
Hardware-assisted Occlusion Culling
for Scene Graph Systems

Dissertation
der Fakulẗat für Informations- und Kognitionswissenschaften

der Eberhard-Karls-Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Dipl.-Inform. Dirk Staneker

aus Reutlingen

Tübingen
2005

Tag der m̈undlichen Qualifikation: 25.01.2006
Dekan: Prof. Dr. Michael Diehl
1. Berichterstatter: Prof. Dr.-Ing. Dr.-Ing. E.h. WolfgangStraßer
2. Berichterstatter: Prof. Dr. Andreas Schilling

Abstract

This thesis describes different aspects of occlusion culling algorithms for the effi-
cient rendering of 3D scenes with rasterization hardware. Scene graphs are used as
data structures for the scenes to support a wide range of different applications. All
presented algorithms permit modifications of the graphs at runtime and therefore the
algorithms are suitable for dynamic scenes.

The thesis consists of three parts. The first part compares different techniques
to determine the visibility of a single scene graph node. Alltechniques have the
same characteristic in that they utilize the depth information on the graphics hard-
ware in some way. Unfortunately, each access to the hardwarerequires some latency.
Therefore the second part of this thesis presents some algorithms to reduce the num-
ber of these accesses to the graphics hardware. The algorithms take advantage of a
lower resolution representation of the scene graph nodes inscreen-space on the one
hand, and they also use the informations of previous occlusion queries on the other.
Because all the presented algorithms use the depth values ofthe currently rendered
scene, the order of the rendering and the occlusion tests is important. Hence the
third part of this thesis presents a novel algorithm for the traversal of a scene graph
which efficiently utilizes hardware occlusion queries. Therefore the algorithm uses
screen-space coherence in combination with a front-to-back sorted traversal of the
scene graph in object-space. To determine the occlusion, the algorithm bundles in-
dividual occlusion tests in multiple occlusion queries. These can be asynchronously
performed to reduce the latency.

All presented algorithms deliberately do not use special – spatial – data structures
for the scene to avoid long preprocessing times or restrictions in the use of dynamic
scenes. Also, the algorithms do not exploit temporal coherence between the frames,
because this results in limitations for dynamic and interactive scenes. However, the
presented algorithms admit an efficient rendering of sceneswith high depth complex-
ity.

iii

iv

Zusammenfassung

Die vorliegende Arbeit behandelt verschiedene Aspekte derVerdeckungsrechnung
zur effizienteren Darstellung dreidimensionaler Szenen mit Hilfe von Rasterisierungs-
hardware. Alle betrachteten Algorithmen verwenden einen herkömmlichen Szene-
graphen als grundlegende Datenstruktur. Dadurch lassen sie sich unmittelbar zahl-
reichen Anwendungen zur Verfügung stellen. Alle Algorithmen erlauben es, den
Szenegraphen zur Laufzeit zu modifizieren, und lassen sich somit auch auf dynami-
sche Szenen anwenden.

Die Arbeit teilt sich auf in drei Bereiche. Im ersten Abschnitt wird auf die ver-
schiedenen M̈oglichkeiten eingegangen, die Verdeckung eines einzelnenKnotens
aus dem Szenegraphen zu ermitteln. Die vorgestellten Algorithmen implementieren
dabei verschiedene Methoden, um die auf der Graphikhardware gespeicherte Tiefen-
information auszunutzen. Allerdings benötigt jeder Zugriff auf die Graphikhardware
eine kurze Zeitspanne. Der zweite Abschnitt beschäftigt sich daher damit, Zugriffe
auf die Hardware zu reduzieren. Dabei wird einerseits eine vereinfachte Repräsenta-
tion der Szenengraphknoten im Bildraum und andererseits die Informationen von
bereits durchgeführten Verdeckungstests verwendet. Da alle vorgestelltenAlgo-
rithmen in irgendeiner Form von den Tiefenwerten von bereits gezeichneten Teilen
der Szene abḧangen, ist die Reihenfolge der Darstellung und der Verdeckungstests
von zentraler Bedeutung. Im dritten Teil der Arbeit wird daher ein neuer Traver-
sierungsalgorithmus für den Szenengraphen vorgestellt, der die von der Graphikhard-
ware zur Verf̈ugung gestellten Verdeckungstests besonders effizient ausnutzen kann.
Dazu sucht der Algorithmus nach Kohärenzen im Bildraum in Kombination mit einer
sortierten Traversierung der Knoten im Objektraum. Um letztendlich die Verdeck-
ung eines Objekts zu bestimmen, bündelt der Algorithmus die Verdeckungstests in
Mehrfachanfragen, die es erlauben, mehrere unabhängige Verdeckungstests asyn-
chron durchzuf̈uhren.

Ganz bewusst wurde auf die Verwendung von speziellen – räumlichen – Daten-
strukturen f̈ur die Szene verzichtet, um lange Vorberechnungszeiten oder Einschr̈an-
kungen f̈ur dynamische Szenen zu vermeiden. Ebenso wurde darauf verzichtet, zeit-
liche Koḧarenz zwischen einzelnen Bildfolgen auszunutzen, da dies Einschr̈ankun-
gen f̈ur interaktive Szenen zur Folge hätte. Gleichwohl erlauben die vorgestellten
Algorithmen eine effiziente Darstellung beliebiger Szenenmit hoher Tiefenkom-
plexität.

v

vi

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Contribution of This Thesis . 4

1.3 Structure of the Thesis . 5

2 Background 7

2.1 Scene Organization . 7

2.1.1 Space Subdivision . 8

2.1.2 Scene Graphs . 9

2.1.3 Bounding Volumes . 14

2.2 Rendering . 15

2.2.1 Rasterization Pipeline . 15

2.2.2 Multi-Resolution . 16

2.2.3 Visibility Culling . 17

3 Occlusion Culling 21

3.1 Introduction . 21

3.2 Classification . 24

3.3 Hardware Occlusion Queries . 26

3.4 Related Work . 28

4 Occlusion Query Implementations 33

4.1 Introduction . 33

4.2 Using the OpenGL Depth Buffer 34

4.3 Using the OpenGL Stencil Buffer 35

4.4 OpenGL Extensions for Occlusion Culling36

4.5 Evaluation . 37

vii

Contents

5 Avoiding Predictable Occlusion Queries 41
5.1 Introduction . 41
5.2 Occupancy Map . 42

5.2.1 Implementation . 42
5.3 Additional Depth Buffer in Software44
5.4 Temporal Coherence . 45
5.5 Results . 46

5.5.1 Occupancy Map and Software Depth Buffer 50

6 Occlusion Driven Traversal 53
6.1 Introduction . 53
6.2 Occlusion Query . 54
6.3 Organization of Multiple Occlusion Queries 55
6.4 Traversal . 56

6.4.1 Complexity . 62
6.5 Results . 63

6.5.1 Scene Graph Structure . 66

7 Conclusion and Future Work 69
7.1 Conclusions . 69
7.2 Main Results . 70
7.3 Future work . 71

8 Appendix 73
8.1 OSGViewer . 73

8.1.1 Implementation . 74
8.1.2 Main Part . 74
8.1.3 Scene View . 75

8.2 Test Models . 77
8.2.1 Cotton Picker . 77
8.2.2 Formula One Car . 78
8.2.3 City . 80
8.2.4 Boom Box . 81

Bibliography 83

viii

List of Figures

1.1 A complex MCAD model of a Cotton Picker. 3

2.1 Structure of a 3d scene subdivided in its objects. 7
2.2 Examples of an octree and BSP tree 8
2.3 Example of a simple scene graph. 9
2.4 Internal data structure of a Jupiter scene graph. 11
2.5 Internal data structure of an OpenSG scene graph. 13
2.6 Bounding volume hierarchy for the Formula One Car. 14
2.7 Block diagram of the OpenGL rendering pipeline. 15
2.8 Two different resolutions of the same model. 16
2.9 View frustum culling and backface culling. 18
2.10 Contribution or detail culling. 19

3.1 Visible and occluded objects of a scene. 21
3.2 Occlusion culling. 22
3.3 Depth complexity. 23
3.4 Point- vs. region-based occlusion culling. 24
3.5 Block diagram of the OpenGL occlusion query extension. 26
3.6 Pipeline of rendering with occlusion queries. 27
3.7 Hierarchical z-buffer. 28
3.8 Hierarchical Occlusion Maps . 29
3.9 Illustration of the depth estimation buffer. 30
3.10 Working set used for temporal coherence. 31
3.11 Differences between a kd-tree and a scene graph. 32

4.1 Overview of the software architecture 33
4.2 Block diagram of the OpenGL z-Buffer read caching scheme. 34
4.3 Z-buffer with marked fragments. 35
4.4 Occlusion test with the stencil buffer. 36
4.5 Block diagram of the OpenGL stencil buffer read. 36

ix

List of Figures

4.6 Latency of the HP Occlusion Flag 37
4.7 Rendering results. 38

5.1 Overview of the software architecture 41
5.2 Construction of the Occupancy Map. 42
5.3 Example for an Occupancy Map. 43
5.4 Request to the Occupancy Map. 44
5.5 Occlusion test with the Software Depth Buffer. 45
5.6 Experimental results. 47
5.7 Experimental results. 48
5.8 Experimental results. 49
5.9 Experimental results. 51
5.10 Experimental results. 51
5.11 Experimental results. 51

6.1 Overview of the software architecture 53
6.2 Multiple query without and with possibly redundant results. 54
6.3 Request to the Occupancy Map. 55
6.4 Traversal of the scene graph. 57
6.5 Traversal – Stage 1. 58
6.6 Traversal – Stage 2. 58
6.7 Traversal – Stage 3. 60
6.8 Occluded bounding boxes of multiple occlusion queries.. 61
6.9 Worst case situation for the traversal 62
6.10 Boom Box frame rates and rendered polygons. 64
6.11 Frame rates and rendered polygons for the different models. 65
6.12 Rendering performance depending on scene graph depth 67

8.1 Screen shot of the OSGViewer. 73
8.2 Main window of the OSGViewer. 74
8.3 Scene view of the OSGViewer. 75
8.4 Screen shot of the statistics window. 76
8.5 Complex scene of a Cotton Picker. 77
8.6 Depth complexity of the Cotton Picker model. 77
8.7 Formula One Car. 78
8.8 Depth complexity of the Formula One Car model. 78
8.9 Screen shots of the F1 Animation model.79
8.10 Some frames of the F1 Animation. 79
8.11 Different views of the Big City model. 80

x

LIST OF FIGURES

8.12 Different views of the Boom Box model.81

xi

List of Figures

xii

Acknowledgments

First, I would like to thank my advisor, Prof. Wolfgang Straßer. This work would
not have been possible without his long term support. I wouldalso like to thank
Prof. Andreas Schilling for his additional support of my work. My thanks go to Dirk
Bartz and Michael Meißner for their help on writing papers and the discussions about
research stuff. Special thanks go to my colleagues for theirsupport in a lot of dif-
ferent situations, especially Michael Wand for the interesting discussions regarding
rendering, operating systems and programming languages.

The work in this thesis is based on the OpenSG scene graph, which was initially
introduced by Dirk Reiners, Gerrit Voss and Johannes Behr. The OpenSG PLUS
project, which the work in this thesis is part of, was funded by bmb+f based on
OpenSG.

English is a foreign language for me and I wish to thank Maria Finnegan for her
corrections and help on language issues.

Finally, thank you to my family and my girlfriend Melisa Mekic for their patience
and aid.

1

2

Chapter 1

Introduction

The first Chapter explains the motivation of the presented work, provides an overview
of the contributions and a brief outline of the structure of the thesis.

Figure 1.1: A complex MCAD model of a Cotton Picker. The model has a complex-
ity of over 10 million polygons in 13 270 individual parts.

1.1 Motivation

The datasets for visualization are growing faster in size than the rendering speed
of modern graphics subsystems. Especially due to the increasing capabilities of 3d
scanner hardware [4], very complex data sets have become available. But also artifi-
cial/constructed data sets from MCAD (see Figure 1.1) or from physical simulations

3

1. Introduction

have become more complex due to increasing computational power. For example, the
rendering of a Boeing 777 would include 132,500 unique partsand over 500,000,000
polygons [21]. Acceleration algorithms will always be necessary to handle such large
amounts of data.

Several algorithms already exist to address the problem of rendering such large
data sets. Most of them reduce the number of primitives, others use sampling tech-
niques such as raytracing [52] or point sampling [56, 57]. Toreduce the number of
primitives, level-of-detail [26] or impostor [22] techniques can be used. Another ap-
proach is occlusion culling, which is the focus of this thesis. As part of this process,
occluded parts of a complex scene are detected and excluded from the rendering pro-
cess. In particular, the rendering of scenes with high depthcomplexity can benefit
from occlusion culling.

In contrast to many other occlusion culling techniques,arbitrary anddynamic
scenes are also the focus of this work with regard to applyingthe techniques de-
scribed here to a standard scene graph. A standard scene graph must be usable in
a wide range of different applications, models, and platforms. To achieve this goal,
miscellaneous capabilities of the graphics hardware should be usable to support a
wide range of different hardware platforms. Also, precalculations or the construc-
tion of special data structures should be avoided to support“real-time” use. This is
important for CAD systems or other interactive systems, where the user is able to
modify the scene in real-time.

1.2 Contribution of This Thesis

The work in this thesis focuses on occlusion culling for common scene graph sys-
tems, which has the previously described implications: support for different hard-
ware platforms, no time for preprocessing and support for general and dynamic
scenes. The thesis is subdivided into three main parts, whichcomplement to each
other:

• We present and compare different techniques for the exploitation of standard
z-buffer hardware for occlusion culling [6]. This includes the presentation
of a new caching scheme for z-buffer accesses and a quantitative analysis of
hardware supported occlusion queries.

• Furthermore, we also present some algorithms to reduce the number of pre-
dictable occlusion queries to the graphics hardware [5, 8].Object space co-
herence and sorted rendering is used to achieve this goal. Thereduction of the

4

1.3. Structure of the Thesis

number of occlusion queries is important to decrease the needed latency for
the hardware communication.

• The main contribution is a new traversal and sorting algorithm that benefits
from multipleocclusion queries of modern graphics hardware, which is avail-
able on a wide range of graphics hardware and part of the OpenGL 2.0 stan-
dard [9, 10, 12]. The algorithm significantly reduces the latency overhead of
occlusion queries. Also no preprocessing or spatial data structures are neces-
sary, so that the algorithm can be directly used with a scene graph system to
benefit from hardware occlusion queries.

1.3 Structure of the Thesis

This thesis is organized as follows; the next Chapter describes the background for
this thesis and gives a short introduction to scene graphs and acceleration techniques
for rendering. A more detailed description of occlusion culling and related work to
this thesis is then given in Chapter 3. Chapter 4, 5, and 6 present the practical part
and corresponding results of this thesis. Different implementations of algorithms to
determine the visibility are described in Chapter 4, followed by extensions to prevent
occlusion queries in Chapter 5, and concluding with a special traversal algorithm in
Chapter 6. The thesis closes in the final Chapter with a summaryof the presented
work and an outlook on future work. An overview of the application and test models
used for the experiments can be found in the Appendix.

5

1. Introduction

6

Chapter 2

Background

This Chapter gives a short introduction to the necessary background for the work
in this thesis, which includes data structures for scene organization and different
acceleration methods for rendering, such as multi-resolution and culling. The main
focus is on scene graphs, real-time rendering and visibility culling techniques.

Figure 2.1: Structure of a 3d scene subdivided in its objects.

2.1 Scene Organization

Usually a 3d graphics scene consists of a large number of polygons (triangles), how-
ever other primitives like points, voxels or splines are also used. The primitives in

7

2. Background

3d space are defined by vertices, normals, texture coordinates, etc. To organize and
manage this data, hierarchical data structures are used [24, 35, 36]. Hierarchical data
structures are able to reduce the complexity fromO(n) to sub-linear for a wide range
of algorithms, like picking or view frustum culling. The datastructures can be clas-
sified into two different types, with and without space subdivision [48]. Examples
for hierarchical data structures with space subdivision are octrees or BSP trees. In
contrast, scene graphs are data structures without strict space subdivision.

