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Tübingen, Februar 2006 Jan Fischer



iv

Zusammenfassung

In den letzten Jahren hat sich die Erweiterte Realität (englisch: Augmented Reality) zu ei-
ner vielversprechenden und schnell an Bedeutung gewinnenden Anwendung der Computer-
graphik entwickelt. Augmented-Reality-Systeme kombinieren vom Computer erzeugte gra-
phische Darstellungen mit der Ansicht der realen Welt. Mehrere zentrale Problemstellungen
lassen sich im Bereich der Augmented Reality identifizieren. Dabei handelt es sich um die
Entwicklung spezieller Anzeigegeräte, das Kamera-Tracking, den Systementwurf, die Benut-
zerinteraktion und Darstellungsverfahren. Während sich der Großteil vorhergehender Arbei-
ten mit den Problemen des Systementwurfs, des Kamera-Trackings und mit Anwendungen
der Augmented Reality befasste, liegt der Schwerpunkt dieser Doktorarbeit auf dem bislang
relativ wenig beachteten Thema der Darstellungstechniken.

Im ersten Teil dieser Doktorarbeit (Kapitel 2) wird ein neu entwickeltes System für die me-
dizinische Augmented Reality vorgestellt [22]. Das ARGUS-Projekt ist ein neues Augmented-
Reality-System, das auf einem kommerziellen intraoperativen Navigationsgerät basiert, wo-
durch ein Einsatz in der klinischen Praxis erleichtert werden könnte. Mehrere Erweiterungen
des grundlegenden Projekts werden beschrieben, darunter ein hybrides Tracking-Verfahren, ei-
ne Bibliothek für die Benutzerinteraktion und eine Methode für die Verdeckungsbehandlung.
Letztere macht es möglich, die Verdeckung graphischer Objekte durch die Patientenanatomie
korrekt darzustellen, was zu einer realistischeren und verständlicheren Ausgabe führt. Dieser
Algorithmus ist eine der fortgeschrittenen Darstellungstechniken für Augmented Reality, die
im Rahmen dieser Doktorarbeit entwickelt wurden.

Der zweite Teil dieser Doktorarbeit, Kapitel 3, stellt das neue Konzept der Stylized Aug-
mented Reality vor. Dabei werden künstlerische oder illustrative Stilisierungsmethoden auf
Augmented-Reality-Videoströme angewendet [15]. Da die gleiche Art der Stilisierung auf vir-
tuelle und reale Bildelemente angewendet wird, nimmt ihre Unterscheidbarkeit stark ab. Auf
diese Art und Weise wird ein neuartiges Augmented-Reality-Erlebnis vermittelt, und mögli-
cherweise wird eine bessere Immersion erzeugt. Echtzeitverfahren für die Cartoon-artige und
malerische Stilisierung von Augmented-Reality-Bildern werden beschrieben. Auch der Ein-
satz programmierbarer Graphikhardware zu diesem Zweck wurde untersucht. Zudem werden
die Ergebnisse einer psychophysikalischen Studie über die Unterscheidbarkeit virtueller Ob-
jekte in der Stylized Augmented Reality präsentiert.

Zu Beginn von Kapitel 4, das den dritten Teil dieser Doktorarbeit darstellt, wird eine neue
Methode der illustrativen Visualisierung beschrieben. Dieser neue Darstellungsalgorithmus für
Isoflächen und polygonale Modelle erzeugt die illustrative Abbildung einer Oberfläche und
dahinter versteckter Strukturen [12]. Die Methode wurde für die programmierbaren Architek-
turen moderner Graphikhardware entworfen und kann komplexe Modelle in Echtzeit darstel-
len. Eine Erweiterung dieses neu entwickelten Darstellungsstils wurde auch auf Augmented-
Reality-Videoströme angewendet. Diese Entwicklung stellt eine weitere Realisierung des Kon-
zepts der Stylized Augmented Reality dar.
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Abstract

Augmented reality (AR) has become a promising and fast-growing application of computer
graphics over the course of the last years. Augmented reality systems overlay computer-
generated graphical information over the view of the real world. Several main research chal-
lenges can be identified in the field of augmented reality. These are the design of advanced
display devices (e.g., head-mounted displays), camera tracking, system design, user interac-
tion, and rendering. While a major part of the previous work focused on the problems of
system design, camera tracking, and applications of AR, this thesis puts a different emphasis
on the relatively underrepresented aspect of rendering techniques. In this thesis, several novel
methods for displaying augmented video streams are explored.

In the first part of this thesis in Chapter 2, the design and implementation of a novel system
for medical augmented reality are discussed [22]. The ARGUS framework is a new augmented
reality system based on a commercial surgical navigation device. Since it does not require
any additional hardware components, a transition into the clinical practice can be facilitated.
Several extensions of the basic framework are described, including a hybrid tracking scheme,
a user interaction library, and a method for handling occlusion. The latter algorithm makes it
possible to correctly render the occlusion of graphical objects by the anatomy of the patient,
leading to a more realistic and easily comprehensible output. This approach is one of the
advanced rendering methods for augmented reality investigated in the context of this thesis.

The second part of this thesis, Chapter 3, introduces the concept of stylized augmented
reality, which applies artistic or illustrative stylization methods to augmented reality video
streams [15]. Since the same type of stylization is applied to virtual and real scene elements,
they become difficult to distinguish. This way, a novel augmented reality experience is cre-
ated, and possibly even a better immersion. Real-time algorithms for cartoon-like and painterly
brush stroke stylization of augmented video streams are described. The exploitation of pro-
grammable graphics hardware for this purpose is discussed. Moreover, the results of a psy-
chophysical study on the discernability of virtual objects in stylized augmented reality are
presented.

At the beginning of Chapter 4, which is the third part of this thesis, a novel illustrative
visualization method is described. This new rendering algorithm for iso-surfaces and polyg-
onal models generates an illustrative representation of a surface and structures hidden behind
it [12]. The method is designed for the programmable rendering pipelines of modern graph-
ics hardware and is capable of displaying complex models in real-time. An extension of this
newly developed illustrative display style was also applied to augmented reality video streams.
This system constitutes another realization of the concept of stylized augmented reality.
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like to thank Prof. Dr. Bernd Fröhlich, who agreed to be part of my graduation committee.

Another main reason for the good and fruitful environment were the colleagues with whom
I worked together in the department. In particular, I would like to express my gratitude to-
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CHAPTER 1

Introduction

1.1 Augmented Reality

In computer graphics, generated images and animations are usually presented to the user on
dedicated display devices. These include conventional screens and video projectors, but also
the conversion of digital images to classical media like movies and television. Moreover, a
number of advanced display technologies for computer graphics has been developed in re-
cent years. These sophisticated systems typically offer large perceived display areas, which
sometimes surround the user, and stereoscopic rendering. Examples of advanced displays are
head-mounted displays [89], rooms made up of back-projected screens (CAVEs) [73], table-
like display setups [129], and domed projection systems [82]. Most of these more elaborate
systems originate from virtual reality (VR) research [197]. They are normally used in high-end
applications like scientific and medical visualization and industrial design, but also in enter-
tainment settings.

When using such dedicated display devices, the attention of the observer is focused on the
computer-generated images, limiting the perception of the real surroundings. For many sce-
narios, however, it is desirable or even necessary to provide the user with a view of the actual
environment along with the artificial graphics. This is usually the case whenever an interactive
display of virtual information is to be integrated into some real-life task. The necessity of such
a combination of real and virtual image elements has lead to the development of augmented
reality (AR). When one looks at the history of early computer graphics research, it becomes
apparent that augmented reality is not an entirely novel concept. In 1968 one of the pioneers
of computer graphics, Ivan E. Sutherland, described a setup which could well be regarded the
first augmented reality system [191]:

1
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As the observer moves his head, his point of view moves and rotates with respect
to the room coordinate system. [...] Half-silvered mirrors in the prisms through
which the user looks allow him to see both the images from the cathode ray tubes
and objects in the room simultaneously. Thus displayed material can be made
either to hang disembodied in space or coincide with maps, desk tops, walls, or
the keys of a typewriter.

(Ivan E. Sutherland, A Head-Mounted Three-Dimensional Display)

In recent years, augmented reality has become an area of active research. These efforts
have also produced a more detailed definition and classification of augmented reality. Azuma
enumerates the following characteristics as essential for an AR system [43, 44]:

1. Combination of real and virtual. Artifically generated graphics and images of the real
environment are combined. This is the main feature of augmented reality. It is not,
however, a unique attribute of AR. Research trends in fields like ubiquitous comput-
ing [205] and wearable computing [143] also aim at providing the user with an overlay
of information over the normal field of view (usually 2D graphics and text overlays).
Therefore, the following two characteristics are necessary for a more precise definition
of augmented reality.

2. Real-time interactivity. The virtual image elements presented to the user are generated
in real-time, and their appearence is sensitive to user input and changes in the environ-
ment.

3. Three-dimensional registration. Graphical information in the AR environment has
a correct spatial alignment relative to the actual surroundings of the user. In order to
achieve such a useful registration, the head of the user or the camera used in the system
has to be tracked. This consistent three-dimensional alignment is the distinguishing
feature of augmented reality.

In his survey article, Azuma differentiates between two types of basic designs for an AR
system [43]. Optical see-through approaches use optical combiners, which are placed in front
of the user’s eyes. These combiners are partially translucent, so that the real world remains
directly visible. They are also partially reflective, so that the user can additionally see virtual
images shown on a display device, e.g., a head-mounted monitor. In video see-through aug-
mented reality, a video camera is used for recording images of the real environment (two cam-
eras in the case of a stereo AR system). The acquired digital images then serve as background
bitmaps, over which the virtual graphical objects are rendered. The resulting combined digi-
tal images are presented to the user on non-translucent display devices like closed-view head
mounted displays (HMDs). Figure 1.1 illustrates both types of see-through mechanism with
overview diagrams.

In addition to the two original approaches to augmented reality, namely optical see-through
and video see-through HMDs, several other methods were proposed in recent years. These
include systems like the Virtual Showcase, which combines several semitransparent mirrors in
a local multi-user setup [55], and projector-based approaches [56].
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(a) Optical see-through HMD (b) Video see-through HMD

Figure 1.1: Comparison of optical see-through and video see-through head-mounted displays
for augmented reality (adapted from [43]).

This thesis focuses on video see-through augmented reality. The medical augmented real-
ity system described in Chapter 2 uses a video see-through approach for image combination.
Video see-through augmented reality is also required if stylization filters are to be applied to
the camera image, a principle used by the techniques described in Chapter 3 and 4.

1.2 Rendering Methods for Augmented Reality

In the last years, researchers have explored many different potential applications of augmented
reality. One of the first and most intensively examined scenarios is the support of medical
diagnostics and treatment [86, 150, 186]. In Chapter 2 of this thesis, a novel AR system for
medicine is presented, which uses commercially available surgical equipment for accomplish-
ing a useful augmentation. Another promising direction of research is the application of aug-
mented reality in an industrial context. The use of AR technology has been demonstrated for
assisting design and development, production, training, and maintenance in industry-related
projects [166]. Moreover, various other scenarios for augmented reality have also been pro-
posed. These include applications in entertainment [193] and cultural heritage [200], among
many others.

With regard to the underlying technical challenges of AR, many research efforts focus on
the topics of calibration and registration, hardware setups, and system design aspects like au-
thoring. For instance, vision-based tracking algorithms for augmented reality have continually
been improved during the last years [119]. Many different and advanced techniques for AR
displays and image combination have been explored [54]. The problems of designing com-
plete augmented reality systems and authoring content for AR applications have also been
intensively studied [107, 132].

Compared to these directions of research, only a relatively limited amount of previous
work exists on the topic of novel methods for rendering in augmented reality. The majority of
existing AR systems uses standard computer graphics algorithms for displaying virtual objects
in an augmented environment. Widespread software libraries like OpenGL [181] and high
level scene graphs based on them (e.g., OpenSG PLUS [184]) are often utilized for real-time
rendering in AR. Such proven technologies are easy to apply in an augmented reality pipeline
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and are inherently fast enough for generating interactive AR displays. The generated output,
however, tends to look artificial and contains typical computer graphics artifacts like aliasing
caused by the rasterization process and simplified lighting models.

Some researchers have tackled the problem of specialized rendering for augmented reality.
One of the first approaches for improving the visual quality of displayed virtual objects was oc-
clusion handling. Occlusion handling tries to resolve visual ambiguities caused by the fact that
graphical objects are always overlaid over the background image in standard AR. The graphical
objects, therefore, always occlude the real world, regardless of the actual spatial relationships
in the observed scene. Geometry-based [64] and image-based [52] algorithms were proposed
for handling occlusion in augmented reality. Figure 1.2a shows an example of occlusion han-
dling in AR. Another method for improving the visual realism of rendered augmented reality
images is the addition of virtual shadows to the scene [104]. An augmented image containing
a virtual shadow based on a known geometrical model is shown in Figure 1.2b. Some research
has also been done on analyzing the illumination conditions in the real environment [41]. This
way, graphical objects can be rendered with a more realistic lighting model.

(a) Static occlusion handling with phantom mod-
els. In this image, the chairs and lamp are virtual
models. The virtual chairs are correctly occluded
by the real table (from [64]).

(b) Virtual shadows in augmented reality. The
graphical objects (arrow and text) cast a shadow on
the real table (from [104]).

Figure 1.2: Improved realism by means of advanced rendering methods in augmented reality.

As its core contribution, this thesis seeks to extend the existing work on novel methods of
rendering for augmented reality. In the medical augmented reality system described in Chap-
ter 2, a new occlusion handling scheme is used in order to achieve a more easily understandable
display. With this method, the occlusion of graphical objects by the anatomy of the patient can
correctly be displayed, leading to a better representation of depth relationships in the scene.

In Chapter 3, a different method of generating AR images is introduced, which applies
stylization methods to the entire augmented reality scene. By using the same type of artistic or
illustrative stylization for both the real and the virtual elements in an augmented video stream,
they become less distinguishable. Therefore, a novel AR experience is created. This approach
was proposed for the first time in the context of this thesis. Subsequently, a novel algorithm
for the illustrative visualization of volumes and polygonal datasets is described in Chapter 4,
which is then also applied to augmented video streams as the basis for an illustrative AR
system.
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1.3 Overview and Contributions

The results presented in this thesis were achieved in two main steps. In the first phase, a new
medical augmented reality system, ARGUS, was designed and realized (see Chapter 2). The
software component of this medical AR system was implemented as a flexible framework for
augmented reality. ARGUS constitutes an important milestone of project VIRTUE, which is
the context in which this thesis was completed. The aim of project VIRTUE is the combination
of surgical navigation, modern modes of visualization, and endoscopy in real-life medical
applications [3, 49, 50]. This project is supported by the German Research Foundation (DFG)
in the focus program on ”Medical Navigation and Robotics” (SPP 1124). In addition to the
ARGUS framework, a common software core for advanced, platform-independent rendering
and visualization was also realized. This software core has the same name as the project for
which it was created, Virtue.

These software components, ARGUS and Virtue, serve as the basis for the topics which
dominated the second phase of research presented in this thesis. Both the novel stylization
approach for augmented reality (see Chapter 3) and the new illustrative visualization algorithm
(see Chapter 4) were implemented using this software framework.

In addition to the main topics mentioned so far, several smaller projects were also carried
out. The following list enumerates the contributions described in this thesis, as well as the
associated improvements upon the state-of-the-art (at the time of first publication):

• The medical augmented reality system ARGUS was designed and implemented [22].
Unlike the vast majority of previously described AR setups for medicine, this system
uses commercially available surgical navigation equipment for tracking and patient data
import. This eliminates the need for specialized hardware components.

• As an application case for the newly developed medical visualization and augmented
reality methods, the task of operation planning for maxillofacial surgery was examined.
A new software tool takes symmetry considerations into account for the preparation of
a so-called orbital reconstruction intervention [21].

• An advanced hybrid tracking system for medical augmented reality was developed. This
approach combines tracking information from an infrared camera system with computer
vision methods in order to improve the camera pose estimation in the ARGUS frame-
work [20].

• Based on the ARGUS system, a new method for real-time occlusion handling in medical
augmented reality was realized, which utilizes the available patient data [10].

• Novel approaches to user interaction in medical AR were explored. A new three-
dimensional user input system provides support for basic gestures and a configurable
menu system [13]. The user interaction is performed with untethered interaction tools
tracked by a surgical navigation system, requiring no additional hardware.

• A new method for generating augmented video streams in video see-through AR was
proposed. This novel approach, stylized augmented reality, applies similar types of artis-
tic or illustrative stylization to the real background image and the virtual objects [15].
This way, real and virtual scene elements are less distinguishable from each other, which
can lead to an improved immersion in the augmented environment. The work presented
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in this thesis describes the concept of stylized augmented reality for the very first time.
As the first implementation of this principle, an algorithm for the cartoon-like stylization
of AR images was designed and implemented.

• As an extension of the stylized augmented reality concept, a technique for rendering
augmented video frames in a brush stroke style was devised [11].

• In order to achieve a better implementation of the principle of stylized AR, an im-
proved algorithm for the cartoon-like stylization of augmented reality images was devel-
oped [14]. This new method is a postprocessing filter, which is executed on the graphics
processing unit (GPU). It delivers significantly higher frame rates and a better visual
quality compared to the original approach.

• A psychophysical study on the effectiveness of stylized augmented reality was per-
formed. In the study, participants were asked to judge whether objects shown in AR
video sequences are real or virtual. The results of the study confirm that the application
of stylization methods to augmented video streams significantly reduces the discernabil-
ity of virtual objects [16].

• A novel method for the illustrative rendering of iso-surfaces generated from volume
datasets was proposed [12]. This new real-time illustrative visualization algorithm au-
tomatically displays the inner structures of objects in indirect volume rendering. No
preprocessing of the data is necessary. The method uses an optimized combination of
object space and image space processing passes executed on the graphics processing unit
(GPU). The algorithm can also be used for displaying general polygonal models. This
technique was the first to make the illustrative display of inner structures of iso-surfaces
on the GPU possible in real-time without preprocessing.

• The new illustrative rendering algorithm was applied to augmented video streams, cre-
ating another novel way of rendering AR images. In illustrative AR, both the camera
image and the virtual objects are displayed in a black-and-white technical illustration
style.

The remainder of this thesis is structured as follows. In Chapter 2, the medical augmented
reality system ARGUS and its extensions, i.e., the hybrid tracking, user interaction, and oc-
clusion handling techniques, are described. Chapter 3 introduces the concept of stylized aug-
mented reality and the newly developed stylization algorithms. The new illustrative visualiza-
tion method and its application to illustrative AR are described in Chapter 4. Finally, Chapter 5
concludes this thesis with a summary and an outlook on possible future developments.



CHAPTER 2

Medical Augmented Reality

2.1 Augmented Reality for Medical Diagnostics and Therapy

Medical diagnostics as well as the planning, preparation, and support of medical treatment
have always been among the most important applications of augmented reality. The aim of
medical AR is the overlay of useful additional graphical information directly over the patient.
Such additional information can include the visualization of preoperatively acquired patient
data (e.g., three-dimensional MRI or CT scans), the display of operation plan elements created
in the preparation phase, and information related to the equipment used in an intervention (e.g.,
the position of surgical tools).

The need for the visualization of additional information during surgical interventions has
increased in recent years due to the more frequent use of minimally invasive techniques. In
minimally invasive surgery, operations are performed with the help of small cameras (endo-
scopes) and specially designed instruments, which are inserted through small keyhole sized
surgical incisions. This type of surgery offers many benefits for the patient, including less
blood loss, minimal scarring, and shorter hospital stays [71]. One challenge during minimally
invasive interventions is the fact that the surgeon’s view is limited to the endoscopic image,
which only shows a small region of the patient’s anatomy. It can therefore be difficult to de-
termine the current position and orientation of the endoscope and surgical instruments relative
to anatomical structures. A widespread approach for the visualization of anatomical structures
on a standard screen during the planning phase of minimally invasive surgery is the so-called
virtual endoscopy [48, 115].

The use of augmented reality for supporting minimally invasive procedures or even replac-
ing conventional endoscopy has been studied for a long time. An early example is the ultra-
sound visualization research performed at the UNC Chapel Hill since the early 1990s [45].

7
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Figure 2.1 shows concept sketches of two possible applications of augmented reality for ul-
trasound visualization. In these sketches, live ultrasound images are displayed as graphical
overlays over the patient to the surgeon, who is wearing a head-mounted display.

(a) Concept sketch: Ultrasound-guided breast biopsy in
AR

(b) Concept sketch: Fetal ultrasound examina-
tion in AR

Figure 2.1: Concept sketches of augmented reality for the visualization of live ultrasound im-
ages (from [196]). In the sketches, video see-through augmented reality is used for overlaying
additional information over the patient.

In recent years, a large number of experimental augmented reality systems for medicine
were created. In addition to the technical challenges described in Chapter 1, several application-
specific problems also have to be solved when designing a medical AR setup:

1. Patient registration. Since any useful overlay of medical information is always rela-
tive to the patient’s anatomy, the exact location and orientation of the patient have to
be known. This problem is not trivial and can usually only be solved reliably for rigid
parts of the anatomy, e.g., the skull of the patient. It also typically requires that the
patient remains completely immobile during the intervention. In many medicial aug-
mented reality systems, patient registration is performed by means of specialized hard-
ware components like infrared tracking cameras or application-specific algorithms (e.g.,
image-based registration methods).

2. Tracking of surgical instruments. In particular during minimally invasive procedures,
it is necessary for the surgeon to know the exact position and orientation of surgical
instruments. This is especially important for the endoscope, but also for other tools,
which are used for performing the actual operation. In many experimental medical AR
systems, surgical instruments are also tracked with dedicated specialized hardware.

3. Import of medical data. A minor technical, but often tedious aspect of implementing a
medical augmented reality application is the import of medical datasets. For most sce-
narios, three-dimensional volume datasets containing the relevant parts of the patient’s
anatomy are required. Such image data in medicine usually originates from 3D scanning
devices like CT (computed tomography) or MRI (magnetic resonance imaging). This
data is generally stored according to the DICOM standard (Digital Imaging and Commu-
nications in Medicine), which is notoriously complex [158]. Moreover, modifications
and derivations from the standard are often encountered.
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In the remainder of this chapter, first an application case for the medical AR and visualiza-
tion techniques described in this thesis is discussed (Section 2.1.1). In Section 2.2, an overview
of previous work in medical augmented reality is given. Section 2.3 describes the novel medi-
cal AR system ARGUS. In Section 2.4, a hybrid tracking algorithm developed for the ARGUS
system is discussed. A description of the newly designed user interaction system contained in
the ARGUS framework is given in Section 2.5. The new occlusion handling method for med-
ical augmented reality is discussed in Section 2.6. Finally, Section 2.7 concludes this chapter
with a summary.

2.1.1 Application Case: Intervention Planning for Orbital Reconstruction
Surgery

In the context of this thesis, one concrete type of surgical intervention was explored as a poten-
tial application case for the described augmented reality and medical visualization methods.
In the practice of maxillofacial surgery (upper jaw and face surgery), one major challenge is
the correct reconstruction of malformed or damaged bone structures of the face. Among those,
a rather frequent task is the remodeling of an injured orbit (eye socket). Injuries of the orbit
occur frequently as a result of various types of accidents. Damage to the orbital cavity can
also result from the preceding removal of a tumor in this area. A malformed orbit causes one
eye to be displaced from a position that is symmetrical to the eye in the healthy half of the
face. This can make the face look unesthetic and can also impair the function of the eyes,
resulting in problems with the patient’s vision. Figure 2.2a shows an example of a patient with
one displaced orbit. In order to reconstruct an injured orbit, bone pieces are removed from the
skull of the patient. These are then placed in the damaged orbit so that a more symmetrical
placement of the affected eye is achieved. The result of such an intervention can be seen in
Figure 2.2b.

(a) Before the intervention (b) After the intervention

Figure 2.2: A case of a patient with an injured orbit (source: Jürgen Hoffmann, Department of
Oral and Maxillofacial Surgery, University Hospital Tübingen).

The main difficulty of this type of operation is the necessity to plan the repositioning of
bone fragments so that symmetry is achieved. This usually has to be done manually using 2D
slice images from scans of the patient’s bone structures. In order to provide a better support for
this task, a new experimental operation planning software for orbital reconstruction was devel-
oped [21]. This software tool was implemented by Melissa Mekić as part of her Diplomarbeit
(Master’s thesis) [146]. The planning tool, named Schneewittchen, provides a specialized user
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interface for defining a three-dimensional symmetry plane for the bone structures in the pa-
tient’s skull. The definition of the symmetry plane is shown in Figure 2.3.

Figure 2.3: User interface for specifying the symmetry plane in the Schneewittchen software.
This process is based on the definition of two-dimensional, partial “axes of symmetry” in
orthogonal image slices.

After the symmetry plane has been specified, the user can highlight important anatomical
structures. These drawings are automatically mirrored in 3D and overlaid over the associ-
ated slice images of the patient scan. This makes it possible to compare bone structures in
the damaged and healthy portions of the patient’s skull. Figure 2.4 illustrates this phase of
the intervention planning process. The generated drawings and mirrored elements can then
be exported in various ways for further processing in other planning software or for use in
intraoperative navigation.

One technical challenge of the implementation of a planning tool for orbital reconstruction
is the necessity for rotating the patient volume dataset. Since the symmetry plane is truly
three-dimensional, the mirrored counterparts of highlighted anatomical structures are usually
located in a different image slice of the original volume. They can even be distributed over
several slices. In order to facilitate an intuitive interaction with displayed 2D slices, the volume
dataset has to be rotated according to the symmetry plane parameters. This step requires a
time-consuming resampling of the entire dataset. Therefore, a novel algorithm for applying
rigid transformations to volume datasets was developed [18, 19]. It was shown that this new
method can significantly speed up the transformation process.

This research on intervention planning for orbital reconstruction surgery was performed
in close cooperation with the Department of Oral and Maxillofacial Surgery of the Univer-
sity Hospital Tübingen. The results of this work have influenced some aspects of the actual
clinical practice of orbital reconstruction [28, 30, 31, 33, 34, 35]. Based on the experience
with the Schneewittchen software, a planning tool for maxillofacial surgery using a polygonal
representation of bone structures was later also developed [172].
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Figure 2.4: Important anatomical structures are highlighted and mirrored at the symmetry
plane.

2.2 Related Work

As mentioned above, the use of augmented reality for medical diagnostics and therapy has
been in the focus of active research for many years. A method for overlaying live ultrasound
images over the patient was presented by Bajura et al. in 1992 [45]. In 1996, State et al.
described an experimental AR system for ultrasound-guided needle biopsies [186], as well as
a specialized hybrid tracking algorithm for this scenario [185]. This system offers stereoscopic
rendering and accurate tracking of both the user and the ultrasound probe, but relies on a
number of proprietary technologies. These include a magnetic tracker for the user’s head and
a mechanical arm for probe registration.

In recent years, experimental AR systems were created for the support of various medical
application scenarios. Navab et al. combined a specialized mobile X-ray system, a so-called C-
arm, with a CCD camera in order to overlay acquired volume data over the optical image [150].
A head-mounted augmented reality operating microscope, the Varioscope AR, was presented
by Birkfellner et al. [57]. It was later developed further and improved [85, 86]. The Varioscope
AR is an optical see-through system which is based on a commercially available operating mi-
croscope with specially modified optical components. In order to make a spatially correct
overlay of information possible, the operating microscope is tracked with dedicated optical
tracking cameras. Sauer et al. have described a video see-through augmented reality system
for the visualization of ultrasound images [171]. In this system, a dedicated infrared camera,
which is attached to the head-mounted display worn by the user, is used for tracking. The AR
system prototype of Splechtna et al. [183] consists of an optical tracking system comprising
two cameras and a head-mounted display. It is capable of augmenting the surgeon’s view with
preoperative volume data or live ultrasound images. Their target application is liver surgery,
during which a visualization of the vessel tree is especially useful. The Medarpa project,
which uses a special translucent display device mounted on a swivel arm, was described by
Schwald et al. [178, 179]. Here, tracking is performed using a hybrid scheme based on active
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infrared and electromagnetic components. Scheuering et al. have presented a two-stage ap-
proach to registration for augmented reality [173, 174]. In addition to rigid tracking using a
hybrid optical-magnetic system, a non-linear deformation of patient data is performed based
on image processing methods. Minimally invasive liver interventions are the target application
for this system. Another augmented reality setup for supporting livery surgery was described
by Bornik et al. [59, 60]. In this system, stereoscopic optical see-through head-mounted dis-
plays are used for displaying information from a liver surgery planning system. Dedicated
optical cameras are used for tracking. A semi-transparent mirror display mounted directly
over the patient is the basis for reality augmentation in the ARSys-Tricorder project described
by Goebbels [96]. It provides stereoscopic rendering, with infrared cameras being used for
tracking the surgeon’s head and components of the AR system. Bockholt et al. describe a
concept for overlaying preoperatively acquired patient scans and operation plan information
during an intervention [58].

Among the latest developments in medical augmented reality is the method described
by Feuerstein et al. [84] for supporting optimal port placement in robotically assisted heart
surgery. A specially designed planing process is used for this task [51], and the resulting
planning information can be overlaid over images delivered by an endoscope. Olbrich et al.
propose a partial periodic augmentation of endoscopic images during minimally invasive liver
surgery [157]. They limit the display of additional information to certain phases of the respi-
ration cycle in order to avoid overlay errors caused by liver motion.

2.2.1 Drawbacks of Previous Systems for Medical Augmented Reality

The main drawback of many existing methods for realizing augmented reality in medicine is
their reliance on specific hardware. Such devices, like dedicated magnetic or optical tracking
systems and specialized displays, often are expensive and can require tedious setup procedures.
Many of them have originally been designed for applications in industry or virtual reality and
are not optimally suitable for medical scenarios. In particular stereo shutter glasses and head
mounted displays are usually considered to be too bulky, and they may deteriorate the user’s
perception of the surroundings. Moreover, connecting cables used for data transmission or
power supply can limit the user’s range of motion. They are thus not well accepted for medical
applications.

Magnetic tracking devices designed for VR scenarios, which are used in many existing
medical AR systems, may prevent the transition from an experimental state into the clinical
practice. Such magnetic trackers can be disturbed by metallic objects like surgical instru-
ments, and they can also possibly interfere with other sensitive equipment in the operating
room. Although the use of specialized magnetic trackers in medical applications is currently
being investigated (e.g., see [87]), they have only recently started to become available as com-
mercial products. Moreover, even specialized magnetic trackers for intraoperative navigation
can still be disturbed by other intraoperative equipment like C-Arm devices for X-Ray scans.
The very limited space available in the operating room also prevents the utilisation of some
types of devices. Furthermore, practical problems like working in a sterile environment and
certification for medical settings usually have not been solved for specialized VR and AR
tracking and display equipment.

Another difficulty of medical AR is the fact that a number of problems related to regis-
tration, tracking and calibration need to be solved. These may require a lot of effort for the
design, implementation and test of the necessary algorithms and software components.
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2.3 Augmented Reality based on Image Guided Surgery

In the context of this thesis, a novel medical augmented reality system was developed. This
new system, ARGUS, uses commercially available medical equipment for solving many prob-
lems of medical AR. This way, many of the difficulties mentioned in Section 2.2.1 can be
avoided.

ARGUS is based on a so-called image guided surgery device (the name of the system is
an acronym for Augmented Reality based on image GUided Surgery). Image guided surgery
(IGS) is a technology which has become a widespread tool for modern types of surgery such as
minimally invasive interventions. The basic concept of image guided surgery is that the surgi-
cal procedure is facilitated by a real-time correlation of the operative field to a monitor, which
shows the precise location of selected surgical instruments to the surrounding structures [149].
This concept is illustrated in Figure 2.5, which shows two screenshots from an IGS system.
Here, a patient dataset is depicted, which was acquired preoperatively with an MRI scan. The
patient’s anatomy can be displayed as image slices from the volume dataset (see Fig. 2.5a)
or as a three-dimensional model (see Fig. 2.5b). In addition to the patient data, the position
and orientation of surgical instruments can be seen. The surgical instruments are tracked by
the IGS system during the operation. Since a highly accurate patient registration is performed
before the intervention, it is possible to display the exact location of the instruments relative
to the patient’s anatomy. Such a real-time visualization of the spatial relationship between
tracked surgical tools and anatomical structures during a surgical procedure is also called in-
traoperative navigation.

(a) IGS display showing orthogonal image slices (b) IGS display showing a three-dimensional model of
the patient anatomy

Figure 2.5: Real-time visualization of patient data and tracked surgical tools in an IGS sys-
tem. These images are screenshots from the VectorVision R© Cranial software developed by the
BrainLAB company (Heimstetten, Germany). In the top right portion of Fig. 2.5b, the tracked
surgical instruments are displayed as three-dimensional models.

Image guided surgery has been used as the basis for advanced modes of intraoperative vi-
sualization. Weber has described a mobile navigated image viewer [204]. This viewer consists
of a small mobile TFT display, which is tracked so that its position and orientation relative to
the patient are known. The display can be moved freely in the proximity of the patient. The
viewer shows 2D image data based on a preoperatively acquired patient scan. These images,
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which represent a section of the patient anatomy parallel to the TFT display, are generated in
real-time.

2.3.1 VectorVision and the VectorVision Link library

A VectorVision R© image guided surgery device is the basis for the ARGUS augmented reality
system. The VectorVision platform is manufactured by the BrainLAB company (Heimstetten,
Germany) [63]. Figure 2.6 shows a VectorVision compact IGS system, which is the type that
is used for developing and extending ARGUS. The image guided surgery device consists of
a computer system running the IGS software, a touchscreen LCD display, and an infrared
camera system. The infrared cameras track surgical instruments in real-time with a very high
accuracy.

Figure 2.6: VectorVision R© compact image guided surgery system manufactured by the Brain-
LAB company (image source: company website [62]).

An infrared source integrated into each camera emits infrared waves. Special marker
spheres that are rigidly attached to every object to be tracked by the IGS system reflect the
infrared light back to the cameras. The position of each marker sphere is calculated via tri-
angulation, which allows the touchscreen to display the 3D model of the surgical tool at the
correct location in the 3D dataset. The triangulation step is depicted in Figure 2.7.

Disregarding the fact that soft tissue can slightly modify shape and position over time, in
particular between the image acquisition and the surgical intervention, the technically possible
accuracy achievable today is in the order of magnitude of 1 mm [114].

It is one particular feature of the VectorVision platform that it provides a network interface
for accessing internal IGS data. This interface, VectorVision Link, consists of an easy-to-use
TCP/IP-based protocol [151]. A software library is available for accessing VectorVision Link
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Figure 2.7: Infrared tracking of surgical instruments.

(VVL) from different platforms (Linux and Windows operating systems) and programming
languages (e.g., C++ and Java). Many different types of data can be exchanged through the
VVL interface between the IGS system and an external computer. These include patient data
and the position and orientation of tracked surgical instruments. This network access to inter-
nal data of the image guided surgery device is the basis for reality augmentation in ARGUS.
The research presented in this thesis was among the very first to use the VVL protocol for ad-
vanced modes of medical visualization [8, 24]. ARGUS is the first medical augmented reality
system which uses this method of transferring IGS data over the network for camera tracking.

