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Abstract

This thesis describes different aspects of occlusion a@ullilyorithms for the effi-
cient rendering of 3D scenes with rasterization hardwaceng graphs are used as
data structures for the scenes to support a wide range efelift applications. All
presented algorithms permit modifications of the graphargime and therefore the
algorithms are suitable for dynamic scenes.

The thesis consists of three parts. The first part comparexeliff techniques
to determine the visibility of a single scene graph node. t&dhniques have the
same characteristic in that they utilize the depth inforamabn the graphics hard-
ware in some way. Unfortunately, each access to the hardequoires some latency.
Therefore the second part of this thesis presents somethlgsrio reduce the num-
ber of these accesses to the graphics hardware. The algstigtke advantage of a
lower resolution representation of the scene graph nodesr@en-space on the one
hand, and they also use the informations of previous oamugueries on the other.
Because all the presented algorithms use the depth valubs otirrently rendered
scene, the order of the rendering and the occlusion testagertant. Hence the
third part of this thesis presents a novel algorithm for tledrsal of a scene graph
which efficiently utilizes hardware occlusion queries. H®iere the algorithm uses
screen-space coherence in combination with a front-té-saded traversal of the
scene graph in object-space. To determine the occlusieraltforithm bundles in-
dividual occlusion tests in multiple occlusion queries. 3éean be asynchronously
performed to reduce the latency.

All presented algorithms deliberately do not use specipktial — data structures
for the scene to avoid long preprocessing times or regiristin the use of dynamic
scenes. Also, the algorithms do not exploit temporal calmrdetween the frames,
because this results in limitations for dynamic and intevacscenes. However, the
presented algorithms admit an efficient rendering of scesteéshigh depth complex-

ity.






Zusammenfassung

Die vorliegende Arbeit behandelt verschiedene AspekteVdedeckungsrechnung
zur effizienteren Darstellung dreidimensionaler SzeneiiHitfe von Rasterisierungs-
hardware. Alle betrachteten Algorithmen verwenden einemdmmlichen Szene-
graphen als grundlegende Datenstruktur. Dadurch laseesicsi unmittelbar zahl-
reichen Anwendungen zur Véigung stellen. Alle Algorithmen erlauben es, den
Szenegraphen zur Laufzeit zu modifizieren, und lassen sioit soch auf dynami-
sche Szenen anwenden.

Die Arbeit teilt sich auf in drei Bereiche. Im ersten Absahmird auf die ver-
schiedenen Nglichkeiten eingegangen, die Verdeckung eines einzelfreastens
aus dem Szenegraphen zu ermitteln. Die vorgestellten Alfgoen implementieren
dabei verschiedene Methoden, um die auf der Graphikhaedgespeicherte Tiefen-
information auszunutzen. Allerdings kgt jeder Zugriff auf die Graphikhardware
eine kurze Zeitspanne. Der zweite Abschnitt bésttpt sich daher damit, Zugriffe
auf die Hardware zu reduzieren. Dabei wird einerseits eeneinfachte Ref@senta-
tion der Szenengraphknoten im Bildraum und anderersestdndormationen von
bereits durchgéfhrten Verdeckungstests verwendet. Da alle vorgestefigo-
rithmen in irgendeiner Form von den Tiefenwerten von bergézeichneten Teilen
der Szene aliingen, ist die Reihenfolge der Darstellung und der Verdeg&iests
von zentraler Bedeutung. Im dritten Teil der Arbeit wird dalein neuer Traver-
sierungsalgorithmusif den Szenengraphen vorgestellt, der die von der Grapfuikha
ware zur Vertigung gestellten Verdeckungstests besonders effizienttaen kann.
Dazu sucht der Algorithmus nach Katenzen im Bildraum in Kombination mit einer
sortierten Traversierung der Knoten im Objektraum. Umtéstdlich die Verdeck-
ung eines Objekts zu bestimmeryjnalelt der Algorithmus die Verdeckungstests in
Mehrfachanfragen, die es erlauben, mehrere ufadpige Verdeckungstests asyn-
chron durchzuihren.

Ganz bewusst wurde auf die Verwendung von spezielléumtichen — Daten-
strukturen @r die Szene verzichtet, um lange Vorberechnungszeiteneidschan-
kungen fir dynamische Szenen zu vermeiden. Ebenso wurde darautivietzizeit-
liche Koharenz zwischen einzelnen Bildfolgen auszunutzen, da diescRankun-
gen fr interaktive Szenen zur Folgette. Gleichwohl erlauben die vorgestellten
Algorithmen eine effiziente Darstellung beliebiger Szemaih hoher Tiefenkom-
plexitat.
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Chapter 1

Introduction

The first Chapter explains the motivation of the presentett ypwovides an overview
of the contributions and a brief outline of the structureu thesis.

e wmat T Py
pum

Figure 1.1: A complex MCAD model of a Cotton Picker. The moded B complex-
ity of over 10 million polygons in 13 270 individual parts.

1.1 Motivation

The datasets for visualization are growing faster in siza tth@ rendering speed
of modern graphics subsystems. Especially due to the inageaapabilities of 3d
scanner hardware [4], very complex data sets have becomeldgaBut also artifi-
cial/constructed data sets from MCAD (see Figure 1.1) anfphysical simulations
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1. Introduction

have become more complex due to increasing computatiomap&or example, the

rendering of a Boeing 777 would include 132,500 unique gartsover 500,000,000

polygons[21]. Acceleration algorithms will always be nesary to handle such large
amounts of data.

Several algorithms already exist to address the problersrafaring such large
data sets. Most of them reduce the number of primitives,rethge sampling tech-
nigues such as raytracing [52] or point sampling [56, 57].r8@uce the number of
primitives, level-of-detail [26] or impostor [22] technigs can be used. Another ap-
proach is occlusion culling, which is the focus of this tise€is part of this process,
occluded parts of a complex scene are detected and excluatedtfe rendering pro-
cess. In particular, the rendering of scenes with high depthplexity can benefit
from occlusion culling.

In contrast to many other occlusion culling techniqueeditrary and dynamic
scenes are also the focus of this work with regard to appltfiegtechniques de-
scribed here to a standard scene graph. A standard scerfergueh be usable in
a wide range of different applications, models, and platfar To achieve this goal,
miscellaneous capabilities of the graphics hardware shbealusable to support a
wide range of different hardware platforms. Also, preckltians or the construc-
tion of special data structures should be avoided to sugpeat-time” use. This is
important for CAD systems or other interactive systems, retiee user is able to
modify the scene in real-time.

1.2 Contribution of This Thesis

The work in this thesis focuses on occlusion culling for comnsoene graph sys-
tems, which has the previously described implications:psupfor different hard-

ware platforms, no time for preprocessing and support foregd and dynamic
scenes. The thesis is subdivided into three main parts, witoiplement to each
other:

e We present and compare different techniques for the expioit of standard
z-buffer hardware for occlusion culling [6]. This includdsetpresentation
of a new caching scheme for z-buffer accesses and a quaetigatalysis of
hardware supported occlusion queries.

e Furthermore, we also present some algorithms to reduceumbder of pre-
dictable occlusion queries to the graphics hardware [5,(8ject space co-
herence and sorted rendering is used to achieve this goatedhbetion of the

4



1.3. Structure of the Thesis

number of occlusion queries is important to decrease thdatekatency for
the hardware communication.

e The main contribution is a new traversal and sorting algorithat benefits
from multiple occlusion queries of modern graphics hardware, which ig-ava
able on a wide range of graphics hardware and part of the Open@stan-
dard [9, 10, 12]. The algorithm significantly reduces therayeoverhead of
occlusion queries. Also no preprocessing or spatial datatsires are neces-
sary, so that the algorithm can be directly used with a sceaghgsystem to
benefit from hardware occlusion queries.

1.3 Structure of the Thesis

This thesis is organized as follows; the next Chapter deseiibe background for
this thesis and gives a short introduction to scene grapthaeeeleration techniques
for rendering. A more detailed description of occlusioniogland related work to
this thesis is then given in Chapter 3. Chapter 4, 5,/and Gptake practical part
and corresponding results of this thesis. Different imm@atations of algorithms to
determine the visibility are described in Chapter 4, fokaldy extensions to prevent
occlusion queries in Chapter 5, and concluding with a spé&ei@ersal algorithm in
Chapter 6. The thesis closes in the final Chapter with a sumofaiye presented
work and an outlook on future work. An overview of the appiica and test models
used for the experiments can be found in the Appendix.
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Chapter 2

Background

This Chapter gives a short introduction to the necessarnkgazind for the work
in this thesis, which includes data structures for sceneaoization and different
acceleration methods for rendering, such as multi-resotuénd culling. The main
focus is on scene graphs, real-time rendering and visybdiilling techniques.

Figure 2.1: Structure of a 3d scene subdivided in its objects

2.1 Scene Organization

Usually a 3d graphics scene consists of a large number ogpoly/(triangles), how-
ever other primitives like points, voxels or splines arealsed. The primitives in

7



2. Background

3d space are defined by vertices, normals, texture cooedinatc. To organize and
manage this data, hierarchical data structures are use@84286]. Hierarchical data
structures are able to reduce the complexity flO(n) to sub-linear for a wide range
of algorithms, like picking or view frustum culling. The dagructures can be clas-
sified into two different types, with and without space swixion [48]. Examples
for hierarchical data structures with space subdivisienaatrees or BSP trees. In
contrast, scene graphs are data structures without gtacessubdivision.

L
< |
><

T~

Figure 2.2: 2D examples of an octree (left, the teuadtreeis used in 2D) and a
BSP tree (right).

2.1.1 Space Subdivision
Octree

An octree [36] recursively subdivides the 3d space intoteigfual sized boxes (see
left Figure 2.2). The 3d informations are sorted into theseebo The advantage of
an octree is its spatial representation, which is usefulrfolti-resolution rendering,
spatial coherent traversal and data compression [13, 2&] dfdwback of an octree
is the cost for an update in dynamic scenes and the strici\gsiloth of space.

Binary Space Partitioning

A binary space partitioning (BSP) tree [24] recursively divfles the 3d space with
planes (see right Figure 2.2), which results in a binary te@esentation of the
scene. A BSP tree is useful for sorted rendering and visilgtlculations. There
are two variantsaxis-aligned(kd-treg andpolygon-aligned The construction of an
effective BSP tree is a very time-consuming process, bedaisshard to find “good”
planes for subdivision. Thus BSP trees are usually precdkdionce and stored for
reuse.



2.1. Scene Organization

Conclusion

Both the octree and BSP tree are useful to speed up rendétowever, the draw-

back here is that updates of the hierarchy become expemgneh makes handling
of dynamic scenes difficult. Usually these data structuresalculated in a prepro-
cessing step. Also space subdivision data structures &mingd only for geometry,

other aspects like material sorting are not taken into aticou

2.1.2 Scene Graphs

| Transform| | Transform|

Geometry| | Geometry

®

| Transform| | Transform| | Transform| | Transform|

Geometry| | Geometry| | Geometry| | Geometry

Figure 2.3: Example of a simple scene graph of the left model.

Scene graphs are used to represent a 3d scene in a hieratodgcatructure
(see Figure 2/3). The tree structure has no space subdivisimontrast to octrees
or BSP trees, which makes scene graphs handy for data mamgm,lstoring and
organization (usually the scene is separated into obj&etsérews, nuts and springs,
which is very useful in many applications like MCAD assembiymodeling tools,
see Figure 2/1). The drawback is that there is no optimizdtomendering in the
data structure. However, a hierarchical structure of bounegolumes are usually
supported by most scene graphs. Also, a scene graph is rke diatabase, which
represents a scene. It is easy to add additional informé&di@nscene, for example,
identifiers or material parameters.

A scene graph consists of different typesiofles for example, group, transform
or geometry nodes. A set of 3d primitives construct a geommetde. The position in

9



2. Background

the scene of a geometry node is driven by transform and grodes) which arrange
a set of child nodes. There are different types of scene gradhéii-parent scene

graphs allow multiple parents for a node in contrast to qgrent graphs. Multi-

parent graphs allow a more flexible instantiation of thecchibdes, whereas single
parent graphs are easier to traverse and manage. Most segies gombine both

techniques and scene graphs in combination with spacewsibdi data structures
are also available [56].

Three main steps are performed to render an image of a scepte dgraversal
cullingandrendering Usually these steps are interleaved to balance the loaebat
the rendering subsystem and the host system, which perfvavesrsal and some
parts of the culling. In a simple implementation of a scermpbrenderer, a recursive,
stack-based, depth-first traversal of the graph is usedn®tnaversal, material and
transformation informations in the nodes are accumulatectalling is applied. If a
node contains geometry, it is directly sent to the graphibsgstem and rendered.

Scene graph programming libraries are widely availableave a long tradition.
Well known are Open Inventor [59], IRIS Performer [46], Cas3d [34],Jupiter[32,
or OpenS@25], but there are many others. Almost every graphics apptn
employs a scene graph in some way.

The main differences are the underlying data structureqatifor large data
sets, the software architecture, the used programmingiéageyand the flexibility of
the traversal techniques. All of these scene graphs usg@udyas main primitives
and OpenGL | [61] or Direct3d [53] for rendering, which doeg nwean that they
cannot be used for raytracing or point sampling. Most of tteme graph toolkits are
implemented in C++ with the advantage of performance anelablorientation.