Figure 2.2: 2D examples of an octree (left, the termquadtreeis used in 2D) and a
BSP tree (right).

2.1.1 Space Subdivision

Octree

An octree [36] recursively subdivides the 3d space into eight, equal sized boxes (see
left Figure 2.2). The 3d informations are sorted into these boxes. The advantage of
an octree is its spatial representation, which is useful formulti-resolution rendering,
spatial coherent traversal and data compression [13, 28]. The drawback of an octree
is the cost for an update in dynamic scenes and the strict subdivision of space.

Binary Space Partitioning

A binary space partitioning (BSP) tree [24] recursively subdivides the 3d space with
planes (see right Figure 2.2), which results in a binary treerepresentation of the
scene. A BSP tree is useful for sorted rendering and visibility calculations. There
are two variants,axis-aligned(kd-tree) andpolygon-aligned. The construction of an
effective BSP tree is a very time-consuming process, because it is hard to find “good”
planes for subdivision. Thus BSP trees are usually precalculated once and stored for
reuse.

8

2.1. Scene Organization

Conclusion

Both the octree and BSP tree are useful to speed up rendering.However, the draw-
back here is that updates of the hierarchy become expensive,which makes handling
of dynamic scenes difficult. Usually these data structures are calculated in a prepro-
cessing step. Also space subdivision data structures are optimized only for geometry,
other aspects like material sorting are not taken into account.

2.1.2 Scene Graphs

Group

Group

Transform

Geometry

Transform

Geometry

Transform

Geometry

Transform

Geometry

Transform

Geometry

Transform

Geometry

Figure 2.3: Example of a simple scene graph of the left model.

Scene graphs are used to represent a 3d scene in a hierarchical tree structure
(see Figure 2.3). The tree structure has no space subdivisionin contrast to octrees
or BSP trees, which makes scene graphs handy for data manipulation, storing and
organization (usually the scene is separated into objects like screws, nuts and springs,
which is very useful in many applications like MCAD assemblyor modeling tools,
see Figure 2.1). The drawback is that there is no optimizationfor rendering in the
data structure. However, a hierarchical structure of bounding volumes are usually
supported by most scene graphs. Also, a scene graph is more like a database, which
represents a scene. It is easy to add additional informationto a scene, for example,
identifiers or material parameters.

A scene graph consists of different types ofnodes, for example, group, transform
or geometry nodes. A set of 3d primitives construct a geometry node. The position in

9

2. Background

the scene of a geometry node is driven by transform and group nodes, which arrange
a set of child nodes. There are different types of scene graphs. Multi-parent scene
graphs allow multiple parents for a node in contrast to single parent graphs. Multi-
parent graphs allow a more flexible instantiation of the child nodes, whereas single
parent graphs are easier to traverse and manage. Most scene graphs combine both
techniques and scene graphs in combination with space subdivision data structures
are also available [56].

Three main steps are performed to render an image of a scene graph. Traversal,
cullingandrendering. Usually these steps are interleaved to balance the load between
the rendering subsystem and the host system, which performstraversal and some
parts of the culling. In a simple implementation of a scene graph renderer, a recursive,
stack-based, depth-first traversal of the graph is used. During traversal, material and
transformation informations in the nodes are accumulated and culling is applied. If a
node contains geometry, it is directly sent to the graphics subsystem and rendered.

Scene graph programming libraries are widely available andhave a long tradition.
Well known are Open Inventor [59], IRIS Performer [46], Cosmo3d [34],Jupiter[32,
3] or OpenSG[25], but there are many others. Almost every graphics application
employs a scene graph in some way.

The main differences are the underlying data structures, support for large data
sets, the software architecture, the used programming language and the flexibility of
the traversal techniques. All of these scene graphs use polygons as main primitives
and OpenGL [61] or Direct3d [53] for rendering, which does not mean that they
cannot be used for raytracing or point sampling. Most of the scene graph toolkits are
implemented in C++ with the advantage of performance and object orientation.

This thesis focuses on the scene graphsJupiterandOpenSG, but all of the algo-
rithms presented could also be used with other scene graph systems.

Jupiter

Jupiter [3, 32] focuses on large model rendering and provides different concepts for
managing large amounts of data. Jupiter is based on a software initiative of Hewlett
Packard (HP) and Engineering Animation Inc. (EAI) which led early in 1997 to
the large model toolkit Jupiter, formerly also known as “DirectModel” [21] (the
rights to the name “DirectModel” were later acquired by Microsoft). This initia-
tive was canceled later the same year, in favor of the “Fahrenheit” project by HP,
Microsoft and SGI. EAI continued working on Jupiter and with the virtual halt of the
Fahrenheit project in 1999, Jupiter was relaunched by HP as an Open Source project
(Kelvin [62]) in conjunction with the department for Graphical-Interactive Systems

10

2.1. Scene Organization

at the Wilhelm Schickard Institute for Computer Science (WSI/GRIS) at the Univer-
sity of Tübingen.

Originally, Jupiter was developed as platform and graphicsapplication program-
ming interface (API) independent toolkit, available with support for StarBase [30],
OpenGL [61] and Direct3d [53] on Microsoft Windows and UNIX systems. In the
version available from WSI/GRIS, Jupiter focuses on OpenGLand UNIX systems
(Linux, Irix, HP/UX).

Shape GroupShape

Group

Shape Instance Instance Instance

Transform

Geometry

TransformTransform

Geometry

Transform

Geometry

Transform

Reference Reference

Transform Transform

Reference

Figure 2.4: Internal data structure of a Jupiter scene graph.

The scene graph of Jupiter is calledlogical graphand is an acyclic directed graph.
It consists of a variety of different nodes, which divide thepartition of the model into
objects and groups of objects (see Figure 2.4). Each node can contain a transfor-
mation matrix to specify a 3d location. The Jupiter scene graph is a single parent
graph, but special instance nodes allow the same instance ofa geometry node to be
used multiple times in the graph to save memory. Geometry nodes are calledshape
nodes in Jupiter and contain different types of representations such as triangle strips,
polygon sets or polyline sets. To manage large models,level-of-detailnodes handle
subgraphs of different resolutions of geometry. A specialpartition node is also avail-
able, which specifies out-of-core subtrees. These subtrees can be swapped from or to
the disk if necessary.

Jupiter has a very flexible concept for the traversal of the scene graph. A special
class, calledstrategy, is used to manage the budget-based traversal. Each strategy
consists of a set of pipelinedagentswhich evaluate the importance of the scene graph
nodes and manipulate the traversal accordingly. The importance can be based on the

11

2. Background

visibility of a node, on its visual contribution, or on specific properties of a node.
The agents process each node in a pipelined fashion. The order of the pipeline is
important and depends on the performance of an agent. For example, the view frus-
tum culling agent is used in front of the rendering agent. Jupiter provides agents for
several purposes, like memory management, picking, rendering, culling.

A strategy can be used for different tasks, like rendering orpicking. The order
during traversal is determined by a priority for each node. This allows different
schemes for traversal, for example, object-space front-to-back, material sorted or
image-space sorted. A more detailed description of Jupitercan be found in [3, 9, 32,
62].

OpenSG

While Jupiter has a longer tradition and started as a commercial product, OpenSG
started in 1999 as Open Source project in Darmstadt, Germany, after the cancellation
of Fahrenheit [25]. In conjunction with the OpenSG project,the OpenSG PLUS
project started 2001 with support by the bmb+f1. OpenSG PLUS adds support for
large scenes, high level primitives and high level shading [20] to OpenSG, which
provides core functionality.

The focus of OpenSG is on a rendering system for virtual reality (VR) applica-
tions. There are a wide range of VR applications. Often special hardware configu-
rations are used to give better impressions in the virtual environment. This means
that high-performance graphics hardware is needed. To obtain maximum rendering
performance and quality, a cluster can be used for rendering, especially if multiple
projectors for stereo, CAVEs or high resolution displays areto be operated. Each
projector is driven by its own computer and the computers areconnected to a cluster.
OpenSG can manage and distribute the rendering over such a cluster. To achieve this
goal, OpenSG uses a more complex scene graph model with reflection and thread-
safe data structures.

Reflection means that each instance can provide informationabout its internal
data structures during run-time of the application. Thread-safe means that asyn-
chronous modifications of the scene graph data are tracked and synchronized in a
cluster or multi-threaded environment.

In contrast to Jupiter and many other scene graphs, the graphand geometric,
material, transformation, etc. information is separated in OpenSG. Each scene graph
node is the same node type and has a pointer to its parent, its children and itscore.
Thecorecontains the actual data, like transform matrices, material informations or

1Federal Ministry of Education and Research, Germany

12

2.1. Scene Organization

CorePtr CorePtr

CorePtr

CorePtr CorePtr CorePtr CorePtr

CorePtr CorePtr CorePtr CorePtr

Node

Transf

Node Node

Transf

Node

Node

Transf

Node

Transf

Node

Transf

Node

CorePtr
Node

Node

TransfCorePtr

Node

CorePtr

Node

Group

Group

Node

Geo Geo

Geo

Node

Figure 2.5: Internal data structure of an OpenSG scene graph.

geometric data (see Figure 2.5). The OpenSG scene graph is also an acyclic directed
graph with single parent nodes. But acore can be referenced by multiple nodes,
which results in instantiation to save memory consumption.The background for this
design decision is that the scene graph itself is very small in contrast to the geometric
data. So the whole scene graph can be distributed and very easily updated over a
cluster. On the other hand, the amount of geometric data can become very big and it
is not necessary to distribute and update all data on every cluster node. At a first view,
the OpenSG scene graph looks much more complex than the Jupiter or other scene
graphs, but the internal data like matrices, geometry, materials, etc. are also stored as
references in other scene graphs. OpenSG abstracts this structure to the application
programmer to benefit for a better synchronization in cluster and multi-threading
environments.

OpenSG focuses on OpenGL as rendering backend and polygons as main prim-
itives. But other primitives like points or NURBS [37] are also supported, even
volume rendering is possible [58]. Shader programming is also supported and can be

13

2. Background

done by Cg [23] or GLSL [47]. Different operating systems likeLinux, Windows or
Irix can be used as platform for OpenSG. A more detailed description of OpenSG can
be found in [45, 55].

2.1.3 Bounding Volumes

Figure 2.6: Bounding volume hierarchy for the Formula One Car (left: none, middle:
bounding boxes, right: k-dops).

A bounding volume[35, 24] wraps a set of 3d primitives. Bounding volumes are
very important to speed up a wide range of computations in computer graphics. Espe-
cially in collision detection and raytracing, but also in visibility and multi-resolution
algorithms, bounding volumes are used to get a fast information about the spatial
organization of an object. Often bounding volumes are grouped together to form
a bounding volume hierarchy. Different types of bounding volumes are used, like
spheres, boxes or k-dops (see Figure 2.6). Also they can be distinguished between a
representation in local or global coordinates and axis- or local-aligned.

Usually every scene graph provides a bounding volume hierarchy. OpenSG and
Jupiter provide bounding spheres and bounding boxes in eachnode. One specialty
is the used coordinate system for the vertices. Only axis-aligned bounding volumes
in local and global coordinates are provided, because they can be calculated inO(n).
In global coordinates each vertex of the underlying has to betransformed to global
coordinate space. Local-oriented bounding volumes are muchmore complicated to
compute, so that an update of a bounding volume comes more expensive.

In the latter, k-dops become more popular in computer graphics for a wide range
of applications. They combine a fast calculation with a tighter approximation of the
underlying object and it is not complicated to build a k-dop hierarchy. K-dops also
becoming more popular in occlusion culling approaches [1, 2, 16].

14

2.2. Rendering

Memory
Texture

Program
Vertex

Vertex
Shader

Program
Fragment

Fragment
Shader

Buffer
Frame

z−BufferVertex Data

Pixel Data

Display
Lists

Evaluator

Operations
Pixel

Rasterizer

Figure 2.7: Block diagram of the OpenGL rendering pipeline.

2.2 Rendering

There are a wide range of rendering techniques [24, 35, 36] in computer graphics.
Most popular are raytracing and polygon rasterization. Volume rendering, point ren-
dering and image based rendering are other well known techniques. While raytracing
is usually used for high quality rendering, polygon rasterization is well supported by
special graphics hardware for real-time rendering.

2.2.1 Rasterization Pipeline

Usually this simplified (OpenGL) pipeline is used for polygonrasterization:

Classical Graphics Pipeline Programmable Graphics Hardware
Triangle setup Setup
Vertex transform Vertex Shader
Lightning Rasterization
Rasterization Fragment Shader
Frame and z-buffer updates Frame and z-buffer updates

The work of this thesis based on such a pipeline and reduces theload during
rendering. Figure 2.7 shows a more detailed block diagram ofthe OpenGL pipeline.
There are different types of bottlenecks in the pipeline:

1. Memory bandwidth host↔ graphics board: transfer of the vertex data (includ-
ing colors, texture, vertex coordinates, etc.).

2. Transformation and vertex shader performance.

15

2. Background

3. Rasterization and fragment shader performance.

4. Memory bandwidth graphics chip↔ frame, texture and z-buffer.

5. State changes: changing configurations of the rendering like blending, light-
ning or different shader programs can cause graphics pipeline flushes and
stalls. In addition to the latency caused by the graphics hardware, this also
includes latencies from the operating system (interrupt handling, etc.) and
graphics driver.

A lot of different acceleration techniques (in hard- and software) exist to reduce
these bottlenecks. Most of them can be classified in two orthogonal types: culling
and multi-resolution techniques.

2.2.2 Multi-Resolution

Multi-resolution or Level-of-Detail (LOD) algorithms try toreduce the number of
used polygons and textures for rendering without loosing image quality by using
simpler representations of an object if its contribution tothe image is small. For
example, consider a very detailed Cotton Picker model shownin Figure 2.8 that
consists of 11,000,000 polygons in full resolution. The fullresolution can be used, if
the viewer is close to the model. But if the viewer is far away and the model covers
only 20×20 pixels on the screen, 11,000,000 polygons are obviously not necessary
to render a nice image (see Figure 2.8). Multi-resolution techniques are very useful
in scenes with a lot of small, visible details, for example, trees in a forest or people
in a stadium.

Figure 2.8: Two different resolutions of the same Cotton Picker model, left: full res-
olution with over 11 million polygons right: lower resolution with almost 3 million
polygons.

16

2.2. Rendering

Multi-resolution algorithms can be split into three major parts: generation, se-
lectionandswitching. Generation is the part, which calculates different detaillevels
of an object. This can be done in a preprocessing step or duringrun-time. Selection
decides, which detail level is used during rendering. Often, the estimated area in
screen-space is used as criteria for selection, but other criterias like the distance to
the viewer or a time-budget for rendering can be used. Finally, the change between
different detail levels is termed switching. A switch between two detail levels is often
noticeable, so different techniques try to reduce this effect.

Multi-resolution techniques are not the focus of this thesis, a more detailed de-
scription can be found in [26]. However, some visibility techniques can be used to
give a hint in detail level selection. It is possible, to acquire the amount of visible
pixels in relation to occluded pixels, which is useful for selection of an adequate
object resolution. Multi-resolution techniques reduce the load of the vertex transfor-
m/shader unit of the graphics hardware and the transfer of vertex data to the graphics
hardware. Also if multi-resolution is applied to textures,less texture memory and
bandwidth is needed.

2.2.3 Visibility Culling

Visibility Culling tries to find parts of the scene, which arenot (or almost not) visible
from a given viewpoint. Culling techniques are very useful in scenes with high depth
complexity or vast environments, like city or architectural environments. Another
application are MCAD models with very detailed interior, like machines or cars.

Culling saves rasterization bandwidth, transformation calculations and texture or
geometry transfers to the graphics hardware. Also state changes and shader cal-
culations can be reduced. To maximize speedups during rendering, usually multi-
resolution and culling techniques are combined.

