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Zusammenfassung in deutscher Sprache

Inhalt dieser Arbeit ist die Betrachtung von nichtlinearen Hamilton-Jacobi-Gleichungen
erster Ordnung auf sogenannten verzweigten Räumen. Während die Theorie linearer
und quasilinearer Interaktionsprobleme zwischen verschiedenen physikalischen Medien gut
entwickelt ist, erscheinen die hier betrachteten nichtlinearen Probleme und insbesondere
deren Lösungsmethoden als recht neuartig; dies auch insofern, als unsere physikalische
Interpretation weniger im Bereich interagierender Medien, als vielmehr innerhalb der The-
orie granularer Medien angesiedelt ist. Das Ziel der vorliegenden Arbeit besteht darin, ein-
erseits die Theorie der Viskositätslösungen nichtlinearer Randwertprobleme auf verzweigte
Räume zu übertragen, um damit ein Werkzeug zur Behandlung solcherlei Probleme zur
Verfügung zu stellen, und andererseits die Struktur dieser Lösungen zu untersuchen.

Der Begriff der Viskositätslösung geht auf M. C. Crandall und P.-L. Lions zurück, die ihrer-
seits in ihrer fundamentalen Arbeit “Condition d’unicité pour les solutions généralisées
des équations de Hamilton-Jacobi de premier order” [CL81] auf Ideen des russischen
Mathematikers S.N. Kružkov zurückgreifen. Dieser entwickelte bereits im Jahre 1975
[Kru75] eine globale Theorie für Lösungen “eikonalartiger” Hamilton-Jacobi-Gleichungen
auf Gebieten des Rn. Sein Ansatz wiederum ist eng verknüpft mit dem Konzept der
vanishing viscosity, welches nichtlineare Probleme auf Konvergenzprobleme verwandter
quasilinearer Probleme zurückführt. Crandalls und Lions’ Verdienst ist es, aus Kružkovs
vorhandenen Konzepten die Charakterisierung von Viskositätslösungen mit Hilfe eines
Test- oder Vergleichsfunktionenansatzes herausgeschält zu haben. Dieses Verfahren er-
laubt es, die unmittelbaren Bedingungen an einen Lösungskandidaten recht gering zu hal-
ten, während die eigentlichen Forderungen, die die Erfüllung der Differentialgleichung be-
treffen, indirekt an sogenannte Testfunktionen gestellt werden. Grob gesprochen sind dies
differenzierbare Funktionen, die die zu testende Funktion von oben bzw. unten berühren.
Es stellt sich heraus (und ist wohlbekannt), dass dieser knapp zu formulierende, elegante
Ansatz eine beträchtliche Schar von Vergleichs- und Existenzresultaten mit sich bringt
und es insbesondere erlaubt, eine globale, allgemeine Theorie skalarer nichtlinearer Glei-
chungen zu entwickeln.

Eine Motivation für die vorliegende Arbeit und regelmäßig wiederkehrendes Beispiel stellt
in diesem Zusammenhang die aus der Optik bekannte Eikonalgleichung

|Du| = 1

dar, die aus gutem Grund als die einfachste Hamilton-Jacobi-Gleichung angesehen wer-
den darf. Die (eindeutige) Viskositätslösung der Eikonalgleichung mit Nullrandwerten
auf einem beschränkten Gebiet ist durch die Distanzfunktion zum Gebietsrand gegeben,
welche nun ihrerseits den Bezug zur Theorie der granularen Medien herstellt. Tatsächlich
beschreibt die Distanzfunktion die Oberflächenform derjenigen stabilen Konfiguration
eines homogenen granularen Materials, die entsteht, wenn man ein maximales Volumen
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dieses Materials auf besagtem Gebiet deponiert [HK99]. Die Eikonalgleichung gewähr-
leistet hierbei, daß der materialspezifische (und hier einfachheitshalber normierte) Bö-
schungswinkel eingehalten wird. Diesen Zusammenhang kann man sich leicht anhand
von Gebieten einfacher Geometrie veranschaulichen. Genauer stellt man fest, dass das
Selektionsprinzip des maximalen Volumens unter allen stabilen Konfigurationen gerade
die Viskositätslösung der Eikonalgleichung auswählt. Im Kapitel 3 untersuchen wir die
Äquivalenz beider Auswahlprinzipien genauer und stellen dazu eine Verbindung zwischen
Existenzbeweisen aus der Theorie der Viskositätslösungen und der von Hadeler und an-
deren in [HK99] entwickelten Perronmethode her, die sogenannte Subeikonallösungen ver-
wendet.

Ausgangspunkt unserer Überlegungen zu verzweigten Räumen ist nun, die Interpreta-
tion der Distanzfunktion als Materialkonfiguration maximalen Volumens auf eben diese
zu erweitern. Als wichtiges Beispiel eines verzweigten Raumes betrachten wir hierbei
vorerst eindimensionale topologische Netzwerke. Diese stellen, vereinfacht gesprochen,
Graphen dar, deren Kanten als glatte Kurven im Rn realisiert sind. Unterteilt man nun
die Knoten eines solchen Graphen in Rand- und Verzweigungsknoten, so erhält man ein
einfaches eindimensionales Modell, indem man sich vorstellt, die Kantenkurven seien bei-
dseitig von hohen Glaswänden gesäumt, in deren Zwischenraum Sand gefüllt wird. An
Verzweigungsknoten wird Sand zwischen den inzidenten Kanten ausgetauscht, während
er an Randknoten durch kleine Löcher am Boden abfließen kann. Man sieht schnell, dass
auch in diesem Falle die Distanzfunktion zu den Randknoten die (eindeutige) Konfigura-
tion maximalen Volumens beschreibt. Es stellt sich somit die Frage, ob ein erweiterter
Viskositätslösungsbegriff auf verzweigten Räumen derart entwickelt werden kann, dass
ein ähnlich enger Zusammenhang zu granularen Medien besteht wie in nichtverzweigten
Räumen. Hierbei ist leicht einzusehen, dass die Schwierigkeit hauptsächlich darin besteht,
eine korrekte Beschreibung einer solchen erweiterten Viskositätslösung an den Verzwei-
gungsknoten zu finden. Als hauptsächlichen Schwerpunkt dieser Arbeit haben wir uns zur
Aufgabe gemacht, diesen erweiterten Viskositätslösungsbegriff auf verzweigten Räumen
zu entwickeln und darauf basierend Eindeutigkeits- und Existenzbeweise zu führen (Kapi-
tel 5). Es stellt sich heraus, dass dies für eine allgemeine Klasse von sogenannten eiko-
nalartigen Hamilton-Jacobi-Gleichungen möglich ist, die in enger Beziehung zu der von
Kružkov in [Kru75] untersuchten Klasse steht. Bei unseren Betrachtungen beschränken
wir uns zudem nicht nur auf topologische Netzwerke, sondern betrachten in Kapitel 7
auch höherdimensionale verzweigte Räume.

Ein weiteres Hauptaugenmerk richten wir ferner auf die Frage, inwieweit unser neu ent-
wickelter Viskositätslösungsbegriff mit der namensgebenden Methode der vanishing vis-
cosity in Einklang steht. Dazu übertragen wir dieses Verfahren auf verzweigte Räume
und beweisen ein entsprechendes Konvergenzresultat für eine Subfamilie der eikonalar-
tigen Hamilton-Jacobi-Gleichungen (Kapitel 4). Später werden wir dann allgemeiner
zeigen, dass jede durch vanishing viscosity erhaltene Grenzfunktion mit der eindeuti-
gen Viskositätslösung für das zugehörige Problem übereinstimmt (Konsistenz). Diese
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Erkenntnis rechtfertigt unseren Lösungsbegriff in weiterer Hinsicht.

Die Methode der vanishing viscosity wird zudem in Kapitel 2 anhand der Eikonalgleichung
auf nichtverzweigten Gebieten einfacher Geometrie direkt untersucht. In diesen Beispiel-
fällen kann man über die Lösungen der zugehörigen Schar von quasilinearen Problemen
(wir nennen dies die viskose Eikonalgleichung) genügend Informationen gewinnen, um
konkrete Konvergenzaussagen direkt beweisen zu können.

Nach der allgemeinen Herleitung der Theorie von Viskositätslösungen auf topologischen
Netzwerken untersuchen wir in Kapitel 6 als Beispiel schließlich eine etwas konkretere
Klasse von eikonalartigen Randwertproblemen auf Netzwerken. Diese nennen wir aniso-
trope Eikonalgleichungen und stellen einen Zusammenhang zu den bereits erwähnten
Maximalkonfigurationen granularer Medien her. Speziell interessiert uns die Struktur
von Viskositätslösungen anisotroper Eikonalgleichungen, und davon ganz besonders die
Menge der singulären Punkte. Wie sich herausstellt, ist die Mächtigkeit dieser Singu-
laritätenmenge eine endliche Zahl, die invariant sowohl gegenüber der konkreten aniso-
tropen Eikonalgleichung, als auch gegenüber der exakten Gestalt des Netzwerkes ist.
Tatsächlich hängt sie lediglich von der Anzahl der Kanten und Verzweigungsknoten ab—
ein Resultat, das wir auf verschiedene Arten interpretieren.
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CHAPTER 1

Introduction

In the wide field of partial differential equations, many contributions of new, ingenious
approaches have led to the great variety of methods and techniques which it enjoys today.
In particular the theory of nonlinear equations, which is far more scattered and less
comprehensive than the linear theory, depends upon the development of new methods
helping to gain deeper insights and to establish new points of view.

In general, boundary or initial value problems of nonlinear equations, among which we
highlight the Hamilton-Jacobi equations as prominent examples, fail to have smooth solu-
tions on a given domain or for all times. A method to overcome this problem is to soften
the demands and to introduce appropriate concepts of weak solutions. The present thesis
is concerned with a particularly important contribution in this spirit: the theory of vis-
cosity solutions, which was initiated by S. N. Kružkov and first established in its present
form by M. C. Crandall and P.-L. Lions. Similar to the idea of weakly differentiable func-
tions known from Sobolev’s theory, the concept of viscosity solutions is a generalization
of classical solutions, allowing for not necessarily differentiable functions to be possible
solution candidates. Roughly speaking, to be continuous is the only immediate condition
a viscosity solution has to satisfy, whereas the crucial requirement—the “test function
condition”—is of indirect nature: The solution has to be resistant against each smooth
test function touching it from above or below, in the sense that the latter (rather than
the solution itself) has to satisfy a corresponding differential inequality. Obviously, the
use of test functions parallels the Sobolev theory of weak solutions of linear equations in
divergence form. Obviously, the latter employs integration by parts in order to “shift” the
derivatives to test functions, whereas the theory of viscosity solutions exploits the max-
imum principle for the same purpose. It turns out that this concept provides existence
and comparison results for a broad class of nonlinear partial differential equations which
in general do not possess classical solutions.

The theory of viscosity solutions has been extensively studied and refined by many au-
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thors, and among the numerous contributions in the literature one can find different
adaptations to more general settings. In the present thesis we refrain from a new dis-
cussion of the old subject. In contrast, we suggest a meaningful transfer of the existing
theory to a setting which has not yet been treated in this context: ramified spaces.

Several physical phenomena such as interaction of different media can be translated into
mathematical problems involving differential equations which are not defined on connected
manifolds as usual, but instead on so-called ramified spaces. The latter can be roughly
visualized as a collection of different manifolds of the same dimension (branches) with cer-
tain parts of their boundaries identified (ramification space). The simplest examples are
topological networks, which basically are graphs embedded in Euclidean space. Interaction
problems can be modeled by a collection of differential equations describing the behavior
of physical quantities on the branches, which is additionally controlled by certain transi-
tion conditions governing the interaction of the quantities across the ramification spaces.
From a mathematical point of view, transition conditions are an essential new aspect when
searching for solutions. Since the year 1980, many works have been published treating
different kinds of interaction problems involving linear and quasilinear differential equa-
tions (confer for instance Lagnese and Leugering [LL91], [LL93], Lagnese, Leugering, and
Schmidt [LLG94], von Below and Nicaise [vBN96], Ali-Mehmeti [AMN93], and Nicaise
[Nic93]). However, as far as we know, fully nonlinear equations such as Hamilton-Jacobi
equations have not yet been examined to a similar extent on ramified spaces.

A major goal of the present thesis is to establish a theory of viscosity solutions of first
order Hamilton-Jacobi equations on ramified spaces, where the main emphasis will be
placed on topological networks. In doing so, mathematical models for granular matter
applied to ramified spaces will serve us as an motivational and illustrating example.

A closely related aim of interest in this context is the so-called method of vanishing
viscosity, which origins in fluid dynamics and has eventually led to the modern notion of
viscosity solutions. Although the latter has been extended to second order equations—
under replacement of the test functions condition by an alternative involving set-valued
generalized differential operators (semi-jets)—, its original nature is of first order type. In
this case the theory is strongly related to the origin of the concept, which gave rise to the
terminology: the idea of converting a nonlinear first order equation

H(Du(x), u(x), x) = 0

into a semilinear second order equation by adding a “viscosity term” ε∆u, followed by a
passage to the limit ε → 0 (“vanishing viscosity”). Heuristically speaking, the viscosity
term prevents the solution from immediately responding to the equation, but causes it
to display a smoothed behavior. The subsequent reduction of viscosity then gradually
decreases this smoothening effect and makes the solution react more quickly. The math-
ematical motivation is to replace the original nonlinear problem by a family of semilinear
problems which can be treated with the standard semilinear theory. The difficulty of the
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problem is thus transferred to the question, whether the ε-family of solutions converges. In
many cases this question can be positively answered by means of compactness arguments,
the essence of which consists in certain a priori -estimates. This so-called method of van-
ishing viscosity in general acts as a selection principle in the following sense: Whereas
classical solutions of boundary value problems involving nonlinear equations do not exist
in general, the situation is different if the demands are relaxed and weak (i.e., “almost
everywhere”) solutions are admitted, in which case solutions do exist but may not be
unique. Hence in either case the problem is unsatisfactory. A possible solution to this
dilemma is provided by the method of vanishing viscosity, as it selects a unique weak
solution. In fact it turns out that what at first might seem to be a purely formal restric-
tion to a certain solution motivated by a technical selection procedure will end up being
the “correct” solution in several other aspects, both physical and mathematical. For in-
stance, the viscosity term appears naturally in fluid dynamics as the physical viscosity of
the liquid, and the vanishing viscosity method describes limiting cases where this viscosity
approaches zero. It also can be interpreted as a gradual reduction of the effect of diffu-
sion in reaction-diffusion scenarios. On the other hand, a mathematical justification is
given by the very fact, that the limit function selected by the vanishing viscosity method
coincides with the viscosity solution of the original problem. Conversely, the characteriza-
tion by test functions is nothing else than an appropriate intrinsic characterization of the
vanishing viscosity limit. In the present thesis we will encounter the vanishing viscosity
method in different contexts, starting from explicit calculations in the exemplary case of
the eikonal equation as the most prominent Hamilton-Jacobi equation, and ending with
general convergence results on networks.

As already mentioned, in order to transfer the test function concept to ramified spaces, we
will repeatedly invoke a physical interpretation: mathematical models for granular mat-
ter. In fact, we consider the problem of determining the contours of maximal volume con-
figurations of homogeneous (or spatially inhomogeneous) granular material placed upon
ramified domains. Let us briefly elaborate on this idea. Equilibrium configurations of
dry and homogeneous granular matter can only form “heaps” with local steepness not
exceeding a certain angle of repose α specific to the respective material. Consequently,
the function describing the contours of maximal volume configurations on non-ramified
domains without rim (such as tables) is contained in the class of the “almost everywhere”
solutions of the eikonal equation

H(Du(x), u(x), x) = |Du(x)| − tanα = 0

satisfying u ≡ 0 on the boundary. In this case another selection criterion is employed:
namely the additional constraint that the volume functional be maximized (cf. [HKG02]).
It can be shown that this “maximal volume solution” coincides—up to multiplication with
a constant—with the distance function to the boundary.

The connection to the theory of viscosity solutions is given by the observation that the
distance function, on the other hand, is the unique viscosity solution of the above boundary
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value problem and thus is selected by the method of vanishing viscosity. In fact we
demonstrate that the construction methods for maximal volume solutions introduced
in [HKG02] are closely related to similar methods for viscosity solutions. Having in
mind both the granular matter and the viscosity solution interpretation of the distance
function on non-ramified domains, the passage to viscosity solutions on ramified spaces
suggests itself. As an example let us consider the simplest case of a ramified space: a
one-dimensional topological network or a graph. In this setting, the distance function to
a given collection of boundary vertices in fact describes the maximal volume configuration
of granular matter for the following scenario: The network can be pictured as a planar
maze with paths connected at the vertices. Now think of the paths to be bounded on
both sides by thin, sufficiently high glass walls perpendicular to the plane. Let us then
uniformly pour as much sand as possible into the space between the glass walls, assuming
that sand can run out of the maze at the boundary vertices. At the other vertices (called
transition vertices), sand is interchanged between the incident paths. Several sand heaps
will grow, each two of them separated by at least one boundary vertex. Finally the heaps
stop growing and reach an equilibrium state. By this time each additional sand portion
locally violates the angle of repose and is thus forced to leave the maze at the boundary
vertices. The contours of the equilibrium configuration are mathematically described by
a continuous function defined on the network which vanishes at the boundary points,
maximizes the volume functional, and satisfies the eikonal equation almost everywhere on
the edges. Analogously to the non-ramified case, the distance function satisfies all these
conditions. Hence it is selected by the maximal volume problem among all other weak
solutions of the eikonal equation on the network.

The equivalence of the two selection principles (maximal volume and viscosity solution)
in the case of the eikonal equation on non-ramified domains gives reason to the question
if there is a generalized test function condition which is satisfied by the distance function
on networks and which might be the key to transferring the theory of viscosity solutions
to ramified spaces for a more general class of Hamilton-Jacobi equations.

As a main result of the present thesis it will turn out that indeed there is a class of
first order Hamilton-Jacobi equations of eikonal type for which the concept of viscosity
solutions can be appropriately extended to networks and even higher dimensional ramified
spaces. In fact, we propose an intrinsic test function characterization for viscosity solutions
on ramified spaces and justify it in different aspects: The reason why viscosity solutions
are so convincing in the non-ramified case is the fact that they coincide with vanishing
viscosity limits and that they entail a variety of technical advantages such as elegant
comparison, uniqueness, and existence results. We show that our theory preserves all
these features. In order to emphasize the generality of our concept, we also present an
adaptation of the theory to certain higher dimensional ramified spaces, so-called LEP-
spaces (locally elementary polygonal ramified spaces).

A corresponding problem is the extension of the method of vanishing viscosity to ramified
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spaces, which we will treat in detail for the case of networks. It requires special care at the
ramification spaces, as after adding the viscosity term the solution of the corresponding
semilinear boundary value problem is not unique, unless we impose a further condition at
the ramification spaces: the classical Kirchhoff condition, establishing a relation between
the outer normal derivatives of the solutions on adjacent branches. The Kirchhoff con-
dition can be thought of as an extension of the “averaging effect” of the viscosity term
on the branches to the ramification spaces. This averaging effect can also be observed
in granular matter experiments due to local perturbations caused by small spontaneous
avalanches.

Another issue of the present thesis is the investigation of certain properties of the distance
function on networks. It is well known (cf. [AG96]) that for a convex two-dimensional
domain the length of its boundary is related to the curvature functional of the distance
function. In fact they are equal up to a normalizing factor independent of the choice
of the domain. The distance function thus plays an important role as a link between
the eikonal equation and the topology of the domain by connecting local and global
concepts, a phenomenon which, as we will show, also appears in the context of networks.
We examine the curvature functional (in the sense of geometric measure theory) of the
distance function to boundary vertices, which is given by the number of singularities of the
distance function, where singularities have to be suitably counted at transition vertices.
It turns out that this number is equal to a purely topological quantity depending only on
basic graph theoretical properties of the underlying network.

As will turn out, the number of singularities is even invariant under replacement of the
eikonal equation by a more general class of what we call anisotropic eikonal equations.
We hence obtain a rather clear picture of the shape and regularity properties of the
corresponding viscosity solutions. This gives rise to different interpretations, in particular
within granular matter scenarios.

1.1 Logical organization and chapter summary

The logical relations between the different topics presented in this thesis are manifold.
However, we have decided to basically arrange the chapters according to an increas-
ing complexity of the underlying domains, which are: one-, two-, and n-dimensional
non-ramified domains, one-dimensional ramified domains (networks), and, finally, n-
dimensional ramified domains (LEP spaces). For a given type of domain, we have tried
to structure the material with respect to logical and/or historical consequence. We think
that the possible drawback of certain topics such as the vanishing viscosity method being
revisited at different stages is compensated by the coherence regarding the complexity.

In chapter 2 we give a brief historical overview of the concept of viscosity solutions as
well as the definitions of Kružkov’s generalized solutions and (classical) viscosity solu-
tions. We examine the vanishing viscosity method for the eikonal equation on several
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domains (interval, square, arbitrary convex domains with smooth boundary) and show its
convergence to the distance function.

In chapter 3 we consider the eikonal equation on two-dimensional domains and connect
the granular matter methods developed in [HKG02] to techniques from the theory of
viscosity solutions, establishing an equivalence of both approaches in the case of the
eikonal equation.

In chapter 4 we provide a general definition of ramified spaces and investigate the Dirich-
let problem of the eikonal equation on topological networks. Furthermore, by means of a
priori estimates we show the convergence of a generalized vanishing viscosity method on
networks for a class of Hamilton-Jacobi equations of eikonal type.

In chapter 5 we present an extension of the theory of viscosity solutions to networks
and prove uniqueness and existence results for solutions of Hamilton-Jacobi equations
of eikonal type. We also show the consistency of the extended theory with the network
version of the method of vanishing viscosity.

In chapter 6 we examine the structure of viscosity solutions of the class of so-called
anisotropic eikonal equations on topological networks, and give an explicit formula for
the number of singularities of such solutions. In the special case of the eikonal equation,
this result connects the curvature functional of the eikonal equation to the topology of the
graph. The result is related to the concept of cycle rank of graphs and is also interpreted
in terms of computer scientific aspects.

In chapter 7 we generally introduce higher dimensional ramified manifolds and define
the so-called LEP spaces, to which we extend the results of chapter 5.
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CHAPTER 2

Viscosity solutions: history and examples

Summary. The purpose of the present chapter is first to discuss two important concepts
which led to the modern notion of viscosity solutions: the method of vanishing viscosity
and Kružkov’s generalized solutions. Secondly, we investigate the method of vanishing
viscosity for the eikonal equation in various domains and show that it yields the distance
function in the limit.

2.1 Introduction

In the year 1981 the notion of viscosity solutions of nonlinear first order equations, or
Hamilton-Jacobi equations, appeared in the literature for the first time, when Michael
G. Crandall and Pierre-Louis Lions published their papers “Condition d’unicité pour les
solutions généralisées des équations de Hamilton-Jacobi de premier order” [CL81] and
“Viscosity solutions of Hamilton-Jacobi equations” [CL83]. Although the definition given
in these publications reads simple and elegant, it is nevertheless important to point out
that it represents the essence of a development over a long time.

Already in 1975 S. N. Kružkov proposed a concept of generalized solutions of Hamilton-
Jacobi equations of eikonal type [Kru75], emanating from the observation that a general
theory for these equations entails a twofold difficulty already mentioned in the preced-
ing chapter: Whereas a classical theory fails as general existence of solutions cannot be
guaranteed, a weak theory cannot ensure uniqueness. Kružkov solved this problem by
imposing a further, physically meaningful, constraint on possible weak solutions. Essen-
tially, he demanded the existence of a uniform lower bound of the second order difference
quotients of a solution candidate. And indeed, this additional requirement enabled him
to overcome the problem of uniqueness and to pave the way to a general theory for a large
class of Hamilton-Jacobi equations of “eikonal type”. As a matter of fact, Kružkov’s the-

7
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ory is not only justified by existence and uniqueness results, but his notion of a generalized
solution also allows physical interpretations related to the classical principles of Fermat
and Huygens in geometric optics (cf. [Kru75]). These principles, in turn, are strongly
connected to the eikonal equation, reflecting the fact that Kružkov’s theory is restricted
to what he calls Hamilton-Jacobi equations of eikonal type.

As stated in [CIL92], “analogies of S. N. Kružkov’s theory of scalar conservation laws
([Kru70]) provided guidance for the notion [of viscosity solutions] and its presentation”. In
fact, inspired by some of the essential ideas in Kružkov’s work, Crandall and Lions found
a strikingly simple intrinsic representation of his generalized solutions, leading to the
notion of viscosity solutions of first order equations [CL83]. Its publication initiated avid
research activities, triggering the discovery of a chain of related and much more general
results. Later on, Lions discovered a possibility to extend the concept to second order
equations, modifying the definitions in a way such that they bear only little resemblance
to their original version. His key achievement was to prove a maximum principle and a
corresponding uniqueness result for viscosity solutions of convex nonlinear second order
Hamilton-Jacobi equations by means of stochastic control theory, a result which was
extended to fully nonlinear second order elliptic equations by R. Jensen [Jen88] five years
later.

However, as powerful (and abstract) the recent general definitions of viscosity solutions
might be, one basic feature always plays a fundamental role: the possibility of approxi-
mating the solution by the method of vanishing viscosity. We begin with a description of
this method, followed by three concrete examples for its application to the eikonal equa-
tion. After that we elaborate on Kružkov’s solutions and end with the modern definition
of viscosity solutions in the spirit of Crandall and Lions.

2.2 The idea of vanishing viscosity

As mentioned above, the method of vanishing viscosity selects a certain weak solution of
a first order nonlinear problem which in general has no classical solution. The idea is to
slightly modify the original problem to get a semilinear problem, whereby the extent of the
modification is controlled by a parameter ε. By means of existence and uniqueness results
from the standard semilinear theory one obtains a unique, sufficiently regular solution uε

for each value ε > 0. Afterwards the modification is gradually “undone” by passing to the
limit ε→ 0, leaving the question if and in what sense the family of functions uε converges
to a limit function, called the “vanishing viscosity solution”.

Let us put the idea in concrete mathematical terms: Let Ω be a bounded domain in Rn

and consider a first order Hamilton-Jacobi equation of the form{
H(Du(x), u(x), x) = 0 on Ω
u = ϕ on ∂Ω,

(2.1)
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where H : Rn × R × Ω → R is a nonlinear function, the so-called Hamiltonian. The
“viscous” modification of the problem, depending on the parameter ε > 0, is given by{

ε∆uε +H(x, uε, Duε) = 0 on Ω
uε = ϕ on ∂Ω.

(2.2)

Under the assumption that H satisfies some standard regularity and monotonicity con-
ditions, the solutions uε exist uniquely, and it remains to prove the convergence of the
functions uε to a limit function u as ε approaches 0. This can be achieved by establishing
suitable a priori estimates. We will elaborate on this in the case of topological networks
in chapter 4.

2.3 Vanishing viscosity and the eikonal equation

At this stage we dispense with a general approach and instead illustrate the method of
vanishing viscosity by means of several exemplary boundary value problems of the eikonal
equation. Accordingly, on a bounded domain Ω ⊂ Rn we consider the boundary value
problem {

|Du| − 1 = 0 on Ω
u = 0 on ∂Ω.

(2.3)

Clearly a classical solution does not exist. However, there are infinitely many Lip-
schitz continuous functions which satisfy the boundary condition and whose modulus
of gradient—existing almost everywhere by the theorem of Rademacher—equals 1, possi-
bly except for a set of measure zero. Obviously the distance function d to the boundary
is contained in this class of weak or almost everywhere solutions, and we will demonstrate
by means of explicit calculations how d is selected by the method of vanishing viscosity.

Both for technical reasons and in order to stay compatible with the theory in the subse-
quent chapters, we do not apply the method of vanishing viscosity to the eikonal equation
itself, but to the equivalent and “more regular” equation

|Du|2 − 1 = 0.

Then for ε > 0 the corresponding semilinear viscous problem reads{
ε∆uε + |Duε|2 − 1 = 0 on Ω
u ≡ 0 on ∂Ω,

(2.4)

and the semilinear theory can be applied. In fact, it is possible to attack this problem by
means of standard linear theory via a transformation approach as used in the following

Theorem 2.1. Let Ω ⊂ Rn be a bounded domain satisfying an exterior sphere condition
at every boundary point. Then the boundary value problem 2.4 has a unique solution
uε ∈ C(Ω̄) ∩ C2(Ω). If ∂Ω is of class C∞, we have uε ∈ C∞(Ω̄).
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Proof. Let ε > 0 and set a := 1/ε. According to theorem 6.13 in [GT77] there is a unique
solution wa ∈ C(Ω̄) ∩ C2(Ω) of the boundary value problem{

∆wa − a2wa = a2 on Ω
wa ≡ 0 on ∂Ω.

(2.5)

Furthermore note that the maximum principle implies wa > −1, whence we infer that
uε ∈ C(Ω̄) ∩ C2(Ω), where

uε(x) := −1

a
log(wa(x) + 1), x ∈ Ω. (2.6)

Straightforward calculation shows that uε satisfies (2.4). Moreover, the solution uε is
unique, as the inverse transformation of (2.6) applied to a different solution of (2.4)
would contradict to the uniqueness of wa.

If ∂Ω additionally is of class C∞, we have wa ∈ C∞(Ω̄) according to theorem 6, p. 326,
in [Eva98]. Hence uε ∈ C∞(Ω̄).

We now consider three cases: an interval, a square, and an arbitrary convex domain in
Rn with a smooth boundary.

2.3.1 Convergence on the interval

Lemma 2.1. Let Ω := (0, 1) ⊂ R and let d : Ω → R be the distance function on Ω. Then
for each ε > 0 there is a unique solution uε ∈ C(Ω̄)∩C2(Ω) of the boundary value problem{

εu′′ε(x)− (u′ε(x))
2 + 1 = 0 on Ω,

uε(0) = uε(1) = 0 .
(2.7)

Furthermore, the functions uε converge pointwise to d on Ω̄ as ε→ 0.

Proof. Let ε > 0. The existence and uniqueness of the solution uε is a consequence of
theorem 2.1. Set a := 1/ε and define

wa(x) := exp(−ε−1uε)− 1.

From theorem 2.1 it follows that wa is a solution of{
w′′a(x)− a2wa(x) = a2 on Ω
wa(0) = wa(1) = 0.

(2.8)

Hence it can be represented by the formula

wa(x) = a2

∫ 1

0

g(x, t) dt, (2.9)
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where g(x, t) is the Green’s function of the homogeneous equation

u′′(x)− a2u(x) = 0

on Ω vanishing at the boundary of Ω.

In other words, for each t ∈ Ω the function g(x, t) satisfies the following equation in the
distribution sense {

d2

dx2 g(x, t)− a2g(x, t) = δ(x− t) on Ω
g(0, t) = g(1, t) = 0 ,

where δ denotes the Dirac delta function. It can be readily verified that g(x, t) is given
by

g(x, t) =

{
− sinh(ax) sinh(a(1− t))(a sinh(a))−1, 0 ≤ x < t
− sinh(a(1− x)) sinh(at)(a sinh(a))−1, t < x ≤ 1.

Plugging this into (2.9), we obtain

wa(x) = −a2

∫ 1

x

sinh ax sinh a(1− t)

a sinh a
dt− a2

∫ x

0

sinh a(1− x) sinh at

a sinh a
dt

= −1 +
sinh a(1− x) + sinh ax

sinh a
.

Applying the transformation (2.6), we obtain an explicit formula for the solution of (2.7),
which reads

uε(x) = −1

a
log(wa(x) + 1) = −1

a
log

(
sinh a(1− x) + sinh ax

sinh a

)
. (2.10)

We now consider the behavior of uε for ε → 0, or, equivalently, a = ε−1 → ∞. For this
purpose we express the hyperbolic functions in (2.10) in terms of exponential functions
and obtain

uε(x) = −1

a
log

(
ea(1−x) − ea(x−1) + eax − e−ax

ea − e−a

)
= x− 1

a
log

(ea − 1)(ea(2x−1) + 1)

ea − e−a︸ ︷︷ ︸
(1)

 .

If x ≤ 0 ≤ 1/2, it is easy to see that the term (1) is bounded from above by 2 and from
below by 1/2 for all sufficiently large a > 0. On the other hand, by choosing a different
representation we get

uε(x) = −x+
1

a
log

 ea − e−a

ea(1−2x) − e−a + 1− e−2ax︸ ︷︷ ︸
(2)

 .
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Now, for 1/2 < x ≤ 1, expression (2) obviously behaves like ea as a → ∞. Altogether it
follows

lim
a→∞

ua(x) =

{
x if 0 ≤ x ≤ 1/2
1− x if 1/2 < x ≤ 1,

and the assertion is proved.

Lemma 2.2. Using the notation of lemma (2.1), we have

lim
ε→0

u′ε(x) =


1 if 0 ≤ x < 1/2
0 if x = 1/2
−1 if 1/2 < x ≤ 1.

Proof. Let ε > 0 and set a := 1/ε. Using (2.10) we compute

u′ε(x) = −− cosh(a(1− x)) + cosh(ax)

sinh(a(1− x)) + sinh(ax)

= −−e
a(1−x) − ea(x−1) + eax + e−ax

ea(1−x) − ea(x−1) + eax − e−ax
=
ea(1−2x) + e−a − 1− e−2ax

ea(1−2x) − e−a + 1− e−2ax
.

The assertion is immediate when letting a→∞ in the last term.

2.3.2 Convergence on a square

We now apply the method of vanishing viscosity to the eikonal equation on a square and
prove an analogous statement.

We first provide the following auxiliary result.

Proposition 2.1. Let Ω := (0, 1)× (0, 1). Let a > 0 and set

σn :=
√
π2n2 + a2 (2.11)

for each n ∈ N. We define the function ua : Ω → R by

ua(x, y) = −1

a
log

[ ∑
n=1,3,...

4a2 sin(nπx)

πσ2
nn

(
π2n2

a2
+

sinh(σn(1− y)) + sinh(σny)

sinh(σn)

)]
,

where the summation index n runs through the odd natural numbers. Then

lim
a→∞

ua(x, y) = x for all 0 < y ≤ 1/2 and all 0 < x ≤ y.

Proof. Let 0 < y ≤ 1/2 and 0 < x ≤ y. We compute

ua(x, y) = −1

a
log

[
e−ay

( ∑
n=1,3,...

4eayπn sin(nπx)

σ2
n

+
∑

n=1,3,...

4eaya2 sin(nπx)

πσ2
nn

· sinh(σn(1− y)) + sinh(σny)

sinh(σn)

)]

= y − 1

a
log[S1(a, x, y) + S2(a, x, y)], (2.12)
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where

S1(a, x, y) :=
∑

n=1,3,...

4eayπn sin(nπx)

σ2
n

and

S2(a, x, y) :=
∑

n=1,3,...

4eaya2 sin(nπx)

πσ2
nn

· sinh(σn(1− y)) + sinh(σny)

sinh(σn)
.

