MOC-SW-18 malignant colon
MOC-SW-151 malignant colon
NGO-Br-7 malignant breast
MO-TES-148 malignant colon
NY-ESO-11 esophageal cancer
NGO-Pr-24 malignant prostate
NY-BR-69 malignant breast

GBP1 guanylate binding protein 1, NM 002053 NGO-Br-40 malignant breast
interferon-inducible, 67 kDa

Colon cancer

SCNN1A sodium channel, non-voltage- NM 001038 NW-CD35b adenocarcinoma
gated 1 alpha colon

AP1G2 adaptor-related protein, NM 003917 NW-SW15 adenocarcinoma
complex 1, gamma 2 subunit colon

Lung cancer

TRAP1 heat shock protein 75 NM 016292 LC19 malignant lung
Renal cancer

PFKFB3 6-phosphofructo-2- NM 004566 NY-REN-56 malignant kidney
kinase/fructose-2,6-
bisphosphatase 3
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becomes more and more important to design databases that offer more than simple data re-

trieval [38]. Tools for predicting and performing statistical analysis of subcellular localization,

function, and T cell epitopes have been implemented into CAP. The automatic annotation

of the information contained in the database is an illustrative example and serves as a base

for exploring protein interaction networks and signaling pathways involved in cancer.

Integration, annotation, and large-scale analysis of heterogeneous data help in the under-

standing of genetic and immunological basis of cancer genesis. The novel analysis pipeline

CAP is one of the first of its kind, offering large-scale analysis tools for heterogenous data

sets. The results include evidence for the involvement of gene regulation in cancer devel-

opment. A global analysis of this type is necessary in order to be able to identify sets of

biologically related genes. The specific regulation of such sets is to analyzed by zooming in

to the sequence level.
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The cellular processes that can be observed at the level of systems are orchestrated by gene

regulatory networks. Sequence-based methods provide powerful means for analyzing tran-

scriptional regulation, as these make it possible to zoom in on specific regulatory sequences

and the TFBSs therein. The regulation of biologically related genes and the functions of

those genes can be studied in detail. In this chapter, important gene regulatory control

mechanisms in three different organisms are analyzed using sequence-based methods. The

knowledge acquired at the level of sequences is helpful for understanding regulatory effects

at the level of systems. Furthermore, sequence-based analysis of gene regulatory regions is a

crucial step towards reconstructing gene regulatory networks.

First, an analysis of the regulatory mechanisms controlling human melanoma-related genes

that were identified at the level of systems using CAP (described in Chapt. 4) is presented.

Potential TFs involved in melanoma are suggested. Putative binding sites for the TF AP2

are detected, which is further confirmed by experimental evidence showing that AP2 plays a

key regulatory role in melanoma development. In the second study, the system for integrative

analysis of yeast regulatory sequence analysis system (YRSA) is described. The regulation of

biologically linked genes is investigated in three case studies using YRSA. Putative functional

TFBSs have been identified in a set of regulons and the TFs likely to bind these are suggested.

Especially, the TF MCB1 (or a TF binding to a highly similar TFBS) is suggested to be

involved in DNA damage response. Finally, an analysis targeting the regulatory network

determining stem cell fate and floral patterning in A. thaliana is described. High significance

motifs are presented and TFs putatively binding to those are suggested. These analyses show

that it is possible to map out TFs responsible for certain cellular traits and to continue with

functional characterization of the target genes.
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5.1 Regulatory analysis of melanoma-related genes

5.1.1 Introduction

An indication of that over-expression can cause an immune response in cancer was found

using CAP [67]. At least five genes in melanoma: COL9A3, HEXB, RRBP1, SLC2A11, and

TIMP3, listed in Table 4.2, show this behavior. Over-expression of a gene in a cancer cell

compared to a normal cell can be the result of a disturbance of the transcriptional control.

Due to the nature of the regulatory networks underlying transcription and the central roles

of TFs, it is likely that several genes are affected by such a change simultaneously [267, 218].

The aim of this study is to elucidate putative commonalities in the transcriptional regulation

of the five melanoma-related genes.

Computational analysis of the transcriptional regulation of human genes presents many

challenges. The human genome is not only large, but the coding and functional information

contained within is widely spread out in the non-coding and repetitive sequences (back-

ground). The exons of genes are interspersed with long introns and non-coding (functional)

regulatory regions often stretch out over several kb long sequences (illustrated in Fig. 2.3).

Potential mechanisms underlying the regulation of these five melanoma-related genes and

possible causes of the over-expression in cancer are addressed in this sequence-based study.

The genomic sequences upstream of the coding cDNA sequences for the five human genes

and the corresponding sequences for the mouse (M. musculus) genes were extracted. Us-

ing phylogenetic footprinting, the upstream sequences of two suitably diverged species (like

human and mouse) are aligned in order to highlight conserved and potentially functional

regions in the non-coding DNA. The promoters of the genes were extracted and the con-

served sequences were searched, using a Gibbs sampling approach [146] and MEME [96], for

potentially over-represented motifs. These over-represented motifs are compared against mo-

tifs in the JASPAR database [217] containing experimentally verified motifs. Good matches

potentially correspond to known functional TFBSs. The detected motifs were also checked

for their statistical significance in the regulatory regions. The preliminary results show that

there are a few interesting motifs, which share a high similarity to experimentally verified

TFBS motifs. Interestingly, the melanoma genes have a few individual motifs and do also

share a few common motifs in their upstream regions, which are previously known for their

involvement in cancer. Furthermore, the potential involvement of a few new TFs in the de-

velopment of melanoma is discussed. A detailed analysis of this kind can highlight critical
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aspects of regulatory mechanisms behind the development and progression of cancer. There

is a clear need for further experimental verification of the results. Nevertheless, they are likely

to prove useful for understanding the development of this cancer type and in the process of

identifying putative drug targets.

5.1.2 Materials and methods

Sequence-based analysis of gene regulatory regions rely on several consecutive steps, for a

graphical illustration see Fig. 5.1. The data sources, tools, and their URLs used in this step-

wise analysis are listed in Table 5.1 and additional details are provided in Sect. 5.2.2. The

genomic and cDNA sequences of the human and their homologous mouse genes were obtained

using the NCBI’s RefSeq database and the Ensemble Genome Browser. One of the genes,

SLC2A11 has no corresponding sequence in mouse and was excluded from further analysis.

The genomic sequence was aligned to the cDNA sequence in order to identify the TSS, for

human and mouse respectively. After the TSSs have been identified, the genomic human and

mouse DNA sequences were aligned using ClustalW [253] to identify conserved sequences in

the upstream non-coding regions. Conserved sequence segments (matching requirements on

the conservation level of 65% in a sliding window length of 100 bps) in the region between

five kb upstream and the TSS were extracted for further analysis. These conserved sequences

were fed into a Gibbs sampling algorithm and into MEME, which were the tools used for

identifying statistically over-represented sequence motifs. At the final step of the process the

resulting motifs have to be analyzed. The motifs found using the two sampling approaches

were checked against a collection of reference motifs in the JASPAR database [217], in order

to assign potential identities to the anonymous motifs that result from the sampling. The

significance of the over-representation was statistically verified by comparing the occurrence

in a) the conserved regulatory regions, b) the full five kb upstream regions of the melanoma-

related genes, and c) the five kb upstream of all genes in the genome. In total, five motifs were

selected for further investigation, which involved manual annotation and literature studies.

5.1.3 Results and discussion

Five human cancer-related genes found to be both immunogenic and over-expressed in melanoma

using CAP, four out of these five genes were used in this study: COL9A3, HEXB, RRBP1, and

TIMP3. The transcriptional regulation of these genes was analyzed using common sequence-

based methods such as: sequence alignment, extraction of conserved regions, sampling of
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Genomic sequences

NCBI, RefSeq, Ensembl

Results from CAP

Melanoma genes:

COL9A3

HEXB

RRBP1

TIMP3

Human gene
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genes (BLAST2)

Extract and align non-coding
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Analysis of the results
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Figure 5.1: The results from the CAP study define the set of H. sapiens and M. muscu-
lus genomic sequences and annotations to be extracted from sequence databases.
A collection of conserved regulatory sequences is obtained using phylogenetic
footprinting i.e. aligning sequences and extracting conserved fragments. The
Gibbs sampling algorithm and the MEME program are used for discovering over-
represented and statistically significant motifs. The significance of the novel mo-
tifs is further evaluated, each motif is compared to known reference motifs in
the JASPAR database [217], and analyzed with respect to the relation to gene
expression in cancer and putative underlying transcription logic.
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Table 5.1: Data sources and tools with their corresponding URLs that were used in the anal-
ysis.

Data source or tool URL

BLAST2 http://genopole.toulouse.inra.fr/blast/wblast2.html
Consite http://mordor.cgb.ki.se/cgi-bin/CONSITE/consite
Ensemble Genome Browser http://www.ensembl.org
Genecards http://bioinfo.weizmann.ac.il/cards/index.shtml
JASPAR http://jaspar.cgb.ki.se/cgi-bin/jaspar db.pl
MEME http://meme.sdsc.edu/meme/website/meme.html
NCBI http://www.ncbi.nlm.nih.gov
RefSeq http://www.ncbi.nlm.nih.gov/RefSeq

Table 5.2: The top scoring human reference motif in JASPAR for each predicted motif.

Motif name TF name TF class Score Similarity (%)

col9a3 motif SOX-9 HMG 7.25 45.3
hexb motif AP2α AP2 8.54 53.4
rrbp1 motif PPARγ nuclear receptor 9.74 48.7
TIMP3 motif USF bHLH-Zip 5.18 37.1
all motif IRF-2 TRP-cluster 11.81 65.6

over-represented motifs, and verification against a reference database. Additionally, litera-

ture investigation of the regulation of the genes and functional annotation of the gene products

was conducted in order to explore their relatedness to cancer.

Two types of motifs could be identified: the motifs that are found in individual upstream

sequences only, and the shared motifs that are found in several of the upstream sequences.

The best individual motif for each gene (nomenclature: lower case[gene name] motif) and the

best shared motif (all motif) is presented in the following, and shown in Fig. 5.2. The best

scoring motifs from the JASPAR reference collection are listed for each gene in Table 5.2. An

example is the col9a3 motif, which is similar (matches to human TFs are given priority) to

the reference motif SOX-9. Database hits for the TFs were identified for each individual gene.

The list of obtained reference motifs was used for further investigation of previously reported

involvement in or regulation of cancer-related genes by conducting manual literature search.

The reference motifs in JASPAR and the motifs obtained through sampling are not likely to

share a 100% similarity, simply due to the scarce amount of sequences used in this study.

However, general sequence recognition patterns should match and can give clues about the

type or family of TF that could be responsible for the regulation.
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Figure 5.2: The detected motifs in the conserved blocks of the regulatory regions upstream
of the genes (indicated by the motif names), sequence logo, motif lengths, and
number of occurrences in the respective upstream sequences.
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Here follows a detailed discussion of some of the matching TF reference motifs and their

putative role in the regulatory control of these melanoma-related genes.