View Frustum Culling

With view frustum culling, parts of the scene outside the view frustum are removed
from the rendering process. Usually only bounding volumes are used to calculate the
visibility. A bounding volume can be in three different states; inside, outside, and
intersectionwith the view frustum. Objects whose bounding volumes are outside
the view frustum, are not rendered, bounding volumes with intersection are further
processed in a hierarchical data structure or rendered, if they contain geometry (see
left Figure 2.9). If a bounding volume hierarchy is used, theterm hierarchical view
frustum culling is used.

17

2. Background

Viewpoint

view frustum
Outside

view frustum
Inside

Viewpoint

Occluded

Visible

Faces

Faces

Figure 2.9: Left: view frustum culling, right: backface culling. The red parts are not
rendered.

View frustum culling is commonly used and easy to implement,there are only a
few minor difficulties. It is usually calculated on the host CPU during traversal of the
scene data structure and thus, view frustum culling reducesthe load of the graphics
hardware.

Backface Culling

Opaque models of real-world objects are usually modeled with a back and a front
side (see right Figure 2.9), but only the primitives which are facing to the viewer
can be seen from a given viewpoint. Backface culling removesprimitives, whose
normals are pointing away from the viewer (backfaces) and thus are not visible (see
Figure 2.9, on the right). This can be calculated by creating avector d from an
arbitrary point (for example, one vertex) on the polygon to the viewer: d = v0 −

pviewer. Then compute the dot product of this vector with the normal ofthe polygon:
r = d ·n. It follows that if r < 0 then∢(n,d) > π/2, the polygon is not facing to the
viewer. Another way is to use the normalnp of theprojectedpolygon; if znp < 0 the
polygon is not facing to the viewer, assuming that the negative z-axis is pointing into
the scene.

Hardware solutions (supported by OpenGL backface culling)are using the ori-
entation of the vertices of a polygon to estimate the projected normal of a primitive.
This reduces the memory bandwidth on the graphics board sincerasterization of
backfacing polygons is not necessary, but the polygons are transfered to the graphics
hardware and transformed. Also additional computations ofthe orientation may be
necessary.

To save also bandwidth between the graphics board and the host, backface culling

18

2.2. Rendering

can be done in software. But it is too expensive to test each normal of each primitive,
hence clustering techniques can be used. Anormal cone[51] is usually used, to
cluster a set of primitives, whose normals are inside the cone. The cone is defined
by a normaln and a half-angleα. The set of primitives is backfacing if the cone is
backfacing.

Contribution and Occlusion Culling

Contribution (or Detail) Culling is making a trade-off between the contribution of an
object to the resulting image and the image quality. If the contribution of an object
to the resulting image is too small (see Figure 2.10), the object is not rendered. This
is not conservative and results in (small) image errors, butis sometimes acceptable if
the rendering speed is the important factor. Contribution Culling can be implemented
by using the projected screen-space size of a bounding volume as degree of contribu-
tion. Often a major problem of contribution culling are not the image errors, but the
flickering of appearing or disappearing geometry, which is similar to the switching
of different level-of-details (cp. to Section 2.2.2).

Occlusion Culling is done, if an object hasnocontribution to the resulting image.
This is the case, if an object is completely occluded by other geometry. This is a
much more complex problem and thus a more detailed description about occlusion
culling is given in the next Chapter.

Viewpoint

Figure 2.10: Contribution or detail culling, the red parts are not rendered.

19

2. Background

20

Chapter 3

Occlusion Culling

Whereas the previous Chapter gives a more general introduction to the backgrounds
of this thesis, the following Chapter focuses on occlusion culling in more detail. A
classification of the different occlusion culling algorithms is given and related work
to this thesis is presented.

Figure 3.1: Visible (left) and occluded (right) objects of ascene.

3.1 Introduction

Occlusion culling tries to find occluded geometry for a givenviewport which is anal-
ogous to the visibility of an object. Occlusion culling is much more complex than
the other visibility techniques, view frustum, backface and contribution culling. In
contrast to the other culling techniques, occlusion culling is aglobal problem, due
to the interaction of polygons of different objects, whereas backface, view frustum

21

3. Occlusion Culling

or contribution culling can be calculated on a “per-object”basis, which is alocal
problem.

Viewpoint

Occludee

Occluder

Shadow Frustum

Figure 3.2: Occlusion culling. The red parts are not rendered.

Two major terms are commonly used in occlusion culling algorithms: occluder
andoccludee. Occludersare objects in the front of the scene, which occlude other
objects.Occludeesare objects behind occluders and not visible for a given viewpoint
(see Figure 3.2).Occludeesare in theshadow frustumof an occluder. If multiple
occluder build a single shadow frustum is it calledoccluder fusion.

A conservativeocclusion culling algorithm avoids only rendering of completely
occluded objects. In contrast, anaggressivealgorithm removes also possibly visible
objects from rendering (cp. to Section 2.2.3).

Usually without occlusion culling, the hardware renderingbackend calculates
the visibility in a discrete way for each primitive with a z-buffer approach [17, 54].
Each primitive has to be scan converted to get the visibility of its pixels. Due to the
linear complexity of the z-buffer, an efficient occlusion culling algorithm has to be
sub-linear to gain a speedup. Especially scenes with high depth complexity are in
the focus of occlusion culling (see Figure 3.3). In such scenes a lot of work of the
z-buffer is wasted on occluded pixels from primitives that had to be transformed and
scan converted.

Two different major approaches are used during rendering. Starting with a view-
point v, an algorithm computes a set of visible objectsOv. These objects are then
rendered with the graphics hardware:

/ / L i s t i n g 3 .1

Viewpor t v ;
V i s i b l e O b j e c t s Ov ;
Ov = g e t V i s i b l e O b j e c t s (v) ;

22

3.1. Introduction

Figure 3.3: Depth complexity (averaged 13.4 z-buffer testsper pixel in 432 540
visible pixels).

f o r each o b j e c t Ov [i] i n Ov{
Render (Ov [i]) ;

}

This approach is often used, if the visibility is precalculated in a preprocessing
step or information of a previously rendered frame can be used. Another approach is
to calculate the occlusion during rendering:

/ / L i s t i n g 3 .2

Viewpor t v ;
O b j e c t s O;

f o r each o b j e c t Ov [i] i n O{

i f (i sOcc luded (v , O[i]){
Skip (O[i]) ;

} e l s e{
Render (O[i]) ;

}

}

The functionisOccluded() is often calledocclusion test, visibility testor oc-
clusion query. Due to the complexity of visibility calculations, the testobject itself
is often not used to calculate its visibility in the occlusion test, but its bounding vol-
ume. In [1, 2] different types of bounding volumes are compared in the context of
occlusion culling.

If a hierarchical data structure like a scene graph or octreeis used,hierarchical
occlusion cullingcan be applied. Each node of the graph can be used as entity for
an occlusion query similar to hierarchical view frustum culling. The hierarchical

23

3. Occlusion Culling

data structure can be subdivided into a visible and an occluded part. A subtree of an
occluded entity is not further processed or traversed.

3.2 Classification

Occlusion Culling has a very long tradition in computer graphics, Cohen-Or et al. [19]
give an overview and a classification of the occlusion culling techniques. They can
be classified in point- vs. region-based, image- vs. object-precision and cell-and-
portal vs. generic scenes. Additional criteria [19] to distinguish between algorithms
are conservative vs. approximate, all vs. subset of occluders, convex vs. generic
occluders, individual vs. fused occluders, 2D vs. 3d, special hardware requirements,
need for precomputation and treatment of dynamic scenes.

Point- vs. Region-Based

Point-based algorithms are calculating the occlusion froma given, single viewpoint
and view frustum. In contrast, region-based algorithms calculating visibility infor-
mation for a whole region (see Figure 3.4). The viewpoint can be placed on any
place in this region. Region-based occlusion culling is more complicated, because
the shadow frustum of an occluder is no longer infinite, whichmakes occluder fusion
much more difficult. However, the result of a region-based algorithm can be used
over multiple frames until the viewpoint is leaving the region.

Viewpoint

Region

Figure 3.4: Point- vs. region-based occlusion culling.

Also point and region-based visibility can be compared withpoint and area light
sources, where an occluded object is in the umbra (shadow frustum) region.

24

3.2. Classification

Object Space Precision

If an occlusion culling technique works in object space precision, each calculation is
performed on the original 3d coordinates of the objects and returns a set of visible
or occluded polygons. This is an expensive calculation and has a complexity of
Ω(n2) for agiven viewpointto get theexact visibility set(EVS). The EVS defines all
primitives that are partially or fully visible.

The aspect graphis a data structure, which allows to reconstruct the EVS for
every viewpoint inO(1). Creating such a data structure is theoretically possible,
but has a complexity ofO(n9) [19]. For practical use, algorithms usually try to find
a Potential Visible Set(PVS), which is a subset of the EVS and over-estimates the
number of polygons, which are visible for a given viewpoint.The result of a PVS is
usually rendered with a z-buffer algorithm to get a correct image [40].

Image Space Precision

Image-space precision visibilityreturns a discrete information of visible pixels (in
place of polygons, which explains the lower complexity) fora given scene, camera
andresolutionof the viewport. Image-space algorithms are using the projected values
of the original 3d coordinates.

The main advantage of image-space precision is the linear complexity with the
z-buffer algorithm [29] and its hardware implementation. Almost every modern 3d
graphics hardware uses the z-buffer to calculate the visibility of the primitives. A
drawback of the z-buffer algorithm is the need to scan convert each primitive in
full z-buffer resolution. In scenes with high depth complexity, a lot of pixels are
rasterized and z-compared without a contribution to the resulting image. Also there
is no feedback to the application thus every primitive has tobe processed. This
problem is addressed by modern graphics hardware, which implements a feedback
to the application with thehardware occlusion queries.

25

3. Occlusion Culling

3.3 Hardware Occlusion Queries

To speed up image-space occlusion queries, it is useful to use the graphics hardware
in some way. Greene et al. [27] suggested afeedbackfor rendering of objects to get
a faster occlusion information. Bartz et al. [14] proposed adetailed hardware im-
plementation of occlusion queries. The first commonly available1 graphics hardware
with OpenGL extensions for occlusion queries was the VISUALIZE fx [49] from
1998 produced by Hewlett-Packard. A specification of the first OpenGL extension
HP Occlusion Flagcan be found in [31].

The fundamental idea is, to render a bounding volume through the graphics hard-
ware with disabled frame and z-buffer writes. If a pixel triggers a z-buffer write
during rasterization, a flag is set to true (see Figure 3.5). After rendering of the vol-
ume, the application can get the flag by theHP Occlusion Flagextension. If the
result is true (at least one pixel of the bounding volume was visible), the content of
the bounding volume has to be rendered or processed further.If the hardware oc-
clusion query for an occluded bounding volume is cheaper than the rendering of the
corresponding geometry, an application can be speeded up.

Memory
Texture

Program
Vertex

Vertex
Shader

Buffer
Frame

Program
Fragment

Fragment
Shader

z−Buffer

Counter
z−Pass

Vertex Data

Pixel Data

Occlusion Information

Display
Lists

Evaluator

Operations
Pixel

Rasterizer

Figure 3.5: Block diagram of the OpenGL occlusion query extension.

TheHP Occlusion Flagprovides an easy way to get the occlusion information of
a single geometry. The drawback here is that each request to the flag is synchronous.
A new request can only be started after the finish of the previous one. This prob-
lem is addressed by theHP Visibility Extension[33] and by the more well known
NVidia Occlusion Query[44]. Both extensions supportmultiple occlusion queries

1Maybe this was firstly implemented on a Kubota Pacific Titan 3000 with Denali GB graphics
hardware [27] and should also be possible on a 3dfx voodoo add-on card from 1996, which supports
pixel counting.

26

3.3. Hardware Occlusion Queries

at the same time (see Figure 3.6). Additionally, the NVidia extension returns the
amount of visible pixels of each tested geometry instead of asimple flag. This can
be used for level-of-detail selection or contribution culling.

A

R RR

A

Q

A

Q

A

R

AA

A
A

R

QR

A A

R

A

Q1

AA

Q2

A

R1R2Q4Q3

A AA

R3R4

Application

Rendering

Occlusion Query

waitingwaiting

waiting waiting

Multiple Occlusion Query

(a)

(b) }
Figure 3.6: Pipeline of rendering with (a) synchronous single queries and (b) asyn-
chronous multiple queries.

The vendor specific OpenGL extensions were added to the OpenGL2.0 standard
in 2004 [50]. Also a wide range of graphics hardware with support for the extensions
are available, for example, NVidia GeForce3/4Ti or newer. OpenGL 2.0 or DirectX
9.0 capable systems like the ATI Radeon 9700 or the NVidia GeForce FX have to
support the occlusion extensions to be fully compliant withthe standards.

Discussion

The advantage of the occlusion queries using the current values of the z-buffer is
a drawback at the same time, because the result of an occlusion query depends on
up-to-date values in the z-buffer. The rendering system has to render an occluder
A before the occlusion queryQB for the occludeeB is performed. IfA is rendered
after QB, the occlusion query will return visible as result forB, which is wrong andB
would be rendered. Therefore the rendering sequence is important for the results of
the occlusion queries. As expected, experiments [5] showedthat a (partially) front-
to-back sorted rendering gives good results.

27

3. Occlusion Culling

3.4 Related Work

A lot of occlusion culling algorithms are available. Some ofthe occlusion culling
techniques need extensive preprocessing [43, 40] or special scenes [41, 60]. These
are not in the scope of this thesis. In the taxonomy of Cohen-Or et al. [18] this thesis
focuses on conservative, from-point image-space approaches for generic scenes and
generic occluders. The following algorithms are also image-based algorithms for
real-time rendering. Further information on the various occlusion culling techniques
can be found in [18, 19].

Update

Query

Update

Query

0 10 20 30 40 50 60

12

12 27

3534
50

Z

Viewpoint

2216

4

11

13 9

17

15

25 24

50

35

27

34

50

Figure 3.7: Hierarchical z-buffer.

One of the well known image-space algorithm for real-time rendering is theHi-
erarchical z-Bufferproposed 1993 by Greene et al. [27]. Many of the concepts of the
algorithm had a significant influence on real-time occlusionculling research. The al-
gorithm uses hierarchical data structures for the frame’s z-buffer and the scene. The
scene is organized in an octree and the depth buffer in az-pyramid(see Figure 3.7).
The finest level (highest resolution) of the z-pyramid is equivalent to the standard
z-buffer. At the other levels, each z-value is the farthest zin the corresponding 2×2
environment of the next finer level. Whenever a z-value is overwritten in the z-
buffer, it is propagated through the coarser levels of the z-pyramid. The hierarchical
representation of the z-buffer (see Figure 3.7) reduces thenumber of z-tests during
rasterization of a bounding box, which is used to perform theocclusion query for a
node in the scene’s octree. The hierarchy is maintained in software but Greene et al.
suggested a hardware implementation for real-time rendering. To apply hierarchical
occlusion culling, the scene’s octree is traversed in a rough front-to-back order. The
bounding box of an octree node is tested against the values inthe z-pyramid to get its
visibility. During z-rasterization of the box, the values are tested top-down against
the z-pyramid. Only if the z-value would be visible in the corresponding z-pyramid
level, the z-pyramid is traversed to the next level. If a z-value would also be visible in
the finest level, the corresponding bounding box is visible.For visible octree boxes,

28

3.4. Related Work

the testing continues recursively down in the octree. If a visible octree node contains
geometry, the geometry is rendered into the z-pyramid to update the z-values and
to use the geometry as occluders for subsequent occlusion queries. The main draw-
back of the Hierarchical z-Buffer is that an update to the frame’s z-values results in
an expensive update of the hierarchy, hence the Hierarchical z-Buffer is only useful
for scenes with very high depth complexity. In such scenes the number of hierarchy
updates are low in relation to the number of occlusion queries. The algorithm in
Section 4.2 works similar to the Hierarchical z-Buffer but does not use a z-pyramid
to avoid expensive hierarchy updates, because the time for an occlusion query with
a visible result should be as low as possible to reduce the latency for the necessary
subsequent rendering of the corresponding object. On the other hand, the time for an
occlusion query for an occluded object has only to be lower than the rendering time
for the corresponding object to gain a speedup (obviously each latency has to be low
as possible to gain the best speedup).