2.3.2 Camera Tracking in the ARGUS System

ARGUS is designed as a video see-through system. An off-the-shelf webcam is used for the
acquisition of the video images. As one central aspect of the design of the new AR system, a
method for tracking the webcam using the given equipment was developed in the context of
this thesis [22, 23, 25]. The VectorVision device is capable of tracking surgical instruments
using its built-in infrared cameras. This capability is harnessed by attaching an instrument
adapter clamp with infrared marker spheres to the webcam. The setup is shown in Figure 2.8a.

(a) Webcam with attached passive infrared mark-
ers

(b) Calibration of surgical tool in the IGS system

Figure 2.8: Webcam with infrared markers and calibration of surgical tool in the IGS system.
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The position and orientation of the instrument clamp measured by the IGS system is re-
ceived using the VectorVision Link interface. Although the latency depends on the system
load of the VectorVision device and the current network traffic, real-time transfer of the data is
almost always possible.

Tracked Instrument Pose Data

The major difficulty of using tracked instrument data for tracking the webcam is the fact that
the pose information delivered by the IGS system does not directly correspond to that of the
camera. In order to utilize an instrument clamp, it has to be calibrated as if it was attached to an
actual surgical instrument. This is done in the IGS software using a special procedure aimed
at ensuring accuracy and correct placement of medical tools within the patient’s coordinate
system. Figure 2.8b shows how a mock-up of a surgical tool is calibrated with respect to a
so-called reference star (seen at the left). The same instrument clamp used for the webcam in
Figure 2.8a is attached to the instrument mock-up.

Since this calibration procedure requires the instrument to have a fixed physical tip, it
is not possible to directly calibrate the webcam at the reference star. Thus the AR system
can only obtain position and orientation information in relation to the instrument mock-up,
as shown in Figure 2.9. In this figure, pos denotes the position of the tip of the instrument.
The direction of the trajectory of the instrument is given as vector dir, with norm being a
plane normal perpendicular to it. By combining the information contained in pos, dir and
norm, the complete six degrees of freedom (6-DOF) pose information can be obtained. It is
then necessary to transform this pose, which is relative to the instrument used for the initial
reference star calibration, into the camera pose required for the AR image composition. An
additional one-time calibration step for computing this transformation was devised.

Figure 2.9: Six degrees of freedom (6-DOF) instrument data delivered by the image guided
surgery system.

One-time Calibration

A matrix describing the transformation from the tracked instrument to the camera is computed.
In order to be able to perform this computation, a common reference coordinate system is
established at a given point of time. This reference coordinate system contains both the tracked
instrument and the webcam in absolute positions and orientations. A transformation between
the two can then be easily derived. For this one-time calibration, conventional marker tracking
based on the ARToolKit by Kato et al. is utilized [123].
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An ARToolKit marker is placed in or near the trackable volume of the VectorVision in-
frared cameras. To make the measurements and the calibration stable and repeatable, a physi-
cally fixed relation between the reference star and the marker is ensured. The user then defines
the positions of the marker corners in the coordinate system of the infrared camera. A stan-
dard pre-calibrated pointer tool is used for indicating the spatial positions of the corners. The
pointer tool is automatically recognized by the image guided surgery system, and the posi-
tion of its tip can be retrieved through the VectorVision Link interface. Figure 2.10 shows the
definition of two marker corners.

Figure 2.10: Two marker corners are indicated by the user with the pointer tool.

The user is prompted to define the corners in clockwise order as shown in Figure 2.11.
Therefore, the transformation matrix from the VectorVision coordinate system to the coordi-
nate system of the marker can easily be constructed. The marker coordinate system is the same
one as used in the ARToolKit: Vectors u and v in Figure 2.11 correspond to the x and y axes,
respectively. The z axis points upward towards the viewer, creating a right-handed coordinate
system.

Figure 2.11: Marker corners are defined in a clockwise order from P1 to P4. The marker
shown here is an ARToolKit marker [123].

The transformation matrix from the VectorVision to the marker coordinate system, de-
noted here as Avvctomarker, is computed according to Equation 2.1. The origin of the marker
coordinate system is the geometric centroid of the four defined corner points. Note that both
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u and v are normalized to a length of one. Other considerations concerning the scaling of
the coordinate systems are not necessary, since both VectorVision and the ARToolKit define a
coordinate unit as equivalent to one millimeter.

u := P4 − P1
‖P4 − P1‖ v := P2 − P1

‖P2 − P1‖

c := P1 + P2 + P3 + P4
4

Avvctomarker :=

⎛
⎝ u v u× v c

⎞
⎠

−1

(2.1)

In the next step, the actual one-time calibration procedure is triggered by the user. At one
point of time, the webcam has to be positioned so that the optical marker can be recognized
by the ARToolKit, while the infrared markers are visible to the VectorVision cameras simulta-
neously. The computation of the necessary transformation matrices is triggered with a single
keystroke.

The matrix for the transformation from the VectorVision coordinate system to the coordi-
nate system of the tracked instrument marker clamp is then calculated. When the calibration is
performed, the current tracked instrument data, as shown in Figure 2.9, is recorded. This pose
information directly leads to the construction of matrix Avvctoinsm (see Equation 2.2), which
describes a right-handed coordinate system with the (imaginary) instrument tip at its origin.

Avvctoinsm :=

⎛
⎝ dir norm dir× norm pos

⎞
⎠

−1

(2.2)

In the most recent versions of the VectorVision Link interface, the complete transforma-
tion matrix for an instrument clamp can be downloaded in addition to the pos, dir and norm
vectors. For these versions of VectorVision Link, the ARGUS software simply uses the down-
loaded transformation data as the Avvctoinsm matrix.

Finally, the marker transformation matrix is retrieved from the ARToolKit. It is then in-
verted, yielding the transformation Acamtomarker from the coordinate system of the webcam
to the marker coordinate system. Using the ARToolKit marker as the common point of ref-
erence, it is now possible to compute the transformation from the instrument clamp to the
webcam coordinate system. Figure 2.12 illustrates the relations between the transformation
matrices involved in the calibration procedure.

Ainsmtocam = A−1
camtomarker ·Avvctomarker ·A−1

vvctoinsm (2.3)

Equation 2.3 shows how the result of the calibration, matrix Ainsmtocam, is computed.
Note that this transformation only needs to be computed once. As long as the physical relation
between the instrument marker clamp and the webcam remains unaltered, the matrix remains
valid. A new calibration is only required when the instrument clamp is moved relative to the
webcam.
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Figure 2.12: Overview of the transformation matrices involved in the calibration and tracking
process.

Operation of the Camera Tracking System

After the one-time calibration step, only the data from the VectorVision infrared camera is re-
quired for tracking the webcam. The vision-based marker tracking is not used for the operation
of the augmented reality application itself. For every frame that is generated by the AR system,
the current tracked tool data is retrieved using the VectorVision Link. An Avvctoinsm matrix
is computed as described in Equation 2.2. The final transformation matrix used for OpenGL
camera setup is the result of a simple multiplication as shown in Equation 2.4.

Avvctocam = Ainsmtocam ·Avvctoinsm (2.4)

2.3.3 Additional Support by the IGS System

In addition to the camera tracking described above, the image guided surgery system also
provides support for several other tasks of medical AR. Surgical tools are tracked in the same
way as the instrument clamp attached to the webcam (see Sec. 2.3.2). Several instruments can
be tracked simultaneously, each delivering 5-DOF or 6-DOF pose information.

The VectorVision system offers several methods for patient registration. These include
algorithms based on the matching of anatomical landmarks, artifical fiducials attached to the
patient, or three-dimensional surface point clouds generated by a special handheld laser device.

A software pipeline for importing and preprocessing DICOM image datasets is provided
by the IGS system. It is possible to define target points or trajectories for interventions. More-
over, volumes originating from different scanning modalities can be registered for use in a
single session. All of this data can be exchanged with the augmented reality system using the
VectorVision Link. The AR application can upload and download volume datasets, retrieve
patient registration parameters and tracked instrument data, and read and add intervention
planning information.
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2.3.4 Overlay of Graphical Information with ARGUS

Several example cases for the overlay of graphical information were realized with the ARGUS
framework. Figure 2.13 shows results from an early test application. Here, a graphical cube
model is positioned at the origin of the coordinate system of the IGS infrared cameras. When
moving the webcam in the trackable volume of the image guided surgery system, the cube
model remains correctly positioned and oriented in the current camera image. The acquired
camera image with the graphical overlay is displayed to the user in an interactive software
application.

Figure 2.13: Early overlay experiments with ARGUS. The blue cube is a virtual object. It
is displayed with a correct position and orientation relative to the reference star (seen at left)
based on the current camera position.

Figure 2.14 shows an example application which demonstrates the use of augmented re-
ality in a medical context. The red object in the images is the graphical model of a tumor
generated from actual patient data. The model is manually positioned so that it is located
inside a real plastic skull phantom1. This plastic skull is the test setting which was used dur-
ing the development of ARGUS. Patient registration in the image guided surgery system was
performed with an MRI scan of the phantom skull. As shown in Figure 2.14, here again the
graphical object is displayed with correct spatial positioning and orientation thanks to AR
camera tracking.

One of the main advantages of utilizing image guided surgery for camera tracking is the
fact that patient registration is provided by the IGS device. For the ARGUS framework this
means that all the tracking information, i.e., position and orientation data for the webcam
and all tracked instruments, has a common coordinate system which is relative to the patient.
This is possible because the IGS system contains several registration algorithms for the patient
anatomy which rely on the automatic or manual identification of anatomical landmarks. There-
fore, the transformation between the patient anatomy and a so-called reference star, which is
also tracked by the infrared cameras, is known. The marker clamps attached to the webcam
and surgical instruments are tracked relative to this reference star.

For the operation of the ARGUS system this means that a change in the position or ori-
entation of the patient anatomy is handled automatically and transparently. The augmented
reality application can define graphical objects in a global coordinate system which is relative
to the patient. This is illustrated in Figure 2.15, in which the same virtual tumor model as in

1The graphical model was originally created from the scan of a lung tumor.
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Figure 2.14: Overlay of a virtual tumor model over the camera image. The red object is a
manually positioned virtual tumor model. It is overlaid over a plastic skull phantom (mock-up).
Due to the camera tracking provided by ARGUS, the virtual tumor model remains correctly
positioned and oriented inside the plastic skull.

Figure 2.14 is used. When recording this image sequence, the webcam remained at a fixed
position, while the plastic skull was moved. Still, the graphical tumor model remains at the
correct position relative to the phantom skull.

Figure 2.15: Automatic patient registration in ARGUS. These images were acquired with
a fixed camera position, while the experimental setup (plastic phantom skull) was moved.
Nonetheless, the virtual tumor model keeps its correct position and orientation relative to the
plastic skull. This is possible due to the patient registration provided by the image guided
surgery device.

In the ARGUS framework, augmented reality applications can also access the position and
orientation information of tracked instruments. This is illustrated in Figure 2.16. Here, a
graphical model representing a tracked tool is displayed in the AR environment. The instru-
ment shown in this image is a so-called pointer tool, which is depicted as a yellow cylinder.
The graphical object is attached to the actual tracked instrument. Therefore, they move syn-
chronuously. While this application only demonstrates a relatively simplistic visualization of
the position and orientation of tracked tools, this information can be very useful for more
advanced types of visualization, e.g., for the display of instrument trajectories.

The ARGUS augmented reality system was developed and is currently operated using
Firewire webcams as video see-through digital cameras. These Firewire cameras are capa-
ble of delivering a video stream with a resolution of 640x480 pixels at a frame rate of 30 Hz.
The overall frame rate of the ARGUS system depends on several factors. In addition to the
geometric complexity of the graphical objects in the augmented scene, which intrinsically has
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Figure 2.16: Overlay of the graphical model of a tracked instrument. The current position
and orientation of the tracked tool is downloaded from the VectorVision device along with
the camera tracking information. It is therefore possible to accurately draw the model of the
tracked tool (yellow cylinders) over the camera image.

an impact on the rendering speed, the network latency of the VectorVision Link connection
is a second important factor. This network latency depends on the speed of the local network
infrastructure, but also on the current frame rate of the VectorVision software running on the
IGS device.

The reason for this dependency of the frame rate of the ARGUS software on the perfor-
mance of the IGS software is the fact that both are fully sychronuous systems. This is illus-
trated in Figure 2.17. At the beginning of each iteration of the ARGUS main rendering loop,
the current tracking information is requested from the VectorVision device. These data are
the basis for AR camera tracking, which is necessary for a spatially correct overlay of graph-
ical models (see Sec. 2.3.2). The IGS software itself is fully synchronuous, i.e., all tasks are
executed in a fixed order in a central application loop. At a certain point of this application
loop, the network requests are processed. When this happens, the tracking information is sent
to the computer running the ARGUS software, and the main AR rendering loop can continue.
Therefore, if the main application loop of the image guided surgery device is executed with a
low frequency, this also reduces the frame rate of the AR application.

Table 2.1 lists the results of benchmarks measured in the ARGUS software. In these bench-
marks, the overall frame rate of the system and the time required for the network download
of tracking data were recorded. The measured network download delay is the time which
passes between sending the request to the IGS system and the reception of the complete data
package. In the benchmark session, different configurations of the IGS software were used.
The first column of Table 2.1 lists the IGS configurations, which consist of different types of
data display. In the “freezed IGS display” setup, a special function of the IGS software was
used for disabling the continual update of its graphical display. A single axial volume slice
was displayed on the IGS device in the “axial slice shown” configuration. In the “three slices
shown” setup, a relatively complex display mode providing the real-time visualization of three
volume slices (axial, coronal, and saggittal) was selected.

The benchmark results clearly show the dependency of the AR frame rate on the complex-
ity of the graphical display on the IGS device. A performance of almost 28 fps is achieved in
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Figure 2.17: Illustration of the communication flow between the ARGUS client system and the
image guided surgery device.

the best case (“freezed” configuration), which is close to the theoretical maximum of 30 Hz
delivered by the webcam. In the most disadvantageous setup (“three slices”), an insufficient
frame rate of only little more than 8 fps was measured. However, in the typical configuration
used during the development and operation of ARGUS, an average network download time of
58 milliseconds and a resulting overall performance of more than 15 fps were observed. This
frame rate is sufficient for an interactive augmented reality application.

The camera tracking provided by the image guided surgery system usually delivers an ad-
equate accuracy. Sporadic visual mismatches between virtual and real scene elements result
from the time lag between IGS infrared marker registration, webcam image acquisition, and
the generation of the augmented video. Moreover, the accuracy of the overlay depends on
the quality of the computed calibration between the webcam and the tracked infrared clamp.
Therefore, the one-time calibration step (Sec. 2.3.2) has to be performed diligently. A draw-

Table 2.1: Average overall frame rates and network download times measured in the ARGUS
system.

Configuration Average AR frame rate Average download time
(fps) (msecs)

Freezed IGS display 27.99 26
Axial slice shown 15.25 58
Three slices shown 8.38 112
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back of the described tracking method is the fact that the tracking range is limited to the
viewing volume of the infrared camera pair of the IGS system. The system is also sensitive to
occlusion of the marker clamps from the viewpoint of the infrared cameras. These limitations,
however, are the normal restrictions of the image guided surgery device, and the users of this
technology are accustomed to them. In practice, a setup of the IGS system is normally chosen
which minimizes the occurence of occlusions and places the trackable volume at the optimal
location in the operation situs. Other limitations of the infrared camera system which affect
the described camera tracking method are the limited angular accuracy of the tracking data and
a sensitivity to certain environmental conditions, as described below (see Sec. 2.4).

2.4 Model-based Hybrid Tracking for Medical AR

As discussed above, the infrared tracking delivered by the IGS system in combination with the
aforementioned calibration step is principally capable of generating a useful overlay of graph-
ical information. However, the overall accuracy of this approach to camera pose estimation
is not always flawless. A drawback of the basic ARGUS medical augmented reality system
is the fact that sometimes discernible tracking errors can occur (see Fig. 2.18). One of the
reasons for this is the limited angular accuracy of the delivered tracking data. This is caused
by the configuration of the infrared marker clamps used by the VectorVision device, since
they consist of only three reflective spheres. This small number of spheres makes it impos-
sible to compensate for localization inaccuracies of individual spheres in the infrared camera
view. Moreover, errors can be caused by a number of other factors including an inaccurately
performed system calibration, an inadequate patient registration, and a temporarily decreased
accuracy of the infrared tracking cameras. The latter can result from environmental conditions
like temperature changes or the presence of diffuse daylight in the trackable volume.

(a) Correct graphical overlay (b) Discernible tracking error

Figure 2.18: Comparison of correct and erratic overlay of graphical information. In this ex-
ample, a virtual green square is rendered over the measured position of an ARToolKit marker
(however, tracking is performed based on the infrared tracking cameras of the IGS system).
In 2.18b, the virtual marker is visibly displaced from the correct location due to an inaccurate
system calibration.
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In this section, a new hybrid camera tracking scheme is presented, which aims at reduc-
ing the overlay error of graphical objects in medical AR while not requiring any additional
equipment [20]. This new tracking algorithm was developed in the context of this thesis and
implemented by Michael Eichler in his Diplomarbeit (Master’s thesis) [80].

2.4.1 Related Work on Hybrid Tracking in AR

The combination of different tracking techniques, an approach which is known as hybrid track-
ing or sensor fusion, has previously been used in various augmented reality applications. As a
very early example, State et al. [185] presented a medical AR system which integrated a mag-
netic tracker with optical landmark information from the camera image. The objective of this
approach can be considered to be somewhat similar to the new system described here, how-
ever, they used a dedicated magnetic tracking device which can be problematic when applied
in a real medical scenario. Hybrid tracking methods for wide area outdoor augmented reality
were described for instance by Piekarski et al. [162] and Caarls et al. [68]. These wide area
AR systems use specialized tracking devices like the global positioning system (GPS), which
are not suitable for medial applications. You et al. developed a hybrid tracking system for AR,
combining a specialized inertial tracker with vision-based pose estimation [211]. Recently,
Schwald and Seibert have described the integration of a dedicated infrared camera system and
an electromagnetic tracker into the Medarpa medical augmented reality setup [178].

2.4.2 Overview of the Hybrid Tracking Method

Figure 2.19: Overview of the proposed hybrid tracking algorithm.

A hybrid tracking approach for medical augmented reality was developed. This hybrid
tracking system combines an initial pose estimation from the infrared cameras with informa-
tion from the digital camera image. This way, the advantages of the two basic tracking methods
complement each other. The infrared tracking provided by the medical device is stable in the
sense that it delivers a pose estimation in practically every frame. Because the infrared cam-
eras are mounted on a movable swivel arm and have a large trackable volume, failures of the
infrared tracking due to occlusion or visibility problems rarely occur. The stability of this
infrared pose estimation is combined with the improved accuracy of the image-based compo-
nent. While the image-based method is not able to deliver an initial global tracking, it can
compensate errors in the position and orientation estimation of the infrared cameras.

An overview of the method is shown in Figure 2.19. The presented approach is a model-
based algorithm. This means that it relies on a geometrical model of a real object in the
observed scene. In a preparatory step, this reference model is manually defined by the user.
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The model consists of a set of salient feature points defined in 3D together with associated
pictures showing the respective portion of the real object.

In the central application loop of the hybrid tracking system, at first the initial pose esti-
mation is acquired from the image guided surgery device. The system then renders a graphical
representation of the geometrical model into the currently not visible back frame buffer. For
this rendering process, the infrared pose estimation is used as global coordinate system trans-
formation. For each of the previously defined salient feature points, a template image is then
read from the back frame buffer. The system looks for a corresponding location in the camera
image for each template image, in a search area centered at the projected feature point position.
This yields the position of a so-called correspondence point in the camera image, as well as a
measure for the similarity of this camera image location with the image template.

The pairs of feature point positions and detected correspondence points are then fed into
a numerical optimization algorithm. An iterative optimization approach is used, which starts
with the infrared pose estimation and incrementally updates the pose parameters in order to
minimize the reprojection error of the feature points. This approach can be considered a tightly
integrated hybrid method because both the infrared pose estimation and the image-based fea-
ture correspondences are used in the same numerical computation. In order to improve the
numerical stability of the algorithm, a number of preprocessing steps are performed on the
point correspondence data, which are described in Section 2.4.3.

In the remainder of this section, the following nomenclature will be used:

• The salient feature points defined in 3D are called the reference points R, consisting of
individual reference points ri = (xri , yri , zri).

• The set of two-dimensional correspondence points is called C, containing the individual
correspondence points ci = (xci , yci).

• The initial pose estimation delivered by the infrared camera system is called infrared
pose. This pose is represented as a transformation matrix MIR.

• The (iteratively refined) pose estimation delivered by the hybrid tracking algorithm is
called the hybrid pose, stored in a transformation matrix MHyb.

• At the beginning of the algorithm, the reference points are projected into 2D camera
image space with the initial infrared pose. These projected reference points are denoted
as pi = (xpi , ypi).

• In order to make a simplified notation possible, the function proj(a) is used for denot-
ing the projection of a 3D point a into two-dimensional image space. In the ARGUS
system, the internal camera parameters are determined with the help of the ARToolKit
framework. The projection operation then consists of multiplying the 3D point with the
camera parameter matrix and subsequently performing the perspective division. Using
this notation, the connection between the reference points and the associated projections
can easily be formulated as pi = proj(MIR · ri).
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2.4.3 Description of the Algorithm

Creation of Reference Model

The newly developed hybrid tracking algorithm requires a geometrical model of some real
object in the observed scene. In the current implementation of the system, this reference
model is created manually by the user with a separate software tool. The model is defined
using a simple process based on a sequence of camera viewpoints. For each viewpoint, the
digital camera is placed so that it can take a picture of some portion of the real reference
object. The user then indicates salient reference points in the visible portion of the model. The
definition of the 3D point positions is done with a special pointer tool which is tracked by the
IGS device. A specific rotating pointer tool gesture is recognized by the system and used for
determining the position of the salient point. This process is shown in Figure 2.20. (A more
detailed description of user interaction in the ARGUS system is given in Section 2.5.)

Figure 2.20: Definition of a reference point with a rotating pointer tool gesture. The reference
object used here is a cube with artifical high-contrast patterns.

For each defined reference point, a quadratic image template (60 x 60 pixels) centered at
the point position is copied from the current camera image. In addition to the 3D point position
and the associated image data, the spatial positions of the corners of the image template are
also stored. This is necessary so that it is later possible to render the reference model. These
corner positions are determined by calculating their locations in the camera image and back-
projecting these locations into the 3D world coordinate system. In summary, the following
data are stored for each reference point:

1. Reference point location ri

2. Associated template image

3. 3D position of the four corner points
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Figure 2.21 shows a graphical representation of the model data acquired for the reference
cube which was used during the development of the algorithm.

Figure 2.21: Visualization of the model data acquired for the reference cube. In this image,
the projected image templates are overlaid over the real camera image.

Offscreen Rendering of Model

At the beginning of the main application loop of the hybrid tracking system, the current in-
frared pose estimation for the digital camera, MIR, is acquired from the IGS device. (Also see
Fig. 2.19, where this step is depicted as the first stage of the realtime process.). Subsequently,
the reference model is rendered according to this initial pose estimation. This is achieved by
setting the OpenGL transformation matrix such that it reflects the camera pose. For each ref-
erence point, a square is then rendered in 3D using the stored image corner positions from
the model definition stage. Each reference point square is textured with the corresponding
template image acquired during the model definition. Figure 2.22 shows the offscreen repre-
sentation of the reference cube model used during development.

Figure 2.22: The offscreen representation of the reference model of the example cube. Shown
here is the final result after all template images were rendered according to the inital infrared
pose.
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After the textured square for each reference point has been rendered, the actual template
image for this point is read back from the frame buffer. A quadratic part of the frame buffer
image centered at the location of the projected reference point pi is used as the template image.
During the rendering process, depth buffer tests are disabled, resulting in complete visibility
for the last rendered textured square. The principle of reading back quadratic frame buffer
areas centered at the projected reference points is illustrated in Figure 2.23.

Figure 2.23: After the textured square for each reference point has been rendered, the corre-
sponding projected template image is read back from the frame buffer.

Each final template image is read back into main memory using the OpenGL function
glReadPixels(). The entire reference model is rendered into the currently invisible back
buffer of the OpenGL doublebuffer. This rendered representation is later overwritten by the
composed AR frame and is never visible to the user. This step of the algorithm can therefore
be considered an offscreen rendering process.

Template Matching

After the offscreen rendering step, the correspondence point ci is searched for each projected
template image. This is done by defining a search area in the camera image which is also
centered at the location of the projected reference point (pi). Figure 2.24 shows a schematic
overview of the template matching process. In the figure, t denotes the side length of the
quadratic template image, and s is the side length of the search area. Both s and t are user-
definable parameters.

Template matching is a common task in image processing, and various different approaches
to template matching exist [163]. In the hybrid tracking system described here, the so-called
normalized correlation coefficient is used. A publicly available and speed-optimized imple-
mentation of this algorithm is provided by the OpenCV computer vision library, which is
utilized for the basic image processing tasks in the hybrid tracking system [116]. This tem-
plate matching method uses single-channel images as input data. Therefore, both the current
camera image and the currently considered template image are converted into gray images. In
Equation 2.5, r(x, y) is the computed normalized correlation coefficient at the pixel coordi-
nates (x, y) in the camera image. The basis for the computation of the coefficient is a cross-
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Figure 2.24: Overview of the template matching process. A search area is defined which
is centered at the projected reference point, pi. The algorithm then looks for the respective
correspondence point ci in this portion of the camera image.

correlation between T (x, y), which is the pixel intensity of the template image, and C(x, y),
which is the pixel intensity of the camera image. As shown in the equation, the result of the
correlation is divided by a term that accounts for the total intensity in the considered image
area. This way, comparable correlation values are obtained for images of varying brightness.

r(x, y) =

t−1∑
y′=0

t−1∑
x′=0

T̃ (x′, y′)C̃(x + x′, y + y′)

√√√√ t−1∑
y′=0

t−1∑
x′=0

T̃ (x′, y′)2C̃(x + x′, y + y′)2

(2.5)

For each pixel in the search area, the summations in Equation 2.5 are evaluated over the
area of the template image, t · t. The factors added up in the summations, T̃ and C̃, are indi-
rectly derived from the pixel intensities. In order to make the resulting coefficient even more
independent from varying brightness in the camera and template images, only the differences
of the pixel intensities from the average intensity are considered. An average intensity C is
computed for the currently regarded search area. Correspondingly, the average intensity T
is calculated for the template image. The factors used in the computation of the normalized
correlation coefficient are then determined as shown in Equation 2.6.

C̃(x, y) = C(x, y)− C

T̃ (x, y) = T (x, y)− T
(2.6)

For each reference point, the normalized correlation coefficient is calculated over the en-
tire associated search area. The coefficient specifies the similarity between the region centered
at this position in the camera image and the projected template image. The greater the coef-
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ficient value, the greater is the similarity between both images. After the computation of the
correlation coefficients, the location of the maximum similarity is determined. The result of
this search consists of two pieces of information. The main result is the correspondonce point
ci, which is considered to be the place in the camera image which corresponds to the projected
reference point pi. The second information gained from the search process is the maximum
coefficient itself. This maximum coefficient, which is here denoted as the confidence value ki,
is also stored for later use.

Numerical Stability

After the correspondence points have been determined for all reference points, the actual com-
putation of the improved camera pose can be performed. This pose computation, however,
is embedded into several methods for increasing the stability of the numerical algorithm. At
first, inadequate point correspondences are culled from the set of reference points. These are
point correspondences with confidence values below a certain threshold, i.e., ki < kmin. Here,
kmin is a constant value, which can be defined by the user. Point correspondences with small
confidence values represent invalid template matching results. These can be caused by various
circumstances, e.g., if the search area is too small or if the real feature point is occluded in the
camera image. Removing these invalid correspondences significantly improves the quality of
the hybrid pose estimation process. Values between 0.8 and 0.9 have empirically proven to be
good choices for kmin.

As a second measure for improving the numerical stability of the pose computation, all
relevant point coordinates are normalized. This means that they are transformed into a coordi-
nate system in which the average distance of points to the coordinate origin is

√
2 in 2D or

√
3

in 3D, respectively (see [108]). Such a transformation is applied to both the reference points
ri and the correspondence points ci. The effect of this normalization is that during the actual
numerical computation, the range of occuring numerical values is relatively small. Therefore,
negative effects caused by the limited accuracy of floating point variables are restricted.

Finally, the actual pose computation process is embedded in a random sample consensus
algorithm (RANSAC) [88]. The RANSAC approach helps to minimize the impact of invalid
point correspondences which have not been removed by the confidence threshold. There are
several possible reasons for the occurrence of such invalid correspondences with high simi-
larity values. Among the possible causes is the existence of repeated patterns in the image,
excessively large camera movements, or inappropriately defined reference points.

Pose Estimation

The core of the hybrid tracking system is a pose estimation algorithm based on Newton’s
method for solving systems of non-linear equations. This pose estimation method is described
in detail by Trucco and Verri [195]. The big advantage of this method is that it starts with an
initial estimate for the pose. In the system described here, the acquired infrared pose, MIR, is
used as this initial estimate.

The algorithm uses a representation of pose information which consists of the translation
from the coordinate origin, T = (tx, ty, tz), and the orientation expressed in Euler angles,
Φ = (φx, φy, φz). The conversion between a transformation matrix and the representation as
(Φ, T ) can be performed with standard linear algebra methods.
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Each iteration begins with the computation of the so-called residuals (δxi, δyi). These are
the difference vectors between the projections of the reference points according to the current
pose estimation and the correspondence points ci. The calculation of the residuals is shown
in Equation 2.7. In this equation, each reference point ri is first transformed according to the
current pose parameters, resulting in a transformed reference point ti = (xti , yti , zti). It is
then projected into image space, producing a 2D point qi = (xqi , yqi).

ti = Φ · ri + T

qi = proj(ti)

(
δxi

δyi

)
= qi − ci

(2.7)

Using Equation 2.7 and the definition of the projection function (see Sec. 2.4.2), the co-
ordinates of the projected points qi can be differentiated with respect to the translation vector
T and the rotation angles Φ. According to [195], this differentiation results in the partial
derivatives shown in Equation 2.8 for the translation components T = (tx, ty, tz).

∂xqi

∂tx
=

f

zti

,
∂xqi

∂ty
= 0,

∂xqi

∂tz
= −f

xti

z2
ti

∂yqi

∂tx
= 0,

∂yqi

∂ty
=

f

zti

,
∂yqi

∂tz
= −f

yti

z2
ti

(2.8)

The partial derivates with respect to the orientation angles (φx, φy, φz) are shown in Equa-
tion 2.9. In both equations, f denotes the focal length of the digital camera used in the AR
system.

∂xqi

∂φx
= −fxtiyti

z2
ti

,
∂xqi

∂φy
= f

x2
ti + z2

ti

z2
ti

,
∂xqi

∂φz
= −f

yti

zti

∂yqi

∂φx
= −f

z2
ti + y2

ti

z2
ti

,
∂yqi

∂φy
= f

xtiyti

z2
ti

,
∂yqi

∂φz
= f

xti

zti

(2.9)

The value of these partial derivatives is computed for each transformed reference point ti.
Using these values, an equation system is then set up for the unkowns ∆T = (∆tx, ∆ty, ∆tz)
and ∆Φ = (∆φx, ∆φy, ∆φz). ∆T is the correction for the translation vector of the current
pose estimation. Likewise, ∆Φ is the correction for the orientation angles of the current pose
estimation. These corrections will later be applied to the current pose parameters in order to
obtain an improved estimation.

For each correspondence point, the two equations shown in Equation 2.10 are set up. The
equations for all point pairs (ti, ci) are combined in a single large equation system. This equa-
tion system is normally over-determined. A minimum number of five point correspondences
was empirically determined in order to compute a useful pose correction. The singular value
decomposition is used for solving the equation system [195]. This yields the corrections ∆T
and ∆Φ for the current iteration of the algorithm.



2.4. MODEL-BASED HYBRID TRACKING FOR MEDICAL AR 33
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At the end of each iteration, the computed corrections are applied to the current pose
estimation. The determined translation correction ∆T is subtracted from the translation vector
T of the current pose, i.e., T ← T −∆T . Likewise, the orientation correction ∆Φ is applied
to the current orientation. This is done by multiplying the rotation matrix corresponding to the
current orientation with the corrections for the individual axes. This computation is shown in
Equation 2.11. In this equation, MΦ is the rotation matrix representing the orientation Φ, and
R{x,y,z}(α) denote matrices corresponding to a rotation around one of the coordinate axes.

MΦ ←MΦ ·Rx(−∆φx) ·Ry(−∆φy) ·Rz(−∆φz) (2.11)

The pose estimation algorithm can thus briefly be summarized as follows: Starting with
MIR as initial estimate, in each iteration 1. compute the residuals (δxi, δyi), 2. for each point
correspondence, calculate the partial derivatives and construct the coefficient matrix, 3. set up
the complete equation system and solve it for ∆T and ∆Φ, and 4. update the pose estimation
with the obtained corrections. This is repeated until either a maximum number of iterations
is reached or the average length of the residuals becomes smaller than a threshold. In the
implementation, a maximum number of 30 iterations is used, which has empirically proven to
produce good results. The finally obtained pose estimation is used as improved hybrid camera
pose MHyb in the AR system.

2.4.4 Results

The presented hybrid tracking system was developed and tested with the aforementioned arti-
ficially textured cube object as reference model. Good results were obtained with the hybrid
scheme, and a significantly improved pose estimation was achieved under most circumstances.
Figure 2.25 demonstrates the effect of the hybrid tracking system. It clearly shows that the cube
geometry rendered with the hybrid pose estimation corresponds significantly better to the lo-
cation of the real cube in the camera image. The effect of the hybrid scheme on the projections
of the reference points is shown in Figure 2.26. Again, the reference points projected with
the hybrid pose are significantly closer to their real counterparts (locations of high-contrast
corners).

Several experimental test runs were performed. Table 2.2 lists the parameters used for one
typical test run. In this case, a reference model was used which consists of 23 reference points
defined from three camera viewpoints. The experiment spanned a duration of 182 frames, dur-
ing which the camera was moved relative to the example cube, but remained roughly pointed
at the object.

Table 2.3 compares the tracking accuracies achieved with the infrared pose and the hybrid
tracking. The pixel displacement listed in the table is the distance between the projected refer-
ence points and the associated correspondence points. For the infrared pose, this is ||pi − ci||,
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Figure 2.25: Visualization of the effect of the hybrid tracking approach. The red (brighter)
wireframe was rendered with the initial infrared pose, the blue (darker) wireframe with the
improved hybrid pose.

