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Abstract

Occlusion is ubiquitous in nature. It is therefore important for an observer to be able

to identify visual input despite partial occlusion. Humans as well as Rhesus monkeys

seem in general to be very good at this task. Yet, it has been demonstrated for

human observers that the recognition of a partially occluded image depends on which

image parts are visible. Here, it is shown that the same effects can be observed for

monkeys. Two Rhesus monkeys were trained to discriminate between natural scenes.

When the scenes were presented behind randomly generated occluders, the occlusion

of very specific image regions impaired the performance. The results indicate that

for monkey observers, information from different image regions contributes in a very

characteristic way to the identification of an image. Each monkey had a unique bias

to rely only on certain image regions during the task.

In the second stage of the experiment, single cell recordings were performed in area

TE in the monkey inferior temporal cortex. The responses of neurons to partially

occluded stimuli were recorded. Occluders were constructed according to the be-

havioral results, taking into account how behavioral relevance, or diagnosticity, was

distributed across an image. The occluded conditions were constructed such that

either diagnostic or non-diagnostic image regions were visible. Consistent influences

of occlusion were present in area TE. Next to a general reduction in response rate

with occlusion, pronounced differences were obtained between diagnostic and non-

diagnostic conditions: Firing rate as well as selectivity was higher in the diagnostic

conditions. The results therefore show that different regions of a natural scene evoke

responses from TE neurons depending on their behavioral relevance.

Together with the behavior of single neurons, the local field potential (LFP) was

recorded in area TE. The LFP reflects the synaptic activity in a brain region and

thus can be considered to be coupled to the inputs into this region. While effects of

occlusion were generally present in the LFP, the effects of diagnosticity depended on

the recording location. Moving from posterior to anterior locations in TE, diagnos-

ticity exerted progressively more influence on the LFP. Contrasting with the LFP,
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the behavior of single units was homogeneous across the whole recording region.

The data are consistent with a model proposing that diagnosticity is first encoded

in posterior TE, but not in earlier visual areas.

In conclusion, we were not only able to demonstrate that the diagnosticity of an

image region is encoded in area TE, but also that this encoding is first achieved

there. In agreement with previous studies, this strongly suggests that one function

of area TE is to store parts-based representation for learned visual structure, which

reflects the diagnosticity of the encoded parts.



Zusammenfassung

Es kommt in der Natur häufig vor, dass nur Teile eines Objekts zu sehen, andere

Teile aber verdeckt sind. Menschen sind trotzdem in den meisten Fällen imstande,

die nur teilweise sichtbaren Objekte zu erkennen. Allerdings hängt es davon ab,

welcher Teil eines Objekts zu sehen ist, ob es erkannt werden kann. Auch Rhesusaf-

fen können in vielen Fällen nur teilweise sichtbare Objekte erkennen. Diese Studie

zeigt, dass es dabei wie für Menschen entscheidend ist, welche Objektteile sicht-

bar sind. Zwei Rhesusaffen wurden darauf trainiert, zwischen mehreren natürlichen

Bildern zu unterscheiden. Diese Bilder wurden dann hinter Masken gezeigt, durch

die zufällig ausgewählte Bereiche der Bilder zu sehen waren. Die Abdeckung be-

stimmter Bereiche führte dazu, dass die Affen die abgedeckten Bilder nicht mehr

erkennen konnten. Im Gegensatz dazu gab es Bildbereiche, deren Abdeckung sich

nicht auf das Verhalten auswirkte. Die Affen stützten ihre Erkennungsleistung also

auf spezifische Bildbereiche. Diese Bildbereiche werden im Folgenden als diagnosti-

sche Bereiche bezeichnet. Die Bestimmung der diagnostischen Bereiche zeigte große

Unterschiede darin, welche Informationen die beiden Affen zur Erkennung eines Bil-

des heranzogen. Menschen verwendeten in den meisten Fällen andere Bereiche zur

Erkennung derselben Bilder. Die diagnostischen Bereiche, die aus Experimenten mit

Versuchspersonen ermittelt wurden, konnten daher nicht dazu verwendet werden,

das Verhalten der Affen vorherzusagen. Des Weiteren zeichneten sich die diagnosti-

schen Bereiche der Affen nicht durch besondere physikalische Bildeigenschaften aus.

Weder die Helligkeit eines Bildbereichs, noch die Präsenz von Ecken oder andere

Bildparameter konnten vorhersagen, welche Bildbereiche für die Affen diagnostisch

sein würden. Bildbereiche wurden also nur deshalb diagnostisch, weil die Affen be-

stimmte Präferenzen für bestimmte Informationen bzw. bestimmte Strategien zur

Lösung der Aufgabe hatten. Unsere Studie zeigt, dass diese Präferenzen bzw. Stra-

tegien sehr verschieden für Affen und Menschen sind. Für visuelle Aufgaben wird

häufig direkt vom Verhalten der Menschen auf das der Affen geschlossen. Unsere

Daten legen nahe, dass dieser Schluss nicht immer zulässig ist.
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Von den Verhaltensstudien ausgehend wurden im zweiten Teil des Projekts Einzel-

zellableitungen im Areal TE im inferotemporalen Kortex der Rhesusaffen durch-

geführt. Das Areal TE ist die höchste rein visuelle Verarbeitungsstufe und liegt im

ventralen Temporallappen des Affenhirns. Es ist bekannt, dass Neurone in diesem

Hirnbereich bevorzugt auf komplexe Objekte antworten. In dieser Studie wurde nun

untersucht, wie sich unterschiedliche Abdeckung von Bildern auf das Antwortver-

halten von Neuronen in TE auswirkt. Basierend auf den Verhaltensdaten wurden

verschiedene Masken generiert. Masken wurden anhand von zwei Parametern kon-

struiert, der Diagnostizität und der Maskengröße. Die Diagnostizität bestimmte die

Platzierung der Masken: Die Masken konnten so positioniert werden, dass trotz Ab-

deckung die diagnostischen Bereiche sichtbar blieben (diagnostische Bedingungen),

oder aber diese Bildbereiche abgedeckt und andere Bildbereiche sichtbar wurden

(nicht-diagnostische Bedingungen). Die Maskengröße dagegen bestimmte, wieviel

vom Bild durch die Maske abgedeckt wurde. Der sichtbare Bildbereich betrug ent-

weder 10, 30, oder 50%. Beide Faktoren hatten sehr unterschiedliche Auswirkungen

auf das Verhalten der Affen. Die Diagnostizität der sichtbaren Bildbereiche korre-

lierte positiv mit der Wahrnehmungsleistung. Die Maskengröße dagegen beeinflusste

die Wahrnehmungsleistung nur wenig. In diagnostischen Bedingungen war sie un-

verändert gut, auch wenn nur 10% des Bildes zu sehen waren. Nicht-diagnostische

Versionen von Bildern wurden dagegen nicht erkannt, auch wenn die Hälfte eines

Bildes zu sehen war.

Die teilweise Verdeckung von natürlichen Bildern hatte systematische Auswirkun-

gen auf das Verhalten von Neuronen in TE. Die größten Unterschiede ergaben sich

dabei zwischen diagnostischen und nicht-diagnostischen Bedingungen. TE-Neurone

zeigten eine höhere Aktivität in den diagnostischen Bedingungen als in den nicht-

diagnostischen Bedingungen. Gleichzeitig waren die Antworten der Neurone in den

diagnostischen Bedingungen selektiver. Unterschiedliche Maskengrößen beeinflus-

sten das Verhalten der Neurone ebenfalls systematisch. Diese Effekte waren aber

schwächer als die Auswirkungen der Diagnostizität. Die Abdeckung eines Bildes

hat also ähnliche Konsequenzen für das Verhalten der Neurone in TE wie für die

Wahrnehmungsleistung des Affen. Ein Bild, das trotz Abdeckung zu erkennen war,

führte auch zu einer Antwort im Areal TE. Sobald allerdings ein Bild aufgrund der

Abdeckung nicht zu erkennen war, ging die Aktivität der TE-Neurone zurück.

Verglichen mit der neuronalen Antwort auf Bilder ohne Abdeckung war die Aktivität

der Neurone für nur teilweise sichtbare Bilder generell reduziert. Die Aktivität wur-

de allerdings in diagnostischen Bedingungen weniger durch die Stimulusabdeckung

vermindert als die Aktivität in nicht-diagnostischen Bedingungen. Insgesamt lässt

sich also aus unseren Daten schließen, dass verschiedene Bildbereiche unterschiedlich
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stark zur neuronalen Antwort auf ein Bild beitragen. Dieses Ergebnis stimmt mit

früheren Studien überein, die ebenfalls zeigen konnten, dass unterschiedliche Berei-

che von Objekten unterschiedlich stark zur Antwort von Neuronen in TE beitrugen.

Unsere Studie erweitert diese früheren Untersuchungen. Es war bis jetzt unklar,

warum bestimmte Objektbereiche mehr Bedeutung für die Antworten in TE haben.

Unsere Daten zeigen, dass die Diagnostizität eines Bildbereichs ausschlaggebend

dafür ist, welche Aktivität der Bildbereich in TE hervorruft. Dieser Einfluss der

Diagnostizität ist ebenfalls in Übereinstimmung mit früheren Studien: TE-Neurone

zeigen z.B. eine höhere Selektivität für diagnostische Stimulusbereiche.

Gleichzeitig mit der Aktivität einzelner Neurone wurde an jeder Elektrode auch das

lokale Feldpotential (local field potential, LFP) aufgezeichnet. Das LFP reflektiert

die synchronisierten synaptischen Aktivitäten in der Umgebung der Elektrodenspit-

ze. Die Analyse des LFPs beschränkte sich zunächst auf die Signalkomponenten mit

einem festen zeitlichen Bezug zum Stimulus. Diese können durch Berechnung der sog.

visuell evozierten Potentiale (VEPs) analysiert werden, die eine stimulus-bezogene

Mittelung wiederholter LFP-Messungen darstellen. Drei VEP-Komponenten wurden

genauer untersucht. Diese Komponenten wurden als N100, P130 und N200 bezeich-

net, wobei die Notation die Polarität einer Komponente und ihre Latenzzeit nach

Erscheinen des Stimulus angibt. Die teilweise Abdeckung eines Bildes wirkte sich

auf alle drei Komponenten aus. In beiden Affen fanden sich Ableitungsorte, an de-

nen die VEP-Amplituden der drei Komponenten rein zwischen diagnostischen und

nicht-diagnostischen Bedingungen unterschieden. An diesen Orten hatte die Masken-

größe keine Auswirkungen auf die VEP-Amplituden. Genauso gab es Ableitungsor-

te, an denen die VEP-Amplituden hauptsächlich durch die Maskengröße bestimmt

wurde. Ableitungsorte, an denen sich ein starker Einfluss der Diagnostizität fand,

waren hauptsächlich im anterioren Teil von TE konzentriert. Dagegen waren die

Ableitungsorte, an denen sich ein starker Effekt der Maskengröße feststellen ließ,

gleichmäßig über TE verteilt. Um diesen Effekt genauer zu quantifizieren, wurde

für jeden Ableitunsgort bestimmt, zu welchen Amplitudenmodulationen die beiden

Faktoren im LFP führten. Übereinstimmend mit den vorigen Beobachtungen stellte

sich heraus, dass der Faktor Diagnostizität einen zunehmend größeren Einfluss auf

das LFP ausübte, je weiter anterior das LFP aufgezeichnet wurde.

Dieser Effekt wurde nur im LFP beobachtet; die Neuronen im gesamten getesteten

TE-Bereich verhielten sich homogen. Das LFP reflektiert sowohl die lokale Aktivität

am Ableitunsgort, wie auch die Aktivität von entfernteren Hirnarealen, die Signale

zum Ableitungsort übertragen. Es wurde nur innerhalb des Areals TE abgeleitet.

Außerdem traten keine Unterschiede im Verhalten der Einzelzellen in verschiede-

nen TE-Bereichen auf. Deshalb kann davon ausgegangen werden, dass der lokale
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Anteil des LFPs im posterioren und anterioren TE gleich bleibt. Damit bleibt nur

der Signalanteil, der von anderen Arealen generiert wird, um die Abhängigkeit des

LFPs von der Ableitungsposition zu erklären. In der Tat sind die Verbindungen für

das posteriore und anteriore TE verschieden. Der größte Unterschied besteht darin,

dass Verbindungen vom Areal V4 nur das posteriore TE erreichen. Insgesamt wird

also das LFP im posterioren TE mehr von der Aktivität früher visueller Areale be-

stimmt als das LFP im anterioren TE. Der geringe Einfluss der Diagnostizität auf

das LFP im posterioren TE lässt sich damit so interpretieren, dass die visuellen Ver-

arbeitungsstufen vor dem Areal TE nicht zwischen Bedingungen mit verschiedener

Diagnostizität unterscheiden können. Die Einzelzellen im posterioren TE reagie-

ren aber, wie oben beschrieben, auf die Diagnostizität. Unsere Daten zeigen also,

dass das posteriore TE die erste Stufe in der visuellen Verarbeitung ist, auf der die

Diagnostizität eines Stimulus kodiert wird. Dieses Model erklärt nicht nur die hier

vorgestellten Daten, sondern es ist auch in Übereinstimmung mit den Auswirkungen

von Läsionen im Areal TE. Diese führen zu Defiziten in allen Aufgaben, in denen

die diagnostischen Bereiche eines Stimulus identifiziert werden müssen. Insgesamt

erweitert diese Doktorarbeit unser Wissen über das Areal TE also nicht nur darum,

wie unterschiedliche Bereiche natürlicher Szenen kodiert werden. Die Daten zeigen

vielmehr, dass die Ermittlung von Diagnostizität eine der speziellen Funktionen des

Areals TE ist.
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Chapter 1

Introduction

1.1 Perception of partially occluded objects

Stimulus occlusion effects were the main interest of this Ph.D. project. In the first

section, the effects of the occlusion of objects are described, first for human observers,

then for animal observers. The two subsections list the perceptual consequences of

occlusion for the different observers.

1.1.1 Influences of occlusion on the perception of human

observers

For instance, when two hills are visible far away, the base of one extend-

ing in front of the other and partly concealing it, we conclude immedi-

ately that the hill that is hidden is the more remote of the two; for if this

were not the case, the form of the object would be different from that of

any other hill that ever was seen; not to mention the strange coincidence

that the outline of this peculiar hill should happen to be exactly contin-

ued by the contour of the other one. It might be a possible explanation

of the picture presented to the eye, but it certainly would be contrary to

all experience. (Helmholtz, 1910, p. 283, part 3)

In our everyday experience, visual information about the objects in our environment

is often incomplete: Because of their three-dimensional nature, objects occlude parts

of neighboring objects, as well as parts of themselves. However, we rarely notice the

resulting lack of visual information. Instead, the visible object parts are identified

as related, and the missing object pieces are filled in by the visual system, so that

11



12 CHAPTER 1. INTRODUCTION

A B C D

Figure 1.1: Occlusion effects. A, Amodal completion. B - C illustrate two possible
constructions of the stimulus shown in A by outlining their constituting elements. B, The
typical complete interpretation. C, An interpretation of A as a two-dimensional mosaic.
D, Perceptual closure. Even though stimulus parts are missing, the figure is completed into
a wine glass.

we perceive whole, uninterrupted objects. This process has been termed “amodal

completion”. Incomplete information can also be generated by deleting parts of

visual stimuli, as if placing them behind an invisible occluder. Again the missing

parts do not prevent the perception of an uninterrupted object, a phenomenon

termed “perceptual closure”. The perceptual impression generated in theses cases is

so realistic that when subjects were presented with complete and incomplete object

pictures, they could not recall later which pictures had been shown as complete

versions, and which ones hadn’t (Foley et al., 1997).

As an example for the effects of occlusion, consider Figure 1.1. Most observers

will describe Figure 1.1A as a square lying behind a circle (Figure 1.1B), instead

of a partial square adjoining a circle as in Figure 1.1C. Similar to the perceptual

completion of the black region into a square, an observer automatically fills in the

missing segments in Figure 1.1D and perceives a wine glass.

So far, most studies addressing occlusion phenomena have been concerned with

amodal completion. The initial studies were restricted to demonstrations of the

phenomenon, and were based purely on appeals to subjective evidence. However,

it was already then noticed by Kanizsa that amodal completion possesses an auto-

maticity that distinguishes it from stimulus completions constructed through logical

reasoning of an observer. Kanizsa was also the first to demonstrate that amodal

completion effects were accessible using quantitative measurements, so that the ob-

servation of the effect could be extended beyond purely subjective descriptions.

Because of amodal completion, the size of a shape that is adjacent to a possibly

occluding surface appears larger than the actual size of the shape (see Figure 1.2).

In the experiment of Kanizsa, size judgements were given by observers, and a con-
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Figure 1.2: The two black rectangles are equal in size; however, the one adjacent the
white surface seems larger because of amodal completion.

sistent expansion effect of about 8% could indeed be shown for occluded surfaces

(Kanizsa & Gerbino, 1982). This provided a quantitative confirmation that amodal

completion interacted with, and modified the perception of the physically presented

information.

Since then, more quantitative studies have been performed, and amodal completion

has been shown to greatly influence performance in many perceptual tasks, includ-

ing motion perception (Shimojo & Nakayama, 1990; Joseph & Nakayama, 1999),

visual search (He & Nakayama, 1992; Rauschenberger & Yantis, 2001), discrimina-

tion tasks (Sekuler & Palmer, 1992; Sekuler et al., 1994; Shore & Enns, 1997), and

judgements about shape parameters (Murray et al., 2001). In these tasks, observers

typically behave as if responding to the amodal completions of the stimuli, and not

to the visible, unoccluded fragments. This happens even if using the unoccluded

fragments would be beneficial for the task (He & Nakayama, 1992). Even though

amodal completion proceeds automatically, it is not an instantaneous process. Using

a priming paradigm, Sekuler & Palmer (1992) were first to show that completion

requires a measurable amount of time. Further experiments have confirmed these

results, yielding completion times from 80 to 200 ms, depending on the size of the

occluded region (Shore & Enns, 1997; Murray et al., 2001). Before completion is

reached, the low-level, partial representation seems to be available to the visual sys-

tem, to be then replaced by the complete interpretation (Rauschenberger & Yantis,

2001, but see Bruno et al., 1997).

With respect to development, the perception of occluded stimuli seems to be an

acquired process. Newborn infants are unable to perceive amodal completion. At

the age of 4 months, this ability emerges first: When habituated to a rod moving

behind an occluder, infants of this age looked longer at a subsequent display of two

independently moving rod pieces than at a single, longer rod (Kellman & Spelke,
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A B

Figure 1.3: Effects of occluder placement. A and B contain the same object partially
visible through an occluder, but only in B the object is easily recognizable as a flashlight
(from Biederman (1987)).

1983). This indicates that the presentation of the occluded rod led to a perceptual

impression of a single, moving rod. For a static display, infants have to reach the

age of 6.5 months to be able to perceive the separate pieces of an object behind

an occluder as connected (Craton, 1996). Finally, at around 8 months they begin

to make assumptions about the form of the hidden object part (Craton, 1996). In

agreement with these effects, infants aged 4.5 months could detect when an occlusion

event contained conflicting information: They looked longer at a display in which a

ball disappeared behind an occluder followed by the appearance of a box when the

occluder was too small to cover both objects at the same time. At the age of 4.5

months, these object identity violations were detected when they involved shape;

violations involving texture were noticed at the age of 7.5 months, and violations

based on color with 11.5 months (Wilcox, 1999).

Even though the recovery of occluded objects seems to be easily possible under

most circumstances, occlusion of different object parts can have different effects.

Using line drawings of objects, Biederman (1987) deleted different parts of the line

segments. Deletion of the middle section of a line segment was found to impair

recognition performance much less than the deletion of line vertices. Using these re-

sults, Biederman constructed an example how for amodal completion the placement

of the occluder could generate very different results. As can be seen in Figure 1.3,

object identification depends on which part of an object is occluded.

More recently, Gosselin & Schyns (2001) systematically studied the effect of occluder

placement on recognition performance. In their so called “Bubbles” paradigm, ob-
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Figure 1.4: A, Exemplar face stimuli as used by Gosselin & Schyns. During the exper-
iment, stimuli were shown behind masks with randomly placed windows, as illustrated in
B. Occlusion of the face regions visible in C led to a disruption of performance in the ex-
pression discrimination (upper image) or the gender discrimination (lower image; adapted
from Gosselin & Schyns (2001) and Gibson et al. (in press)).

servers were presented with a set of female and male faces, showing either a neutral

or a happy expression (see Figure 1.4). Observers had to classify the faces either by

their gender or by their expression. On every trial, the stimulus was shown behind

an occluding surface containing round windows. The placement of the windows was

random on every trial, and their number was adjusted to the performance of an ob-

server. The results showed not only that the observers responded incorrectly in some

of the trials, but also that the masks systematically interacted with the observers’

performance. This interaction was furthermore dependent on how subjects had to

classify the face images. While occlusion of the mouth region induced errors when

faces had to be discriminated by their expression, subjects used eyes and mouth to

determine the gender of a face. Occlusion can therefore prevent the identification of

a stimulus, if the stimulus regions are occluded that subjects rely upon to perform

a task.

Through completion processes, partially occluded stimuli are treated behaviorally

as if they were completely visible. This incongruence between physically presented

information and perception raises the question of how partially occluded stimuli

are represented in the brain. Early experiments on this matter were adaptation

experiments performed by Weisstein and colleagues (Weisstein et al., 1972a,b). In

these studies, observers were first presented with different adaptation stimuli and

subsequently had to judge the apparent contrast of a grating presented centrally.

Subjects adapted either to a grating with a gap in the center, or to a grating with
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a visible occluder at the gap position. In the latter case, the grating perceptually

continued behind the occluder. Although the stimuli were physically almost iden-

tical, the amodally completed adaptation stimulus led to slightly larger adaptation

effects. Adaptation effects were only observed if the adapting grating had the same

orientation as the test grating. This experiment suggested that although the grat-

ing was only perceptually present at the center of the screen, it was nonetheless

sufficient to adapt orientation sensitive channels in the brain, hinting at a neural

representation of the amodally completed grating part.

The aftereffects generated by partially occluded stimuli are also consistent with the

notion of a neural representation of the whole object instead of a representation of

isolated parts: After adapting to a green rectangle partially occluded by two smaller

rectangles, observers reported an afterimage consisting of a large red rectangle al-

ternating with the afterimages of the smaller rectangles (Kanizsa & Gerbino, 1982).

An afterimage generated by the physically presented information alone should have

shown multiple, small red rectangles, in addition to the afterimages of the occluding

rectangles.

The usage of functional magnetic resonance imaging (fMRI), as well as the recording

of the electroencephalogram (EEG) allowed to study the brain activity for amodally

completed stimuli in more detail. In an fMRI experiment by Lerner et al. (2002),

higher order visual areas in the human brain were found to be only mildly affected by

stimulus occlusion. The activation observed in the lateral occipital complex (LOC),

a brain region responding to complex objects (Kanwisher et al., 1996; Kourtzi &

Kanwisher, 2001), was reduced upon presentation of occluded object pictures in

comparison to the activation evoked by the unoccluded pictures. However, the effect

was smaller than the reduction observed after scrambling the objects to render them

unidentifiable. It seems that as long as occluded objects are identifiable, the LOC

responds similar to them as to the unoccluded images. In contrast, the activation

of V4 seemed to be mainly determined by the physical properties of a stimulus

and not whether it could be identified. For V4, adding an occluder increased the

activation beyond the level observed for the unoccluded object; scrambling the object

and thereby generating more discontinuities and corners increased the activation

even further. Consistent results were obtained when the EEG was recorded while

subjects viewed stimuli leading to amodal completion. The amodally completed

stimuli generated an EEG scalp topography that was most likely generated from

active brain regions in the LOC and the posterior parietal cortex. Again, no EEG

sources were evident in the early visual cortex (Murray et al., 2004).

In the case of perceptual closure, the effects of missing stimulus information on ob-

ject representation in the brain were studied with EEG recordings as well (Doniger
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et al., 2000). In the experiment, observers were presented with line drawings of

objects, of which parts had been deleted (the so called Snodgrass stimuli (Snodgrass

& Feenan, 1990)). Upon first presentation of an image, large parts of an object were

deleted, so that the objects were not identifiable. The presentation of the object was

followed by less and less fragmented versions of the same picture, until just enough

detail was presented to allow for object recognition. The EEG was recorded while

observers viewed these stimulus sequences. The technique permitted the analysis

of brain activity during object recognition, as well as during the completion pro-

cesses preceding this stage. After the experiment, the visual evoked potentials were

computed from the EEG data by averaging the EEG traces from repeated presen-

tations of the same occlusion levels. The experiment showed that the magnitude of

a negativity in the visual evoked potentials at about 290 ms after stimulus onset

was influenced by the deletion of stimulus parts. This component could again be

recorded above occipito-temporal areas. Adding physical information by presenting

more of the stimulus parts increased the peak’s amplitude gradually as long as stim-

uli could not be identified. Furthermore, when enough information was provided to

allow stimulus identification, a larger increase in peak magnitude was observed.