SOX The SOX-gene family [64] represents an ancient group of TFs involved in numerous

developmental processes and sex determination in vertebrates. SOX proteins are char-

acterized by a conserved high mobility group (HMG)-box domain, which is responsible

for DNA binding and bending.

AP2 The AP2 [13, 250] TF family is a set of developmentally regulated, retinoic acid in-

ducible genes composed of four related factors, AP2α, β, γ, and δ. The AP2 factors

orchestrate a variety of cellular processes including apoptosis, cell growth, and tissue dif-

ferentiation during embryogenesis [155], which all are important aspects of melanoma

cancer development [250]. Loss of AP2 function has been experimentally verified in

metastatic melanoma cells [12].

PPAR Peroxisome proliferator-activated receptors (PPARs) [181] belong to the nuclear re-

ceptor superfamily that includes receptors for steroids, thyroid hormone, vitamin D,

and retinoic acid. Three receptor subtypes of PPARs, termed α, β, and γ have been

identified. These function as ligand-activated TFs and control the expression of genes

implicated in extra- and intracellular lipid metabolism.

USF The USF (upstream TF) [85] encodes a member of the basic helix-loop-helix leucine

zipper (bHLH-Zip) family, and is known for its involvement in development and differ-

entiation [107].

IRF Shared motif: Interferon regulatory factor-1 (IRF-1) and IRF-2 are nuclear TFs that

respond to interferon gamma (INFγ) [164]. INFγ is a cytokine that is produced by

T-cells and natural-killer cells and has a variety of immunological effects.

Transcriptional control clearly plays an important role in the complex events underlying

the initialization of tumor growth and metastasis of human cancer. Over-expression is a

sign of a disturbance or dysfunction of the underlying regulatory network. The regulatory

mechanisms controlling the genes, which were shown to be over-expressed and responsible for

triggering an immune response in melanoma are addressed in this study. On the sequence

level it is possible to study the exact mechanisms, by identifying which TFs are involved

that could cause over-expression of the individual genes. The resulting motifs in combination
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with a manual literature search show that there are putative functional TFBSs, in each of the

upstream regions of the melanoma-related genes. Especially, the AP2 and the INF TFs have

previously been shown to regulate gene expression in melanoma tumors and to play pivotal

roles in growth of melanoma tumors [12, 13]. Furthermore, the identification of a motif,

similar to that of the IRF TFBS, supports the evidence that the genes induce an immune

response in melanoma [164] (which was found using CAP). This study could be extended

and was primarily restricted by the small number of melanoma-related genes and the high

complexity of human genomic DNA sequences. The results supports previously reported

experimental evidence and illustrates how sequence-based analysis can be conducted on a

small scale on interesting experimental data.
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5.2 Integrated analysis of biologically linked clusters of genes in

yeast

5.2.1 Introduction

There is a clear need for flexible tools allowing for fast analysis of the regulatory regions

of many different sets of genes. Such systems can help in finding answers to immediate

questions posed by the experiments. In order to address this need, the yeast regulatory

sequence analysis system (YRSA) [218] was developed.

Baker’s yeast (S. cerevisiae) is a popular model organism used for studying complex reg-

ulatory networks. Compared to the human and mouse genome, the yeast genome contains

significantly less genes and the upstream sequences are typically shorter than 1000 bp. Nev-

ertheless, gene regulation in yeast is far more complex than that in bacteria and several

networks and cascades in yeast are as complex as in human. Cooperatively functioning

genes are commonly regulated in a similar manner ensuring complete sets of interacting pro-

teins are present at the same time. As yeast is one of the commonly used model organism,

immense amounts of experimental data has been produced using microarray expression pro-

filing [212, 235], ChIP assays [117, 209, 229], phenotypic screens [89], text analysis [238],

and protein-protein interactions [116, 258]. Key advances have been made in defining gene

networks and their common transcriptional control mechanism [110, 111, 193].

The vast amount of experimental data holds an enormous potential for governing insights

into the coordinated transcription of biologically linked genes in transcriptional networks.

Integration of the required steps in the analysis process is a major challenge. The aim of

an exhaustive promoter analysis is to decipher common characteristics and link these to the

coordinated expression of gene networks. Effective means of comparing and assessing motifs

combined with current methodologies is required for expert analysis. The developed system

YRSA is described in detail and its usefulness is illustrated through a set of case studies. The

results both re-affirm previously published work and reveal interesting findings as applied

to novel data. The main finding is the hypothesis that the well-known cell cycle-regulated

response element MCB may regulate the induced expression of a set of genes following cellular

exposure to DNA-damaging agents. YRSA is available at http://YRSA.cgb.ki.se/ and further

details has been published in [218].
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5.2.2 Materials and methods

Promoter sequences

Sets of promoter sequences for analysis can either be uploaded or selected from a pre-defined

set of 1,000 bp upstream sequences for 6,255 S. cerevisiae open reading frames (ORFs).

To narrow the search space, users may indicate sub-segments for analysis. The promoter

sequences were retrieved from the SCPD database (http://cgsigma.cshl.org/jian/) [290].

Motif representation

TF binding preferences were modeled using PSSMs, which describe the counts of base occur-

rences in every position of the binding site. For visual representation of TF binding profiles,

sequence logos [222] are used.

Pattern discovery algorithm

For pattern discovery, the Gibbs motif sampler by Lawrence et al. [146] is utilized. This

software has been continuously developed since the original publication. For the systematic

study of a reference collection of gene sets, the estimated number of sites was set to one

site/sequence, using 10-bp pattern width and a filter to remove low complexity regions.

Model collection

The YRSA database contains a collection of non-redundant PSSMs for 38 yeast TFs. Se-

quence data used for the construction of models was collected from the published literature

and high-quality data repositories produced by leading research groups, including SCPD [290]

and the ACE collection [110, 212]. Sequences were aligned in order to obtain PSSMs, using

the Gibbs Motif Sampler. The collection of models is stored in a relational database system

(MySQL) and is available online (http://yrsa.cgb.ki.se/matrixlist.html). Pattern searching

and scoring PSSMs can be used to quantitatively score any sequence for its potential to serve

as a TFBS for the indicated TF. By sliding PSSMs along promoter sequences, high scoring

frames (hits) may be identified and classified as putative TFBS. Since the matrix models can

be of varying length, their respective score ranges are unique. To be able to compare putative

hits for different PSSMs, the hit scores (H) are first converted into a unit scale (normalized

hit score, HN ) given by:

HN = 100(H−m)
M−m
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where m is the minimum and M the maximal possible hit score for the subject matrix.

Object-oriented TFBS modules

We used the Perl TFBS [154] extension to BioPerl [237] (http://www.bioperl.org). TFBS is

an object-oriented Perl module with C extensions that allows for promoter scanning, model

creation, and model handling, using Gibbs sampling, relational database systems, and other

tasks involved in promoter analysis. As an expansion of TFBS, we added modules for manip-

ulating sets of sequences and visual interpretation of site distributions, as well as an interface

to pattern comparison algorithms.

Comparison of binding profiles

For comparison of binding profiles, a novel quantitative comparison algorithm was applied.

Matrix models in normalized formats are compared using a novel scoring function. The

scoring function S evaluates the similarity between two columns x and y of the two matrices

X and Y .

S = 2 − ∑

bε[A,C,G,T ]

(xb − yb)
2

The scoring function gives a score between a maximum of 2 (total identity) and minimum

of 0 for each position in a given alignment. The total score Stot of a given alignment is the

sum of call column pairs i.

Stot =
∑

bε[i]

Si

Finally, the normalized total score N is obtained by dividing Stot with the potential max-

imum total score according to:

N = Stot

2w

where w the shortest width of the two aligned motifs.

The motif alignment is obtained using a Needleman-Wunsch algorithm [184], which allows

for the opening of a maximum of one gap in the alignment. This addresses situations in which

TFs bind as heterodimers with variable spacing between half-sites, which for instance is the

case in leucine zipper structures [131], the δEF1 ZF [208], certain homeodomain proteins [286],

and nuclear receptors [211]. Based on observations in a study with metazoan binding profiles,
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gap opening and extension penalties were set to -3 and -0.01, respectively, for the test cases.

This allows for an optimal semi-global alignment of the matrix models, given the scoring

function S and gap penalties defined above.

5.2.3 Results

Performance

Over-represented sequence patterns were obtained from the regulatory sequences of associated

genes using the YRSA system. A series of tests were conducted in order to assess the reliability

and the performance of the predicted TFBS motifs.

Extension test for sensitivity

The limitation of the pattern finding was assessed by obtaining known binding sites for three

TFs annotated in the SCPD database, listed in Table 5.3. The individual binsing sites for

each TF were extended by flanking sequence from their natural promoters. The length of the

flanking sequence was gradually increased from 25 to 225 bp in both directions. Each study

was repeated 30 times and compared against a control set of randomly chosen promoter

sequences. The observed patterns were compared to the reference models in the YRSA

database to assess the average comparison score and rank obtained by the motif comparison

algorithm, these results are plotted in Fig. 5.3 a and b. The sensitivity of the motif finding

algorithm decreases as the flanking sequence is progressively extended. Pattern detection

begins to fail when the signal-to-noise ratio becomes low. The precise signal detection limit

is unique to each TF. The observed results are consistent with previously published reports,

and the drop in score at the lower bound is presumed to originate from the inclusion of false

sites in the profile.

Analysis of a reference set for specificity

The performance of YRSA was tested on a reference collection of gene sets to determine the

specificity of the detected patterns. A data set collected by Lee et al. [150] from published

literature contains sets of genes known to respond to specific TFs (regulons). The precise

location of the motif is unknown in many cases and there is no exclusive evidence that each

listed promoter contains a motif. Thus, this data set presents a real-world challenge to YRSA.

Putatively co-regulated genes for which a binding profile was available in the YRSA database
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Table 5.3: TFBSs and promoters used in the extension test.