Template side length t 16 pixels
Search area side length s 60 pixels
Confidence threshold kmin 0.9
Number of reference points 23
(defined from 3 viewpoints)

Test duration 182 frames

Table 2.2: Parameters of the experimental test run.

for the hybrid pose ||proj(MHyb · ri) − ci||. As shown in the table, the minimum average
displacement per frame is significantly smaller for the hybrid pose (2.98 pixels) than for the
infrared pose (6.4 pixels). Moreover, the measured overall average displacement is more than
30% less with hybrid tracking (7.89 pixels) than with pure infrared tracking (11.74 pixels).

It has to be noted that it is the default behaviour of the hybrid tracking system to revert to
the infrared pose estimate if the hybrid pose is considered to be invalid. This is the case if the
average reference point displacement is too large. An invalid pose estimation can be caused
by adverse environmental circumstances. These include excessively fast camera movements
or rapid changes in the environment lighting, which cause the digital camera to deliver useless
images. Another possible reason is a situation in which the reference object is not visible or
mostly occluded in the camera image. In the experiment, invalid poses were computed for
three frames. These frames were also included in the statistics shown in Table 2.3.

As shown in Table 2.3, the hybrid tracking system reduced the frame rate from more than
20 fps to 13.5 fps. Table 2.4 contains an analysis of the average runtime of the individual
algorithm steps during the experiment. The major part of the hybrid pose estimation algorithm
is required for the template matching step.
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Figure 2.26: The effect of the hybrid tracking scheme illustrated for the reference points.
The red dots were projected with the initial infrared pose and correspond to the pi. They are
connected with red lines to the blue projections of the reference points when the improved
hybrid pose (MHyb) is used. (Also partially visible as yellow dots are the correspondence
points ci.)

Infrared pose Hybrid pose
Min. Ø displacement 6.4 pixels 2.98 pixels
(average per frame)

Max. Ø displacement 18.94 pixels 12.88 pixels
(average per frame)

Overall Ø displacement 11.74 pixels 7.89 pixels
(average of all frames)

Overall Ø frame rate 20.7 fps 13.5 fps
Number invalid frames - 3

Table 2.3: Results of the experimental test run.

Offscreen rendering 17.86 msecs (27%)
Template matching 36.92 msecs (57%)

Pose estimation 10.18 msecs (16%)

Table 2.4: Runtime analysis of the individual algorithm steps.

2.4.5 Discussion

The described hybrid tracking algorithm is capable of significantly improving the accuracy
of graphical overlays in video see-through AR. It works stably expect in the case of adverse
environmental conditions (see Sec. 2.4.4). However, the system can revert to the infrared pose
if an invalid hybrid pose was computed. The hybrid tracker, which uses information from
the camera image, has the typical limitations of vision-based systems. A low quality of the
digital image, an inadequate definition of the reference model, excessive camera motions, or
too much occlusion in the image can have a negative impact on the tracking performance.
However, empirically it was found that the hybrid pose estimation system delivered useful
output most of the time in the performed experiments.
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The current implementation of the algorithm reduces the overall frame rate of the system.
The most computationally complex algorithm step is the readback of template images using
glReadPixels() and the subsequent template matching. This part of the method could be
sped up by utilizing the programmability of modern GPUs. With appropriate fragment pro-
grams, tasks like template matching could be offloaded to the GPU, eliminating computations
on the CPU and costly buffer readbacks.

The main drawback of the current implementation is the required manual definition of the
reference model. A (semi)automatic acquisition of reference objects is an important topic in
the future work. Moreover, the system should be tested in a more application-specific environ-
ment. Possibly, an adjusted tracking strategy could prove useful for medical scenarios, e.g., by
using intraoperative registration fiducials as optical landmarks.

The current realization of the presented system is still in an experimental state, but it
demonstrates the feasibility and usefulness of the approach. Medical application scenarios
can benefit significantly from an improved accuracy of the camera pose estimation.

2.5 User Interaction in the ARGUS System

One important challenge for any kind of augmented reality system is to provide useful facilities
for user interaction. These should usually include methods for triggering application-specific
actions, for the selection or manipulation of virtual objects, and for the definition of points
or more complex shapes in space. In medical augmented reality, user input is often required
for changing the rendering parameters for medical data visualization and for displaying and
manipulating operation plan information. Many different techniques for user interaction in AR
have been proposed. Most of these are based on specialized hardware, e.g., magnetic track-
ers or 3D input devices. Specialized interaction devices for virtual reality were for instance
described by Fröhlich et al. [92] and Bernstein et al. [53]. Wormell and Foxlin have given
an overview over some recently developed dedicated devices for user input in VR/AR [209].
However, as stated above, the use of such dedicated system components can be problematic in
medical applications (see Sec. 2.2.1).

In the context of this thesis, a novel method for user interaction in medical AR was de-
veloped [9, 13]. This new approach is based exclusively on the information delivered by the
image guided surgery system. The pose data of tracked surgical tools is processed in order
to recognize a set of basic “gestures”, i.e., simple user interaction elements. The ARGUS
framework uses these gestures to implement a flexible, configurable menu system. This sys-
tem makes it possible to trigger actions by performing a “click” at a certain position. These
clicks can be executed in immediate proximity to the patient. Moreover, the user can define
positions and freely drawn shapes in three-dimensional space. All of these interactions, which
are performed with untethered passive input tools tracked by the IGS device, are supported
without requiring any kind of additional hardware. Figure 2.27 shows an example of a simple
operation plan element created with the new user interaction method.

The menu system described in this thesis could even be used as a replacement for existing
user interfaces provided by medical devices. As in the case of the VectorVision system (see
Sec. 2.3.1), these are usually based on touchscreens or conventional screens with mouse input.
Unlike such traditional user input systems, the new immersive approach in ARGUS works in
immediate proximity to the patient and does not require the user to shift the attention focus to
a screen built into a medical device.
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Figure 2.27: Example drawing created directly on the plastic skull. The tracked tool used for
interaction can be seen in the top right part of the image. On the bottom, the row of four menu
“icons” is visible.

The IGS-based user interaction and menu system developed in the context of this thesis
has been filed for patent [40].

2.5.1 The New User Interaction Method

A new technique for providing comprehensive user interaction based on the information deliv-
ered by the image guided surgery system was developed. The IGS device is capable of tracking
multiple infrared marker clamps simultaneously. In order to utilize the infrared tracking for
user interaction, one of the instrument clamps is attached to a pointer-like tool, as illustrated in
Figure 2.28. Alternatively, the standard pointer tool supplied with the IGS system can be uti-
lized. The tool is used for triggering actions by indicating menu markers located at previously
defined positions and for the definition of points or free formed shapes in 3D.

Figure 2.28: Example of a tracked tool used for interaction.

The ARGUS system continually acquires the position and orientation of tracked tools from
the image guided surgery device. It then looks up the user-defined interaction tool, which is
identified by a unique name string. Consecutive tool positions and orientations are compared
in order to detect basic gestures and the triggering of menu actions.
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Basic Gestures

The new user interaction system supports two basic gestures. One is the so-called “still click”,
which is detected when the movement of the tool is below a given threshold for a certain
amount of time. The still click is easy to execute, but it is also often triggered inadvertently,
e.g., when the tool is put down.

The “angle click” also requires the position of the tool to remain practically constant for
a certain duration. However, additionally the direction vector of the tool has to change con-
tinually during that period. The position reported by the IGS system is always that of the tip
of the tracked instrument. Therefore, an angle click is executed when the user holds the tip of
the instrument at a certain point while rotating the instrument. The angle click is significantly
more complex to perform and thus is rarely triggered unintentionally. Figure 2.29 illustrates
the tool motion necessary for triggering an angle click. Note that the angle click gesture is also
used in the model definition phase of the hybrid tracking algorithm discussed in Sec. 2.4.3.

Figure 2.29: Illustration of the “angle click” user interaction gesture.

The following algorithm was developed for detecting tool gestures. In every time step, the
position post and the direction vector dirt of the tracked interaction tool are received from the
IGS system. The software permits a maximum tip movement of thresholdpos per time step.
Since the coordinate system of the infrared camera is calibrated to have a unit length of one
millimeter, thresholdpos is also defined in that unit. A typical value for thresholdpos is less
than one millimeter. A second threshold parameter, thresholddir, determines the minimum
change of the direction vector required for a valid angle click step. The number of consec-
utive time steps during which the respective gesture conditions have to be fulfilled is given
as parameter clickDuration. The threshold and click duration values can be configured at
run-time.
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Figure 2.30: Program flow for updating the gesture state and generating click events for a
single time step.

Figure 2.30 shows the program flow chart of the click detection algorithm for a single time
step. After the tool information has been downloaded, the movement of the tip is checked.
If it is above thresholdpos, the current gesture state is reset, and the algorithm stops. This
means that any ongoing click period is interrupted by the tool motion, and any tool gesture can
only begin in a later time step. If the movement is small enough, the counter numStepsstill is
incremented. numStepsstill counts the number of time steps without significant tool motion
and is used for triggering still clicks. Subsequently, the current direction vector is compared to
the tool direction measured in the last time step. If the direction change is above thresholddir,
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the counter variable numStepsangle is incremented. The value of numStepsangle is used for
detecting angle clicks.

After the current changes in tool position and direction have been considered, the condi-
tions for triggering a click event are checked. If clickDuration time steps without significant
motion have passed, a still click has been executed. The algorithm then checks whether the
current tool position is the same as the position recorded during the last still click. This position
is stored in the vector lastStillClick. If the locations of the last and the current click are very
close, the user interaction event is suppressed. Otherwise, a still click event is generated for
further processing by the software, and the current tool position is saved in lastStillClick. If
the application provides support for menu interaction, the click event is processed by the menu
system (see below).

Finally, the algorithm checks whether an angle click has been executed. If the conditions
of an angle click were continuously met for clickDuration time steps, the location of the
current and the last angle click are compared. In case the current tool position is too close to
the last angle click, which is stored in the vector variable lastAngleClick, no click event is
generated. Otherwise, a user interaction event is sent to the application and, optionally, to the
menu system.

It has to be noted that using this method, a still click event is always generated simulta-
neously or right before an angle click. The application logic is assumed to account for this
fact by filtering click events according to the semantics of the current top-level user interaction
sequence. The algorithm could easily be modified to operate exclusively in either a still click
mode or a separate angle click mode.

Menu System

In addition to the basic gestures recognition, the second main innovation of the ARGUS user
interaction system is a method for implementing a configurable menu using the basic gestures.
Markers, which have icons for the menu items printed on them, are placed inside the trackable
volume of the infrared camera. The user can then activate a menu action by performing a click
with the interaction tool on one of the markers. Figure 2.31 shows an example of a simple
menu, which is used by the demonstration application for patient drawings (see Section 2.5.2).

Figure 2.31: AR menu markers used by the patient drawing example application.

The ARGUS software contains an editor for the interactive definition and modification of
menu items. The data structure for each item consists of the position of the center of the
marker, a radius, a name, and a description string. In the editor, the marker position is defined
by a click gesture with the interaction tool. The other data are entered with a graphical user
interface. Table 2.5 lists the attributes for a menu item and their data types.
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Table 2.5: Attributes of a menu item.

Attribute Data Type
Center position 3 float values (x,y,z)

Radius float
Name string

Description string

An application using the menu system can be configured to react to still clicks or angle
clicks for menu actions. When a click event of the respective type is generated by the basic
gestures algorithm (see Fig. 2.30), it is analyzed by the menu system. The click location is
compared with the position of each menu item. If the distance between the click location
and the center of a menu item is smaller than its radius, a menu action event is generated. The
menu event is parameterized with the name of the menu item and can thus be easily interpreted
by the application. Note that due to the comparison of the Euclidean distance with a radius,
the real marker is approximated by a sphere. However, this distance criterion could easily be
modified to be sensitive to a shape which more closely resembles the physical appearance of
the marker. Moreover, in practice, the sphere criterion works reliably and intuitively in most
cases.

2.5.2 Example Application: Operation Plan Drawings

An example application has been implemented for demonstrating the usefulness of the new
ARGUS interaction method. Using this software, points and free formed line strips can be
drawn directly on the patient. This way, operation plan elements or related visual aids can be
created interactively. The application uses the menu items shown in Figure 2.31.

The following mechanism is provided for creating free formed line strips. The software
continually waits for menu action events. Once the menu event “freehand” is received, a
special drawing mode is initiated. From that moment, the software waits for the next still
click. After the still click event has been triggered, the line strip is recorded. Every new
position of the tip of the interaction tool is stored and added to the geometry of the line strip.
This continues until another still click event is received. The click then ends the interactive
drawing of the line strip.

Figure 2.32 illustrates this user interaction sequence. The sequence can be easily and
intuitively perfomed by the user. After clicking on the menu item, the interaction tool has to
be moved to the intended starting point of the drawing. Then the user has to wait for a short
period. Since the basic gestures algorithm suppresses consecutive clicks at the same location
(see Fig. 2.30), the line strip never inadvertently begins at the menu item. The drawing is
created in a continuous motion. When the drawing is complete, the user again has to wait for a
short while in order to leave the drawing mode. This way the entire functionality is controlled
without any additional hardware, only using the tracking information of the interaction tool.

The application also contains a mode for setting individual points. When the respective
menu action event has been triggered, the software waits for the next still click. A point is then
generated at the location of the click. In addition to the line strip and point drawing modes,
two utility functions are supported. The menu action “color” changes the current color by
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Figure 2.32: Interaction sequence for drawing a free formed line strip in the demonstration
application.

traversing a preset color palette. The next point or free formed line strip to be generated is
then displayed in the new color. By selecting the menu action “switch”, the user can cycle
through several drawing slots. Only one of several drawings is displayed and can be edited at
a time. The switch command advances to the next stored drawing or displays nothing, if the
slot has not been used yet. Altogether the demonstration software shows that the lightweight
interaction method in ARGUS can provide all the functionality required for a useful drawing
application in an easy-to-use and intuitive way.

In the actual experimental setup, the four menu items are laid out in a row as shown in
Figure 2.33. However, it would be possible to place the items freely within the trackable
volume of the infrared camera due to the configurability of the menu. A standard XML file
contains the description of the menu items and their placement.

Figure 2.33: Real menu used by the user interaction example application.

Figure 2.34 shows a real-life example for creating a single line strip drawing. The drawing
mode is actived in Fig. 2.34a by a still click on the respective menu item. The following click
at a different location determines the starting point of the line strip (see Fig. 2.34b). The freely
drawn line strip is then extended until the interaction tool again remains still for a period of
time (see Fig. 2.34c).
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(a) Activation of drawing mode (b) After initial still click (c) End of interaction

Figure 2.34: Real-life example for the creation of a free formed line strip. The interaction
mode is activated by a still click on the “freehand” menu item. A second still click begins the
drawing, and a third click ends it. In the top left corner of each image, the name of the last
detected user interaction is displayed.

(a) Change of color after white line
has been drawn

(b) Different color used for circular
line strip

(c) Top view of scene

Figure 2.35: The example application provides a menu item for changing the current drawing
color. Figure 2.35c illustrates that the created drawings are three-dimensional.

In Figure 2.35, the effect of the color change action can be seen. Figure 2.35a shows the
augmented reality display after a white line strip has been drawn. The user then activates the
color change item using a still click. This causes the next line strip to be rendered in a different
color (see Fig. 2.35b). Due to the fact that the tracking information delivered by the image
guided surgery system contains full spatial pose information, the drawings created with the
user interaction system are three-dimensional. This is illustrated in Figure 2.35c, which shows
the scene with the virtual drawings from a different point of view.

The described user interaction method in ARGUS including the menu system does not
negatively affect the overall performance of the AR application. Since the tracked tool data
are continually requested from the IGS system for tracking the webcam anyway, the amount
of data transferred over the network does not increase.

2.6 Occlusion Handling

As described in Sections 2.3 and 2.4, ARGUS achieves a spatially correct overlay of graphical
information by utilizing an IGS device for camera tracking. The augmented reality application
can simply define graphical models representing additional medical information and send the
rendering primitives to the standard OpenGL pipeline. The three-dimensional graphical data
are then displayed using conventional rasterization methods. These standard graphics algo-
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rithms are readily available, easy to use, and fast. The produced graphical output, however,
often lacks visual realism. One particular problem caused by the simple overlay of rendering
primitives over the background camera image is the lack of correct occlusion handling. This
means that the mutual occlusion between real and virtual objects is not represented correctly.
It is therefore difficult for the observer to assess the actual depth relationships in the augmented
scene.

Figure 2.36 illustrates a typical case of an ambiguous AR image due to the lack of occlu-
sion handling. In both images, the virtual graphical model of a tracked tool is overlaid over
the camera image. As described in Section 2.3.4, the graphical tool model is attached to a real
tracked instrument held by the user. In Figure 2.36a, the real tool is located between in the
plastic skull and the camera. Hence, the resulting image shows the correct depth relationship
because the graphical tool occludes the plastic skull. By contrast, in Figure 2.36b, the real
instrument is behind the skull phantom. However, the virtual tool model is still rendered over
the camera image and appears to occlude the plastic skull. It is therefore not possible for the
observer to decide whether the graphical representation of the tracked instrument is supposed
to be in front of or behind the real skull phantom.

(a) Tracked tool in front of plastic skull (b) Tracked tool behind plastic skull

Figure 2.36: Incorrect representation of depth relationships in the AR scene. Due to the lack
of occlusion handling, the graphical tool model occludes the plastic skull both in Fig. 2.36a
and in Fig. 2.36b.

The different types of occlusion which can occur in an augmented reality image are listed
in Table 2.6. The table distinguishes between real and virtual objects as occluding and oc-
cluded object types. A correct image is automatically generated for real objects occluding
each other (case 1A) due to optical occlusion. Virtual objects which are supposed to occlude
real objects (case 1B) are also intrinsically displayed correctly because they are rendered over
the camera image. The standard Z-Buffer test in the rendering pipeline leads to a correct dis-
play of depth relationships within the set of virtual objects (case 2B). (The original Z-Buffer
algorithm was described in [70, 188].)

The relevant new problem which has to be handled in an augmented reality system is case
2A. Here, virtual objects should be occluded by real objects. This introduces a difficult chal-
lenge, which cannot be solved in the general case. In order to handle the occlusion of virtual
objects by real objects, the shape and depth of the real objects in the camera image have to be
known. Two general approaches to solving this problem exist. In static occlusion handling, the
3D geometry of real objects in the actual environment is manually defined before the runtime
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of the AR system. Dynamic occlusion handling tries to resolve occlusion in AR for unknown
real objects. The latter approach usually requires relatively complex and computationally ex-
pansive image processing algorithms. Both approaches can only partially solve the occlusion
handling problem in most cases.

Table 2.6: Different types of occlusion occurring in an AR scene. In this table, all possible
combinations of occluding object type and occluded object type are listed. For each com-
bination, the table describes how the corresponding occlusion case is resolved. (Adapted
from [127].)

In the context of this thesis, a specialized occlusion handling method for medical aug-
mented reality was developed. This new approach solves the occlusion problem for the appli-
cation case illustrated in Figure 2.36. The new algorithm can handle the occlusion of virtual
objects by the anatomy of the patient. Since the geometry of the relevant part of the patient’s
anatomy is available as a volume dataset, the method is a special case of static occlusion han-
dling.

2.6.1 Related Work on Occlusion Handling in Augmented Reality

Several researchers have worked on the detection and handling of occlusion in augmented re-
ality. Breen et al. have suggested a model-based approach to handling occlusion in augmented
reality [64]. As mentioned above, the use of geometric models of known real objects for de-
tecting the occlusion of virtual objects is called static occlusion handling. These geometric
models, which have to be acquired or manually modelled before the runtime of the AR sys-
tem, are often also called phantom models2. An example of static occlusion handling is shown
in Figure 1.2a. This method of detecting and handling occlusion in augmented reality has
been used and extended in many AR systems. An extension of static occlusion handling for
determining how virtual objects are hidden by the user’s body was described by Fuhrmann et
al. [93]. Their system combines a previously acquired geometric model with positional data
from a tracking system.

2Note that in this thesis, the term phantom is also sometimes used to denote the plastic skull mock-up in the
experimental AR system setup.
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Dynamic occlusion handling does not require geometric descriptions of real objects in the
environment. In dynamic occlusion handling, image processing and computer vision tech-
niques combined with certain assumptions or partial information about the real environment
are used in order to detect occlusion. The dynamic approach can therefore deal with occlusion
in AR in the more general case, especially in (mostly) unknown environments. The drawbacks
of dynamic occlusion handling, however, are increased computational costs, a more tedious
and complex algorithm development, and often a reduced stability of the occlusion detection.
Berger has described a method for resolving occlusion when overlaying virtual objects over
recorded video sequences [52]. This algorithms tracks the contours of real objects in image
space in order to compute an occlusion mask. Later, Lepetit and Berger presented another
approach to handling occlusion in off-line augmented reality [133]. In this system, the user
manually defines the occlusion boundary of a real object as well as relevant key frames in the
stored video sequence. The algorithm then automatically tracks the occlusion boundary, which
results in a correct rendering of occluded graphical objects. The author of this thesis has also
previously described an algorithm for detecting dynamic occlusion in front of planar, textured
background objects [26]. This method tracks salient features in the background texture and
performs a comparison between camera image pixels and the projected texture data in order
to compute an occlusion map. A similar, but more advanced, algorithm was described by Lin
et al. [135]. In their system, a model of the real background is acquired in a semi-automatic
procedure from the video stream. This information is then used as the basis for an image-
based tracking method as well as for occlusion handling by means of background-foreground
segmentation.

Approaches for detecting occlusion in a stereo camera AR system have also been investi-
gated. In some cases, an attempt to solve the occlusion problem using depth information de-
livered by stereo matching is made [120, 207]. The method developed by Gordon et al. [100]
can correctly render interaction devices into the scene.

2.6.2 Static Occlusion Handling based on Volumetric Datasets

In the context of this thesis, an approach for correctly handling the occlusion of virtual graph-
ical objects by the anatomy of the patient was developed [10]. By solving this problem, it
becomes possible for the user to easily determine whether a graphical object – like the render-
ing of a surgical tool or an instrument trajectory – is supposed to be in front of or behind the
patient. A volumetric dataset containing the relevant part of the patient’s anatomy is acquired
before the surgical intervention using a medical scanning procedure, e.g., computed tomog-
raphy or magnetic resonance imaging. After the initial registration, the IGS system requires
that the patient’s position and orientation remain fixed relative to the coordinate system of the
infrared cameras. This means that the new method is a special case of static occlusion handling
as described in Section 2.6.1.

The basic idea of static occlusing handling is to define a polygonal representation of real
objects in the environment of the user. In most applications, relatively simple phantom models
are used. Unlike such polygonal meshes of manageable size, models derived from medical
volume datasets often consist of millions of triangles. This problem is aggravated by the
steadily increasing image resolution provided by modern medical scanners. Therefore, in
order to prevent occlusion handling from having an exceedingly negative impact on the overall
frame rate, an application-specific method for reducing the number of triangles was devised
for the new approach which is described here.
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Volume Preprocessing Pipeline

A volume preprocessing pipeline for reducing the polygonal complexity of models generated
from medical datasets is the core of the new occlusion handling system. In contrast to general
mesh simplification schemes, this method tries to preserve a highly detailed model of the outer
surface of the anatomy while completely eliminating inner structures invisible from the out-
side. This is achieved by extracting the visual hull volume, a binary volume in which all parts
of the volume dataset that cannot been seen from the outside (e.g., anatomical cavities) have
full intensity. In order to compute this visual hull volume, a number of first-hit raycasting tests
from six orthogonal directions is performed. This can be considered a simple approximative
simulation of possible outside views of the volume dataset. Figure 2.37 illustrates the visual
hull volume concept.

(a) Original volume (b) Visual hull volume

Figure 2.37: Comparison of an image slice in the input and visual hull volumes for a skull
dataset.

First-Hit Raycasting

The elementary operation of the visual hull algorithm is the casting of a single ray parallel to
one of the coordinate axes into the volume dataset. The ray is iteratively traversed until a voxel
intensity above a user-defined threshold is encountered. Until this threshold condition is met
or the ray leaves the volume boundaries, zero values are written into a second volume dataset
at the same coordinates. This resulting volume, the visual hull volume, is initialized with full
voxel intensities (255 in case of 8-bit volumes) beforehand. The raycasting process can be
considered an approximative simulation of the user viewing the outer surface of the volume
dataset from one direction.

Parallel rays are generated over the entire area of each face of the bounding box of the
volume. The visual hull volume is initialized with full intensities only at the very beginning of
the process. Each of the raycasting iterations then works on the already modified volume. Thus
the empty parts surrounding the actual anatomy are “carved out” of the volume consecutively.
The principle of the consecutive first-hit raycasting iterations is described as pseudocode in
Algorithm 1.

While the first-hit raycasting method works well for most volumetric datsets, ray iterations
can be terminated erratically in volumes with an above-average level of noise. The raycast-
ing process is therefore embedded into a volume processing pipeline comprising additional
filtering steps.
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Algorithm 1 Computation of visual hull volume with iterative raycasting.
originalVolume: VolumeData;
visualHull: VolumeData;

rayCastingDirs: Vector3d[6] :=
{{0,0,1}, {0,0,-1}, {0,1,0}, {0,-1,0}, {1,0,0}, {-1,0,0}};

procedure preprocessVolume(threshold: double)
startPos, pos: Vector3d;

begin
initializeWithFullIntensity(visualHull);

for directionLoop := 1 to 6 do
for startPos ∈ all positions on corresponding

face of volume boundary do

pos := startPos;

while (pos within volume boundaries) do

if (originalVolume[pos] > threshold)
break;

visualHull[pos] := 0;
pos := pos + rayCastingDirs[directionLoop];

done
done

done
end
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Additional Volume Filtering Steps

Before the actual raycasting operation is applied to the volume dataset, two filtering steps are
performed. The first is a standard low-pass Gaussian volume filter. It reduces noise in the
volume, but also tends to soften the edges of anatomical structures. Like for most steps in
the volume processing pipeline, the user can opt against using the Gaussian filter and directly
use the original volume as input for the next stage. If Gaussian smoothing is applied to the
dataset, the standard deviation used by the filter can be selected by the user. After this low-
pass filtering step, morphological operations are applied to the volume. These operations can
remove isolated islands of low or high intensity (e.g., small holes) from the volume. In order
to achieve this improvement, at first a 3D morphological opening and then a morphological
closing operation are performed. (For a more detailed description of morphological operators
see, e.g., [97].) Here again, the user can skip this preprocessing step and directly continue
with the next stage. The kernel size used for the morphological opening and closing steps can
be manually adjusted if necessary. Figure 2.38 shows the effect of the volume preprocessing
stage on one slice of a volume with a relatively high level of noise.

(a) Input volume (b) Preprocessed volume

Figure 2.38: One slice of a volume dataset of the plastic skull before and after application of
volume preprocessing steps (Gaussian filter and morphological operators).

The computation of the visual hull volume from the preprocessed volume dataset only
yields voxels with either full intensity or zero intensity, as described above. Since such a
binary volume dataset leads to visible artefacts in the subsequent polygonal iso-surface ex-
traction, another volume filtering step is applied. In order to smooth hard edges and remove
possible remaining noise, first a median filter and then another Gaussian smoothing are used.
Unlike for previous steps of the pipeline, fixed kernel sizes have proven to work reliably for the
postprocessing of visual hull volumes. The median filter uses a kernel size of 3x3x3 voxels,
while the Gaussian postprocessing filter has a standard deviation of 1.5 voxels. Since the me-
dian filter step is not necessary for all volumes, it can be skipped. The result of postprocessing
with a Gaussian filter operation is illustrated in Figure 2.39.

If areas of full voxel intensity are located at the boundary of the volume dataset, the subse-
quent iso-surface extraction is unable to generate a suitable polygonal representation. In such
cases, the computed iso-surface will have holes at the respective places of the visual hull vol-
ume. Such holes make the polygonal surface unsuitable for the task of occlusion handling. The
user can thus choose to apply a final postprocessing step to the volume, in which it is padded
with a surrounding layer of zero intensity voxels. This additional layer causes the iso-surface
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(a) Binary visual hull volume (b) Smoothed volume

Figure 2.39: After the raycasting process, the visual hull volume is smoothed using a Gaussian
filter. A magnified detail of one slice of a visual hull volume is shown.

extraction algorithm to generate a closed outside surface for the whole volume. Figure 2.40
gives an overview of the entire volume processing pipeline used for computing the visual hull
volume. Several of the pipeline steps were implemented using respective functionality from
the standard Visualization Toolkit (VTK) library [175].

Figure 2.40: Overview of the volume processing pipeline for computing the visual hull vol-
ume. The steps in boxes with white backgrounds are optional and do not need to be applied in
all cases. The items above some of the boxes list user-definable parameters for the respective
processing steps.

Integration into Rendering Process

A polygonal iso-surface is extracted from the visual hull volume using the marching cubes
algorithm [137]. Since the visual hull volume contains a representation of the outer surface
as the interface between full and zero intensity, the half of the full intensity is selected as
iso-surface threshold (128 in case of 8-bit volumes).
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This visual hull iso-surface is then used for suppressing the display of occluded graphical
objects during the augmented reality image composition process. In order to achieve this
effect, the iso-surface is rendered in a special way before the actual virtual objects. Writing to
the color buffer is disabled while the visual hull surface is rendered, so that only the z-buffer
(depth buffer) is altered. Then color buffer access is enabled again. When the graphical objects
are rendered, their color values overwrite the original camera image, but pixels lying behind the
(invisible) visual hull are suppressed. Since the graphical model contained in the volumetric
dataset corresponds to actual patient anatomy, the impression of virtual objects being occluded
by the patient is created. This modified rendering process is illustrated in Algorithm 2.

Algorithm 2 Modified rendering process for occlusion handling, using OpenGL-like termi-
nology.
glClear(GL DEPTH BUFFER BIT);
drawCameraImage();
computeAndLoadTransformationMatrix();

// Disable color buffer access
glDrawBuffer(GL NONE);
renderOcclusionVisualHullSurface();

// Enable color buffer access
glDrawBuffer(GL BACK);
renderVirtualObjects();

Correct static occlusion handling in medical augmented reality requires an accurate patient
registration. Since the fragments of the virtual objects in the AR environment are compared
with the depth of graphical primitives of the visual hull iso-surface, it is necessary that this
iso-surface is located and oriented so that it corresponds to the actual patient anatomy. As
mentioned above, one of the advantages of the ARGUS system is the fact that it automatically
benefits from the registration mechanisms of the IGS device (see Section 2.3.3). The ARGUS
framework acquires the patient registration transformation from the IGS system. This trans-
formation matrix is then used for correctly positioning and rotating the visual hull iso-surface.
Therefore, the integration of the occlusion handling method into the rendering process can be
realized with the straightforward approach shown in Algorithm 2.

2.6.3 Occlusion Handling Results

The visual hull volume extraction was tested with several datasets. Figure 2.41 gives an
overview of the five medical volumes used for the evaluation, and their dimensions are listed
in Table 2.7. “Plastic skull” (Fig. 2.41a) is an MRI dataset of the plastic skull mock-up used
in the actual augmented reality setup. Figures 2.41b and 2.41c show CT scans of the heads of
patients who were treated at the department of maxillofacial surgery of the University Hospital
Tübingen. The last two test datasets (Figures 2.41d and 2.41e) were taken from the Stanford
volume data archive [134]. Each of the columns shows one slice from the input volume dataset
and the corresponding slice in the computed visual hull volume. As illustrated in Figure 2.41,
the visual hull volumes generated by the pipeline are an accurate representation of the outer
surface of the patient’s anatomy. Assuming that sufficiently good parameters for thresholds
and filter kernel sizes are selected by the user, almost all computed volume slices are free of
errors. The visual hull volume slice in Figure 2.41d shows one rare exception, where artifacts
at the lower end of the skull were not removed by the algorithm (see Fig. 2.42 for a detailed
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Table 2.7: Dimensions and bit depth per voxel of the test datasets.
Dataset Size X Size Y Size Z Depth

Plastic skull 512 512 160 8 bits
Patient A 512 512 147 8 bits
Patient B 256 256 40 8 bits
CTHead 256 256 113 8 bits
MRBrain 256 256 109 8 bits

illustration). The defect in this case was caused by a physical contact between the skull of the
patient and the CT tube it was placed in, which deteriorates the CT scan. This artifact could
have been prevented, however, if a better prepared volume dataset had been used as input.
This could have been achieved by preprocessing it with appropriate segmentation or clipping
methods.

(a) Plastic skull (b) Patient A (c) Patient B (d) CTHead (e) MRBrain

Figure 2.41: Visual hull volumes computed for five volume datasets. The first row shows one
slice from each input volume, while the second row shows the corresponding slices from the
visual hull volumes. The dataset in column 2.41a contains the plastic skull used in the actual
AR system setup, columns 2.41b and 2.41c are from clinical cases at the University Hospital
Tübingen, and 2.41d and 2.41e were taken from the Stanford volume data archive.

Figure 2.43 shows iso-surfaces generated from a medical dataset. The first image (Fig-
ure 2.43a) is a rendering of the iso-surface extracted directly from the the original input vol-
ume. In Figure 2.43b, the iso-surface of the corresponding visual hull volume is shown. As
illustrated in the images, most of the detail of the surface of the anatomy is preserved by
the volume processing pipeline. A slight smoothing of the surface occurs due to the Gaus-
sian filters used in the visual hull extraction process. The quality of the computed visual hull
iso-surface is more than sufficient for the occlusion handling task, especially since it mainly
depends on the accuracy of the surface silhouette.
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Figure 2.42: Artifacts in the visual hull volume of the “CTHead” dataset.

(a) Iso-surface from unprocessed volume (b) Iso-surface from visual hull volume

Figure 2.43: Comparison of the iso-surfaces generated from the unprocessed and visual hull
volumes of the “MRBrain” dataset.

Iso-surfaces were extracted for both the original input and the visual hull volumes of all
five test datasets. A comparison of the triangle counts of the generated surfaces is shown in Ta-
ble 2.8. Threshold and filtering parameters in both cases were selected so that an outer surface
suitable for occlusion handling was obtained. As demonstrated in the table, a triangle count
reduction of at least one third is achieved in all but one cases. While reduction rates of close
to or over 50% frequently occur, only dataset “CTHead” is not significantly simplified by the
volume processing pipeline, due to the already low complexity of the input volume. The mea-
sured average triangle count reduction rate of 42.9% confirms the simplification performance
of the algorithm.

The effect of the occlusion handling method on augmented images is illustrated in Fig-
ure 2.44. The images shown here are screenshots from interactive real-time sessions in the
ARGUS framework with occlusion handling based on the plastic skull dataset. Figures 2.44a
and 2.44b illustrate that the problem of unintelligible depth relationships is solved by the occlu-
sion handling method. The situation in these images is very similar to the scenario presented in
Figure 2.36, where the graphical representation of the tracked tool always appears to occlude
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Table 2.8: Triangle counts of iso-surfaces generated from unprocessed input and visual hull
volumes.