1.1.2 Perception of occluded stimuli by animals

A number of animal species have been tested with respect to how they perceive

partially occluded stimuli. Two outcomes are possible in this situation: Animals

may only perceive the visible stimulus parts, or they may amodally complete the

physically presented information, and perceive a larger object continuing behind the

occluder.

Experiments have so far been performed on a number of species. They typically

involved testing the animals on a discrimination task in which complete versions of

a stimulus had to be distinguished from incomplete versions of the same stimulus.

As an example, circles had to be discriminated from pacman stimuli. Partially

occluded stimuli were inserted as test trials in the discrimination task, and it was

recorded whether the animals categorized them as complete or incomplete. The

results indicated that most animals tend to amodally complete partially occluded

stimuli; however, there are some exceptions. Mice categorize partially occluded

shapes as complete (Kanizsa et al., 1993). Chickens (Regolin & Vallortigara, 1995;

Lea et al., 1996; Forkman, 1998) have been shown to amodally complete partially

occluded stimuli; in contrast, an extensive number of experiments suggests that

pigeons are unable to do so (Cerella, 1980; Sekuler et al., 1996; Fujita, 2001a).

Chimpanzees (Fujita, 2001b) show behavior consistent with the perception of amodal
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completion, but baboons only do so under certain circumstances (Deruelle et al.,

2000).

Rhesus monkeys were tested in three different paradigms. In a discrimination

paradigm, these monkeys have been shown to be able to discriminate shapes irre-

spective of whether they were shown in isolation or behind randomly placed masks

(Kovács et al., 1995; Osada & Schiller, 1994), indicating that the masks did not dis-

rupt the identification of the shapes. In another experiment, the study of Kanizsa

described in Section 1.1.1 was repeated. It was confirmed that Rhesus monkeys

systematically overestimate the length of a bar shown adjacent to a surface (Fu-

jita, 2001a). Since the experiment allowed a parametrical assessment of the effects

of occlusion on the perception of Rhesus monkeys, it provides strong evidence that

Rhesus monkeys amodally complete partially occluded stimuli. Finally, Rhesus mon-

keys were trained to discriminate a long, continuous bar from two disconnected line

segments by giving different responses to these two stimuli (Sugita, 1999). When the

long bar was partially occluded by a surface, the monkeys indicated the perception

of a continuous bar, consistent with the amodal completion of the two visible line

segments.

The negative results for pigeons and baboons seem to stand out from the other

experiments. However, these differences can possibly be explained as a failure to

extract depth information from two-dimensional displays, and not as a failure to

perceive amodal completion. The necessity of available depth information for amodal

completion processes was suggested in a case study of Stevens (1983). The tested

patient with a lesion in the left occipital and temporal cortex was unable to perceive

amodal completion in a 2-D display. However, when stereoscopic depth information

was added to the display, the patient’s perception of partially occluded stimuli was

normal.

In line with this hypothesis, chickens can identify which object is further away in a 2-

D display depicting a spatial scene (Forkman, 1998), while pigeons seem to perceive

all objects in a 2-D display in the same depth plane (Fujita, 2001a). Pigeons are

also known to have problems with the extraction of depth information from 2-D line

drawings (Blough, 1984). It might therefore be possible that pigeons could perceive

amodal completion when tested with either the appropriate training or different

displays. Support for this assumption is given by a study by DiPietro et al. (2002),

in which pigeons were trained to identify four different objects. When after training

the objects were shown upon or behind an occluding surface, pigeons failed in the

identification task. Since this failure affected both presentation conditions similarly,

it seemed to be generated by a difficulty segregating the object from the occluding

surface, rather than a failure of amodal completion in the case of the occluded
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presentation. Indeed, when the pigeons were provided with additional training on

the objects now shown on top of an occluder during the training, they could transfer

during testing to the same objects presented behind an occluder.

Similarly, baboons failed to associate partially occluded circles with their complete

counterparts as long as stimuli were shown on computer displays (Deruelle et al.,

2000, Experiment 3). However, when the presentation mode was changed, and

stimuli were instead printed on cardboards which the baboons had to manipulate

to receive rewards, occluded circles were associated with full circles (Deruelle et al.,

2000, Experiment 4). Again, the availability of depth information is the distinguish-

ing factor between both experiments. It therefore seems that – if the circumstances

are appropriate – most animals perceive the visible parts of an occluded object as

connected.

Only a single study has tested so far whether the occlusion of certain stimulus

features selectively impairs stimulus identification. In a replication of the experiment

by Gosselin & Schyns (2001), Gibson et al. (in press) used the Bubbles paradigm to

test the ability of pigeons to discriminate partially occluded faces. As in the original

study (see Section 1.1.1), pigeons had to discriminate human faces either by the

faces’ expression, or by their gender. Masks randomly revealed parts of the faces.

Occluder placement had a systematic effect on performance, in that the occlusion of

certain image regions affected stimulus discrimination more than occlusion of other

regions. Pigeons, similar to humans, relied upon the eye region to identify faces

by their expression. When faces had to be discriminated by their gender, pigeons

tended used both eye and mouth region, although these effects are not as pronounced

as for human observers (see Figure 1.5).

The representation of partially occluded stimuli in the animal brain has been stud-

ied in Rhesus monkeys. Neural responses to partially occluded stimuli have been

recorded in early visual areas V1 and V2, as well as in the inferotemporal cortex,

a higher level visual area. The responses of neurons in the inferotemporal cortex

to partially occluded objects are the topic of this thesis, and the general properties

of this brain area will be described in the next section. In this section, only the

results of the recordings in V1 and V2 will therefore be given, and the behavior of

inferotemporal neurons when tested with partially occluded stimuli will be described

later.

Sugita (1999) recorded from neurons in area V1. Neurons were selected which re-

sponded to a bar of a certain length. About 12% of these neurons stopped responding

when the bar was replaced by two smaller, disconnected line segments, which if con-

nected were as long as the original bar. Interestingly, the responses of these neurons
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Figure 1.5: Influences of occluder placement on the performance of humans and pigeons
in a face discrimination task. Red regions indicate face regions in which occlusion disrupted
performance. The upper row shows that humans and pigeons use the mouth region to
discriminate faces by their expression, while the lower row contains the results for a gender
discrimination (from Gibson et al. (in press)).

could be restored if the same line segments were presented together with a larger

surface which was placed in a depth plane in front of the line segments, and filled

the space between them. Placing the same surface in a depth plane behind the two

line segments left the neurons unresponsive. Perceptually, the line segments were

perceived as one large bar because of amodal completion in the first condition, but

not in the latter. The behavior of the neurons thus seemed to follow the perceptual

impression, rather than the physically presented information. Bakin et al. (2000)

confirmed these results in a more extensive study, in which neurons in V1 and V2

were tested. Many neurons in V2, but also a small proportion of neurons in V1

responded to illusory contours generated by occlusion. In conclusion, these results

suggest that neural responses as early as V1 and V2 can show behavior sufficient to

mediate amodal completion.

Finally, some conclusion about the responses of V1 neurons to amodally completed

stimuli can be drawn from a study of Lee (2001) which tested different properties

of V1 neurons. Nonetheless, from the example given in the paper (see Figure 3 of

Lee, 2001), it can be concluded that neurons in V1 can respond to contours that

are not physically present in a display, but generated because of amodal comple-

tion processes. The example also suggests that the onset of the responses to these
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illusory contours is delayed with respect to the onset of responses to a real contour,

suggesting that these responses are actually generated because of feedback input

from higher visual areas.
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1.2 Properties of area TE

So far, the general effects of stimulus occlusion have been described. This section

gives an overview over the properties of area TE in the macaque monkey, to provide

an introduction into the function of the brain area studied in this thesis. In the

macaque monkey, information about visually presented objects is transmitted from

primary visual cortex to inferotemporal cortex through multiple extrastriate areas.

In this occipitotemporal pathway, the inferotemporal cortex (IT) is the final purely

visual stage (Desimone & Gross, 1979). The first single-cell recordings in IT cortex

were performed by Gross et al. (1969). Since this time, a number of neurophysiolog-

ical studies have provided us with more detailed information about the properties of

IT neurons. Reviews of these studies are for example given in Logothetis & Shein-

berg (1996), and Gochin (1996). Here, after briefly reviewing the basic anatomy of

TE, the effects of lesions of this brain area will be described, followed by a summary

of the response properties of TE neurons.

1.2.1 Anatomy

IT is generally assumed to extend from the lower bank of the superior temporal

sulcus (STS) to the lateral wall of the occipitotemporal sulcus (OTS). Horizontally,

IT stretches from just anterior to the inferior occipital sulcus (IOS) to a couple

of millimeters posterior to the temporal pole (Iwai & Mishkin, 1969; Desimone &

Gross, 1979). Based on morphological data, neurons in this brain region are more

complex than their counterparts in earlier visual areas: Layer III pyramidal cells in

IT have both larger cell-bodies as well as larger basal dendritic fields as neurons in

V1. While the somal cross-sectional area measures on average 100 µm2 in V1, the

IT average is 230 µm2. The mean basal dendritic field area found in V1 is 25 ×
103 µm2, whereas its value in IT is 120 × 103 µm2 (Elston & Rosa, 1998; Elston

et al., 1999).

IT represents a large portion of the visual cortex, with a surface area corresponding

to about 15% of the total area of the visual cortex (Felleman & Van Essen, 1991).

Both anatomically and functionally, it is not a homogenous region. IT has con-

sequently been subdivided, in most cases into the areas TEO posteriorly and TE

anteriorly (Iwai & Mishkin, 1969; Kikuchi & Iwai, 1980; Boussaoud et al., 1991). A

great variety of experiments, from lesion experiments, histological studies, to neu-

rophysiological investigations, supports this distinction. These studies located TEO

in a band of cortex running ventrally from the lip of the STS to about 2 to 8 mm

medial to the OTS. The posterior border of TEO coincides roughly with the ante-
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Figure 1.6: Locations of areas TEO and TE, sketched on lateral and ventral views of
the right hemisphere of a typical rhesus monkey brain. Abbreviations: AMTS - anterior
middle temporal sulcus, IOS - inferior occipital sulcus, OTS - occipitotemporal sulcus,
PMTS - posterior middle temporal sulcus, RS - rhinal sulcus, STS - superior temporal
sulcus.

rior lip of the ascending portion of the IOS. Anteriorly, TEO approximately ends at

the anterior tip of the posterior middle temporal sulcus (PMTS) (Boussaoud et al.,

1991). TE extends from the anterior TEO border, i.e. from the PTMS, to about the

sphenoid, as shown in Figure 1.6.

Since regions within TE differ in their histology, and in their connections with other

cortical and subcortical structures, a further subdivision of TE seems necessary. Us-

ing different criteria for the subdivision, two major partition systems for TE have

evolved. The first scheme is illustrated in Figure 1.7. Here, TE is divided into four

parts, namely TEpd (posterodorsal), TEpv (posteroventral), TEad (anterodorsal),

and TEav (anteroventral). The demarcation between dorsal and ventral regions is

placed at the anterior middle temporal sulcus (AMTS) and its caudal extension.

The antero-posterior border is a vertical line crossing the posterior tip of the AMTS

(Iwai & Yukie, 1987; Yukie et al., 1990). Subregions were identified as separate

entities because the patterns of afferent and efferent connections vary across TE.
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Specifically, dorsal and ventral regions are segregated by differing connections with

the amygdala, the hippocampo-parahippocampal areas, and the perirhinal, prorhi-

nal and entorhinal cortex (Yukie et al., 1990; Saleem & Tanaka, 1996). Along the

anterior-posterior axis, area TE is subdivided into two regions mainly by the pres-

ence or absence of direct afferents from area V4 (Shiwa, 1987; Morel & Bullier, 1990;

Yukie et al., 1992).

The second partition system for TE was proposed by Seltzer & Pandya (1978).

Based solely on the cyto- and myeloarchitecture within TE, they divided TE into

five smaller regions, named TEa, TEm, TE1, TE2, and TE3. TE1 is the most rostral

and ventral zone, situated immediately behind the temporal pole. Adjacent to it,

progressively more caudally, lie TE2 and TE3. TEm straddles the lower edge of the

STS, and TEa is located entirely within the lower bank of the STS. The partitioning

scheme is depicted in Figure 1.8.

The two partition systems overlap partially: The border between TEav and TEad

corresponds to the cytoarchitectonic border between TE1 and TE2. It is located at

the lateral bank or lip of the AMTS at the rostrocaudal level, approaching the STS

as it continues further anteriorly. Also, the lateral border of TEad is identical to

the cytoarchitectural border between TE2 and TEm. Thus, TEav may be identified

with TE1, and TEad with TE2 (Saleem & Tanaka, 1996).

The subdivision of IT into TEO and TE, with variations in the partition of TE,

dominates in the recent literature. However, there exists at least one alternative

partitioning scheme for the whole IT region, which was suggested by Felleman &

Van Essen (1991). They divided IT into six subregions, forming three pairs of

corresponding ventral and dorsal parts. Following their position along the anterior-

posterior axis, the areas are labeled posterior (PITd, PITv), central (CITd, CITv)

and anterior IT (AITd, AITv), as illustrated in Figure 1.9. The dorsal areas lie

largely within the lower bank of the STS, extending a short distance onto the middle

temporal gyrus. The ventral areas occupy most of the middle and inferior temporal

gyri and extend into the lateral bank of the OTS. Borders between regions are delin-

eated based primarily on changes in the connectivity of these regions. In addition,

PIT subregions differ from CIT and AIT subregions in having a crude topographic

organization.

Judging from their anterior-posterior level, PITd and PITv correspond to TEO,

CITd and CITv to posterior TE, and AITd and AITv to anterior TE. However,

the border between the dorsal and ventral parts of all three subregions is located

close to the ventral lip of the STS. Since the lip of the STS represents the dorsal

border of TEO as described by Boussaoud et al. (1991), PITv only corresponds to
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Figure 1.7: A, Lateral and ventral views of the right hemisphere of a macaque monkey,
showing the locations of TEpd, TEpv, TEad, and TEav. B, Unfolded map, in which the
STS, PMTS, AMTS, and RS are opened. Solid lines indicate lips and fundi of the sulci;
broken lines show the borders between cortical areas (adapted from Saleem et al. (2000);
abbreviations see Figure 1.6 and text).
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Figure 1.8: Partitioning scheme of Seltzer & Pandya. Top, Lateral view. Bottom, Ven-
tral view. The STS has been opened to allow the areas buried inside the sulcus to be shown.
Sulcal boundaries are drawn as continuous lines, architectonic borders as interrupted lines.
Areas TAa, PGa, and TEa are additionally cross-hatched. Relevant abbreviations: o.i. -
inferior occipital sulcus, o.t. - occipitotemporal sulcus, rh. - rhinal sulcus (Seltzer &
Pandya, 1978).
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Figure 1.9: Partitioning scheme of Felleman & Van Essen. Insets show lateral and
medial views of the macaque brain, while the middle figure depicts an unfolded view of one
hemisphere (Felleman & Van Essen, 1991).
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TEO. PITd is often used referring to the ventral bank of the STS adjoining TEO. As

another consequence, CITv overlaps both TEpd and TEpv, and AITv both TEad

and TEav (Tamura & Tanaka, 2001). In comparison with the partition system of

Seltzer & Pandya, CITd and AITd taken together incorporate TEa and TEm. CITv

contains TE3 and parts of TE2, whereas AITv matches TE2 and TE1 (Felleman &

Van Essen, 1991).

1.2.2 Connections of area TE

In most cases, the connections of either the whole TE region or of a single subregion

in TE have been studied, prohibiting the analysis of differential projections origi-

nating in different subregions in TE. The results of these studies will be presented

as connections for the whole TE region. Where applicable, differences between sub-

regions will be specified.

TE receives its main input from area TEO, with additional input arising from area

V4 and V4t (Desimone et al., 1980; Shiwa, 1987; Morel & Bullier, 1990; Yukie

et al., 1992; Distler et al., 1993; Suzuki et al., 2000). The projections of V4 and

V4t terminate in posterior TE only (Shiwa, 1987; Morel & Bullier, 1990; Yukie

et al., 1992). Along the dorsal-ventral axis, visual afferents from TEO and V4 are

differentiated roughly. Dorsal TE receives major projections from the representation

of the central visual field in these areas, in contrast to a peripheral visual field input

into ventral TE (Yukie et al., 1992). TE sends output back to V4, as well as to areas

V1 and V2 (Suzuki et al., 2000). Of the areas in the caudal STS, TE has connections

with FST (Morel & Bullier, 1990), PITd (Suzuki et al., 2000), PGa (Morel & Bullier,

1990) and IPa (Morel & Bullier, 1990). In the rostral STS, there exists a projection

from area TPO in the upper bank of the rostral STS to anterior TE only (Morel &

Bullier, 1990). In addition, the pattern of connections with the banks and fundus

of rostral STS shows differences between TEav and TEad: TEad is interconnected

with the upper bank of the rostral STS, as well as the rostro-caudally middle part,

whereas TEav sends and receives information from the fundus and lower bank of

the STS (Saleem et al., 2000).

TE also exchanges fibers with the temporal pole, which originate almost exclusively

in anterior TE (Shiwa, 1987; Webster et al., 1991). Furthermore, parahippocampal

regions TH and TF (Yukie et al., 1990; Webster et al., 1991; Saleem & Tanaka,

1996), as well as the perirhinal areas 36 and 35 (Yukie et al., 1990; Webster et al.,

1991; Saleem & Tanaka, 1996), and entorhinal area 28 (Saleem & Tanaka, 1996) have

reciprocal connections with TE. For each of these areas, the connection is stronger
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with ventral than with dorsal TE (Yukie et al., 1990). From the inferior parietal

lobule, TEav receives projections from areas PG, PF, and PFG (Zhong & Rockland,

2003). These are accompanied by reciprocal connections with areas LIPd and LIPv

in the parietal cortex (Morel & Bullier, 1990; Webster et al., 1994). In the frontal

cortex, area TE is interconnected with areas 8, 11, 12, 13 and 45a (Webster et al.,

1994). Projections to the prefrontal cortex are maintained via the uncinate fascicle

(Ungerleider et al., 1989). Within area TE itself, reciprocal connections have been

shown between TEav and TEpv, as well as between TEad and TEpd (Yukie et al.,

1992; Saleem et al., 2000). If the connections within TE are analyzed in the partition

system of Seltzer & Pandya, reciprocal connections are found between TEa, TEm,

and TE3. TE3 sends afferents to TE2, and TE2 to TE1 (Baylis et al., 1987).

The laminar pattern of the observed projections places TE at a higher hierarchical

level than areas V1, V2, V4 and TEO (Morel & Bullier, 1990). FST and TPO

are of the same level as TE (Morel & Bullier, 1990), whereas TG, TH, TF, and

areas 35 and 36 follow TE in the hierarchy (Webster et al., 1991). The hierarchical

relationship with IPa and PGa is unclear, but they have to be placed at least at the

same level as TE, if not higher (Morel & Bullier, 1990). Also, the laminar pattern of

projections does not allow an unequivocal determination of the relationship between

TE and the prefrontal areas (Webster et al., 1994).

Besides its cortical connections, TE has a number of subcortical connections. TE

receives input from the amygdala (Webster et al., 1991; Iwai & Yukie, 1987; Yukie

et al., 1990; Cheng et al., 1997), the hippocampal formation (Webster et al., 1991;

Yukie et al., 1990), and the lateral hypothalamus (Webster et al., 1993). However,

in contrast to TEO, TE also sends fibers to the amygdala and the hippocampal

formation (Webster et al., 1991; Yukie et al., 1990). The connections with the lim-

bic system differ in their extent between dorsal and ventral TE regions. Dorsal

TE is connected more strongly to the amygdala, whereas ventral TE is intercon-

nected more with the hippocampal formation (Yukie et al., 1990). As area TEO,

TE receives input from the locus coeruleus, the dorsal and median raphe, the basal

nucleus of Meynert and the reticular formation (Webster et al., 1993). Additional

projections originate in several thalamic nuclei, including the reticular nucleus, the

nucleus reunions, and the pulvinar (Webster et al., 1993). Output from TE termi-

nates in the striatum (Cheng et al., 1997; Webster et al., 1993) and the superior

colliculus (Webster et al., 1993). Finally, TE also has a reciprocal connection with

the claustrum (Webster et al., 1993).

Finally, TE makes connections with a number of contralateral structures, both corti-

cal and subcortical. These concern the contralateral TE, amygdala, hypothalamus,
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and midbrain structures (Webster et al., 1991, 1993). The interhemispheric connec-

tions are mainly maintained via the corpus callosum.

A number of predictions can be made based on the pattern of connections of TE and

other cortical areas. First of all, TE receives its major inputs from V4 and TEO, but

there are numerous other brain areas which provide input into TE. Consequently,

neurons in TE should still be responsive even if the connections from V4 and TEO

are severed. This has been confirmed by Buffalo et al. (2005), who reported normal

firing rates in TE after lesions of both V4 and TEO. Second, with progression from

V1 to V4 and TEO, neurons respond to more and more complex object features

(Kobatake & Tanaka, 1994). Since based on the connectivity patterns TE has to be

placed higher in the hierarchy than TEO, it can be expected that the properties of

TE neurons are yet more complex. The next sections will prove this prediction to

be correct.

Third, the functional properties of the areas that connect to TE should predict

which TE behavior is mediated via these projections. Lesions of V4 and TEO

have been linked to impairments in visual selective attention (De Weerd et al.,

2003). The performance of monkeys with these lesions is normal as long as they

are tested with stimuli presented in isolation; their deficits become apparent as

soon as irrelevant stimuli are added to a display. Since for the lesioned animals

information of relevant and irrelevant stimuli seems to be averaged together, it can

be hypothesized that in normal animals, V4 and TEO filter this information out.

With the lesion, information about the distractors reaches downstream area TE that

normally would not have been transmitted. Indeed, the selectivity of TE neurons

was found to be normal even after a V4 and TEO lesion as long as stimuli were

presented in isolation (Buffalo et al., 2005). However, when disctractors were added

to the display, the selectivity of the TE neurons changed.

Similarly, conclusions about the role of the connections of TE to structures like

the hippocampus can be drawn from the behavior of these brain regions. The hip-

pocampal region, as well as the entorhinal, perirhinal, and parahippocampal cortices

in the medial temporal lobe have been linked to the formation of declarative mem-

ory, i.e. the capability to recollect facts and events (for a review, see Squire et al.,

2004). The functions of these brain areas are necessary to establish representations

in long-term memory. However, they are most likely not the permanent repository

of memory, which must be stored elsewhere. TE projects to and receives projec-

tions from these brain areas. Because of these projections, an involvement of TE

in the storage of visual memory seems plausible. In this case, the backward signals

from the medial temporal lobes should serve to consolidate the memory represen-

tations in TE. Indeed, Sakai & Miyashita (1991) demonstrated that after training
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monkeys to associate pairs of geometric patterns, the responses of TE neurons to

stimuli that formed a pair were correlated more strongly than to stimuli that were

unrelated during training. These memory traces depended on the intactness of the

feedback projections from the medial temporal lobe. When these connections were

disrupted during learning, the associated stimuli did not evoke significantly corre-

lated responses (Miyashita et al., 1996). In summary, the experiment confirmed that

signals from the memory structures in the medial temporal lobe serve to establish

long-term memory in TE.

1.2.3 Consequences of lesions in area TE

The behavioral changes of monkeys in which the inferotemporal cortex has been re-

moved bilaterally implicate a participation of IT in the process of object recognition

(for a review, see Dean, 1976, 1982). After IT removal, monkeys appear to have

forgotten visual discriminations learned before the surgery, and they learn new dis-

criminations much more slowly than normal animals. The deficit in discrimination

learning is very long lasting, and represents the most pronounced effect of IT lesions.

It affects a wide variety of discriminanda, including both very simple and complex

patterns. The impairment is restricted to vision, with discrimination learning for

other modalities being unaffected. In general, the severity of the deficit caused by

an IT lesion increases with task difficulty. It is not attributable to a “simple sensory

loss”, since IT lesions that impair visual discrimination learning do not reduce visual

acuity or produce detectable scotoma. In addition, perceptual thresholds have been

measured along a number of dimensions, and were found to be normal in each case.

