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Zusammenfassung

Die Visualisierung zéhlt zu den éltesten und wichtigsten Anwendungen der
Computergraphik. In den letzten Jahrzehnten hat die Bedeutung der Volu-
menvisualisierung exponentiell zugenommen. Dieses Wachstum war von be-
sonders grofler Bedeutung fiir die Anwendung der 3D-Visualisierung in der
Medizin, wo die Verbreitung immer genauerer Scanner zur Entwicklung neuer
Darstellungs-Verfahren fiir die grosseren und genaueren Datensétze gefiithrt
hat.

In dieser Doktorarbeit werden verschiedene Losungsansatze fiir die kor-
rekte Visualisierung von 3D-Daten vorgestellt, wobei der Anwendungsschwer-
punkt immer auf dem medizinischen Bereich liegt. Aufgrund der Vielfalt exi-
stierender Visualisierungsalgorithmen, und um einen korrekten, umfassenden
Uberblick zu schaffen, ohne auf die relevanten Details zu verzichten, besteht
diese Arbeit aus drei unterschiedlichen thematischen Einheiten:

Die erste Einheit, die in Kapitel 2 préasentiert wird, beschéftigt sich mit
punktbasierten Darstellungstechniken (Point Rendering) und ihre Anwen-
dung auf die graphische Darstellung von volumetrischen Daten. Die inhérente
Einfachheit der Verwendung von Punkten als Darstellungs- und Modellie-
rungsprimitive, sowie die wachsende Leistung von Graphikhardware, machen
punktbasiertes Rendering zu einer interessanten Alternative zu traditionel-
len Darstellungstechniken. Trotzdem stellt das Erreichen von Echtzeit- oder
selbst interaktiven Bildfrequenzen angesichts der grossen Menge von Punkt-
primitiven, die fiir die Darstellung grosser 3D-Modelle notwendig sind, eine
Herausforderung dar. Unsere Arbeit in diesem Bereich befasst sich mit ei-
ner hardwarebasierten Losung, die eine hohe Geschwindigkeit erreicht, oh-



vi

ne die Bildqualitéit zu verringern. Um die Ausfithrungen verstdndlicher und
vollsténdiger zu machen, wird zuerst ein Uberblick iiber die wichtigsten Algo-
rithmen fiir punktbasierte Darstellung gegeben. Nachdem die grundlegende
Funktionsweise erklart wurde, wird unsere hardwarebeschleunigte Punktpro-
jektionstrategie erldutert und im Detail analysiert.

In der zweiten Einheit (Kapitel 3) liegt der Schwerpunkt auf den Méglich-
keiten der indirekten Volumendarstellung (indirect Volume Rendering) als
Volumenvisualisierungswerkzeug. In der indirekten Volumendarstellung wer-
den charakteristische Isoflichen extrahiert und anschlieBend dargestellt, um
einen Einblick im Volumendatensatz zu gewinnen. Da die Isoflachenextraktion
das zentrale Element in jeder Anwendung der indirekten Volumendarstellung
ist, wird die Standardmethode, d.h. der Marching Cubes Algorithmus, hier
im Detail erkléart. Das notwendige Hintergrundwissen wird mit einer Analyse
der wichtigsten Beschleunigungstechniken ergénzt, so dass der aktuelle Stand
der Technik aufgezeigt wird. Auf diesem aufbauend wird dann unsere eigene
Arbeit vorgestellt, die auf eine hardwarebeschleunigte Isoflichendekodierung
und -darstellung abzielt.

Kapitel 4 schliesst den Kreis von Volumenvisualisierungsalgorithmen mit
einer Einheit tiber direkte Volumendarstellung (direct Volume Rendering).
Als die unmittelbare Darstellung eines 3D-Datensatzes ist direct Volume Ren-
dering der ideale Ansatz, um einen guten Einblick in einen kompletten Pati-
entenscan auf einmal zu erhalten. Allerdings ist die Erzeugung einer klaren
Darstellung mit einer Betonung von signifikanten Bereichen gegeniiber von
Kontextinformation keineswegs trivial, da die Auflésung der Aufnahmegerite
(z.B. CT-/MRI-Scanner) stédndig wichst, und mit ihr auch die entsprechen-
den Datensétze. Dariiberhinaus ist die Anwendung der Techniken, die fiir die
Betonung dieser Regionen zustéandig sind, oft zu kompliziert, was einen prak-
tischen Einsatz im medizinischen Bereich meist verhindert. Deswegen fangen
wir in dieser Einheit mit einem Uberblick iiber die Grundlagen von direct Vo-
lume Rendering und einer kurzen Sammlung der bekanntesten Algorithmen
an, um uns dann mit unserem eigenen Ansatz fiir die Volumenklassifikati-
on zu befassen. Unsere Methode kombiniert eine intuitive Augmented Rea-
lity-Umgebung zur direkten Darstellung und Benutzerinteraktion mit einem
automatischen Klassifizierungsverfahren, das auf maschinellen Lernverfahren
basiert. Auf diese Art und Weise wird dem Arzt ein komplettes Werkzeug
zur Verfiigung gestellt, mit dem wichtige Materialien im Volumen halbauto-
matisch hervorgehoben werden koénnen, ohne dass man ein Experte in der
Definition von Transferfunktionen sein muss.

Abschlieflend werden verschiedene Beispiele von praktischen Anwendun-
gen, die zu konkreten Projekten gehoren, in Appendix A zusammengefasst.
Dadurch wird die Einsatzfdhigkeit der medizinischen Volumenvisualisierung
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Abstract

Visualization is probably one of the oldest and most important applications of
computer graphics. In the last decades the relevance of volume visualization
has increased exponentially. This growth has been especially significative in
the application of 3D visualization to medicine, where the development of
more accurate scanning devices has escorted the creation of new algorithms
to enable the proper display of these larger and more precise data.

This thesis presents several solutions for the correct visualization of 3D
data, emphasizing their utility as a tool in the medical field. Due to the
diversity of volume visualization algorithms, and in order to provide a correct
global overview without sacrificing necessary and relevant details, this work
has been structured in three different thematic units:

The first unit, presented in Chapter 2, is devoted to point rendering and
its application for obtaining graphical representations of volumetric data.
The simplicity inherent to the utilization of point samples as rendering and
modelling primitives and the increasing performance of graphics hardware
have made point rendering an interesting alternative to more traditional ren-
dering modalities. Nevertheless, given the large amount of point primitives
necessary to represent large 3D models, real-time or even interactive frame-
rates can become a challenge. Our work in this field is devoted towards
a hardware-based solution that enables high speed point-based rendering
without sacrificing image quality. In order to make the exposition fully un-
derstandable and self-contained, a survey of the most important algorithms
for point-based rendering is firstly exposed. Once the working principle of
these methods has been presented, our hardware accelerated point projection



strategy is explained and analyzed in detail.

In the second unit, enclosed in Chapter 3, the focus is shifted to the
possibilities of indirect volume rendering as a volume visualization tool. In
indirect volume rendering, representative isosurfaces are extracted and ren-
dered as a means to gain an insight of the volume data. Since isosurface
extraction is a key element in every indirect volume rendering application,
the standard technique for this purpose, i.e., the marching cubes algorithm
is explained in detail here. The necessary background is complemented with
an analysis of the most relevant acceleration techniques, hence indicating the
current state-of-the-art on the field. This is then further extended with the
presentation of our own work, which pursues a hardware (GPU) accelerated
isosurface decoding and rendering solution.

Chapter 4 closes this circle of volume visualization algorithms with a di-
rect volume rendering unit. As a straight representation of a 3D dataset as a
whole, direct volume rendering is the perfect option to obtain a good insight
of a patient’s scan at once. However, given the increasing resolution of the
acquisition devices (e.g., CT-/MR-scanners) and therefore of the generated
datasets, the production of a clear representation, where certain regions of
interest are highlighted over other context information, is by no means a triv-
ial task. Furthermore, the internal complexity of the techniques responsible
of emphasizing these regions of interest too often prevents new interesting
algorithms from being applied in practical cases. Therefore, in this unit we
start by first giving an overview of the principles of direct volume rendering
together with a brief collection of the most commonly used algorithms, for
then focussing on our novel approach for volume classification. Our method
combines an intuitive augmented reality environment for direct display and
user interaction, with automatic machine-learning based classifiers. This way,
the physician is furnished with a complete tool able to efficiently highlight
materials and features of interest within the volume in a semiautomatic way,
without requiring from her/him a high level of expertise on transfer function
design.

Finally, several examples of practical applications corresponding to con-
crete projects are summed up in Appendix A, thus illustrating the applica-
bility of medical volume visualization to real-life cases.
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CHAPTER 1

Introduction

1.1 Visualization of 3D Medical Datasets

The visualization of scientific data is one of the main challenges in computer
graphics. Since its recognition in 1987 in the NSF report [88] as a field on
its own, scientific visualization has grown and developed until a point where
it has become indispensable to interpret and understand all kinds of results
obtained in many different fields. From the simulation of fluids dynamics, to
the analysis of multidimensional hypersurfaces, or the inspection of scanned
data, the use of computed visualization techniques has played a crucial role
in the development of modern science and its applications.

In this thesis, we focus on the application of visualization techniques
to the medical activity. In medicine, most data employed for diagnosis, in-
traoperative assistance, postoperative analysis or even for teaching purposes,
such as radiographs, computed tomography (CT) scans, magnetic resonances
(MRI), positron emission tomography (PET) images, etc., are obtained using
scanning devices. These devices usually sample a continuous magnitude of
the patient’s anatomy, e.g., Hydrogen density, thus yielding to a discrete rep-
resentation. While traditional acquisition techniques work on a 2D basis, the
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implantation of 3D scanners has grown immensely during the last decades,
hence bringing much attention from the medical imaging community into 3D
computer graphics and scientific visualization methods.

Data 3D Preprocessing Visualization

Acquisition Reconstruction (Filtering, Segmentation...) (Rendering)

Figure 1.1: General workflow in medical visualization.

The general structure of any medical visualization application responds
to the workflow depicted in Figure 1.1. Initially, the patient is examined by
means of a scanning device. These scanning apparatus measure and sample
a given magnitude representative of the patient’s anatomy along a certain
direction. All these acquisition tools stem from the pioneer work done by
Wilhelm Conrad Réntgen (1845-1923), who in 1895 accidentally discovered
a new type of radiation which was later known as X-rays. The utilization of
X-rays in medical practice was almost immediate and has continuously been
used, through a large path of improvements, until today. The basic principle
of measuring the interaction of an external source of energy and the human
body matter is still the core of all scanning devices utilized in today’s medical
imaging. This spectrum includes from high energy electromagnetic radiation
in X-rays and computed tomography (CT) to an external magnetic field in
magnetic resonance imaging (MRI). But of course, contemporary scanning
equipment has little to do with the experimental tubes designed by Rontgen
over one century ago. In present day’s routine, most systems are digital and
radiation doses (X-ray, CT) have been severely reduced, while the resolution
has tremendously increased. Even more, the development of more complex
emitters and detectors, as well as more powerful and accurate magnetic field
generators has lead, additionally to better images, to a wider spatiotemporal
range of acquisition yielding to 3D and even 4D datasets.

A common characteristic of all these devices is the necessity of processing
the measured data in order to reconstruct the spatial structure of the patient.
This process, called reconstruction is based on back-projection techniques.
Radon and Fourier reconstruction methods are among the most commonly
applied to this purpose. In this work, the emphasis is put on 3D visualization,
meaning that the result of this reconstruction phase is a volumetric dataset
usually comprising a set of parallel slices. Such volumes constitute the basis
for the visualization techniques that are discussed in this thesis.

Additionally, as the diagram in Figure 1.1 illustrates, an intermediate step
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might be necessary between the reconstruction of the 3D dataset and its final
presentation to the user. This element, labelled in the figure as preprocessing
in general, can comprise many different transformations and data analysis
algorithms. Typical examples are the segmentation of structures of interest
(e.g., bone structures or blood vessels), the application of filters to reduce the
presence of noise in the dataset, to prepare the data for further processing
or to extract additional information and provide a better understanding of
the scanned body (e.g., edge detection, gradient estimation), etc. The limit
between preprocessing for preparing the data to be visualized and the actual
application of a visualization algorithm is often only theoretical and these two
stages of the pipeline can then be easily merged into a single one. The focus
in this thesis is to present and analyze a set of alternatives for addressing
the difficulties raised by these two last elements of the workflow of a medical
visualization application, i.e., algorithms for the visualization of 3D medical
datasets and, when necessary, the corresponding preprocessing associated to
them. Taking into account this framework, let us pose some of the main
challenges to be confronted in today’s 3D medical visualization.

The steady technical improvement experimented in the last decades by
acquisition devices and reconstruction algorithms has produced also a notice-
able refinement in the temporal and spatial resolution of the generated 3D
datasets. While this evolution has multiplied the diagnosis and treatment
efficiency in many cases, it also means new challenges from a computing
point of view, as the size of the data has also exploded. Therefore, new
algorithms must be and are being designed in order to cope with the new
difficulties these large datasets imply. Most novel visualization and render-
ing techniques can be classified into two complementary groups according to
their intended target: on the one hand, those dedicated to accelerate the
display of this large amount of data and, on the other hand, those techniques
devoted to find efficient ways to gain a better insight by highlighting the
most relevant parts of the dataset.

As both groups are of utter importance for the development and improve-
ment of medical and scientific visualization, algorithms belonging to both
categories are presented in this thesis. But before providing an overview of
these techniques and the way they have brought forward the current state-
of-the-art in Section 1.2, a brief survey is presented of different criteria for
the classification of visualization solutions. By observing the group a given
algorithm belongs to and the common characteristics shared by all methods
of a kind, a better and more complete perception of every specific technique
can be easily achieved. Therefore, a comprehensive categorization is of big
interest for a thorough understanding of each algorithm and the recognition
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of its added value and originality.

A basic criterion for the classification of visualization methods is the
rendering strategy they make use of. One crucial aspect of this render-
ing algorithm’s classification is the type of primitive employed to represent
the structures to be visualized. While traditionally in computer graphics
the standard modelling and rendering primitives have always been polygons,
and predominantly triangles, other possibilities have also been explored and
successfully applied. This way, according to the primitive they use, ren-
dering algorithms can be included in one of the following three categories:
polygon-based rendering, image-based rendering and point-based rendering.

In polygon-based rendering, the elements of the scene to be displayed are
modelled as a set of polygonal meshes, usually composed of triangles. The
number and size of the triangles determines the resolution of the model, a
factor that plays a crucial role in the quality of the final image. In volume
visualization applied to medical purposes, polygon-based rendering is very
often utilized for displaying surfaces representative of relevant inner struc-
tures of the volume. These surface models can be generated as the result of
segmentation, the extraction of an isosurface, etc.

Due to the large number of triangles necessary to represent highly de-
tailed models, alternatives to polygon-based rendering, such as image-based
and point-based rendering, have been investigated. In image-based rendering
algorithms, the appearance of three dimensional models is represented by 2D
images of the object. However, a purely image-based representation is too
expensive in terms of memory requirements, if it is to be realistic, mainly due
to the high dimensionality of the problem (5D). Therefore, hybrid geometry
and image-based approaches and simplifications are usually utilized instead.
Clear examples of this category are image-based impostors [114] (e.g., bill-
boards [107]), or texture mapping [32, 55].

In texture mapping, images are mapped onto parameterized surfaces to
provide additional details supplanting high resolution geometry. There exist
many variants of texture mapping, but specially relevant for volume visual-
ization are the three ways in which texture mapping may be used in volume
rendering, i.e., to obtain an image of a solid, translucent object. The first is
to draw slices of the object from back to front [43]. Each slice is drawn by
first generating a texture image of the slice by sampling the data representing
the volume along the plane of the slice, and then drawing a texture mapped
polygon to produce the slice. Each slice is blended with the previously drawn
slices using transparency. The second method uses 3D texture mapping [42].
In this method, the volumetric data is copied into the 3D texture image.
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Then, slices perpendicular to the viewer are drawn. Each slice is again a
texture mapped polygon, but this time the texture coordinates at the poly-
gon’s vertices determine a slice through the 3D texture image. This method
requires a 3D texture mapping capability, but has the advantage that tex-
ture memory needs to be loaded only once independently of the viewpoint.
A third way is to use texture mapping to implement splatting as described
by [131, 72].

Point-based rendering uses sample points from surface models as display
primitives. This has the advantage of not having to deal with any explicit
representation of neighborhood relationships, as with polygon-based render-
ing. By doing so, not only are the memory storing requirements reduced, but
it also facilitates the application of reduction and simplification techniques
to render complex scenes. Due to these and other properties, together with
the development of new graphics hardware, point-based rendering has be-
come a practical alternative to polygon-based rendering for modelling and
visualizing large and complex scenes.

At last, another common classification for rendering algorithms splits
them into forward mapping and backward mapping techniques, depending on
the way the visibility of elements in a scene is solved. Forward mapping al-
gorithms operate in world space and typically sort all objects to be rendered
with the assistance of a z-buffer [32, 119] so that background objects be oc-
cluded by foreground ones. Backward mapping tackles the visibility problem
in the opposite direction. Instead of processing the primitives and sorting
them according to their depth values, with backward mapping a search is
performed among the elements in the scene for each pixel in the image to
determine which objects are visible and should be displayed. A typical ex-
ample of backward mapping is the ray-tracing algorithm [22, 132] and its
simplification for volume rendering, ray-casting [74].

1.2 Overview and Contributions

As mentioned above, in this thesis, several methods are described that focus
on both reducing the time required for rendering a dataset, and improving the
quality or meaningfulness of the produced images. More specifically, novel
performance-driven algorithms in the field of point rendering and indirect
volume rendering are presented, as well as a new quality-driven technique
for direct volume rendering. As a whole, a survey of the three rendering
strategies oriented to their application to medical 3D visualization is globally
depicted. Special emphasis is put on our own contributions and the way they
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have extended the current state-of-the-art in every case.

Each chapter starts with a brief introduction which summarizes the most
relevant related work already existing in the field, as well as background
information necessary to properly understand the new proposed algorithm.
A detailed explanation and analysis of each novel technique is then performed
and complemented with illustrative examples.

First, in Chapter 2, the characteristics of point-based rendering as an
alternative to traditional polygon-based rendering for the visualization of
large and complex scenes is presented. After reporting the necessary basics
on the functioning of point rendering algorithms, our work on high-speed
projection for point rendering applications is introduced. This work, that
establishes the basis for a high performance and fully hardware-accelerated
solution for point rendering, was originally published in [1].

Chapter 3 focuses on indirect volume rendering and its application to the
visualization of 3D medical datasets. As isosurface extraction is a decisive el-
ement of indirect volume rendering, the most commonly used technique (i.e.,
the Marching Cubes algorithm) and a survey of several existing optimizations
are reported. Next, the problem of rendering large extracted isosurfaces is
tackled, concentrating on our GPU-based proposal presented in [6], for de-
coding and rendering compressed isosurfaces directly on the graphics card.
This was, at the time of first publication, the first application where com-
pressed isosurfaces were both decompressed and rendered fully on the GPU,
thus avoiding any slow read-back to the CPU and speeding-up rendering.

After the presentation of performance-oriented techniques in the two pre-
vious chapters, the algorithms discussed in Chapter 4 address the question
of how to improve the quality and value of the visualization experience in a
medical scenario. Initially, a quick reminder is provided of some basic con-
cepts on direct volume rendering, such as the functional pipeline or the most
common rendering algorithms. Then the focus is shifted to the classifica-
tion stage, where all optical properties (e.g., color, opacity) for rendering are
assigned. In this particular topic, our novel approach originally presented
in [7, 8] is described in detail. This half-automatic solution combines mod-
ern classification techniques, such as the use of 2D histograms, with machine
learning methods (e.g., neural networks) in order to assist the user during
the definition of an appropriate transfer function. By utilizing an Augmented
Reality (AR) environment for the user interaction and display of the results,
a highly intuitive visualization experience is achieved.

Finally, in Appendix A, a survey of research projects is presented, which
show real-life cases where some of the here described algorithms and tech-
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niques were utilized for practical purposes in medical volume visualization
applications.
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CHAPTER 2

Point Rendering

2.1 Introduction

Point-based rendering constitutes an alternative to the classical rendering
approaches: polygon-based and image-based rendering. The use of polygons,
normally triangles, is the standard avenue in most computer graphics appli-
cations for representing the different objects composing a scene. Each object
is modelled as a set of connected vertices forming a mesh that reproduces its
outermost surface. While this can yield to highly appealing rendering results
and good rendering performance, its major drawback is the necessity of stor-
ing explicit connectivity information together with the vertex positions. In
complex scenes this can become a bottleneck that prevents real time or even
interactive visualization.

Image-based techniques try to overcome this limitation by replacing com-
plex objects with image-based impostors [114], such as billboards [107]. When
using impostors, the actual geometry of the object is substituted by a pre-
viously generated image, therefore saving storage and processing resources,
thus speeding up rendering. However, these image-based replacements pro-
duce severe parallax issues, which may lead to visible and disturbing artifacts
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in interactive scenarios. In order to overcome such limitations, many differ-
ent images must be employed to achieve an acceptable representation of the
object and hence considerably increasing the storage and processing require-
ments.

The use of sample points as rendering primitives presents several advan-
tages compared to the both aforementioned classical approaches. In point-
based rendering, each object in a scene is represented by a dense set of points
lying on its surface. In contrast to polygon-based representations (typically
triangle meshes), by using points as modelling primitive no explicit connec-
tivity information must be stored. This does not only imply a reduction in
terms of storage requirements, but it also facilitates the application of sim-
plification algorithms to complex objects. Since in point rendering the view
of an object is constructed from view-independent surface points in object
space, no parallax problems arise as with image-based approaches.

2.2 Point Rendering Algorithms

Points have often been used for rendering purposes. However, even though
points have been employed with particle systems to model smoke, clouds,
dust, fire, water and trees [102, 117, 103], and to model solid objects [37], it
has not been until recent years that point-based rendering has been accepted
as a valid and promising alternative to classical rendering primitives. The
basis for this development was first settled by Levoy and Whitted in 1985 for
the case of continuous, differentiable surfaces [76], where a parametric smooth
surface is converted into a point-based representation for further processing
and rendering. The solutions proposed by Levoy and Whitted for rendering
point sample models have been further extended and utilized in some recent
proposals [138, 130].

Point-based techniques have also been used for 3D modelling purposes.
In [121], each object is modelled using elastic surfaces defined as a set of
ortented particles, which the authors call surfels. Attraction and repulsion
forces are used to distribute the particles over the surface favoring locally
planar arrangements. Editing is enabled by adding or removing particles, as
well as by modifying the interaction potentials responsible for the particle
distribution. This has the advantage of allowing interactive modelling with-
out the necessity of dealing with base meshes or boundary problems. Many
other applications of point-based rendering have been proposed during the
last two decades, covering areas like sampling and rendering of implicit sur-
faces [39, 134], or rendering of complex terrain models [49].
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Figure 2.1: QSplat: Bounding sphere hierarchy with average attributes in
each node [129].

Despite this considerable amount of existing research, it has not been
until the last lustrum that point-based rendering techniques have become an
actively utilized alternative to polygon-based and image-based techniques.
Much responsibility for this sudden development is derived from the incor-
poration of multi-resolution strategies to point-based rendering. Point-based
rendering can be more efficient than traditional rendering methods for com-
plex models if triangles occupy a small screen area. This way, it is impor-
tant to count with a level-of-detail (LOD) representation, able to identify
the better suited rendering modality. Multi-resolution point-based rendering
was introduced independently in 2000 by three different groups, which are
now briefly presented.