Dataset Input Visual hull Reduction
(triangle count) (triangle count)

Plastic skull 2,219K 1,279K 42.4%
Patient A 3,312K 1,627K 50.9%
Patient B 767K 230K 70.0%
CTHead 339K 283K 16.5%
MRBrain 433K 282K 34.9%
Average 42.9%

the plastic skull. With occlusion handling turned on, the surgical tool model is now correctly
occluded whenever the actual tool is behind the real plastic skull, as demonstrated in Fig-
ures 2.44a and 2.44b. Most of the graphical representation of the tool cannot be seen because
the rendering of the respective pixels is suppressed by the depth buffer values of the visual hull
iso-surface. This creates the visual impression that the graphical model is actually occluded
by the real skull itself. The simultaneous correct occlusion of multiple surgical tool models
is shown in Figures 2.44c and 2.44d. In Figure 2.44c, only one of the two tools is behind the
skull. Therefore, the second tool is completely visible. By contrast, both tools are located be-
hing the plastic skull in Figure 2.44d, causing both graphical models to be partially occluded.
The fact that small details in the medical dataset are preserved by the volume preprocessing
pipeline is illustrated in Figure 2.44e. In this image, the surgical tool model is occluded by the
visual hull iso-surface of the cheek-bone, while the geometry remains visible outside of it.

In order to examine the benefits of the visual hull volume extraction algorithm, the times
required for rendering iso-surfaces generated from unprocessed and processed volumes were
compared. Table 2.9 lists average rendering times measured during test sessions. Each test run
was at least 60 seconds long, during which similar typical camera movements were performed.
The average time required for rendering the extracted iso-surface into the depth buffer was
calculated over all frames generated during the test run (typically more than 1000 frames). The
tests were performed on a computer system with an Intel Pentium 4 Xeon processor running
at 2.66 GHz, 2 GBytes of main memory and a graphics card based on an NVidia GeForce FX
5900 chipset. While some of the absolute speedups listed in Table 2.9 may not seem very large,
the absolute reductions of about 20 milliseconds achieved for the datsets “Plastic skull” and
“Patient A” are a significant improvement. The iso-surface rendering is embedded in a complex
augmented reality pipeline of video image acquisition, download of tracking information over
the network and the final rendering stage. Therefore, rendering times in the range of 40 to 50
milliseconds for the occlusion handling can seriously hamper real-time image generation in the
AR system. This is confirmed by a perceivable drop of the overall frame rate when iso-surface
rendering is enabled for a larger dataset without the use of visual hull volume extraction.
As shown in Table 2.9, considerable performance improvements through the algorithm were
generally measured in terms of relative speedup. This acceleration quality can be assumed to
scale well for cases in which larger datasets or several datasets are used.
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Table 2.9: Average time required for rendering iso-surfaces into the depth buffer.
Dataset Input Visual hull Speedup

(msecs) (msecs)
Plastic skull 35.7 17.4 105.2%

Patient A 51.7 23.3 121.9%
Patient B 14.4 6.4 125.0%
CTHead 4.6 3.7 24.3%
MRBrain 5.9 4.9 20.4%
Average 79.4%

(a) Single tracked tool occluded by plastic skull

(b) Single tracked tool occluded by plastic skull (c) Two tracked tools, one is behind plastic skull

(d) Two tracked tools, both are behind plastic
skull

(e) Occlusion of tracked tool by cheek-bone

Figure 2.44: The effect of the occlusion handling method in the augmented reality setup.
Graphical representations of surgical tools are used as virtual objects.
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2.6.4 Discussion

The presented visual hull volume extraction process aims at ensuring that the occlusion han-
dling does not have a negative impact on the frame rate. In order achieve this aim, an iso-
surface is generated which contains only a highly detailed representation of the outer surface
of the patient anatomy. All inner structures are removed since they are not required for the
occlusion handling algorithm.

The described first-hit raycasting strategy with rays parallel to coordinate axes might not
work optimally for certain volumetric objects. However, the method has proven to generate
good results for all test datasets. Alternative approaches would include volume segmentation
algorithms like region growing (see [97]). These, however, generally have a high computa-
tional complexity and often are not robust when used with non-watertight objects. The pre-
sented new approach typically only takes a few seconds to compute even for large datasets,
and it practically never leaks through the outer surface of the anatomy. At the same time, the
number of parameters to be selected by the user is relatively small.

The typical approach to reducing the number of triangles of an iso-surface is to apply
a mesh decimation algorithm (e.g., as described in [176]). The major disadvantage of such
methods in the context of occlusion handling is the fact that they do not distinguish between
inner and outside surfaces. In order to achieve a similar reduction of the triangle count, a sig-
nificant degradation of the quality of the outside surface geometry would have to be accepted.
Still, a conservative mesh decimation algorithm could be considered as a postprocessing step
for the visual hull surfaces generated by the presented volume processing pipeline. This could
further reduce the number of triangles while maintaining a sufficient visual quality of the out-
side hull.

2.7 Summary

In this chapter, the basic design and extensions of the ARGUS framework for medical aug-
mented reality were presented. Unlike other research systems, this solution is based on ex-
isting equipment for medical visualization and navigation. Devices for image guided surgery
are becoming increasingly widespread and are found in many operating rooms. Therefore,
the transition of augmented reality into the clinical practice can be facilitated by the fact that
IGS systems are well tested, stable, and certified for medical settings. Since the VectorVision
image guided surgery devices have been designed specifically for medicine, many practical
problems like working in a sterile environment have already been taken care of. An IGS-based
augmented reality system benefits from these qualities. Assuming that IGS equipment exists
for a certain medical application, additionally only a standard computer system and webcam
are necessary for building a basic AR system. The initialization of the image guided surgery
system can be performed within a few minutes by a trained surgeon, while the one-time camera
calibration step (Sec. 2.3.2) is only required in case of a configuration change.

The advanced hybrid tracking scheme described in Section 2.4 is capable of significantly
improving the overlay accuracy in medical AR. While it has the typical limitations of a (partly)
vision-based tracking method and is sensitive to the quality of the acquired camera image, it
can typically deliver a much better pose estimation than the purely infrared-based system.
Future research topics could include the development of a (semi)automatic model definition
method for hybrid tracking and a better application-specific adaptation of the approach to the
requirements of a medical setting.
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The ARGUS framework is still an experimental system, and it has not yet been used in the
clinical practice. Some additional challenges will have to be addressed before it can be applied
intraoperatively. These tasks include the selection of an appropriate display device. Currently,
the video streams generated by the AR application are displayed on a conventional computer
monitor. Moreover, a comprehensive experimental study on the overlay accuracy of the system
could be performed for confirming the reliability of the system.

In Section 2.5, a novel concept for untethered user interaction in medical augmented re-
ality was presented. Unlike previously described interaction methods, this approach is based
exclusively on certified image guided surgery equipment. By contrast, specialized 3D track-
ing or interaction devices are usually designed for applications in VR or engineering and are
ill-suited for medicine. The interaction modes supported by the new method can be used for
a wide range of applications. The menu system can be used for changing the parameters of
an advanced information display like volume or multi-modal rendering. Even conventional
functions like loading a patient dataset or initiating the patient registration procedure could be
triggered using the novel menu system.

The ARGUS user interaction system presented in this thesis has also been used as the ba-
sis for a new method for semiautomatic volume classification. In this application, intuitive
augmented reality interaction delivers the input data for a machine learning algorithm, which
computes the volume rendering transfer function [5, 6, 128]. This development demonstrates
that complex application cases can be realized based on the ARGUS framework and the asso-
ciated user interaction library.

The occlusion handling method described in Section 2.6 contributes to the ongoing re-
search on correctly rendering depth relationships in augmented reality. While the associated
volume processing pipeline was designed for volumetric datasets containing patient anatomy,
the approach could easily be employed for other applications in which volume datasets are
available. These include fields like engineering or production planning. The tests have shown
that the method is capable of generating easily understandable augmented images, in which
virtual objects appear correctly occluded by the patient anatomy. This makes a better inter-
pretation of the spatial relationships in the AR scene possible. The improved visual quality
achieved through the new occlusion handling method could further promote the acceptance of
augmented reality in medicine.

As discussed in the introduction of this thesis, the design of improved rendering methods
for augmented reality is an important area of research (see Chapter 1). The presented occlusion
handling system was developed as an advanced approach to more realistic image generation
in AR. An understandable representation of the spatial relationships between objects in the
augmented environment can contribute significantly to the usefulness of an AR system. In
the following chapters of this thesis, the topic of advanced rendering methods and alternative
display modes for augmented reality will be investigated further.
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CHAPTER 3

Stylized Augmented Reality

3.1 Introduction

As discussed in Section 1.2, conventional augmented reality systems generally use straightfor-
ward methods for overlaying graphical objects over the real environment. Video see-through
augmented reality systems acquire the digital input video stream and display the current video
frame as background image for the augmented view. The graphical primitives which constitute
virtual objects in the AR scene are then rendered over the background image using standard
computer graphics methods. Common real-time graphics libraries like OpenGL [181] or high-
level frameworks based on them are often utilized for this task. The resulting renderings
contain the typical artifacts of computer generated graphics, e.g., aliasing caused by the ras-
terization process. Figure 3.1 illustrates the standard method for overlaying graphical objects
in conventional augmented reality.

Moreover, simplified lighting and shading models are normally used in real-time computer
graphics. Common local illumination methods for the vertices of graphical primitives rely on
manually placed virtual light sources and manually assigned material parameters. Simple in-
terpolation methods like Gouraud shading then spread the computed brightness values over
the graphical models [90]. Even if more sophisticated rendering methods with advanced illu-
mination and shading are used, the problem of mismatched scene generation parameters still
persists. Since light sources and material properties are defined manually during the definition
of the AR scene, they do not correspond to the lighting conditions in the actual environment.
This becomes particularly apparent when the camera is moved, which often results in varying
image brightness and coloring, while the appearance of computer generated virtual objects
remains invariable.
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Figure 3.1: The image mixing process in conventional AR.

Due to the large discrepancies in visual appearance, even in a still image an observer
can easily distinguish virtual objects from the real camera background in most cases. This is
illustrated in the examples in Figure 3.2. It is obvious that the teapot and the coffee maker are
virtual objects in the respective augmented scenes, since they appear to be “pasted over” the
camera image.

(a) Virtual teapot in AR environment (b) Virtual coffee maker in AR environment

Figure 3.2: Two examples of virtual objects in conventional AR images. Due to the artifi-
cal look of the virtual objects generated by standard rendering methods, they can easily be
distinguished from the real environment.

In this thesis, an alternative method for generating augmented video streams is proposed.
This novel approach creates a stylized reproduction of the AR images. The basic idea of the
new method for generating augmented images is that the same type of artistic or illustrative
stylization is applied to both the digital camera image and the graphical objects. This
way, adapted levels of realism are created in the real camera image and the virtual models
that compose the AR video output. Since the same type of stylization is applied to both the
real background image and the graphical models, they become significantly more difficult to
distinguish. The resulting augmented output images create a novel experience for the user of
an augmented reality system, and they possibly create a better feeling of immersion. This new
approach to AR image generation has been named stylized augmented reality. It was proposed
and presented for the very first time in the context of this thesis [15].
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The principle of stylized augmented reality can basically be implemented with any type of
artistic or illustrative rendering style. Two preconditions have to be fulfilled so that a useful
stylized output video stream is generated:

1. Visual similarity. The stylization processes applied to the camera image and the virtual
objects have to create similar-looking output images. This is necessary in order to ensure
that real and graphical objects become less distinguishable.

2. Real-time performance. The complete stylized AR system has to be capable of gener-
ating an output video stream at real-time frame rates in order to make an application in
interactive scenarios possible.

In the context of this thesis, three different kinds of stylization were applied to augmented
video streams. In the original implementation of stylized AR, a cartoon-like look was applied
to the AR images. Additionally, an artistic type of stylization was realized. In this rendering
style, the output images are composed of brush strokes. The application of an illustrative
rendering style to augmented reality is described in Chapter 4.

In the remainder of this chapter, Section 3.1.1 gives an overview of related work on ren-
dering methods for augmented reality and on artistic and illustrative rendering. In Section 3.2,
the original cartoon-like stylization algorithm for augmented video streams is described. Sec-
tion 3.3 presents an advanced cartoon-like stylization method which works as a postprocess-
ing filter on the GPU. The alternative, artistic rendering style for AR images is discussed in
Section 3.4. Section 3.5 describes the design and results of a psychophysical study on the
effectiveness of stylized augmented reality. Finally, Section 3.6 concludes this chapter with a
summary.

3.1.1 Related Work

An approach that is complementary to the concept of applying stylization to AR images is the
attempt to improve the realism of virtual objects. This approach is generally known as pho-
tometric registration. The photometric registration problem is defined as the task of adapting
the illumination conditions and overall visual appearance of two images while preserving their
original, unstylized look. This way, a better visual correlation between the virtual objects and
the camera image can also be achieved. An early method for the correct automatic illumination
of virtual objects added to real images was described by Debevec [75]. Research has also been
done into methods of analyzing the real illumination conditions in an interactive augmented
reality setup. Examples of this approach include the work of Gibson et al. on photometric
reconstruction for mixed reality [95]. The system of Kanbara and Yokoya analyzes the dis-
tribution of real light sources, which is then used for adapting the representation of graphical
objects [121]. Their method requires a special marker and mirror ball to be visible in the
camera image in order to compute the environment light map. A similar technique which also
utilizes an acquired environment illumination map is proposed by Agusanto et al. [41]. In their
system, a mirror ball and special camera are used in a specific procedure for determining the
lighting conditions in the scene beforehand. Heymann et al. have proposed a GPU-accelerated
rendering technique for realistic illumination in AR based on information from a captured
mirror sphere [112, 113].
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An advanced type of photometric registration is the method developed by Okumura et al.
for analyzing the blur in the camera image [155, 156]. Blur is produced if the camera optics
is not correctly focused on the currently observed objects. Since no blur is present in the
renderings of virtual objects, they look different from the camera image. Okumura et al. use
the measured size of blur for adapting the appearance of virtual objects. This is achieved by
applying a corresponding blur filter to the rendered image of the graphical scene elements.

Another method for making virtual objects appear more realistic is to add shadowing to the
AR image. This creates the impression that shadows are cast from virtual objects on physical
surfaces. Haller et al. describe an algorithm for displaying such shadows in augmented real-
ity [103, 104]. A similar technique is used for a user study on the effects of shadowing in AR
by Sugano et al. [190]. As a drawback of these methods, a model of the geometry of objects
in the real world is required. This model needs to be generated beforehand and is assumed to
remain static.

The concept of stylized augmented reality is based on artistic and illustrative image gen-
eration and filtering. Artistic and illustrative rendering and image processing have been areas
of very active research for many years. Strothotte and Schlechtweg have published a good
survey of methods used in the field [189]. Another overview of various artistic and illustrative
techniques is given by Gooch and Gooch [99]. Hertzmann and Perlin have presented a method
for the stylization of video streams using an artistic painterly style [110]. One example of an
algorithm for the cartoon-like stylization of photographs is the work presented by DeCarlo and
Santella [76]. Their technique uses a combination of color segmentation and edge detection,
which partly inspired the algorithms for cartoon-like stylized AR presented in Sections 3.2
and 3.3. However, their method requires several minutes for processing an input image. An
algorithm for the semi-automatic conversion of a real video sequence into a cartoon-like video
has been presented by Wang et al. [202]. This method produces results of good visual qual-
ity, but it is an offline algorithm and computationally too expensive for real-time applications.
Moreover, a certain amount of user interaction is required for the specification of semantic
regions in some video frames.

Some researchers have integrated artistic and illustrative rendering styles into virtual and
augmented environments. The application of a specific artistic rendering method in virtual re-
ality was presented by Klein et al. [126]. In this system, a completely virtual scene is displayed
using an artistic style, and no video information is included. The first method which integrated
painterly rendering into augmented reality was presented by Haller and Sperl [103, 106]. How-
ever, they applied artistic rendering techniques only to the virtual objects, whereas the camera
image was displayed in its original, unprocessed form. After the initial publication of the con-
cept of stylized augmented reality in [15], Haller et al. developed a method for displaying both
the camera image and virtual objects in AR in a “loose and sketchy” style [105].

It could be argued that stylized augmented reality is a variation of the original definition
of augmented reality. While the camera image is only used as an unprocessed backdrop in
conventional AR, the image of the real environment is significantly modified in stylized AR.
Mann has introduced the term mediated reality for systems which alter the view of the real
environment [142]. Later, different applications of mediated reality were described [101, 102,
192]. The concept of stylized AR can therefore be considered a form of mediated reality.
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3.2 Cartoon-like Stylization of Augmented Reality Images

In this section, the original algorithm for generating stylized augmented video streams, which
was published in [15], is described. This approach handles the digital camera image and
the graphical objects separately. However, the design of these two branches of the image
generation pipeline aims at generating a similar, cartoon-like style for the real and the virtual
scene elements in the output image. In this system, the camera image is processed before it
is used as background in the image mixing process. An image stylization filter is applied to
the input camera image. The aim of this filtering step is to create a simplified, stylized version
of the current camera view. After the camera image has been processed, the virtual objects
are rendered over it. However, unlike in conventional AR, a stylized rendering scheme is used
instead of standard methods. A special renderer creates a cartoon-like representation of the
graphical objects. It is based on the cartoon-like rendering method described by Lander [130,
131]. An overview of the entire process is given in Figure 3.3.

Figure 3.3: The image mixing process used for cartoon-like stylized augmented reality.

As pointed out in Section 3.1, an important precondition for a useful system of stylized
augmented reality is the ability to generate images in real-time. Therefore, a combination of
camera image filter and stylized rendering method was developed which is fast enough to en-
sure high overall frame rates. It is important to note that both the image filter and the rendering
component can be customized using a set of parameters. In order to obtain a similar type of
stylization for both AR image layers, the parameters for the filter and rendering components
must be adjusted accordingly. The algorithm described in this section is capable of generating
two slightly different subtypes of stylization. Cartoon-like AR images consist of flat, uni-
formly colored patches enclosed by silhouette lines. In a second, sketch-like mode, only black
silhouettes are visible in front of a white background. Figure 3.4 shows a comparison of the
two stylization subtypes.
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(a) Conventional AR (b) Cartoon-like stylization (c) Sketch-like stylization

Figure 3.4: Comparison of cartoon-like and sketch-like stylization subtypes for a simple AR
scene containing the virtual model of a bench.

3.2.1 Stylization Filter for the Camera Image

The image filter used by the original cartoon-like stylization method is designed to simplify
and stylize the input camera image. In order to achieve this effect, two separate steps are
performed. The first step aims at reducing detail in the camera image by generating large,
uniformly colored regions based on the original image information. The second stage detects
high-contrast edges in the image. A postprocessing step is applied to the edge image in order
to generate thick lines which are adequate for the desired cartoon-like look.

Subsequently, the images generated by the two steps of the stylization filter are combined.
The edge image is a binary map, in which detected edges have full intensity. Since the silhou-
ette edges in the final output image are supposed to be black, the edge image is inverted and
then combined with the color image using the binary AND operation.

If the sketch-like stylization mode is used, the color segmentation step is skipped. In
this case, only edge detection is performed, and the inverted edge map is the output of the
stylization filter. This way an image with a white background and black silhouette lines is
created. An overview of the image filtering process is shown in Figure 3.5.

Figure 3.5: Overview of the image stylization filter used in the original cartoon-like stylized
AR system.

An essential design goal for the elements of the camera image filter is to achieve an in-
teractive execution speed. Since the filter is embedded in a complex augmented reality and
stylization pipeline, it must not take more than a few milliseconds to compute. Due to these
strict runtime requirements, most of the filtering process was designed from scratch and specif-
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ically adapted for the purpose of stylized augmented reality. In order to achieve a sufficiently
short execution time for the algorithm, the OpenCV library [116] was used for speed optimized
image processing on the CPU.

Color Segmentation

The first stage of the stylization filter aims at converting the input image into an image con-
sisting of regions which are mostly uniformly colored. This way a simplified and stylized
“coloring book” look is created. This task is closely related to color segmentation. However,
due to the time constraints it is not possible to achieve a true full segmentation in this filtering
step. The algorithm used in the filtering process is based on bilateral image filtering, which
was described by Tomasi and Manduchi [194]. The basic idea of bilateral filtering is to take
spatial distance as well as signal difference into account when smoothing a function. Unlike a
Gaussian filter, the bilateral filter therefore leaves high-contrast edges mostly unaltered, while
it has a strong smoothing effect on homogeneous regions.

Given the multi-channel (RGB) image function f , the bilateral filter computes the smoothed
image h using the following equation:

h(x) = k−1(x)
∫ ∞

−∞

∫ ∞

−∞
f(ξ)c(ξ,x)s(f(ξ), f(x)) dξ (3.1)

In Equation 3.1, x is the currently regarded point in the output image, and the integral
is computed in two dimensions over neighboring image points ξ. In the discrete case, this
is equivalent to a weighted sum of image pixels f(ξ) in the neighborhood of x. The weight
is a product of two factors. c(ξ,x) is a function of the vector difference ξ − x, i.e., the
spatial distance. The second factor, s(f(ξ), f(x)) depends on the similarity of values in the
color channels, f(ξ) − f(x). In the implementation used by the cartoon-like image filtering
algorithm, both c and s are Gaussian functions:

c(ξ,x) = e
− 1

2

� |ξ−x|
σd

�2

(3.2)

s(f(ξ), f(x)) = e
− 1

2

� |f(ξ)−f(x)|
σr

�2

(3.3)

Note that the value of c is a function of the Euclidean distance between ξ and x (Equa-
tion 3.2), while s depends on the absolute value of the color difference f(ξ) − f(x) (Equa-
tion 3.3). The standard deviations of the Gaussian functions, σd and σr, determine the proper-
ties of the smoothing and can be chosen by the user as parameters for the stylization filter. In
order to maintain the overall brightness of the image, the integral is divided by the normaliza-
tion factor k(x), which is computed as shown in Equation 3.4.

k(x) =
∫ ∞

−∞

∫ ∞

−∞
c(ξ,x)s(f(ξ), f(x)) dξ (3.4)

The effect of the bilateral filter is that smoothing only occurs in places where nearby pixels
have similar colors. In such places in the image, both c(ξ,x) and s(f(ξ), f(x)) are large. If
near the currently regarded pixel colors are present which are relatively far away in color space,
smoothing is suppressed. Thus strong edges in the image are preserved.
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The disadvantage of bilateral filtering for stylized AR is that it is computationally too
expensive. Due to the necessity for computing the vector differences, the Gaussian functions,
and the normalization factor, even an optimized implementation is too slow for the real-time
requirements. Therefore, a Gaussian pyramid of iteratively shrunk images is created, and the
bilateral filter is only applied to the smallest version. The use of resolution pyramids for image
processing is described for instance in [46].

Figure 3.6: Construction of Gaussian pyramid for speeding up the bilateral filter.

Figure 3.6 illustrates the principle of using a Gaussian pyramid for speeding up the color
segmentation step. For each level of the pyramid, the image resolution is reduced in both
dimensions by a factor of two. This results in an image with only a quarter of the number of
pixels of the previous level. The image is filtered with a standard Gaussian filter before the
subsampling takes place, reducing aliasing effects. A bilateral filter with standard deviations
σd and σr is then applied to the top level of the pyramid, the smallest version of the image. The
bilateral filter is repeatedly applied to the image in order to achieve a better color segmentation
result. The number of iterations can be selected by the user. Afterwards, the filtered image
is iteratively scaled up, each time by a factor of two in both dimensions. In this process, a
modified Gaussian filter is used for a smooth interpolation of missing pixels. Finally, an image
with the same resolution as the original camera image is created, which is the output of the
color segmentation step. The number of levels of the Gaussian pyramid can be selected by the
user as a parameter for the stylized AR system.

(a) One pyramid level (b) Three pyramid levels (c) Four pyramid levels

Figure 3.7: Color segmentation results using a different number of Gaussian pyramid levels
for the same scene.

The required computation time for the bilateral filter decreases with an increasing number
of pyramid levels. On the other hand, the resulting image becomes more blurred if more
pyramid levels are used. In Table 3.1, measured runtimes for the entire color segmentation
process, including construction and decomposition of the Gaussian pyramid, are listed (column
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Table 3.1: Measured execution times of the color segmentation process.

#Pyramid levels Filter time Frames/sec.
1 0.217s 4.57 fps
2 0.092s 10.79 fps
3 0.063s 16.00 fps
4 0.055s 18.00 fps

“filter time”). These benchmarks for the color segmentation process, which is executed entirely
on the CPU, were measured on a computer system with an Intel Pentium 4 Xeon processor
running at 2.66 GHz. The third column of the table contains average measured overall frame
rates of the AR system, if only color segmentation is used for processing the camera image.
The table clearly shows that a higher number of pyramid levels significantly increases overall
system performance. Figure 3.7 shows three color segmented camera images of the same scene
and illustrates that a greater number of pyramid levels leads to a more blurred result.

Edge Detection

In the second stage of the image stylization filter, edges are detected in the camera image. The
detected edges are used as black silhouette outlines in the stylized camera image, resulting in
the desired “cartoon-like” or “sketch-like” look. The Canny edge detector [69] is used in the
cartoon-like stylization system. Note that the edge detection step is performed on the original
camera image, not on the result of the color segmentation process.

The Canny edge detector is based on a standard gradient computation, normally using the
Sobel operator, followed by methods for suppressing erreneous responses. The final step of
the Canny detector is the so-called hysteresis, which eliminates erreneous detection responses
based on two threshold values. The larger threshold is used for finding definite edge pixels,
which can be thought of as starting points for continuous edge segments. Any pixel adjacent
to an already identified edge pixel is also marked as an edge pixel, if its gradient is greater than
the smaller threshold. This way continuous edges are generated, while detached and weak
gradient operator responses caused by noise are suppressed.

In the cartoon-like stylized AR system, these two thresholds for the Canny detector, t1 and
t2, can be selected by the user. In order to achieve the goal of a stylized look with an emphasis
on strong edges, rather large threshold values were found to be practical. Smaller thresholds
can result in visually irrelevant edges being emphasized, or can even leave camera noise in the
edge image. This is illustrated in Figure 3.8.

It is one of the properties of the Canny edge detector that the edge image it delivers con-
sists of very thin edge segments (see Fig. 3.8b). For the purpose of the camera image filter in
cartoon-like stylized AR, the black lines derived from the edge image should be much thicker.
In order to achieve this effect, a morphological operator is applied to the image. The morpho-
logical dilation operation processes a binary image by assigning a value of one to all pixels
in the neighborhood of any pixel which has a value of one [97]. As shown in Figure 3.9, this
morphological postprocessing makes the edges appear thicker and removes discontinuities.
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(a) Small thresholds result in image noise (t1=80,
t2=60)

(b) Larger thresholds generate a better result (t1=150,
t2=105)

Figure 3.8: Canny edge detection results for different thresholds.

Figure 3.9: Application of morphological dilation to the edge image. The thresholds used for
this image are the same as in Fig. 3.8b.

3.2.2 Cartoon-like Rendering Method for Virtual Objects

For rendering virtual objects in the cartoon-like stylized AR system, a stylized rendering
method consisting of two main components is used. A technique for drawing thick silhou-
ette outlines is applied to the geometry of the objects. Moreover, a custom shading method is
utilized, which reduces the number of different pixel intensities in the generated image. These
two methods make the rendered objects appear visually similar to the stylized camera image,
which is used as background plane in the image mixing process.

Silhouette Rendering

A simple method for rendering the silhouette outline of a graphical object by utilizing standard
OpenGL functionality has been described by Lander [131]. This approach is based on drawing
the geometry of each graphical object twice. In a first rendering pass, filled polygons are used
for drawing the object. The Z-buffer test is applied in the normal way, so that pixels are only
rendered if they are closer to the viewer than primitives which have already been drawn (depth
test function GL LESS). In this step, only front-facing polygons are rendered.
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For the second rendering pass, the face culling performed by OpenGL is adjusted so that
only back-facing polygons are drawn. These polygons, which face away from the camera, are
rendered in wireframe mode. This means that only the outlines are drawn for each polyon.
The wireframe representation is made up of thick lines. In this rendering pass, the Z-buffer
is set up to allow the display of all pixels which are closer to the viewer or at the same depth
as previously rendered pixels (depth test function GL LEQUAL). This second rendering pass
affects all the places in the image where back-facing and front-facing polygon edges have the
same distance to the viewer. For most graphical objects, these places correspond to silhouette
edges. The result of this rendering pass is that thick lines are visible where the silhouette out-
line of an object should be. The code fragment in Algorithm 3 explains how the two rendering
passes can be performed using standard OpenGL calls.

Algorithm 3 The two rendering passes used for silhouette rendering (taken from [131]).
glPolygonMode(GL FRONT, GL FILL);
glDepthFunc(GL LESS);
glCullFace(GL BACK);
DrawModel(); // Draw primitives of virtual object

glPolygonMode(GL BACK, GL LINE);
glDepthFunc(GL LEQUAL);
glCullFace(GL FRONT);
DrawModel(); // Draw primitives of virtual object

Figure 3.10 illustrates the effect of the silhouette rendering method. In the cartoon-like
stylized AR system, the thickness of the silhouette lines can be selected by the user. Although
this silhouette rendering approach is based on two-pass rendering, its impact on the overall
system frame rate is negligible except for extremely large virtual models. The advantage of
this method is that it does not require advanced OpenGL functionality (e.g., shaders) and is
therefore highly portable.

(a) The second rendering pass: Only the outlines
of back-facing polygons are drawn

(b) Final result of the silhouette rendering
method

Figure 3.10: The silhouette rendered for the graphical model of a teapot.
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Non-linear Shading

The second method utilized by the stylized AR system for giving a cartoon-like look to virtual
objects is non-linear shading. Normally, brightness and color parameters computed for the
vertices of an object are spread over the visible surface using OpenGL shading. This means
that either flat shading is applied, which uses constant color and brightness, or Gouraud shad-
ing, which uses linear interpolation between the vertex parameters over the area of a polygon.
While flat shading is too simplistic even for the purposes of a stylized AR renderer, the appli-
cation of Gouraud shading generates too many different intensity levels. Although Gouraud
shading can make surfaces appear round (as seen on the teapot in Fig. 3.2a), it also creates a
too artificial look that does not correspond well to the stylized background image.

The cartoon-like non-linear shading method, which was also described by Lander [130],
only generates a limited and well-defined set of intensities. This is achieved by modulating the
base color of the object with a special one-dimensional texture. The one-dimensional texture
contains the representation of a function which translates texture coordinates to a brightness
value in discrete, quantized steps. An example of a one-dimensional shading texture is shown
in Figure 3.11. In the cartoon-like stylized AR system, the shading texture is generated auto-
matically. The number of quantization steps and the base intensity can be selected by the user.
In order to be able to represent a full light intensity, the shading texture always contains the
full texel intensity in the last texels (127 for OpenGL signed byte intensity textures). In the
implemenation of the stylized AR system, the cartoon-like renderer always uses a texture with
a size of 32 texels, unlike the 16-texel texture used for clarity in Figure 3.11.

Figure 3.11: Example of a one-dimensional intensity texture.

For the actual rendering process, OpenGL lighting computations are disabled. Instead,
light intensity is computed by the cartoon-like renderer for every vertex. This is done using
simple diffuse reflection:

Ii = ni · L (3.5)

In Equation 3.5, the brightness Ii of vertex i is computed as the dot product of its normal
vector ni and the light direction L. In order to obtain a correct lighting, each vertex normal is
rotated by the rotational component of the current OpenGL transformation matrix beforehand.
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This ensures that the current viewing parameters are taken into account. The system maintains
normalized ni and L, therefore the result of the dot product is always between -1 and 1.
Negative values are clamped to zero. The resulting value between 0 and 1 is then used as
index into the one-dimensional shading texture, i.e., as texture coordinate. This way the texture
acts as a lookup table for the non-linear shading function. The effect of non-linear shading
with a different number of quantization steps is illustrated in Figure 3.12. The cartoon-like
stylized AR system provides functionality for manually specifying the light direction used by
the shading algorithm.

(a) 2 quantization levels (b) 6 quantization levels

Figure 3.12: Non-linear shading with a different number of quantization levels in the shading
texture.

If the sketch-like stylization subtype (see Fig. 3.4c) is selected by the user, a special con-
figuration is used for the virtual objects renderer. In this case, the front-facing polygons are
rendered uniformly white, which is achieved by setting the entire one-dimensional shading
texture to full intensity and choosing white as the base color of the object. The silhouette
rendering process is performed as described in Section 3.2.2 with black selected as the outline
color. This creates a pure black-and-white look for the virtual objects, which corresponds to
the filtered camera image in the sketch-like style.

3.2.3 Results

The described cartoon-like stylized augmented reality approach was tested with numerous dif-
ferent test scenes. The implementation of the stylized AR system is based on the ARGUS
framework introduced in Chapter 2. The software contains an editor which is capable of
importing 3D models in the standard Wavefront OBJ file format (see [148] for a format de-
scription). The user can freely place, scale and rotate the model. Moreover, a graphical user
interface for adjusting all parameters of the camera image stylization filter and the stylized
virtual objects renderer is provided. These include the number of Gaussian pyramid levels
and standard deviations for the bilateral filter, as well as object color, lighting parameters, line
thickness, and line color for the stylized rendering algorithm. Additionally, the user can choose
between the cartoon-like and sketch-like stylization subtypes.

For all of the test scenes shown here, optical marker tracking based on the ARToolKit
library was used [123]. The user-defined transformation of the 3D model is in relation to an
ARToolKit marker, which determines the origin of the coordinate system.
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(a) Moka Express, conventional AR (b) Moka Express, cartoon-like
stylization

(c) Moka Express, sketch-like styl-
ization

(d) VW Beetle, conventional AR (e) VW Beetle, cartoon-like styliza-
tion

(f) VW Beetle, sketch-like styliza-
tion

(g) Teacup, conventional AR (h) Teacup, cartoon-like stylization (i) Teacup, sketch-like stylization

(j) Statue of Liberty, conventional
AR

(k) Statue of Liberty, cartoon-like
style

(l) Statue of Liberty, sketch-like
style

Figure 3.13: Four example scenes illustrating the effect of the original cartoon-like stylized
augmented reality approach. In each row, the leftmost column shows conventional AR ren-
dering. The second and third column contain the stylized versions. Note that Figure 3.13c
and 3.13i show the respective scene from a different angle.

Figure 3.13 shows four augmented reality test scenes. In each row of images, the leftmost
column contains the augmented scene as generated by conventional AR image composition.
In the second column, the image is rendered with the presented cartoon-like style. The sketch-
like stylization subtype for each test scene is depicted in the third column. Figures 3.14, 3.15
and 3.16 show three more example scenes demonstrating the original cartoon-like stylization
algorithm.
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(a) Bridge scene, conventional AR (b) Bridge scene, cartoon-like stylization

Figure 3.14: Example scene showing a virtual bridge model.

(a) Santa Claus model, conventional AR (b) Santa Claus model, cartoon-like stylization

Figure 3.15: Santa Claus example scene for the original cartoon-like stylization method.