This thesis focuses on the scene grajgterandOpenSGbut all of the algo-
rithms presented could also be used with other scene grapénsy.

Jupiter

Jupiter B, 32] focuses on large model rendering and provides diffezencepts for
managing large amounts of data. Jupiter is based on a sefinitiative of Hewlett
Packard (HP) and Engineering Animation Inc. (EAI) which ledlye& 1997 to
the large model toolkit Jupiter, formerly also known as ‘&itModel” [21] (the
rights to the name “DirectModel” were later acquired by Misoft). This initia-
tive was canceled later the same year, in favor of the “Fdt@®hproject by HP,
Microsoft and SGI. EAI continued working on Jupiter and whie wirtual halt of the
Fahrenheit project in 1999, Jupiter was relaunched by H &p&n Source project
(Kelvin [62]) in conjunction with the department for Graphl-Interactive Systems

10



2.1. Scene Organization

at the Wilhelm Schickard Institute for Computer Science (M@RIS) at the Univer-
sity of Tubingen.

Originally, Jupiter was developed as platform and grapapgdication program-
ming interface (API) independent toolkit, available withpport for StarBase [30],
OpenGL [61] and Direct3d [53] on Microsoft Windows and UNI¥}ssems. In the
version available from WSI/GRIS, Jupiter focuses on Opem@td UNIX systems
(Linux, Irix, HP/UX).

Group
Shape| Shape|
|Transforn1 |Transforn1
| Geometlnl | Geometlnl

Shape| Instan¢e Instadce Instanc
|Transf0rn1 |Transfomi |Transf0rn1 | Transforrh
I | Refere:l*;e I
T

| Geomet:)l | Referencj | Referenc}-|
T T T

Figure 2.4: Internal data structure of a Jupiter scene graph

The scene graph of Jupiter is calledical graphand is an acyclic directed graph.

It consists of a variety of different nodes, which divide gaatition of the model into
objects and groups of objects (see Figure 2.4). Each nodea#aic a transfor-
mation matrix to specify a 3d location. The Jupiter scene lyiaga single parent
graph, but special instance nodes allow the same instaregebdmetry node to be
used multiple times in the graph to save memory. Geometrgsiade calledhape
nodes in Jupiter and contain different types of represemssuch as triangle strips,
polygon sets or polyline sets. To manage large modielg|-of-detailnodes handle
subgraphs of different resolutions of geometry. A spquaatition node is also avail-
able, which specifies out-of-core subtrees. These subtagdsacswapped from or to
the disk if necessary.

Jupiter has a very flexible concept for the traversal of temegraph. A special
class, callecstrategy is used to manage the budget-based traversal. Each strategy
consists of a set of pipelinejentswvhich evaluate the importance of the scene graph
nodes and manipulate the traversal accordingly. The impoetaan be based on the

11



2. Background

visibility of a node, on its visual contribution, or on spiciproperties of a node.
The agents process each node in a pipelined fashion. The drtles pipeline is

important and depends on the performance of an agent. Foreathe view frus-

tum culling agent is used in front of the rendering agentitduprovides agents for
several purposes, like memory management, picking, rergjemulling.

A strategy can be used for different tasks, like renderingicking. The order
during traversal is determined by a priority for each node.is Hilows different
schemes for traversal, for example, object-space frobltk, material sorted or
image-space sorted. A more detailed description of Jugétere found in [3, 9, 32,
62].

OpenSG

While Jupiter has a longer tradition and started as a comatgnmoduct, OpenSG
started in 1999 as Open Source project in Darmstadt, Gerratiaythe cancellation
of Fahrenheit [25]. In conjunction with the OpenSG projebe OpenSG PLUS
project started 2001 with support by the bn%+0penSG PLUS adds support for
large scenes, high level primitives and high level shad2@] fo OpenSG, which
provides core functionality.

The focus of OpenSG is on a rendering system for virtual ie@IR) applica-
tions. There are a wide range of VR applications. Often speaiaware configu-
rations are used to give better impressions in the virtuairenment. This means
that high-performance graphics hardware is needed. Torolstaximum rendering
performance and quality, a cluster can be used for rendegsecially if multiple
projectors for stereo, CAVEs or high resolution displaystarbe operated. Each
projector is driven by its own computer and the computergammected to a cluster.
OpenSG can manage and distribute the rendering over suaktarclTo achieve this
goal, OpenSG uses a more complex scene graph model withti@flend thread-
safe data structures.

Reflection means that each instance can provide informatiaut its internal
data structures during run-time of the application. Threaf® means that asyn-
chronous modifications of the scene graph data are trackgdyarchronized in a
cluster or multi-threaded environment.

In contrast to Jupiter and many other scene graphs, the gmnaglgeometric,
material, transformation, etc. information is separate@penSG. Each scene graph
node is the same node type and has a pointer to its parenhilidsen and itscore
The core contains the actual data, like transform matrices, mdteriarmations or

LFederal Ministry of Education and Research, Germany
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2.1. Scene Organization

Node

Group

Node
Transf Transf

Node

Node Node
CorePtr G roup
Geo Geo

Node Node

Transf CorePtr Transf CorePt Transf Transf

Node Node Node Node
Geo

ft

Figure 2.5: Internal data structure of an OpenSG scene graph

geometric data (see Figure 2.5). The OpenSG scene grapb @raescyclic directed
graph with single parent nodes. Buicare can be referenced by multiple nodes,
which results in instantiation to save memory consumpfidre background for this
design decision is that the scene graph itself is very smalbntrast to the geometric
data. So the whole scene graph can be distributed and veity epdated over a
cluster. On the other hand, the amount of geometric data@eonte very big and it
is not necessary to distribute and update all data on evesyesinode. At a first view,
the OpenSG scene graph looks much more complex than thedapibther scene
graphs, but the internal data like matrices, geometry, naddéeetc. are also stored as
references in other scene graphs. OpenSG abstracts tiotusér to the application
programmer to benefit for a better synchronization in cluated multi-threading
environments.

OpenSG focuses on OpenGL as rendering backend and polyganaia prim-
itives. But other primitives like points or NURBS [37] aresal supported, even
volume rendering is possible [58]. Shader programmingsis alipported and can be
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2. Background

done by Cg [23] or GLSL [47]. Different operating systems likeux, Windows or
Irix can be used as platform for OpenSG. A more detailed desmn of OpenSG can
be found in[45, 55].

2.1.3 Bounding Volumes

Figure 2.6: Bounding volume hierarchy for the Formula One(@dt: none, middle:
bounding boxes, right: k-dops).

A bounding volumé35, 24] wraps a set of 3d primitives. Bounding volumes are
very important to speed up a wide range of computations irpeen graphics. Espe-
cially in collision detection and raytracing, but also isiility and multi-resolution
algorithms, bounding volumes are used to get a fast infoamatbout the spatial
organization of an object. Often bounding volumes are gedujpgether to form
a bounding volume hierarchy. Different types of boundinguwees are used, like
spheres, boxes or k-dops (see Figure 2.6). Also they carsbiagliished between a
representation in local or global coordinates and axisecallaligned.

Usually every scene graph provides a bounding volume likyaitOpenSG and
Jupiter provide bounding spheres and bounding boxes inmaadd. One specialty
is the used coordinate system for the vertices. Only axigrxadl bounding volumes
in local and global coordinates are provided, because theye calculated i@(n).
In global coordinates each vertex of the underlying has tordresformed to global
coordinate space. Local-oriented bounding volumes are marle complicated to
compute, so that an update of a bounding volume comes moensixp.

In the latter, k-dops become more popular in computer gcdior a wide range
of applications. They combine a fast calculation with a gt#pproximation of the
underlying object and it is not complicated to build a k-degréarchy. K-dops also
becoming more popular in occlusion culling approaches|[162

14
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Figure 2.7: Block diagram of the OpenGL rendering pipeline.
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2.2 Rendering

There are a wide range of rendering techniques [24, 35, 36pnmpater graphics.
Most popular are raytracing and polygon rasterizationukfe rendering, point ren-
dering and image based rendering are other well known tqaksi While raytracing
is usually used for high quality rendering, polygon ragiation is well supported by
special graphics hardware for real-time rendering.

2.2.1 Rasterization Pipeline

Usually this simplified (OpenGL) pipeline is used for polygasterization:

Classical Graphics Pipeline Programmable Graphics Hardware
Triangle setup Setup

Vertex transform Vertex Shader

Lightning Rasterization

Rasterization Fragment Shader

Frame and z-buffer updates Frame and z-buffer updates

The work of this thesis based on such a pipeline and reducel®dldeduring
rendering. Figure 2.7 shows a more detailed block diagratheo©penGL pipeline.
There are different types of bottlenecks in the pipeline:

1. Memory bandwidth host> graphics board: transfer of the vertex data (includ-
ing colors, texture, vertex coordinates, etc.).

2. Transformation and vertex shader performance.
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2. Background

3. Rasterization and fragment shader performance.
4. Memory bandwidth graphics chip frame, texture and z-buffer.

5. State changes: changing configurations of the rendekadlending, light-
ning or different shader programs can cause graphics pgdlushes and
stalls. In addition to the latency caused by the graphicsgvmare, this also
includes latencies from the operating system (interruptdhag, etc.) and
graphics driver.

A lot of different acceleration techniques (in hard- andwafe) exist to reduce
these bottlenecks. Most of them can be classified in two gadhal types: culling
and multi-resolution techniques.

2.2.2 Multi-Resolution

Multi-resolution or Level-of-Detail (LOD) algorithms try tceduce the number of
used polygons and textures for rendering without loosinggenquality by using

simpler representations of an object if its contributiortie image is small. For
example, consider a very detailed Cotton Picker model shiowfigure| 2.8 that

consists of 11,000,000 polygons in full resolution. The faolution can be used, if
the viewer is close to the model. But if the viewer is far awag ¢he model covers
only 20x 20 pixels on the screen, 11,000,000 polygons are obviowglpecessary
to render a nice image (see Figure 2.8). Multi-resolutiahméques are very useful
in scenes with a lot of small, visible details, for examptegest in a forest or people
in a stadium.

Figure 2.8: Two different resolutions of the same Cottork&ienodel, left: full res-
olution with over 11 million polygons right: lower resolati with almost 3 million
polygons.
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2.2. Rendering

Multi-resolution algorithms can be split into three maj@rts: generation se-
lectionandswitching Generation is the part, which calculates different désals
of an object. This can be done in a preprocessing step or dirmgme. Selection
decides, which detail level is used during rendering. Qftee estimated area in
screen-space is used as criteria for selection, but otlterias like the distance to
the viewer or a time-budget for rendering can be used. Kinlé change between
different detail levels is termed switching. A switch beemawo detail levels is often
noticeable, so different techniques try to reduce thisceffe

Multi-resolution techniques are not the focus of this teeaimore detailed de-
scription can be found in [26]. However, some visibility ieaques can be used to
give a hint in detail level selection. It is possible, to aicguhe amount of visible
pixels in relation to occluded pixels, which is useful fotestion of an adequate
object resolution. Multi-resolution techniques reducelttad of the vertex transfor-
m/shader unit of the graphics hardware and the transferrtdwdata to the graphics
hardware. Also if multi-resolution is applied to texturésss texture memory and
bandwidth is needed.

2.2.3 Visibility Culling

Visibility Culling tries to find parts of the scene, which aret (or almost not) visible
from a given viewpoint. Culling techniques are very usefitdcenes with high depth
complexity or vast environments, like city or architectuzavironments. Another
application are MCAD models with very detailed interiokdimachines or cars.

Culling saves rasterization bandwidth, transformatidowations and texture or
geometry transfers to the graphics hardware. Also statagdsaand shader cal-
culations can be reduced. To maximize speedups during negdeisually multi-
resolution and culling techniques are combined.

View Frustum Culling

With view frustum culling, parts of the scene outside thewfeustum are removed
from the rendering process. Usually only bounding volumiesiaed to calculate the
visibility. A bounding volume can be in three different gsitinside outside and
intersectionwith the view frustum. Objects whose bounding volumes anside
the view frustum, are not rendered, bounding volumes witkrgection are further
processed in a hierarchical data structure or rendereldeyf ¢contain geometry (see
left Figure 2.9). If a bounding volume hierarchy is used, téren hierarchical view
frustum culling is used.
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Figure 2.9: Left: view frustum culling, right: backface aoli. The red parts are not
rendered.

View frustum culling is commonly used and easy to implemtrgre are only a
few minor difficulties. It is usually calculated on the ho®\C during traversal of the
scene data structure and thus, view frustum culling redtieefoad of the graphics
hardware.

Backface Culling

Opague models of real-world objects are usually modeled aiback and a front
side (see right Figure 2.9), but only the primitives whick &cing to the viewer
can be seen from a given viewpoint. Backface culling rem@résitives, whose
normals are pointing away from the viewer (backfaces) and #re not visible (see
Figure 2.9, on the right). This can be calculated by creatinga@ord from an
arbitrary point (for example, one vertex) on the polygonte viewer:d = vg —
Pviewer Then compute the dot product of this vector with the normahefpolygon:
r =d-n. It follows that ifr < 0 then<(n,d) > 11/2, the polygon is not facing to the
viewer. Another way is to use the nornmgJ of the projectedpolygon; ifz,, < 0 the
polygon is not facing to the viewer, assuming that the negatiaxis is pointing into
the scene.