Figure 3.8: Hierarchical Occlusion Maps generated by the texture unit of the graphics
hardware.

Another well known image-space algorithm areHierarchical Occlusion Maps
proposed 1997 by Zhang et al. [63]. They are using the graphics hardware to generate
different levels ofocclusion maps(see Figure 3.8). In contrast to the Hierarchical z-
Buffer, Zhang et al. are using an overlap test in the xy-plane in combination with
a subsequent depth test to get the visibility for an object. Aset O of preselected
occluders is used to generate the content of the first-level occlusion map. Then the
texture unit of the graphics hardware is used to calculate the higher levels of the
occlusion map hierarchy. A value in an occlusion map saves the average value of the
underlying 2×2 pixels. In the highest resolution the occlusion map contains either
white or black pixels describing the occupied regions of thepreselected occluders.
The greyscale of the values in the inner levels of the occlusion maps describe the
“opacity” of the pixels. A high opacity value for a pixel in any level means that most
of the pixels are occluded in the overlap test. Due to the missing depth information
of the occlusion maps, a second data structure, thedepth estimation bufferis used,
which stores farest depth values of the occludersO in a lower resolution z-buffer (see

29

3. Occlusion Culling

maxz

Viewpoint

Viewplane
z

Depth Estimation Buffer

B
B

B
C

A

A B

Figure 3.9: Illustration of the depth estimation buffer; A:Preselected occluders, B:
Occluded objects behind the values of the depth estimation buffer, C: Visible objects
in front of the depth values.

Figure 3.9). Before an object (usually a bounding volume) istested with the depth
estimation buffer, a two-dimensional, hierarchical xy-overlap-test is performed with
the occlusion map (similar to the test with the hierarchicalz-pyramid, but without
z-values). Only if a bounding volume is occluded in the occlusion maps, a second
test with the depth estimation buffer is performed. A main part of the algorithm is
the selection of “good” occluders for generation of the occlusion maps and the depth
estimation buffer. The algorithm benefits from the generation of the hierarchy by
hardware and from a faster test against the occlusion maps (no z-values are needed in
this part), but has the drawback that the occlusion efficiency depends on the quality
of the preselected occluders. Also the lower resolution in the depth estimation buffer
reduces the occlusion efficiency. The main difficulty of the algorithm is the selection
of the occluder set, especially if preprocessing time should be avoided to support
dynamic and modifiable scenes. This prevents the implementation in a commonly
usable scene graph system.

Bartz et al. proposed a technique calledVirtual Occlusion Buffers[15], which
uses the OpenGL graphics pipeline to get image-space visibility information. A more
detailed description can be found in Section 4.3.

Obviously, one of the fastest ways to utilize an occlusion query for geometry
culling for general scenes is by special hardware support (see Section 3.3 and 4.4).
But the use of this support is not for free, due to needed statechanges and rasteriza-
tion bandwidth on the graphics hardware. So there is a new field of research [19] to
find ways for an efficient use of hardware occlusion query extensions, which is also
the main part of this thesis.

30

3.4. Related Work

Klosowski and Silva [38] have developed an algorithm, called prioritized-layered
projection algorithm(PLP), which focuses on constant frame-rates using occlusion
culling. However, their algorithm is not conservative, it sacrifices image quality in
order to keep the constant frame-rate. Later, they have extended their algorithm with
hardware occlusion queries to a conservative approach [39]. The algorithm has no
restrictions for occluders and has occluder fusion, but needs time for preprocessing.
In the preprocessing step the whole scene is partitioned into convex cells. The col-
lection of the cells is generated in a way that each cell has a roughly uniform density
of the primitives. This scheme results in larger cells in unpopulated areas and smaller
cells in densely occupied regions. The original implementation used a Delauney tri-
angulation, which was replaced by a more efficient octree implementation in newer
versions. After the subdivision of the scene, a “solidity” value is generated for each
cell, which represents the intrinsic occlusion. During rendering the traversal algo-
rithm uses the solidity value in combination with the viewpoint and view direction to
generate a prioritized list of cells which would be likely visible and therefore should
be rendered. The original PLP algorithm is not conservative, because the render-
ing stops after a given budget. But the result is a good approximation of the image
and therefore PLP can be used as occluder selection algorithm. To be conservative
a subsequent test with hardware occlusion queries can be used to find the remain-
ing, visible cells [39]. The main drawback of the algorithm isthe preprocessing step
which reduces the algorithm to static scenes.

V

VV

V

V

V

V

OO

OO

O

O

O

OO

O

V

V V

V

V

O

VO

pull up

V

pull down

Figure 3.10: Working set (blue) which is used for an multipleocclusion query (left)
and how the working set is changed between the frames (right)[16]. The nodes of
the kd-tree are classified into visible (green) and occluded(red).

Bittner et al. [16] presented an algorithm, which uses particularlytemporal (frame-
to-frame) coherenceto select bounding volumes for hardware occlusion queries.The
scene is organized in a kd-tree, they call the used working set termination nodes. For
each frame, a multiple occlusion query is performed for these termination nodes (see

31

3. Occlusion Culling

Figure 3.10). If the visibility of a node changes, the set of termination nodes is
adjusted – either with a “pull down” (subdivide bounding volume) or a “pull up”
(merge bounding volumes) operation. The kd-tree is traversed in a front-to-back or-
der and visible nodes (of previous frames) are rendered immediately during traversal.
Also the occlusion query of a termination node is immediately started. The result of
an occlusion query is requested later in the traversal. This results in an interleaved
rendering and culling scheme, which reduces the latency of the hardware for the
occlusion queries. The algorithm is very useful for static scenes and slow camera
movements. On the other hand, dynamic scenes and fast changes of the viewpoint
are problematic, because the termination nodes will changevery often, which re-
duces the occlusion efficiency. But this is the case for all algorithms, which try to
exploit temporal coherence.

Figure 3.11: Differences between a kd-tree (left) and a scene graph (right). The
bounding volumes of a kd-tree are obviously more spatially correlated than the
bounding volumes of a scene graph.

The authors claim that the algorithm will work on arbitrary hierarchical data
structures for scenes. This is true for spatial structures like octrees and BSP-trees,
but not for scene graphs, where the bounding volumes of innernodes are not strongly
spatial correlated (see Figure 3.11). There is much less spatial coherence in a scene
graph which will result in a lot of visible occlusion query results after a “pull-up”
operation, which significantly reduces the occlusion queryefficiency.

32

Chapter 4

Occlusion Query Implementations

The main focus in this thesis is on real-time occlusion culling for arbitrary scenes
in a scene graph environment without precomputing. Also a lotof different types
of graphics hardware should be usable, even though more hardware with special
support for visibility determination becomes available.

In this Chapter, different approaches to determine the visibility of a scene graph
object are compared.

Traversal and Sorting

Extensions

Occlusion Query

Figure 4.1: Overview of the software architecture. This Chapter describes different
implementations of the central occlusion query.

4.1 Introduction

The base algorithms [6, 11] provide some generic, image-space algorithms to get
from-point visibility information of a given object. All ofthem are using the OpenGL
graphics pipeline in some way to get the information. The algorithms implement the
isOccluded() function of Listing 3.2.

The main idea of the following approaches is to exploit the actual z-buffer values

33

4. Occlusion Query Implementations

of the OpenGL graphics system. The occlusion test is initialized (for example, dis-
abling z-buffer writes), then occlusion queries can be performed (each request gets an
index) and after all queries the results can be requested with the corresponding index.
There is no restriction in the geometry for the occlusion test, however, the presented
implementation uses the bounding boxes provided by the scene graph for the tests.
No precomputing to get a special hierarchy or special data structure is needed, thus
arbitrary and dynamic scenes are also supported. Only an up-to-date bounding box
hierarchy for each frame is needed.

4.2 Using the OpenGL Depth Buffer

Obviously the OpenGL z-buffer itself can be used to get the visibility information of
a bounding volume or object, since it always holds the up-to-date and correct depth-
value for every pixel during rendering. To test occlusion, the depth-values of the test
geometry are computed with a software rasterizer and compared with the values of
the OpenGL z-buffer. The neededglReadPixels() to read the OpenGL z-buffer is
quite expensive, hence the algorithm is using a caching scheme with a lazy update
of fragments of the z-buffer. Each fragment has the same size (for example, 32×32
Pixels), which is a multiple of the data-bus width of the graphics hardware and starts
at a memory aligned position to avoid shifting of data. All fragments together create
a full resolution z-buffer in software; no hierarchy or lower resolution is used to avoid
additional calculations.

z−Compare
per Pixel Update

Flags

z−Buffer

Bounding Volume Software
Rasterizer

Pixel visible

Pixel occluded

Bounding Volume visible

Graphics SubsystemHost
z−Buffer

Fragments

Figure 4.2: Block diagram of the OpenGL z-Buffer read caching scheme.

Two flags for each fragment are used to support a lazy update, an invalid and
an unusedflag. At the beginning of every frame, all theunusedflags are true, be-
cause there is no rendered geometry, which could affect the z-values. A tested pixel

34

4.3. Using the OpenGL Stencil Buffer

against unused fragments leads always to a visible pixel without reading the OpenGL
z-buffer. If a pixel is visible in the software rasterizer, the invalid bits of the corre-
sponding fragment is enabled, because the actual geometry of the corresponding test
geometry will be rendered with OpenGL and the content of the z-buffer may change.
For a pixel inside a fragment with a trueinvalid flag, the z-buffer is read to update
the fragment and theinvalid flag is disabled.

Unused fragments

Multiple accesses

Invalid fragments

Figure 4.3: Image of the assembled z-buffer fragments afterall occlusion queries;
not every fragment is needed to reconstruct the visibility of a bounding box. The
brightness of a fragment describes, how often the corresponding fragment was read
from the OpenGL z-buffer.

4.3 Using the OpenGL Stencil Buffer

Bartz et al. [15] described a technique that the OpenGL stencil buffer can be used to
compute visibility informations. The approach works as follows; during rasterization
writing to the frame- and z-buffer is disabled. For each pixel of the bounding volume
the z-buffer test is applied. If the pixel would be visible, avalue is written to the sten-
cil buffer (see Figure 4.4) by usingglStencilOp() . After rasterizing the bounding
volume, the stencil buffer is read and sampled by the application. Occluded bounding
volumes will not contribute to the z-buffer, hence will not cause a respective entry
in the stencil buffer. On the other hand, partly visible bounding volumes modify the
stencil-values of the corresponding, visible pixels.

35

4. Occlusion Query Implementations

0
0

0
0
0
0

maxz

Viewpoint

Viewplane
z

Stencil−buffer

1
0

0
1 pixels

Visible

Figure 4.4: Occlusion test with the stencil buffer.

The actual implementation reads the whole region of the covered zone by the
bounding volume. This could be optimized with a lazy update like the fragments in
Section 4.2 or with the interleaving scanning scheme from Bartz et al. [15]. Multiple
queries are possible, if the stencil buffer supports more than one bit. The amount of
visible pixels can be also counted, but usually the test is stopped after the first or a
necessary amount of visible pixels are found. For more details please refer to [15].

Memory
Texture

Program
Vertex

Vertex
Shader

Program
Fragment

Fragment
Shader

Vertex Data

Pixel Data

Display
Lists

Evaluator

Operations
Pixel

Rasterizer

z−Buffer

Buffer

Stencil−Buffer Values

Frame/Stencil

Figure 4.5: Block diagram of the OpenGL stencil buffer read.

4.4 OpenGL Extensions for Occlusion Culling

As presented in Section 3.3, OpenGL extensions can be used toget the occlusion
information. A small application was used to measure the latency of the extensions
on the graphics hardware. Test boxes with different sizes were moved in different

36

4.5. Evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20000 40000 60000 80000 100000 120000

La
te

nc
y

in
 M

ic
ro

se
c

Test Size in Pixel

NVidia Geforce4ti 4400
HP Visualize fx10

Figure 4.6: Latency of the HP Occlusion Flag on an Intel P4@2400MHz with a
NVidia GeForce4Ti 4400 (red) and on an Intel P3@750MHz with aHP Visualize
fx10 (green). Both running Linux.

frames from completely visible over partly visible to completely occluded. The per-
formance of the hardware extensions depends on the fill-rateof the z-buffer. Larger
geometry needs more time for the test, because the whole geometry passes always
the z-buffer stage of the rendering pipeline. Figure 4.6 shows the correlation between
the size of the geometry in screen-space and the latency for an occlusion test request.
With enabled backface culling, the test is almost twice as fast as without, because
with backface culling, only one scan through the z-buffer for the front-face is done.
The graphics hardware rasters always the complete bounding volume, but the ras-
terization could be stopped after the first visible pixel when using the HP extension.
With the NVidia extension, the hardware has to raster alwaysthe whole bounding
volume to determine the full amount of visible pixels. This isa drawback, especially
for larger bounding volumes. In addition, a more complex hardware implementation
could use a hierarchical representation of the hardware z-buffer, which would also
speed up the occlusion tests.

4.5 Evaluation

To compare the different techniques the Formula One Car model from the Jupiter pro-
ject was used. The model has about 750.000 polygons in 306 geometry nodes (see
Section 8.2.2). A camera path with 342 frames was created; Inevery frame the
whole model is located within the viewing frustum, therefore view frustum culling

37

4. Occlusion Query Implementations

itself does not remove geometry. In Figure 4.7 and Table 4.5,the resulting frame
rates are shown for the different occlusion culling techniques. A simple depth first
traversal of the scene graph with an additional front-to-back sorting of the geometry
was used [6].

Avg. Deviation Min. Max. Avg.
fps fps fps fps speedup

No occlusion culling 3.77 0.03 3.58 3.85 0.0%
Stencil test 4.28 0.23 3.46 5.13 12.0%
Z-Buffer test 4.42 0.28 3.65 5.15 14.8%
HP Flag 5.70 0.41 4.44 6.67 33.8%

Table 4.1: Comparison between different occlusion query implementations [6].

The first benchmark (no culling) shows the performance of OpenSG without any
occlusion queries. In the second benchmark, the performance of the stencil buffer
test was evaluated. In the third test, the z-buffer technique was applied and in the last
one the HP Occlusion Flag was used. For all benchmarks a Dual Pentium III with
750 MHz with a HP VISUALIZE fx10 running Linux was used for rendering. The
resulting frame rates show average speed-ups between 12% and 34%.

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250 300 350

F
ra

m
es

 p
er

 s
ec

on
d

Frame

Z-Buffer test
Stencil-Buffer

HP
No culling

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

P
er

ce
nt

Frame

Hidden polygons
Hidden nodes

Figure 4.7: Left: Frame rates for the camera path and right: percentage of occluded
nodes and polygons.

Occlusion culling generally depends on the scene and its depth complexity. Fig-
ure 4.7 (right) shows the percentage of hidden nodes and polygons in every frame.
The limited depth complexity of the test dataset (about 60% ofthe polygons are de-
tected as occluded) leads only to a limited culling performance. In scenes with a
higher depth complexity, a better performance can be expected.

38

4.5. Evaluation

The benchmarks show that the HP Occlusion Flag is the fastest solution in this
test. The stencil- and z-buffer-tests show similar results,whereby the stencil-test
will perform better in frames with lower depth-complexity (less setup and rasteriza-
tion time in software), while the z-buffer-test is faster inframes with more depth-
complexity, because the z-buffer in software needs less updates (for occluded nodes
no update is necessary).

