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Introduction

We start from a uniform distribution of heat in a compact subset D of Rn represented
by the characteristic function 1D of D. Then the heat semigroup (T (t))t≥0 on L2(Rn),
applied to 1D, gives the unique solution u(x, t) = T (t)1D(x) of the heat equation

(HE)

{
d
dt

u(x, t) = ∆u(x, t), x ∈ Rn, t ≥ 0,
u(x, 0) = 1D(x)

on Rn for all times t ≥ 0 with initial data 1D.
This heat flow in particular induces an evolution of the corresponding L2-norms

t 7→ ‖T (t)1D‖L2 , t ≥ 0. (1)

If we adopt the notation

〈f, g〉 :=

∫

Rn

f(x) · g(x) dx

both for the inner product on L2(Rn) and for the duality pairing 〈L1(Rn), L∞(Rn)〉,
then by the semigroup property

T (t + s)1D = T (t)T (s)1D, s, t ≥ 0

and the self-adjointness of the operators T (t) we obtain the following alternative de-
scription for the evolution (1):

〈T (t)1D, 1D〉 = 〈T ( t
2
)1D, T ( t

2
)1D〉 = ‖T ( t

2
)1D‖2

L2 , t ≥ 0. (2)

Since on Rn no heat is lost under diffusion, this also yields

〈T (t)1D, 1Dc〉 = |D| − 〈T (t)1D, 1D〉 = |D| − ‖T ( t
2
)1D‖2

L2 , t ≥ 0. (3)

Observe that, by

〈T (t)1D, 1D〉 =

∫

D

T (t)1D(x) dx and 〈T (t)1D, 1Dc〉 =

∫

Dc

T (t)1D(x) dx,

(2) describes the amount of heat that is, at time t, still inside the set D, while
(3) describes the heat that has flowed into the complement Dc. In this sense the
evolution of the L2-norm (1) directly reflects how good the set D keeps the heat inside.
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M. Ledoux [Led94] discovered that there are interesting connections between the heat
flow into the complement (3) and the perimeter P (D) of D, i.e., area measure of the
boundary ∂D in the sense of geometric measure theory. In particular he proved that
the L2-inequality

‖T (t)1D‖L2 ≤ ‖T (t)1B‖L2 , t ≥ 0, (4)

for a Euclidean ball B and a second compact set D of the same volume implies the
isoperimetric inequality

P (D) ≥ P (B),

i.e., the Euclidean ball has the smallest perimeter under all compact sets of the same
volume.
This is in fact a very interesting conclusion since the L2-inequality (4) can be derived
easily from the Riesz-Sobolev inequality for symmetric rearrangements in Rn, a fact
that, remarkably, was not realized by Ledoux.

In this thesis we present a further systematic treatment of the connections between
properties of the heat flow (1)-(3) and the geometry of D. Our main results concern
the short time behaviour as well as large time phenomena.

In the first chapter we give a brief summary of the analytic and geometric concepts
and results that will be used in the following. We introduce the heat semigroup on
Rn and its main properties. We recall the concept of symmetric rearrangements in
Rn, the Riesz-Sobolev inequality and present the interesting, but rather unknown,
connections between the heat semigroup and rearrangement inequalities. These
connections then lead to a proof of the isoperimetric inequality. Further, we briefly
present the necessary background on perimeters, relevant geometric measure theory
and the basic notions of the geometry of smooth hypersurfaces in Rn.

In Chapter two we focus on the short time behaviour of the flow t 7→ T (t)1D. We
start with a detailed treatment of the evolution of the level sets of T (t)1D and deter-
mine the pointwise asymptotic behaviour for this evolution: We show that for short
times the evolution of the level sets admits an asymptotic expansion in powers of t1/2.
We determine the coefficients up to order t2 in terms of geometric invariants of the
boundary ∂D and give a general formula for the further coefficients of higher order.
We then show that the short time behaviour of the flow (1)-(3) is controlled by the
perimeter of D. We prove this first for a compact set with smooth boundary using the
results obtained for the evolution of the level sets, and then for a Caccioppoli set using
measure theoretic arguments. These results generalise what Ledoux [Led94] proved
for Euclidean balls.
As a consequence we obtain a comparison result stating that for two arbitrary compact
sets A, D ⊂ Rn of the same volume the one with smaller perimeter keeps for small
times the heat better than the other - a fact that corresponds to the isoperimetric
character of inequality (4) but now allows to compare two arbitrary compact sets of
the same volume and not only the Euclidean ball and a second set.
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In the third chapter we concentrate on large time phenomena of the flow (1)-(3). In
particular, we study the analogue of the question treated at the end of Chapter 2:
Given two compact sets A,D ⊂ Rn of the same volume. Which one keeps the heat
better for large times? We again prove a comparison theorem stating now that this
holds for the one which has the smaller second central moment. This again compatibly
corresponds to the inequality (4) since the Euclidean ball minimizes the second central
moment under all sets of a given volume.
In addition we give further criteria on the fourth central moments and on the tensors
of inertia of A and D yielding an answer in case the second central moments are
equal.

We conclude with considerations on the question how much geometry of D is already
determined if we know the flow (1)-(3) on a (maybe small) time interval.
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Chapter 1

Heat diffusion and the
isoperimetric inequality

In this chapter we give a short summary of the notions and results we frequently need
in the following. We introduce the heat semigroup (Section 1.1), symmetric rearrange-
ments of sets and functions, the Riesz-Sobolev inequality (Section 1.2), perimeter, some
measure theoretic background (Section 1.3), connections between the heat semigroup
and the isoperimetric inequality (Section 1.4), and finally the basic notions of the
geometry of smooth hypersurfaces in Rn (Section 1.5).

1.1 The heat semigroup

We consider the heat equation (HE) in Rn

(HE)

{
d
dt

u(x, t) = ∆u(x, t), x ∈ Rn, t ≥ 0,
u(x, 0) = 1D(x),

where the Laplace operator ∆ : D(∆) ⊂ L2(Rn) → L2(Rn) is given by

∆u(x, t) =
n∑

i=1

∂2

∂x2
i

u(x1, ..., xn, t) with domain

D(∆) = W 2,2(Rn),

and where 1D ∈ L2(Rn) denotes the characteristic function of a compact set D ⊂ Rn.

Using, e.g., the Fourier transform we obtain that the Laplace operator (∆,W 2,2(Rn))
generates a strongly continuous, analytic semigroup (T (t))t≥0 of linear operators, the
heat semigroup, on L2(Rn). This semigroup is given explicitly by the integral kernel

p(x, y, t) =
1

(4πt)n/2
e
−|x−y|2

4t , x, y ∈ Rn, t > 0,

called the Gauß-Weierstrass kernel or simply the heat kernel on Rn, and provides the
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unique solution of (HE):

u(t, x) = T (t)1D(x) =

∫

Rn

p(x, y, t) 1D(y) dy

=
1

(4πt)n/2

∫

Rn

e
−|x−y|2

4t 1D(y) dy

=
1

(4πt)n/2

∫

D

e
−|x−y|2

4t dy, x ∈ Rn, t > 0.

Physically speaking, u(t, x) describes the heat flow we obtain if at time t = 0 the heat
is distributed uniformly in the set D and no heat is in the complement of D. Then
the function T (t)1D yields the distribution of heat at time t.

If one studies the behaviour of the solution t 7→ T (t)1D and in particular the evolution
of the L2-norms t 7→ ‖T (t)1D‖L2 for a given compact set D ⊂ Rn, one expects that
it should be closely related to geometric properties of D, such as its volume, its
perimeter and other geometric and/or physical quantities.

Let us further recall the main properties of the heat semigroup (T (t))t≥0 and in
particular the relations between properties of the operator T (t) and properties of the
kernel p(x, y, t).

i) Symmetry of kernel and semigroup

The Gauß-Weierstrass kernel

p(x, y, t) =
1

(4πt)n/2
e
−|x−y|2

4t

is symmetric with respect to the two space variables x, y ∈ Rn. By Fubini’s Theorem
this corresponds to the symmetry of the operator T (t) on L2(Rn) by

〈T (t)1A, 1D〉L2 =

∫

Rn

∫

Rn

p(x, y, t)1A(y) dy 1D(x) dx

=

∫

Rn

∫

Rn

p(x, y, t) 1A(y) 1D(x) dy dx

=

∫

Rn

1A(y)

∫

Rn

p(x, y, t) 1D(x) dx dy

= 〈1A, T (t)1D〉L2 , t > 0.

ii) Semigroup property

Furthermore, the semigroup property

T (t + s)1D = T (t)T (s)1D, s, t > 0,
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is reflected by the well-known ”semigroup formula” for the kernel

p(x, y, t + s) =

∫

Rn

p(x, z, t)p(z, y, s) dz, x, y ∈ Rn, s, t > 0.

In fact, it holds that

T (t)T (s)1D(x) =

∫

Rn

p(z, x, t)
(
T (s)1D(z)

)
dz

=

∫

Rn

p(z, x, t)

∫

Rn

p(z, y, s) 1D(y) dy dz

=

∫

Rn

∫

Rn

p(x, z, t)p(z, y, s) dz

︸ ︷︷ ︸
= p(x,y,t+s)

1D(y) dy

=

∫

Rn

p(x, y, t + s) 1D(y) dy

= T (t + s)1D(x).

iii) Relation between norm and inner product

Now the symmetry and semigroup properties of the operators T (t) yield an elementary
but important relation between the norm and the inner product on the Hilbert space
L2(Rn). Indeed, we have the following identities

‖T ( t
2
)1D‖2

L2 = 〈T ( t
2
)1D, T ( t

2
)1D〉L2 = 〈T ( t

2
)T ( t

2
)1D, 1D〉L2 (1.1)

= 〈T (t)1D, 1D〉L2 =

∫

D

T (t)1D(x) dx, t ≥ 0,

i.e., the square of the L2-norm of the evolution t 7→ T (t)1D at time t
2

is equal to the
amount of heat that is still inside D after time t.

Further the map t 7→ ‖T (t)1D‖2
L2 has the following properties.

Proposition 1. Let D ⊂ Rn be a compact set. Then the map

t 7→ ‖T (t)1D‖2
L2 , t ≥ 0,

is strictly decreasing and strictly convex.
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Proof: The first derivative of ‖T (t)1D‖2
L2 satisfies

d

dt
‖T (t)1D‖2

L2 =
d

dt
〈T (t)1D, T (t)1D〉

= 2 〈 d

dt
T (t)1D, T (t)1D〉

= 2 〈∆T (t)1D, T (t)1D〉
= 2

∫

Rn

∆T (t)1D(x) · T (t)1D(x) dx

= −2

∫

Rn

|∇T (t)1D(x)|2 dx < 0,

so t 7→ ‖T (t)1D‖2
L2 is strictly decreasing. Furthermore

d2

dt2
‖T (t)1D‖2

L2 =
d

dt
2 〈∆T (t)1D, T (t)1D〉

= 2 〈 d

dt
∆T (t)1D, T (t)1D〉+ 2 〈∆T (t)1D,

d

dt
T (t)1D〉

= 2 〈∆ d

dt
T (t)1D, T (t)1D〉+ 2 〈∆T (t)1D, ∆T (t)1D〉

= 4 〈∆T (t)1D, ∆T (t)1D〉 > 0,

so t 7→ ‖T (t)1D‖2
L2 is strictly convex.

Remark 2. Note that, since the heat semigroup (T (t))t≥0 is analytic on L2(Rn), also
the map

t 7→ 〈T (t)1D, 1D〉L2 = ‖T ( t
2
)1D‖2

L2

is analytic for t ∈ (0,∞). So in particular we obtain that for two different compact
sets A,D ⊂ Rn the maps

t 7→ ‖T (t)1A‖L2 and t 7→ ‖T (t)1D‖L2

coincide everywhere if they coincide on an arbitrarily small time interval or even on a
sequence (tn)n∈N with accumulation point in (0,∞).

1.2 Symmetric rearrangements, the Riesz-Sobolev

inequality and an L2-diffusion inequality

We now introduce the notion of symmetric rearrangements in Rn and give a short
overview of the results we need. Most of the material is taken from [LL95], but see
also [Bae94], [Cha01], [HLP52].

In the second part of this section we deduce a very useful L2-diffusion inequality.
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General background

We start with the symmetric rearrangement of sets.

Definition 3. (Rearrangement of sets) Let D ⊂ Rn be a compact set. We define
the symmetric rearrangement D∗ of D to be the closed Euclidean ball centered at the
origin which has the same volume as D:

D∗ := Br(0) = {x ∈ Rn : |x| ≤ r} with r =
( |D|

ωn

)1/n

,

where ωn = |Bn| is the volume of the n-dimensional Euclidean unit ball.

The procedure to define the symmetric-decreasing rearrangement of a characteristic
function is quite intuitive and one simply sets

1∗D := 1D∗ .

This allows us to define the rearrangement of more general functions f : Rn → R.
We call a measurable function f : Rn → R vanishing at infinity if the superlevel sets
of |f |, i.e., the sets

{x ∈ Rn : |f(x)| ≥ λ}

have finite measure for all λ ∈ (0,∞).
The main idea to define the symmetric-decreasing rearrangement for such f is now
that the superlevel sets of f ∗ should be the rearrangements of the level sets of |f |,
namely

{x ∈ Rn : |f(x)| ≥ λ}∗ = {x ∈ Rn : f ∗(x) ≥ λ}, λ ∈ (0,∞).

This is expressed as follows.

Definition 4. (Rearrangement of functions) Let f : Rn → R be a measurable function
vanishing at infinity. The symmetric-decreasing rearrangement f ∗ of f is defined by

f ∗(x) :=

∞∫

0

1∗{x∈Rn:|f(x)|≥λ}(x) dλ, x ∈ Rn.

The definition directly yields that the function f ∗ : Rn → R has the following nice
properties:

(i) f ∗ is positive,
(ii) f ∗ is radially symmetric with respect to the origin,
(iii) f ∗ decreases as |x| increases,
(iv) if f ∈ Lp(Rn), then also f ∗ ∈ Lp(Rn) and ‖f‖Lp = ‖f ∗‖Lp .

Besides these immediate properties of the function f ∗, there are many useful and
nontrivial inequalities comparing integrals of functions before and after symmetric-
decreasing rearrangement. For a whole variety of these inequalities one should consult,
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e.g., [LL97], [Bae94], [Bur96].

Probably the most famous inequality for symmetric-decreasing rearrangements is the
so called Riesz-Sobolev inequality. It was first proved in dimension n = 1 by F. Riesz
[Rie30] and in arbitrary dimensions by S.L. Sobolev [Sob38], [Sob63]. For a modern
proof we refer e.g. to [LL97, Theorem 3.7].

Theorem 5 (Riesz-Sobolev inequality). Let f, g, h be three positive functions on
Rn vanishing at infinity. Then it holds that

∫

Rn

∫

Rn

f(x) g(x− y) h(y) dx dy ≤
∫

Rn

∫

Rn

f ∗(x) g∗(x− y) h∗(y) dx dy, (1.2)

i.e., under symmetric-decreasing rearrangement the value of the double integral does
never decrease.

For the interesting history of this inequality and the question of finding cases of equality
we refer to [Bur96] and the references therein. Under strong conditions on g the
following holds.

Theorem 6. Let f, g, h be three nonnegative functions on Rn such that g(x − y) =
g∗(x− y) and g is strictly decreasing. Then one has equality in (1.2) if and only if

f(x) = f ∗(x− y) and h(x) = h∗(x− y) for some y ∈ Rn,

i.e., only if the functions f, h are already symmetric up to an eventual translation by
y ∈ Rn.

For the proof we again refer to [LL97, Theorem 3.9].

The Riesz-Sobolev inequality as an L2-diffusion inequality

As a very useful application of the Riesz-Sobolev inequality we now obtain the fol-
lowing L2-diffusion inequality for characteristic functions which will have far reaching
consequences. Although the following considerations are quite natural, we could not
find them explicitly in the literature.

Theorem 7 (L2-diffusion inequality). Let D, B ⊂ Rn be compact sets of the same
volume and B a Euclidean ball. Then it holds that

‖T (t)1D‖L2 ≤ ‖T (t)1B‖L2 , t ≥ 0. (1.3)

Further, for t > 0 equality holds if and only if D is also a Euclidean ball. So if D is
not a ball, one has

‖T (t)1D‖L2 < ‖T (t)1B‖L2 , t > 0. (1.4)

Proof: By

‖T (0)1D‖L2 = ‖1D‖L2 =
( ∫

Rn

|1D(x)|2 dx
)1/2

= |D|1/2

6



and condition |D| = |B| one always has equality in (1.3) for t = 0.
For some fixed t > 0 we now apply the Riesz-Sobolev inequality to the characteristic
function 1D and the Euclidean heat kernel p(x, y, t), i.e., we take

f = h = 1D and

g(x− y) = p(x, y, t) =
1

(4πt)n/2
e
−|x−y|2

4t .

Observe that, since p(x, y, t) is positive, radially symmetric and decreasing with
respect to the difference x − y ∈ Rn, it coincides with its symmetric-decreasing
rearrangement: p(x, y, t) = p∗(x, y, t).