(a) Candle model, conventional AR (b) Candle model, cartoon-like stylization

Figure 3.16: Candle example scene for the original cartoon-like stylization method.
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It is the goal of the described cartoon-like stylization approach as well as the basic idea of
stylized AR to achieve an improved immersion. This means that it becomes less obvious for
the user whether an object in the augmented image is real or virtual. The example images in
the Figures 3.13 - 3.16 show that this effect is achieved by the presented method. Especially
for scenes in which the scale of the virtual object matches the physical world, the barrier
between virtual and real is reduced. The coffee maker (Fig. 3.13b) and teacup (Fig. 3.13h) are
good examples for scenes in which the virtual model appears to be a natural part of the real
environment thanks to the stylized display method.

Several performance measurements of the described original cartoon-like stylized AR ap-
proach are listed in Table 3.2. These performance measurements were taken on a computer
system with an Intel Pentium 4 Xeon processor running at 2.66 GHz and a graphics card based
on an nVidia GeForce FX 6800GT chipset. Measurements were taken for two different virtual
graphical models. The “teacup” dataset contains more than 81k vertices, while the “teapot”
object is made up of only approximately 4k vertices. For each of the two models, interactive
stylized AR sessions with a duration of at least 300 frames were examined. The benchmarks
were performed for both the cartoon-like and the sketch-like stylization subtypes, with the
virtual objects being visible in the generated output images during the entire experimental
sessions. In Table 3.2, the third column lists the average overall frame rate measured in the
test scenarios. The fourth column (“image filter”) contains the measured average duration of
the algorithm phase consisting of camera image acquisition and the image stylization filter (in
milliseconds). The last column (“rendering”) shows the average time required for rendering
the virtual object, also listed in milliseconds.

Table 3.2: Benchmarks measured with the original cartoon-like stylized augmented reality
system.

Scene #Vertices Frame rate Image filter Rendering
(fps) (msecs) (msecs)

Teacup (cartoon style) 81.7k 8.4 64 55
Teacup (sketch style) 81.7k 10.16 43 55
Teapot (cartoon style) 4.4k 14.88 64 3
Teapot (sketch style) 4.4k 21.49 43 3

The benchmark results show that the performance of the cartoon-like stylized AR system
depends on several main factors. One is the complexity of the graphical model used in the
augmented reality scene. Due to the specialized two-pass rendering approach (see Sec. 3.2.2),
a higher polygon count leads to a significantly decreased rendering speed. Table 3.2 demon-
strates that, as a second factor, the sketch-like stylization subtype is faster to generate than
the cartoon-like style. The sketch-like stylization only requires the edge detection step of the
stylization filter without any color simplification (see Sec. 3.2.1). Because the computationally
expensive color simplification step can be skipped, the camera image filter takes significantly
less time in the sketch-like mode (43 milliseconds) than for cartoon-like images (64 millisec-
onds). As additional factors, which have not been separately examined here, the number of
Gaussian image pyramid levels and the number of bilateral filter iterations also influence the
attainable frame rate. In all the benchmark scenarios listed in Table 3.2, two image pyramid
levels and two bilteral filter iterations were used. A detailed discussion of the connection
between the number of Gaussian pyramid levels and algorithm performance was shown in
Table 3.1 (see Sec. 3.2.1).
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The application of the original cartoon-like stylized AR system to various example sce-
narios has lead to the empirical observation that it is typically capable of delivering interactive
frame rates. With the exception of AR scenes containing geometrically complex virtual mod-
els (like the “teacup” model in Table 3.2), frame rates of approximately 15 fps are normally
achieved with typical algorithm parameters for the cartoon-like style.

3.3 Stylization of AR Video Streams on the GPU

The original cartoon-like stylization approach for augmented reality images discussed in Sec-
tion 3.2 was the first implementation of the principle of stylized AR. It demonstrated the
feasibility of a system which combines a specialized camera image filter and a cartoon-like
renderer and generates an output video stream at interactive frame rates. Moreover, the origi-
nal cartoon-like algorithm renders stylized augmented reality images in which real and virtual
objects appear less distinguishable from each other. This way, the objective of stylized AR, to
create an output video stream in which real and virtual scene elements are indistinguishable,
is at least partially achieved.

This original stylized augmented reality approach, however, has some significant draw-
backs. Its first problem is the limited graphical quality of the generated output. Especially in
the processed camera image, strong flickering often occurs. This flickering is caused by the
direct application of the line detection algorithm to the digital input image, which contains a
large amount of noise. The rendered graphical objects can also contain visible artifacts due to
the limited accuracy of the Z-Buffer, which leads to problems during the two-pass silhouette
rendering step. Finally, although the original stylized AR system is capable of generating in-
teractive frame rates, an even higher image generation speed is often desired for real-time per-
formance. True real-time systems are usually considered to run at more than 20 fps (see [47]),
resulting in a better experience and immersion for the user.

Therefore, a second, more advanced cartoon-like stylized AR system was developed in
the context of this thesis [14, 38]. This advanced cartoon-like stylization algorithm solves
many of the problems of the original approach. Although the output images generated by the
newer system may look similar to the original cartoon-like stylization at first glance, the design
of the advanced algorithm and its implementation are completely different. The advanced
approach delivers output images of a higher visual quality. In particular, it eliminates flickering
silhouette edges in the output video stream. The rendering performance of this newer algorithm
is also significantly better than that of the original apprach. It can generate frame rates of 25
fps or more in typical scenarios.

In contrast to the original approach, the advanced cartoon-like stylization algorithm is
executed entirely on the graphics processing unit. For each frame, a standard augmented reality
pipeline first generates an output image containing the unaltered camera image with overlaid
virtual objects. This original AR frame is rendered using standard rasterization methods on
the graphics hardware and resides in its local frame buffer memory. A postprocessing filter is
then applied to it, which is computed on the graphics processing unit (GPU). An overview of
the approach is shown in Figure 3.17. Due to the design of the system, all image processing
operations, which are computationally expensive, are performed efficiently by the dedicated
graphics hardware. The image filtering steps are implemented as a set of specialized vertex
and fragment shaders, utilizing the programmability of modern graphics processing units.
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Figure 3.17: Overview of the advanced stylized augmented reality pipeline designed as a post-
processing filter.

Since the new method is based on the principle of applying a postprocessing filter to the
original AR frame, it is related to image space stylization of acquired camera images. The
cartoon-like stylization of single photographs (e.g., DeCarlo and Santella [76]) and entire video
sequences (e.g., Wang et al. [202]) was described before. However, previously published
approaches are usually offline algorithms and too slow for integration into a real-time image
generation pipeline. Many existing algorithms also rely to some degree on user input for
guiding the stylization procedure, which is not practical in an augmented reality scenario. The
postprocessing step described here is based on common basic image operations like bilateral
filtering and edge detection. However, these basic techniques were adapted and refined for the
specific requirements of stylized augmented reality (see the enumeration in Section 3.1).

In the remainder of this section, Section 3.3.1 will give an overview of the algorithm. Sub-
sequently, the color simplification step (Sec. 3.3.2) and the edge detection method (Sec. 3.3.3)
are discussed in detail. Section 3.3.4 describes some aspects of the implementation of the al-
gorithm. Experimental results obtained with the advanced cartoon-like stylization system are
presented in Section 3.3.5.

3.3.1 Algorithm Overview

The cartoon-like postprocessing filter consists of two steps. In the first step, a simplified color
image is computed from the original AR frame. The simplified color image is made up of
mostly uniformly colored regions. A non-linear filter using a photometric weighting of pix-
els is the basis for this computation. The photometric filter is applied to a shrunk version of
the input image. This way, a better color simplification is achieved, and the required com-
putation time is reduced. Several filtering iterations are consecutively applied to the image.
The repetition of the filter operation is necessary in order to achieve a sufficiently good color
simplification. Figure 3.18 illustrates this procedure.

The second stage of the image stylization filter is an edge detection step. The simplified
color image is the primary input for this operation. This way, the generated silhouette lines
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Figure 3.18: The simplified color image is generated with several iterations of a non-linear
filter.

are located between similarly colored regions in the image, which is a good approximation of
a cartoon-like rendering style. To a lesser degree, edges detected in the original AR frame are
also taken into account when drawing the silhouette lines. The higher resolution of the original
image compared to the shrunk color image can contribute some additional detail to the edge
detection result. Figure 3.19 shows an overview of this filter stage.

Figure 3.19: Edge detection results from the original image and the shrunk color image are
combined.

In typical setups, most of the input for the edge detection step is taken from the simplified
color image. It consists of mostly uniformly colored regions generated by the photometric
filter. Therefore, edges detected in the simplified color image typically correspond quite well
to the outer boundaries of physical or virtual objects.

Finally, the simplified color image is combined with the edge detection results. The color
image is enlarged to the size of the original input image. The combined responses of the edge
detection filters are drawn over the enlarged image as black lines. A specific weight function
is used for computing a transparency for the detected edge pixels, which produces a smooth
blending over the color image.

3.3.2 Generation of Simplified Color Image

At the beginning of the filtering process, a shrunk version of the original AR frame is ren-
dered into the local frame buffer of the graphics card. This is done by drawing a rectan-
gle textured with the original image. The texturing process is configured so that a smoothly
scaled version of the image is produced. User-definable parameters, shrunkImageWidth
and shrunkImageHeight, specify the dimensions of the new image. The non-linear filter is
then applied iteratively by using the output image of the last iteration as input texture for the
next filtering step.
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The non-linear filter used in the advanced cartoon-like stylization algorithm is inspired
by bilateral filtering [194]. However, in contrast to the original cartoon-like approach (see
Sec. 3.2.1) the filtering method is modified in order to achieve a better simplification re-
sult. The original bilateral filter algorithm combines geometric and photometric weights when
adding up pixels in the neighborhood of the currently regarded pixel. While the geometric
factor gives a greater weight to pixels closer to the current location, the photometric weight
suppresses the influence of pixels with very dissimilar color values. In the context of cartoon-
like stylization, however, it was empirically found that the photometric weight is sufficient for
generating a useful simplification. Ignoring the geometric weight simplifies the algorithm and
reduces the computational complexity. Moreover, this simplified non-linear filter produces
very good visual results.

In addition to disregarding the geometric weight, the filter is also modified such that the
photometric weight only depends on the actual color of each pixel. Each pixel is converted
into the YUV color space before the filter is applied. In the YUV color space, the Y compo-
nent represents the brightness of a pixel, while U and V are the chrominance (color) compo-
nents [163]. For computing the weight of each pixel in the neighborhood, the new non-linear
filter only takes the U and V components into account.

Again, the original RGB image function is denoted as f , and the corresponding color
coordinates in YUV space are called fUV . The non-linear filter computes the simplified RGB
image h using the following equation:

h(x) = k−1(x)
∑

ξ ∈ Ωx

f(ξ) s(fUV (ξ), fUV (x)) (3.6)

In Equation 3.6, x is the currently regarded point in the output image. A weighted sum is
computed over image points ξ in the neighborhood Ωx of x in the input image. A quadratic
image area is used as neighborhood for the summation. The weight s(fUV (ξ), fUV (x)) de-
pends on the similarity of values in the color channels, fUV (ξ) − fUV (x). As in the original
cartoon-like approach, s is a Gaussian function:

s(fUV (ξ), fUV (x)) = e
− 1

2

� |fUV (ξ)−fUV (x)|
σp

�2

(3.7)

Note that s is a function of the absolute value of the color difference, fUV (ξ) − fUV (x)
(Equation 3.7). The standard deviation σp of the Gaussian function determines the properties
of the color simplification and can be chosen by the user as a parameter for the algorithm.
In order to maintain the overall brightness of the image, the weighted sum is divided by the
normalization factor k(x), which is computed as shown in Equation 3.8.

k(x) =
∑

ξ ∈ Ωx

s(fUV (ξ), fUV (x)) (3.8)

The effect of this non-linear filter is that an averaging of pixels only occurs in places where
nearby pixels have similar colors. In such places in the image, s(fUV (ξ), fUV (x)) is large. If
near the currently regarded pixel colors are present which are far away in color space, they are
not taken into account. Thus strong edges in the image are preserved.
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(a) Original AR frame (b) Simplified color image

Figure 3.20: Generation of the simplified color image for an original AR frame. In the aug-
mented reality scene, a virtual plane model is overlaid over the camera image. (Parameters:
shrunkImageWidth=240, shrunkImageHeight=180, σp=0.025, numFilterSteps=7)

In the implementation of the GPU-based cartoon-like stylization method, a small local
neighborhood of 5 x 5 pixels is used for the weighted summation. As described above, the
non-linear filter is applied several times. For each filtering step, the resulting image from the
previous iteration is used as input. The number of color simplification iterations performed by
the algorithm, numFilterSteps, can be chosen by the user. Figure 3.20 shows an example of
a simplified color image computed for an original augmented reality frame.

The reason why it is possible to ignore the geometric weight in the computation of the non-
linear filter is the fact that only a small pixel neighborhood is regarded. The main purpose of
the geometric weight in the original bilateral filter is to reduce the influence of pixels which are
father away in image space. Since only a small local neighborhood is taken into account in the
implementation of the non-linear filter used in the advanced cartoon-like stylized AR system,
the geometric weight is not necessary for this purpose. In this sense, the original bilateral
filtering method is the combination of a Gaussian filter with the photometric weight, while the
approach described here is the combination of a box filter with the photometric weight. To
approximate a larger standard deviation used for the geometric weight in the original bilateral
filtering algorithm, the number of filtering iterations can be increased. This increased number
of iterations also leads to a enlarged area of influence for each pixel, resulting in a more blurred
output image.

3.3.3 Adaptive Edge Detection based on Intensity and Color Contrasts

After the simplified color image has been generated, the edge detection step is performed.
The algorithm uses the the Sobel edge detection filter for computing the partial derivatives
of color channel values along the x-axis and the y-axis [97]. (The Canny algorithm is not
used here because as an iterative process it would add several rendering passes to the filtering
pipeline.) Here again, the pixels are converted into the YUV color space before the edge
detection step. The image function of the simplified color image is denoted as S, consisting
of the channels (SY , SU , SV ). Correspondingly, the original AR frame A contains the YUV
channels (AY , AU , AV ).
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For each of the color channels of both images, two partial derivatives are calculated.
In the case of the Y component, these are the derivatives ∂SY

∂x , ∂SY
∂y , ∂AY

∂x , and ∂AY
∂y . The

U and V color channels are processed accordingly. Based on the partial derivatives, gra-
dient magnitudes (|∇SY |, |∇SU |, |∇SV |) are computed for the simplified color image, and
(|∇AY |, |∇AU |, |∇AV |) for the original AR frame.

An edge detection response is then calculated for each pixel using the gradient magni-
tudes. This response value is obtained through the weighted averaging of the local contrast
in the intensity (Y) and color (U,V) channels. The relative weight of the intensity and color
contrasts is determined by the parameter α ∈ [0; 1]. Equation 3.9 shows the computation of
the edge detection response for the simplified color image, edge(S), and the original AR frame,
edge(A). Using this method, the edge detection process can generate responses in locations
with homogeneous intensities where the color channel gradient is large. The user can empha-
size intensity contrasts or color contrasts for locating silhouette edges by adjusting the value
of α. Edge detection responses computed for the example AR scene in Figure 3.20 are shown
in Figure 3.21.

edge(S) = (1− α) · |∇SY |+ α · |∇SU |+ |∇SV |
2

(3.9)

edge(A) = (1− α) · |∇AY |+ α · |∇AU |+ |∇AV |
2

(a) edge(S) (b) edge(A)

Figure 3.21: Edge detection responses for the original AR frame and simplified color image
shown in Figure 3.20. (Parameter α=0.3. Images have been brightened for better visibility.)

The two edge detection responses are then combined for determining the final silhouette
intensity in the full-resolution output image. For every pixel position (xo, yo) in the output
image, the corresponding coordinates in the simplified color image are denoted as (xs, ys). The
parameter β introduced in Equation 3.10 specifies the relative influence of the simplified color
image and the original AR frame for silhouette detection. Note that the output coordinates
(xo, yo) are also used for accessing the edge detection responses of the original AR frame
because it has an identical image resolution.

Io(xo, yo) = (1− β) · smoothsteps1
s0

(edge(S)(xs, ys)) (3.10)

+β · smoothstepa1
a0

(edge(A)(xo, yo))
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As shown in Equation 3.10, each of the two edge detection responses is filtered with the
smoothstep function. This function is provided by the shading language used for the imple-
mentation (see Sec. 3.3.4). It returns a value of zero for edge detection responses below the
threshold s0 (a0), and a value of one for responses above s1 (a1). Between the two thresholds,
smooth Hermite interpolation is used (see [124] for a complete definition). The parameters s0,
s1, a0 and a1 are specified by the user. They determine the minimum edge detection response
necessary for generating a silhouette, and how steeply the silhouette intensity increases.

The combined edge detection response Io is computed for every pixel location (xo, yo) in
the output image. The final output image is then generated with a simple mixing operation.
For every output pixel, the corresponding simplified color image pixel is looked up with an
interpolated texture access to S(xs, ys). This pixel is then rendered at (xo, yo), possibly with
a silhouette edge blended over it. The silhouette edge intensity is computed as the factor
(1 − Io), which is used for scaling the values in the RGB color channels of the output pixel.
This way, the output pixel is rendered dark if a large combined edge detection response has
been computed. The resulting output image is a magnified version of the simplified color
image with black silhouette lines rendered over it. This is illustrated in Figure 3.22, which
shows the final output image generated for the original AR frame in Figure 3.20a.

Figure 3.22: The final output of the image stylization filter. (Parameters: s0=0.054, s1=0.064,
a0=0.3, a1=0.7, β=0.3)

3.3.4 Implementation Details

The image stylization filtering algorithm for the advanced cartoon-like stylized AR approach
was implemented using the OpenGL Shading Language [169]. The shading language makes
it possible to execute the code of the stylization filter on the graphics processing unit (GPU).
All necessary computations are performed on data which are stored in the local memory of the
graphics card. This eliminates the need for a time-consuming readback of graphics memory
contents.

The implementation of the algorithm uses three different textures stored in graphics card
memory:

• During program startup, a one-dimensional texture storing an exponential function is
defined. This exponential texture contains a sequence of function values computed as
shown in Equation 3.7. The non-linear filter in the color simplification step looks up the
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photometric weights for neighboring pixels in this one-dimensional texture. This way,
an explicit evaluation of the Gaussian function for every pixel becomes unnecessary.
The exponential texture is updated whenever σp is changed by the user.

• For each frame, the original AR image is copied from the frame buffer into a separate
texture. This original AR texture is later used for generating a scaled-down version
of the image. Moreover, this texture is later also accessed as image function A by
the edge detection filter for computing the edge detection response edge(A). Standard
OpenGL functionality is used for copying the frame buffer content into texture memory
(glCopyTexSubImage2D(), see [181]).

• The scaled-down version of the original AR image is also stored in a separate texture.
This texture is repeatedly overwritten with the results of the iterations of the non-linear
filter. After the last iteration, it contains the simplified color image. Since this tex-
ture serves as buffer for intermediate images generated by the filtering passes, it is also
called multipass texture in this thesis. Again, the scaled-down original image and the
result images of the filtering passes are copied into the texture using glCopyTexSub-
Image2D().

Each of the textures is bound to a separate texture unit of the GPU. This way, they can
be accessed simultaneously from the shader programs. The filtering passes are performed by
rendering 2D rectangles into the OpenGL back buffer. Before each rectangle is rendered, the
respective image filtering shaders are activated. The final result image is also rendered into the
back buffer, overwriting data from intermediate passes before the image content of the buffer
is displayed to the user.

As mentioned in Sections 3.3.2 and 3.3.3, the image stylization filter converts pixels into
the YUV color space. This conversion is performed by multiplying RGB vectors with a con-
stant matrix, which is an operation that can be computed very efficiently on the GPU. An
optimized texture access scheme is used for the actual image processing operations. This
optimized access method is discussed in the following section.

Optimized Texel Addressing Scheme

Both the color simplification and the edge detection stages are implemented as a pair of ver-
tex and fragment shaders. The main processing is performed in the fragment shaders, which
require many texture accesses. The color simplification shader accesses a 5 x 5 texel neighbor-
hood. Moreover, the Sobel filter in the edge detection shader reads 3 x 3 texel neighborhoods
in the original AR frame and the multipass texture. Each access to a neighboring texel requires
the computation of texture coordinates by adding a certain offset to the texture coordinates of
the currently regarded image location.

In a straightforward implementation, these new texture coordinates would be computed in
a nested loop over the texel neighborhood. In each iteration of the texel loop, the corresponding
texture coordinate would be determined by multiplying the loop indices with texture-specific
texel size factors. This straightforward implementation requires conditional branches for the
loops and one additional vector multiplication per texel. Image processing shaders imple-
mented this way are typically slow, especially since conditional branches are normally not
executed efficiently on GPUs. Therefore, the advanced cartoon-like filter uses a method for
pre-computing texel addresses which is similar to a technique described in [199].
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The basic concept of texel address pre-computation is to utilize the automatic texture co-
ordinate interpolation provided by the GPU. Up to eight texture coordinate vectors, gl Tex-
Coord[0] - gl TexCoord[7], can be defined simultaneously. Each vector holds four
vector components xyzw. All of these data are interpolated over the area of a graphical prim-
itive. This is done automatically and does not involve any additional computational costs. The
texture coordinate vectors are initialized in the vertex shader with the addresses of neighboring
texels. In the fragment shader, the interpolated addresses are then read and used directly for
performing texture lookups.

Figure 3.23: Diagram of the scheme used by the edge detection shader for addressing texels
in a 3 x 3 neighborhood. Each grid represents a 3 x 3 texel square centered at the currently
processed texel.

Figure 3.23 shows an illustration of how the texture coordinate vectors are used in the edge
detection shader. Vectors gl TexCoord[0] to gl TexCoord[2] hold the texel addresses
for the multipass texture, gl TexCoord[3] to gl TexCoord[5] the addresses for the
original AR texture. In both cases, they describe a 3 x 3 neighborhood for the computation
of the Sobel filter. As shown in Figure 3.23, different combinations of the components of a
texture coordinate vector are required for accessing different texels. In the case of the edge
detection shader, the w component always holds the texture coordinate t for describing the
interpolated texel row. The s coordinates of texel columns in the same row are stored in the
x, y and z components. The arbitrary combination of vector components is directly supported
by the OpenGL shading language (component swizzling).

As an example, the pre-computation of one line of texel addresses for the multipass texture
is shown in Algorithm 4. In this piece of vertex shader code, vector gl MultiTexCoord0
holds the input texture coordinates defined for the current vertex. Offsets corresponding to
multiples of the distance between texel rows or texel columns are added to this input texture
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coordinate. The offsets are computed by multiplying integer texel indices with texelSizeX
or texelSizeY. These float values have been previously defined as the texture coordinate
distance between neighboring texel columns or texel rows, respectively.

Algorithm 4 An example for texel address pre-computation (OpenGL Shading Language code
fragment.)
gl_TexCoord[0].x = gl_MultiTexCoord0.x + (-1 * texelSizeX);
gl_TexCoord[0].y = gl_MultiTexCoord0.x;
gl_TexCoord[0].z = gl_MultiTexCoord0.x + ( 1 * texelSizeX);
gl_TexCoord[0].w = gl_MultiTexCoord0.y + ( 1 * texelSizeY);

The same technique is utilized for pre-computing the texel addresses of the 5 x 5 neigh-
borhood required by the color simplification filter. In the fragment shaders, the interpolated
texture coordinates are read and their components are combined in order to obtain the ad-
dresses of neighboring texels. The texels are then directly accessed using these addresses for
computing the weighted summation performed by the image filters.

3.3.5 Results

The advanced cartoon-like stylization algorithm for augmented video streams was tested with
various AR scenes. Like for the original stylization algorithm (see Sec. 3.2.3), an interac-
tive demonstration application was created. The software containing the implementation of
the algorithm also provides functionality for importing 3D models in the standard Wavefront
OBJ file format. The user can translate, rotate and scale the virtual models in relation to
the ARToolKit marker coordinate system. Moreover, material parameters and textures can be
assigned to the models. A comprehensive user interface for choosing the parameters of the
GPU-based postprocessing filter is also provided. A screenshot of this user interface is shown
in Figure 3.24.

Figure 3.25 shows images of three test scenes. In each row of images, the left image
contains the original AR frame, and the result of the stylization algorithm is shown in the right
image. A virtual Santa Claus model is the virtual object in Fig. 3.25a and 3.25b. In Fig. 3.25c
and 3.25d, a virtual Moka Express coffeemaker is located over the ARToolKit marker. The
graphical model of a DC10 plane is displayed in the AR scene shown in Fig. 3.25e and 3.25f.

As an additional example application, the visualization of dinosaur bones with the ad-
vanced stylized augmented reality method is demonstrated. Figure 3.26 shows three different
bone segments rendered in an AR scene using the cartoon-like stylization algorithm. The
datasets were generated from CT scans of actual Plateosaurus bones.

For rendering the example images in Figure 3.25 and 3.26, the adaptive edge detection was
performed with a strong emphasis on the simplified color image. The factor for edges in the
original AR frame (parameter β in Equation 3.10) was set to values smaller than 0.5. This way,
thick silhouette lines between large, homogeneously colored image regions were generated.
The selected size of the multipass texture, which is also the size of the final simplified color
image, typically was less than half of the dimensions of the original AR frame. Therefore,
some detail was removed from the image, and uniformly colored regions were created. As
illustrated in Figure 3.25 and 3.26, real and virtual scene elements look very similar in the
stylized output video frames.
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Figure 3.24: The demonstration application for the advanced cartoon-like stylization. The
output image of the algorithm as well as the dialog for adapting the parameters of the postpro-
cessing filter are shown.

Table 3.3: Runtimes of the advanced cartoon-like stylization filter and overall frame rates for
different algorithm parameters.

Resolution Filtering Postprocessing Overall fps

(multipass tex.) iterations (msecs)

240x180 5 19 27.84
240x180 7 25 24.22
240x180 9 30 21.51
400x300 5 44 16.68
400x300 7 59 13.37
400x300 9 74 11.12

In Table 3.3, frame rates measured with the advanced stylized augmented reality system
for different algorithm parameters are listed. These measurements were taken on a computer
system with an Intel Pentium 4 Xeon processor running at 2.66 GHz and a graphics card based
on an NVidia GeForce FX 6800 GT chipset. The webcam used in the AR system delivers video
images with a resolution of 640 x 480 pixels1. The first column in the table lists the selected
resolution of the multipass texture (shrunkImageWidth x shrunkImageHeight). In the second
column, the number of non-linear filter iterations (numFilterSteps) is listed. The third column
contains the measured runtimes of the image stylization filter in milliseconds. Finally, column
four shows the overall system frame rate including the entire augmented reality pipeline.

1The results shown in this thesis were obtained with Firewire (IEEE 1394) webcams delivering a resolution
of 640 x 480 pixels at a rate of 30 Hz. For the development and the experiments, either Unibrain Fire-i or Pyro
Firewire webcams were used.
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(a) Santa Claus model, conventional AR (b) Santa Claus model, cartoon-like style

(c) Moka Express model, conventional AR (d) Moka Express model, cartoon-like style

(e) DC10 plane model, conventional AR (f) DC10 plane model, cartoon-like style

Figure 3.25: Three example scenes illustrating the effect of the GPU-based cartoon-like styl-
ization for augmented reality. In each row, the left image shows conventional AR rendering.
The right column contains the stylized versions of the respective video frames.
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(a) Plateosaurus bone 1, conventional AR (b) Plateosaurus bone 1, cartoon-like style

(c) Plateosaurus bone 2, conventional AR (d) Plateosaurus bone 2, cartoon-like style

(e) Plateosaurus bone 3, conventional AR (f) Plateosaurus bone 3, cartoon-like style

Figure 3.26: Visualization of dinosaur bones in stylized augmented reality. Using the advanced
cartoon-like stylization, the virtual bone models look very similar to the real environment.
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A multipass texture resolution of 240 x 180 texels was empirically found to be sufficient
for generating an output video stream of good visual quality in most cases. Moreover, no more
than 7 filter iterations are usually necessary. Assuming that the graphical models contained in
the AR scene do not consist of an excessive number of polygons, the GPU-based cartoon-like
system can generate stylized augmented video streams at 25 fps or more in a typical setup.

Comparison of the two Cartoon-like Stylization Algorithms

The GPU-based stylization method for AR described in this section generates output images
of a high visual quality. This is illustrated in Figure 3.27, which compares output images
rendered by the advanced method and the original cartoon-like stylization algorithm described
in Section 3.2. The image generated by the previous algorithm shown in Figure 3.27a contains
aliasing, and some important silhouette lines are missing. In the video frame rendered by the
GPU-based method (Fig. 3.27b), the colors in the camera image are better preserved, and a
greater similarity between the real background and the virtual object is created.

(a) Moka Express scene, original algorithm (b) Moka Express scene, GPU-based algorithm

Figure 3.27: Comparison of the output generated by the original algorithm and the GPU-based
method for an example scene.

The original cartoon-like algorithm is typically only capable of delivering frame rates of
approximately 15 fps (see Sec. 3.2.3). The advanced GPU-based method can normally render
a stylized augmented video stream with more than 25 frames per second (see Table 3.3).
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3.4 Brush Stroke Stylization of AR Images

In addition to the cartoon-like stylized AR systems described above, a second type of styliza-
tion for augmented reality was developed in the context of this thesis [11, 37]. This alternative
approach mimics an artistic style found in paintings. The generated output video frames con-
sist of a large number of small brush strokes. This rendering method recreates the technique
applied by painters who adhere to the pointillism2 style of painting [42].

The design of the brush stroke stylization system aims at fulfilling the requirements listed
in Section 3.1. The algorithm tries to create output images in which the virtual elements and
the background camera image are represented in a visually similar style. Moreover, the system
achieves interactive frame rates when generating the output video stream. Like the original
cartoon-like stylized AR approach (see Sec. 3.2), the brush stroke method uses two different
processing branches in the image generation pipeline; one branch for the camera image, a
second branch for the virtual objects.

Figure 3.28: An example image generated with Meier’s original algorithm (from [145]).

The rendering algorithm used by the brush stroke stylized AR system is inspired by a non-
photorealistic method described by Meier [145]. Meier presented an approach for the painterly
rendering and animation of completely virtual scenes. This method is based on two main ideas.
As the first central step, the graphical models are converted into a particle representation.
During the actual rendering process, these particles are then projected into screen space and
interpreted as the positions of brush strokes. As the second main step, a so-called reference
image is rendered from the original scene description for each frame as the basis for the visual
properties of the individual brush strokes (e.g., stroke color). An example image rendered with
Meier’s algorithm is shown in Figure 3.28. Many derivations and improvements of this original
brush stroke rendering method exist, including Sperl’s system, which is a speed-optimized
variation of the algorithm [182].

2It has to be noted, however, that the use of small brush strokes is only one aspect of pointillism in the strict
sense. Another important feature the pointillism style of painting is the fact that only primary colors are used for
the tiny brush strokes, generating secondary colors as an optical effect. In this sense, the technique presented here
emulates only one aspect of the pointillism style of painting.
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The main challenge in applying the brush stroke rendering algorithm to stylized augmented
reality is the filtering of the camera image. Since the original approach described by Meier can
only process graphical models completely defined in 3D, it cannot be used for stylizing two-
dimensional image data. Therefore, an adapted method for generating a brush stroke represen-
tation of camera images was developed in the context of this thesis. Moreover, the rendering
method for virtual objects had to be adapted significantly in order to achieve a visually com-
patible output for real and virtual scene elements.

In the remainder of this section, an overview of the brush stroke system is given in Sec-
tion 3.4.1. Sections 3.4.2 and 3.4.3 discuss the camera image filter and the renderer for virtual
objects, respectively. Finally, results generated with the brush stroke stylization system are
presented in Section 3.4.4.

3.4.1 Overview of the Brush Stroke System

In brush stroke stylized AR, a painterly filter is applied to the input camera image. This
painterly filter randomly samples the camera image and paints brush strokes with the colors of
the sampled camera pixels. Afterwards, the virtual model is rendered in the brush stroke style.
In order to create an appearance similar to the processed camera image, the representation of
the virtual model also consists of colored brush strokes. The polygonal geometry of the virtual
model is first converted to a three-dimensional particle model, which is then used for the actual
painterly rendering. The renderer projects each of the particles into screen space and uses these
2D positions as basis for the brush stroke representation of the model. Therefore, the painterly
rendering method can be considered a simplified specialization of point based rendering (e.g.,
see [161]).

Figure 3.29: Overview of the brush stroke stylized AR image generation pipeline.

It is an important observation that the same brush stroke positions must be used in order
to make the virtual model and camera image look similar. In early experiments employing
a method which directly renders projected particles, the brush stroke rendering of the virtual
model appeared to float above the background image. The newly developed method therefore
assigns each projected particle position to the nearest point in a precomputed 2D brush stroke
grid. This is the same grid that is used for sampling the camera image. Figure 3.29 shows an
overview of the system for brush stroke stylization.
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3.4.2 Brush Stroke Filter for Camera Image

Generation of 2D Sampling Grid

During the initialization of the brush stroke stylized AR software, a two-dimensional sampling
grid is generated in a one-time preprocessing step. The grid remains fixed throughout the
runtime of the system. It is stored as an array of sampling point records. Each sampling point
record contains the 2D position of the point and additional information about the brush stroke
which is to be painted there.

Table 3.4: Attributes stored for one sampling point.
Attribute Data type

xsample(i,j) integer

ysample(i,j) integer

radius(i,j) integer

colorOffset(i,j) RGB color vector

Table 3.4 lists the attributes stored for each sampling point. xsample(i,j) and ysample(i,j) are
the two-dimensional position of the point in the camera image, and radius(i,j) is the radius
of the brush stroke to be drawn there. Moreover, a fixed RGB color offset is stored for each
sampling point. This color offset is later added to the color of any brush stroke rendered at that
position.

Figure 3.30: Illustration of two sampling points randomly displaced from the regular grid with
random brush stroke radii.

Sampling points are generated over the entire area of the camera image. Each point is
initially located on a regular grid with a horizontal step size of colSkip and a vertical step
size of rowSkip. A random displacement vector is added to the point positions, as shown
in Equation 3.11. The maximum random offset range is a user-definable parameter. Brush
stroke radius radius(i,j) and RGB color offset colorOffset(i,j) are also generated randomly
with random number ranges that can be modified by the user. An illustration of two sampling
points is shown in Figure 3.30.
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xsample(i,j) = i·colSkip + rand(−range, range) (3.11)

ysample(i,j) = j·rowSkip + rand(−range, range)

The random variations of point position, brush stroke radius and brush stroke color are
introduced into the sampling point grid in order to create a more natural, irregular look in the
generated image. Note that the total number of grid points depends on colSkip and rowSkip.
The random number range for the radius(i,j) has to be selected so that a good coverage of the
image area with brush strokes is achieved.

Another measure for creating a more natural look for the processed image is the application
of a random drawing order of the brush strokes. An array containing the indices of all sampling
points is generated. This array is then randomly shuffled. When the camera image filter is
applied, this index array is traversed sequentially, resulting in a random brush stroke drawing
order.