By (2.11) we furthermore have lima→∞(σn − a) = 0 for fixed n. Invoking this and the
relation 0 < y ≤ 1/2, we have for any fixed n ∈ N

lim
a→∞

eσn+y(a−σn) − e−σn+y(a+σn) + e(a+σn)y − e(a−σn)y

eσn − e−σn

= lim
a→∞

ea − e−a+2ay + e2ay − 1

ea
= 1 + δ1/2(y), (2.13)

where

δ1/2(y) :=

{
1 if y = 1/2
0 otherwise.

Since transition to the limit and summation can be interchanged in this case, we compute

lim
a→∞

S2(a, x, y) =
∑

n=1,3,...

lim
a→∞

4eaya2 sin(nπx)

πσ2
nn

· sinh(σn(1− y)) + sinh(σny)

sinh(σn)

=
∑

n=1,3,...

lim
a→∞

4a2 sin(nπx)

πσ2
nn

· eay · e
σn(1−y) − e−σn(1−y) + eσny − e−σny

eσn − e−σn

=
∑

n=1,3,...

lim
a→∞

4a2 sin(nπx)

πσ2
nn

· e
σn+y(a−σn)) − e−σn+y(a+σn) + e(a+σn)y − e(a−σn)y

eσn − e−σn

=
∑

n=1,3,...

4 sin(nπx)

πn
· lim

a→∞

eσn+y(a−σn)) − e−σn+y(a+σn) + e(a+σn)y − e(a−σn)y

eσn − e−σn

= 1 + δ1/2(y). (2.14)

Note that we have taken advantage of (2.13) and of the well-known relation∑
n=1,3,...

sin(nπx)

n
=
π

4
. (2.15)

Next observe that we can write

S1(a, x, y) = eaySa(x), (2.16)

where the function Sa : R → R is defined by

Sa(t) :=
∑

n=1,3,...

4πn sin(nπt)

π2n2 + a2
, t ∈ R. (2.17)
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For fixed a > 0 we consider the 2-periodic function f : R → R given by

f(t) :=

{
−e−a(t+1) − e−a(1−(t+1)), if −1 ≤ t ≤ 0,
e−at + e−a(1−t), if 0 ≤ t ≤ 1,

on the interval [−1, 1]. Its Fourier expansion has the form

f(t) =
∞∑

n=1

bn sin(nπt), (2.18)

where

bn =

∫ 1

−1

f(s) sin(nπs) ds =

{
4πn(e−a+1)

π2n2+a2 if n is odd

0 if n is even.
(2.19)

By (2.17), (2.18), and (2.19) it then follows

(e−a + 1)Sa(t) = f(t).

From (2.16) we therefore obtain

S1(a, x, y) = eay · e
−ax + e−a(1−x)

e−a + 1
. (2.20)

For large a > 0 we thus derive by virtue of (2.12), (2.14), and (2.20)

ua(x, y) ' y − 1

a
log

(
eay · e

−ax + e−a(1−x)

e−a + 1
+ 1 + δ1/2(y)

)
= y − 1

a
log

(
e−a(x−y) + e−a(1−x−y)

e−a + 1
+ 1 + δ1/2(y)

)
.

By 0 < y ≤ 1/2 and 0 < x ≤ y it follows lima→∞ ua(x, y) = x.

Lemma 2.3. For each ε > 0 there is a unique solution uε ∈ C(Ω̄)∩C2(Ω) of the boundary
value problem {

ε∆uε − |Duε|2 + 1 = 0 on Ω := (0, 1)× (0, 1)
uε ≡ 0 on ∂Ω.

(2.21)

Furthermore, the functions uε converge pointwise to the distance function d on Ω as ε→ 0.

For the proof of lemma 2.3 we need the following well-known facts about the spectral rep-
resentation of Green’s functions for the Dirichlet problem on arbitrary domains, associated
with a self-adjoint linear operator.

Lemma 2.4. The Green’s function G for the Dirichlet problem associated with the self-
adjoint linear operator L on a bounded domain Ω ⊂ Rm, m ∈ N, has the form

G(p, q) =
∞∑

n=1

un(p)un(q)

λn

, p, q ∈ Ω,
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where un, n ≥ 1, are orthonormal eigenfunctions of L corresponding to the eigenvalues
λn defined by

Lun(x) = λnun(x), x ∈ Ω
un(x) = 0, x ∈ ∂Ω.

Lemma 2.5. Let κ ∈ R. If L is replaced by L− κ in lemma 2.4, the Green’s function G
takes the form

G(p, q) =
∞∑

n=1

un(p)un(q)

λn − κ
,

provided κ is not an eigenvalue of L.

Proof. (of lemma 2.4 and lemma 2.5) Confer theorem 9.4 and its corollary in [Roa70].

Proof. (of lemma 2.3) Let ε > 0. The existence and uniqueness of uε immediately follows
from theorem 2.1. Set a := 1/ε and define

wa(x) := exp(−ε−1uε)− 1.

From theorem 2.1 it follows that wa is a solution of (2.5). Therefore it may be represented
by the formula

wa(p) = a2

∫
Ω

G(p, q) dq,

where G is the Green’s function associated with the linear operator

Lu := −∆u+ a2u

on Ω. Next note that the functions

um,n(x, y) := 2 sin(mπx) sin(nπy), m, n ∈ N,

form a complete orthonormal system of eigenfunctions of −∆ vanishing on the boundary
of Ω, corresponding to the eigenvalues

λm,n := π2(m2 + n2).

Accordingly, setting L := −∆ and κ := −a2, we obtain by virtue of lemma 2.5

G(p, q) = G(x1, y1, x2, y2) = 4
∞∑

m,n=1

sin(mπx1) sin(nπy1) sin(mπx2) sin(nπy2)

π2(m2 + n2) + a2
, (2.22)

where p = (x1, y1), q = (x2, y2) ∈ Ω. We now represent the solution wa of the boundary
value problem (2.5) by means of the standard integral representation formula (cf. for
instance theorem 9.6 in [Roa70]) and obtain

wa(x1, y1) = −4a2

∞∑
m,n=1

∫ 1

0

∫ 1

0

sin(mπx1) sin(nπy1) sin(mπx2) sin(nπy2)

π2(m2 + n2) + a2
dx2 dy2

= −4a2
∑

m,n=1,3,...

4

mnπ2

sin(mπx1) sin(nπy1)

π2(m2 + n2) + a2
, (x1, y1) ∈ Ω.
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However, this representation is not suitable to gain information about the behavior of wa

as a → ∞. We therefore choose an alternative way to represent the Green’s function,
which will turn out to be more fruitful. In fact, according to [Roa70], p. 270, problem
11, the above Green’s function (2.22) may be expressed in the form

G(p, q) = G(x1, y1, x2, y2) = 2
∞∑

n=1

sinh(σny2) sinh(σn(y1 − 1))

σn sinh(σn)
sin(nπx1) sin(nπx2)

for the case 0 < y2 < y1 < 1, with σ2
n = a2 + n2π2, p = (x1, y1) and q = (x2, y2).

Applying the integral representation formula of theorem 9.6 in [Roa70] once more, the
solution wa takes the form

wa(x1, y1) = 2a2

∞∑
n=1

∫ 1

0

∫ y1

0

sinh(σn)y2 sinh(σn(y1 − 1))

σn sinh(σn)
sin(nπx1) sin(nπx2)dy2dx2

+ 2a2

∞∑
n=1

∫ 1

0

∫ 1

y1

sinh(σn(y2 − 1)) sinh(σny1)

σn sinh(σn)
sin(nπx2) sin(nπx1)dy2dx2. (2.23)

Evaluating the respective integrals yields∫ 1

0

∫ y1

0

sinh(σny2) sinh(σn(y1 − 1))

σn sinh(σn)
sin(nπx1) sin(nπx2)dy2dx2

=
sinh(σn(y1 − 1)) sin(nπx1)

σn sinh(σn)

∫ 1

0

sin(nπx2) dx2

∫ y1

0

sinh(σny2) dy2

=
sinh(σn(y1 − 1)) sin(nπx1)

σn sinh(σn)
· ((−1)n+1 + 1)

nπ
· 1

σn

(cosh(σny1)− 1)

=

{
2 sinh(σn(y1−1)) sin(nπx1)

nπσ2
n sinh(σn)

· (cosh(σny1)− 1) if n is odd

0 if n is even
(2.24)

and ∫ 1

0

∫ 1

y1

sinh(σn(y2 − 1)) sinh(σny1)

σn sinh(σn)
sin(nπx2) sin(nπx1)dy2dx2

=
sinh(σny1) sin(nπx1)

σn sinh(σn)
· ((−1)n+1 + 1)

nπ
· 1

σn

(1− cosh(σn(y1 − 1)))

=

{
2 sinh(σny1) sin(nπx1)

nπσ2
n sinh(σn)

· (1− cosh(σn(y1 − 1))) if n is odd

0 if n is even.
(2.25)

In order to simplify the presentation, let us define the quantity

K(n, x, a) :=
4a2 sin(nπx)

nπσ2
n

.
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If we insert (2.24) and (2.25) into equation (2.23) and simplify, we obtain that the solution
wa(p) = wa(x, y) is equal to the quantity∑

n=1,3,...

K(n, x, a)
sinh(σn(y − 1))(cosh(σny)− 1)− sinh(σny)(cosh(σn(y − 1))− 1)

sinh(σn)

= −
∑

n=1,3,...

K(n, x, a)
sinh(σn(1− y))(cosh(σny)− 1) + sinh(σny)(cosh(σn(1− y))− 1)

sinh(σn)

= −
∑

n=1,3,...

K(n, x, a)

(
1− sinh(σn(1− y)) + sinh(σny)

sinh(σn)

)
.

Applying the transformation (2.6) yields

uε(x, y) = −1

a
log

[
1−

∑
n=1,3,...

K(n, x, a)

(
1− sinh(σn(1− y)) + sinh(σny)

sinh(σn)

)]
.

Taking advantage of the well-known relation∑
n=1,3,...

sin(nπx)

n
=
π

4
(2.26)

for all 0 < x < 1, we obtain using σ2
n = a2 + n2π2

uε(x, y) = −1

a
log

[ ∑
n=1,3,...

K(n, x, a)

(
π2n2

a2
+

sinh(σn(1− y)) + sinh(σny)

sinh(σn)

)]
.

Now proposition 2.1 implies

lim
ε→0

uε(x, y) = x for all 0 < y ≤ 1/2 and all 0 < x ≤ y.

Note that for each ε > 0 it follows from the uniqueness of the function uε as a solution of
(2.21) that uε is symmetric with respect to the lines {x = 1/2}, {y = 1/2}, {x− y = 0},
and {x+ y = 1}. Hence the assertion is proved.

2.3.3 L1-Convergence on convex domains with smooth bound-

ary

As for more general domains the Green’s function is not explicitly known, the method of
characterizing the solutions uε of the viscous eikonal equation by means of the Green’s
function cannot be employed successfully.

However, it turns out that we still can prove an L1-convergence result for the case that
the domain is convex and has a smooth boundary. We start with the following
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Lemma 2.6. Let Ω ∈ Rn be a domain with smooth boundary. Furthermore, for any ε > 0
let uε ∈ C∞(Ω̄) be the unique solution of the boundary value problem{

ε∆uε − |Duε|2 + 1 = 0 on Ω
uε ≡ 0 on ∂Ω,

(2.27)

which exists according to theorem 2.1. Then we have

lim
ε→0

∫
Ω

(|Duε|2 − 1) dx = 0.

The proof of lemma 2.6 is based upon the following

Proposition 2.2. Let Ω ⊂ Rn be a domain with smooth boundary. For each a > 0 let
wa ∈ C(Ω̄) ∩ C2(Ω) be the unique solution of the boundary value problem{

∆wa − a2wa = a2 on Ω
wa ≡ 0 on ∂Ω.

(2.28)

Then we have

lim
a→∞

∫
Ω

(wa + 1) dx = 0.

Proof. (of proposition 2.2). Let a > 0 and define

Ωa := {x ∈ Rn |x/a ∈ Ω}.

Then the function
va(x) := wa(x/a) + 1

satisfies {
∆va − va = 0 on Ωa

va ≡ 1 on ∂Ωa.
(2.29)

Note that we have va ≤ 1 on Ω̄a by the maximum principle.

Now define for β > 0
Ωβ := {x ∈ Ω |d(x) > β},

where d is the distance function to the boundary, and set

Ωβ
a := {x ∈ Rn |x/a ∈ Ωβ}.

Fix β > 0. We show that there is a positive function S : R → R with S(a) → 0 as a→∞,
such that

va(x) < S(a) for all x ∈ Ωβ
a . (2.30)

To this end we define for any r > 0 the function vr to be the solution of boundary value
problem (2.29), where the domain Ωa is replaced by the open ball Br(0) with radius
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r > 0. As is well known, vr is given by a suitable Bessel function depending on the radius
r. Hence one easily verifies that

vr(0) → 0 as r →∞. (2.31)

Next fix x ∈ Ωβ
a . Then Baβ(x) ⊂ Ωa. Define the function

ϕx : y 7→ vaβ(y − x).

Then we have

1 = ϕx(y) ≥ va(y) for all y ∈ ∂Baβ(x),

which implies

vaβ(0) = ϕx(x) ≥ va(x)

by the maximum principle. As x ∈ Ωβ
a has been chosen arbitrarily, it follows

S(a) ≥ va(x) for all x ∈ Ωβ
a ,

where we have set S(a) := vaβ(0). Furthermore, by means of relation (2.31) we have

S(a) → 0 for a→∞, (2.32)

and (2.30) is proved.

Now fix ε > 0. As the boundary ∂Ω is smooth, its curvature is bounded, whence there is
a constant C > 0 independent of β such that

|Ω\Ωβ| < C · β.

We now choose β > 0 such that Cβ ≤ ε/2 and compute∫
Ω

(wa(x) + 1) dx =
1

an

∫
Ωa

va(y) dy ≤
1

an
|Ωa\Ωβ

a |+
1

an

∫
Ωβ

a

va(y) dy

≤ |Ω\Ωβ|+ 1

an
|Ωβ

a | · S(a) < ε/2 + |Ωβ| · S(a).

Hence by (2.32) we have ∫
Ω

(wa(x) + 1) dx < ε,

if a is large enough. The assertion follows.

Proof. (of lemma 2.6). We apply the same transformation as in the proof of lemma 2.1.
Let ε > 0, let uε ∈ C∞(Ω̄) be the solution of (2.27), and set a := 1/ε. Then the function

wa := exp(−ε−1uε)− 1
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satisfies the linear boundary value problem{
∆wa − a2wa = a2 on Ω
wa ≡ 0 on ∂Ω.

(2.33)

From the inverse transformation

uε := −1

a
log(wa + 1)

it follows

|Duε|2 =
1

a2

n∑
i=1

(Diwa)
2

(wa + 1)2
.

Using

Di

(
wa

wa + 1

)
=

Diwa

(wa + 1)2
,

we get by partial integration∫
Ω

|Duε|2 dx =
1

a2

∫
Ω

n∑
i=1

(Diwa)
2

(wa + 1)2
dx =

1

a2

∫
Ω

n∑
i=1

Diwa

(wa + 1)2
Diwa dx

=
1

a2

∫
Ω

n∑
i=1

Di

(
wa

wa + 1

)
Diwa dx = − 1

a2

∫
Ω

wa

wa + 1
∆wa dx,

where the boundary terms vanish due to wa ≡ 0 on ∂Ω.

On the other hand, (2.33) implies

a2(wa + 1) = ∆wa,

whence it follows ∫
Ω

|Duε|2 dx = −
∫

Ω

wa dx.

We obtain ∫
Ω

(|Duε|2 − 1) dx = −
∫

Ω

(wa + 1) dx,

and the assertion follows by proposition 2.2.

Theorem 2.2. Suppose that the domain Ω in lemma 2.6 be convex. Then |Duε|2 → 1
with respect to the L1-norm on Ω as ε→ 0.

Proof. Let d : Ω̄ → R be the distance function to the boundary ∂Ω. We show that uε ≤ d
on Ω̄ for all ε > 0. For this purpose assume this were not the case. Then there is an ε > 0
and a point x0 ∈ Ω such that uε(x0) > d(x0). Let y ∈ ∂Ω satisfy |x0−y| = minz∈∂Ω |z−x0|
and let νy be the inward pointing unit normal of Ω at y. For the function

ϕ : Rn → R, ϕ(x) := 〈νy, x− y〉



2.4 Generalized solutions in the sense of Kružkov 21

it then follows that
ϕ(x0) = d(x0) < uε(x0). (2.34)

Define the quasilinear differential operator

Q(u) := ε∆u− |Du|2 + 1, u ∈ C2(Ω),

and observe that we have
Q(ϕ) = 0 on Ω.

As Ω is convex, we furthermore have ϕ ≥ 0 on ∂Ω. On the other hand, we have Q(uε) = 0
on Ω as well as uε ≡ 0 on ∂Ω. Then the quasilinear comparison principle (cf. theorem
9.2 in [GT77]) implies uε ≤ ϕ on Ω̄, a contradiction to (2.34).

The quasilinear comparison principle also implies that we have uε ≥ 0 on Ω̄, whence
altogether it follows

0 ≤ uε ≤ d on Ω̄.

As uε ∈ C∞(Ω̄), this implies ∣∣∣∣ ∂∂vuε(x)

∣∣∣∣ ≤ 1 (2.35)

for all x ∈ ∂Ω and for any direction v ∈ Rn, |v| = 1. Now fix v ∈ Rn with |v| = 1.
Differentiating (2.27) with respect to v yields

ε∆w − 2〈Duε, Dw〉 = 0

where w := ∂
∂v
uε. By (2.35) the linear maximum principle then implies |w| ≤ 1 on Ω̄. As

the choice of v was arbitrary, it follows |Duε| ≤ 1 on Ω̄. Hence

lim
ε→0

∫
Ω

∣∣|Duε|2 − 1
∣∣ dx = − lim

ε→0

∫
Ω

|Duε|2 − 1 dx = 0

by lemma 2.6. This completes the proof.

Remark 2.1. Observe that the convexity condition is not required until theorem 2.2, in
the proof of which, however, it plays an essential role.

2.4 Generalized solutions in the sense of Kružkov

In view of the historical development of the concept of viscosity solutions, it is worth while
elaborating on the work of S. N. Kružkov, especially on his achievements in developing a
comprising theory of generalized solutions of “Hamilton-Jacobi equations of eikonal type”.
The corresponding paper [Kru75] provided valuable inspiration for the present thesis, and
we therefore outline the essential ideas of Kružkov’s theory in order to draw a complete
picture.
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The theory applies to Hamilton-Jacobi equations of the form

H(Du, u, x) = 0 with H(Du, u, x) = f(Du, u, x)− n2(u, x), (2.36)

with x ∈ Ω for some domain Ω ⊂ Rn. The functions n and f are subject to several
constraints, among which the most important are

(i) f(0, u, x) = 0 for all (u, x) ∈ R× Ω
(ii) H(p, u, x) is convex with respect to p
(iii) H(p, u, x) is non-decreasing with respect to u.

(2.37)

These equations are related to the eikonal equation, whereby in the geometrical optics
interpretation the function n(u, x) corresponds to the index of refraction of light rays
determined by the properties of the medium.

Classically, nonlinear problems like this can be attacked by the method of characteristics,
which usually yields a unique classical solution in the neighborhood of a given manifold of
dimension n−1, provided that this manifold is non-characteristic and sufficiently smooth.
However, in the case of the above eikonal type equations, uniqueness cannot be expected
for these local classical solutions, as the original equation may split into two distinct
equations, each of them corresponding to a different local solution. Apart from that, the
projections of the characteristics onto the underlying space intersect in general, with the
consequence that at a point of intersection each of them corresponds to a different value
of the gradient brought to it from the initial manifold. With this in mind it suggests itself
to dispense with classical solutions and to allow for weak solutions satisfying the equation
only almost everywhere. Then unicity is not guaranteed in the first stage—even in case
of problems where the method of characteristics yields global solutions—, and one has to
introduce an extra condition. Kružkov’s condition can be most easily outlined in the case
of the eikonal equation on an interval, that is{

|u′(x)| = 1 on [0, 1]
u(0) = u(1) = 0.

(2.38)

In the class of Lipschitz continuous functions satisfying (2.38) almost everywhere, the most
obvious are those piecewise linear functions which are composed by sections of lines of
slope 1 or −1. Among these solutions the distance function seems to be the most natural
one, as it possesses several extremal properties: It maximizes the volume functional, it
minimizes the curvature functional (suitably weakly defined), and it is the only concave
solution. In fact, if any of these extra conditions is demanded, the distance function
will be uniquely singled out. However, only (a modification of) the concavity constraint
turns out to be powerful enough to still provide uniqueness if the boundary conditions
are more general, the dimension of the space is higher, or if the equation itself deviates
from the eikonal equation in a sense which is referred to as “eikonal-type” by Kružkov.
Whereas both volume and curvature functionals in connection to the eikonal equation will
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be discussed later on, let us at this stage elaborate on the modified concavity condition
that has been introduced by Kružkov. In fact it is sufficient to ensure that the weakly
defined second derivatives are bounded by above.

Definition 2.1. A function u : Ω → R is called a generalized solution of (2.36) in the
sense of Kružkov , if it has the following properties:

(i) u is locally Lipschitz continuous on Ω
(ii) u satisfies (2.36) almost everywhere
(iii) for each r > 0 and x ∈ Ω such that Br(x) ⊆ Ω we have

∆2u

|∆x|2
:=

u(x+ ∆x)− 2u(x) + u(x−∆x)

|∆x|2
≤ C(x, r)

for all ∆x ∈ Rn with 0 < |∆x| ≤ r.

Kružkov showed that if such a generalized solution exists, it will be unique. The proof
is essentially based on property (iii) in combination with a certain transformation of the
problem. Furthermore, he made explicit use of the method of vanishing viscosity to show
that generalized solutions exist, a fact which reflects the connection to the concept of
viscosity solutions designed by Crandall and Lions several years later. In fact, Kružkov’s
theory coincides with their theory in the case of eikonal-type equations. All this has been
exhaustively discussed in the literature.

2.5 Viscosity solutions in the sense of Crandall and

Lions

Michael G. Crandall and Pierre-Louis Lions were the first to notice that Kružkov’s ad-
ditional constraint—the local upper bound of the second derivatives—can be seen as the
manifestation in a special case of a by far more general approach applicable to a broad
class of Hamilton-Jacobi equations. Here we will consider the historically oldest defini-
tion, which captures the essential features in the best way. We also restrict ourselves to
first order problems of the form

H(Du, u, x) = 0 in Ω, (2.39)

where Ω ⊂ Rn, u : Ω → R, H : Rn × R× Ω → R. Moreover we demand the fundamental
monotonicity condition

H(p, r, x) ≤ H(p, s, x) whenever r ≤ s for all (p, x) ∈ Rn × R, (2.40)

which is essential for the theory (cf. [CIL92]).

We now provide the important notion of upper and lower test functions.
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Definition 2.2. Let u : Ω → R and let x ∈ Ω. A function ϕ ∈ C(Ω) which is differentiable
at x and for which u−ϕ attains a local maximum (minimum) at x is called upper (lower)
test function of u at x.

A viscosity solution of (2.39) is then defined via a test function condition according to
the following

Definition 2.3. Let Ω ⊂ Rn be an open bounded set and let x ∈ Ω. For problem (2.39),
a function u : Ω → R is said to satisfy the viscosity subsolution, viscosity supersolution,
or viscosity solution condition at x, if respectively the first, the second, or both of the
following conditions are satisfied.

(i) u is upper semicontinuous on Ω̄ and for all upper test functions ϕ of u at x we have
H(Dϕ(x), u(x), x) ≤ 0.

(ii) u is lower semicontinuous on Ω̄ and for all lower test functions ϕ of u at x we have
H(Dϕ(x), u(x), x) ≥ 0.

If u satisfies the viscosity subsolution, viscosity supersolution, or viscosity solution condi-
tion for all x ∈ Ω, then u is respectively called a viscosity subsolution, viscosity superso-
lution, or viscosity solution of (2.39).

As a matter of fact, this definition of viscosity solution allows the derivation of various
existence and uniqueness results for boundary value problems which can be proven in a
far more elegant way compared with Kružkov’s methods (cf. [CIL92]). It can also be
shown that the vanishing viscosity limit coincides with the unique viscosity solution, a
fact which we will refer to as consistency with the method of vanishing viscosity.

As we have announced in chapter 1, we will extend this concept to ramified spaces in
chapter 5 and chapter 7.



CHAPTER 3

Perron methods for the eikonal equation

Summary. The present chapter relates viscosity solutions of the eikonal equation on non-
ramified domains to maximum volume solutions of granular matter problems. We show
the equivalence of the two selection principles induced by the test function condition and
the maximum volume constraint. In fact, we characterize viscosity solutions of the eikonal
equation as pointwise suprema over a certain class of subsolutions, the so-called subeikonal
functions (Perron method). We also consider the viscous version of the eikonal equation
and characterize its viscosity solutions as suprema of subharmoneikonal functions, which
also form a special class of viscosity subsolutions.

3.1 Introduction

In [HKG02], the authors discuss the analogy between the Dirichlet problem of the Lapla-
cian and the Dirichlet problem of the eikonal equation under a maximal volume constraint
on bounded domains. They point out that similar to the Laplace equation one can con-
struct solutions for the eikonal equation via a Perron method. Whereas the Perron method
for the Laplacian is well known, for the maximal value problem they introduce a special
class of subfunctions (the so-called subeikonal functions), and show that solutions are
given by pointwise suprema of all subeikonal functions staying below given boundary
values.

On the other hand, as has been shown by Ishii in [Ish87b], a general Perron method
can be designed to construct viscosity solutions for a general class of Hamilton-Jacobi
equations. In fact, a viscosity solution is given by the pointwise supremum over all
viscosity subsolutions staying below given boundary values.

We demonstrate that Ishii’s method applied to the eikonal equation is equivalent to the
method given in [HKG02] (at least in most cases). As we will see, the class of subeikonal

25
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functions is contained in the class of viscosity subsolutions and has the property that its
pointwise supremum as constructed in [HKG02] is indeed a viscosity solution.

We discuss a possible interpretation of this equation in terms of granular matter theory.
The viscous version of the eikonal equation, which reads

ε∆u− |Du|+ 1 = 0, (3.1)

can be considered as a mixture or combination of the Laplace and the eikonal equation. We
show that solutions can be constructed via a special Perron method which in a certain
sense is a mixture of the two different Perron methods belonging to the eikonal and
the Laplace equation, respectively. In fact, we introduce a class of subharmoneikonal
functions (SHE functions, for short), which is a modification of the class of subeikonal
functions. Once more we show that a Perron method based on these functions yields
viscosity solutions.

3.2 The eikonal equation and subeikonal functions

Throughout this chapter let Ω ⊂ Rn be a bounded domain. We consider the eikonal
equation

H(Du) = |Du| − 1 = 0 (3.2)

on Ω. The following terminology is introduced in [HKG02].

Definition 3.1. Let x ∈ Ω. We call a function u ∈ C(Ω̄) subeikonal at x, whenever there
is a radius r0 > 0 with Br0(x) ⊆ Ω such that

u(x) ≤ inf
y∈Sr(x)

u(y) + r (3.3)

for all 0 < r ≤ r0, where Sr(x) := ∂Br(x). The function u is called subeikonal, if it is
subeikonal at each point x ∈ Ω.

Suppose the boundary of the domain Ω be Lipschitz. For a given boundary data function
φ : ∂Ω → R we define X to be the set of all subeikonal functions u with u ≤ φ on ∂Ω. It
has been shown in [HKG02] that the function ũ : Ω̄ → R defined by

ũ(x) := sup
u∈X

u(x), x ∈ Ω̄, (3.4)

is also contained in X (consistency). Furthermore, ũ is the unique function among all
Lipschitz continuous functions with Lipschitz constant 1, which maximizes the volume
functional

V (u) :=

∫
Ω

u(x) dx.
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The construction of the maximum volume solution ũ as a pointwise supremum of subeikonal
functions is what we refer to as Perron’s method. We now show that the Perron solution
ũ is in fact a viscosity solution of (3.2) according to definition 2.3. We start with the
following

Lemma 3.1. Let v ∈ C(Ω̄) be subeikonal. Then v is a viscosity subsolution of (3.2).

Proof. Let x ∈ Ω and let ϕ be an upper test function of v at x. We have to show
|Dϕ(x)| ≤ 1. First note that we can without loss of generality assume that we have
v(x) = ϕ(x). As v is subeikonal and as v − ϕ attains a local maximum at x, it follows
that there is a number r̃ > 0 such that

ϕ(x) = v(x) ≤ inf
y∈Sr(x)

v(y) + r ≤ inf
y∈Sr(x)

ϕ(y) + r (3.5)

for all 0 < r ≤ r̃.

As ϕ is differentiable at x, we obtain by Taylor expansion

ϕ(x+ re) = ϕ(x) + r〈Dϕ(x), e〉+O(r2)

for any e ∈ Sn−1. Choosing e := −Dϕ(x)/|Dϕ(x)|, we estimate

inf
y∈Sr(x)

ϕ(y) = inf
z∈Sn−1

ϕ(x+ rz) ≤ ϕ(x+ re) = ϕ(x)− r|Dϕ(x)|+O(r2). (3.6)

Combining (3.5) and (3.6) yields

0 ≤ 1− |Dϕ(x)|+O(r),

which implies |Dϕ(x)| ≤ 1 upon letting r → 0.

It has been shown in [HKG02] that ũ is subeikonal. Hence the above lemma implies that
ũ is a viscosity subsolution of (3.2). Next we show that it also is a viscosity supersolution.

Lemma 3.2. The function ũ as defined in (3.4) is a viscosity supersolution of (3.2).

Proof. Suppose the contrary were the case. Then there is a point x0 ∈ Ω and a lower test
function ϕ of ũ at x0 such that we have |Dϕ(x0)| < 1. Without loss of generality we may
assume ũ(x0) = ϕ(x0) and that ϕ be C2 in an open neighborhood U of x0. Furthermore
we can assume that the local minimum of ũ−ϕ, which by definition is attained at x0, be
strict, by possibly adding to ϕ a quadratic function of the form

y 7→ −α||x0 − y||2, α > 0.

For reasons of continuity it follows that there are small numbers η, ξ > 0 such that
B̄ξ(x0) ⊂ U and such that for ϕ̃ := ϕ+ η we have ϕ̃(y) < ũ(y) for all y ∈ ∂Bξ(x0) as well
as |Dϕ̃(y)| < 1 for all y ∈ Bξ(x0). We show that the function ū ∈ C(Ω̄) given by

ū(x) :=

{
max{ũ(x), ϕ̃(x)} if x ∈ B̄ξ(x0)
ũ(x) if x ∈ Ω̄\B̄ξ(x0)
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is contained in X. To this end first note that ū clearly is subeikonal for all x ∈ Ω\B̄ξ(x0).
Now let x ∈ B̄ξ(x0). As ϕ is C2 in U and as x ∈ U , there is a radius r0 > 0 such that by
Taylor expansion we have

ϕ(x+ re) > ϕ(x) + r〈Dϕ(x), e〉 − Cr2 ≥ ϕ(x)− r

〈
Dϕ(x),

Dϕ(x)

|Dϕ(x)|

〉
− Cr2

= ϕ(x)− r|Dϕ(x)| − Cr2

for all e ∈ Sn−1 and all 0 < r ≤ r0, where C > 0 is a constant independent of r and
e. Consequently, as |Dϕ(x)| < 1, there is a δ > 0 such that for all e ∈ Sn−1 and all
0 < r ≤ r0 we have

ϕ(x+ re) + r > ϕ(x) + δr − Cr2.

Hence for all 0 < r < δ/C := r1 we have

inf
y∈Sr(x)

ϕ(y) + r = inf
e∈Sn−1

ϕ(x+ re) + r > ϕ(x). (3.7)

The same holds if ϕ is replaced by ϕ̃.

On the other hand, ũ is subeikonal at x according to [HKG02], whence there is an r2 > 0
such that we have

ũ(x) ≤ inf
y∈Sr(x)

ũ(y) + r (3.8)

for all 0 < r < r2. Combining (3.7) and (3.8) we find

max{ũ(x), ϕ̃(x)} ≤ inf
y∈Sr(x)

max{ũ(y), ϕ̃(y)}+ r

for all 0 < r < min{r1, r2}, implying that ū is subeikonal at x. Thus we have ū ∈ X.
Since by construction we have ū(x0) > ũ(x0), we obtain a contradiction to the definition
of ũ. This completes the proof.

The combination of lemmas 3.1 and 3.2 yields the following

Corollary 3.1. The function ũ as defined in (3.4) is a viscosity solution of (3.2).

As the above lemmas have shown, the Perron method designed in [HKG02] yields a
viscosity solution of the eikonal equation. Note that the behavior of both the boundary
∂Ω and the boundary data φ is not relevant in the above proofs. However, as it is also
the case for the classical Perron method for the Dirichlet problem, it is not clear if the
boundary data are assumed. We thus need an extra barrier condition for the boundary
values. Such a barrier condition is given in [HKG02].



3.3 An example from granular matter theory 29

3.3 An example from granular matter theory

We now turn to the discussion of the viscous eikonal equation (3.1). Let us start with
recovering it within a granular matter scenario. In fact, (3.1) can serve as a contin-
uum model for the behavior of the height of a sandpile under the influence of a weak,
continuously pouring source, as we will point out in the sequel.

Models for the deposition of homogeneous granular matter on domains or obstacles have
been proposed by various authors. As an example we consider an extended version of
the BCRE model (due to Bouchaud, Cates, Ravi Prakash, and Edwards [BCRPE95]) as
presented in [HKG02]. It reads

vt = β div (vDu)− γ(α− |Du|)v + f

ut = γ(α− |Du|)v (3.9)

on a domain Ω ⊂ Rn and provides a continuum description of the dynamics of sandpile
surfaces, which involves two populations of grains: standing u and rolling v. The latter
move downhill with a velocity depending on the slope of the standing layer, where we
assume that u and v represent masses rather than heights. The parameter α > 0 is the
tangens of the angle of repose specific to the respective granular material, β > 0 governs
the speed of the rolling layer, and γ > 0 is a measure for the exchange rate between the
standing and the rolling layer. The model also incorporates a source term f which may
vary in time and space. Furthermore it is mass-conserving, as for functions with compact
support in Ω we have

∂

∂t

∫
Ω

u+ v dx =

∫
Ω

f dx.

We now restrict our considerations to the special situation that new granular matter is
being poured uniformly, steadily, and slowly from above, i.e. we assume f ≡ f0 for some
small positive number f0 << 1. It is then plausible to make the further simplifying
assumption that v be constant in both time and space, i.e. we assume v ≡ v0 for some
positive number v0 << 1.