Most recently, thresholds have been shown to be normal for shape distortion when

animals had to detect a distorted shape in a set of simultaneously presented shapes

(Huxlin et al., 2000).

Insights into the sources underlying the observed deficits come from studies by Iwai

and colleagues (Iwai, 1985; Iwai et al., 1990). In these experiments, monkeys were

taught a discrimination task using a Wisconsin General Testing Apparatus. In the

apparatus, patterns were displayed on large plaques that covered two food wells in

front of the monkeys. The monkeys had to touch the edge of a plaque to push it

aside, and to retrieve a bait possibly hidden under the plaque. On each trial, the

same two stimulus cards were presented, one of which was consistently associated

with a reward. When the monkey’s learning curves were analyzed under these

conditions, they could be shown to consist of two separate stages. During the first

stage (Learning Stage I), the monkey’s performance remained at chance level, while

in the second stage (Learning Stage II) the number of correct responses increased
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drastically. At the end of Learning Stage II, monkeys could discriminate the patterns

without problems. Further experiments showed that the duration of Learning Stage I

could for example be reduced if the monkeys were trained with one pair of patterns

first, and subsequently learned to discriminate a second pattern pair. Learning

Stage II however was unaffected by such manipulations. The authors concluded

that Learning Stage I reflected the learning process to attend selectively to the

discriminative cues shown on the plaques. Only in Learning Stage II, animals seemed

to actively sample the patterns and to identify the discriminative features of each

pattern. In normal, näıve animals, Learning Stage I accounted for most of the time

necessary to learn the discrimination task, yet in animals with IT lesions, Learning

Stage II was significantly longer than Learning Stage I. It was also longer than

the Learning Stage II in normal animals, whereas the duration of Learning Stage I

was not affected by IT removal. The results indicate that IT lesions do not affect

attention mechanisms, but instead lead to a deficit in pattern perception, or the

identification of the task-relevant pattern features.

A similar conclusion was drawn by Gaffan et al. (1986), who also tested monkeys

with IT lesions on a discrimination task. The monkeys were taught to discriminate

between pairs of stimuli. In each stimulus pair, one stimulus was selected as the

“positive” stimulus. The two stimuli were presented at the same time; if the mon-

key selected the positive stimulus, reward was delivered. Each stimulus pair was

presented for 100 trials before a new pair was introduced. In this way, the learning

performance for a total of 60 stimulus pairs was obtained. Monkeys without a lesion

were tested on the same stimulus pairs for comparison. While the general deficit in

discrimination learning was confirmed for the lesioned animals, it was also observed

that their performance varied widely between stimulus pairs. In many cases, there

were no errors at all, in others, over 70 trials of the block of 100 trials were incorrect.

A more precise analysis of the individual discriminations showed that the lesioned

animals expressed very strong preferences for one or the other stimulus during the

first few trials with a new stimulus pair. These preferences persisted throughout

the whole block, even if the monkeys preferred the unrewarded stimulus. Therefore,

performance for a particular discrimination problem depended on the initial prefer-

ence of a monkey. If the monkey initially preferred the positive stimulus, error rates

were generally low, while preference of the negative stimulus led to high error rates.

No such preference was observed for the control animals. Interestingly, the lesioned

animals agreed in their initial preferences. Furthermore, the degree of difficulty of

a particular problem was not correlated between control and lesioned animals.

The data are consistent with the hypothesis that IT lesions reduce the set of features

available to describe a shape. As a consequence of a reduced feature set, lesioned
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animals will find other problems difficult than normal animals. In addition, if stimuli

are described by few attributes only, inappropriate transfer between discriminations

learned at different times becomes very likely because of the overlap of attributes

between objects. In these cases, attributes of new stimuli carry over irrelevant

associations from previous problems. A reduced feature set does therefore not only

impair the learning of new discriminations, it may also be reflected in a strong

preference for a particular shape in a completely new discrimination problem. The

authors summarize their results in the conclusion that the IT cortex enables normal

animals to take advantage of a wide range of attributes which in combination identify

a particular complex visual input.

Most recently, IT lesions have been shown to affect performance in oddity tasks

(Huxlin et al., 2000). In an oddity task, a number of stimuli are presented simulta-

neously. All stimuli except one are identical, and the monkey is required to locate

the odd stimulus. Oddity tasks are an extension of stimulus detection tasks, in

which the monkey has to locate a predefined target amongst a number of distractor

stimuli. Postoperatively, animals could eventually be retrained to perform stimulus

detection tasks. However, they did not relearn the oddity tasks within the duration

of the study. The crucial difference between these two paradigms is the way in which

the response target is defined. In stimulus detection tasks, the target is predefined

and identical on every trial, while in oddity tasks, a target is only defined through

its relationship with the other stimuli, and it changes on every trial. Oddity tasks

therefore rely more heavily on the ability to identify the characteristic attributes of

an object. Again, the results point towards an involvement of IT in the extraction

of the task relevant shape features.

1.2.4 General response characteristics of TE neurons

Neurons in TE are exclusively visual (Gross et al., 1972; Baylis et al., 1987; Desimone

& Gross, 1979). They respond to visual stimulation with an onset latency of 50 to

250 ms (Hikosaka, 1999; Baylis et al., 1987; Sheinberg & Logothetis, 2001; Tamura &

Tanaka, 2001), with a peak latency in TE of about 150 ms (Tamura & Tanaka, 2001).

Neurons in TE have been reported to have variable and bursty spontaneous activity

(Desimone & Gross, 1979). In addition, the responses of TE neurons were found

to decline with repeated stimulation if the time interval between the stimulations

was shorter than about 5 s (Gross et al., 1972; Desimone & Gross, 1979). Most

studies have analyzed changes in mean firing rate to characterize the behavior of

IT neurons. However, the time course of the responses has been proposed to carry

information as well (Richmond & Optican, 1987). Interestingly, neuronal selectivity
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might be time dependent, with neurons becoming more selective over time (Tamura

& Tanaka, 2001).

1.2.5 Receptive field properties

TE neurons were initially reported to have receptive fields as large as 60 deg (Gross

et al., 1977; Desimone & Gross, 1979; Boussaoud et al., 1991; Kobatake & Tanaka,

1994). More recent studies have however shown that receptive field size in TE

depends on the stimulus size (Op de Beeck & Vogels, 2000), and may be much

smaller. Using stimuli with a size of about 3 deg, Op de Beeck & Vogels (2000)

reported an average receptive field diameter of 10 deg. In their sample, the smallest

receptive field had a diameter of about 3 deg, while the largest diameter equaled

26 deg. Even smaller receptive fields were observed by DiCarlo & Maunsell (2003),

who measured position dependencies in TE consistent with receptive field diameters

of 2.5 deg when testing with very small stimuli (0.6 deg width).

No retinotopic organization could be identified in area TE (Desimone & Gross, 1979;

Boussaoud et al., 1991). The receptive fields found in TE almost always include the

center of gaze (Gross et al., 1969, 1972; Desimone & Gross, 1979; Op de Beeck &

Vogels, 2000), with neurons responding to stimulations both in the upper and lower

visual field (Boussaoud et al., 1991). A large number of TE units has bilateral

receptive fields (Gross et al., 1969, 1972, 1977; Desimone & Gross, 1979). These

neurons receive information from the ipsilateral visual field by connections from the

opposite striate cortex through the anterior commissure and the splenium (Gross

et al., 1977).

1.2.6 Stimulus selectivity

The stimulus selectivity of IT neurons was initially tested by comparing the re-

sponses evoked by different classes of stimuli, such as bars and disks, or complex

shapes (see for example Baylis et al., 1987). By this means, it could be established

that most IT neurons do not respond to simple stimuli, and instead can only be

activated by the presentation of complex shapes (Gross et al., 1972; Baylis et al.,

1987; Desimone et al., 1984; Tanaka et al., 1991). Figure 1.10 shows recordings from

one such IT neuron that maximally responds to stimuli with irregular edges, but

cannot be activated by simple, more regular shapes. The preference for complex

stimuli seems to be especially pronounced in area TE (Kobatake & Tanaka, 1994).



1.2. PROPERTIES OF AREA TE 35

Figure 1.10: Peristimulus time histograms (PSTHs) for an illustrative IT unit selective
for patterns with irregular edges. The bar indicates the time during which the stimulus
was shown, and arrows the direction of stimulus motion and the direction of time in the
histograms (Desimone et al., 1984).

This property clearly distinguishes TE from earlier visual areas. Its complex trigger

features make TE a suitable candidate for processes involved in object recognition.

Upon presentation of a large number of stimuli, some TE neurons could be identified

as selective for a single class of objects or object properties. As an example, so

called face cells have been identified in TE, for which the sight of a face elicited

two to ten times larger responses than other visual stimuli (Perrett et al., 1982).

Face selective neurons responsive to the identity of faces were found in the inferior

temporal cortex, while cells that responded to facial expressions, gaze direction, and

vantage point were mostly located in the STS (Hasselmo et al., 1989; Perrett et al.,

1991, 1992). This clustering of cells with the same properties in some TE parts has

raised the question of whether TE possesses a particular functional architecture.
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Only one study could so far demonstrate that neurons in different subregions in

TE indeed differ in a specific functional property. In the experiment by Janssen

et al. (2000), the responses of TE neurons to 2-D and 3-D shapes were compared. A

clear distinction between neurons in the lower bank of the STS and neurons in more

lateral TE parts became apparent: 56% of the neurons in the STS distinguished

between shapes that were similar with respect to their 2-D projections, but differed

in their depth information. In contrast, only 12% of the neurons in lateral TE were

selective for the 3-D aspects of a shape.

For the majority of TE neurons, no preference for a specific stimulus class was

observed. Most neurons responded to a broad range of objects, limiting the iden-

tification of further subdivisions within TE. A rather general distinction between

areas TEav and TEad emerged from a study by Tamura & Tanaka (2001): Neurons

in these two regions were tested with a set of 100 different stimuli, with maximally

ten stimuli belonging to the same class. For the average neuron in TEad, 17 of the

100 stimuli evoked discharge rates significantly higher than the spontaneous activity,

demonstrating a broad neuronal selectivity. The median of the distribution was at 7

stimuli evoking responses significantly larger than the baseline activity. In contrast,

the median for the population of TEav neurons was 4 stimuli triggering significantly

enhanced firing rates.

Because the observed stimulus selectivity in TE is so broad, it is difficult to iden-

tify which stimulus dimensions determine the neuronal responses. One approach to

the problem was based on the assumption that responses to different objects are

actually triggered by a part or feature common to these objects. To identify this

feature, the responses to object parts need to be compared to the responses to the

full objects containing these parts. This line of research was extensively followed in

the lab of Tanaka (for a review, see Tanaka, 1996). In their experiments, 3-D objects

were used to stimulate TE neurons. If a neuron was found to be responsive to a

certain object, the object was photographed. The object’s image was subsequently

simplified to identify the object feature that the neuron responded to (the critical

feature). Simplification steps included the removal of color information, texture,

gradual luminosity change, and highlight, as well as the transformation of the pho-

tography into a simpler geometrical figure. In subsequent steps, the critical aspect

of this figure was determined by modifying the shapes of components or the overall

configuration, or by decomposing the image into components (Fujita et al., 1992).

After each simplification step, the neuron’s response to the simplified stimulus ver-

sion was compared to the response to the original version. Testing proceeded only

if the two responses were comparably strong, arguing that in this case the removed

stimulus properties could not be necessary to activate the neuron. Responses were
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Figure 1.11: Exemplar simplification of a water bottle to determine the critical feature
for a single TE neuron. Simplification proceeds from left to right. For each step, the
stimulus image and the PSTH for a TE neuron are shown. PSTH are calculated from
ten presentations of the stimuli. Numbers above the histograms represent the response
magnitude, normalized to the magnitude of the largest response. In this case, the critical
feature is an ellipse with a bar at the bottom (Wang et al., 1998).

considered to be equally strong if the mean firing rate did not differ significantly

between the stimuli. The simplest 2-D feature that fully activated the cell was taken

as the critical feature for the cell. An example of how simplification may proceed is

shown in Figure 1.11.

Using this reduction technique, it was confirmed that most neurons in TE required

complex stimuli to be maximally activated (Tanaka et al., 1991; Kobatake & Tanaka,

1994). In addition, the authors claimed to have identified a columnar organization in

TE, with neurons in a column sharing the same critical feature (Fujita et al., 1992).

Tanaka (1993) formalized their results as a feature-based shape representation in TE,

in which neuronal columns signal the presence or absence of a specific feature in a

shape. This theory can explain the broad selectivity of TE neurons, and resembles

the columnar representation demonstrated for orientation in V1. The model is

however limited by a missing rule how to derive the critical features, which are
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specified only at a purely descriptive level. More importantly, there is some concern

regarding the experimental methods. As described, simplification was continued as

long as a neuron’s firing rate remained maximal. The ability to detect deviations

from the maximal firing rate – and thus changes introduced by a simplification

– is however limited by ceiling effects. Nonlinear effects in general pose potential

problems for the method. As an example, TE neurons have been shown to be excited

by a certain object part if presented in isolation, but to be inhibited by the same

object part if presented in combination with another stimulus (Tsunoda et al., 2001).

Effects like this might have excluded objects from further testing even though they

contained parts that would have activated the neuron. Finally, the way in which

stimuli were decomposed into simpler parts, and thus the essential determinant

for the critical features, seems questionable. The extraction of simpler parts was

guided by the intuition of the experimenter only. Judging from the exemplary

figures presented in the papers by Tanaka et al. (see examples in Wang et al.,

1998; Tanaka, 2000), objects seem to have been decomposed into parts appearing

to be “good” elementary shapes for a human observer. It is not obvious that TE

decomposes objects in the same way.

A reductive approach as the one followed by Tanaka et al. is not the only possibility

to study the selectivity of TE neurons. Constructive methods have been applied

as well. These rely on the definition of a model for shape representation, from

which parametric stimulus descriptions can be derived. Testing the responses of TE

neurons to stimuli that systematically differ in these parameters allows to assess

whether the selected shape parameters are encoded in TE. One such model of shape

representation is the method of Fourier Descriptors, tested against the properties

of TE neurons by Schwartz et al. (1983) and Albright & Gross (1990). The model

describes shape boundaries only, parameterizing them by a set of so called Fourier

Descriptors (FDs). FDs are computed by first determining the boundary orientation

function for a shape – i.e. the orientation of the shape’s boundary measured at

regular intervals around the perimeter. This boundary orientation function is then

expanded in a Fourier series, whose terms are the FDs. Each FD is thus associated

with a specific frequency, amplitude, and phase, which correspond to the boundary’s

number of lobes, the lobe indentation, and the orientation of the closed contour.

Any shape is fully described by a linear combination of FDs, with the additional

advantage that this shape description is independent of position and size of the

shape. Furthermore, neurons in early visual areas are known to be selective for the

orientation of local contours, and therefore the boundary orientation function is an

easily accessible information for TE neurons. In the model, each TE neuron would

represent how strongly a particular FD is present in a shape.
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Figure 1.12: A, Selectivity of a single IT neuron for FD frequency. B, Actual (bars) and
predicted responses (dots) of the same neuron for compound FDs. Responses to compound
stimuli were predicted by summing the responses to single FDs, as assumed by the model.
The neuron fails to extract its preferred FD when presented in conjunction with a second
FD. Figures below the plots show the stimuli. S/S: Spikes per second (adapted from Albright
& Gross (1990)).

Stimuli were constructed by inverse transforms of specific FDs. By using stimuli

that were the inverse of a single FD, it could be demonstrated that about half of

the recorded visually responsive TE neurons were systematically tuned to FD fre-

quency. The response magnitude changed with the amplitude, but the frequency

tuning curves remained similar. It therefore seemed possible that TE neurons en-

code shapes in terms of their FDs. However, contradictory results were obtained

when stimuli were constructed as the inverse of the sum of two FDs. Under these

conditions, neurons failed to respond to stimuli that contained their preferred FD,

demonstrating that the two FDs were not represented independently as required by

the model’s assumptions (see Figure 1.12 for an example). In conclusion, the exper-

iments could not demonstrate that the shape selectivity of TE neurons is generated

by the contributions of specific FDs to the shapes.

The experiments described so far share the assumption that a shape is represented in

the exact same way whenever it is encountered, independent of how it is perceived,

and of which task an animal has to perform on the shape. Similarly, the learning

history of the animal with a shape is not taken into account. No clear picture of

the stimulus encoding properties of TE neurons has yet emerged from these exper-

iments. However, this may change with experiments that explicitly test the effects

of behavior or learning on the selectivity of TE neurons. It has long been suggested

that behavior has an influence on TE neurons, possibly gating, potentiating, or even



40 CHAPTER 1. INTRODUCTION

altering their visual responses (Gross et al., 1979). Modulations of firing rate with

task have been reported (Spitzer & Richmond, 1991). In addition, the way in which

a shape was perceived, and not its physical contour, was recently demonstrated to

determine the responses in TE (Baylis & Driver, 2001).

A number of recent experiments reported task or learning effects on the selectivity

of TE neurons. In the first experiment, Sigala & Logothetis (2002) studied the

subordinate classification of a set of face or fish stimuli. Monkeys were trained to

categorize line drawings of faces or fish into two categories (exemplar face stimuli

are shown in Figure 1.13). Shapes of both types were parameterized by four varying

features (e.g. in the case of the face stimuli, eye height, eye separation, mouth

height, and nose length). Category boundaries were defined based on the values of

two diagnostic features (for the face stimuli, eye height and eye separation). Of the

neurons that responded differentially to the values of at least one feature, a large

percentage was selective for one or both of the diagnostic features, but not for the

non-diagnostic features. The same effects could be obtained on the level of the whole

population of visually responsive neurons. The population average for all neurons

tested with the face, depicted in Figure 1.13, clearly shows the different selectivity

for diagnostic versus non-diagnostic features. In conclusion, TE selectivity seemed

to be shaped by the most task relevant subset of stimulus features.

Similar effects of training on the selectivity of TE neurons were found in a recent

experiment by Baker et al. (2002). In this study, monkeys learned to discriminate

among baton stimuli consisting of distinct top and bottom elements joined by a

vertical stem. Stimuli were organized into tetrads representing the four possible

combinations of two top and two bottom parts (see Figure 1.14 for stimulus exam-

ples). Monkeys were trained to respond to the members of two tetrads by pulling

one of two levers, with the batons assigned to the response alternatives such that

a decision could not be based on the identity of single parts. Instead, the monkeys

had to take the conjunction of features into account to perform above chance. After

completion of training, the activity of TE neurons was recorded during a fixation

task in which the learned and similar, unlearned stimuli were presented to the mon-

keys. The authors observed a slight increase in the selectivity for learned versus

unlearned stimuli. This increase in selectivity was analyzed more closely for each

neuron by comparing the responses evoked by the members of a tetrad. By this

means, a neuron’s selectivity could be attributed to selectivity for batons’ parts or

for whole batons. In this data, the increase in selectivity for learned batons was

evident in a modest enhancement of the selectivity for individual parts, and in a

marked enhancement for the combination of parts. Since in the discrimination task

the monkeys had to base their decisions on the conjunction of parts, these results
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Figure 1.13: Stimuli and results of Sigala & Logothetis (2002). Left, Exemplar face
stimuli, showing members of both categories. Right, Population average for the neurons
tested with face stimuli, with data of each neuron normalized to its background activity
preceding stimulus onset. Black traces indicate the average responses to the best feature
value, and gray lines to the worst. Eye height and eye separation are diagnostic features.
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Figure 1.14: Baton stimuli used by Baker et al. (2002). Each monkey learned to associate
the members of two tetrads to two levers. Here, shapes with gray background were mapped
to the left lever, and shapes with a white background to the right lever.

again indicate that task requirements and learning interact with the selectivity ob-

served in TE.

Another experiment from which conclusions about the impact of a task may be

drawn is a study by Sheinberg & Logothetis (2001). In this experiment, monkeys

were familiarized with 70 objects and were trained to respond to each of them by

pulling one of two levers. Once the monkeys mastered this task, objects were ei-

ther presented in isolation (isolated condition), or embedded in one of 100 randomly

chosen natural scenes (embedded condition). When embedded in a scene, objects

were located at a random position and were blended into the background scenes to

increase the difficulty of locating the targets. In both conditions, the monkeys’ task

was to respond to the presented object by pulling the correct lever, which in the

embedded condition required them to scan the background for any familiar object.

No information about object identity was available before the trial started. Back-

ground scenes were large, complex images, and the monkeys were free to move their

eyes throughout the trial. Recordings were carried out in TE while the monkeys

performed trials of both conditions. Selectivity of an isolated unit was first estab-

lished in the isolated condition. Units were then tested with effective and ineffective

objects in the embedded condition. Responses were similar for isolated and embed-

ded condition, suggesting that the observed activity was related to the process of

noticing particular targets, independent of how they were found. In the embedded

condition, neurons began to respond about 100 ms before the eyes acquired the tar-

get, but only if the monkey was about to fixate the target. Most importantly, very

little discharge activity was observed while the monkeys explored the scene prior to

locating the target, obvious in both examples shown in Figure 1.15. This was the

case even though the neurons were visually responsive, and the backgrounds were

rich scenes with a number of objects falling in a neuron’s receptive field during the
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Figure 1.15: Behavior of TE neurons during a visual search task. A and B show two
different stimuli of the embedded condition of Sheinberg & Logothetis as presented to the
monkeys. Superimposed on the scenes are recorded eye movement traces. The red circle
encompasses the position of the target, shown enlarged in the small inset. Plots below
the images depict the gaze distance from the target (black trace) and the observed spike
density function of a single neuron (red curve) as a function of time. The green line
indicates stimulus onset, the blue line response time (Sheinberg & Logothetis, 2001).

visual search. Thus, although neurons appeared to have a broad selectivity which

made them respond to a number of stimuli, they were sharply tuned to meet the

requirements of the task by responding to the targets only.

In line with the conclusions of the above mentioned studies are the results of an

experiment by Logothetis et al. (1995), which suggested that TE neurons may de-

velop selectivity for complex stimulus configurations as the animals are trained to

recognize specific objects. Monkeys were extensively trained to identify novel three-

dimensional objects from two different classes. One class contained wire-like objects,

the other amoeboid objects. The monkeys learned to identify these objects from

particular viewpoints. After training, the responses of TE neurons to the trained

objects, as well as to a large number of distractor objects, were recorded. A number

of neurons were found which selectively responded to certain views of an object, but

not to the distractors. Interestingly, when testing objects that the monkey could

only identify from a certain viewpoint, no selective responses were ever encountered

for those views that the animal failed to recognize. In addition, the number of cells
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selective for a particular object class correlated with the amount of training that

each animal had received for the object class. Taken together, the findings suggest

that the neuronal selectivity was generated because of the training experience of the

monkeys.

The findings of two further studies corroborate these conclusions. Sakai & Miyashita

(1994) and Kobatake et al. (1998) repeatedly exposed monkeys to members of a fixed

set of stimuli. In both cases, neurons were recorded in TE after extensive training.

Manipulating the fine structure of the trained stimuli, Sakai & Miyashita (1994)

observed that responses of TE neurons were always lower for the transformed than

for the trained stimuli. Kobatake et al. (1998) compared the responses in the TE

cortex of trained monkeys to the ones found in untrained monkeys. In the trained

monkeys, more cells responded to the training stimuli than in the control monkeys.

Also, TE neurons in the trained monkeys displayed higher selectivity for the training

stimuli than the TE neurons in the control monkeys. Taken together, these studies

strongly suggest that the selectivity of TE neurons is shaped by learning.

1.2.7 Effects of occlusion on the responses of TE neurons

In Section 1.1.2, the behavior of V1 and V2 neurons to partially occluded stim-

uli was reported. Here, the results of recordings in TE will be described. Kovács

et al. (1995) compared the responses of TE neurons evoked by whole stimuli and

by partially occluded versions thereof. Stimuli were simple geometric shapes, and

the occluders were randomly placed masks, designed to occlude different amounts of

these shapes (from 20 to 90%). For an example of these stimuli, see Figure 1.16A.