Further we may assume that the ball B is centered at the origin. Then with 1∗D = 1B

we obtain the following inequality valid for every t > 0

∫

Rn

∫

Rn

1D(x) p(x, y, t) 1D(y) dx dy ≤
∫

Rn

∫

Rn

1∗D(x) p(x, y, t) 1∗D(y) dx dy

=

∫

Rn

∫

Rn

1B(x) p(x, y, t) 1B(y) dx dy. (1.5)

Note now that∫

Rn

∫

Rn

1D(x) p(x, y, t) 1D(y) dx dy =

∫

Rn

1D(y)

∫

Rn

1D(x) p(x, y, t) dx dy

=

∫

Rn

1D(y) · T (t)1D(y) dy

= 〈1D, T (t)1D〉L2

= ‖T ( t
2
)1D‖2

L2

by the semigroup property and symmetry of T (t), see (1.1). Therefore, inequality (1.5)
is equivalent to

‖T ( t
2
)1D‖2

L2 ≤ ‖T ( t
2
)1B‖2

L2 , t > 0,

i.e., equivalent to

‖T (t)1D‖L2 ≤ ‖T (t)1B‖L2 , t > 0.

This together with the equality for t = 0 proves (1.3).

Further note that for every t > 0 the heat kernel p(x, y, t) is strictly decreasing as the
difference x− y ∈ Rn increases. Then by Theorem 6 one can have equality in (1.3) for
t > 0 only if 1D = 1∗D, i.e., only if D is already a ball.

Remark 8. One of the distinctive properties of the above inequality (1.3) is that it
holds for all times t. When we compare the L2-norms for two arbitrary compact sets
A,D ⊂ Rn of the same volume (cf. Chapter 2 and 3), we see that it is a very special
case to have the L2-inequality for all t. In general, opposite inequality signs may occur
for short and for large times.
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1.3 Functions of bounded variation, perimeter and

measure theoretic notions

We recall the following important definition, see e.g. [AFP00], [BZ88], [EG92], [Giu84].

Definition 9. We say that f ∈ L1(Rn) has bounded variation on Rn if

∫

Rn

|Df | := sup
{ ∫

Rn

f div g dx : g ∈ C1
0(Rn,Rn), |g| ≤ 1

}
< ∞

and write f ∈ BV (Rn).

Using characteristic functions we define the perimeter of a set in the following way
(see e.g. also the original work of E. de Giorgi [DG53]).

Definition 10. Let A ⊂ Rn be a measurable set with finite volume. We define the
perimeter of A to be the variation of the characteristic function 1A in Rn,

P (A) :=

∫

Rn

|D1A| = sup
{ ∫

Rn

1A div g dx : g ∈ C1
0(Rn,Rn), |g| ≤ 1

}
.

The set A ⊂ Rn is called a Caccioppoli set if P (A) < ∞.

Further we denote by Hk(A), 1 ≤ k ≤ n, the k-dimensional Hausdorff measure of a
subset A ⊂ Rn (which coincides with the classical measure for k-dimensional smooth
submanifolds).

For sets A ⊂ Rn with a Lipschitz boundary ∂A one can show that

P (A) = Hn−1(∂A)

(see e.g. [EG92, p. 183f]).

For a measure µ and a measurable set A, we define by µ A the restriction measure,
i.e.,

µ A(D) := µ(A ∩D)

for all measurable sets D.

Definition 11. For a measurable set A and t ∈ [0, 1] we denote by At the set

At :=
{

x ∈ Rn : lim
r→0

|A ∩Br(x)|
|Br| = t

}
. (1.6)

This set is called the set of points of density t and we define the essential boundary
(often also called the measure theoretic boundary) of A as

∂∗A := Rn \ (A0 ∪ A1).

8



The reduced boundary FA of A is defined as follows: If A ⊂ Rn is a Caccioppoli set,
then x ∈ supp |D1A| belongs to FA if the limit

νA(x) := lim
r→0

D1A(Br(x))

|D1A|(Br(x))

exists in Rn and satisfies |νA(x)| = 1. The map νA : FA → Sn−1 is called the
generalised (or measure theoretic) inner normal to A, and (see e.g. [AFP00, Theorem
3.59]) for every x ∈ FA the hyperplane πx = {y ∈ Rn : 〈y, νA(x)〉 = 0} is the
approximate tangent space to FA at x.

Moreover (see e.g. [AFP00, Theorem 3.78]), it holds that

Hn−1(∂∗A \ FA) = 0 (1.7)

and

Hn−1(Rn \ [(A0 ∪ A1) ∪ FA]) = 0. (1.8)

Thus the distributional derivative of 1A is given by the Rn-valued measure

D1A = νAHn−1 FA. (1.9)

Further
|D1A| = Hn−1 FA, (1.10)

and in particular

P (A) = Hn−1(FA). (1.11)

As a consequence, for Caccioppoli sets a generalised Gauß-Green formula (see e.g.
[AFP00, Theorem 3.36])

∫

A

div ϕdx = −
∫

Rn

〈ϕ, νA〉 d|D1A|

= −
∫

FA

〈ϕ, νA〉 dHn−1, ϕ ∈ C1
0(Rn,Rn), (1.12)

holds.

1.4 From the L2-diffusion inequality to the

isoperimetric inequality

Apart from being a nice consequence of the Riesz-Sobolev inequality, the L2-diffusion
inequality has interesting relations with the isoperimetric inequality. M. Ledoux
[Led94] discovered that the L2-diffusion inequality

‖T (t)1A‖L2 ≤ ‖T (t)1B‖L2 , t ≥ 0, (1.13)

9



implies the isoperimetric inequality.

Observe that we use the notation

〈f, g〉 =

∫

Rn

f(x)g(x) dx

not only for the inner product in L2(Rn) but also for the dual pairing when f ∈ Lp(Rn)
and g ∈ Lq(Rn), 1

p
+ 1

q
= 1.

In particular we will look at the pairing 〈T (t)1A, 1Ac〉 which physically represents the
amount of heat that has flowed out of A into the complement Ac after time t.

Using semigroup properties of (T (t))t≥0 and further analysis for the explicit formula
of the heat kernel one can prove that for every Caccioppoli set A ⊂ Rn this pairing
satisfies the following estimate, see [Led94] and [Pre04].

Proposition 12. Let A ⊂ Rn be a Caccioppoli set. Then

〈T (t)1A, 1Ac〉 ≤
√

t√
π

P (A) (1.14)

holds for all t ≥ 0.

Furthermore M. Ledoux proved that the bound (1.14) is optimal for a Euclidean ball
as t → 0:

Proposition 13. For B a Euclidean ball in Rn it holds

lim
t↘0

√
π√
t
〈T (t)1B, 1Bc〉 = P (B). (1.15)

Now the isoperimetric inequality can be deduced as follows: First, by the relation (see
Section 1.1)

‖T ( t
2
)1A‖2

L2 = 〈T (t)1A, 1A〉L2

we rewrite the L2-inequality (1.13) as

〈T (t)1A, 1A〉 ≤ 〈T (t)1B, 1B〉, t ≥ 0. (1.16)

Using the elementary relations

|A| = 〈T (t)1A, 1Rn〉 = 〈T (t)1A, 1A〉+ 〈T (t)1A, 1Ac〉, t ≥ 0,

|B| = 〈T (t)1B, 1Rn〉 = 〈T (t)1B, 1B〉+ 〈T (t)1B, 1Bc〉, t ≥ 0

and the fact that A and B have the same volume, it follows that (1.16) is equivalent
to

〈T (t)1A, 1Ac〉 ≥ 〈T (t)1B, 1Bc〉, t ≥ 0.

So with Propositions 12 and 13 we obtain that

P (A) ≥ lim
t↘0

√
π√
t
〈T (t)1A, 1Ac〉 ≥ lim

t↘0

√
π√
t
〈T (t)1B, 1Bc〉 = P (B),

i.e.,

P (A) ≥ P (B),

which is the isoperimetric inequality for Caccioppoli sets in Rn.
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1.5 Geometry of hypersurfaces in Rn

We briefly introduce some notation from the theory of smooth hypersurfaces in Rn,
needed to describe the asymptotic expansions of the evolution of level sets in the next
chapter.
We first recall some general facts about the metric, second fundamental form and
mean curvature of hypersurfaces in Rn which are locally given as graphs. Then the
corresponding formulas with respect to local normal coordinates will be given.

General notations

Let Σ ⊂ Rn be a smooth hypersurface. For every parametrisation F : Rn−1 ⊃ U → Σ
of Σ a natural basis of the tangent space TpΣ at p = F (x) is given by the set of the
n− 1 tangent vectors

∂F

∂x1

(x), ...,
∂F

∂xn−1

(x).

Recall that locally we can always represent Σ as graph of a smooth function, i.e., for
every p ∈ Σ we find an open set Ω ⊂ Rn−1 and a smooth function u : Ω → R such
that F (x) = (x, u(x)) is a local parametrisation of Σ. In this representation the basis
vectors { ∂F

∂xi
}1≤i≤n−1 at p = (x, u(x)) ∈ Σ take the form

∂F

∂xi

(x) = (0, ..., 0,
(i)

1 , 0, ..., Diu(x)).

Hence the coefficients gij of the induced metric g with respect to { ∂F
∂xi
}1≤i≤n−1 are

given by

gij =
〈∂F

∂xi

(x),
∂F

∂xj

(x)
〉
Rn

=
〈
(0, ..., 0,

(i)

1 , 0, ..., Diu(x)), (0, ..., 0,
(j)

1 , 0, ..., Dju(x))
〉
Rn

= δij + Diu(x) ·Dju(x), 1 ≤ i, j ≤ n− 1, (1.17)

where 〈·, ·〉Rn denotes the standard scalar product in Rn.

A unit normal vector ν at p = (x, u(x)) is given by

ν(p) =
(−Du(x), 1)√
1 + |Du(x)|2

and its differential Dν(p), the Weingarten operator, is a self-adjoint linear map on
TpΣ with respect to the metric g. Its n−1 real eigenvalues λ1, ..., λn−1 are called
principal curvatures of Σ at p, and the corresponding eigenvectors are the principal
curvature directions.

Given the metric g and the Weingarten operator Dν at p ∈ Σ we define by

A(X,Y ) := 〈Dν(p)X,Y 〉g, X, Y ∈ TpΣ

the second fundamental form A which, by the self-adjointness of Dν, is a bilinear
symmetric form on TpΣ.

11



We denote by hij the coefficients of A. With respect to the basis { ∂F
∂xi
}1≤i≤n−1 of TpΣ

they are given by

hij = A
(∂F

∂xi

(x),
∂F

∂xj

(x)
)
,

and, in case Σ is parametrised as graph of a smooth function u, we have

hij =
−DiDju√
1 + |Du|2 . (1.18)

The trace of the Weingarten operator Dν at p, i.e., the sum of the principal curvatures
λ1 + λ2 + ... + λn−1, is the mean curvature H of Σ at p. In terms of the metric g and
the second fundamental form A it can be expressed as H =

∑
ij

gijhij =
∑
i

hi
i.

We further denote by |A|2 the squared norm of A. In terms of the coefficients hij

it becomes |A|2 =
∑
ijkl

gijgklhikhjl =
∑
il

hl
i h

i
l and in terms of the principle curvatures

|A|2 = λ2
1 + λ2

2 + ... + λ2
n−1.

In the following we will also need the quantity tr A3, the trace of the third power of
A. It can be expressed as tr A3 =

∑
ijk

hj
i hk

j hi
k and in terms of the principal curvatures

as tr A3 = λ3
1 + λ3

2 + ... + λ3
n−1.

Finally, the Christoffel symbols of the metric gij are given by

Γk
ij =

1

2

∑

l

gkl
( ∂

∂xi

gjl +
∂

∂xj

gil − ∂

∂xl

gij

)
. (1.19)

Normal coordinate systems and geometry of ∂D

Let D ⊂ Rn be a compact set with smooth boundary ∂D which is a smooth closed
hypersurface in Rn. We fix a point p ∈ ∂D. After translation and rotation of D in Rn,
we may assume that p coincides with the origin of Rn and the outer unit normal vector
~ν(p) at ∂D in p is given by the n-th standard unit normal vector en = (0, 0, ..., 1) of
Rn.
We call such a coordinate system a local normal coordinate system at p with respect to
∂D since in these coordinates the boundary ∂D can be represented locally around p as
graph of a smooth function u : U ⊂ Rn−1 → R satisfying (since Rn−1 × {0} coincides
with the tangent plane Tp(∂D))

u(0) = 0 and Du(0) = 0. (1.20)

Then it follows from (1.17) and (1.18) that with respect to these coordinates the
coefficients of the metric g = gij and of the second fundamental form A = hij of ∂D
at p are given by

gij = δij and hij(p) = −DiDju(0).

12



So the coefficients hij are the negative of the components of the Hessian of u at 0. We
can further determine the mean curvature H of ∂D at p as

H(p) =
∑
i,j

δijhij(p) = −
∑

i

DiDiu(0) = −∆u(0),

i.e., given by minus the Laplacian of the representation u of ∂D.

Further (1.17) and (1.20) at p imply

∂

∂xk

gij = DkDiu ·Dju + Diu ·DkDju = 0. (1.21)

In particular it holds Γk
ij = 0 at p.
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Chapter 2

Diffusion of characteristic
functions: Short time behaviour

In this chapter we study the short time behaviour of the flow t 7→ T (t)1D and of the
maps

t 7→ 〈T (t)1D, 1Dc〉 and t 7→ ‖T (t)1D‖L2 ,

respectively. In particular we pursue two main aims:

In the first part we present a detailed treatment of the short time evolution of the
level sets of t 7→ T (t)1D and determine the pointwise asymptotic behaviour for this
evolution: We show that for short times the evolution of the level sets admits an
asymptotic expansion in powers of t1/2. We determine the coefficients up to order t2

in terms of geometric invariants of the boundary ∂D and give a general formula for
the coefficients of higher order.
Related questions on level sets have been studied by [Eva93], [BMO94] and [Cha04].
In particular, the analytic techniques used in the proof of Proposition 18 and Theorem
19 go back to L.C. Evans [Eva93] who studied approximation of (nonlinear) mean
curvature flow by (linear) heat flows starting from characteristic functions.

Our second aim is to generalise M. Ledoux’s result (see Chapter 1, Proposition 13) by
proving that the formula

lim
t→0

√
π√
t
〈T (t)1D, 1Dc〉 = P (D) (2.1)

holds for compact sets with smooth boundary and even for all Caccioppoli sets in Rn.

We will treat this question from two different points of view: For a compact set D ⊂ Rn

with smooth boundary we first apply the above results on the asymptotic expansion
for the level sets to deduce (2.1).
The second approach, using methods from geometric measure theory, allows to prove
(2.1) even for all Caccioppoli sets in Rn, but gives less insight into the ”geometric
nature” of the flow.
This last result was obtained in collaboration with M. Miranda (jr), D. Pallara and F.
Paronetto (see [MPPP05]) and the proof is based on the measure-theoretic properties
of the reduced boundary FD of D.
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2.1 Asymptotic expansion for the evolution

of level sets

For a given compact set D ⊂ Rn with smooth boundary ∂D we now study the evolution
of level sets in Rn induced by the heat flow t 7→ T (t)1D. In other words, we treat the
time dependent motion of subsets in Rn on which the function T (t)1D : Rn → (0, 1)
takes a given value λ ∈ (0, 1). To be precise we define the following.

Definition 14. Given a compact set D ⊂ Rn. For λ ∈ (0, 1) we call

t 7→ Dλ(t) := {x ∈ Rn : T (t)1D(x) = λ}

the evolution of level sets induced by the heat flow t 7→ T (t)1D.

Physically this means that we consider the evolution of subsets in Rn of constant
temperature λ ∈ (0, 1), when the initial heat distribution is given by the char-
acteristic function 1D. Note that, since the function T (t)1D is smooth for every
t > 0, by the implicit function theorem the level set Dλ(t) will be a smooth hypersur-
face in Rn if λ is a regular value of T (t)1D, i.e., if ∇T (t)1D(x) 6= 0 for every x ∈ Dλ(t).

We need the following definition in order to understand how a given value of λ ∈ (0, 1),
i.e., the height of the level, influences the motion of the level set Dλ(t). We intuitively
expect that the motion of level sets will depend on the local geometry of ∂D but also
on the concrete choice of the level λ.

Definition 15. We define a Gaussian error function Φ : R→ (0, 1) by

Φ(x) :=
1√
4π

x∫

−∞

e
−z2

4 dz.

Since Φ is bijective, we denote its inverse by

cλ := Φ−1(λ), λ ∈ (0, 1),

i.e., cλ is the unique real number such that

1√
4π

cλ∫

−∞

e
−z2

4 dz = λ.

The function z 7→ e
−z2

4 has no elementary primitive function, thus no concrete formula
for cλ can be expected.

Remark 16. By the definition of Φ we have the following properties

lim
x→−∞

Φ(x) = 0, lim
x→∞

Φ(x) = 1, Φ(0) =
1

2
.

16



In particular, it holds that

cλ < 0 if 0 < λ <
1

2
,

cλ = 0 if λ =
1

2
,

cλ > 0 if
1

2
< λ < 1.

The most important tool to study the geometric evolution of t 7→ T (t)1D will be the
normal distance function which we define as follows.

Definition 17. Given a compact set D ⊂ Rn with smooth boundary, a point p ∈ ∂D
and a level λ ∈ (0, 1). We define dλ(t) to be the real valued function of t such that

p + dλ(t) · ~ν(p) ∈ Dλ(t),

i.e., dλ(t) gives the normal distance the level set Dλ(t) has moved away from ∂D after
time t. We call dλ(t) the normal distance function with respect to the level λ.

Note that, since for every λ ∈ (0, 1) the level set Dλ(t) will become empty after a
certain time, dλ(t) is never defined on the whole of (0,∞). In particular, for λ close
to 1, dλ(t) will be defined only for very short time intervals.

In order to illustrate the method how to obtain the asymptotic expansion for the nor-
mal distance function dλ(t) we start in the next subsection with the one-dimensional
case and then proceed with the (more complicated) n-dimensional situation where
the geometry of the boundary comes into play.