Camera Image Filter

The camera image filter samples the input image by reading pixel colors at the sampling point
positions in the given, random order. The color offset colorOffset(i,j) is then added to each
pixel color, and the resulting RGB components are clamped to the valid real number range
[0; 1]. Each brush stroke is drawn as a textured square with side length 2 · radius(i,j) + 1,
centered at (xsample(i,j), ysample(i,j)). The brush stroke texture is loaded from file during the
initialization of the system. Alpha blending is enabled to achieve partial transparency when
rendering overlapping brush strokes. An example of a brush stroke image generated by the
camera image filter is shown in Figure 3.31.

(a) Original camera image (b) Result of brush stroke filter

Figure 3.31: Example of an image generated by the brush stroke filter for the camera image.
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3.4.3 Brush Stroke Renderer for Virtual Objects

Creation of Particle Model

Virtual objects in the augmented scene are first converted into particle models before they can
be rendered in the brush stroke style. For each of the polyons constituting a graphical object, a
number of particles lying on the polygon is generated. Each three-dimensional particle position
is computed as a weighted sum of the polygon vertices. In Equation 3.12, the vi denote the
vertices of the current polygon, and N is the number of vertices. The position of the currently
regarded particle is called particlePosj .

particlePosj =
N∑

i=1

wi · vi

N∑
i=1

wi = 1 (3.12)

As expressed in Equation 3.12, the vertex weights wi sum up to a value of one, so that
particlePosj is located on the polygon. The weights are chosen randomly in order to generate
a random particle position. Particle color particleColj and normal vector particleNormj are
stored as additional attributes for each particle. The particle color is obtained from a texture
lookup, for which texture coordinates are computed as a sum of the texture coordinates of
the polygon vertices weighted with wi. The user can load any bitmap as texture image for
the graphical model. The particle normal is calculated by correspondingly interpolating the
normals of the polygon vertices and normalizing the result.

In order to achieve a homogeneous distribution of particles over the entire surface of the
model, a specific number of particles is calculated for each polygon. The total number of par-
ticles to be generated is selected by the user as algorithm parameter numParticles. Before
generating the particle model, the total surface area of the virtual model, totalArea, is deter-
mined. For each polygon, the number of particles is then computed as the ratio of its area to
totalArea multiplied by numParticles.

An example of a particle model generated for a virtual object is shown in Figure 3.32.

(a) Polygonal model (b) Particle model

Figure 3.32: Particle model generated for a teapot object.
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Sampling Point Lookup Table

During the brush stroke rendering process, the nearest 2D sampling point has to be determined
for each projected particle. The computational complexity of this task is large if a naive search
strategy is used. Since a high overall rendering speed is required, a lookup table containing the
index of the nearest sampling point for each pixel in the camera image is computed. This table
can be considered a representation of the Voronoi diagram of the sampling point set [208]. An
illustration of an example lookup map is shown in Figure 3.33. The lookup table is generated in
a one-time preprocessing step during the initialization of the brush stroke stylized AR software.

Figure 3.33: Illustration of the Voronoi diagram of four sampling points. The black dots are
the sampling point positions, randomly displaced from the regular grid. The gray area in the
top left part represents the camera image pixels which are assigned to the top left sampling
point. The three remaining segments belong to the respective other sampling points.

The main challenge in computing the lookup map is the fact that the random displacement
of sampling points can be large. Therefore, the nearest sampling point cannot easily be de-
termined for a given camera image pixel. The straightforward approach, namely traversing
the camera image and computing the distance to each sampling point from the current pixel
coordinates, is extremely inefficient. This simple method has proven to be too slow even for
a preprocessing step. Even for a relatively small number of points, this method can require
a runtime of several minutes. Hence, the reverse approach to generating the lookup map was
implemented. For each sampling point, the distances to camera pixels in a neighbourhood are
compared with their distances to adjacent sampling points.

distij(x, y) =
√

(xsample(i,j) − x)2 + (ysample(i,j) − y)2

for currently regarded (i, j):

map(x, y) = arg min disti′j′(x, y)
i′=i−1,...,i+1

j′=j−1,...,j+1

(3.13)

The points in the sampling grid are processed consecutively. Assuming that the grid indices
of the current sampling point are (i, j), the lookup map algorithm evaluates Equation 3.13
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for each pixel position (x, y) in a pixel neighbourhood. This means that lookup table entry
map(x, y) will contain the grid position of the nearest of the 3 x 3 adjacent sampling points.

The size of the regarded pixel neighbourhood depends on the grid step sizes rowSkip and
colSkip as well as the maximum random displacement range, as shown in Equation 3.14.
The neighbourhood of pixel (x, y) is defined as a rectangle which extends horizontally from
(x − xExtent) to (x + xExtent) and vertically from (y − yExtent) to (y + yExtent).

xExtent = ( colSkip
2 + range)

yExtent = ( rowSkip
2 + range) (3.14)

The described reverse approach to computing the sampling point lookup map results in
a significantly faster intialization stage of the system. Table 3.5 lists computation times of
the lookup map for a 640 by 480 pixels camera image with typical sampling grid parameters.
These data were measured on a PC with a Pentium 4 processor running at 2.8 GHz.

Table 3.5: Typical computation times for the sampling point lookup map.

rowSkip colSkip range Runtime (secs.)

3 3 2 2.47

3 3 3 4.06

5 5 3 2.16

5 5 5 3.97

7 7 6 3.25

Rendering Process

The actual rendering procedure for the particle models first determines the current color for
each particle, projects the particles into screen space and sorts the particles according to their
depth. The sorted particle list is then rendered from back to front, taking into account the
positions and parameters of the 2D sampling points.

The renderer rotates the particle normals particleNormj according to the current transfor-
mation matrix. The active transformation and projection matrices as well as viewport param-
eters are retrieved from the current OpenGL state at the beginning of the rendering process.
Based on the transformed normal vectors, particles on back-facing polygons are culled from
the list of particles to be rendered. For visible particles, the current brightness is computed
with diffuse reflection using the normal vector information (see Eq. 3.5). These brightness
values are used for scaling the particle colors particleColj in order to achieve a shaded look
for the model.

In the next step of the rendering process, the front-facing particles are projected into screen
space on the basis of the stored matrices and viewport parameters. The resulting x and y
coordinates and depth values are stored for each particle. Subsequently, the particle list is
sorted according to the depth values.

Finally, brush strokes are rendered for the projected particles in the order of descending
depth values. This drawing sequence constitutes an implementation of the painter’s algorithm
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for the correct mutual occlusion of brush strokes [90]. It is necessary because Z-buffer tests
have to be disabled for rendering the semi-transparent brush strokes with alpha blending.

The nearest 2D sampling point for each projected particle at (x, y) is looked up in the
precomputed table entry map(x, y). The brush stroke is then drawn with the same technique
as used by the camera image filter (see Section 3.4.2): The color offset stored in the sampling
point record is added to the particle color, and then a semi-transparent textured rectangle with
a side length depending on radius(i,j) is rendered at the sampling point location. Therefore, a
brush stroke drawn for a model particle has the same visual properties as a brush stroke drawn
by the camera image filter.

Figure 3.34 shows an example of a virtual 3D model drawn by the brush stroke renderer.

Figure 3.34: Brush stroke rendering of a uniformly colored plane model with diffuse lighting.

3.4.4 Results

The brush stroke stylization method for augmented reality was tested with various example
scenes. Like the stylization systems described above, the brush stroke stylized AR software
contains an editor which is capable of importing 3D models in the standard Wavefront OBJ
file format. Again, the user can freely place, scale and rotate the model. Bitmap files can be
loaded and applied as textures to the virtual models. The augmented reality display can be
switched interactively between conventional AR and the brush stroke mode at any time. For
all the test scenes shown here, optical marker tracking based on the ARToolKit framework was
used [123].

Images rendered with the brush stroke stylization algorithm are shown in Figure 3.35.
Figures 3.35a and 3.35b compare the conventional and brush stroke representation of an AR
scene containing a Moka Express coffee maker as the virtual object. In Figure 3.35c, a stylized
augmented reality scene containing a virtual teacup with a marble texture is depicted. The
scene shown in Figure 3.35d comprises a bridge model with a painting applied as texture. A
wooden plane model is the virtual object in Figure 3.35e. Finally, Figure 3.35f shows a virtual
beer bottle with an artificial marble texture applied to it.
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(a) Moka Express (metal), conventional AR (b) Moka Express (metal), brush stroke style

(c) Teacup (marble), brush stroke style (d) Bridge (painting), brush stroke style

(e) Plane (wood), brush stroke style (f) Beer bottle (marble), brush stroke style

Figure 3.35: Five example scenes demonstrating the brush stroke stylization method. The
description of the scenes contains the type of texture applied to the virtual model in brackets.
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Benchmark measurements show that the brush stroke stylization system delivers an aver-
age overall frame rate of more than 14.5 fps with typical scene generation parameters. This
measurement was taken on a computer with an Intel Pentium 4 Xeon processor running at
2.66 GHz and a graphics card based on an NVidia GeForce FX 6800 GT chipset. The aug-
mented reality system uses a Firewire webcam delivering a resolution of 640 by 480 pixels.
The measurements show that the brush stroke stylization algorithm is capable of delivering a
video stream at interactive frame rates.

3.5 Study on the Discernability of Virtual Objects in Stylized AR

In the preceding sections, several realizations of the principle of stylized augmented reality
were described. The basic concept of stylized AR is to generate an output video stream in
which real and virtual scene elements are difficult to distinguish. The decreased - or even
non-existent - discernability of virtual objects leads to a novel experience for the users of such
a system. A well-designed stylized AR application might even result in a stronger feeling
of presence in the augmented environment. If physical and graphical objects cannot easily
be distinguished anymore, users will probably tend to impute the same significance to virtual
elements in an augmented environment as to real objects. The feeling of presence in virtual
and augmented reality, however, is difficult to measure. A considerable amount of previous
work exists on attempts to quantify presence in VR and AR (e.g., see [167, 206]).

In order to examine the effectiveness of the stylized AR approach, a basic psychophysical
study was performed in the context of this thesis [16]. In this study, it is assumed that the
elementary evidence for the effectiveness of stylized AR is the degree of difficulty of distin-
guishing real objects from virtual models. This means that in stylized augmented reality, it
should be measurably more difficult for the user to tell whether an object visible in the aug-
mented image is virtual or not. This concept is illustrated in Figure 3.36: Figure 3.36a shows
a real cup in a conventionally rendered image. In this image - and even more so in an interac-
tive real-time AR setup - it is relatively easy to identify the cup as an actual physical object.
Figure 3.36b, by contrast, contains a image of the same real cup stylized with the GPU-based
cartoon-like filter described in Section 3.3. In Figure 3.36d, the stylized augmented reality
rendering of a similarly shaped virtual cup, which has been geometrically modelled, is shown.
In the latter two, it should be more difficult for an observer to tell if the central object is real or
virtual.

For the sake of clarity, the following terminology is used in this section with regard to the
psychophysical study. Actually existing items in the environment of the user which are visible
in the camera image are called “physical objects” (e.g., see Fig. 3.36a and 3.36b). The term
“virtual objects” is used for computer generated graphical models in the augmented image (see
Fig. 3.36c and 3.36d). This distinction between physical and virtual objects is denoted as object
type. As a concept which is orthogonal to these two types of object, two types of augmented
reality rendering are also distinguished. Both physical and virtual objects can be displayed in
“stylized” (see Fig. 3.36b and 3.36d) and “conventionally rendered” (see Fig. 3.36a and 3.36c)
augmented reality images. The difference between conventionally rendered and stylized is
called AR rendering style.
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(a) Real cup in conventional AR (b) Real cup in stylized AR

(c) Virtual cup model in conventional AR (d) Virtual cup model in stylized AR

Figure 3.36: Two example objects used in the study: A real cup (Fig. 3.36a and 3.36b) and
a virtual cup model (Fig.3.36c and 3.36d). All test objects in the study are located directly
over the marker used for camera tracking. In order to provide some visual reference for the
participants, several background objects are placed near the marker. For each test object,
conventionally rendered as well as stylized AR images were recorded and presented to the
participants.

The remainder of this section is structured as follows. Section 3.5.1 gives an overview
of related work on psychophysics for virtual and augmented environments. The experimental
methodology of the study is discussed in Section 3.5.2. Section 3.5.3 presents the experimental
results of the psychophysical study. Finally, Section 3.5.4 summarizes the conclusions which
can be drawn from the study.

3.5.1 Related Work

Several researchers have performed user-based studies for evaluating different aspects of vir-
tual and augmented reality systems. Pausch et al. presented a work on quantifying immersion
in virtual reality [159]. The connection between visual information and haptic feedback in a
VR system was examined by Burns et al. [66]. Gabbard et al. have presented a study on the
suitability of text drawing styles in an augmented reality application [94].

The experiment described in this section is a psychophysical examination of the effect of
stylization on the perception of realism. A number of different techniques have been used to
determine the perceptual realism of computer graphics algorithms [72, 136, 140, 141, 144,
165, 201]. Some experiments rely on indirect measures, examining the “behavioral realism”.
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In these experiments, performance on a specific task is compared between the real world and
a virtual environment. The similarity of the responses produced by the virtual and real scenes
is a measure of the behavioral realism of the system. For example, Mania and Robinson [141]
compared estimates of presence and subjective lighting quality for both real world scenes and
several virtual environments. Presence was measured using standard questionnaires and the
subjective response to lighting was measured using semantic differentials (e.g., the scene was
rated along several dimensions, such as warm versus cold and relaxing versus tense, using a
scale of 1 to 79).

Other experiments determine the realism of a scene more directly [136, 165]. Longhurst et
al. [136], for example, showed a series of carefully controlled real scenes, photographs of the
real scenes, and printed photographs of rendered versions of the real scenes to participants and
asked them a variety of questions, including “was the image real?”. By systematically varying
scene properties, such as shadows and lighting quality, these experiments can determine the
impact of those properties on perceived realism.

3.5.2 Experimental Methodology

The psychophysical study described in this section was designed as an offline task. This means
that the participants did not wear a head-mounted display driven by an interactive augmented
reality application. Optical marker tracking, which is used by the AR framework developed in
the context of this thesis, often fails in an interactive setting with inexperienced users because
they tend to accidently occlude the marker or move it out of the camera image. This leads
to the inadvertent disappearance of all virtual objects, revealing that they cannot be physical.
Moreover, such a setup would have complicated the execution of the study. Since an assess-
ment of visual differences was the main objective of the study, only recorded still images and
short video clips were shown to the participants on a conventional monitor.

(a) First frame of video clip (b) Last frame of video clip

Figure 3.37: First and last frame of an AR video clip showing the stylized rendering of a virtual
coffeemaker.

The test scenes constituting the psychophysical study show different virtual and physi-
cal objects. For each object, one conventionally rendered and one stylized video clip were
recorded by grabbing real-time frame buffer images from the actual augmented reality appli-
cation. The GPU-based cartoon-like stylization method described in Section 3.3 was used for
producing the stylized images and video clips shown in the study. A standardized setting con-
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sisting of a large optical marker with some real background objects was used when recording
the video clips (see Fig. 3.36). The currently regarded object is always centered directly over
the marker. Each video was shot with a standardized camera path. The beginning and end of
this camera movement are illustrated in Figure 3.37. The first frame of each video clip was
also used as still image for the static experiments. The recorded video clips and still images
were presented to the participants. They were asked to decide whether the displayed object is
physical or virtual. The correctness of the response and the participant’s reaction time were
recorded in a protocol file and later evaluated.

Outline of the Study

Conventional and stylized presentations of 15 physical and 15 virtual objects were presented
to 18 individuals in a psychophysical experiment. The individuals, who participated in return
for financial compensation at standard rates, were randomly assigned to one of two groups.
One group was presented with a video sequence of the camera moving around the object (the
“Dynamic” group). The other group was presented with the first frame of the video sequence
(the “Static” group). The participants’ task was to determine if the central object in each
image was physical or virtual. A selection of images of objects used in the study is shown in
Figure 3.38.

Stimuli

Using the AR framework and the real-time stylization algorithm described in Section 3.3, the
15 real and the 15 virtual objects were recorded using a simple, partially curved camera trajec-
tory (see Figure 3.37). Each object was filmed both in conventional mode as well as in stylized
mode, yielding 60 recordings. Care was taken so that the trajectory of the camera was as iden-
tical as possible across the 60 recording sessions. The video sequences were approximately
4 seconds each. During the study, the resulting images were scaled from their original size
of 640 x 480 pixels to 1024 x 768 pixels, filling the screen of the 21 inch computer monitor.
Since the participants sat at a distance of approximately 0.5 meters from the computer screen,
the images subtended approximately 43.6 by 33.4 degrees of visual angle3.

Procedure

The participants were given an instruction sheet describing the experimental task. In particu-
lar, the participants were told that they would be presented with several images containing a
tracking marker, on top of which would be either a physical object or a virtual object. They
were given several example photographs4. The participants were also told that sometimes the
images would be rendered in conventional manner and sometimes in a stylized manner, and
were again given examples.

3Note that while the full image subtended 43.6 by 33.4 degrees, the experimental object subtended a substan-
tially smaller angle.

4The example object was not used during the main experiment.
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(a) Physical cup, conven-
tional

(b) Physical cup, stylized (c) Physical plate, conven-
tional

(d) Physical plate, stylized

(e) Physical plate, conven-
tional

(f) Physical plate, stylized (g) Physical stapler, con-
ventional

(h) Physical stapler, styl-
ized

(i) Physical scotch tape,
conventional

(j) Physical scotch tape,
stylized

(k) Virtual puncher, con-
ventional

(l) Virtual puncher, styl-
ized

(m) Virtual cup, conven-
tional

(n) Virtual cup, stylized (o) Virtual stapler, conven-
tional

(p) Virtual stapler, stylized

(q) Virtual teacup, conven-
tional

(r) Virtual teacup, stylized (s) Virtual pencil, conven-
tional

(t) Virtual pencil, stylized

Figure 3.38: Some of the objects shown in the psychophysical study.
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Each participant saw all 60 trials in a different random order. Each trial began when the
participant pressed a key and ended when they entered their answer. For the Dynamic group,
the video sequence was shown in a continuous loop with a 250 ms blank screen between
repetitions. For the Static group, the first frame of the recording was shown on the screen.
The accuracy and speed of the participants’ answers were recorded and separately subjected
to a repeated measures analysis of variance (ANOVA), with AR rendering style (conventional
versus stylized) and object type (physical versus virtual) as within-subjects factors and motion
type (static versus dynamic) as a between-subjects factor. The data from one participant in the
Static group were not analyzed, as the participant did not follow the instructions.

3.5.3 Results

In the following, the statistical analysis of the experimental results is described with respect to
both recognition accuracy and reaction times. In this section, several results of the statistical
ANOVA analysis are reported. These results are stated in the form F(x,y)=f , p<p. In this
formulation, x and y are parameters describing the experimental setup. They are indirectly
derived from the number of groups (here: 2) and the total number of participants (here: 17
without the invalid responses). The actual result of the analysis is represented by the values
f and p. Expressed in simple terms, a large value of f (significantly larger than 1.0) and an
associated small value of p (typically smaller than 0.05) are taken as evidence that a particular
experimental condition (e.g., AR rendering style or object type) influences the recognition ac-
curacy. Conditions which are found to be of no importance for the outcome of the experiment
are denoted as not significant. A detailed discussion of the ANOVA method can for instance
be found in [61, 65, 187].

Accuracy

Participants found it significantly harder to tell the difference between physical and virtual
objects in stylized AR than in conventionally rendered images (69% versus 94% accuracy
ratings, respectively). This is reflected in the significant main effect for AR rendering style
(F(1,15)=57.345, p<0.0001). The fact that the overall accuracy for stylized AR images is still
significantly above chance suggests that while the stylization helped to mask the difference
between physical and virtual, it did not completely eliminate it5. The fact that the accuracy
rate is so low, however, clearly demonstrates the general effectiveness of using stylization.
Future experiments with either stronger stylization or different stylization algorithms should
easily be able to completely mask the difference between physical and virtual objects.

The results are remarkably consistent between the Static and Dynamic groups (see the
graph in Fig. 3.39a). This is reflected in both the lack of an effect of motion type (F(1,15)=2.154,
p>0.16, not significant) and the lack of an interaction between motion type and AR render-
ing style (F(1,15)=0.008, not significant). This clearly shows that stylization for dynamic
sequences did not introduce any artifacts that might have resulted in easier detection of virtual
versus physical objects. On the contrary, it seemed that the slight jitters introduced by the
sometimes imperfect camera tracking were effectively masked out by the stylization.

5Chance level accuracy is what one would expect if the participants were blindly guessing, for example, if they
were completely unable to tell the difference between physical and virtual objects. For this experiment, which used
a two alternative forced-choice task, chance level is 50%.
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(a) Recognition accuracy in percent correct. The dashed line indicates
chance level.

(b) Reaction times in seconds.

Figure 3.39: Recognition accuracy and reaction times measured in the study. Error bars in
both graphs represent standard error of the mean.

The main effect for object type was close to being significant (F(1,15)=3.875, p<0.068):
Overall, participants had more difficulty identifiying physical objects than identifying virtual
objects (77% versus 86% correct, respectively). This difference is driven almost completely
by the physical objects shown as stylized AR images: In the conventionally rendered scenes,
virtual and physical objects were correctly labeled 92% and 96% of the time, respectively.
In the stylized AR images, however, virtual and physical objects were correctly labeled 80%
and 58% of the time, respectively. This trend, which is reflected in the significant interaction
between object type and AR rendering style (F(1,15)=6.985, p<0.02), strongly suggests that
most errors are due to the incorrect labeling of physical objects in the stylized images. This
result shows that the stylization technique is particularly successful in making physical objects
almost indistinguishable from virtual objects.

The effect that virtual objects were relatively more accurately identified compared to phys-
ical objects in the stylized AR images is probably caused by the geometric models used in the
study. Some of these virtual models are of a rather low graphical quality. Several of the vir-
tual objects have rather unrealistic colors (e.g., almost completely black), and most of them
are uniformly colored. Another example of an easily identifiable virtual object is shown in
Figure 3.40. The spout of the teapot shown in these images is incorrectly modeled, so that
it is displayed as translucent. This was probably a strong hint to most participants that this
object is not a physical teapot. Nevertheless, the fact that even in this condition, participants
showed a clear decrease in performance testifies to the validity of using stylized AR to blur the
distinctions beween the virtual and the real world.

Reaction Times

The only statistically significant effect that could be found in the reaction times data was that
people are slower when assessing stylized AR images than when assessing conventionally ren-
dered AR images (4.0 seconds versus 2.8 seconds, F(1,15)=17.059, p<0.001; see Fig. 3.39b).
No other main effects or interactions reached significance. In particular, no difference between
the Static and Dynamic conditions was found, showing that dynamic information did not help
to speed up the task. Most importantly, virtual and real objects were processed equally fast in
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Figure 3.40: Graphical error in the virtual model of a teapot, which was used in the study. Due
to incorrect backface culling, the spout of the teapot is only partially displayed. This made
it easier for participants to identify the teapot as a virtual object, even in stylized AR (right
image).

all conditions suggesting that partipants used the same strategies for both object types. Finally,
the difference between stylized and conventionally rendered images reflects the fact that par-
ticipants had to make a more difficult decision in case of stylized images. This, however, does
not mean that stylization in itself would result in a less effective AR environment, but rather
points towards the difficulty of the task.

3.5.4 Conclusion

The results of the psychophysical study showed that presenting the scenes in a stylized manner
successfully reduced the detectable differences between physical and virtual objects. It has to
be noted that the results were nearly identical for the Static and Dynamic groups, suggesting
that the results should generalize to an interactive version of the task in which dynamic infor-
mation should play an even more important role. Finally, the majority of the errors consisted of
falsely believing that some of the physical objects presented in stylized AR were actually vir-
tual objects. This highlights the success of the stylization algorithm in generating a consistent
representation of virtual and physical image elements.

As mentioned in Section 3.5.3, some of the virtual object models used in the study were of
a rather low graphical quality. It can be assumed that a study based on better graphical models
would yield an even more decreased recognition accuracy.

The problem presented to the participants of the described psychophysical study was rel-
atively simple. However, while it could be argued that the experimental setup used in the
study was very different from most real-life AR systems, the results of the study indicate that
stylized AR is effective. It has been shown that in stylized AR images and video sequences,
it is significantly more difficult to distinguish physical objects from virtual objects (and vice
versa). This means that a novel user experience is created by applying stylization algorithms
in AR, and it also points to an improved immersion in the augmented scene.
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3.6 Summary

In this chapter, a novel approach to combining real and virtual image elements in augmented
reality was presented. The adapted levels of realism in the camera image and the graphical
objects in stylized AR result in a novel experience for the user. This way, a unique and impres-
sive augmented reality environment is produced, and possibly a better feeling of immersion is
created.

Experiments with the various types of stylization, as well as the psychophysical study
described in Section 3.5, have shown that the stylization techniques presented here successfully
make the two layers of an AR image - background image and rendered objects - look similar.
For some augmented reality scenes, users are genuinely unable to distinguish virtual elements
from real objects. In particular this is the case for scenes containing virtual objects which have
a scale corresponding to the real world. A good example for such scenes are the virtual models
of dishes used in this chapter (e.g., see Fig. 3.13h, 3.25d and 3.35c).

In order to achieve the objectives of stylized augmented reality, it is essential that the real
background image and the virtual models look similar. This is accomplished by applying styl-
ization techniques to virtual and real scene elements. While it could be argued that this concept
is based on effectively degrading the visual quality of the camera image, enough information
is preserved to be useful for many applications. For these scenarios, which do not require a
high fidelity rendering of the camera image, stylized AR can be considered a realization of the
principle of “functional realism” described by Ferwerda [83].

3.6.1 Technical Aspects

The cartoon-like and brush stroke stylization methods for augmented video streams described
in this chapter are generally successful at generating a coherent ouput video. However, each
type of stylization has certain advantages and limitations. Sometimes, unwanted artifacts can
also occur.

In Section 3.3, the advanced method for generating cartoon-like stylized AR images was
presented. Since this image stylization filter is designed as a post-processing step, it can easily
be combined with any augmented reality rendering system. Its GPU-based implementation is
fast and delivers real-time frame rates. The presented post-processing algorithm is based on
common basic image operations like photometric filtering and edge detection. It was shown
that these basic techniques were specifically adapted for the requirements of stylized aug-
mented reality.

The advanced cartoon-like stylization algorithm consists of a color simplification step and
an adaptive edge detection method, which are computed on a per-frame basis. They do not
take temporal coherence in consecutive images into account. Depending on the illumination
conditions in the surroundings and the quality of the video frames delivered by the camera, the
parameters of the algorithm need to be adapted in order to obtain a good separation of uniform
regions in the image. However, good results are normally generated with a constant parameter
set as long as a similar type of augmented scene is viewed. Only if the video acquisition
settings of the camera change significantly or if the lighting in the observed environment varies
strongly, the algorithm parameters have to be corrected. A nearly constant setup of the camera
image filter has empirically proven to deliver acceptable results under most circumstances.
However, very large or extremely small color constrasts between regions in the observed scene
can cause the algorithm to produce unsatisfactory stylized images.
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The drawback of the brush stroke stylization algorithm presented in Section 3.4 is the fact
that the design of the camera image filter results in the so-called “shower door effect”. It is
caused by the constant positions of the sampling points and the rendered brush strokes. Most
painterly rendering systems make an effort to prevent this shower door effect. However, it
was found that a constant position of the brush strokes is necessary for the purpose of stylized
augmented reality. As mentioned in Section 3.4, early experiments with brush strokes attached
to the projected positions of model particles were not successful. In videos generated with such
an algorithm, the virtual models were clearly distinguishable from the background image. The
development of a brush stroke stylization algorithm for augmented reality without the shower
door effect is one important topic for future research.

The stylization algorithms described in this chapter constitute a useful and promising first
realization of the concept of stylized augmented reality. Moreover, the application of an illus-
trative rendering style to augmented reality is presented in Chapter 4. As a future development,
more advanced techniques from the fields of artistic and illustrative rendering could be applied
to augmented reality images.

3.6.2 Potential Applications and Future Work

Among the main topics in future research are psychophysical studies for the examination of
the effects of stylized AR. These could include the repetition of a similar study as described
in this Section 3.5 in a more realistic AR setting, e.g., by using a head-mounted display for
displaying the images and videos. In a later stage, a study could be executed in an interactive,
real-time augmented reality system. Finally, more complicated tasks could be designed which
have to be performed by participants both in conventional and stylized augmented reality. An
example of such an advanced task performance experiment would be the problem of finding a
virtual object (or several virtual objects) in a room in conventional and stylized AR.

The study of stylization effects in the context of psychophysics is also one possible appli-
cation of stylized augmented reality. For instance, the use of the stylization methods described
in this chapter for examining their effect on the recognition of facial expressions has been
proposed (see [74] for an example of related previous work).

Among other potential applications of stylized augmented reality are entertainment sce-
narios and art projects. AR games and other types of virtual entertainment could benefit from
the novel user experience and the blurred barrier between virtual and real created by the styl-
ization techniques. An obvious application of stylized augmented reality are art projects and
installations, which could be based on the artistic representation of an augmented environment.
Stylized AR could also be used for training and education settings. For instance, stylized ren-
dering could be used in interactive AR applications in museums and exhibitions. This way,
the experience of visitors could be enhanced with additional virtual exhibits and interactive
descriptions in a novel way.
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Figure 3.41: Spider phobia treatment in AR (image taken from [118]).

Finally, another possible application for stylized AR are psychotherapy scenarios like pho-
bia therapy. The use of augmented reality for phobia treatment was described for example
by Schubert and Regenbrecht [177] and Juan et al. [118]. In the spider phobia application
presented by Juan et al., virtual spiders are displayed to the patients, as shown in Figure 3.41.
The effect of this treatment in AR, however, might be limited when the patient is able to easily
recognize the spider models as virtual objects. It is conceivable that a more effective therapy
can be achieved by applying stylized AR. If the patient cannot distinguish virtual spiders from
real spiders anymore, the reaction to this virtual stimulus could become stronger.



CHAPTER 4

Illustrative Visualization

4.1 Introduction

In the preceding chapter, the application of artistic techniques to augmented video streams
was discussed. In addition to the use of these basic artistic methods, the development of
novel advanced stylized rendering algorithms was a topic pursued in the context of this the-
sis. Specifically, a new approach to the illustrative visualization of iso-surface datasets and
general polygonal models was proposed [12]. This method for illustrative visualization also
constitutes the basis for another type of stylized augmented reality, which renders both the real
environment and the virtual objects in an illustrative style. The novel illustrative rendering
algorithm as well as its application to augmented reality are presented in this chapter.

4.1.1 Overview of the New Illustrative Rendering Method

Volumetric datasets have become a widely used format for storing three-dimensional infor-
mation in application areas like medicine and scientific visualization. The efficient display of
such datasets has been a field of active research for many years. One very common method for
rendering volume data is the use of polygonal iso-surfaces, which represent boundary surfaces
defined by a constant intensity value within the volume. The Marching Cubes algorithm de-
scribed by Lorensen and Cline is a widespread method for the extraction of such iso-surfaces
from a volume dataset [137]. Standard polygon rasterization techniques are then used for
displaying the iso-surfaces. This entire process is called indirect volume rendering.

In conventional indirect volume rendering, only the front layer of the iso-surface geometry
is visible to the user. Parts of the model which are at a greater depth in the eye coordinate
system are suppressed by hidden-surface algorithms like the Z-Buffer. However, the shape
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of inner structures in a dataset is of great importance for many applications. For instance,
inner organ structures or back walls of cavities often are of interest for a physician inspecting
an anatomical dataset. In the case of a volume dataset containing a scanned engine block, it
might be useful to view hidden mechanical parts or structural weaknesses in non-destructive
material testing.

The straightforward solution for displaying hidden structures of an iso-surface is to ren-
der the entire geometry with transparent polygons. Parts of the iso-surface geometry which
cover the same screen space are combined using standard blending mechanisms (e.g., alpha
blending). The drawback of this approach is that the entire polygonal model becomes visible.
This can produce a visually complex and difficult to interpret graphical output, if too many
structures are shown behind each other (see Fig. 4.1a). Moreover, it is necessary to sort the
graphical primitives according to their screen space depth, so that the blending computations
yield correct results. This usually leads to a significantly increased computational complex-
ity of the rendering process. The effect of incorrect depth sorting when rendering transparent
objects is shown in Figure 4.1b.

(a) Visually complex output due to fully
transparent rendering (Engine dataset)

(b) Erratic alpha blending due to incorrect depth sorting
(Ventricle dataset)

Figure 4.1: Problems of the conventional rendering of transparent structures.

Direct volume rendering, which is not based on precisely defined iso-surfaces, also makes
the display of interior structures of an observed dataset possible. However, the necessary
definition of a useful transfer function is not trivial [160]. The images generated by direct
volume rendering often show many parts of the volume dataset simultaneously, which can
make viewing the structures of interest difficult for the user.

Therefore, a novel way of displaying hidden structures of an iso-surface was developed
in the context of this thesis. This new algorithm utilizes illustrative rendering methods. The
design of the new method aims at achieving the following advantages:

• By using illustrative visualization methods, an easily understandable graphical output
is generated. The new algorithm uses silhouette outlines and monochrome hatching for
conveying the shape of objects.

• The inner structures of the iso-surface are automatically extracted during the rendering
process. In the new approach, the first occluded layer of the iso-surface behind the
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front layer is displayed as hidden geometry in a distinctive silhouette-based style. No
preprocessing or manual definition of objects is required.

• As an optional addition, the geometry of special inner structures of high interest can be
manually specified by the user. This “secondary geometry” always remains visible and
is displayed in a special solid style with depth attenuation.

• The algorithm is capable of generating real-time frame rates for most datasets and typical
image resolutions.

The design of the new algorithm exploits the programmability of modern graphics pro-
cessing units. A specialized rendering pipeline was developed, which integrates application-
specific object space and image space processing stages. Two geometry rendering passes
generate the data for the first and second layer of the iso-surface. In an optional third pass,
the information required for displaying the “secondary geometry” is gathered. Finally, an
image space processing step combines all the data collected in the previous steps for achiev-
ing the desired graphical output. The implementation uses the OpenGL Shading Language
(GLSL) [169] and can deliver real-time frame rates in most cases.

In the remainder of this chapter, Section 4.1.2 discusses some related previous work on
stylized and illustrative rendering. The new illustrative visualization algorithm is described
in Section 4.2. Section 4.3 presents its application to stylized augmented reality. Finally,
Section 4.4 concludes this chapter with a summary.

4.1.2 Related Work

As mentioned above (see Sec. 3.1.1), artistic and illustrative rendering have been in the focus
of active research for several years. The aim of many research trends in non-photorealistic
rendering is to imitate painterly or cartoon-like styles in the generated images. An example of
painterly rendering is the method of using brush strokes for recreating still images presented
by Hertzmann [109], which was later extended by Hertzmann and Perlin for interactively pro-
cessing video streams [110]. Kaplan et al. have proposed an algorithm for displaying 3D
models in different painterly and stroke styles at interactive frame rates [122].