The techniques show differences in the load of the graphics hardware and the
host’s CPU. With the readback of the z-buffer in Section 4.2 most work is done by
the host’s CPU, so this approach is very useful for systems with lower graphics hard-
ware capabilities. In addition no state changes on the graphics hardware are needed.
The stencil buffer technique of Section 4.3 distributes the load on the host’s CPU and
the graphics hardware. But state changes are necessary to setup the stencil buffer,
anyway this technique is useful on standard OpenGL hardwarewithout special oc-
clusion extensions and lower CPU power. On modern graphics hardware the special
extensions are the first choice (see Section 4.4). Most of thework is done by the
graphics hardware and the host’s CPU can be used for other calculations like sorting.
But state changes are necessary, so that the number of occlusion queries should be
minimized, which is the focus of the next Chapter.

39

4. Occlusion Query Implementations

40

Chapter 5

Avoiding Predictable Occlusion Queries

The previous presented techniques to get the visibility of an object are using the
OpenGL graphics hardware in some way. Although the performance of graphics
hardware is continously increasing, each request to the hardware causes some la-
tency. This chapter presents some algorithms, which reducethe number of occlusion
queries.

Traversal and Sorting

Extensions

Occlusion Query

Figure 5.1: Overview of the software architecture. This Chapter describes exten-
sions, to avoid predictable occlusion queries.

5.1 Introduction

To reduce the number of occlusion queries on the graphics hardware, some aspects of
the visibility of occluders and occludees are taken into account. A trivial observation
shows if there is no rendered geometry in the actual frame, anocclusion query will
alwayslead to a visible result, because there is no occluding geometry. The following
Sections show further details, how occlusion queries can beavoided, if their result
can be predetermined. The techniques are used on top of the occlusion queries of
Chapter 4.

41

5. Avoiding Predictable Occlusion Queries

5.2 Occupancy Map

During traversal of the scene graph, an algorithm has to decide when to perform an
occlusion query for a given node. Especially from viewpointswith low occlusion a
lot of occlusion tests are unnecessary, because they returna visible result, so that the
rendering of the corresponding geometry gets more expensive. The idea is that only
in (occupied) regions with already rendered geometry, an occlusion test makes sense.
TheOccupancy Map[9] is a small data structure which manages occupied regionsof
the screen space. In not occupied regions an occlusion test will always return visible
pixels due to the lack of occluding pixels (see Figure 5.2).

As noted in the previous Section 4.4, the latency of an occlusion query depends on
the number of rasterized pixels of the bounding volume. In particular large, partially
visible bounding volumes will spent significant time in the rasterization stage of the
graphics accelerator, without any benefit for the renderingperformance. In order
to reduce the associated costs, the approach tries to avoid occlusion queries with a
visible result.

maxz

Viewpoint

z
Viewplane

Occupancy Map

B B

B

B
B

A

A

A

Figure 5.2: Construction of the Occupancy Map; bounding boxes of the geometry in
the front (A) are added.

5.2.1 Implementation

The Occupancy Map is realized as a small bit field. Each bit represents an occupied
or unoccupied region of the screen-space. Storing depth values or other information
is not necessary, if the requests occur in a partial depth sorted order. Due to perfor-
mance reasons, the Occupancy Map is updated with the screen-space bounding boxes
of the rendered geometry, which is not exact, but a conservative approximation of the
occupied regions.

42

5.2. Occupancy Map

Figure 5.3:Left: Scene with low occlusion.Right: Occupancy Map for scene [9].

A first implementation [5, 9] was done with the Jupiter scene graph and later the
approach was added to the OpenSG system [7].

Before a node’s visibility is tested with an occlusion query, its screen-space
bounding box is compared with the Occupancy Map values. As soon as the Oc-
cupancy Map detects that the target screen area of the node’sbounding box is partial
“empty”, it cancels the occlusion query and initiates the rendering or traversal of the
respective scene graph node (see Section 6.4 – Stage 1). Notethat the Occupancy
Map is conservative, since it is essentially storing the lower resolution coverage in-
formation of the framebuffer. However, it is not exact and will occasionally initiate
the rendering of geometry which would have been determined occluded by the ac-
tual occlusion query. This is due to the approximation of the scene entity bounding
box by a screen space axis-aligned bounding box (AABB). Nevertheless, tests found
that with the used Occupancy Map size (see below), this did not turn up to be a
problem [5, 9].

Technically, an Occupancy Map is a cache optimized bit-fieldrealized as an array
of 32 Bit integers with 256 entries (to fit into a cache line). Every bit represents a
tile in the screen space. If a bit is set, the respective tile is occupied by already
rendered geometry. Otherwise, no geometry has yet been rendered into the associated
screen region (see Fig. 5.3). The effectiveness of the tile size is a trade-off between
precision (resolution) and overhead (memory and update). Meißner et al. provided
interesting measurements on the effective resolution in the context of a hardware
implementation [42]. In our context, an Occupancy Map size of 1024 Bytes is quite
effective. The representing tile size can be adapted to the window size; for example,
in a window of 1024×768 pixels every tile represents 4×24 pixels. If the whole

43

5. Avoiding Predictable Occlusion Queries

Figure 5.4: Request to the Occupancy Map; the blue box is detected as “not oc-
cluded”, the green one as possibly occluded. For the latter one, an occlusion query
will follow.

scene is inside the view-frustum, the screen space size of the scene’s bounding box
can be used to scale the Occupancy Map to enable a better resolution. Due to the
small size, the Occupancy Map can be easily accommodated in the first level cache
of the CPU to permit an extremely low latency (orders of magnitude lower than a
read back from the graphics accelerator to acquire the occlusion query result).

For a lookup, the screen space AABB of the corresponding nodeis checked
whether it overlaps with empty (unset) regions of the Occupancy Map. If that is
the case (blue box in Fig. 5.4), the corresponding AABB is assumed visible and the
occlusion query is canceled. Note that for good performance, the test nodes have to
be organized partially front-to-back.

5.3 Additional Depth Buffer in Software

In contrast to the Occupancy Map of the previous Section, thepresentedSoftware
Depth Bufferfocuses on occluded bounding volumes.

For scenes with high depth complexity, occlusion tests can be saved by a soft-
ware implementation of a z-buffer. Rendering of the scene geometry in software is
too expensive, but occluded bounding boxes can be used as an approximation (see
Figure 5.5). Thus the bounding boxes of previous (hardware accelerated) occlusion
queries are rendered into the Software Depth Buffer. Beforeanother bounding vol-
ume is tested by the occlusion query, it can be tested with theSoftware Depth Buffer.
Fill-rate and rasterization calculations for the SoftwareDepth Buffer can be saved by

44

5.4. Temporal Coherence

maxz

Viewpoint

Viewplane
z

A

A

A
B

C

C

B

B

Figure 5.5: Occlusion test with the Software Depth Buffer; (A) visible geometry, (B)
tested with an OpenGL test, (C) tested by the software approach.

a lower resolution than the depth buffer of the graphics subsystem. Also if the appli-
cation knows occluders, they can be rendered into the Software Depth Buffer before
starting any other tests.

Unfortunately, bounding boxes of scene graph nodes can intersect each other in
object space so that the Software Depth Buffer must save depth values in contrast to
the Occupancy Map, due to an overlap test is not being sufficient to calculate conser-
vative visibility. In an octree or BSP tree environment it ispossible to realize a strict
front-to-back rendering. Therefore the Software Depth Buffer could be implemented
as a simple “bitfield”, which would further significantly speedup the test.

5.4 Temporal Coherence

To reduce the number of occlusion queries, temporal coherence between frames can
be used. Based on the assumption that a visible scene graph node in one frame
is likely to be visible in the next frame, occlusion queries for these nodes can be
saved. In our implementation [11], the result of an occlusion query is stored for
the corresponding node. Occlusion queries for a visible node in framen are not
performed in the followingn+ 1. . .d frames. The valued changes between 2 and
4 to balance the number of occlusion queries over all frames.If d is constant, a
lot of queries are performed in framen, while in framesn+ 1. . .d these are saved.
Experiments showed that this would result in very high frame rate jitter.

For aggressive occlusion culling with a small reduction in image quality, oc-
cluded nodes can also be assumed as occluded in the next, following frames. This
leads to a non-conservative, aggressive approach, since failure of this assumptions

45

5. Avoiding Predictable Occlusion Queries

will result in missing geometry in the image. In our implementation, it is assumed
that an occluded node is only occluded in the next two frames to minimize these
image errors while moving the camera. Furthermore a preliminary test with the Oc-
cupancy Map is performed to avoid errors of large visible nodes in the front of the
scene.

Temporal coherence can be very problematic in dynamic scenes or if the view-
point is changing fast. Bittner et al. [16] presented another temporal coherence al-
gorithm, but they also benefit from a balanced hierarchy of the scene in a kd-tree
(object-space coherence). Also the problem of dynamic scenes is not addressed by
their approach. Due to the fact that the presented approach is a heuristic, the imple-
mentation is unrivaled. The “magic” numbers, how long a visibility result is valid has
an influence to the resulting frame rates, which makes comparison between different
models and views difficult.

5.5 Results

All tests in this Section were performed with the OSGViewer application [6] and an
OpenSG scene graph. A PC with AMD Athlon 2500 XP (1.8 GHz) running Linux
and a NVidia Geforce3 was used as platform. During traversal, hierarchical occlusion
culling with the OpenGL extension from NVidia in conjunction with the previous
extensions was applied. The traversal of the scene graph occurred in an object-space
front-to-back order with applied hierarchical culling. Thenearest corner of a node’s
bounding box was used as criteria for the ordering and the nodes’ bounding boxes
were used for the occlusion queries. All frames were rendered at a high resolution
of 1140× 755 with 24 bits color depth. The Software Depth Buffer had a quarter
resolution of the viewport if used for the tests.

Number of polygons

Cotton Picker 10 610 166
Formula One Car 746 827
City 4 056 195

Table 5.1: Test models.

First, the Cotton Picker model (see Table 5.1 and Section 8.2.1) and a camera
path with 280 different frames was used. In the right Figure 5.6 the amount of visible
and occluded polygons (detected by a bounding box occlusiontest) for each frame
is shown. Approximately between frame 150 and frame 250 the view frustum culler

46

5.5. Results

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

fp
s

Frame

a) Only VFC
b) Occlusion Query

c) OQ + SDB
d) OQ + OM

e) OQ + OM + SDB
f) OQ + TC

g) OQ + TC (aggr.)

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

 0 50 100 150 200 250

P

ol
yg

on
s

Frame

a) sum
b) rendered polygons
c) occluded polygons

Figure 5.6: Performance (left) and visible/occluded polygons (right) during render-
ing of the Cotton Picker camera path.

Avg. Dev Min. Max.
fps fps fps fps Speedup

No occlusion culling 1.7 1.5 1.0 7.6 0%
OpenGL Occlusion Query 6.7 4.8 1.6 22.7 294%
OpenGL OQ + Occupancy Map 6.9 5.0 1.6 22.7 306%
OpenGL OQ + Software Depth Buffer 7.5 4.8 1.9 21.7 341%
OpenGL OQ + OM + SDB 7.7 5.1 2.0 21.7 353%
OpenGL OQ + Temporal Coherence 6.7 5.0 1.5 23.3 294%
OpenGL OQ + TC (aggressive) 7.9 4.9 1.9 24.4 364%

Table 5.2: Comparison of the performance timings for the Cotton Picker model.

removes some nodes. Table 5.2 concludes some average performance results. Each
extension is able to speed up the average rendering speed. Thefastest results are with
enabled Occupancy Map and Software Depth Buffer, where the average rendering
speed increases by about one fps, which is a speedup of 15% compared to using only
the OpenGL occlusion query.

A Formula One Car was the second test model (see Section 8.2.2). A camera
path with 270 different frames was rendered to compare the performance. Like the
Cotton Picker path, in some frames parts of the scene are outside the view frustum.
Right Figure 5.7 shows the visible and occluded polygons during the camera path.
The rendering performance can be found in the left Figure 5.7.Table 5.3 concludes
the timings for the Formula One Car rendering. Similar to theresults of the Cotton
Picker model the rendering gains approximately one frame with the extensions, but

47

5. Avoiding Predictable Occlusion Queries

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

fp
s

Frame

a) Only VFC
b) Occlusion Query

c) OQ + SDB
d) OQ + OM

e) OQ + OM + SDB
f) OQ + TC

g) OQ + TC (aggr.)

0

200000

400000

600000

800000

1000000

 0 50 100 150 200 250

P

ol
yg

on
s

Frame

a) sum
b) rendered polygons
c) occluded polygons

Figure 5.7: Performance (left) and visible/occluded polygons (right) during render-
ing of the Formula One Car camera path.

Avg. Dev Min. Max.
fps fps fps fps Speedup

No occlusion culling 16.9 3.3 14.5 43.5 0%
OpenGL Occlusion Query 23.6 6.5 16.4 58.8 40%
OpenGL OQ + Occupancy Map 24.4 6.5 16.1 58.8 44%
OpenGL OQ + Software Depth Buffer 23.7 6.4 16.1 66.7 40%
OpenGL OQ + OM + SDB 24.5 6.3 16.7 55.6 45%
OpenGL OQ + Temporal Coherence 25.0 7.4 16.9 71.4 48%
OpenGL OQ + TC (aggressive) 29.0 7.1 20.0 71.4 72%

Table 5.3: Comparison of the performance timings for the Formula One Car model.

in contrast to the Cotton Picker, this is just a speedup of 4%.Due to the lower
complexity of the model the number of occlusion queries is lower, which results in a
reduced dependency of the occlusion query performance during rendering.

In a last test, a City model with some Formula One Car models inthe streets was
used for rendering (see Section 8.2.3). The camera path consisted of 110 frames and
also in some frames parts of the scene were outside the view frustum (see Figure 5.8
left). In contrast to the Formula One Car, the City model is much more complex
and in many frames a lot of geometry is occluded. Table 5.4 andright Figure 5.8
show the rendering performance. In addition to the occlusion queries, the average
performance increases by 1.5 fps with the Occupancy Map and the Software Depth
Buffer, which is equal to a speedup of 11%.

The temporal coherence algorithm shows only with the FormulaOne Car model

48

5.5. Results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100

fp
s

Frame

a) Only VFC
b) Occlusion Query

c) OQ + SDB
d) OQ + OM

e) OQ + OM + SDB
f) OQ + TC

g) OQ + TC (aggr.)

0

1000000

2000000

3000000

4000000

5000000

 0 20 40 60 80 100

P

ol
yg

on
s

Frame

a) sum
b) rendered polygons
c) occluded polygons

Figure 5.8: Performance (left) and visible/occluded polygons (right) during render-
ing of the City model.

Avg. Dev Min. Max.
fps fps fps fps Speedup

No occlusion culling 3.1 0.4 2.8 4.3 0%
OpenGL Occlusion Query 13.8 5.2 5.1 40.0 345%
OpenGL OQ + Occupancy Map 14.3 5.7 5.1 43.5 361%
OpenGL OQ + Software Depth Buffer 14.7 5.4 5.3 40.0 374%
OpenGL OQ + OM + SDB 15.3 5.9 5.3 43.5 393%
OpenGL OQ + Temporal Coherence 13.1 4.1 4.9 27.0 322%
OpenGL OQ + TC (aggressive) 20.1 6.1 9.7 47.6 548%

Table 5.4: Comparison of the performance timings for the City model.

and with the aggressive technique speedups compared with the standard occlusion
queries. However, the conservative technique shows a slowdown applied to the City
model and the aggressive technique generates image errors,therefore the presented
temporal coherence algorithm is not useful in a commonly usable scene graph envi-
ronment.

49

5. Avoiding Predictable Occlusion Queries

5.5.1 Occupancy Map and Software Depth Buffer

To measure, how many occlusion queries can be saved, the amount of visible and
occluded occlusion queries were counted with and without the additional techniques.
Figures 5.9, 5.10, and 5.11 show the percentage of the savings of the Occupancy
Map and the Software Depth Buffer from all occlusion tests inthe frames of our
camera paths. In addition, Table 5.5 shows the averaged values.