The one-dimensional case

Let D ⊂ R be a compact interval and denote by t 7→ T (t)1D the heat flow starting
from its characteristic function 1D. Here, the ”normal” distance dλ(t) simply becomes
the distance between the level set Dλ(t) and the boundary ∂D.

We obtain the following result for its asymptotic behaviour as t → 0.

Proposition 18 (Asymptotic behaviour of the distance; one-dimensional).
Let D ⊂ R be a compact interval. Then the distance function dλ(t) describing the
evolution of level sets Dλ(t) for a given level λ ∈ (0, 1) has the following asymptotic
behaviour

dλ(t) = −cλt
1/2 + O(e−α/t) as t → 0. (2.2)

Proof: By translation invariance of heat diffusion we may assume that D = [−a, 0] for
some a > 0. We take x = dλ(t) and consider

λ = T (t)1D(x) = T (t)1D(dλ(t)).

The integral representation of T (t)1D(x) then yields

λ =
1√
4πt

∫

D

e
−|y−dλ(t)|2

4t dy =
1√
4πt

∫ 0

−a

e
−|y−dλ(t)|2

4t dy.
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In order to eliminate the t-dependence in the exponential function, we change variables
by setting z := y−dλ(t)

t1/2 and obtain

λ =
1

2
√

π

∫ −dλ(t)

t1/2

−a+dλ(t)

t1/2

e
−z2

4 dz.

Now, since

1

2
√

π

∫ −dλ(t)

t1/2

−∞
e
−z2

4 dz =
1

2
√

π

∫ −a+dλ(t)

t1/2

−∞
e
−z2

4 dz

︸ ︷︷ ︸
= O(e−α/t)

+
1

2
√

π

∫ −dλ(t)

t1/2

−a+dλ(t)

t1/2

e
−z2

4 dz

︸ ︷︷ ︸
= λ

,

(where the first integral on the right hand side tends exponentially to zero since

−a+dλ(t)

t1/2 → −∞ sufficiently fast as t → 0), it holds that

1

2
√

π

∫ −dλ(t)

t1/2

−∞
e
−z2

4 dz = λ + O(e−α/t). (2.3)

We choose cλ = Φ−1(λ) (cf. Definition 15) such that

1

2
√

π

∫ cλ

−∞
e
−z2

4 dz = λ

and rewrite (2.3) as

λ =
1

2
√

π

∫ cλ

−∞
e
−z2

4 dz +
1

2
√

π

∫ −dλ(t)

t1/2

cλ

e
−z2

4 dz + O(e−α/t)

= λ +
1

2
√

π

∫ −dλ(t)

t1/2

cλ

e
−z2

4 dz + O(e−α/t).

After subtracting λ on both sides and omitting the constant 1
2
√

π
we obtain

∫ −dλ(t)

t1/2

cλ

e
−z2

4 dz = O(e−α/t), (2.4)

which will be crucial in order to determine the asymptotic behaviour of dλ(t) as t → 0.

Since e
−z2

4 is strictly positive, (2.4) implies that the length of the integration interval
has to go to zero. To conclude the proof it only remains to show that the convergence
is exponentially fast.
Since we are interested in the asymptotic behaviour as t → 0, we fix a small time
t0 > 0 and determine a lower bound for the integral (2.4). Therefore we denote its
integration interval by

I(t) := [cλ,
−dλ(t)

t1/2
]
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and its length by

|I(t)| := −dλ(t)

t1/2
− cλ.

We further set

K := min
0<t<t0

{e−z2

4 : z ∈ I(t)}.

Since the lengths of the intervals I(t) are uniformly bounded from above for 0 < t < t0,
the exponential function can not get arbitrarily close to zero. Therefore K is strictly
positive.

We now take the product of K and the length |I(t)| of the integration interval and
obtain a lower bound for (2.4)

0 < K · |I(t)| <
∫ −dλ(t)

t1/2

cλ

e
−z2

4 dz, 0 < t < t0,

which implies

|I(t)| = O(e−α/t).

Therefore

−dλ(t)

t1/2
− cλ = O(e−α/t),

i.e.,

dλ(t) = −cλt
1/2 + O(e−α/t).

We now come to the n-dimensional situation.

The n-dimensional case

We take D ⊂ Rn to be a compact set with smooth boundary. Our main theorem on
the asymptotic expansion of the evolution of the level sets Dλ(t) is the following. The
proof will be given successively in the next sections.

Theorem 19 (Asymptotic behaviour of the normal distance; n-dimensional).
The normal distance function dλ(t) describing the evolution of the level sets Dλ(t) for
a given level λ ∈ (0, 1) admits an asymptotic expansion in powers of t1/2

dλ(t) = a1/2t
1/2 + a1t + a3/2t

3/2 + a2t
2 + ... + akt

k + O(tk+1) as t → 0. (2.5)

The first five coefficients can be computed explicitly as

a1/2 = −cλ,

a1 = ∆u = −H,

a3/2 = 0,

a2 =
1

2
∆2u = −1

2
(4∂DH + H|A|2 + 2 tr A3),

a5/2 = 0,
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i.e., the normal distance between ∂D and Dλ(t) behaves asymptotically as

dλ(t) = −t1/2cλ − tH − t2

2
(4∂DH + H|A|2 + 2 tr A3) + O(t3) as t → 0.

Remark 20. (i) Note that in the expansion of dλ(t) we have a strict separation between
the height of the level λ and geometric quantities of ∂D: The asymptotic behaviour
in order t1/2 is completely independent of the geometry of ∂D, whereas the behaviour
of dλ(t) in higher orders is independent of λ and only depends on the geometry of ∂D.

(ii) Since the leading coefficient in the expansion is given by −cλ and geometric quanti-
ties occur first in order t, we see that the short time evolution of the level sets Dλ(t) is
(in the lowest order t1/2) governed by the value of λ. Since −cλ is positive if λ ∈ (0, 1

2
)

and negative if λ ∈ (1
2
, 1), we obtain that for short times the evolution of the level

sets Dλ(t) is directed to the complement of D if λ ∈ (0, 1
2
) and to the interior of D if

λ ∈ (1
2
, 1), as one would expect intuitively.

(iii) The expansion gives a deep insight into the geometric nature of heat flows starting
from characteristic functions: The coefficient −cλ in order t1/2 is responsible for the
”rough” diffusion of the heat contained in D without recognizing the geometry of
∂D. Simultanously with the coefficient −H in order t the heat equation immediately
optimizes the ”shape” of the level sets Dλ(t) since the flow of a closed surface in outer
normal direction by minus its mean curvature (the classical mean curvature flow) is
the gradient flow for the area functional, i.e., it is the optimal geometric flow in order
to minimize the surface area. So, for short times, apart from only diffusing the heat
from D into Dc through the boundary ∂D, the heat semigroup does this in a physically
optimal way.

(iv) From the coefficients cλ we also recover the infinite speed of propagation of heat
diffusion: For small t > 0 and every positive distance d we find a (maybe very low)
level λ such that the level set Dλ(t) has distance from ∂D greater than d.

Proof: Given a fixed point p ∈ ∂D. According to Chapter 1, Section 1.5 we take a
normal coordinate system at p ∈ ∂D such that p = 0 and ~ν(p) = (0, 0, ..., 1). Let
Q := QRn = {x ∈ Rn : |xi| ≤ 1, i = 1, ..., n} be the unit cube in Rn and Q̃ := QRn−1

the corresponding unit cube in Rn−1.
We assume that within the unit cube Q the boundary ∂D is represented by the graph
of a smooth function ũ : Q̃ ⊂ Rn−1 → R such that |ũ(ỹ)| < 1 for ỹ ∈ Q̃. For technical
reasons we extend ũ from Q̃ to a bounded smooth function u : Rn−1 → R on the
whole of Rn−1.

We take x = (0, 0, ..., dλ(t)) and consider

λ = T (t)1D(x) = T (t)1D(0, 0, ..., dλ(t)).

The integral representation of T (t)1D(x) then yields

λ =
1

(4πt)n/2

∫

D

e
−|y−(0,0,...,dλ(t))|2

4t dy =
1

(4πt)n/2

∫

D

e
−|ỹ|2−(yn−dλ(t))2

4t dy.
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We reduce our consideration to the unit cube Q around p = 0 since the short time
influence coming from outside Q will become exponentially small as t → 0, i.e.,

λ =
1

(4πt)n/2

∫

D∩Q

e
−|ỹ|2−(yn−dλ(t))2

4t dy +
1

(4πt)n/2

∫

D\Q
e
−|ỹ|2−(yn−dλ(t))2

4t dy

=
1

(4πt)n/2

∫

Q̃

∫ u(ỹ)

−1

e
−|ỹ|2−(yn−dλ(t))2

4t dyndỹ + O(e−α/t)

for some α > 0. Now, in order to eliminate the t-dependence in the exponential
function, we change variables by setting (z̃, zn) := ( ỹ

t1/2 ,
yn−dλ(t)

t1/2 ) and obtain

λ =
1

(4π)n/2

∫
Q̃

t1/2

∫ u(t1/2z̃)−dλ(t)

t1/2

− 1+dλ(t)

t1/2

e
−|z̃|2−z2

n
4 dzndz̃ + O(e−α/t)

=
1

(4π)n/2

∫
Q̃

t1/2

e
−|z̃|2

4

∫ u(t1/2z̃)−dλ(t)

t1/2

− 1+dλ(t)

t1/2

e
−z2

n
4 dzndz̃ + O(e−α/t).

Now, since

1

(4π)n/2

∫

Rn−1

e
−|z̃|2

4

∫ u(t1/2z̃)−dλ(t)

t1/2

−∞
e
−z2

n
4 dzndz̃

=
1

(4π)n/2

∫

Rn−1

e
−|z̃|2

4

( ∫ − 1+dλ(t)

t1/2

−∞
e
−z2

n
4 dzn +

∫ u(t1/2z̃)−dλ(t)

t1/2

− 1+dλ(t)

t1/2

e
−z2

n
4 dzn

)
dz̃

=
1

(4π)n/2

∫
Q̃

t1/2

e
−|z̃|2

4

∫ u(t1/2z̃)−dλ(t)

t1/2

− 1+dλ(t)

t1/2

e
−z2

n
4 dzndz̃



 = λ + O(e−α/t)

+
1

(4π)n/2

∫

Rn−1\ Q̃

t1/2

e
−|z̃|2

4

∫ u(t1/2z̃)−dλ(t)

t1/2

− 1+dλ(t)

t1/2

e
−z2

n
4 dzndz̃

+
1

(4π)n/2

∫
Q̃

t1/2

e
−|z̃|2

4

∫ − 1+dλ(t)

t1/2

−∞
e
−z2

n
4 dzndz̃

+
1

(4π)n/2

∫

Rn−1\ Q̃

t1/2

e
−|z̃|2

4

∫ − 1+dλ(t)

t1/2

−∞
e
−z2

n
4 dzndz̃





= O(e−α/t)

(where the last three summands tend exponentially to zero since Rn−1 \ Q̃
t1/2 → ∅ and

−1+dλ(t)

t1/2 → −∞ sufficiently fast as t → 0), it holds that

λ =
1

(4π)n/2

∫

Rn−1

e
−|z̃|2

4

∫ u(t1/2z̃)−dλ(t)

t1/2

−∞
e
−z2

n
4 dzndz̃ + O(e−α/t). (2.6)
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We now choose cλ = Φ−1(λ) (cf. Definition 15) and, by factorisation, obtain

1

(4π)n/2

∫

Rn−1

∫ cλ

−∞
e
−|z|2

4 dz =
1

(4π)n/2

∫

Rn−1

e
−|z̃|2

4

∫ cλ

−∞
e
−z2

n
4 dzndz̃

=
1

(4π)(n−1)/2

∫

Rn−1

e
−|z̃|2

4 dz̃

︸ ︷︷ ︸
= 1

· 1

(4π)1/2

∫ cλ

−∞
e
−z2

n
4 dzn

︸ ︷︷ ︸
= λ

= λ.

Using this identity we write (2.6) as

λ =
1

(4π)n/2

∫

Rn−1

∫ cλ

−∞
e
−|z|2

4 dz +
1

(4π)n/2

∫

Rn−1

e
−|z̃|2

4

∫ u(t1/2z̃)−dλ(t)

t1/2

cλ

e
−z2

n
4 dzndz̃ + O(e−α/t)

= λ +
1

(4π)n/2

∫

Rn−1

e
−|z̃|2

4

∫ u(t1/2z̃)−dλ(t)

t1/2

cλ

e
−z2

n
4 dzndz̃ + O(e−α/t),

and by subtracting λ on both sides we obtain the relation

∫

Rn−1

e
−|z̃|2

4

∫ u(t1/2z̃)−dλ(t)

t1/2

cλ

e
−z2

n
4 dzn

︸ ︷︷ ︸
=: Bt(z̃)

dz̃ = O(e−α/t), (2.7)

which will be essential to obtain a determining equation for the normal distance dλ(t).
Since we are interested in the asymptotic behaviour of dλ(t) as t → 0, we fix some
small t0 > 0 and determine a lower bound for the integral Bt(z̃) that is valid for all
0 < t < t0. We set

I(t, z̃) := [cλ,
u(t1/2z̃)− dλ(t)

t1/2
]

for the integration interval and denote its length by

|I(t, z̃)| := u(t1/2z̃)− dλ(t)

t1/2
− cλ.

Since e
−|z̃|2

4 is strictly positive, it follows that Bt(z̃) has to go to zero for every z̃ ∈ Rn−1

as t → 0, which further implies by the strict positivity of e
−z2

n
4 that also |I(t, z̃)| → 0

as t → 0.
Since u : Rn−1 → R is bounded by construction (see above), also u(t1/2z̃) remains a
bounded function of z̃ for every choice of 0 < t < t0, i.e., there exists a constant M
such that

u(t1/2z̃) ≤ M for every z̃ ∈ Rn−1, 0 < t < t0,

which implies that the lengths of the intervals I(t, z̃) are uniformly bounded from
above for 0 < t < t0, z̃ ∈ Rn−1. Further we set

K := min
0<t<t0, z̃∈Rn−1

{e−z2
n

4 : zn ∈ I(t, z̃)}
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being the uniform minimum of the integrand e
−z2

n
4 on I(t, z̃) for every 0 < t < t0 and

z̃ ∈ Rn−1, i.e.,

K ≤ e
−z2

n
4 for zn ∈ I(t, z̃) with 0 < t < t0 and z̃ ∈ Rn−1.

Since the lengths of the intervals I(t, z̃) are uniformly bounded from above for 0 <
t < t0, z̃ ∈ Rn−1 and the exponential function is strictly positive, also K is strictly
positive.
We now take the product of K and the length |I(t, z̃)| of the integration interval to
obtain the following lower bound for the integral Bt(z̃)

0 ≤ K · |I(t, z̃)| ≤ Bt(z̃), z̃ ∈ Rn−1, 0 < t < t0.

Since also e
−|z̃|2

4 is strictly positive on Rn−1, we conclude that

0 ≤ K

∫

Rn−1

e
−|z̃|2

4 · |I(t, z̃)| dz̃

=

∫

Rn−1

e
−|z̃|2

4 ·K · |I(t, z̃)| dz̃

≤
∫

Rn−1

e
−|z̃|2

4

∫ u(t1/2z̃)−dλ(t)

t1/2

cλ

e
−z2

n
4 dzndz̃ for all 0 < t ≤ t0.

Omitting the constant K we by (2.7) obtain
∫

Rn−1

e
−|z̃|2

4

(
t−1/2[u(t1/2z̃)− dλ(t)− t1/2cλ]

)

︸ ︷︷ ︸
= |I(t,z̃)|

dz̃ = O(e−α/t). (2.8)

Using the Taylor expansion of u(t1/2z̃) in z̃ = 0 and the fact that u satisfies u(0) = 0
and Du(0) = 0 we have

u(t1/2z̃) = u(0)︸︷︷︸
=0

+ t1/2ui(0)zi︸ ︷︷ ︸
=0

+
t

2
uij(0)zizj +

t3/2

6
uijk(0)zizjzk +

t2

24
uijkr(0)zizjzkzr + O(t5/2|z̃|5)

=
t

2
uij(0)zizj +

t3/2

6
uijk(0)zizjzk +

t2

24
uijkr(0)zizjzkzr + O(t5/2|z̃|5),

where we have used the convention that we always sum up over repeated indices, e.g.,

uijk(0)zizjzk means
n−1∑
i,j,k

uijk(0)zizjzk.

So we write |I(t, z̃)| as

|I(t, z̃)| = t−1/2[u(t1/2z̃)− dλ(t)− t1/2cλ]

= t−1/2
[ t

2
uij(0)zizj +

t3/2

6
uijk(0)zizjzk +

t2

24
uijkr(0)zizjzkzr − dλ(t)− t1/2cλ + O(t5/2|z̃|5)

]

= t1/2
[1

2
uij(0)zizj +

t1/2

6
uijk(0)zizjzk +

t

24
uijkr(0)zizjzkzr − dλ(t)

t
− cλ

t1/2

]
+ O(t2|z̃|5)

︸ ︷︷ ︸
= a

.
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Then we replace |I(t, z̃)| by a in (2.8) and obtain that

∫

Rn−1

e
−|z̃|2

4 t1/2
[1

2
uij(0)zizj +

t1/2

6
uijk(0)zizjzk +

t

24
uijkr(0)zizjzkzr − dλ(t)

t
− cλ

t1/2

]
+ O(t2|z̃|5)

︸ ︷︷ ︸
= a

dz̃

= O(e−α/t).