QSplat

Rusinkiewicz and Levoy [108] proposed QSplat, a point-based rendering sys-
tem relying on a hierarchy of bounding spheres for visibility culling, level-of-
detail control and rendering. This approach was developed in order to render
large amounts of scanned data within the Digital Michelangelo project [75].
A scanned triangular mesh is preprocessed and converted into a hierarchy
of bounding spheres, where each node stores average surface attributes such
as color and normal (see Figure 2.1). A quantization scheme is applied for
a memory efficient encoding of the point hierarchy. During rendering, this
hierarchy is traversed until the projected size of a sphere falls below a given
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Figure 2.2: Surfels: Hierarchy of layered depth cubes. [129].

threshold for the splat size. Subsequently, fixed size splats with a color ob-
tained as the average of the underlying points, are drawn into a z-buffer in
order to obtain a complete representation avoiding holes in the final image.

Surfels

Also in 2000, Pfister et al. [99] presented a point-based rendering paradigm.
In this case, the authors utilize oriented surface elements with attributes
such as normals or prefiltered textures as rendering primitives — the so-called
surfels. A sampling preprocessing step is first performed, in which textured
geometrical objects in the scene are converted to a set of surfels. This is
achieved by means of ray casting the scene along three orthogonal directions
and storing all intersection points, thus creating three orthogonal layered
depth images (LDIs) as in [113]. This set of LDIs, also called layered depth
cubes (LDCs) [77], is organized in a hierarchical data structure forming an
octree which can be accessed for rendering (see Figure 2.2). Each node in
the octree represents one LDC with a sampling space dependent of its height
in the octree. So the highest resolution is stored at the lowest level (n = 0),
while the pixel spacing at a level n is h,, = ho2", being hy the spacing at
the highest resolution. This leads to a multi-resolution representation where
each child node contains geometry with twice as much accuracy. The ren-
dering algorithm traverses the LDC tree top to bottom until the maximum
distance between adjacent surfels in image space falls below a certain thresh-
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(a) Random sampling (b) Point samples

Figure 2.3: Randomized z-buffer [129].

old, which determines the degree of oversampling. The points corresponding
to the selected level of detail are written into a z-buffer. For each surfel
tangent disk, a parallelogram approximation of its projection is rasterized in
order to detect holes in the z-buffer that would lead to visibility artifacts.
Holes in the final image are then corrected during image reconstruction by
applying either simple splatting with nearest neighbor interpolation, hierar-
chical push-pull [51], or gaussian interpolation with supersampling, leading
to a tradeoff between image quality and rendering performance. Finally, for
shading, linear interpolation between two adjacent levels in the hierarchy is
employed to avoid popping artifacts.

Randomized Z-Buffer

The randomized z-buffer proposed by Wand et al. [130, 129] is also composed
by three main stages: First, in a preprocessing step, a hierarchical represen-
tation of the scene to be rendered is constructed; then, during rendering,
a traversal of the hierarchy is performed and point samples are generated;
finally, the result is completed in an image reconstruction process. The main
contribution of this technique compared to the two mentioned above, relies on
the random nature of the sample points generation. This algorithm is based
on the fact that, with an appropriate oversampling, a scene can be completely
reconstructed from a set of randomly placed sample points on the surface of
its objects (see Figure 2.3). In order to achieve a reasonable and sufficient
point distribution, the projected area on the screen of each triangle should be
employed. Since this would turn into too costly computations, an estimation
of the projected area values is utilized instead. This approximation is cal-
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culated as a projection factor, a function of both the triangle’s depth in the
scene and its orientation. All triangles in the scene are classified into groups
of similar projection factor. By using an octree, a spatial classification of
regions within the scene is performed, thus bounding the depth factor within
a node. Each node stores additionally a list of the summed area correspond-
ing to the geometry it contains. During rendering, the octree is traversed in
a view-dependent way and the geometry contained in the selected nodes is
sampled. The selection of sample points is guided by a probability density
function describing a uniform distribution on the projections of the surfaces
on the image plane. This way, larger triangles on the screen are sampled
more densely than those with smaller visual contribution to the final image.
With a sufficient oversampling factor, it is guaranteed that at least one point
is projected onto one pixel on the screen in the final image. During image
reconstruction, a per-pixel reconstruction algorithm can be applied, where
all sample points are taken in arbitrary order, projected onto the image plane
and drawn as pixels using a z-buffer to resolve occlusions. Alternatively to
per-pixel reconstruction, also splatting can be used to reduce rendering time
and increase interactivity. Due to the considerable oversampling inherent to
this algorithm, the costs associated to large triangles on the screen can easily
overwhelm those of a conventional z-buffer. In order to avoid a drop in the
rendering performance, triangles resulting in a large projected area on the
screen are identified and rendered using a conventional z-buffer. The main
advantage of the randomized z-buffer is that it can render the scene with
arbitrary precision, not limited by the initial sampling like in the Surfels or
QSplat approaches. On the other hand, the dynamic sampling applied in the
randomized z-buffer technique can be more computationally expensive than
using precomputed sample sets.

2.3 Hardware-Accelerated Point Rendering

One important drawback of all these point-based rendering algorithms is
that, despite their proven suitability for rendering highly complex scenes,
the existing graphics hardware is optimized for accelerating the rendering of
triangles and not necessarily of points. Therefore, in the last years, several
proposals have been presented for either trying to exploit the capabilities
of current graphics cards, or developing alternative architectures more ap-
propriate for dealing with the problems associated to point-based methods.
In both cases, two complementary issues must be addressed for a successful
result: the visual quality of the rendered images, and the rendering speed.
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Figure 2.4: EWA surface splatting [138].

Both aspects have to be efficiently solved in order to achieve a satisfactory
hardware-accelerated point-based rendering strategy.

The visual quality resulting of point-based rendering algorithms is highly
dependent on the way the point samples are combined to determine the
color of each pixel. Since most algorithms rely on different types of splat-
ting, hardware acceleration of this filtering process is of big relevance for the
appearance of the final image. Based on the work of Zwicker et al. [138] on el-
liptical weighted average (EWA) surface splatting, Ren et al. [105] presented
a hardware-accelerated approach that applies high quality, anisotropic tex-
ture filtering to complex point-based scenes. The original work of Zwickler et
al. [138] performs screen space EWA splatting to reconstruct the final image
out of a set of irregularly spaced textured points in three dimensional ob-
ject space. Each point is associated with a radially symmetric basis function
(elliptical Gaussian) on a locally parameterized domain indicating its color.
These basis functions, which act as reconstruction filters, provide a contin-
uous texture function on the surface represented by the set of points (see
Figure 2.4). During rendering, this continuous texture function is warped
to screen space using a local affine mapping of the perspective projection
at each point, and the result is sampled at each screen space coordinate in
order to produce the final discrete image. This way, the output of the algo-
rithm - each pixel color - can be obtained as a weighted sum of screen space
resampling filters.

The configuration described above is suitable for software implementa-
tions, with the limitations that this implies. A better rendering performance
can be achieved with a hardware-accelerated approach. In [105], Ren et al.



16 CHAPTER 2. POINT RENDERING

propose the conversion of the screen space EWA splatting into an object space
EWA splatting. In the latter case, the resampling filter (a Gaussian again)
is formulated as a function on a parameterized surface in object space, and
then, the result is projected to screen space, yielding the rendered image.
Modern GPUs programmability (vertex and fragment shaders) is used to
implement the filtering in a two-pass approach where, in the first pass, visi-
bility splatting [99] is performed, and in the second pass the actual filtering
and mapping are produced. This way, antialiased images are obtained at
higher rates than with a software implementation, without loss of quality.

An alternative approach for hardware acceleration, also based on the
surfels algorithm of Pfister et al. [99], was proposed by Coconu and Hege
in [36]. This is, however, not a purely point-based rendering solution, but
a hybrid system which combines the use of points and triangles in a hier-
archical LOD representation in a similar way as in [130]. Here again, an
off-line preprocessing step is required, where the LOD hierarchy for points
and triangles is generated. Analogously to the work of Pfister et al. [99],
also view independent EWA texture pre-filtering with Gaussian kernels and
several mipmaps are employed to deal with minification problems. The main
contribution of the work of Coconu and Hege [36] consists in the image re-
construction algorithm. They use what they call fuzzy splats of Gaussian
elliptical form, which are suitable for being rendered using current graph-
ics hardware features (point sprites, programmable geometry and texture
pipelines). The selected points are ordered back to front and combined using
fuzzy splats using a Gaussian distribution as transparency pattern for each
splat. The degree of oversampling is determined by traversing the hierarchy
structure during rendering according to a given threshold for image plane
spacing between adjacent projected points. Then, the splats are combined
using alpha-blending to produce the final image. Popping artifacts due to
LOD transitions are avoided by utilizing alpha-blending between both the
old (e.g. triangles) and the new representation (e.g. points).

Another proposal focussed on accelerating the rendering of point-sampled
geometry without sacrificing visual quality is the work of Botsch and Kobbelt [30].
They also implement a GPU-based splatting algorithm with filtering and
blending of several overlapping splats. The appearance of holes in the im-
age is avoided by selecting the size and shape of the splats according to the
current viewing parameters and the splat position in the scene. For splat fil-
tering, each splat in object-space is associated a radially symmetric Gaussian
weighting function, yielding elliptical Gaussian filters in image-space. The
main contribution of this work consists on the fact that the whole splatting
processing takes place on the GPU, thus freeing the CPU and profiting from
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Figure 2.5: Test scenes obtained with point rendering [1].

the highly parallel architecture of vertex and — specially — fragment units.

2.4 High Speed Projection in Point Render-
ing Applications

All the proposals summarized above, try to accelerate the final stages of
the rendering pipeline by adding filtering, visibility sorting, etc. in order to
achieve appealing images in a point-based scenario. However, depending on
the complexity of the scene and on the point-based rendering approach in use,
other problems may arise as well. In our case, we concentrate in the random-
ized z-buffer algorithm [130, 129]. As explained previously, the randomized
z-buffer relies on a sufficient oversampling of the scene, so that the maximum
distance in the image plane between two adjacent points in object-space is
of, at most, one pixel. This implies, for highly complex models, dealing with
several millions of points in real-time (see Figure 2.5). Attempts to increase
the speed of the system, through the utilization of hardware-accelerated ap-
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proaches, permit the setup of a primitive every five clock cycles with typical
clocking in the neighborhood of 300 MHz [84]. However, highly complex
scenes with several millions of points require a higher order performance,
reaching rates of up to one billion points per second [130]. This suggests
the proposal of new hardware-accelerated approaches for the processing and
management of large numbers of points. In this sense, the first algorithm in-
volved in point rendering applications is the projection of points from object
space to image space. Therefore, our work [1] concentrates on improving the
performance of perspective projection on current graphics hardware, when
applied to point-based rendering.

Current graphics cards are optimized for processing triangular meshes,
where only the vertices of the mesh are projected, thus making the projec-
tion operation a non critical one. In point rendering applications, however,
the increment in the number of points that have to be handled makes nec-
essary a reconsideration of the classical projection strategy because of its
computational core being based on the division operation and the dividers
implemented in current graphics cards having a recursive structure. This re-
quires the proposal and analysis of alternative algorithms for fast perspective
projection, avoiding or minimizing divisions.

In the remainder of this chapter, we describe a new projection technique
for perspective correct rendering that minimizes division operations. This
technique is based on the identification of a projection area on the screen
and the selection of the final pixels through comparison operations. The
simplicity of this novel projection algorithm permits the employment of par-
allelization as a way to increase the processing speed. Additionally, an effi-
cient scheduling strategy allows the usage of a pipelined structure with the
consequent increase in the obtained performance. Following, a brief intro-
duction to the classical projection and the new algorithm we propose are
presented. Next, the implementation of an appropriate projection unit and
an optimized scheduling for it are described. Finally, the validity of the
algorithm is proven with illustrative results.

2.4.1 Perspective Projection

In this section we present both the classical approach and the new modified
algorithm we propose for point perspective projection. The modified perspec-
tive projection solution takes advantage of the proximity of the projection
on the screen of adjacent points in object space, inherent to the randomized
z-buffer algorithm. This way, the projection of a given point can be easily
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Figure 2.6: Perspective projection. Points are mapped from object space
() to camera space (X).

computed employing the information relative to the projection of a neighbor
point. The projection operation can be then converted into a simple selection
operation among a low number of candidate pixels. Consequently, this tech-
nique allows high speed projections avoiding the utilization of the recursive
dividers available in the graphics card.

2.4.1.1 Perspective Transformations

The rendering operation starts by computing, for each point, the coordinate
transformation from object space to camera space. By camera space we mean
the coordinate system in which the camera is at the origin and the screen is
on the plane z = 1. This geometry transformation can be written as:

~
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Y _ aijp air G2 a13 Yy (2 1)
w Qzp G21 A22 A23 z
1 0O 0 O 1 1
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where (z,y, z) are the object space coordinates of the point to be projected;
(',y',w) are interpreted as homogeneous 2D camera space coordinates of
that point; and the matrix contains the rotation, scaling, and translation
components of the transformation. To compute the screen coordinates (u, v)
from the camera coordinates, a division operation is performed:

u x’ 1
(0)=(0)= &
Then, the values (u,v) are given by:

aoo-w+a01-y+a02-z+a03
a20-$+a21-y+a22-z+a23

U:alo-x+a11-y+a12-2+a13 (2.4)

A20 T + Q21 - Y + A2 - 2+ Aa3

This transformation implies the computation of three parallel inner product
operations and two divisions. These equations can be implemented in hard-
ware in graphics cards [57] by means of floating point multiply-accumulate
units (fMACs) and floating point divider units (fDIV). Due to the timing
requirements associated with the recursive structure of the dividers imple-
mented on the graphics cards, a different technique should be employed in
point rendering algorithms, where a large amount of points have to be pro-
jected at much higher rates. Following, an alternative projection technique,
which avoids the division operations, is proposed and analyzed.

2.4.1.2 Modified Perspective Projection Algorithm

The standard perspective projection algorithm implies two divisions per
point. This operation represents the limiting factor of the projection op-
eration, due to the recursive structure of current floating point divider units
(fDIV). Therefore a new technique for a more efficient point perspective pro-
jection has been developed [1]. This approach is based on the proximity of
the projections on the screen of adjacent points in object space. As a result,
the division operations associated with the classical perspective projection
algorithm are eliminated.

The new technique we propose is based on the regular data distribu-
tion of the recent out-coming point rendering proposals in the bibliography
(99, 138, 130, 105]. In these algorithms, a regular sampling is performed and
an efficient hierarchical structure is used to store the scene. A hierarchy is
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Figure 2.7: Projection of neighbor positions [1].

used where the scene is partitioned in different cubic resolution areas form-
ing an octree structure. At each node there is a subsampled version of its
children, the lowest resolution being stored at the root node. Specifically in
the randomized z-buffer approach [130], a sufficient level of oversampling is
mandatory so that every pixel receives the projection of, at least, one point
of the scene.

In order to simplify the presentation, we consider a grid of 32 x 32 x 32
samples per node, while an extension to other grid sizes is straightforward.
We refer to the set of points associated with each node as cube. During
the rendering process (from a view point) the octree is recursively traversed
from the root. The recursion process selects all nodes intersecting the view
frustum and, to choose the octree level to be projected, it conservatively
estimates for each node the number of points per pixel. The working set of
the hierarchy is stored in the graphics board and reused many times over
several frames.

In order to obtain a good reconstruction of the final image independently
of the use of splatting techniques, the octree resolution to be represented is
chosen in such a way that every pixel receives at least one point [130]. It
is important to note that a consequence of this resolution level is that two
contiguous positions in the grid are projected to contiguous pixels, if not the
same pixel, on the screen. On the other hand, as the objects are modelled as
a dense set of surface point samples, the points on a surface occupy adjacent
positions on the grid and are then projected to equal or contiguous pixels on
the screen.

Let us consider the example of Figure 2.7, where the projection of the
central point (black point) and its first order neighbors are considered. Once
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the projection of the central point is determined (grey pixel), its first or-
der neighbor locations are projected into the 9 x 9 pixel area indicated in
Figure 2.7 (grey pixel and contiguous pixels).

Let us denote the screen coordinates of two contiguous points (z;, yi, 2;)
and (41, Yir1, Ziy1) as (ug,v;) and (w41, v;41) respectively. In the following
we will only consider the computations for the u screen coordinate, being the
corresponding process for v completely equivalent. So if the projection of a
point (z;, y;, z;) is u;:

(xivyz‘azi) i U; (2~5)

The u;41 coordinate value of the projection of a contiguous point (41, Yi+1, Zit1)
can only be one of the following three values:

P U; — 1
(@it1, Yir1, zir1) = Wi (2.6)

The identification of the correct projection value can be performed through
the analysis of:

Wi41
(2.7)
Wi+1
or, in order to avoid division operations, through the analysis of:
Ti — Wit + 0.5wi4q
(2.8)

/
Ty — W1 — 0.5w;11

so that if both values are negative, the pixel u; — 1 is identified; if the first
one is positive and the second negative; the pixel is u;; and finally, if both
values are positive, the resulting pixel is u; + 1.

This technique is attractive because it allows the projection of a point to
be performed incrementally by using the projection of a first order neighbor
point. This way, the projection can be computed through additions and
comparisons, avoiding the costly division operations.
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2.4.2 Implementation of the Perspective Point Projec-
tion Algorithm

In this section we present the hardware implementation of the algorithm we
propose. This implementation can be efficiently mapped to a graphics card
resulting in a fast projection algorithm as no divisions are performed. The
simple structure of the projection unit and its low computational require-
ments permit the utilization of different projection units working in parallel
to increase the projection rate. Furthermore, in order to increase the speed
of the system, a pipelined structure is analyzed.

We focus our interest on the transformation from camera to screen coor-
dinates (Equation (2.2)) where the division operation is critical. The trans-
formation from object to camera space coordinates (Equation (2.1)) is not so
relevant in terms of performance because it consists on multiplications and
additions, operations for which current graphics cards have more hardware
resources. Additionally, simplifications can be performed due to the regular
structure of the data, making incremental strategies also possible [50, 51].

Two considerations have to be taken into account to optimize the utiliza-
tion of the architecture. The first one is related to the recursive structure
of the algorithm, so that the utilization of a pipelined strategy as a way of
reducing the clock cycle has to be carefully analyzed. As will be shown later,
the pipeline can be efficiently exploited through the utilization of adequate
scheduling. On the other hand, the second consideration is related to the
potential bottleneck associated with the bandwidth of the frame-buffer as it
may restrict the scalability of the system. In this case, the utilization of local
cached frame-buffers [66, 136] together with an efficient scheduling should be
employed to assure the scalability of the processing rate.

The generic structure of the proposed architecture for the transforma-
tion from camera space to screen space (Equation (2.2)) is indicated in Fig-
ure 2.8(a). It consists of a candidate generator unit and an identifier unit.
The inputs of the system are the camera space coordinates of the point to be
projected (2,1, ¥y, , wi+1). The candidate generator unit identifies the can-
didate pixels for the projection. This unit employs, as input, the projection
(u;,v;) of the previous contiguous point (a7, y;, w;) and offers as output all
candidate projection pixels: (u; — 1,v; — 1), (u; — 1,v;), (u; — 1,0, + 1), -+,
(u; + 1,v; + 1). The proper pixel (u;;1,v;11) whereto the point is projected
is selected in the identifier unit.

The detailed structure of the system is depicted in Figure 2.8(b). Specif-
ically, only the computations related to the u coordinate are depicted, be-
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Figure 2.8: Projection architecture (a) Scheme (b) Detailed structure [1].

ing the computational structure associated with the v coordinate equivalent.
The identifier unit is basically compounded of a multiplier, a subtractor, two
simplified adders (where only the sign of the result is required) and a final
multiplexer (mux), meanwhile the candidate generator unit consists of two
incrementers. In the first multiplier and adder, the zj , — (u; - w;41) value
is computed. In the second level of adders the 0.5 - w;,; value is added and
subtracted respectively. The resulting signs are employed in a mux to select
the final screen coordinate value.

Let us emphasize the simplicity of the projection units that permits the
utilization of several of them working in parallel to increase the projection
rate. On the other hand, the avoidance of the division operations makes the
resulting algorithm adequate to be implemented on current graphics cards.

Subpixel Precision Architecture

The above presented algorithm permits the identification of projection pixels.
In some applications, in order to reduce aliasing artifacts, subpixel resolu-
tions are considered [100]. Following, the modifications of the architecture
necessary to include a 3 x 3 subpixel precision — the most commonly used —
are indicated. Extensions to different precision levels can be directly extrap-
olated from the results presented here.
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Adapting the previous algorithm to subpixel precision is straightforward
as only a different number of candidate pixels, in this case subpixels, have to
be considered. For the subpixel precision system, the set of equations to be
evaluated, similar to those presented in Equation (2.8), are:

IL‘;+1 — UjW;41 +17- Wi+1 with 1 = 057 15, 25, 3.5
I;_,’_l — UjWiy1 — 1- Wi+1 with i = 05, 15, 25, 3.5

to identify the appropriate subpixel among all possible candidates: wu; — 4,
w;p — 3, uy — 2, u; — 1, uy, u; + 1, u; + 2, u; + 3, u; + 4. Note that the u;, v;
coordinates identify here subpixel coordinates and not pixel coordinates as
previously.

This new set of equations can be implemented with a structure similar to
the one presented in Figure 2.8(b) where, in this case, eight sign values have
to be generated. It is important to note the simple scalability associated
with the subpixel precision.

2.4.2.1 Scheduling Strategy

The simplicity of the projection operation and its low computational require-
ments permit the utilization of different projection units working in parallel
to increase the projection rate. However, the parallelization of the algo-
rithm can make the bandwidth of the frame-buffer to become a bottleneck,
as different screen areas (frame-buffer areas) might have to be accessed si-
multaneously. This problem can be overcome by adopting a local cached
frame-buffer solution [66, 136]. For this solution to be effective in terms of
memory usage and processing performance the data should be distributed
among projection units in such a way that the local frame-buffer size be
minimized, i.e., that the projection of points assigned to the same projection
unit falls into a small screen area.

On the other hand, in order to reduce the clock cycle of the system, a
pipelined strategy can be utilized. However, the exploitation of the pipeline
has to be carefully analyzed due to the recursive structure of the projection
algorithm. This recursive structure introduces data dependencies which, if
not handled carefully, might produce empty cycles (bubbles) in the pipeline,
thus dropping performance. This suggests the simultaneous utilization of in-
dependent data produced from different seed points (the first point projected
with the standard projection algorithm). However, such a choice of data for
each pipelined unit would act as a limiting factor for the efficiency of the
parallel solution. Therefore, a proper scheduling is mandatory in order to
obtain the best benefit from both, parallelization and pipelining.
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Figure 2.9: Cyclic distribution of cubes on the pipeline [1].

Following, a scheduling algorithm is presented that efficiently exploits a
parallel system of pipelined units. The scheduling we propose permits, on
the one hand, the exploitation of the parallel system, minimizing the size of
the local cached frame-buffers associated with each unit and, on the other
hand, an efficient utilization of the pipelined structure of each unit.

Firstly, let us consider the interleaving solution based on cyclic introduc-
tion of different cubes in the pipeline. To clarify, let us consider a four-stage
pipelined projection unit where data corresponding to four different cubes
are introduced in an interleaved manner. This is schematically indicated
in Figure 2.9 where data corresponding to different cubes, depicted with
different colors, are processed in a pipelined system with four stages. The
projection of a point (x;,y;, z;) from a given cube requires four cycles to be
fully computed. The resulting projection value can be employed to project
the neighbor point (241, yi+1, zi+1) of the same cube. This projection value
is introduced into the first pipeline stage at the next cycle. To make possi-
ble the utilization of the proposed projection strategy, data corresponding to
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each cube has to be sorted in the CPU to exploit neighborhood information.
That is, the points of each cube are sent from the CPU following a neigh-
borhood sorting. Note that in order to start the recursive computations, the
CPU has to perform the exact projection of one seed point for each surface
(Equations (2.3)and (2.4)) to start the recursive computations.