For the Cotton Picker the Occupancy Map saves 31% of occlusion tests with
a visible result and the Software Depth Buffer saves 73% of occlusion tests with
an occluded result. Of course, these values are lower in scenes with lower depth
complexity.

The Occupancy Map saves only 17% of occlusion tests with a visible result and
the Software Depth Buffer saves 55% of occlusion tests with an occluded result for
the Formula One Car model. The lower value of the Occupancy Mapresults from
many, partly visible, small objects, which are not in the front of the model.

For the City model the Occupancy Map saves 17% of occlusion tests with a vis-
ible result and the Software Depth Buffer saves 42% of occlusion tests with an oc-
cluded result.

Avg. # Avg. #
Queries Avg. Queries Avg.
Visible Saving Occluded Saving

Cotton Picker:
Only Occlusion Queries 1251 2205
With OM + SDB 868 31% 587 73%

Formula One Car:
Only Occlusion Queries 80 186
With OM + SDB 66 17% 83 55%

City:
Only Occlusion Queries 174 582
With OQ + OM + SDB 145 17% 327 42%

Table 5.5: Comparison of the number of occlusion queries forthe Cotton Picker, the
Formula One Car, and the City model.

50

5.5. Results

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

%

Frame

a) Savings Occupancy Map
b) Savings Software Depth Buffer

Figure 5.9: Savings of extra occlusion tests by the Occupancy Map and the Software
Depth Buffer for the Cotton Picker model.

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250

%

Frame

a) Savings Occupancy Map
b) Savings Software Depth Buffer

Figure 5.10: Savings of extra occlusion tests by the Occupancy Map and the Software
Depth Buffer for the Formula One Car model.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100

%

Frame

a) Savings Occupancy Map
b) Savings Software Depth Buffer

Figure 5.11: Savings of extra occlusion tests by the Occupancy Map and the Software
Depth Buffer for the City model.

51

5. Avoiding Predictable Occlusion Queries

52

Chapter 6

Occlusion Driven Traversal

The previous Chapter described some techniques to reduce the number of occlusion
queries to reduce the load of the graphics hardware. Another way to make occlusion
culling more efficient is to shadow the latency of occlusion queries with other work
on the graphics hardware.

This Chapter describes a special traversal technique of thescene graph to reduce
the occlusion query overhead.

Traversal and Sorting

Extensions

Occlusion Query

Figure 6.1: Overview of the software architecture. This Chapter describes a spe-
cial traversal and sorting technique of the scene graph withfocus on efficient use of
occlusion queries.

6.1 Introduction

As noted in previous Chapters, the image space occlusion queries of graphics hard-
ware require state changes and rasterization bandwidth (for the testing geometry).
Therefore, this thesis introduces a novel hierarchical traversal technique for scene
graphs, which significantly reduces the latency of occlusion queries. The approach

53

6. Occlusion Driven Traversal

reduces the number of state changes by usingmultipleocclusion queries and allows
thehierarchicalculling of occluded subtrees from the scene graph. The overall goal
of the approach is a stable render performance improvement for a varying set of mod-
els and viewing situations, even if little or no occlusion ispresent, where regular oc-
clusion culling methods have high overhead costs with little benefits. The presented
traversal technique requires no preprocessing or special (spatial) data structures. Fi-
nally, the approach supports dynamic and animated scenes, if the scene graph is
updated accordingly.

6.2 Occlusion Query

To obtain occlusion information, the mentioned (see Section 3.3 and 4.4) hardware
supported occlusion queries from NVidia are used. For an occlusion test, the test
geometry is rendered in the occlusion query mode with disabled frame and z-buffer
writes to avoid actual modifications to the framebuffers. Two different costs are
associated with an occlusion query; first it has to wait for the completion of the state
changes (because of disabling of frame and z-buffer writes and other state changes)
and second it rasterizes the test geometry.

Viewpoint

Viewpoint

Test boxes
in one multiple query

space areas
Separate screen

(a)

includes area of rear BB
Screen space area of front BB

Test boxes
in one multiple query

(b)

Figure 6.2: Multiple query without (a) and with (b) possiblyredundant results.

54

6.3. Organization of Multiple Occlusion Queries

The NVidia extension supports clustering of multiple tests in one query to reduce
the latency of setup costs for an occlusion query. This way, the visibility of more
than one bounding volume can be determined at the same time, while intermediate
visibility results are not guaranteed to be considered. Foreach tested bounding vol-
ume, the corresponding occlusion result is asynchronouslyreturned (see Figure 3.6
of Section 3.3). A major problem of multiple queries is the selection of the bounding
volumes. Because intermediate results are not taken into account. Two each other
occluding bounding volumes may return a false positive result (both not occluded,
see Figure 6.2); the second volume located behind the first one is tested against the
not up-to-date z-buffer, since the geometry of the first bounding volume is not yet
rendered. To avoid this problem, the presented approach uses a lower-resolution
representation of projected bounding boxes to utilize the screen-space coherence.

6.3 Organization of Multiple Occlusion Queries

As mentioned, the latency of an occlusion query can be reduced by using multiple
occlusion queries. This method reduces setup costs, becausestate changes are solely
necessary before and after the multiple query and the results can be collected asyn-
chronously (see Section 3.3). However, redundant queries (see Figure 6.2) have to
be avoided in order to circumvent false-positive results ofgeometry that is indeed
occluded. To address this problem, the algorithm uses an Occupancy Map for each
multiple query. In contrast to [9], an hierarchical approach exploiting multiple oc-
clusion queries is presented.

Figure 6.3: Request to the Occupancy Map; the blue box is detected as “not oc-
cluded”, the green one as possibly occluded. For the latter one, an occlusion query
will follow.

55

6. Occlusion Driven Traversal

In contrast to Section 5.2, the Occupancy Map has a slightly different meaning.
A covered area in such an Occupancy Map means that this regionis covered by a
bounding box from the corresponding test list. Only if at least one bit in the Occu-
pancy Map is not set in the area of the corresponding boundingbox, the bounding
box is added to a multiple occlusion query (see Figure 6.3). This means that the
bounding box will test a region in screen-space, which is notyet covered by another
bounding box from the respective test list. Bounding boxes can overlap in screen-
space, which could result in redundant queries, but they never occlude each other. If
all Occupancy Map bits covered by the bounding box are already set, the bounding
box is tested in a subsequent Occupancy Map. A bounding box, which is added to
an occlusion query, is always rendered into the tested Occupancy Map to mark the
corresponding screen space region as used.

6.4 Traversal

In this approach, hierarchical view-frustum and occlusionculling of the nodes in
the scene graph is applied. While the inner nodes of the scenegraph only contain
the bounding volume of their associated sub-tree, the leaf nodes contain the actual
geometry and their corresponding bounding boxes. The experiments are performed
with OpenSG.

Interleaved culling and rendering is performed during the scene graph traversal.
Two priority queues (traversalandpendingqueue) are used to organize the traversal
and the respective multiple occlusion queries. The priorityqueues are functioning in
a double-bufferedmanner. Only one Occupancy Map is used in this approach, and
it is cleared after each multiple occlusion query. The primary algorithm, which we
presented in [9], always used five instances of Occupancy Maps without hierarchical
culling.

To restrict the maximum number of multiple occlusion queries per frame, the
Occupancy Map is used for onlyo multiple queries. All remaining nodes are pro-
cessed by a brute force applying of occlusion queries. Limited temporal coherence
is exploited at this point, sinceo is calculated from frame to frame:of rame+1 =

7/10·mf rame, wherem is the number of all (organized by Occupancy Maps + re-
maining queries) multiple occlusion queries. Note that even for drastic movements
– which destroy temporal coherence –, the method is still conservative. Only the
efficiency might be reduced, due to the occlusion queries of the last stage.

The traversal technique can be partitioned into three main stages; starting with
the root node, it takes the bounding volume of the node and performs a view-frustum
culling test. If the node (actually its bounding volume) is determined inside the view-

56

6.4. Traversal

V

V

V

????

V

V

V

V ? ? ?

?

V

V

V

??

V

V

V

V ? ?O

V

O O

V

V

V

V

V

V

V

V

V

V O

V

O O

O

O O

V

V

V

V

V ? ? ?

?

?? ??

by the Occupancy Map
Subsequent multiple occlusion queries to Resulting scene graph with

visible and occluded nodesget the visibility of the remaining nodes
Visible nodes found

Figure 6.4: Traversal of the scene graph.

frustum, its child nodes are added to a front-to-back sortedqueue (traversalqueue
T in Figure 6.5) of current nodes. Otherwise, the whole sub-tree is skipped. The
closest corner of the node’s bounding box to the current viewpoint is used for the
front-to-back sorting.

In thefirst stage, the Occupancy Map is used to find the visible nodes in front of
the scene (equal to Section 5.2):

/ / L i s t i n g 6 .1 − Stage 1

whi le (t r a v e r s a l queue Tnot empty)
{

node = g e t f i r s t node of t r a v e r s a l queue T ;
i f (node i s o u t s i d e view f rus tum)

c u l l node ;
e l s e
{

i f (node i s v i s i b l e i n occupancy map)
{

i f (node i s geometry)
r e n d e r and a s s i g n node t o occupancy map ;

e l s e
{

add c h i l d r e n f r o n t−to−back
t o t r a v e r s a l queue T ;

}

}

e l s e
add node t o pend ing queue P ;

}

}

57

6. Occlusion Driven Traversal

Occupancy Map

Traversal Queue

Pending Queue

Children?

Add ChildrenYes

No
Render

Not occupied

Occupied

Stage 2 − Traversal Queue

Figure 6.5: Stage 1 – Request to the Occupancy Map; Leaf (geometry) nodes are
directly rendered.

Nodes with a bounding box visible in the Occupancy Map, are assumed visible in
the scene, since there is no rendered geometry up to now whichcovers the associated
region. If such a node is a geometry node, it is rendered and the Occupancy Map is
updated by its screen space bounding box. Nodes, whose bounding box is covered
in the Occupancy Map are added to thependingqueueP. These nodes are probably
occluded and therefore tested with occlusion queries in thenext stage of the traversal
scheme. In Fig. 6.5, an overview of the first stage of the traversal is given. If the
traversal queueT is empty the algorithm proceeds to stage two and thepending
queue replaces thetraversalqueue,T := P.

Occupancy Map

Traversal Queue

Pending Queue

Multiple Occlusion Query

Not occupied

Occupied

Stage 3 − Multiple Occlusion Query

Stage 3 − Pending Queue

Figure 6.6: Stage 2 – sorting of scene graph nodes during traversal.

58

6.4. Traversal

In the second stage(see Fig. 6.6), multiple occlusion queries are performed on
the nodes of the scene graph. To avoid false positive results, an Occupancy Map is
used to distribute the occlusion tests in different screen space regions (cp. Fig. 6.2).
Nodes, whose bounding box are not yet tested for occlusion, are added to thepending
queueP for later processing:

/ / L i s t i n g 6 .2 a − Stage 2

m = 0 ;

whi le (pend ing queue Pnot empty && m<m a x t e s t s)
{

c l e a r occupancy map ;

T = P ;

whi le (t r a v e r s a l queue Tnot empty)
{

node = g e t f i r s t node from t r a v e r s a l queue T ;

i f (node i s o u t s i d e view f rus tum)
c u l l node ;

e l s e
{

i f (node i s v i s i b l e i n occupancy map)
{

add node t o t e s t l i s t ;
a s s i g n node t o occupancy map ;

}

e l s e
add node t o pend ing queue P ;

}

}

per fo rm m u l t i p l e o c c l u s i o n query w i th t e s t l i s t ;

/ / −> 6 .2 b

59

6. Occlusion Driven Traversal

Multiple Occlusion Query

Occluded

Pending Queue

Visible
Children?

Add ChildrenYes

No
RenderResult?

Stage 2 − Traversal Queue

Figure 6.7: Stage 3 – the result of the hardware occlusion query causes culling or
further processing.

In the third stage(see Fig. 6.7), the results of the multiple occlusion query are
collected. Visible nodes are either immediately rendered (geometry (leaf) nodes) or
their children (of inner nodes) are added to thependingqueueP for further process-
ing:

/ / L i s t i n g 6 .2 b − Stage 3

f o r (each t e s t node){
i f (node i s v i s i b l e){

i f (node i s geometry)
r e n d e r node ;

e l s e
add c h i l d r e n t o pend ing queue P ;

}

e l s e
c u l l node ;

}

m++;
}

Stage two and three arelooped(after stage three thependingqueue replaces the
traversalqueue:T := P), until all nodes from thetraversalqueueT are processed or
a maximum number of organized multiple occlusion queries isreached.

60

6.4. Traversal

Figure 6.8: Occluded bounding boxes for a given view of the Cotton Picker model.
All bounding boxes of an individual multiple occlusion query have the same color.

To avoid too many occlusion queries given by the Occupancy Map in the back-
stage of the scene, brute force multiple occlusion queries on the remaining nodes are
performed, since bounding boxes in the back are usually occluded:

/ / L i s t i n g 6 .3

whi le (pend ing queue Pnot empty){
per fo rm m u l t i p l e o c c l u s i o n query w i th pend ing queue ;

c l e a r pend ing queue ;

f o r (each v i s i b l e node){
i f (node i s geometry)

r e n d e r node ;
e l s e

add c h i l d r e n t o pend ing queue P ;
}

m++;
}

m a x t e s t s = 7 /10 ∗ m;

Overall, the presented traversal technique provides hierarchical culling, since
complete subgraphs are culled, if the bounding box of the subgraph is occluded.
Figure 6.4 demonstrates the traversal in the scene graph andFigure 6.8 shows the
mapping of the bounding boxes to a corresponding multiple occlusion query.

61

6. Occlusion Driven Traversal

6.4.1 Complexity

Recapitulating: The simplest way to render a scene graph is with a stack-based depth-
first traversal of the scene graph. This kind of traversal has linear complexity, but is
very inflexible and does not care about the rendering performance. A much more
flexible scheme can be realized by using a priority-driven traversal of the graph.
By using specific priorities (for example: screen-space size, distance to the view-
point, or material parameters such as transparency) different orders for rendering
can be achieved. Due to the sorting of the needed priority queue, the complexity is
O(nlog(n)) (sometimes this can be optimized by using a hash-table). Unfortunately,
the presented algorithm uses two priority queues, which areworking in an interleaved
fashion. This leads to a worst case complexity ofO(o×nlog(n)) (Figure 6.9 gives an
example of a worst case situation), whereo is the number of used Occupancy Maps.
Fortunately, this is a very rare situation because all bounding boxes have to overlap
each other in screen-spaceandthey must be from different subgraphs.

Another problem in the presented implementation is the repeated sorting of the
nodes into the priority queues due to the double-buffered scheme. This can be
avoided by using only one priority queue with random access.Therefore, an algo-
rithm can remove occluded nodes and add children of visible nodes without copying
older nodes.

Viewpoint

maxzmaxz
Viewplane

z
Viewplane

z

...A B C

A

B

C ...
B C

...
A

Figure 6.9: Two different situations for the traversal performance. Left: worst case
situation, the bounding boxes are overlapping each other and they are from different
subgraphs. Right: The bounding boxes do not completly overlap each other and
the algorithm can merge the occlusion queries of the different bounding boxes in a
multiple occlusion query.

62

6.5. Results

6.5 Results

To evaluate the performance of the multiple occlusion queries organized by the Oc-
cupancy Maps, an Intel P4@2400 MHz with a NVidia Geforce FX5600XT and the
models listed in Table 6.1 were used. A camera path for each model at a resolution
of 800×600 and 32 Bit color depth was rendered. The occlusion cullingwas done
with the NVidia occlusion query extension.

Number of polygons

Boom Box 644 268
Formula One Car 746 827
F1 Animation 2 242 481
Cotton Picker 10 610 166
Big City 64 898 464

Table 6.1: Test models.