Hardware solutions (supported by OpenGL backface cullarg)using the ori-
entation of the vertices of a polygon to estimate the pregciormal of a primitive.
This reduces the memory bandwidth on the graphics board sasterization of
backfacing polygons is not necessary, but the polygongamsfered to the graphics
hardware and transformed. Also additional computationteforientation may be
necessary.

To save also bandwidth between the graphics board and theébhokface culling
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2.2. Rendering

can be done in software. But it is too expensive to test eanhalwf each primitive,
hence clustering techniques can be usednofmal cone[51] is usually used, to
cluster a set of primitives, whose normals are inside theecdrne cone is defined
by a normaln and a half-angle. The set of primitives is backfacing if the cone is
backfacing.

Contribution and Occlusion Culling

Contribution (or Detail) Culling is making a trade-off bedan the contribution of an
object to the resulting image and the image quality. If thetcbution of an object
to the resulting image is too small (see Figure 2.10), thecib$ not rendered. This
is not conservative and results in (small) image errorsidsmmetimes acceptable if
the rendering speed is the important factor. Contributiohiy can be implemented
by using the projected screen-space size of a bounding wéasxegree of contribu-
tion. Often a major problem of contribution culling are nle¢timage errors, but the
flickering of appearing or disappearing geometry, whichinslar to the switching
of different level-of-details (cp. to Section 2.2.2).

Occlusion Culling is done, if an object has contribution to the resulting image.
This is the case, if an object is completely occluded by otleamgetry. This is a
much more complex problem and thus a more detailed desmipthout occlusion
culling is given in the next Chapter.

< 'EEE:{;;;::: ----------------

Viewpoint SR

Figure 2.10: Contribution or detail culling, the red pants aot rendered.
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Chapter 3

Occlusion Culling

Whereas the previous Chapter gives a more general introatutd the backgrounds
of this thesis, the following Chapter focuses on occlusigdhng in more detail. A
classification of the different occlusion culling algontis is given and related work
to this thesis is presented.

Figure 3.1: Visible (left) and occluded (right) objects cd@ene.

3.1 Introduction

Occlusion culling tries to find occluded geometry for a giveawport which is anal-
ogous to the visibility of an object. Occlusion culling is afumore complex than
the other visibility techniques, view frustum, backface aontribution culling. In

contrast to the other culling techniques, occlusion cglimaglobal problem, due
to the interaction of polygons of different objects, wheréackface, view frustum
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3. Occlusion Culling

or contribution culling can be calculated on a “per-objda#isis, which is docal
problem.

Occluder

Viewpo

‘I Shadow Frusturr

~

<

Occludee

Figure 3.2: Occlusion culling. The red parts are not rendered

Two major terms are commonly used in occlusion culling atbars: occluder
andoccludee Occludersare objects in the front of the scene, which occlude other
objects.Occludeesre objects behind occluders and not visible for a given pent
(see Figure 3.2)Occludeesare in theshadow frustunof an occluder. If multiple
occluder build a single shadow frustum is it caltctluder fusion

A conservativeocclusion culling algorithm avoids only rendering of coetely
occluded objects. In contrast, aggressivalgorithm removes also possibly visible
objects from rendering (cp. to Section 2.2.3).

Usually without occlusion culling, the hardware renderlvaickend calculates
the visibility in a discrete way for each primitive with a zffer approach [17, 54].
Each primitive has to be scan converted to get the visibilitiysopixels. Due to the
linear complexity of the z-buffer, an efficient occlusionlicg algorithm has to be
sub-linear to gain a speedup. Especially scenes with higthdepnplexity are in
the focus of occlusion culling (see Figure 3.3). In such eseamlot of work of the
z-buffer is wasted on occluded pixels from primitives thatl to be transformed and
scan converted.

Two different major approaches are used during renderitegtig with a view-
point v, an algorithm computes a set of visible objeCXs These objects are then
rendered with the graphics hardware:

/Il Listing 3.1
Viewport v;

VisibleObjects Ov;
Ov = getVisibleObjects (v);
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3.1. Introduction

Figure 3.3: Depth complexity (averaged 13.4 z-buffer tgss pixel in 432 540
visible pixels).

for each object Ov[i] in Ov{
Render (Ov[i]);

}

This approach is often used, if the visibility is precalcathin a preprocessing
step or information of a previously rendered frame can bd.usaother approach is
to calculate the occlusion during rendering:

/l Listing 3.2

Viewport v;
Objects O;

for each object Ov[i] in Of
if (isOccluded (v, O[i])X
Skip (O[i]);
lelse{
Render (0O[i]);
}
}

The functionisOccluded()  is often calledocclusion testvisibility testor oc-
clusion query Due to the complexity of visibility calculations, the tesiject itself
is often not used to calculate its visibility in the occlusiest, but its bounding vol-
ume. In [1, 2] different types of bounding volumes are coredan the context of
occlusion culling.

If a hierarchical data structure like a scene graph or odtresed hierarchical
occlusion cullingcan be applied. Each node of the graph can be used as entity for
an occlusion query similar to hierarchical view frustumlicig. The hierarchical
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3. Occlusion Culling

data structure can be subdivided into a visible and an oedlpart. A subtree of an
occluded entity is not further processed or traversed.

3.2 Classification

Occlusion Culling has a very long tradition in computer driap, Cohen-Or et al. [19]
give an overview and a classification of the occlusion cglliechniques. They can
be classified in point- vs. region-based, image- vs. olpeetision and cell-and-
portal vs. generic scenes. Additional criteria [19] to idigtiish between algorithms
are conservative vs. approximate, all vs. subset of occid®nvex vs. generic
occluders, individual vs. fused occluders, 2D vs. 3d, spé@rdware requirements,
need for precomputation and treatment of dynamic scenes.

Point- vs. Region-Based

Point-based algorithms are calculating the occlusion feogiven, single viewpoint
and view frustum. In contrast, region-based algorithmsudating visibility infor-
mation for a whole region (see Figure 3.4). The viewpoint carplaced on any
place in this region. Region-based occlusion culling isencvmplicated, because
the shadow frustum of an occluder is no longer infinite, wimakes occluder fusion
much more difficult. However, the result of a region-basegbathm can be used
over multiple frames until the viewpoint is leaving the 1@yi

<

Viewpoint

Figure 3.4: Point- vs. region-based occlusion culling.

Also point and region-based visibility can be compared witint and area light
sources, where an occluded object is in the umbra (shad®tufn) region.
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3.2. Classification

Object Space Precision

If an occlusion culling technique works in object space siea, each calculation is
performed on the original 3d coordinates of the objects aharns a set of visible
or occluded polygons. This is an expensive calculation arsdahaomplexity of

Q(n?) for agiven viewpointo get theexact visibility se{fEVS). The EVS defines all
primitives that are partially or fully visible.

The aspect graphs a data structure, which allows to reconstruct the EVS for
every viewpoint inO(1). Creating such a data structure is theoretically possible,
but has a complexity ad(n®) [19]. For practical use, algorithms usually try to find
a Potential Visible Se(PVS), which is a subset of the EVS and over-estimates the
number of polygons, which are visible for a given viewpoifihe result of a PVS is
usually rendered with a z-buffer algorithm to get a correwge [40].

Image Space Precision

Image-space precision visibilineturns a discrete information of visible pixels (in
place of polygons, which explains the lower complexity) ogiven scene, camera
andresolutionof the viewport. Image-space algorithms are using the ptegevalues
of the original 3d coordinates.

The main advantage of image-space precision is the lineaplesity with the
z-buffer algorithm [29] and its hardware implementatiorimAst every modern 3d
graphics hardware uses the z-buffer to calculate the \itgilof the primitives. A
drawback of the z-buffer algorithm is the need to scan cdnzach primitive in
full z-buffer resolution. In scenes with high depth comjtgxa lot of pixels are
rasterized and z-compared without a contribution to theltieg image. Also there
is no feedback to the application thus every primitive haveoprocessed. This
problem is addressed by modern graphics hardware, whiclemgnts a feedback
to the application with th@ardware occlusion queries
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3. Occlusion Culling

3.3 Hardware Occlusion Queries

To speed up image-space occlusion queries, it is usefuktthesgraphics hardware
in some way. Greene et al. [27] suggestddedbackor rendering of objects to get
a faster occlusion information. Bartz et al. [14] proposedetailed hardware im-
plementation of occlusion queries. The first commonly a raphics hardware
with OpenGL extensions for occlusion queries was the VISUALKx [49] from
1998 produced by Hewlett-Packard. A specification of the @genGL extension
HP Occlusion Flagcan be found in [31].

The fundamental idea is, to render a bounding volume thraugytaphics hard-
ware with disabled frame and z-buffer writes. If a pixel ¢rgys a z-buffer write
during rasterization, a flag is set to true (see Figure 3.H&erAendering of the vol-
ume, the application can get the flag by tHE Occlusion Flagextension. If the
result is true (at least one pixel of the bounding volume waibhe), the content of
the bounding volume has to be rendered or processed furthére hardware oc-
clusion query for an occluded bounding volume is cheapar tha rendering of the
corresponding geometry, an application can be speeded up.

Vertex
. . Program
Occlusion Information =
) {
Fragment
z—Buffer
Vertex Data Vertex Program
}{ Evaluator]—p Shader

Lists Shader
l t | Frame
| : Buffer
Pixel
Pixel Data Operation—) Memory

Figure 3.5: Block diagram of the OpenGL occlusion query esiten.

! L]
Display [Rasterizer]_}[ Fragment]—V Counter

TheHP Occlusion Flagorovides an easy way to get the occlusion information of
a single geometry. The drawback here is that each request f@this synchronous.
A new request can only be started after the finish of the pusvame. This prob-
lem is addressed by théP Visibility Extension33] and by the more well known
NVidia Occlusion Query44]. Both extensions supponultiple occlusion queries

IMaybe this was firstly implemented on a Kubota Pacific TitaO®B®ith Denali GB graphics
hardware [217] and should also be possible on a 3dfx voodoaaduhrd from 1996, which supports

pixel counting.
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3.3. Hardware Occlusion Queries

at the same time (see Figure 3.6). Additionally, the NVidigeasion returns the
amount of visible pixels of each tested geometry insteaddfrgple flag. This can
be used for level-of-detail selection or contribution mgl

waiting waiting
NN Ny

Application
@ Rendering
@ Occlusion Query

Multiple Occlusion Query

Figure 3.6: Pipeline of rendering with (a) synchronous lgirggeries and (b) asyn-
chronous multiple queries.

The vendor specific OpenGL extensions were added to the Op2ritandard
in 2004 [50]. Also a wide range of graphics hardware with supfor the extensions
are available, for example, NVidia GeForce3/4Ti or newgre@GL 2.0 or DirectX
9.0 capable systems like the ATI Radeon 9700 or the NVidia GeFBX have to
support the occlusion extensions to be fully compliant il standards.

Discussion

The advantage of the occlusion queries using the currenesadli the z-buffer is
a drawback at the same time, because the result of an oatlge&ry depends on
up-to-date values in the z-buffer. The rendering system dasrider an occluder
A before the occlusion quei@g for the occluded is performed. IfA is rendered
after Qs, the occlusion query will return visible as result #rwhich is wrong and
would be rendered. Therefore the rendering sequence is iamidor the results of
the occlusion queries. As expected, experiments [5] shdhetda (partially) front-
to-back sorted rendering gives good results.
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3. Occlusion Culling

3.4 Related Work

A lot of occlusion culling algorithms are available. Sometloé occlusion culling
techniques need extensive preprocessing [43, 40] or $meeines [41, 60]. These
are not in the scope of this thesis. In the taxonomy of Coheat@l. [18] this thesis
focuses on conservative, from-point image-space appesaftin generic scenes and
generic occluders. The following algorithms are also imbagsed algorithms for
real-time rendering. Further information on the variousloesion culling techniques
can be found in [18, 19].

2
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Figure 3.7: Hierarchical z-buffer.