Transcription factor Gene ID Binding site sequence Start Stop

REB1 (model ID: MY0021) YDL164C TTACCCGGAT -351 -342
YDR007 W CGCTCACCCG -322 -313
YDR050C AGATTACCCG -401 -392
YDR146C TCCGGGCAA -361 -353
YER086 W CGGGTAGCAA -186 -177
YFL039C CTGTCACCCGGCC -410 -398
YGL026C TTATTACCCG -169 -160
YNL216 W CCGCTACCCG -232 -223
YOL004 W TTACCCGTGT -372 -363
YOL006C TCCGGGTAA -287 -279
YPL231 W TTACCCG -296 -290

MCB (model ID: MY0013) YDL102 W ACGCGT -166 -161
YDL164C ACGCGA -133 -128
YJL194 W ACGCGA -216 -211
YNL102 W ACGCGT -208 -203
YOR074C ACGCGT -158 -153

CAR REP (model ID: MY0039) YAL005C TCGGCGGCA -246 -238
YDR256C AGCCGCGCA -249 -241
YGR088 W CTGCAGGCT -197 -189
YGR254 W AGCCACCTC -219 -211
YGR264C TGTTAGCCGCCGA -248 -232
YHR018C GTGGTGGTT -229 -221
YML054C AACCGCCAA -167 -159
YMR108 W AGCCGCCGG -483 -475
YOL006C AGCCGCCGA -447 -439
YPL111 W AGCCGCCGA -156 -148
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5 Gene regulation at the sequence level

Figure 5.3: In the extension test for sensitivity, the motifs for three representative TFs (REB1,
MCB, and CAR REP) were obtained using the YRSA system and an increasing
flanking sequence around the annotated motif. These motifs were compared to
the known motifs in the YRSA database and the average score (a) and average
rank (b) are plotted against the extended flanking sequence.
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were grouped into regulons. The 16 selected regulons contain a varying number of sequences

(from 5 to 28 genes), for which the promoter segments -500 to -1 were obtained. The test is

not comprehensive (detailed results can be found in [218]), but they indicate that promising

motifs can be obtained even for larger and less tightly defined gene sets.

Analysis of experimental data

The extension test and the analysis of the reference collection showed that the YRSA system is

applicable in the motif discovery process of sequences mediating transcription of yeast genes.

YRSA has been applied to a series of studies presenting an increasing level of difficulty of

motif detection.

Case study 1: Analysis of PDR1/3-regulated genes

The first application of YRSA is on a regulon defined by multiple microarray studies of genes

responsive to the TF PDR1 [61]. PDR1 is closely related to PDR3, published experimental

data lead to the definition of a common set of target genes. The PDR1/3 regulon contains 27

genes listed in Fig. 5.4. YRSA can detect a motif (motif1 in Fig. 5.4 a), which is highly similar

to the annotated motif for PDR3 in the YRSA database. Potential circularity problems are

avoided since only three of the 27 input sequences were used for constructing this motif [110,

212]. The specificity of the PDR1/3 motif appears to be high since it could be detected in

long promoter sequences (700 bp, data not shown).

Case study 2: Genes activated by an unknown TF following release from cell cycle arrest

Getz et. al. [88] applied a novel super-paramagnetic clustering algorithm on the well-

annotated yeast cell microarray data set by Spellman et al. [235]. Focusing on finding sets

of putatively co-regulated genes with ascribed function, an interesting regulon (consisting of

42 genes listed in Fig. 5.4) related to metabolism was identified. Promoter analysis revealed

a highly conserved motif (consensus sequence ANCTCATCGC), and the authors concluded

that it most likely is the binding site for an unknown TF. YRSA finds an over-represented

motif, which is highly similar to the PAC motif in the YRSA database shown in Fig. 5.4.

Case study 3: Analysis of DNA-damage response genes

In this third study YRSA is applied to a novel data set, for which no promoter analysis has

been reported. The DNA damage repair system is crucial for avoiding fatal mutations in all

69



5 Gene regulation at the sequence level

Figure 5.4: The genes in the PDR1/3 regulon (top) are listed next to the motif (motif1)
detected using YRSA. This motif is highly similar to the PDR3 reference motif
in the YRSA database. Another regulon by Getz et al. [88] (bottom) was used
in the second study. YRSA identified one motif, which is highly similar to the
annotated PAC binsing site [110, 212].
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organisms. Gasch et al. [87] identified a set of genes induced by methyl-methane sulfonate

(MMS) or radiation. Additional data was used to refine the regulon and the authors reported

a condensed cluster of nine putatively co-regulated genes listed in Fig. 5.5. Several genes were

known from earlier studies to be connected to DNA repair mechanisms, whereas other genes

in the regulon have no annotated function. Little is know about the repair mechanism, with

the exception of the Mec1 response [69] and the coupled Crt1 repressor [109]. Gasch et

al. noted that only a subset of the DNA-damage response set of genes overlaps the Mec1

response, suggesting the existence of additional control mechanisms.

Applying YRSA to these MMS-induced DNA repair genes reveals a motif similar ot the

MCB (MluI cell cycle box [110, 212]), which is bound by the MBP1 protein and the cofactor

SWI6, could be identified, see Fig. 5.5. Based on this observation, we suggest that the

DNA damage response is partially regulated by MBP1 or a TF with highly similar binding

specificity. Interestingly, it is known that the DNA-damage and replication pathways in yeast

activate checkpoints at four stages of the cell cycle. The MCB element partially controls the

entry from G1 phase into S1, where DNA replication takes place [276]). The role of MCB

sites in blocking DNA replication and the presence of a suitable target site in the promoters

of DNA-damage responsive genes (the matching TFBSs in each of the nine promoters are

graphically illustrated in Fig. 5.5) is consistent with the biological processes.

5.2.4 Discussion

Pattern discovery methods can be successfully applied to a set of transcriptionally co-regulated

yeast genes for the identification of the TFBSs in the regulatory regions. The presented

YRSA system shows a successful integration facilitating studies of co-regulated genes. The

integrated analysis tools, including a Gibbs sampling method for motif detection and a novel

algorithm for motif comparison, allow for rapid assessment of predicted regulatory controls

of gene clusters. The large-scale systematic assessment of YRSA presented here, shows its

applicability to biological data.

Applying YRSA to experimental data resulted in a hypothesis consistent with what has

been previously observed. The MCB regulatory element or an element of a similar TF plays

a mediating role in the DNA damage response. Compared to previously published work

conducted on individual genes of DNA damage response, this study presents an analysis

of the full set of putative target genes confirming earlier work. TFs with similar binding

specificity and DNA-binding domain as the MCB-associated protein MBP1, are SWI4, SOK2,
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Figure 5.5: The nine yeast MMS-induced DNA repair genes are listed to the left, below the
detected motif and its best match in the YRSA database (MCB). The distribution
of the potential matches in the promoter sequences (-500 to -1) are illustrated to
the right.
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Table 5.4: Integrated web-based systems for yeast promoter analysis.

System Description URL

ACE AlignAce (Pattern recognition) http://atlas.med.harvard.edu/
CompareAce (Pattern comparison) http://atlas.med.harvard.edu/cgi-bin/

compareace.pl
RSAT Pattern recognition and scans http://embnet.cifn.unam.mx/rsa-tools/
INCLUSive Pattern recognition and scans http://www.esat.kuleuven.ac.be/∼dna/

BioI/Software.html

and PHD1.

Detecting TFBSs is a true challenge in bioinformatics. The short and often variable func-

tional binding sites must be distinguished against an often noisy promoter background. The

performance assessment shows that the length of yeast promoters is at the upper limit for

the motif detection method. Further tests show the potential of the YRSA system on exper-

imental data, likely to contain noise, for analyzing the TFs mediating transcription of a set

of biologically linked gene clusters.

YRSA integrates pattern recognition, detection of sites in promoter sequences, and the

classification of TFs likely to act through a newly detected pattern. Each of these components

has been the focus of individual projects. Three previous reports have defined efforts to

couple at least two of the steps: ACE [110], RSAT [261], and INCLUSive [252], which are

listed in Table 5.4. The RSAT and INCLUSive services partially overlap the functionality

of YRSA in pattern recognition, but should be viewed as complementary methods. Both

allow users to scan multiple genomes (including yeast) for sites matching a binding profile

and to retrieve sequences flanking predicted sites. The ACE suite of tools is the only set to

include a complete set of pattern recognition and classification components comparable to

those within YRSA. However, the tools generated for specific applications are not integrated

and lack many features for user control. The comparison algorithm is substantially different

and highlights the novelty of YRSA. ACE uses a comparison algorithm based in large part on

a method for comparing ungapped protein alignments [110, 196]. YRSA introduces a novel

scoring function that allows for gaps. Since there is no limit on the motif widths, an unwieldy

constraint of a specific number of significant positions within binding sites is avoided.

The distinguishing component of YRSA is the underlying database of reference motifs.

These were obtained from literature and as new technologies emerge and research projects

progress, the body of experimental evidence for both known and unknown TFBSs grows. It is
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crucial to keep the reference collection up-to-date by editing and adding new data. Enabling

user-specified choice of further pattern detection methods is a clear advantage to YRSA.

Not included in this study, but an obvious future direction is to incorporate phylogenetic

footprinting. The promising advantage of utilizing information about conservation across

species is of definite advantage for identifying functional genomic sequences.

74



5.3 Regulatory networks determining stem cell fate in plant

5.3 Regulatory networks determining stem cell fate in plant

5.3.1 Introduction

The beautiful shape and color patterns of flowers attract almost everybody, including devel-

opmental biologists. The genome of A. thaliana (also known as mouse-ear cress) was the

first plant genome to be fully sequenced and is commonly used as a model organism for

studying plant development. The regulatory regions of plant genes tend to be more com-

pact than those of animal genes. However, plants have as many TFs and the complexity

of the control mechanisms is as high, which provides an excellent model system to study

transcriptional programs and the developmental stages of multicellular organisms. A further

difference between plants and animals, is that plants develop continuously (i.e. form new

organs postembryonically) presenting all stages of the life cycle within the repeating units of

an individual (e.g. leaves). The cellular basis for this mode of development is the stem cells

that are located in the apical meristem of the shoot and root, which are the growing parts

of the plant. The number of stem cells in the pool is small, typically six to nine, and under

tight transcriptional regulation. Some key TFs have been identified, however, exactly how

these mediate and control their target genes still remains to be elucidated.

The aerial tissues (leaf and flower primordia) of plants are generated from the plant apex

- a small cone-shaped region called the shoot apical meristem (SAM) [239] that plays an

important role in plant development [271]. An important control circuit, modulating the size

of the SAM, is a feed-back loop between the WUSCHEL (WUS1) and the CLAVATA3 (CLV3)

gene expression [230]. The expression of WUS and CLV3 has been shown to be spatially

separated (confined to different expression domains), which indicates that signal transduction

is necessary for communication. WUS expression is activated in and restricted to the cells

in the organizing center (OC) [174], which is directly situated below the SAM, illustrated

in Fig. 5.7. CLV3, on the other hand, is expressed by the cells in the SAM. The WUS

gene encodes for a nuclear-localized homeodomain (HD) TF that promotes initiation and

maintenance of the stem cells in the apex [145, 174], by inducing CLV3 expression in the SAM.

Transmission of the CLV3 (short peptide) signal is carried out through lateral movement [153]

and binding to the CLV1/CLV2 kinase receptor complex, which causes restriction of WUS

activity to the OC [32]. A 57-bp region, in the WUS upstream sequence (approximately at

1The gene name is abbreviated using capitals (WUS), whereas a specimen with a knock-out mutation is
abbreviated in italics and lowercase (wus).

75



5 Gene regulation at the sequence level

Figure 5.6: The genome of A. thaliana (also known as the mouse-ear cress) was the first plant
genome to be fully sequenced. This flower has become a model organism and is
commonly used for studying developmental biology in plant. The picture was
obtained form http://www.weigelworld.org/research/gallery/.