Next observe that the variables u and v represent masses rather than heights. For granular
matter in general there is no fixed ratio between mass and volume or height, not even at
rest. For example it is known that in dunes the packing of grains is rather dense on the
luff side but can be extremely loose on the lee side. Here we assume that the relation of
mass and volume equals 1 everywhere for the standing layer, i.e., we interpret u as the
height of the standing heap. For the rolling layer we assume that it consists of grains
rolling at various speeds and at various heights but that the rolling layer contributes to
the perceived height only with a factor 0 < κ < 1. In other words we assume that the
upper part of the rolling layer has low volume density and produces microscopic surface
roughness such that the perceived height is

w = u+ κv.
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From the model equations (3.9) we then obtain

wt = κβ div (vDu) + γ(1− κ)(α− |Du|)v + κf.

With v ≡ v0 and f ≡ f0 this simplifies to

wt = κβv0∆w + γ(1− κ)(α− |Dw|)v0 + κf0.

Putting a := γ(1− κ)v0 and ε := κβv0, we obtain

wt = a(α− |Dw|) + ε∆w + κf0.

Changing the scales of time and space appropriately we arrive at

wt = 1− |Dw|+ ε∆w + κf0,

for suitably adjusted constants ε > 0 and κ > 0. In the special case f0 = 0 we get

wt = ε∆w + 1− |Dw|.

Now (3.1) is the corresponding stationary problem.

Remark 3.1. An alternative, immediate interpretation of the term ε∆u in (3.1) is a sort
of diffusion effect caused by small avalanches occurring at hilltops or similar nonsmooth
areas of a sand pile.

Let us now examine the structure of solutions of (3.1) in detail.

3.4 The viscous eikonal equation and SHE functions

Let Ω ⊂ Rn be a bounded domain and fix ε > 0. For u ∈ C2(Ω) we define the semilinear
operator Q by

Q(u) := ε4u− |Du|+ 1.

We call the equation
Q(u) = 0 on Ω (3.10)

viscous eikonal equation, where we emphasize that the term |Du| is not squared here – in
contrast to the previous chapter.

We have seen that in the case of the eikonal equation viscosity solutions can be constructed
as pointwise suprema of subeikonal functions. On the other hand, classical solutions (and
thus viscosity solutions) of the Laplace equation can be constructed as pointwise suprema
of subharmonic functions. We now examine the question, whether viscosity solutions
of the viscous eikonal equation (3.10), which is a semilinear second order equation, can
be constructed using a similarly intuitive class of “subsolutions”. We will show that
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in many cases viscosity solutions of (3.10) can indeed be built by taking the pointwise
supremum over a suitable class of “subfunctions”. In a certain sense, equation (3.10) is a
linear combination of the Laplace equation and the eikonal equation, and it is reasonable
to expect that the corresponding subfunctions reflect properties of both of them. In
fact, subeikonal functions are characterized by a local “subextremal” property, whereas
subharmonic functions satisfy a local “subaverage” condition. Note that both of these
properties are incorporated in the following definition.

Definition 3.2. Let x ∈ Ω. We call a function u ∈ C(Ω) subharmoneikonal (SHE) at x,
if there is an r0 > 0 such that Br0(x) ⊆ Ω and such that for all 0 < r ≤ r0 we have

u(x) ≤ r

r + 2nε

(
inf

y∈Sr(x)
u(y) + r

)
+

2nε

r + 2nε

∮
Sr(x)

u(y) dS(y), (3.11)

where
∮

denotes the average integral; Sr(x) := ∂Br(x).

Furthermore let A ⊆ Ω. If u is SHE at all x ∈ A, we say that u is subharmoneikonal
(SHE) on A and write u ∈ SHE(A).

Definition 3.3. Let u, v ∈ C(Ω) and x ∈ Ω. We say that v touches u by above (by below)
at x, if u(x) = v(x) and if there is a neighbourhood U around x such that v(y) ≥ (≤) u(y)
for all y ∈ U .

The following two propositions are immediate implications of definition 3.2.

Proposition 3.1. Let u ∈ C(Ω) be SHE at x ∈ Ω and assume that v ∈ C(Ω) touches u
by above at x. Then v is SHE at x.

Proposition 3.2. Let u, v ∈ C(Ω) be SHE at x ∈ Ω. Then w := max{u, v} is SHE at x.

Lemma 3.3. Let x ∈ Ω and let u : Ω → R be twice differentiable at x.

(i) If u is SHE at x, then Q(u)(x) ≥ 0.

(ii) If Q(u)(x) > 0, then u is SHE at x.

Proof. Expanding u around x yields for small r > 0

u(x+ re) = u(x) + r〈Du(x), e〉+
r2

2
etD2u(x)e+O(r3) (3.12)

for any e ∈ Sn−1. We integrate and obtain∮
y∈Sr(x)

u(y) dS(y) =

∮
e∈Sn−1

u(x+ re) dS(e) = u(x) +
r2

2n
∆u(x) +O(r3), (3.13)

where we have used the relations∫
e∈Sn−1

〈Du(x), e〉 dS(e) = 0
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and ∫
e∈Sn−1

etAe dS(e) =
1

n
· |Sn−1| · trA

for any symmetric n× n-matrix A.

Setting e = −Du/|Du| in (3.12), we obtain the relation

inf
y∈Sr(x)

u(y) ≤ u(x)− r|Du(x)|+O(r2). (3.14)

(i) Let u be SHE at x. By (3.11), (3.13), and (3.14) we estimate

0 ≤ r

[
inf

y∈Sr(x)
u(y) + r − u(x)

]
+ 2nε

[∮
u(y) dS(y)− u(x)

]
≤ −r2|Du(x)|+ r2ε∆u(x) + r2 +O(r3).

Dividing by r2 and letting r → 0 yields Q(u)(x) ≥ 0.

(ii) Conversely, suppose that we have Q(u)(x) > 0. It follows that there is a number
δ > 0 such that Q(u)(x)− δ > 0. Plugging e = −Du/|Du| into (3.12) and multiplying by
r yields that for all sufficiently small r > 0 we have

r inf
y∈Sr(x)

u(y) ≥ ru(x)− r2|Du(x)|+O(r3)− r2δ/2. (3.15)

Hence we have by (3.13), (3.14), and (3.15)

0 < r2ε∆u(x)− r2|Du(x)|+ r2 − r2δ

≤ r

[
inf

y∈Sr(x)
u(y) + r − u(x)

]
+ 2nε

[∮
u(y) dS(y)− u(x)

]
− r2δ/2 +O(r3)

≤ r

[
inf

y∈Sr(x)
u(y) + r − u(x)

]
+ 2nε

[∮
u(y) dS(y)− u(x)

]
for all sufficiently small r > 0, implying that u is SHE at x.

We now adapt the Perron method applied to the (classical) eikonal equation to the viscous
eikonal equation. For this purpose we require the concept of viscosity solutions to be
extended to second order equations. There are different ways to accomplish this; the
easiest is to simply replace the C1-test functions in definition 2.3 by C2-test functions. We
remark, however, that viscosity solutions of second order will not appear in the subsequent
chapters, which is why we dispense with further details. For the general theory we refer
to [CIL92]. Here we only need the following
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Definition 3.4. A function u : Ω → R is said to be a viscosity subsolution (supersolution)
of

Q(u) = 0, (3.16)

on Ω, if the following holds: The function u is upper (lower) semicontinuous and for any
ϕ ∈ C2(Ω) and any y ∈ Ω such that u−ϕ has a local maximum (minimum) at y we have
Q(ϕ)(y) ≥ (≤) 0.

The function u is called viscosity solution of (3.16), if it is both a sub- and a supersolution
of (3.16). We denote the class of all viscosity subsolutions, supersolutions, solutions of
(3.16) on Ω by S(Ω), S̄(Ω), and S(Ω), respectively.

Lemma 3.4. We have SHE(Ω) ⊂ S(Ω).

Proof. Let u ∈ SHE(Ω), ϕ ∈ C2(Ω), and let u−ϕ attain a local maximum at some point
y ∈ Ω. We may also assume u(y) = ϕ(y), whence it follows that ϕ touches u by above.
According to proposition 3.1, ϕ is SHE at y, implying Q(ϕ)(y) ≥ 0 by lemma 3.3. As u
is continuous, we have u ∈ S(Ω).

For technical reasons we now require the following

Definition 3.5. Let u : Ω → R. Define the functions u?, u? : Γ → [−∞,+∞] by

u?(x) := lim
r→0

sup
y∈Br(x)

u(y) and u?(x) := lim
r→0

inf
y∈Br(x)

u(y)

We respectively call u? and u? the upper and lower semicontinuous envelope of u.

Now we choose a continuous boundary data function φ : ∂Ω → R and define the set

X := {u ∈ SHE(Ω) ∩ C(Ω̄) |u ≤ φ on ∂Ω}.

As before we define the Perron solution ū to be the pointwise supremum over X, i.e.

ū(x) := sup
u∈X

u(x), x ∈ Ω̄, (3.17)

and prove that it is indeed a viscosity solution of (3.16).

Lemma 3.5. We have ū(x) <∞ for all x ∈ Ω.

Proof. As ∂Ω is compact and as φ is continuous, there is an m > 0 such that φ ≤ m on
∂Ω. Consequently, u ≤ m on ∂Ω for all u ∈ X.

Choose a point x ∈ Ω and set d := sup{||x − z||, z ∈ ∂Ω} > 0. Define the function
v ∈ C2(Ω) by

v(y) := −α||y − x||2 +K, y ∈ Ω,
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where α > (2εn)−1 and K > αd2 +m. It follows that v > m on ∂Ω. Furthermore we have

Q(v)(y) = −2εnα− 2α||y − x||+ 1 for all y ∈ Ω.

By the choice of α, we have Q(v) < 0 in Ω. Hence v is a classical supersolution of
Q(u) = 0. Thus it is also a viscosity supersolution. Let u ∈ X. By lemma 3.4 it follows
that u is a viscosity subsolution of Q(u) = 0. As u < v on ∂Ω by construction, we invoke
the comparison theorem for viscosity solutions (theorem 3.3 in [CIL92]) and conclude that
u ≤ v in Ω. We obtain ū ≤ v in Ω. The assertion follows.

Lemma 3.6. The function ū is a viscosity supersolution of Q(u) = 0.

Proof. First note that ū is lower semicontinuous on Ω, as it is the pointwise supremum of
continuous functions. Let us suppose that ū is not a viscosity supersolution of Q(u) = 0.
Then by definition 3.4 there is a point y ∈ Ω and a function ϕ ∈ C2(Ω), such that ū− ϕ
has a local minimum at y and Q(ϕ)(y) > 0. We may assume ū(y) = ϕ(y).

Now choose δ > 0 small enough such that Q(ϕ)(y)− nεδ > 0 and define the paraboloid

ψ(x) := ϕ(y) +Dϕ(y)(x− y) +
1

2
(x− y)tD2ϕ(y)(x− y)− δ

2
||x− y||2, x ∈ Ω.

Then we have 4ψ(y) = 4ϕ(y)− nδ, whence Q(ψ)(y) > 0. By construction of ψ and by
the properties of ϕ there is a radius s > 0 such that B̄s(y) ⊂ Ω and

ψ < ϕ < ū (3.18)

on Bs(y)\{y}. Continuity implies that there is a radius t with s ≥ t > 0 such that
Q(ψ) > 0 on B̄t(y). It follows that ψ ∈ SHE(B̄t(y)) according to lemma 3.3 (ii).

Let 0 < ξ := min∂Bt(y)(ϕ − ψ). Define ψ̄ := ψ + ξ
3
. Then we have ψ̄(y) > ū(y) and

ψ̄ ∈ SHE(B̄t(y)).

By (3.18) we have ū ≥ ψ + ξ on ∂Bt(y). Hence for each x ∈ ∂Bt(y) there is a function
vx ∈ X such that vx(x) > ψ(x) + 2ξ

3
. By the continuity of the functions ψ and vx,

x ∈ ∂Bt(y), and by compactness of ∂Bt(y) there are finitely many xi ∈ ∂Bt(y) such that
v := max vxi

> ψ + 2ξ
3

on ∂Bt(y). It follows v ∈ X by proposition 3.2.

By reasons of continuity we conclude that for each x ∈ ∂Bt(y) we have w ≡ v on a
neighborhood of x, where w is defined by

w :=

{
max{ψ̄, v} on B̄t(y)
v on Ω\B̄t(y).

We obtain that w is SHE at each x ∈ ∂Bt(y). Furthermore, by proposition 3.2 we have
w ∈ SHE(Bt(y)), as v, ψ̄ ∈ SHE(Bt(y)). Clearly, w ∈ SHE(Ω\B̄t(y)). Furthermore we
have w ∈ C(Ω). Hence it follows w ∈ SHE(Ω) and also w ∈ X, since v ≡ w on ∂Ω. As
w(y) > ū(y), we get a contradiction to the supremal property of ū.
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It remains to show that ū is a viscosity subsolution. As it is not clear if ū is upper
semicontinuous, we first show that ū? is a viscosity subsolution. For this purpose we invoke
an alternative definition of viscosity (sub-, super-) solutions of second order equations,
which, however, is equivalent to definition 3.4. The idea is to replace upper and lower
test functions by super- and subdifferentials (or semi-jets) according to the following

Definition 3.6. Let u : Ω → R and x ∈ Ω. The super- (sub-) differential D+u(x) (D−u(x))
of u at x is the set of all pairs (p,M) of a vector p ∈ Rn and a symmetric n × n matrix
M such that

u(y) ≤ (≥) u(x) + 〈p, y − x〉+
1

2
(y − x)tM(y − x) + o(||y − x||2)

as y → x.

The possibility to characterize viscosity solutions by means of semi-jets instead of test
functions is expressed by the following

Lemma 3.7. We have u ∈ S(Ω) (∈ S̄(Ω)), if and only if

Q̃(p,M) := εtrM − |p|+ 1 ≥ (≤) 0 for all x ∈ Ω and all (p,M) ∈ D+u(x) (∈ D−u(x)).

Proof. Confer [CIL92], for example.

Lemma 3.8. Let S ⊆ SHE(Ω) be an arbitrary set of SHE-functions and define the func-
tion u(x) := supv∈S v(x) for all x ∈ Ω. Assume u?(x) <∞ for all x ∈ Ω̄. Then u? ∈ S(Ω).

Proof. First note that u? is upper semicontinuous by definition. Then let x ∈ Ω and
(p,M) ∈ D+u?(x). We show Q̃(p,M) ≥ 0. To this end define the paraboloid

P : Rn → R, P (y) := 〈p, y〉+
1

2
〈y,My〉,

and observe that from definition 3.6 it follows that for any δ > 0 there is a radius r > 0
such that

u?(y) ≤ u?(x) + P (y − x) + δ||y − x||2 for all y ∈ B̄ := B̄r(x). (3.19)

Next let (rl)l∈N be a sequence with 0 < rl < r for all l ∈ N and liml→∞ rl = 0. We
choose a sequence (xl)l∈N with xl ∈ Bl := B̄rl

(x) and supBl
u− u(xl) < 1/l for all l ∈ N.

Moreover, for each l ∈ N by the definition of u there is a function ul ∈ S such that
u(xl)− ul(xl) < 1/l . It follows

sup
Bl

u ≥ ul(xl) > u(xl)− 1/l > sup
Bl

u− 2/l,

whence
u?(x) = lim

l→∞
sup
Bl

u = lim
l→∞

ul(xl). (3.20)
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As B̄ is compact, for any l ∈ N the upper semicontinuous function

ψl : y 7→ ul(y)− P (y − x)− 2δ||y − x||2 (3.21)

attains a global maximum with respect to B̄ at some point yl ∈ B̄. By extracting a
subsequence, if necessary, we assume that yl → z as l → ∞ for some z ∈ B̄. By xl ∈ B̄
for all l ∈ N and by the maximum property of the points yl, l ∈ N, we obtain

ul(xl)− P (xl − x)− 2δ||xl − x||2 ≤ ul(yl)− P (yl − x)− 2δ||yl − x||2 (3.22)

for all l ∈ N. By the choice of the points xl we have liml→∞ xl = x, whence we get by
taking the limes inferior of (3.22) and invoking (3.20)

u?(x) = lim inf
l→∞

ul(xl) ≤ lim inf
l→∞

ul(yl)− P (z − x)− 2δ||z − x||2. (3.23)

By (3.19) we have
u?(z)− P (z − x)− δ||z − x||2 ≤ u?(x). (3.24)

Adding (3.23) and (3.24) yields

u?(z) ≤ lim inf
l→∞

ul(yl)− δ||z − x||2. (3.25)

Moreover, definition 3.5 implies that we have

lim inf
l→∞

ul(yl) ≤ lim sup
l→∞

ul(yl) ≤ u?(z). (3.26)

By (3.25) and (3.26) it follows ||z − x|| = 0, and thus

lim
l→∞

yl = x. (3.27)

Consequently, we may truncate the sequence (yl)l∈N such that all yl lie in the interior of
B̄. Therefore, setting

ϕδ(y) := P (y − x) + 2δ||y − x||2,

we conclude from (3.21) that for all l ∈ N the function ϕδ + ul(yl) touches ul by above.
As ul is SHE at yl, it follows that ϕδ + ul(yl) and thus ϕδ is SHE at yl by proposition 3.1.
Lemma 3.3 implies Q(ϕδ)(yl) ≥ 0. Now observe that we have

Q(ϕδ)(yl) = Q̃(p,M) + 4nεδ for all l ∈ N,

whence −4nεδ ≤ Q̃(p,M). Since the choice of δ > 0 was arbitrary, we conclude

Q̃(p,M) ≥ 0.
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Remark 3.2. Some authors (e.g. [Ish87b]) use a slightly more general definition for
viscosity solutions: They omit the semicontinuity condition and call a function u viscosity
subsolution, if it is locally bounded and if its upper semicontinuous envelope u? satisfies
the test function condition; an analogous definition is given for viscosity supersolutions.
Observe that lemma 3.6 and 3.8 also hold for this alternative definition. Then, these
lemmas and lemma 3.5 would immediately imply that ū as defined in (3.17) is a viscosity
solution in this alternative sense. An additional barrier condition could be introduced to
guarantee that ū indeed attains the boundary values φ. Such a barrier condition is for
instance to assume the existence of a function v ∈ X with v ≡ φ on ∂Ω.

Remark 3.3. We emphasize that the basic ideas of the proofs of lemma 3.6 and lemma
3.8 will also be employed in the examination of viscosity solutions on ramified spaces
in chapter 5 and chapter 7. Then, however, the correct treatment of what happens at
ramification points will be of crucial importance.

Defining viscosity solutions as in definition 2.3 we have

Theorem 3.1. Assume that there is a function W ∈ C(Ω) and a function w ∈ SHE(Ω)
such that v ≤ W on Ω for all v ∈ X and

w ≡ W ≡ φ on ∂Ω. (3.28)

Then ū as defined in (3.17) is a viscosity solution of Q(u) = 0.

Proof. Setting S = X in lemma 3.8 and invoking lemma 3.5, we conclude ū? ∈ S(Ω).
Furthermore we have

w ≡ w? ≤ ū? ≤ ū ≤ ū? ≤ W ? ≡ W on Ω,

and by (3.28) we obtain
ū ≡ ū? on ∂Ω.

As ū ∈ S̄(Ω) by lemma 3.6, the comparison theorem for viscosity solutions (e.g. [CIL92],
theorem 3.3) implies

ū ≡ ū? on Ω.

Hence ū ∈ S(Ω) and the assertion follows.
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CHAPTER 4

Vanishing viscosity on networks

Summary. In this chapter we generally introduce the notion of ramified spaces and, in
particular, networks, to which we extend the vanishing viscosity method for first order
Hamilton-Jacobi equations. As an important example, we discuss existence and unique-
ness of solutions of the viscous eikonal equation on networks satisfying the Kirchhoff
condition at the vertices. Finally, we prove the convergence of the vanishing viscosity
method for a general class of Hamilton-Jacobi equations on networks.

4.1 Introduction

The concept of ramified spaces has originally been introduced by Gunter Lumer [Lum80]
and has later been refined and specified by various authors, e. g., J. v. Below and S. Nicaise
[Nic93]. It serves as an appropriate setting for problems of interaction between different
media which are governed by partial differential equations on the branches and transition
conditions on the ramification spaces. Interaction problems find various applications in
physics, chemistry, and biology – confer for example [SH72] and [Cam80]. Also, well-
known models based on scalar equations appear in a new light when being embedded into
the ramified space setting, such as the description of the behavior of chemical substances
by reaction-diffusion equations [vBN96]. As far as the analysis of these models is con-
cerned, the applicability of various mathematical methods does not only depend on the
structure of the differential equations on the branches, but also and particularly on the
properties of the transition conditions. In fact, the latter have an considerable effect on
existence, uniqueness, and regularity of solutions. Possible aspects regarding which the
transition conditions may vary are linearity or nonlinearity, being dynamical or static,
dissipative or non-dissipative, etc.

Many well-known elliptic and parabolic concepts have been transferred from the classical

39



40 Chapter 4. Vanishing viscosity on networks

non-ramified situation to ramified spaces, providing results for boundary or initial value
problems, now formulated for families of media with transition conditions. In many
cases, the one-dimensional version of a ramified space, the so-called topological network, is
of major importance, as the core of the problems often evolves fully already in this simple
setting.

However, as far as we know, research has been restricted to linear and semilinear elliptic
(stationary) equations [Nic88] on the one hand, and, on the other hand, to evolution equa-
tions such as (nonlinear) scalar reaction-diffusion equations [vBN96]. Typically, the first
demand adaption of Sobolev space methods and the theory of elliptic operators, whereas
the latter are usually attacked by means of semigroup theory and related functional an-
alytical tools such as fixed point theorems. However, fully nonlinear stationary problems
on ramified spaces have not enjoyed similar attention, and according to our knowledge
there has not been done any work in this area so far.

As in this thesis it is our goal to extend the theory of viscosity solutions to ramified spaces,
we consider it natural to start with an extension of the method of vanishing viscosity. First
we focus on the Dirichlet problem of the viscous eikonal equation on networks and discuss
existence and uniqueness of classical solutions for each ε > 0. In doing so, the necessity of
introducing an extra condition at transition vertices will become clear. In a second section
we show that the ε-family of solutions converges. This convergence result does not only
apply to the eikonal equation, but also to a wide class of Hamilton-Jacobi equations of
eikonal type, as we will see.

The fact that the extended method of vanishing viscosity converges provides guidelines for
the extension of the theory of viscosity solutions, as the two concepts should coincide in
the same way as they do in the non-ramified case. In particular, observing the behavior
of the converging family at transition vertices should give hints to how to formulate a
correct transition condition for viscosity solutions. We elaborate on this in chapter 5.

4.2 Ramified spaces

We start with the general definition of ramified spaces originally given by Lumer [Lum80].

Definition 4.1. Let Ω? be a non-empty, separable, locally compact space with a countable
topological basis. Let L = {Ωj}j∈J be a countable family of non-empty open subsets Ωj of
Ω?. Furthermore let N?

E be a closed (possibly empty) subset of the set N? := Ω?\∪j∈J Ωj

with the property that it contains each point of N? which is contained in the boundary
of exactly one Ωj, j ∈ J .

We call Ω := Ω?\N?
E a ramified space (induced by the triple (Ω?,L, N?

E)), whenever we
have

(i) Ω̄j ∩ Ω̄k ⊆ ∂Ωj ∩ ∂Ωk for all j, k ∈ J , j 6= k
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(ii) Ω? = ∪j∈JΩ̄j

(iii) {Ωj}j∈J is locally finite in Ω?

(iv) Ω is connected.

NR := N?\N?
E is then called ramification space of Ω.

We now introduce topological networks as important instances of ramified spaces. Higher
dimensional ramified spaces and other examples will be discussed in chapter 7.

4.3 Graphs, topological graphs, and networks

In this chapter we distinguish between (abstract) graphs, topological graphs, and net-
works. We recall the definition of abstract graphs.

Definition 4.2. An (abstract) graph G is a pairing G = (V,E), where V = V (G) and
E = E(G) are the sets of vertices and edges, respectively. An edge e ∈ E is an unordered
pair {v1, v2} of vertices v1, v2 ∈ V ; we write e = v1v2. A path (with endpoints v1 and vn)
in G is a formal sequence v1v2 . . . vn of vertices v1, . . . , vn ∈ V , n ∈ N, such that vivi+1 ∈ E
for all i = 1, . . . , n− 1.

We also provide the basic graph theoretical notions we will require in the sequel.

Definition 4.3. Let G = G(V,E) be a graph.

(i) We say that two vertices v, w ∈ V are adjacent, whenever vw ∈ E. We
write v adjw.

(ii) We say that a vertex v ∈ V and an edge e ∈ E are incident, whenever
there is a vertex w ∈ V such that vw = e. We write v inc e.

(iii) G is called connected, if there is a path with endpoints v and w for each
pair of vertices v, w ∈ V .

(iv) For each vertex v ∈ V we call the quantity deg v := |{e ∈ E | v inc e}| the
degree of v.

In the sequel we assume each graph to be non-empty, finite, simple, and free of loops,
which is expressed by the conditions

(i) 0 < |V | <∞
(ii) |{e ∈ E | e = vw}| = 1 for all v, w ∈ V , v 6= w

(iii) v 6= w for all e = vw ∈ E.

For further graph theoretical terminology we refer to [Har69].

Next we introduce the notion of a topological graph.
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Definition 4.4. Let V = {vi, i ∈ I} be a finite collection of pairwise different points in
Rn. Furthermore, let {πj, j ∈ J} be a finite collection of continuous, non-self-intersecting
curves in Rn given by

πj : [0, lj] → Rn, lj > 0, j ∈ J.

We set ej := πj((0, lj)), ēj := πj([0, lj]), and E := {ej, j ∈ J}. Assume furthermore the
following conditions to be satisfied:

(i) πj(0), πj(1) ∈ V for all j ∈ J
(ii) |ēj ∩ V | = 2 for all j ∈ J

(iii) ēj ∩ ēk ⊂ V and |ēj ∩ ēk| ≤ 1 for all j, k ∈ J , j 6= k.

Then G := (V,E) is called a (finite) topological graph.

Obviously we can consider G not only as a subset of Rn, but also as an abstract graph
G := (V,E) according to definition 4.2. As long as confusions are ruled out, we will switch
between both interpretations without explicitly mentioning.

Observe that the parametrizations πj induce an orientation on the edges, which can be
expressed by the signed incidence matrix

A = (aij) with aij :=


1 if vi inc ej and πj(0) = vi

−1 if vi inc ej and πj(lj) = vi

0 otherwise.
(4.1)

Finally, we introduce the notion of a topological network.

Definition 4.5. Let k ∈ N ∪ {∞}, k ≥ 1. Let G = (V,E) be a connected topological
graph in Rn, and assume πj ∈ Ck([0, lj]; Rn) for all j ∈ J . Then the union

Γ :=
⋃
j∈J

ēj ⊂ Rn

is called the (topological) ck-network Γ belonging to G.

Observe that a topological ck-network Γ is a compact topological subspace of Rn. More-
over, as the edge parametrizations πj, j ∈ J , are at least C1, it is clear that the topology
induced by the path metric d on Γ is equivalent to the subspace topology.

In the sequel let Γ always denote a topological c∞-network with underlying topological
graph G = (V,E), V = {vi, i ∈ I}, E = {ej, j ∈ J}.



4.4 Boundary value problems on topological networks 43

4.4 Boundary value problems on topological networks

We want to study boundary value problems on Γ. For this purpose we first specify what
we mean by the boundary ∂Γ of Γ. In fact, we single out a non-empty index subset IB ⊂ I
and define ∂Γ := {vi, i ∈ IB} ⊆ V to be the set of boundary vertices. In contrast, we set
IT := I\IB and call {vi, i ∈ IT} the set of transition vertices.

In the case of an Dirichlet interaction problem, the value of solutions is prescribed at
boundary vertices, whereas at transition vertices the restrictions of the solutions to the
different incident edges are put into relation by a transition condition. Therefore transition
conditions at vertices with only one incident edge do not make sense, and it is reasonable
to demand i ∈ IB for each i ∈ I with deg(vi) = 1.

For any function u : Γ → R and each j ∈ J we from now on denote by uj the restriction
of u to ēj, i. e.,

uj := u ◦ πj : [0, lj] → R.

The C∞-regularity of the parametrizations πj of Γ allows to differentiate along the edges,
where differentiation along ej will be denoted by ∂j, j ∈ J , that is we define

∂α
j u(x) = ∂α

j u
j(π−1

j (x)) :=

(
∂

∂x

)α

uj(π−1
j (x))

for all x ∈ ej and all α ∈ N. At a given vertex vi, i ∈ I, we furthermore define

Inci := {j ∈ J | vi inc ej}

and

∂ju(vi) = ∂ju
j(π−1

j (vi)) :=
∂

∂x
uj(π−1

j (vi))

for j ∈ Inci.

Let us introduce the function spaces on Γ we are mainly going to work with.

Definition 4.6. Let u : Γ → R.

We call u continuous, if u is continuous with respect to the subspace topology of Γ induced
by Rn. We write u ∈ C(Γ).

We call u k times differentiable, k ≥ 1, if uj ∈ Ck([0, lj]) for all j ∈ J . We write u ∈ Ck(Γ).

Remark. The sufficient condition that a collection of continuous functions

uj : [0, lj] → R, j ∈ J,

constitutes a function u ∈ C(Γ) is given by

uj(π−1
j (vi)) = uk(π−1

k (vi)) whenever vi inc ej and vi inc ek.
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In this sense, continuity can be regarded as a transition condition. In fact, it is the basic
transition condition we require in the sequel.

As has already been announced, the Kirchhoff condition known from electrical circuits the-
ory plays a fundamental role in the following considerations. In a way, C1-differentiability
of a function along the edges means that left- and right-sided derivatives are related in
a fashion that cusps are ruled out. In other words, the slopes in outward (or inward)
direction with respect to each given point add up to zero. At vertices, this condition
naturally generalizes to the Kirchhoff condition, the simplest form of a linear transition
condition.

Definition 4.7. Let u ∈ C1(Γ), i ∈ I, and j ∈ Inci. We then set

sij(u) := aij∂ju(vi),

where (aij) as defined in (4.1) is the incidence matrix of the topological graph belonging
to Γ.

Furthermore we define the linear mapping Si : C1(Γ) → R by

Si(u) :=
∑

j∈Inci

sij(u).

We say that u satisfies the Kirchhoff condition at vi, i ∈ I, if Si(u) = 0. We say that u
satisfies the Kirchhoff condition and write u ∈ C1

K(Γ), if u satisfies the Kirchhoff condition
at all i ∈ IT . For k > 1 we moreover set

Ck
K(Γ) := Ck(Γ) ∩ C1

K(Γ).

4.5 Maximum and comparison principles for Kirch-

hoff functions

If we ask the Kirchhoff condition to be satisfied at the transition vertices, several standard
maximum principles for linear and semilinear equations can be carried over to networks.
The following lemma states a maximum principle for certain linear operators on networks.

Lemma 4.1. Let L := (Lj)j∈J be a collection of linear differential operators given by

Lj(f) := aj∂2
j f + bj∂jf, f ∈ C2((0, lj)),

with coefficient functions aj, bj : (0, lj) → R, j ∈ J . Assume L to be uniformly elliptic in
the sense that there are constants λ > 0, Λ > 0 such that λ ≤ aj ≤ Λ on (0, lj) for all
j ∈ J . Furthermore assume that there is a constant C(λ) such that |bj| ≤ C(λ) on (0, lj)
for all j ∈ J .
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Let u ∈ C2(Γ) such that

(i) Lj(uj) ≥ 0 (Lj(uj) ≤ 0) on (0, lj) for all j ∈ J and
(ii) Si(u) ≥ 0 (Si(u) ≤ 0) for all i ∈ IT .

Then we have
max

∂Γ
u = max

Γ
u (min

∂Γ
u = min

Γ
u), (4.2)

where ∂Γ := {vi | i ∈ IB}.

Remark 4.1. In particular, (4.2) holds for all u ∈ C2
K(Γ) with Ljuj ≤ 0 for all j ∈ J .

Remark 4.2. Observe that the coefficient functions do not need to satisfy a transition
condition at the transition vertices.

For the proof of lemma 4.1 we need the following proposition.

Proposition 4.1. Let L be as in lemma 4.1. Then there is a function f ∈ C2(Γ) satisfying{
Lj(f j) > 0 on (0, lj) for all j ∈ J,
Si(f) > 0 for all i ∈ IT .

Proof. (of proposition 4.1). Let γ > 0 such that we have λγ2−C(λ)γ > 0. Define the set

M := {ξ ∈ RI with ξi 6= ξj for all i, j ∈ I with vi adj vj}. (4.3)

Let ξ ∈ M . Fix k ∈ J and let i, j ∈ I such that ek = vivj. Since ξi 6= ξj, we can find
unique numbers σ, η, c ∈ R with |σ| = 1 such that the function

uk : [0, lk] → R, uk(x) := eσγ(x−η) + c

satisfies uk(π−1
k (vi)) = ξi and uk(π−1

k (vj)) = ξj.

We then compute

Lk(uk)(x) = (ak(x)λ2 + bk(x)σλ)eσλ(x−η) for all x ∈ (0, lk).

By the choice of γ it then follows

Lk(uk)(x) > (λγ2 − C(λ)γ)eσλ(x−η) > 0 for all x ∈ (0, lk).

If we repeat this for all other choices k ∈ J , we obtain an injective mapping

Φ : M → D with D := {u ∈ C2(Γ) with Lj(uj) > 0 on (0, lj) for all j ∈ J},

satisfying Φ(ξ)(vi) = ξi for all i ∈ I and all ξ ∈M .

Now we show that we can choose ξ = (ξi) ∈ M such that Si(Φ(ξ)) > 0 is satisfied for all
i ∈ IT . To this end observe that for i ∈ IT the mapping

Ti : M → R, Ti := Si ◦ Φ, (4.4)
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is a continuous, strictly decreasing and unbounded function in the component ξi. Further-
more observe that Ti is continuous, unbounded, and strictly increasing in each component
ξj, j ∈ Ai, where

Ai := {j ∈ I | vj adj vi}.

Finally, Ti is independent of the component ξj for any j ∈ I\({i} ∪ Ai).

We construct ξ ∈M such that Ti(ξ) > 0 for all i ∈ IT . Let dist : I × I → N be the metric
given by the smallest number dist(i, j) of edges a path connecting vi and vj can consist
of. It induces the partition Il := {i ∈ I | dist(i, IB) = l}, l ∈ N0. Observe that I0 = IB.
Let m := max{l ∈ N0 | Il 6= ∅}. Furthermore note that for i ∈ Il, 1 ≤ l ≤ m, there is
by construction at least one j ∈ Il−1 such that j ∈ Ai. Moreover, Ti is constant in the
component ξj for all j ∈ I\(Il−1 ∪ Il ∪ Il+1).