Comparing O(t2|z̃|5) and O(e−α/t) yields

t1/2

∫

Rn−1

e
−|z̃|2

4

[1

2
uij(0)zizj +

t1/2

6
uijk(0)zizjzk +

t

24
uijkr(0)zizjzkzr − dλ(t)

t
− cλ

t1/2

]
dz̃ = O(t2)

and therefore
∫

Rn−1

e
−|z̃|2

4

[1

2
uij(0)zizj +

t1/2

6
uijk(0)zizjzk +

t

24
uijkr(0)zizjzkzr − dλ(t)

t
− cλ

t1/2

]
dz̃ = O(t3/2).

We add another summand in the Taylor expansion of u and so we have that

1

2

∫

Rn−1

e
−|z̃|2

4 uij(0)zizj dz̃ +
t1/2

6

∫

Rn−1

e
−|z̃|2

4 uijk(0)zizjzk dz̃

︸ ︷︷ ︸
=0

(2.9)

+
t

24

∫

Rn−1

e
−|z̃|2

4 uijkr(0)zizjzkzr dz̃ +
t3/2

120

∫

Rn−1

e
−|z̃|2

4 uijkrm(0)zizjzkzrzm dz̃

︸ ︷︷ ︸
=0

−
(dλ(t)

t
+

cλ

t1/2

) ∫

Rn−1

e
−|z̃|2

4 dz̃ = O(t2),

where the summands with the parentheses vanish by the symmetry of Gaussian inte-
grals (see also Proposition 21). Further, we will show below (Corollary 23) that

1

2

∫

Rn−1

e
−|z̃|2

4 uij(0)zizj dz̃ = ∆u(0)

∫

Rn−1

e
−|z̃|2

4 dz̃ (2.10)

and (Proposition 24) that

1

24

∫

Rn−1

e
−|z̃|2

4 uijkr(0)zizjzkzr dz̃ =
1

2
∆2u(0)

∫

Rn−1

e
−|z̃|2

4 dz̃. (2.11)

So this finally yields

∆u(0)

∫

Rn−1

e
−|z̃|2

4 dz̃ + t · 1

2
∆2u(0)

∫

Rn−1

e
−|z̃|2

4 dz̃ −
(dλ(t)

t
+

cλ

t1/2

) ∫

Rn−1

e
−|z̃|2

4 dz̃ = O(t2),

hence
(
∆u(0) + t · 1

2
∆2u(0)− dλ(t)

t
− cλ

t1/2

) ∫

Rn−1

e
−|z̃|2

4 dz̃ = O(t2).

By ∆u(0) = −H we obtain an explicit expression for dλ(t)
t

as

dλ(t)

t
= − cλ

t1/2
−H + t · 1

2
∆2u(0) + O(t2),
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and therefore

dλ(t) = −cλt
1/2 − t ·H + t2 · 1

2
∆2u(0) + O(t3).

It remains to prove the equalities (2.10) and (2.11) and the fact that
1
2
∆2u(0) = −1

2
(4∂DH + H|A|2 + 2 tr A3) which we will do in the next sec-

tion.

2.1.1 The coefficients a1 and a2

We first show the identities

1

2

∫

Rn−1

e
−|z̃|2

4 uij(0) zizj dz̃ = ∆u(0)

∫

Rn−1

e
−|z̃|2

4 dz̃

and

1

24

∫

Rn−1

e
−|z̃|2

4 uijkr(0) zizjzkzr dz̃ =
1

2
∆2u(0)

∫

Rn−1

e
−|z̃|2

4 dz̃,

which we have used at the end (2.10), (2.11) of the above proof. For this purpose we
start with an interesting observation on the symmetry of Gaussian integrals.

Proposition 21. For p ∈ N we have

∫

R
xp e

−x2

4 dx =





p!
( p
2
)!

∫
R

e
−x2

4 dx, p even,

0, p odd.

And generally, for p1, ..., pn ∈ N,

∫

Rn

xp1

1 xp2

2 ... xpn
n e

−|x|2
4 dx =





( n∏
i=1

pi!

(
pi
2

)!

) ∫
Rn

e
−|x|2

4 dx, p1, ..., pn all even,

0, one of the pi is odd.

Proof: Let p ∈ N be even, i.e., p = 2q for some q ∈ N. Then, in one dimension we
have for arbitrary a > 0 (see e.g. [GR65, 3.461.2]) that

∫

R

xp e−ax2

dx =

∫

R

x2q e−ax2

dx =
1 · 3 · ... · (2q − 1)

2q+1aq+ 1
2

· 2√π.

We take a = 1
4
, use the fact that

∫
R

e
−x2

4 dx = 2
√

π and obtain

∫

R

x2qe
−x2

4 dx =
1 · 3 · ... · (2q − 1)

2q+1 (1
4
)q+ 1

2

∫

R

e
−x2

4 dx

= 1 · 3 · ... · (2q − 1) · 2q

∫

R

e
−x2

4 dx.
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By the elementary fact that

(2q)!

q!
=

1 · 2 · 3 · 4 · ... · 2q
1 · 2 · ... · q

= 1 · 2

1
· 3 · 4

2
· ... · 2q − 2

q − 2
· (2q − 1) · 2q

q

= 1 · 2 · 3 · 2 · ... · 2 · (2q − 1) · 2
= 1 · 3 · ... · (2q − 1) · 2q

we conclude
∫

R

xp e
−x2

4 dx =

∫

R

x2qe
−x2

4 dx =
(2q)!

q!

∫

R

e
−x2

4 dx =
p!

(p
2
)!

∫

R

e
−x2

4 dx.

In case p ∈ N is odd, the integrand xpe
−x2

4 is anti-symmetric with respect to the origin,
so

∫

R

xpe
−x2

4 dx = 0.

If all the exponents p1, ..., pn are even, the general n-dimensional case follows by fac-
torisation

∫

Rn

xp1

1 xp2

2 ... xpn
n e

−|x|2
4 dx =

∫

R

xp1

1 e
−x2

1
4 dx1 · ... ·

∫

R

xpn
n e

−x2
n

4 dxn

=
p1!

(p1

2
)!

∫

R

e
−x2

1
4 dx1 · ... · pn!

(pn

2
)!

∫

R

e
−x2

n
4 dxn

=
( n∏

i=1

pi!

(pi

2
)!

) ∫

Rn

e
−|x|2

4 dx.

In case one pi is odd, the factor containing this pi and therefore the entire product is
zero.

In particular we obtain the following special cases.

Corollary 22. It holds that

∫

Rn

xixj e
−|x|2

4 dx =





2
∫
Rn

e
−|x|2

4 dx, i = j,

0, i 6= j,

and

∫

Rn

xixjxkxr e
−|x|2

4 dx =





12
∫
Rn

e
−|x|2

4 dx, i = j = k = r,

4
∫
Rn

e
−|x|2

4 dx, i = j 6= k = r,

0, else.
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This implies

Corollary 23. It holds that

1

2

∫

Rn−1

e
−|z̃|2

4 uij(0) zizj dz̃ = ∆u(0)

∫

Rn−1

e
−|z̃|2

4 dz̃.

Proof: We have

1

2

∫

Rn−1

e
−|z̃|2

4 uij(0) zizj dz̃ =
1

2
uij(0)

∫

Rn−1

zizje
−|z̃|2

4 dz̃

=
1

2
uii(0)

∫

Rn−1

z2
i e

−|z̃|2
4 dz̃

=
1

2
∆u(0) · 2

∫

Rn−1

e
−|z̃|2

4 dz̃

= ∆u(0)

∫

Rn−1

e
−|z̃|2

4 dz̃

since all the integrals containing mixed derivatives vanish by Corollary 22.

We next prove the identity (2.11), i.e., that the coefficient a2 is given by 1
2
∆2u(0)

and then show how to express 1
2
∆2u(0) explicitly in terms of the geometric invariants

4∂DH, H|A|2 and tr A3 (Proposition 25).

Proposition 24. With a local normal representation of ∂D as graph of a smooth
function u with u(0) = p the coefficient a2 is given by

a2 =
1

2
∆2u(0).

Proof: We have to prove that

1

24

∑

i,j,k,r

uijkr(0)

∫

Rn−1

zizjzkzr e
−|z̃|2

4 dz̃

=
1

2
∆2u(0)

∫

Rn−1

e
−|z̃|2

4 dz̃.

By Corollary 22 we know that the integral
∫
Rn−1 zizjzkzr e

−|z̃|2
4 dz̃ is non-zero if and

only if it contains two (not necessarily different) pairs of coordinate directions. So

1

24

∑

i,j,k,r

uijkr(0)

∫

Rn−1

zizjzkzr e
−|z̃|2

4 dz̃

=
1

24

∑

two pairs
of indices

uijkr(0)

∫

Rn−1

zizjzkzr e
−|z̃|2

4 dz̃. (2.12)

Now clearly every summand containing four partial derivatives in the same coordinate
direction appears only once in (2.12), and every derivative containing two pairs of
different coordinate directions, i.e,

uiikk(0), k > i,

27



appears
(
4
2

)
= 6 times for every combination of coordinate directions i, k ∈

{1, ..., n−1}. So the sum

n−1∑
i

n−1∑

k>i

uiikk(0)

appears 6 times in (2.12) and therefore

n−1∑
i

n−1∑

k 6=i

uiikk(0)

exactly 3 times since we have now replaced k > i by k 6= i. So we have

∑

two pairs of
different indices

uijkr(0) = 3
n−1∑

i

n−1∑

k 6=i

uiikk(0)

and rewrite (2.12) as

1

24

∑

i,j,k,r

uijkr(0)

∫

Rn−1

zizjzkzr e
−|z̃|2

4 dz̃

=
1

24

[
3

n−1∑
i

n−1∑

k 6=i

uiikk(0)

∫

Rn−1

z2
i z

2
k e

−|z̃|2
4 dz̃ +

n−1∑
i

uiiii(0)

∫

Rn−1

z4
i e

−|z̃|2
4 dz̃

]
.

Again by Corollary 22 we have that

n−1∑
i

n−1∑

k 6=i

uiikk(0)

∫

Rn−1

z2
i z

2
k e

−|z̃|2
4 dz̃ = 4

n−1∑
i

n−1∑

k 6=i

uiikk(0)

∫

Rn−1

e
−|z̃|2

4 dz̃,

n−1∑
i

uiiii(0)

∫

Rn−1

z4
i e

−|z̃|2
4 dz̃ = 12

n−1∑
i

uiiii(0)

∫

Rn−1

e
−|z̃|2

4 dz̃.

So we obtain

1

24

∑

i,j,k,r

uijkr(0)

∫

Rn−1

zizjzkzr e
−|z̃|2

4 dz̃

=
1

24

[
3 · 4

n−1∑
i

n−1∑

k 6=i

uiikk(0) + 12
n−1∑

i

uiiii(0)
] ∫

Rn−1

e
−|z̃|2

4 dz̃

=
1

24

[
12

n−1∑
i

n−1∑

k

uiikk(0)
] ∫

Rn−1

e
−|z̃|2

4 dz̃

=
1

2
∆2u(0)

∫

Rn−1

e
−|z̃|2

4 dz̃,

which we wanted to prove.

In order to complete the statement of Theorem 19 it remains to express 1
2
∆2u(0) in

terms of the geometric invariants 4∂DH, H|A|2 and tr A3.
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Proposition 25. Let ∂D at p ∈ ∂D in normal coordinates be locally represented as
graph of a smooth function u with u(0) = p. Then we have the following identity

a2 =
1

2
∆2u(0) = −1

2
(4∂DH + H|A|2 + 2 tr A3)

∣∣∣
p
,

where 4∂D is the Laplace-Beltrami operator, H the mean curvature and A the second
fundamental form of the boundary ∂D.

Proof: In the following we denote by ∂khij the coordinate derivative of the second
fundamental form, by ∇khij its covariant derivative and by Dku the coordinate
derivatives of the function u. We again use the sum convention.

We start with the second fundamental form hij of ∂D at p and determine first its
second covariant derivative ∇r∇khij.

By definition of the Christoffel symbols, the first covariant derivative of hij is

∇khij = ∂khij − Γl
kihlj − Γl

kjhli.

So the second covariant derivative of hij at p is given by

∇r∇khij

∣∣∣
p

= ∂r(∂khij − Γl
kihlj − Γl

kjhli)− 0

= ∂r∂khij − ∂rΓ
l
kihlj − ∂rΓ

l
kjhli − Γl

ki∂rhlj − Γl
kj∂rhli︸ ︷︷ ︸

=0

(2.13)

= ∂r∂khij − ∂rΓ
l
kihlj − ∂rΓ

l
kjhli,

since the Christoffel symbols Γk
ij vanish at p.

Since hij =
−DiDju√
1+|Du|2 , we compute the second coordinate derivative of hij as

∂r∂khij = DrDk

( −DiDju√
1 + |Du|2

)

= Dr

(−DkDiDju√
1 + |Du|2 +

1

2

DiDju · 2 ·Dlu ·DlDku

(1 + |Du|2)3/2

)

= −DrDkDiDju√
1 + |Du|2 +

1

2

=0︷ ︸︸ ︷
DkDiDju · 2 ·Dlu ·DlDru

(1 + |Du|2)3/2

+

=0︷ ︸︸ ︷
DrDiDju ·Dlu ·DlDku +DiDju ·DrDlu ·DlDku +

=0︷ ︸︸ ︷
DiDju ·Dlu ·DrDlDku

(1 + |Du|2)3/2

−

=0︷ ︸︸ ︷
3

2

DiDju ·Dlu ·DlDku · 2 ·Dku ·DkDru

(1 + |Du|2)5/2
,

where for the parentheses we have used that Du = 0 at p, so
√

1 + |Du|2 = 1 and
every factor that contains a first derivative of u vanishes. So we obtain

∂r∂khij

∣∣∣
p

= −DrDkDiDju + DiDju ·DrDlu ·DlDku. (2.14)
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Now we compute the terms ∂rΓ
l
kihlj and ∂rΓ

l
kjhli of (2.13). Recall that the first deriva-

tive of gij at p is given by

∂kgij = DkDiu ·Dju + Diu ·DkDju = 0. (2.15)

Since we want to compute the first derivative of the Christoffel symbols Γk
ij, we deter-

mine the second derivative of gij in terms of the representation u:

∂r∂kgij

∣∣∣
p

= Dr(DkDiu ·Dju + Diu ·DkDju)

= DrDkDiu ·Dju︸ ︷︷ ︸
=0

+DkDiu ·DrDju + DrDiu ·DkDju + Diu ·DrDkDju︸ ︷︷ ︸
=0

= DkDiu ·DrDju + DrDiu ·DkDju. (2.16)

Using (2.15) and (2.16) we obtain the first derivative of the Christoffel symbols as

∂rΓ
k
ij

∣∣∣
p

= ∂r

(1

2
gkl

(
∂igjl + ∂jgil − ∂lgij

))

=
1

2
δkl

(
∂r∂igjl + ∂r∂jgil − ∂r∂lgij

)

=
1

2

(
∂r∂igjk + ∂r∂jgki − ∂r∂kgij

)

=
1

2

(
DiDju ·DrDku + DrDju ·DiDku

+DjDku ·DrDiu + DrDku ·DjDiu

−DkDiu ·DrDju−DrDiu ·DkDju
)

=
1

2

(
DiDju ·DrDku + DrDku ·DjDiu

)

= DiDju ·DrDku,

and therefore with hij = −DiDju at p

−∂rΓ
l
kihlj

∣∣∣
p
− ∂rΓ

l
kjhli

∣∣∣
p

= DkDiu ·DrDlu ·DlDju + DkDju ·DrDlu ·DlDiu. (2.17)

We now put (2.14) and (2.17) in (2.13) and obtain the second covariant derivative of
the second fundamental form in the point p in terms of u as

∇r∇khij

∣∣∣
p

= ∂r∂khij − ∂rΓ
l
kihlj − ∂rΓ

l
kjhli

= −DrDkDiDju + DiDju ·DrDlu ·DlDku

+DkDiu ·DrDlu ·DlDju + DkDju ·DrDlu ·DlDiu.

So we obtain

DrDkDiDju = −∇r∇khij − hijhrlhlk − hkihrlhlj − hkjhrlhli.

Finally, taking the sum over k = r and i = j, we have

DkDkDiDiu = −
(
∇k∇khii + hiihklhlk + hkihklhli + hkihklhli

)

= −
(
∇k∇khii + hiihklhlk + 2hikhklhli

)
,
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which by H|A|2 = hiihklhlk and tr A3 = hikhklhli yields

∆2u(0) = −(4∂DH + H|A|2 + 2 tr A3)
∣∣∣
p
,

what we wanted to prove.

This now completes the proof of all statements of Theorem 19.

2.1.2 Higher order coefficients

Observe that by taking more summands in the Taylor series expansion (2.9) in the proof
of Theorem 19 we can determine also higher order coefficients ak of the asymptotics.
By the symmetry of Gaussian integrals it follows immediately that ak = 0 if k is
fractional. Whereas ak (k integer) is implicitly given by

1

(2k)!

n−1∑
r1,...,r2k=1

Dr1Dr2 · · ·Dr2k
u(0)

∫

Rn−1

zr1zr2 · · · zr2k
e
−|z̃|2

4 dz̃ = ak

∫

Rn−1

e
−|z̃|2

4 dz̃.

We determine a general formula how to compute ak from the function u. Therefore,
we first provide a representation formula for the k-th power of the Laplacian that will
be essential in the proof of Theorem 27.