-550) appears to be necessary and sufficient for WUS expression in the SAM, was shown

to contain two regulatory elements (RE1 and RE2). RE1 (-566 to -557) has the sequence

TTGAGAAGAG and overlaps with three bp of the HD-Zip consensus. RE2 (-546 to -541)

has the sequence TGAAAA. The position in the upstream regions seems to be crucial to the

function for the TFBSs, perhaps due to a favorable chromatin structure [35]. In wus mutants,

stem cells differentiate prematurely and, therefore, the SAM is greatly reduced, whereas in

clv3 mutants, stem cells proliferate abnormally leading to a enlarged SAM. Inducible over-

expression of WUS or CLV3 can cause the reverse effects.

There is a second pathway that has been shown to control the stem cell population. The

SHOOT-MERISTEMLESS (STM) gene encodes a HD TF, which is a second mediator am-

plifying the stem cell daughter cells in the SAM [162]. The SAM is absent in stm mutants.

STM (in a similar way as WUS) acts through a feed-back loop [265], but has a different set

of target genes. STM and WUS seem to require each other for the correct regulation of the

stem cell population [15, 174].

Meristem plasticity requires the ZWILLE (ZLL) gene. In zll mutant embryos, the apical

cells are defect causing a variability of the meristem’s size and function. Therefore, two

phenotypes can be observed in zll mutant seedlings: one lacks the SAM and in the other one

the SAM develops into a pin-like structure.
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Figure 5.7: An illustration of the current theoretical model of gene regulation in the aerial
organs, the shoot apical meristem (SAM) and the leaf primordia (LP), of A.
thaliana. First, the negative feed-back loop in the SAM (WUS/CLV3). The cells
in the organizing center (OC) express WUS, which induces stem cell identity in
a few cells above the OC. The stem cells express CLV3, which in turn represses
WUS activity in the OC. The stem cell population is further and independently
regulated by STM. Second, the negative feed-back loop (WUS/AG) connecting
the gene expression in the SAM and the LP is also illustrated. The expression
of WUS in the SAM induces AG expression in LP, which in turn represses the
activity of WUS. The expression of AG is further regulated by LFY.
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In contrast, the LEAFY (LFY) TF is responsible for the formation of leaf primordia (LP)

and a direct regulator of the AGAMOUS (AG) and APETALA1 (AP1) genes. AG and AP1

are both floral homeotic2 genes [29]. Hence, LFY brings about terminal differentiation of

young cells in the LP. WUS and LFY cooperate to activate AG in the center of the LP,

which induces the identity of stamens and carpels and limits cellular proliferation. A direct

link between the control of the stem cell pool (WUS/CLV circuit) and the activation of

floral homeotic gene expression in the LP, was established as it could be shown that WUS

induces AG in the LP contributing to meristem growth and that AG in turn represses WUS

through a negative feed-back loop [161]. However, no AG consensus [232] has been identified

in the WUS promoter. WUS and LFY bind to regulatory sequences in the second intron

of the AG gene, where a few additional highly conserved response elements (RE) have been

identified [106]. The first RE1 has the sequence CCAATCA, which is similar to the binding

site of a TF called Nuclear Factor-Y (NF-Y, which has three homologs A, B, and C). The

sequence of RE2 is aAGAAT , but does not match any known consensus sequence. The CArG

(r being 6-7 nucleotides) motif is bound by MADS domain TFs [186] and AGL6 has been

identified as a putative candidate [106].

WUS appears to play a dual role: it controls the stem cell population and activates floral

homeotic genes. AG also shows this duality as it induces floral organ identity and determines

the growth of the floral meristem. However, there is a fundamental difference between the

two negative feed-back loops. The WUS/CLV signaling pathway occurs in the same cells,

but is temporally separated, whereas the WUS/AG circuit takes place in adjacent cells si-

multaneously. The current regulatory model is based on interaction studies mainly through

loss-of-function (LOF) and gain-of-function (GOF) experiments [77, 31, 223]. The robustness

of the network is impressive, since it varies throughout the different developmental phases

and has been shown to self-organize back to normal patterns after induced disturbance [207].

Diverse regulatory pathways seem to converge at a central transactivating mechanism [17].

Much data supporting the current theories exist but there are still many open questions

regarding the transcriptional network and an attempt to model SAM development computa-

tionally was recently reported [124].

Since most of the known stem cell regulators in A. thaliana are TFs, we have set out to

elucidate the regulatory network of stem cell control by computational analysis of experimen-

tal data. In order to explore the regulatory networks in the SAM and the LP, transcriptional

2A gene that affects embryo development by specifying the character of a body segment.
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profiling experiments are employed for investigating the key TFs and their target genes. Cur-

rently we verify the microarray data by quantitative rtPCR and study the spatial expression

domains and dynamics by in situ hybridization. Furthermore, we use ChIP experiments to

study the interaction of the transcription factor WUS with its target genes in vivo. Com-

mon and individual target genes for WUS, CLV3, ZLL, and LFY, are identified using LOF

and GOF experiments. Computational analysis of the promoter sequences is undertaken in

order to gain information about gene function and the regulatory logic of stem cell control.

Ultimately, the goal is to establish a comprehensive model of stem cell homeostasis with

predictive power.

5.3.2 Materials and methods

The analysis process contains both experimental and computational steps and is graphically

illustrated in Fig. 5.8. Putative target genes, of the key players in the regulation of stem

cells and floral patterning, are identified using several transcriptional profiling experiments.

Questioning the transcriptional logic with different experiments and extracting only genes

that show an induced change generates a set of gene lists containing putative target genes.

Analysis of these gene lists and combinations of such gene lists is conducted computationally.

The promoter sequences of the putative target genes are extracted and searched for over-

represented motifs that could correspond to functional TFBSs. The identified motifs are

further investigated and compared to a reference collection of know motifs.

Gene expression experiments

This work is a collaboration with Wolfgang Busch and Jan Lohmann, who performed the

experimental work and extraction of differentially expressed genes (briefly outlined below) at

the Max Planck Institute (MPI) for Developmental biology in Tuebingen, Germany.

Pools of microscopically dissected apices were sampled at very early developmental stages,

when the wild type (WT) and the mutant phenotypes just begin to deviate. The Affymetrix

ATH1 array platform, which represents over 80% of the annotated genes in A. thaliana, was

used in the microarray experiments. Affymetrics GeneChip arrays use short oligonucleotides

to probe for genes in the sample. Following the image processing step further pre-processing

steps need to be conducted in order to extract differentially expressed genes. First, back-

ground adjustment was performed in order to estimate the expression levels. This was done

using the commonly employed gcRMA algorithm [283], which accounts for specific and non-
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TIGR
Sequences and
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Figure 5.8: The workflow of the analysis process. Experimental gene expression data define
the sets of A. thaliana genomic sequences and annotations to be extracted from
the TIGR database. The Gibbs sampling algorithm and the INCLUSive package
are used for discovering over-represented and statistically significant motifs within
the promoter regions of the identified target genes. The significance of the novel
motifs is evaluated, compared to known reference motifs, and analyzed in respect
to the experimental design and putative underlying transcription logic.
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specific hybridization by regarding the difference between the pair of the perfect match probe

and the mismatch probe. Secondly, differential expression was determined at the probe level

by applying Logit-t [152] for normalization of the expression data. Genes showing a two-fold

change in expression levels were extracted.

In order to profile the mutant plants (wus, stm, clv3, and zll), two independent experiments

consisting of two replicates for each genotype were performed. Each sample consisted of 45

pooled apices dissected from plants grown in parallel. For the GOF lines, one experiment

in biological triplicates was conducted. Reference samples carried inducible β-glucoronidase

(GUS) as control.

Putative target genes are listed for each experimental condition. As several sets of experi-

ments were conducted, these were used in a combinatorial fashion to extract the most likely

target genes.

Sequence data

Genomic sequences of the potential target genes were obtained from the online available

A. thaliana Database (http://www.tigr.org/tdb/e2k1/ath1/) designed and cared for by The

Institute for Genomic Research (TIGR). The sequence data is stored locally in a MySQL re-

lational database in order to enable fast and flexible extraction of non-coding regions. These

sequences are defined according to variable parameters and combinations thereof, such as:

upstream (or promoter) sequence length (-500, -1000, and -1500), introns, and downstream

sequence. The sequence collections, which are extracted for each gene list, are used as in-

put for the sequence sampling algorithms. The Gibbs algorithm and the INCLUSive motif

finding package were used for discovering short over-represented sequence motifs, which are

likely to correspond to putative functional TFBSs. The motifs are ranked according to their

corresponding p-value. The p-value was assigned by generating 999 random gene lists of the

same size (number of genes) as the gene list under analysis. A putative motif is used for

scanning all 1000 gene lists and detecting how often the query motif occurs more often in

other gene lists when compared to the original gene list. The best p-value of 0.001 is obtained

if no other gene list contains the same motif more often than the analysed gene list.

5.3.3 Results

Our approach integrates expression profiling of LOF mutants and inducible GOF lines with

genome-wide TF binding studies by means of computational analysis. Studying the global
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Figure 5.9: Ratio of up- and down-regulated genes in mutant and transgenic lines compared
to the WT. Left (grey): mutants; right (light green): inducible over-expression
lines.

effects of mutants and inducible alleles, it becomes clear that the analyzed stem cell regula-

tors mostly cause activation of genes, see Fig. 5.9. To assess what biological processes are

targeted by plant stem cell regulators, we then assigned the differentially expressed genes to

functional categories (see Fig. 5.10). These annotations are defined by TAIR (The Arabidop-

sis Information Resource, http://www.arabidopsis.org/) and GO (Gene Ontology project,

http://www.geneontology.org/). We found that many targets code for metabolic and house-

keeping functions. In addition, we find a strong representation of genes involved in transcrip-

tional control and stress response.

Using the known regulatory interactions between SAM regulators, such as the WUS/CLV3

feed-back loop, we searched for genes that follow the predicted genetic logic. For example,

the expression of a true WUS target gene should not only change in the wus mutant, but also

behave the opposite way in the clv3 mutant. Furthermore, if it was to be a specific WUS

target, it should not change in any of the other mutants, even though some display a very

similar phenotype. Applying these biological criteria in addition to the bioinformatics filters

described above, we were able to identify five high confidence target genes for WUS.

In order to elucidate the transcriptional logic of stem cell control, we aim to identify

functionally relevant regulatory elements. To this end, we have developed a database, which

allows for the automated retrieval of promoter sequences from genes identified in our profiling
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Figure 5.10: Differentially expressed genes in the different conditions assigned to global cate-
gories according to their functional annotations by TAIR and GO. The numbers
above the columns indicate the number of differentially expressed genes under a
certain condition compared to the WT.

experiments. Using Gibbs motif sampler and statistical tests we are currently identifying

high confidence motifs from our target gene promoters. The results indicate that there are

statistically over-represented motifs, both common and unique for the gene lists.