One of the well known image-space algorithm for real-timedexing is theHi-
erarchical z-Buffeproposed 1993 by Greene et al. [27]. Many of the conceptseof th
algorithm had a significant influence on real-time occlusiolting research. The al-
gorithm uses hierarchical data structures for the framdsgfier and the scene. The
scene is organized in an octree and the depth buffezipyramid(see Figure 3.7).
The finest level (highest resolution) of the z-pyramid is egl@nt to the standard
z-buffer. At the other levels, each z-value is the farthastthe corresponding 2 2
environment of the next finer level. Whenever a z-value isrwrigten in the z-
buffer, it is propagated through the coarser levels of tipgramid. The hierarchical
representation of the z-buffer (see Figure 3.7) reducesuingber of z-tests during
rasterization of a bounding box, which is used to performabeusion query for a
node in the scene’s octree. The hierarchy is maintained twadé but Greene et al.
suggested a hardware implementation for real-time rengefio apply hierarchical
occlusion culling, the scene’s octree is traversed in alduant-to-back order. The
bounding box of an octree node is tested against the valube xpyramid to get its
visibility. During z-rasterization of the box, the valuedested top-down against
the z-pyramid. Only if the z-value would be visible in the m®ponding z-pyramid
level, the z-pyramid is traversed to the next level. If a ksgavould also be visible in
the finest level, the corresponding bounding box is visibla. visible octree boxes,
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3.4. Related Work

the testing continues recursively down in the octree. Ifs#ble octree node contains
geometry, the geometry is rendered into the z-pyramid tatgthe z-values and
to use the geometry as occluders for subsequent occluseegqu The main draw-
back of the Hierarchical z-Buffer is that an update to thenfe&s z-values results in
an expensive update of the hierarchy, hence the HieratchiBaffer is only useful
for scenes with very high depth complexity. In such scenesitimber of hierarchy
updates are low in relation to the number of occlusion gseri€he algorithm in
Section 4.2 works similar to the Hierarchical z-Buffer boed not use a z-pyramid
to avoid expensive hierarchy updates, because the timenfoc@usion query with
a visible result should be as low as possible to reduce tkadgtfor the necessary
subsequent rendering of the corresponding object. On ttex band, the time for an
occlusion query for an occluded object has only to be lowan tine rendering time
for the corresponding object to gain a speedup (obviousi &tency has to be low
as possible to gain the best speedup).

& & & ¥

Figure 3.8: Hierarchical Occlusion Maps generated by tkieite unit of the graphics
hardware.

Another well known image-space algorithm aférarchical Occlusion Maps
proposed 1997 by Zhang et al. [63]. They are using the graphicsJare to generate
different levels ofocclusion mapgsee Figure 3.8). In contrast to the Hierarchical z-
Buffer, Zhang et al. are using an overlap test in the xy-planeombination with
a subsequent depth test to get the visibility for an objectse®O of preselected
occluders is used to generate the content of the first-les@usion map. Then the
texture unit of the graphics hardware is used to calculagehigher levels of the
occlusion map hierarchy. A value in an occlusion map sawesvkrage value of the
underlying 2x 2 pixels. In the highest resolution the occlusion map costaither
white or black pixels describing the occupied regions offheselected occluders.
The greyscale of the values in the inner levels of the ocalusiaps describe the
“opacity” of the pixels. A high opacity value for a pixel inatevel means that most
of the pixels are occluded in the overlap test. Due to theimgsdepth information
of the occlusion maps, a second data structured#dpth estimation buffes used,
which stores farest depth values of the occludns a lower resolution z-buffer (see
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Depth Estimation Buffer

<

Viewpoint

Viewplane Zma
Figure 3.9: lllustration of the depth estimation buffer; Preselected occluders, B:
Occluded objects behind the values of the depth estimatiierhC: Visible objects
in front of the depth values.

Figure 3.9). Before an object (usually a bounding volumegssed with the depth
estimation buffer, a two-dimensional, hierarchical xyedap-test is performed with
the occlusion map (similar to the test with the hierarchiz@yramid, but without
z-values). Only if a bounding volume is occluded in the osidno maps, a second
test with the depth estimation buffer is performed. A mairt p&athe algorithm is
the selection of “good” occluders for generation of the asmn maps and the depth
estimation buffer. The algorithm benefits from the genematbthe hierarchy by
hardware and from a faster test against the occlusion majpsy¥alues are needed in
this part), but has the drawback that the occlusion effigielepends on the quality
of the preselected occluders. Also the lower resolutiohéxdepth estimation buffer
reduces the occlusion efficiency. The main difficulty of thgoaithm is the selection
of the occluder set, especially if preprocessing time shde avoided to support
dynamic and modifiable scenes. This prevents the implementst a commonly
usable scene graph system.

Bartz et al. proposed a technique calMidual Occlusion Bufferg15], which
uses the OpenGL graphics pipeline to get image-spacelitisibformation. A more
detailed description can be found in Section 4.3.

Obviously, one of the fastest ways to utilize an occlusioerguor geometry
culling for general scenes is by special hardware suppeé &ection 3.3 and 4.4).
But the use of this support is not for free, due to needed stetages and rasteriza-
tion bandwidth on the graphics hardware. So there is a newdialesearch [19] to
find ways for an efficient use of hardware occlusion queryresitens, which is also
the main part of this thesis.
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Klosowski and Silva [38] have developed an algorithm, chfieoritized-layered
projection algorithm(PLP), which focuses on constant frame-rates using occlusio
culling. However, their algorithm is not conservative, acsfices image quality in
order to keep the constant frame-rate. Later, they have @atktineir algorithm with
hardware occlusion queries to a conservative approach [38 algorithm has no
restrictions for occluders and has occluder fusion, butsgiene for preprocessing.
In the preprocessing step the whole scene is partitionedcorivex cells. The col-
lection of the cells is generated in a way that each cell hasigity uniform density
of the primitives. This scheme results in larger cells in ynpated areas and smaller
cells in densely occupied regions. The original impleméotaised a Delauney tri-
angulation, which was replaced by a more efficient octredampntation in newer
versions. After the subdivision of the scene, a “soliditglue is generated for each
cell, which represents the intrinsic occlusion. Duringdering the traversal algo-
rithm uses the solidity value in combination with the viewg@nd view direction to
generate a prioritized list of cells which would be likelyNile and therefore should
be rendered. The original PLP algorithm is not conservatieeabse the render-
ing stops after a given budget. But the result is a good apmiaion of the image
and therefore PLP can be used as occluder selection algoritarbe conservative
a subsequent test with hardware occlusion queries can loetaged the remain-
ing, visible cells [39]. The main drawback of the algorithnttie preprocessing step
which reduces the algorithm to static scenes.

Figure 3.10: Working set (blue) which is used for an multipbelusion query (left)
and how the working set is changed between the frames (ig8k) The nodes of
the kd-tree are classified into visible (green) and occlyded).

Bittner et al. [16] presented an algorithm, which uses paldirlytemporal (frame-
to-frame) coherenc® select bounding volumes for hardware occlusion queftiks.
scene is organized in a kd-tree, they call the used workinggs®ination nodesFor
each frame, a multiple occlusion query is performed foreftesmination nodes (see
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3. Occlusion Culling

Figure/ 3.10). If the visibility of a node changes, the setefitination nodes is
adjusted — either with a “pull down” (subdivide bounding wale) or a “pull up”
(merge bounding volumes) operation. The kd-tree is tradersa front-to-back or-
der and visible nodes (of previous frames) are rendered aratedy during traversal.
Also the occlusion query of a termination node is immedjas¢hrted. The result of
an occlusion query is requested later in the traversal. Hsslts in an interleaved
rendering and culling scheme, which reduces the latenchefhardware for the
occlusion queries. The algorithm is very useful for statierss and slow camera
movements. On the other hand, dynamic scenes and fast chahtes viewpoint
are problematic, because the termination nodes will chaegge often, which re-
duces the occlusion efficiency. But this is the case for gibathms, which try to
exploit temporal coherence.

4 4 44
Vinrr iz

¢ e
2 -

Figure 3.11: Differences between a kd-tree (left) and aeagaph (right). The
bounding volumes of a kd-tree are obviously more spatiatlyretated than the
bounding volumes of a scene graph.

The authors claim that the algorithm will work on arbitrareifarchical data
structures for scenes. This is true for spatial structukesdctrees and BSP-trees,
but not for scene graphs, where the bounding volumes of imp@es are not strongly
spatial correlated (see Figure 3.11). There is much lessaspaherence in a scene
graph which will result in a lot of visible occlusion querystdts after a “pull-up”
operation, which significantly reduces the occlusion qufigiency.
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Chapter 4

Occlusion Query Implementations

The main focus in this thesis is on real-time occlusion ogllior arbitrary scenes
in a scene graph environment without precomputing. Also afdatifferent types
of graphics hardware should be usable, even though morewss with special
support for visibility determination becomes available.

In this Chapter, different approaches to determine thebiliy of a scene graph

object are compared.

Traversal and Sorting

Extensions

Occlusion Query

Figure 4.1: Overview of the software architecture. This Gaagdescribes different
implementations of the central occlusion query.

4.1 Introduction

The base algorithms [6, 11] provide some generic, imageesplyorithms to get
from-point visibility information of a given object. All ahem are using the OpenGL
graphics pipeline in some way to get the information. The ilgms implement the
isOccluded()  function of Listing 3.2.

The main idea of the following approaches is to exploit thealct-buffer values
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4. Occlusion Query Implementations

of the OpenGL graphics system. The occlusion test is inzgali(for example, dis-
abling z-buffer writes), then occlusion queries can begrened (each request gets an
index) and after all queries the results can be requestédhigtcorresponding index.
There is no restriction in the geometry for the occlusion, testvever, the presented
implementation uses the bounding boxes provided by theesgeaph for the tests.
No precomputing to get a special hierarchy or special datatsire is needed, thus
arbitrary and dynamic scenes are also supported. Only da-dpte bounding box
hierarchy for each frame is needed.

4.2 Using the OpenGL Depth Buffer

Obviously the OpenGL z-buffer itself can be used to get téility information of

a bounding volume or object, since it always holds the ugéte and correct depth-
value for every pixel during rendering. To test occlusitie depth-values of the test
geometry are computed with a software rasterizer and cadpaith the values of
the OpenGL z-buffer. The needgliReadPixels() to read the OpenGL z-buffer is
quite expensive, hence the algorithm is using a cachingnsehwith a lazy update
of fragments of the z-buffer. Each fragment has the same fsizeXample, 32< 32
Pixels), which is a multiple of the data-bus width of the dnap hardware and starts
at a memory aligned position to avoid shifting of data. Aldments together create
a full resolution z-buffer in software; no hierarchy or lawesolution is used to avoid
additional calculations.

z—Buffer .
Fragments Host i Graphics Subsysten

z—Buffer

<
<

Bounding Volume Software [ per Pixel]__Pixel visible Update
Rasterize z-Compar] Flags
| Pixel occludeJ

Bounding Volume visible

Figure 4.2: Block diagram of the OpenGL z-Buffer read caglsoheme.

Two flags for each fragment are used to support a lazy updatavalid and
an unusedlag. At the beginning of every frame, all thewusedlags are true, be-
cause there is no rendered geometry, which could affect-ttadues. A tested pixel
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4.3. Using the OpenGL Stencil Buffer

against unused fragments leads always to a visible pixbbwrtitreading the OpenGL
z-buffer. If a pixel is visible in the software rasterizeévetinvalid bits of the corre-
sponding fragment is enabled, because the actual geonielry corresponding test
geometry will be rendered with OpenGL and the content of thaffer may change.
For a pixel inside a fragment with a truevalid flag, the z-buffer is read to update
the fragment and thavalid flag is disabled.

Unused fragments

Invalid fragments

Multiple accesses

Figure 4.3: Image of the assembled z-buffer fragments aftercclusion queries;
not every fragment is needed to reconstruct the visibilfty ®wounding box. The
brightness of a fragment describes, how often the correpgriragment was read
from the OpenGL z-buffer.

4.3 Using the OpenGL Stencil Buffer

Bartz et al. [15] described a technique that the OpenGL #8teuffer can be used to
compute visibility informations. The approach works asda#; during rasterization
writing to the frame- and z-buffer is disabled. For each patéhe bounding volume
the z-buffer test is applied. If the pixel would be visiblejadue is written to the sten-
cil buffer (see Figure 4/4) by usirgiStencilOp() . After rasterizing the bounding
volume, the stencil buffer is read and sampled by the appicaOccluded bounding
volumes will not contribute to the z-buffer, hence will n@use a respective entry
in the stencil buffer. On the other hand, partly visible bdg volumes modify the
stencil-values of the corresponding, visible pixels.
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4. Occlusion Query Implementations

[ 0
0
0
1 visible
1 pixels
< 0
Viewpoint 0
0
0
| 0
' z
Viewplane Zmex Stencil-buffer

Figure 4.4: Occlusion test with the stencil buffer.

The actual implementation reads the whole region of the eavepne by the
bounding volume. This could be optimized with a lazy upddte the fragments in
Section 4.2 or with the interleaving scanning scheme fromiZBzt al. [15]. Multiple
gueries are possible, if the stencil buffer supports maae thne bit. The amount of
visible pixels can be also counted, but usually the testopmtd after the first or a
necessary amount of visible pixels are found. For more dgtease refer to [15].

Vertex

Program
‘ Fragment
Vertex Data Vertex PR T z-Buffer
> Evaluator]—}[ Shader ‘ r
- ; Fragment‘4
Display Rasterize Shader
Lists g ‘
| 1 t L Frame/Stenci
- Buffer
Pixel
. > — Texture
Pixel Data Clpeieien Memory I

Stencil-Buffer Values

Figure 4.5: Block diagram of the OpenGL stencil buffer read.