The Boom Box, the Formula One Car, and the Cotton Pickerare MCAD models
(see Section 8.2.4, 8.2.2 and 8.2.1). The Big City model is an artificial city with some
Formula One Car models in the streets and has the highest complexity of the four
models with high depth complexity (see Section 8.2.3). F1 Animation is a simple
animation with three Formula One Car models as test for dynamic scenes. The cars
driving an “8” behind each other around two obstacles. We didnot optimize the
scene graphs for occlusion culling or traversal.

We rendered different camera paths for each model. In some frames, the camera
zoomed into the scene and parts of the scene outside of the view frustum were culled.
Our measurements are performed a) only with view frustum culling, b) with a single
synchronous occlusion query for each node in the scene graph(without using an
Occupancy Map), c) with multiple occlusion queries organized by the previously
described traversal algorithm.

With occlusion culling, average frame rates between 11.1 fps (F1 Animation) and
33.7 fps (Formula One Car) for the different models (see Table 6.2) can be achieved.
With the new traversal scheme with Occupancy Maps and multiple occlusion queries
the new traversal algorithm improved these results to 16.5 fps (F1 Animation) and
42.9 fps (Boom Box). The best speed-ups were achieved with multiple occlusion
queries in scenes with lower depth complexity, because of the trade-off between ren-
dering and occlusion query state changes. In scenes with very high depth complexity,
the occlusion queries dominate and with very low depth complexity the rendering

63

6. Occlusion Driven Traversal

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140

fp
s

Frame

a) no occlusion culling
b) single query

c) multiple queries

0

100000

200000

300000

400000

500000

600000

700000

800000

 0 20 40 60 80 100 120 140

R
en

de
re

d
po

ly
go

ns

Frame

No occlusion culling
With occlusion culling

Figure 6.10: Boom Box frame rates and rendered polygons.

Average Frame Rates [fps]
b) synchronous c) asynchronous

a) only occlusion multiple
vfc queries queries

Boom Box 22.1 31.1 42.9
+41% +94%

Formula One Car 27.7 33.7 41.9
+22% +51%

F1 Animation 8.3 11.1 16.5
+34% +97%

Cotton Picker 8.8 17.9 20.6
+103% +135%

Big City 0.5 19.9 20.7
+3880% +4040%

Table 6.2: Resulting average frame rates and correspondingspeed-ups for the test
models.

dominates. The F1 Animation shows the lowest average frame rates, even though it
has not the highest complexity, because only a few polygons were outside the view
frustum during the camera path in contrast to the camera paths of the other models.

In Figures 6.10 – 6.11 the frame- and renderrates (how many polygons are ren-
dered) are given. In scenes with higher depth complexity, the speed-up is not that
high, because most of the costs are the fillrate for the occlusion tests and the scene
graph traversal in the (occluded) backstage of the scene, which is similar with or
without multiple queries.

64

6.5. Results

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250

fp
s

Frame

a) no occlusion culling
b) single query

c) multiple queries

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

 0 50 100 150 200 250

R
en

de
re

d
po

ly
go

ns

Frame

No occlusion culling
With occlusion culling

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

fp
s

Frame

a) no occlusion culling
b) single query

c) multiple queries

0

500000

1000000

1500000

2000000

2500000

 0 50 100 150 200

R
en

de
re

d
po

ly
go

ns

Frame

No occlusion culling
With occlusion culling

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

fp
s

Frame

a) no occlusion culling
b) single query

c) multiple queries

0

10000000

20000000

30000000

40000000

50000000

60000000

 0 20 40 60 80 100 120 140

R
en

de
re

d
po

ly
go

ns

Frame

No occlusion culling
With occlusion culling

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

fp
s

Frame

a) no occlusion culling
b) single query

c) multiple queries

0

2000000

4000000

6000000

8000000

10000000

12000000

 0 50 100 150 200 250 300 350 400

R
en

de
re

d
po

ly
go

ns

Frame

No occlusion culling
With occlusion culling

Figure 6.11: Frame rates (left) and rendered polygons (right) for the different models.
Top-down: Formula One Car, F1 Animation, Big City, and Cotton Picker.

65

6. Occlusion Driven Traversal

6.5.1 Scene Graph Structure

In the previous experiments, the original scene graphs of the models were used. But,
obviously, the structure of the graph has an influence on the traversal and culling
performance. Therefore a simple algorithm was used to generate different structures
of the scene graphs. The algorithm arranges the geometry nodes in an rough octree
structure with a predefined depth. Table 6.3 presents the average timings to generate
an octree-like scene graph for the given models. The algorithm was not optimized,
but shows that an update of the scene graph for each frame is too expensive, espe-
cially in large scenes.

Model Approx. Time Num. Geo. Nodes

Boom Box 315ms 530
Formula One Car 305ms 306
Cotton Picker 4 900ms 13 270
Big City 75 000ms 30 385

Table 6.3: Average time to generate an “octree-like” scene graph from the original
graph.

In Table 6.4 and Figure 6.12 the average rendering performances for the different
depths of the scene graphs are given. The results show that theperformance is stable
in scene graphs with a lower number of nodes. With a large number of nodes, a scene
graph with a larger depth is needed to obtain good performance. In graphs with an
almost flat structure and a large number of nodes, the needed sorting for the front-
to-back rendering becomes expensive and limits the overallperformance, because
a huge number of nodes have to be sorted and traversed until the rendering can be
started with the first geometry node. In scene graphs with larger depth, the sorting
is executed parallel to the rendering (which is performed onthe graphics hardware)
and the culling can be hierarchically applied.

66

6.5. Results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16

fp
s

Maximum Scene Graph Depth

a) Boom Box
b) Formula One Car

c) Cotton Picker
d) Big City

Figure 6.12: Average rendering performance depending on the used maximum scene
graph depths.

Average Frame Rates [fps]
Scene Graph DepthOriginal Flat 2 4 6 8 Unlimited

Boom Box 42.8 46.6 48.0 48.5 49.2 48.9 48.5
Formula One Car 41.9 37.8 35.8 35.1 35.8 35.9 35.7
Cotton Picker 20.6 3.5 9.9 14.9 19.9 20.1 20.1
Big City 20.7 2.4 5.1 10.9 17.8 17.8 18.6

Table 6.4: Average rendering performance for different depths of the used scene
graph.

67

6. Occlusion Driven Traversal

68

Chapter 7

Conclusion and Future Work

7.1 Conclusions

In this thesis different occlusion culling techniques assisted by graphics hardware
are evaluated. Additionally some new algorithms to reduce the number of hardware-
assisted occlusion queries are presented. Also a novel algorithm for scene graph
traversal to efficiently utilize multiple occlusion queries of the graphics hardware
was introduced.

All the presented work can be used with arbitrary scenes and scene graph systems.
Only a bounding volume hierarchy is needed to perform the occlusion queries. In the
presented work we used only bounding boxes as bounding volumes, but also other
bounding volumes can be utilized [1, 2].

The presented algorithms show good speed-ups compared to traditional rendering
techniques without occlusion culling. Also they can be implemented on top of a
wide range of different scene graph systems or other hierarchical data structures. No
preprocessing on the data structures is needed, which makesthe presented algorithms
suitable for dynamic and interactive real-time environments.

All presented techniques can be combined with each other. This results in a very
flexible solution for a wide range of different platform configurations. For example, a
computer system with low graphics capabilities and withoutspecial hardware exten-
sions can benefit from the presented occlusion query implementations. In contrast,
a computer system with high performance graphics hardware and support for hard-
ware occlusion queries will benefit from the special traversal technique to efficiently
exploit the graphics hardware capabilities.

69

7. Conclusion and Future Work

7.2 Main Results

Occlusion Query Implementations

Three different approaches to calculate the occlusion of a given bounding volume
were compared in Chapter 4. All of them are using the depth values of the graphics
hardware in any way to compare the depth values of the tested bounding volume with
the depth values of already rendered geometry. The approaches differ in the utiliza-
tion of the graphics hardware and the host’s CPU. As expected, special extensions
of the graphics hardware are the fastest way to get the occlusion. But also the other
algorithms are able to speed up the rendering of complex scenes. Particularly they
are useful in hardware environments without special occlusion query extensions. The
read back of the z-buffer can be used in environments with high CPU power com-
pared to the graphics capabilities, for example, in mobile phones or personal digital
assistants (PDAs). On the other hand, the use of the OpenGL stencil buffer is use-
ful in systems with middle-sized graphics hardware, missing the special OpenGL
extensions, for example, in notebooks with unified memory architecture (UMA).

Avoiding Predictable Occlusion Queries

Because of the utilization of the graphics hardware for the occlusion queries, each
occlusion query is associated with some latency. Therefore the number of occlusion
queries to the graphics hardware has to be minimized to reduce the overall rendering
time. We presented two novel techniques to decrease the number of occlusion queries
in Chapter 5. The first technique focuses on occlusion querieswith a visible result
and the second on occlusion queries with an occluded result.Both techniques do not
use the graphics hardware in some way to avoid additional latency. For example,
with the Cotton Picker model, the number of occlusion queries decreased in average
from 3456 to 1455 per frame for a given camera path. This is a reduction of 58%.

Occlusion Driven Traversal

Another way to reduce the latency for the occlusion queries is by using multiple oc-
clusion queries in an interleaved fashion. Instead of synchronously waiting for an
occlusion query result, this time is used for rendering or other occlusion queries. But
the main problem is, how these multiple occlusion queries are organized. Which
bounding volumes have to be added to a multiple occlusion query and which not?
How can the bounding volumes be arranged to avoid false positive results? In Chap-
ter 6 we presented an algorithm which uses screen-space coherence of the projected

70

7.3. Future work

bounding boxes to arrange the multiple occlusion queries during scene graph traver-
sal. For example, the algorithm additionally gains over 5 fps in average for a F1 an-
imation in a given camera path in contrast to synchronous occlusion queries, which
is a speedup of 49%. Also the algorithm works in dynamic scenes and needs only an
up-to-date bounding box hierarchy.

7.3 Future work

Hardware-assisted occlusion culling is a powerful tool to accelerate the rendering of
very complex scenes with high depth complexity. The work presented in this thesis
can be utilized in a standard scene graph environment. There are several directions
and applications for future work:

• Beside the use for occlusion culling, a lower resolution bounding box of the
Occupancy Map lookup gives information of the screen-spacesize for a node’s
bounding box. This can be used for level-of-detail selectionor contribution
culling.

• No temporal coherence is utilized in the presented approaches, but could be
used to further speed up the construction and organization of the traversal and
culling techniques. But this is a very sensitive technique and should be care-
fully used to avoid problems with dynamic scenes. This could also include a
combination of the algorithm from Bittner et al. [16] and thepresented traver-
sal algorithm. For example, the selected nodes from the temporal coherence
algorithm could be used as starting point for the occlusion-driven traversal. In
frames with slow camera movement and less dynamic modifications, the algo-
rithm would benefit from the temporal coherence. In dynamic,fast changing
situations, the occlusion-driven part avoids loosing efficiency of the occlusion
queries.

• Another obvious improvement is to render the geometry nodesin a state sorted
fashion to further reduce the number of state changes duringrendering. This
can be easily implemented in the presented occlusion-driven traversal scheme.

• Precomputing was not in the focus, because dynamic scenes without assump-
tions on the scene graph have to work. In further releases this could become
a more interesting point to speed up rendering of static or special scenes and
could be implemented as additional tool complementing the presented tech-
niques.

71

7. Conclusion and Future Work

• The tests are working in a serial fashion, but could be parallelized, so that the
software techniques, like the Occupancy Map or the SoftwareDepth Buffer are
working parallel to the hardware-assisted occlusion queries. This would result
in a better load balancing between the main processor and thegraphics subsys-
tem and thus, to higher frame rates.

• All the presented work was done with a very flexible scene graph environ-
ment. If other spatial data structures are available, like an octree or BSP tree,
several optimizations could be done. For example, the projection of the bound-
ing boxes would not be necessary in an octree environment forthe occlusion-
driven traversal. The sorting in screen-space for the multiple occlusion queries
can be implicitly done by a clever traversal of the octree.

72

Chapter 8

Appendix

8.1 OSGViewer

Figure 8.1: Screen shot of the OSGViewer.

The OSGViewer application was implemented to test the presented occlusion
culling techniques with the OpenSG scene graph. In additionto the rendering capa-
bilities, the application supports some features to manipulate a given scene graph, to
manage animations, and to allow writing scripts. Also different file formats like the
Jupiter-format are supported to import the models available from the Jupiter project.

73

8. Appendix

8.1.1 Implementation

The application is written in C++ and uses Linux as platform. OpenSG is used as
rendering and scene graph backend, Qt for the GUI and the QGLViewer for camera
control. The SWIG library is used to attach different script languages to the C++
classes.

The application is split into two parts. The first part includesthe “Main Win-
dow”, the I/O-capabilities and manages the central scene graph which contains the
scene. The second part is responsible for the rendering of thescene graph in a “Scene
Viewer”. Several instances of the Scene Viewer can be independently used at the
same time.

8.1.2 Main Part

The main part controls the central scene graph and all functions, which do inspection
or modifications of the central scene graph. Also multiple instances of the scene
views are controlled. The main part is split into loading and saving, scripting and
modification tools. The window in Figure 8.2 is used as user interface, which shows
the scene graph as tree view in the left of the window. The user can inspect or
manipulate the graph with the interfaces on the right side and with context-sensitive
popup menus in the tree view.

Figure 8.2: Main window of the OSGViewer.

For loading and saving of models, the applications supportsdifferent formats.
This includes all OpenSG supported formats (VRML, OBJ and the own binary or

74

8.1. OSGViewer

ASCII format). To benefit from the efficient binary format of the Jupiter scene graph,
a special converter was implemented, which is able to convert an OpenSG scene
graph to a Jupiter graph and vice versa. Also only subgraphs can be saved or added
to an existing scene graph, which allows a simple construction of new models.

For further modifications of the scene graph, the user is ableto add new nodes
to the scene graph. Also cut and paste of a subgraph is possible. Additional tools
allow to replicate a subgraph in different directions or canrestructure the nodes in an
octree like hierarchy.

Because of the reflection system of OpenSG the application can give the user full
access to do modifications of the scene graph data like material or light parameters.
Also some additional special interfaces are available for afast editing of transforma-
tion matrices.

8.1.3 Scene View

In contrast to the abstract view of the scene graph in the mainwindow, the scene view
presents the 3d OpenGL rendering of the graph. To render a scene, the scene viewer
uses an instance of a new render action, which is derived fromthe original render
action provided by OpenSG. The new render action implements different enhanced
techniques like the ones presented in Chapter 6. The interface (see Figure 8.3) of
the scene viewer allows to configure a wide range of parameters for the rendering
for example, enabling occlusion culling with the hardware extensions or enabling the
Occupancy Map.

Figure 8.3: Scene view of the OSGViewer.

75

8. Appendix

The qglviewer library was used as user interface to control the camera, which
yields additional features like playing of camera paths or automatic spinning. Addi-
tionally, multiple scene views can be connected to each other. A “master” scene view
controls the connected cameras. For example, this allows tocompare the rendering
speed of the same view at the same time for different techniques with and without
occlusion culling.

Figure 8.4: Screen shot of the statistics window.

To give a feedback of the rendering performance, the frame rate can be visualized
in a statistics window. Figure 8.4 shows an example of this window. The user can
connect a scene view with drag and drop to the statistics window. Different modes
are available for the visualization.

76

8.2. Test Models

8.2 Test Models

8.2.1 Cotton Picker

Figure 8.5: Complex scene of a Cotton Picker.

Figure 8.6: Depth complexity of the Cotton Picker model (avg. complexity: 13.3752
in 432 540 visible pixels).

Number of polygons 10 610 166
Number of nodes 40 724
Number of geometry nodes 13 270

Table 8.1: Scene specifications of the Cotton Picker model.