We first choose pairwise different numbers ξj ∈ R for all j ∈ I. Let i ∈ Im. Due to the
fact that Ti is unbounded, continuous, and strictly increasing in each ξj, j ∈ Ai, and by
the fact that Im−1 ∩Ai 6= ∅ for each i ∈ Im, we may increase the value of the components
ξj, j ∈ Im−1, such that we have Ti(ξ) > 0 for all i ∈ Im and such that all ξj, j ∈ J ,
remain pairwise different. Analogously we can increase ξj, j ∈ Im−2, such that Ti(ξ) > 0
for all i ∈ Im−1 and such that all ξj, j ∈ J , remain pairwise different. For k = 3, . . . ,m
we continue this procedure by sufficiently increasing ξj, j ∈ Im−k, in order to ensure that
Ti(ξ) > 0 for all i ∈ Im−k+1, ending up with a choice for ξ ∈ M such that Ti(ξ) > 0 for
all i ∈ ∪m

l=1Il = IT . Setting f := Φ(ξ) completes the proof.

Proof. (of lemma 4.1). First assume Lj(uj) > 0 on (0, lj) for all j ∈ J and Si(u) > 0 for
all i ∈ IT . Suppose that there be some j ∈ J and some x0 ∈ (0, lj) such that uj attains
a local maximum at x0. It follows ∂ju

j(x0) = 0 and aj∂2
ju

j(x0) ≤ 0, which contradicts
the assumption Lj(uj)(x0) > 0. Now assume that there be some i ∈ IT such that u
attains a local maximum at vi. Then aij∂ju

j(π−1
j (vi)) ≤ 0 for all j ∈ Incj, whence we

have Si(u)(vi) ≤ 0, a contradiction to our assumption Si(u) > 0 for all i ∈ IT .

Now assume Lj(uj) ≥ 0 on (0, lj) for all j ∈ J as well as Si(u) ≥ 0 for all i ∈ IT .
For δ > 0 we then set wδ := u + δf ∈ C2(Γ), where f is the function constructed in
proposition 4.1. By linearity of Lj, j ∈ J , and Si, i ∈ IT , we have Lj(wj

δ) > 0 on (0, lj)
for all j ∈ J as well as Si(wδ) > 0 for all i ∈ IT . By the arguments above it follows
that maxΓ(u + δf) = max∂Γ(u + δf), whence by passing to the limit δ → 0 we obtain
maxΓ u = max∂Γ u.

Finally, assume Lj(uj) ≤ 0 on (0, lj) for all j ∈ J as well as Si(u) ≤ 0 for all i ∈ IT . By
linearity it follows Lj(−u) ≥ 0 on (0, lj) for all j ∈ J as well as Si(−u) ≥ 0 for all i ∈ IT .
We obtain minΓ u = maxΓ−u = max∂Γ−u = min∂Γ u.

From lemma 4.1 we now derive a comparison result for certain semilinear operators on
networks.
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Lemma 4.2. Let Q = (Qj)j∈J be a collection of semilinear operators given by

Qj(f)(x) := aj(x)∂2
j f(x) + bj(∂jf

j(x), f j(x), x), x ∈ (0, lj), f ∈ C2((0, lj)),

with coefficient functions aj : (0, lj) → R and bj : R × R × (0, lj) → R, j ∈ J . For all
j ∈ J assume furthermore that bj(·, z, x) ∈ C1(R) for all (z, x) ∈ R × (0, lj), and that
bj(p, ·, x) is non-increasing for all (p, x) ∈ R× (0, lj).

Let u, v ∈ C2(Γ) satisfy
Qj(uj) ≥ Qj(vj)

for all j ∈ J as well as Si(u) ≥ Si(v) for all i ∈ IT . Furthermore suppose u ≤ v on ∂Γ.
Then we have u ≤ v on Γ.

Proof. For all j ∈ J and all x ∈ (0, lj) we have

Qj(uj)(x)−Qj(vj)(x)

= aj(x)∂j(u
j(x)− vj(x)) + bj(∂ju

j(x), uj(x), x)− bj(∂jv
j(x), vj(x), x)

= aj(x)∂j(u
j(x)− vj(x)) + bj(∂ju

j(x), uj(x), x)− bj(∂jv
j(x), uj(x), x)

+ bj(∂jv
j(x), uj(x), x)− bj(∂jv

j(x), vj(x), x) ≥ 0.

As bj(p, ·, x) is non-increasing, it follows

aj(x)∂j(u
j(x)− vj(x)) + bj(∂ju

j(x), uj(x), x)− bj(∂jv
j(x), uj(x), x) ≥ 0, (4.5)

for all x ∈ A := {u > v} ⊂ Γ. Since bj(·, z, x) is continuously differentiable, for each
j ∈ J there is a locally bounded function b̃j : (0, lj) → R, such that

bj(∂ju
j(x), uj(x), x)− bj(∂jv

j(x), uj(x), x) = b̃j(x)∂j(u
j(x)− vj(x))

by the mean value theorem. Defining w ∈ C2(Γ) by w := u− v, from (4.5) we derive

Lj(wj) := aj∂2
jw

j + b̃j∂jw
k ≥ 0 on (0, lj) ∩ A, j ∈ J .

By linearity of Si we furthermore have Si(w) ≥ 0 for all i ∈ IT . By the proof of lemma
4.1 it follows that w cannot attain a local maximum on the (open) set A, and as we have
A ∩ ∂Γ = ∅, it follows A = ∅ and thus u ≤ v on Γ.

4.6 The viscous eikonal equation on networks

Having introduced the framework of topological networks and basic maximum principles,
let us now return to the track we have outlined above - the idea of applying the method
of vanishing viscosity to nonlinear first order boundary value problems on topological
networks. In the present section, before considering the general case, we treat the exem-
plary case of the viscous eikonal equation and show existence and uniqueness of solutions
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satisfying the Kirchhoff condition. The proofs are elementary, but serve as an illustration
of the importance of the Kirchhoff condition in order to make solutions unique. Later it
will turn out that the Kirchhoff condition is sufficient to ensure the convergence of the
vanishing viscosity method.

Accordingly, we are interested in existence and uniqueness of solutions u ∈ C2
K(Γ) of the

following boundary value problem on Γ.{
ε∂2

ju− (∂ju)
2 + 1 = 0 on ej for all j ∈ J ,

u(vi) = gi for all i ∈ IB, ε > 0,
(4.6)

where gi ∈ R, i ∈ IB.

Theorem 4.1. There is a unique function u ∈ C2
K(Γ) solving problem (4.6).

The proof is given by the following collection of results.

Lemma 4.3. Let u, v ∈ C2(Γ) be solutions of boundary value problem (4.6). Then u ≡ v
on Γ.

Proof. Observe that Q = (Qj)j∈J with

Qj(uj) := ε∂2
ju

j − (∂ju
j)2 + 1, j ∈ J,

satisfies the conditions of lemma 4.2. Then the assertion is an immediate consequence of
this lemma.

Proposition 4.2. Let l ∈ R, l > 0. Then there is an injective mapping

Ψ : R2 → C2([−l, l]),

such that for each pair (s, t) ∈ R2 we have u(−l) = s, u(l) = t, and

εu′′ − (u′)2 + 1 = 0 on (−l, l),

where u := Ψ(s, t).

Furthermore, define the functions

ψ : R2 → R, ψ(s, t) :=
∂

∂x
Ψ(s, t)(−l)

and

π : R2 → R, π(s, t) :=
∂

∂x
Ψ(s, t)(l).

Then for all s ∈ R the functions ψ(s, ·) : R → R and π(s, ·) : R → R are continuous
and strictly increasing. Furthermore for all t ∈ R the functions ψ(·, t) : R → R and
π(·, t) : R → R are continuous and strictly decreasing.
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Proof. Using the transformation method from theorem 2.1 we find that Ψ is given by

Ψ(s, t) = −ε log(w(x) + 1),

where

w(x) :=
1

4

(
t− s

sinh(ε−1l)
+

t+ s

cosh(ε−1l)

)
e−

1
ε
x +

1

4

(
− t− s

sinh(ε−1l)
+

t+ s

cosh(ε−1l)

)
e

1
ε
x

The assertion follows from straightforward calculation.

Proposition 4.3. There is a function f ∈ C2(Γ) such that there is a vector (aj)j∈J with
aj 6= 0 for all j ∈ J and such that{

∂jf ≡ aj on ej for all j ∈ J ,
Si(f) > 0 for each i ∈ IT .

Proof. We proceed similarly to the proof of proposition 4.1. Define the set M as in (4.3)
and observe that there is a canonical injective mapping

Φ : M → D := {u ∈ C2(Γ) | ∃ (aj)j∈J such that aj 6= 0 and ∂jf ≡ aj on ej, j ∈ J .}

with Φ(ξ)(vi) = ξi, i ∈ I. It then suffices to show that there is a ξ ∈ M such that
Si(Φ(ξ)) > 0 for all i ∈ IT . For this purpose define for all i ∈ IT the functions Ti

as in (4.4) and observe that they have the same properties as described in the proof of
proposition 4.1. We then proceed exactly as in this proof to construct ξ.

Lemma 4.4. There exists a solution u ∈ C2
K(Γ) for the boundary value problem 4.6.

Proof. By proposition 4.2 there is an injective mapping

Φ : RI → C2(Γ)

such that for each ξ = (ξi)i∈I and u := Φ(ξ) we have u(vi) = ξi for all i ∈ I as well as

ε∂2
ju− (∂ju)

2 + 1 = 0 on ej for all j ∈ J .

Fix i ∈ IT . Then the mapping

Ti : RI → R, Ti := Si ◦ Φ =
∑

j∈Inci

(sij ◦ Φ), (4.7)

is continuous, as the mappings sij ◦ Φ : RI → R, j ∈ Inci, are continuous by proposition
4.2 (cf. definition 4.7). It follows that the set

C := {ξ ∈ Rp |Ti(ξ) ≥ 0 ∀ i ∈ IT , ξi ≤ gi ∀ i ∈ IB}
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is closed. Furthermore C is non-empty, as we clearly have ξ0 = (ξ0
i )i∈I ∈ C, where

ξ0
i := mink∈IB

gk for all i ∈ I. We show that

sup
ξ∈C

max
i∈I

|ξi| <∞. (4.8)

For this purpose let f and (aj)j∈J be the function and the corresponding vector as con-
structed in proposition 4.3 and let a := minj∈J |aj| > 0. Furthermore set g := maxi∈IB

gi.
For the function

f̃ := −1/a · (f −min
i∈IB

f(vi)) + g ∈ C2(Γ)

we then have
Qj(f̃ j) := ε∂2

j f̃
j + 1− (∂j f̃

j)2 = 1− (aj/a)2 ≤ 0

for all j ∈ J as well as Si(f̃) ≤ 0 for all i ∈ IT by proposition 4.3. Furthermore we have
f̃(vi) ≥ gi for all i ∈ IB. Now let ξ ∈ C and u := Φ(ξ). By the properties of u and by
lemma 4.2 we conclude u ≤ f̃ on Γ. Hence ξi ≤ f̃(vi) for all i ∈ I and (4.8) is proved.

Define ξ̃ = (ξ̃i)i∈I by ξ̃i := supξ∈C ξi. We have ξ̃ ∈ RI , since ξ̃i < ∞ for each i ∈ I by

(4.8). We show ξ̃ ∈ C. As C is closed, it suffices to show that there is a sequence (ξn)n∈N
in C converging to ξ̃. For this purpose choose for each i ∈ I a sequence (ξi;n)n∈N in C
such that limn∈N ξ

i;n
i → ξ̃i. Then for each n ∈ N define ξn ∈ RI to be the componentwise

maximum of the vectors ξi;n, i ∈ I. It follows limn→∞ ξn = ξ̃, whence it remains to show
that ξn ∈ C for all n ∈ N. To this end we fix two vectors ξ, ξ̄ ∈ C and verify that their
componentwise maximum ζ is contained in C. Fix i ∈ IT and assume without restriction
that ζi = ξi. Observe that for all j ∈ Ai := {j ∈ I | vj adj vi} the function sij ◦Φ : RI → R
is strictly increasing in the component ξj by proposition 4.2. Hence the function ξ 7→ Ti(ξ)
(as defined in (4.7)) is strictly increasing in each component ξj, j ∈ Ai. Therefore, as
ξi = ζi and ξj ≤ ζj for all j ∈ Ai, it follows Ti(ζ) ≥ Ti(ξ) ≥ 0. As i ∈ IT has been chosen
arbitrarily, we obtain ζ ∈ C.

Now suppose that there is some i ∈ IT with Ti(ξ̃) > 0. By continuity of Ti there is a
ξ ∈ RI with ξj = ξ̃j for all j ∈ I\{i} and ξi > ξ̃i, such that Ti(ξ) > 0. Furthermore, for all
j ∈ IT ∩Ai we have Tj(ξ) ≥ 0, since Tj is strictly increasing in ξi. Moreover, Tj(ξ̃) = Tj(ξ)
for all j ∈ IT\Ai. It follows ξ ∈ C, a contradiction to the definition of ξ̃.

One derives a similar contradiction in the case that there is an i ∈ IB with ξ̃i < gi. Thus
it follows Ti(ξ̃) = 0 for all i ∈ IT as well as ξ̃i = gi for all i ∈ IB. Consequently, u := Φ(ξ̃)
solves the boundary value problem 4.6.

Remark 4.3. Theorem 4.1 can alternatively be attacked by means of the transformation

wa(x) := exp(−ε−1uε)− 1

with a := 1/ε (confer the methods in chapter 2), which preserves the Kirchhoff condition,
as can be easily seen. The resulting linear problem can then be treated by the well-known
methods for linear interaction problems.



4.7 Convergence of vanishing viscosity on networks 51

4.7 Convergence of vanishing viscosity on networks

Denoting the unique solution of boundary value problem (4.6) by uε, we now ask whether
and in which sense the functions uε converge to a limit function as ε → 0, and which
properties this limit function will possess. In the special case gi = 0 for all i ∈ IB, we
expect them to converge to the distance function d on Γ, analogously to the non-ramified
case treated in chapter 2.

In the present section we will extend our point of view from the special case of the eikonal
equation towards a general class of first order Hamilton-Jacobi equations of eikonal type.
Namely we assume that for any ε > 0 the function uε ∈ C2

K(Γ) be a solution of the
boundary value problem{

ε∂2
ju

j
ε(x)−Hj(∂ju

j
ε(x), u

j
ε(x), x) = 0 for all x ∈ (0, lj) and j ∈ J

uε(vi) = gi for all i ∈ IB.
(4.9)

Here the collection H = (Hj)j∈J with Hj : R×R× [0, lj] → R is called the Hamiltonian.

Definition 4.8. A Hamiltonian H = (Hj)j∈J is said to be of eikonal type, if it satisfies
the following conditions.

(i) Hj(0, z, x) < 0 for all (z, x) ∈ R× [0, lj], j ∈ J
(ii) Hj ∈ C2(R× R× [0, lj]), j ∈ J
(iii) Hj(p, ·, x) is non-decreasing for all (p, x) ∈ R× [0, lj], j ∈ J
(iv) Hj(p, z, x) →∞ as |p| → ∞ for all (z, x) ∈ R× [0, lj], j ∈ J
(v) Hj(p, z, x) is strictly convex in p for all fixed (z, x) ∈ R× [0, lj], j ∈ J
(vi) Hj(p, z, π−1

j (vi)) = Hj(−p, z, π−1
j (vi)) ∀ i ∈ I, j ∈ Inci, (p, z) ∈ R× R

(vii) Hj(p, z, π−1
j (vi)) = Hk(p, z, π−1

k (vi)) ∀ i ∈ I, j, k ∈ Inci, (p, z) ∈ R× R.

(4.10)

Remark 4.4. Conditions (4.10) (i) - (v) are the basic properties prescribed by Kružkov
in [Kru75]. The additional conditions (vi) and (vii) concern the compatibility of the Hj

at the vertices, which are continuity (condition (vii)) and independence of the orientation
of the incident edges (condition (vi)).

Definition 4.9. Let H = (Hj)j∈J be a Hamiltonian of eikonal type. We call H isotropic,
if we have Hj

x(p, z, x) = 0 for all (p, z, x) ∈ R× R× [0, lj], j ∈ J .

For the remainder of this chapter we will assume each Hamiltonian to be of eikonal type
and isotropic, unless otherwise stated.

Example 4.1. The Hamiltonian of the eikonal equation given by

Hj(p, z, x) := p2 − 1, j ∈ J,

is of eikonal type and isotropic, as one can easily verify.
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We dispense with general existence considerations for solutions of boundary value problem
(4.9) and focus instead on the proof that the family (uε) of solutions converges, provided
it exists. The following lemma is a generalization of theorem 2.3 in [Kru75].

Before presenting it, however, we mention the fact that the limit function will not nec-
essarily attain the boundary values gi. From now on we therefore assume the following
sufficient condition on gi, i ∈ IB, to be satisfied, ensuring the assumption of the boundary
values.

There is a constant δ > 0 and a function ψ : Γ → R with ψj ∈ C2([0, lj])
for all j ∈ J such that we have

ψ(vi) = gi for all i ∈ IB,
Hj(∂jψ

j, ψj, x) < −δ on (0, lj) for all j ∈ J ,
Si(ψ) ≥ 0 for all i ∈ IT .

(4.11)

Lemma 4.5. Assume that for each ε > 0 we have a solution uε ∈ C2
K(Γ) of boundary

value problem (4.9). Then there is a number ε̃ > 0 such that the functions uε, 0 < ε < ε̃,
are uniformly bounded in ε and equicontinuous on Γ.

Theorem 4.2. Under the conditions of lemma 4.5 there is a sequence εn → 0 such that
the functions uεn uniformly converge to a limit function u ∈ C(Γ) as n→∞.

Remark 4.5. The uniqueness of the limit function u, i. e., its independence of the choice
of the sequence εn, will be shown in chapter 5.

Proof. (of theorem 4.2). Recall that Γ endowed with the induced topology of Rn is a
compact space. The sets B(x) := {uε(x) | 0 < ε < ε̃}, x ∈ Γ, are relatively compact by
lemma 4.5. Then the assertion follows by the equicontinuity of uε and by the theorem of
Arzelà-Ascoli.

Before we prove lemma 4.5, we provide a short

Proposition 4.4. Let H be a Hamiltonian of eikonal type, not necessarily isotropic. Let
θ, η ∈ R, θ > 0. Then there is a number Mθ;η > 0 such that

Hj(p, z, x) > θ for all p ∈ R, |p| > Mθ;η, z ≥ η, x ∈ [0, lj], j ∈ J. (4.12)

Proof. By (4.10) (i), (ii), and (iv) there is for each j ∈ J and for each x ∈ [0, lj] a
maximal number M+

θ;η(x) > 0 such that Hj(M+
θ;η(x), η, x) = θ and Hj(p, η, x) > θ for all

p > M+
θ;η(x). Similarly, for each j ∈ J and for each x ∈ [0, lj] there is a minimal number

M−
θ;η(x) < 0 such that Hj(M−

θ;η(x), η, x) = θ and Hj(p, η, x) > θ for all p < M−
θ;η(x).

Observe that for each j ∈ J the functions [0, lj] 3 x 7→M+
θ;η(x) and [0, lj] 3 x 7→ −M−

θ;η(x)
are upper semicontinuous by (4.10) (ii). Hence we have

Mθ;η := max
j∈J

max
x∈[0,lj ]

max{M+
θ;η(x),−M

−
θ;η(x)} <∞, (4.13)

and the assertion follows by means of (4.10) (iii).
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Proof. (of lemma 4.5). We proceed in several steps.

Step 1. Bounding |uε| on Γ uniformly in ε.

We construct functions v ∈ C2(Γ) and w ∈ C2(Γ) as uniform lower and upper bounds,
respectively, of the functions uε, ε > 0. In fact, we choose v :≡ m := mini∈IB

gi. Then it
follows for all x ∈ (0, lj), j ∈ J , and ε > 0

Qj
ε(v

j)(x) := ε∂2
j v

j(x)−Hj(∂jv
j(x), vj(x), x) = −Hj(0,m, x) > 0 = Qj

ε(uε)(x)

by property (4.10) (i). Moreover, we have Si(v) = 0 = Si(uε) for all i ∈ IT as well as
v(vi) ≤ gi = uε(vi) for all i ∈ IB. By virtue of (4.10) (ii) we can apply lemma 4.2, implying
uε ≥ v on Γ.

Now let f ∈ C2(Γ) and (aj)j∈J be the function and the corresponding vector as constructed
in proposition 4.3 and let a := minj∈J |aj| > 0. Choose C > 0 such that we have

w > max{0,max
i∈IB

gi} > 0 (4.14)

for the function
w := −M0;0f/a+ C ∈ C2(Γ),

where M0;0 > 0 is defined in proposition 4.4. By construction we have∣∣∂jw
j(x)

∣∣ > M0;0 (4.15)

for all x ∈ (0, lj), j ∈ J . Let ε > 0. By (4.12), (4.14), and (4.15) it follows

Qj
ε(w

j)(x) = −Hj(∂jw
j(x), w(x), x) < 0

for all x ∈ (0, lj), j ∈ J . Furthermore, by construction of w we have Si(w) < 0 for all
i ∈ IT as well as w(vi) > gi for all i ∈ IB. By the properties of uε we then have uε ≤ w
on Γ by virtue of lemma 4.2.

Altogether it follows that there is a constant C1 > 0 with

|uε| < C1 (4.16)

for all ε > 0.

Step 2. Bounding |∂juε(vi)|, j ∈ Inci, uniformly in ε at boundary vertices vi, i ∈ IB.

Let d : Γ → R be the distance function to the boundary ∂Γ = {vi | i ∈ IB}. For β > 0
let Γβ := {x ∈ Γ |d(x) ≤ β}. We show that there are constants κ > 0, β > 0, and ε̃ > 0
such that

ψ ≤ uε ≤ ψ + κd on Γβ for all 0 < ε < ε̃, (4.17)

where ψ is the function whose existence has been assumed in (4.11). As ψj ∈ C2([0, lj])
for all j ∈ J , it follows that there is a constant ε̃ > 0 such that ε̃∂2

jψ
j(x) > −δ for all
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x ∈ (0, lj), j ∈ J , where δ is the constant defined in (4.11). Invoking (4.11) once more we
then derive

Qj
ε(ψ

j)(x) = ε∂2
jψ

j(x)−Hj(∂jψ
j(x), ψj(x), x) > 0 = Qj

ε(u
j
ε)(x)

for all x ∈ (0, lj), j ∈ J , and for all 0 < ε ≤ ε̃, j ∈ J . Furthermore we have Si(ψ) ≥
0 = Si(uε) for all i ∈ IT as well as ψ(vi) = gi = uε(vi) for all i ∈ IB, and the comparison
lemma 4.2 yields uε ≥ ψ on Γ for all 0 < ε ≤ ε̃. The first part of inequality (4.17) is
established.

In order to derive the second part of (4.17) first observe that there is a constant β > 0
such that the distance function d does not attain a local maximum on Γβ. Furthermore
we assume β to be sufficiently small such that there is no i ∈ IT with vi ∈ Γβ. Fix
arbitrary indices i ∈ IB and j ∈ Inci. Assuming without loss of generality that the edge
ej be parametrized with πj(0) = vi, it follows that |∂jd

j| ≡ 1 and ∂2
j d

j ≡ 0 on [0, β]. Let

θ := ε̃max
j∈J

max
x∈[0,lj ]

∂2
jψ

j(x) > 0, η := min
j∈J

min
x∈[0,lj ]

ψj(x),

and define Mθ;η as in proposition (4.4). For

κ := Mθ;η + max
j∈J

max
x∈[0,lj ]

∣∣∂jψ
j(x)

∣∣ and ψ̃ := ψ + κd

we then have |∂jψ̃
j(x)| > Mθ;η for all x ∈ [0, lj]. By (4.12) it follows

Qj
ε(ψ̃

j)(x) = ε∂2
jψ

j(x)−Hj(∂jψ̃
j(x), ψ̃j(x), x)

≤ θ −Hj(∂jψ̃
j(x), ψ̃j(x), x) < 0 = Qj

ε(u
j
ε)(x) (4.18)

for all x ∈ [0, β], 0 < ε ≤ ε̃. By possibly enlarging κ we can additionally arrange that we
have

ψ̃j(β) ≥ C1, (4.19)

where C1 is the constant in (4.16). Then (4.19) and (4.11) imply

ψ̃j(β) ≥ uj
ε(β) and ψ̃j(0) ≥ uj

ε(0) for all 0 < ε < ε̃.

By this and by (4.12) the comparison lemma 4.2 implies

ψ̃j ≥ uj
ε on [0, β]. (4.20)

We finally choose κ large enough such that (4.18) - (4.20) hold for all j ∈ Inci and i ∈ IB,
whence the second part of (4.17) follows.

Now inequality (4.17) implies that there is a constant C2 > 0 with

|∂juε(vi)| < C2 (4.21)
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for all j ∈ Inci, i ∈ IB, 0 < ε < ε̃.

Step 3. Bounding |∂juε(vi)|, j ∈ Inci, uniformly in ε for all i ∈ IT .

We show that there is a constant C3 > 0 such that

|∂juε(vi)| < C3 (4.22)

for all j ∈ Inci, i ∈ IT , 0 < ε < ε̃. For this purpose we assume the contrary. Then there
is an index i ∈ IT and an index k ∈ Inci along with a sequence εn → 0 such that for
un := uεn we have

lim
n→∞

|∂kun(vi)| = ∞. (4.23)

As for each n ∈ N the Kirchhoff condition

Si(un) =
∑

j∈Inci

aij∂jun(vi) = 0

is satisfied, it follows from (4.23) that there is an index j ∈ Inci such that

lim
n→∞

aij∂jun(vi) = ∞.

Consequently there is a sequence xn ∈ ej with xn → vi such that

lim
n→∞

aij∂jun(xn) = ∞. (4.24)

Let yn := π−1
j (xn) and fix t0 > 0 such that yn +aijt ∈ [0, lj] for all t ∈ [0, t0] and all n ∈ N.

Define the functions fn ∈ C2([0, t0]) by

fn(t) := uj
n(yn + aijt), n ∈ N.

Then (4.24) reads
lim

n→∞
f ′n(0) = ∞. (4.25)

Using f ′′n(t) = ∂2
ju

j
n(yn + aijt), we conclude by (4.9) that we have for all t ∈ [0, t0] and all

n ∈ N
εnf

′′
n(t)−Hj(aijf

′
n(t), fn(t), yn + aijt) = 0

or equivalently
f ′′n(t) = ε−1

n Hj(aijf
′
n(t), fn(t), yn + aijt). (4.26)

Now set
θ := 2C1/t

2
0 > 0 and η := −C1, (4.27)

where C1 is the constant in (4.16). Let Mθ;η > 0 be the constant defined in proposition
4.4. Then (4.25) implies that there is a number n ∈ N such that |aijf

′
n(0)| = f ′n(0) > Mθ;η.

Consequently, by (4.26), (4.16), and proposition 4.4 we have

f ′′n(0) > θ, (4.28)
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provided that εn ≤ 1, which we from now on assume.

We now show that we have

f ′′n(t) ≥ θ for all t ∈ [0, t0]. (4.29)

For this purpose let A := (f ′′n)−1({x ≥ θ}) ⊆ [0, t0]. By (4.28) there is a connected
component A0 of A which contains 0. From fn ∈ C2([0, t0]) it follows that A0 is closed,
whence there is a maximal t ∈ A0. Assume (4.29) to be false. Then t < t0. As f ′n(0) >
Mθ;η and as f ′′(s) ≥ θ > 0 for all s ∈ A0, it follows by continuity that there is a
neighborhood U ⊆ [0, t0] of t such that f ′n(s) > Mθ;η for all s ∈ U . Then proposition 4.4
and (4.26) imply f ′′n(s) > θ for all s ∈ U , contradicting the maximality of t.

From (4.29) it follows that the inequality

fn(t) ≥ θt2 + f ′n(0)t+ fn(0)

holds on [0, t0]. As f ′n(0) ≥ 0, we estimate

uj
n(yn + aijt0) = fn(t0) ≥ fn(0) + θt20 > −C1 + θt20,

where C1 is the constant in (4.16). By (4.27) we obtain

uj
n(yn + aijt0) > C1,

a contradiction to (4.16). Hence (4.22) is proved.

Step 4. Bounding |∂ju
j
ε|, j ∈ J , uniformly in ε

Fix j ∈ J and set wj := ∂ju
j
ε. By (4.10) (ii) we may differentiate equation (4.9) and

obtain

ε∂2
jw

j −Hj
p(∂ju

j
ε, u

j
ε, x)∂jw

j −Hj
z (∂ju

j
ε, u

j
ε, x)w

j −Hj
x(∂ju

j
ε, u

j
ε, x) = 0. (4.30)

Observe moreover that we have Hj
z (∂ju

j
ε, u

j
ε, x) ≥ 0 due to (4.10) (iii). We also have

Hj
x(∂ju

j
ε, u

j
ε, x) = 0,

as H is isotropic. Then (4.30) simplifies to

a∂2
jw

j + b∂jw
j + cwj = 0

with bounded coefficient functions a, b, c ∈ C(R × R × (0, lj)) and c ≤ 0. Consequently,
(4.21) and (4.22) and the classical maximum principle (cf. [GT77], corollary 3.2) imply
that there is a constant C > 0 such that |∂juε| < C on [0, lj] for all 0 < ε < ε̃. Repeating
this argument for all j ∈ J shows that there is a constant C4 > 0 such that

|∂juε| < C4 on [0, lj]

for all j ∈ J and for all 0 < ε < ε̃. This completes the proof.
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Remark 4.6. Observe that in the above proof we have not invoked the conditions (4.10)
(v)-(vii). In fact they are not necessary for the convergence statement to hold. However,
as it comes to uniqueness questions in the following chapter, they play an eminent role.
Then, on the other hand, we may dispense with the isotropy condition and allow for
Hamiltonians depending on x.
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CHAPTER 5

Viscosity solutions on networks

Summary. In this chapter we propose an extension of the theory of viscosity solutions of
first order Hamilton-Jacobi equations of eikonal type to networks and derive comparison,
uniqueness, and existence results. Moreover we show that this notion of viscosity solutions
is consistent with the extended method of vanishing viscosity discussed in chapter 4.

5.1 Introduction

As we have seen, a possible approach for selecting a solution of first order Hamilton-
Jacobi equations on networks (and on unramified domains) is the method of vanishing
viscosity. However, two problems arise in this context: the problem of convergence and
the question of uniqueness. Under the condition that H be isotropic, the convergence
problem has been solved in the previous chapter. However, the question of uniqueness
has not yet been answered. An adaptation of the original uniqueness proof given by
Kružkov in [Kru75] entails certain difficulties depending on the topology of the network.
In fact, in case that the graph corresponding to the network contains cycles, a direct
adaptation of Kružkov’s method is not fruitful.

In the present chapter we attack the problem by extending the theory of viscosity solutions
based on test functions to networks, a method turning out to be both elegant and powerful.
The major task in this context is to establish the correct transition conditions solutions
are subjected to at transition vertices. As a matter of fact, these transition conditions
make up the core of our theory, as they constitute the major difference of our theory
from the classical theory of viscosity solutions. Let us elaborate here on an interesting
phenomenon concerning the transition conditions: Among other topics, we will verify the
consistency of our viscosity solution concept on networks with the method of vanishing
viscosity, which in other words means that we show that any limit function u of a sequence

59
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uε converging according to theorem 4.2 is a viscosity solution. As the functions uε satisfy
the Kirchhoff condition at transition vertices, one might expect that this also holds for
the limit function u. This, however, is not the case: whereas the Kirchhoff condition has a
certain averaging effect on the functions uε, the correct transition condition for the limit
function u will thoroughly lose this averaging property in favor of another principle which
only involves two incident branches at a given vertex instead of all of them. Although
this might seem unexpected at a first glance, it is nevertheless coherent with the idea
of vanishing viscosity (which can equivalently be interpreted as “vanishing averages”).
Compare this for instance with the results of chapter 2, where we have seen that the
distance function on an interval is the vanishing viscosity limit of C2-functions (which
all satisfy a trivial Kirchhoff condition due their C1-regularity), but possesses a singular
point (its peak), at which the Kirchhoff condition is violated.

In order to give an impression of the transition condition of the limit function, let us once
again consider the eikonal equation on a network with zero boundary conditions. Of course
the distance function d to the boundary is an obvious candidate for a solution. However, it
generally does not satisfy a Kirchhoff condition at transition vertices. Instead, it displays
a behavior which can be described to be governed by ”finding the shortest way to the
boundary” rather than ”building local averages”, a characterization which also describes
the general case, as we will see. In fact, imagine an additional edge being inserted at a
given transition vertex vi. Then the distance function at vi and on the incident edges will
only be affected, if the new edge permits a shorter connection to a boundary vertex. It is
remarkable how much this behavior deviates from the Kirchhoff condition.

Any generalization of existing concepts to new scenarios has of course to be justified
by checking if all features the success of the existing theory relies on are preserved. In
the case of the theory of viscosity solutions, these features are uniqueness, existence,
and consistency with related concepts, i. e., method of vanishing viscosity. Giving this
justification will be the main issue of the present chapter. In fact, our generalization
of viscosity solution to networks will be just as weak to yield existence, while being
sufficiently ”selective” in order to ensure uniqueness. We will also demonstrate that our
generalization of viscosity solutions is not only a technical construction, but arises as a
natural selection principle, which in particular selects the distance function as the unique
viscosity solution of the Dirichlet problem for the eikonal equation on networks.

5.2 Hamilton-Jacobi equations on networks

Throughout this chapter let Γ be a topological network with boundary index set IB 6= ∅
and boundary ∂Γ := {vi, i ∈ IB}. Our objective is to establish a weak theory of solutions
of Dirichlet problems on Γ of the form{

Hj(∂ju(x), u(x), x) = 0 for all x ∈ ej, j ∈ J ,
u(vi) = gi for all i ∈ IB.

(5.1)
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Here we make use of the following simplified notation

Hj(∂ju(x), z, x) := Hj(∂ju
j(π−1

j (x)), z, π−1
j (x)) (5.2)

for all x ∈ ēj, j ∈ J , and all z ∈ R, which we will use in the sequel whenever confusion
is ruled out. Moreover, throughout this chapter we assume that the Hamiltonian H =
(Hj)j∈J be of eikonal type, i.e. that it satisfies the conditions (4.10).

Example 5.1. Consider the eikonal equation with zero boundary data on Γ given by{
(∂ju)

2 − 1 = 0 on ej, j ∈ J,
u(vi) = gi for all i ∈ IB.

Here we have Hj(p, z, x) := p2 − 1, and H = (Hj)j∈J clearly satisfies (4.10).

Remark 5.1. In the case of the eikonal equation it is obvious that a smooth solution
of (5.1) will not exist in general. Furthermore it is equally unlikely that the Kirchhoff
condition is satisfied. This condition rather does not seem to do justice to the structural
properties of viscosity solutions in the majority of cases. So by now, continuity is the
only property of a possible solution candidate for (5.1) which is reasonable to expect. All
other properties will be established in the sequel.