Neural firing rate to occluded stimuli was reduced overall, an effect that increased

with increasing amounts of occlusion. To further assess the influences of occlu-

sion on the neural responses, stimuli were ranked for each neuron according to the

mean firing rate that they evoked. Mean firing rate averaged across a population

of neurons was then analyzed as a function of stimulus rank, giving a measure of

the population selectivity (see Figure 1.16B). As long as sufficient stimulus infor-

mation was visible through the masks, the dependency of firing rate on stimulus

rank remained similar. This demonstrates that the selectivity of neurons remained

unaffected. Most importantly, for all but the highest occluder density, mean firing

rate was significantly higher for the best than for the worst stimulus, allowing these

stimuli to be distinguished by their evoked firing rate. In conclusion, the results

suggest that occlusion only weakly affects responses in the inferotemporal cortex.
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A B

Figure 1.16: Influence of partial occlusion on the responses of neurons in the inferotem-
poral cortex. A, Exemplar stimulus as used in the study by Kovács et al.. The occluded
shape is drawn in red for illustrative purposes only. B, Mean firing rate of a population
of neurons as a function of stimulus rank. Shape 1 corresponds to a neuron’s best shape,
8 to the worst shape, and the curve gives an indication of the neural selectivity. The
full line shows the results for shapes presented without an occluder, dashed lines represent
increasing amounts of occlusion (percentages give the occluder density). Firing rates are
decreased with occlusion, but selectivity is mostly preserved (adapted from Kovács et al.
(1995)).
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An experiment by Missal et al. (1997) addressed the related question of how the

responses of TE neurons changed if shapes were not presented in isolation, but

overlapping a larger background. Although this study did not directly test the

influence of occlusion since responses to the foreground object were investigated, it

nonetheless allows to draw conclusions about possible interactions between an object

and an occluder. The results show that shapes presented in isolation, and the same

shapes presented in front of a larger background, could lead to markedly different

responses. This was the case even though the shapes were perceptually segmentable

for the monkey. The most commonly observed interaction between background and

foreground shape was a reduction in firing rate. This parallels the reduction in firing

rate for partially occluded shapes that has been described by Kovács et al. (1995).

However, more complex, nonlinear interactions were also possible. Still, the neural

responses were at least partially determined by the foreground shape: Some portion

of the original selectivity for isolated shapes was preserved even if the shape was

shown in front of a background shape. This remaining selectivity could completely

be abolished if the shape and the background were painted in the same color, so

that the foreground object could no longer be segregated from the background. The

nonlinear effects therefore seemed not to be due to a failure to extract the foreground

shape, but rather because of an interaction of the two shapes, indicating that in TE,

responses to complex shapes cannot necessarily be predicted from the responses to

the shape’s parts. Although no similar effects were observed by Kovács et al. (1995),

it is nonetheless possible that with different, maybe smaller masks, the interactions

between masks and occluded shapes become more nonlinear.
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1.3 Aim of the thesis

Since occlusion is ubiquitous in nature, it is important for an observer – either human

or animal – to be able to identify an object even if only parts of it are visible. As

described in Section 1.1, humans possess this capability fully at the age of one.

In addition, most animals can identify objects correctly under partial occlusion

conditions. However, it has been demonstrated for humans and for pigeons that

there are limits to the recognition of partially occluded images. These studies have

shown that it is a function of the spatial placement of an occluder whether an object

can be identified despite partial occlusion. If the spatial placement of an occluder

indeed has different effects on the behavior, then the question arises whether these

effects are also reflected in the neural responses to a partially occluded stimulus.

Specifically, it is interesting to test whether neural responses distinguish between

partially occluded stimuli that can or cannot be identified. This is the main topic of

this work. Not only does this question address how the brain deals with a situation

that is very common in nature; since behavioral and neural performance are analyzed

at the same time, it also addresses how much brain activity and behavior change in

synchrony.

Chances are highest to detect spatial influences of occlusion if responses of individual

neurons can be followed. This resolution is currently only possible by performing

single cell recordings in the cortex of awake, behaving Rhesus monkeys. For Rhesus

monkeys, it has not been tested so far whether the recognition of partially occluded

objects depends on the spatial placement of an occluder. It has however been shown

that monkeys performing a task find certain stimulus features more informative than

others (e.g. Sigala et al., 2002; D’Amato & van Sant, 1988). Since information is

therefore distributed inhomogeneously across a stimulus, occlusion will most likely

have differential effects depending on the occluder placement. Rhesus monkeys thus

are suitable subjects for the experiment.

From the experiments described in the introduction, it seems likely that occlusion

has some effects on the whole visual cortex. However, the emphasis of the Ph.D.

project is on how occlusion interacts with the encoding of complex objects. Because

of its preference for complex shapes, area TE thus seems a good starting place for the

experiments. Furthermore, it has already been demonstrated that TE neurons are

affected to a certain degree by occlusion (Kovács et al., 1995). Yet, this study does

not allow to determine whether the occlusion effects depend on where the occluder

is placed.
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In summary, the aim of this Ph.D. thesis is to test how different placements of

an occluder affect both the behavior of Rhesus monkeys, as well as the encoding

of partially occluded stimuli in area TE. With respect to the stimuli, the study

takes advantage of the fact that occlusion can be used in conjunction with almost

any stimulus. Most studies of TE responses have used line-drawings or geometric

objects, because these simpler shapes can easily be parameterized. However, they do

not represent the natural input to the visual system. While normally the complexity

of a natural scene poses problems, this is not the case for the current study. To the

contrary, the fact that natural scenes contain structure at many spatial scales is a

benefit for the experiments, because it leaves a lot of room for interactions between

occluders and images. The stimuli for the Ph.D. project will therefore be sets of

natural scenes.

The complete experimental paradigm will be as follows: Monkeys are initially taught

to discriminate sets of three natural scenes. The effect of partial occlusion on their

behavior is then tested using the Bubbles paradigm developed by Gosselin & Schyns

(2001). As described in Section 1.1.1, this paradigm involves showing stimuli behind

occluders with randomly placed windows. The monkeys continue to identify the oc-

cluded scenes. The subsequent analysis compares the stimulus material from correct

and incorrect trials. By these means, regions in the scenes can be identified where oc-

clusion systematically generates identification failures (“diagnostic regions”). Sim-

ilarly, scene regions where occlusion has no effect are identified (“non-diagnostic

regions”). Human observers are tested under the exact same conditions, so that the

distribution of information across natural scenes can be compared between monkeys

and humans. The monkeys’ behavioral results are subsequently used to derive stim-

uli for single cell recordings. While recording from area TE, the natural scenes are

either presented unoccluded or with occluders placed over the diagnostic or non-

diagnostic regions. Occlusion of diagnostic regions renders the scene unidentifiable

for the the monkeys, while occlusion of non-diagnostic regions does not affect the

identification. By comparing the responses of TE neurons in these different condi-

tions, the effect of occluder placement on the neuronal responses can be studied in

a controlled way.

The proposed experiments become possible because it matters for the identification

of a partially occluded stimulus where the occluder is placed. This is a consequence

of the fact that different image regions carry different amounts of information. The

experiments therefore not only test how occluder placement influences the perception

of Rhesus monkeys or the encoding of occluded scenes. Additional conclusions can

be drawn from the data. Based on the behavioral results, it is possible to identify

which information Rhesus monkeys use to perform a task. While previous studies
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on the categorization of natural scenes had to manipulate their stimuli to identify

which features could be underlying a monkey’s decision (see e.g. Vogels, 1999), we

can determine without further manipulations which image regions are diagnostic. In

addition, the same paradigm can be used for humans and monkeys, allowing a direct

comparison of the behavior of the two species. On the neural level, the presentation

of partially occluded images is equivalent to presenting only a selected portion of the

image. The experiments by Tanaka have shown that neurons responding to complex

objects are often also responsive to some parts of these objects (see Section 1.2.6).

Here, we can test whether the same is the case for natural scenes, so that neurons

responsive to the whole scene remain responsive for some portions of the scenes.

Furthermore, since natural scenes in our study are split into diagnostic and non-

diagnostic regions, we can address how the diagnosticity of a scene region influences

its encoding, enhancing our understanding of how diagnosticity contributes to the

responses in area TE.



Chapter 2

Methods

2.1 Animal preparation

G00 and B98, two adult male Rhesus monkeys (Macaca mulatta), weighing 10 and

14 kg, participated in the experiments. All studies were approved by the local au-

thorities and were in full compliance with the guidelines of the European Community

(EUVD, European Union directive 86/609/EEC) for the care and use of laboratory

animals.

The monkeys were first trained to move calmly from their home cage into primate

chairs, and they were familiarized with the setup environment. After this initial

training, a custom designed titanium head post (Max Planck Institute for Biological

Cybernetics, Tübingen, Germany), and a scleral search coil for eye position moni-

toring (Judge et al., 1980) were implanted in a sterile surgery. The following pro-

tocol is typically used in the lab for these surgeries: Animals are first premedicated

with Glycopyrrolat (Robinul, 0.01 mg/kg), and Ketamine Hydrochloride (Ketavet,

15 mg/kg). Subsequently, anesthesia is induced with Fentanyl (Fentanyldihydro-

gencitrat, 3 µg/kg) and Thiopental (Trapanal, 5 mg/kg). To maintain the anesthe-

sia, Isoflurane is administered at levels of surgical tolerance (about 2%), while the

animal is artificially ventilated. Throughout the surgical procedure, blood pressure,

heart rate, and the respiration in terms of SpO2 and CO2 levels are constantly mon-

itored. Body temperature is measured, and kept at 37 - 38 degrees using a heating

pad. Postoperatively, the monkeys are daily administered an analgesic (Finadyne,

1 mg/kg) for three days, in addition to an antibiotic (Baytril, 5 mg/kg or Synulox,

0.1 ml/kg) for up to ten days.

50
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Figure 2.1: Ball-and-socket chamber implanted on monkey G00. A, Construction of the
chamber. The guide tube is held in place by the ball. Its angle can be adjusted by means
of two position screws. The angle could be changed by pm5 deg from the central position.
B and C, Views of the actual chamber. In C, the guide tube is visible.

After sufficient behavioral data were collected from a monkey, a chronic titanium

chamber for the electrophysiological recordings was implanted under sterile surgical

conditions. The chamber (see Figure 2.1) consisted of a ball-and-socket joint with

a stainless steel guide tube (1.3 mm outer diameter) passing through the chamber’s

center (Schiller & Koerner, 1971). The guide tube could be swiveled around the

central position by loosening the position screws on top of the chamber. This allowed

flexible positioning of the guide tube. To generate space for the guide tube to move,

the chamber’s base contained a large opening. It was filled with silicon (Sylgard 516

from Dow Corning GmbH, Wiesbaden, Germany; mixed in a ratio of A:B=1:1.2,

and annealed at 150◦C for 60 min). The silicon allowed the guide tube to move,

but nonetheless tightly sealed the complete opening. With the exception of the

recording sessions, the guide tube was closed with a stylus. The stylus was made

from a metal tube slightly longer than the guide tube. One end of the stylus was

bent so that it easily could be pulled out. The other end was closed by a drop of

melted glass.

High-resolution magnetic resonance imaging (MRI) scans (3D-MDEFT, TR=22 ms,

TE=4 ms, voxel size 0.5 × 0.5 × 0.5 mm3, 160 slices) of each monkey’s head and

brain were obtained at the beginning of the experiments. These served to design
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Figure 2.2: Two cross-sections of the brain of monkey G00, obtained from the structural-
anatomical MRI data. A, Sagittal view. B, Coronal view. The yellow ellipse encloses the
intended recording location in the anterior lower bank of the STS. Red lines intersect at
the chamber position on the skull. Abbreviations: I - inferior, S - superior, A - anterior,
P - posterior, L - left, R - right.

the chamber with optimal fit to each monkey’s skull. MRI scans were furthermore

used to place the chamber on the skull such that the intended recording region could

optimally be reached. To determine the appropriate chamber position for a monkey,

suitable for recordings in TE, the anterior half of the STS was first located in the

brain scans. The yellow ellipse in Figure 2.2 shows the recording region on the brain

anatomy of monkey G00. Starting from the recording position, the electrode track

was determined next. During this procedure, care had to be taken that electrodes

avoided critical brain regions. For the TE recordings, this was the middle cerebral

artery in the bank of the lateral fissure. Extrapolation from the recording position

along the electrode track to the skull determined the chamber position. Once its

position had been defined, the chamber base was exactly modeled to the surface of

the skull at this position. The precise fit between chamber and skull minimized the

risk of infections. Horsley-Clark coordinates for the chamber position were AP 15.4,

ML 16.8 for monkey G00, and AP 18.1, ML 17.7 for monkey B98 (AP - anterior-

posterior, ML - medial-lateral).
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2.2 Monkey psychophysics

2.2.1 Stimuli

In each experiment, monkeys were exposed to a stimulus set of three images. During

large parts of the experiments, the stimuli were shown behind occluders generated

using the Bubbles paradigm. Stimulus sets will be described in the next section,

before explaining the construction of the masks.

Stimulus sets

Three stimulus sets were tested, one of them showing simple geometrical shapes

(G1 - G3), and two containing natural scenes (N1 - N3, N5 - N7). All stimulus

sets are shown in Figure 2.3. The geometrical shapes were generated in CorelDraw

(www.corel.com). They had a size of 256 by 256 pixels, and were constructed by

placing a small square on one of three sides of a larger square. Both squares were

painted light on a dark background.

All natural scenes were taken from Corel PhotoCDs. Images again had a size of

256 by 256 pixels. They were normalized to have equal Fourier amplitude spectra.

This was achieved by computing the Fourier transform of each image, resulting in

an amplitude and phase spectrum for each image. Amplitude spectra were then

averaged over the set members. Finally, the average amplitude spectrum was com-

bined with the image specific phase spectrum in the inverse Fourier transform to

yield a normalized image. The overall image contrast was reduced by limiting image

gray-scale values to the range from 30 to 70% of the maximal gray scale value. If

shown without further scaling, images of a size of 256 by 256 pixels covered 6 by

6 deg of visual angle1.

Generation of masks

Masks were constructed as suggested by Gosselin & Schyns (2001). A masked im-

age appeared to be occluded by a surface punctured by round windows (“bubbles”),

through which parts of the image were visible. This effect was generated by blending

between an image and a mask as large as the image. At each image pixel, the mask

specified a value between 0 and 1, expressing the percentage of original image trans-

1In the remainder of the text, deg will be used to refer to degrees of visual angle.
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Figure 2.3: Stimulus sets of the Bubbles experiments with monkey observers. A, Geo-
metrical patterns. B and C, Natural scenes. Small letters in the stimuli are the stimulus
labels used for referencing. They were not part of the actual stimuli.
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mitted through the mask. Computationally, blending was performed by calculating

the intensity value

oi = mi · ui + (1−mi) · b

at each pixel i, where o denotes the gray-scale value of the occluded image, u the

gray-scale value of the unoccluded original image, m the mask value, and b the

background gray-scale value.

To generate masks with round windows, all mask values were initially set to zero,

generating a nontransparent surface of the background color. 2-D Gaussian profiles

with a peak value of 1 were then added to this surface. Each Gaussian profile

corresponded to one bubble in the mask. Profiles were computed as

f(x, y) = exp

(
−(x− xc)

2 + (y − yc)
2

σ

)
.

x and y give the horizontal and vertical coordinates of each image pixel, respectively.

xc and yc are the coordinates of the maximum for the 2-D profile. σ sets the

profile’s width. Because of their Gaussian envelope, windows smoothly merged into

the nontransparent background. Bubbles could be manipulated by the parameters

defining the 2-D Gaussian curve, i.e. center coordinates and width. The center

coordinates determined the position of a bubble, while the width set its size. Each

image pixel could be selected as a center position. No bubble could therefore be

centered around a location outside of the image. However, since center coordinates

could fall onto or close to the edge of the image, bubbles only partially overlapping

the image were possible.

Masks with multiple bubbles were generated by adding multiple 2-D Gaussian pro-

files. The composite mask was computed as

M(x, y) =
N∑

i=1

exp

(
−(x− xci)

2 + (y − yci)
2

σ

)
,

where x and y again specify the horizontal and vertical coordinates of the pixels.

N denotes the number of bubbles, and xci and yci are the center coordinates of

the ith bubble. Gaussian profiles were restricted to have different center positions

at least in one direction. Bubbles could therefore overlap, but could never fall

completely on top of each other. Because of the blending operation between mask

and image, mask values were restricted to the range from 0 to 1. Addition of

several overlapping Gaussians could in principle lead to mask values greater than

1. Therefore, after addition of all Gaussians, mask values were clipped to 1. An
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A B C

Figure 2.4: Construction of masked stimuli. A, Original image. B, Exemplar mask
containing four bubbles. Brighter values indicate higher transparency. In the actual exper-
iments, smaller bubbles were used. C, Image in A covered with the mask in B.

example for the generation of masked images is given in Figure 2.4, showing the

original image, a mask, and the masked image.

2.2.2 Experimental paradigms

Most of the behavioral experiments used a stimulus discrimination task, which will

be described in detail in the next section. Some changes were necessary to incor-

porate the Bubbles paradigm. These will be described thereafter. To compare the

distribution of information across a scene as determined with Bubbles to the one

found during visual examination of the same scene, two variants of a free viewing

task were devised. The first tested the eye movements elicited by a mere inspection

of a scene without the context of a task, while the second addressed the influences

of a task on this data. Both tasks are described below.

Discrimination task

A trial began with the presentation of a yellow fixation spot in the center of the

screen, combined with the sounding of a tone. The monkey had 4 s to acquire

fixation on this spot. 100 ms after the onset of fixation, the spot was turned off

and one of the stimuli appeared centrally for 300 ms, after which the fixation spot

was again presented for 100 ms. Stimuli were shown with their original size of 6 by

6 deg. When the fixation spot was finally turned off, three small white squares (the

targets) were presented in the periphery. All targets had a distance of 6 deg from

the center of the screen, and the monkey was given 4 s to make a saccade to one of

them. Foveation of the selected target for 300 ms ended the trial. A high-pitched
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Figure 2.5: A typical trial during the discrimination task performed by the monkeys.
Trials began with the onset of a fixation spot, followed by the stimulus. They ended with
the presentation of three peripheral response targets, one of which the monkey had to select
by fixating on it. See text for more details.

tone was played, and the screen went blank. The next trial was initiated after an

inter-trial interval (ITI) of 3 s. Figure 2.5 illustrates a typical trial for this task.

From the acquisition of fixation on the centrally presented fixation spot until the

onset of the targets in the periphery, the monkey had to keep his gaze within a

window of 2 deg radius around the center of the screen. He was then allowed to move

his gaze freely from the central position to one of the target positions. However, as

soon as one of the targets was foveated, the monkey’s gaze had to remain in a 2 deg

window around this position. If at any point during which fixation was required the

animal’s gaze left the fixation window, the trial was aborted. The same happened

if the monkey failed to acquire fixation within the set times at the beginning of the

trial, or during the response period. If a trial was aborted, the screen turned blank

immediately, and the ITI was extended by an additional delay period of 2.5 s. The

long delay was intended to discourage the monkey from aborting trials.

Stimulus sets consisted of three images. Each image was associated with one of the

response targets, so that each of the three stimuli required a unique response from

the monkey. Only fixation on the correct target was rewarded by a drop of juice at

the end of the trial. Incorrect responses were not rewarded, and were additionally

indicated by the sounding of a specific tone at the end of the trial. A pseudo-

random sequence was used to determine which stimulus was presented in a trial

to assure that each stimulus was used equally often. On every trial, the number

of presentations was determined for each stimulus. The stimulus with the lowest

number of presentations was shown on the next trial. If multiple stimuli had been

shown equally often, one of them was randomly selected.
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When a new stimulus set was introduced, the monkeys had to be taught the associ-

ations between stimuli and corresponding response target locations. This was done

by introducing a brightness difference between the response targets. The correct

target was always shown as a white square, while the brightness of the incorrect

targets was reduced. During the first trials with a new stimulus set, the brightness

of the incorrect targets was adjusted so that they disappeared against the screen

background. Brightness was then slowly increased so that the performance of the

monkey always remained above 70% correct. Training was completed when the mon-

keys could perform the task better than 80% correct with all targets at the same

brightness. This training procedure took several weeks for the first stimulus set.

For subsequently introduced stimulus sets, the training duration could be reduced

to about a week.

Bubbles task

The monkeys were first trained to perform the basic discrimination task on a stim-

ulus set before the Bubbles task was introduced. Order and timing of stimulus

presentations were kept identical for the two tasks, as well as the response mode:

As before, the monkeys responded to the stimulus by making a saccade to one of the

targets. The only difference between the two tasks therefore was the presentation

of occluded stimuli, which were only used in the Bubbles task. Presentations of

masked and unmasked stimuli were interleaved. At least every third trial contained

a stimulus without a mask, to be able to control the monkey’s behavior in the basic

task. The same pseudo-random procedure as described above was used to deter-

mine the stimulus identities for a trial. Monkeys were rewarded in the case of both

masked and unmasked stimulus presentations when making a saccade to the correct

target.

As described in Section 2.2.1, masks were non-transparent surfaces punctured by

randomly placed bubbles. Each mask could be characterized by the number of

bubbles, their size, and positions. Size was equal for all bubbles, and kept constant

throughout the experiments. Bubbles were generated from a 2-D Gaussian with a

width σ of 20 pixels. This resulted in moderately large windows (1.35 deg in diameter

for stimuli that were 6 by 6 deg). Bubble position was randomly determined on every

trial. The number of bubbles in a mask determined how much of a stimulus was

visible, and therefore set the overall difficulty of the task. Since the monkeys had to

remain motivated, the task could not be made too difficult, which required a flexible

setting of the bubbles numbers. Three different methods were used interchangeably:



2.2. MONKEY PSYCHOPHYSICS 59

- Constant bubble numbers: The number of windows was kept constant for a large

number of trials, eventually reduced by the experimenter. The primary use of

this scheme was during the first introduction of the Bubbles task, with the goal

of familiarizing the monkeys with the presentation of masked stimuli. In this

situation, stimuli had to easily identifiable despite the masks, and large, constant

numbers of bubbles were required.

- Staircase protocol: The number of bubbles was adjusted by a staircase protocol.

Staircases were updated to maintain a performance level of 75% correct. Every

fourth presentation of a stimulus, the performance of the monkey with this partic-

ular stimulus was determined for the last four trials. Unmasked presentations were

not taken into account. If all four last responses had been correct, the number

of windows was reduced by three, while for three correct responses the number

of windows was kept constant. If two or less responses were correct, the bubble

number was increased by two. Bubbles numbers were adjusted individually for

each stimulus.

- Method of constant stimuli: In this case, upper and lower limits were set for the

bubble numbers. Bubble numbers started with the upper limit, and were reduced

by a fixed amount after a small number of trials (usually 4 or 5 trials). When

the bubble number reached the lower limit, it was reset to the upper limit, to

be reduced again. The upper limit was usually chosen so that the task was very

simple for the monkey, while performance at the lower limit was at threshold.

With this method, masks for different stimuli had the same number of windows.

In a few additional experiments, fixed masks were used instead of the randomly

varying Bubbles masks. These experiments were designed to verify the Bubbles

results, and they were carried out after the Bubbles testing sessions were concluded.

When these masks were used, two changes had to be introduced in the Bubbles

paradigm: The ratio between masked and unmasked trials was changed, so that

more trials contained unmasked than masked trials. In these experiments, only

every third trial contained a masked stimulus. In addition, responses on masked

trials were randomly rewarded in 50% of the trials, irrespective of the correctness of

an answer.

Eye movements tasks

A set of three tasks was used to study the eye movements elicited by different

stimuli. The first paradigm was designed to give a measure of the precision with

which monkeys could fixate on any location on the screen. In this calibration task,
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Figure 2.6: Screen positions for which the fixation accuracy was tested. See text for task
description.

the monkeys had to fixate on a white square that was presented at various positions

on the screen. In every trial, the square initially appeared in the center of the screen.

If the monkeys acquired and successfully held fixation on this position, the square

jumped to one of 16 peripheral locations. The monkeys were required to reacquire

fixation on this location to receive a drop of juice as reward. For every position, a

fixation was counted as successful if the monkey held its gaze within a circle of 2 deg

diameter around the position for 400 ms. If these requirements were not met, a trial

was aborted and no reward was given. The 16 positions were located on the corners

and the midpoints of the sides of two concentric squares (see Figure 2.6). The larger

square had a side length of 10 deg, the smaller one of 5 deg. Thus, fixation accuracy

was determined for horizontal and vertical distances up to 5 deg from the center of

the screen.

A free viewing task was used to study where monkeys looked on an image when

it was presented to them for visual exploration. The intention of this task was to

study the natural viewing behavior of a monkey without the influences of a task.