Lemma 26. Let ∆ be the standard Laplacian on C∞(Rn−1). Then the k-th power ∆k

of the Laplacian applied to a function u ∈ C∞(Rn−1), i.e.,

∆ku =
n−1∑

r1,r2,...,rk=1

D2
r1

D2
r2
· · ·D2

rk
u, (2.18)

can be represented as

∆ku =
∑

(q1,...,qm)∈Qm

k!
m∏

i=1

qi!

n−1∑

r1 6=r2 6=... 6=rm=1

(D2
r1

)q1(D2
r2

)q2 · · · (D2
rm

)qmu︸ ︷︷ ︸
2k derivatives

(2.19)

=
∑

q∈Qm

Ak(q)
∑

r∈Rm

D2qu, (2.20)

where

m := min{k, n− 1}.
Here, Qm is the set of all ordered multi-indices (q1, ..., qm) ∈ Nm of length k, i.e.,

Qm := {q = (q1, ..., qm) ∈ Nm : 0 ≤ q1 ≤ q2 ≤ ... ≤ qm and q1 + ... + qm = k}
and Rm is the set of all m-tuples of coordinate directions in Rn−1 with pairwise different
entries, i.e.,

Rm := {(r1, r2, ..., rm) ∈ {1, 2, ..., n− 1}m : r1 6= r2 6= ... 6= rm}
(since m ≤ n− 1, Rm is well defined).
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Proof: By (2.18), the k-th power of the Laplacian is given by the sum of partial
derivatives, where each summand contains k pairs of squares of partial derivatives.
Since in each summand of (2.18) every partial derivative appears an even number of
times, every summand can have at most k pairwise different partial derivatives. On
the other side, since u depends on n−1 variables, each summand can contain at most
n−1 pairwise different partial derivatives. So the maximal number of pairwise different
partial derivatives in each summand is

m = min{k, n− 1}.
Since u ∈ C∞(Rn−1) all partial derivatives commute. The expression (2.19) is there-
fore a representation of ∆ku where all the partial derivatives are already ”sorted” in
the sense that in every summand all appearing partial derivatives in the same coordi-
nate direction are iterated correspondingly to their multiplicity and ordered by their
multiplicity 0 ≤ q1 ≤ q2 ≤ ... ≤ qm.
It then only remains to determine the multiplicity of each of these ”sorted” partial
derivatives

D2qu = D2q1
r1

D2q2
r2
· · ·D2qm

rm
u, (2.21)

i.e., to determine how often we have a summand in (2.18) that contains q1 squares of
derivatives in coordinate direction r1, q2 squares of derivatives in coordinate direction
r2, and so on.
This multiplicity can now be calculated by the combinatorical expression

Ak(q) :=

(
k

q1

)(
k − q1

q2

)
...

(
k −

m−1∑
i=1

qi

qm

)

=
k ... (k − q1 + 1)

q1!
· (k − q1) ... (k − q1 − q2 + 1)

q2!
· ... ·

(
k −

m−1∑
i=1

qi

)
!

qm!

=
k!

m∏
i=1

qi!
.

The assertion now follows by taking the sum over all possible combinations of different
partial derivatives, i.e., q ∈ Qm, and all pairwise different coordinate directions, i.e.,
r ∈ Rm, with the corresponding multiplicity Ak(q), i.e.,

∆ku =
∑

(q1,...,qm)∈Qm

k!
m∏

i=1

qi!

n−1∑

r1 6=r2 6=... 6=rm=1

(D2
r1

)q1(D2
r2

)q2 · · · (D2
rm

)qmu︸ ︷︷ ︸
2k derivatives

.

We can now state and prove the generalisation of Proposition 24 to higher order
coefficients ak.

Proposition 27. Let ∂D at p ∈ ∂D in normal coordinates be locally represented as
graph of a smooth function u with u(0) = p. Then the coefficient ak (k integer) in the
expansion of the normal distance function dλ(t) describing the evolution of the level
sets Dλ(t) is given by

ak =
1

k!
∆ku(0).
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Proof: Starting from the Taylor expansion (2.9) we have to show that

1

(2k)!

n−1∑
r1,...,r2k=1

Dr1Dr2 · · ·Dr2k
u(0)

(B)︷ ︸︸ ︷∫

Rn−1

zr1zr2 · · · zr2k
e
−|z̃|2

4 dz̃

︸ ︷︷ ︸
(A)

(2.22)

=
1

k!
∆ku(0)

∫

Rn−1

e
−|z̃|2

4 dz̃.

For this purpose, we look at the combinatorical structure of the sum (A), and at
symmetry properties of the integral (B).

Since by Proposition 21 the integral (B) is zero if and only if one of the 2k coordinate
directions r1, ..., r2k ∈ {1, ..., n−1} occurs an odd number of times, the sum (A) in fact
only contains summands where each of the coordinate directions r1, ..., r2k appears an
even number of times. So we have

n−1∑
r1,...,r2k=1

Dr1Dr2 · · ·Dr2k
u(0)

∫

Rn−1

zr1zr2 · · · zr2k
e
−|z̃|2

4 dz̃

=
∑

k pairs of
indices

Dr1Dr2 · · ·Dr2k
u(0)

∫

Rn−1

zr1zr2 · · · zr2k
e
−|z̃|2

4 dz̃.

Now, by the same arguments as in the proof of Lemma 26, every summand in (2.22)
contains at most m = min{k, n − 1} pairwise different partial derivatives and hence
can be written as

D2q1
r1

D2q2
r2
· · ·D2qm

rm
u, (2.23)

where r1 6= r2 6= ... 6= rm ∈ {1, 2, ..., n− 1} are pairwise different coordinate directions
and q1 ≤ q2 ≤ ... ≤ qm are the corresponding multiplicities of partial derivatives in
these directions.

Next we determine how often each of these derivatives actually appears in the sum
(2.22) after we have ”sorted” the partial derivatives. We denote by M(q) the multi-
plicity of summands in (2.22) that are of the form (2.23) for a given q = (q1, ..., qm).
This yields

n−1∑
r1,...,r2k=1

Dr1Dr2 · · ·Dr2k
u(0)

∫

Rn−1

zr1zr2 · · · zr2k
e
−|z̃|2

4 dz̃

=
∑

q∈Qm

M(q)
n−1∑

r1 6=r2 6=... 6=rm=1

D2q1
r1

D2q2
r2
· · ·D2qm

rm
u(0)︸ ︷︷ ︸

2k derivatives

∫

Rn−1

z2q1
r1

z2q2
r2
· · · z2qm

rm
e
−|z̃|2

4 dz̃.

Now, determining the value of M(q) = M(q1, ..., qm) reduces to the combinatorical
question how many possibilities do we have to distribute 2q1 times an index r1, 2q2
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times an index r2, ..., and 2qm times an index rm on alltogether 2k positions. Therefore

M(q) =

(
2k

2q1

)(
2k − 2q1

2q2

)(
2k − 2q1 − 2q2

2q3

)
· ... ·

(2k −
m−1∑
i=1

2qi

2qm

)

︸ ︷︷ ︸
m factors

=
(2k) · ... · (2k − 2q1 + 1)

(2q1)!
· ... ·

(2k −
m−1∑
i=1

2qi) · ... · 1
(2qm)!

=
(2k)!

m∏
i=1

(2qi)!
.

Further, we have by Proposition 21 that

∫

Rn−1

z2q1
r1

z2q2
r2
· · · z2qm

rm
e
−|z̃|2

4 dz̃ = I(q) ·
∫

Rn−1

e
−|z̃|2

4 dz̃

with

I(q) =
m∏

i=1

(2qi)!

(qi)!
.

So we obtain

n−1∑
r1,...,r2k=1

Dr1Dr2 · · ·Dr2k
u(0)

∫

Rn−1

zr1zr2 · · · zr2k
e
−|z̃|2

4 dz̃

=
∑

q∈Qm

M(q)
n−1∑

r1 6=r2 6=...6=rm=1

D2q1
r1

D2q2
r2
· · ·D2qm

rm
u(0) · I(q)

∫

Rn−1

e
−|z̃|2

4 dz̃

=
∑

q∈Qm

M(q) · I(q)
∑

r∈Rm

D2qu(0)

∫

Rn−1

e
−|z̃|2

4 dz̃,

with

Qm = {q ∈ Nm : 0 ≤ q1 ≤ q2 ≤ ... ≤ qm and q1 + ... + qm = k}
Rm = {(r1, r2, ..., rm) ∈ {1, 2, ..., n− 1}m : r1 6= r2 6= ... 6= rm}

as in Lemma 26.

Now the product M(q) · I(q) is given as

M(q) · I(q) =
(2k)!

m∏
i=1

(2qi)!
·

m∏
i=1

(2qi)!

(qi)!
=

(2k)!
m∏

i=1

qi!
,
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and we therefore finally obtain

n−1∑
r1,...,r2k=1

Dr1Dr2 · · ·Dr2k
u(0)

∫

Rn−1

zr1zr2 · · · zr2k
e
−|z̃|2

4 dz̃

=
∑

q∈Qm

M(q) · I(q)
∑

r∈Rm

D2qu(0)

∫

Rn−1

e
−|z̃|2

4 dz̃

=
∑

(q1,...,qm)∈Qm

(2k)!
m∏

i=1

qi!

n−1∑

r1 6=r2 6=... 6=rm=1

D2q1
r1

D2q2
r2
· · ·D2qm

rm
u(0)

∫

Rn−1

e
−|z̃|2

4 dz̃

=
(2k)!

k!

∑

(q1,...,qm)∈Qm

k!
m∏

i=1

qi!

n−1∑

r1 6=r2 6=...6=rm=1

D2q1
r1

D2q2
r2
· · ·D2qm

rm
u(0)

︸ ︷︷ ︸
=∆ku(0)

∫

Rn−1

e
−|z̃|2

4 dz̃

=
(2k)!

k!
∆ku(0)

∫

Rn−1

e
−|z̃|2

4 dz̃

by the representation of ∆ku from Lemma 26. Dividing by (2k)! then yields the
assertion.

2.2 Heat diffusion into the complement

2.2.1 Compact sets with smooth boundary

We now derive from the results above the short time behaviour of the map

t 7→ 〈T (t)1D, 1Dc〉,

i.e., the short time behaviour for the amount of heat that has flowed from D into the
complement Dc after time t.

We prove that for a compact set D with smooth boundary the equality

lim
t→0

√
π√
t
〈T (t)1D, 1Dc〉 = P (D)

holds, which generalises the result M. Ledoux obtained for Euclidean balls (see
Chapter 1, Proposition 13).

The basic idea is to look at the superlevel sets of T (t)1D defined as follows.

Definition 28. For λ ∈ (0, 1) we call

Dλ(t) := {x ∈ Rn : T (t)1D(x) ≥ λ}, t > 0,

the superlevel set of T (t)1D for the level λ.
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We proceed in two steps: Up to an O(t) we approximate the volume of Dλ(t) as
t → 0 and then integrate over all levels that yield a contribution to the heat in the
complement.

Therefore, we first look at the behaviour of the volume of so called parallel sets.

Definition 29. Let D ⊂ Rn be a compact set with smooth boundary. We call

Dr := {x ∈ Rn : dist(D, x) ≤ r}, r > 0,

the parallel sets of D.

Remark 30. For r smaller than the injectivity radius of ∂D the boundaries of Dr are
smooth and given by

∂Dr = {x + r · ν(x) : x ∈ ∂D}.

The following expansion of the volume |Dr| should be known, but we have not found
an explicit reference in the literature.

Proposition 31. The volume of Dr has the following expansion

|Dr| = |D|+ r · P (D) +
r2

2

∫

∂D

H dσ + O(r3) as r → 0. (2.24)

Proof: In order to obtain the expansion we deduce the first and second derivative of
r 7→ |Dr| at r = 0 from the first and second variation of volume formulas (see e.g.
[Spi79, Volume 4, Chapter 9], [Met02]).

For a smooth variation F : Rn × (−ε, ε) → Rn of D with variational vector field
Xr = dF

dr
the first variation of the volume of F (D, r) is given by

d

dr

∣∣∣
r=0
|F (D, r)| =

∫

∂D

〈X0, ν〉 dσ,

i.e., we integrate the normal velocity 〈X0, ν〉, ν the outer unit normal, at r = 0 over
∂D. In our situation we simply have X0 = ν (i.e., normal velocity constant to 1), so

d

dr

∣∣∣
r=0
|Dr| =

∫

∂D

〈ν, ν〉 dσ = P (D). (2.25)

The second variation of |F (D, r)| is given by

d2

dr2

∣∣∣
r=0
|F (D, r)| =

∫

∂D

d

dr
〈Xr, ν〉

∣∣∣
r=0

+ 〈X0, ν〉 div X0 dσ.

In our case we have Xr = ν, hence 〈Xr, ν〉 = 1 and d
dr
〈Xr, ν〉

∣∣∣
r=0

= 0. So it holds
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d2

dr2

∣∣∣
r=0
|Dr| =

∫

∂D

div ν dσ

=

∫

∂D

H dσ, (2.26)

since the divergence of the normal vector field on ∂D is its mean curvature H.
By (2.25) and (2.26) we obtain from Taylor’s theorem that

|Dr| = |D|+ r · P (D) +
r2

2

∫

∂D

H dσ + O(r3) as r → 0.

We can now prove the following result.

Theorem 32. Let D ⊂ Rn be a compact set with smooth boundary. Then

〈T (t)1D, 1Dc〉 =

√
t√
π
· P (D) + O(t) as t → 0.

In particular we have

lim
t→0

√
π√
t
〈T (t)1D, 1Dc〉 = P (D).

Proof: From the asymptotic behaviour of the normal distance function

dλ(t) = −t1/2cλ + O(t)

and its square

d2
λ(t) = tc2

λ + O(t3/2)

it is clear that only dλ(t) (and not its square) yields a contribution of order t1/2 for
the volume of Dλ(t). Therefore, as t → 0 the volume |Dλ(t)| behaves up to an O(t)
as the volume of the parallel set Dr with r = −t1/2cλ.
So with Proposition 31 we obtain

|Dλ(t)| = D−t1/2cλ
+ O(t)

= |D| − t1/2cλP (D) + O(t) as t → 0.

Since for small t the level set Dλ(t) is the boundary of the superlevel set Dλ(t), the
asymptotic expansion of the normal distance dλ(t) yields for small t that

Dλ(t) ⊂ D, λ ∈ (
1

2
, 1),

D ⊂ Dλ(t), λ ∈ (0,
1

2
).

37



So we obtain the asymptotic behaviour of t 7→ 〈T (t)1D, 1Dc〉 as t → 0 by integrating
the volume of all superlevel sets λ ∈ (0, 1

2
) and then subtracting 1

2
|D|, i.e.,

〈T (t)1D, 1Dc〉 =

1/2∫

0

|D| − t1/2 · P (D)cλ dλ− 1

2
|D|+ O(t)

= −t1/2 · P (D)

1/2∫

0

cλ dλ + O(t).

It remains to determine the integral

−
1/2∫

0

cλ dλ.

Therefore, observe that cλ = Φ−1(λ), i.e., cλ considered as a function of λ is the inverse
of Φ (cf. Definition 15), and Φ(−x) = 1− Φ(x). So we have

−
1/2∫

0

cλ dλ =

0∫

−∞

Φ(x) dx =

∞∫

0

(1− Φ(x)) dx.

From [GR65, 6.281] we take the identity

∞∫

0

(1− Φ(p x))x2q−1 dx =
Γ(q + 1

2
)

2
√

π q p2q
,

which implies

−
1/2∫

0

cλ dλ =

∞∫

0

(1− Φ(x)) dx =
1√
π

for q =
1

2
, p = 1.

This finally yields

〈T (t)1D, 1Dc〉 = −t1/2 · P (D)

1/2∫

0

cλ dλ + O(t)

=

√
t√
π
· P (D) + O(t). as t → 0.

2.2.2 Caccioppoli sets

We now drop the smoothness assumptions on the boundary and study the heat flow
t 7→ 〈T (t)1D, 1Dc〉 for a Caccioppoli set D. We show that for every Caccioppoli set
D ⊂ Rn it holds

lim
t→0

√
π√
t
〈T (t)1D, 1Dc〉 = P (D).
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Although this result yields the desired assertion for much more sets than Theorem
32, we obtain less insight into the ”geometric nature” of the flow.

Let us first study the short time behaviour of the semigroup (T (t))t≥0 with respect to
two arbitrary Caccioppoli sets.

Proposition 33. For two Caccioppoli sets A,D ⊂ Rn the equality

lim
t→0

√
π√
t
〈1D − T (t)1D, 1A〉 =

∫

FA∩FD

〈νA(x), νD(x)〉 dHn−1(x) (2.27)

holds.

Proof: Since

T (t)1D − 1D =

t∫

0

∆T (s)1D ds,

we have

〈T (t)1D − 1D, 1A〉 = 〈
t∫

0

∆T (s)1D ds, 1A〉 =

t∫

0

〈∆T (s)1D, 1A〉 ds.

Moreover, by the generalised Gauß-Green formula for Caccioppoli sets (see Chapter
1, Section 1.1) we obtain

〈∆T (s)1D, 1A〉 =

∫

A

∆T (s)1D(x) dx

= −
∫

FA

〈∇T (s)1D(x), νA(x)〉 dHn−1(x)

for the reduced boundary FA of A. So

〈T (t)1D − 1D, 1A〉 = −
t∫

0

∫

FA

〈∇T (s)1D(x), νA(x)〉 dHn−1(x) ds

and clearly

〈1D − T (t)1D, 1A〉 =

t∫

0

∫

FA

〈∇T (s)1D(x), νA(x)〉 dHn−1(x) ds.

Notice that, if we define for x ∈ Rn and s > 0 the measures

dµs,x := Ln

(
D − x√

s

)
,
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we have

∇T (s)1D(x) =

∫

D

∇
( 1

(4πs)n/2
e
−|x−y|2

4s

)
dy = −

∫

D

(x− y)

2s (4πs)n/2
e
−|x−y|2

4s dy

=
1

2
√

s

∫

D−x√
s

z
1

(4π)n/2
e
−|z|2

4 dz

=
1

2
√

s

∫

Rn

z
1

(4π)n/2
e
−|z|2

4 dµs,x(z).