Three significant motifs are shown in Fig. 5.11. The two top ones have very good p-

values, whereas the bottom one has a worse p-value but is interesting for its novelty. The

distribution of each motif in the promoter sequences is graphically illustrated on the right

hand side of each motif. One black pixel represents a hit and the white area along the x-

axis defines the promoter regions that were extracted for the genes in the gene list. The

vertical bar represents the start of a gene. This information can be helpful in determining

if the motif clusters around a particular site in the upstream region. The ACATGT motif

(left) was found to be over-represented in several gene lists (notably in several lists that

aim to identify WUS target genes) and covers a large percentage of the genes within these

lists. The motif is interesting since it consists of two short palindromic sequences ACA and

TGT , which also are palindromic when combined and read on the opposite strand. This

binding site is characteristic of TFs in the bHLH-Zip class and it aligns with the consensus

sequence CANNTG (where N is any nucleotide). This structural class of TFs contains a

tripartite DNA binding domain containing a basic region, a helix-loop-helix, and a leucine

zipper. The TFBSs reflect the heterodimer (two short subsites) and are typically highly

conserved. Proteins of this class usually play important regulatory roles in cell growth and
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Figure 5.11: These three motifs are statistically over-represented in the promoter sequences
in some of the generated gene lists. The motif at the top is highly similar to a
binding site of TFs in the bHLH-Zip class. The motif in the middle is identical
to a TFBS of the cAMP response element (CRE). The two motifs at the top
have very low p-values and the top motif is found in 90 of the 104 genes in a
particular gene list. The bottom motif is novel, i.e. does not share a significant
similarity to any known motif. It is detected in a gene list where the missing link
between LFY and WUS is targeted, however, the p-value is higher than for the
top two motifs. The motif distribution in the promoter regions are illustrated
on the right hand side. Grey areas were not used for extracting the motifs.

differentiation [107]. A potentially important function is that they regulate the rate of growth

(defined as an increase in cell mass and size) that is thought to be required for cell cycle

progression and cell division. The second motif TGCATGCA has a low p-value and is highly

conserved. It is identical to the response element of the c-AMP binding protein (CREB),

which is known to be involved in regulation of cell growth [33]. The third motif TGGGCCT

occurs in several gene lists containing target genes that are common to LFY and WUS. This

novel motif is unlike any motif in the TFBS database JASPAR [217] and could potentially

be a link between the key regulators (LFY and WUS) of plant development. The motif has

AT-rich flanking sequences and about 20% of the genes in a gene list has it in their upstream

sequences, however, the motif is not significant.
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5.3.4 Discussion

The development of multicellular organisms requires a network of highly controlled TFs.

Cellular signals and transport mechanisms care for the signal transmission within one cell

and between adjacent cells. The continuously developing plant A. thaliana is a suitable model

organism for studying eukaryotic transcriptional networks, since it contains a high number

of TFs and the genes have relatively short promoters compared to animals.

Experimental results show that the transcriptional control of genes with regulatory power

play a pivotal role for many developmental processes. Analysis of expression profiles pro-

vides insight into the mechanisms that govern spatial and temporal patterning during de-

velopment [269]. WUS transcription is a central checkpoint in stem cell control, integrating

information from disjoint regulatory pathways. Specifically, two negative feed-back loops, the

WUS/CLV and the WUS/AG, seem to converge at a specific region in the WUS promoter,

linking stem cell control in the SAM domain and patterning in floral organs.

The regulatory network underlying stem cell regulation and floral patterning is the target

of this analysis. Computational analysis of the promoter sequences of sets of target genes,

identified using experimental transcriptional profiling, reveals putative functional regulatory

sequences. The sequence motif ACATGT was found to be over-represented in putative WUS

target genes. This motif is very similar to a TFBS of the bHLH-Zip structural class. This class

contains TFs that play key roles in early cell differentiation and developmental processes [107].

The second motif TGCATGCA is identical to the binding site of the CREB protein. This

TF binds to the cAMP response element (CRE) and activates gene transcription in response

to a wide variety of extracellular signals including growth factors and hormones. A further

motif TGGGCCT is found to be over-represented in WUS and LFY target genes and appears

to be novel since no known matching TFBS has been reported to date. The motif is of high

interest since it could be the missing link explaining the coordinated control of the stem cell

population and development of leaf primordia.

The presented motifs represent a selection of the several motifs found to be over-represented

in the gene lists. Typically, the motifs match known TFBSs which are implicated in processes

related to growth and development. Plant TFs are poorly represented in public databases,

which induces one uncertainty to the extracted knowledge. Matching plant TFBSs to ver-

tebrate TFBSs is useful for identifying the structural TF class, however, transferring the

function of the corresponding TF is not reliable since the lineage split occurred before the
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development of multicellularity. Although great care is taken in the experimental design and

expression analysis, the gene lists are likely to include secondary responses in addition to

the primary responses. Hence, it is important to acknowledge the fact that motifs may be

over-represented in subsets of the gene lists rather than in all promoters. These results pro-

vide information that is needed for understanding stem cell homeostasis in plants. Further

computational evaluation and experimental verification of the high confidence patterns, e.g.

using reporter constructs, is needed in order to confirm these motifs and hypotheses.
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Sequence-based approaches facilitate analysis of the organization of regulatory regions and

identification of putative TFBSs, as illustrated in the previous chapter. Statistical methods

are used for representing position dependent base preferences within the binding site for a

specific TF. Still, current TFBS models do not suffice for explaining observed redundancy

or contradictions at the sequence level. Hence, in order to better understand the specific

interactions underlying protein-DNA recognition, it is necessary to take the step from the

sequence level to the molecular level [105].

Structure-based studies at atomic resolution make it possible to study the structural and

chemical complementarity between TFs and their binding sites. Experimental techniques en-

able affinity measurements of the effects that individual mutations have on the binding free

energy [183], whereas theoretical simulation approaches facilitate the analysis of such effects

in silico. However, there are a few drawbacks associated with structure-based methods. Ex-

perimental methods that provide structural data of biomolecules are time-consuming, hence

the amount of existing protein-DNA complexes with associated mutant structures is still rel-

atively limited. The computational protocols required for analyzing a single protein-DNA

complex are not trivial to design and often imply high computational requirements, which

currently impede large-scale structure-based analysis. Nevertheless, the detailed knowledge

gained from individual case studies of protein-DNA interaction at the molecular level is useful.

The aim is to acquire a better understanding of protein-DNA interactions, which can be

used to improve the accuracy of sequence-based methods and thereby enhance both TFBS

representation and discovery. An essential step on this way is to reliably estimate and predict

the effects mutations made to individual bases or amino acids have on the overall binding

affinity. A computational protocol, which can be used for reproducing experimental binding

affinity data for ZF TFs, was developed in this study. Ideally, data obtained from large-scale

simulations of protein-DNA complexes using such a protocol could be used for improving

PSSM models.
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The TF-DNA complex, consisting of the ZF Zif268 bound to DNA, used in this study at

atomic detail, was chosen for a number of reasons. The structural class of ZF TFs is one

of the most numerous in eukaryotes, members of this group have often been identified as

proto-oncogenes (key regulators in cancer), extensive experimental data both sequence- and

structure-based exist, and they are being explored as a framework for design of engineered

TFs with putative use in therapeutics. Furthermore, the fairly small and modular recognition

motif (30 amino acid residues in each finger) is well-suited for MD simulations.
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6.1 Free energy calculations for Zinc Finger-DNA complexes

6.1.1 Introduction

Protein-DNA recognition is dependent on the structural and chemical complementarity at

the interaction surface between the two molecules. The binding free energy of a protein-DNA

complex is determined by the sum of the individual contributing factors, which either favor or

oppose complex formation. Computational advances have made free energy calculations for

relatively large biomolecules feasible. It is now feasible to analyze how modifications made

to a chemical group at the binding interface influences the binding free energy, something

which previously have been addressed using experimental approaches. A key challenge in

this type of analysis is the development of computational protocols applicable to a wide

range of biomolecular complexes for studying the effects of several types of modifications. If

such protocols are able to reproduce experimental binding affinity data, they can be used for

large-scale generation of binding free energy profiles.

A first step towards performing reliable computational calculations of binding free energies

in protein-DNA complexes has been taken. The effects that small base modifications have on

the overall binding affinity have been experimentally measured [40, 177]. Recently, computa-

tional estimations reproducing such effects using MD simulations and free energy calculations

were reported. Sen and Nilsson [228] explored the effects of base modifications in the EcoRI-

DNA complex (restriction enzyme) and Saito and Sarai [215] were able to computationally

estimate experimental values for mutating thymine (T) → uracil (U) in the λ-repressor-DNA

complex (TF). These studies describe a way to estimate the effects of different base modifica-

tions, however, from a transcriptional point of view it is also desirable to be able to analyze

the effects of modifications made to the amino acid side chains. In this work, a computational

protocol applicable to transcription factor-DNA complexes is presented.

Experimental rational design of ZF proteins has recently proven useful in targeting specific

DNA sequences [216], which make them useful for a wide range of biotechnological applica-

tions [151]. Artificial ZF TFs have for example been used for inducing angiogenesis, which

can accelerate wound healing [203]. Their modularity, i.e. linking several ZF domains to

each other, facilitates recognition of unique DNA sequences in the genome [9, 114]. ZFs

bind to their target DNA sequences without severe conformational changes and the modular

binding mode of the recognition helix, which are two key features that make ZFs a suitable

system for MD simulations [71]. The ZF Zif268, and mutants thereof, complexed with DNA
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have been subject to several experimental and theoretical studies, which address the binding

affinity [40, 177]. Hence, these crystal structures are used as starting structures for the free

energy calculations presented here.

Zif268 consists of three ZF domains (fingers F1, F2, and F3), where each domain contacts

a four bp subsite (one bp overlap) as described in Fig. 6.1. The contacting amino acids

reach out from the ZF recognition helices to make specific contacts with the bp edges in the

major groove of the DNA and do also make non-specific contacts with the DNA backbone.

There are several important interactions between neighboring side chains in a finger, which

orient and stabilize the contacts to DNA. In each ZF domain, the zinc ion is tetrahedrally

coordinated by four conserved residues, two cysteines from the β-sheet and two histidines

from the α (recognition)-helix. It is primarily the residues at the N-terminus (positions -1,

2, 3, and 6 relative to the start of the helix) of each α-helix that make direct contacts with

DNA. These contacts are mainly histidine-guanine and arginine-guanine interactions along

one DNA strand. However, base preferences have also been observed at base positions where

there are no direct interactions. A detailed analysis of the crystal structure revealed subtle

contacts that allow for indirect readout of the DNA sequence [71]. Here, the acidic residues

play an important role by forming water-mediated hydrogen bonds with the DNA helix. The

aspartic acids at position 2 of each α-helix form hydrogen bond with the arginine at position

-1. Each of these arginines (Arg18, 46, and 74) forms two hydrogen bonds with guanine.