Therefore, introducing data corresponding to different cubes in an inter-
leaved manner permits the filling and exploitation of the pipeline. However,
the association of points from different cubes to the same unit can be a prob-
lem if the performance of a local cached frame-buffer is considered. Manag-
ing data from different cubes implies a larger projection area on the screen.
Then, the larger the working screen area covered, the larger the local cached
frame-buffer that should be employed, hence reducing its performance.

In order to minimize the cached frame-buffer size, only data corresponding
to one cube should be processed by each unit before starting with a new cube.
Moreover, the following cube should be adjacent to the former one, in such
a way that the locality of the screen projections is exploited. This way, the
coverage of only a small screen region is assured, so that the cached frame-
buffer size is minimized.

Consequently, the scheduling we propose fills the pipeline stages of each
projection unit with data corresponding to the same cube. The scheduling
is based on the contiguity of the sampled points on a surface and on the
identification of the different neighbors associated with each point. Specifi-
cally, let us interpret the result of the projection of a point as the seed for
the projection of a neighbor point. The scheduling we propose is based on
the computation of the different neighbors associated with the same seed
and on the utilization of different seeds, corresponding to the same surface,
simultaneously.

Next, and in order to simplify the presentation of the technique, we will
consider that each cube has data corresponding to a unique surface. However,
extending the results to different surfaces is straightforward. The scheduling
requires a certain data sorting to be performed by the CPU so that the points
are organized according to a neighborhood relationship. This sorting covers
all points of the surface in an efficient way and without overlapping. The
sorted data, organized in lists, are sent from the CPU to the graphics card
where the projection computations are performed.

The basic idea, outlined in Figure 2.10(a), consists in distributing the grid
cube structure in layers of connected points. In the Figure, for the sake of
clarity, each point is labelled with a number and each layer is marked with a
different color. The first layer comprises only one point, point {0}. The next
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Figure 2.10: Data sorting. (a) Cube structure. (b) Layer representation [1].

layer is constructed with the neighbor points of that point, {13,10,4,1,3,9,12}
and so on.

The data corresponding to each layer are organized in Figure 2.10(b)
forming different lists. In order to optimize the scheduling, a data sorting
has been performed inside each layer. Specifically, the data are organized
according to their connectivity with the following layer, from higher to lower
connectivity values. For example, point {13} in Figure 2.10(b) is listed before
point {10} because it is connected to nineteen points of the following layer,
while point {10} is only connected to ten points. On the other hand, in the
following layer the data are organized according to their seeds, and to their
own connectivity to the following layer. For instance, points associated with
point {13} are listed first and organized according to their connectivity with
the following layer. Note that in this example all ten neighbors of point {10}
are already included in the list of neighbors of point {13} and therefore
point {10} is labelled with O further neighbors. This way, the sorting of
the points in a cube is based on the first order connectivity to the following
layers.

Once the data are ordered in layers, the seed values to be employed



2.4. HIGH SPEED PROJECTION IN POINT RENDERING 29

24 25 -
1k m/"f O
N — 23
S w— Ve
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .20
I — JdeT e

Layer 1— Os

Lay81‘24>127 10 390 99 19

Layer 3 165 69 150 7o 2lg 249 250 149 2o 1lg 50 200 239

Layef44’ 809 179 26¢
(b)

Figure 2.11: Sorting example. (a) Surface. (b) Layer representation [1].

for each point are identified. Each value indicated as a subindex in Fig-
ure 2.10(b) represents the new points of the following layer connected to the
current point, but still not associated with a previous seed. As an example,
point {13} can be employed as a seed for the computation of its nineteen
neighbors in the following layer. On the other hand, point {10} is not em-
ployed as a seed for any point, since all its associated neighbors have already
been computed as neighbors of point {13}.

In order to complete the presentation, let us now consider the real data
distribution associated with sampled surfaces. In this case, although the
continuity of the surface is assured, not all grid positions contain points.
Here, instead of full layers, layer sections have to be considered. As an
example, let us consider the point distribution represented in Figure 2.11(a)
where the point positions are again labelled with numbers. This set of points
can be classified in four layers as indicated in Figure 2.11(b). The first layer
comprises, as usual, only one seed point, point {0}. The connectivity of the
elements in the second layer {12, 10, 3, 9, 1} is given by the subindices {7,
6, 0, 0, 0}. This means, for instance, that the first point in the second layer,
point {12}, is connected to the first seven points in the third layer {16, 6, 15,
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Figure 2.12: An example of the scheduling strategy [1].

7, 21, 24, 25}, meanwhile point {10} has six additional neighbors still not
considered in the third layer list {14, 2, 11, 5, 20, 23}. These connectivity
values permit the identification of seed values that can be employed for the
projections. As an example, the point labelled as point {8} is the first one in
the list of the fourth layer. Observing the information about the connectivity
of the third layer to the fourth layer, it can be seen that the seed to be
employed for projecting point {8} is point {16} of the third layer.

Once the points are sorted in the CPU, the resulting layer lists are sent
to the graphics card where they are stored and processed. Taking into ac-
count that the connectivity information indicates the seed point that can
be employed for the projection of each new point, the scheduling is directly
determined by this representation of lists of layers. Assuming that the projec-
tion of the only point in the first layer list is already computed (by the CPU),
the points of the second layer list can be introduced into the pipeline. When
the first projection value associated with the second layer list is finished, the
connected values of the third layer list can be introduced into the pipeline.
We assume the utilization of an input queue for the temporal storage of data
points whose seed has already been processed but cannot be introduced into
the pipeline in the current cycle (e.g., in case the pipeline is already full).
That is, if a point with connectivity n is processed, n new data from the
following layer list can be added to the input queue for being processed.

In order to further clarify the functioning of the scheduling strategy, let
us consider the example presented in Figure 2.12 where a four-stage pipeline
unit is depicted. The points utilized for this example correspond to the
data sorting described in Figure 2.11. Each row in Figure 2.12 represents
the state of the input queue and the different stages of the pipeline along
four consecutive clock cycles. Specifically, the evolution of point {9} is fully
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indicated from the first (cycle 1) to the last pipeline stage (cycle 4). In the
first cycle, the data corresponding to the second layer list {12, 10, 3, 9, 1} are
distributed along the pipeline and the input queue. Once the computation
of the first value {12} is finished (cycle 2), since its connectivity value is 7,
the first seven points {16, 6, 15, 7, 21, 24, 25} from the third layer list are
appended to the input queue. In cycle 3, all points in the third layer list
derived from the seed point {10} are also introduced into the queue {14, 2,
11, 5, 20, 23}. This process is repeated until all points in the current cube
have been projected. Then a new cube is selected and the same strategy is
started again until all points in the scene have been projected.

This way, this simple scheduling strategy makes use of an efficient sorting
of the data performed by the CPU. Once the processed data are sent to the
graphics card, the scheduling is based on the utilization of different seeds and
on the computation of different neighbors associated with each seed. As a
result, proper management of the data assures an efficient utilization of the
pipeline structure with a simple and basic control, as will be seen in detail
in the following section.

2.4.3 Results

Current graphics cards are optimized for processing triangular meshes where
the projection operation is not critical. That is the reason why only few
dividers, usually with a recursive structure, are available [57]. This structure
is not adequate for point rendering applications, specially for the randomized
z-buffer algorithm, making the projection algorithm to become an unsolved
problem. In this sense, our novel method, presented in the previous sections,
permits an increase in performance for the projection of points. By avoiding
division operations, this strategy represents an interesting and efficient al-
ternative to the standard projection algorithm for point rendering systems.
Moreover, given the characteristics of our method it allows the utilization of
parallelism, with the consequent boost in the resulting processing rate. On
the other hand, the scheduling we propose permits the efficient utilization
of a pipelined structure which helps to better exploit the capabilities of the
available hardware.

We have implemented our projection solution through a software simula-
tion. Subsequent rendering of the scenes has been realized according to the
randomized z-buffer algorithm. Figure 2.5 shows point rendering scenes used
to demonstrate the validity of the proposed method: Flock (Figure 2.5(a)),
Landscape (Figure 2.5(b)) and Bunny (Figure 2.5(c)). All images were ob-
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tained with the projection and rounding of the points to the closest pixel
position and written to a z-Buffer and color buffer. In order to improve the
quality of the images a subpixel resolution may be considered.

Independently of the image quality, more related to the point render-
ing algorithm itself than to the projection technique employed, a key factor
for analyzing the value of the proposed projection strategy is the efficiency
achieved by the system using the above described scheduling. This is spe-
cially critical in this case, given the pipelined structure of the system. In
Figure 2.13, the efficiency of the pipeline for the scene in Figure 2.5(c) is
analyzed. The two curves in this figure represent the total number of cycles
required per cube and the number of idle cycles respectively. In this simula-
tion, the pipeline comprises five stages. Note that the number of idle cycles
corresponding to each cube is very small resulting in a 99.32% efficiency
(toml i%il;f;yzfll; Cydes). These results were obtained employing local interleav-
ing (applied to different surfaces corresponding to the same cube). This way,
the processing rate of the projection is mainly determined by the degree of
parallelism and the pipeline levels employed.
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2.5 Summary

In this chapter we have presented a novel approach to efficient hardware-
accelerated projection applied to point rendering applications. The focus in
our work has not been to improve the visual quality of scenes rendered with
points as primitives, but to provide the steps necessary to achieve interactive
or even real-time frame rates in the visualization of complex scenes modelled
as sets of points. For rendering, our system is based on the randomized z-
buffer algorithm [130] which relies on a high level of oversampling. However,
it can also be applied to any other point rendering solution by applying just
minor changes in the sorting of the data. The above presented method is
an incremental strategy based on the (standard) projection of an initial seed
point and the identification of pixel candidates for the projection of subse-
quent neighbor points out of the seed one. The corresponding next correctly
projected point is then selected through simple comparison operations. This
simplicity permits the implementation of high speed projections where no
dividers are required, resulting in an adequate structure for being mapped
into a graphics card.

To increase the speed of the projection operation and due to the low com-
putational requirements associated with the projection operation, a parallel
solution can be employed. An appropriate scheduling strategy permits to
exploit the parallelism associated with point rendering where points can usu-
ally be treated individually. Furthermore, we have proven that the design of
the scheduling successfully deals with the bottleneck created by the recursive
structure of the proposed projection algorithm. This way, a parallel pipelined
system can be efficiently realized. The architecture is also simple and regular,
which assures good scalability. As a result, a high processing rate, necessary
for highly complex scenes, can be achieved, hence contributing to improve
the performance of hardware-accelerated point rendering applications.

While point rendering has steadily grown in importance as an alternative
for rendering large, complex scenes, it is not, by far, the only valid possibility
in modern computer graphics. The use of triangles as a modelling primitive
remains as the standard solution for most applications. The study of efficient
techniques to improve the quality and performance of the visualization of
large triangle meshes is the topic addressed in the following chapter.
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CHAPTER 3

Indirect Volume Rendering

3.1 Introduction

Despite the increasing importance being acquired by other rendering para-
digms such as point rendering (see Chapter 2), or the use of implicit represen-
tations [29], volume rendering remains as the standard and most employed
alternative for the visualization of volumetric data. Practically all volume
rendering algorithms can be classified within two big groups: indirect and
direct volume rendering. Direct volume rendering algorithms perform a view
dependent interpolation and composition through the volume, normally com-
bining different transparency and colors in order to give an insight of the
rendered dataset. Since direct volume rendering and its applications will be
discussed later in Chapter 4, we refer to there for a detailed description. On
the other hand, in indirect volume rendering an explicit representation is
generated for each element in the volume (e.g. bones, blood vessels, etc. in a
medical dataset) that is to be visualized. Typically, this representation con-
sists of a polygonal (triangle) mesh modelling the outermost surface of the
object or feature of interest. Triangle meshes are normally used due to their
suitability for being rendered efficiently on standard graphics cards. The sur-
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faces represented by these triangle meshes are usually known as isosurfaces,
as they approximate the shape of a surface delimitated by the position of
all points in the volume with a given isovalue. Therefore, two are the main
issues to be addressed in indirect volume rendering: first, the identification
and generation of the isosurface/-s and second, rendering the obtained iso-
surface. In the remainder of this chapter, relevant algorithms dedicated to
solve these two problems are presented.

While this project has been fully created and implemented by the author
of this thesis, the collaboration of Jan Fischer on early design stages and
many fruitful discussions should also be acknowledged.

3.2 Isosurface Extraction

Most scanning devices used in medicine, such as computed tomographs (CT)
or magnetic resonance scanners (MR), produce volume datasets sampling a
continuous magnitude at discrete points on a regular grid. Let rjj, € R3
with ¢ =0, ..., %4z, ] = 0, -o; Jimae and k = 0, ..., ke, be the position of the
grid points composing the volume (voxels). Since medical scanners generate
a representation of scalar physical magnitudes (e.g., Hydrogen density), a
scalar value I, ;, € R is associated to each grid position. In this representa-
tion, a cell C; ;; in the 3D regular grid has eight voxels at its corners forming
a cube — isotropic datasets — or a prism — anisotropic datasets (the anisotropy
is mostly only along the scan direction in medical datasets). An isosurface
corresponding to an isovalue ¢ € R, can then be defined as the solution set
of the equation

o(r) —c=0 (3.1)
where ¢(r) is a continuous interpolation function ¢ : R® — R, such that
¢(ri7j7k) = Ii,j,k for all voxels ri,j,k-

Therefore the problem of finding an isosurface can be decomposed into
two main tasks: a first step where the cells containing an intersection with
the surface are identified, and a second one responsible for generating the
corresponding triangulation from the selected cells.

3.2.1 Marching Cubes

Probably the best-known and still mostly used isosurface extraction method
is the Marching Cubes algorithm introduced by Lorensen and Cline [82].
The Marching Cubes algorithm uses a divide-and-conquer approach which
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simplifies the global problem of extracting an isosurface from a complete
3D dataset, to obtaining extracts of that isosurface in a single cell basis.
While many optimizations to the original algorithm have been proposed along
the years, this divide-and-conquer strategy remains the core of almost every
single isosurface extraction method.

0 . s g

Figure 3.1: Marching cubes: 15 simplified triangulation cases.

The algorithm determines how the surface intersects each volume cell
Ci k- The surface intersection is identified by comparing the intensity of
each of the eight voxels forming the vertices of the cell with the sought after
isovalue. If the intensity exceeds (or equals) the isovalue, the voxel is inside
(or on) the surface. Otherwise, if the intensity is lower than the isovalue the
voxel is outside the isosurface. By assigning 1 to each interior voxel and 0 to
each exterior one, all possible combinations for a cell can be precomputed.
Since there are eight vertices in each cell and two possible states for each
of them, there are only 2® = 256 possible ways for a surface to intersect
one volume cell. However, by taking into account the interchangeability of
complementary cases, where interior and exterior vertices are respectively
switched without modifying the topology of the triangulated surface, only
cases with zero to four intersections need to be considered. Thus, the number
of cases to be analyzed can be reduced to 128. Furthermore, if rotational
symmetry is also employed, the total number of cases can be reduced until
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reaching the 15 cases shown in Figure 3.1. These 15 cases can be easily stored
in a look-up table (LUT). This way, the result of the eight voxel intensity
comparisons can be utilized to address the triangulation look-up table and
find out the corresponding topology for the current cell. The exact position
of each triangle vertex is then computed interpolating the surface intersection
along the active edge. Typically, linear interpolation is used for this purpose,
although higher degree interpolation schemes might be utilized too.

Finally, a normal vector at each triangle vertex is calculated for shading
purposes. Normal vectors are approximated from the gradient values at
the voxel positions forming the vertices of a cell. In this case, similarly to
the procedure followed for the triangle vertex position, the normal vector
is obtained (linearly) interpolating the gradient vectors at both extremes
of the corresponding edge. Since in most volumetric datasets there is no
gradient information directly stored with the data, the gradient, G (x,y,2) =
VI (x,y, z) is normally estimated using central differences along the three
coordinate axes:

Giisj, k) = -
o 16,54 1,k) = I(i,j — 1,k
. I(i, 5, k+1) = 1(i, 5,k —1
(i j. k) = (i,J )AZ( J )

where 1(i,j,k) is the intensity at pixel (i,j,k) and Az, Ay, Az are the
spacings along the three main coordinate axes.

Later research discovered an ambiguity problem in the original Marching
Cubes look-up table [86, 94, 127] that could lead to a topologically inconsis-
tent isosurface and the introduction of artificial holes. This inconsistency can
be resolved by using a full look-up table containing the 256 possible cases,
instead of the reduced 15 cases one.

3.2.2 Accelerated Isosurface Extraction

The Marching Cubes algorithm presented above clearly demonstrates that
isosurface extraction can be satisfactorily solved using a divide-and-conquer
approach. Furthermore, this method provides good quality results in terms of
accuracy for most applications provided the resolution of the original volume
data is high enough. However, with the growth of spatial and temporal
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resolution experienced by medical scanners (e.g., CT, MRI) and computer
simulations in the last decades, also the size of the produced datasets has
increased dramatically. The Marching Cubes algorithm is not well suited for
fast isosurface extraction when dealing with large volumes, since all cells in
the volume are visited in order to determine whether they are intersected
by the isosurface or not. As only those cells which actually are intersected
by the isosurface need to be visited and triangulated, the performance of
the whole isosurface extraction can clearly benefit from an optimized search.
Many different techniques have been proposed to accelerate this search phase.
These can be classified within three main categories depending on whether
they operate in geometric, image or value space decomposition [79]. Formally,
this is indicated in Definition 3.2.1.

Definition 3.2.1 Geometric and Value Space

Let ¢ : S — V be a given scalar field and let D be a sample subset over ¢,
such that,

where S C R", with n € Z (usually n = 3), is a geometric space and V C R
is the associated value space.

Under these conditions, the problem of finding an isosurface through geo-
metric search [79] can be defined as shown by Approach 3.2.1:

Approach 3.2.1 Geometric Search

Given a point v € V and given a set C' of cells in S space where each cell is
associated with a set of values {u;} € V space, find the subset of C' which
an isosurface, of value v, intersects.

Following, the most relevant geometric space decomposition techniques,
sometimes also called space-based methods, are presented.

Geometric Space Decomposition

Whenever a volume dataset relies on a structured grid as its internal struc-
ture, as it is still the case for most scanned medical data, spatial coherence
can be exploited to optimize the localization and extraction of isosurfaces.
One of the first attempts to address this issue was presented by Wilhelms
and Van Gelder [133], who employed the branch-on-need octree (BONO),
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creating a hierarchical decomposition of the cell set. In their octree repre-
sentation, each node stores information such as the minimum and maximum
values of the cells it contains. This information is then utilized during the
search phase, which consists of a traversal of the octree. This way, sections
of the tree can be trimmed off during the search, thus reducing the number
of visited cells. Livnat et al. [81, 78] analyzed the time complexity of this
search phase, concluding a worst-case complexity of O(k+k log(n/k)), where
n is the total number of cells and k is the size of the extracted isosurface.
Nevertheless, the use of octrees is mostly devoted to structured grids, being
an adaptation to unstructured grids not trivial.

Bajaj et al. [24] use set theory to find seed cells and a segment tree to
organize and traverse them. This technique, which theoretically provides
near-optimal worst case time complexity, is applicable for both structured
and unstructured meshes. Its main drawback is, however, its sensitivity to
noise in the volume dataset that may disturb the rather complex seed set
construction process. Such noise is common in scanned data, e.g., CT or
MRI scans, which causes the algorithm to produce a large number of seed
cells, thus causing slower preprocessing times.

The extrema graphs proposed by Itoh et al. [59] use a geometric space
decomposition to accelerate the search phase of the isosurface extraction
process. This approach relies on the spatial coherence inherent to all isosur-
faces, meaning that cells intersected by the isosurface are typically connected
to each other. The search starts at a seed cell which is known to be inter-
sected by the isosurface, and propagates recursively to its adjacent cells. An
analysis of the way the current cell is intersected by the isosurface allows to
guide the propagation so that only those neighbor cells which are guaranteed
to be intersected too are subsequently selected.

An extrema graph is employed to find an appropriate seed cell from which
the search can be started. The nodes of such a graph are cells including local
extremum (minimum or maximum) values, while each arc of the graph has a
list of the cells connecting its two end nodes. The use of these local extrema
is based on fixed rules governing the relationship between an isosurface and
a volume [61] (see Definition 3.2.2 and Remark 3.2.1).

Definition 3.2.2 Extremum Point

An extremum point is a node whose scalar value is higher (or lower) than
those of all adjacent nodes that are connected to the node by cell-edges.

Therefore, given an isovalue, the extrema graph is traversed in order to
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Figure 3.2: Extrema graph and boundary cell lists [61].

Remark 3.2.1

If there is a closed isosurface, then extremum points exist both inside and
outside it. If there is an open isosurface, then it intersects the boundary of
the volume.

locate arcs that span across that isovalue. The cells in each of these arc lists
are then scanned sequentially until a seed cell is found. Boundary cells are
registered as well and sorted in a list according to the minimum and max-
imum values of their voxels. These cells must also be traversed, hence the
complexity of the algorithm is at best the size of the boundary list, which is
estimated as O(n??) by the authors. This makes this technique quite sen-
sitive to the presence of noise in the dataset, producing small perturbations
that might cause most nodes to be local extrema, raising the complexity
of the algorithm to O(n) in the worst case. This is, nevertheless, a rather
unusual situation, only relevant with extremely noisy datasets.

Itoh et al. [60, 61] presented a further improvement to the original extrema
graph technique introducing the extrema skeleton to avoid the dependency
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to the number of boundary cells. The initial extrema graph is replaced with
a volumetric extrema skeleton obtained utilizing a thinning algorithm, an
extension of a method commonly used in image processing. The volumetric
skeleton preserves the topological features of the volume and the connectivity
of the extremum points. It acts as a search index that facilitates the location
of a proper seed cell. Once this has been found, the isosurface cells are
propagated and consequently triangulated.

It must also be remarked that, even though the extrema graph is built
based on intensity values, the search phase is guided by the spatial relation-
ship between a selected cell and its neighbors, and therefore it is inherently
a geometric space decomposition rather than a value space decomposition.

Image Space Decomposition

Due to the increasing size of today’s datasets, such as high resolution medical
scanned volumes or the results of flow simulations, which can easily reach
several gigabytes, new problems are posed when it comes to the extraction
and visualization of isosurfaces. The size of such an isosurface can arise to
several million polygons, many of which are often projected to screen areas
of under one pixel in size. In these cases, not only the computation of all the
local triangulations can be very costly, but the huge number of polygons to be
displayed can prevent a real-time or even interactive visualization. In such a
scenario, several alternatives have been explored to optimize the visualization
experience.

One approach is to use mesh reduction techniques [115, 95] to facilitate
the rendering process. The mesh reduction can be applied during the isosur-
face extraction itself or afterwards as a postprocessing step [101]. However,
mesh reduction is usually a computational intensive operation and requires
extracting the whole isosurface previously for examination. Moreover, any
change in the isovalue implies repeating the whole isosurface extraction and
mesh reduction process over and over again.

Another possibility, which might be combined with mesh reduction, is
the application of compression techniques to encode the polygonal mesh. A
proper encoding of the mesh vertices and topology can lead to a noticeable
rendering performance boost, specially when combined with hardware accel-
erated implementations [6] as will be presented in detail later in Section 3.3.

Finally, view-dependent isosurface extraction [80] focusses on reducing the
time required for the search, triangulation and rendering of the isosurface all
at once. This approach, as indicated by its name, tries to access only those
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Figure 3.3: View-dependent isosurface extraction [80].

cells producing triangles belonging to the visible portion of the isosurface,
i.e., based on the image space. A hierarchical front-to-back traversal of the
dataset needs to be performed for each view point, so that non-visible sections
of the dataset can be skipped during the isosurface extraction. The potential
benefits of this type of strategies are illustrated in Figure 3.3. Figure 3.3(a)
shows a rendered scene from both the user view point and a 90° rotated
view position so that the actually rendered geometry becomes visible. This
type of techniques are particularly well suited for those situations where
only the outermost isosurface is of interest, thus saving the computational
costs associated to render all complex inner structures, as can be seen in
Figure 3.3(b).