Therefore, no constraint was placed on where the monkeys had to look, and no

reward was given to them. Images had a size of 10 by 10 deg, and were presented

for 3 s. During an experimental session, the images from one of the stimulus sets

were used. They were shown to the monkey in a pseudo-random order. Stimulus

presentation cycled through the stimulus set as long as the monkey was willing to

look at the images.
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In the third eye movement task, it was tested whether the looking pattern evoked

by a scene changed when the monkeys had to give a response to the image instead

of merely inspecting it. So called “scanning trials” were therefore introduced in the

standard discrimination task. These scanning trials had a longer stimulus presen-

tation time of 3 s than normal trials. No fixation requirements were imposed while

the stimulus was visible. The rest of the trial remained unchanged with respect to

the normal discrimination paradigm. Central fixation was required before and after

stimulus presentation. Also, as usually the monkeys had to give a response to the

scenes by making a saccade to one of the response targets. In both trial types, stim-

ulus size was 6 by 6 deg. Scanning trials were indicated to the monkey by showing

a large frame around the first fixation spot. During a session, every third or fourth

trial was a scanning trial, while the rest were normal trials as in the original task.

2.2.3 Apparatus

Behavioral training was performed in a specially designed awake monkey physiol-

ogy setup. During any procedure in this setup, monkeys were seated in a custom-

made primate chair (Max Planck Institute for Biological Cybernetics, Tübingen,

Germany). These chairs were placed within an electromagnetically and acousti-

cally shielded chamber. During experimental sessions, the light in the chamber

was turned off. Monkeys could be monitored by the experimenter by means of two

infrared cameras. While in the setup, the monkey’s head was fixated.

Eye movements were monitored using the scleral search coil technique (Robinson,

1963). In the initial surgery, a search coil was implanted in one of the monkey’s eyes.

In the setup, monkeys were placed in a high frequency magnetic field, inducing a

voltage in the search coil. Since the amplitude of the induced voltage is proportional

to the sine of the angle between the axis of the search coil and the magnetic field,

it is a measure of the animal’s gaze direction. Two sets of field coils were used to

generate a horizontal and a vertical magnetic field in the chamber. The two fields

alternated at different frequencies. Separately detecting voltage components at the

two frequencies allowed to determine horizontal and vertical components of the eye

position. With the available equipment (CNC Engineering, Seattle, Washington),

eye positions could be measured stably and with a high precision. Data points were

taken at a rate of 200 Hz.

Stimuli were presented on a 21” monitor (Intergraph 21sd115, Intergraph Systems,

Huntsville, USA) with a resolution of 1024 by 768 pixels, and a refresh rate of 75 Hz.

Background luminance of the monitor was set to 41 cd/m2, and the monitor was
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gamma corrected. The monitor was placed outside the electromagnetical shield-

ing at a distance of 95 cm from the monkey. For monitoring, stimuli were also

simultaneously presented on a second computer screen in front of the experimenter.

Stimuli were generated and displayed with STIM (D.L. Sheinberg), executed on a

dedicated PC. STIM provides a TCL/TK interface into OpenGL. A STIM script

was used to load images, to generate random masks, and to combine the two into

masked images by blending. In addition, STIM was also responsible for saving the

masks. Each mask was saved as a compressed binary file to reduce the required

amount of storage. While STIM was used for stimulus presentation, the execution

of an experiment was controlled by a so called experimental state system in the

QPCS environment. The state system was programmed in C, and implemented

on a distributed network of PCs, all of which used the real-time operating system

QNX (QSSL, Ontario, Canada). The state system timed stimulus presentations,

and additionally provided the behavioral control for the experiments. It registered

the eye position and, if applicable, tested it against predefined fixation criteria. By

these means, trials in which the monkey failed to fixate were detected and aborted.

By analyzing the eye position, the state system could also determine which response

target the monkey selected in the discrimination and Bubbles task. Furthermore,

the state system determined which stimulus to show on a given trial, and when

appropriate set the mask parameters. All events in a trial were written to a file.

Dedicated FastEthernet served for the communication between all setup computers.
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Figure 2.7: A, Extended natural scene set 1. B, Time sequence of the task used with
human observers. The upper two lines indicate the time course of the appearance of fixation
spot and stimulus on the screen. The lowest line shows the time course of the response
(see text for a more thorough description of the paradigm).

2.3 Human psychophysics

2.3.1 Subjects

A total of 12 subjects participated in the described experiments. In most cases, three

subjects were tested per experiment. All subjects were näıve as to the purpose of the

experiments. Subjects had normal or corrected-to-normal vision. Testing sessions

usually lasted two to three hours, with subjects completing between 1100 and 2000

trials in this time. Subjects returned to the lab for additional sessions, until a total

of 4000 to 6000 trials had been collected.

2.3.2 Stimuli

Human observers were only tested with the two sets of natural scenes. The second

set (scenes N5 - N7) was identical for human and monkey observers, while the first

set included scene N4 as an additional fourth scene (see Figure 2.7). Images from

the first set were also presented at different sizes; in the initial experiment, they

were shown with a size of 128 by 128 pixels. In later experiments, they had a size

of 256 by 256 pixels. During the experiments, the distance of the subjects from the

monitor was such that the smaller images subtended 4.2 deg, and the larger images

8.3 deg.
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2.3.3 Experimental paradigm

Trials began with the presentation of a yellow fixation spot for 500 ms, followed by

one of the experimental stimuli for 500 ms (see Figure 2.7 for illustration of the task).

Observers responded after the presentation of the stimulus by pressing designated

keys on the numerical keypad of a standard computer keyboard. No constraints were

imposed on reaction time. After a subject’s response, the next trial was initiated.

Each of the images in a stimulus set was associated with a specific response key.

Subjects were first familiarized with the stimulus set, and learned to press the correct

keys in response to the images. Once they had correctly performed 20 trials with

non-occluded stimuli, the actual testing began, in which stimuli were shown behind

masks partially revealing the images. As before, observers had to report the identity

of the presented stimulus. In trials in which they were unsure about the image

identity, they were instructed to nonetheless choose one of the response alternatives.

No feedback was given about the correctness of their answer.

Masks were constructed as described in Section 2.2.1. As for the monkey observers,

bubble size was kept constant throughout an experiment. With human observers,

Gaussian profiles with a width of either 10 or 20 pixels were used, corresponding to

about 0.95 or 1.9 deg, respectively. Bubble position was again randomly determined

on every trial. Using a staircase protocol, the bubble number was set such that

subjects identified a stimulus correctly in 75% of the trials. Staircases were run for

each stimulus independently. Every fourth presentation of a stimulus, the bubble

number was updated depending on the correctness of the last four presentations. It

was decreased by three if the subject had responded correctly in all last four trials,

and increased by two if less than three answers had been correct. For three correct

responses, the bubble number remained unchanged. The stimulus presented in a

trial was chosen pseudo-randomly as described in Section 2.2.2, assuring that every

stimulus was shown equally often. Every tenth presentations of an image, it was

shown without a mask. For each image, the presentation of unmasked images was

started a random number of trials after the beginning of a testing session. Otherwise,

the unmasked presentations of all images would have immediately followed each

other in consecutive trials. Responses to unmasked images were not taken into

account when updating the number of bubbles.

In some cases, subjects were presented with a questionnaire after they had com-

pletely finished an experiment. The questionnaire was intended to determine which

decision strategies an observer was aware of. Questionnaires showed printouts of

the experimental stimuli. The subjects were instructed to circle in these printouts

the image regions they had found most informative in identifying the images. They
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were also provided with additional space to add descriptions of any other strategy

they used during the task.

2.3.4 Apparatus

Stimuli were presented on a 21” monitor (Intergraph 21sd107, Intergraph Systems,

Huntsville, USA) with a refresh rate of 85 Hz and a resolution of 1152 by 864 pixels.

The monitor’s RGB channels were gamma corrected individually. Background lumi-

nance was set to 27 cd/m2. Subjects were comfortably seated in front of the screen

with an approximate viewing distance of 60 cm. However, the subject’s head posi-

tion was not controlled. A table in front of the subjects held a computer keyboard,

which the subjects used for their responses.

Stimulus generation and presentation was controlled using STIM, executed on a ded-

icated graphics workstation. Besides stimulus generation, STIM was also responsible

for saving the masks. Stimulus presentation was timed by a QPCS state system,

implemented on a second PC operating under QNX. The state system additionally

logged a number of events during each trial, including the subject’s response. It also

determined the content of the trials by designating the stimulus to be presented, in

combination with computing the appropriate numbers of bubbles for a mask. Com-

munication between QNX and STIM computers was by dedicated FastEthernet.



66 CHAPTER 2. METHODS

C D

Diagnostic Non-Diagnostic

1

0

0.2

0.4

0.6

0.8
A B

Original image p-values

Figure 2.8: Construction of masks for the physiology stimuli. A, Original image. B,
Map of p-values computed for monkey G00 as Bubbles result for this stimulus. The black
arrow indicates the 30th percentile, while the gray arrow is placed at the 70th percentile.
By selecting pixels with p-values below the 30th percentile, and applying the smoothing
described in the text, the diagnostic mask shown in C is generated. Similarly, selecting
pixels with p-values above the 70th percentile and smoothing leads to the non-diagnostic
mask shown in D. C and D also show the result of overlaying the computed masks on the
original image.

2.4 Neurophysiology

2.4.1 Stimuli

Depending on the task, different stimulus sets were used. In the fixation paradigm,

we selected four of the six natural scenes used for the monkeys before. In the case

of monkey G00, these were images N1, N3, N5, and N7. For monkey B98, we

selected images N2, N3, N5, and N6. Images were shown without masks, and with

masks derived from the Bubbles results. Masks were computed individually for each

monkey.

As a result of the Bubbles task, a map of p-values was computed that specified for

each image pixel whether masking of this pixel had a significant effect on behavior

(see Section 2.5.1). Based on these maps, six different masks were constructed

for each of the images (see Figure 2.8 for an illustration). Masks again contained
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values between 0 and 1, and controlled the blending operation between image and

background. Initially, all mask values were set to zero. Next, some proportion of

the mask values was set to 1, making the underlying image region visible. Which

of the mask values were set to 1 was based on the p-value map for an image. By

selecting mask pixels where the corresponding p-values were at the lower end of the

p-value distribution, masks were generated through which diagnostic image regions

were visible (diagnostic conditions). On the other hand, masks with holes over non-

diagnostic image parts were built by selecting mask pixels with p-values in the upper

end of the distribution (non-diagnostic conditions). Three diagnostic and three non-

diagnostic masks were constructed. In each group, the three masks differed by the

amount of the underlying image that was visible (the visible stimulus size). This

was achieved by setting either 10, 30, or 50% of the mask values to 1, so that either

10, 30, or 50% of the original image was visible. Mask computation was done using

Matlab (www.mathworks.com).

Some of the generated masks contained very small elements. They also sometimes

had very rough edges. This fine detail in the masks was unnecessary, and sometimes

distracting. To smooth mask edges and remove small, disconnected elements, image

dilation followed by image erosion operations were repeatedly applied to the masks.

These operations were taken from the Matlab Image Processing Toolbox. Dilation

added pixels to the mask boundaries by setting each pixel value to the maximum of

the values in a defined neighborhood. In contrast, erosion removed mask pixels by

setting pixel values to the minimum value in the neighborhood.

The resulting masks still contained only values of 0 or 1, and therefore had sharp

transitions from mask to image. These edges were smoothed by replacing the sharp

transitions from 0 to 1 at the edges with ramps in which mask values increased

in steps of 0.1 from 0 to 1. As a side effect, this manipulation now blended the

masked images smoothly into the screen background. However, presentation of

the unmasked images generated sharp edges between image and background. To

avoid differences between masked and unmasked images, a similar manipulation

had therefore to be done for the unmasked images. Edges were here removed by

generating a vignette for each image. The vignette was a 20 pixels wide frame with

the same outer side lengths as the images. In the vignette, mask values were ramped

from 0 at the outside to 1 in the inside in steps of 0.05.

Masked and unmasked images were also equalized in terms of their lower order image

properties. Mean luminance was matched by setting the mean of all image pixel

values to 0.5 in each image. Image contrast was adjusted for the masked images by

scaling the image values so that their standard deviation was equal to the standard

deviation of the image values in the unmasked image. In case of the masked images,



68 CHAPTER 2. METHODS

Diagnostic Non-Diagnostic
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Figure 2.9: Stimulus set constructed for monkey G00. In the diagnostic conditions,
diagnostic image regions were visible, while they were occluded in the non-diagnostic con-
ditions. Percentages specify how much of the underlying image was visible through the
mask.
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Figure 2.10: Stimulus set constructed for monkey B98. See Figure 2.9 for more details.
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Figure 2.11: Design of the task used in the physiology sessions. The sequence of events
is outlined in B, while A shows exemplar stimuli appearing in the baseline and stimulus
period. The arrows indicate during which time intervals these stimuli were shown. The
upper two lines in B show the time course for the presentation of fixation spot and stimulus.
The third line gives an exemplar eye movement trace. This line indicates the distance of
the gaze from the center of the screen. Fixation at the center of the screen is reached at
the level indicated by the small “0”. The lowest line, finally, shows at which time point
juice was delivered to the monkey.

only the values of visible image regions were taken into account when normalizing

mean and standard deviation; masked regions were not considered. All stimuli were

shown at a size of 6 by 6 deg. The stimulus sets for both monkeys are shown in

Figures 2.9 and 2.10.

2.4.2 Task

Trials began with the presentation of a red square in the center of the screen (see

Figure 2.11 for an illustration of the task sequence). Monkeys were additionally

alerted to the beginning of a trial by the sounding of a tone. They were required

to fixate on the square within 3 s after its appearance. If they acquired fixation
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within this time limit, the stimulus appeared behind the red square some time

after the onset of fixation. The stimulus was presented in the center of the screen.

The duration between fixation onset and stimulus onset was at least 400 ms; it

was however extended up to 600 ms depending on the performance of the monkey.

Due to a problem in the experimental control system, the stimulus erroneously

appeared 100 ms after fixation onset in a few sessions for monkey G00 and B98.

This short presentation duration of the fixation spot may introduce an unstable

baseline. Neurons may still be responding to the fixation spot when the stimulus

is turned on. However, the fixation spot was present in all conditions. Response

differences between conditions can thus not be an artefact of the too short baseline

period, and the data of the sessions were included in the analysis.

Stimulus presentation lasted 500 ms, after which time the stimulus was removed.

Throughout the whole period, the monkeys had to keep their gaze within a window

of 1 deg diameter around the center of the screen. They were in principle rewarded

for fixating the required amount of time, but to increase their attention, a second

task was introduced. In most trials, the screen went blank after stimulus offset.

Reward was delivered, if appropriate, 1 s thereafter. On some trials, however, the

fixation spot jumped from its central position to one of four peripheral locations.

The monkeys had to make a saccade to the new location to receive a reward. The

next trial was initiated after an ITI of 3 s.

Trials were aborted for both monkeys if the fixation requirements were not met. For

monkey B98, an additional sensor made it possible to record jaw movements. To

reduce movement artifacts during the recordings, jaw movements were prohibited

during the trial until the delivery of juice. The threshold for the jaw movements

varied on every recording session, depending on the quality of the physiology record-

ings, as well as the position of the sensor with respect to the jaw. Thresholds were

set such that jaw movements that generated detectable artifacts in the single unit

recordings led to an abortion of the trial. As described before, stimulus sets for

this experiment consisted of four natural scenes, presented in seven conditions. A

pseudo-random sequence determined the combination of stimulus and condition pre-

sented on a trial. Between 10 and 20 successful repetitions were collected for each

stimulus and condition.

2.4.3 Setup and recording procedure

Neural signals were recorded using a 5-channel electrode drive (5-channel Mini-Mani-

pulator from Thomas Recording GmbH, www.ThomasRecording.de), which allowed
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Figure 2.12: A, 5-channel electrode drive from Thomas Recordings. Each electrode is
fed through a metal guide tube. Guide tubes are bundled at the end of the drive. Electrodes
can be moved independently by their own motor. B, Photo of an electrode tip, showing the
Pt/T core and its Quartzglass cover.

five electrodes to be advanced independently in 1 µm steps. The drive and a sample

electrode tip are shown in Figure 2.12. Electrodes consisted of a Pt/T core coated

with Quartzglass, and had an impedance between 1 and 2 MΩ (ESI2ec, Thomas

Recording GmbH). Each electrode was fed through a separate guide tube with an

outer diameter of 305 µm and a length of either 88 or 93 mm. These guide tubes

were inserted into the brain through the chamber’s guide tube.

Signals were amplified to span the range of -5 V to 5 V, and low-pass filtered with

a cutoff of 3 kHz (MeasUnit5 Amplifier, Thomas Recording GmbH). The amplified

signal was subsequently divided into multi-unit activity (MUA) and local field po-

tential (LFP) by applying different filters. To generate the multi-unit signal, the

amplified signal was band passed between 500 Hz and 10 kHz, while 1 Hz and 100 Hz

were used as upper and lower cutoff frequencies for the LFP. Before saving the sig-

nals to disk, the recorded MUA and LFP were digitized with 22.3 kHz and 4.46 kHz,

respectively.
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Figure 2.13: Left, Coronal view of the brain with a schematic chamber, guide tube, and
electrode. Right, Enlarged view of the STS region. The dark gray region corresponds to
the lower bank of the STS, the light gray region to lateral TE (adapted from Janssen et al.
(2000)).

Electrode tips were lowered until they reached the lower bank of the the STS or

lateral TE (see Fig 2.13), determining the recording depth by transitions between

gray and white matter, as well as sulcal boundaries. Electrodes were then slowly

advanced until at least one single unit could be isolated at each channel. For each

channel, the first single unit that could be stably recorded was usually selected for

further testing, irrespective of its responsiveness or selectivity to the experimental

stimuli. This method was chosen to guarantee an unbiased sampling of TE neurons.

For every electrode, the lower end of the STS and the recording location were noted.

The same setup chamber was used as before (see Section 2.2.3). For monkey B98,

jaw movements were recorded in addition to the eye movements. Jaw movements

were detected by an infrared motion sensor (AMN22112, www.nais-e.com) that was

attached to the primate chair. The setup chamber provided electromagnetic shield-

ing during the recording sessions. To further reduce artifacts in the recorded signals,

the grounding scheme was adapted such that the setup chamber, the monkey, all

amplifiers, and the shields of all cables leading into or out of the chamber were

grounded to the same point. Computer control of the experiments was done with

the same network of distributed PCs as described in Section 2.2.3. In addition to

the network nodes used before, two PCs were used to record MUA and LFP. Start

and stop of the recordings were triggered by the state system at the beginning and

end of each trial.
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2.5 Data analysis

2.5.1 Analysis of Bubbles data

After every masked trial of the Bubbles experiments, the used mask was saved,

together with the subject’s response, and the identity of the presented stimulus. As

soon as all testing sessions were completed, trials were sorted according to which

stimulus was presented, so that the rest of the analysis could be performed separately

for each stimulus. In the next step, the correctness of the observer’s response was

determined for each trial of one stimulus. Based on the response, the masks were

split into two groups, one containing the masks from all correct trials, the other one

from all incorrect trials. The following analysis was then concerned with identifying

differences between these two groups. The analysis of differences between masks

proceeded pixelwise, i.e. by only taking mask values at one of the image pixels into

account. The results of any of the analyses could then be summarized by combining

the results obtained for all pixels, and representing the combination as an image.

Qualitative differences between the masks in correct and incorrect trials were an-

alyzed by computing the average of each of the two groups. These average masks

again contained values between 0 and 1, indicating how visible image regions were in

an average correct or incorrect trial. In a quantitative approach, the mask value dis-

tributions in correct and incorrect trials were computed at each pixel. Distributions

were then compared between correct and incorrect trials using the Kolmogorov-

Smirnov test. Since the test was performed at each image pixel, the resulting p-

values were Bonferoni corrected for the number of pixels.

To analyze data from single sessions, the correlation coefficient between the mask

values at a pixel, and the correctness of the responses were computed following a

suggestion by Chauvin et al. (submitted). To compute the correlation coefficient,

correct trials were assigned a response value of 1, and incorrect trials a response

value of 0. The correlation coefficient was then calculated as

Ci =

∑
t mi(t) · r(t)√∑

t(mi(t)−mi)2 ·
∑

t(r(t)− r)2
,

where C is the correlation coefficient, m(t) the mask value in trial t, r(t) the response

value in the same trial, m the average mask value computed over all trials, and r

the average response. The subscript i indicates computation of a value at the ith
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pixel. The correlation coefficients were additionally z-transformed to have a normal

distribution:

Zi =
Ci − C

sC

.

Here, C indicates the average correlation coefficient over all pixels. Likewise, sC

is the standard deviation of the correlation coefficient over all pixels. All of the

analysis was done using Matlab.

2.5.2 Construction of a model observer

A model observer was constructed to identify which diagnostic regions are generated

if a particular response strategy is followed during the task. The model observer was

designed to discriminate between the three geometric shapes G1 - G3. It used the

following decision strategy to identify shapes: Shapes G1 and G2 were identified by

the position of the small square in these shapes. Shape G3 was not directly encoded.

It was identified whenever a shape could not be matched with either G1 or G2.

The model was implemented in the following way: Two templates were generated

to detect G1 and G2. Each template was zero at all image pixels except for the

pixels falling onto the small square of one of the shapes. In this region of 30 by 30

pixels, the template was set to 1 (see Figure 2.14 for an illustration of the model).

These templates were applied to shapes G1 - G3. To simplify the computation,

the gray-scale values of the stimuli were scaled such that all shape regions had a

value of 1, and all background regions had a value of 0. When a stimulus was

presented to the model observer, it computed the value of a decision variable d by

multiplying the stimulus with the template at each pixel, and summing across the

whole image. Values of d greater than 0 were only reached if template and stimulus

matched. When tested repeatedly, observers usually identify a shape with a certain

error rate even under optimal conditions. A noise term was therefore introduced

in the computation of the decision variable. The noise was drawn from a Gaussian

distribution with a mean of 0. By these means, the noise could increase or reduce

the decision variable. In conclusion, the decision variable was computed as

d =
∑

i

Ti · Si + r.

Here, the sum is carried out over all image pixels i. Ti and Si indicate the template

and stimulus value at a pixel, and r denotes the random noise term. d was computed

for both templates. d1 is used to refer to the value of d for the template matching G1,

and d2 for the template matching G2. Larger values of a decision variable indicate a
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Figure 2.14: Model observer. A, Model templates. The model has two detection windows,
which are located at the positions of the small rectangles of G1 and G2. Outlined regions
show the detection windows; the hatched regions correspond to each shape’s large rectangle,
and are only shown to indicate the position of the detection windows. B, Model decision
rules. Pixel values in the left window larger than a threshold, combined with pixel values
smaller than a threshold in the upper window, generate “G1” responses. Similarly, G2 is
detected by larger pixel values in the upper window, and values smaller than threshold in
the left window. If the threshold is exceeded in none of the windows, the model responds
“G3” (see text for a more thorough description).

better match between template and stimulus. The model thus identified a presented

stimulus with G1 if d1 was above a certain threshold, and d2 below the threshold.

Similarly, the model chose G2 if d2 was above and d1 below threshold. Finally, the

response G3 was selected if both d1 and d2 were below threshold. Both threshold

and noise term could be adjusted so that the model’s performance matched that of

a real observer. In the simulation run in this project, a threshold of 225 was chosen.

The noise term was adjusted by setting the standard deviation of the Gaussian

distribution to 240.

The model could be exposed to masked shapes as well. In this case, shapes were

occluded with the Bubbles masks. The same decision variables were then computed

for the masked shapes. Again, to simplify the computation, shapes were transformed

so that their gray-scale values were either 0 or 1. Using the Bubbles masks, these

shapes were blended into a black background, i.e. a background with a gray-scale

value of 0 (see Section 2.2.1 for an explanation of the blending operation). This

generated masked stimuli that also had gray-scale values between 0 and 1. The

same decision rules were used as before to identify the occluded shapes. Because of
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the occlusion, the model observer sometimes failed to identify a shape. The masks

for which this was the case could be subjected to the same analysis as the data

collected for human or monkey observers.

2.5.3 Eye movements

As a prerequisite for the analysis of the scanning data, the data collected during

the calibration task was used to assess the precision of the fixation data. During

each trial in the calibration task, the monkeys had to hold their gaze at one of

several peripheral locations for 300 ms. Each location was tested several times.

Thus, the variability in trials of the same location gave a measure of how much

fixation positions were scattered around a location that the monkeys intended to

fixate. To quantify the variability, the horizontal and vertical deviation between the

required and the actual gaze position was computed on every trial. The actual gaze

position was determined as the mean eye position within the 300 ms fixation interval.