4.4 OpenGL Extensions for Occlusion Culling

As presented in Section 3.3, OpenGL extensions can be usget the occlusion
information. A small application was used to measure theniat of the extensions
on the graphics hardware. Test boxes with different siza® weved in different

36



4.5, Evaluation
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Figure 4.6: Latency of the HP Occlusion Flag on an Intel P4A@R48z with a
NVidia GeForce4Ti 4400 (red) and on an Intel P3@750MHz witHRa Visualize
fx10 (green). Both running Linux.

frames from completely visible over partly visible to corefgly occluded. The per-
formance of the hardware extensions depends on the fillefetee z-buffer. Larger
geometry needs more time for the test, because the wholeeggopasses always
the z-buffer stage of the rendering pipeline. Figure 4.6shibie correlation between
the size of the geometry in screen-space and the latency facc@usion test request.
With enabled backface culling, the test is almost twice as & without, because
with backface culling, only one scan through the z-bufferthe front-face is done.
The graphics hardware rasters always the complete boundinge, but the ras-
terization could be stopped after the first visible pixel whising the HP extension.
With the NVidia extension, the hardware has to raster alwagsvhole bounding
volume to determine the full amount of visible pixels. Thiaidrawback, especially
for larger bounding volumes. In addition, a more complexdhare implementation
could use a hierarchical representation of the hardwanegffesh which would also
speed up the occlusion tests.

4.5 Evaluation

To compare the different techniques the Formula One Car hiraahe the Jupiter pro-
ject was used. The model has about 750.000 polygons in 306ejgonodes (see
Section 8.2.2). A camera path with 342 frames was create@vémny frame the
whole model is located within the viewing frustum, thereferew frustum culling
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4. Occlusion Query Implementations

itself does not remove geometry. In Figlre 4.7 and Table thé resulting frame
rates are shown for the different occlusion culling teche& A simple depth first
traversal of the scene graph with an additional front-tokisorting of the geometry
was used [6].

Avg. | Deviation Min. Max. Avg.
fps fps fps  fps | speedup
No occlusion culling| 3.77 0.03 3.58 3.85 0.0%

Stencil test 4.28 0.23 3.46 5.13] 12.0%
Z-Buffer test 4.42 0.28 3.65 5.15| 14.8%
HP Flag 5.70 0.41 444 6.67] 33.8%

Table 4.1: Comparison between different occlusion quepiémentations [6].

The first benchmark (no culling) shows the performance of G@without any
occlusion queries. In the second benchmark, the perforenahthe stencil buffer
test was evaluated. In the third test, the z-buffer techaigas applied and in the last
one the HP Occlusion Flag was used. For all benchmarks a Cardiuen 111 with
750 MHz with a HP VISUALIZE fx10 running Linux was used for renatg. The
resulting frame rates show average speed-ups between 1P 3&6n

- 100

9 T T - - -
Z-Buffer test Hidden polygons
8t Stencil-Buffer | Hidden nodes
2 HP —— 80 | 1
§ 7t No culling \J/\\//\W\‘/V\j\/\‘v\\w
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Figure 4.7: Left: Frame rates for the camera path and rightepgage of occluded
nodes and polygons.

Occlusion culling generally depends on the scene and ithasmplexity. Fig-
ure4.7 (right) shows the percentage of hidden nodes andypogyin every frame.
The limited depth complexity of the test dataset (about 60%h@fpolygons are de-
tected as occluded) leads only to a limited culling perfaroga In scenes with a
higher depth complexity, a better performance can be eggect
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4.5, Evaluation

The benchmarks show that the HP Occlusion Flag is the fasikgios in this
test. The stencil- and z-buffer-tests show similar resulisereby the stencil-test
will perform better in frames with lower depth-complexitggs setup and rasteriza-
tion time in software), while the z-buffer-test is fasterffames with more depth-
complexity, because the z-buffer in software needs lesatepdfor occluded nodes
no update is necessary).

The techniques show differences in the load of the graphicdwaae and the
host's CPU. With the readback of the z-buffer in Section 4dsnwork is done by
the host’s CPU, so this approach is very useful for systerttslaiver graphics hard-
ware capabilities. In addition no state changes on the graplardware are needed.
The stencil buffer technique of Section 4.3 distributes t¢tagllon the host's CPU and
the graphics hardware. But state changes are necessanyotise stencil buffer,
anyway this technique is useful on standard OpenGL hardwah®ut special oc-
clusion extensions and lower CPU power. On modern graplaicdiare the special
extensions are the first choice (see Section 4.4). Most ofvtir& is done by the
graphics hardware and the host's CPU can be used for otleratbns like sorting.
But state changes are necessary, so that the number of iooctiugeries should be
minimized, which is the focus of the next Chapter.

39



4. Occlusion Query Implementations

40



Chapter 5

Avoiding Predictable Occlusion Queries

The previous presented techniques to get the visibilitynoblaject are using the
OpenGL graphics hardware in some way. Although the perfoomanf graphics

hardware is continously increasing, each request to thellvare causes some la-
tency. This chapter presents some algorithms, which retheceumber of occlusion
queries.

Traversal and Sorting

Extensions

Occlusion Query

Figure 5.1: Overview of the software architecture. This Gbapescribes exten-
sions, to avoid predictable occlusion queries.

5.1 Introduction

To reduce the number of occlusion queries on the graphicsi\zeie, some aspects of
the visibility of occluders and occludees are taken intmaat. A trivial observation
shows if there is no rendered geometry in the actual framegcalusion query will
alwayslead to a visible result, because there is no occluding gagmihe following
Sections show further details, how occlusion queries caavbéled, if their result
can be predetermined. The techniques are used on top of thesioccqueries of
Chapter 4.
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5. Avoiding Predictable Occlusion Queries

5.2 Occupancy Map

During traversal of the scene graph, an algorithm has taldeghen to perform an
occlusion query for a given node. Especially from viewpoinith low occlusion a
lot of occlusion tests are unnecessary, because they @etsible result, so that the
rendering of the corresponding geometry gets more expensive idea is that only
in (occupied) regions with already rendered geometry, afusmon test makes sense.
TheOccupancy Majf9] is a small data structure which manages occupied regibns
the screen space. In not occupied regions an occlusion iléatways return visible
pixels due to the lack of occluding pixels (see Figure 5.2).

As noted in the previous Section 4.4, the latency of an oamiuguery depends on
the number of rasterized pixels of the bounding volume. miqadar large, partially
visible bounding volumes will spent significant time in tlasterization stage of the
graphics accelerator, without any benefit for the rendepedgormance. In order
to reduce the associated costs, the approach tries to agclidsmn queries with a
visible result.

Occupancy Map

<

Viewpoint

Viewplane

Figure 5.2: Construction of the Occupancy Map; boundingsmf the geometry in
the front (A) are added.

5.2.1 Implementation

The Occupancy Map is realized as a small bit field. Each bit sgmts an occupied
or unoccupied region of the screen-space. Storing deptiesalr other information

IS not necessary, if the requests occur in a partial deptedorder. Due to perfor-
mance reasons, the Occupancy Map is updated with the sspaee-bounding boxes
of the rendered geometry, which is not exact, but a conseevapproximation of the

occupied regions.
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5.2. Occupancy Map

Figure 5.3:Left: Scene with low occlusiorRight: Occupancy Map for scene [9].

A first implementation [5, 9] was done with the Jupiter scerapb and later the
approach was added to the OpenSG system [7].

Before a node’s visibility is tested with an occlusion quetg screen-space
bounding box is compared with the Occupancy Map values. As s the Oc-
cupancy Map detects that the target screen area of the ronleling box is partial
“empty”, it cancels the occlusion query and initiates thedexing or traversal of the
respective scene graph node (see Section 6.4 — Stage 1).tHdothe Occupancy
Map is conservative, since it is essentially storing thedovesolution coverage in-
formation of the framebuffer. However, it is not exact andl eccasionally initiate
the rendering of geometry which would have been determimetided by the ac-
tual occlusion query. This is due to the approximation of tteng entity bounding
box by a screen space axis-aligned bounding box (AABB). Nbe&ess, tests found
that with the used Occupancy Map size (see below), this didura up to be a
problem [5, 9].

Technically, an Occupancy Map is a cache optimized bit-fietdized as an array
of 32 Bit integers with 256 entries (to fit into a cache line).eBubit represents a
tile in the screen space. If a bit is set, the respective siledcupied by already
rendered geometry. Otherwise, no geometry has yet beeanshohto the associated
screen region (see Fig. 5.3). The effectiveness of the tikeisia trade-off between
precision (resolution) and overhead (memory and updat&i3iver et al. provided
interesting measurements on the effective resolution enctimtext of a hardware
implementation [42]. In our context, an Occupancy Map siz&024 Bytes is quite
effective. The representing tile size can be adapted to thdaw size; for example,
in a window of 1024x 768 pixels every tile represents<424 pixels. If the whole
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5. Avoiding Predictable Occlusion Queries

Figure 5.4: Request to the Occupancy Map; the blue box isctiteas “not oc-
cluded”, the green one as possibly occluded. For the latter an occlusion query
will follow.

scene is inside the view-frustum, the screen space sizeeafdne’s bounding box
can be used to scale the Occupancy Map to enable a bettentresolDue to the

small size, the Occupancy Map can be easily accommodatée ifirst level cache
of the CPU to permit an extremely low latency (orders of magte lower than a
read back from the graphics accelerator to acquire the sictlquery result).

For a lookup, the screen space AABB of the corresponding neddecked
whether it overlaps with empty (unset) regions of the OcagpaMap. If that is
the case (blue box in Fig. 5.4), the corresponding AABB isiaesd visible and the
occlusion query is canceled. Note that for good performatineetest nodes have to
be organized patrtially front-to-back.

5.3 Additional Depth Buffer in Software

In contrast to the Occupancy Map of the previous SectionptlesentedSoftware
Depth Bufferfocuses on occluded bounding volumes.

For scenes with high depth complexity, occlusion tests gasdved by a soft-
ware implementation of a z-buffer. Rendering of the scermrgry in software is
too expensive, but occluded bounding boxes can be used ggpamxanation (see
Figure 5.5). Thus the bounding boxes of previous (hardwaselaxated) occlusion
gueries are rendered into the Software Depth Buffer. Bedorher bounding vol-
ume is tested by the occlusion query, it can be tested witBdfisvare Depth Buffer.
Fill-rate and rasterization calculations for the Softwaepth Buffer can be saved by
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<

Viewpoint

z
Viewplane fmax

Figure 5.5: Occlusion test with the Software Depth Buffé); {isible geometry, (B)
tested with an OpenGL test, (C) tested by the software approa

a lower resolution than the depth buffer of the graphicsgsiiesn. Also if the appli-
cation knows occluders, they can be rendered into the Sadtidapth Buffer before
starting any other tests.

Unfortunately, bounding boxes of scene graph nodes carsetdteach other in
object space so that the Software Depth Buffer must savéndejiies in contrast to
the Occupancy Map, due to an overlap test is not being suffiteecalculate conser-
vative visibility. In an octree or BSP tree environment ip@ssible to realize a strict
front-to-back rendering. Therefore the Software Depth &utbuld be implemented
as a simple “bitfield”, which would further significantly sg@up the test.

5.4 Temporal Coherence

To reduce the number of occlusion queries, temporal coberbatween frames can
be used. Based on the assumption that a visible scene grajghimmne frame
is likely to be visible in the next frame, occlusion queries these nodes can be
saved. In our implementation [11], the result of an occlngipiery is stored for
the corresponding node. Occlusion queries for a visibleenadframen are not
performed in the followingh+ 1...d frames. The value changes between 2 and
4 to balance the number of occlusion queries over all framgl is constant, a
lot of queries are performed in franme while in framesn+1...d these are saved.
Experiments showed that this would result in very high fraate jitter.

For aggressive occlusion culling with a small reductionnmage quality, oc-
cluded nodes can also be assumed as occluded in the neatyifalframes. This
leads to a non-conservative, aggressive approach, siigeefaf this assumptions
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5. Avoiding Predictable Occlusion Queries

will result in missing geometry in the image. In our implertagion, it is assumed
that an occluded node is only occluded in the next two frarnesinhimize these
image errors while moving the camera. Furthermore a preanyitest with the Oc-
cupancy Map is performed to avoid errors of large visiblee®uh the front of the
scene.

Temporal coherence can be very problematic in dynamic scend the view-
point is changing fast. Bittner et al. [16] presented anotemporal coherence al-
gorithm, but they also benefit from a balanced hierarchy efdtene in a kd-tree
(object-space coherence). Also the problem of dynamicescennot addressed by
their approach. Due to the fact that the presented apprgacheuristic, the imple-
mentation is unrivaled. The “magic” numbers, how long a vigyresult is valid has
an influence to the resulting frame rates, which makes casgrabetween different
models and views difficult.

5.5 Results

All tests in this Section were performed with the OSGViewgplication [6] and an
OpenSG scene graph. A PC with AMD Athlon 2500 XP (1.8 GHz) mgrLinux
and a NVidia Geforce3 was used as platform. During traveingadarchical occlusion
culling with the OpenGL extension from NVidia in conjunatiovith the previous
extensions was applied. The traversal of the scene graphreddn an object-space
front-to-back order with applied hierarchical culling. Tinearest corner of a node’s
bounding box was used as criteria for the ordering and thesidibunding boxes
were used for the occlusion queries. All frames were rerblatex high resolution
of 1140x 755 with 24 bits color depth. The Software Depth Buffer had artpx
resolution of the viewport if used for the tests.

| | Number of polygons
Cotton Picker 10 610 166
Formula One Car 746 827
City 4 056 195

Table 5.1: Test models.