Image space decomposition presents also two big disadvantages: visibility
tests must be performed every time the view position is changed, which can
easily be once per frame in interactive applications; and the savings are
strongly reduced whenever transparency is introduced in the scene, since
most structures become then visible.
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Value Space Decomposition

A more general, and still effective, optimization of the isosurface extraction
process is the decomposition of the value space, giving place to the sometimes
also called range-based methods. By working directly with voxel values rather
than spatial relationships, the underlying topology of the geometric structure
is of no importance, making value space decomposition techniques applica-
ble to both structured and unstructured grids. Furthermore, for scalar field
datasets (in 3D), predominant in medical volume visualization, the dimen-
sionality of the search field is reduced from three (X, Y, Z) to two (min, mazx).
Even though the worst-case complexity of value space decomposition tech-
niques is of O(n), algorithms have been developed which considerable reduce
this worst-case complexity.
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Figure 3.4: Span space representation.

Many value space decomposition solutions are represented by techniques
based on the span space metaphor. Span space decomposition methods create
and manipulate abstract representations of the cells based on their extreme
values. The span space, first introduced by Livnat et al. [81], is a represen-
tation based on mapping each cell extreme values to a point in 2D space
(V?). In this 2D space the minimum scalar value of the cell is assigned to
the x-coordinate and the maximum value determines the y-coordinate. The
span space results very useful to geometrically interpret value space or range-
based methods. Each cell can then be interpreted as an interval of intensities
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I = [a,b], which are represented as a point of coordinates (a,b). All points
lie then automatically above the y = x (min = maz) line. The cells which
contribute to an isosurface with isovalue, v, can be easily identified on the
span space as the set of points lying to the left of the line min = v and above
the line mazr = v, as illustrated by Figure 3.4 with the green shaded region.

The span space, when employed as the basis for the search of active cells
intersected by a given isosurface, provides the additional advantage of reduc-
ing the problem of searching over intervals of scalar values (voxel intensities
in each cell) to a search over points in the (2D) span space. In order to further
clarify these aspects, let us now formally define this augmented search space
and its associated isosurface extraction search phase (see Definition 3.2.3 and
Approach 3.2.2).

Definition 3.2.3 Span Space

Let C be a given set of cells, define a set of points P = {p;} over V2 such
that,
Ve, € C associate, pi = (a;, b;)

where,
a; =min{v;}; and b; = max{v;};
j j

and {v,}; are the values of the vertices of cell 1.

Approach 3.2.2 Span Search

Given a set of cells, C', and its associated set of points, P, in the span space,
and given a value, v € V, find the subset Ps C P, such that

V(xi,yi)EPS T, <v Y >v

Searching the intersected cells in the span space instead of performing
other kinds of value space decomposition, such as an interval search (see
below) has several advantages. One key concept is that points in 2D can
be easily sorted according to their z and y coordinates. Compared to the
case of intervals, specially overlapping intervals, this clearly facilitates the
organization of the data in a hierarchical structure, thus easing the search
phase too. Such a hierarchical data structure is employed by Livnat et al. in
their near-optimal isosurface extraction (NOISE) algorithm [81]. The NOISE
algorithm works with the span space as its underlying search domain and
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utilizes a Kd-tree as a means for simultaneously ordering the cells according
to their maximum and minimum values.

Kd-trees were designed by Bentley [26] as a hierarchical data structure for
efficient associative searching. Essentially, a Kd-tree is a multidimensional
version of a binary search tree. FEach node in the tree contains one data
value and has two sub-trees as children. The division of nodes in the tree
is performed in such a way that all nodes are ordered. This means that all
nodes in one sub-tree, for instance the left branch of a root node, hold values
which are lower than that of the root node, while those nodes in the right
sub-tree correspond to values higher than that of the root node.

Another key characteristic of Kd-trees, which differentiates them from
binary trees, is their multidimensionality. The data in the Kd-tree are sorted
at each level of the tree according to alternating dimensions of the data. So,
for the case of isosurface extraction for medical visualization using the span
space as search domain, the Kd-tree structure alternates between the mini-
mum, x — min and the maximum y — maxz values as the sorting dimension
for each tree level. The construction of the Kd-tree can be carried out recur-
sively in optimal time O(nlogn). The tree construction problem consists in
finding the median of the data values along the first dimension (e.g., min)
and store it at the root node. The data are then partitioned according to
the median and recursively stored in the two sub-trees. This process is sub-
sequently repeated at each level of the tree alternating between the min and
max coordinates for sorting and creating the sub-trees. As the Kd-tree has
one node per cell or span space point, the memory requirements are trivially

O(n).

However, more important than the time complexity of the Kd-tree build-
ing process or its memory requirements, is the time complexity of the query.
As already outlined above, a query within this context consists in, given an
isovalue, v, locate all of the points in Figure 3.5, which are above and to the
left of the horizontal and vertical lines at v respectively. In order to find out
which points on the span space or cells in the volume satisfy this condition,
the Kd-tree is traversed recursively starting from its root node. The isovalue
is compared to the value stored at the current node, alternating between the
minimum and maximum value depending on the current tree level. In the
example presented in Figure 3.5, odd tree levels store minimum values, while
maximum coordinates are hold at even levels of the Kd-tree. In this context,
the first comparison is performed at the root node in terms of the minimum
coordinates. Since this node is situated to the left of the isovalue, Z,.0; < v,
both sub-trees must be analyzed. Obviously if the minimum coordinate of
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Figure 3.5: Query using a Kd-tree in a span space representation.

the root node had been greater than the sought after isovalue, only the left
sub-tree would have been further traversed. At the next tree level, both
sub-trees are hence inspected, being the maximum coordinates the ones to
be compared to the isovalue. In this case, if the maximum (y) coordinate
of the current node is less than the isovalue, y; < v, its lower sub-tree can
be excluded from the search and only its upper sub-tree must be further
traversed. Otherwise, both sub-trees should be traversed recursively.

This query system can be summarized in two search routines, search-min-
max and search-maz-min. The dimension being compared at the current
level is named first, and the dimension to be analyzed at the next tree level
is named second. The pseudo-code in Algorithm 3.2.1 indicates how the
search-min-maz routine works, being the search-max-min routine trivially
symmetric to this one.

It is not trivial to estimate the time complexity associated to this query.
Only some years after the work by Bentley introduced the Kd-trees [26], a
worst case analysis was presented by Lee and Wong [73]. Obviously, for a
given query, the time necessary is proportional to the number of nodes vis-
ited. The analysis of the worst case is based on a situation where all the
visited nodes are not part of the sought after isosurface. In such a scenario,
they showed that the worst case time complexity is O(y/n + k). The average
case analysis is still an open problem. However, several studies [26, 112] sug-
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Algorithm 3.2.1 min-max Search Routine

search-min-max( isovalue, node )
if node.min < isovalue then
if node.mazx > isovalue then
triangulate node
end if
search-max-min( isovalue, node.right )
end if

search-max-min( isovalue, node.left )

gest that it is much faster than the worst case time O(y/n+k). Experimental
results indicate that, for most applications, the number of active cells in a
volume in relation to the total number of cells is k ~ n*? > \/n [79], which
suggests a complexity of O(k). The complexity of the isosurface extraction
problem is £(k), as it is bound from below by the size of the output. There-
fore, the NOISE algorithm is considered to be near optimal in the general
case and optimal, for those cases where it is validated that k ~ n?/3.

®

Figure 3.6: Pointerless Kd-tree.

Further improvements, such as the pointerless Kd-tree or an optimized
search routine [81, 78, 79] can be employed to reduce the memory and search
time corresponding to this algorithm. The former stores a Kd-tree as a
one-dimensional array of nodes. In this array, the root node is placed at
the middle, while the (n — 1)/2 nodes representing the left sub-tree are at
the first (n — 1)/2 positions of the array, and the (n — 1)/2 right sub-tree
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nodes are at the end of the array as shown in Figure 3.6. This produces a
considerable reduction of the memory requirements, as only the minimum
and maximum values of the cell must be held in each node together with one
pointer to the actual cell data. The search routine can be optimized too, by
distinguishing odd and even levels of the tree and taking into account previous
comparison results. This is based on a trivial but useful remark derived from
the examination of the previously presented search-min-max (search-maz-
min) routine (see Algorithm 3.2.1). As already indicated, if the current
node’s minimum is greater than the isovalue, the right sub-tree (containing
nodes with minimum values greater than the current’s one) can be directly
trimmed. However, if the node’s minimum is less than the isovalue, we still
get information that is not being used by this routine. In this case, the
minimum condition is automatically satisfied for all nodes in the left sub-
tree. This means that, while we still need to recursively traverse the right
sub-tree checking both dimensions, min and maz, those nodes held in the left
sub-tree only need to be compared to the isovalue in terms of their maximum
coordinate. The optimized search procedure is illustrated by the routines in
Algorithm 3.2.2.

The search-maz routine in Algorithm 3.2.2 is only utilized with those
nodes which already fulfill the minimum condition. Therefore, if the current
node also fulfills the maximum value condition (i.e., node.max > isovalue),
the current node’s cell is triangulated, and the lower sub-tree (i.e., the sub-
tree whose nodes hold maximum values less than the current node’s max-
imum) is recursively traversed with the search-skip-maz routine. On the
other hand, we automatically can conclude that all the nodes in the upper
sub-tree (i.e., the sub-tree whose nodes hold maxima greater than the current
node’s maximum) belong to the active area of the span space containing the
cells intersected by the isosurface and consequently only have to be collected
in order to be triangulated. This optimization in the search routine does
not only reduce the traversal time, but also facilitates fast access to many
of the intersected cells for their triangulation. This is possible due to the
combination of the pointerless Kd-tree and the optimized search. Since in a
pointerless Kd-tree any sub-tree is represented as a contiguous block of tree
nodes, collecting all the nodes of a sub-tree requires only a fast sequential
traversal of this contiguous memory sector, hence speeding up the access to
the active cells.

An alternative way to approach the problem of isosurface extraction based
on value space decomposition consists in orienting the search of active cells
in the volume as the identification of intervals of the scalar magnitude (e.g.,
intensity) which contain the sought after isovalue. Under this approach, each
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Algorithm 3.2.2 min-maz Search Routine

search-min-max( isovalue, node )
if node.min < isovalue then
if node.mazx > isovalue then
triangulate node
end if
search-max-min( isovalue, node.right )
search-max( isovalue, node.left )
else

search-max-min( isovalue, node.left
end if

search-max( isovalue, node )
if node.maz > isovalue then
triangulate node
search-skip-max( isovalue, node.down )
collect( node.up )
else
search-skip-max( isovalue, node.up )
end if

collect( sub — tree )
sequentially triangulate all nodes in this sub — tree

cell is typically characterized as an interval of intensities [a, b], where a and
b are respectively the minimum and maximum voxel intensities in the cell.
Taking this into account, an interval search can be formulated as indicated
in Approach 3.2.3.

The interval tree introduced by Cignoni et al. [35, 34] works on this basis.
This algorithm groups cells represented as the intervals, I;, defined by the
extreme values of the cell’s voxels, [a;, b;]. These groups of cells constitute the
nodes of a balanced binary tree, 7. For the formation of the tree, the extreme
values of the intervals are sorted in a sequence of values, X = (x1, ..., z;) (i.e.,
each extreme a;, b; is equal to some x;). Two lists are then held by each tree
node, one sorted in ascending order of cell minima, AL, and the other sorted
in descending order of cell maxima, DR. The root node has a discriminant
value, 0, = =, = Trhy, SO that the sorted sequence, X’ can be partitioned into
three subsets as follows:

e 7, ={I; € T|b; <d,}. This subset represents the nodes composing
the left sub-tree.
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Approach 3.2.3 Interval Search

Given a point v € V' and given a set of cells represented as intervals,
I =Al,...,I,} suchthat, I, =la;,b;], with a; <b;, and a;b; €V,
find the subset Zs such that,
IsCZ and a; <v<b; V(a,b) € Ls,

where a norm should be used when the dimensionality of V' is greater than
one.

e 7, ={I, € T | a; > 6,}. This subset represents the nodes composing
the right sub-tree.

o 75, = {I; € Tla; < d, < b;}. The intervals contained in this subset are
held by the root node arranged into the two ordered lists previously
mentioned: a list sorted in ascending order of cell minima, a;, and a
list sorted in descending order of cell maxima, b;.

The left and right sub-trees are then recursively defined by taking the
resting intervals and repeating the partitioning process for the extreme sets
(1, ... ,x[%kl) and (x(%Hl, ..., xp) respectively. The interval tree can be
constructed in O(mlogm) time by a direct implementation of its recursive
definition, producing a binary balanced tree with A nodes, and a height of
[log h].

Figure 3.7 shows an example of the formation of an interval tree for a
reduced number of intervals (11 cells). By construction, the tree has 11
nodes and a height of 4 levels. Due to the definition of the interval tree, the
last level of the tree is generally empty, as it is the case here, since these nodes
only might be generated by cells having the same minimum and maximum
values (i.e., homogeneous cells).

For the extraction of an isosurface, given a query isovalue, v, the tree is
traversed recursively starting at its root following Algorithm 3.2.3.

The interval tree and its corresponding search algorithm can be graphi-
cally interpreted using the span space representation. An example showing
the span space equivalent for the intervals from Figure 3.7 is depicted in
Figure 3.8. As can be seen in the figure, the discriminant, ¢,., defines a sub-
division of the span space at each level of the interval tree. By the definition
of the interval tree, intervals (i.e., cells) lying on a subdivision line belong to
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Figure 3.7: Example of an interval tree for a reduced number of intervals.
The blue dots represent nodes with empty AL and DR lists.

the upper level of the tree. The tree search for a given isovalue, v, is also rep-
resented in Figure 3.8. Those space sections containing the horizontal dotted
line that indicates the sought after isovalue, v, (i.e., sectors with 4, < v)
are visited top-down (scanning the AL list) until the delimiting dotted line
is reached. On the other hand, those sectors containing the vertical dotted
line (i.e., §, > v) are searched left to right (scanning the DR list) until the
line is reached. Therefore, [logh] nodes of the interval tree are visited dur-
ing a query, where h is the total number of distinct interval extreme values.
Hence, for an output of size k, the computational complexity of the search is
O(k + logh). Tt is important to note, that the time complexity of querying
with the interval tree is not only optimal, but also independent of the total
number of intervals (i.e., cells) and only dependent on the output size.

As this brief review of isosurface extraction acceleration techniques shows,
there are many possibilities that have proven to reduce the latency associated
to isosurface extraction with traditional Marching Cubes. However, despite
this large extent of algorithms, not much information is available to assist the
user in the selection of the method that best fits to a specific visualization
problem. A case study performed by Sutton et al. [120] analyzes the benefits
derived from several acceleration techniques in terms of latency and memory
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Algorithm 3.2.3 Interval Tree Query

search-interval-tree( isovalue, node )
if isovalue < node.d, then
for all Z in node. AL do
if 7.a < isovalue then
select 7 as active
else
break
end if
end for
search-interval-tree( isovalue, node.le ft )
else if isovalue > node.d, then
for all 7 in node. DR do
if 7.b > isovalue then
select Z as active
else
break
end if
end for
search-interval-tree( isovalue, node.right )
else
for all 7 in node. AL do
select 7 as active
end for
end if

overhead. Even though no clear winner can be extracted from this study, due
to the strong dependency existent between dataset and performance, it can
be stated that the branch-on-need octree (BONO) approach [133] and the
near-optimal isosurface extraction method (NOISE) [81] provide some of the
best performances on average, being both comparable in terms of execution
time. Of course, such a statement must be considered very carefully, given
the high variance associated to the nature of the data and the isosurface
sought after. Thus, factors like the level of noise, the spacial distribution of
the surface within the volume, the size of the dataset, etc. can dramatically
influence the performance obtained with each algorithm. Moreover, a fair
comparison of all these different techniques is not easy and sometimes not
even possible to perform, as many of them combine the core algorithm with
additional optimizations. This way, value space decomposition methods can
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Figure 3.8: Graphical representation of the interval tree of Figure 3.7 in the
span space. Solid lines indicate the partitioning of the span space according
to the corresponding tree level. The arrows show the order followed during
tree traversal for an isovalue v.

benefit from implementation optimizations related to the spatial coherence
of the data (e.g. indexing of groups of cells) and, on the other hand, geo-
metric space decomposition techniques make often use of value attributes as
an extra hint during the search of active cells. Therefore, it is not always
clear which technique is the most suitable for a general case, being neces-
sary a personalized analysis of each specific problem to determine the most
appropriate isosurface extraction algorithm.

The methods presented in this section represent the current state-of-the-
art of acceleration techniques devoted to improve the extraction of isosurfaces
from a volume dataset. In the remainder of this chapter we will now focus
not on the isosurface extraction itself, but on how to render already extracted
isosurfaces in a fast and efficient way.

3.3 Isosurface Rendering

The steady improvement in time and spatial resolution experimented by CT
and MRI scanners during the last decades has lead to an important increase
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in the size and complexity of the datasets. Even though optimized search
techniques can be utilized to accelerate the extraction of an isosurface from
a large volume, the extensive number of triangles necessary to represent the
obtained isosurface can produce a bottleneck in the rendering performance,
thus reducing the interactivity of the visualization experience. This bottle-
neck is mostly due to the limited bandwidth of the bus connecting CPU
and graphics card. Compression and encoding algorithms can be used to
reduce the amount of memory necessary to represent the isosurface. The
difficulty stems then from finding an efficient way to render the geometry
out of its compressed representation. In this section, we present a brief sur-
vey of isosurface compression and encoding algorithms specifically devoted
to overcome these limitations, as well as a detailed description of our own
solution which was originally presented in [6].

3.3.1 Isosurface Compression

Standard algorithms for isosurface extraction, such as Marching Cubes, can
produce an extensive amount of triangles when applied to large volume
datasets employed for medical imaging. High resolution datasets usually
generate large meshes with many small triangles. Even though surface sim-
plification techniques [56, 28, 58] can reduce the complexity of these isosur-
faces by removing and replacing vertices and triangles of the mesh, in some
applications this alteration of the original data is not acceptable. This is the
case, for instance, in medical applications, where the accuracy of the original
data must be kept also in isosurface representations. An alternative approach
to surface simplification is geometry compression. Given the copious amount
of literature about compression techniques (see [40, 33, 52, 123] for examples
of efficient mesh connectivity compression algorithms), here we restrict our-
selves to those algorithms oriented to the compression of isosurfaces, which
are of relevance for our work.

In recent years, Yang and Wu [137] described a method to compress tri-
angle meshes generated by the Marching Cubes algorithm. Based on the fact
that in isosurfaces generated by the Marching Cubes algorithm all vertices
are placed along one edge of an active cell, it is granted that each vertex
can be represented by a cell index, the index of the supporting edge, and its
position along the supporting edge. The connectivity of the vertices, i.e., the
topology of the mesh, is reconstructed by the decoder, in a rather complex
process based on the 3D-chessboard structure first proposed by Cignoni et
al. [34]. Since the Marching Cubes algorithm produces triangles whose ver-
tices lie on an edge between two consecutive voxels, and each edge belongs
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Figure 3.9: 3D-chessboard structure. All volume cells are classified into

black and white cells. Black cells are explicitly encoded. White cells are
labelled according to their closest black cell (XY, 7).

simultaneously to different cells (1-4 from boundary to interior edges), there
is a considerable level of redundancy in the mesh representation it gener-
ates. The 3D-chessboard structure (see Figure 3.9) reduces this redundancy
by considering only every second cell (black cubes) along each main direction
(X, Y, Z) while taking into account neighborhood relationships to process the
remaining cells (white cubes). This way, only a fourth of the total amount of
cells is explicitly encoded, thus helping to reduce the memory requirements.
Saupe and Kuska [110] presented an algorithm to compress isosurfaces that is
also based on a similar vertex representation. In this case, the active cell set,
often also called occupancy image, is encoded with an octree-based scheme in
order to efficiently prune large homogeneous regions of empty space. Based
on a similar isosurface representation, Taubin [122] developed a different ap-
proach that compresses the representation of the isosurface using a context
based arithmetic coding scheme known as JBIG, typically dedicated to loss-
less compression of binary images.

In our approach [6], we employ an isosurface encoding representation
analogous to that described by Saupe and Kuska [110] and also utilized by
Taubing [122], which is presented in detail in Section 3.3.2. However, even
though these approaches achieve considerable reductions in the memory size
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of the isosurface, they do not address the problem of rendering these encoded
versions of the extracted geometry. Typically, the compressed isosurface must
be decoded by the CPU and the set of polygons (generally triangles) are
subsequently stored in main memory before being transferred to the graphics
pipeline for being rendered, hence making bus bandwidth a major bottleneck.
Such a hindrance can be overcome by moving the decoding stage from the
CPU to the graphics card.

The main problem associated with the transfer of the decoding stage to
the graphics card is that, at least until now, it was not possible to generate
new geometry directly on the GPU. Every new vertex had to be explicitly de-
fined and sent from the application (and therefore the CPU) to the graphics
pipeline. Even though the creation of new geometry information directly on
the GPU is still not directly supported, it is possible to reuse the functionality
provided by current graphics cards supporting the DirectX Shader Model 3.0
(or its OpenGL equivalent), in order to overcome this limitation. Therefore,
by applying the innovative strategy described in Section 3.3.3, it becomes
possible to both decode and render an isosurface fully on the card. Specif-
ically, in our method we make use of the newly available functionality on
recent graphics cards (GL_EXT_framebuffer_object), which allows to render
to off-line buffers and, with the assistance of fragment and vertex shaders, to
reutilize the content of such buffers for subsequent rendering passes. This is
the principle that allows us to generate geometry primitives with shader pro-
grams running on the GPU, without any read back to application memory.
This constitutes, to our knowledge and at the time of first publication, the
first such a solution for isosurface decoding and rendering, and constitutes
the main contribution of this work.

As this has been a hot topic of research in the last years, other similar
proposals have been also recently produced. A somehow alike solution has
been presented by Kriiger et al. [69] for rendering of large point scans with
point rendering techniques. Also related, although not directly addressing
the same problem, is the GPU-based implementation of isosurface extraction
using the Marching Tetrahedra algorithm [41], which has been recently pre-
sented by Klein et al. [64]. Nevertheless, this solution, despite its efficiency
in terms of performance, relies on the utilization of ATT’s SuperBuffers func-
tionality, from the proposed GL_ATI super_buffers OpenGL extension [83].
This cumbersome extension has not been officially accepted by the OpenGL
Architectural Review Board (ARB), which makes its functionality difficult
to handle and restricts its availability.
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3.3.2 Encoding Scheme
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Figure 3.10:  Volume cell representation. Each cell C;; contains eight
voxels [6].

Even though this encoding and decoding strategy can be efficiently uti-
lized for rendering any triangle mesh in general, our work focuses on medical
imaging applications. In this scenario, a 3D dataset is acquired by means of
scanning devices (e.g., CT, MRI) as a discrete representation (sampling) of a
continuous scalar magnitude (e.g., material density) at discrete points within
the patient’s anatomy. These samples are usually placed at the vertices of a
regular grid (see Definition 3.3.1).

Definition 3.3.1 Regular Grid

Let rijx € R® with i = 0,.. ., 4maz, 7 = 0, Jmae and k =0, ..., kyaz, be
the position of the points composing the volume (voxels). This set of points,
Iijk, compose a regular grid if

Tijk — Ti—1k = Dy = constant Vi =0,...,%ma
Tijk — Tij—1k = Oy =constant V7 =0,..., jmaz
Tijk — Tijh—1 = A, =constant VEk=0,...,kne

(Note: A strict definition would also require A, = A, = A,, but this

condition is often relaxed in medical imaging, as most medical data present

Ap=A, #£A,).
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As we work with scalar datasets, a scalar value I; ;, € R is associated to
each grid position. In this representation, a cell C; ;; in the 3D regular grid
has eight voxels at its corners forming a cube (see Figure 3.10). Let us now
recall that an isosurface corresponding to an isovalue ¢ € R, can be defined
as the solution of the equation

o(r) —c=0 (3.3)

where ¢(r) is a continuous interpolation function ¢ : R® — R, such that

o(rijx) = Lijk (3.4)

for all voxels rjj k.