The aspartic acid-arginine contacts presumably help orienting the long side chain of arginine,

increasing the arginine-guanine specificity. Furthermore, the coupled arginine/aspartic acid

residue pair forms water-mediated contacts with the cytosine paired to the guanine directly

contacted by the arginine residue. F1 and F3 have glutamic acid, whereas F2 has a histidine

at position 3 of the recognition helix. These glutamic acids do not make any direct contacts

with the DNA, however, contribute to the specificity by orienting neighboring residues and

water-mediated contacts. F1 and F3 have an arginine at position 6 of the α-helix, which form

hydrogen bonds with guanine. In F2, there is a threonine in position 6 that forms no direct

DNA contacts, but does make water-mediated contacts with phosphate 4 of the backbone.

In this study, a computational protocol for analyzing energetic effects of base modifications

at the binding interface of the TF-DNA complexes is developed. The aim is to computation-

ally reproduce experimentally measured binding affinities. This is explored using an explicit

solvent model that is implemented in the AMBER molecular modeling package [44]. Specifi-

cally, molecular modeling is used for estimating the change in the binding free energy induced

90



6.1 Free energy calculations for Zinc Finger-DNA complexes

6         3  2     -1

G C G T G G G C G

F3 F2 F1

5’ 3’

5’3’

6         3  2     -1 6         3  2     -1

CC G C A C C C G A

T

Figure 6.1: This is an illustration of the Zif268 WT protein (fingers F1, F2, and F3) binding
to its consensus TFBS. The modifications were made to the third subsite, which
is contacted by F1. The amino acid side chains in position -1, 2, 3, and 6 relative
to the α-helix primarily contact one strand of the DNA. The side chains in F1
are Arg18, Asp20, Glu21, and Arg24, respectively.

by replacing the methyl group in the base T to a single hydrogen in base U in the WT and

D20A mutant of Zif268 bound to DNA. The free energy calculations in explicit solvent are

carried out allowing for full flexibility (all degrees of freedom). The TI-MD (thermodynamic

integration using molecular dynamics) method and the thermodynamic cycle approach are

employed for estimating the change in binding free energy (methods described in Sect. 2.3.4).

First, the computational protocol for analyzing the effects of the T → U mutation is val-

idated using the λ-repressor-DNA complex, for which the results are compared to those re-

ported (both experimental and computational) by Saito and Sarai [215]. The applicability of

this protocol to ZF-DNA structures is further evaluated by comparing the computational re-

sults obtained here to previously reported experimental values measured by Miller et al. [177].

The experimental data includes measurements for mutating a T to a U within the third sub-

site (contacted by F1) in the complexes of the WT Zif268-DNA complex and the D20A-DNA

complex. Miller et al. shown that the D20A mutant binds with similar affinity, but is less

specific than the WT protein.

A computational protocol for mutating T → U in protein-DNA complexes using an explicit

representation of the solvent molecules is described. This protocol shows similar if not better

results compared to a previously presented protocol for mutating T → U in the λ-repressor-

DNA complex. Applied to ZF-DNA complexes, the calculated values of the change in binding

free energy agree well with previously presented experimental data. The binding free energies

converge after 40 ps of sampling time and are within 0.5 kcal/mol range of the experimentally

measured values. The standard deviations (STDs) show that there is some fluctuations of
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the estimated values, partly due to the relatively short equilibration and simulation times.

The initial preparations of the structures clearly have an effect on the accuracy of the results

and the required computational time. If the original crystal structure is manually mutated,

longer energy minimization and equilibration times are needed.

Estimating the effects of base modifications made to protein-DNA complexes illustrates how

the contributions of different components at the binding interface can be studied. Applying

this protocol to novel protein-DNA complexes shows great promise for analyzing the effects

on binding affinity, as it is possible to reproduce previously reported experimental values.

The importance of combining experimental data and theoretical estimations at an early

stage is essential for developing reliable computational protocols with applicability in rational

design of artificial TFs. This study is an important first step towards enabling the use of

computational methods for improving PSSM models.

6.1.2 Materials and methods

Protein-DNA complexes

Five different TF-DNA complexes are used in this study. One complex is used for compar-

ing the performance of this protocol to a previously presented protocol and the other four

complexes are used for performing computational estimations of experimentally measured

binding free energy values. The effect on the binding energy due to the T → U mutation

in the λ-repressor-DNA complex (position 15) has been experimentally measured to +1.80

kcal/mol [219]. Saito and Sarai [215] successfully calculated the change in binding free energy

due to the mutation to +1.47 (±0.40) kcal/mol, using MD simulations in explicit solvent.

The λ-repressor-DNA complex is used for validating the computational protocol developed

in this study. The initial λ-repressor-DNA complex was obtained from the experimentally

determined crystal structure (PDB code: 1LMB [19]). The DBD domain of the λ-repressor

that binds to the consensus 12-mer of the DNA was extracted and prepared according to the

instructions described by Saito and Sarai [215]. The λ-repressor-DNA complex is illustrated

in Fig. 6.2, where the base T to be mutated is highlighted in red. The hydrophobic methyl

group of T favorably interacts with the λ-repressor.

Miller et al. presented experimental results for the same modification T → U, but for a

different set of protein-DNA complexes. Two different ZF proteins were used, the WT Zif268

bound to two different DNA sequences (GCG-TGG-GCT-G and GCG-TGG-GTG-G) and
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Figure 6.2: The λ-repressor-DNA (the protein is colored white and the DNA grey) complex
was used by Saito and Sarai for studying the effects of the T (red) to U mutation.
The mutation decreases the binding affinity, which is shown both experimentally
and computationally [215].
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Table 6.1: The initial modifications made to the original PDB structures in order to obtain
the complexes M1, M2, M3, and M4 used by Miller et al. are described here. The
original DNA sequence (GCG-TGG-GCG-T) in 1AAY required mutation (mu-
tated bases are underlined and affect both DNA strands) in order to obtain the
experimental structures M1 and M2. The complexes M3 and M4 required less pre-
processing as they are identical, respectively very similar, to the PDB structures
1JK2 and 1JK1. Miller et al. experimentally measured the relative binding free
energies for mutating the base T (shown in bold) to a U [177].

ID Protein PDB code DNA

M1 WT 1AAY GCG-TGG-GCT-G
M2 WT 1AAY GCG-TGG-GTG-G
M3 D20A 1JK2 GCG-TGG-GCT-G
M4 D20A 1JK1 GCG-TGG-GTG-G

the D20A Zif268 mutant bound to the same two DNA sequences as the WT. These four

protein-DNA complexes (M1-M4) are used for calculating the change in free energy due to

replacing the methyl group in T with a hydrogen in U. The mutations are made to the T

bases within the third subsite (contacted by F1, see Fig. 6.1). The four ZF-DNA complexes

M1-M4 are described in Table 6.1.

Complexes M1 and M2 were obtained by mutating the WT structure bound to its con-

sensus sequence GCG-TGG-GCG-T (PDB code: 1AAY [71]), which required two initial bp

mutations. The M3 complex is the D20A mutant bound to GCG-TGG-GCT-G (identical to

PDB code: 1JK2 [177]). Finally, the M4 complex was obtained from a similar complex (PDB

code: 1JK1 [177]), which required one bp mutation. The initial bp modifications made to

the original crystal structures in order to obtain M1-M4, are underlined in Table 6.1 and the

T to be mutated is highlighted in bold. The M1 complex, with the affected T highlighted

in red, is graphically illustrated in Fig. 6.3. The complexes were allowed to adjust to the

structural changes, by conducting a step-wise (reducing the structural constraints) energy

minimization and equilibration. Thereafter the free energy calculation is performed in order

to estimate the effects of the T → U mutation.

Base mutation

Transforming T into U involves replacing the methyl group in T with a single hydrogen

in U, a mutation which is graphically illustrated in Fig. 6.4. The methyl group is more

hydrophobic than a single hydrogen and the mutation changes the chemical complementarity
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Figure 6.3: The base T (red) to be mutated to a U in the WT Zif268 (blue) DNA binding
site (grey) of the M1 complex.
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Figure 6.4: Mutating T → U involves replacing the methyl group in T group with a hydrogen
in U.

at the interaction interface, which is likely to affect the binding energy. A 3D illustration of

the methyl group in T and its placement within the major groove of the DNA helix is shown

in Fig. 6.5.

The T → U mutation in the λ-repressor-DNA complex (Fig. 6.2) decreased the binding

affinity as the ∆∆GExp = +1.80 kcal/mol is positive. Removing the hydrophobic methyl

group at the binding interface caused loss of the favored van der Waals interactions with

several non-polar amino acid residues of the λ-repressor [215], especially G46, A49, and I54.

The experimental values (∆∆GExp) obtained for the T → U mutation in the ZF-DNA

complexes by Miller et al., are listed in Table 6.3. The ∆∆GExp for the complexes M1,

M2, M3, and M4 are -0.09, -0.17, +0.08, and -0.76 kcal/mol, respectively. These values are

relatively low compared to the +1.80 kcal/mol obtained for the λ-repressor-DNA complex.

The T in the λ-repressor-DNA complex is at a crucial position at the binding interface, hence

affects the binding free energy more.

Free energy calculations and protocols

The effects of the base mutations were estimated using an explicit solvent model (described

in Sect. 2.3.3). The AMBER 7.0 molecular modeling package [44] with the AMBER99

force field [266] is used throughout this study, since these have been shown to be useful for

molecular modeling studies involving proteins and DNA.

Explicit solvent

Computationally mutating T → U using explicit solvent involves defining a hybrid base (TU).

The hybrid contains structural information about both T and U and a mixing parameter λ

allows for a smooth transition between the two states, starting as the base T (unperturbed

state) and finishing as U (perturbed state). This information is stored in parameter and
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Figure 6.5: The hydrogens (white) of the affected methyl group of the base T (red) in the
major groove of the DNA binding site (grey).

library files, that were specifically constructed for this purpose. The change in the binding

free energy (∆G) is calculated using the TI-MD method of the AMBER package, which is

a commonly employed technique for computing the change in binding free energy due to a

structural modification. The thermodynamic cycle approach, which was described in Sect.