A very important basic principle employed by many stylized rendering techniques is the
generation and processing of intermediate image space buffers containing geometric proper-
ties of the observed scene. Depth values and transformed normal vectors, which are com-
puted for each image pixel, are frequently used geometric properties. This basic principle was
introduced as G-buffers by Saito and Takahashi [170]. The new illustrative rendering algo-
rithm presented here is also partly based on such intermediate image space data. Decaudin
has described a method for the cartoon-like rendering of 3D objects using depth and normals
buffers [77]. Mitchell et al. have presented a GPU-based technique for the extraction of object
outlines based on image space information [147]. Nienhaus and Döllner use G-buffers to cre-
ate different illustrative styles [152]. A framework for mapping G-buffer concepts to modern
graphics processing units was described by Eißele et al. [81].

Several researchers have proposed to use colors for conveying the shape of objects or
their material properties. Examples include the work of Gooch et al. on stylized lighting for
automatic illustration [98], as well as Lum and Ma’s watercolor inspired method for rendering
surfaces [139]. The new approach described here uses discrete, user-defined colors in order
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to distinguish the front layer of the iso-surface from the second layer and for highlighting the
“secondary geometry”.

Monochrome hatching and halftoning are often used in non-photorealistic rendering. These
methods map a continuous range of intensities to monochrome representations based on reg-
ular patterns or artistic drawing styles. Interrante et al. have discussed the use of a texture
containing discrete strokes for conveying the shape of an iso-surface [117, 125]. Hertzmann
and Zorin have described methods for the line-art rendering of smooth surfaces [111]. Praun et
al. have proposed tonal art maps as a primitive for generating an artistic monochrome hatching
for 3D objects [164]. The utilization of configurable and programmable graphics hardware for
real-time hatching and halftoning has been addressed by several researchers [91, 203]. Sec-
ord et al. have presented a method for the high-quality distribution of monochrome drawing
primitives based on a probability density function derived from an input image [180]. An ap-
plication of hatching styles to 3D scans of real world enviroments was developed by Xu and
Chen [210]. Strothotte and Schlechtweg describe a method for procedural halftoning, which
is used by the algorithm presented in this chapter [189].

Some researchers have addressed the problem of visualizing hidden components of a
graphical model. Nooruddin and Turk have described a preprocessing method for classify-
ing interior and exterior parts of a polygonal dataset [154]. Diepstraten et al. have presented
an algorithm for displaying hidden structures in technical illustrations using transparency [78]
and cutaway techniques [79]. An algorithm for the illustrative display of polygonal models us-
ing depth peeling has been described by Nienhaus and Döllner [153]. However, their method
extracts consecutive layers of geometry for the entire model, again introducing a certain de-
gree of visual complexity. Moreover, their algorithm typically delivers less than interactive
frame rates, whereas the new method described here can generate images in real-time for most
datasets.

Illustrative techniques have also been applied to direct volume rendering in order to em-
phasize structures of interest. Rheingans and Ebert have proposed the volume illustration
approach for enhancing important features in a volume dataset [168]. A technique that uses
stippling for the visualization of volume data has been presented by Lu et al. [138]. Viola et
al. describe an automatic method for cutting away irrelevant parts of a volume which occlude
significant structures [198]. Yuan and Chen have introduced a system which combines point-
based illustrative rendering with direct volume visualization [212]. A method for the real-time
generation of line drawings from volume data has recently been presented by Burns et al. [67].

4.2 Illustrative Display of Hidden Iso-Surface Structures

The new illustrative rendering algorithm consists of a pipeline of geometry drawing passes
followed by an image space processing step. At first, the polygonal geometry of the iso-surface
is rendered twice in order to extract the first and second layers of the model. Subsequently, the
optional secondary geometry is rendered, if it has been specified by the user. Finally, an image
processing shader combines all data collected in the previous stages to achieve the desired
illustrative output. This is the main step of the method. In the following, the set of polygons
comprising the iso-surface are denoted as P and the secondary geometry as S.

Figure 4.2 shows an overview of the method. After each of the geometry rendering passes,
generated image space data like fragment depth, normal vectors, and computed intensity are
gathered. Note that the second and third rendering step take information from previous passes
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Figure 4.2: Overview of the algorithm for the illustrative rendering of hidden iso-surface struc-
tures. Solid arrows indicate data that is fed into the geometry rendering passes, dotted arrows
data fed into the image processing stage. P and S stand for the primary iso-surface and the
secondary geometry, respectively.

into account for their own computations. This is necessary because the fragment depths of the
polygons drawn by the preceding stages are required for correctly rendering the geometry data
in subsequent passes.

4.2.1 Iso-Surface Rendering Passes

In the first pass of the algorithm, the polygons P of the iso-surface are rendered. The standard
Z-Buffer test is applied, so that the final image contains the front layer of the iso-surface
geometry. For the generation of the image, a special shader is used, which computes the
interpolated and normalized normal vectors for each pixel instead of color values. The depth
values depthP1 and normal vectors normalP1 are the image space output of this pass and can
be accessed by the following steps of the algorithm. Figure 4.3 shows the output generated by
the first rendering pass for a view of the Engine dataset.

(a) depthP1 (b) normalP1

Figure 4.3: Image space data generated for the first layer of the Engine dataset. The compo-
nents of the normal vectors are represented as RGB-values in Fig. 4.3b.
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In the next step of the rendering pipeline, the iso-surface polyons P are drawn once again.
This time, the aim is to generate the image that results from removing the first layer of the
geometry. The depth information from the first pass is used to achieve this effect using a
technique called depth peeling [153]. Each fragment rasterized in this rendering step has to
pass two depth tests. In the first test, the depth of the currently regarded polygon fragment
is compared to the depth of the first-pass geometry at the same location. The new fragment
has to be at a greater depth than the value stored in depthP1 , otherwise it is culled. The result
of this test is that the first layer of the iso-surface geometry is suppressed, or “peeled away”.
Subsequently, each fragment has to pass the standard Z-Buffer test so that a coherent second-
layer image is generated. This process is illustrated in Algorithm 5.

Algorithm 5 Pseudocode demonstrating the principle of depth peeling.
for all polygons p ∈ P do

F := rasterize p;
for all fragments f ∈ F do

// Depth peeling test
if (f.depth <= depthP1(f.x,f.y)) then

continue; // Skip this fragment
endif
// Standard Z-Buffer test
if (f.depth > depthP2(f.x,f.y)) then

continue; // Skip this fragment
endif
depthP2(f.x,f.y) := f.depth;
normalP2(f.x,f.y) := f.normal;

done
done

Only fragments which pass both tests contribute to the image space output of the second
rendering stage. The diagram in Figure 4.4 demonstrates the depth peeling technique. As
shown here, the second rendering pass yields the first layer of geometry behind the directly
visible polyons.

Figure 4.4: Illustration of the depth peeling technique (adapted from [153]). Thick black lines
indicate polygons which are visible in the image generated by the respective rendering stage.

The output of the second rendering pass again consists of depth and normal information,
depthP2 and normalP2 . Figure 4.5 depicts the data computed for the second layer of the
Engine volume dataset.
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(a) depthP2 (b) normalP2

Figure 4.5: Image space data generated for the second layer of the Engine dataset.

4.2.2 Optional Rendering of Secondary Geometry

If a polygonal dataset containing secondary geometry has been specified by the user, the op-
tional third geometry rendering pass is performed. In contrast to the two initial iso-surface
rendering steps, this pass generates an intensity texture. The computed intensities are later
used by the image processing stage as brightness values for the secondary geometry pixels.
All polygons in S are rasterized. Initially, the intensity of each fragment is calculated using
diffuse reflection:

I0
S(x, y) = max(normalS(x, y) · lightDir, 0) (4.1)

As shown in Equation 4.1, the initial intensity value I0
S is the result of the dot product of the

normal vector of the fragment, normalS(x, y), and the user-defined light direction lightDir.
A special depth attenuation scheme is then applied to the fragment intensities. The aim of
this process is to make the depth relationships in the generated image better understandable.
Although the secondary geometry is supposed to remain always visible, a comprehensible rep-
resentation of its distance relative to iso-surface structures is desired. Therefore, the fragment
depth of the secondary geometry is compared to the depth values retrieved from the first two
rendering passes.

IS(x, y) = I0
S(x, y) ·

⎧⎨
⎩

1, depthS(x, y) < depthP1(x, y)
α, depthP1(x, y) ≤ depthS(x, y) < depthP2(x, y)
β, depthP2(x, y) ≤ depthS(x, y)

with 0 < β < α < 1 (4.2)

The depth of the secondary geometry fragments is denoted as depthS in Equation 4.2.
Depth values computed during the primary rendering passes are contained in depthP1 and
depthP2 , as described in Section 4.2.1. The following rule determines the attenuation of the
initial fragment intensity I0

S : Secondary geometry fragments which are directly visible, i.e., not
behind any iso-surface layer, retain their full intensity. Fragments which would be occluded by
the front layer are attenuated with factor α, those which are also behind the second iso-surface
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layer with factor β. These factors have to be in the interval [0; 1] and are parameters of the
algorithm.

Figure 4.6: Increasing attenuation of secondary geometry pixels which are behind one or two
iso-surface layers, respectively.

This depth attenuation method helps the user understand the spatial relationship between
the secondary geometry and the iso-surface. Figure 4.6 illustrates this effect. In the central
part of the image detail, the secondary geometry is shown with less intensity because here it
is occluded by two iso-surface layers. The output of the optional third rendering step is the
final intensity value IS , which is accessed by the image processing stage. Moreover, the depth
of the secondary geometry fragments, depthS , is also stored for use by the final step of the
rendering pipeline.

4.2.3 Image Processing Stage

All of the aforementioned geometry rendering passes generate images with the full resolution
of the OpenGL output window. The size of this OpenGL viewport is determined by the user. In
the final stage of the algorithm, all the previously generated data are combined using an image
processing step. This step is performed by drawing a textured rectangle, which again has
the same size as the OpenGL window. The intermediate images generated by the geometry
rendering passes are used as input textures for a special shader program. In this shader, a
number of image processing tasks are performed, which eventually yield the desired output
rendering.

Silhouette Detection

As mentioned above, the display of silhouettes is a central feature of the illustrative rendering
method presented here. Silhouettes are detected in image space for both the first and the second
layer of the iso-surface. The silhouette detection method used here is similar to the approach
described by Mitchell et al. [147]. Discontinuities in the depth and normal vector images are
the basis for computing the response of the silhouette detection filter.
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The gradient magnitude is computed for the depth maps of both iso-surface layers, depthP1

and depthP2 . In order to determine the gradient magnitude, partial derivatives ∂ depthPn
∂x and

∂ depthPn
∂y (n ∈ {1, 2}) are obtained using the Sobel edge detection filter. The norms of the

resulting gradient vectors, |∇depthP1 | and |∇depthP2 |, indicate discontinuities in the depth
images. A binary response is determined for the depth discontinuity filter based on a user-
defined threshold, depthThresh, as shown in Equation 4.3.

depthRespPn(x, y) =
{

0, |∇depthPn |(x, y) < depthThresh
1, |∇depthPn |(x, y) ≥ depthThresh

(4.3)

For finding discontinuities in the normal images, the normal vector stored in each pixel is
compared to its four direct neighbours. This comparison is computed as a dot product between
the corresponding vectors. As shown in Equation 4.4, the four resulting dot products are added
up in order to obtain a normal vector similarity value normalSimPn . These computations
are performed for both layers of the iso-surface, yielding normalSimP1 and normalSimP2 ,
respectively. A smaller normal similarity value indicates a significant discontinuity.

normalSimPn(x, y) = normalPn(x, y) · normalPn(x + 1, y)+
normalPn(x, y) · normalPn(x− 1, y)+
normalPn(x, y) · normalPn(x, y + 1)+
normalPn(x, y) · normalPn(x, y − 1)

(4.4)

normalRespPn(x, y) =
{

0, normalSimPn(x, y) ≥ normalThresh
1, normalSimPn(x, y) < normalThresh

(4.5)

A binary normal discontinuity response is computed by comparing the similarity value to
a user-defined threshold (see Equation 4.5). The greater the threshold value normalThresh
is, the more pixels contribute to normal map silhouettes. Finally, an overall silhouette de-
tection response is determined for each iso-surface layer. Depth as well as normal discon-
tinuities are taken into account by calculating the logical OR of both response types, i.e.,
silhouettePn(x, y) = depthRespPn(x, y) ∨ normalRespPn(x, y). The output of the silhou-
ette detection process for both layers of the Engine dataset is shown in Figure 4.7.

(a) silhouetteP1 (b) silhouetteP2

Figure 4.7: Silhouette detection responses computed for the first and second layer of the En-
gine dataset iso-surface.
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Procedural Halftoning

In the illustrative rendering style described here, the shape of the front layer of the iso-surface is
not only represented with silhouettes. In order to make a better understanding of the geometry
of the iso-surface possible, and to achieve a clear distinction between first-layer and second-
layer structures, diffuse reflection intensities are added to the graphical output. The intensity
of each first-layer fragment is computed as the dot product of a user-defined light direction and
the stored normal vector. As shown in Equation 4.6, the aforementioned light direction vector
lightDir is again used for this calculation.

IP1(x, y) = max(normalP1(x, y) · lightDir, 0) (4.6)

The main aim of the rendering algorithm is the display of hidden structures behind the
first iso-surface layer. It is therefore necessary to show the diffuse reflection intensities with
a method which allows second-layer silhouettes to remain visible. A monochrome halftoning
method is used for recreating a black-and-white cross-hatching style found in technical illus-
trations. The procedural screening approach described by Strothotte and Schlechtweg [189] is
utilized, which does not require additional input textures for describing the hatching pattern.

The coordinates of each fragment which is to be dithered are first mapped to dither coor-
dinates (s, t). This is done using a mapping function M:

(x′, y′) = Rθ · (x, y)

(s, t) = M(x′, y′) =
(

x′ mod n
n , y′ mod n

n

)
(4.7)

In Equation 4.7, the screen-space coordinates of the currently regarded fragment are de-
noted as (x, y). These coordinates are first rotated by the angle θ, which is selected by the
user. This is done by computing the product of the rotation matrix Rθ ∈ 	2x2 and the input
coordinate vector. Due to this multiplication, the resulting halftoning pattern will be rotated
relative to the screen space coordinate axes. This creates a more natural look of the black-and-
white hatching image. Subsequently, the rotated fragment coordinates are mapped to the real
number range [0; 1] using the mapping function M. The dither coordinates (s, t) are the basis
for determining whether the fragment is displayed as an opaque black pixel or as translucent.
The choice of the user-defined variable n in Equation 4.7 determines the size in pixels of the
hatching pattern.

τ(s, t) =
{

ccross · t s ≤ ccross

(1− ccross)s + ccross s > ccross
(4.8)

Ihatching(x, y) =
{

0, IP1(x, y) < τ(s, t)
1, IP1(x, y) ≥ τ(s, t)

(4.9)

For each pixel, a halftoning threshold τ is computed as a function of the dither coordinates
(s, t). The calculation of τ depends on the parameter ccross (see Equation 4.8). ccross deter-
mines the minimum intensity necessary for generating perpendicular cross-hatching strokes in
addition to the parallel strokes which are the basis for the halftoning pattern. As described in
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Equation 4.9, the diffuse reflection intensity IP1(x, y) is then compared to the local threshold
τ(s, t). If the intensity is large enough, the output value Ihatching(x, y) will be one, otherwise
zero. The black-and-white pattern computed by this halftoning method for the intensity range
[0; 1] is depicted in Figure 4.8.

Figure 4.8: Black-and-white pattern generated by the halftoning method for the continuous
intensity range [0; 1].

Display of Secondary Geometry

In the final output image, the secondary geometry is displayed as a solid polygonal object with
a special color. The brightness of secondary geometry fragments is determined by the intensity
value IS(x, y), which has been computed in the optional third geometry rendering pass (see
Section 4.2.2).

Before the final color for each pixel in the output image is computed, a specific depth test
is performed for the secondary geometry. In places where second-layer silhouette pixels have
been detected, only such secondary geometry fragments are to be displayed which are in front
of the second layer of the iso-surface.

I ′S(x, y) = IS(x, y) ·
{

0, silhouetteP2(x, y) ∧ (depthP2(x, y) ≤ depthS(x, y))
1, otherwise

(4.10)

Equation 4.10 shows the additional depth test for secondary geometry pixels, which yields
the final intensity value I ′S . Due to this test, the depth relationships between second-layer
silhouettes and the secondary geometry are correctly represented.

Computation of Final Pixel Color

In order to generate the final output image, all the data computed for each pixel so far are
combined. The image is initialized with a user-defined background color called paperColor.
Typically, a bright background color is used to create the look of a technical illustration on
paper. The second-layer silhouettes are then drawn over the background. They are displayed
with the color backLayerColor in all places where silhouetteP2 indicates a silhouette frag-
ment. Subsequently, the secondary geometry is blended over the background according to its
computed intensity I ′S . The color of the secondary geometry is also selected by the user and
stored in the variable secGeomColor. Finally, the front-layer of the iso-surface is taken into
account. Every pixel which has a first-layer silhouette response of one or a hatching intensity
of zero is displayed black. In the current implementation of the algorithm, black is always used
for the first-layer geometry, but it could easily be replaced with any other color. The piece of
pseudocode shown in Algorithm 6 summarizes the process of determining the final pixel color.
This code uses a terminology similar to the functionality of modern shading languages.
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Algorithm 6 Computation of final pixel color.
vec3 pixelColor;
pixelColor = mix(paperColor,backLayerColor,silhouetteP2(x, y));
pixelColor = mix(pixelColor,secGeomColor,I ′

S(x, y));
pixelColor *= (1.0 - silhouetteP1(x, y));
pixelColor *= Ihatching(x, y);

In the pseudocode in Algorithm 6, the variable pixelColor is an RGB color vector,
which will store the final output color of the pixel at position (x, y). In the code, the linear
blend of two colors is computed by the function mix, i.e., mix(c1,c2,α)= (1− α)c1 + αc2.
The black color of the first-layer geometry is generated by multiplying the components of
pixelColor with a scalar value of zero, indicated by an *= operator.

4.2.4 Implementation Details

The capability for achieving real-time frame rates has been one of the main objectives of the
design and the implementation of the algorithm. The new illustrative visualization method was
realized with the OpenGL Shading Language [169], which was used to implement all of the
aforementioned shader programs. The entire approach is executed on the graphics processing
unit (GPU) and does not require any preprocessing on the CPU.

Each type of intermediate image-space information (e.g., depthPn , normalPn , depthS

etc.) is stored in a separate texture image in onboard memory. The normal and intensity images
are generated as the components of standard RGBA textures, while depthPn and depthS have
a special depth texture format provided by OpenGL. In each geometry rendering pass, the
intermediate data are written into the framebuffer. Subsequently, they are copied into texture
images which are accessed by later stages of the algorithm. This is done with the glCopy-
TexSubImage2D() function.

In the final step of the algorithm, a rectangle covering the entire OpenGL window is drawn
using the image processing shader. The image processing shader reads the intermediate data
by accessing the corresponding texture images. In particular for the silhouette detection step, a
large number of texture accesses is required. For each fragment, a neighborhood of five or nine
texels has to be read for the normal and depth textures, respectively. In order to avoid a loss
of performance due to the repeated calculation of texel addresses, a special precomputation
scheme is used. This texel address precomputation method is similar to the one described in
Section 3.3.4.

One significant advantage of the design of the rendering pipeline (see Fig. 4.2) is the fact
that all image processing tasks are performed in the same shader progam. This way, no redun-
dant texture accesses are necessary. All the previously computed data relevant for the current
pixel are loaded once from the intermediate textures and can be used for several computa-
tions. One example is the first-layer normal information, normalP1 , which is needed for the
silhouette detection and the calculation of the diffuse reflection intensity.

Many of the computations in the implementation of the rendering pipeline use standard
functions provided by the shading language. Examples include step(), which performs a
boundary check, and mix(), which computes a linear blending of vectors. These functions
are normally executed efficiently on the GPU. Due to the extensive use of these functions, the
implementation requires almost no conditional branches and no loop statements on the GPU,
which are notoriously slow.
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4.2.5 Results

The algorithm was tested with a number of example datasets. Most of them are polygon
meshes representing iso-surfaces generated from volume data. For some of the datasets, sec-
ondary geometry was created by extracting a second surface with a different iso-value. Ex-
ample images rendered with the new method are shown in Figure 4.10. The Engine dataset
(Fig. 4.10a) is a CT scan of two cylinders of an engine block. The result of a simulation of
diesel injection into a combustion chamber is contained in the Fuel dataset (Fig. 4.10b). In
this case, high-intensity voxels are displayed as secondary geometry. The NegHip example
(Fig. 4.10c) is a simulation of the spatial probability of the electrons in a protein molecule.
It also contains secondary geometry extracted from high-intensity voxels. The Screwdriver
dataset (Fig. 4.10d) is the detailed mechanical design of an electric screwdriver, with some
inner parts highlighted as secondary geometry. Unlike the other examples shown here, the
Screwdriver dataset is not an iso-surface extracted from volume data, but a manually created
CAD model. A CT scan of a human colon is shown in the Colon example, and the Ventricle
dataset is an MRI scan of the ventricular system of a human brain (Fig. 4.10e and 4.10f).

The example images and animations generated with the new illustrative rendering algo-
rithm show that the method can convey the shape of hidden structures of the iso-surface. This
is also illustrated in Figure 4.9a, which shows a detail of the colon dataset, where the shape
of the back wall of the colon is suggested by second-layer silhouettes. In Figure 4.9b, holes
in the septum of the patient are visible in the Ventricle dataset. These are defects caused by a
degenerative process, and they are significant for medical diagnosis and treatment. Figure 4.11
illustrates how manually specified secondary geometry is highlighted by the algorithm in the
case of the Screwdriver dataset.

(a) Close-up of a section of the Colon dataset (b) A significant detail in the Ventricle dataset displayed by
the algorithm

Figure 4.9: Details of two renderings generated with the algorithm.

A number of tests were performed for measuring the frame rates achieved with the illus-
trative visualization method. These benchmarks were run on a computer with a Pentium 4
processor running at 2.8 GHz using a graphics card with an NVidia GeForce FX 6600 GT
chipset. Animation sequences with a length of at least 1000 frames were used to compute the
average performance for each test run. Table 4.1 shows a comparison of frame rates measured
with standard rendering and with the illustrative method for the Engine dataset.
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(a) Engine dataset (b) Fuel dataset

(c) NegHip dataset (d) Screwdriver dataset

(e) Colon dataset (f) Ventricle dataset

Figure 4.10: Example images generated with the illustrative rendering algorithm. (Parameters
used for all images: α = 0.7, β = 0.21, normalThresh = 3.98, depthThresh = 0.001,
θ = 20.0, n = 4.0, ccross = 0.9)
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Figure 4.11: Detailed polygonal model of an electric screwdriver. Some inner parts are used
as secondary geometry (see enlarged detail).

Table 4.1: Comparison of frame rates for standard and illustrative rendering of the Engine
dataset (311k vertices) at different resolutions.

1024x768 800x600 640x480
standard 96.01 99.05 100.85

illustrative 21.33 28.10 34.83

In Table 4.2, rendering speeds achieved by the algorithm for the other five test datasets
are listed. Benchmark runs were performed for different output resolutions. As illustrated
in both benchmark tables, the performance of the method depends on two main factors. The
first is the size of the iso-surface mesh. A large number of polygons slows down the image
generation because of the multiple geometry rendering passes. Moreover, the frame rate is
influenced strongly by the output resolution. A larger output window increases the size of the
intermediate textures and the number of image processing operations, resulting in a reduced
rendering speed. Still, the algorithm is capable of delivering real-time performance in most
cases. Even for large datasets and image resolutions, frame rates of close to or above 20 fps
have been measured.

Table 4.2: Frame rates measured for the other five datasets.

Dataset #vertices 1024x768 800x600 640x480
Colon 1,076k 18.16 22.96 27.17

Screwdriver 487k 26.65 40.69 58.07
Ventricle 201k 31.00 45.94 61.98
NegHip 17k 30.96 50.41 76.78

Fuel 6.4k 32.29 52.30 81.49
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4.3 Illustrative Augmented Reality

Using the visual style of the illustrative visualization method presented in the previous section,
an additional type of stylized augmented reality was realized in the context of this thesis. In
this illustrative augmented reality system, the real camera image is filtered so that it recreates
the same look of a technical illustration on paper which is generated by the illustrative visu-
alization algorithm. An example image rendered by the illustrative AR system is shown in
Figure 4.12.

Figure 4.12: Image generated by the illustrative augmented reality system.

4.3.1 Description of the Illustrative AR System

In the illustrative augmented reality system, the camera image and the virtual objects which
constitute the augmented scene are handled separately. This concept is similar to the design
of the original cartoon-like stylized AR system (see Sec. 3.2) and the brush stroke stylization
method for augmented images (see Sec. 3.4). However, unlike in those types of stylized AR,
the camera image processing step is also performed on the graphics processing unit (GPU) in
illustrative augmented reality. Figure 4.13 shows an overview of the method.

As illustrated in Figure 4.13, the original camera image is processed in a separate step. In
this processing stage, edges in the camera image are detected, and a low-pass filter is applied
to it. The data generated in this step are then used by the final rendering stage, which is a
modified and enhanced version of the image processing step of the illustrative visualization
algorithm (see Sec. 4.2.3).

Camera Image Filter

At the beginning of the illustrative AR pipeline, the original camera image is copied from
the frame buffer into a texture image in graphics card memory. This texture is then used as
input texture for an image filtering step. The camera image filter is executed by rendering a
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Figure 4.13: Overview of the illustrative augmented reality rendering pipeline. In this diagram,
dotted arrows represent image space data which is fed into the final image processing stage.

two-dimensional rectangle at the full resolution of the original image. During this rendering
process, a specific image processing shader program is activated.

Two tasks are performed by the camera image filter. The most important aspect is the
detection of edges in the camera image. An edge detection strategy is used which is simi-
lar to the method applied in the GPU-based cartoon-like stylization filter described in Sec-
tion 3.3.3. Each camera image pixel is converted into the YUV color space. Partial derivatives
are then computed for each color channel using the Sobel filter, yielding the gradient magni-
tudes (|∇Y |, |∇U |, |∇V |). Like in the GPU-based cartoon-like stylization filter, these gradient
magnitudes are then used in an adaptive edge detection process based on color as well as inten-
sity constrasts. As shown in Equation 4.11, the user-defined parameter α ∈ [0; 1] determines
the relative influence of color contrasts (in the U and V channels) and intensity contrasts (in
the Y channel) when computing an edge detection response. The computed edge detection
response edgecam is then compared with the threshold camEdgeThresh in order to obtain
the binary silhouette flag silhouettecam for the camera image (see Eq. 4.12).

edgecam = (1− α) · |∇Y |+ α · |∇U |+ |∇V |
2

(4.11)

silhouettecam =
{

0, edgecam < camEdgeThresh
1, otherwise

(4.12)

As the second output of the camera image filter, the low-pass filtered pixel intensity is
computed. A box filter is applied to the image intensities in a 3 x 3 pixel neighborhood. The
final output of the camera image filtering step is the determined silhouette flag, silhouettecam,
as well as the filtered intensity, Icam, for each pixel. These data are again stored in a separate
texture image, which is later used as additional input for the final image composition stage.

Final Image Composition

The image composition step of the illustrative AR system is a modified version of the final
image processing step used in the original illustrative visualization algorithm (see Sec. 4.2.3).
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This new image composition stage, however, computes two possible color values for each
pixel in the output image. The first computed alternative is the output color which would
be generated by the illustrative visualization method, i.e., pixelColor. Additionally, a
representation of the camera image in an illustrative style is also rendered for every pixel
location. This second color alternative is denoted as camPixelColor.

The computation of camPixelColor consists of three steps. At the beginning of the
process, the pixel color is initialized with the background color, paperColor (cf. Sec. 4.2.3).
Subsequently, the color of the stylized camera image pixel is set to black if an input image sil-
houette was detected at this location. Finally, in order to achieve a look for the output image
which visually corresponds to the desired illustrative style, a monochrome hatching is gener-
ated based on the pixel intensity. The same hatching technique is used as in the illustrative
visualization system (see Sec. 4.2.3). Since the halftoning threshold τ has already been com-
puted in the image processing shader, only a comparison with the camera image intensity at
this location is required in order to generate the hatching. This comparison is shown in Equa-
tion 4.13. The parameter γ is introduced into the comparison in order to make an overall
brightening or darkening of the stylized camera image possible. This way, a similar bright-
ness can be generated for the camera image as for the virtual objects. As the last operation
in the computation of the camera pixel color, the hatching is then taken into consideration. If
a hatching value of zero was determined, the output pixel is also set to black. Algorithm 7
summarizes the computation of the stylized camera image pixel. Here again, a terminology
similar to the functionality of modern shading languages is used.

IcamHatching(x, y) =
{

0, γ · Icam(x, y) < τ(s, t)
1, γ · Icam(x, y) ≥ τ(s, t)

(4.13)

Algorithm 7 Computation of the color for the stylized camera image pixels.
vec3 camPixelColor;
camPixelColor = paperColor;
camPixelColor *= (1.0 - silhouettecam(x, y));
camPixelColor *= IcamHatching(x, y)

After the computation of the stylized camera image as well as the output of the original
illustrative algorithm, the image composition step selects which of the two color alternatives is
used as the final result. In places which are covered by the geometry of the virtual objects, their
illustrative representation is shown. Otherwise, the stylized camera image pixel is rendered. In
order to determine which pixels are covered by the virtual objects, the first geometry rendering
pass (see Sec. 4.2.1) is adapted so that it generates a flag for every pixel which is modified
when drawing the polygons of the virtual objects. This flag is stored in the fourth component
of the RGBA output texture, which otherwise only holds the computed normal vectors.

While it might appear that the calculation of two color alternatives is a suboptimal compu-
tation strategy, the generation of the stylized camera image pixel requires very little computa-
tional effort (see Algorithm 7). The selection of the correct color value can then efficiently be
done with a single call to the mix() function provided by the shading language. The alterna-
tive solution of using conditional processing based on the virtual object flag would introduce
an inefficient if-statement into the image composition step. Such an inefficient conditional
branching on the GPU is avoided by the described rendering strategy used in the illustrative
AR system.
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4.3.2 Results

The illustrative augmented reality system was tested with several example scenes. Figure 4.14
shows three test datasets rendered in the illustrative AR environment. The Submarine dataset
is the polygonal model of a small submarine (see Fig. 4.14a). The DC10 model (Fig. 4.14b) is
the graphical representation of a jet airplane. Finally, the NegHip example (Fig. 4.14c) again
is the iso-surface extracted from a volumetric dataset containing the spatial probability of the
electrons in a molecule (this example was also used in Sec. 4.2.5). For the Submarine and
NegHip models, certain inner structures were explicitly specified as secondary geometry.

As demonstrated in Figure 4.14, the illustrative AR system generates augmented images
in which real and virtual scene elements are rendered in a similar style. Since the same type
of hatching and silhouette representation is used, a good visual similarity is achieved. Unlike
in the previously described stylized AR approaches, however, certain visual differences are in-
herently created in the rendering process. Both the second-layer silhouettes and the secondary
geometry of the virtual object are displayed in different colors, while the stylized camera image
is strictly black-and-white. Moreover, the secondary geometry is rendered as a solid object,
distinguishing it from the other objects in the image. Still, the stylization filter applied to the
camera image creates a very uniform look in the generated output video frames.

Table 4.3 lists average frame rates measured for the three test datasets in the illustrative
augmented reality system. For each example case, an interactive test session with a duration
of at least 480 frames was performed. These benchmarks were measured on a computer with
an Intel Pentium 4 Xeon processor running at 2.66 GHz and a graphics card based on an
NVidia GeForce FX 6800 GT chipset. As mentioned earlier, the augmented reality system
uses a Firewire webcam delivering a resolution of 640 x 480 pixels.

The results shown in Table 4.3 demonstrate that the illustrative AR method is capable of
delivering a video stream at a sustained rate of 30 fps for every example scene. The reasons for
this high performance are twofold. On the one hand, the original illustrative visualization algo-
rithm is designed to deliver real-time frame rates for image sizes significantly higher than the
webcam resolution. For a resolution of 640 x 480 pixels, the illustrative rendering method itself
achieves 60 fps or more unless the polygonal model is very complex (see Table 4.2). Moreover,
the camera image filter used in the illustrative AR system is relatively simple, in particular be-
cause it is a single-pass method. It can therefore be executed significantly faster than the rather
complex stylization filter of the GPU-based cartoon-like AR system (see Sec. 3.3). The overall
performance of the illustrative AR system in the examined test cases was only limited by the
speed of the webcam, which acquires images at a rate of approximately 30 Hertz.

Table 4.3: Frame rates measured for the test datasets in the illustrative AR system.

Dataset #vertices Frame Rate Rendering Time
(fps) (msecs)

Submarine 482k 30.38 17
NegHip 17k 30.36 12

DC10 7k 30.73 12
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(a) Submarine model

(b) DC10 model

(c) NegHip dataset

Figure 4.14: Example images generated with the illustrative AR system.
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4.4 Summary

In this chapter, a novel method for the illustrative rendering of iso-surfaces was presented. The
new algorithm utilizes depth peeling, silhouette extraction, and monochrome hatching and
combines them in an efficient way in a single rendering pipeline. The generated images make
a simultaneous inspection of the outer surface as well as inner structures possible. Due to the
selected style of rendering, spatial relationships and the shape of hidden objects can easily be
understood.

One major advantage of the illustrative visualization algorithm is the lack of any prepro-
cessing of the input data. Any polygonal dataset can be loaded into the system and then
be displayed in the new illustrative style. The depth peeling step automatically extracts the
second-layer geometry. Since it is always assumed that the second iso-surface layer contains
the relevant hidden structures, difficulties can arise in the case of more complex datasets. If
areas of interest are occluded by several layers of polygons, they have to be manually speci-
fied as secondary geometry in order to remain visible. However, the continual display of such
secondary structures is integrated efficiently into the rendering pipeline.

Although the performance of the illustrative visualization algorithm depends on the size
of the displayed dataset and the image resolution, it was empirically found that it is capable of
achieving real-time frame rates in most cases.