The first stage of the isosurface extraction process, presented in detail
in Section 3.2.2, consists in finding those cells C; ; ;, whose voxel intensities
I; ; . have values both above and below the sought after isovalue c. Such cells,
usually denominated active cells or intersecting cells, are the only ones in the
volume that contribute to the generation of an isosurface. Furthermore, in
this scenario, all vertices of the generated mesh representing the isosurface
are on edges of an active cell. In the standard case of Marching Cubes, vertex
positions are linearly interpolated along one edge of an active cell according
to the intensities of both voxels at the extremes of the edge, and the given
isovalue. Taking this into account, we can build an alternative representation
for isosurfaces, where instead of storing the 3D coordinates of each vertex
(three floating point numbers, 32 bits each) and each normal vector (three
floating point numbers, 32 bits each) of the mesh, indices identifying the
vertex position within an active cell can be used. More specifically, a vertex
position can be determined as

r=rijx+la€a (35)

with a = x,y, z, where e, is a unit vector along one of the three main direc-
tions of the regular grid X, Y, Z, and ¢, € [0,1] acts as linear interpolation
factor from a voxel rjjx to one of its first order neighbors along the edge
selected by e,. The value of ¢, can be then expressed as

_ ¢ — P(rijx)
o = P(rijue +eq) — o(rijx) (3:6)

At this point it is important to note that with this representation, each
voxel position can identify up to six vertices along one of its six incident edges.
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However, the half of these positions are redundant and can be assigned to one
of its direct neighbors, by defining a scan direction. In this case, we associate
to each voxel the three edges along the negative direction of the main axis,
{e_s,e_y,e_.}. This way, a vertex lying on one edge will be assigned to
the ceiling voxel. This choice is arbitrary and for the sake of clarity, in the
remainder of this presentation we will refer to the directions and edges as
X,Y, Z instead of — X, Y, —Z.

By using this representation, an encoded version of the isosurface can be
created. Each vertex is now encoded as a 5-tuple of values (i, 7, k, ta, €q).
Even though we have replaced the three coordinates of the vertex by five
values, the memory requirements associated to the encoded version are con-
siderably lower. The voxel indices (i, j, k) are integer values. In our imple-
mentation, these indices are stored using one byte per index, which allows
to address volumes of size up to 256 x 256 x 256. Larger volumes could be
either split in blocks of this size, or encoded using 16 bits per index. The unit
vector identifying the edge on which the vertex lies could be ideally encoded
using only two bits, since only three values are possible. However, given that
the encoded isosurface is to be transferred to the GPU as the content of a
set of textures, the edge identifier must be stored using one byte, the small-
est depth value of the supported texture format. Finally, the interpolation
factor ¢, € [0,1] is a real number that can be quantized for encoding. In
our system, t, is quantized with 8 bits and mapped to the range [0, 255].
This choice is sufficient for datasets acquired with a depth of 8 bits/voxel
and does not introduce any extra uncertainty in the isosurface (see [110] for
a complete discussion). Consequently, the position of each vertex is encoded
using 5 bytes (40 bits) instead of the standard 12 bytes (96 bits), meaning
that the encoded isosurface needs around 58% less memory than a standard
OpenGL representation.

So far we have dealt with the encoding of the vertex positions. If nec-
essary, it is possible to encode the normal vectors too. Since a normal
vector is usually normalized to be a unit vector, its magnitude can be ig-
nored, focussing only on encoding its orientation. This can be easily rep-
resented using the azimuth and zenith spherical coordinates (6, ¢), with
0 € [0,2m), ¢ € [0,7]. Here again, (0, ¢) are real numbers that must be
quantized in order to be efficiently transferred to the GPU in a texture. Dif-
ferent resolutions can be selected for the quantization of both components.
In our implementation, we scale each value to be in the interval [0, 255] and
use 8 bits to encode each # and ¢ value. Even though this introduces a cer-
tain error in the normal orientation, our tests show that this is negligible and
does not result in visible artifacts. With such encryption, a normal vector



3.3. ISOSURFACE RENDERING 61

can be encoded using 2 bytes (16 bits) instead of the 12 bytes (96 bits) of a
standard representation, a reduction of more than 83%.

As briefly mentioned before, we have selected this representation, not only
due to the reduction of memory requirements associated to the isosurface,
but specially because of its suitability to be directly uploaded to graphics
memory as the content of a set of textures. Specifically, two textures are
employed to transfer the geometry information (vertex positions) and one
texture is utilized to upload the encoded normal vectors, if required. The
first geometry texture is a GL_RGBA8 texture (8 bits/component), where the
RGB components contain the (i, 7, k) voxel indices, respectively, and the al-
pha component comprises the quantized and scaled interpolation factor t,.
The second geometry texture is even more simple and contains the edge
identifier e, in a GL_ALPHA8 (8 bits/component). Finally, the normal com-
ponents, if needed, are saved as the content of a GL_LUMINANCE8 ALPHA8 (8
bits/component) texture. This distribution of the data in three textures
obeys not only to a logical separation of the encoded components, but also
to the requirement that the chosen texture formats be directly supported by
the graphics card to avoid undesired data transformations.

In order to obtain textures of the form 2™ x 2", with m,n € 7, the size of
the textures is computed automatically depending on the number of vertices
in the isosurface as

textureyigy, = 21092 1Vmverts|

Nyerts )'I

te:ctureheight = 2log2 I textureyyiqtp

Alternatively, a rectangular texture (GL_ARB_texture rectangle) can
also be utilized, if supported by the employed graphics card and driver.

In either way, the textures containing the encoded isosurface can be gener-
ated and uploaded to graphics memory, from where the GPU-based decoder
will access them to produce the vertices of the mesh ready to be rendered.

3.3.3 Decoding and Rendering

The fast development experimented by graphics cards in recent years, to-
gether with their increasing level of programmability has brought us to the
point where GPU-based computations can clearly outperform CPU-based
ones in scenarios where the highly parallel structure of the former can be
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fully utilized. We make use of this higher performance to accelerate the
rendering of the encoded version of an isosurface presented in the previous
section. Our solution is based on the newly available frame-buffer objects
extension (GL_EXT_framebuffer_object), which allows to render to an off-
screen memory buffer in the graphics card and to reuse this memory buffer
as the source of a vertex array (an alternative to implement the so called ren-
der_to_vertez_array functionality). This way, a costly read back from graph-
ics memory to main memory can be avoided, thus speeding up the rendering
process.

The functional pipeline of our decoding and rendering strategy is the
following:

e Upload data (geometry + normals) as textures.

Render geometry (and normals) texture/-s to off-screen buffer/-s.

Decode vertex position and normal vector using a fragment program
and write results to a frame-buffer object.

Bind content of frame-buffer object as source of a vertex array.

Render vertex array.

Upload Data

The textures described in Section 3.3.2 are uploaded to graphics memory
using OpenGL functions (glTexImage2D). This way, the geometry and the
normals can be efficiently transferred to the graphics card as a whole. Note
that with the given encoding scheme, only the information corresponding
to the vertices must be sent to the graphics pipeline in order to render the
isosurface, in contrast to GPU-accelerated isosurface extraction algorithms,
where the whole volume must be copied.

Render Textures to Off-Screen Buffers

Once the textures have already been defined and their content has been up-
loaded, we need to compute the appropriate texture coordinates to access
the correct texels for each vertex. This can be easily achieved by rendering
a multi-textured quad of the same size as the textures. If a 2D orthogonal
projection is defined and the viewport is also set to the size of the textures,
every texel corresponds to a pixel on the screen, or as in our case, to a
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fragment in the off-screen buffer. This is important because, this way, a
fragment program can be utilized to decode both the vertex position and the
normal vector in a single pass. In order to do this, we must create a frame-
buffer object with two different draw buffers (GL_COLOR_ATTACHMENTO_EXT,
GL_COLOR_ATTACHMENT1 _EXT). These act as two independent rendering tar-
gets similar to a regular frame-buffer, but without the precision restrictions
associated to the latter. This is a crucial aspect, since floating point ren-
dering targets can be defined, thus making it possible to render (write) the
results of the decoding process (i.e., vertex coordinates) directly to a floating
point buffer.

Decode Geometry

For decoding the isosurface on the GPU, a fragment program in the OpenGL
Shading Language (GLSL) is used. Even though rendering the textures to
off-screen buffers and decoding the geometry are two different logical steps,
both are performed in one single pass. Therefore, the same shader pro-
gram is run once to carry out both tasks. The shader program is formed
by a vertex shader and a fragment shader. Given the adequate disposition
of the projection matrix and the viewport, the vertex shader is extremely
simple. It only must compute one texture coordinate (gl TexCoord[0] =
gl MultiTexCoord0) and transform and orthogonally project the four cor-
ners of the multi-textured quad. The actual decoding process is executed by
the fragment shader.

The fragment shader receives the volume parameters (volume offset and
voxel’s spacings) from the application, as well as the identifiers of the textures
involved (two for geometry, three if normals are encoded). At the same time,
the texel coordinate corresponding to the current fragment—vertex—texel is
passed automatically from the vertex shader. With this information, the
decoding process consists in first identifying the position of the two voxels
on both extremes of the respective edge, and then interpolate between both
positions using the linear factor ¢, (see an illustration in Figure 3.11). The
linear interpolation factor can be directly read from the texture as its value,
alike all other fixed point precision texture values, is automatically scaled to
be within [0, 1]. The rest of values read from the textures must therefore be
scaled back to their original values with a multiplication by 255.

The position of the first voxel r! can be computed as

ri =0+ A, (3.7)
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Figure 3.11: Ilustration of the decoding process. The current vertex position
is linearly interpolated between the position of the two voxels involved, r!
and r2.
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where i = x,y, z, with o; being the i-th component of the volume offset, A;,
the i-th component of the voxel spacing and v;, the voxel index in the i-th
direction read from the texture. Once the position of the first voxel has been
computed and the corresponding edge e, subsequently identified by reading
the respective texel value, the 3D coordinates of the second voxel r? can be
easily obtained as

r’=r'+A-e, (3.8)

For the linear interpolation,

r=tort + (1 —t,)r? (3.9)

the OpenGL Shading Language function vec3 mix(vec3 x,vec3 y,float
a) is used. This is a vectorial function that exploits the parallelism existent
on the graphics board. The obtained vertex position is written as an RGB
value in the first draw buffer bound to the frame-buffer object, where R =
rs,G =1y, B=r,.

On the other hand, the normal vector can also be decoded and the three
cartesian components of the vector can be written to the second draw buffer
bound to the frame-buffer object. The coordinates of the normal vector are
computed from the encoded direction vector (6, ¢) as

n, = —cos(0)sin(¢p)
ny, = —sin(f)sin(¢) (3.10)

n, = cos(Q)

Here again, these values are saved as the RGB content of a second draw
buffer (off-screen buffer) with R = n,,G =n,, B =n,.

This way, both the vertices of the mesh representing the isosurface and
their respective normal vectors are written to graphics memory and ready to
be used for rendering.

Render Isosurface

In order to render the isosurface, we reutilize the content of the two draw
buffers where the geometry has been written to during the decoding process.
This can be done making use of the GL_EXT_pixel buffer object OpenGL
extension, together with the already mentioned GL_EXT_framebuffer_object
extension. This allows us to bind each of the draw buffers of the frame-
buffer object as the source for two vertex attributes of a vertex array. The
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first vertex attribute (identified by index 0) is mandatory and represents the
vertex position, while the second is optional and can be used to define the
normal vector of the corresponding vertex. Once these vertex attributes are
bound by the application, the vertex array can be rendered using a second
shader program so that each normal vector can be assigned to the built-in
attribute gl Normal in a vertex shader. A complete transcription of the
vertex and fragment programs is presented in Appendix B.

3.3.4 Results

We have evaluated a prototypical implementation of the proposed method
with a variety of datasets. Figure 3.12 shows three of these datasets, among
which two are typical medical imaging datasets (see Figures 3.12(a) and
3.12(c)) and one is a scientific visualization example (see Figure 3.12(b)).
Our test system is a PC with an Intel ®XeonTM processor running at 2.66
GHz and a graphics card based on an NVidia ®)GeForceTMFX 6800 chipset.
Our implementation is cross-platform, having being tested both in a Windows
and in a Linux operating system. The timing data presented here correspond
to the Linux tests.

The first dataset (see Figure 3.12(a)) is a magnetic resonance (MRI) scan
of a human head with a resolution of 0.90 x 0.90 x 1.09 mm and a size of
256 x 256 x 114 voxels. For this volume, we have extracted the isosurface
corresponding to the isovalue 190 using Marching Cubes. The second dataset
(see Figure 3.12(b)) is the result of a simulation representing the spatial
probability distribution of electrons in a high potential protein molecule with
a volume size of 64 x 64 x 64 voxels. The represented isosurface corresponds
to the isovalue 35. Finally, the third dataset is a computed tomography (CT)
scan of a human chest obtained at a resolution of 0.71 x 0.71 x 1.25 mm and
a size of 512 x 512 x 294 voxels. Here, the Marching Cubes algorithm is
employed to extract the isosurface corresponding to the isovalue 115. All
datasets are stored with an internal resolution of 8 bits/voxel.

The obtained isosurfaces have been reconverted in each case into a se-
quence of triangle strips, in order to minimize the amount of connectivity
information. The vertices of these meshes have then been encoded following
the method described in Section 3.3.2. For the evaluation of the algorithm,
the performance obtained with and without encoding are compared. When
rendering the mesh without encoding, the standard OpenGL pipeline is uti-
lized. For the encoded version, the geometry is uploaded as the content of
a set of textures and decoded and rendered on-the-fly on the GPU. In order
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(a) MRI Head (b) Neghip

(c¢) CT Thorax

Figure 3.12: Isosurfaces utilized to evaluate the proposed method [6].
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to obtain a representative value for the time required to upload the encoded
geometry to the graphics card, an average value over 50 uploads has been
measured. For the obtention of significative timing values of the rendering,
the same benchmarking sequence has been used in all the tests. Table 3.1
summarizes the information collected during the performed tests.

Table 3.1: Timing results obtained for test isosurfaces. Topencr: rendering
time using standard OpenGL. Tzpy: time for decoding and rendering using
our GPU-based method. Typeaq: extract from T py employed to upload the
encoded isosurface.

’ H MRI Head H Neghip H CT Thorax ‘
Volume Size (#Voxels) || 256 x 256 x 110 || 64 x 64 x 64 || 512 x 512 x 294
Isosurface Size (#Strips) 26401 6284 61566
Isosurface Size (# Verts.) 69924 17183 144933
TOpenGL (ms) 42 11 88
TGPU (ms) 22 5! 41
TUpload (ms) 3 1 4
FPSopencr 24 91 11
FPScpu 45 200 24

As can be seen in the table, acceleration factors between 1.9x and 2.2x
are achieved when the GPU-based decoding and rendering approach is uti-
lized. This speed-up is mostly due to two different factors: first, the reduced
size of the encoded vertices reduces the time necessary to upload the mesh
from the CPU to the GPU compared to the standard OpenGL implemen-
tation; and second, since all the geometry is decoded and stored directly in
graphics memory, it is already on the graphics card and ready to be ren-
dered, thus making unnecessary any additional transfer from the CPU to
the GPU in subsequent frames. While a similar benefit to that derived from
the latter factor can be achieved by caching the whole mesh in the graphics
card using OpenGL vertex buffer objects (VBO), the former is a direct con-
sequence of employing a purely GPU-based method. Furthermore, it should
be noted that, even though these tests have been performed on static iso-
surfaces, our algorithm is perfectly suitable for accelerating the rendering of
dynamic isosurface representations. The visualization of dynamic datasets,
with time evolving inner structures, or isosurfaces with a changing isovalue,
implies a frequent upload of the isosurface which in the extreme case could
be every frame. In such a situation, the ability to render a compressed ver-
sion of the isosurface acquires an extra value, as the traffic exchange on the
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bus between CPU and GPU usually becomes the major bottleneck for the
rendering performance. As the results displayed on the table clearly show,
the time required to upload the textures comprising the encoded isosurface
is rather short, representing only the 10% of the total rendering time for
the largest test dataset (CT Thorax). This would trivially result in a much
higher acceleration factor than the one obtained for static scenes.

The main contribution of this new method, the capability of dealing with
compressed representations of an isosurface, decompressing and rendering
fully on the GPU without any further communication back to the CPU,
opens a new door to the application of many compression schemes to real time
visualization problems. While the encoding scheme employed in our proof-
of-concept implementation is rather simple, the utilization of more complex
compression algorithms, such as entropy based encoding, might be perfectly
possible based on the same procedure as we have described here. An example
of high performance rendering of compressed volume data using wavelets
compression and direct volume rendering has been presented by Guthe et
al. [53].

Furthermore, the framework and special utilization of available exten-
sions one step further than the purpose they were created for, that have been
performed for this project open many new possibilities for GPU-accelerated
solutions which were not possible before. A good example of such possibil-
ities is the work by Shiue et al., developed simultaneously to our solution
for isosurfaces, and presented at the 2005 Siggraph [116], which describes a
similar proposal applied to subdivision on the GPU. Moreover, other appli-
cations such as displacement mapping, may now also be produced on the
GPU without the necessity of extra slow transfers between the CPU and the
graphics pipeline.

Concerning the image quality achieved with our method, Figure 3.13
presents both rendering results corresponding to rendering the isosurface
with standard OpenGL and to applying our decoding and rendering approach
running fully on the GPU. As the choice of the resolution for the internal
representation of the encoded values has been performed taking into account
the limitations of the hardware (e.g., internal precision on the GPU), both
images reproduce equivalent visual accuracy. It must be noted at this point
that, due to the fact that the GPU-based implementation carries out all
lighting effects directly in the shader program responsible for rendering the
mesh, slight differences in the illumination conditions can be appreciated in
both images.
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(a) Original (b) Decoded

Figure 3.13: Image quality comparison [6].

3.4 Summary

In this chapter, the application of indirect volume rendering techniques has
been addressed. Given the characteristics of most medical scanned data, such
as regularity or their scalar structure, the extraction of isosurfaces and their
subsequent display represent a very important role in medical visualization.
Therefore, both aspects, the isosurface extraction process and the succeed-
ing rendering of those isosurfaces have been analyzed. First, the standard
method for isosurface extraction, the Marching Cubes algorithm, has been
presented, followed by a survey of the most relevant optimization techniques
oriented to accelerate the computation of the polygonal model represent-
ing the sought after isosurfaces. Once the current state-of-the-art has been
settled, a review of compression techniques applied to the visualization of
isosurfaces obtained out of scalar volumes has been performed. Our own con-
tribution, a novel method for accelerating the rendering of large isosurfaces
based on the utilization of the programmability of current graphics cards,
has then been presented in detail. Our strategy works on an encoded version
of the isosurface that reduces its memory size, while other encoding and com-
pression schemes are compatible with the method and might be incorporated
in the future. The main contribution of our work focuses on decoding and
rendering the isosurface. By making use of the programmability of recent
graphics cards and the newly available frame-buffer objects OpenGL exten-
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sion, the whole decoding and rendering process can be performed directly
on the GPU. Since no slow read back to main memory through the CPU is
required, the rendering performance is increased. One major bottleneck for
the rendering of large isosurfaces, the bandwidth of the bus connecting CPU
and GPU, is also alleviated due to the reduced size of the encoded isosurface.
This can greatly benefit applications where the isosurface must be updated
very often, like the visualization of time sequences of animated volumes. The
obtained results are encouraging and illustrate the benefits of our method:
reduced bandwidth requirements and faster quality rendering.

As a possible line for future work, the investigation of the feasibility of
implementing a GPU-accelerated entropy decoder is a very promising avenue
and a perfect complement to the procedure described in this chapter. Given
the ability to generate geometry directly on the GPU, as it has been proven
in our implementation, derived from the utilization of the newly available
OpenGL frame-buffer objects, a whole new generation of GPU-accelerated
algorithms can be now developed. Such techniques include, but are not
limited to, GPU based subdivision, GPU based displacement mapping, etc.

In the last two chapters, several techniques for the visualization of vol-
ume datasets have been presented and analyzed, either utilizing point-based
rendering (Chapter 2), or indirect volume rendering (Chapter 3). In both
cases, the focus has been set on acceleration techniques devoted to speed
up the rendering process while minimizing or even avoiding visual quality
losses. In the following chapter, a rather different perspective is adopted for
direct volume rendering applied to medical visualization. Now the target will
not be the reduction of the rendering time, but to improve the quality and
meaningfulness of the visualization experience. Therefore a special emphasis
will be put on the classification stage of the direct volume rendering pipeline
and on mechanisms for assisting the user in order to efficiently display the
relevant information out of the volume data.
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CHAPTER 4

Direct Volume Rendering

4.1 Introduction

In contrast to indirect volume rendering, where the volumetric data are first
converted into a set of polygonal isosurfaces and subsequently rendered with
standard polygonal graphics hardware, with direct volume rendering the data
are directly rendered without any intermediate conversion step. This has
the advantage of providing a complete insight of the data as a whole, as
the complete 3D sampled volume is represented in the final rendered image.
Furthermore, by working with the whole volume, it is possible to explore
not only the external surface as with indirect volume rendering, but also the
inner structures hidden underneath those surfaces. Such characteristics make
volume rendering!of great interest as a supporting tool in medical scenarios
by both improving the global understanding and providing a complete three-
dimensional representation of the scanned patient’s data. Of course such
insight could be also achieved by means of extracting and visualizing a set of
N different isosurfaces, but at the cost of much higher memory and processing
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requirements, which make this alternative not suitable for general purposes.

It is important to note that in volume rendering, unlike other areas of
computer graphics, photo-realism is not the goal. In fact, given the nature
of the data being visualized (e.g., scanned data), in many situations it is not
even possible to define what a photo-realistic result should look like. So, the
task to be achieved with volume rendering is to synthesize meaningful images
from 3D data such that the resulting rendering reveals useful insights to the
user.

Many different algorithms have been designed as a realization of the di-
rect volume rendering concept. Among these, four techniques have become
the most popular, thus establishing a standard set for volume rendering:
ray casting [124, 74), splatting [131], shear-warp [71], and 3D texture map-
ping [31]. All these algorithms are based on the direct volume rendering
integral, also known as the low-albedo volume rendering integral, which is
described in Section 4.1.1. Independently of the chosen algorithm, volume
rendering is always achieved as a sequence of ordered operations forming
the so-called volume rendering pipeline, which is briefly summarized in Sec-
tion 4.1.2. Subsequently, Section 4.1.3 presents the basics of the four most
widespread volume rendering algorithms mentioned above, hence completing
this short reminder of the essentials of volume rendering. Then, in Sec-
tion 4.2, special emphasis is put on the classification stage of the volume
rendering pipeline. Since a proper classification is a crucial element for the
obtention of meaningful and practically valuable images, its adequate de-
sign plays a fundamental role in the utilization of volume rendering as a
medical visualization tool. The relevance of this process is clearly stated in
Section 4.2.1, where our original proposal for transfer function definition is
presented in detail.

While the original idea, design of the algorithm, measurement and analy-
sis of the results, as well as the whole final presentation have been produced
by the author of this thesis, the prototype implementation utilized for the
evaluation of the proposed method was performed by Martin Koébele as a
part of his master’s project (Diplomarbeit) [67] under the active supervision
of this author. It should also be acknowledge the participation of Jan Fischer
as responsible for the medical AR environment and fruitful discussions.