The Cotton Picker is a “real world” model from an industrial CAD modeling
application. It consists of 13,270 individual parts in its assembly list (see Table 8.1).
Most of the geometric complexity is located in the front of the model where are the
spindle parts located. Each spindle has a huge number of smallspikes. Depending

77

8. Appendix

on the viewpoint most of the spindles are occluded by chassisparts. However, from
a frontal point of view, most of the spindles are visible, which decreases the benefits
of occlusion culling approaches.

8.2.2 Formula One Car

Figure 8.7: Formula One Car.

Figure 8.8: Depth complexity of the Formula One Car model.

Number of polygons 746 827
Number of nodes 311
Number of geometry nodes 306

Table 8.2: Scene specifications of the Formula One Car model.

The Formula One Car model is like the Cotton Picker a CAD model.It has a
lower complexity with 746,827 polygons. Inside the chassisthe model consists of

78

8.2. Test Models

an engine, a gear box and suspension parts. Also a driver is sitting on the seat and
controls the drive. The polygons are distributed over the whole body and chassis. In
most points of view, the inner parts are occluded by the chassis.

F1 Animation

Figure 8.9: Screen shots of the F1 Animation model.

Figure 8.10: Some frames of the F1 Animation.

Number of polygons 2 242 481
Number of nodes 2 552
Number of geometry nodes 965

Table 8.3: Scene specifications of the F1 Animation model.

The F1 Animation is an artificial scene with three Formula One Car models and
a very simple circuit in which the Formula One Car models describe an eight. Each
car has a little different track and performance, however they do not overtake each
other. The model is more complex with 2,242,481 polygons and is used to make
experiments with dynamic scenes. The relations of the polygons to each other is
changing in every frame, which has to taken into account in anocclusion culling
approach.

79

8. Appendix

8.2.3 City

Figure 8.11: Different views of the Big City model, lower right: depth complexity.

Model City Big City

Number of polygons 4 056 195 64 898 464
Number of nodes 1 973 31 439
Number of geometry nodes 1 900 30 385

Table 8.4: Scene specifications of the both City models.

The City model is a combination of a London district and some Formula One
Car models to increase the complexity. To get a larger model with higher complexity,
the City model is replicated four times in each direction to build the Big City model.
Both models are architectural scenes, which usually benefitfrom occlusion culling
techniques. Facades in the front of the models occlude most of the inner and rear
geometry.

80

8.2. Test Models

8.2.4 Boom Box

The Boom Box model is a CAD model of a portable music system withlower com-
plexity. In the interior the model contains some resistors,capacitors and other elec-
tronic stuff, which are occluded by the case.

Figure 8.12: Image of the Boom Box model, lower left: bounding boxes of the
interior, lower right: depth complexity.

Number of polygons 644 268
Number of nodes 1 277
Number of geometry nodes 530

Table 8.5: Scene specifications of the Boom Box model.

81

8. Appendix

82

Bibliography

Author’s list of publications

[1] D. Bartz, J. Klosowski, and D. Staneker. Tighter Bounding Volumes for Better
Occlusion Performance. InVisual Proc. of ACM SIGGRAPH, page 213, 2001.

[2] D. Bartz, D. Staneker, and J. Klosowski. Tighter Bounding Volumes for Better
Occlusion Culling Performance. Technical Report WSI-2005-13, Wilhelm
Schickard Institute for Computer Science, Graphical Interactive Systems
(WSI/GRIS), University of T̈ubingen, 2005.

[3] D. Bartz, D. Staneker, W. Straßer, B. Cripe, T. Gaskins, K. Orton, M. Carter,
A. Johannsen, and J. Trom. Jupiter: A Toolkit for Interactive Large Model
Visualization. InProc. of Symposium on Parallel and Large Data
Visualization and Graphics, pages 129–134, 2001.

[4] P. Biber, S. Fleck, M. Wand, D. Staneker, and W. Straßer. First Experiences
with a Mobile Platform for Flexible 3D Model Acquisotion in Indoor and
Outdoor Environments - The Ẅagele. InProc. of 3D-Arch, 2005.

[5] D. Staneker. Ein hybrider Ansatz zur effizienten Verdeckungsrechnung.
Master’s thesis, University of T̈ubingen, Computer Science, 2001.

[6] D. Staneker. A First Step towards Occlusion Culling in OpenSG PLUS. In
Proc. of OpenSG Symposium, 2002.

[7] D. Staneker. An Occlusion Culling Toolkit for OpenSG PLUS. In Proc. of
OpenSG Symposium, 2003.

[8] D. Staneker, D. Bartz, and M. Meißner. Using Occupancy Maps for Better
Occlusion Query Efficiency. InEG Workshop on Rendering, 2002. Poster.

83

Bibliography

[9] D. Staneker, D. Bartz, and M. Meißner. Improving Occlusion Query
Efficiency with Occupancy Maps. InProc. of Symposium on Parallel and
Large Data Visualization and Graphics, pages 111–118, 2003.

[10] D. Staneker, D. Bartz, and W. Straßer. Efficient MultipleOcclusion Queries
for Scene Graph Systems. Technical Report WSI-2004-6, Wilhelm Schickard
Institute for Computer Science, Graphical Interactive Systems (WSI/GRIS),
University of Tübingen, 2004.

[11] D. Staneker, D. Bartz, and W. Straßer. Occlusion Culling in OpenSG PLUS.
Computers & Graphics, 28(1):87–92, 2004.

[12] D. Staneker, D. Bartz, and W. Straßer. Occlusion-Driven Scene Sorting for
Efficient Culling. InProc. of Afrigraph, to appear, 2006.

[13] G. Wetekam, D. Staneker, U. Kanus, and M. Wand. A Hardware Architecture
for Multi-Resolution Volume Rendering. InProc. of
Eurographics/SIGGRAPH Workshop on Graphics Hardware, 2005.

84

BIBLIOGRAPHY

Literature

[14] D. Bartz, M. Meißner, and T. Ḧuttner. Extending Graphics Hardware for
Occlusion Queries in OpenGL. InProc. of Eurographics/SIGGRAPH
Workshop on Graphics Hardware, pages 97–104,158, 1998.

[15] D. Bartz, M. Meißner, and T. Ḧuttner. OpenGL-assisted Occlusion Culling of
Large Polygonal Models.Computers & Graphics, 23(5):667–679, 1999.

[16] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer.Coherent Hierarchical
Culling: Hardware Occlusion Queries Made Useful. InEurographics, 2004.

[17] E. Catmull.A Subdivision Algorithm for Computer Display of Curved
Surfaces. PhD thesis, University of Utah, 1974.

[18] D. Cohen-Or, Y. Chrysanthou, F. Durand, and C. Silva. Visibility: Problems,
Techniques, and Application. InACM SIGGRAPH Course 4, 2000.

[19] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand. A Survey of
Visibility for Walkthrough Applications.IEEE Transactions on Visualization
and Computer Graphics, 9(3), 2003.

[20] OpenSG PLUS Consortium. OpenSG PLUS Project.
http://www.opensg.org/OpenSGPLUS/index.EN.html , 2001.

[21] B. Cripe and T. Gaskins. The DirectModel Toolkit: Meeting the 3D Graphics
Needs of Technical Applications.The Hewlett-Packard Journal, May:19–27,
1998.

[22] M. DeLoura.Game Programming Gems 2 (T. Forsyth: Impostors: Adding
Clutter). Charles River Media, 2001.

[23] R. Fernando and M. J. Kilgard.The Cg Tutorial: The Definitive Guide to
Programmable Real-Time Graphics. Addison–Wesley Professional, 2003.

[24] J. Foley, A. Van Dam, S. Feiner, and J. Hughes.Computer Graphics:
Principles and Practice. Addison–Wesley, 2nd edition, 1996.

[25] OpenSG Forum. OpenSG - Open Source Scenegraph.
http://www.opensg.org , 2000.

[26] M. Garland. Multiresolution Modeling: Survey and Future Opportunities. In
Eurographics STAR report 2, 1999.

85

http://www.opensg.org/ OpenSGPLUS/ index.EN.html
http://www.opensg.org

Bibliography

[27] N. Greene, M. Kass, and G. Miller. Hierarchical Z-BufferVisibility. In Proc.
of ACM SIGGRAPH, pages 231–238, 1993.

[28] S. Guthe, M. Wand, J. Gonser, and W. Straßer. Interactive rendering of large
volume data sets. InIEEE Visualization, 2002.

[29] P. Heckbert and M. Garland. Multiresolution Modeling for Fast Rendering. In
Graphics Interface, 1994.

[30] Hewlett-Packard. Starbase Graphics Techniques. Volume 1, 1st edition, 1991.

[31] Hewlett-Packard. Occlusion Test, Preliminary.http://www.opengl.org/

Developers/Documentation/Version1.2/HPspecs/

occlusion_test.txt , 1997.

[32] Hewlett-Packard. Jupiter 1.0 Specification. Technical report, Hewlett Packard
Company, Corvallis, OR, 1998.

[33] Hewlett-Packard. HP Visibility Test.http://dune.mcs.kent.edu/

˜farrell/distcomp/graphics/hpopengl/Reference/

glVisibilityBufferHP.html , 1999.

[34] Silicon Graphics Inc. Cosmo3D Programmer’s Guide. Technical report, 1998.

[35] W. Straßer J. Encarnação and R. Klein.Graphische Datenverarbeitung I. R.
Oldenbourg Verlag, 1996.

[36] W. Straßer J. Encarnação and R. Klein.Graphische Datenverarbeitung II. R.
Oldenbourg Verlag, 1997.

[37] F. Kahlesz, A. Balazs, and R. Klein. NURBS rendering in OpenSG PLUS.
http://www.opensg.org/OpenSGPLUS/symposium/ , 2002.

[38] J. Klosowski and C. Silva. The Prioritized-Layered Projection Algorithm for
Visible Set Estimation.IEEE Transactions on Visualization and Computer
Graphics, 6(2), 2000.

[39] J. Klosowski and C. Silva. Efficient Conservative Visibility Culling Using the
Prioritized-Layered Projection Algorithm.IEEE Transactions on Visualization
and Computer Graphics, 7(4), 2001.

[40] T. Leyvand, O. Sorkine, and D. Cohen-Or. Ray Space Factorization for
From-Region Visibility. InProc. of ACM SIGGRAPH, 2003.

86

http://www.opengl.org/
Developers/Documentation/Version1.2/HPspecs/
occlusion_test.txt
http://dune.mcs.kent.edu/
~ farrell/distcomp/graphics/hpopengl/Reference/
glVisibilityBufferHP.html
http://www.opensg.org/ OpenSGPLUS/symposium/

BIBLIOGRAPHY

[41] D. Luebke and C. Georges. Portals and Mirrors: Simple, Fast Evaluation of
Potentially Visible Sets. InProc. of ACM Symposium on Interactive 3D
Graphics, pages 105–106, 1995.

[42] M. Meißner, D. Bartz, R. G̈unther, and W. Straßer. Visibility Driven
Rasterization.Computer Graphics Forum, 20(4):283–294, 2001.

[43] S. Nirenstein, E. Blake, and J. Gain. Exact from-region visibility culling. In
Proceedings of the 13th workshop on Rendering, pages 191–202.
Eurographics Association, 2002.

[44] NVidia. NVidia Occlusion Query.http://oss.sgi.com/projects/

ogl-sample/registry/NV/occlusion_query.txt , 2001.

[45] D. Reiners. A Flexible and Extensible Traversal Framework for Scenegraph
Systems.http://www.opensg.org/OpenSGPLUS/symposium/ , 2002.

[46] J. Rohlf and J. Helman. IRIS Performer: A High Performance Multiprocessing
Toolkit for Real-Time 3D Graphics. InProc. of ACM SIGGRAPH, pages
381–394, 1994.

[47] R. J. Rost.OpenGL Shading Language. Addison–Wesley Professional, 2004.

[48] H. Samet.The Design and Analysis of Spatial Data Structures.
Addison–Wesley, 1994.

[49] N. Scott, D. Olsen, and E. Gannett. An Overview of the VISUALIZE fx
Graphics Accelerator Hardware.The Hewlett-Packard Journal, (May):28–34,
1998.

[50] M. Segal and K. Akeley. The OpenGL Graphics System: A Specification
(2.0). http://www.opengl.org/documentation/specs/

version2.0/glspec20.pdf , 2004.

[51] L. A. Shirman and S. S. Abi-Ezzi. The Cone of Normals Technique for Fast
Processing of Curved Patches. InEurographics, pages 261–272, 1993.

[52] P. Slusallek, S. Parker, E. Reinhard, H. Pfister, and T. Purcell. Interactive
Ray-Tracing. InACM SIGGRAPH Course 13, 2001.

[53] M. Stein, E. Bowman, and G. Pierce.Direct3D: Professional Reference. New
Riders Pub, 1997.

87

http://oss.sgi.com/projects/
ogl-sample/registry/NV/occlusion_query.txt
http://www.opensg.org/ OpenSGPLUS/ symposium/
http://www.opengl.org/documentation/specs/
version2.0/glspec20.pdf

Bibliography

[54] W. Straßer.Schnelle Kurven- und Flächendarstellung auf graphischen
Sichtger̈aten. PhD thesis, Technische Universität Berlin, 1974.

[55] G. Voß, J. Behr, D. Reiners, and M. Roth. A multi-thread safe foundation for
scenegraphs and its extension to clusters. InEG Workshop on Parallel
Graphics and Visualisation, 2002.

[56] M. Wand. Point-based multi-resolution rendering. Dissertation, University of
Tübingen, 2004.

[57] M. Wand, M. Fischer, I. Peter, F. Meyer auf der Heide, andW. Straßer. The
randomized z-buffer algorithm: Interactive rendering of highly complex
scenes. InSIGGRAPH 2001, 2001.

[58] M. Weiler and T. Ertl. Ein Volume-Rendering-Framework für OpenSG.
http://www.opensg.org/OpenSGPLUS/symposium/ , 2002.

[59] J. Wernecke.The Inventor Mentor. Addison–Wesley, 1994.

[60] P. Wonka, M. Wimmer, and D. Schmalstieg. Occluder Shadows for Fast
Walkthroughs of Urban Environments. InComputer Graphics Forum, pages
vol. 18, no. 3, pp. 51–60, 1999.

[61] M. Woo, J. Neider, and T. Davis.OpenGL Programming Guide.
Addison–Wesley, 2nd edition, 1997.

[62] WSI/GRIS. The Kelvin Project.
http://www.gris.uni-tuebingen.de/kelvin/ , 1999.

[63] H. Zhang, D. Manocha, T. Hudson, and Kenneth E. Hoff. Visibility Culling
Using Hierarchical Occlusion Maps. InProc. of ACM SIGGRAPH, pages
77–88, 1997.

88

http://www.opensg.org/ OpenSGPLUS/symposium/
http://www.gris.uni-tuebingen.de/kelvin/

	Introduction
	Motivation
	Contribution of This Thesis
	Structure of the Thesis

	Background
	Scene Organization
	Space Subdivision
	Scene Graphs
	Bounding Volumes

	Rendering
	Rasterization Pipeline
	Multi-Resolution
	Visibility Culling

	Occlusion Culling
	Introduction
	Classification
	Hardware Occlusion Queries
	Related Work

	Occlusion Query Implementations
	Introduction
	Using the OpenGL Depth Buffer
	Using the OpenGL Stencil Buffer
	OpenGL Extensions for Occlusion Culling
	Evaluation

	Avoiding Predictable Occlusion Queries
	Introduction
	Occupancy Map
	Implementation

	Additional Depth Buffer in Software
	Temporal Coherence
	Results
	Occupancy Map and Software Depth Buffer

	Occlusion Driven Traversal
	Introduction
	Occlusion Query
	Organization of Multiple Occlusion Queries
	Traversal
	Complexity

	Results
	Scene Graph Structure

	Conclusion and Future Work
	Conclusions
	Main Results
	Future work

	Appendix
	OSGViewer
	Implementation
	Main Part
	Scene View

	Test Models
	Cotton Picker
	Formula One Car
	City
	Boom Box

	Bibliography