The absolute values of the differences were then averaged over all repetitions for a

location, specifying the fixation accuracy as a function of the spatial position of a

fixation location. By averaging over all spatial locations, a general mean error was

computed for the horizontal and vertical direction.

The rest of the analysis was concerned with the scanning behavior evoked by natural

scenes. Only fixation periods were analyzed, i.e. periods in which the eye position

remained stable. These were identified as time periods of at least 100 ms with eye

movement velocities below 60 deg/s. At a sampling rate of 200 Hz, this criterion

corresponds to a spatial displacement in eye position of less than 0.3 deg between

consecutive data points. The eye position within each fixation period was determined

as the mean position during the fixation duration.

When fixation probabilities were computed for different image regions, the fixation

positions identified in the free-viewing task were combined with the precision data

obtained from the calibration task. Instead of assigning a fixation to a single position

only, fixations were attributed to a rectangular region delineated by the determined

fixation location plus and minus the fixation error in horizontal and vertical direc-

tion. By combining all fixations in this way, the number of fixations falling onto

a specific image point could be computed across the whole image. Probabilities

were generated by normalizing this data to the total number of fixations falling

onto an image. The first fixation after any stimulus onset was excluded from the

computation.
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Figure 2.15: Characterization of low-level properties of natural scenes. To compute
luminance and edge saliency maps, several analysis steps were necessary, as described in
the text. Further analyses use the results computed at the first and the last stage.

2.5.4 Image characterization

To characterize the physical properties of the employed natural scenes, the distri-

bution of luminance across the images, as well as the distribution of edge energy,

was analyzed using Matlab. The full analysis progressed through multiple stages as

shown in Figure 2.15, and followed a model proposed by Itti et al. (1998). The re-

sults from the first stage (luminance and edge information), as well as the luminance

and saliency maps computed at the last stage were used for further description of

the natural scenes.

Analysis at the first stage proceeded through four spatial scales, corresponding to

four spatial resolutions. These were generated through progressively low-pass filter-

ing and subsampling each image. At the finest resolution, images had their original

size of 256 by 256 pixels. Each subsequent scale reduced the image size by a factor

of 4, so that at scale 4, images had a size of 32 by 32 pixels. Luminance information

was then computed at each of the four scales by convolution of the image with a
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2-D Gaussian with a kernel size of 20 by 20 pixels and a standard deviation of 4

pixels. Edge energy was computed at four different orientations (0◦, 45◦, 90◦, 135◦)

at each of the four spatial scales. It was extracted by applying oriented Gabor filter

pairs to the images. Gabor filter pairs consisted of a symmetric and an asymmetric

filter, which were constructed as the product of a sine or cosine function and a 2-D

Gaussian envelope:

Gs = cos(2πfx) · exp

(
x2 + y2

2σ2

)
,

Ga = sin(2πfx) · exp

(
x2 + y2

2σ2

)
.

Here, x and y give the horizontal and vertical coordinates of an image pixel, σ

the standard deviation, and f the spatial frequency of the filter. The standard

deviation was set to 4 pixels, and the frequency to 1/10 pixels. Artifacts at the

image borders were avoided by appending copies of an image to its borders. These

copies were only present while convolutions were computed; they were removed

after these calculations. All computed luminance and edge maps were rescaled to

half the size of the original image, i.e. 128 by 128 pixels. In summary, at this stage

of the analysis, four feature maps were computed indicating regions with high or

low luminance in the images. 16 feature maps showed the distribution of edges at

different orientations and different scales. Examples are given in Figure 2.16A and

B.

In the next analysis steps, the derived multiscale feature maps were combined into

so called saliency maps. To compute saliency maps, center-surround responses were

first computed from the multiscale luminance and edge maps. A center-surround

organization is akin to the visual receptive fields found for example in the retina, the

geniculate nucleus, and the primary visual cortex. These neurons are most sensitive

in a small region of the visual space (the center), while stimuli presented in a broader

region concentric with the center (the surround) inhibit the neuronal response. In

the model, center-surround interactions were implemented as differences between a

fine and a coarse scale map for a feature. Scales 1 to 3 were selected as fine scale

maps; the coarse scale maps had an offset of 1 to 3 scales from the fine scale. This

meant that for example differences between maps at scale 1 and scale 2, 3, and

4 were computed. Two types of center-surround interactions were realized for the

luminance information, representing On-Center or Off-Center responses. For On-

Center responses, maps at the coarse sale were subtracted from the fine scale map,

while for Off-Center responses, the fine scale map was subtracted from the coarse

scale one. In both cases, the resulting differences were rectified. By this means, 12
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Figure 2.16: Exemplar analysis of a natural scene (scene N1). A, Luminance infor-
mation computed at four spatial scales. B, Edge information at the same spatial scales.
The upper row shows edges oriented vertically, the lower row horizontally oriented edges.
C and D, Exemplar center-surround responses computed as the difference between scale 1
and scale 3 responses for luminance and edges.
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Figure 2.17: Saliency maps for all natural scenes. Minima in the maps are shown in
black, maxima in white.

center-surround maps were generated for luminance. In the case of edge energy, two

center-surround types were computed for each orientation. Here, either maps for the

same orientation but at different scales were contrasted, or maps with orthogonal

orientations and at different scales. Again, the difference maps were rectified, to

create a total of 48 edge center-surround maps. For an illustration of these maps,

see Figure 2.16C and D.

In the final step, center-surround maps were combined to create a saliency map for

luminance and edges. The purpose of the saliency map is to represent the conspicuity

or saliency of a visual feature at every location in the visual field by a scalar quantity.

Since a large number of maps needs to be combined to generate saliency maps, simple

summation of all individual maps seems problematic. A salient object may only

elicit a strong peak of activity in one or a few feature maps, tuned to the features of

that object. A linear combination of maps may then lead to masking of the salient

object because of noise or less salient objects in other maps. Center-surround maps

were therefore normalized before combining them to form the saliency maps. The

normalization process was selected to promote maps with a small number of strong

peaks of activity, while globally suppressing maps with numerous comparable peak

responses. Each map was first scaled to the range of 0 to 1. The map’s global and

local maxima were next identified, and the average m of all local maxima, excluding
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the global maximum, was computed. Maps were then divided by (1 − m)2. In

the case of the luminance saliency map, each of the 12 center-surround maps was

normalized individually; normalized maps were then added. For the edge saliency

map, again all 48 center-surround maps were first individually normalized. The 12

maps belonging to one orientation were then summed, and the resulting four maps

were again normalized before adding them to form the saliency map. The saliency

maps computed for each of the natural scenes are shown in Figure 2.17.

2.5.5 Analysis of neurophysiology data

Single cell responses

During physiology sessions, the multi-unit activity was continuously registered at

each of the electrodes. The multi-unit activity consists of two components: Su-

perimposed on a background of low amplitude are large action potentials. The

background reflects the activity of non-isolated neurons in the vicinity of the elec-

trode tip, while the action potentials are generated from isolated neurons very close

to the electrode. The activity of individual neurons therefore needs to be separated

from the background activity. Also, multiple neurons can be close enough to the

electrode to generate spikes larger than the background activity. The individual con-

tributions of these neurons thus have to be identified before the rest of the analyses

could be performed. This so called spike sorting was done for each electrode using

a commercial software (Offline Sorter, www.plexoninc.com). First, spike waveforms

were extracted from the continuous recordings by determining the time points at

which the recorded signal amplitude exceeded a certain threshold. This separated

spikes from the background activity. The rest of the spike sorting then served to

separate the spikes from multiple neurons. A fixed time window was set around

each threshold crossing, and only the data segments in these windows were kept

for further analysis. The shape of all extracted waveforms was then characterized

by a number of parameters like maximal and minimal amplitude or more complex

shape descriptors. The shape of a waveform recorded from a neuron depends on the

spatial arrangement of the neuron and the electrode tip. Hence, different neurons

generate different waveforms. This in turn results in very similar shape parameters

for the waveforms generated by one neuron, while the shape parameters for differ-

ent neurons are more dissimilar. Similarities between waveforms can be assessed by

plotting the values of all waveforms along two selected shape parameters. In these

2-D projections, waveforms of the same neuron build a large cluster. Depending

on the selected projection, clusters generated from different units can be separated.
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The projections resulting in the largest separation between clusters from different

units was identified by inspection, and the clusters were outlined manually. All

waveforms within a cluster were assigned to the same neuron. As end result, the

program returned the time stamps for the spikes generated by each of the identified

neurons.

All further analysis was done using Matlab. First, spike time stamps were converted

into a rate code for each unit. The baseline firing rate and the stimulus driven

firing rate were computed by counting the number of spikes in the 200 ms interval

preceding stimulus onset, and in the interval from 100 to 400 ms after stimulus

onset, respectively. Whenever net firing rates were analyzed, these were generated

by subtracting the baseline activity from the stimulus driven firing rate. In addition,

spike density functions were computed for each unit. These functions were computed

by convolving the spike train of each trial with a Gaussian kernel:

p(t) =
N−1∑
i=0

f(i) · 1√
2πσ2

exp

(
−(t− i)2

σ2

)
,

where t denotes the time relative to stimulus onset, and f(i) is the spike train

represented with a 1-ms resolution. f(i) is equal to 1 if a spike occurred in the

ith 1-ms interval, and 0 otherwise. N gives the total number of spike train bins.

A standard deviation σ of 5 ms was chosen. The convolved signal p was averaged

over all trials of the same condition. For each image, the spike density functions

computed in different conditions were normalized by dividing them by the maximal

value observed across all conditions for this image.

The spatial dependency of a neural response was characterized by computing a so

called response image. The response image pooled all occluded conditions of one

image. To compute the response image for a particular image, the maximal firing

rate of a neuron was first determined across all conditions of all images. Then, the

net response in each occluded condition of the selected image was compared against

the maximal firing rate. If a condition evoked a net firing rate that was at least as

large as 70% of the maximal response, the condition was considered further. Mask

values in each condition normally varied between 0 and 1. For the following analysis,

all mask values greater than 0 were set to 1, so that mask values were binary. Based

on the binary masks, the response image RI was computed as

RI =
∑

i

Mi.
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The sum was carried out over the binary masks M from effective conditions. The

response image was also transformed into a binary mask by setting all values larger

than 0 to 1. A response image thus shows the image regions which were visible in

at least one of the effective conditions.

The selectivity of a neuron was quantified in terms of the mutual information that

the firing rate conveyed about which image had been presented in a trial, and by

assessing the neuron’s tuning curve. Both computations were performed separately

for each condition. Mutual information was computed by first determining the

number of spikes evoked in a selected interval after stimulus onset. In most cases,

the interval from 100 to 400 ms after stimulus onset was chosen. The distribution

of spike counts was then computed by combining the spike counts elicited by the

four images, and binning the responses into 12 bins between the minimum and the

maximum spike count. Bins were placed so that the first bin was centered on the

minimum, and the last bin was centered on the maximum. From this response

distribution, the mutual information could be derived as

I =
S∑

s=1

R∑
r=1

p(r, s) log2

p(r, s)

p(r)p(s)
.

R and S indicate the total number of response bins and images, respectively. p(s)

denotes the probability of occurrence of one of the images. Similarly, p(r) is the

overall probability of a spike count falling into one of the response bins. The joint

probability of the occurrence of one of the images and a spike count falling into a

specific response bin is given by p(r, s). Since only a limited sample size is available

to compute any probability, a systematic error is introduced in the computation.

Different methods have been proposed to correct for this error. Here, the procedure

suggested by Panzeri & Treves (1996) was implemented, and the following bias was

subtracted from the computed mutual information:

B =
1

2N log 2

(∑
s

R̃s − R̃− (S − 1)

)
,

where R̃s denotes the number of “relevant” response bins for the trials with image

s, i.e. the response bins in which the occupancy probability p(r, s) is non-zero. In

the same way, R̃ denotes the number of response bins where p(r) is non-zero.

To compute the tuning curves, images were rank ordered for each neuron according

to the net firing rate they evoked in the unoccluded condition. This ordering was

kept for the occluded conditions, and net firing rates were averaged across neurons

as a function of stimulus rank. Rank ordering was also used to compare stimulus
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preferences across conditions. Images were rank ordered according to their firing

rates in the unoccluded condition, as well as in each occluded conditions. The best

stimulus was then identified in the unoccluded condition. The rank of this best

image could then be determined for the occluded condition.

For each neuron, the effectiveness of manipulating either the visible stimulus size

or the diagnosticity were assessed. Each factor was treated independently. Effec-

tiveness was quantified as the variability in firing rate explained by changes in one

factor. For this analysis, net firing rates were computed for each trial of a particular

image. Subsequently, trials were grouped according to the levels of the factor of

interest, i.e. either according to whether they were diagnostic, or according to the

visible stimulus size. The means of firing rates within each group were computed,

as well as their variability:

VGroup =
∑

l

((∑
i

fil

)
− f

)2

,

where fil indicates the firing rate in the i-th trial of factor level l, and f is the mean

firing rate across all trials. The total variability present in the data is as usually

given by

Vtotal =
∑

l

∑
i

(
fil − f

)2
.

Finally, the variance explained by one of the factors amounts to VGroup/Vtotal · 100%

(Bortz, 1993).

A neuron’s selectivity could also be expressed in terms of an explained variance

value. Here, trials were grouped according to which image was presented, taking

only the unmasked images into account. Selectivity was then given as the variance

explained because of the presentation of different images.

To characterize the timing of the neural response, the onset latency of each neuron

was computed. Latencies were derived separately for each image and condition. To

determine the response latencies, neural responses were characterized as peristimulus

time histograms (PSTHs) with a resolution of 10 ms, computed for the time interval

from 200 ms before stimulus onset to 500 ms after stimulus onset. Each PSTH bin

gives the probability of a spike occurring within a particular 10 ms time interval.

Baseline activity of a neuron was quantified by the mean and standard deviation of

the PSTH values in the 200 ms prior to stimulus onset. The latency of a neuron

was determined as the time of the first response bin exceeding the baseline mean

plus 1.96 times the baseline standard deviation, followed by at least one more bin
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fulfilling the same criterion. The chosen criterion implied that PSTH levels had to

be statistically significant from the baseline level at p<.05.

Local field potentials

LFP signals were recorded with a sampling rate of 4.46 kHz. In a first preprocessing

step, the signal was downsampled to 1000 Hz. Second, a low-pass filter was applied

to remove slow drifts and other artifacts. Signals were filtered with a first-order But-

terworth filter generating a band-pass between 5 and 80 Hz. This filtering provided

more stable signals. However, the same results were obtained without additional

filtering. Since different channels were often recorded with different gains, the data

were normalized next. For this purpose, the mean and standard deviation of the

LFP was determined during a 100 ms baseline interval preceding stimulus onset.

The whole LFP data in a trial were then transformed by computing

Z(t) =
L(t)− µBase

σBase

,

where L(t) was the original LFP time series, and µBase and σBase the mean and

standard deviation during the baseline period, respectively. Each trial was normal-

ized independently. As a result, the transformed LFP was centered around zero in

the baseline periods, and specified amplitudes in units of standard deviation. When

computing visual evoked potentials (VEPs), the transformed LFPs were averaged

stimulus locked, i.e. by aligning different trials to stimulus onset before averaging.

The further analysis was restricted to three 20 ms time intervals during stimulus pre-

sentation. These time intervals were centered around the location of three prominent

peaks present in the VEPs averaged across all images and recording sites. Referring

to their polarity and latency, the three components were labeled N100, P130, and

N200. To account for latency differences, the time intervals were set independently

for each condition and monkey, with the restriction that for a monkey, the time win-

dows were identical for diagnostic and non-diagnostic conditions of the same visible

stimulus size. Table 2.1 lists the peak latencies for all conditions and both monkeys.

To analyze the LFP behavior in these time intervals, the VEP amplitudes in each

trial were averaged across the 20 ms time periods. Based on these averages, the

mean VEP amplitude across recording sites could be given for each of the time

windows. In addition, the influence of the two stimulus manipulations on the LFP

was quantified in terms of the explained variance. In principle, the same analysis

was carried out as for the single units. Instead of the firing rates, the average LFP

during one of the 20 ms epochs was subjected to the analysis. The average LFP
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Table 2.1: Latency of the three identified VEP peaks, given in ms after stimulus onset.
Diagnostic and non-diagnostic conditions of the same size have been collapsed. Conditions
are labeled by how much of the stimulus was visible.

G00 B98

Condition N100 P130 N200 N100 P130 N200

Full 106 130 195 127 161 206

10% 133 166 226 141 177 238

30% 119 142 198 131 164 219

50% 106 135 197 129 165 216

amplitude was computed in each trial for the three time windows. Based on this

data, the variances explained by diagnosticity and visible stimulus size could be

computed at each site.



Chapter 3

Results

3.1 Behavioral results

The behavioral experiments tested the influences of partial occlusion on the behav-

ior of monkeys who had to identify members of various stimulus sets. Both simple,

geometric stimulus sets, as well as complex natural scenes were tested. The conse-

quences of partial occlusion on the discrimination performance were used to identify

sources of information in the stimuli. Results obtained for monkey observers were

compared with the behavior of human observers; in addition, diagnostic regions for

a task were contrasted with regions of interest evident from visual inspection of the

images.

3.1.1 Effects of occlusion on the discrimination of simple

geometric shapes

The first experiment was designed to test the Bubbles paradigm with simple stimuli

before using natural scenes. It therefore used a set of simple geometric shapes

(see Figure 2.3A in Section 2.2.1). Shapes were constructed so that each of them

had a single diagnostic feature. Shapes could only be identified by the position

of the small rectangle. As a consequence, when an observer has to discriminate

between partially occluded versions of these shapes, occlusion of the small rectangle

will render the shape unidentifiable. Occlusion of other shape regions should have

no systematic effect. This precise control of diagnostic stimulus regions allowed

an easier interpretation of the results, in contrast to the complex outcomes possible

88
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with natural scenes. The results could therefore be used to test whether the Bubbles

paradigm works in monkeys.

The monkeys were initially trained to discriminate the three shapes. In the discrim-

ination task, shapes were presented for 300 ms. This is the same timing as used

by Kovács et al. (1995). After stimulus presentation, the monkeys had to execute

a saccade to one of three targets displayed in the periphery. Each target was as-

sociated with one of the shapes. The monkeys thus indicated which stimulus they

perceived by selecting a particular target. Fixation of the correct target resulted

in the delivery of a drop of juice as reward. When the monkeys were proficient in

discriminating the stimuli, they were transferred to the Bubbles task. Stimuli were

now presented behind trial-unique masks partially occluding the stimuli. The mon-

keys continued to discriminate between the masked shapes. As before, stimuli were

presented for 300 ms, followed by the three response targets. Again, the monkeys

had to make a saccade to the correct response target to receive a reward.

As in the original paradigm developed by Gosselin & Schyns (2001), the trial-unique

masks consisted of an occluding surface, punctured by round windows (“bubbles”) of

a fixed size through which the underlying stimulus could be seen. Mathematically,

masks were images with the same size as the original images. Each mask pixel

had a value between 0 and 1. To generate a partially occluded image, the gray-

scale values of the original image were mixed with a gray background. Mask values

determined how much the image values contributed to the mixture. Mask values of 0

corresponded to completely covered image regions, while mask values of 1 indicated

completely visible regions.

Bubbles were randomly positioned on every trial. Their number was adjusted such

that the visible stimulus portion was large enough to allow a correct stimulus identifi-

cation in 70% of the trials. Bubble diameter was set to 1.35 deg, which corresponded

to about 23% of the stimulus size. Masked stimulus presentations were interleaved

with unmasked ones to assure that the monkeys maintained their performance level

in the basic task. Consequently, errors in masked trials were mostly due to the

influences of the masks.

In each masked trial, it was recorded which stimulus had been shown, which mask

had been used, and whether the monkey had identified the stimulus correctly or

not. After collection of sufficient data, trials were first sorted according to stimulus

identity. The trials for each stimulus were then further divided into correct and

incorrect trials depending on the monkey’s response. Finally, masks in correct trials

were compared to masks in incorrect trials to identify image regions where occlusion
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had a systematic effect on performance. Because all masks had the same size,

analyses could be performed for each pixel separately.

First, the average over all masks from correct trials was computed, as well as the

average over all masks from incorrect trials. The two averages allowed a quantitative

description of the effects of the masks. They indicated which image regions were

consistently covered or visible in the respective trial types. Second, the distribution

of mask values at a pixel was used to quantify differences between correct and

incorrect trials. This analysis was based on the following reasoning: If occlusion

of an image pixel has a systematic effect on performance, this image pixel will

always be covered in incorrect trials, while it is visible in the correct trials. The

mask values determine how much of a pixel is visible. At the hypothetic pixel,

mask values in correct trials will thus be clustered around 1, while mask values in

incorrect trials will be near 0. More generally, if occlusion of a pixel systematically

affects the performance, mask values will have different distributions in the correct

and in the incorrect trials. However, if the visibility of an image pixel has no effect

on performance, similar mask values – and hence similar distributions – will be

observed in correct and incorrect trials.

An analysis of the distribution of mask values showed this assumption to be justified.

The box plots in Figure 3.1 summarize how the mask values were distributed at

different image pixels of scene G1, analyzing the data collected for monkey B98.

The averages over masks from correct and incorrect trials were taken as a qualitative

description of the occluder effects. If these averages are very different at a particular

pixel, the occlusion of the pixel presumably has robust effects on the behavior. Four

pixels were selected based on the averages. Two pixels fell into image regions with

different average values in correct and incorrect trials. The other two were selected

in image regions without differences. Consistent with the above hypothesis, mask

value distributions were different at those pixels at which the averages indicated

occlusion effects. For the other pixels, very similar distributions were observed.

A quantitative assessment of the mask influences could therefore be based on a

test that compared the mask value distributions between correct and incorrect tri-

als. Mask values were restricted to the range from 0 to 1, and did not follow a

particular distribution because they were simply a product of how bubbles were

distributed across a mask. A non-parametric test seemed therefore appropriate,

and the Kolmogorov-Smirnov test was selected for the analysis. This test gives the

probability that two sample distributions could have been generated by drawing

samples from the same population. It is sensitive to differences in any of the pa-

rameters affecting a distribution’s shape (Siegel, 2001). Since a test was computed

at each pixel, the resulting p-values had to be Bonferoni corrected for the number
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Figure 3.1: The distribution of mask values at different image locations (data from scene
G1, experiment with monkey B98). A, Average mask computed from correct trials. B,
Average mask computed from incorrect trials. Four image pixels (denoted as Pixel 1 -
4) were selected. Pixel 1 and 2 fall on image regions where the averages show differences
between masks in correct and incorrect trials, while at Pixel 3 and 4, the masks do not seem
to influence the performance. C, Box plots of the mask value distribution for each of the
pixels. C indicates correct, IC incorrect trials. The box plots show lower quartile, median,
and upper quartile by horizontal lines; whiskers extend 1.5 times the interquartile range.
p-values rate the difference between the distributions (computed by a Kolmogorov-Smirnov
test).
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of comparisons. The corrected p-values were then used to identify image regions

where occlusion exerted a systematic effect on performance. The obtained results

were not an artefact of the selected test. To verify this, the Kolmogorov-Smirnov

test was replaced by the Mann-Withney U test. The relationship between occlusion

and behavior remained similar in both cases, i.e. the same regions were identified to

show a systematic or non-systematic effect of occlusion.

Figure 3.2 shows how occlusion affected the discrimination performance of monkey

B98. These results were based on a total of 1400 masked trials per image, of which

between 10 and 20% were incorrect. In the intermingled unmasked trials, the error

rate was between 2 and 4%, confirming that the monkey was performing well in

the basic task. Error trials could hence mainly be attributed to the influence of the

mask. Little structure was visible in the average masks from correct trials. However,

for each shape the average mask from incorrect trials contained a dark patch over

the position of the small rectangle. This indicates that in trials in which the monkey

failed to identify a shape, the small rectangle was occluded. The quantitative analy-

sis confirmed this observation. Statistical maps showed focal regions with systematic

differences in masks from correct and incorrect trials. These regions were located at

the position of the small rectangles. To interpret the statistical results more easily,

p-value maps were summarized by identifying shape regions for which the statistical

comparison yielded p-values smaller than .01. These diagnostic regions contained

the small rectangle for all three shapes.