2.3.4 and illustrated in Fig. 2.13, gives the following relationship for obtaining the relative

change in binding free energy:

∆∆G = ∆G2 - ∆G1 = ∆G′′ - ∆G′

For each protein-DNA complex two parallel transformations, going from the unperturbed

(λ = 0) to the perturbed (λ = 1) state, one for calculating ∆G′′ (associated state) and ∆G′

(dissociated state) transformations, are performed. Each of these are conducted by simulating

the complex at several intermediate states (integration points) defined by λ according to the

following approximation:

∆G ≈
n
∑

i=1
wi〈δV /δλ〉λi

The ensemble average change in potential energy V 〈δV /δλ〉 between two intermediate

steps of λ (λi andλi+1) is estimated using MD simulations. At each integration point (λi) the

〈δV /δλ〉 value is multiplied by a weight wi that is symmetrical around λ = 0.5. Quadrature

points (i) are used for estimating the integral and the weights wi are defined according to

the trapezoidal rule (the curious reader is referred to [2, 44] for further details).
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6 Gene regulation at the molecular level

According to the definition, two TI-MD simulations (∆G′ and ∆G′′) are required for es-

timating the ∆∆G. For each complex (M1, M2, M3, and M4) the associated state was

prepared by adding explicit hydrogens to the crystal structure. The protonation state of

ionizable groups was determined corresponding to pH 7, however, exceptions were made for

the metal ion-coordinating residues. The complex was then completely embedded in a water

box, with at least 8 Å from the complex to the borders. Counterions were added in order

to neutralize the system and water molecules interfering with the added counterions were

removed. Since the protein is not affected by the modification, the dissociated state was

prepared in a similar fashion, however, immersing only the DNA molecule in a 8 Å thick

water layer.

Before starting to estimate the change in free energy due to a modification it is important

that the system reaches thermodynamic equilibrium. Especially artificial mutations made to

the starting systems are likely to introduce unfavorable contacts. Excessively high energies

typically originate in van der Waals or electrostatic interactions between non-bonded atoms

that have come to close. Performing two essential pre-processing steps: minimization and

equilibration prevents high initial potential energy from being transformed into high kinetic

energy. An energy minimization seeks to relieve any energetically unfavorable clashes in the

system, by bringing the system to a nearby local energy minimum. The minimization is

performed in two steps. First, 500 steps of minimization restraining heavy atoms, including

50 steps of steepest descent (SD) followed by 450 steps of conjugate gradient (CG), were

performed. The heavy atoms are restrained in order to let the energy of the explicitly added

water molecules around the solute molecule decrease. Secondly, a non-restrained minimization

was carried out during a total of 1000 steps, which included 50 SD and 950 CG steps. The

energy decreases quickly in the beginning and then levels off at the end of the minimization,

as the system reaches the local minimum. The aim of the equilibration is to bring the system

to a physically meaningful conformation by allowing sampling of possible conformations and

achieve thermodynamic equilibrium. Equilibration was carried out in two steps. First, the

system is coupled to a heat bath of 300 K (raising the temperature from 0 K to 300 K) and

equilibrated for 5 ps under constant volume (NTV) dynamics, aiming to let the temperature

stabilize at the desired value. In the second equilibration step the temperature is kept at 300

K and it is carried out under constant pressure (NTP) dynamics for another 5 ps. A weak

harmonic constraint of 1 kcal/mol was applied to the heavy atoms in both steps, whereas

the surrounding solvent molecules are allowed to adjust to the solute. The non-bonded
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6.1 Free energy calculations for Zinc Finger-DNA complexes

interactions are evaluated up to the cutoff (cut) set to 10 Å. SHAKE constraints are used on

the hydrogen atoms (ntc = 2, ntf = 2).

The TI simulations are run in a step-wise fashion, going from the start state (base T)

to the end state (base U), corresponding to λ = 0 and λ = 1, respectively. Two different

experimental protocols are tested. The first (Explicit 1, E1) includes five integration points

(λi), whereas the second (Explicit 2, E2) includes nine. The protocol E1 includes 20 ps of

equilibration time (no artificial restraints were applied) before 50 ps of simulation time, where

the sampling of 〈δV /δλ〉 is conducted, at each integration point. In the second protocol (E2)

the equilibration time is increased to 50 ps.

6.1.3 Results

Validation

The λ-repressor-DNA complex is used for validating the computational protocols used for

performing the T → U mutation. The experimentally measured change in the binding free

energy was +1.80 kcal/mol and computationally estimated by Saito and Sarai to +1.47

(±0.40) kcal/mol, which is listed in Table 6.2.

Protocol E1 included 20 ps equilibration and 50 ps simulation time at five integration

points. In protocol E2 the equilibration time was increased to 50 ps and the number of

integration points was increased to nine. The results obtained using E1 and E2 generally

show good agreement with experimental data and previously reported values, see in Table 6.2.

In particular, the ∆∆GE2 value of +1.83 (±1.90) kcal/mol is very close to the experimental

value, accurately estimating the loss of favored van der Waals interactions. The STDs are

analyzed two-fold, first by including data from 50 ps of the simulation time at each integration

point, and secondly by using only the final 10 ps at each integration point. In the first case

the STDs are rather high at a value of ±1.90 kcal/mol, however, during the final 10 ps the

complex has better adjusted to the new conformation and the STD is ±0.77 kcal/mol, as

listed in Table 6.4. The STDs are within the range of previously reported results [228].

Comparison against experimental data

In this second test the protocols are used for estimating the effect of the T → U mutation for

the four ZF-DNA complexes (M1-M4), for which experimental results but no computational

estimations have been reported. The results obtained when applying the above described
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6 Gene regulation at the molecular level

Table 6.2: The results of the performance evaluation of the computational protocols (E1 and
E2) using explicit solvent are listed in this table. The values are listed next to
the experimentally measured and previously reported computational result (Ex-
perimental and Saito, respectively). E1 includes 20 ps equilibration and 50 ps
simulation at five integration points, whereas E2 includes 50 ps equilibration and
50 ps simulation at nine integration points. Values are obtained from 50 ps of
simulation time ([0..50]).

Protocol ∆∆G ∆G Complex
(kcal/mol) (kcal/mol) λ-repressor-DNA

Exp. ∆∆GExp +1.80

Saito ∆∆GSaito +1.47 (±0.40)

Explicit 1 ∆∆GE1 +1.00 (±2.14)
[0..50] ∆GG′′ -5.77 (±0.90)

∆GG′ -6.77 (±1.24)

Explicit 2 ∆∆GE2 +1.83 (±1.90)
[0..50] ∆GG′′ -4.82 (±0.99)

∆GG′ -6.64 (±1.14)

protocols (E1 and E2) and evaluating over the full simulation time are listed in Table 6.3.

Again, the results obtained using the E2 protocol are closer to the experimentally reported

values. The relative free energies for the complexes M1-M4 are plotted against simulation

time in Fig. 6.6. The results converge for longer simulation times after about 40 ps. The

results are listed two-fold: First, the two protocols E1 and E2 are evaluated over the full 50

ps of simulation time and the results are listed in Table 6.3. Secondly, the results evaluated

using only the final 10 ps of simulation time are listed in Table 6.4.

Especially, the ∆∆GE2ii values for the complexes M3 and M4 (-0.17 (±0.75) kcal/mol

and -1.02 (±0.92) kcal/mol) are near to identical to the experimental values (-0.08 (±0.14)

kcal/mol and -0.76 (±0.81) kcal/mol, respectively) (see Table 6.4). The computational results

for M1 also agree with the experimental values, which are -0.09 (±0.13) kcal/mol and -0.68

(±0.71), respectively. The results for M2 do not agree as the experimental result is -0.17

(±0.25) kcal/mol and the computational +2.10 (±0.62). Longer equilibration and simulation

times are expected to slightly improve the results, especially for the complexes M1 and M2

that needed larger initial modifications. The results for the complexes M1 and M2 are listed

in Table 6.3 and in Table 6.4. The STDs during the final 10 ps of simulation time is between

±0.62 and ±0.92 kcal/mol, which is within the range presented by Sen and Nilsson [228].
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6.1 Free energy calculations for Zinc Finger-DNA complexes

Figure 6.6: Free relative free energy for each complex M1-M4 is plotted against simulation
time. Convergence is achieved at about 40 ps of simulation time. Slight fluctua-
tions indicate that longer simulation times could improve the results even further.
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Table 6.3: The computationally calculated results for the T → U mutation, using the protocols E1 and E2 for the structures M1-M4, are
compared to the respective experimental values. The STDs are calculated for the full 50 ps of simulation time and shown in
parenthesis.

Protocol ∆∆G ∆G Complex

(kcal/mol) (kcal/mol) M1 M2 M3 M4

Exp. ∆∆GExp -0.09 (±0.13) -0.17 (±0.25) +0.08 (±0.14) -0.76 (±0.81)

Explicit 1 ∆∆GE1 -2.19 (±2.54) +1.96 (±1.73) +0.77 (±2.02) +1.06 (±1.88)
[0..50] ∆GG′′ -8.67 (±1.87) -4.73 (±1.02) -5.81 (±1.50) -5.61 (±1.11)

∆GG′ -6.47 (±1.47) -6.67 (±1.43) -6.50 (±1.41) -6.72 (±1.52)

Explicit 2 ∆∆GE2 -0.95 (±2.09) +2.17 (±1.89) +0.15 (±2.10) -0.77 (±2.11)
[0..50] ∆GG′′ -7.39 (±1.57) -4.25 (±1.12) -6.53 (±1.54) -7.86 (±1.35)

∆GG′ -6.44 (±1.40) -6.41 (±1.37) -6.68 (±1.57) -7.08 (±1.56)
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Table 6.4: The relative free energies converge after 40 ps and are listed here. The corresponding standard deviations are significantly smaller,
when evaluated for the final 10 ps of the simulation time.

Protocol ∆∆G Complex
(kcal/mol) λ-repressor-DNA M1 M2 M3 M4

Exp. ∆∆GExp +1.80 (±na) -0.09 (±0.13) -0.17 (±0.25) +0.08 (±0.14) -0.76 (±0.81)

Explicit 2i ∆∆GE2i +1.83 (±1.90) -0.95 (±2.09) +2.17 (±1.89) +0.15 (±2.10) -0.77 (±2.11)
[0..50]
Explicit 2ii ∆∆GE2ii +2.00 (±0.77) -0.68 (±0.71) +2.10 (±0.62) +0.17 (±0.75) -1.02 (±0.92)
[40..50]
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6 Gene regulation at the molecular level

6.1.4 Discussion

Crystal structures provide snapshots of macromolecular interactions and can help to under-

stand the thermodynamics underlying both specific and non-specific interactions. Complex

formation should be seen as a concerted event that is dependent on several factors. Thermo-

dynamic features involved in protein-DNA binding include electrostatic interactions, shape

complementarity, and solvent release, which are all considered to be favorable to the binding

process. On the other hand, entropy effects: the loss of translational, rotational, and inter-

nal degrees of freedom due to complex formation, are generally unfavorable. Computational

methods serve as a means for analyzing the implications structural modifications have on

the binding free energy. However, should be seen in the light of their limitations and as a

complement of (rather than as a replacement) to current experimental methods.

In this study, the challenge of analyzing the effects structural modifications have on the

thermodynamics of binding has been addressed using the TI-MD approach. The explicit

solvent protocol presented here, considers the relative effects of the modifications between

two states, the associated and the dissociated, by performing free energy calculations and by

applying the thermodynamic cycle approach. The free energy calculations were performed

under all degrees of freedom including explicit modeling of water molecules, addressing some

important issues with presently available theoretical methods.