Moreover, for every x ∈ FD we define the half space

HνD(x) := {z ∈ Rn : 〈z, νD(x)〉 ≥ 0} .

By the existence of the approximate tangent space for x ∈ FD (see Chapter 1, Section
1.3) the measures µs,x, for x ∈ FD, are locally weak∗ convergent as s → 0 to the
Lebesgue measure Ln restricted to HνD(x)

dµx := Ln HνD(x),

in the sense that

lim
s→0

∫

Rn

ϕdµs,x =

∫

Rn

ϕdµx, ϕ ∈ Cc(Rn).

We observe that, although the function z 7→ 〈z, νA(x)〉 e−|z|
2

4 does not have compact
support, but decreases fast enough, it holds

lim
s→0

∫

Rn

〈z, νA(x)〉e−|z|
2

4 dµs,x(z) =





∫

HνD(x)

〈z, νA(x)〉 e−|z|
2

4 dz, x ∈ FD,

∫

Rn

〈z, νA(x)〉 e−|z|
2

4 dz, x ∈ D1,

0, x ∈ D0.

Further, the second integral is always zero: By rotational invariance we may assume
that νA = en, so

∫

Rn

〈z, νD(x)〉 e−|z|
2

4 dz =

∫

Rn−1

e
−|z̃|2

4 dz̃

∫ ∞

−∞
zn e

−z2
n

4 dzn

︸ ︷︷ ︸
=0

= 0.

Therefore

lim
s→0

∫

Rn

〈z, νA(x)〉e−|z|
2

4 dµs,x(z) =





∫

HνD(x)

〈z, νA(x)〉 e−|z|
2

4 dz, x ∈ FD,

0, x ∈ (D0 ∪D1).

(2.28)
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Altogether we write

√
π√
t
〈1D − T (t)1D, 1A〉 =

∫

FA

g(x, t) dHn−1(x),

where g : FA× (0,∞) → R is given by

g(x, t) :=

√
π√
t

t∫

0

1

2
√

s

∫

Rn

〈z, νA(x)〉 1

(4π)n/2
e
−|z|2

4 dµs,x(z) ds.

By (2.28) and Hn−1(Rn \ [D0 ∪D1 ∪ FD]) = 0, see (1.8), we obtain the limit

lim
t→0

g(x, t) =





√
π

(4π)n/2

∫

HνD(x)

〈z, νA(x)〉 e−|z|
2

4 dz for x ∈ FA ∩ FD,

0 for x ∈ FA ∩ (D0 ∪D1).

Note that |g(x, t)| is bounded from above by

|g(x, t)| ≤
√

π

(4π)n/2

∫

Rn

|z| e−|z|
2

4 dz = const.

So we can apply Lebesgue’s dominated convergence theorem and obtain

lim
t→0

√
π√
t
〈1D − T (t)1D, 1A〉

=

√
π

(4π)n/2

∫

FA∩FD

∫

HνD(x)

〈z, νA(x)〉 e−|z|
2

4 dz dHn−1(x)

=

√
π

(4π)n/2

∫

FA∩FD

∫

HνD(x)

〈νA(x), νD(x)〉〈z, νD(x)〉 e−|z|
2

4 dz dHn−1(x)

=

∫

FA∩FD

〈νA(x), νD(x)〉
√

π

(4π)n/2

∫

HνD(x)

〈z, νD(x)〉 e−|z|
2

4 dz dHn−1(x)

=

∫

FA∩FD

〈νA(x), νD(x)〉 dHn−1(x),

since 〈νA(x), νD(x)〉 νD(x) = νA(x) for Hn−1-a.e. x ∈ FA ∩ FD (because νA(x) and
νD(x) are parallel for Hn−1-a.e. x ∈ FA ∩ FD) and

√
π

(4π)n/2

∫

HνD(x)

〈z, νD(x)〉 e−|z|
2

4 dz = 1 for every x ∈ FD.

Indeed, by rotational invariance we may assume HνD(x) = Rn−1× (0,∞) and νD = en,
so
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∫

HνD(x)

〈z, νD(x)〉 e−|z|
2

4 dz =

∫

Rn−1

e
−|z̃|2

4 dz̃

∫ ∞

0

zn e
−z2

n
4 dzn

= (4π)(n−1)/2 · 2 =
(4π)n/2

√
π

.

Corollary 34. Let A,D ⊂ Rn be two Caccioppoli sets satisfying |A \D| = 0, then the
equality

lim
t→0

√
π√
t
〈1D − T (t)1D, 1A〉 = Hn−1(FA ∩ FD) (2.29)

holds.

Proof: The fact |A \D| = 0 implies that νA(x) = νD(x) for Hn−1-a.e. x ∈ FA ∩ FD,
so ∫

FA∩FD

〈νA(x), νD(x)〉 dHn−1(x) = Hn−1(FA ∩ FD).

As a particular case, we take A = D and obtain the following result which generalises
M. Ledoux’s result (see Chapter 1, Proposition 13) to an arbitrary Caccioppoli set in
Rn.

Theorem 35. For a Caccioppoli set D ⊂ Rn the equality

lim
t→0

√
π√
t
〈T (t)1D, 1Dc〉 = P (D) (2.30)

holds.

Proof: We take A = D in (2.29) and obtain, since P (D) = Hn−1(FD) and
〈T (t)1D, 1Rn〉 = ‖T (t)1D‖L1(Rn) = |D| for all t ≥ 0, that

P (D) = Hn−1(FD)

= lim
t→0

√
π√
t
〈1D − T (t)1D, 1D〉

= lim
t→0

√
π√
t
〈1D − T (t)1D, 1Rn − 1Dc〉

= lim
t→0

√
π√
t

(
〈1D, 1Rn〉︸ ︷︷ ︸

= |D|

−〈1D, 1Dc〉︸ ︷︷ ︸
=0

−〈T (t)1D, 1Rn〉︸ ︷︷ ︸
= |D|

+〈T (t)1D, 1Dc〉
)

= lim
t→0

√
π√
t
〈T (t)1D, 1Dc〉.

As a first consequence we obtain the following comparison principle for the evolution
of the L2-norm t 7→ ‖T (t)1D‖L2 .
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Corollary 36. Let A,D ⊂ Rn be two Caccioppoli sets of the same volume that satisfy
the strict perimeter inequality P (A) > P (D). Then there exists t1 > 0 such that

‖T (t)1A‖L2 < ‖T (t)1D‖L2 for all t ∈ (0, t1).

Proof: By Theorem 35 we have that

lim
t→0

√
π√
t
〈T (t)1D, 1Dc〉 = P (D).

Since the map t 7→
√

π√
t
〈T (t)1D, 1Dc〉 is continuous on (0,∞), the strict inequality for

the limits P (A) > P (D) implies that there exists t̃1 > 0 such that

√
π√
t
〈T (t)1A, 1Ac〉 >

√
π√
t
〈T (t)1D, 1Dc〉 for all t ∈ (0, t̃1)

and

〈T (t)1A, 1Ac〉 > 〈T (t)1D, 1Dc〉 for all t ∈ (0, t̃1). (2.31)

By conservation of the total amount of heat in Rn we have

〈T (t)1A, 1Ac〉+ 〈T (t)1A, 1A〉 = 〈T (t)1A, 1Rn〉 = |A|,
〈T (t)1D, 1Dc〉+ 〈T (t)1D, 1D〉 = 〈T (t)1D, 1Rn〉 = |D|.

Since |A| = |D| and (2.31) holds, it follows that

〈T (t)1A, 1A〉 < 〈T (t)1D, 1D〉 for all t ∈ (0, t̃1). (2.32)

In addition, we have (see Chapter 1, Section 1.1)

〈T (t)1D, 1D〉 = ‖T ( t
2
)1D‖2

L2 ,

so (2.32) yields

‖T (t)1A‖L2 < ‖T (t)1D‖L2 for all t ∈ (0, T ) with t1 := 2 t̃1.

On the other hand we also obtain a corollary concerning the opposite implication.

Corollary 37. Let A,D ⊂ Rn be two Caccioppoli sets of the same volume that satisfy
an L2-inequality

‖T (t)1A‖L2 ≤ ‖T (t)1D‖L2 , t ∈ (0, t1), (2.33)

for some t1 > 0. Then P (A) ≥ P (D).

Proof: By the same arguments as above the inequality (2.33) is equivalent to

√
π√
t
〈T (t)1A, 1Ac〉 ≥

√
π√
t
〈T (t)1D, 1Dc〉, t ∈ (0, t1).

Taking the limits as t → 0 we obtain P (A) ≥ P (D).

43



44



Chapter 3

Diffusion of characteristic
functions: Long time behaviour

Motivation: Diffusion with Dirichlet boundary conditions

We motivate this chapter by recalling the long time behaviour of the diffusion of
the characteristic function 1E of some bounded open set E ⊂ Rn in case we impose
(vanishing) Dirichlet boundary conditions on ∂E. More precisely, we look at the long
time behaviour of the following diffusion equation on L2(E)

(DHE)

{
d
dt

u(x, t) = ∆D
Eu(x, t), t ≥ 0, x ∈ E,

u(x, 0) = 1E(x),

where we denote by ∆D
E the Dirichlet Laplacian on L2(E) with domain

D(∆D
E) = {f ∈ W 1,2

0 (E) : ∃ g ∈ L2(E) such that ∆D
Ef = g weakly}.

The semigroup (TD
E (t))t≥0 yielding the solution of (DHE) is then given by an integral

kernel pDE(x, y, t), the Dirichlet heat kernel of E. So the solution TD
E (t)1E of (DHE)

takes the form

TD
E (t)1E(x) =

∫

E

pDE(x, y, t) 1E(y) dy =

∫

E

pDE(x, y, t) dy, x ∈ E, t > 0.

In this situation it is known (see e.g. [EN00, Chapter V]) that the long time behaviour
of the solution is determined by the spectral bound of ∆D

E , i.e., by the first (largest)
Dirichlet eigenvalue λ1(E) since

s(∆D
E) = sup {Re λ : λ ∈ σ(∆D

E)} = λ1(E) < 0.

Physically speaking, −λ1(E) is the fundamental frequency of E.

Since the semigroup (TD
E (t))t≥0 is self-adjoint, it follows from the spectral theorem (see

e.g. [EN00, Chapter I]) that

‖TD
E (t)‖ ≤ etλ1(E).
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In particular, the total amount of heat that is still inside E after time t > 0, i.e., the
quantity given by the inner product

〈TD
E (t)1E, 1E〉L2(E) =

∫

E

TD
E (t)1E(x) dx =

∫

E

∫

E

pDE(x, y, t) dy dx,

converges to zero with exponential rate etλ1(E) as t →∞.

Since for diffusion with Dirichlet boundary conditions the boundary has to be kept at
temperature zero for all times t > 0, the diffusion process will, intuitively speaking,
”never forget the geometry of the boundary”. So it is quite reasonable that a quantity
like λ1(E) which reflects information on the shape of the boundary determines the
qualitative behaviour of the flow for large times.

In order to illustrate the significance of this geometric/physical condition we look at
the following example of a Euclidean ball B and a ball D with a thin but long cut
such that both B and D have the same volume.

B D

Figure 3.1: Euclidean ball B and ball D with cut.

It is quite plausible that for large times the amount of heat still contained in D
will decrease much faster than the amount of heat in B since the geometry of the
boundary, here in particular the cut in the set D, has to be respected for all times.

Note that also for this kind of diffusion the ball B is extremal, i.e., keeps the heat
for large times better than any other set: Under all sets having a given volume the
ball has the largest first Dirichlet eigenvalue λ1(B) or, physically speaking, the lowest
fundamental frequency. This is well known as the so called Faber-Krahn inequality
for the first Dirichlet eigenvalues (see e.g. [Cha01], [Fab23], [Kra25]).
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”Free” diffusion into the complement

In contrast to the situation described above, we now take the heat semigroup (T (t))t≥0

on L2(Rn), a compact set D ⊂ Rn and study the long time behaviour of the evolution

t 7→ ‖T (t)1D‖L2 , t ≥ 0.

This has been introduced in Chapter 1, Section 1.1 and treated in detail for small
times in Chapter 2.

The physical significance is again that we consider the heat flow starting from the
characteristic function of a compact set D without boundary condition on ∂D.
Therefore we allow ”free” heat flow out of D into the complement Dc. Since this
”free” diffusion is a diffusion problem on the whole of Rn, the spectral bound of the
Laplacian ∆ on L2(Rn) is not less than 0 anymore. However, we have an explicit
representation of the kernel which we will use constantly.

This representation implies immediately that

〈T (t)1D, 1D〉L2(Rn) =
1

(4πt)n/2

∫

D

∫

D

e
−|x−y|2

4t dx dy

converges only polynomially to zero as t →∞.

Recall that in Chapter 1, Section 1.2 we deduced from the Riesz-Sobolev inequality
the strict L2-diffusion inequality

‖T (t)1D‖L2 < ‖T (t)1B‖L2 , t > 0, (3.1)

for a Euclidean ball B and some other compact set D of the same volume (which is
not a ball). It states in particular that the characteristic function of a Euclidean ball
B has the optimal diffusion property for large times.

We now want to identify the reason why the ball has this extremal property with
respect to large times. This is important if one wants to compare the corresponding
evolutions for two arbitrary compact sets and not just for the ball and a second set
like in (3.1). The main problem clearly is that Euclidean balls are extremal with
respect to so many properties that it is difficult to identify the one that causes the
phenomenon under consideration. For a nice overview over many extremal properties
of the ball, see [PS51].

As a main result of the previous chapter (Chapter 2, Corollary 36) we proved a partial
generalisation of (3.1) for small times stating that for two arbitrary compact sets
A,D ⊂ Rn of the same volume the implication

P (A) > P (D) =⇒ ‖T (t)1A‖L2 < ‖T (t)1D‖L2 , t ∈ (0, t1), (3.2)

holds with some t1 ∈ (0,∞]. It is possible to have t1 = ∞, but in general the
inequality for the L2-norms will hold only on a finite, possibly very small time interval.
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The aim now is to find the ”large time analogue” to implication (3.2). As a first result
in this direction we will show (Proposition 43) that for two arbitrary compact sets
A,D of the same volume we have
∫

A

∫

A

|x− y|2 dx dy >

∫

D

∫

D

|x− y|2 dx dy ⇒ ‖T (t)1A‖L2 < ‖T (t)1D‖L2 , t ∈ (t2,∞)(3.3)

for some t2 ∈ [0,∞). Afterwards we will further describe the integrals on the left
hand side by physical quantities of the sets A and D - considered as rigid bodies -
like momenta and inertial tensors (Proposition 47 and 51).

The results we are going to establish can be coined, in the two-dimensional situation,
into the following rule of thumb: If two compact sets of the same volume are fixed in
their center of gravity, and both are given the same angular momentum, then the one
which turns faster will keep the heat better for large times.

As an introductory example we will discuss a special situation where we can prove
explicitly a strict L2-diffusion inequality not only for large, but even for all positive
times.

3.1 Heat diffusion for ring domains

We look at the following class of compact sets in Rn.

Definition 38. Given two Euclidean balls B1, B2 ⊂ Rn such that B1 ⊂ B2. We call
the set D := B2 \B1 a ring domain in Rn obtained from the balls B1 and B2.

D1 D2 D3

Figure 3.2: Ring domains in R2.

For the diffusion of characteristic functions of ring domains we prove the following
comparison result.

Proposition 39 (Diffusion for ring domains). Given a Euclidean ball B ⊂ Rn

and three smaller balls C1, C2, C3 ⊂ B with |C1| = |C2| = |C3| such that C1 has the
same center as B, C3 touches the boundary of B and C2 lies somewhere in between
(as drawn in Figure 3.2). Further denote by D1 := B \C1, D2 := B \C2, D3 := B \C3

the corresponding ring domains. Then

‖T (t)1D1‖L2 < ‖T (t)1D2‖L2 < ‖T (t)1D3‖L2 , t > 0. (3.4)
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Remark 40. The above proposition in particular says that a ring domain keeps the
heat the better the more it is asymmetric. This corresponds to the statement from
above that the ”more concentrated” the volume of a set is, the better the heat will be
kept inside the set at least for large times.

For the proof we need the following elementary facts on the diffusion of characteristic
functions of Euclidean balls.

Lemma 41. Let B ⊂ Rn be a Euclidean ball centered in the origin. For every t > 0
the function

T (t)1B(x) =
1

(4πt)n/2

∫

B

e
−|x−y|2

4t dy, x ∈ Rn,

is positive, radially symmetric with respect to the origin and strictly decreasing as |x|
increases, i.e.,

T (t)1B(x) = T (t)1B(x̃), |x| = |x̃|,
and T (t)1B(x) > T (t)1B(x̃), |x| < |x̃|.

Proof: The positivity is immediate by the positivity of the kernel. The radial
symmetry follows from the fact that the kernel as well as the ball B are symmetric.
Finally T (t)1B is strictly decreasing as |x| → ∞ since the exponential function
contained in the kernel is strictly decreasing.

Proof of the proposition: From Section 1.1 we have the relation

‖T ( t
2
)1Di

‖2
L2 = 〈T (t)1Di

, 1Di
〉.

So it is enough to prove that

〈T (t)1D1 , 1D1〉 < 〈T (t)1D2 , 1D2〉 < 〈T (t)1D3 , 1D3〉, t > 0.