'The term direct volume rendering is commonly used as opposed to indirect volume
rendering. The shorter form volume rendering is usually employed as a synonym of direct
volume rendering. In the remainder of this chapter, for the sake of simplicity, the former
will be often used and should not be mistaken with indirect volume rendering.
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4.1.1 Volume Rendering Integral

The volume rendering integral (see Equation 4.1) is the solution to an equa-
tion computing the color of light that passes through a volume. Its theoretical
basis is the density emitter model introduced by Sabella [109], which assumes
a simplified model of the transport theory of light and its interaction with
the matter being visualized. This simplified model takes only absorption and
emission into account, hence ignoring other physical terms such as scattering
or refraction. Such simplification is usually known as the low albedo model,
making reference to the low reflectivity assumed for the particles forming the
volume, which leads to neglecting the effects of inter-reflection within the
volume [74, 109, 43].

L
I(z,7) :/ Ci(s) p(s) e Jo rBdt g (4.1)
0

Therefore, I)(z,7) in Equation 4.1 is the analytical solution to the amount
of light of wavelength A coming from ray direction 7 that is received by an
observer at location x on the image plane. Here, L represents the length
of ray 7. The terms in the body of the integral can be easily interpreted.
The model assumes thinking of the volume as a continuum of particles with
certain densities, u, able to absorb and/or emit light. C) accounts for the
amount of light of wavelength A being reflected and/or emitted at a location
s in the direction towards the observer, i.e., the direction of the ray . As
the reflectivity associated to each infinitesimal location is proportional to the
density of the participating medium (i.e., the volume) at that position, the
reflected color (light at wavelength \) is weighted by the particle’s density, p.
The decreasing exponential function represents the attenuation of the light
from position s, due to the density of particles between s and the observer’s
eye.

Unfortunately, even with this simplified model, in the general case the
volume rendering integral (Equation 4.1) cannot be solved analytically [87].
Thus, in order to obtain a numerical solution, practical volume rendering
algorithms perform a discretization of the integral by decomposing it into a
Riemann sum, i.e. a series of sequential intervals ¢ of width As along the ray
7, as expressed in Equation 4.2.

I(z,7) ~ Z C(si) p(si) As [Jers) 29 (4.2)
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Now, the exponential term can be replaced by its Taylor series, e™* =

> (_5!)”. Furthermore, the full series expansion can be truncated drop-
ping all but the first two terms (i.e., linear approximation). Performing
these substitutions gives place to the discretized volume rendering integral
presented in Equation 4.3, where a(s;) = 1.0 —7(s;) is the opacity at interval

i (7 is the transparency).

L/As i—1
IL(z,7) ~ Z Ci(si) a(s;) H[1 — afs;)] (4.3)

It must be noted that, due to the non linear behavior of the discretized
volume rendering integral, the composition must be performed in sorted or-
der, either front-to-back, or back-to-front.

Definition 4.1.1 Front-To-Back Composition

For each pixel on the screen, x, the intensity for each color component cor-
responding to the front-to-back composition of all voxels along a direction 7,
can be computed as

i—1

I(z,7) = Zc a [ -ay)

§=0
This can be expressed iteratively as

Cout = Cln + (1 - ain) Q; Cz

Qloyt = Qip, + Qi (1 - ain)

In both definitions (Definition 4.1.1 and 4.1.2), C,,; and g, are the
total accumulated color intensity and opacity just after the composition of
the current sample point; C;, and «;, are the total accumulated values just
before compositing the current sample point; and C; and «; are the color
intensity and opacity of the current sample point.

4.1.2 Volume Rendering Pipeline
Every direct volume rendering algorithm is achieved as a series of concate-

nated steps. As each operation in the sequence is completed, the data is
passed to the next operation, forming a pipeline. The general structure of this
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Definition 4.1.2 Back-To-Front Composition

For each pixel on the screen, x, the intensity for each color component cor-
responding to the back-to-front composition of all voxels along a direction 7,
can be computed as

n

I(z,7) = Zc a [ -ay)

j=i+1

This can be expressed iteratively as

Cout = C; a; + Cp, (1 — o)

pipeline is illustrated by Figure 4.1. The operations in the pipeline consist of
segmentation, gradient computation, resampling, classification, shading, and
compositing. The order and inclusion of some of these steps may vary among
different algorithms and practical implementations. The consequences asso-
ciated to some of these changes, such as the inversion of the relative order
between resampling and classification, will be briefly analyzed below. But
first, let us comment the meaning of each of the pipeline stages:

e Segmentation: It is a preprocessing step, typically done before the

actual rendering. It consists of separating the dataset into structural
units by labelling voxels within the volume. Each label identifies one
feature and this information can be further utilized for separating these
semantic classes during rendering. A clear example in medical imaging
is the identification of bones and tissue regions from a patient’s scan.
The segmented regions can then, for instance, be assigned a different
transfer function during classification in order to be highlighted and
presented to the user.

Gradient Computation: The gradient is a measure of how quickly
voxel intensity in the dataset changes. The gradient also indicates the
direction of this variation. Since the changes in intensity are normally
perpendicular to the interface between two materials, the gradient vec-
tor is utilized as an approximation of the normal vector at a material’s
or object’s surface. This information is typically used for shading, as
in any traditional computer graphics discipline, but also can be ex-
tremely useful for the identification of material boundaries and edges.
Several filters can be employed for the computation of the gradient,
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Figure 4.1: Direct volume rendering pipeline.

being the central differences operator the most simple and commonly
applied one. Other possibilities such as the Sobel operator or cubic
spline filters can provide a more accurate estimation of the gradient
vector, but at the cost of being more time and memory consuming.
A comparison of different gradient estimation techniques can be found
in [27].

Resampling: In volume rendering, voxel intensities along a viewing
direction must be accumulated in order to produce a 2D image of the
3D dataset. Since this is a discrete process where arbitrary positions
within the dataset must be accessed, the volume must be sampled. It is
called resampling, as the volume is already a discrete sampling of the
continuous patient’s anatomy. Such resampling is necessary because
these 3D arbitrary positions rarely coincide with an exact voxel loca-
tion on the volumetric grid, thus requiring an interpolation based on the
values at neighboring grid positions. There exist many approaches to
perform this interpolation, each one controlled by a different interpola-
tion kernel. Usually separable kernels are utilized, since they allow the
interpolation being performed independently in each dimension. The
most straightforward method is nearest neighbor interpolation, where
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the voxel closest to the sought after position is selected. Even though
this is easy to implement and rather fast, nearest neighbor interpola-
tion does not provide high quality results. A more accurate and very
common alternative is the utilization of trilinear interpolation within a
volume cell. Using trilinear interpolation, the eight voxels forming the
cell containing the query position are utilized to compute this location’s
value. Linear interpolation is then consecutively applied along each of
the three coordinate directions. Despite its relatively high complexity,
due to the optimizations suffered by modern graphics hardware (e.g.,
3D texture memory), good performance can be achieved. Its major
drawback is the appearance of diamond-like artifacts due to the nature
of the trilinear kernel. As with the case of gradient computations, more
complex interpolation kernels (e.g., Gaussian kernel, cubic convolution,
B-spline interpolation) may be utilized at the cost of longer computing
times and larger memory requirements, should the accuracy provided
by trilinear interpolation not be enough.

Classification: Decisive step in every volume rendering algorithm,
classification consists in the assignment of optical properties such as
color and opacity to every voxel in the volume. This assignment is
based on the application of a transfer function which defines the map-
ping between internal parameters of the 3D data (e.g., intensity, gra-
dient magnitude, curvature) and the final color and opacity utilized
during rendering. A detailed description of the classification stage and
several algorithms for the design of transfer functions are presented in
Section 4.2.

Shading: [lumination and shading within volume rendering borrow
the concepts and techniques common to traditional polygon-based ren-
dering. By simulating the effects of light-matter interaction, the ap-
pearance of rendered objects is enhanced. This interaction is typically
factorized into three modelling elements: ambient, diffuse, and specular
light components. The ambient component is present at each position
in the scene as a constant distribution that approximates the effect
of inter-reflections. The diffuse component models the interaction of
light with rough materials, where light scatters almost equally in all
directions. Therefore it depends on the normal vector but not on the
viewpoint. Finally, the specular component depends on the angle be-
tween the light and the eye position and specifies how much of a light
source’s intensity is reflected, thus simulating the behavior of smooth,
shiny objects.



80 CHAPTER 4. DIRECT VOLUME RENDERING

Two are the main differences between shading in polygon-based ren-
dering and volume rendering: The first difference is trivial: while in
polygon-based rendering these effects are applied to surface elements
(i.e. triangles), with volume rendering, volumetric objects are utilized
instead. The second factor consists in the goal to be achieved in both
cases. Differently to most polygon-based rendering examples, by ap-
plying illumination and shading effects to volume rendering no photo-
realism is pursued. On the contrary, the intention is to provide a better
understanding of the inner structures of the volume and thus achieve
a more meaningful representation of the 3D data.

Figure 4.2: Comparison of (A) direct volume rendering compositing and (B)
mazimum intensity projection (MIP) [44].

e Compositing: In the last stage of the pipeline, all contributions to
each pixel in the final image are combined into one color value. This
process represents an approximation to the discrete volume rendering
integral presented in Equation 4.3. Depending on the chosen algorithm,
this gathering process for the corresponding color and opacity values
can be performed either in front-to-back or back-to-front order. A sur-
vey of various volume rendering algorithms is provided in Section 4.1.3.
Other compositing operators can be chosen instead of the accumula-
tion over all samples to determine the color for each pixel using the
volume rendering integral. One example of such operators is known
as mazimum intensity projection (MIP). It selects the maximum voxel
intensity of all samples along every viewing direction, hence producing
results resembling an X-ray image of the dataset. Maximum intensity
projection compositing is commonly used in medical imaging to high-
light high-contrast features within an MRI scan, such as arteries in
rotational angiography acquisitions 2. Figure 4.2 shows a comparison

2In these cases, arteries appear as bright structures due to an injected contrast agent.
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of direct volume rendering compositing and MIP applied to the same
dataset.

Figure 4.3: Pre-classification (left) versus post-classification (right) [44].

As briefly mentioned above, the position of some of the elements in the
volume rendering pipeline can be exchanged. Specially important are the
consequences derived from the relative order between resampling and classi-
fication. Generally, applying the transfer function responsible of defining the
classification of the volume before the interpolation performed for resampling
has taken place can cause visible artifacts. This approach is usually referred
to as pre-classification. When using pre-classification, a colored volume is
generated where each voxel is represented by an RGBa value instead of the
scalar intensity typical of medical datasets. Therefore, by executing classi-
fication first, the interpolation takes place in the 4D color space, leading to
artifacts such as image blurring and color bleeding [135].

Figure 4.4: Color bleeding example. Separate interpolation of color and
opacity (left) versus opacity-weighted interpolation of colors (right) [135].
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These problems can be minimized if opacity-weighted color interpola-
tion is employed instead of separately interpolating color and opacity values.
Otherwise, low-opacity colors may mix on equal terms with high-opacity col-
ors, leading to color bleeding artifacts at the boundaries between differently
colored regions of the volume as illustrated by Figure 4.4.

Such effects are obviously avoided with post-classification, where inter-
polation takes place in the 1D voxel intensity space and the classification is
performed on these already resampled values. However, it should be noted
that with post-classification artifacts might be generated too. In particular,
due to the interpolation of intensity values, if a material with a high voxel
value is adjacent to a material with a low voxel value, the averaging intro-
duced by interpolation can visibly distort the obtained voxel values. This
way, one might obtain interpolated values being classified as a structure that
is not present at the given location. This is known as the partial volume effect
and, together with aliasing artifacts, is one of the main problems associated
with undersampling.

4.1.3 Volume Rendering Algorithms

Many are the algorithms devoted to create an image from of a volumetric
dataset by implementing the discretized volume rendering integral presented
in Equation 4.3. In this section a brief survey is presented of the main
characteristics of those techniques that have become the standard set for
direct volume rendering.

4.1.3.1 Ray Casting

Ray casting [74] is an image-order direct volume rendering algorithm perform-
ing a straightforward numerical evaluation of the volume rendering integral.
Its working principle is therefore quite simple: for each pixel of the image, a
ray is cast from the viewpoint into the scene traversing through the volume.
For each of these rays, samples are calculated at given locations along the
ray path in order to approximate the integration process. Typically, equally-
spaced samples are used for the sampling, while optimizations might affect
such regular sampling for the sake of performance and/or quality. A recon-
struction filter is utilized for interpolating the discrete volume and computing
the corresponding value at each sample location. As trilinear interpolation is
the most frequently selected reconstruction, the scalar values of eight neigh-
boring voxels are weighted according to their distance to the actual location



4.1. INTRODUCTION 83

for which a value is needed. A transfer function is then applied to properly
classify the volume, if post-classification is used. Pre-classification may also
be applied instead, by inverting the order between interpolation and clas-
sification, as already discussed in the previous section. The solution of the
volume rendering integral is then approximated by compositing the obtained
sample values via alpha-blending in either back-to-front or front-to-back or-
der.

Voxels

Samples

Image
Plane

(a) Orthogonal Projection (b) Perspective Projection

Figure 4.5: Ray casting of a volume dataset with uniform sampling.

Figure 4.5 illustrates the compositing process in a typical ray casting sce-
nario for a front-to-back implementation for both orthographic (Figure 4.5(a))
and perspective projection (Figure 4.5(b)). The samples along each ray are
subsequently combined as a weighted sum controlled by the corresponding
opacity (alpha) value, thus producing the rendered image. It must be noted
that, in general, the highest frequency of the content of the volume is un-
known, and therefore the Nyquist theorem?® must be taken into account to
determine the sampling frequency (i.e., the distance between consecutive
samples along a ray).

Theorem 4.1.1 Nyquist Theorem

When sampling a band-limited signal, the sampling frequency must be
greater than twice the input signal bandwidth in order to be able to re-
construct the original perfectly from the sampled version.

3The Nyquist theorem is also known as the Shannon theorem or just simply as the
sampling theorem.
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In this case, this implies that the spacing between two consecutive samples
should be smaller than half of the voxel grid spacing.

As the ray casting algorithm is a rather computing intensive technique,
acceleration methods are usually applied to increase the rendering perfor-
mance. When using front-to-back compositing, early ray termination may
be employed to accelerate the sampling process. As its name suggests, the
sampling along a ray is stopped once full (or almost full) opacity has been
reached (o &~ 1.0), since the structures behind that sample location would
not contribute to the final image. Another useful acceleration technique is
empty space leaping, where a distance field or an equivalent data structure is
applied to identify and avoid empty regions where no sampling is required.

Despite these optimizations, the performance obtained with software im-
plementations of ray casting is usually not enough for real-time or even inter-
active frame rates. Therefore, specific hardware solutions such as the Vizard
II [89, 90, 62] or the VolumePro [97] boards have been developed, which
provide a significant boost in terms of rendering speed without sacrificing
image quality. Additionally, in recent years, due to the programmability of
modern graphics cards, an intermediate solution has arisen in the form of
GPU-based ray casting implementations [70, 106]. These approaches rely
on the new Pixel Shader 2.0 model (DirectX) or the equivalent functionality
via OpenGL shader programs. Describing the details about these techniques
is clearly beyond the scope of this thesis, but a complete survey of the key
factors to be taken into account in GPU-based ray casting is presented in
the 2004 SIGGRAPH Course Notes by Engel et al. [44].

4.1.3.2 Splatting

The splatting algorithm was first proposed by Westover [131]. In contrast to
ray casting, splatting is an object-space oriented volume rendering algorithm.
In splatting, each voxel is represented by overlapping radially symmetric basis
functions which are pre-integrated into a 2D footprint, weighted by the voxel
value and mapped onto the image plane. A Gaussian kernel is commonly
selected as the basis interpolation function. The pre-integrated 2D footprint
is stored in a lookup table, hence reducing the rendering time.

In the original splatting algorithm, all splats are composited back-to-
front, which is prone to produce bleeding artifacts from hidden objects. A
straightforward optimization of this technique consists of locally accumulat-
ing slices of splats in cache-sheets, aligned with the volume face most parallel
to the image plane. This introduces inaccuracies that result in severe bright-
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Figure 4.6: Splatting. Illustration of image aligned splatting.

ness variations, such as visible popping artifacts in animated views. Image
aligned splatting [92], eliminates most of these drawbacks by projecting slabs
of the voxel kernels onto sheet buffers of a constant width As, aligned par-
allel to the image plane (see Figure 4.6). Additionally, optimizations like
the early splat elimination [93] of non-contributing splats can help to reduce
the rendering time by reducing the amount of redundant computations. In
a similar manner to the early ray termination for the ray casting algorithm,
the opacity of the set of pixels covered by a splat is tested against a given
threshold value. If the obtained opacity is already above the threshold, the
contribution of the respective splat (and of the upcoming ones behind it) can
be neglected and the front-to-back compositing can be interrupted.

It also must be noted that the splatting algorithm replaces the point
samples of ray casting with a sample average across a distance given by
the width of the slabs, As. This introduces additional low-pass filtering,
if As > 1.0. Even though this helps to reduce aliasing, it also tends to
smooth details in the volume. Furthermore, if post-classification is applied,
the filtering of the original intensities tends to increase the partial volume
effect. On the other hand, the size of the splats is a key factor for the
performance of the algorithm. Therefore, a tradeoff between performance
and visual quality is commonly necessary. This is one of the reasons for
splatting usually not providing such a high image quality as ray casting. This,
together with the increasing hardware support for texture mapping has lead
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to a certain loss of popularity of the splatting algorithm for direct volume
rendering. Nevertheless, the splatting principle has become a powerful tool
for point rendering applications, as has been presented in Chapter 2.

4.1.3.3 Shear-Warp

The shear-warp factorization [71] is a hybrid alternative between an image-
space oriented (e.g., ray casting) and an object-space oriented (e.g., splatting)
algorithm. It is mainly a variation of ray casting, which factorizes the viewing
transformation into a shearing and a warping step. In contrast to ray casting,
no rays are cast back into the volume, but the volume itself is projected slice
by slice onto the image plane. The data reconstruction is performed as
bilinear interpolation within two-dimensional slices, instead of the trilinear
interpolation typically used by ray casting.

Base
Voxels
Plane

Base Samples Viewing

Samples

Plane Rays
Image ] 1 ]
Plane
Viewing Sheared
Rays Slices

(b)
Figure 4.7: Shear-warp factorization for orthogonal projection.

The basic principle of shear-warp is illustrated in Figure 4.7 for the case
of orthogonal projection. The projection does not take place directly on the
final image plane, as with ray casting, but on an intermediate image plane
called base plane. The base plane is located in front of and aligned parallel
to the volume instead of the viewport. Then, the volume itself is sheared in
such a way that the viewing rays become perpendicular to the volume slices
(see Figure 4.7(b)), which allows for an extremely fast implementation of the
projection due to the optimal memory access. The rays obtain their sample
values using bilinear interpolation within the traversed volume slices. This
results in a view-dependent sampling interval, which can vary between 1.0
for axis-aligned views, to v/3 for corner-on views. Thus, the Nyquist theorem
is potentially violated, which can result in visible aliasing artifacts.
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In the second step of the algorithm, the computed base plane image is
warped onto the final image plane, as illustrated in Figure 4.7(b). Note that
this is only necessary once per image and not per slice. The example shown
in Figure 4.7 corresponds to orthogonal projection. Perspective projection
can be easily incorporated to the algorithm by scaling the volume slices in
addition to the shearing in order to address the divergence of perspectively
cast rays.

The set formed by the above mentioned characteristics, together with
additional optimizations such as run-length encoding the volume data, is
what make the shear-warp algorithm probably the fastest software method
for direct volume rendering.

4.1.3.4 Texture Mapping

This object-space oriented algorithm is one of the most commonly applied
volume rendering techniques. Two are the main existing variants of texture
mapping applied to volume rendering: 2D and 3D texture mapping. Both
techniques consist of an accumulation of parallel texture slices in a back-to-
front manner using the (alpha-)blending functionality of graphics hardware.
The main difference is the type of alignment applied in each case, which in
turn results also in a different interpolation scheme.

“

\Y

(b) ()

Figure 4.8: 2D texture mapping-based volume rendering with object-aligned
textures.

In 2D texture mapping [31], object aligned slices are alpha-blended to
produce the final image. Three stacks of planar slices aligned with each of
the three major axes of the volume are utilized as proxy geometry. This align-
ment is necessary so that the volume can be mapped with 2D textures, which
are then resampled using bilinear interpolation within each slice. During ren-
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dering, the stack corresponding to the major axis which is most parallel to the
viewing direction is chosen (see Figure 4.8). This may lead to visible popping
artifacts when switching between two major axis directions. Furthermore, as
only 2D textures are employed, no interpolation between slices is performed,
thus limiting the final image quality due to under-sampling along the view
direction. In addition, the necessity of creating and keeping three stacks of
object-aligned slices clearly increases the texture memory requirements. On
the other hand, by relying only on 2D texture memory, this type of imple-
mentation is directly supported by any graphics board. Also, the rendering
performance is extremely high, since bilinear interpolation requires only a
lookup and a weighting of four texels for each resampling operation.

N

Figure 4.9: 3D texture mapping-based volume rendering with view-aligned
textures.

Many modern graphics cards include support for 3D textures, additionally
to traditional 2D textures, thus enabling the possibility to implement 3D
texture mapping [38]. In this case, the dataset is stored in a single 3D texture
map, which can be directly indexed in order to obtain a value at any arbitrary
location within the volume by applying trilinear interpolation. Since no 2D
restriction is bound to the hardware as with 2D texture mapping, the natural
selection is to use slices aligned with the viewport (see Figure 4.9), as these
more closely reproduce the sampling employed by ray casting. Furthermore,
due to the hardware supported trilinear interpolation within the volume,
proxy slices (i.e., polygons) are not limited to original slices from the dataset.
This way, the number of slices and the sampling distance between them can
be adjusted on-the-fly without any restrictions, so that a constant sampling
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rate for all pixels and viewing directions can be maintained. This not only
eliminates the popping artifacts typical of 2D texture mapping, but also
reduces aliasing problems associated with under-sampling.

On the other hand, three are the main drawbacks of 3D texture map-
ping: first, the still limited availability of 3D texturing capabilities in con-
sumer’s graphics cards; second, trilinear interpolation is significantly slower
than bilinear interpolation, due to the necessity of accessing eight texels per
sample (instead of four), and texture fetch patterns that decrease the ef-
ficiency of texture caches; and third, larger volumes which do not fit into
texture memory require swapping of volume bricks between main memory
and texture memory with the consequent performance drop. Nevertheless,
in recent years, 3D texture mapping has become popular in PC based graph-
ics hardware, which in turn has produced an increase of the on-board texture
memory available, thus limiting the effect of the aforementioned hindrances.
As a result, 3D texture mapping has become a standard solution for those
visualization applications that do not require the accuracy of ray casting, but
a good tradeoff between rendering performance and image quality.

4.2 Classification in Direct Volume Render-
ing

As an element of the direct volume rendering pipeline, classification is defined
as “the process of identifying features of interest based on abstract data
values” [44]. Normally, the classification step is performed applying a transfer
function that maps the domain of data values from the original volume (e.g.,
voxel intensity, gradient, curvature) to the range of optical properties such as
color and opacity. Finding a good transfer function for volume classification is
one of the key problems in direct volume rendering, as a good classification is
mandatory for a meaningful visualization. Despite its crucial relevance, it has
not been until recent years that a considerable research effort has been put on
addressing this problem [98]. In the simplest case, a transfer function has a
one dimensional domain (voxel intensity), while its range can be characterized
by one (opacity) or four dimensions (color and opacity). Typically, the user
is presented with a transfer function editor working on a histogram basis,
that visually demonstrates the effect of changes in the transfer function. An
example of such an editor is presented in Figure 4.10, where the yellow line
corresponds to the histogram of the volume dataset and a different mapping
function is defined for the red, green, blue and alpha channels. This rather



90 CHAPTER 4. DIRECT VOLUME RENDERING

naive approach, even though still being used in many applications, leads to a
complex and time consuming trial and error process. Obviously, the addition
of new dimensions to the domain of the transfer function further complicates
this explorative task.