In the comparison against an existing protocol an improved performance is shown for the

λ-repressor-DNA complex. The developed protocol, applied to the ZF-DNA complexes, is

proven useful for estimating the change in binding free energy due to the T → U mutation.

In the λ-repressor-DNA complex the thymine methyl group is at the center of the binding

interface and interacts with two non-polar amino acids A49 and I54. Hence, the mutation

causes loss of favorable hydrophobic interactions (positive ∆∆G).

Results that are very close to the experimentally reported ones are obtained when perform-

ing the mutation in the D20A mutant-DNA complexes (M3 and M4). In complex M3, the

thymine group interacts with the hydrophobic side chain of A20. Removing the methyl group

of thymine in M3 leads to a loss of favorable hydrophobic interactions this is reflected in the

computational result ∆∆GE2ii = +0.17 (±0.75) kcal/mol, which is further strengthened by

the experimental result ∆∆GExp = +0.08 (±0.14) kcal/mol.

In the M4 complex the closest amino acid is the G21 side chain, which steps in and orients

the R18 side chain in absence of D20 (however, less constrained). Hence, mutating T → U
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6.1 Free energy calculations for Zinc Finger-DNA complexes

improves the binding affinity. The computational value ∆∆GE2ii = -1.02 (±0.92) kcal/mol is

again in agreement with the experimental value ∆∆GExp = -0.76 (±0.81) kcal/mol. In M1,

the thymine methyl group interacts with D20. Replacing the methyl group with an hydrogen

improves the binding affinity. The computational value ∆∆GE2ii = -0.68 (±0.71) kcal/mol

suggests that it indeed is a favorable mutation, however, it is an slight over-estimation of

the experimentally measured effect ∆∆GExp = -0.09 (±0.13) kcal/mol. The T → U muta-

tion in the M2 complex was experimentally measured to -0.17 kcal/mol, however, for this

complex the computational protocol fails to estimate the negative effect on the binding free

energy. It is likely that the relatively large initial mutations made in order to obtain the

starting complex (described in Table 6.1) complicate a correct estimation of the binding free

energy. The calculated STDs are still slightly higher than those obtained from experimental

measurements, but in the range of those previously reported in similar studies [215, 228].

The results confirm earlier suggestions that it is possible to estimate changes in the binding

free energies in protein-DNA complexes by performing MD simulations. Furthermore, they

indicate that the accuracy is highly dependent on the initial complex. The larger the initial

modifications needed in order to obtain the starting structure, the less reliable results are to

be expected. The largest structural modifications were done in order to construct the starting

complexes M1 and in particular M2, for which the calculated results deviate the most from

the experimentally obtained ones. This can most likely be compensated by extending the

equilibration and simulation times, which has been called for by others [91].

Choosing the solvent model to use is clearly important and analysis specific problem.

Implicit solvent models approximate the interactions with the bulk solvent, thereby reducing

the computational costs. Such models are likely to give more reliable results than explicit

solvent models, when either the initial modifications in order to obtain the starting complex,

or the structural mutation itself is larger. As these calculations are faster, they are also

better suited for efficient screening of larger data sets. A study, in which an implicit solvent

model is applied to the same data set by Miller et al., is ongoing. Preliminary test show that

implicit solvent models do not handle the DNA molecule as well as explicit models, since

DNA strand separation has been observed. However, by applying simulation constraints

these problems can be circumvented. Implicit models have one great advantage, as iterations

of full bp mutations are feasible for one protein-DNA complex. The aim is to compare the

two methods and bring the results together in order to evaluate required simulation times

and applicability for improving PSSM models.

105



6 Gene regulation at the molecular level

The computational protocol presented here is suited for analyzing modifications made to

protein-DNA complexes. The contributions of individual residues at the binding interface can

be studied, whereby residues responsible for the key interactions can be identified. Results

that agree well with experimental values can be obtained at reasonable simulation times if

the mutation to be studied is small and the initial structure is close to a crystal structure.

Analysis of a larger data set is likely to provide useful information and a rough estimation of

the effects, however, currently hindered by the high computational requirement using explicit

solvent representation and missing experimental data for validation.

The aim is to contribute to the development of predictive methods of protein-DNA inter-

actions by including full flexibility, different solvent models, and atomic description of the

complexes. In order to achieve this goal, the first step towards developing computational

algorithms for accurate prediction of TFBSs is to understand the recognition process qual-

itatively. Theoretical approaches for performing virtual mutagenesis using thermodynamic

cycles provide insight into macromolecular energetics, which is essential step in rational design

of sequence specific ZF proteins and for investigating potential use in therapy.
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7 Conclusion

Gene expression is primarily regulated at the level of transcription through sequence specific

recognition of TFBSs. Intertwined signaling pathways and gene regulatory networks care for

controlled global expression profiles of genes in all cell types. Due to their role in gene regu-

lation, TFs play key roles in cellular events, such as cell survival, growth, and differentiation.

Consequently, alterations in genes encoding TFs are implicated in a number of diseases.

The analysis of gene regulation at the level of systems (presented in Chapt. 4) is a good

example of how multiple sources of information can be used for discovering potential causes

of a complex disease. The importance of gene regulation in cancer has been brought out by

providing evidence for a correlation between differential gene expression and auto immune

response. Furthermore, sets of biologically related cancer specific target genes are identified

using this global approach.

The three studies presented in Chapt. 5 provide instructive information and illustrate the

power of sequence-based tools for predicting functional TF binding sites, which in turn can

provide clues about the underlying regulatory networks. The results include a evidence for

potential TFs involved in regulating the expression of melanoma-associated genes, which

is confirmed by previously presented experimental results. The integrated system YRSA

exemplifies the advantage of flexible and automated analysis of biologically-related genes in

yeast and has proved useful for biologists active in the field. Finally, potentially functional

TFBSs involved in directing stem cell regulation in plant are presented. An over-represented

motif, which could be the link between the two key TFs LFY and WUS, is suggested. The

genomes analyzed here differ in both size and complexity. Specifically the promoters in H.

sapiens are significantly longer and more complex than those of S. cerevisiae. Phylogenetic

footprinting was employed in the analysis of the melanoma-related genes, as a means for

filtering out non-conserved regions, whereas the promoter sequences of both S. cerevisiae and

A. thaliana can be analyzed without pre-processing. Understanding regulatory mechanisms

in less complex organisms is a step towards studying the corresponding mechanisms in human.
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These examples illustrate the value of studying gene regulation in model organisms.

Structure-based methods provide means for explaining contradictions that are observed at

the sequence level. Significant progress in structure-based analysis of protein-DNA complexes

has been made both experimentally and computationally. An initial step towards analyzing

the individual contributions to the binding affinity between protein and DNA is taken in the

structure-based study presented in Chapt. 6. An investigation at the molecular level facilitates

a deeper understanding of the energetic effects, which are due to subtle differences in chemical

and structural complementarity between the two interacting molecules. Eventually, such

subtle differences determine the binding affinity and thereby the subsequent gene expression

levels in the cells. In this study, the power of using MD simulations for investigating the

effects that structural modifications have on the relative free energies in individual protein-

DNA complexes has been demonstrated. This study is an important step towards using

molecular modeling techniques for constructing PSSMs.

Gene regulation has been intensely investigated during recent years, which has resulted

in a number of valuable insights into transcriptional involvement in the development and

progression of diseases. Clearly information obtained at the level of systems is crucial in

the drug target identification process and for diagnostic purposes. Sequence-based analyses

of protein-DNA binding have contributed to the initial and necessary understanding of the

biomolecular interactions involved in specific sequence recognition. Sequence-based methods

are currently irreplaceable regarding their use for efficiently scanning genomic sequences.

However, structure-based information is crucial for understanding specific TF-DNA binding,

for improving sequence-based representation and discovery of TFBSs, and for eventually

untangling gene regulation.

Technologies capable of modulating gene expression are powerful tools for biotechnological

research and can be applied in therapeutics. Using engineered TFs for controlling gene

expression presents some advantages compared to other tools such as antisense RNA or

RNA interference (RNAi). The ZF-TF technology is currently the only method, by which

transcription can be either activated or repressed. Another clear advantage is the synergistic

binding effects observed when constructing a multidomain ZF protein. Finally, transcriptional

regulation is present in diverse organisms and can be used in prokaryotes, as well as in higher

eukaryotes. Before being able to utilize TFs in therapy, it is of outmost importance to ensure

that the individual effects of a single TF and its involvement in regulatory networks can

be assessed. Rationally designed artificial ZF-TFs are of potential use in therapeutics, for
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example in cancer therapy and for controlling the differentiation of transplanted stem cells.

Members of the Cys2His2 ZF family bind to DNA using modular domains that are capable

of recognizing a wide range of DNA sequences. Ideally, any given DNA sequence could be

targeted using a ZF library consisting of sequence specific modules that can be combined to

design multidomain ZF proteins. A universal recognition code specifying amino acid-base

preferences is desired.

In conclusion, with the vision is to fully unravel complex regulatory networks underlying

developmental decisions it is meaningful to study several aspects of gene regulation. The

versatile analysis presented in this work is a good example of how gene regulation can be

addressed using different approaches, which is a necessity for exploring the use of gene regu-

lation in therapeutics. Approaching gene regulation at the level of systems provides a holistic

view of the involvement of gene regulation is disease. Zooming in to the level of sequences,

it is possible to identify common regulatory mechanisms. The final step down to molecu-

lar level provides the necessary information for understanding sequence specific recognition

in protein-DNA complexes. Exactly how detailed structure-based information obtained at

the molecular level should be used for improving sequence-based methods remains an open

question. A further non-trivial problem, but perhaps the most interesting aspect of gene

regulation, is how gene regulatory networks can be simulated at the level of systems using

sequence-based information.

They are ill discoverers that think there is no land, when they can see nothing but sea.

Sir Francis Bacon
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8 Abbreviations

bp base pair

bZip basic leucine zipper

DBD DNA-binding domain

DNA deoxyribonucleic acid

ChIP chromatin immunoprecipitation assay

GB Generalized Born model

HD homeo domain

HLH helix-loop-helix

HTH helix-turn-helix

kb kilobases

MD molecular dynamics

MM molecular mechanics

Myrs Million years

ORF open reading frame

PSSM position specific scoring matrix

RE response element

SASA solvent accessible surface area

STD standard deviation

TF transcription factor

TFBS transcription factor binding site

TI thermodynamic integration

TIC transcription initiation complex

TSS transcription start site
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8 Abbreviations

WT wild type

UAS upstream activating sequence

ZF zinc finger

3D three-dimensional

Å Ångström
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Tübingen University, Germany

2001 - 2002 Guest Lecturer, University of Linköping, Sweden
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2006 Höglund, A., Blum, T., Brady, S., Dönnes, P., Miguel, J.S., Rocheford,
M., Kohlbacher, O., and Shatkay, H., Significantly improved prediction
of subcellular localization by integrating text and protein sequence data.
In: Pacific Symposium on Biocomputing (PSB 2006), p. 16-27.
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