Since 1Di
= 1B − 1Ci

, we write 〈T (t)1Di
, 1Di

〉 in the following way:

〈T (t)1Di
, 1Di

〉 = 〈T (t)(1B − 1Ci
), 1B − 1Ci

〉
= 〈T (t)1B − T (t)1Ci

, 1B − 1Ci
〉

= 〈T (t)1B, 1B − 1Ci
〉 − 〈T (t)1Ci

, 1B − 1Ci
〉

= 〈T (t)1B, 1B〉 − 〈T (t)1B, 1Ci
〉 − 〈T (t)1Ci

, 1B〉+ 〈T (t)1Ci
, 1Ci

〉.

Again by the symmetry of T (t) the summands 〈T (t)1B, 1Ci
〉 and 〈T (t)1Ci

, 1B〉 coincide.
Therefore

〈T (t)1Di
, 1Di

〉 = 〈T (t)1B, 1B〉 − 〈T (t)1B, 1Ci
〉 − 〈T (t)1Ci

, 1B〉+ 〈T (t)1Ci
, 1Ci

〉
= 〈T (t)1B, 1B〉 − 2〈T (t)1B, 1Ci

〉+ 〈T (t)1Ci
, 1Ci

〉.

Next, since the heat equation is invariant under translations of Rn, the product
〈T (t)1Ci

, 1Ci
〉, and clearly also 〈T (t)1B, 1B〉, are independent of the position of Ci

and B. Therefore, in order to minimize the product 〈T (t)1Di
, 1Di

〉, i.e., to minimize
the amount of heat still contained inside of Di after an arbitrary time t > 0, we have
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to choose the Ci such that 〈T (t)1B, 1Ci
〉 becomes maximal.

Since by Lemma 41 the function T (t)1B is positive, rotationally symmetric and
strictly decreasing with respect to its center, one has to locate Ci in the center of B
to maximize 〈T (t)1B, 1Ci

〉 and therefore to minimize 〈T (t)1Di
, 1Di

〉. The more we
move Ci away the larger 〈T (t)1Di

, 1Di
〉 becomes and it is maximal if ∂Ci touches the

boundary of B.

Remark 42. This special class of sets is interesting also from a different perspective:
In case we have equality of perimeters, P (A) = P (D), we can not apply (3.2) from
above and the example shows that it is in general not possible to make any assertion
about the relation of the L2-norms ‖T (t)1A‖L2 and ‖T (t)1D‖L2 for small t > 0.

After this introductory example we now study the general situation for the long time
behaviour of the flow t 7→ ‖T (t)1D‖L2 for arbitrary compact subsets of the same
volume.

3.2 Heat diffusion for arbitrary compact sets

The following result shows the main connections between integrals describing the
”distribution of volume” for given compact sets A,D ⊂ Rn and the long time
behaviour for the diffusion of their characteristic functions, as mentioned above in
(3.3).

Note that in the whole section we will need no smoothness assumptions on the bound-
aries of the regarded sets.

Proposition 43 (Long time diffusion behaviour). Let A, D ⊂ Rn be two compact
sets of the same volume that satisfy a strict inequality

∫

A

∫

A

|x− y|2 dx dy >

∫

D

∫

D

|x− y|2 dx dy. (3.5)

Then there exists t2 ∈ [0,∞) such that

‖T (t)1A‖L2 < ‖T (t)1D‖L2 , t > t2. (3.6)

In case we have equality for the integrals in (3.5) but a strict (opposite!) inequality for
the integrals over the fourth powers of the distances, i.e.,

∫

A

∫

A

|x− y|4 dx dy <

∫

D

∫

D

|x− y|4 dx dy, (3.7)

then the same conclusion (3.6) holds.
In general the integrals with the smallest exponent 2n such that the integrals

∫

A

∫

A

|x− y|2n dx dy and

∫

D

∫

D

|x− y|2n dx dy
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are not equal, e.g., without loss of generality

(−1)n

∫

A

∫

A

|x− y|2n dx dy < (−1)n

∫

D

∫

D

|x− y|2n dx dy, (3.8)

determine the long time behaviour (3.6).

Proof: For a compact set A ⊂ Rn we first define the following function

ϕA(τ) :=

∫

A

∫

A

e−τ |x−y|2 dx dy, τ ∈ R.

Since

ϕA(0) =

∫

A

∫

A

dx dy = |A|2,

we conclude

ϕA(0) = ϕD(0). (3.9)

From the definition it is clear that ϕA ∈ C∞(R). Since A is compact, we obtain the
derivatives of ϕA(τ) by differentiating under the integral sign

d

dτ
ϕA(τ) = −

∫

A

∫

A

|x− y|2e−τ |x−y|2 dx dy,

d2

dτ 2
ϕA(τ) =

∫

A

∫

A

|x− y|4e−τ |x−y|2 dx dy

and
dn

dτn
ϕA(τ) = (−1)n

∫

A

∫

A

|x− y|2ne−τ |x−y|2 dx dy.

So we have at τ = 0:

d

dτ
ϕA(0) = −

∫

A

∫

A

|x− y|2 dx dy,

d2

dτ 2
ϕA(0) =

∫

A

∫

A

|x− y|4 dx dy

and
dn

dτn
ϕA(0) = (−1)n

∫

A

∫

A

|x− y|2n dx dy.

Therefore, in case of condition (3.5), i.e.,

∫

A

∫

A

|x− y|2 dx dy >

∫

D

∫

D

|x− y|2 dx dy

this means that

d

dτ
ϕA(0) <

d

dτ
ϕD(0). (3.10)

In case conditions (3.7) are satisfied we can write

d

dτ
ϕA(0) =

d

dτ
ϕD(0) and

d2

dτ 2
ϕA(0) <

d2

dτ 2
ϕD(0), (3.11)
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and in the general situation (3.8) we have

dk

dτ k
ϕA(0) =

dk

dτ k
ϕD(0), k = 1, ..., n−1 and

dn

dτn
ϕA(0) <

dn

dτn
ϕD(0). (3.12)

Now, each of these cases together with the equality (3.9) imply by using the Taylor
expansion for the functions ϕA and ϕD near zero that there exists t̃2 ∈ (0,∞] such
that

ϕA(τ) < ϕD(τ), τ ∈ (0, t̃2),

i.e.,

∫

A

∫

A

e−τ |x−y|2 dx dy <

∫

D

∫

D

e−τ |x−y|2 dx dy, τ ∈ (0, t̃2).

After the substitution t := 1
4τ

and multiplication with 1
(4πt)n/2 > 0 we obtain

1

(4πt)n/2

∫

A

∫

A

e
−|x−y|2

4t dy dx <
1

(4πt)n/2

∫

D

∫

D

e
−|x−y|2

4t dy dx, t ∈
( 1

4 t̃2
,∞

)
, (3.13)

which in case t̃2 = ∞ holds for all t ∈ (0,∞). Using the identity

1

(4πt)n/2

∫

A

∫

A

e
−|x−y|2

4t dy dx = 〈T (t)1A, 1A〉 = ‖T ( t
2
)1A‖2

L2 ,

we rewrite (3.13) as

‖T ( t
2
)1A‖2

L2 < ‖T ( t
2
)1D‖2

L2 , t ∈
(

1
4 t̃2

,∞
)
.

So we finally have

‖T (t)1A‖L2 < ‖T (t)1D‖L2 , t ∈ (t2,∞), t2 :=
1

8 t̃2
,

which in case t̃2 = ∞ holds for all t ∈ (0,∞).

However, for applications and in order to determine explicitly the integrals in (3.5)
and (3.7) it will be interesting to find relations between these integrals and physical
quantities of the sets under consideration - considered as rigid bodies.

We will make use of the concept of moments coming from physics, which plays an
important role, e.g., in the multipole expansions in electrostatics and in the theory
of rigid bodies. There, not only the total amout of charges or the total mass is
important, but also their distribution throughout the field or the body, for which the
moments yield an appropriate description.

Therefore we continue with the following definitions.
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Definition 44. Let D ⊂ Rn be a compact set. We denote by xD its center of gravity

xD :=
1

|D|
∫

D

x dx.

Further, we define by

µ2(D) :=
1

|D|
∫

D

|x− xD|2 dx

the second central moment of D, i.e., the second moment with respect to the center of
gravity xD. The fourth central moment of D is

µ4(D) :=
1

|D|
∫

D

|x− xD|4 dx.

Definition 45. Let D ⊂ Rn be a compact set. We define the inertia tensor ΘD :=
(ΘD

ij )1≤i,j≤n of D with respect to the origin by

ΘD
ij :=

∫

D

xixj dx,

and recall that the Hilbert-Schmidt norm of the tensor ΘD is given by

‖ΘD‖HS =
( ∑

ij

(ΘD
ij )

2
)1/2

.

Remark 46. Note that if D has center of gravity in the origin, then the second central
moment µ2(D) of D is - up to the volume |D| - equal to the trace tr (ΘD) of the inertial
tensor ΘD:

µ2(D) =
1

|D|
∫

D

|x|2 dx =
1

|D|
n∑

i=1

∫

D

x2
i dx =

1

|D|
n∑

i=1

ΘD
ii =

1

|D| tr (ΘD).

Now we will connect the integrals

∫

D

∫

D

|x− y|2 dx dy and

∫

D

∫

D

|x− y|4 dx dy,

with the quantities defined above and start with the integral of the squared distances.
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3.2.1 The quantity
∫
D

∫
D

|x− y|2 dx dy

We first show that the integral over the squared distances in D×D is up to a constant
the second central moment µ2(D) of D.

Proposition 47. Let D ⊂ Rn be a compact set, xD its center of gravity. Then it holds
that

∫

D

∫

D

|x− y|2 dx dy = 2 |D|
∫

D

|x− xD|2 dx = 2 |D|2 µ2(D). (3.14)

In particular, for two compact sets A,D ⊂ Rn of the same volume |A| = |D| the
equivalence

µ2(A) ≤ µ2(D) ⇐⇒
∫

A

∫

A

|x− y|2 dx dy ≤
∫

D

∫

D

|x− y|2 dx dy

holds.

Proof: The second equality in (3.14) follows directly by definition of the second central
moment µ2(D).
In order to prove the first equality we denote by D0 := D − xD the translation of D
which has its center of gravity in the origin. Since the integral

∫
D

∫
D

|x − y|2 dx dy is

invariant under translation of D we obtain by polarisation that

∫

D

∫

D

|x− y|2 dx dy =

∫

D0

∫

D0

|x− y|2 dx dy

=

∫

D0

∫

D0

〈x− y, x− y〉 dx dy

=

∫

D0

∫

D0

(
|x|2 + |y|2 − 2〈x, y〉

)
dx dy

=

∫

D0

∫

D0

|x|2 dx dy +

∫

D0

∫

D0

|y|2 dx dy − 2

∫

D0

∫

D0

〈x, y〉 dx dy

= |D0|
∫

D0

|x|2 dx + |D0|
∫

D0

|y|2 dy − 2

∫

D0

∫

D0

〈x, y〉 dx dy

= 2 |D0|
∫

D0

|x|2 dx− 2

∫

D0

∫

D0

〈x, y〉 dx dy

= 2 |D0|
∫

D0

|x|2 dx− 2
〈 ∫

D0

y dy

︸ ︷︷ ︸
=0

,

∫

D0

x dx

︸ ︷︷ ︸
=0

〉

= 2 |D0|
∫

D0

|x|2 dx,
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since the center of gravity xD0 of D0 coincides with the origin and clearly |D0| = |D|.
Since

∫

D0

|x|2 dx =

∫

D

|x− xD|2 dx,

we obtain the desired equality

∫

D

∫

D

|x− y|2 dx dy = 2 |D0|
∫

D0

|x|2 dx

= 2 |D|
∫

D

|x− xD|2 dx.

Therefore, in order to minimize the integral

∫

D

∫

D

|x− y|2 dx dy

under all compact sets of a given volume, we can instead minimize the second central
moment µ2(D) of D. As an easy consequence we obtain the following corollary.

Corollary 48. The following assertions hold true.
i) Under all compact sets D ⊂ Rn of the same volume the Euclidean ball D = B
minimizes the integral

∫

D

∫

D

|x− y|2 dx dy. (3.15)

ii) Further, for every compact set D ⊂ Rn it holds that

µ2(D)

|D| ≥ n

(n + 2) ωn Rn−2
, (3.16)

where ωn = |Bn| is the volume of the n-dimensional unit ball and R is the radius of

the Euclidean ball BR having the same volume as D, i.e., R =
( |D|

ωn

)1/n
. Equality in

(3.16) is attained if D is a Euclidean ball.

Remark 49. The assertion of the corollary should be compared with the ”isoperi-
metric property” of the ball: This time one does not compare volume and perimeters
which was the crucial relation for the short time behaviour of the flow, but volume
and second central moments.

Proof: i) By Proposition 47 we only have to show that for a given volume the Euclidean
ball of this volume minimizes the integral

∫

D

|x− xD|2 dx =

∫

D0

|x|2 dx.
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Since x 7→ |x|2 is a positive, monotone, radially symmetric function having its mini-
mum in the origin, the integral is minimized if and only if the integration domain is
the Euclidean ball B with center in the origin.
ii) By i) the Euclidean ball B ⊂ Rn minimizes the integral (3.15) and therefore the
second central moment under all compact sets of the same volume. So B minimizes
the quotient µ2(D)

|D| , and we obtain

µ2(BR)

|BR| =
1

|BR|2
∫

BR

|x|2 dx =
1

(ωnRn)2

∫

Sn−1

R∫

0

rn−1|rω|2 dω dr

=
|Sn−1|

(ωnRn)2

R∫

0

rn+1 dr =
nωn

(ωnRn)2
· Rn+2

n + 2

=
n

(n + 2) ωn Rn−2
.

Remark 50. Now, independently of the L2-diffusion inequality (Chapter 1, Theorem
7) which compares Euclidean balls with other compact sets of the same volume, we
obtain that for large times a Euclidean ball keeps heat better than any other set of
the same volume.
But this time, we can even compare the large time heat diffusion of the characteristic
functions of two arbitrary compact sets A,D ⊂ Rn of the same volume.

We next come to the situation where the second central moments are equal. Here
the integrals of the fourth power of the distances decide about the comparison of the
norms ‖T (t)1A‖L2 and ‖T (t)1D‖L2 for large times.

3.2.2 The quantity
∫
D

∫
D

|x− y|4 dx dy

Here the situation is not as nice as before, but at least we obtain the following con-
nections.

Proposition 51. Let D ⊂ Rn be a compact set with center of gravity xD in the origin.
Then we have the following decomposition

∫

D

∫

D

|x− y|4 dx dy = 2 |D|
∫

D

|x|4 + 2
( ∫

D

|x|2 dx
)2

+ 4

∫

D

∫

D

〈x, y〉2 dx dy (3.17)

= 2 |D|2 µ4(D) + 2[|D|µ2(D)]2 + 4 ‖ΘD‖2
HS. (3.18)

In particular, for two compact subsets A,D ⊂ Rn with |A| = |D| and µ2(A) = µ2(D)
the following implication holds

µ4(A) < µ4(D)

‖ΘA‖HS ≤ ‖ΘD‖HS

}
=⇒

∫

A

∫

A

|x− y|4 dx dy <

∫

D

∫

D

|x− y|4 dx dy.
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Proof: At first we have the following decomposition

∫

D

∫

D

|x− y|4 dx dy =

∫

D

∫

D

〈x− y, x− y〉2 dx dy

=

∫

D

∫

D

(|x|2 − 2 〈x, y〉+ |y|2)2 dx dy

=

∫

D

∫

D

|x|4 − 2〈x, y〉|x|2 + |x|2|y|2 dx dy

+

∫

D

∫

D

−2〈x, y〉|x|2 + 4〈x, y〉2 − 2〈x, y〉|y|2 dx dy

+

∫

D

∫

D

|y|4 − 2〈x, y〉|y|2 + |x|2|y|2 dx dy

= 2

∫

D

∫

D

|x|4 dx dy + 2

∫

D

∫

D

|x|2|y|2 dx dy

+4

∫

D

∫

D

〈x, y〉2 dx dy − 8

∫

D

∫

D

〈x, y〉|x|2 dx dy.

Since
∫

D

∫

D

〈x, y〉|x|2 dx dy =

∫

D

∫

D

〈x|x|2, y〉 dx dy = 〈
∫

D

x|x|2 dx,

∫

D

y dy

︸ ︷︷ ︸
=0

〉 = 0,

we obtain (3.17)

∫

D

∫

D

|x− y|4 dx dy = 2 |D|
∫

D

|x|4 dx + 2
( ∫

D

|x|2 dx
)2

+ 4

∫

D

∫

D

〈x, y〉2 dx dy.

Now note that by

∫

D

∫

D

〈x, y〉2 dx dy =

∫

D

∫

D

( n∑
i=1

xiyi

)2

dx dy =
n∑

i,j=1

∫

D

∫

D

xixjyiyj dx dy

=
n∑

i,j=1

( ∫

D

xixj dx
)2

=
n∑

i,j=1

(ΘD
ij)

2

= ‖ΘD‖2
HS

the integral
∫

D

∫
D
〈x, y〉2 dx dy gives the squared Hilbert-Schmidt norm of the tensor

ΘD.
So we altogether obtain

∫

D

∫

D

|x− y|4 dx dy = 2 |D|
∫

D

|x|4 dx + 2
( ∫

D

|x|2 dx
)2

+ 4

∫

D

∫

D

〈x, y〉2 dx dy
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and therefore (3.18)
∫

D

∫

D

|x− y|4 dx dy = 2 |D|2 µ4(D) + 2[|D|µ2(D)]2 + 4 ‖ΘD‖2
HS

by definition of the second and fourth central moments of D.

We summarize the main results in the following theorem.