5.3 Preliminaries and definitions

Before giving the definition of viscosity solutions, let us provide some useful terminology
capturing and simplifying the test function technique we are going to apply in the sequel.
Recall that ej := {πj((0, lj))}, j ∈ J , and ēj := {πj([0, lj])}, j ∈ J , denote the open and
closed edges, respectively (see definition 4.4).

Definition 5.1. Let ϕ ∈ C(Γ).

(i) Let j ∈ J and x ∈ ej. We say that ϕ is differentiable at x, if ϕj is differentiable at
π−1

j (x).

(ii) Let i ∈ IT and j, k ∈ Inci, j 6= k. We say that ϕ is (j, k)-differentiable at vi, if we have

aij∂jϕ(vi) + aik∂kϕ(vi) = 0,

where (aij) is the oriented incidence matrix of Γ as defined by (4.1).

Definition 5.2. Let u : Γ → R and ϕ ∈ C(Γ).

(i) Let j ∈ J and x ∈ ej. We call ϕ an upper (lower) test function of u at x, if ϕ is
differentiable at x and if u− ϕ attains a local maximum (minimum) at x.

(ii) Let i ∈ IT and j, k ∈ Inci. We call ϕ an upper (lower) (j, k)-test function of u at vi,
if ϕ is (j, k)-differentiable at vi and if u− ϕ attains a local maximum (minimum) at vi.
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Now we are ready to introduce viscosity solutions on networks. Note that the condition
on the open edges ej, j ∈ J , is identical with the classical test function condition given in
definition 2.3, whereas its extension to the transition vertices is the essential new aspect.

Let USC(Γ) and LSC(Γ) denote the set of all upper and lower semicontinuous functions
u : Γ → R, respectively.

Definition 5.3. Let f : Γ → R and let u ∈ USC(Γ).

We say that u satisfies the viscosity subsolution condition (associated with H and f) at
x ∈ Γ0, if the following conditions (i) and (ii) hold.

(i) If x ∈ ej, j ∈ J , we have

Hj(∂jϕ(x), u(x), x) ≤ f(x) (5.3)

for all upper test functions ϕ of u at x.

(ii) If x = vi, i ∈ IT , then for any j, k ∈ Inci, j 6= k, the inequality (5.3) holds for all
upper (j, k)-test functions ϕ of u at vi.

Alternatively, we say that u satisfies the formal relation

H(∂u(x), u(x), x) ≤ f(x) (5.4)

in the viscosity sense.

Now let u ∈ LSC(Γ).

We say that u satisfies the viscosity supersolution condition (associated with H and f) at
x ∈ Γ0, if the following conditions (iii) and (iv) hold.

(iii) If x ∈ ej, j ∈ J , we have

Hj(∂jϕ(x), u(x), x) ≥ f(x) (5.5)

for all lower test functions ϕ of u at x.

(iv) If x = vi, i ∈ IT , then for each j ∈ Inci there is an index k ∈ Inci, k 6= j, such that
inequality (5.5) holds for all lower (j, k)-test functions ϕ of u at vi. We call k an i-feasible
index for j (with respect to u).

Alternatively, we say that u satisfies the formal relation

H(∂u(x), u(x), x) ≥ f(x) (5.6)

in the viscosity sense.

We call u ∈ USC(Γ) (u ∈ LSC(Γ)) a viscosity sub- (super-) solution of

H(∂u(x), u(x), x) = f(x) (5.7)

on Γ, if it respectively satisfies (5.4) and (5.6) in the viscosity sense for all x ∈ Γ0.
Furthermore, u ∈ C(Γ) is said to be a viscosity solution of (5.7), if it is both a viscosity
sub- and a supersolution of (5.7).
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Remark 5.2. Note the asymmetry of the definition of viscosity sub- and supersolutions
at transition vertices and compare it with the properties of the distance function on
networks. The existence of an i-feasible index k for each index j ∈ Inci reflects the idea
“that there is always a shortest way to the boundary”.

Remark 5.3. Let i ∈ IT , j, k ∈ Inci, and let ϕ ∈ C(Γ) be (j, k)-differentiable at vi. By
definition 5.1 and by (4.10) (vi) and (vii) we then have

Hj(∂jϕ(vi), s, vi) = Hk(∂kϕ(vi), s, vi)

for all s ∈ R. This symmetry will play a crucial role in the sequel whenever a function
satisfies a viscosity sub- or supersolution condition at transition vertices according to
definition 5.3 (ii) and (iv).

The following result states that the pointwise maximum (minimum) over a finite set of
viscosity subsolutions (supersolutions) is itself a viscosity subsolution (supersolution).

Proposition 5.1. Let x ∈ Γ0 and let u1, u2 ∈ USC(Γ) (u1, u2 ∈ LSC(Γ)) satisfy the
viscosity sub- (super-) solution condition at x. Then v := max{u1, u2} (v := min{u1, u2})
satisfies the viscosity sub- (super-) solution condition at x.

Proof. We only treat the case x = vi, i ∈ IT , as the case x ∈ ej, j ∈ J follows from similar
(and simpler) arguments. First let u1, u2 ∈ USC(Γ) satisfy the viscosity subsolution
condition at x and set v := max{u1, u2}. Observe that v ∈ USC(Γ). Now let j, k ∈ Inci,
j 6= k, and let ϕ be an upper (j, k)-test function of v at x. Then v(x) = ul(x) for l = 1 or
l = 2, whence ϕ is an upper (j, k)-test function of ul at x. It follows

Hj(∂jϕ(x), v(x), x) = Hj(∂jϕ(x), ul(x), x) ≤ 0, (5.8)

whence v satisfies the viscosity subsolution condition at x.

Secondly, let u1, u2 ∈ LSC(Γ) satisfy the viscosity supersolution condition at x and set
v := min{u1, u2}. Observe that v ∈ LSC(Γ). Next note that there is an index l ∈ {1, 2}
such that v(x) = ul(x). Let j ∈ Inci and let k ∈ Inci\{j} be an i-feasible index for j with
respect to ul. Furthermore, let ϕ be a lower (j, k)-test function of v (and thus of ul) at x.
It follows

Hj(∂jϕ(x), v(x), x) = Hj(∂jϕ(x), ul(x), x) ≥ 0, (5.9)

whence k is i-feasible for j also with respect to v, whence v satisfies the viscosity super-
solution condition at x.

We now concretize boundary value problem (5.1) in terms of definition 5.3 and pose the
question if there is a unique function u ∈ C(Γ) such that{

H(∂u(x), u(x), x) = 0 on Γ0 in the viscosity sense
u(vi) = gi for all i ∈ IB.

(5.10)
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Such a function will be called solution of (5.10).

Our concerns in the following sections are with showing both existence and uniqueness of
solutions of (5.10). Moreover, we will demonstrate that the notion of viscosity solutions on
network arises naturally as limits of the vanishing viscosity method discussed in chapter
4.

5.4 Uniqueness

We show that the notion of viscosity solution defined above is sufficiently strong to ensure
that a solution of (5.10) is unique, whenever it exists. We remark that the major part
of the proof of this statement consists in establishing a comparison result, which can
be considered as the core of a variety of different uniqueness proofs. In fact, once we
have proven the comparison result, then the derivation of the uniqueness statement is
a matter of a straightforward adaptation of existing techniques in the literature, among
which we have decided to present a modified uniqueness proof due to H. Ishii for the sake
of completeness.

Before getting started we have to impose an additional constraint on the Hamiltonian H.
Observe that by virtue of the conditions (4.10) for each p ∈ R and for each z ∈ R the
mapping

hp,z : x 7→ Hj(p, z, π−1
j (x)) for all x ∈ ēj, j ∈ J,

constitutes a well-defined function hp,z ∈ C2(Γ). Now we demand that there is a positive
constant C0 <∞ such that

|∂jh
j
p,z(x)| ≤ C0 for all x ∈ ej, j ∈ J , p ∈ R, and z ∈ R. (5.11)

This condition is assumed to hold throughout the remainder of the present chapter.

Lemma 5.1. Let f ∈ C(Γ) with f(x) < 0 for all x ∈ Γ and suppose that we have two
functions u ∈ USC(Γ) and v ∈ LSC(Γ) such that

H(∂u(x), u(x), x) ≤ f(x) and H(∂v(x), v(x), x) ≥ 0 (5.12)

in the viscosity sense for all x ∈ Γ0. Assume u ≤ v on ∂Γ. Then we have u ≤ v on Γ.

Proof. Assume the contrary, i.e. assume that there exists a point z ∈ Γ0 with u(z) > v(z).
We derive a contradiction.

As u and v are upper and lower semicontinuous, respectively, we have

M := max{sup
Γ
u,− inf

Γ
v, 1} <∞.
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Choose a function β ∈ C∞(R) with 0 ≤ β ≤ 1, β(0) = 1, β′(0) = 0, and such that
β(x) = 0 if |x| ≥ 1. Recall that d(·, ·) denotes the path metric on Γ. For ε > 0 we then
define the function

Φ : Γ× Γ → R by Φ(x, y) := u(x)− v(y) + 3Mβ(ε−1d(x, y)).

Note that Φ is upper semicontinuous on the compact set Γ2 = Γ×Γ. Therefore it attains
its maximum at some point (p, q) ∈ Γ2. We claim that we have

d(p, q) ≤ ε. (5.13)

In fact, if this were not the case, we would have

Φ(z, z)− Φ(p, q) = u(z)− v(z) + 3M − u(p) + v(q) ≥ 3M − 2M = M > 0

by the definition of M , a contradiction to the choice of (p, q).

For any ε > 0 we define the quantity

mε := sup{u(x)− v(y) | d(x, y) ≤ ε, (x, y) ∈ Γ2\Γ2
0}.

As the function (x, y) 7→ u(x) − v(y), (x, y) ∈ Γ2, is upper semicontinuous, and as we
have u ≤ v on ∂Γ, it follows limε→0mε ≤ 0. Hence we can arrange mε < u(z) − v(z) by
choosing ε > 0 sufficiently small. Then the definition of mε implies Φ(z, z) > Φ(x, y) for
any choice (x, y) ∈ Γ2\Γ2

0 with d(x, y) ≤ ε. Consequently, (p, q) ∈ Γ2
0.

Next choose m ∈ R with 0 < m < −maxx∈Γ f(x). If necessary, we now decrease ε > 0
such that we have εC0 ≤ m/2, where C0 is the constant defined in (5.11), and such that
there is a unique path P of length d(p, q) in Γ connecting p and q, which runs through at
most one vertex vi, i ∈ I. This is possible by (5.13). Then the situation may be described
by one of the following cases.

Case 1. There are indices i ∈ I and j, k ∈ Inci such that p ∈ ej and q ∈ ek and such that
P runs through vi. Set dy := d(·, y) for any y ∈ Γ and define the functions ϕq, ϕp ∈ C(Γ)
by

ϕq : x 7→ 3Mβ(ε−1dq(x)) and ϕp : x 7→ 3Mβ(ε−1dp(x)). (5.14)

Clearly, dq and dp (and hence ϕq and ϕp) are differentiable at p and q, respectively. In
fact, setting

p̃ := π−1
j (p) and q̃ := π−1

k (q) (5.15)

we have
∂jd

j
q(p̃) = aij and ∂kd

k
p(q̃) = aik,

where (aij) is the oriented incidence matrix as defined in (4.1). Consequently we have

∂jϕ
j
q(p̃) = 3M∂j[β(ε−1dj

q)]|x=p̃ = aijη (5.16)
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and
∂kϕ

k
p(q̃) = 3M∂k[β(ε−1dk

p)]|x=q̃ = aikη, (5.17)

where
η := 3Mε−1β′(ε−1d(p, q)). (5.18)

Now observe that by the choice of p and q the function u+ϕq attains a local maximum at
p, whence −ϕq is an upper test function of u at p. By (5.12) and (5.16) we thus deduce

f(p) ≥ Hj(−∂jϕ
j
q(p̃), u

j(p̃), p̃) = Hj(−aijη, u
j(p̃), p̃). (5.19)

Similarly observe that −v+ϕp attains a local maximum at q, implying that v−ϕp attains
a local minimum at q. Hence ϕp is a lower test function of v at q, and by (5.12) and (5.17)
we conclude

0 ≤ Hk(∂kϕ
k
p(q̃), v

k(q̃), q̃) = Hk(aikη, v
k(q̃), q̃). (5.20)

Observe that by (5.19) and by the definition of m we have

0 > f(p) +m ≥ Hj(−aijη, u
j(p̃), p̃) +m =: T1. (5.21)

As we have |p̃ − π−1
j (vi)| = d(p, vi) ≤ ε and εC0 < m/2, relation (5.11) and the mean

value theorem imply

T1 ≥ Hj(−aijη, u
j(p̃), π−1

j (vi)) +m/2 =: T2. (5.22)

Since |aij| = |aik| and π−1
j (vi) = π−1

k (vi), we furthermore have by (4.10) (vi) and (vii)

T2 = Hk(aikη, u
j(p̃), π−1

k (vi)) +m/2. (5.23)

Applying the mean value theorem once more, we estimate

T2 ≥ Hk(aikη, u
j(p̃), q̃) =: T3. (5.24)

By the definition of p and q we have

uj(p̃)− vk(q̃) = u(p)− v(q) ≥ u(z)− v(z) > 0,

and we invoke (4.10) (iii) to conclude

T3 ≥ Hk(aikη, v
k(q̃), q̃) ≥ 0. (5.25)

The last inequality follows by (5.20). Then the successive combination of (5.21) - (5.25)
yields a contradiction.

Case 2. There are indices i ∈ I and j ∈ Inci such that q = vi and p ∈ ej. As q ∈ Γ0, we
have i ∈ IT . Setting p̃ and q̃ as in (5.15), we have

∂jd
j
p(q̃) = −aij and ∂kd

k
p(q̃) = aik for all k ∈ Inci, k 6= j. (5.26)
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Define ϕq and ϕp as in (5.14) and η as in (5.18). Similar as in (5.16) we compute the
one-sided differentials

∂jϕ
j
p(q̃) = −aijη and ∂kϕ

k
p(q̃) = aikη for all k ∈ Inci, k 6= j.

for all l ∈ Inci. Invoking (5.26) we obtain

aij∂jϕp(q̃) + aik∂kϕp(q̃) = (−a2
ij + a2

ik)η = 0 (5.27)

for all k ∈ Inci, k 6= j. Hence ϕp is (j, k)-differentiable at q for all k ∈ Inci, k 6= j. Exactly
as in (5.16) we moreover conclude

∂jϕ
j
q(p̃) = 3M∂j[β(ε−1dj

q)]|x=p̃ = aijη, (5.28)

and, by (5.12),

f(p) ≥ Hj(−aijη, u
j(p̃), p̃), (5.29)

as −ϕq is an upper test function of u at p ∈ ej. On the other hand, by (5.12) and according
to definition 5.3 (iv) there is an i-feasible index k0 ∈ Inci, k0 6= j, for j. As v−ϕp attains
a local minimum at q, it follows by (5.27) that ϕp is a lower (j, k0)-test function of v at
q, whence we have

0 ≤ Hj(∂jϕ
j
p(q̃), v

j(q̃), p̃) = Hj(−aijη, v
j(q̃), p̃). (5.30)

Using the mean value theorem, condition (4.10) (iii), and (5.11) we derive a contradiction
from (5.29) and (5.30) similar to case 1.

Case 3. There are indices i ∈ I and j ∈ Inci such that p = vi and q ∈ ej. We proceed as
in case 2, with the difference that definition 5.3 (ii) has to be invoked instead of definition
5.3 (iv). Observe, however, that the first is more restrictive than the latter, whence no
extra arguments are required.

Case 4. There is an index j ∈ J such that p, q ∈ ej, p 6= q. With p̃ and q̃ as in (5.15) we
have

∂jd
j
q(p̃) = −∂jd

j
p(q̃), implying ∂jϕ

j
q(p̃) = −∂jϕ

j
p(q̃).

As the functions −ϕq and ϕp are upper and lower test functions for u and v at p and q,
respectively, we obtain

Hj(∂jϕ
j
q(p̃), u

j(p̃), p̃) < f(p) (5.31)

and

0 ≤ Hj(−∂jϕ
j
p(q̃), v

j(q̃), q̃) = Hj(∂jϕ
j
q(p̃), v

j(q̃), q̃) (5.32)

by definition 5.3. Using the mean value theorem, condition (4.10) (iii), and (5.11), we
derive a contradiction from (5.31) and (5.32) similar as in the previous cases.
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Case 5. In this last case we assume that p and q coincide. If they coincide on a vertex vi,
i ∈ I, it follows i ∈ IT , and by the fact that we have β′(0) = 0 it follows

∂jϕ
j
p(π

−1
j (vi)) = ∂jϕ

j
q(π

−1
j (vi)) = 0

for all j ∈ Inci. In particular, for each choice of j, k ∈ Inci, j 6= k, both −ϕq and ϕp are
upper and lower (j, k)-test functions of u and v at vi, respectively, and a contradiction
similar to the previous cases can be derived.

The case p = q ∈ ej, j ∈ J , can be treated analogously.

As we have already mentioned, a uniqueness result based upon the comparison lemma
5.1 can be established by various methods, among which we have chosen to present an
adaptation of an elegant proof due to H. Ishii [Ish87a] making explicit use of the convexity
condition (4.10) (v).

Lemma 5.2. Let u ∈ USC(Γ), v ∈ LSC(Γ) be a viscosity sub- and supersolution, respec-
tively, of

H(∂u(x), u(x), x) = 0 on Γ, (5.33)

with u(vi) ≤ v(vi) for all i ∈ IB. Furthermore assume that there is a lower bound M ∈ R
such that M < u on Γ. Then u ≤ v on Γ.

Proof. Define for each θ ∈ [0, 1] the function uθ ∈ USC(Γ) by

uθ(x) := θu(x) + (1− θ)M, x ∈ Γ.

Clearly we have
uθ < u on Γ for all 0 ≤ θ < 1. (5.34)

Now choose a compact set K ⊂ R such that uθ(x) ∈ K for all x ∈ Γ and all θ ∈ [0, 1],
which is possible as u is bounded from below. Due to conditions (4.10) (i), (ii), and (vii)
we then can indicate a function h ∈ C(Γ) with h < 0 on Γ and

Hj(0, z, x) ≤ hj(x) (5.35)

for all x ∈ [0, lj], j ∈ J , z ∈ K.

Fix θ ∈ (0, 1). We show that we have

H(∂uθ(x), uθ(x), x) ≤ (1− θ)h(x) in the viscosity sense for all x ∈ Γ0. (5.36)

First assume x ∈ ej for some j ∈ J . Let ϕ ∈ C(Γ) be an upper test function of u at
x. Setting ϕθ := θϕ + (1 − θ)M and x̃ := π−1

j (x) we obtain by means of the convexity
condition (4.10) (v), and by virtue of (5.34), (5.35), and (4.10) (iii)

Hj(∂jϕ
j
θ(x̃), u

j
θ(x̃), x̃) ≤ θHj(∂jϕ

j(x̃), uj
θ(x̃), x̃) + (1− θ)Hj(0, uj

θ(x̃), x̃)

≤ θHj(∂jϕ
j(x̃), uj(x̃), x̃) + (1− θ)hj(x̃). (5.37)
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As u is a viscosity subsolution and as ϕ is an upper test function of u at x, we have

Hj(∂jϕ
j(x̃), uj(x̃), x̃) ≤ 0,

whence we further conclude from (5.37)

Hj(∂jϕθ(x̃), u
j
θ(x̃), x̃)) ≤ (1− θ)hj(x̃).

Secondly, assume x = vi for some i ∈ IT . Fix any two indices j, k ∈ Inci, j 6= k, let
ϕ be an upper (j, k)-test function of u at x, and set x̃ := π−1

j (x). As u is a viscosity
subsolution, we have

Hj(∂jϕ
j(x̃), uj(x̃), x̃) ≤ 0.

Moreover, we derive (5.37) as above. It follows

Hj(∂jϕ
j
θ(x̃), u

j
θ(x̃), x̃) ≤ (1− θ)hj(x̃),

whence, as the choice of j and k was arbitrary, (5.36) is shown.

By (5.34) we have uθ ≤ v on ∂Γ. As v is a viscosity supersolution of (5.33) and as (5.36)
holds, we now apply lemma 5.1 with f := (1 − θ)h and obtain uθ ≤ v for all θ ∈ (0, 1).
Letting θ tend to 1 completes the proof.

Corollary 5.1. Let u, v be solutions of boundary value problem (5.10). Then u ≡ v.

5.5 Existence

Having established the uniqueness of viscosity solutions on networks, we now turn to the
question of their existence. The key idea is to apply a Perron method (cf. [Ish87b]) as
in chapter 3 to construct a viscosity solution. Roughly speaking, a viscosity solution is
given by the pointwise supremum over a suitable class of viscosity subsolutions of (5.10).
Unfortunately, the pointwise supremum over a class of upper semicontinuous functions is
not automatically upper semicontinuous. Hence we have to take a technical detour by
considering the upper semicontinuous envelope of the supremum function.

The proof consists of two parts: for any given class of viscosity subsolutions it first has
to be shown that (the upper semicontinuous envelope of) the pointwise supremum is
contained in this class. Afterward it has to be verified that the pointwise supremum
over the class of those viscosity subsolutions, which stay below the boundary data, is
a viscosity supersolution, too. The latter case is treated indirectly, by assuming the
contrary and showing that one then can construct a strictly larger function within this
class, contradicting to the pointwise supremal property.

We recall the definition of semicontinuous envelopes.
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Definition 5.4. Let u : Γ → R. Define the functions u?, u? : Γ → [−∞,+∞] by

u?(x) := lim
r→0

sup{u(y) | d(x, y) ≤ r} and u?(x) := lim
r→0

inf{u(y) | d(x, y) ≤ r}.

We respectively call u? and u? the upper and lower semicontinuous envelope of u.

Remark 5.4. Observe that u? and u? are upper and lower semicontinuous, respectively.
Furthermore, u?(x) ≤ u ≤ u?(x) for all x ∈ Γ. However, as u? and u? may attain the values
+∞ and −∞, they are in general not contained in USC(Γ) and LSC(Γ), respectively.

Lemma 5.3. Let V be an arbitrary set of viscosity subsolutions of

H(∂u(x), u(x), x) = 0 on Γ. (5.38)

Define the function u(x) := supv∈V v(x) for all x ∈ Γ and assume u?(x) < ∞ for all
x ∈ Γ. Then u? is a viscosity subsolution of (5.38).

Proof. Observe that the assumption u? <∞ implies u? ∈ USC(Γ). The main issue of the
proof is to verify that u? satisfies

H(∂u?(x), u?(x), x) ≤ 0

in the viscosity sense for all x ∈ Γ0. We will, however, only treat the case x = vi, i ∈ IT , as
the simpler case x ∈ ej, j ∈ J , is essentially based upon the same (or simpler) arguments.

Accordingly, assume x = vi, i ∈ IT , fix any j, k ∈ Inci, j 6= k, and suppose that ϕ ∈ C(Γ)
be an upper (j, k)-test function of u? at x. Observe that we may assume without restriction
that ϕ be continuously differentiable in a neighborhood of x. We have to show

Hj(∂jϕ(x), u?(x), x) ≤ 0. (5.39)

For this purpose we introduce the auxiliary function

ϕδ : Γ → R with ϕδ(y) := ϕ(y) + δ(d(x, y))2, δ > 0. (5.40)

Since ϕ is an upper (j, k)-test function of u? at x, there is a radius r > 0 such that
u? − ϕ attains a global maximum on B̄r(x) at x. Moreover, observe that this maximum
is also global with respect to B̄ := B̄r(x) ∩ (ēj ∪ ēk). Then the function ϕδ also attains
a maximum at x, which is global with respect to B̄. Next let (rl)l∈N be a sequence with
0 < rl < r for all l ∈ N and liml→∞ rl = 0. Note that we can indicate a sequence (xl)l∈N
with xl ∈ Bl := B̄rl

(x) for all l ∈ N such that supBl
u− u(xl) < 1/l. By the definition of

u, for each l ∈ N there is a function ul ∈ V such that u(xl)− ul(xl) < 1/l. It follows

sup
Bl

u ≥ ul(xl) > u(xl)− 1/l > sup
Bl

u− 2/l,
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whence

u?(x) = lim
l→∞

sup
Bl

u = lim
l→∞

ul(xl). (5.41)

As B̄ is compact, for any l ∈ N the upper semicontinuous function

y 7→ ul(y)− ϕ(y)− 2δ(d(x, y))2

attains a global maximum with respect to B̄ at some point yl ∈ B̄. By extracting a
subsequence, if necessary, we assume that yl → z as l → ∞ for some z ∈ B̄. By xl ∈ B̄
for all l ∈ N and by the maximum property of the points yl, l ∈ N, we obtain

ul(xl)− ϕ(xl)− 2δ(d(x, xl))
2 ≤ ul(yl)− ϕ(yl)− 2δ(d(x, yl))

2 (5.42)

for all l ∈ N. By the choice of the points xl we have liml→∞ xl = x, whence we get by
taking the limes inferior of (5.42) and invoking (5.41)

u?(x) = lim inf
l→∞

ul(xl) ≤ lim inf
l→∞

ul(yl)− ϕ(z) + ϕ(x)− 2δ(d(x, z))2. (5.43)

As u? − ϕδ attains a global maximum with respect to B̄ at x, we have

u?(z)− ϕ(z)− δ(d(x, z))2 ≤ u?(x)− ϕ(x). (5.44)

Adding (5.43) and (5.44) yields

u?(z) ≤ lim inf
l→∞

ul(yl)− δ(d(x, z))2. (5.45)

Moreover, definition 5.4 implies that we have

lim inf
l→∞

ul(yl) ≤ lim sup
l→∞

ul(yl) ≤ u?(z). (5.46)

By (5.45) and (5.46) it follows d(x, z) = 0, and thus

lim
l→∞

yl = x. (5.47)

Consequently, we may truncate the sequence (yl)l∈N such that all yl lie in the interior of
B̄. Furthermore, (5.45) and (5.46) imply

lim sup
l→∞

ul(yl) ≤ u?(x) ≤ lim inf
l→∞

ul(yl),

and, consequently,

lim
l→∞

ul(yl) = u?(x). (5.48)

Now fix l ∈ N. We distinguish two cases.
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Case 1. We have yl 6= x. Then yl ∈ em with either m = j or m = k. By the fact that yl

lies in the interior of B̄ and by the definition of yl, the function ul − ϕ2δ attains a local
maximum at yl, where

ϕ2δ : y → ϕ+ 2δ(d(x, y))2.

Note that ϕ2δ is differentiable at yl with

∂mϕ2δ(yl) = ∂mϕ(yl) + 4δaimd(x, yl).

Hence it is an upper test function of ul at yl. As ul satisfies the viscosity subsolution
condition at yl, it follows

Hm(∂mϕ(yl) + 4δaimd(x, yl), ul(yl), yl) ≤ 0. (5.49)

Case 2. We have yl = x. Then we have

∂mϕ2δ(yl) = ∂mϕ(yl) for m = j and m = k.

As ϕ is (j, k)-differentiable at yl, it follows that ϕ2δ is (j, k)-differentiable at yl. Hence
ϕ2δ is an upper (j, k)-test function of ul at yl. As ul satisfies the viscosity subsolution
condition at yl, it follows

Hj(∂jϕ(yl), ul(yl), yl) ≤ 0. (5.50)

Now let l → ∞. By virtue of (4.10) (i) and (vii), the relations (5.49) and (5.50) in
combination with (5.47), (5.48) yield

Hj(∂jϕ(x), u?(x), x) ≤ 0.

As j, k ∈ Inci, j 6= k, have been chosen arbitrarily, it follows that u? satisfies the viscosity
subsolution condition at x. Hence u? is a viscosity subsolution of (5.38).

Theorem 5.1. Assume that there is a viscosity subsolution w ∈ USC(Γ) and a viscosity
supersolution W ∈ LSC(Γ) of

H(∂u(x), u(x), x) = 0 on Γ (5.51)

satisfying the boundary condition w?(vi) = w(vi) = W ?(vi) = W (vi) = gi for all i ∈ IB.
Furthermore assume that w is uniformly bounded by below on Γ.

Define the function u : Γ → R by u(x) := supv∈X v(x), where

X = {v ∈ USC(Γ) is a viscosity subsolution of (5.51) with w ≤ v ≤ W on Γ}.

Then u is a solution of (5.10).
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Proof. We first show that u is a viscosity subsolution of (5.51) with u(vi) = gi for all
i ∈ IB. For this purpose observe that we have

gi = w?(vi) ≤ u?(vi) ≤ u(vi) ≤ u?(vi) ≤ W ?(vi) = gi ∀ i ∈ IB, (5.52)

implying u?(vi) ≤ u(vi) ≤ u?(vi) = gi for all i ∈ IB. By lemma 5.3 it follows that u?

is a viscosity subsolution of (5.51). Furthermore, as the viscosity subsolution u? and the
viscosity supersolution W coincide on ∂Γ and as u? is uniformly bounded by below, we
conclude u? ≤ W on Γ by lemma 5.2. Consequently, we have u? ∈ X and therefore u? ≤ u
on Γ by the definition of u. As we furthermore have u? ≥ u by the definition of upper
semicontinuous envelope, we find

u = u? on Γ. (5.53)

Suppose that u? is a viscosity supersolution of (5.51). Then we apply lemma 5.2 to
conclude u? ≥ u, implying u? = u by means of the definition of lower semicontinuous
envelope, and the theorem is proved.

It therefore remains to show that u? is a viscosity supersolution of (5.51). We apply an
indirect argument: If u? does not satisfy the supersolution condition at some point y ∈ Γ0,
then we construct a function v ∈ X with v(y?) > u(y?) for some y? ∈ Γ0, contradicting the
definition of u. As in the proof of lemma 4.2, we restrict ourselves to the case y = vi for
some i ∈ IT , as the case y ∈ ej, j ∈ J , can be treated by similar (and simpler) arguments.

Accordingly, assume that u? does not satisfy the supersolution condition at some point
y = vi for some i ∈ IT . Then by definition 5.3 (iv) there is an index j ∈ Inci for which
there does not exist any i-feasible index k ∈ Inci, k 6= j. Hence for each k ∈ K := Inci\{j}
there is a lower (j, k)-test function ϕk of u? at y with

Hj(∂jϕk(y), u?(y), y) < 0. (5.54)

Observe that without loss of generality we may assume

ϕk(y) = u?(y) (5.55)

for all k ∈ K. We also may assume that the functions ϕk, k ∈ K, are continuously
differentiable in a neighborhood of y. In view of remark 5.3, relations (5.54) and (5.55)
imply

Hj(∂jϕk(y), ϕk(y), y) = Hk(∂jϕk(y), ϕk(y), y) < 0. (5.56)

Furthermore, as for each k ∈ K the function ϕk is a lower (j, k)-test function of u? at y, the
function u?−ϕk attains a local minimum at y. Note that we may assume these minima to
be strict by possibly adding to each ϕk a quadratic function of the form x 7→ αk(d(x, y))

2

for some αk < 0. Then there is a t > 0 with B̄t(y) ⊂ (∪j∈Inci
ej) ∪ {y} such that

(u? − ϕk)(x) > 0 for all k ∈ K and all x ∈ B̄t(y)\{y}. (5.57)
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Furthermore we can assume t > 0 to be sufficiently small such that for all k ∈ K we have

Hj(∂jϕk(x), ϕk(x), x) < 0 and Hk(∂kϕk(x), ϕk(x), x) < 0 ∀x ∈ B̄t(y). (5.58)

This is possible by (5.56) and by the continuity of H, ϕk, ∂kϕk, and ∂jϕk for all k ∈ K.
By compactness of the set ∂Bt(y) it then follows from (5.57) that there is a ξ > 0 such
that

u?(x)− ϕk(x) > ξ for all k ∈ K and all x ∈ ∂Bt(y). (5.59)

By (5.58) and the continuity of H we may furthermore assume ξ > 0 to be sufficiently
small to make the relations

Hj(∂jϕk(x), ϕk(x) + ξ, x) < 0 and Hk(∂kϕk(x), ϕk(x) + ξ, x) < 0 (5.60)

hold for all x ∈ B̄t(y) and all k ∈ K. For the functions ϕ̃k := ϕk + ξ, k ∈ K, it then
follows

ϕ̃k(y) = ϕk(y) + ξ = u?(y) + ξ > u?(y). (5.61)

By definition of lower semicontinuous envelope there is a sequence yn → y, yn ∈ Γ0, such
that limn→∞ u(yn) = u?(y). Therefore, by (5.61) and by the continuity of ϕ̃k, k ∈ K, we
can indicate a point y? ∈ Bt(y) such that

ϕ̃k(y
?) > u(y?). (5.62)

Observe also that by (5.59) we have

u(x) ≥ u?(x) > ϕ̃k(x) ∀x ∈ ∂Bt(y). (5.63)

We now define the function

ṽ : {y} ∪
⋃

k∈Inci

ek → R, ṽ(x) :=

{
maxk∈K ϕ̃k(x) if x ∈ ēj

ϕ̃k(x) if x ∈ ek, k ∈ K.

Let us verify the viscosity subsolution condition of ṽ for all x ∈ B̄t(y). First observe that
ṽ is continuous at each x ∈ B̄t(y). Then we distinguish two cases.

Case 1. Let x ∈ B̄t(y) ∩ el for some l ∈ Inci. If l ∈ K, by (5.60) we have

H l(∂lϕ̃l(x), ϕ̃l(x), x) < 0. (5.64)

As ϕ̃l is continuously differentiable at x, (5.64) immediately implies the viscosity subso-
lution condition of ϕ̃l at x. By the definition of ṽ it follows that ṽ satisfies the viscosity
subsolution condition at x. On the other hand, if l = j, by (5.60) we have

H l(∂lϕ̃k(x), ϕ̃k(x), x) < 0
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for each k ∈ K, which immediately implies the viscosity subsolution condition of ϕ̃k at x
for each k ∈ K. The viscosity subsolution condition of ṽ at x then follows from proposition
5.1 and the definition of ṽ.

Case 2. Let x = y. First let l,m ∈ K, l 6= m. Assume that there is an upper (l,m)-test
function ψ of ṽ at x, as otherwise there is nothing to show. Set

dl := ail∂lψ(x), dm := aim∂mψ(x), el := ail∂lϕ̃l(x), em := aim∂mϕ̃m(x).