Monkey G00 was also tested with the geometric stimulus set. The error rates in the

masked trials were slightly higher for G00 than for B98. 2100 masked trials were

collected, with 20 to 30% of them being incorrect. Performance in the unmasked

trials was again very good, and error rates were between 1 and 4%. Spatial influences

of occlusion are shown in Figure 3.3. The results for shapes G1 and G2 confirmed

the pattern observed in monkey B98: In both cases, the only shape region with a

systematic effect of occlusion was the small rectangle. This was obvious both in the

average masks from incorrect trials, as well as in the statistical comparison between

masks from incorrect and correct trials.

A different pattern of results emerged for shape G3. Both the average mask from

correct trials, and the average mask from incorrect trials were homogeneously gray,

and no shape region could be identified where the average masks distinguished be-

tween trials with successful or unsuccessful identification. As expected, the statisti-

cal comparison also did not yield a significant result, suggesting that occlusion had

no systematic effect on the identification of this shape. In conclusion, the Bubbles

results suggested that monkey G00 identified shapes G1 and G2 by the position of

the small rectangle, but used no such diagnostic feature to identify G3. Interestingly,
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Figure 3.2: Bubbles results for monkey B98, discriminating a set of geometric shapes.
Each column contains the results for the shape shown in D. A, Average over the masks
from correct trials. B, Average over the masks from incorrect trials. Dark grays in A and
B indicate that a pixel was covered, while bright grays show pixels that were not occluded
by the average mask. C, Results of a comparison between the mask value distribution
from correct and incorrect trials by means of a Kolmogorov-Smirnov test. Plotted is the
logarithm of the Bonferoni corrected p-values. D, Diagnostic regions. Each line includes
the pixels with Bonferoni corrected p-values smaller than .01.
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Figure 3.3: Influences of occlusion on the discrimination performance of monkey G00.
Layout of the plot is identical to Figure 3.2.
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this difference in the treatment of the stimuli was not accompanied by a difference in

recognition rates. About 30% of the masked trials were incorrect for G3. This was

the largest error score for the three shapes, but the error scores for the other shapes

were not very different (21 and 24% for G1 and G2, respectively). Furthermore, in

case of the unmasked trials G3 was identified with the smallest amount of errors

(about 1% error trials).

There are two equally successful strategies to solve the discrimination task. In the

first strategy, each shape is identified by its diagnostic feature. In the second strat-

egy, only two of the shapes and their diagnostic features are remembered by the

observer. The third shape is selected whenever a shape cannot be identified as ei-

ther of the two remembered shapes. This latter strategy seems consistent with the

observed influences of occlusion for monkey G00. It also matches the distribution

of errors made during the task. Table 3.1 suggests that when the monkey failed to

identify G1 or G2, these shapes were classified mostly as G3. This seemed to be

the case for both masked and unmasked presentations. To verify the significance of

these observations, the error trials were more closely analyzed. If the monkey made

an error upon presentation of shape G1, he erroneously chose either shape G2 or G3.

If the hypothesis is correct and shape G3 was encoded as “not G1 or G2”, then the

number of error trials in which G3 was selected should be significantly higher than

the number of trials with G2 responses. This was indeed the case (χ2-test for the er-

rors on G1, masked: χ2(1) = 8.82, p=.003; errors on G1, unmasked: χ2(1) = 18.69,

p<.000). Similarly, incorrect responses to G2 involved G3 significantly more often

than G1 (errors on G2, masked: χ2(1) = 29.77, p<.000 errors on G2, unmasked:

χ2(1) = 5.00, p=.03). Finally, misclassifications of G3 led to equal numbers of G1

and G2 responses (errors on G3, masked: χ2(1) = 0.01, p=.90; errors on G3, un-

masked: χ2(1) = 1.00, p=.32). This shows that shapes that could not be identified

as G1 or G2 were classified as G3. This pattern is consistent with a response scheme

in which only G1 and G2 were actively encoded.

To confirm that this response model indeed is consistent with the observed Bubbles

results, a model observer was constructed that implemented the same decision rules

(see Figure 2.14 in Section 2.5.2 for an illustration of the model). Thus, the model

identified G1 and G2 by their small rectangle, and selected G3 as response when

a stimulus could not be identified as G1 or G2. The model observer used two

templates to identify the shapes. One template was matched to shape G1, and

contained a “detection window” at the position of the small square in G1. The

second template was similarly matched to G2, and also contained an appropriately

placed detection window. When a stimulus was presented to the model, it applied

both templates to the stimulus. For each template, the value of a decision variable
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Table 3.1: Response matrix for monkey G00. The table shows with which percentage the
monkey selected one of the three response alternatives after presentation of a particular
stimulus.

Presented Stimulus

Unmasked Trials Masked Trials

Resp. Stim. G1 G2 G3 G1 G2 G3

G1 96.5 0.6 2.9 79.3 8.9 11.9

G2 0.4 98.4 1.2 9.0 76.2 14.8

G3 0.8 0.5 98.7 14.7 14.9 70.4

was computed. The decision variable quantified the certainty of the model observer

that a small rectangle was present in the detection window of the template. Each

decision variable was based on the stimulus brightness in the respective detection

window, plus a random noise term. The random noise term was necessary because

real observers do not perform at a 100% correct even under optimal conditions. The

random noise term was drawn from a Gaussian distribution with mean 0 and a fixed

standard deviation. It could increase or decrease the value of the decision variable.

The two decision variables were then used to generate a response to a presented

stimulus. If the value of the decision variable for the template matching G1 was

above a fixed threshold, and the value for the template matching G2 was below the

threshold, the model identified a stimulus with G1. Similarly, G2 was detected as a

value above threshold for the decision variable computed from the second template,

and a value below the threshold for the first. Finally, G3 was chosen whenever both

decision variables had values below the threshold.

The model was then confronted with partially occluded versions of the three shapes.

Since the performance of the model was compared against the one of monkey G00,

the exact same stimulus material was used. Thus, the same stimuli shown before

to monkey G00 were now shown to the model observer. Two parameters needed

to be chosen before the model could be used. These were the threshold for the

decision variables, as well as the standard deviation for the distribution from which

the random noise term was drawn. Both parameters affected the performance level

of the model. The threshold was set such that without the noise term, the model

identified a shape correctly if a quarter of its small square was visible. The noise

term was then adjusted so that the model performed with the same overall error

rates as monkey G00. The values for both parameters are given in Section 2.5.2.

After every presentation of a masked stimulus, the model decided which stimulus

had been presented. The rest of the analysis was then performed identically to the

one for the monkey’s data. Results are shown in Figure 3.4. As for the monkey,
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Figure 3.4: Results of the Bubbles testing for a model observer. A, p-values from a
comparison between masks from correct and incorrect trials using the Kolmogorov-Smirnov
test. B, Diagnostic regions. All p-values are Bonferoni corrected.

occlusion had systematic effects only for the first two shapes. Diagnostic regions

included the two small rectangles in these cases. For G3, occlusion had no consistent

influence on identification performance. These results confirm that a model that

only identifies two of the shapes by their diagnostic features, and detects the third

shape by excluding the other alternatives, is compatible with the Bubbles results

for monkey G00.

In summary, the first experiment yielded the following results: For monkey B98,

the effects of partial occlusion on the discrimination of simple geometric shapes

were as predicted. In most cases, partial occlusion did not affect the discrimination

performance. However, when the single diagnostic feature of a shape was occluded,

the monkey reliably failed to identify the shape. For monkey G00, results were

similar for two of the stimuli. These were identified by their diagnostic features. The

third shape was recognized not because of its diagnostic feature, but by excluding

the other two response alternatives. This different treatment of the shapes would not

have been detected based on the error rates alone, especially in the case of unmasked

presentations. To conclude, the results of both monkeys show that monkeys treat

shape regions differently when performing a task, with some regions containing

more information than others. At the same time, the experiments confirm that

Bubbles can be used with monkeys to identify how information is distributed across

a stimulus, revealing the monkeys’ strategies.
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3.1.2 Distribution of information across natural scenes for

monkey observers

After the first experiment had established that the Bubbles paradigm could be used

with monkey observers, it was used to determine the distribution of information

across natural scenes. Two sets of natural scenes were used in the second experiment.

The monkeys worked with one set at a time: They were first trained to identify the

members of one set correctly, and then tested with the Bubbles paradigm, before

training and testing them on the second set. The selected natural scenes were gray-

scale pictures of an object (mostly animals and one plant; see Figure 2.3) in front

of a non-uniform background. Images were normalized to have the same Fourier

amplitude and to span the same range of gray-scale values. Nonetheless, images

were very different locally, containing many possible sources of information. All

parameters affecting the Bubbles paradigm were left identical to the first experiment.

The results for both sets are shown in Figure 3.5 for monkey G00, and in Figure

3.6 for monkey B98. For monkey G00, the comparison of masks from correct and

incorrect trials yielded one region for each image in which occlusion robustly affected

the task performance. The only possible exception is scene N6 in the second set, for

which only a small region reached significance. Diagnostic regions always included

the object present in the scene. For three of the the five animal pictures, the

diagnostic region fell onto the head or the eye of the depicted animal.

The results obtained from monkey B98 were rather different. Again, for all but one

of the scenes, a region in the image could be identified where occlusion systematically

led to identification failures. However, with the exception of image N5 in the second

set, diagnostic regions did not include or only partially included the object shown in

a scene. Instead, diagnostic regions seemed to include scene parts with either very

distinct luminance (like the dark patches in scenes N2 and N7) or contrast edges (as

in scene N3). Monkey B98 therefore used a completely different strategy, which at

first glance seems very unexpected. However, since images differed in many ways in

their low-level properties, using these properties is an equally successful strategy to

identify an image as using the scene’s main object.

The particular strategy followed by monkey B98 seemed not to be a consequence of

a learning process that took place during the Bubbles testing. Instead, an analysis

of the data collected during the first session showed that the monkey already used

information from the same image regions. In this first session, about 130 trials

were collected per image, of which about 30 were incorrect. The sample size for

the incorrect trials is too small to allow a statistical comparison. The analysis was



3.1. BEHAVIORAL RESULTS 99

-60

0

-6

0

-6

0

-8

0

-3.5

0

-9

0

A

B

lo
g

(p
)

lo
g

(p
)

lo
g

(p
)

lo
g

(p
)

lo
g

(p
)

lo
g

(p
)

Figure 3.5: Effects of occlusion on the discrimination of natural scenes, monkey G00.
A, Natural scene set 1. B, Natural scene set 2. The upper row in A and B plots the
logarithm of the p-values obtained from the Kolmogorov-Smirnov test. In the lower row,
regions with p-values below 0.01 are encircled on the natural scenes. As before, all p-values
are Bonferoni corrected.
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Figure 3.6: Distribution of information across the natural scenes for monkey B98. A,
Natural scene set 1. B, Natural scene set 2. The upper row of each panel shows the results
of the statistical test (Bonferoni corrected p-values), the lower row the diagnostic regions.
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Figure 3.7: Initial distribution of diagnosticiy for scene N2. The image shows the z-
transformed correlation coefficient between a mask value for a pixel, and the correctness
of the monkey’s response. The data come from the first testing session with monkey B98.
High correlation coefficients show that pixels were visible in correct, and occluded in in-
correct trials.

therefore restricted to computing the correlation between the mask value at a given

pixel, and the correctness of the observer’s response. As an example, the results

from the first testing session are shown in Figure 3.7 for scene N2. Image regions

with a high correlation coefficient correspond to regions which were occluded during

incorrect trials, but visible during correct ones. As can be seen, the upper left corner

was the image region attaining the highest correlation coefficients. Identical to the

statistical results obtained from many days of testing, these results indicate that

occlusion of the left corner disrupted performance. The monkey’s decision strategy

was therefore already evident on the first day of testing.

For the first natural scene set, monkey B98’s strategy was also not generated because

this set was the first that the monkey learned to discriminate. After testing had

been completed with the second set of scenes, monkey B98 was re-tested on the first

set. The results of the re-test are given in Figure 3.8. A comparison of Figure 3.6

and 3.8 shows test and re-test to be in good agreement. Considering only scenes

N2 and N3, 84% of a diagnostic region of the re-test was also diagnostic in the first

testing. Since several months lay between test and re-test, the results suggested

that the distribution of information across the natural scene was very stable for the

monkey.

So far, the effects of occlusion have been described by determining the image regions

where the statistical tests showed masks to have a reliable effect on performance.

These regions have been taken to be the diagnostic image regions, i.e. the image

regions from which an observer draws information to identify an image. Judging



102 CHAPTER 3. RESULTS

-7

0

-25

0

-11

0
A

B

lo
g

(p
)

lo
g

(p
)

lo
g

(p
)

Figure 3.8: Re-test of monkey B98 on natural scene set 1. As before, the upper row
depicts the logarithm of the p-values computed with a Kolmogorov-Smirnov test, while the
lower row shows diagnostic image regions.

from the average masks from correct and incorrect trials, occlusion introduced dif-

ferences in performance because diagnostic regions were occluded in incorrect trials,

and visible in correct ones. However, during the actual testing images were shown

behind masks with randomly placed bubbles. This random placement makes the

number of trials very low in which masks did exactly cover or uncover all portions

of the diagnostic regions. It therefore seemed necessary to confirm the conclusions

drawn from the Bubbles experiments. For this purpose, masks were constructed

based on the Bubbles results. These masks either covered or uncovered the diagnos-

tic regions. The discrimination performance of the monkeys was then tested with

the constructed masks. If diagnostic regions are indeed meaningful image portions

to the monkey, a stimulus in which the diagnostic region is visible, while the rest of

the image is covered (“diagnostic conditions”), should be identifiable. In contrast,

covering the diagnostic region and uncovering some other portion of the image has

to result in a stimulus that the monkey cannot identify correctly (“non-diagnostic

conditions”).

To construct these masks, a number of parameters had to be known. One was the

placement of the occluder. This was given by the Bubbles results, since masks were

designed to cover either diagnostic or non-diagnostic image regions. The shape of

the mask similarly followed from the Bubbles results. However, the appropriate size

of the occluder was not as obvious. One possibility was to construct masks that

covered all image regions where the p-value was below .01, as has been used to
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outline diagnostic regions so far. However, this would generate masks of different

sizes for different images. A different method was therefore chosen to determine the

extent of the occluders. Occluders were here constructed so that they revealed a

fixed amount of each image. To test the influence of the occluder size in addition to

the influence of the occluder placement, three sizes were chosen. Occluders revealed

either 10, 30, or 50% of an image.

Considering all requirements on the occluder generation, the following method was

chosen to derive them: As before, mask computation was based on the p-values

computed from the Kolmogorov-Smirnov test. Any mask was initially set to com-

pletely cover the whole image. To generate a mask that revealed the diagnostic

image portions, the mask was made transparent over image regions where the cor-

responding p-values were very low. Three different mask sizes were generated by

selecting the pixels with p-values belonging to the lowest 10, 30, or 50% of all p-

values to be visible. The constructed masks consequently covered 90, 70, or 50% of

an image. Similarly, masks for the non-diagnostic conditions were built by selecting

image pixels with p-values belonging to the highest 10, 30, or 50%, and making the

masks transparent at these locations. By these means, masks were generated that

were non-overlapping in the two conditions, differed in the behavioral relevance of

the visible image portion, but revealed the same amount of the underlying image.

Because of the different occluder placements, the generated stimuli differed in terms

of their low-level characteristics like overall contrast or luminance. These differ-

ences were removed by equalizing the luminance, as well as the overall contrast,

of the visible image regions across all stimuli. In summary, seven conditions were

constructed for each image: Images could either be shown unoccluded, behind one

of three masks that revealed diagnostic image parts, or behind one of three masks

revealing non-diagnostic regions. The three masks of each group uncovered 10, 30,

or 50% of the image. Since the masks were computed from the Bubbles results, each

monkey had its own specific stimulus set. Figure 2.9 and Figure 2.10 show some of

the generated stimuli for both monkeys.

As the monkeys had already been trained to discriminate partially occluded im-

ages, their discrimination performance on the constructed stimuli could be tested

by simply replacing the standard Bubbles masks with the constructed masks. The

rest of the Bubbles paradigm remained mostly unchanged. Two minor changes were

required because of the nature of the generated masks. While the normal Bubbles

masks were controlled such that correct responses were made in 70% of the trials,

masks were now built so that half of them explicitly interfered with the recogni-

tion performance (the non-diagnostic conditions). Usually, correct responses were

rewarded for masked and unmasked trials, and incorrect responses were indicated



104 CHAPTER 3. RESULTS

to the monkey by a sound. Applying the same reward scheme here would result in

an overall lower reward probability, which poses problems because of the monkeys’

motivation to perform the task. On the other hand, indicating incorrect responses

may help the monkeys to eventually form an association between the non-diagnostic

conditions and the correct response, thereby distorting the results. The reward

scheme was therefore changed for the masked trials only; the monkey received the

usual feedback on unmasked trials. On masked trials, 50% of the trials were now

randomly rewarded irrespective of the correctness of the response. For the same

reasons, a second change was introduced in the paradigm, and masked stimuli were

now shown less often then unmasked stimuli. Only few repetitions were run for each

masked stimulus, so that the monkeys would not change their response pattern to

these stimuli.

The monkeys were tested with both stimulus sets. Since no diagnostic region could

be determined for image N1 in the case of monkey B98, this image was excluded

from the analysis of the performance of monkey B98. Error rates were computed

for each mask size. As only few repetitions were run for each stimulus, all stimuli

were considered together to increase the sample size. Figure 3.9 shows the error

rates for diagnostic and non-diagnostic conditions as a function of mask size. For

each size and condition, the error rate was tested against the chance level of 33%

correct responses using a χ2-test. For monkey G00, both stimulus sets showed the

same pattern: Stimuli in which the diagnostic regions were visible, were identified

correctly significantly more often than chance (χ2(1) ≥ 8.17, p<.000 for all sizes in

both stimulus sets). This was the case even for the smallest mask size. In contrast,

masking the diagnostic conditions resulted in stimuli that were not identified any

better than chance (χ2(1) ≤ 3.38, p>.06 for all sizes in both stimulus sets). These

results showed a clear distinction between diagnostic and other image regions in

importance for the monkey’s task performance.

The same distinction between diagnostic and non-diagnostic conditions was obtained

for monkey B98 when tested with the second stimulus set containing images N5 -

N7: Again, the performance on diagnostic conditions was significantly better than

chance, irrespective of mask size (χ2(1) ≥ 32.82, p<.000 for all three mask sizes).

For the non-diagnostic conditions, performance with the smallest mask size was

worse than chance (χ2(1) = 5.82, p=.02); all other non-diagnostic conditions were

identified at chance level (χ2(1) ≤ 1.69, p≥.2 for the two conditions). For the other

stimulus set, diagnostic versions of scenes N2 and N3 were again identified better

than chance at all three sizes (χ2(1) ≥ 14.24, p<.000 for all conditions). This was

the case even though the diagnostic regions did not contain the scene’s object. For

these scenes only the smallest non-diagnostic condition was efficient in hindering
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Figure 3.9: Verification of the Bubbles results. Stimuli were constructed in which the
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stimulus sets. B, Results for monkey B98. Image N1 was excluded from the analysis for
this monkey.
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stimulus identification (χ2(1) = 0.47, p=.49). When non-diagnostic masks revealed

30 or 50% of the stimuli, the monkey became significantly better than chance in

identifying the stimuli (χ2(1) = 16, p<.000 for both conditions). This suggested

that task relevant information was distributed very broadly across the scenes; yet

the effects at the smallest stimulus size confirmed a special role for the diagnostic

region.

To summarize, regions in natural scenes could be identified using Bubbles where

occlusion systematically affected the monkeys’ discrimination performance. These

regions were unique for each monkey, and suggested a different involvement of low-

level information in the task performance. Stimuli in which the diagnostic regions

were covered were not identifiable by the monkeys. Occlusion of other image regions

did not have a comparable detrimental effect on performance. It had only minor

effects on performance how much of an image was visible. Even when only 10%

of an image were exposed, diagnostic stimuli were recognized. Also, in most cases

non-diagnostic stimuli were not recognized despite the fact that half of the image

was visible.

3.1.3 Partial occlusion of natural scenes - comparison be-

tween monkey and human observers

For a number of reasons it seemed interesting to determine the strategies of hu-

man observers in the paradigm used for the monkeys. A larger number of human

observers could easily be tested, allowing to assess the variability of strategies be-

tween observers. This is especially interesting because the two monkeys were found

to use very different strategies. In addition, testing more observers made it possi-

ble to determine the influence of some of the experimental parameters. Finally, a

comparison between the strategies of humans and monkeys indicates whether these

different observers are sensitive to the same kind of information in natural scenes

when performing a task.

In the first experiment (Experiment 1), three human observers were trained to per-

form the Bubbles task on the first set of natural scenes. Since this experiment had

actually been performed before testing the monkeys with natural scenes, it differed

in a number of details from the experiment testing monkeys on the same images. For

human observers, the stimulus set included four instead of three stimuli by adding

a scene showing a pure landscape (scene N4). Also, stimuli had a smaller size of

128 by 128 pixel (4.2 deg). For the masks, a smaller bubbles diameter was chosen

as well. A diameter of 0.95 deg was used (23% of the image size), so that despite



3.1. BEHAVIORAL RESULTS 107

the differences in absolute size, the ratio between image size and bubble diameter

was equal for monkey and human observers.

Human observers did not respond to the images by making a saccade; instead,

they pressed one of four buttons on a computer keyboard. Stable eye movement

recordings are more difficult to obtain from human observers. Since the monkeys

used saccades simply to indicate the presented image, and there was no further

interest in the properties of these eye movements, a change in response mode seemed

uncritical. Each of the four buttons was associated with one of the images. Observers

were first trained to respond correctly to the full scenes before they were introduced

to the Bubbles paradigm. As for the monkey observers, images now appeared behind

trial-unique masks with randomly positioned bubbles. As a control, unmasked trials

were inserted into the testing, so that the performance on the basic task could be

monitored. None of the subjects fell below 96% correct responses with the unmasked

presentations.

About 1500 masked trials were collected per image in multiple sessions, and analyzed

in the same way as the data recorded for the monkeys. Specifically, diagnostic

regions were derived for this and the following experiments by subjecting the data

from correct and incorrect trials to a Kolmogorov-Smirnov test, and thresholding

the resulting p-values at .01, with a Bonferoni correction applied for the number of

performed tests. The same threshold was applied to derive the diagnostic regions

for monkeys G00 and B98 depicted in Figure 3.5 and 3.6. Figure 3.10A shows the

diagnostic regions computed for the three subjects for each of the scenes.

Human observers were found to be robustly influenced by the occlusion of some

regions in the natural scenes. This was the case for all of the scenes and all of the

observers. Diagnostic regions always included parts of the object shown in a scene.

In case of the landscape scene, which contained no such foreground object, observers

identified the scene by the visibility of either the river in the middle, or the horizon.

The fact that human observers consistently used object information to identify a

scene distinguished their behavior from the one of the monkeys.

Since the same statistical threshold was used to compute the diagnostic regions for all

observers, the size of the regions could be compared across observers. The extent of

the diagnostic regions varied a lot between the human observers. While for example

observer VB used information from rather small patches in the scenes, diagnostic

regions for observer KN included at least half of each scene. Expressing the size

of the diagnostic region as percent of the size of the entire image, the diagnostic

regions of observer VB covered on average about 5% of the full stimulus size. For

observer KN, diagnostic regions had an average size of 72% of the full stimulus.
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Figure 3.10: Diagnostic image regions for human observers. A, Natural scene set 1 at
size 128 by 128 pixel. B, Natural scene set 2. Lines enclose image regions with Bonferoni
corrected p-values below .01. The results for each observer are plotted with a different color
(see legends for the observers’ initials).
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Despite this variability, human observers nonetheless used in general information

from larger parts of the images than the monkeys. To compare the two observer

groups, only images N1 - N3 were considered, since they had been shown to both

groups. Averaging over images and observers, the diagnostic regions had an average

size of 33.2% of the full image for human observers, and of only 5.0% for the monkeys.

A t-test showed this difference to be significant (t(13)=-2.75, p=.02).

Another difference between monkey and human observers was found in the variabil-

ity of decision strategies between observers: While the results of the two monkeys

were very inconsistent, the diagnostic regions of multiple human observers mostly

overlapped. The overlap was quantified as the size of the diagnostic regions shared

between all observers, in relation to each observer’s diagnostic region size. For the

monkeys, diagnostic regions did not overlap at all. In contrast, the diagnostic region

common to all observers explained about 52.0% of an individual subject’s diagnostic

region.