Theorem 52 (Long time behaviour). Let A,D ⊂ Rn be two compact sets of the
same volume |A| = |D| that satisfy the strict inequality

µ2(A) > µ2(D) (3.19)

for the second central moments. Then there exists t2 ∈ [0,∞) such that

‖T (t)1A‖L2 < ‖T (t)1D‖L2 for all t > t2. (3.20)

In case we have equality in (3.19) and a strict (opposite!) inequality
∫

A

∫

A

|x− y|4 dx dy <

∫

D

∫

D

|x− y|4 dx dy, (3.21)

then the same conclusion (3.20) holds.
Furthermore, inequality (3.21) follows, e.g., if we have

µ4(A) < µ4(D) and ‖ΘA‖HS ≤ ‖ΘD‖HS

for the fourth central moments and the Hilbert-Schmidt norm of the inertial tensors
ΘA and ΘD.

Remark 53. As we see from the L2-diffusion inequality (see Section 1.2) for a ball
and any other set of the same volume and in addition from the class of ring domains
discussed in Section 3.1 it is possible to have t2 = 0. In general t2 will be strictly
positive as the following example (Figure 3.3) should illustrate.

E R

Figure 3.3: Ball E with cuts and rectangle R.
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Example 54. We assume E and R have the same volume and are as in figure 3.3.
It is immediate that the set E has larger perimeter than R, i.e., P (E) > P (R). This
implies that

‖T (t)1E‖L2 < ‖T (t)1R‖L2 for small t > 0.

On the other hand, R obviously has larger second central moment than E:
∫

E

|x− xE|2 dx <

∫

R

|x− xR|2 dx.

So we have

‖T (t)1E‖L2 > ‖T (t)1R‖L2

for large values of t.

Obviously, in the notation used above, we can not have t1 = ∞ or t2 = 0 since the
L2-diffusion inequality has the opposite inequality sign for short and for large times,
respectively. This means that the L2-inequality has to ”switch” at least once after a
certain time.

However, even with the inequalities

P (A) > P (D) and µ2(A) > µ2(D)

for two compact sets A,D ⊂ Rn of the same volume, we only know that

‖T (t)1A‖L2 < ‖T (t)1D‖L2 , t ∈ (0, t1) ∪ (t2,∞), (3.22)

for some t1, t2.

It remains an open problem to find (maybe additional?) sufficient conditions on the
sets A and D such that (3.22) holds for all times t > 0.

3.3 Examples

3.3.1 Examples (µ2 - second central moment)

In order to illustrate the above results we look at the following examples of subsets of
R2 and compare explicitly their second central moments.

i) Euclidean ball BR ⊂ R2 with radius R > 0:

µ2(BR) =
1

|BR|
∫

BR

|x|2 dx =
1

|BR|
∫

S1

R∫

0

r|rω|2 dω dr

=
|S1|
|BR|

R∫

0

r3 dr =
2π

R2π

R4

4
=

R2

2
.
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For |BR| = 1, i.e., R = 1√
π
, we have µ2(B 1√

π
) = 1

2π
≈ 0, 15915.

ii) Square Sa ⊂ R2 with side length a:

µ2(Sa) =
1

|Sa|
∫

P

|x|2 dx =
4

a2

a
2∫

0

a
2∫

0

x2
1 + x2

2 dx1 dx2 =
4

a2
· 1

24
a4 =

1

6
a2.

For |Sa| = 1, i.e., a = 1, we have µ2(S1) = 1
6
≈ 0, 16667.

iii) Parallelogram P1 ⊂ R2 bounded by f(x) = −1
2
|x| + 1

2
and −f(x) with volume

|P1| = 1:

µ2(P1) =
1

|P1|
∫

P

|x|2 dx = 4

1∫

0

− 1
2
x2+ 1

2∫

0

x2
1 + x2

2 dx1 dx2 = 4 · 5

96
=

5

24
≈ 0, 20833.

iv) Parallelogram P2 ⊂ R2 bounded by g(x) = −1
8
|x| + 1

4
and −g(x) with volume

|P2| = 1:

µ2(P2) =
1

|P2|
∫

P1

|x|2 dx = 4

2∫

0

− 1
8
x2+ 1

4∫

0

x2
1 + x2

2 dx1 dx2 = 4 · 65

384
=

65

96
≈ 0, 67708.

v) Family of rectangles Ra ⊂ R2 with side lengths a and 1
a

with volume |Ra| = 1:

µ2(Ra) =
1

|Ra|
∫

R

|x|2 dx = 4

a
2∫

0

1
2a∫

0

x2
1 + x2

2 dx1 dx2 = 4 · 1

48
(a2 +

1

a2
) =

1

12
(a2 +

1

a2
).

So we have the following table for second central moments which explicitly allows to
compare the long time behaviour for the diffusion of the corresponding characteristic
functions.

set volume µ2

Euclidean ball 1 0,15915

square 1 0,16667

rectangle (a = 95
100

) 1 0,16754

rectangle (a = 9
10

) 1 0,17038

rectangle (a = 8
10

) 1 0,18354

parallelogram P1 1 0,20833

rectangle (a = 1
2
) 1 0,35417

parallelogram P2 1 0,67708

rectangle (a = 1
5
) 1 2,08667

rectangle (a = 1
10

) 1 8,33417

rectangle (a = 1
20

) 1 33,33354

rectangle (a = 1
50

) 1 208,33337

rectangle (a = 1
100

) 1 833,33333
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3.3.2 Examples (µ4 - fourth central moment)

Finally we give an example of two compact sets A,D in R2 having the same volume,
the same second central moment, but different fourth central moments and satisfy
the condition of Theorem 52 for the Hilbert-Schmidt norms of ΘA and ΘD.

We first consider the family of rectangles

Ra = [−4a, 4a]× [−4

a
,
4

a
], a > 0.

Then Ra has volume |Ra| = 64 (independently of a) and second central moment
(depending on a)

µ2(Ra) =
1

|Ra|
∫

Ra

|x|2 dx =
4

64

4a∫

0

4
a∫

0

x2
1 + x2

2 dx1 dx2 =
16

3

(a4 + 1)

a2
.

Further we take the family of parallelograms Pa bounded by the functions fa and −fa

which are given by

fa(x) :=

{
8
a2 x + 16

a
, x < 0,

− 8
a2 x + 16

a
, x ≥ 0.

Then Pa has volume (independently of a)

|Pa| = 4

2a∫

0

fa(x) dx = 4

2a∫

0

− 8

a2
x +

16

a
dx = 64

and second central moment (depending on a)

µ2(Pa) =
1

|Pa|
∫

Pa

|x|2 dx =
4

64

2a∫

0

− 8
a2 x2+ 16

a∫

0

x2
1 + x2

2 dx1 dx2

=
2

3

(a4 + 64)

a2
.

We next determine the value for a > 0 such that µ2(Ra) = µ2(Pa), i.e.,

16

3

(a4 + 1)

a2
=

2

3

(a4 + 64)

a2
⇐⇒ a =

4
√

8.

For abbreviation we set R := R 4√8 and P := P 4√8. So we have

|R| = |P | = 64 and µ2(R) = µ2(P ) = 768
√

2.
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PR

Figure 3.4: R and P.

The fourth central moments are given by

µ4(R) =
1

64

∫

R

|x|4 dx =
4

64

4a∫

0

4
a∫

0

x4
1 + 2 x2

1 x2
2 + x4

2 dx1 dx2

=
256

45

(9a8 + 10a4 + 9)

a4

∣∣∣
a= 4√8

=
4256

9
≈ 472, 89

and

µ4(P ) =
1

64

∫

P

|x|4 dx =
4

64

2a∫

0

− 8
a2 x2+ 16

a∫

0

x4
1 + 2 x2

1 x2
2 + x4

2 dx1 dx2

=
16

45

(3a8 + 64a4 + 12288)

a4

∣∣∣
a= 4√8

=
25984

45
≈ 577, 42,

i.e., we have

µ4(R) < µ4(P ).

We now show that the Hilbert-Schmidt norms of ΘR and ΘP are equal. For ΘR it is
given by

‖ΘR‖2
HS =

2∑
i,j=1

(ΘR
ij)

2 =
2∑

i,j=1

( ∫

R

xixj dx
)2

=
( ∫

R

x2
1 dx

)2

+
( ∫

R

x2
2 dx

)2

+ 2
( ∫

R

x1x2 dx
)2

︸ ︷︷ ︸
=0

,

62



where the last summand vanishes by the symmetries of R with respect to the x1- and
x2-axis (and clearly the last summand also vanishes for ΘP ). So we have

‖ΘR‖2
HS =

( ∫

R

x2
1 dx

)2

+
( ∫

R

x2
2 dx

)2

=
(
4

4a∫

0

4
a∫

0

x2
1 dx1 dx2

)2

+
(
4

4a∫

0

4
a∫

0

x2
2 dx1 dx2

)2

= 2
(256

3

)2

+ 2
(2048

3

)2

and

‖ΘP‖2
HS =

(
4

2a∫

0

− 8
a2 x2+ 16

a∫

0

x2
1 dx1 dx2

)2

+
(
4

2a∫

0

− 8
a2 x2+ 16

a∫

0

x2
2 dx1 dx2

)2

= 2
(256

3

)2

+ 2
(2048

3

)2

.

Finally, since |R| = |P |, µ2(R) = µ2(P ), µ4(R) < µ4(P ) and ‖ΘR‖HS = ‖ΘP‖HS it
follows by Theorem 52 that there exists a critical time t2 ∈ (0,∞) such that

‖T (t)1R‖L2 < ‖T (t)1P‖L2 , t > t2.

3.4 Final considerations

One could ask the question: How much geometry of D is determined by the flow
t 7→ ‖T (t)1D‖L2?

The following is an interesting consequence of our main results in Chapter 2 and 3
and gives a partial answer.

Theorem 55. Let A,D ⊂ Rn be two Caccioppoli sets and (tn)n∈N a sequence with
accumulation point in (0,∞). If

‖T (tn)1A‖L2 = ‖T (tn)1D‖L2 for every n ∈ N,

then A and D have

i) the same volume |A| = |D|,
ii) the same perimeter P(A) = P(D) and

iii) the same distance integrals

∫

A

∫

A

|x− y|2k dx dy =

∫

D

∫

D

|x− y|2k dx dy for every k ∈ N.
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Proof: By the analyticity of t 7→ ‖T (t)1A‖L2 and t 7→ ‖T (t)1D‖L2 , see Chapter 1,
Remark 2, the condition

‖T (tn)1A‖L2 = ‖T (tn)1D‖L2 for every n ∈ N,

implies that the two maps coincide for every t ∈ (0,∞). By continuity they also
coincide for t = 0. So we have

‖T (t)1A‖L2 = ‖T (t)1D‖L2 , t ≥ 0. (3.23)

This yields |A| = |D| and P (A) = P (D) since

‖T (0)1D‖2
L2 = |D|

and

lim
t→0

√
π√
t

(
|D| − ‖T ( t

2
)1D‖2

L2

)
= lim

t→0

√
π√
t

(
|D| − 〈T (t)1D, 1D〉

)

= lim
t→0

√
π√
t
〈T (t)1D, 1Dc〉

= P (D).

Furthermore, all the integrals
∫

A

∫

A

|x− y|2k dx dy =

∫

D

∫

D

|x− y|2k dx dy for every k ∈ N

must coincide since an inequality
∫

A

∫

A

|x− y|2k0 dx dy <

∫

D

∫

D

|x− y|2k0 dx dy for some k0 ∈ N

would imply by Proposition 43 that (3.23) could not hold for all t ≥ 0.

Final Conjecture 56. It seems to be an open question whether the above properties
i)-iii) imply that A und D have additional common properties or maybe that they
already have to be congruent.

If this would be true, we could - up to a rigid motion - characterise a compact set
D by the induced evolution t 7→ ‖T (t)1D‖L2 , and even by its values on a sequence
(tn)n∈N with accumulation point in (0,∞).

This is reminiscent of the famous question of M. Kac [Kac66]: ”Can one hear the
shape of a drum?”, i.e., does the sequence (λn)n∈N of Dirichlet eigenvalues of D
determine the geometry of D. There, as shown by a counterexample of C. Gordon,
D.L. Webb, S. Wolpert [GWW92] the answer is, in general, negative.

So we dare to close with the question: ”With a perfect measuring instrument for heat,
can one deduce the shape of a coffee cup?”
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Zusammenfassung in deutscher
Sprache

Wir betrachten eine gleichmäßige Wärmeverteilung in einer kompakten Menge D des
Rn, die durch die charakteristische Funktion 1D of D repräsentiert wird. Die Wärme-
leitungshalbgruppe (T (t))t≥0 auf L2(Rn) liefert dann, angewandt auf 1D, die eindeutige
Lösung u(x, t) = T (t)1D(x) der Wärmeleitungsgleichung

(WLG)

{
d
dt

u(x, t) = ∆u(x, t), x ∈ Rn, t ≥ 0,

u(x, 0) = 1D(x)

auf Rn für alle Zeiten t ≥ 0 mit Anfangswert 1D.
Dieser Wärmefluss induziert insbesondere eine Evolution der entsprechenden L2-
Normen

t 7→ ‖T (t)1D‖L2 , t ≥ 0. (1)

Wenn wir die Notation

〈f, g〉 :=

∫

Rn

f(x) · g(x) dx

sowohl für das innere Produkt auf L2(Rn) als auch für das duale Paar 〈L1(Rn), L∞(Rn)〉
verwenden, dann bekommen wir mit der Halbgruppeneigenschaft

T (t + s)1D = T (t)T (s)1D, s, t ≥ 0

und der Selbstadjungiertheit der Operatoren T (t) die folgende alternative Form der
Evolution (1):

〈T (t)1D, 1D〉 = 〈T ( t
2
)1D, T ( t

2
)1D〉 = ‖T ( t

2
)1D‖2

L2 , t ≥ 0. (2)

Da zudem im Rn unter Diffusion keine Wärme verloren geht, liefert dies auch

〈T (t)1D, 1Dc〉 = |D| − 〈T (t)1D, 1D〉 = |D| − ‖T ( t
2
)1D‖2

L2 , t ≥ 0. (3)

Mit der Integralschreibweise

〈T (t)1D, 1D〉 =

∫

D

T (t)1D(x) dx und 〈T (t)1D, 1Dc〉 =

∫

Dc

T (t)1D(x) dx
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wird deutlich, dass (2) genau die Wärmemenge beschreibt, die zur Zeit t noch in D
ist, während (3) angibt, was bereits ins Komplement Dc geflossen ist. In diesem Sinne
spiegelt die Entwicklung der L2-Normen (1) wider, wie gut die Menge D Wärme in
sich hält.

Im ersten Kapitel geben wir eine kurze Zusammenfassung der analytischen und
geometrischen Konzepte, die im weiteren benutzt werden. Wir führen die Wärme-
leitungshalbgruppe auf Rn und ihre wichtigsten Eigenschaften ein. Wir gehen auf
das Konzept der Symmetrisierung im Rn und die Riesz-Sobolev-Ungleichung ein
und zeigen interessante, aber weitgehend unbekannte Beziehungen zwischen der
Wärmeleitungshalbgruppe und Symmetrisierungs-Ungleichungen. Weiter stellen wir
kurz den nötigen Hintergrund zum Perimeter, relevante geometrische Maßtheorie und
grundlegende Begriffe der Geometrie glatter Hyperflächen im Rn vor.

Im zweiten Kapitel konzentrieren wir uns auf das Kurzzeitverhalten des Flusses
t 7→ T (t)1D. Wir beginnen mit einer genauen Untersuchung der Evolution der
Niveauflächen von T (t)1D und bestimmen das asymptotische Verhalten dieser Evo-
lution: Wir zeigen, dass für kurze Zeiten die Bewegung der Niveauflächen eine asymp-
totische Entwicklung in Potenzen von t1/2 besitzt. Wir bestimmen die Koeffizienten
bis zur Ordnung t2 in Termen geometrischer Invarianten des Randes ∂D und geben
eine allgemeine Formel für die Koeffizienten höherer Ordnung an.
Wir zeigen dann, dass das Kurzzeitverhalten des Flusses (1)-(3) für eine beliebige
Caccioppoli-Menge D durch den Perimeter von D kontrolliert ist.
Als Folgerung erhalten wir einen Vergleichssatz, der sagt, dass für zwei beliebige
kompakte volumengleiche Mengen A, D ⊂ Rn diejenige mit dem kleineren Perimeter
für kurze Zeiten Wärme besser hält als die andere.

Im dritten Kapitel konzentrieren wir uns auf Langzeitphänomene des Flusses (1)-(3).
Vor allem betrachten wir das Analogon der Frage, die wir am Ende von Kapitel 2
behandelt haben: Gegeben seien zwei kompakte volumengleiche Mengen A,D ⊂ Rn.
Welche hält für lange Zeiten Wärme besser?
Wir beweisen wiederum einen Vergleichssatz, der sagt, dass dieses für diejenige Menge
gilt, die kleineres zweites Zentralmoment hat. Darüberhinaus geben wir Kriterien für
die vierten Zentralmomente und die Trägheitstensoren von A and D an für den Fall,
dass die zweiten Zentralmomente gleich sind.

Wir schließen die Arbeit mit Überlegungen zu der Frage, wie viel Geometrie von D
bereits bestimmt ist, wenn wir den Fluss (1)-(3) auf einem (eventuell kleinen) Zeitin-
tervall kennen.

68



Lebenslauf

Marc Preunkert

15.06.1975 geboren in Crailsheim

1982 - 1986 Grundschule in Gerabronn

1986 - 1992 Gymnasium in Gerabronn

1992 - 1995 Evang. Seminar Blaubeuren

1995 Abitur

1995 - 1996 Zivildienst

1996 - 2002 Studium der Fächer Mathematik und Latein
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