As ψ is (l,m)-differentiable at x, we have dl + dm = 0. If dl ≤ 0, we have dl ≥ el by the
definition of ṽ and by the fact that ṽ − ψ attains a local maximum at x. Consequently,
|dl| ≤ |el|. Similarly, if dm ≤ 0, we have dm ≥ em, implying |dm| ≤ |em|. Altogether we
have

|∂lψ(x)| = |∂mψ(x)| ≤ max{|∂lϕ̃l(x)|, |∂mϕ̃m(x)|}. (5.65)

By (4.10) (i), (v), (vi), and (vii) the function

h : R → R, h(p) := Hs(p, ṽ(x), x)), s ∈ Inci,

is independent of s, symmetric at p = 0 and strictly increasing in |p|. By (5.60) we have

h(∂lϕ̃l(x)) < 0 and h(∂mϕ̃m(x)) < 0.

Then by (5.65) it follows

H l(∂lψ(x), ṽ(x), x) = h(∂lψ(x)) ≤ max{h(∂lϕ̃l(x)), h(∂mϕ̃m(x))} < 0.

Now let l ∈ K, let ψ be an upper (j, l)-test function of ṽ at x, and set

dj := aij∂jψ(x), dl := ail∂lψ(x), ej := max
k∈K

aij∂jϕ̃k(x), el := ail∂lϕ̃l(x).

As above we derive |dj| ≤ |ej| whenever dj ≤ 0, as well as |dl| ≤ |el| whenever dl ≤ 0.
Hence we arrive at

|∂jψ(x)| = |∂lψ(x)| ≤ max{max
k∈K

|∂jϕ̃k(x)|, |∂lϕ̃l(x)|}. (5.66)

Then (5.60) and (5.66) imply

Hj(∂jψ(x), ṽ(x), x) = h(∂jψ(x)) ≤ max{max
k∈K

h(∂jϕ̃k(x)), h(∂lϕ̃l(x))} < 0.

Hence we have shown that ṽ satisfies the viscosity subsolution condition for all x ∈ B̄t(y).
We now define the function v : Γ → R by

v(x) :=

{
max{ṽ(x), u(x)} if x ∈ B̄t(y)
u(x) if x ∈ Γ\B̄t(y)
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and show that v ∈ X. For this purpose first observe that the maximum of finitely many
functions, which are upper semicontinuous at a given point, is also upper semicontinuous
at this point. As the function ṽ is continuous on B̄t(y), and as u is upper semicontinuous
by (5.53), it follows that v is upper semicontinuous on Bt(y). By (5.63) and by the
definition of ṽ we then conclude that v is upper semicontinuous on Γ. Moreover, from
proposition 5.1 it follows that v satisfies the viscosity subsolution condition at each x ∈ Γ0,
as both ṽ and u satisfy the viscosity subsolution condition on B̄t(y). Furthermore we
have v(gi) = u(gi) = W (gi) by construction of v, and lemma 5.2 implies v ≤ W . Finally
we clearly have v ≥ w. Altogether we conclude v ∈ X. However, by (5.62) we have
v(y?) > u(y?), a contradiction to the definition of u. This completes the proof.

5.6 Consistency with vanishing viscosity

The purpose of the present section is to establish a link of the concept of viscosity solutions
on networks to the convergence result of chapter 4 by verifying the consistency of viscosity
solutions with the method of vanishing viscosity. In fact, we show that the limit function
of any uniformly converging class of solutions of the viscous boundary value problem (4.9)
is a viscosity solution. Again we assume the Hamiltonian H = (Hj)j∈J to be of eikonal
type, i. e., to satisfy the conditions (4.10).

Theorem 5.2. Let (εn)n∈N be a sequence with εn > 0 for all n ∈ N and limn→∞ εn = 0.
For each n ∈ N let un ∈ C2

K(Γ) be a solution of the boundary value problem (4.9) with
ε := εn. Assume that the functions un converge uniformly to a limit function u ∈ C(Γ).
Furthermore assume that the functions un and their first derivatives be uniformly bounded
in n ∈ N on Γ by a constant 0 ≤ C <∞. Then u is a (viscosity) solution of (5.10).

Remark 5.5. Observe that the uniform boundedness of un, n ∈ N, and of their first
derivatives is a consequence of the proof of lemma 4.5, whenever H is isotropic.

The proof of theorem 5.2 is given by the following collection of results. We first provide a
short statement on the behavior of the Hamiltonian H at transition vertices. In fact, the
following proposition is an immediate consequence of (4.10).

Proposition 5.2. Let i ∈ IT and define the function h : R → R by

hi(p) := Hj(p, 0, vi), j ∈ Inci.

Then hi is independent of the choice of j ∈ Inci. We have hi ∈ C2(R), h(0) < 0, and
hi(−p) = hi(p) for all p ∈ R. Furthermore, hi is symmetric and strictly convex on R. In
particular, it is strictly increasing on [0,∞), and strictly decreasing on (−∞, 0]. Finally,
there is a unique number a > 0 such that hi(a) = hi(−a) = 0.

In the following propositions and lemmas let the assumptions and notations be as in
theorem 5.2.
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Lemma 5.4. Let i ∈ IT , j ∈ Inci, and let ξ > 0. Furthermore let the sequence (xm)m∈N,
xm ∈ ej, converge to vi. Then there is a number mξ ∈ N such that

Hj(pm, u(vi), vi) ≤ ξ

for all m ≥ mξ, where

pm :=
u(xm)− u(vi)

d(xm, vi)
.

Proof. Suppose without loss of generality that we have aij = 1 and u(vi) = uj(0) = 0.
Setting v := uj and ym := π−1

j (xm) we then have to show that we have

h(v(ym)/ym) ≤ ξ

for all sufficiently large m ∈ N, where h := hi is the function defined in proposition 5.2.

Now set vn := uj
n and plug x := ymz into (4.9) for z ∈ [0, 1]. Integration over z yields∫ 1

0

Hj(∂jvn(ymz), vn(ymz), ymz) dz = εn

∫ 1

0

∂2
j vn(ymz) dz.

Moreover we have ∣∣∣∣∫ 1

0

∂2
j vn(ymx) dx

∣∣∣∣ ≤ 2 max
x∈[0,ym]

|∂jvn(x)| < 2C.

It follows

lim
n→∞

∫ 1

0

Hj(∂jvn(ymx), vn(ymx), ymx) dx = 0 (5.67)

for all m ∈ N.

As h is convex we may apply Jensen’s inequality to compute for all m,n ∈ N

h

(
vn(ym)− vn(0)

ym

)
= h

(
1

ym

∫ ym

0

∂jvn(x) dx

)
= h

(∫ 1

0

∂jvn(ymx) dx

)
≤
∫ 1

0

h(∂jvn(ymx)) dx

≤
∫ 1

0

Hj(∂jvn(ymx), vn(ymx), ymx) dx+ C1ym (5.68)

for some constant C1 <∞. Here the last inequality follows by a Taylor expansion of Hj

in the second and third argument as in combination with the uniform boundedness of vn

and ∂jvn in n. Letting n→∞ in (5.68) yields by means of (5.67)

h

(
v(ym)

ym

)
≤ C1ym
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for all m ∈ N. As limm→∞ ym = 0, there is a number mξ ∈ N such that

h

(
v(ym)

ym

)
≤ ξ

for all m ≥ mξ. The assertion follows.

Proposition 5.3. Let j ∈ J and let y ∈ (0, lj). Assume there is a function f ∈ C2((0, lj))
such that uj − f attains a local maximum (minimum) at y. Then

Hj(∂jf(y), uj(y), y) ≤ (≥) 0.

Proof. Assume that uj − f attains a local maximum at y. Let g ∈ C2((0, lj)) be defined
by g(x) := |x−y|2. Then uj−f −g attains a strict local maximum at y. As the functions
un converge uniformly to u, it follows that there is a sequence (yn)n∈N, yn ∈ (0, lj) for all
n ∈ N, and a number n0 ∈ N, such that limn→∞ yn = y and such that uj

n − f − g attains
a local maximum at yn for all n ≥ n0. We then have

∂ju
j
n(yn) = ∂jf(yn) + ∂jg(yn) and ∂2

ju
j
n(yn) ≤ ∂2

j f(yn) + ∂2
j g(yn)

for all n ≥ n0. It follows

0 = εn∂
2
ju

j
n(yn)−Hj(∂ju

j
n(yn), uj

n(yn), yn)

≤ εn(∂2
j f(yn) + ∂2

j g(yn))−Hj(∂jf(yn) + ∂jg(yn), uj
n(yn), yn).

By the continuity of Hj we obtain

0 ≤ lim
n→∞

[
εn(∂2

j f
j(yn) + ∂2

j g(yn))−Hj(∂jf
j(yn) + ∂jg(yn), uj

n(yn), yn)
]

= −Hj(∂jf
j(y), uj(y), y) (5.69)

for all n ≥ n0. The case that uj − f j attains a local minimum at y can be treated
similarly.

Lemma 5.5. The limit function u satisfies H(∂u(x), u(x), x) ≤ 0 in the viscosity sense
on Γ.

Proof. The proof is divided into two parts. We verify the viscosity subsolution condition
of u at points x ∈ ej, j ∈ J , in the first part, and at transition vertices x = vi, i ∈ IT , in
the second.

Part 1. Let j ∈ J and let x ∈ ej. Let ϕ be an upper test function of u at x. Without loss
of generality we may assume that ϕ be continuously differentiable within a neighborhood
of x. Then there is an open set U ⊂ (0, lj) with x ∈ U , and a sequence (fn)n∈N of functions
fn ∈ C2((0, lj)), such that fn|U → ϕj|U with respect to the C1-topology on U . Moreover,
we can assume the local maximum of u−ϕ at x to be strict by possibly adding a parabola
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centered at x. Then there is a sequence (zn)n∈N, zn ∈ (0, lj), and a number n0 ∈ N such
that limn→∞ zn = z := π−1

j (x) and such that uj−fn attains a local maximum at zn for all
n ≥ n1. For each fixed n ≥ n0 we now apply proposition 5.3 with f := fn and conclude

Hj(∂jfn(z), uj(z), z) ≤ 0.

The assertion follows from the fact that we have limn→∞ ∂jfn(zn) = ∂jϕ
j(z).

Part 2. Let x = vi, i ∈ IT . Let j, k ∈ Inci, j 6= k. Furthermore let ϕ be an upper
(j, k)-test function of u at x and assume u(x) = 0 without restriction. Then

h(∂jϕ(x)) = Hj(∂jϕ(x), u(x), x),

where h := hi is the function defined in proposition 5.2. Suppose

h(∂jϕ(x)) > 0. (5.70)

As ϕ is (j, k)-differentiable at x, it follows by proposition 5.2 that for one of the indices
j, k, say for j, there is a number δ0 > 0 such that

aij∂jϕ(vi) = −(a+ δ0), (5.71)

with a > 0 as defined in proposition 5.2. Let (xm)m∈N be a sequence with xm ∈ ej, m ∈ N,
and limm→∞ xm = x. As u− ϕ attains a local maximum at x, we obtain by (5.71)

pm :=
u(xm)− u(x)

d(xm, x)
< −(a+ δ0/2)

for all sufficiently large m ∈ N. By the properties of h (see proposition 5.2) it follows that
there is a number δ1 > 0 such that

δ1 < h(pm) = Hj(pm, u(x), x)

for all sufficiently large m ∈ N, a contradiction to lemma 5.4. Hence

Hj(∂jϕ(x), u(x), x) = h(∂jϕ(x)) ≤ 0.

It remains to check that u is a viscosity supersolution. The following proposition provides
the key result.

Proposition 5.4. Let i ∈ IT and assume that there is an index j ∈ Inci such that
aij∂jun(vi) ≤ 0 for infinitely many n ∈ N. Furthermore assume that we have a function
f ∈ C2(Γ) such that u− f attains a local minimum at vi. Then

Hj(∂jf(vi), u(vi), vi) ≥ 0.
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Proof. Without restriction we assume u(vi) = f(vi) = 0 and aij = 1. By assumption
we can choose a subsequence of (un)n∈N (which we again denote by (un)n∈N) such that
∂ju

j
n(0) ≤ 0 for all n ∈ N. By virtue of proposition 5.2 it then suffices to show ∂jf(vi) ≤

−a. To this end we assume the contrary, i.e. that there is a number δ > 0 such that

∂jf(vi) = −a+ δ. (5.72)

First we assert that for each n ∈ N there is a r > 0 such that uj
n(x) < 0 and ∂ju

j
n(x) < 0

for all 0 < x < r. This is clear if ∂jun(0) < 0. If ∂jun(0) = 0, the assertion follows from
(4.9) and (4.10) (i). Next, as a direct consequence of (4.9) and (4.10) (i) we conclude that
uj

n does not attain a local minimum on (0, lj). Consequently,

uj
n(x) ≤ uj

n(0) for all x ∈ [0, lj] and all n ∈ N. (5.73)

It follows
uj(y) = lim

n→∞
uj

n(y) ≤ lim
n→∞

uj
n(0) = 0 for all y ∈ [0, lj]. (5.74)

As u− f attains a local minimum at vi, (5.74) implies that we may restrict our consider-
ations to the case δ ≤ a. In this case we have

Hj(∂jf
j(0), 0, 0) = h(−a+ δ) < 0 (5.75)

by (5.72) and by proposition 5.2. By continuity of Hj, by (4.10) (iii), and by proposition
5.2 it follows from (5.75) that there are numbers η, γ > 0 with η < min{δ, lj}, such that

Hj(p, z, x) ≤ −γ for all p ∈ [−β, 0], all z ∈ (−∞, η], and all x ∈ [0, η], (5.76)

where β := a − δ + η. Choose a number n0 ∈ N such that εn0β/γ < lj and such that
uj

n(0) < η for all n ≥ n0. Fix n ≥ n0. Setting vn := ∂ju
j
n, (4.9), (5.73), and (5.76) imply

∂jvn(x) = Hj(vn(x), un(x), x)/εn ≤ −γ/εn (5.77)

for all x ∈ [0, η] satisfying −β ≤ vn(x) ≤ 0. In particular, as we have vn(0) ≤ 0, we derive
from (5.77) that there is a number xn with

0 ≤ xn ≤ εnβ/γ ≤ εn0β/γ < lj, (5.78)

such that
vn(xn) = −β. (5.79)

We furthermore claim that

vn(x) ≤ −β for all xn < x ≤ η. (5.80)

For if this were not the case, there would be an x0 with xn < x0 < η, such that vn(x0) = −β
and ∂jvn(x0) ≥ 0. This, however, contradicts to (5.77).
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Now (5.80) and (5.73) imply

uj
n(y) = uj

n(xn) +

∫ y

xn

vn(s) ds ≤ uj
n(xn)− (y − xn)β ≤ uj

n(0)− (y − xn)β

for all y with xn ≤ y ≤ η. Using (5.78) we conclude

uj(y) = lim
n→∞

uj
n(y) ≤ −yβ = y(−a+ δ − η)

for all 0 ≤ y ≤ η. As uj−f j attains a local minimum at 0, it follows that there is a radius
r > 0 such that

f j(y) ≤ y(−a+ δ − η)

for all 0 ≤ y ≤ r, a contradiction to (5.72).

Lemma 5.6. The limit function u satisfies H(∂u(x), u(x), x) ≥ 0 in the viscosity sense
on Γ.

Proof. The proof splits into two parts, the first part treating points x ∈ ej, j ∈ J , the
second part treating transition vertices x = vi, i ∈ IT . We skip the presentation of the
first part, as it is in perfect analogy with part 1 of the proof of lemma 5.5.

Accordingly, let x = vi, i ∈ IT . As the functions un, n ∈ N, satisfy the Kirchhoff condition
at x, there is an index j ∈ Inci such that

aij∂jun(x) ≤ 0 (5.81)

for infinitely many n ∈ N. We show that u satisfies the viscosity supersolution condition
at x by verifying that j is an i-feasible index for each k ∈ K := Inci\{j}. Fix k ∈ K and
assume that there is a lower (j, k)-test function ϕ of u at x (if not, then there is nothing
to prove). Without restriction we can assume aij = 1 and that there is a number r > 0
such that ϕj is continuously differentiable on [0, r). Then there is a sequence (fm)m∈N of
functions fm ∈ C2([0, lj]), m ∈ N, converging to ϕj with respect to the C1-topology of
[0, r]. Moreover we can assume the (right-sided) minimum of uj − ϕj at 0 to be strict.
Then there is a number m0 ∈ N such that for each m ≥ m0 there is a zm ∈ [0, r) where
uj − fm attains a local minimum and such that limm→∞ zm = 0. For each fixed m ≥ m0

we now apply proposition 5.3 (if zm > 0) or proposition 5.4 (if zm = 0) to conclude

Hj(∂jfm(zm), uj(zm), zm) ≥ 0.

As we have limm→∞ ∂jfm(zm) = ∂jϕ
j(0), we obtain

Hj(∂jϕ(x), u(x), x) = Hj( lim
m→∞

∂jfm(zm), lim
m→∞

uj(zm), lim
m→∞

zm)

= lim
m→∞

Hj(∂jfm(zm), uj(zm), zm) ≥ 0.

Hence j is an i-feasible index for k at x, and, by symmetry, k is i-feasible for j at x. As
the choice of k ∈ K was arbitrary, the assertion follows.
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Corollary 5.2. The limit function u in theorem 4.2 is independent of the choice of the
sequence εn.

Proof. This is a consequence of theorem 5.2 and corollary 5.1.

5.7 Example: the eikonal equation

We return to our standard example, the eikonal equation, and its Dirichlet problem

(∂ju)
2 − 1 = 0 on ej, j ∈ J,
u(vi) = gi for all i ∈ IB. (5.82)

Lemma 5.7. Assume d(vi, vj) ≥ |gi − gj| for all i, j ∈ IB. Then the function

f ∈ C(Γ), f(x) := min
i∈IB

(d(x, vi) + gi),

is the (unique) viscosity solution of (5.82).

Proof. Fix j ∈ IB. Observe that we have f(vj) 6= gj if and only if there is no i ∈ IB,
i 6= j, such that gj > d(vj, vi) + gi. This, however, is ruled out by assumption, whence
f(vi) = gi for all i ∈ IB. It remains to verify the viscosity sub- and supersolution condition
everywhere on Γ0. For this purpose observe that f is continuously differentiable with
|∂jf

j(x)| = 1 (and thus trivially satisfies the viscosity sub- and supersolution conditions)
for almost every x ∈ (0, lj)). Let x ∈ (0, lj) be a singular point. From the definition of f
it follows ∂−j f

j(x) = +1 for the left-sided derivative and ∂+
j f

j(x) = −1 for the right-sided
derivative. Consequently, we have (∂jϕ(x))2 − 1 ≤ 0 for all upper test functions ϕ at x.
Lower test functions do not exist.

Now let x = vi for some i ∈ IT . Observe that the definition of f implies that there are
disjoint sets I− and I+ with I− ∪ I+ = Inci, such that we have aij∂jf(x) ∈= −1 for all
j ∈ I− and aij∂jf(x) ∈= +1 for all j ∈ I+. Furthermore we have |I−| ≥ 1. Now let
j, k ∈ Inci. If j, k ∈ I−, we conclude (∂jϕ(x))2 − 1 ≤ 0 for all upper (j, k)-test functions
ϕ of f at x. If j ∈ I−, k ∈ I+, then f is (j, k)-differentiable at x and the viscosity
subsolution condition is trivially satisfied. If j, k ∈ I+, then there is no upper (j, k)-test
function. Furthermore, let j ∈ Inci. If j ∈ I−, then each index k ∈ Inci, k 6= j, is
i-feasible for j: If k ∈ I+, then f is (j, k)-differentiable at x; if k ∈ I−, then there is no
lower (j, k)-test function at x. Finally, if j ∈ I+, then each index k ∈ I− is i-feasible for
j, as then f is (j, k)-differentiable at x. As |I−| > 0, such an index exists.

5.8 Optimal path integrals

The (classical) theory of viscosity solutions is closely related to the theory of optimal
control of differential equations and to the theory of dynamic programming. The basic
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idea of dynamic programming is to assign to each fixed point (x, t) in time and space
a least cost value C(x, t), representing the infimum of all appropriately defined cost in-
tegrals associated with certain control functions. The control functions can be thought
of as steering devices which impact the dynamics of the underlying differential equation,
whereas the corresponding cost integral expresses the expenses produced by the trajectory
which is governed by the differential equation steered by the control function. The plan is
to choose for (x, t) the control function producing the least cost C(x, t). It turns out that
the value function (x, t) → C(x, t) is a viscosity solution of a certain Hamilton-Jacobi-
Bellman equation associated with the problem, where for this purpose viscosity solutions
have to be extended to Hamilton-Jacobi equations involving time.

The idea of viscosity solutions expressing optimality with respect to certain cost (or path)
integrals is also reflected when time is not involved. In the case of the eikonal equation
this is clear: The distance function on a domain or on a network tells us the shortest
way to the boundary. A similar principle holds for a more general class of stationary
Hamilton-Jacobi equations, a class which we call anisotropic eikonal equations.

A closer investigation of the structure of this class is the topic of the following chapter.
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CHAPTER 6

Singularities of viscosity solutions

Summary. In the present chapter we study the structure of viscosity solutions of a
special class of Hamilton-Jacobi equations on networks, the so-called anisotropic eikonal
equations, and compute their number of singular points. For illustrating reasons we in-
terpret these solutions as maximal volume equilibrium configurations of granular matter
(sand) placed upon a network, the singular points corresponding to the number of “hill-
tops” of the configuration. We also interpret the solutions in terms of optimality of certain
corresponding path integrals, establishing a relation to optimal control theory. Finally we
discuss connections to abstract graph theory and shortest path algorithms appearing in
computer scientific contexts.

6.1 Introduction

The behavior of homogeneous granular matter, when being poured onto objects from
sources above, is rather well understood and has been described by various models. Several
one- and two-dimensional models have been proposed by Hadeler et al ([HK99], [HK01],
[HKG02]). In particular, situations have been examined where a maximal amount of
homogeneous granular material is deposited on top of a given object or domain. As has
been pointed out in chapter 3, the shape of these maximal volume configurations on flat
and bounded domains (such as tables) is described by the graph of the unique viscosity
solution u (in the classical sense) of the eikonal equation |∇u| = tanα, where α is the angle
of repose of the respective granular material. The function u has an almost everywhere
existing gradient of length tanα and coincides with (a multiple of) the distance function
d.

We now focus on the granular matter interpretation of the distance function d on a
topological network Γ. In fact, it describes (up to multiplication by a constant) the shape
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of the “sand heap” formed by a maximal amount of homogeneous granular matter placed
upon Γ. Moreover, it is the unique viscosity solution of the eikonal equation on Γ. In a
more general approach we assume the angle of repose to be a function of the local position
within the network and of the local height of the heap, taking account of the possibility
that the properties of the granular material may vary with position and height. Then it
is not hard to see that the corresponding maximal volume configuration is given by the
viscosity solution of an appropriate anisotropic eikonal equation to be introduced below.

In any case, an important feature of these maximal volume configurations is their number
of local maxima. Our concerns of the present chapter are with deriving a simple formula
for this number. In the special case of the eikonal equation, this result is related to
a theorem of Aviles and Giga ([AG96], lemma 2.6), basically stating that the suitably
defined curvature functional of the distance function on an n-dimensional domain Ω equals
the n− 1-dimensional Hausdorff measure of the boundary ∂Ω.

6.2 Maximal volume configurations

As we have outlined in chapter 1, we can consider a topological network Γ as a maze in
the plane and think of its edges ej, j ∈ J , as a set of slim “paths” whose end points
are connected at the vertices vi, i ∈ I. Let us suppose the paths on both sides to be
bounded by thin, sufficiently high glass walls perpendicular to the plane. As before we
split the vertex set into a nonempty set of boundary vertices ∂Γ = {vi, i ∈ IB} and a set
of transition vertices {vi, i ∈ IT}, assuming that sand may run out of the maze through
a hole at the bottom at boundary points, whereas at transition vertices sand may be
interchanged between the different incident paths. Let us then uniformly pour as much
sand as possible from above into the space between the glass walls. Several sand heaps
will grow, every two of them separated by at least one boundary point. Finally the shape
of the sand heaps will stop growing and reach an equilibrium configuration. Similarly to
the case of non-ramified domains it is easy to understand that in this maze model the
contours of the maximal volume equilibrium are described by (a multiple of) the distance
function d to the boundary—under the constraint that the angle of repose is constant.

It is, however, also plausible to assume that the angle of repose is not constant, but
depends on the position within the network as well as on the local height of the sand pile.
In fact, in the sequel we focus our interest on solutions of what we call the anisotropic
eikonal equation.

Let Γ be a topological network as in chapter 5 and let f : Γ×R → R satisfy the following
conditions:

(i) f j ∈ C2([0, lj]× R), with f j(y, z) := f(πj(y), z) ∀ (y, z) ∈ [0, lj]× R
(ii) f(x, z) is non-increasing in z ∈ R for all x ∈ Γ
(iii) f(x, z) > 0 for all (x, z) ∈ Γ× R
(iv) f j(π−1

j (vi), z) = fk(π−1
k (vi), z) for all i ∈ I, j, k ∈ Inci.

(6.1)
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Then the Hamiltonian H = (Hj)j∈J given by

Hj(p, z, x) := p2 − (f j(x, z))2 for all p ∈ R, z ∈ R, x ∈ [0, lj], j ∈ J , (6.2)

is of eikonal type, i. e., it satisfies the conditions (4.10).

Making use of the simplified notation introduced in (5.2), we call the boundary value
problem {

Hj(∂ju(x), u(x), x) = 0 for all x ∈ ej, j ∈ J ,
u(vi) = 0 for all i ∈ IB

(6.3)

the Dirichlet problem of the anisotropic eikonal equation.

Lemma 6.1. There is a unique viscosity solution u ∈ C(Γ) of boundary value problem
(6.3).

Proof. Observe that the function w :≡ 0 ∈ C(Γ) is a viscosity subsolution, whereas the
function W := κd ∈ C(Γ) with κ := maxΓ f(x, 0) is a viscosity supersolution of (6.3).
Then there is a unique viscosity solution u of (6.3) according to theorem 5.1 and lemma
5.2.

Let us explain in what sense the function u describes as a maximal volume configuration
of granular matter: Let v ∈ C(Γ) be a (continuous) viscosity subsolution of (6.3) with
v ≥ 0 on Γ, v ≡ 0 on ∂Γ. Let x ∈ ej for some j ∈ J . Note that the viscosity subsolution
condition does not permit the existence of a differentiable function ϕ touching v from
above such that the local gradient of ϕ at x is greater than f(x, v(x)). If we interpret
f(x, z) as the angle of repose the material possesses at position x and height z, we conclude
that the granular matter configuration described by v does not violate the angle of repose,
and thus is stable. The same holds if x = vi, i ∈ IT : Sand deposited at x is only stable if
it cannot run downhill along neither of the incident edges ej, j ∈ Inci. This is indeed the
case, as the viscosity subsolution condition ensures that the angle of repose is not violated
for any combination of two different incident edges. Now lemma 5.3 basically states that
u itself also satisfies the viscosity subsolution and thus describes a stable configuration.
By the construction of u as the pointwise supremum over viscosity subsolutions, we have∫

Γ

u dx :=
∑
j∈J

∫ lj

0

uj(x) dx ≥
∫

Γ

v dx

for all such stable configurations v. This means that u maximizes the volume functional
among all stable configurations described by nonnegative viscosity subsolutions of (6.3)
with zero boundary data.
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6.3 The order of singularities

A characteristic feature of a maximal volume configuration is its number of peaks or
hilltops, which—in a specified sense—we will call the order of singularities. As will turn
out, this quantity is exclusively determined by the number of edges and transition vertices
and thus is independent of the choice of f or the precise shape of Γ.

Let u be the viscosity solution of (6.3).

Proposition 6.1. The function u does not attain a local minimum on Γ0.

Proof. This is an immediate consequence of the fact that u is a viscosity solution of
(6.3).

Lemma 6.2. Let j ∈ J and let k, l ∈ I, k 6= l, such that j ∈ Incl ∩ Inck. Moreover let

σij := sign(aij∂ju(π
−1
j (vi))) ∈ {−1, 1} for all j ∈ Inci, i ∈ I.

(i) uj attains a local maximum at x ∈ (0, lj), if and only if x is a singular point of uj.

(ii) We have either sj = 0 or sj = 1, where

sj := |{x ∈ (0, lj) |x is a singular point of uj}|.

(iii) We have sj = 1, if and only if σkj = σlj = 1.

(iv) We have sj = 0, if and only if σkj + σlj = 0.

Before we prove lemma 6.2, we provide the following

Proposition 6.2. Let a < b and let w ∈ C([a, b]) be a viscosity solution of

(w′(x))2 − (g(x,w(x)))2 = 0 (6.4)

on [a, b] with g ∈ C2([a, b] × R) and g(x, z) > 0 for all x ∈ [a, b], z ∈ R. Furthermore
assume that g(x, z) is non-increasing in z for all x ∈ [a, b]. Then one of the following
cases is true:

(i) w ∈ C1([a, b]) and either w′ > 0 or w′ < 0 everywhere on [a, b]

(ii) w has exactly one singular point x ∈ (a, b) and we have w′ > 0 on (a, x) and w′ < 0
on (x, b).

Proof. (of proposition 6.2). Consider the initial value problems

w′(x)− g(x,w(x)) = 0 on [a, b] (6.5)

and
w′(x) + g(x,w(x)) = 0 on [a, b]. (6.6)
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As g ∈ C2([a, b] × R) and as g is non-increasing in the second variable, standard ODE
theory ensures the existence of two functions wa, wb ∈ C1([a, b]) satisfying (6.5) and (6.6),
respectively, as well as wa(a) = w(a) and wb(b) = w(b), respectively. Furthermore, we
have

w′a(x) = g(x,wa(x)) > 0 and w′b(x) = −g(x,wb(x)) < 0 on [a, b].

Moreover, both wa and wb satisfy (6.4) in the classical and thus in the viscosity sense.
We set w̃ := min{wa, wb} and distinguish the following cases:

(i) w(a) < wb(a) and w(b) < wa(b). Then w̃ has exactly one singular point x ∈ (a, b).
Observe that lower test functions of w̃ do not exist at x, whereas we have |ϕ′(x)| ∈
[−g(x, w̃(x), g(x, w̃(x)] for all upper test functions ϕ of w̃ at x. We conclude that w̃
satisfies (6.4) in the viscosity sense at x. The same is trivially the case everywhere else on
(a, b). As we have w̃(a) = w(a) and w̃(b) = w(b), the comparison theorem for viscosity
solutions (e.g. [CIL92], theorem 3.3) implies w̃ = w.

(ii) w(a) = wb(a) or w(b) = wa(b). It is immediately clear that we either have w̃ = wa or
w̃ = wb, as well as w̃(a) = w(a) and w̃(b) = w(b). Hence we have w̃ = wa or w̃ = wb by
the comparison theorem for viscosity solutions. In both cases we conclude w ∈ C1([a, b])
and either w′ < 0 or w′ > 0 everywhere on [a, b].

(iii) w(a) > wb(a) or w(b) > wa(b). This case does not occur (as the two cases are
symmetric, we consider only the second one): Let c ∈ [a, b] be the maximal number
satisfying w(c) = maxx∈[a,b]w(x). From w(a) > wb(a), w(b) = wb(b), and from the fact
that wb is decreasing on [a, b], it follows c < b and w(c) > wb(c). Furthermore, w is non-
increasing on [b, c], as otherwise w would attain a local minimum at some point x ∈ (c, b)
by the choice of c. This, in turn, would imply the existence of a lower test function ϕ of
w at x with ϕ′(x) = 0, a contradiction.

Since w is the viscosity solution of (6.4), it satisfies (6.4) in the classic sense almost
everywhere on [c, b]. Hence there is a set N ⊂ [c, b] of measure zero such that (6.4) is
satisfied in the classic sense on [c, b]\N . Observe that we have w′(x) = −g(x,w(x)) < 0
for all x ∈ [c, b]\N , as w is non-increasing. Now note that we can choose a number γ ∈ R
with

0 < γ < min{1, min
x∈[c,b]

g(x,wb(c) + b− c)},

such that the unique point z ∈ (c, b) with v(z) = w(z) is not contained in N , where we
set

v(x) := wb(c) + γx for all x ∈ [c, b].

By the choice of γ the function v is a viscosity subsolution of (6.4) on [c, b]. Now set
ṽ(x) := min{v(x), w(x)} for all x ∈ [c, b]. We show that ṽ satisfies

(w′(x))2 − (g(x,w(x)))2 ≤ 0 (6.7)
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at z in the viscosity sense. For this purpose let ϕ be an upper test function of ṽ at z. By
w′(z) = −g(z, w(z) < 0 and v′(z) = γ > 0, we conclude

−g(z, w(z)) ≤ ϕ′(z) ≤ γ ≤ g(z, w(z)),

which implies the assertion. Furthermore, ṽ trivially satisfies (6.7) everywhere else on
(c, b). As we have wb(c) = ṽ(c) and wb(b) = ṽ(b), the comparison theorem for viscosity
solutions implies wb ≥ ṽ on [c, b], a contradiction.

Proof. (of lemma 6.2). For each j ∈ J observe that uj is a (classical) viscosity solution of

Hj(∂ju
j(y), uj(y), y) = 0 on [0, lj].

Then the lemma follows from proposition 6.2 and the properties of H.

Lemma 6.2 basically states that edges either contain no or exactly one singular point,
inducing a partition J = JR ∪̇ JS, where JR and JS consist of the indices of the regular
and singular edges, respectively.

Definition 6.1. The function κE : J → {0, 1} given by

κE(j) :=

{
1 if j ∈ JS

0 if j ∈ JR

is called the order of singularity of the edges.

Let i ∈ IT . Lemma 6.2 tells us that on each incident edge vj, j ∈ Inci, the graph of
u leaves vi either “uphill” or “downhill”. Informally speaking, the more incident edges
lead “downhill”, the more vi assumes the character of a local maximum and the higher
vi should be weighted when counting the singularities. As will turn out, the following
definition of the order of singularity at transition vertices is correct, since it keeps the
total number of singularities invariant under small transformations of Γ.

Definition 6.2. Let i ∈ I. We define the sets

Inc+
i := {j ∈ Inci |σij = 1} and Inc−i := {j ∈ Inci |σij = −1}.

Definition 6.3. The function κV : I → N given by

κV (i) := |Inc−i |

is called the order of singularity of the vertices.

Remark 6.1. Observe that κV (i) = 0 for all i ∈ IB. Furthermore, proposition 6.1 implies
κV (i) ≥ 1 for all i ∈ IT .
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Definition 6.4. The quantity

S :=
∑
i∈I

κV (i) +
∑
j∈J

κE(j)

is called the order of singularity.

The following theorem states the main result of the present chapter.

Theorem 6.1. We have

S = |J |.

Proof. Observe that we have

κV (i) =
1

2

∑
j∈Inci

(1− σij) and κE(j) =
1

2
(σk(j)j + σl(j)j)

where k(j), l(j) ∈ I such that j ∈ Inck(j) ∩ Incl(j). Using this, we compute by means of
definition 6.4

S =
1

2

[∑
i∈I

∑
j∈Inci

(1− σij) +
∑
j∈J

(σk(j)j + σl(j)j)

]
=

1

2

∑
i∈I

deg vi = |J |.