H =
{(kauenbey)o1boy

Figure 4.10: Transfer function editor working on a 1D histogram basis.

In order to simplify and facilitate this cumbersome design process, var-
ious alternatives have been proposed. He et al. [54] treat the search for a
proper one-dimensional transfer function as a stochastic parameter optimiza-
tion problem and employ heuristic search techniques, either based on user
selection of intermediate thumbnail renderings (see Figure 4.11(a)), or auto-
matically controlled by user-specified objective image fitness functions. The
purpose is to create an interface that suggests an appropriate transfer func-
tion and lets the user to guide the design process based on how well he/she
feels the rendered images capture the essential features of the dataset.

Marks et al. [85] address the general problem of computer-assisted pa-
rameter setting with a Design Gallery interface. Their approach generates
a selection of images obtained with a broad selection of all possible trans-
fer functions. The whole space of transfer functions is parameterized and
stochastically sampled, thus producing volume rendering images illustrating
each parameter selection. The images are then grouped based on similarity.
An example of such a user interface is provided in Figure 4.11(b). Since
many different images must be rendered, this approach can be quite time
consuming but it may be performed in a fully automatic manner. A similar
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Figure 4.11: Examples of transfer function design interfaces.



92 CHAPTER 4. DIRECT VOLUME RENDERING

approach is presented in [68], where thumbnail renderings are also employed
to assist the user, but decoupling the different search domains (data range,
color, opacity) and benefiting from the use of the VolumePro technology [97]
to provide real-time visual feedback (see Figure 4.11(c) for an illustrative
example). The Contour Spectrum proposed by Bajaj et al. [25] tackles the
problem in a more data-centric manner. Data metrics such as surface area
and mean gradient magnitude are utilized to parameterize and visually sum-
marize the space of isosurfaces in the volume. Even though this is devoted
to guide the choice of isovalues for indirect volume rendering, the provided
information can also be useful for transfer function generation.

The above mentioned techniques propose alternatives to facilitate the
design of one-dimensional transfer functions. However, over the years it
has become clear that the use of multi-dimensional transfer functions can
drastically benefit the success of volume visualization [98]. Such approaches,
already proposed by Levoy in 1988 [74], incorporate additional parameters to
the domain of transfer functions, hence increasing their capability to visually
discern between different materials and structures. Such functions can be
defined as a mapping from 2D to 1D,

f:R*—R

where the domain D C R? is formed by the voxel’s value (or intensity), I,
and its gradient magnitude, |VI|; while the function’s range R C R defines
the opacity value, «, for each voxel.

Kindlmann et al. [63] use first and second derivative information in the
opacity transfer function design in order to semi-automatically isolate struc-
tures within the volumetric dataset correlating with a material boundary
model. A different and interactive approach is presented in [65], where the
gradient magnitude is also computed together with the Hessian matrix, but
where the color is added to the range of the transfer function. This derivative
information is thus incorporated into the transfer function design process by
a set of manipulation widgets that the user can employ to select and high-
light features within the dataset. A relevant aspect of this method is the
concept of dual-domain, which connects the spatial and the transfer func-
tion domains. However, even for this interactive system proposed by Kniss
et al. [65], a considerable expertise from the user is necessary to achieve a
meaningful visualization in a reasonable amount of time. It must be noted at
this point that, unlike the original approach by Levoy, where this 2D infor-
mation (intensity value and gradient magnitude) is employed to determine
a proper opacity value (1D), in this case the transfer function is a mapping
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from 2D to 4D,
f:R?— R*

as the three color components (e.g., RGB) are also to be generated by the
classification mapping. This not only increases the degrees of freedom, and
therefore the complexity of the function itself, but also represents a chal-
lenge in terms of usability, as the design of an intuitive user interface for the
definition of such a mapping is by no means trivial. In a medical scenario,
this would imply the necessity of a computer graphics expert assisting the
physician during the transfer function definition, which is not practicable in
most situations.

Figure 4.12: Example of transfer function definition based on paintings done
by the user on slices and neural networks [125].

The concept of direct interaction with the rendered result instead of with
a representation of the transfer function domain has been taken one step
further by Tzeng et al. [125, 126], as shown in Figure 4.12. In this case,
the transfer function space is kept completely hidden to the user, who only
interacts with the volume itself by painting on sample slices of the dataset.
The classification itself is performed by one multilayer perceptron (MLP)
neural network for each predefined material class.

Partially inspired by this work, we have developed our own interface for
volume classification specially oriented to medical visualization [8, 7]. In our
solution, we borrow the idea of using a multi-dimensional transfer function,
while limiting the user interaction to the spatial domain. We also combine the
result of the user interaction with machine learning methods in order to pro-
duce the final transfer function in an automated way. However, our approach
clearly differentiates from the one by Tzeng et al. [125, 126] by employing an
augmented reality paradigm on which a real 3D interaction with the volume
is guaranteed, in contrast with a 2D slice-based solution. Moreover, our au-
tomatic classification process defines a standard multi-dimensional transfer
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Figure 4.13: Example of 2D histogram. The cyan line shows the standard
(accumulative) 1D histogram on logarithmic scale. Each of the points form-
ing a cloud represents one voxel in the volume positioned according to its
intensity (X coordinate) and gradient magnitude (Y coordinate).

function for the whole volume and does not require an extra neural network
for each sought after material.

In our strategy, a 2D transfer function is generated in a semiautomatic
way. The transfer function itself can be represented as a mapping from a
voxel’s intensity, I/, and gradient magnitude, VI, to the opacity, «, and
color (r,g,b), that are to be utilized for rendering that given voxel. Tt is,
therefore, a mapping from 2D I,VI to 4D r,g,b,a. As mentioned above,
the representation of such a function is not trivial. In our case, in order to
present and analyze the results, the generated transfer function is represented
on top of the 2D histogram of the dataset. A mixed representation of a 2D
histogram together with a regular 1D histogram is shown in Figure 4.13. As
can be seen in the figure, the X-axis represents the voxel intensity, while two
Y-axes are utilized. On the right hand side, the frequency with which each
intensity value appears in the volume (on logarithmic scale) is represented, so
that a cyan line depicts the traditional 1D histogram. The left Y-axis is used
for the representation of the gradient magnitude in order to generate the 2D
histogram. In this case, each voxel is depicted as a 2D point using its (1,VI)
as coordinate values, hence producing the cloud of points that can be seen
in the figure. This way, the frequency of appearance for each pair (1,|V1]) is
indicated by the density of this cloud at each position on the 2D histogram.
In the remainder of this chapter, all 2D histograms are presented using this
abstraction, representing in every case the 1D histogram with a cyan line and
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the 2D histogram with a cloud of points. Further details about this type of
representation are provided in Section 4.2.1.3, when the classification results
are presented using 2D histograms as a basis.

4.2.1 AR-Based Semiautomatic Transfer Function De-
finition

As briefly pointed out above, in direct volume rendering in general, and in
medical volume visualization in particular, a proper transfer function is vi-
tal for producing a meaningful image that provides a good insight of the
data. Since in most cases the information sought after is highly dependent
on the application, user interaction becomes a crucial factor to allow the
user to guide the classification of the dataset. Therefore, our novel approach
translates the interaction between the user and the analyzed data into an
augmented reality environment, so that a better and more direct manipula-
tion of the volume is enabled.

The term augmented reality (AR) denotes techniques which combine im-
ages of the real environment with three-dimensional computer-generated
graphics. A thorough survey of augmented reality falls beyond the scope
of this thesis, but an overview is given by Azuma [23].

Augmented reality user interfaces have recently been used as a tool for
defining transfer functions in a manual way [104]. However, it must be noted
that the proposed paradigm corresponds to a traditional one-dimensional
transfer function, where the user manually combines a set of predefined func-
tions in a trial and error manner. This way, an opacity transfer function can
be determined for a gray-scale representation. This clearly differentiates
from our volume classification approach, which focuses on the combination
of multi-dimensional transfer functions with a user friendly AR-based user
interface. This type of interaction has the advantage of providing a bet-
ter understanding of the actual three-dimensional structure of the dataset,
enabling a deeper integration of the user into the transfer function specifica-
tion process. The actual transfer function design is kept transparent to the
user by employing machine learning classifiers, thus freeing the user from the
internal complexity of the classification.

Our semi-automatic volume classification proposal has been implemented
using our own medical augmented reality framework, called ARGUS [47, 48].
Following, relevant aspects about medical augmented reality and the ARGUS
system are summarized.
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Figure 4.14: Overview of the coordinates transformation involved in the
tracking process [47].

4.2.1.1 Medical AR

The application of augmented reality in medical diagnostics and treatment
has been in the focus of active research for many years. Among the most
relevant references is the work by State et al. [118], who presented an early
system for supporting ultrasound-guided needle biopsies. Figl et al. de-
scribed a head-mounted operating microscope which is capable of overlaying
additional graphical information over the conventional microscopic view [45].
More recently, a high performance video see-through augmented reality sys-
tem for medical applications was presented by Vogt et al. [128]. Also well
known is the Studierstube project, conceived and developed by Schmalstieg
et al. as a collaborative augmented reality system [111].

Our transfer function design process uses an augmented reality environ-
ment for displaying the volume datasets. Moreover, intuitive 3D user in-
teraction is provided by a specialized AR-based user interface. The sys-
tem has been realized using our framework for medical augmented reality,
ARGUS (Augmented Reality based on Image GUided Surgery). Unlike
many other experimental setups for medical augmented reality, ARGUS
uses existing, commercially available medical equipment [47]. In the AR
setup, a VectorVision® intraoperative navigation device is employed (see
Figure 4.15(a)), which is equipped with a highly accurate infrared track-
ing system. The tracking information delivered by the infrared cameras is
utilized for the pose estimation of the digital video camera used in the AR
system, and for realizing the novel user interaction in our semi-automatic vol-
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(a) VectorVision® (b) Example application.

Figure 4.15: Medical AR. (a) IGS device produced by the BrainLAB com-
pany (Heimstetten, Germany). (b) 3D user interaction based on intraopera-
tive navigation: operation planning drawings on a plastic skull phantom [46].

ume classification approach. An illustration of the transformation matrices
involved in the tracking and calibration process is presented in Figure 4.14.
Further details about the medical AR set-up can be found in the work by
Fischer et al. [47].

Several objects can be tracked simultaneously by the intraoperative nav-
igation system. Infrared marker clamps consisting of a configuration of three
reflective spheres are attached to surgical or interaction tools which are to
be tracked. Moreover, a pre-configured pointer tool is supplied by the man-
ufacturer of the IGS device. Using these capabilities, a user interaction li-
brary based on this medical AR framework has been designed and imple-
mented [46]. The library allows the replacement of traditional input devices
such as keyboard or mouse with direct tools in a medical AR application.
We use different pen-like and pointer-like tools as wireless interaction devices.
The user interface system is capable of detecting different click gestures for
the definition of points in 3D. Moreover, a standard menu system with freely
placeable menu items is provided. An example application of the interaction
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Figure 4.16: Volume rendering of the patient’s dataset in an AR environment
prior to the application of the volume classification algorithm.

library is illustrated in Figure 4.15(b). Further information about the user
interaction library and examples can be found in [46].

4.2.1.2 Volume Classification

The novel paradigm for volume classification we propose constructs a multi-
dimensional transfer function in a semi-automatic manner. The key elements
of the algorithm are summarized in a functional pipeline:

e Render volume in AR environment: The original dataset is rendered
with a standard linear ramp transfer function for all color and opacity
channels producing a gray-scale representation. The obtained result is
displayed using 3D texture mapping (see Figure 4.16).

e Inspect volume: The rendered volume can be directly examined in the
AR environment using a clipping plane widget (see below).

e Select sample points: Combining the use of the clipping plane widget
together with a pointer tool, sample points representing features of
interest can be easily selected.

e Generate transfer function: The information corresponding to the se-
lected points is processed and utilized to automatically generate an
appropriate transfer function. This automatic process is achieved with
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Figure 4.17: AR interaction tools: clipping plane (lower image) and pointer
tool (upper image) [8].

the help of machine learning algorithms on the basis of a 2D histogram
(voxel intensities and gradient magnitudes) (see Section 4.2.1.2.2).

e Render classified volume: Once a satisfactory transfer function has
been obtained, the volume is classified and a final rendering image is
produced.

Following, a detailed description of the two most relevant elements of this
pipeline is presented.

4.2.1.2.1 Sample Points Selection In our system, the user can di-
rectly manipulate and interact with the volume in an AR environment. The
correct positioning of the scanned dataset (CT, MRI) is guaranteed by the
registration process provided by the image-guided surgery (IGS) system [47].
Two intuitive tools are then employed by the user to inspect the volume and
define regions of interest. Figure 4.17 shows both interaction tools together
with their virtual representation immersed in an AR environment: a clipping
plane and a pointer tool.

The clipping plane tool (see the tool and the virtual plane in red on
the lower part of Figure 4.17) is tracked with the help of three non-aligned
reflecting spheres (6-DOF) in such a way that its position and orientation can
be retrieved from the IGS system. With this information, a plane containing
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Figure 4.18: Sample point selection [8].

the three reflecting spheres can be easily modelled. An intersection test
between this plane and the volume bounding box provides the information
necessary to cull off all voxels above the defined plane. This way the user can
browse through the volume rendered in the AR environment by just moving
the clipping plane tool in any direction, providing a direct insight of the data.

The second interaction tool is a pointer. As can be seen in the upper
part of Figure 4.17, the pointer tool is tracked using two spheres (5-DOF).
The position of these two points determine a vector that can be used to
represent the direction of a straight line (the virtual extension of the pointer
is shown in white in the figure). A simple plane-line intersection test between
this straight line and the plane defined by the clipping plane tool can be
used to indicate a position within the dataset. In order to complete the
type of interaction needed by our system, we need to be able to generate
an activation click event informing that the current position corresponds
to a region of interest and should be used for the transfer function design
process. We solved this problem with our AR user interaction library (see
Section 4.2.1.1). By holding the pointer with a fixed orientation during a
predefined time (1 ~2 seconds), the user generates an event informing the
system that the point selection process must be activated.

Once a point has been selected (see Figure 4.18), a dialog allows the user
to select color and opacity values (see Figure 4.19), as well as an identifying
name for the class corresponding to the current material. These material
attributes (color, opacity and name) are saved for further use, and a list
with all previously defined materials is generated and presented to the user.
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Figure 4.19: Color selection for chosen material [8].

This way, the point selection can be repeated either to add new points to an
already defined material class (by choosing the material name from the list),
or to introduce new materials that should be taken into account during the
classification of the volume (by entering a new name on the list and defining
the corresponding color and opacity material attributes).

4.2.1.2.2 Transfer Function Generation The actual transfer function
generation process utilizes the information provided by the user, i.e., the set
of sample points and the material attributes associated to them, for the
classification of the volume. The basic idea of this semiautomatic approach
is to free the user from the more cumbersome aspects of the classification
process, while still letting him /her control the final visualization result. So,
intuitive parameters such as the material attributes (color and opacity) are
directly entered by the user and linked to regions in the volume during the
sample points selection. On the other hand, the actual mapping of intensity
and gradient magnitude intervals to renderable attributes (i.e., the material
attributes defined by the user) is carried out in an automatic manner, due
to the difficulties of designing such a transfer function. By adopting this
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type of approach for the transfer function definition, the initial complexity
of the function itself is reduced from a general f : R? — R* to a more
simple mapping for which the original range has been restricted to a finite
(and usually small) set of 4-tuples, M C R* where each element m € M
corresponds to a user defined material and contains its color and opacity
values.

As mentioned above, the points selected by the user constitute the input
to the automatic transfer function generation. In order to minimize the
number of points that must be defined by the user and to make the point
selection more robust against noise in the dataset and inaccuracies during the
point selection, a larger set of sample points is generated out of the initial
subset defined by the user. For each point selected with the interaction
tools, a small surrounding region around the point is determined. The user
has the opportunity to choose between two different specifications for this
surrounding region: a 3D neighborhood and a planar neighborhood. The 3D
neighborhood is formed by the 3 x 3 x 3 first order neighbors along the three
orthogonal directions (X,Y,Z). The planar neighborhood is a two-dimensional
3 x 3 set of points on the intersection polygon determined by the clipping
plane tool. In either case, the computed set of points is taken and the average
values for both intensity and gradient magnitude are calculated. This way,
even if noise is present in the dataset, the user can rely on the fact that the
selected point does correspond to a representative value of the spatial region
which has been pointed to.

Next, for each of these average points representing the region selected by
the user, a small two-dimensional interval in the transfer function domain
is taken around the given values, and the cartesian product of these two
subsets is employed to generate the set of points that are passed to the
actual classifier.

[I; — AL |V — AIVI|] x [I; + AL |VL| + A|VI]|] (4.4)

Equation 4.4 indicates this set of points, where I; and |VI;| denote, re-
spectively, the voxel intensity and the gradient magnitude of the average
point representing one region selected by the user.

After multiple tests, an interval width (2A7) of 12 HU (Hounsfield units)
in intensity and 6 in terms of gradient magnitude (2A|VI|) were found to be a
suitable value in order to obtain a proper representation of the selected points.
Hence, 72 sample points are generated for each user selection, ensuring a
sufficient amount of input data for the automatic classification process. Due
to this procedure, the spatially guided selection performed by the user is
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combined with a data centric generation of similar points in the transfer
function domain.

Machine Learning Classifiers The transfer function generation is per-
formed automatically using machine learning methods. Machine Learning
15 the study of computer algorithms that improve automatically through ex-
perience [91]. In our case, this experience is provided by the set of points
and materials defined by the user, which establish the starting point for the
automatic transfer function generation. Since the initial correspondences be-
tween these sample points and the material attributes they are to be mapped
to are already known, the actual transfer function design can be reduced to a
partitioning of the 2D histogram of the dataset among regions corresponding
to the different materials defined by the user. Therefore, automatic classifi-
cation and spatial partition methods may be used here for the determination
of an appropriate transfer function. Two examples of such approaches have
been tested in this work. The first is based on the utilization of an artificial
neural network, more specifically a Multi-Layer Perceptron (MLP), while the
second employs a k-Nearest Neighbors (kNN) classifier.

Multi-Layer Perceptron Classifier Artificial neural networks are
composed by simple processing elements (artificial neural cells) organized
in architectures characterized by a high degree of interconnection inspired
by the parallel architecture of animal brains. They result specially interest-
ing for classification purposes due to their ability to approximate functions
based on sparse data through a training process and to apply this to solve
new problems of similar nature. This training process adapts the weights
modulating the value across each connection until the network implements a
desired function.

For our purposes, we have chosen a three-layer perceptron topology, using
the supervised training method known as Feed-Forward Back-Propagation
algorithm. Figure 4.20 shows an illustration of such a network. Our network
is composed by one input layer of two cells, one for each value in the domain
of the transfer function (I;, |VI;|), one output layer with as many cells as
material classes have been defined by the user, and one hidden layer. After
several tests, we have determined that a hidden layer of 15 cells is able to
properly discern among the user defined classes (typically 4 — 8 materials).

For the implementation of the neural network, a third party library (LTI-
Lib from the University of Aachen (Germany)) was selected. The functioning
principle is simple: The set of sample points created out of the user selected
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Figure 4.20: Structure of a three-layer perceptron [8].

positions is utilized as a training set for the neural network. Once the network
has been properly trained, each voxel intensity and gradient magnitude are
fed to the network and an output value is produced at each cell of the output
layer. As mentioned above, the output layer has one cell for each material
class. The value generated at each of these cells indicates the probability that
the input voxel belongs to the material associated to the output cell. This
way, a threshold can be set so that each voxel producing a probability over
the threshold be classified with the color and opacity of the corresponding
material, while the remaining voxels with probabilities below the threshold
can be either ignored (opacity = 0), or classified with the initial standard
transfer function.

k-Nearest Neighbors Classifier A k-nearest neighbors (kNN) analy-
sis provides a different alternative for the automatic classification of new
objects out of a number of known examples. In our approach we use a 1-
nearest neighbor classifier (k = 1). The operating routine is very simple,
though effective. The known examples constitute classes defined by the po-
sition of a prototype. The initial position of each prototype is given by the
first sample point corresponding to a material class being passed to the in-
put of the classifier. Each subsequent sample point is assigned to the class
whose prototype is at the lowest Euclidean distance computed on the transfer
function domain. Once the assignment has been completed, the prototype is
recomputed as the average position of all the points belonging to the class
it represents. Alternatively, each new sample point may be considered as
a prototype of a new class, resulting in a cluster of sibling regions for each
material. In either case, with every new sample point, the same process is re-
peated until all the points generated as a result of the direct user interaction



4.2. CLASSIFICATION IN DIRECT VOLUME RENDERING 105

have been classified, and the corresponding prototypes have been respectively
created and repositioned to their final location. Then, the kNN (i.e., INN)
classifier can be utilized to perform the classification of the volume, voxel by
voxel.

»
»

|grad()|
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»

/

Figure 4.21: Structure of a kNN classifier (k=1). The red point illustrates
an example of a voxel belonging to class B [§].

Figure 4.21 illustrates a simple example of this process. The labels
A, B,C, D, E show the prototype positions corresponding to five different
material classes selected by the user with the AR-based interaction tools. In
this scenario, each voxel is classified as belonging to the material class whose
prototype is the closest in terms of intensity and gradient magnitude. The
red point in Figure 4.21 represents a voxel being classified. Since its nearest
neighbor (k = 1) is prototype B, the voxel will be classified with the color
and opacity associated to this material.

Even though the kNN classifier does not provide a direct measure of
the probability for each voxel to belong to a specified material class, the
distance to the closest prototype can be used for this purpose. This way,
it is possible to set a threshold again in order to decide whether all voxels
should be classified (assigned to one of the defined classes), or those which are
not close enough to any prototype should be specially handled (e.g., ignored
— opacity = 0 — or classified with the initial gray-scale linear ramp transfer
function).

4.2.1.3 Results

A prototype implementation of our proposed method has been realized in a
master project (Diplomarbeit) [67]. Based on this prototypical implementa-
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tion, the viability of the proposed method has been tested on several scanned
medical datasets (CT, MRI). Here, two representative examples are presented
in detail. Other results are then briefly summarized with illustrative images.

ations AR options Volume View Classification MLP

(none) INSTR. ; (none) [NSTR.

(a) External view. (b) Insight view.
Figure 4.22: Unclassified MRI head overlaid on top of plastic skull phantom.

The first example dataset is an MRI scan of a human head with 512 x
512 x 160 voxels and 8 bits/voxel of resolution. In order to simulate the
typical scenario for a medical AR application, the patient’s scan has been
registered using a plastic skull phantom. This way, the patient data can be
efficiently overlaid on top of the phantom as presented in Figure 4.22.

‘ Material H Color H Opacity H # Points ‘

air black 0.0 5

fat yellow 10.0 6
mner tissue || blue 20.0 3
ventricle red 120.0 5
edges white 20.0 6

Table 4.1: Material classes defined for the MRI head dataset shown in
Figure 4.22.

Figure 4.22 shows the starting point for our approach. The volume is first
rendered in an AR environment using a standard linear ramp one-dimensional
transfer function for all color and opacity (alpha) channels, where only the
voxel intensity is taken into account. The volume rendering is performed with
3D texture mapping using pre-classification to apply the transfer functions.
As can be seen on the images (see Figures 4.22(a) and 4.22(b)), the initial
rendering does not provide a sufficient insight of the structures present in the
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(none} INSTR. (none} INSTR.

(a) External view. (b) Insight view.

(¢) 2D histogram with user defined sample points.

Figure 4.23: Intermediate classification with user defined sample points on
top of plastic skull phantom.

MRI scan of the patient’s head, and a new classification must be performed
in order to reveal the information it contains. Using the direct interaction
tools (clipping plane and pointer tool), we define five different materials as
described in Table 4.14, which indicates the user defined material attributes
and the number of points, also selected by the user, for each of these mate-
rials.