First, the Cotton Picker model (see Table|5.1 and Sectiori)8ghd a camera
path with 280 different frames was used. In the right Figuéethe amount of visible
and occluded polygons (detected by a bounding box occlussth for each frame
is shown. Approximately between frame 150 and frame 250 ighe frustum culler
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Figure 5.6: Performance (left) and visible/occluded polyg (right) during render-
ing of the Cotton Picker camera path.

Avg. | Dev Min. Max.

fps | fps fps  fps | Speedup
No occlusion culling 1.7 15 10 7.6 0%
OpenGL Occlusion Query 6.7 | 48 16 227 294%
OpenGL OQ + Occupancy Map 69 | 5.0 16 227 306%
OpenGL OQ + Software Depth Buffey 7.5 | 4.8 19 217 341%
OpenGL OQ + OM + SDB 77 | 51 20 217  353%
OpenGL OQ + Temporal Coherence| 6.7 | 5.0 15 233 294%
OpenGL OQ + TC (aggressive) 79 |49 19 244 364%

Table 5.2: Comparison of the performance timings for the@olPicker model.

removes some nodes. Table|5.2 concludes some averagenment@® results. Each
extension is able to speed up the average rendering speethstést results are with
enabled Occupancy Map and Software Depth Buffer, wherebeage rendering
speed increases by about one fps, which is a speedup of 15@acedto using only
the OpenGL occlusion query.

A Formula One Car was the second test model (see Section).8&2.2amera
path with 270 different frames was rendered to compare thienpeance. Like the
Cotton Picker path, in some frames parts of the scene areleutse view frustum.
Right Figure 5.7 shows the visible and occluded polygonsnduhe camera path.
The rendering performance can be found in the left Figure Eable 5.3 concludes
the timings for the Formula One Car rendering. Similar torémults of the Cotton
Picker model the rendering gains approximately one frantk thie extensions, but
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Figure 5.7: Performance (left) and visible/occluded polyg(right) during render-
ing of the Formula One Car camera path.

Avg. | Dev Min. Max.

fps | fps  fps  fps | Speedup
No occlusion culling 169 3.3 145 435 0%
OpenGL Occlusion Query 23.6| 6.5 16.4 58.8 40%
OpenGL OQ + Occupancy Map 244| 6.5 16.1 58.8 44%
OpenGL OQ + Software Depth Buffer 23.7| 6.4 16.1 66.7 40%
OpenGL OQ + OM + SDB 245| 6.3 16.7 55.6 45%
OpenGL OQ + Temporal Coherence| 25.0| 7.4 16.9 71.4 48%
OpenGL OQ + TC (aggressive) 29.0, 7.1 20.0 714 2%

Table 5.3: Comparison of the performance timings for therftda One Car model.

in contrast to the Cotton Picker, this is just a speedup of 496e to the lower
complexity of the model the number of occlusion queriesvg=io which results in a
reduced dependency of the occlusion query performancagltendering.

In a last test, a City model with some Formula One Car modeisarstreets was
used for rendering (see Section 8.2.3). The camera pathstedsif 110 frames and
also in some frames parts of the scene were outside the vistufn (see Figure 5.8
left). In contrast to the Formula One Car, the City model iscmmore complex
and in many frames a lot of geometry is occluded. Tablé 5.4rayd Figure 5.8
show the rendering performance. In addition to the occtusjoeries, the average
performance increases by 1.5 fps with the Occupancy Mapten&aoftware Depth
Buffer, which is equal to a speedup of 11%.

The temporal coherence algorithm shows only with the Forr@uia Car model
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Figure 5.8: Performance (left) and visible/occluded polyg (right) during render-
ing of the City model.

Avg. | Dev Min. Max.

fps | fps fps  fps | Speedup
No occlusion culling 31,04 28 43 0%
OpenGL Occlusion Query 13.8| 5.2 51 40.0 345%
OpenGL OQ + Occupancy Map 143 | 57 51 435 361%
OpenGL OQ + Software Depth Buffey 14.7 | 5.4 5.3 40.0 374%
OpenGL OQ + OM + SDB 15.3| 59 53 435| 393%
OpenGL OQ + Temporal Coherence| 13.1| 41 49 27.0 322%
OpenGL OQ + TC (aggressive) 20.1| 6.1 9.7 476 548%

Table 5.4: Comparison of the performance timings for thg @iodel.

and with the aggressive technique speedups compared witstdindard occlusion
queries. However, the conservative technique shows a slewapplied to the City

model and the aggressive technique generates image ehernsfore the presented
temporal coherence algorithm is not useful in a commonlplesscene graph envi-
ronment.
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5.5.1 Occupancy Map and Software Depth Buffer

To measure, how many occlusion queries can be saved, thenamibuisible and
occluded occlusion queries were counted with and withcuatiditional techniques.
Figures 5.9| 5.10, and 5.11 show the percentage of the savinthe Occupancy
Map and the Software Depth Buffer from all occlusion testshie frames of our
camera paths. In addition, Table 5.5 shows the averagedsalu

For the Cotton Picker the Occupancy Map saves 31% of occlusists with
a visible result and the Software Depth Buffer saves 73% ofuston tests with
an occluded result. Of course, these values are lower inescefth lower depth
complexity.

The Occupancy Map saves only 17% of occlusion tests with aleisesult and
the Software Depth Buffer saves 55% of occlusion tests witbealuded result for
the Formula One Car model. The lower value of the Occupancy tdsiplts from
many, partly visible, small objects, which are not in thenfrof the model.

For the City model the Occupancy Map saves 17% of occlusiis teith a vis-
ible result and the Software Depth Buffer saves 42% of odmtutests with an oc-
cluded result.

Avg. # Avg. #
Queries  Avg. | Queries  Avg.
Visible Saving| Occluded Saving

Cotton Picker:

Only Occlusion Queries 1251 2205
With OM + SDB 868 31% 587 73%
Formula One Car:
Only Occlusion Queries 80 186
With OM + SDB 66 17% 83 55%
City:
Only Occlusion Queries 174 582

With OQ + OM + SDB 145 17% 327 42%

Table 5.5: Comparison of the number of occlusion querieghi®iCotton Picker, the
Formula One Car, and the City model.
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5.5. Results
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Figure 5.9: Savings of extra occlusion tests by the Occupltap and the Software
Depth Buffer for the Cotton Picker model.
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Figure 5.10: Savings of extra occlusion tests by the Ocoupltap and the Software
Depth Buffer for the Formula One Car model.
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Figure 5.11: Savings of extra occlusion tests by the Oconyplliap and the Software
Depth Buffer for the City model.
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Chapter 6

Occlusion Driven Traversal

The previous Chapter described some techniques to redeasutinber of occlusion
gueries to reduce the load of the graphics hardware. Anotlegrt@ make occlusion
culling more efficient is to shadow the latency of occlusioarges with other work
on the graphics hardware.

This Chapter describes a special traversal technique o$tleme graph to reduce
the occlusion query overhead.

Traversal and Sorting

Extensions

Occlusion Query

Figure 6.1: Overview of the software architecture. This Gbagescribes a spe-
cial traversal and sorting technique of the scene graphfadhs on efficient use of
occlusion queries.

6.1 Introduction

As noted in previous Chapters, the image space occlusiomegugf graphics hard-
ware require state changes and rasterization bandwidthh@otesting geometry).
Therefore, this thesis introduces a novel hierarchicaletisal technique for scene
graphs, which significantly reduces the latency of occlusjoeries. The approach
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6. Occlusion Driven Traversal

reduces the number of state changes by usinfjiple occlusion queries and allows
thehierarchicalculling of occluded subtrees from the scene graph. The dwgwal

of the approach is a stable render performance improveraeaiMarying set of mod-
els and viewing situations, even if little or no occlusiompresent, where regular oc-
clusion culling methods have high overhead costs wittelbénefits. The presented
traversal technique requires no preprocessing or spegatiél) data structures. Fi-
nally, the approach supports dynamic and animated sceinte&e scene graph is
updated accordingly.

6.2 Occlusion Query

To obtain occlusion information, the mentioned (see Sa@i@ and 4.4) hardware
supported occlusion queries from NVidia are used. For atusmn test, the test

geometry is rendered in the occlusion query mode with deshfame and z-buffer

writes to avoid actual modifications to the framebuffers. oTelfferent costs are

associated with an occlusion query; first it has to wait fer¢cbmpletion of the state
changes (because of disabling of frame and z-buffer writelsogher state changes)
and second it rasterizes the test geometry.

Separate screen
space areas

) %
Viewpoint
Q Test boxes

in one multiple quen

.

(@)

Screen space area of front BB
includes area of rear BB

|

<

Viewpoint

:

Test boxes
in one multiple query

j

(b)

Figure 6.2: Multiple query without (a) and with (b) possibgdundant results.
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6.3. Organization of Multiple Occlusion Queries

The NVidia extension supports clustering of multiple testsne query to reduce
the latency of setup costs for an occlusion query. This wag vikibility of more
than one bounding volume can be determined at the same tihik, Wwtermediate
visibility results are not guaranteed to be considered.eaoh tested bounding vol-
ume, the corresponding occlusion result is asynchronaeslyned (see Figure 3.6
of Section 3.3). A major problem of multiple queries is thiesgon of the bounding
volumes. Because intermediate results are not taken imwuat. Two each other
occluding bounding volumes may return a false positive ltéboth not occluded,
see Figure 6.2); the second volume located behind the fiestotested against the
not up-to-date z-buffer, since the geometry of the first lolmg volume is not yet
rendered. To avoid this problem, the presented approach aisewer-resolution
representation of projected bounding boxes to utilize tneen-space coherence.

6.3 Organization of Multiple Occlusion Queries

As mentioned, the latency of an occlusion query can be retlbgaising multiple
occlusion queries. This method reduces setup costs, bestatisehanges are solely
necessary before and after the multiple query and the sesailt be collected asyn-
chronously (see Section 3.3). However, redundant quesis Figure 6.2) have to
be avoided in order to circumvent false-positive resultg@dmetry that is indeed
occluded. To address this problem, the algorithm uses angaocy Map for each
multiple query. In contrast to [9], an hierarchical appto&sploiting multiple oc-
clusion queries is presented.

Figure 6.3: Request to the Occupancy Map; the blue box isctkteas “not oc-
cluded”, the green one as possibly occluded. For the lattey an occlusion query
will follow.
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6. Occlusion Driven Traversal

In contrast to Section 5.2, the Occupancy Map has a sligliffigrednt meaning.

A covered area in such an Occupancy Map means that this regmovered by a
bounding box from the corresponding test list. Only if atste@ane bit in the Occu-
pancy Map is not set in the area of the corresponding bourtatixg the bounding
box is added to a multiple occlusion query (see Figure 6.3)is Weans that the
bounding box will test a region in screen-space, which isyeptovered by another
bounding box from the respective test list. Bounding boxas averlap in screen-
space, which could result in redundant queries, but thegmaeclude each other. If
all Occupancy Map bits covered by the bounding box are ajreat] the bounding
box is tested in a subsequent Occupancy Map. A bounding bleichws added to
an occlusion query, is always rendered into the tested QeuypMap to mark the
corresponding screen space region as used.

6.4 Traversal

In this approach, hierarchical view-frustum and occlustoiling of the nodes in
the scene graph is applied. While the inner nodes of the sgepd only contain
the bounding volume of their associated sub-tree, the ledés contain the actual
geometry and their corresponding bounding boxes. The erpets are performed
with OpenSG.

Interleaved culling and rendering is performed during theng graph traversal.
Two priority queuestfaversalandpendingqueue) are used to organize the traversal
and the respective multiple occlusion queries. The prigpitgues are functioning in
a double-bufferednanner. Only one Occupancy Map is used in this approach, and
it is cleared after each multiple occlusion query. The privagorithm, which we
presented in [9], always used five instances of OccupancysMathout hierarchical
culling.

To restrict the maximum number of multiple occlusion quener frame, the
Occupancy Map is used for ontymultiple queries. All remaining nodes are pro-
cessed by a brute force applying of occlusion queries. Luotiéenporal coherence
is exploited at this point, since is calculated from frame to framedfigmer1 =
7/10- Mframe Wherem is the number of all (organized by Occupancy Maps + re-
maining queries) multiple occlusion queries. Note thaneieg drastic movements
— which destroy temporal coherence —, the method is stilseorative. Only the
efficiency might be reduced, due to the occlusion queriebefdst stage.

The traversal technique can be partitioned into three maigest starting with
the root node, it takes the bounding volume of the node arfdimes a view-frustum
culling test. If the node (actually its bounding volume) &&fmined inside the view-
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6.4. Traversal

) )

/\ /\
/\ /\_./\ /\

Visible nodes found Subsequent multiple occlu5|on queries to Resultlng scene grap
by the Occupancy Map get the visibility of the remaining nodes visible and occluded nod¢

—

Figure 6.4: Traversal of the scene graph.

frustum, its child nodes are added to a front-to-back sagtezlie {raversalqueue
T in Figure 6.5) of current nodes. Otherwise, the whole sab-ts skipped. The
closest corner of the node’s bounding box to the current paemt is used for the
front-to-back sorting.