An immediate consequence is

Corollary 6.1. Assume

κV (i) = 1 for all i ∈ IT (6.8)

and let M be the number of local maxima of u on Γ. Then we have

M = |J | − |IT |.

In a way, condition (6.8) represents the generic case, which we will elaborate on in the
next section. We emphasize that the fundamental consequence of corollary 6.1 is given by
the fact that the cardinal number of the singular set of the viscosity solution of (6.3) only
depends on the number of edges and the number of transition vertices of Γ (provided that
(6.8) is satisfied). In particular, neither the edge lengths nor the choice of the function f
have to be taken into account. Both quantities, however, have an substantial impact on
the location of the singular points.
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6.4 Cost integrals

As already mentioned in section 5.8, the viscosity solution of boundary value problem (6.3)
allows an alternative interpretation in terms of optimal path integrals. In this section we
even admit arbitrary boundary values, i.e., we consider the boundary value problem of
the form {

Hj(∂ju(x), u(x), x) = 0 for all x ∈ ej, j ∈ J ,
u(vi) = gi for all i ∈ IB.

(6.9)

Let γ : [0, 1] → Γ be a piecewise differentiable path in the sense that there are finally
many numbers

x0 := 0 < x1 < · · · < xm < 1 =: xm+1

such that for all l = 0, . . . ,m we have γ([xl, xl+1]) ⊆ ējl
for suitable jl ∈ J and π−1

jl
◦ γ ∈

C1((xl, xl+1)). Let x ∈ Γ and let Cx be the set of all such paths γ with γ(0) = x and
γ(1) = viγ for some iγ ∈ IB. In other words, Cx consists of all paths leading from x to the
boundary.

By the properties (6.1) of f it is now easy to see that for each x ∈ Γ and each γ ∈ Cx

there is a unique function φγ : [0, 1] → R satisfying φγ(1) = giγ and

d

ds
φγ(s) = −f(γ(s), φγ(s))

∣∣∣∣ ddsγ(s)
∣∣∣∣

for all s ∈ [0, 1] with xl < s < xl+1 for some l = 1, . . . ,m, where we set∣∣∣∣ ddsγ(s)
∣∣∣∣ :=

∣∣∣∣ dds(πjl
◦ γ)(s)

∣∣∣∣
for xl < s < xl+1.

In view of the previous results it is not hard to verify the following fact.

Lemma 6.3. The function

u(x) = inf
γ∈Cx

φγ(0)

is a viscosity solution of (6.9), which, however, does not necessarily attain all boundary
values. The smallest boundary value is attained in any case.

The value φγ(0) can be interpreted as the expenses arising when one moves on γ from x to
the boundary point viγ , composed by the terminal cost giγ and the running cost per space
unit f . Hence u(x) can be considered as the minimal cost arising when one is allowed to
choose among all possible paths leading to arbitrary boundary points.

Example 6.1. An elegant visualization is obtained when the travelling direction is in-
verted: Think of a traveller starting at the boundary ∂Γ and intending to reach the point
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x ∈ Γ on the cheapest way possible. Again the cost is composed by a fixed cost gi associ-
ated with the chosen starting boundary vertex vi, i ∈ IB, and the running cost f . Observe
that the conditions (6.1) include that f(x, z) is non-increasing in z. This corresponds with
the fact that the farther the traveller has moved away from the boundary, the less running
expenses arise. This circumstance may be related to a scenario where the traveller has to
carry the fuel needed for the journey by himself. The farther he gets, the less fuel is to
carry, the easier he can move along his way.

This example implies a sufficient condition for the attaining of the boundary values gi,
i ∈ IB: A boundary point vi0 will never be chosen as a starting point by the traveller,
if its fixed cost gi0 exceeds the cost for the journey from another boundary point to vi0 ,
as then each journey starting from vi0 can be replaced by a cheaper journey starting
from somwhere else. Hence the boundary value of vi0 will not be attained by u. On the
other hand, if it can be ruled out that there exists any journey between two boundary
points which is cheaper than the fixed cost of the target point, all boundary values will
be attained by u. A special case of this condition is given in lemma 5.7.

6.5 Degree of freedom

The generality of theorem 6.1 and the rather abstract definition of order of singularity at
transition vertices (definition 6.3) allow us to embed them into the least cost interpretation
above. Let u be the viscosity solution of boundary value problem 6.3 and set

D(x) := lim
r→0

|∂Br(x) ∩ {y ∈ Γ |u(y) < u(x)}|.

We interpret D(x) as the number of different possible directions leading from x to the
boundary with minimal cost. Observe that we have D(x) ≥ 1 for all x ∈ Γ0 by proposition
6.1. On the other hand, at any x ∈ Γ0 with D(x) > 1 one has the freedom to choose
among D(x) different directions, whence we may call D(x) − 1 the degree of freedom of
x. Accordingly, we call the quantity

∑
x∈Γ0

(D(x)− 1) the total degree of freedom of Γ.

Lemma 6.4. We have
∑

x∈Γ0
(D(x)− 1) = |J | − |IT |.

Proof. Observe that we have∑
x∈ej

(D(x)− 1) = κE(j) for all j ∈ J

and

D(x) = κV (i) for all i ∈ IT .

Then the assertion follows from theorem 6.1.
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6.6 Non-uniqueness of shortest path algorithms

As graphs are persuasively simple and versatile objects, graph theoretical problems sub-
sume many concrete problems arising in the theory of computer algorithms. A prominent
question is how to efficiently detect shortest paths connecting a given vertex with pre-
scribed source vertices in a weighted graph. Dijkstra’s classical algorithm [Dij59] basically
was the first managing the situation where there is exactly one source vertex (single-source
shortest path problem), and is followed by a long list of modifications or more specific ap-
proaches to the same problem (see for instance [AMOT90], [Bel58], [FF62], and [Tho99]).

Dijkstra’s algorithm successively lists all shortest paths from the single source to the other
vertices, starting at the source vertex. In terms of a topological network Γ with exactly
one boundary vertex i0 ∈ IB it does the following: Starting at the source vertex vi0 , it
determines the level sets Lt := {x ∈ Γ |d(x) = t} for continuously increasing t ≥ 0. As
soon as a set Lt contains one or more vertices, these vertices are assigned the shortest
distance t to the source, along with the way “back downhill” as shortest path to the source
(which is not necessarily unique). This procedure is continued until a shortest path is
assigned to each vertex. Whereas Dijkstra’s algorithm is originally restricted to abstract
weighted graphs (that is, detection of shortest ways between vertices), the level set idea
described here may of course be extended to all points x ∈ Γ, particularly to edge points.

The relation to the previous section is now easily established: At a point x ∈ Γ0 with
D(x) > 1, the single-source shortest path problem cannot be solved uniquely in the sense,
that the direction in which shortest ways leave x is unique.

Of course one can also consider multiple-source shortest path problems, represented by
networks with more than one boundary vertices. Again, the singular points are exactly
those points for which this problem cannot be solved uniquely in the above sense. Thus,
theorem 6.4 captures and quantifies the “non-uniqueness” of such shortest path problems.

6.7 Singularities of the distance function

In this section we discuss theorem 6.1 in the special case of the eikonal equation on Γ
with its unique viscosity solution d, the distance function. Accordingly, assume from now
on f ≡ 1 in (6.2) and set u = d.

In this special case, condition (6.8) of corollary 6.1 can be made true by slightly varying
the edge lengths lj, j ∈ J , while keeping the order of singularity S constant. As this fact
is easy to see, we dispense with a rigorous proof and explain the idea in loose terms:

Assume κV (i) > 1 for some i ∈ IT and choose any j ∈ Inc−i . Clearly, κE(j) = 0. Assume
now that lj be increased by an arbitrarily small number δ > 0. Obviously, this does not
affect the values of d at the endpoints of ej, since the “upper” endpoint vi possesses at
least one more shortest way to the boundary, whereas the “lower” endpoint’s shortest
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way to the boundary does not contain ej. As a consequence, κE(j) is increased by 1,
whereas κV (i) is decreased by 1, whence S remains unaffected. Repeating this procedure
will finally make (6.8) true.

This observation justifies the following

Definition 6.5. The network Γ (and its underlying graph) is called generic, if it satisfies
condition (6.8).

Then the reformulation of corollary 6.2 reads:

Lemma 6.5. Assume that Γ is generic. Then the number M of local maxima of the
distance function d is given by

M = |J | − |IT |.

As we have outlined above, this result is not obvious from a physical point of view, as one
can imagine many possible deformations of Γ, which preserve |J | and |IT |, but change the
lengths of the edges dramatically. As an effect of such a deformation, the local maxima
may move along the edges, possibly jumping from one edge to another at a transition
vertex, whereas others may vanish, melt together, or be newly created.

6.8 Singular points and cycle rank

It is worth mentioning the close relation of lemma 6.5 to the concept of cycle rank of
abstract graphs. Let G = (V,E) with V = {v1, . . . , vp} and E = {e1, . . . , xq} be a graph.
A cycle in G is a path whose endpoints coincide. Analogously to techniques in algebraic
topology a 0-chain of G is a formal linear combination

∑
εivi, where εi ∈ F2 (the field

with two elements), whereas 1-chains are formal sums
∑
εjej of edges. The boundary

operator ∂ sends 1-chains to 0-chains in such a way that ∂ is linear and that we have
∂e = v+w for edges of the form e = vw. A 1-chain with boundary 0 is called cycle vector
and can be regarded as a set of edge-disjoint cycles. The collection of all cycle vectors
forms a vector space over F2 called the cycle space of G. A cycle basis is defined as a
basis for the cycle space of G consisting entirely of cycles. A cycle vector Z is said to be
dependent on the cycles Z1, . . . , Zk, if it can be written as

∑k
i=1 εiZi, εi ∈ F2. Thus a

cycle basis of G is a maximal collection of independent cycles of G, or a minimal collection
of cycles on which all cycles depend. The number m(G) of cycles in a cycle basis of G is
called cycle rank, and it can be shown (see for instance [Har69], pp. 37-39) that we have

m(G) = q − p+ k, (6.10)

where k is the number of components of G, that is, the maximal number of subsets of V
with the property that any two elements of two different subsets are not connected by a
path.

The connection of this result to lemma 6.5 is established as follows. We first recall
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Definition 6.6. A subgraph H = (VH , EH) of the graph G = (VG, EG) is a graph with
VH ⊂ VG and EH ⊂ EG. A subgraph H of G is said to be spanned by VH ⊂ VG, if
vw ∈ EH for each edge vw ∈ EG with v, w ∈ VH .

Let Γ be generic according to definition 6.5, and let G be the underlying graph. The
genericity ensures that local maxima of d only occur on edges; let us call those edges
maximal edges. We then “disconnect” G by deleting certain edges in the following way:
For each boundary point u ∈ ∂G we form the subgraph Gu spanned by

Vu := {v ∈ V | d(u, v) = min
w∈∂Γ

d(w, v)}.

Observe that the sets Vu form a partition of V , i.e. they are pairwise disjoint and
∪̇u∈∂ΓVu = V . The union of the graphs Gu, u ∈ ∂Γ, forms the graph G̃ which is ob-
tained by deleting the set E0 of exactly those edges from G, whose respective endpoints
are not contained in the same vertex set Vu. Observe that the deleted edges are all max-
imal, which is easy to see by the definition of the subgraphs Gu. The remaining graph
G̃ has exactly |∂G| components. According to the formula for the cycle rank (6.10), its
cycle rank m = m(G̃) satisfies m = |E\E0| − |V |+ |∂G|.

Now consider Gu for any fixed u ∈ ∂G. As Gu has only one component, the cycle rank
mu of Gu is mu = |Eu| − |Vu| + 1, where Eu is the edge set of Gu. Clearly we have
m =

∑
u∈∂Γmu. We now claim that Eu contains exactly mu maximal edges – in other

words, each element of the cycle space basis of Gu contributes one maximal edge. The
argument is the following: It is clear that whenever Gu has at least one cycle, it must also
contain at least one maximal edge. Deleting all maximal edges from Gu thus leaves a tree,
that is, a cycle-free graph. Successively re-adding the deleted maximal edges then yields
one new independent cycle per maximal edge. Any other cycle or cycle vector depends
on these cycles; the maximal number of independent cycles – the cycle rank mu – thus
exactly equals the number of maximal edges in Gu.

Altogether we obtain for the total number M of maxima of d:

M = |E0|+
∑
u∈∂Γ

mu = |E0|+m = |E0|+ |E\E0| − |V |+ |∂G| = |E| − |V |+ |∂Γ|.

We thus have recovered lemma 6.5.



CHAPTER 7

Viscosity solutions on LEP spaces

Summary. In the present chapter we generalize the results obtained in chapter 5 to
higher dimensional ramified spaces. For this purpose we introduce ramified manifolds
and, as special cases, locally elementary polygonal ramified spaces (LEP spaces). On LEP
spaces we develop a theory of viscosity solutions of Hamilton-Jacobi equations, including
existence and uniqueness results.

7.1 Introduction

The notion of viscosity solutions introduced in chapter 5 differs from its classical origin by
the transition conditions we have additionally imposed at transition vertices. The concept
of (j, k)-test functions allows us to “ignore” the transition vertex by treating two edges as
one connected edge. In this chapter we shall study a generalization of this approach: The
idea of (j, k)-differentiability is to link the two “normal” derivatives of a function with
respect to a given pair of edges which are incident to the same vertex. It suggests itself
to apply this pattern in case of manifolds of dimension n which have a certain manifold
of dimension n− 1 in common, as long as this manifold is smooth enough to ensure that
we have well-defined normal derivatives with respect to each incident “branch manifold”.
In fact we can establish an analogous theory on a suitable class of higher dimensional
ramified spaces.

In the literature there are many different ways of introducing “ramified spaces” (cf.
[Lum80], [Nic88], [Nic88], [vBN96], [AMN93]) or “branched manifolds” (cf. [Wil67]).
The definitions vary in different aspects, depending on the kind of theory to be devel-
oped. In a general approach, subsets of classic differentiable manifolds are glued together
along parts of their boundaries by means of the topological gluing operation. Another,
more specific definition, demands the uniqueness of the ”tangent space” at ramification
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points (cf. [Wil67]) by describing how the branches should be situated relatively to each
other in the ambient space. Here we choose an approach which is very similar to the
concept of a manifold with boundary. The basic idea is that in contrast to classic topo-
logical manifolds, a ramified topological manifold should not only contain points at which
it is locally homeomorphic to Euclidean space (simple points), but should also allow for
ramification points at which it is locally homeomorphic to some kind of ramified Euclid-
ean space. The latter is visualized as a collection of closed Euclidean half spaces glued
together at their boundary hyperplanes and will be called elementary ramified space.
Consequently, small neighborhoods of a given ramification point split up into different
branches corresponding to the branches of the homeomorphic elementary ramified space.
If we endow these ramified topological manifolds with suitable differentiable structures,
we end up with an extension of the concept of tangent space at ramification points. This
generalization should have the property that a real function defined in a neighborhood
of a ramification point can be differentiated in direction of all different branches. Put
in other terms, each branch ”contributes” a different tangent space. In particular, we
dispense with the uniqueness of the tangent space at ramification points.

Once we have introduced the differentiable structure, we will see that for each of the
branches emanating from a fixed ramification point x ∈ Σ, a normal direction at x on
this branch with respect to Σ is well-defined. The possibility to differentiate into normal
directions at ramification points is crucial for our theory, as it will turn out that a general
definition of viscosity solutions on ramified manifolds depends on this very possibility. In
fact, at ramification points we will make use of test functions whose normal derivatives
are related (the generalization of (j, k)-differentiable functions mentioned above).

In order not to get lost in too general approaches, we restrict ourselves to a rather simple
kind of ramified manifolds, the so-called locally elementary polygonal ramified spaces (LEP
spaces), which are characterized by two main criteria: On the one hand, LEP spaces
are ramified spaces in the sense of Lumer (cf. definition 4.1) meeting the additional
requirement that each branch is a flat n-dimensional submanifold of Rn+1. On the other
hand, they are ramified manifolds in the sense described above. Hence they can be
visualized as polygonal subsets of hyperplanes in Rn+1 which are glued together along
certain edges, with the restriction that ”corner points” cannot occur. The term ”locally
elementary” refers to the fact described above: that they are locally homeomorphic to an
open subset either of Euclidean space or of an elementary ramified space.

Once the notion of viscosity solutions on LEP spaces has been correctly extended to LEP
spaces, the development of the theory consists of a rather direct translation of the theory
of chapter 5. However, technically we will proceed somewhat differently, as we replace
the test function technique by the equivalent, but more convenient concept of upper and
lower semijets.
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7.2 Ramified manifolds

Our first aim is to define ramified manifolds as objects which locally resemble either
(non-ramified) Euclidean space or some ramified parameter space. We begin with the
introduction of the latter, the n-dimensional elementary ramified spaces (of ramification
order r).

Definition 7.1. Let n ≥ 1. We respectively define the n-dimensional open and closed
Euclidean half-space by

Rn
>0 := {(x1, . . . , xn) ∈ Rn |x1 > 0} and Rn

≥0 := {(x1, . . . , xn) ∈ Rn |x1 ≥ 0}.

Definition 7.2. Let n ≥ 1 and let r ≥ 2 be an integer. Set

R̃n
r := Rn

≥0 × {1, . . . , r} and Rn
r := R̃n

r /R,

where R be the equivalence relation on R̃n
r which for each choice of (x2, . . . , xn) ∈ Rn−1

identifies all points ((0, x2, . . . , xn), j) ∈ R̃n
r , 1 ≤ j ≤ r. Equivalence classes with respect

to R are denoted by an upper bar.

Let R̃n
r carry the product topology formed by the Euclidean topology on Rn

+ and the
discrete topology on {1, . . . , r}. The quotient topology of this product topology with
respect to the quotient mapping induced by R turns Rn

r into a topological space which
we denote by the n-dimensional elementary ramified space of order r.

Furthermore define the ramification space

Σn
r := {((0, x2, . . . , xn), j) | (x2, . . . , xn) ∈ Rn−1, 1 ≤ j ≤ r} ⊂ Rn

r

and the open and closed branches

Rn
r,j := {(x, j) ∈ Rn

r , x ∈ Rn
>0} and R̄n

r,j := {(x, j) ∈ Rn
r , x ∈ Rn

≥0}, 1 ≤ j ≤ r.

Remark 7.1. Note that for n ≥ 2 we can identifyRn
r with R1

r×Rn−1, R̄n
r with R̄1

r×Rn−1,
as well as Σn

r with Σ1
r × Rn−1 = {0} × Rn−1, where 0 = (0, j). Moreover we can identify

Rn
r with Rn, if r = 2. Furthermore observe that Ω := Rn

r is a ramified space according to
definition 4.1 with Ωj = Rn

r,j, 1 ≤ j ≤ r, and NR = Σn
r .

We obviously can interpret Rn
r as the subset of Rn+1 given by(

∪r−1
j=0{(t cos(2πj/r), t sin(2πj/r)) ∈ R2, t ≥ 0}

)
× Rn−1,

and it is easy to verify that the subset topology on this subset coincides with the topology
on Rn

k given by the definition above. Both topologies in turn coincide with the topology
on Rn

k induced by the path metric d(·, ·).
When introducing ramified manifolds below, elementary ramified spaces will be the cor-
responding parameter spaces. Beforehand we provide a fundamental lemma about home-
omorphisms from Rn

k to itself.
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Proposition 7.1. Let n ≥ 1 and let r, s be integers with r, s ≥ 3. Let x ∈ Σn
r , let U ⊂ Rn

r

be an open connected set with x ∈ U , and let V ⊂ Rn
s be an open set. Furthermore let

ϕ : U → V be a homeomorphism. Then the following holds:

(i) ϕ(x) ∈ Σn
s

(ii) s = r

(iii) For each 1 ≤ j ≤ r there is a 1 ≤ k ≤ r such that ϕ(U ∩Rn
r,j) ⊂ Rn

r,k.

Proof. Let n = 1. Observe that if (i) or (ii) were violated, then U\{x} and V \{ϕ(x)}
would possess different numbers of connected components.

Let n ≥ 2. Theorem 11.2.2 in [SZ94] implies

Hn(U,U\{x}) ∼= Hn(V, V \{ϕ(x)}),

where Hq(X,X\{x0}) denotes the qth local homology group of a topological space at a
point x0 ∈ X. The theorem also implies that

Hn(B1(x), B1(x)\{x}) ∼= Hn(B1(ϕ(x)), B1(ϕ(x))\{ϕ(x)}),

where B1(y) is the open ball of radius 1 around a point y with respect to the path metric.
Observe now that if (i) or (ii) was violated, we would obtain a contradiction to lemma
7.1 below.

Assertion (iii) is immediately clear.

Lemma 7.1. Let n ≥ 2 and let Sn−1 be the (n−1)-dimensional sphere. Let r ∈ N, r ≥ 2,
and define

Sn−1
r := Sn−1

+ × {1, . . . , r}/E ,
where Sn−1

+ := Sn−1 ∩ Rn
+ and E be the equivalence relation which for each

y ∈ Sn−1
+ ∩ P n−1 with P n−1 := {x = (x1, . . . , xn) ∈ Rn

+ |x1 = 0}

identifies the points (y, i) ∈ Sn−1
+ × {1, . . . , r}, 1 ≤ i ≤ r.

Then we have Hn−1(Sn−1
r ) = Zr.

Proof. Observe that Sn−1
r is topologically equivalent to the space Ar, where Ar is formed

by (r− 1) copies B1, . . . , Br−1 of the boundary of the n-dimensional half-ball of radius 1,
which are identified along their flat sides F1, . . . , Fr−1. Observe that A2 is homologically
equivalent to the (n− 1)-dimensional sphere, whence we have Hn−1(A2) = Hn−1(S

n−1) =
Z. Assume r > 2. For each 1 ≤ i ≤ r − 1 let Ci ⊂ Ar be a closed circular cap with
Ci ⊂ Bi and Ci ∩ Fi = ∅. Then the sets U := Ar\Cr−1 and V := Ar\ ∪r−2

i=1 Ci are open
and satisfy U ∪V = Ar. Furthermore, it is easy to see that U is homotopically equivalent
to Ar−1, whereas V is homotopically equivalent to the sphere Sn−1. Moreover, U ∩ V is
homotopically equivalent to the open (n− 1)-dimensional ball, whence we have

Hn−1(U ∩ V ) = Hn−2(U ∩ V ) = 0. (7.1)
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Now we take advantage of the corresponding Mayer-Vietoris sequence yielding an exact
sequence of group homomorphisms

. . .→ Hn−1(U ∩ V ) → Hn−1(U)⊕Hn−1(V ) → Hn−1(Ar) → Hn−2(U ∩ V ) → . . .

Relation (7.1) implies thatHn−1(U)⊕Hn−1(V ) andHn−1(Ar) are isomorphic. AsHn−1(U) ∼=
Hn−1(Ar−1) and Hn−1(V ) ∼= Hn−1(S

n−1) ∼= Z, we conclude

Hn−1(Ar) ∼= Hn−1(Ar−1)⊕ Z.

The assertion follows by induction.

Definition 7.3. Let m,n ≥ 1, r ≥ 2 be integers, let U ⊆ Rn
r be an open set, and let

f : U → Rm be continuous. Then f is said to be C l-differentiable at x ∈ U (1 ≤ l ≤ ∞),
if the following holds.

(i) If x ∈ Σk
n, then for each 1 ≤ j ≤ r there is a domain Vj ⊂ Rn and an l times

continuously differentiable function fj : Vj → Rm such that, if R̄n
r,j is interpreted as the

closed half-space Rn
≥0, we have x ∈ Vj and fj ≡ f on Vj ∩ Rn

≥0.

(ii) If x ∈ Rn
r,j ' Rn

>0 for some 1 ≤ j ≤ r, then f is l times continuously differentiable at
x in the classic sense.

Definition 7.4. Let r ≥ 3 and let U, V ⊂ Rn
r be open sets. Let ϕ : U → V be a

homeomorphism. Then ϕ is called diffeomorphism, if for all 1 ≤ j ≤ r the respective
restrictions of ϕ and ϕ−1 to R̄n

r,j ∩ U and R̄n
r,j ∩ V , are C∞-differentiable in the sense of

definition 7.3 (note that each connected component of the images of these restrictions can
be thought of a subset of Rn

≥0 according to proposition 7.1).

We are now ready to define topological and differentiable ramified manifolds.

Definition 7.5. Let n ≥ 1. A set M is called n-dimensional topological ramified manifold,
if it is endowed with a Hausdorff topology and if for each point x ∈ M there is an open
set U ⊂M with x ∈ U such that there are an integer r = r(x) ≥ 2, an open set V ⊂ Rn

r

with V ∩ Σn
r 6= ∅, and a homeomorphism x : U → V with x(x) ∈ Σn

r . The number r(x)
is called ramification order of x and is independent of x according to proposition 7.1.

A point x ∈ M is called simple point if r(x) = 2 and ramification point if r(x) ≥ 3. The
set of all ramification points is denoted by Σ and is called ramification space of M .

Remark 7.2. In view of remark 7.1 observe that topological ramified manifolds are locally
homeomorphic to Euclidean space at simple points.

Definition 7.6. Let n ≥ 1 and let M be an n-dimensional topological ramified manifold
with ramification space Σ. We call M differentiable if the following conditions are the
satisfied:
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(i) There is a family of charts (Uα,xα), i.e. of open sets Uα ⊂M and injective mappings
xα : Uα → Rn

r(α) with the following properties:

For any pair α, α′ with V := Uα ∩ Uα′ 6= ∅, the sets xα(V ) and xα′(V ) are open sets in
Rn

r(α) and Rn
r(α′), respectively. Furthermore, the mapping ϕ : xα(V ) → xα′(V ) given by

ϕ := xα′ ◦ x−1
α is a diffeomorphism in the sense of definition 7.4. (Note that we have

r = r(α) = r(α′) according to proposition 7.1.)

(ii)
⋃

α Uα = M .

(iii) The family {(Uα, xα)} is maximal with respect to the conditions (i) and (ii).

Example 7.1. Let Γ be a topological network. Set Γ̃ := Γ\{v ∈ V | deg(v) = 1}. Then
for n ≥ 2 the set M := Γ̃× Rn−1 is an n-dimensional topological ramified manifold. The
sets Mr of points of ramification order r are given by

Mr =

{
∪{v∈V | deg(v)=r}({v} × Rn−1) if r > 2
M\Σ(M) if r = 2,

where Σ(M) = ∪{r>2}Mr. We call M an n-dimensional network (cf. [Nic93]).

Next we extend the notion of tangent space to differentiable ramified manifolds. In fact,
the idea of interpreting tangent vectors as equivalence classes of curves in M can easily
be transferred to ramification points.

Definition 7.7. Let M be a differentiable ramified manifold and let 1 ≤ l ≤ ∞. A
continuous function f : M → R is said to be C l-differentiable at x ∈ M , if for any chart
(U,x) around x the function f ◦ x−1 is C l-differentiable at x according to definition 7.3.
f is called C l-differentiable in V ⊂M , if it is C l-differentiable at all x ∈ V .

In the sequel let M always be an n-dimensional differentiable ramified manifold with ram-
ification space Σ. Unless otherwise noted, let x ∈ Σ and let r := r(x) be the ramification
order of x.

Remark 7.3. In order to avoid indexation problems, let us from now on assume without
restriction of generality that for any two charts (U,x) and (V,y) around x the mapping
y ◦ x−1 : Rn

r → Rn
r maps Rr,j to itself for any 1 ≤ j ≤ r. Observe that the following

definition will then be independent of the choice of the respective chart.

Definition 7.8. Let α : (−ε, ε) →M with α(0) = x be a continuous curve. Let 1 ≤ j ≤ r.
We say that α reaches x from the branch j, whenever there exists a chart (U,x) with x ∈ U
such that

α̃(t) := (x ◦ α)(t) ∈ R̄n
r,j for all t ∈ (−δ, 0) and some δ > 0. (7.2)

Let Cj(x) be the set of all curves reaching x from the branch j and set

C(x) :=
⋃

1≤j≤r

Cj(x).
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Remark 7.4. Note that if (7.2) holds for some chart (U,x) and some 1 ≤ j ≤ r, then
it automatically holds for all charts (V,y) with x ∈ V and the same j by proposition 7.1
and remark 7.3. Hence definition 7.8 is independent of the choice of the specific chart.

Now we subdivide the set C(x) of all curves reaching x from a unique branch into equiv-
alence classes representing the tangent vectors.

Definition 7.9. Let α, β ∈ C(x). We call α and β equivalent, if for all functions f : M →
R which are C∞-differentiable at x (in the sense of definition 7.7) we have

(f ◦ α)′(0) = (f ◦ β)′(0),

where both derivatives are left-sided. We denote the set of all equivalence classes by the
tangent space TxM of M at x and say that ξ ∈ TxM is a j-tangent vector at x, 1 ≤ j ≤ r,
if ξ contains a curve reaching x from the branch j. We set

ξ(f) := (f ◦ α)′(0), α ∈ ξ.

The set of all j-tangent vectors at x (the j-tangent space at x) is denoted by T j
xM , and

TxΣ := ∩jT
j
xM is called the Σ-tangent space at x; any ξ ∈ TxΣ is called a Σ-tangent

vector at x.

Remark 7.5. Clearly, TxM is not a vector space. Instead it can be identified with the
elementary ramified space Rn

r , where

T j
xM ≡ R̄n

r,j, 1 ≤ j ≤ r, and TxΣ ≡ Σn
r .

Hence TxΣ ⊂ T j
xM can be identified with Rn−1, whereas T j

xM can be identified with Rn
≥0.

For the purpose of shorter presentation, let us for each 1 ≤ j ≤ r agree to extend T j
xM to

the entire Euclidean space Rn via the relation ξ(f) = −ξ(−f) for any f ∈ C∞(M) and
any ξ ∈ T j

xM . The advantage of this extension is that each j-tangent space T j
xM at x

carries a vector space structure.

An important tangent vector is the gradient of a function at a given point.

Definition 7.10. Let 1 ≤ j ≤ r. Let f : M → R be continuously differentiable at x and
let ξ1, . . . , ξn be a basis of T j

xM . We define the j-gradient by

Djf(x) :=
n∑

i=1

ξi(f)ξi ∈ T j
xM.
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7.3 LEP spaces

Having introduced the concept of ramified manifolds, we have a rather general framework
at our disposal in order to extend the theory of chapter 5. However, a theory of viscosity
solutions on general ramified Riemannian manifolds is not within the scope of this work.
In order to understand the crucial mechanisms it rather is sufficient to focus on the
phenomena occurring in the neighborhood of the ramification space. We therefore have
decided to consider flat ramified manifolds in the following sense.

Definition 7.11. Let Ω be a ramified space induced by the triple (Ω?, (Ωj)j∈J , N
?
E) ac-

cording to definition 4.1 and let n ≥ 1. We call Ω an (n-dimensional) polygonal ramified
space if the following conditions are satisfied.

(i) Ω? is a subset of Rn+1 and is endowed with the induced subset topology.

(ii) For each j ∈ J there is a hyperplane Pj of Rn+1 such that Ωj is a bounded subset of
Pj.

(iii) All Pj, j ∈ J , are pairwise different.

For each j ∈ J we set

∂EΩj := ∂Ωj ∩N?
E and ∂RΩj := ∂Ωj ∩NR.

The set N?
E is also called boundary ∂Ω of Ω.

Remark 7.6. Observe that Ω̄ = Ω?, where the closure is taken with respect to the
topology of Ω?. Furthermore note that Ω? is a compact space.

Remark 7.7. Let Ω be an n-dimensional polygonal ramified space. In view of definition
4.1 note that the boundary ∂Ω of Ω is a closed subset of Ω?. Note moreover that ∂Ω is
a subset of Ω?\Ω meeting the requirement that it contains each point which is contained
in the boundary ∂Ωj of exactly one branch Ωj. As such, it is not uniquely determined;
we rather have some freedom in choosing ∂Ω. In order to emphasize this circumstance,
we will explicitly speak of the polygonal ramified space Ω with boundary ∂Ω in the sequel.
As we will see below, the fact that ∂Ω is not uniquely defined will be of importance when
we turn to the question of existence of solutions of boundary value problems on Ω. The
corresponding uniqueness results, however, remain unaffected.

Example 7.2. Let n ≥ 1. Let Ω? be the surface of the (n+ 1)-dimensional cube Cn+1 ⊂
Rn+1 endowed with the subset topology and let Ωj, j ∈ J , be the 2(n + 1) open faces.
Furthermore let ∂Ω = N?

E be any closed (possibly empty) subset of the union of the edges
with the property that Ω := Ω?\N?

E is connected. Then Ω is an n-dimensional polygonal
ramified space with 2(n+ 1) branches and boundary ∂Ω.

The possible occurrence of “corner points” in the above example shows that a polygonal
ramified space is in general not locally homeomorphic to an elementary ramified space
at any point x ∈ NR. As we do require this property, we strengthen the concept in the
following definition.
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Definition 7.12. An n-dimensional polygonal ramified space Ω ⊂ Rn+1 is called locally
elementary, if it is also a differentiable ramified manifold. We call locally elementary
polygonal ramified spaces LEP spaces, for short.

Remark 7.8. Note that the ramification space Σ coincides with NR for any LEP space
Ω.

In order to establish our theory, we need an additional convexity condition.

Definition 7.13. Let Ω be an n-dimensional LEP space, n ≥ 2. Ω is called convex, if Ωj

is convex as a subset of Rn for each j ∈ J .

Example 7.3. Any n-dimensional network as defined in example 7.1 is a convex LEP
space.

Example 7.4. Let Ω be as in example 7.2 and assume that the 2n corner points are
contained in ∂Ω. Then Ω is a convex LEP space.

In the sequel let Ω always denote an n-dimensional convex LEP space, n ≥ 2, with finitely
many branches Ωj, j ∈ J and non-empty boundary ∂Ω. Furthermore let Σ denote the
ramification space of Ω.

Remark 7.9. The convexity condition will play a technical role in the proof of the
comparison lemma 7.2.

Definition 7.14. For each j ∈ J we set

Ω̃j := Ωj ∪ ∂RΩj.

For any x ∈ Σ we set Incx := {j ∈ J |x ∈ ∂Ωj}.

As the branches of Ω can be thought of as subsets of Rn, LEP spaces have the conve-
nient property that around any given point we can always choose a chart induced by the
canonical identification with the Euclidean or a suitable elementary ramified space (the
inclusion mapping). Although this property is obvious, we state the following proposition.