Each material is represented by a color and opacity value, as well as an
identifying label. The selected sample points are reproduced in Figure 4.23(c)

4The opacity values in this table are unclamped alpha values which are then automat-
ically clamped to the range [0, 1] by OpenGL.
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on the 2D histogram of the dataset. Fach colored rectangle illustrates the
size of the intervals in terms of intensity and gradient magnitude employed
for the generation of the input to the automatic classifiers. Since these la-
belled regions define a color and opacity for those voxels represented below
the respective areas on the histogram, a preliminary manual classification
may already be performed with these user defined data. The result of such
an intermediate classification is shown in Figure 4.23(a) and 4.23(b). Even
though this already provides a more appealing visual result than the ini-
tial standard transfer function, the result is still not satisfactory enough for
most applications. Of course the user could further refine this intermediate
manual classification by defining more and more points for each material.
This, although compatible with our algorithm, would notably increase the
time required for the classification of the volume, thus limiting the benefits
introduced by the method. Therefore, an automatic classifier is used instead.
This way, a minor set of points is enough to create a much more complex
and meaningful visualization of the patient’s anatomy.

In this example, we utilize both automatic classifiers (MLP and kNN),
so that a comparison of the pros and cons associated with them can be per-
formed. First, the k-nearest neighbors classifier is applied. The setup in this
case consists in the creation and proper allocation of the class prototypes.
Given the reduced amount of sample points (25) that must be processed
and the limited number of material classes (5), this initialization step is ac-
complished almost instantaneously. For this example no threshold was set,
letting the classifier act over the whole volume. This way, each voxel is des-
ignated to belong to one of the user defined materials. The obtained result is
illustrated in Figure 4.24. Figures 4.24(a) and 4.24(b) clearly show the abil-
ity of the kNN classifier to emphasize those features explicitly selected by
the user in the AR environment. Furthermore, the dark cloud produced by
the air surrounding the head has also been effectively removed. The transfer
function itself is represented in Figure 4.24(c) on the 2D histogram of the
dataset. Fach point on this 2D histogram corresponds to one voxel in the
volume, while the colors indicate the distribution of the classes (i.e. mate-
rials) produced by the automatic classification process. This image clearly
illustrates how unintuitive the interaction on a histogram basis would be,
compared to the direct selection of points in the volume.

In order to confront the results produced by the kNN classifier with those
of a neural network, the same set of points selected for the first case (see
Figure 4.23(c)) was employed to train the MLP neural network. The training
set for the neural network is generated as described above. For this example,
we have configured the training process to a maximum length of 400 epochs
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(a) External view. (b) Insight view.

(¢) 2D histogram showing transfer function.

Figure 4.24: Result of automatic classification with kNN classifier on top of
plastic skull phantom. Each material is rendered with the color and opacity
defined by the user. The 2D histogram shows the generated transfer function
where each color identifies one of the given materials.
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(a) External view. (b) Insight view.
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(¢) 2D histogram showing transfer function.

Figure 4.25: Result of automatic classification with MLP neural network on
top of plastic skull phantom.
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(a) External view. (b) Insight view.

Figure 4.26: Unclassified MRI head overlaid on top of test subject’s anatomy.

(iterations of the back-propagation algorithm). Under these conditions, the
network was trained after approximately 2 minutes®. In this case, a threshold
of 70% was set as the minimum probability to consider a voxel as belonging
to one of the defined material classes. Voxels with a probability inferior to
70% were rendered as transparent. Figures 4.25(a) and 4.25(b) show the
patient’s scan rendered after being classified by the MLP neural network.
The generated transfer function is also depicted in Figure 4.25(c) indicating
all the different colored regions on the 2D histogram of the volume.

Comparing the results obtained with both classification methods (see Fig-
ures 4.24 and 4.25), the outcome produced is surprisingly similar for both,
the MLP artificial neural network and the kNN classifier, specially consid-
ering their completely different internal structure. Both approaches have
been proven to be effective removing undesired elements of the dataset (e.g.
surrounding air) and also highlighting materials and features of interest (e.g.
ventricular system) over uninteresting background regions. However it is also
possible to recognize some characteristic differences between them. The arti-
ficial neural network, probably due to its more complex structure, produces a
slightly more accurate classification of the data than the k-nearest neighbors
classifier. This is particularly true for fine structures and material interfaces
like the contour of the ventricle system. On the other hand, the simplicity
of the kNN classifier makes it also attractive given its shorter runtime and
similar visual performance. In any case, further testing should be performed
in collaboration with our clinical partners before a definitive evaluation of
the utility of both classifiers can be proclaimed, as at the current state both

50Our test system is a PC with an Intel® Xeon™ processor running at 2.66 GHz and
a graphics card based on an NVidia® GeForce™FX 6800 chipset.
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(b) External view of interaction during
point selection.

I Show neural network result inste;
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(c) 2D histogram showing selected sample points.

Figure 4.27: Selection of sample points.

alternatives have proven their adequateness. It can be stated, though, that
the divergence observed between both classifying methods tends to diminish
with the amount of selected sample points. This is the expected course, since
a higher number of sample points implies more control supplied by the user
during the transfer function design process, thus constraining the behavior
of the automatic classifiers.

For the second example, we have reconstructed a more realistic scenario,
reproducing a situation much closer to the actual application of our proposed
method for clinical purposes. Here again, the dataset is an MRI scan of a
human head with a spatial resolution of 512 x 512 x 74 voxels with 16 bit-
s/voxel. The MRI scan is first rendered on top of the image of the registered
test subject, with help of the infrared tracking provided by the IGS system
(see Figures 4.26(a) and 4.26(b)). A set of points is then directly defined
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in the medical AR environment as indicated in Figure 4.27. Figure 4.27(b)
shows an external view of the experimental setup, illustrating the direct in-
teraction process during the selection of a sample point. All the user selected
sample points can be seen in Figure 4.27(c) on top of the volume’s 2D his-

togram. The corresponding color and opacity parameters are summarized in
Table 4.2.

’ Material H Color H Opacity H # Points ‘

air black 0.0 4
material 1 || green 40.0 5
material 2 || yellow 30.0 6
matertal 3 || violet 30.0 )
material 4 || orange 30.0 4

edges white 20.0 4

Table 4.2: Material classes defined for the MRI head dataset shown in
Figure 4.26.

For this example a kNN classifier was selected for generating the transfer
function. As can be seen in Figure 4.28, the obtained classification clearly
reveals the inner structure of the dataset, thus confirming that, with a suf-
ficient amount of sample points, a simple kNN classifier is able to produce
an appropriate transfer function. This second example not only illustrates
the interaction in a real scenario, but also demonstrates how our proposed
method allows to produce rather complex volume classifications, that are ca-
pable of discerning between different tissues and materials within a patient’s
anatomy (see Figure 4.28(c)).

Two additional examples of results obtained with our semiautomatic vol-
ume classification approach are shown in Figure 4.29 for another MRI scan
of a human head and a CT acquisition of a human thorax. The setup utilized
in both cases is analogous to that described above, and therefore will not be
repeated here in detail. It must be noted that these two examples do not
strictly utilize an augmented reality environment, since the real anatomy is
not present in the scene. Nevertheless, they still benefit from the direct user
interaction within a three-dimensional virtual environment, even though the
orientation may turn to be slightly less intuitive than with AR. Both classifi-
cations obtained for the MRI head dataset (see Figures 4.29(a) and 4.29(b))
confirm the similarities between the two automatic classifiers, when enough
sample points have been defined (19 points for 5 materials in this case). The
main differences observed between the image produced by the kNN classifier
and the MLP neural network are mostly due to the fact that, in the latter,
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(c¢) 2D histogram showing transfer function.

Figure 4.28: Result of automatic classification with kNN classifier on top of
test subject’s anatomy.

those voxels below the probability threshold were rendered with the initial
gray-scale linear ramp transfer function. On the other hand, the CT thorax
dataset, given its more complex inner structure, provides a good illustration
of the divergences between the classifiers. While the kNN classifier tends
to over-classify by assigning every voxel to one of the user defined materials
(see Figure 4.29(c)), the MLP neural network is able to better discern fine
structures, such as the interface separating bronchi and air in the lungs (see
Figure 4.29(d)).
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Figure 4.29: Results of automatic classification with kNN ((a), (c¢)) and MLP
((b), (d)) classifiers for an MRI scan of a human head ((a), (b)) and a CT
scan of a human thorax ((c), (d)) [8].
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4.3 Summary

Direct volume rendering provides a powerful tool for displaying scanned
volume data in a three-dimensional environment. Since all the data is di-
rectly processed and incorporated to the scene, it generates a valuable global
overview of the whole dataset at once. Various are the algorithms to visualize
a 3D dataset with direct volume rendering, among which the most impor-
tant are: ray casting, splatting, shear-warp and texture mapping. In this
chapter, the main characteristics of these algorithms have been presented
and discussed. Then, once the necessary background has been provided, the
focus has been shifted to the problem of classification in volume rendering
applications. This consists of the assignment of renderable optical properties
to different regions within the dataset. As commonly only certain limited
regions of the volume are specially relevant and must be highlighted with
respect to the rest of the anatomy, a proper classification becomes a crucial
element for a meaningful visualization.

The classification step of the volume rendering pipeline is usually per-
formed by means of a transfer function, which maps internal parameters of
the data (e.g., voxel intensity) to color and opacity values to be used during
rendering. Much work has been devoted to assist the user in the typically
tedious and complex transfer function design. Even though these algorithms
have proven their ability to generate appealing images, they require a high
level of expertise from the user about the internal classification process. Since
this is not the case in most medical scenarios, we have developed an intuitive
semi-automatic approach for transfer function definition which is based on
direct interaction between the user and the rendered volume in a medical
augmented reality (AR) environment. Working on a set of sample points
defined by the user directly in the volume, an automatic volume classifica-
tion process is carried out using machine learning techniques. Specifically,
an artificial neural network (multi-layer perceptron) and a k-nearest neigh-
bors classifier have been implemented and tested. Both alternatives have
proven to be appropriate for the transfer function design process and their
own characteristics have been discussed and analyzed. The results obtained
with a prototypical implementation confirm that our novel method permits
the generation of complex multi-dimensional transfer functions, producing
meaningful images and gaining a better insight of the data. On the other
hand, given the combination of an intuitive and easy-to-use user interface and
the application of automatic classifiers, the complexity of the volume clas-
sification process is kept transparent to the physician, thus facilitating the
integration of these techniques in the medical routine as a useful visualization



4.3. SUMMARY 117

tool.
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APPENDIX A

Medical Applications

In this thesis, various innovative algorithms have been presented, which have
helped to extend the state-of-the-art of volume visualization in general, and
particularly to its application to the medical field. In this appendix, a brief
summary of practical projects is exposed, in which volume visualization has
played a decisive role. The projects are grouped into two logical blocks:
the first focuses on pre- and intra-operative support for medical procedures;
while the second includes example applications where isosurface extraction
and visualization is the center of attention.

A.1 Visual Assistance for Pre-/Intra-Operative
Support

The application of visualization techniques for medical purposes is one of the
most active fields for volume visualization. Here, two different projects are
presented, which are devoted to support a physician in the preparation and
realization of a surgical procedure.
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A.1.1 DynCT EU Project: Real Time Motion Com-
pensated Reconstruction and Visualization for
Dynamic Computed Tomography

A.1.1.1 Description of the Project

The purpose of the DynCT project was to define and develop a novel hardware /-
software-based reconstruction and visualization system for real-time medical
computed tomography. The system addressed three hot issues in this medical
scanning modality: real-time 3D cone-beam reconstruction, organ motion-
independent CT reconstruction and real-time 2D /3D visualization.

Within this project, the responsibility of the University of Tiibingen was
to develop tailored software and hardware for the visualization and interac-
tion with the reconstructed real-time volume data [20].

e — —

Figure A.1: User interface showing the data retrieval, data reviewing and
reconstruction reviewer protocol entries.

The main objective for the visualization and user interface development
was to deliver high quality images that reveal the structures present in the
CT dataset. To make the system applicable for CT fluoroscopy, visualiza-
tion had to be done in real-time. To handle these requirements we made
use of the VIZARDII [89] which is a multipurpose fully programmable PCI
card featuring DSP and FPGA components. It has been constructed for
volume rendering and delivers high-quality images at a real-time frame rate.
The VIZARDII board was originally designed to handle only static volume
data. Within the DynCT project, it was required that each frame a different
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volume dataset be rendered. This made it necessary to extend the original
VIZARDII design to handle rendering and uploading of data simultaneously.
The implementation of the VIZARDII board is based on a reconfigurable
FPGA chip allowing a flexible implementation of different rendering archi-
tectures. Therefore the VIZARDII board could be adapted to the input of
a new real-time data-interface without the need of redesigning the rendering
pipeline.

Figure A.2: User interface showing the intervention planning and interven-
tion protocol entries (with volume rendering and blended slices).

For the user-interaction we developed a framework for an intuitive GUI
that controls features such as viewing modality, viewpoints, transfer func-
tions, material properties, cut planes, region of interest selection, reconstruc-
tion parameters, intervention planning and intervention guidance (see Fig-
ure A.1). The integration of the VIZARDII board as a rendering engine
enabled the user to choose between a standard 2D slice view or a 3D volume
rendering visualization (see Figure A.2), while using the different protocol
entries.

By incorporating new control devices, such as a voice recognition and a
remote control system, the user was provided with an extra level of interac-
tivity. This way the physician could handle the user interface while attending
the patient.

The DynCT project started in January 2000 and was successfully com-
pleted after an extension of 6 months in June 2003.
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A.1.1.2 Project Partners

This project was funded by the European Commission as a joint work be-
tween the University of Tiibingen, Sema Group (Spain), ELTA Electronic
Industries Ltd. (Israel), CEA-LETI (France), Philips Medizin Systeme (Ger-
many), Universitair Medic Ctr. Utrecht (Netherlands), Clinica Puerta de
Hierro (Spain) and Univ. Politécnica de Cartagena (Spain).

A.1.2 VIRTUE DFG Project: Visualization Platform
for Medical Datasets (Helios)

A.1.2.1 Description of the Project

The main goal pursued within the VIRTUE project is the combination of
minimally-invasive methods of surgery and techniques from virtual endoscopy
and image-guided navigation. The additional information provided by image-
guided navigation and virtual endoscopy can improve significantly the three-
dimensional spatial orientation during surgical procedures. In particular a
better representation of risk structures — like blood vessels or nerve fibers —
enables a better planning. Consequently, the risk of serious complications
of such an intervention is reduced. An integral part of the project is the
development of a software visualization tool, which will be used as a basis
for the realization of the navigated virtual endoscopy software.

This software platform, called Helios, initially stemmed from the basis
developed in the DynCT project (see Section A.1.1), and has been conceived
to fulfill a double purpose. On the one hand, as a framework, it provides
common use functionality for volume visualization (i.e. data management),
and on the other hand, a viewer has been created to illustrate the use of the
framework and to offer the user (physician) a state-of-the-art visualization
tool for examining 3D data.

As a viewer, Helios provides a complete set of display modes. The basic
mode is classical 3D orthogonal section slices (axial, coronal, sagittal) where
the user can interactively browse through the slices along the three main
axes. Complementary, several alternative modes have been included, such as
maximum intensity projection (MPI) where the maximum intensities along
each of the three main directions are projected onto a plane producing X-ray-
like images. In Figure A.3, a different example is presented, where the three
orthogonal slices are properly placed within a 3D scenario. These can also
be combined with an overlaid isosurface to enhance the three dimensional
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Figure A.3: Helios: User interface showing 3D orthogonal slices and shaded
isosurface.

effect (i.e., the ventricle system in the figure).

Based on the experience acquired during the development of a first proto-
typical version of the Helios viewer, a second version called Volv, was imple-
mented in the context of a student thesis [96]. This refactoring effort helped
to improve the modularity and flexibility of the software. This is a decisive
aspect given the double objective pursued by Helios, as a viewer but also as a
framework and software basis. Within this newer version of Helios/Volv, ad-
ditional display modes have also been added to the viewer. An example can
be seen in Figure A.4, where a sequence of slices along the selected direction
(axial, coronal or sagittal) are displayed.

Apart from new visualization modes, another important improvement in
the new software is the introduction of an enhanced DICOM manager. This
new DICOM manager allows a much more intuitive and complete interaction
with the datasets acquired by the scanner, by automatically sorting the data
according to the meta-information contained in each DICOM-header.

An example of the capabilities of Helios/Volv as a software framework
can be seen in Figure A.5. This illustrates a collaboration project with
the Department of Maxillofacial Surgery from the University of Tiibingen.
The objective in this case is to perform a volume transformation so that
the final volume is a mirrored version of the original dataset. In order to
support such type of functionality within the software framework, a general
plug-in concept has been added to the processing pipeline. This allows a
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Figure A.4: Volv: User interface showing a sequence of slices along one of
the main axis (axial, coronal, sagittal).

fast integration of new modules responsible of different transformations to
be applied to the loaded volume, thus facilitating the development of new
visualization techniques.

A.1.2.2 Project Partners

The departments of neurosurgery and maxillofacial surgery of the University
Hospital Tiibingen as well as the BrainLAB company are collaborators of the
WSI/GRIS in project VIRTUE.

The project VIRTUE is supported by the German Research Foundation
(DFG) in the focus program on “Medical Robotics and Navigation” (SPP
1124).

A.2 FIRE: Isosurface Extraction Software

This second group of projects shows practical examples of applications where
the main interest is focused on isosurface extraction and visualization. The
two cases here presented are based on variations of our own software frame-
work for isosurface extraction and visualization, called FIRE (Fast Isosurface
Rendering and Extraction).
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(a) Original dataset (b) Mirrored dataset

Figure A.5: Example of plug-in in Helios/ Volv.

A.2.1 Extraction of Dinosaur Osseous Structures
A.2.1.1 Description of the Project

The extraction of three-dimensional models from volumetric data is a highly
demanded feature that facilitates a successful visualization of these otherwise
rather complex data. Usually the region of interest that must be extracted
as a 3D model corresponds to the interface of a material within scanned
data (from CT or MRI scanners). This isosurface extraction process can be
easily carried out employing the Marching Cubes algorithm (see Chapter 3
for a detailed description). By applying the Marching Cubes algorithm, a
triangulated surface is generated which approximates the shape of a level-set
corresponding to an intensity present in the volume. Once an isosurface has
been generated, the next logical step is to export this geometrical model into a
standard format. This way the 3D model can be stored for further processing
with a professional 3D modelling tool such as 3D Studio Max or Maya. All
these features, from loading the volume, to extracting the isosurface and
exporting to a standard 3D model format, have been implemented in the
FIRE software system (see Figure A.6) with a wizard structure that guides
the user through the different necessary steps.

The goal in this project is the generation of 3D models of dinosaur bones
by extracting isosurfaces from CT-scanned data. Real dinosaur bones are
scanned by means of a CT-scanner and the resulting volumetric data is stored
as DICOM files. These files are then loaded into FIRE. There, a proper
iso-value for the isosurface extraction is interactively determined in a short
trial and error process. Once the adequate isosurface has been found and
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Figure A.6: FIRE software system.

extracted, it can be further exported into a file in a 3D model format such
as the DXF format, which is compatible with most commercial modelling
software.

An additional feature has been implemented in order to deal with those
cases where several bones have been scanned simultaneously in the same
acquisition and therefore are stored in a single volume. If a standard ap-
plication of the FIRE pipeline were employed in such case, different bone
elements would be stored as a whole in a single 3D model. For the further
utilization of the extracted bone models, separate files are required. There-
fore, the possibility of choosing a single element out of a compound scene
with several bones has been implemented. This way, the user selects an ele-
ment on the displayed surface and the selected point is used as a seed point
for a region growing algorithm that identifies the isosurface of interest. One
illustrative example of this situation can be seen in Figure A.7.
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Select Bone | Apply | Select Bone | Apply |

Close | Close |

(a) Compound scene (b) Selected bone

Figure A.7: Visualization of two toes of a plateosaurus showing the extracted
bones and the result after selecting one single phalange to be exported.

A.2.1.2 Project Partners

This project is the result of an active cooperation between the GRIS de-
partment and Prof. H.-U. Pfretzschner and Heinrich Mallison, from the
group of Wirbeltierpaldontologie (Vertebrate Paleontology) at the University
of Tibingen.

A.2.2 Generation and Visualization of Anatomical Mod-
els

A.2.2.1 Description of the Project

This project is also based on the isosurface extraction with the Marching
Cubes algorithm integrated in the FIRE software system. In this case, the
user-friendly interactive wizard structure is employed to generate 3D mod-
els from human anatomy. The procedure is similar to that of the previous
project. Here, instead of dinosaur bones, plastic models resembling the shape
of human bones are put into a CT scanner. The corresponding isosurface is
subsequently extracted with our software and exported to a file in a format
compatible with commercial 3D modelling software. These 3D models are
then further processed and integrated into an illustration for an endoscopic
anatomy atlas, which is the final objective of the project. Figure A.8 shows
two example pages of the atlas that were generated with 3D models extracted
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Figure A.8: Example pages of the Endoscopic Anatomy Atlas.
with FIRE.

A.2.2.2 Project Partners

This project is the result of joint work between the GRIS department and
the group of Endoscopic Anatomy at the University of Tiibingen.
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Shader Programs

B.1 Vertex Program

The following OpenGL Shading Language (GLSL) vertex program is em-
ployed for decoding isosurface vertices as described in Chapter 3. The pro-
gram computes the texture coordinates to be used within the fragment pro-
gram in order to access the vertex information and applies an orthographic
projection by multiplying each coordinate of a textured quad by the current
modelview matrix.

void main(void)

{
gl_TexCoord [0] = gl-MultiTexCoordO0;

gl _Position = ftransform ();

}
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B.2 Fragment Program

The following OpenGL Shading Language (GLSL) fragment program is em-
ployed for decoding isosurface vertices as described in Chapter 3. This pro-
gram reads the encoded version of the current vertex from texture memory
and applies the necessary transformations in order to compute its actual po-
sition and normal vector coordinates. These are then written to two different
off-screen buffers (gl FragData[0] and gl FragData[1]). These buffers are
then utilized as the source of a vertex array within the application to render
the decoded geometry.

uniform vec3d volSpacing;
uniform vec3d volOffset ;

uniform sampler2D tex0; // ijktTezture
uniform sampler2D texl; // edgeldTexture
uniform sampler2D tex2; // normalTexture

const float PI.VAL = 3.1415926535897932384;

void main (void)

{
vecd datal = texture2D (tex0, gl TexCoord |[0].st);
vecd voxellndx = floor (255.0 % data0.xyz + 0.5);

float edgelD = floor (255.0
* texture2D (texl
gl_TexCoord [0].st).w
+ 0.5);

// Decode the position of the wvertex
vec3d firstVoxelCoord = volOffset +
volSpacing *x voxellndx;
vec3d secondVoxelCoord = firstVoxelCoord + volSpacing;
vecd mixed = mix(firstVoxelCoord ,
secondVoxelCoord ,
datal.w);

int2 decision = step(vec2(0.5, 1.5),
vec2 (edgelD , edgelD));
gl_FragData [0] = mix(vec4 (mixed.x,
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firstVoxelCoord .yz,
edgelD) ,

mix (vecd (firstVoxelCoord .x
mixed .y,
firstVoxelCoord .z,
edgelD ),

vecd (firstVoxelCoord .xy,
mixed .z,
edgelD) ,
decision [1]),
decision [0]);

// Decode the normal vector
vecd normalPolar = floor (255.0

x texture2D (tex2

gl_TexCoord [0].

+ 0.5);
float theta = normalPolar.x % 2.0 x PILLVAL / 255.0;
float phi = normalPolar.w x PI.VAL / 255.0;
gl_FragData[1l] = vecd(—cos(theta) x sin(phi),
—sin (theta) % sin(phi),
cos(phi),
edgelD );

131
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