In thefirst stage the Occupancy Map is used to find the visible nodes in front of
the scene (equal to Section 5.2):

/l Listing 6.1 — Stage 1

while (traversal queue Tnot empty)
{
node = get first node of traversal queue T;
if (node is outside view frustum)
cull node;
else

{

if (node is visible in occupancy map)
{
if (node is geometry)
render and assign node to occupancy map;
else
{
add children frontto—back
to traversal queue T;

}
}

else
add node to pending queue P;
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6. Occlusion Driven Traversal

Traversal Queue

f !

' Pending Queue
O ied o
(" ocomancyvap )y T T T T 1.

lNot occupied :

" \/

[ Children? ]—O> [ Render ] Stage 2 - Traversal Quel
Yes| Add Children

Figure 6.5: Stage 1 — Request to the Occupancy Map; Leaf (gegnmodes are
directly rendered.

Nodes with a bounding box visible in the Occupancy Map, asem@gd visible in
the scene, since there is no rendered geometry up to now wbnehs the associated
region. If such a node is a geometry node, it is rendered an@ttupancy Map is
updated by its screen space bounding box. Nodes, whose ingumak is covered
in the Occupancy Map are added to ffendinggqueueP. These nodes are probably
occluded and therefore tested with occlusion queries inéxéstage of the traversal
scheme. In Fig. 6.5, an overview of the first stage of the tsalds given. If the
traversal queueT is empty the algorithm proceeds to stage two andpheding
gueue replaces theaversalqueue,T :=P.

Traversal Queue

l ‘Pending Queue o
[ Occupancy Map ]Occupled | | | | | | L |
lNot occupied :
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, \/
3 Multiple Occlusion Query Stage 3 — Pending Quel
CIITTTT.
1
1
\/

Stage 3 — Multiple Occlusion Query

Figure 6.6: Stage 2 — sorting of scene graph nodes duringrsalv
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6.4. Traversal

In the second stagésee Fig. 6.6), multiple occlusion queries are performed on
the nodes of the scene graph. To avoid false positive result®ccupancy Map is
used to distribute the occlusion tests in different scregts regions (cp. Fig. 6.2).

Nodes, whose bounding box are not yet tested for occlusteraaded to thpending
gueueP for later processing:

/l Listing 6.2a— Stage 2

m = 0;

while (pending queue Pnot empty & nxkmax tests)
{

clear occupancy map;

T =P,

while (traversal queue Tnot empty)

{
node = get first node from traversal queue T;
if (node is outside view frustum)
cull node;
else
{
if (node is visible in occupancy map)
{
add node to test list;
assign node to occupancy map;
¥
else
add node to pending queue P;
}
}

perform multiple occlusion query with test list;

Il — 6.2b
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6. Occlusion Driven Traversal

Multiple Occlusion Query

'

[ Result? ]% [ Children? ]N—°>

LOchuded YesLAdd Children

> Pending Queue L
| | | Lttt

Stage 2 - Traversal Queue

Figure 6.7: Stage 3 — the result of the hardware occlusiomyqueeuses culling or
further processing.

In the third stage(see Fig!l 6.7), the results of the multiple occlusion quegy a
collected. Visible nodes are either immediately rendegeinetry (leaf) nodes) or
their children (of inner nodes) are added to pemdingqueueP for further process-

ing:
/Il Listing 6.2b— Stage 3

for (each test nodef)
if (node is visible]
if (node is geometry)
render node;
else
add children to pending queue P;
ki
else
cull node;

m++;

}

Stage two and three aleoped(after stage three th@endingqueue replaces the
traversalqueue:T := P), until all nodes from théraversalqueueT are processed or
a maximum number of organized multiple occlusion querigsashed.
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6.4. Traversal

Figure 6.8: Occluded bounding boxes for a given view of théd@@oPicker model.
All bounding boxes of an individual multiple occlusion quérave the same color.

To avoid too many occlusion queries given by the Occupancy Madhe back-
stage of the scene, brute force multiple occlusion quendbs® remaining nodes are
performed, since bounding boxes in the back are usuallyided:

[/l Listing 6.3

while (pending queue Pnot empty){
perform multiple occlusion query with pending queue;

clear pending queue;

for (each visible node)
if (node is geometry)
render node;
else
add children to pending queue P;

m++:

max_tests = 7/10* m;

Overall, the presented traversal technique provides takei@al culling, since
complete subgraphs are culled, if the bounding box of theysyh is occluded.
Figure 6.4 demonstrates the traversal in the scene grapFkigoce 6.8 shows the
mapping of the bounding boxes to a corresponding multiptdusoon query.
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6. Occlusion Driven Traversal

6.4.1 Complexity

Recapitulating: The simplest way to render a scene graphtisagtack-based depth-
first traversal of the scene graph. This kind of traversal imesit complexity, but is
very inflexible and does not care about the rendering pedoo®a. A much more
flexible scheme can be realized by using a priority-driveaversal of the graph.
By using specific priorities (for example: screen-space,silistance to the view-
point, or material parameters such as transparency) eliffesrders for rendering
can be achieved. Due to the sorting of the needed priorityuejuine complexity is
O(nlog(n)) (sometimes this can be optimized by using a hash-tableprtinfately,
the presented algorithm uses two priority queues, whickvar&ing in an interleaved
fashion. This leads to a worst case complexit{ob x nlog(n)) (Figure 6.9 gives an
example of a worst case situation), whens the number of used Occupancy Maps.
Fortunately, this is a very rare situation because all bghbdoxes have to overlap
each other in screen-spa@edthey must be from different subgraphs.

Another problem in the presented implementation is theatgaesorting of the
nodes into the priority queues due to the double-bufferdeerme. This can be
avoided by using only one priority queue with random accds$serefore, an algo-
rithm can remove occluded nodes and add children of visibtees without copying
older nodes.

Viefvzpoint *A *B
Do

Viewplane Zmax Viewplane

D¢ ¢ % E/‘
=)
=

Figure 6.9: Two different situations for the traversal pemfiance. Left: worst case
situation, the bounding boxes are overlapping each othektlaay are from different
subgraphs. Right: The bounding boxes do not completly opeztch other and
the algorithm can merge the occlusion queries of the diffelb®unding boxes in a
multiple occlusion query.
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6.5. Results

6.5 Results

To evaluate the performance of the multiple occlusion eseorganized by the Oc-
cupancy Maps, an Intel P4@2400 MHz with a NVidia Geforce FO®6T and the

models listed in Table 6.1 were used. A camera path for eaatehad a resolution

of 800x 600 and 32 Bit color depth was rendered. The occlusion culliag done

with the NVidia occlusion query extension.

Number of polygons
Boom Box 644 268
Formula One Car 746 827
F1 Animation 2242 481
Cotton Picker 10610 166
Big City 64 898 464

Table 6.1: Test models.

The Boom Box, the Formula One Car, and the Cotton Pickerare M@wdels
(see Section 8.2.4, 8.2.2 and 8/2.1). The Big City model istiical city with some
Formula One Car models in the streets and has the highest@dtymf the four
models with high depth complexity (see Section 8.2.3). Finfation is a simple
animation with three Formula One Car models as test for dymaoenes. The cars
driving an “8” behind each other around two obstacles. Wendit optimize the
scene graphs for occlusion culling or traversal.

We rendered different camera paths for each model. In scaneefs, the camera
zoomed into the scene and parts of the scene outside of thdrugtum were culled.
Our measurements are performed a) only with view frusturiingylb) with a single
synchronous occlusion query for each node in the scene dweigiout using an
Occupancy Map), c) with multiple occlusion queries orgadiby the previously
described traversal algorithm.

With occlusion culling, average frame rates between 11s1Fg Animation) and
33.7 fps (Formula One Car) for the different models (seed&i®?) can be achieved.
With the new traversal scheme with Occupancy Maps and nhelthigclusion queries
the new traversal algorithm improved these results to 1ts5F1 Animation) and
42.9 fps (Boom Box). The best speed-ups were achieved withipteubcclusion
queries in scenes with lower depth complexity, becauseedtrtiue-off between ren-
dering and occlusion query state changes. In scenes wigthigit depth complexity,
the occlusion queries dominate and with very low depth cexipl the rendering

63
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Figure 6.10: Boom Box frame rates and rendered polygons.

Average Frame Rates [fps]
b) synchronous c) asynchronous

a) only occlusion multiple

vfc queries queries
Boom Box 22.1 31.1 42.9
+41% +94%
Formula One Car| 27.7 33.7 41.9
+22% +51%
F1 Animation 8.3 11.1 16.5
+34% +97%
Cotton Picker 8.8 17.9 20.6
+103% +135%
Big City 0.5 19.9 20.7
+3880% +4040%

Table 6.2: Resulting average frame rates and corresporsgiegd-ups for the test
models.

dominates. The F1 Animation shows the lowest average fratas,raven though it
has not the highest complexity, because only a few polygare wutside the view
frustum during the camera path in contrast to the camera dtine other models.

In Figures 6.10 - 6.11 the frame- and renderrates (how malygmas are ren-
dered) are given. In scenes with higher depth complexigy,siheed-up is not that
high, because most of the costs are the fillrate for the ocriussts and the scene
graph traversal in the (occluded) backstage of the scenehvig similar with or
without multiple queries.
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Figure 6.11: Frame rates (left) and rendered polygonstjrighthe different models.
Top-down: Formula One Car, F1 Animation, Big City, and CotRicker.
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6. Occlusion Driven Traversal

6.5.1 Scene Graph Structure

In the previous experiments, the original scene graphseofitbdels were used. But,
obviously, the structure of the graph has an influence onrthettsal and culling

performance. Therefore a simple algorithm was used to genéiféerent structures
of the scene graphs. The algorithm arranges the geometng moda rough octree
structure with a predefined depth. Table 6.3 presents thagedimings to generate
an octree-like scene graph for the given models. The algontias not optimized,

but shows that an update of the scene graph for each frame expensive, espe-
cially in large scenes.

| Model | Approx. Time| Num. Geo. Nodes
Boom Box 315ms 530
Formula One Car 305ms 306
Cotton Picker 4 900ms 13270
Big City 75 000ms 30 385

Table 6.3: Average time to generate an “octree-like” scealyfrom the original
graph.

In Table 6.4 and Figure 6.12 the average rendering perfaresafor the different
depths of the scene graphs are given. The results show tha¢tftemance is stable
in scene graphs with a lower number of nodes. With a large euwinodes, a scene
graph with a larger depth is needed to obtain good performalmgraphs with an
almost flat structure and a large number of nodes, the needtBdgsfor the front-
to-back rendering becomes expensive and limits the ovpesfbrmance, because
a huge number of nodes have to be sorted and traversed untgtidering can be
started with the first geometry node. In scene graphs witfeladepth, the sorting
is executed parallel to the rendering (which is performedhengraphics hardware)
and the culling can be hierarchically applied.
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Figure 6.12: Average rendering performance dependingengbd maximum scene
graph depths.

Average Frame Rates [fps]
Scene Graph DepthOriginal | Flat 2 4 6 8  Unlimited
Boom Box 42.8 | 46.6 48.0 485 49.2 48.9 48.5
Formula One Car 419 | 378 358 351 358 359 35.7
Cotton Picker 20.6 35 99 149 199 201 20.1
Big City 20.7 24 51 109 178 17.8 18.6

Table 6.4: Average rendering performance for differenttemf the used scene
graph.
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

In this thesis different occlusion culling techniques st&sl by graphics hardware
are evaluated. Additionally some new algorithms to redheenumber of hardware-
assisted occlusion queries are presented. Also a novelithlgofor scene graph
traversal to efficiently utilize multiple occlusion quesief the graphics hardware
was introduced.

All the presented work can be used with arbitrary scenese@ekesgraph systems.
Only a bounding volume hierarchy is needed to perform thé&usamn queries. In the
presented work we used only bounding boxes as bounding wslubut also other
bounding volumes can be utilized [1, 2].

The presented algorithms show good speed-ups compareditominal rendering
technigues without occlusion culling. Also they can be iempénted on top of a
wide range of different scene graph systems or other higicaicdata structures. No
preprocessing on the data structures is needed, which rrekpeesented algorithms
suitable for dynamic and interactive real-time environtsen

All presented techniques can be combined with each othes.rékults in a very
flexible solution for a wide range of different platform capfrations. For example, a
computer system with low graphics capabilities and withspécial hardware exten-
sions can benefit from the presented occlusion query impi&tiens. In contrast,
a computer system with high performance graphics hardwadesapport for hard-
ware occlusion queries will benefit from the special trazktschnique to efficiently
exploit the graphics hardware capabilities.

69



7. Conclusion and Future Work

7.2 Main Results

Occlusion Query Implementations

Three different approaches to calculate the occlusion o@ngbounding volume
were compared in Chapter 4. All of them are using the depthegbf the graphics
hardware in any way to compare the depth values of the testattling volume with
the depth values of already rendered geometry. The appreddfer in the utiliza-
tion of the graphics hardware and the host's CPU. As expesieetial extensions
of the graphics hardware are the fastest way to get the acnluBut also the other
algorithms are able to speed up the rendering of complexesceParticularly they
are useful in hardware environments without special oc@tuguery extensions. The
read back of the z-buffer can be used in environments with RIBU power com-
pared to the graphics capabilities, for example, in moltler@s or personal digital
assistants (PDAs). On the other hand, the use of the Opergatikbuffer is use-
ful in systems with middle-sized graphics hardware, migghre special OpenGL
extensions, for example, in notebooks with unified memochigecture (UMA).