Proposition 7.2. For any x ∈ Ω there is a neighborhood Vx of x and a canonical identi-
fication

ix : Vx → ix(Vx),

where ix(Vx) ⊂ Rn, ix(x) = 0, if x 6∈ Σ, and ix(Vx) ⊂ Rn
r(x), ix(x) = 0, if x ∈ Σ. In

the latter case, ix induces a bijective mapping Ix between the index set Incx and the set
{1, . . . , r(x)}.
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7.4 Hamilton-Jacobi equations on LEP spaces

We want to study first order Hamilton-Jacobi equations and corresponding boundary
value problems on LEP spaces. For this purpose we suitably extend the notion of the
Hamiltonian introduced in (4.9) and (4.10).

Definition 7.15. A Hamiltonian H = (Hj)j∈J is a family of mappings Hj, such that for
fixed j ∈ J the mapping Hj assigns to each x ∈ Ω̃j a function

Hj(·, ·, x) : T j
xΩ× R → R.

We furthermore assume the mappings Hj to be twice continuously differentiable in the
following sense: Let j ∈ J . By means of the canonical identification map ix around some
fixed x ∈ Ω̃j, locally around x we can think of Hj as a mapping

Hj : Rn × R× V → R, (7.3)

where V is a neighborhood of 0 ∈ Rn or 0 ∈ Rn
≥0, provided x ∈ Ωj or x ∈ Σ, respectively.

We then assume this mapping to be C2 in each argument, where in the latter case we mean
C2 in the sense of definition 7.7. In the sequel we will speak of Hj under the canonical
identification (around x), whenever we refer to Hj in the sense of (7.3).

Let us assume from now on that H be a Hamiltonian such that each Hj, j ∈ J , has the
following properties under the canonical identification around any fixed x ∈ Ω:

(i) Hj(0, z, 0) < 0 for all z ∈ R
(ii) Hj(p, ·, 0) is non-decreasing for all p ∈ Rn

(iii) Hj(p, z, 0) →∞ as |p| → ∞ for all (p, z) ∈ Rn × R
(iv) Hj(p, z, 0) is convex in p for all fixed z ∈ R.

(7.4)

In addition, at the ramification space Σ we require that the Hj are continuous across the
ramification space, as well as rotationally symmetric in p. In fact, under the canonical
identification we demand at each x ∈ Σ

(v) Hj(p, z, 0) = Hk(p, z, 0) ∀ z ∈ R, p ∈ Rn, j, k ∈ Incx

(vi) Hj(p, z, 0) = Hj(p̃, z, 0) ∀ p, p̃ ∈ Rn with |p̃| = |p|, ∀ z ∈ R, j ∈ Incx.
(7.5)

Observe that the conditions (7.4) and (7.5) are analogous to conditions (4.10).

As in chapter 5, we require a last additional assumption on H: the uniform boundedness
of the spatial derivative of H in p and z. Accordingly, we assume that there is a constant
C0 <∞ that for each x ∈ Ω̃j, j ∈ J , we have

(vii) |Djhp,z(x)| ≤ C0 for all p ∈ Rn and all z ∈ R, (7.6)

where under the canonical identification around x we set

hp,z : y 7→ Hj(p, z, y) for all y ∈ Vx.

Accordingly, we define
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Definition 7.16. A Hamiltonian H is said to be of eikonal type, if it satisfies conditions
(7.4) and (7.5).

We study boundary value problems associated with H on the LEP space Ω. Consequently,
let φ : ∂Ω → R be a prescribed boundary value function. We then consider the Dirichlet
problem {

Hj(Dju(x), u(x), x) = 0 for all x ∈ Ωj, j ∈ J ,
u(x) = φ(x) for all x ∈ ∂Ω,

(7.7)

and establish a viscosity solution theory for it.

7.5 Test functions and semijets

We transfer the test function technique employed in chapter 5 to LEP spaces. For this
purpose we extend the necessary concepts, such as differentiability across the ramification
space.

Throughout this and the following sections, for each x ∈ Ω we always fix a canonical
identification chart (Vx, ix) as defined in proposition 7.2. All concepts to be discussed will
be expressed in terms of ix for the sake of simplicity. However, in each case it will be easy
to verify that they in fact do not depend on the choice of any specific chart.

Definition 7.17. Let r ≥ 3, n ≥ 2, and let x ∈ Σn
r ⊂ Rn

r . Furthermore let u : Rn
r → R

be a function which is continuously differentiable at x in the sense of definition 7.3. We
then denote by ∂1u(x), . . . , ∂n−1u(x) the directional derivatives of u at x with respect to
the canonical basis vectors e1, . . . , en−1 of Σn

r ≡ Rn−1. For 1 ≤ j ≤ r we furthermore
denote by ∂νj

u(x) the directional derivative of u at x with respect to the inward pointing
unit normal νi of Rn

r,j ≡ Rn
≥0 at x.

Definition 7.18. Let x ∈ Σ, r := r(x). Furthermore let V ⊂ Ω be a neighborhood of x
and let u : V → R be a function which is continuously differentiable at x in the sense of
definition 7.7. With Ix as defined in proposition 7.2, we set

∂iu(x) := ∂i(u ◦ i−1
x )(0), 1 ≤ i ≤ n− 1, and ∂νj

u(x) := ∂νIx(j)
(u ◦ i−1

x )(0), j ∈ Incx.

Remark 7.10. Note that for each i ∈ Incx the collection {∂1, . . . , ∂n−1, ∂νj
} forms a basis

of T j
xΩ.

Let us define some function classes on Ω.

Definition 7.19. Let u : Ω → R. We denote the restriction of u to Ωj by uj, j ∈ J .

Definition 7.20. The space of all continuous functions on Ω is denoted by C(Ω).
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Definition 7.21. Let 1 ≤ l ≤ ∞. A function u ∈ C(Ω) is said to be l times continuously
differentiable, if it is C l-differentiable at each x ∈ Ω in the sense of definition 7.7. We
write u ∈ C l(Ω).

The natural generalization of (k, l)-differentiability and (k, l)-test functions introduced in
chapter 5 is given by the following definitions.

Definition 7.22. Let ϕ ∈ C(Ω), x ∈ Σ, and k, l ∈ Incx, k 6= l. Then ϕ is said to be
(k, l)-differentiable at x, if ϕ is C1-differentiable at x, and if we have

∂νk
ϕ(x) + ∂νl

ϕ(x) = 0.

Definition 7.23. Let u : Ω → R and let ϕ ∈ C(Ω).

Let j ∈ J and let x ∈ Ωj. We call ϕ an upper (lower) test function of u at x, if u − ϕ
attains a local maximum (minimum) at x and if ϕ is C1-differentiable at x.

Let x ∈ Σ and let k, l ∈ Incx, k 6= l. We call ϕ an upper (lower) (k, l)-test function of u
at x, if u − ϕ attains a local maximum (minimum) at x with respect to Ωk,l := Ω̄k ∪ Ω̄l

and if ϕ is (k, l)-differentiable at x.

Additionally to the test function technique, we now invoke another way of characterizing
viscosity solutions. In fact, as the characterization by test functions is of local nature, only
their behavior around the point x is of interest. To be more precise, we only require the
knowledge of their first derivatives along with the fact that their difference function with
the tested function u attains an extremum at x. Hence we dispense with the test function
concept and replace it by a formulation employing a generalized concept of differentials
of continuous functions, the so-called semijets.

The basic idea of semijets is to arrange all first derivatives of possible upper and lower test
functions of a function at a given point in two sets, called the upper and lower semijet,
respectively. Although this concept is equivalent to the test function approach, it is more
elegant, as the essential properties of test functions are distilled (the first derivatives),
whereas all unnecessary information (the actual shape of the test function) is omitted.

The generalization of semijets to (j, k)-semijets at a ramification point x ∈ Σ with respect
to two incident branches k, l ∈ Incx is carried out analogously by taking into account all
possible (j, k)-test functions at x.

Definition 7.24. Let u : Ω → R.

(i) Let x ∈ Ωj, j ∈ J .

We define the super- (sub-) semijet J+
j u(x) (J−j u(x)) of u at x to be the set of all p ∈ T j

xΩ
such that

u(x) ≥ (≤)u(yn) + 〈Djix(x)(p), ix(yn)− ix(x)〉+ o(d(x, yn))

for every sequence yn ∈ Ωj ∩ Vx with yn → x.
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(ii) Let x ∈ Σ and let k, l ∈ Incx, k 6= l.

We define the super- (sub-) (k, l)-semijet J+
k,lu(x) (J−k,lu(x)) of u at x to be the set of all

p ∈ T k
x Ω such that

u(x) ≥ (≤)u(yn) + 〈Dkix(x)(p), ix(yn)− ix(x)〉+ o(d(x, yn))

for every sequence yn ∈ Ωk ∩ Vx with yn → x and such that

u(x) ≥ (≤)u(yn) + 〈Dlix(x)(S
l
k(p)), ix(yn)− ix(x)〉+ o(d(x, yn))

for every sequence yn ∈ Ωl ∩ Vx with yn → x, where

Sl
k : T k

x Ω → T l
xΩ

is defined as Sl
k(p) := −p1∂νl

+
∑n−1

m=1 pm∂m with p := p1∂νk
+
∑n−1

m=1 pm∂m (cf. remark
7.10).

We collect straightforward properties of semijets.

Proposition 7.3. Let ϕ : Ω → R.

(i) We have J+
k,jϕ(x) = {Sk

j (p), p ∈ J+
j,kϕ(x)} and J−k,jϕ(x) = {Sk

j (p), p ∈ J−j,kϕ(x)} for
any x ∈ Σ, j, k ∈ Incx, j 6= k.

(ii) If ϕ is differentiable at x ∈ Ωj, j ∈ I, then we have J+
j ϕ(x) = J−j ϕ(x) = {Djϕ(x)}.

(iii) If ϕ is (j, k)-differentiable at x ∈ Σ, j, k ∈ Incx, j 6= k, then we have J+
j,kϕ(x) =

J−j,kϕ(x) = {Djϕ(x)}.

Proof. The proof is an easy consequence of the Taylor expansion theorem and the defini-
tion of (j, k)-differentiability.

The following proposition expresses the equivalence of test functions and semijets.

Proposition 7.4. Let u : Ω → R.

(i) Assume ϕ ∈ C(Ω) is an upper (lower) test function of u at x ∈ Ωj for some j ∈ J .
Then Djϕ ∈ J+

j u(x) (Djϕ ∈ J−j u(x)). On the other hand, assume p ∈ J+
j u(x) (p ∈

J−j u(x)). Then there is an upper (lower) test function ϕ ∈ C(Ω) of u at x, which is
C1-differentiable in an open neighborhood U ⊂ Ωj of x, and which satisfies p = Djϕ(x).

(ii) Assume ϕ ∈ C(Ω) is an upper (lower) (k, l)-test function of u at x ∈ Σ for some
k, l ∈ Incx, k 6= l. Then Dkϕ ∈ J+

k,lu(x) (Dkϕ ∈ J−k,lu(x)). On the other hand, assume
p ∈ J+

k,lu(x) (p ∈ J−k,lu(x)). Then there is an upper (lower) (k, l)-test function ϕ ∈ C(Ω)
of u at x and an open neighborhood U ⊂ Ω̄k ∪ Ω̄l with the following properties:

(a) ϕ is C1-differentiable on U in the sense of definition 7.7

(b) ϕ is (k, l)-differentiable on Σ ∩ U
(c) Dkϕ(x) = p.

Proof. This is a direct consequence of the definition of semijets and test functions.
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7.6 Viscosity solutions on LEP spaces

By means of the semijet concept we now define viscosity solutions for Hamilton-Jacobi
equations on LEP spaces. By USC(Ω̄) and LSC(Ω̄) we respectively denote the set of all
upper and lower semicontinuous functions u : Ω̄ → R.

Definition 7.25. Let f : Ω → R and u ∈ USC(Ω̄).

We say that u satisfies the viscosity subsolution condition (associated with H and f) at
x ∈ Ω (or, alternatively, that it formally satisfies

H(Du(x), u(x), x) ≤ f(x)

in the viscosity sense), if the following conditions (i) and (ii) are satisfied.

(i) If x ∈ Ωj for some j ∈ J , then

Hj(p, u(x), x) ≤ f(x) for all p ∈ J+
j u(x).

(ii) If x ∈ Σ, then for all k, l ∈ Incx, k 6= l,

Hk(p, u(x), x) ≤ f(x) for all p ∈ J+
k,lu(x).

Let u ∈ LSC(Ω̄).

We say that u satisfies the viscosity supersolution condition (associated with H and f) at
x ∈ Ω (or, alternatively, that it formally satisfies

H(Du(x), u(x), x) ≥ f(x)

in the viscosity sense), if the following conditions (iii) and (iv) are satisfied.

(iii) If x ∈ Ωj for some j ∈ J , then

Hj(p, u(x), x) ≥ f(x) for all p ∈ J−j u(x).

(iv) If x ∈ Σ, then for all Σ-tangent vectors p> ∈ TxΣ at x (cf. definition 7.9) and for
each k ∈ Incx there is an index l ∈ Incx, l 6= k, such that

Hk(p, u(x), x) ≥ f(x) for all p ∈ J−k,lu(x) with π>k (p) = p>.

Here π>k : T k
x Ω → TxΣ is the projection given by

π>k (p) :=
n−1∑
m=1

pm∂m for p = pn∂νk
+

n−1∑
m=1

pm∂m.

We say that u ∈ USC(Ω̄) (u ∈ LSC(Ω̄)) is a viscosity sub- (super-) solution of

H(Du(x), u(x), x) = f(x) (7.8)

on Ω, if it satisfies the viscosity sub- (super-) solution condition at each x ∈ Ω. We call
u ∈ C(Ω̄) a viscosity solution of (7.8) on Ω, if it is both a viscosity sub- and supersolution
of (7.8) on Ω.
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Remark 7.11. Observe that in the above definition we have

Hk(p, u(x), x) = H l(Sl
k(p), u(x), x)

for all x ∈ Σ, k, l ∈ Incx, k 6= l, in view of (7.5).

The proof of the following proposition is similar to the proof of proposition 5.1.

Proposition 7.5. Let x ∈ Ω and let u1, u2 ∈ USC(Ω̄) (u1, u2 ∈ LSC(Ω̄)) satisfy the
viscosity sub- (super-) solution condition at x. Then v := max{u1, u2} (v := min{u1, u2})
satisfies the viscosity sub- (super-) solution condition at x.

We now seek to solve Dirichlet problem (7.7) in the sense that we look for a function
u ∈ C(Ω̄) such that{

H(Du(x), u(x), x) = 0 in the viscosity sense for all x ∈ Ωj, j ∈ J ,
u(x) = φ(x) for all x ∈ ∂Ω.

(7.9)

Such a function is called a solution of (7.9).

In the following sections we prove uniqueness and existence results similar to those stated
in chapter 5. The structure of the proofs is also quite similar, whence we dispense with
the presentation of details whenever they can be deduced from the proofs in chapter 5.
Note, however, that here we work with a semijet characterization of viscosity solution
(instead of the test function characterization used in chapter 5) causing the arguments to
take different forms. In this case we stick to the detailed presentation.

7.7 Uniqueness

The central idea of the proof of the comparison lemma 5.1 is the fact that the two partial
derivatives of the distance function between two points equal in modulus. We can take
advantage of a similar circumstance in the LEP space Ω.

In this section we understand the sets Ωj, j ∈ J , as subsets of Rn, whose boundaries are
(partly) identified according to the equivalence relation ∼ defined by the way the sets Ωj

are situated as subsets of Ω.

Definition 7.26. Let x, y ∈ Ω̄. A continuous curve γ : [0, 1] → Ω̄ is called a connection
of x and y, if the following conditions are satisfied:

(i) γ(0) = x and γ(1) = y.

(ii) γ((0, 1)) ⊂ Ω.

(iii) There are finitely many numbers 0 = a0 ≤ · · · ≤ as = 1, such that for each l =
1, . . . , s the number al is maximal with the property that there is an index jl ∈ J with
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γ([al−1, al]) ∈ Ω̄jl
. Furthermore we demand that γl : [al−1, al] → Ω̄jl

⊂ Rn given by
γl(x) := γ(x) is continuously differentiable for all l = 1, . . . , s.

We define the length of γ by

L(γ) :=
s∑

l=1

L(γl),

where L(γl) is the usual length of a continuously differentiable curve in Rn.

Definition 7.27. Let x, y ∈ Ω̄. We define the distance d(x, y) between x, y by

d(x, y) := inf{L(γ), γ is a connection of x and y}.

The following proposition follows from the simple structure of LEP spaces.

Proposition 7.6. Let y ∈ Ω and define dy(x) := d(x, y) for all x ∈ Ω. Then there is
a number Λ > 0, which is independent of the choice of y, such that for all x ∈ Ω with
d(x, y) < Λ and x 6= y the following is true.

(i) If x ∈ Ωj for some j ∈ J , then dy is continuously differentiable at x.

(ii) If x ∈ Σ, then for each index j ∈ Incx there is an index k ∈ Incx with k 6= j, such
that dy is (j, k)-differentiable at x.

(iii) In both cases (i) and (ii) we have |Djdy(x)| = 1.

Proof. The assertions (i) and (ii) follow from the observation that the fact that Ω is an
LEP space implies that we can choose Λ > 0 in such a way that the distance of any given
point x ∈ Ω̄ to its cut locus is larger than Λ. Assertion (iii) is immediately clear.

We state the following comparison result.

Lemma 7.2. Let f ∈ C(Ω̄) with f(x) < 0 for all x ∈ Ω̄. Furthermore let u ∈ USC(Ω̄)
and v ∈ LSC(Ω̄) respectively satisfy

H(Du(x), u(x), x) ≤ f(x) and H(Dv(x), v(x), x) ≥ 0

in the viscosity sense for all x ∈ Ω and assume u ≤ v on ∂Ω. Then u ≤ v on Ω.

Proof. We assume the contrary, i.e., that there is a point z ∈ Ω with u(z) > v(z) and
derive a contradiction.

First note that we have

M := max{sup
Ω̄

u,− inf
Ω̄
v, 1} <∞,

as the functions u and −v are upper semicontinuous, and as Ω̄ is compact. Next observe
that the function d : Ω̄2 → R, d : (x, y) 7→ d(x, y) is continuous by definition 7.27. Hence
for each ε > 0 the function

Φ : Ω̄2 → R by Φ(x, y) := u(x)− v(y) + 3Mβ(ε−1d(x, y))
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is upper semicontinuous on Ω̄2, where β is chosen as in the proof of lemma 5.1. Therefore
there is a point (p, q) ∈ Ω̄2, where Φ attains a global maximum.

Borrowing arguments from the proof of lemma 5.1, we derive (p, q) ∈ Ω2 and

d(p, q) ≤ ε. (7.10)

Now let m := −maxΩ̄ f > 0 and choose

ε < C1 := min{m/C0,Λ} (7.11)

where C0 > 0 is the constant defined in (7.6) and Λ is the constant defined in proposition
7.6. Then by (7.11) there is a connection γ of p and q with L(γ) < C1. According to
definition 7.26 we may assume that there are an integer s ≥ 1 and numbers

0 = a0 ≤ . . . ≤ as = 1

such that for each 1 ≤ l ≤ s the number al is maximal with the property that there is an
index jl ∈ J with γ([al−1, al]) ∈ Ω̄jl

. We set jp := j0 and jq := js.

Next observe that by (7.6) and by the mean value theorem we have the estimate

|Hjl(ξ, z, γ(al))−Hjl(ξ, z, γ(al+1))| ≤ C1L(γl+1) (7.12)

for all ξ ∈ Rn, z ∈ R, 0 ≤ l ≤ s− 1, where γl is defined in definition 7.26

By (7.5) (vi) we furthermore have

Hjl(ξ, z, γ(al)) = Hjl+1(ζ, z, γ(al)) for all 1 ≤ l ≤ s− 1 (7.13)

and all ξ, ζ ∈ Rn with |ξ| = |ζ|.

Consequently, if s > 1, then from (7.12) and (7.13) we conclude

|Hj0(ξ, z, p)−Hjs(ζ, z, q)| ≤ C1

s−1∑
l=1

L(γl) < m, (7.14)

for all z ∈ R and all ξ, ζ ∈ Rn with |ξ| = |ζ|.

Next we define the functions dq : Ω → R and dp : Ω → R by dq(x) := d(x, q) and
dp(x) := d(x, p), respectively. As in the proof of lemma 5.1 we also define the functions

ϕq : Ω → R, ϕq(x) := 3Mβ(ε−1dq(x)) and ϕp : Ω → R, ϕp : x 7→ 3Mβ(ε−1dp(x)).

If s > 1, then proposition 7.6 implies

|Djpdq(p)| = |Djqdp(q)|.



114 Chapter 7. Viscosity solutions on LEP spaces

Consequently, we have

|Djpϕq(p)| = |Djqϕp(q)|.

Observe furthermore that by the choice of p and q the function u + ϕq attains a local
maximum at p, whereas the function v − ϕp attains a local minimum at q. Hence −ϕq is
an upper test function of u at p and ϕp is a lower test function of v at q. It follows

−Djpϕq(p) = −ηDjpdq(p) ∈ J+
jp
u(p) and Djqϕp(q) = ηDjqdp(q) ∈ J−jq

v(q), (7.15)

where η := 3Mε−1β′(ε−1d(p, q)).

By proposition 7.6 and by the properties of u and v we respectively obtain

f(p) > Hjp(−Djpϕq(p), u(p), p) (7.16)

and

Hjq(Djqϕp(q), v(q), q) > 0. (7.17)

The definition of Φ yields

u(p)− v(q) + 3Mβ(ε−1d(p, q)) = Φ(p, q) ≥ Φ(z, z) = u(z)− v(z) + 3M > 3M,

whence we have u(p) > v(q). By virtue of (7.4) (ii) and by (7.17) we then obtain

Hjq(Djqϕp(q), u(p), q) > 0. (7.18)

First assume s > 1. Then (7.18), (7.16), and (7.14) imply a contradiction.

Secondly assume s = 1. As Ω is a convex LEP space, Ωjp = Ωjp is convex, implying

Djpdq(p) = −Djqdp(q), and thus Djpϕq(p) = −Djqϕp(q),

which yields a contradiction in combination with (7.18), (7.16), and (7.12).

As in chapter 5 we obtain:

Lemma 7.3. Let u, v ∈ C(Ω̄) be a viscosity sub- and supersolution of

H(Du(x), u(x), x) = 0 on Ω, (7.19)

respectively, with u ≤ v on ∂Ω. Furthermore assume that there is an M ∈ R such that
M < u on Ω̄. Then u ≤ v on Ω̄.

Proof. The proof is completely analogous to the proof of lemma 5.2, where we invoke
lemma 7.2 instead of lemma 5.1.
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7.8 Existence

In the present section we show that we can find a solution of (7.9), provided that certain
barrier functions exist. For this purpose we define the upper and lower semicontinuous
envelopes u? and u? as in definition 5.4.

Lemma 7.4. Let V be an arbitrary set of viscosity subsolutions of

H(Du(x), u(x), x) = 0 on Ω. (7.20)

Define the function u(x) := supv∈V v(x) for all x ∈ Ω and assume u?(x) < ∞ for all
x ∈ Ω. Then u? is a viscosity subsolution of (7.20).

Proof. We have to show that u? satisfies the viscosity subsolution condition for all x ∈ Ω.
As in the proof of lemma 5.3 we restrict our considerations to ramification points x ∈ Σ,
since the case x 6∈ Σ is based upon similar, but easier, arguments.

Accordingly, let x ∈ Σ. We show that u? satisfies the viscosity subsolution condition
at x. By definition, u? is upper semicomtinuous at x. Let k, l ∈ Incx, k 6= l, and fix
p ∈ J+

k,lu
?(x). We have to show

Hk(p, u?(x), x) ≤ 0.

According to proposition 7.4 we can choose an upper (k, l)-test function ϕ of u? at x
with Dkϕ(x) = p and such that ϕ is both C1-differentiable in an open neighborhood U
of x and (k, l)-differentiable for all x ∈ Σ ∩ U . Furthermore assume ϕ(x) = u(x) without
restriction. Consequently, the function u?−ϕ attains a local maximum at x, whence there
is a radius r > 0 with Br(x) ⊂ U such that this maximum is global with respect to B̄,
where B := Br(x) ∩ (Ω̄k ∪ Ω̄l). Since Ω is an n-dimensional LEP space, we can assume
r > 0 to be sufficiently small such that B∩Σ is contained in an (n−1)-dimensional affine
linear subspace of Rn+1.

As in the proof of lemma 5.3 we now indicate a sequence (xm)m∈N, xm ∈ B for all m ∈ N,
and a sequence (um)m∈N, um ∈ V for all m ∈ N, such that

lim
m→∞

xm = x and u?(x) = lim
m→∞

um(xm). (7.21)

Now let ym ∈ B̄ for each m ∈ N be a point at which the upper semicontinuous function

ϕ2δ : Ω → R, y 7→ um(y)− ϕ(y)− 2δ(dx(y))
2

attains its maximum with respect to B̄, where we have set

dx(y) := d(x, y) for y ∈ Ω.
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As in the proof in lemma 5.3 we then conclude d(x, z) = 0, implying

lim
m→∞

ym = x and lim
m→∞

um(ym) = u?(x). (7.22)

Consequently, we may truncate the sequence (ym)m∈N such that all ym lie in the interior
of B̄. Fixing m ∈ N, we distinguish two cases.

Case 1. There are infinitely many ym with ym 6∈ Σ. Then there is a subsequence –
also denoted by (ym)m∈N –, which is completely contained in either Ωk or Ωl. Without
restriction we assume ym ∈ Ωk for all m ∈ N. As the function um − ϕ2δ attains a local
maximum at ym with respect to B and as the function ϕ2δ is C1-differentiable at ym, the
latter is an upper test function of um at ym, implying Dkϕ2δ(ym) ∈ J+

k um(ym). As um

satisfies the viscosity subsolution condition at ym, we conclude

Hk(Dkϕ2δ(ym), um(ym), ym) ≤ 0. (7.23)

Now, since ϕ is C1-differentiable in B, we have

lim
m→∞

Dkϕ2δ(ym) = Dkϕ(x) = p. (7.24)

Hence the relations (7.23), (7.24), and (7.22) imply

Hk(p, u?(x), x) = lim
m→∞

Hk(Dkϕ(xm), u?(xm), xm) ≤ 0,

as H is continuous.

Case 2. By possibly truncating the sequence (ym)m∈N we can assume that ym ∈ Σ ∩ B
for all m ∈ N. As Σ ∩B is contained in a linear subspace of Rn+1, we have

∂νj
dx(y) = 0 for all y ∈ Σ ∩B and j ∈ Incx;

in particular it follows that dx is (k, l)-differentiable on Σ ∩ B. By assumption the same
holds for ϕ as well, whence we conclude that ϕ2δ is (k, l)-differentiable on Σ ∩ B. Thus
ϕ2δ is an upper (k, l)-test function of um at ym for all m ∈ N. As um satisfies the viscosity
subsolution condition at ym, it follows

Hk(Dkϕ2δ(ym), um(ym), ym) ≤ 0 (7.25)

for all m ∈ N. We furthermore have

lim
m→∞

Dkϕ2δ(ym) = Dkϕ(x) = p, (7.26)

since ϕ is C1-differentiable on B. Now (7.22), (7.25), and (7.26), as well as the continuity
of Hk imply

Hk(p, u?(x), x) = lim
m→∞

Hk(Dkϕ2δ(ym), um(ym), ym) ≤ 0.

As the choice of k and l was arbitrary, it follows that u? satisfies the viscosity subsolution
condition at x.
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Returning to the Dirichlet problem (7.9), we now state the following existence result.

Theorem 7.1. Assume that there is a viscosity subsolution w and a viscosity supersolution
W of

H(Du(x), u(x), x) = 0 on Ω. (7.27)

satisfying the boundary condition w? ≡ w ≡ W ? ≡ W ≡ φ on ∂Ω. Furthermore assume
that w is uniformly bounded by below on Γ.

Define the function u : Ω → R by u(x) := supv∈X v(x), where

X := {v is a viscosity subsolution of (7.27) with w ≤ v ≤ W on Ω̄}.

Then u is a solution of (7.9).

Proof. As in the proof of lemma 5.1 we first conclude by means of lemma 7.3 that we
have

u ∈ X and u ≡ u? on Ω. (7.28)

Then suppose that u? be a viscosity supersolution of (7.27). By lemma 7.3 we conclude
u? ≥ u, implying u? = u by means of the definition of lower semicontinuous envelope, and
the theorem is proved.

It therefore remains to show that u? is a viscosity supersolution of (7.27), where, as in the
previous proofs, we only treat the case x ∈ Σ. Accordingly, let x ∈ Σ and assume that u?

does not satisfy the viscosity supersolution condition at x. Then—according to definition
7.25—, there is a Σ-tangent vector p> ∈ TxΣ and an index k ∈ Incx such that for each
l ∈ K := Incx\{k} there is a tangent vector pl ∈ J−k,lu?(x) with π>(pl) = p> and

Hk(pl, u?(x), x) < 0. (7.29)

Then, according to proposition 7.4, there is an open neighborhood U of x and a family of
functions ϕl ∈ C(Ω), l ∈ K, such that for all l ∈ K we have

(i) ϕl is C1-differentiable on U ∩ (Ωk ∪ Ωl)
(ii) ϕl is (k, l)-differentiable on U ∩ Σ
(iii) Dkϕl(x) = pl

(iv) ϕl(x) = u?(x)
(v) ϕl(y) < u?(y) for all y ∈ U\{x}
(vi) ∃ϕΣ ∈ C(U ∩ Σ) such that ϕl ≡ ϕΣ on U ∩ Σ.

(7.30)

Note that we are allowed to assume property (vi), as we have π>(Dkϕl) = p> for all
l ∈ K.

Due to relation (7.29) and by the continuity of H there is a small number δ > 0 such that
for all l ∈ K and all m ∈ Incx we have

Hm(Dmϕl(y), ϕl(y), y) < 0
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for all y ∈ Bm := B̄δ(x)∩ Ω̄m. We furthermore assume δ to be sufficiently small such that
Bδ(x) ⊂ U .

Hence, as Bm is compact, there is a number ε0 > 0 such that for all l ∈ K and all m ∈ Incx

we have

Hm(Dmϕl(y), ϕl(y) + ε, y) < 0 (7.31)

for all 0 ≤ ε < ε0 and all y ∈ Bm.

We now construct a function v ∈ X such that v(x?) > u(x?) for some x? ∈ Ω, contradicting
the supremal property of u. In fact, for y ∈ B̄δ(x) we define

ṽ(y) :=

{
maxl∈K ϕl(y) if y ∈ Bk

ϕl(y) if y ∈ Bl\Σ for some l ∈ K

and ṽε := ṽ + ε, where ε with 0 < ε < ε0 is yet to be determined. Observe that ṽ is
continuous on B̄δ(x), as the functions ϕl coincide on B̄δ(x) ∩ Σ according to (7.30) (vi).
We show that ṽε satisfies the viscosity subsolution condition at each y ∈ Bδ(x).

Case 1. Let y ∈ Bδ(x) ∩ Σ. For each choice of i, j ∈ Incy, i 6= j, we have to show

H i(p, ṽ(y), y) ≤ 0 (7.32)

for all p ∈ J+
i,j ṽ(y). Choose p ∈ J+

i,j ṽ(y) arbitrarily, represented by

p = pn∂νi
+

n−1∑
m=1

pm∂m,

where ∂νi
, ∂1 . . . , ∂n−1 are defined by means of the canonical identification around y as in

definition 7.18. Let us first assume the special case i 6= k and j 6= k. By the definition of
ṽ and by the definition of superdifferential it follows

pm = ∂mϕi(y) for all m = 1, . . . , n− 1 and pn ≥ ∂νi
ϕi(y).

This implies

|p| ≤ |Diϕi(y)|, provided we have pn ≤ 0. (7.33)

Applying the same arguments to

Sj
i (p) = −pn∂νj

+
n−1∑
m=1

pm∂m ∈ J+
j,iṽ(y),

we derive −pn ≥ ∂νj
ϕj(y), implying

|Sj
i (p)| ≤ |Djϕj(y)|, provided we have −pn ≤ 0. (7.34)
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Then (7.33) and (7.34) yield

|p| = |Sj
i (p)| ≤ max{|Diϕi(y)|, |Djϕj(y)|}. (7.35)

Now observe that conditions (7.4) and (7.5) imply that for each l ∈ {i, j} the function

hl : T l
yΩ → R, q 7→ H l(q, ṽε(y), y)

is strictly convex and rotationally symmetric in q. Consequently, hl(q) is strictly isotonic
in |q| for both l = i and l = j. By (7.35) we thus have

H i(p, ṽε(y), y) = Hj(Sj
i (p), ṽε(y), y) ≤ max{H i(Diϕi(y), ṽε(y), y), H

j(Djϕj(y), ṽε(y), y)}.

Hence (7.32) follows upon choosing l = m = i and l = m = j, respectively, in (7.31).

In order to prove the general case it remains to examine the situation where one of the
indices i, j, say i, coincides with k. Then by the definition of ṽ and by the definition of
superdifferential we have

pn ≥ max{∂νi
ϕi(y), ∂νi

ϕj(y)} and pm = ∂mϕi(y) = ∂mϕj(y) for all m = 1, . . . , n− 1.

This implies
|p| ≤ min{|Diϕi(y)|, |Diϕj(y)|}, provided pn ≤ 0.

We combine this with (7.34), which we derive as above, in order to obtain (7.35). We
then proceed as above to show (7.32).

Case 2. Let y ∈ Bδ(x)\Σ. If y ∈ Ωl, l 6= k, we have to show

H i(p, ṽε(y), y) ≤ 0 for all p ∈ J+
l ṽ(y). (7.36)

As ϕ is differentiable at y, this follows immediately from (7.31) and the definition of ṽε. If
y ∈ Ωk, (7.31) implies that each ϕl +ε, l ∈ K, satisfies the viscosity subsolution condition
at y. Then (7.36) follows by the definition of ṽε and proposition 7.5.

By (7.30) (v) we may now choose the number ε with 0 < ε < ε0 such that ṽε(y) < u?(y)
for all y ∈ ∂Bδ(x). As u? ≤ u on Ω, we have ṽε < u on ∂Bδ(x). Note that ṽε is upper
semicontinuous on Bδ(x). Furthermore, u is upper semicontinuous on Ω by (7.28). Hence
the function v : Ω → R given by

v(y) :=

{
max{u(y), ṽε(y)} if y ∈ Bδ(x)
u(y) if y 6∈ Bδ(x)

is upper semicontinuous on Ω. Furthermore, by the fact that ṽε satisfies the viscosity
subsolution on Bδ(x) and by (7.28), we may invoke proposition 7.5 to conclude that v
satisfies the viscosity subsolution condition on Bδ(x). Hence, as v ≡ u on Ω\Bδ(x), we
conclude v ∈ X. Finally observe that by (7.30) (iv) we have v(x) = u?(x) + ε, implying
that there is a point x? ∈ Ω with v(x?) > u(x?). Thus we have derived a contradiction to
the definition of u, which completes the proof.
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