The application of the illustrative visualization style to augmented reality constitutes an-
other type of stylized AR. As discussed in Chapter 3, any type of stylization can be used for
realizing a stylized augmented reality system as long as real and virtual objects obtain a simi-
lar look. Although the illustrative AR approach creates a slightly different appearance for the
graphical models in the scene, a sufficient visual similarity is achieved. The augmented envi-
ronment is rendered in a style recreating the look of a technical illustration on paper. Thanks to
the illustrative visualization algorithm, inner structures and secondary geometry of the graph-
ical models are displayed in an easily comprehensible way. Education and training as well
as (collaborative) design tasks could be among the potential applications for the illustrative
augmented reality approach.
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

This thesis described a number of new developments in the field of augmented reality. The
main focus in most of the projects presented here was to find new and advanced ways of
rendering augmented video streams. Considering that much of the existing research in aug-
mented reality deals with the problems of tracking, user interaction, display technologies, and
system design, this thesis put a different emphasis on the relatively underrepresented topic
of specialized graphics algorithms. In the vast majority of existing AR systems, standard
rendering methods (e.g., straightforward OpenGL calls) are used for displaying the virtual
objects. While this approach is sufficient for some applications, especially when only a lim-
ited amount of mostly symbolic augmentations is shown, the combination of artificial-looking
computer graphics with the fully detailed real camera image can lead to a dissatisfactory user
experience. The novel AR rendering methods presented in this thesis have attracted a rather
large amount of attention, and they hopefully manage to inspire more research on the topic
of specialized display algorithms for augmented video streams. The main conclusion of this
thesis can be considered to be the proposal that the development of specialized rendering
algorithms be regarded as a research problem of equal importance as the other main
technical challenges of augmented reality.

Two different main research trends were described in this thesis. The topic of medical
augmented reality was discussed in Chapter 2. Chapters 3 and 4 presented the fusion of stylized
rendering and AR. In the medical augmented reality chapter, an application-specific method
for handling static occlusion in the augmented scene was described. This approach improves
the visual realism of the generated output video and represents an advanced way of rendering
AR images. The sections on stylized and illustrative augmented reality introduced the new

131



132 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

idea of applying stylization techniques to both real and virtual scene elements, which also
constitutes a new way of rendering for AR. In the following, the conclusions for each section
are summarized.

Medical Augmented Reality. The medical AR framework ARGUS was presented, which
is built using commercially available and certified medical technology. The ARGUS system
was the basis for a number of advanced developments in the fields of tracking, user interac-
tion, and the aforementioned occlusion-aware rendering method. Later, the framework also
served as the foundation for a novel approach to semiautomatic volume classification, which
confirmed its usefulness and stability [6, 128]. While the ARGUS system in its current state
cannot be considered ready for use in an actual clinical context, its basic design philosophy
can probably help to facilitate the transition of medical AR into the practical application.

Stylized Augmented Reality. The concept of a stylized AR video stream containing artis-
tic depictions of virtual as well as real scene elements was proposed. Several different imple-
mentations of this principle were presented. The described algorithms for creating cartoon-like
and brush stroke representations of augmented images are specifically adapted variations of ex-
isting stylized rendering techniques or completely new developments. Some of the presented
methods consist of separate processing paths for the camera image and the graphical mod-
els, using standard graphics library calls and image processing on the CPU. In other cases,
the programmability of modern graphics processing units was employed to achieve a fast and
high quality postprocessing of image data. All of the presented stylization algorithms are ca-
pable of generating an output video stream at interactive or even real-time frame rates. The
presented example cases showed that using the different types of AR stylization, augmented
images are generated in which real and virtual objects are difficult to distinguish. The de-
creased discernability of graphical models in stylized augmented reality was also confirmed
by the psychophysical study performed in the context of this thesis. Consequently, a novel
experience for the user is created, and possibly a better feeling of immersion. The stylized
AR concept could be the basis for a number of possible applications, e.g., art installations in
the form of an “Augmented Painting” and video games, as well as a number of other uses like
psychotherapy applications and further studies in psychophysics.

Illustrative Visualization. A new method for the illustrative display of hidden structures
in iso-surfaces and general polygonal models was presented. The generated output images
recreate the visual style of a technical illustration on paper. It was shown that the algorithm
can produce useful and aesthetically pleasing renderings of datasets ranging from anatomical
volume data to polygonal CAD designs. Since the algorithm is implemented using shader
programs for modern programmable graphics processing units, it can generate images in real-
time even for complex models and high image resolutions. No manual preprocessing of the
datasets is necessary because the method automatically extracts the second layer of geometry.
Moreover, additional inner structures can optionally be specified by the user. Although the au-
tomatic extraction of second-layer geometry does not always produce the structures of interest
in a dataset, and although certain rendering artifacts are sometimes generated by the underly-
ing basic techniques, the new method has proven to be capable of rendering useful images in
most cases. Based on this illustrative visualization method, an additional type of stylized AR
system was realized. In illustrative augmented reality, both the camera image and the virtual
objects resemble the look of a technical illustration. Although here, as in the other realiza-
tions of stylized AR, the fidelity of the rendered camera image is reduced, the illustrative AR
approach could be used for applications in training, education, and design.
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5.2 Future Directions of Research

The main topic in future research on stylized augmented reality is the development of improved
and advanced stylization algorithms. The generation of artistic or illustrative representations
of augmented video streams poses a unique set of challenges. Only a monoscopic camera
image stream at a relatively low resolution together with estimated poses is available as input
data. This data stream has to be processed on a per-frame basis because the output is used
in an interactive system (i.e., it is not possible to apply multi-pass video processing meth-
ods). Moreover, the system has to generate real-time frame rates, and ways of integrating the
virtual information have to be investigated. One of the most promising directions for future
developments is the exploitation of temporal coherence in consecutive camera frames. More
advanced existing artistic and illustrative rendering algorithms can be applied to augmented
video streams in order to create a better visual quality or new visual styles. Finally, the incor-
poration of new types of input data into the rendering process could be investigated. These
could include (semi-)static models of the real environment or geometry data from a partial 3D
reconstruction based on the camera images.

There are several possible routes for enhancing and improving the presented illustrative
visualization method. A more sophisticated technique for automatically finding inner struc-
tures of interest would be one important improvement of the algorithm. As another possible
research topic, the illustrative visualization pipeline could be redesigned to be more config-
urable. In an advanced illustrative visualization system, the number of extracted geometry
layers and the display style applied for each layer could be selected by the user. In order to
maintain the real-time characteristics of the approach, an intelligent rendering strategy with an
optimized automatic configuration of the visualization pipeline would be required for such a
development. Such an advanced system could even incorporate the use of dynamically gener-
ated shader program code.

Finally, the exploration of potential applications for the combination of stylization tech-
niques and augmented reality is one of the most important areas in future research. As an
obvious example, an AR game could be created, which is based on the principle of stylized
augmented reality. With regard to applications in electronic entertainment, a special empha-
sis could be put on using widespread hardware platforms as basis for the implementation, for
instance commercial game consoles with camera add-ons or modern cell phones with built-in
cameras. Moreover, an interactive art installation could be prepared in order to demonstrate
the concept in public. Other possible scenarious include training and education, e.g., by using
stylized AR in an augmented museum exibition or in the context of cultural heritage appli-
cations. As another possibility, the use of stylization techniques in augmented environments
designed for psychotherapy and psychophysics could be investigated. The aforementioned
phobia therapy application is one example for such an augmented reality system which could
benefit from the effects of stylization. The various stylization techniques could also be used to
support experimental perception research in psychophysics. An example for the application of
stylization methods in psychophysics would be a possible study on the recognition of virtual
and real faces in stylized videos. Lastly, advanced artistic stylization methods for real scenes
with added virtual objects could in the long term also be used in applications beyond interac-
tive AR systems. The automatic generation of high quality stylized augmented video streams
might be of interest for the TV and movie industries, for example.
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mann. Computergestützte Planung und CT-Daten-basierte Navigation zur Rekon-
struktion des lateralen Mittelgesichts bei Jochbeinfehlstellungen. In Jahrestagung der
Deutschen Gesellschaft für Computer-und Roboterassistierte Chirurgie e.V. (CURAC),
September 2005.

[35] C. Westendorff, J. Kaminsky, A. del Rı́o, J. Fischer, M. Tatagiba, S. Reinert, and
J. Hoffmann. Resektion eines ausgedehnten Keilbeinflühelmeningeoms mit Infiltration
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W. Straßer. Integration von Navigation, optischer und virtueller Endoskopie in der
Neuro- sowie Mund-, Kiefer- und Gesichtschirurgie. In Jahrestagung der Deutschen
Gesellschaft für Computer-und Roboterassistierte Chirurgie e.V. (CURAC), October
2002.

141



142 BIBLIOGRAPHY

[51] R. Bauernschmitt, M. Feuerstein, E. Schirmbeck, J. Traub, G. Klinker, S. Wildhirt, and
R. Lange. Improved Preoperative Planning in Robotic Heart Surgery. In Proc. of IEEE
Computers in Cardiology, pages 773–776, September 2004.

[52] M.-O. Berger. Resolving Occlusion in Augmented Reality: A Contour Based Approach
without 3D Reconstruction. In Proc. of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 91–96, 1997.

[53] A. Bernstein, R. Lenhardt, J. Hochstrate, and B. Fröhlich. The Haptic SpaceMouse - an
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[55] O. Bimber, B. Fröhlich, D. Schmalstieg, and M. Encarnação. The Virtual Showcase.
IEEE Computer Graphics and Applications, 21(6):48–55, November/December 2001.

[56] O. Bimber and R. Raskar. Spatial Augmented Reality: Merging Real and Virtual Worlds.
A K Peters, July 2005.

[57] W. Birkfellner, K. Huber, F. Watzinger, M. Figl, F. Wanschitz, R. Hanel, D. Rafolt,
R. Ewers, and H. Bergmann. Development of the Varioscope AR - A See-through HMD
for Computer-Aided Surgery. In Proc. of IEEE and ACM International Symposium on
Augmented Reality (ISAR), pages 54–59, October 2000.

[58] U. Bockholt, A. Bisler, M. Becker, W. Müller-Wittig, and G. Voss. Augmented Reality
for Enhancement of Endoscopic Interventions. In Proc. of IEEE Virtual Reality, pages
97–101, March 2003.

[59] A. Bornik, R. Beichel, B. Reitinger, G. Gotschuli, E. Sorantin, F. Leberl, and M. Sonka.
Computer Aided Liver Surgery Planning Based on Augmented Reality Techniques. In
Proc. of Workshop Bildverarbeitung in der Medizin, pages 249–253, 2003.

[60] A. Bornik, R. Beichel, B. Reitinger, E. Sorantin, G. Werkgartner, F. Leberl, and
M. Sonka. EG2003 Medical Prize Competition: Augmented Reality based Liver
Surgery Planning. Computer Graphics Forum, 22(4):795–796, December 2003.

[61] J. Bortz. Statistik für Human- und Sozialwissenschaftler. Springer Verlag, 5th edition,
2005.

[62] BrainLAB AG. BrainLAB Global Site. http://www.brainlab.com, 2006.

[63] BrainLAB AG. Neurosurgery Solutions Brochure, 2006.

[64] D. Breen, R. Whitaker, E. Rose, and M. Tuceryan. Interactive Occlusion and Automatic
Object Placement for Augmented Reality. Computer Graphics Forum, 15(3):11–22,
1996.

[65] H. Bülthoff, D. Cunningham, B. Adelstein, N. Magnenat-Thalmann, K. Mania,
N. Mourkoussis, T. Troscianko, and J. Swan II. Human-Centred Fidelity Metrics for
Virtual Environment Simulations. In IEEE VR Tutorials, 2005.



BIBLIOGRAPHY 143

[66] E. Burns, S. Razzaque, A. Panter, M. Whitton, M. McCallus, and F. Brooks Jr. The
Hand is Slower than the Eye: A Quantitative Exploration of Visual Dominance over
Proprioception. In Proc. of IEEE Virtual Reality, pages 3–10, 2005.

[67] M. Burns, J. Klawe, S. Rusinkiewicz, A. Finkelstein, and D. DeCarlo. Line Drawings
from Volume Data. In Proc. of ACM SIGGRAPH, pages 512–518, 2005.

[68] J. Caarls, P. Jonker, and S. Persa. Sensor Fusion for Augmented Reality. In Proc.
of European Symposium on Ambient Intelligence (EUSAI), pages 160–176, November
2003.

[69] J. Canny. A Computational Approach to Edge Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679–698, November 1986.

[70] E. Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces. PhD
thesis, University of Utah, 1974.

[71] Chicago Institute of Neurosurgery and Neuroresearch. Minimally Invasive Surgery
(MIS). http://www.cinn.org/treattech/mis.html, 2006.

[72] D. Cosker, D. Marshall, P. Rosin, S. Paddock, and S. Rushton. Toward Perceptually
Realistic Talking Heads: Models, Methods, and McGurk. ACM Transactions on Applied
Perception, 2(3):270–285, 2005.

[73] C. Cruz-Neira, D. Sandin, and T. DeFanti. Surround-Screen Projection-Based Virtual
Reality: The Design and Implementation of the CAVE. In Proc. of ACM SIGGRAPH,
pages 135–142, 1993.

[74] D. Cunningham, M. Kleiner, C. Wallraven, and H. Bülthoff. Manipulating Video Se-
quences to Determine the Components of Conversational Facial Expressions. ACM
Transactions on Applied Perception, 2(3):251–269, 2005.

[75] P. Debevec. Rendering Synthetic Objects Into Real Scenes: Bridging Traditional and
Image-Based Graphics With Global Illumination and High Dynamic Range Photogra-
phy. In Proc. of ACM SIGGRAPH, pages 189–198, July 1998.

[76] D. DeCarlo and A. Santella. Stylization and Abstraction of Photographs. In Proc. of
ACM SIGGRAPH, pages 769–776, July 2002.

[77] P. Decaudin. Cartoon-Looking Rendering of 3D-Scenes. Research Report 2919, INRIA,
June 1996.

[78] J. Diepstraten, D. Weiskopf, and T. Ertl. Transparency in Interactive Technical Illustra-
tions. In Proc. of Eurographics, pages 317–326, 2002.

[79] J. Diepstraten, D. Weiskopf, and T. Ertl. Interactive Cutaway Illustrations. In Proc. of
Eurographics, pages 523–532, 2003.

[80] M. Eichler. Modellbasiertes hybrides Tracking für medizinische Augmented Reality.
Diplomarbeit, University of Tübingen, November 2005.
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[147] J. Mitchell, C. Brennan, and D. Card. Real-Time Image Space Outlining for Non-
Photorealistic Rendering. In ACM SIGGRAPH Sketches, page 239, 2002.

[148] J. Murray and W. Van Ryper. Wavefront OBJ File Format Summary.
http://www.fileformat.info/format/wavefrontobj/, 2005.

[149] N. Nachlas. Image - Guided Surgery. eMedicine.com, Inc,
http://www.emedicine.com/ent/topic396.htm, January 2003.

[150] N. Navab, A. Bani-Hashemi, and M. Mitschke. Merging Visible and Invisible: Two
Camera-Augmented Mobile C-arm (CAMC) Applications. In Proc. of IEEE and ACM
International Workshop on Augmented Reality (IWAR), pages 134–141, October 1999.

[151] M. Neff and K. Diepold. Design and Implementation of an Interface Facilitating Data
Exchange between an IGS System and External Image Processing Software. Diplomar-
beit, TU München, May 2003.
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APPENDIX A

The Virtue Framework

A.1 Overview of the Virtue Repository

The research efforts described in this thesis were implemented based on a specialized new
software framework, which was developed and extended in the context of this thesis. This
software framework consists of a set of libraries which provide support for many of the basic
tasks required for the research topics presented here. These basic tasks include general util-
ity functionality like handling debug output and time measurements, file input/output, three-
dimensional mathematics through linear algebra classes, a specialized scene graph library for
customized rendering, and network communication with the image guided surgery device, as
well as a framework for augmented reality applications. The software framework is called
Virtue after the grant from the Deutsche Forschungsgemeinschaft (German Research Founda-
tion) which funded this thesis. The entire Virtue framework exists as a single CVS (Concurrent
Versions System) repository of the same name. As one part of the framework, the augmented
reality software foundation ARGUS is contained in a subdirectory. The complete software
foundation as well as all developments based on it were written in the C++ programming
language using object oriented design methodology.

The following directories are contained in the Virtue repository. Among them, the most
important directories are core/, vvl/, and ar/. Each of these corresponds to one library
file, and each of these has its own set of dependencies on third-party software.

apps/ Applications based on the Virtue framework.
core/ Virtue core library sources, headers and test programs.
doc/ Documentation for the Virtue project.
lib/ Output directory for the generated library files.

VirtueSolution/ Visual Studio .NET project files (only for the Windows OS).
vvl/ Virtue VectorVision Link library sources and test programs.
ar/ Virtue augmented reality library sources and test programs, i.e.,

the ARGUS framework.
Helios/ Helios sources, headers and test programs. It includes the ’fire’

subdirectory containing resources for isosurface handling.
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In the remainder of this appendix, Section A.2 will demonstrate the use of the Virtue scene
graph with a simple example, and Section A.3 will show how to use the ARGUS framework.

A.2 Virtue Scene Graph Example

The Virtue scene graph is a C++ scene graph library contained in the core module of the
repository. While it is not particularly optimized for the fast rendering of very large or very
complex models and does not have its own native file format, its uncomplicated structure and
easy extensibility make it ideal for research purposes.

Each node in the Virtue scene graph is derived from the class VirSceneNode, a fully
abstract class which only consists of the interface for the required traverse() method.
Each scene graph node implements this method, either by recursively traversing child nodes or
generating the appropriate OpenGL calls. The main structuring element of a Virtue scene graph
is the VirGroupNode class. VirGroupNode is the superclass of all group nodes used in
the scene graph. Each group node can hold pointers to an arbitrary number of child nodes.
Whenever a group node is traversed, it recursively traverses its child nodes. The management
of child nodes is done with an interface which is equivalent to many other scene graph libraries,
providing methods like addChild(), getChild(), and removeChild().

Algorithm 8 Declaration of instance variables for the scene graph example.
//----- Scene graph objects

// Transformations

VirSeparator *root;

VirTranslationGroup *cartoonTransG;
VirRotationGroup *cartoonRotG;
VirScaleGroup *cartoonScaleG;
VirTranslationGroup *cartoonOriginTransG;

VirSwitchNode *renderModeSwitchG;

// Normal rendering mode

VirGroupNode *normalRenderG;
VirDirLightNode *normalRenderLight;
VirMaterialNode *normalRenderMat;
VirEnableTexture2DNode *normalRenderTexEnable;
VirTexture2DNode *normalRenderTex;
VirVtkPolyDataNode *normalRenderPolyD;

In the following, a simple example demonstrating the use of the scene graph will be
discussed. Algorithm 8 shows the declaration of instance variables in the example appli-
cation class. These instance variables are pointers to scene graph nodes, to which newly
created node objects are later assigned. The root of the scene graph is a VirSeparator
node named root. The VirSeparator class is a group node which encapsulates the cur-
rent OpenGL state. Subsequently, a number of different other types of group nodes are de-
clared. These group node classes, e.g., VirTranslationGroup and VirScaleGroup,
are the transformation groups in the Virtue scene graph. They apply some kind of geometric
transformation to their child nodes and therefore constitute the core of the hierarchical mod-
elling approach realized in the scene graph. At the end of the code shown in Algorithm 8,
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a number of leaf nodes are declared. These scene graph leaf nodes generate OpenGL primi-
tives (e.g., VirVtkPolyDataNode) or manipulate the OpenGL rendering parameters (e.g.,
VirMaterialNode). Within one group node, child nodes are traversed in sequential order,
i.e., in the order in which they were added to the group (“from left to right”).

Algorithm 9 shows the construction of the example scene graph. Each of the node pointers
is initialized with a newly constructed object of the respective type. The scene graph hierarchy
is then constructed with calls to addChild(), which adds a node pointer as child to a group
node. In the second part of the code, the leaf nodes are constructed and added to the group
node at the bottom of the hierarchy (normalRenderG). For some of the nodes, attributes
determining their behavior are set, e.g., using getDirection().set() for a light node.
The example scene graph is shown in Figure A.1.

Algorithm 9 Construction of the example scene graph.
//----- Scene graph setup

root = new VirSeparator();

// Transformations

cartoonTransG = new VirTranslationGroup();
root->addChild(cartoonTransG);

cartoonRotG = new VirRotationGroup();
cartoonTransG->addChild(cartoonRotG);

cartoonScaleG = new VirScaleGroup();
cartoonRotG->addChild(cartoonScaleG);

cartoonOriginTransG = new VirTranslationGroup();
cartoonScaleG->addChild(cartoonOriginTransG);

renderModeSwitchG = new VirSwitchNode();
cartoonOriginTransG->addChild(renderModeSwitchG);
renderModeSwitchG->setChildToTraverse(0);

// Scene graph leaf nodes

normalRenderG = new VirGroupNode();
renderModeSwitchG->addChild(normalRenderG);

normalRenderLight = new VirDirLightNode();
normalRenderLight->getDirection().set(0.0, 0.0, -1.0);
normalRenderLight->setUseIdentityTransformation(true);
normalRenderG->addChild(normalRenderLight);

normalRenderMat = new VirMaterialNode();
normalRenderG->addChild(normalRenderMat);

normalRenderTexEnable = new VirEnableTexture2DNode(false);
normalRenderG->addChild(normalRenderTexEnable);

normalRenderTex = new VirTexture2DNode();
normalRenderG->addChild(normalRenderTex);

normalRenderPolyD = new VirVtkPolyDataNode();
normalRenderG->addChild(normalRenderPolyD);
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Figure A.1: The example scene graph.

In the rendering method of the application, the scene can easily be rendered by calling
the traverse method of the root node, i.e., root->traverse(). This way, the complete
hierarchy is iteratively traversed, and the entire scene is displayed. In order to deallocate the
scene graph when the application object is deleted, only the root node has to be deallocated
with delete root. It is the default behavior of group nodes to recursively delete their
children, leading to an automatic deallocation of the entire scene graph. This also entails the
automatic release of all OpenGL resources allocated by the scene graph (e.g., display lists or
texture objects).
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A.3 ARGUS Application Example

The ARGUS framework is a foundation for augmented reality applications, which served as
the basis for all AR developments described in this thesis. ARGUS is based on the ARToolKit
library, which provides the functionality for video acquisition, camera calibration, and video-
based marker tracking. However, unlike the original ARToolKit software, ARGUS provides an
advanced graphical user interface (GUI) using the Qt toolkit. In order to make the use of Qt in
connection with the ARToolKit software possible, a modified version of the ARToolKit library
was created. The source code of this modified library also resides in the Virtue repository.

Two main classes constitute the core of the ARGUS framework. The ArgMainWindow
class is a Qt main window containing the central GUI for any ARGUS application. It holds
some of the data required for running augmented reality applications and defines the drop-
down menus, menu items, and several dialogs which make up the user interface of the AR ap-
plication. Algorithm 10 demonstrates the construction of a simple ARGUS main window. The
application code simply has to derive a window class of its own from ArgMainWindow. The
main window class then typically holds a pointer to an object derived from the second central
ARGUS class, ArgGLWidget. This pointer is initialized in the constructor with a newly allo-
cated object. As one peculiarity of the ARGUS framework, the ArgGLWidget-derived object
must be made known to the main window using the method setArgGLWidget, preferably
during the initialization process. This way, the correct connections between the main window
and its OpenGL widget are created.

Algorithm 11 shows an example for the typical use of the ArgGLWidget class. The
ARGUS application class derives a class of its own from ArgGLWidget. The superclass pro-
vides all the necessary functionality for running the actual augmented reality application, e.g.,
video acquisition and marker tracking, as well as some simple standard graphical displays. The
derived class only has to implement some abstract methods, in particular initializeAR()
and renderAR(). These replace the normal OpenGL callbacks found in conventional win-
dowing frameworks. In initializeAR(), all the required OpenGL initialization code
should be executed. renderAR() is the central method of the ARGUS OpenGL widget
class and is supposed to contain the application-specific rendering code. In the example code
in Algorithm 11, an example scene graph is constructed in initSceneGraph() (details are
left out of the code) and then rendered with a call to root->traverse() in renderAR().

In order to generate a basic ARGUS application, it is sufficient to derive application-
specific classes from ArgMainWindow and ArgGLWidget and create the corresponding
objects. The main window contains the required user interface for basic augmented reality
tasks, but also for infrared tracking and calibration using the image guided surgery device.
Moreover, some utility functionality like benchmarking options and frame grabbing are pro-
vided. The ARGUS application can extend this user interface in order to provide access to its
own functionality.
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Algorithm 10 Example code for a simple ARGUS main window.
Main window header file (ArtMainWindow.h):

#include "ArgMainWindow.h"

class ArtGLWidget;

class ArtMainWindow : public ArgMainWindow {
private:

QWidget *arParentWidget;
ArtGLWidget *artGLWidget;

void makeUI();

protected:
public:

ArtMainWindow(QApplication *app = 0, QWidget *parent = 0,
const char *name = 0);

˜ArtMainWindow();
};

Main window implementation file (ArtMainWindow.cpp):

#include "ArtGLWidget.h"

#include "ArtMainWindow.h"

void ArtMainWindow::makeUI()
{

arParentWidget = new QWidget(this);
setCentralWidget(arParentWidget);

artGLWidget = new ArtGLWidget(arParentWidget, getTheApp());
setArgGLWidget(artGLWidget);

}

ArtMainWindow::ArtMainWindow(QApplication *app, QWidget *parent,
const char *name)

: ArgMainWindow(app, parent, name)
{

setCaption("ARGUS Test");
makeUI();

}

ArtMainWindow::˜ArtMainWindow()
{ }
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Algorithm 11 Example code for a simple ARGUS OpenGL widget.
OpenGL widget header file (ArtGLWidget.h):

#include "ArgGLWidget.h"

class ArtGLWidget : public ArgGLWidget {
private:

void initSceneGraph();

protected:
virtual void initializeAR();
virtual void renderAR();

public:
ArtGLWidget(QWidget *parent = 0, QApplication * app = 0,

const char *name = 0);
virtual ˜ArtGLWidget();

};

OpenGL widget implementation file (ArtGLWidget.cpp):

#include "ArtGLWidget.h"

void ArtGLWidget::initSceneGraph()
{

// Build scene graph
}

void ArtGLWidget::initializeAR()
{

initSceneGraph();
}

void ArtGLWidget::renderAR()
{

root->traverse();
}

ArtGLWidget::ArtGLWidget(QWidget *parent, QApplication * app,
const char *name)

: ArgGLWidget(parent, app, name)
{ }

ArtGLWidget::˜ArtGLWidget()
{ }
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APPENDIX B

Coding Conventions

B.1 Introduction

In this appendix, the coding conventions applied for the software framework and research
projects described in this thesis are discussed. This coding styleguide mainly covers rules for
C++ programming, but also some general project management aspects. The complete original
styleguide is reproduced in Section B.2. These coding conventions were also used for student
and diploma theses based on the Virtue framework, as well as some other related projects like
Helios/Fire (by Ángel del Rı́o) and Volv (by Matthias Pfeifle).

B.2 The Original Coding Styleguide of the Virtue Project

Programming Language, Features, Portability

All parts of the project are to be written in pure C++, using object oriented methodology wher-
ever possible. The use of global variables, functions and constants should be strictly limited to
cases where they are absolutely unavoidable. An example of this are the (rare) callback mech-
anisms of some APIs (like GLUT’s display callback or Open Inventor’s SoCallback node).

All data and functionality beyond what is absolutely required for the main program is to
be put into C++ classes. Classical C constructs like structs and #define constants and macros
should be avoided in favor of their typesafe and access-limited C++ counterparts.

As much code as possible should be independent from the platform used (OS and/or com-
puter system). If any part of the code is specific to a certain platform, it should be encapsuled,
preferably in a class of its own. Conditional compilation for this purpose should be used as
little as possible.
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Object Oriented Programming

Whenever data types and classes share a subset of their data structure or functionality, it should
be put into a common base class.

Within each class, all member variables are to be declared as private variables to
ensure data encapsulation. Access to member data should be only possible through special
access methods. In order to provide a uniform way of accessing private variables, a simple
naming convention is to be followed for these access methods (see Section “Methods”).

The extremely rare exception to the private-variables-only rule are classes which consist
of public variables only. Such classes have a similar role as data structures in pure C programs.
These data-only classes provide a fast way of manipulating data structures, but can only be
used when no data consistency must be ensured. An example of such a data-only class is a
simple 3-d vector class:

class Vector3d {
public:

double x, y, z;

Vector3d() { }
˜Vector3d() { }

};

Base APIs and Libraries to be used

The following libraries and APIs should be used preferredly whenever the respective function-
ality is required:

• C++ standard library and IOStreams library (advanced data structures, algorithms, stan-
dard I/O)

• Qt (GUI, OpenGL rendering context, certain OS-independent services, XML services)

• OpenGL (all types of hardware-accelerated rendering)

• GLEW, the OpenGL Extension Wrangler Library (access to OpenGL extensions, and in
particular the OpenGL Shading Language)

• VTK for volume input/output, direct volume rendering, basic image processing and iso-
surface extraction

• Classes from the Virtue repository for the OpenGL-based Virtue scene graph, de-
bug output classes, benchmarking functionality, AR base functionality etc. for software
written in the context of Virtue and ARGUS projects

The use of system-specific libraries and APIs (e.g. the Win32 API or Linux-specific func-
tions) is to be avoided.
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Editor Settings

The C++ source code has to be saved without any tab characters. Indentations must always
be converted to regular spaces to ensure compatibility with as many editors as possible.

As explained below, indentations should consist of four space characters each.

Directory and File Structure

Each project should be given a directory of its own. If the project is important or consists of
many files, there should be an include and a src directory for the header and the code files
respectively.

MyProject
+-include
+-src

Compiler and IDE specific files and directory structures (e.g. Visual Studio Workspaces)
should be located seperately to keep the project sourcecode itself as pure as possible.

MyProject
+-include
+-src
+-VSWorkpace

Simple/small projects (like test programs) can have a flat directory structure, which can be
located within the main project directory.

MyProject
+-include
+-src
+-tests
+-IOTest (sources and headers)
+-DebugTest (sources and headers)

+-VSWorkspace

Big projects can also be split into several subdirectories, each containing both an include
and a src directory.

C++ source files must have the file extension .cpp, header files the extension .h. Each
pair of source and header file should normally correspond to a single C++ class. The filenames
should be exactly the same as the name of the contained class (including case-sensitivity).
Template classes are the exception to this rule. Template classes are to be written exclusively
in a header file in order to avoid compilation problems.

Qt designer files (*.ui and ui.h) and qmake project files (*.pro) should be placed in
the directory of the respective source code.
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Naming Conventions

All names and identifiers used in a project should be chosen to be as understandable and self-
explanatory as possible. Long and readable identifiers should be used rather than short ones.
All names must be in English (including variable names used within the code). The names of
all kinds of datatypes have to start with a capital letter. This includes classes, enumerations,
structs and typedefs. The subsequent characters usually are lowercase, with the exception of
new words or word parts in the identifier. Normally only letters and digits are used. Examples:

class Vector3
class VvcError
enum AugFileType

Symbolic constants consist entirely of capital letters. Words or word parts within symbolic
constants are divided by the underscore character ( ). Examples:

const int VIR BUFFER SIZE
#define MAX ERRORS

Other identifiers start with a lowercase letter but otherwise follow the same rules as class
names. This includes names for methods and all types of variables (instance variables, global
variables etc.). Examples:

void getValue()
int curNumber
int getElement(int whichElement)

Namespaces

Namespace collisions (i.e. multiple use of identical identifiers) should be avoided. In order to
achieve this, a prefix indicating the current project is to be added to the beginning of all class
identifiers. Examples:

VirError - class name in the Virtue project (Vir...)
VvcEndianStream - class name in the VVC project (Vvc...)

Note that this also means that all file names in the project normally start with the project
prefix (e.g. VirError.h / VirError.cpp or VirColor.h / VirColor.cpp).

The project prefix should also be added to all (global) constants in the project (for instance,
VIR BUFFER SIZE, VVC ERROR CODE).

Alternatively, C++ namespaces can be used for making identifiers unique. Example:

namespace Virtue {
class Vector3 {

:
};

}
Virtue::Vector3 curPos;



B.2. THE ORIGINAL VIRTUE STYLEGUIDE 165

Prefix abbrevations and namespace names should remain the same throughout the entire
project. They must start with a capital letter. The rest of the letters can be upper or lower case
depending on the project. Examples:

project: ISConv
class: ISCViewer
files: ISCViewer.h, ISCViewer.cpp

project: Virtue
class: VirSession
files: VirSession.h, VirSession.cpp

Methods

Method names should always start with a lowercase letter. Operator overloading is to be
limited to cases where the operator functionality is absolutely obvious (e.g., vector addition).

Inline methods should be defined within the class declaration using the respective C++
syntax:

class MyClass {
:

public:
int calcValue(int a, int b) { // keyword "inline" not

// required here
return a + b;

}

:
};

As mentioned above, private variables are to be accessed by means of get/set methods.
These methods should always contain the exact name of the variable to which they provide
access in their identifier. Example:

class MyClass2 {
private:

int numVertices;

public:
int getNumVertices();
void setNumVertices(int newNumVertices);

:
};
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In the method declaration in the header file, parameter names have to be given along with
the parameter types:

class MyClass3 {
:
public:

// Wrong: only parameter types
void wrongMethod(int, int);

// Correct: parameter types AND names in declaration
void correctMethod(int num, int versionNumber);

:
};

Default parameters must be defined in the method declaration in the header file. They
should not be defined in the implementation of the method in the source file.

class MyClass4 {
:
public:

// Correct: initialization in declaration
void initExample(int num = 0, int versionNumber = 1);

:
};

// Wrong: initialization in implementation
void MyClass4::initExample(int num = 0, int versionNumber = 1)
{}

Access Privileges

All class members must be grouped according to their access privileges. Thus private members
(both class variables and methods) must be grouped together during declaration, as well as
protected and public class members, respectively. This means that there must be only one
block of public class members, one of protected (if any) and one of private ones.

class MyClass {
:
public:

void myFirstPublicMethod();
void mySecondPublicMethod();

protected:
void myFirstProtectedMethod();
void mySecondProtectedMethod();

private:
myFirstPrivateMethod();
:
int privateIntVar;
char privateCharVar;

:
};
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Only in exceptional cases, when it is absolutely unavoidable, there can be two different
blocks of the same access privilege type. One example is when using enum within a class. The
enum must be a public member of the class, therefore the public group can be split in this case
into two different blocks.

class MyClass {
:
public:

enum MyEnum { ONE, TWO, THREE };
private:

myFirstPrivateMethod();
:
int privateIntVar;
char privateCharVar;

public:
myFirstPublicMethod();
mySecondPublicMethod();

:
};

The order in which the different member access groups are written is left to each devel-
oper’s like.

Project Code Documentation

Classes which are mostly finished and are not going to change significantly anymore should
be documented extensively. The automatic documentation generation tool doxygen is to be
used for code documentation. All code should be documented according to the documentation
syntax of doxygen.

The documentation blocks should use the JavaDoc style:

/// Brief class description
/** This is the full description of the class DocExample...

* :

* :

*/
class DocExample {

:
};

The "autobrief" option of doxygen should not be used, so that brief descriptions have to
be given explicitly (as shown in the above example).
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Within the implementation code, all parts which are complicated or non-obvious should
also be documented extensively, using standard C++ comments:

/** <doxygen comment block>

* :

* :

*
*/

int MyClass::runAlgorithm()
{

:
// Process all values in the input array
for(int loop = 0; loop < inputValues.size(); loop++) {

sum += inputValues[loop].val; // Calculate total sum for
// statistics

:
}
:

}
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