Avoiding Predictable Occlusion Queries

Because of the utilization of the graphics hardware for tbeéusion queries, each
occlusion query is associated with some latency. Therefm@amber of occlusion
gueries to the graphics hardware has to be minimized to ectthécoverall rendering
time. We presented two novel techniques to decrease theanohbcclusion queries
in Chapter 5. The first technique focuses on occlusion queiibsa visible result
and the second on occlusion queries with an occluded réuil techniques do not
use the graphics hardware in some way to avoid additionahdégt For example,
with the Cotton Picker model, the number of occlusion quediecreased in average
from 3456 to 1455 per frame for a given camera path. This is acteah of 58%.

Occlusion Driven Traversal

Another way to reduce the latency for the occlusion quesdyyiusing multiple oc-
clusion queries in an interleaved fashion. Instead of ssorabusly waiting for an
occlusion query result, this time is used for rendering beobcclusion queries. But
the main problem is, how these multiple occlusion queriesaaganized. Which
bounding volumes have to be added to a multiple occlusiomycaed which not?
How can the bounding volumes be arranged to avoid falseip®sésults? In Chap-
ter/6 we presented an algorithm which uses screen-spaceecaieeof the projected
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bounding boxes to arrange the multiple occlusion queriesidiscene graph traver-
sal. For example, the algorithm additionally gains over $ifpaverage for a F1 an-
imation in a given camera path in contrast to synchronoukision queries, which
is a speedup of 49%. Also the algorithm works in dynamic ssame needs only an
up-to-date bounding box hierarchy.

7.3 Future work

Hardware-assisted occlusion culling is a powerful tooldoederate the rendering of
very complex scenes with high depth complexity. The work gmésd in this thesis
can be utilized in a standard scene graph environment. Thersegeral directions
and applications for future work:

e Beside the use for occlusion culling, a lower resolutionrimbng box of the
Occupancy Map lookup gives information of the screen-sgamefor a node’s
bounding box. This can be used for level-of-detail selectorontribution
culling.

e No temporal coherence is utilized in the presented appesdbut could be
used to further speed up the construction and organizafitredraversal and
culling techniques. But this is a very sensitive technique should be care-
fully used to avoid problems with dynamic scenes. This coldd anclude a
combination of the algorithm from Bittner et al. [16] and thesented traver-
sal algorithm. For example, the selected nodes from the desthpoherence
algorithm could be used as starting point for the occlusiowen traversal. In
frames with slow camera movement and less dynamic modditsitihe algo-
rithm would benefit from the temporal coherence. In dynar@st changing
situations, the occlusion-driven part avoids loosing &dfficy of the occlusion
queries.

e Another obvious improvement is to render the geometry nodastate sorted
fashion to further reduce the number of state changes dveimdering. This
can be easily implemented in the presented occlusion+ttre@ersal scheme.

e Precomputing was not in the focus, because dynamic scetiesutvassump-
tions on the scene graph have to work. In further releasexthild become
a more interesting point to speed up rendering of static ecigpscenes and
could be implemented as additional tool complementing tlesgnted tech-
nigues.

71



7. Conclusion and Future Work

e The tests are working in a serial fashion, but could be pdizdi#, so that the
software techniques, like the Occupancy Map or the Softwayh Buffer are
working parallel to the hardware-assisted occlusion gseiThis would result
in a better load balancing between the main processor argtaipéics subsys-
tem and thus, to higher frame rates.

e All the presented work was done with a very flexible scene lympviron-
ment. If other spatial data structures are available, likeetree or BSP tree,
several optimizations could be done. For example, the gtioje of the bound-
ing boxes would not be necessary in an octree environmemtéoocclusion-
driven traversal. The sorting in screen-space for the maltpclusion queries
can be implicitly done by a clever traversal of the octree.
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Chapter 8

Appendix

8.1 OSGViewer
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Figure 8.1: Screen shot of the OSGViewer.

The OSGViewer application was implemented to test the ptedeocclusion
culling techniques with the OpenSG scene graph. In additidhe rendering capa-
bilities, the application supports some features to mdatpwa given scene graph, to
manage animations, and to allow writing scripts. Also déf@ file formats like the
Jupiter-format are supported to import the models avaélfioim the Jupiter project.
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8.1.1 Implementation

The application is written in C++ and uses Linux as platform.e@pG is used as
rendering and scene graph backend, Qt for the GUI and the @@V for camera
control. The SWIG library is used to attach different scrggdguages to the C++
classes.

The application is split into two parts. The first part includies “Main Win-
dow”, the I/O-capabilities and manages the central sceaphgwhich contains the
scene. The second part is responsible for the rendering stdre graph in a “Scene
Viewer”. Several instances of the Scene Viewer can be ingraly used at the
same time.

8.1.2 Main Part

The main part controls the central scene graph and all fumgtiwhich do inspection
or modifications of the central scene graph. Also multiptances of the scene
views are controlled. The main part is split into loading aadirsg, scripting and
modification tools. The window in Figure 8.2 is used as us@rfate, which shows
the scene graph as tree view in the left of the window. The userispect or
manipulate the graph with the interfaces on the right sidkwaith context-sensitive
popup menus in the tree view.

- - ———————————————— ||}
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& Transform 003 001 001 No&H0001  attachments SFAttachmentMap  Single AttachmentMa
=-Group 002 081 001 No@l0002 parents MFNodePtr Multi (1) Pointer
+Transform 003 001 001 Noi o003  material SFMaterialPtr Single Pointer
& Transform 003 001 oot Noi [looo4  types SFGeoPTypesPtr  Single Pointer
- Transform 003 001 001 No| [looos  lengths SFGeoPLengthsPtr Single Pointer
- Transform 003 001 001 Noj o006 positions SFGeoPositionsPtr  Single Pointer
= Transform 003 001 001 Noi 10007 normals SFGeoNormalsPir  Single Pointer
=-Group 002 018 0o1 No| [loo08 colors SFGeoColorsPtr Single unset
-+ Transform 003 001 001 No| [loo0g8  secondaryColors SFGeoColorsPtr Single unset
'--017 000 001 Noi 10010  texCoords SFGecTexCoordsPtr Single unset
+Transform 003 001 001 Noi 10011 texCoords1 SFGeoTexCoordsPtr Single unset
¢ Transform 003 001 001 Noi l0012  texCoords2 SFGeoTexCoordsPtr Single unset
- Transform 003 001 001 Noi 10013  texCoords3 SFGeoTexCoordsPtr Single unset
I Transform 003 001 001 Noi l0014  indices SFGeolndicesPtr  Single Pointer
+Transform 003 001 001 No| 10015 indexMapping MFUInt16 Multi (0)
- Transform 003 001 001 No| 0016  dlistCache SFBool Single TRUE
& Transform 003 001 001 Noj 0017 GLId SFint32 Single 214
: Transform 003 001 001 Nog|
T — e || v
{homefjsux/models/cottonpicker.jt. é)

Figure 8.2: Main window of the OSGViewer.

For loading and saving of models, the applications supptiftsrent formats.
This includes all OpenSG supported formats (VRML, OBJ and thie binary or
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8.1. OSGViewer

ASCII format). To benefit from the efficient binary format bftJupiter scene graph,
a special converter was implemented, which is able to corareiOpenSG scene
graph to a Jupiter graph and vice versa. Also only subgraphe saved or added
to an existing scene graph, which allows a simple constnaf new models.

For further modifications of the scene graph, the user is @béeld new nodes
to the scene graph. Also cut and paste of a subgraph is pesgiaditional tools
allow to replicate a subgraph in different directions or cestructure the nodes in an
octree like hierarchy.

Because of the reflection system of OpenSG the applicatiogiva the user full
access to do modifications of the scene graph data like rabteriight parameters.

Also some additional special interfaces are available fastediting of transforma-
tion matrices.

8.1.3 Scene View

In contrast to the abstract view of the scene graph in the migidow, the scene view
presents the 3d OpenGL rendering of the graph. To rendeme sttee scene viewer
uses an instance of a new render action, which is derived thenoriginal render

action provided by OpenSG. The new render action implemefieseht enhanced

techniques like the ones presented in Chapter 6. The inee(f@®e Figure 8.3) of
the scene viewer allows to configure a wide range of paraséerthe rendering

for example, enabling occlusion culling with the hardwatgeasions or enabling the
Occupancy Map.

. son] . T
Eile Culling View Options Eile Culling View Options

| Connectcamera | (Ll Draw Bounding Boxes [/ Software Test [/ Prediction Test | Connectcamera | ([l Draw Bounding Boxes [ Software Test ) Prediction Test

[ Shadow Volume Test [ ExactOM | Update Bounding Box | | Statistics | [l Shadow Volume Test [J ExactOM | Update Bounding Box | | Statistics |

) Animation | Update | < ‘Min#Pixell0 ] ) Animation| Update | < “Min#Piell0 2]
E[Ejmﬂulﬂmﬂmmhl,_ﬂamp |# [ONear[+ 2|[Farfs00 2] }E@Wulﬂﬂﬂﬂmmﬁl_ﬂaw |+ [iONear[ Ellfars00 &l

1
3.05 (0.00, 0.00) fps, 41, no server /| 1.93(0.00,0.00)fps, 48, no server

Figure 8.3: Scene view of the OSGViewer.
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The qglviewerlibrary was used as user interface to control the cameraghwhi
yields additional features like playing of camera pathsuiomatic spinning. Addi-
tionally, multiple scene views can be connected to eachrofhtnaster” scene view
controls the connected cameras. For example, this allowsrtgare the rendering
speed of the same view at the same time for different teclesiguth and without
occlusion culling.

L= =——————————Hoan

Min: 15.62
Avg: 19.96
Max: 28.57

Min: 8.77
Avg: 37.57
Max: 45.45

rBlue

Connect scene

Min: 25.00
Avg: 35.15
Max: 45.45

100 =
Enable overwrite
Enable stderr

Reset framecount

Figure 8.4: Screen shot of the statistics window.

To give a feedback of the rendering performance, the frateecem be visualized
in a statistics window. Figure 8.4 shows an example of thisdewv. The user can
connect a scene view with drag and drop to the statisticsawndifferent modes

are available for the visualization.
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8.2 Test Models

8.2.1 Cotton Picker

! ‘.J‘%"L.H;
I R

i

Figure 8.6: Depth complexity of the Cotton Picker model (aagmplexity: 13.3752
in 432 540 visible pixels).

Number of polygons 10610 166
Number of nodes 40 724
Number of geometry nodes 13 270

Table 8.1: Scene specifications of the Cotton Picker model.

The Cotton Picker is a “real world” model from an industrial BAnodeling
application. It consists of 13,270 individual parts in isseambly list (see Table 8.1).
Most of the geometric complexity is located in the front of tinodel where are the
spindle parts located. Each spindle has a huge number of spiladls. Depending
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on the viewpoint most of the spindles are occluded by chassis. However, from
a frontal point of view, most of the spindles are visible, e¥htlecreases the benefits
of occlusion culling approaches.

8.2.2 Formula One Car

Figure 8.8: Depth complexity of the Formula One Car model.

Number of polygons 746 827
Number of nodes 311
Number of geometry nodes 306

Table 8.2: Scene specifications of the Formula One Car model.

The Formula One Car model is like the Cotton Picker a CAD modtehas a
lower complexity with 746,827 polygons. Inside the chasisesmodel consists of
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an engine, a gear box and suspension parts. Also a drivetingysin the seat and
controls the drive. The polygons are distributed over thelevbody and chassis. In
most points of view, the inner parts are occluded by the dhass

F1 Animation

T
()
» |
( D)
")
"‘
0
¥
()

3 N
(=% : F

Figure 8.10: Some frames of the F1 Animation.

Number of polygons 2242 481
Number of nodes 2552
Number of geometry nodes 965

Table 8.3: Scene specifications of the F1 Animation model.

The F1 Animation is an artificial scene with three Formula Orae iBodels and
a very simple circuit in which the Formula One Car models dbsan eight. Each
car has a little different track and performance, howevey ttho not overtake each
other. The model is more complex with 2,242,481 polygons anased to make
experiments with dynamic scenes. The relations of the polydo each other is
changing in every frame, which has to taken into account im@lusion culling
approach.
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8.2.3 City

Figure 8.11: Different views of the Big City model, lower hig depth complexity.

Model City  BigCity |
Number of polygons 4056 195 64 898 464
Number of nodes 1973 31439
Number of geometry nodes 1 900 30 385

Table 8.4: Scene specifications of the both City models.

The City model is a combination of a London district and someritda One
Car models to increase the complexity. To get a larger modklvigher complexity,
the City model is replicated four times in each directionwddthe Big City model.
Both models are architectural scenes, which usually befnefit occlusion culling
techniques. Facades in the front of the models occlude nidkednner and rear
geometry.
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8.2.4 Boom Box

The Boom Box model is a CAD model of a portable music system lwitler com-
plexity. In the interior the model contains some resistoapacitors and other elec-

tronic stuff, which are occluded by the case.

Figure 8.12: Image of the Boom Box model, lower left: boumdivoxes of the
interior, lower right: depth complexity.

Number of polygons 644 268
Number of nodes 1277
Number of geometry nodes 530

Table 8.5: Scene specifications of the Boom Box model.
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