Three additional subjects were tested on the second image set (Experiment 2; scenes

N5 - N7). In this case, the identical stimulus set was used for humans and monkeys;

bubbles also had the same size on the screen. Since humans were placed closer to

the screen than the monkeys, stimuli subtended a size of 8.3 deg for the human

observers, and bubbles had a diameter of 1.9 deg. The results (see Figure 3.10B)

confirmed the observations made for the first image set: The diagnostic regions of

human observers always at least partially included foreground objects. Diagnostic

regions were mostly large, with an average size across images and observers of 46.2%

of the full image. They overlapped between different observers to a large degree,

since on average 50.9% of a diagnostic region were common between all observers. In

contrast, the monkeys’ diagnostic regions had an average size of 8.6% of the full size,

and overlapped only very little. On average, about 20.9% of an diagnostic region

was shared between the monkeys; this overlap was mainly due to the overlap in

diagnostic regions for image N5. The difference between the sizes of the diagnostic

regions between monkeys and humans was significant (t(13)=-4.25, p=.001). The

results of both experiments therefore showed the strategies of human observers to

be more homogeneous, and to involve information from larger scene regions, than

the strategies employed by the tested monkeys.

Besides the consistency and extent, the locations of the diagnostic regions also dif-

fered between monkeys and humans. Both monkeys used very different strategies

for the two image sets. It seemed that the diagnostic regions of monkey G00 were

more similar to the ones of humans, while monkey B98 had a very unique strat-

egy. To quantify this effect, it was computed how much of a diagnostic region of

a monkey could be predicted based on the human experiments. For this analysis,
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the diagnostic regions of each human observer were compared against the diagnostic

regions of one of the monkeys. Percentages were averaged across all observers and

images. For monkey G00, human diagnostic regions predicted on average 82.7% of a

diagnostic region for the first set of natural scenes, and about 81.2% for the second

set of natural scenes. This shows that the smaller diagnostic regions for monkey G00

were mostly included in the diagnostic regions of human observers. In contrast, only

50.6% of the diagnostic regions of monkey B98 could be predicted from the human

data for the first set of natural scenes. In the case of scene N2 alone, this value even

dropped to 9%. For the second set of natural scenes, the human diagnostic regions

predicted on average 60.4% of the monkeys behavior; for the three scenes, the values

ranged between 17.8 and 99.0%. The locations of the diagnostic regions for monkey

B98 thus only partially overlapped with the diagnostic regions of humans.

Experiments with human observers were also used to study the influence of two of the

experimental parameters, namely image size and bubble size. These parameters were

more closely inspected because both have the potential to influence an observer’s

strategy. Bubble size determines how large the image pieces are that are visible

through each bubble. If a bubble does not permit enough image structure to be

seen to resolve object parts, subjects may opt for using luminance and contrast

differences to form their decision. On the contrary, with larger bubbles, objects

may more easily be identifiable, and object information may therefore dominate in

the scene identification task. The same arguments also hold for image size, since it

determines the resolution of the presented image. Bubble size and image size could

therefore bias an observer’s strategy towards a more low-level or more high-level

strategy (see Gosselin & Schyns, 2005, for a similar concern). Both questions were

addressed in a third experiment involving six human observers. Images N1 - N4

were presented to the subjects, with a size of 256 by 256 pixels (8.3 deg). Three

observers performed the Bubbles task with bubbles of 1.9 deg diameter (Experiment

3a), the other three with bubbles of 0.95 deg diameter (Experiment 3b). Image N4

consistently failed to evoke a sufficient number of error trials for the latter group of

subjects; the statistical analysis was therefore not possible, and the image had to

be excluded from the rest of the analysis.

Together with Experiment 1, the data from three experiments on the same image set

could thus be compared. In Experiment 1, small images and small bubbles were used.

Experiment 3a used large images and large bubbles, and Experiment 3b used large

images with small bubbles. Figures 3.11A and B show the results of Experiment 3a

and b. In addition, Figure 3.11C shows for each of the three experiments the common

diagnostic region, i.e. the image region considered diagnostic by all subjects. For
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Figure 3.11: Influence of bubble and image size. In contrast to the first experiment,
images were shown with a size of 256 by 256 pixel. A, Diagnostic regions computed from
an experiment involving masks with bubbles of 1.9 deg diameter. B, Diagnostic regions for
masks with bubbles of 0.95 deg diameter. In A and B, lines again enclose regions of p≤.01,
and the color indicates the identity of the human observer. C, Common diagnostic regions,
i.e. the diagnostic regions shared between all subjects, for Experiments 1, 3a, and 3b. The
legend gives the line color for each experiment, as well as the experimental details. Small
images had a size of 128 by 128 pixels, large images had the size of 256 by 256 pixels. For
the bubbles, the small versions had a diameter of 0.95 deg, and the large ones of 1.9 deg.
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this plot, the data from Experiment 1 were rescaled to the image size of Experiment

3a and 3b.

Experiment 1 and 3a shared the same ratio between bubble diameter and image

size. Stimuli in Experiment 3a were thus simply scaled versions of the stimuli in

Experiment 1. Most importantly, the amount of image structure visible through a

single bubble remained unchanged. Nonetheless, the data showed that increasing

the stimuli resulted in larger diagnostic regions. For Experiment 3a, the diagnostic

regions covered on average 56.9% of the scenes, which was significantly larger than

the average diagnostic region size of 33.2% in Experiment 1 (t(16)=2.83, p=.01).

One subject in Experiment 1 had very large diagnostic regions as well. This shows

that in principle more information could have been used in the smaller stimuli.

However, it required the larger stimuli for this information to be consistently used

by all subjects. Considering the positions of the diagnostic regions, it seems that

information especially in the background regions became more easily accessible in

the larger stimuli. This hypothesis was confirmed by splitting each scene into back-

ground and foreground regions. The overlap between the diagnostic regions and

the foreground regions was then computed. Indeed, foreground regions constituted

56.3% of the diagnostic regions in Experiment 1, and only 27.5% in Experiment 3a

(t(16)=-4.11, p=.001). Thus, the background region conveyed more information in

the larger stimuli than in the smaller ones.

Since both image and bubble size were doubled, these effects cannot be explained by

a bubble size that only revealed object information at a certain scale in Experiment

1. Instead, the reason for the larger diagnostic regions has to be found in the

fact that small detail became more visible in the larger stimuli. This is consistent

with the fact that the image regions that were only diagnostic with larger stimuli

corresponded to background regions containing lots of small detail.

Figure 3.11C shows that when increasing the image size without increasing the

bubble size, diagnostic regions remained relatively unchanged. Diagnostic regions

became moderately smaller in Experiment 3b than in Experiment 1 (average size

of 14.1% of the image size, instead of 33.2% for Experiment 1; t(16)=-2.29, p=.04).

However, the location of the diagnostic regions was similar for Experiments 1 and

3b. The common diagnostic regions for Experiment 1 explained on average 63% of

the diagnostic regions of Experiment 3b. Excluding scene N2 because of the bad

agreement between observers in Experiment 3b even increased this value to 89%.

This also implied that diagnostic regions were still centered on object regions, and

not on background regions with prominent low-level characteristics.
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In Experiment 3b the ratio of bubble diameter and image size was changed relative

to Experiment 1. Image features were thus visible at a smaller scale. Nonethe-

less, observers’ strategies remained relatively unchanged. The number of bubbles

is flexibly adjusted to an observer’s performance in the Bubbles paradigm. If im-

age material is presented at a scale that is too small for an observer, Bubbles can

accommodate by increasing the amount of bubbles. A comparison of the bubble

numbers between Experiments 3a and b shows that this mechanism might indeed

be responsible for the overall similar diagnostic regions.

During all experiments involving human observers, bubble numbers were adjusted

to a subject’s performance using an automated staircase protocol so that the sub-

ject responded correctly about 75% of the time. Staircases quickly reached their

asymptote. The last 100 trials of each session performed by a subject could thus

safely be taken as a measure of the number of bubbles necessary for a performance

at this level. For Experiment 3a and b, subjects tested with small bubbles required

different bubble numbers than subjects tested with large bubbles. With large bub-

bles, staircases resulted in an average of 3.0 bubbles (averaged over all sessions from

all three observers). In contrast, 11.3 bubbles were necessary for subjects tested

with small bubbles to reach the same performance level. This difference was highly

significant (t(32)=8.94, p<.000). The data show that observers working with masks

punctured by small bubbles required about four times as many bubbles as subjects

tested with large bubbles. Since the bubble diameter was doubled from small to

large bubbles, this implied that the average area covered by the bubbles – i.e. the

stimulus area visible through the masks – was almost identical for the two groups.

For an equal performance, subjects from both groups therefore needed to be exposed

to about the same proportion of the occluded stimulus.

In conclusion, diagnostic regions were not affected by changing the scale at which

image information was available. Combining the results of Experiments 1, 3a and

3b, changes in the relation between bubble size and image size seemed not to affect

the observer’s strategy; possibly because the bubble number was increased for the

smaller bubbles. Importantly, there was no indication of a more low-level strategy

with smaller bubble sizes. Increasing the image size allowed subjects to use addi-

tional information in the images. This effect is probably due to the higher resolution

of the larger images.

One more experiment was performed with human observers which served to verify

the Bubbles results. Some of the subjects who had performed in the experiment be-

fore were provided with printouts of the experimental stimuli after the final testing

session. They were asked to encircle stimulus regions that they had found diagnostic

during the task, and to list any additional strategy that they had used. Figure 3.12
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Subject’s Report of Important Image Regions

Diagnostic Image Regions

Subject’s Report of Important Image Regions

Diagnostic Image Regions

A

B

Figure 3.12: Comparison between the diagnostic regions determined with Bubbles, and
an observer’s insight into his strategy. A, Results from observer AH. B, Results from
observer DW. The top row in each panel shows the regions indicated as diagnostic by the
subject, the bottom row gives the Bubbles results.
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shows a comparison of the subjective reports and the Bubbles results for two sub-

jects. In most cases, the subjective reports were in good agreement with what had

been determined as diagnostic using Bubbles. Differences most likely were gener-

ated by how consistently subjects used information from the image regions. In cases

in which they overestimated their consistency, regions appeared in the subjective

reports but were absent in the Bubbles results; most likely because they failed to

reach significance. In other cases, subjects underestimated how much information

they actually gained from a region. In these cases, diagnostic regions were larger for

the Bubbles results than for the subjective reports. To summarize, the subjective

reports confirmed that the Bubbles results indeed reflected an observer’s strategy

to solve a task.

3.1.4 Eye movements versus Bubbles

Visual acuity is highest in the central 2 deg of vision, around the fovea. Human and

monkey observers make use of this fact, and reorient their center of gaze around

a viewed scene at a rate of about 3 times per second. A very stereotyped eye

movement behavior is evoked in these situations: The gaze is moved from one image

position to another by a very quick eye movement, the so called saccade. After

a new position has been acquired, the gaze remains almost still at this position,

until it is reoriented again by a saccade. The scanning behavior therefore consists

of a sequence of alternating fixation periods and saccades. Pattern information is

acquired during the fixations, while visual sensitivity is reduced during a saccade

(Ross et al., 2001).

One of the earliest studies examining where human observers fixate when inspecting

a complex scene was performed by Yarbus (1967). He reported that when viewing

a painting of a realistic scene, human observers mostly fixated on people present in

the scene, and particularly on the peoples’ faces. The way in which viewers scanned

the scene could be influenced by giving the subjects instructional questions before

scene investigation (see Figure 3.13). Yarbus therefore suggested that the eyes tend

to land on regions containing information that is “useful or essential for percep-

tion”. This hypothesis was tested more formally by Mackworth & Morandi (1967)

and Antes (1974), who studied whether fixations preferably fall onto informative

scene parts. In both experiments, scenes were divided into smaller patches. One

group of subjects was asked to rate the informativeness of each of these patches

with respect to the information contained in the large scene. Subsequently, the eye

movements of a second group of observers were monitored while they inspected the
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Figure 3.13: Examples of eye scanning records obtained by Yarbus (1967). Observers
were given different instructions while viewing the picture “They did not expect him” by
Ilya Repin. Each of the traces shows a 3 min record of eye scanning with the following
instructions: 1) Free examination. 2) Estimate the material circumstances of the family.
3) Give ages of the family. 4) Surmise what the family had been doing before the visitor’s
arrival. 5) Remember the clothes worn by the people in the picture. 6) Remember the
position of the people and objects in the room. 7) Estimate how long the “unexpected
visitor” had been away.

large scenes. Regions rated as highly informative attracted the most fixations, while

region considered to be uninformative were often not fixated at all.

The two studies described above based their conclusions on the differences in infor-

mativeness between image patches. However, the image patches did not only differ

in how much information they contained, but also in many of their low-level proper-

ties. In principle, each of the two factors alone may have been sufficient to influence

the distribution of fixations. The influence of pure semantic inconsistencies, i.e. the
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influence of informativeness alone, was studied in a number of studies. Recently,

extending a study originally performed by Loftus & Mackworth (1978), Henderson

et al. (1999) manipulated the consistency of particular regions of complex, natural

scenes by changing a target object in that region. Low-level information was con-

trolled by pairing scenes, and exchanging objects across scenes. As an example, a

laboratory and a bar scene were paired so that either scene could contain a micro-

scope or a cocktail. Depending on the background scene, the same object was either

consistent or inconsistent. A rectangular region was defined around each target ob-

ject, and the number of fixations within or outside of the region was measured. In

agreement with the reports by Mackworth & Morandi (1967) and Antes (1974), the

results showed observers to fixate more often on inconsistent than on consistent tar-

gets. This effect was due to a longer looking time on the inconsistent region, as well

as more returns of the gaze to this region. No influence of semantic consistency was

evident in the initial fixations; inconsistent targets, for example, were not fixated

earlier than consistent ones.

It is still an open question whether the image regions attracting a fixation can be dis-

tinguished based on some of their low-level, physical properties (Reinagel & Zador,

1999; Mannan et al., 1996). It has, however, been demonstrated that these prop-

erties control at least part of the scan patterns of human observers. Mannan et al.

(1995) presented observers either with unfiltered natural scenes, or with the same

scenes strongly low-pass filtered. The low-pass filtered scenes had the same over-

all spatial layout as the original scenes, but were not identifiable by the observers.

Nonetheless, the distribution of fixations across the scenes was similar for both scene

types, especially during the first 1.5 s.

The currently prevalent view about the factors determining the placement of fixa-

tions on a natural scene can be summarized as follows (Henderson & Hollingworth,

1999): Upon presentation of a complex scene, the initial fixations are mainly driven

by the low-level characteristics of a scene in a bottom-up manner. During this

early phase, fixation locations are independent of the content of a scene; later fixa-

tions, however, are influenced by the nature of a scene and task requirements. As

a consequence, the spatial distribution of fixation density is controlled by the how

information is distributed across a scene, and informative regions attract in total

more fixations than non-informative regions.

The fixation density observed when a viewer scans a scene can therefore potentially

reveal which scene regions the observer finds interesting. So far, Bubbles has been

used to characterize how information is distributed across natural scenes. Now, the

fixation density on the same scenes was recorded for the monkey observers under

two different conditions. In the first experiment, scenes were simply presented to the
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monkeys for free-viewing. No particular response was required from the monkeys,

so that this completely unconstraint situation serves as a baseline to highlight image

regions that the monkeys in general find interesting. The evoked fixation patterns

also give an indication of whether the monkeys were able to parse the stimuli into

foreground and background, resulting in meaningful images. The Bubbles results,

however, were obtained while the monkeys had to actively discriminate between

different images. Especially the results from monkey B98 suggest that under task

conditions, very specific image regions attain diagnosticity. The same regions may

be completely uninteresting outside the task. It was therefore tested whether the

fixation density observed while the monkeys performed a task on an image changed

with respect to the free-viewing condition, and how it aligned with the Bubbles

results.

All eye movements of the monkeys were recorded using a scleral search coil, which

allowed the position of the gaze to be detected very accurately. Before any scanning

data was obtained, the eye position recordings had to be calibrated in separate

sessions. During calibration, the monkeys fixated a small square presented on various

locations on the screen. Each location was tested repeatedly. For each fixation, the

difference between the required and the actual fixation location was determined.

The absolute value of this difference was averaged over repetitive tests at the same

location. The average gave a measure for the accuracy with which fixations could be

attributed to a specific spatial location. It reflected both the measurement precision

of the setup, as well as the accuracy with which the monkey was fixating. Initially,

accuracy was determined as a function of the spatial location of a fixation on the

screen. It was, however, found to be independent of the spatial location for both

monkeys, and the data from different locations were pooled. General values for the

position error in horizontal and vertical direction were thus computed. Horizontal

values yielded 0.22 deg for monkey G00, and 0.26 deg for monkey B98. In the

vertical direction, fixations could be attributed to a specific spatial location with an

error of 0.26 deg for monkey G00, and 0.35 deg for monkey B98.

After the eye movement signal had been calibrated, the monkeys were tested either

on a free-viewing or on a discrimination task. Both monkeys participated in the

free-viewing task, but only monkey B98 was tested in the discrimination task. Data

were collected before as well as after the Bubbles testing. During free-viewing, the

scenes from one of the stimulus sets were shown to the monkey in pseudo-random

order, who was free to inspect them. Each stimulus was shown for 3 s, so that there

was ample time for eye movements. No constraints were placed on the monkey’s

behavior, and no reward was given, so that it was impossible to form an association

between a particular behavior and a reward. The experiment was continued as long
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as the monkeys were willing to look at the stimuli. Usually, between ten to 15 trials,

i.e. three to five repetitions of each stimulus, could be collected. Experiments were

repeated on multiple days to collect enough data.

During each trial, the eye position was continuously monitored. Fixation periods

were extracted from the continuous traces by identifying time periods in which

the eye movement velocity did not exceed a set threshold. For each fixation, the

location was determined as the average gaze position during the fixation duration.

Since the calibration data showed fixations to be scattered around a location that the

monkeys intended to fixate, possible variability was taken into account by attributing

a fixation not only to a single spatial location. Instead, locations were assigned to

a rectangular region centered on the fixation location, with a width and height

determined as twice the horizontal and vertical error, respectively. Fixation density

could then be computed for each pixel of the tested scenes by counting the number

of fixations falling onto this pixel, combining the data from all relevant trials in all

sessions. Fixation counts were finally converted into the probability of observing a

fixation on an image pixel by normalizing the counts to the total number of fixations

falling onto an image.

By these means, the fixation density could be computed for each of the scenes (see

Figure 3.14). The results showed that when freely inspecting a visual scene, both

monkeys behaved very similar: When animals were present in a scene, the monkeys

preferentially inspected the animals’ heads, as well as their eyes. The only distinction

seemed to be stimulus N1, which evoked very distributed fixation patterns. For

scene N7, which contained no animal, the monkeys mainly fixated on parts of the

plant visible in the foreground. These scan patterns are very consistent with the

behavior of human observers inspecting a real-world scene. When inspecting real-

world scenes, humans mostly fixate on the objects present in the scene; uniform

background regions receive little or no fixations (Yarbus, 1967; Henderson, 2003).

Furthermore, a number of studies reported that monkeys preferentially fixate on the

major face features like eyes and nose when viewing facial displays. From these face

features, the eyes receive most of the fixations (Wilson & Goldman-Rakic, 1994;

Guo et al., 2003; Nahm et al., 1997). Again, our data are in agreement with these

previous studies. Whenever a face was present in a scene, most fixations landed

on the eyes. The results therefore did not only establish which scene regions the

monkey attended to in general. Since the monkeys showed the typical behavior

when inspecting scenes containing animals, the data also implied that the monkeys

were able to perceive the content of the scenes correctly.

The influence of a task on the allocation of fixations was subsequently assessed by

measuring eye movements during a discrimination task. As mentioned before, only
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B98, Fixation Locations During Free-Viewing
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Figure 3.14: Fixation density in a free-viewing paradigm. Contour plots indicate the
probability of a fixation falling into an image region. Each contour plot is individually
scaled so that the maximal value is plotted in yellow. A, Results from monkey G00. B,
Results from monkey B98. The light blue lines in B indicate the positions of the diagnostic
regions determined with Bubbles.
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monkey B98 was tested in this experiment. The task was kept as similar as possible

to the usual discrimination task that the monkeys were trained to perform. As usual,

each trial began when the monkey fixated a centrally presented fixation spot. The

spot was replaced by one of the stimuli, and each trial ended with the presentation

of three peripheral targets, one of which the monkey had to saccade to. While in

the normal trials the monkey was required to maintain fixation in the center of the

screen during scene presentation, scanning trials were now introduced in which the

monkey was free to move its gaze during the scene presentation. All other fixation

requirements were kept the same. Scanning trials were mixed with normal trials

and indicated to the monkey by placing a large rectangle around the fixation spot

that initiated each trial. Correct responses in both trial types were rewarded by a

drop of juice. In normal trials, stimuli were presented for 300 ms only. Since this is

on the order of the duration of a single fixation, these trials did not provide enough

time to evoke a sufficient number of eye movements. In scanning trials, the stimulus

duration was therefore increased to 3 s, and only these trials were considered further.

Again, eye movements were recorded continuously during each trial. As before,

fixation periods were extracted using a velocity criterion, and the probability of a

fixation was computed for each image region. The monkey was required to fixate

the fixation spot before the onset of a scene, and needed some time until the first

saccade was executed. The first fixation after stimulus onset was therefore usually

located at the center of the screen, and was not part of the scan pattern evoked by

an image. It was therefore excluded from the analysis. The resulting distribution of

fixations can be seen in Figure 3.15. A major difference between this data and the

data collected during free-viewing has to be taken into account when interpreting

any effects: In the free-viewing condition, the monkeys were not performing a task,

and they were not rewarded. As a consequence, they usually quickly lost interest

in the scenes, and stopped to examine them further. In contrast, in the the second

experiment the performance of a task required more constant attention. Even though

multiple sessions were combined for the free-viewing data, the data set from the task

condition was still much richer and contained many more fixations.

Nonetheless, a number of observations were made by comparing the fixation density

from free-viewing and task conditions. During the task, the main fixation locations

were the same as during free-viewing. The monkey continued to fixate on the head

of the displayed animals, and in particular on their eyes. Maxima of the fixation

densities had an average distance of 25 pixels between task and free-viewing maps,

slightly less than 10% of the image size. Both data were therefore in good agreement

with respect to the regions receiving most of the fixations.
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Figure 3.15: Fixation density during a discrimination task. As before, contour plots in-
dicate the probability of a fixation falling into an image region. Results for different images
are scaled individually. Again, the blue lines indicate the diagnostic regions determined
with Bubbles.

Possible differences between fixations in free-viewing and task conditions emerged

when comparing the fixation densities to the Bubbles results. This was particularly

the case for the first set of natural scenes. Here, the Bubbles results revealed diag-

nosticity mainly to be concentrated in background regions (see Figure 3.6A). These

regions did not receive fixations in the free-viewing task, but some proportion of

fixations during the discrimination task. This proportion was quantified as the per-

centage of fixations in the Bubbles diagnostic region. Only scenes N2 and N3 were

considered because of the lack of an appropriate diagnostic region in N1. While in

the free-viewing task 0% of the fixations fell into the diagnostic region, during the

discrimination task 10% of the fixations were placed into the diagnostic region. For

the second set of natural scenes, the diagnostic regions covered more object parts

(see Figure 3.6B). For this stimulus set, the discrepancy between fixation locations

in the free-viewing task, and diagnostic regions was therefore not as large. Conse-

quently, the diagnostic regions received about as much fixations in the free-viewing

and the discrimination task (on average, 38% in the free-viewing, and 34.5% in the

discrimination task). The comparison between free-viewing and task data may be

confounded by the different amounts of fixations in the two experiments. However,

at least for the first set of natural scenes there was a trend for more fixations in the

diagnostic regions during the performance of a task. It is possible that this trend is
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generated because the monkeys use information from this region during the task, as

indicated by the Bubbles results.

In conclusion, the fixation patterns obtained when monkey observers viewed the

natural scenes confirmed that the monkeys were able to extract the meaning of the

scenes, in the sense that they seemed to react appropriately to the depicted animals.

Fixation patterns obtained during a task were mainly consistent with the fixation

patterns recorded during free-viewing; however, there may have been an influence of

the task on the distribution of fixations across different image regions. Nonetheless,

even when recorded during a task, regions with maximal fixation density could not

be used to predict the diagnostic regions found with Bubbles.

3.1.5 Characterization of diagnostic image regions

Diagnostic image regions have so far been described in terms of their location, as

well as their extent. In addition to these parameters, the physical properties of

these image regions were also analyzed. Consistent differences between diagnostic

and other image regions may help to pinpoint why observers relied on these regions

to perform the task. For this purpose, the luminance and edge energy of individual

image regions were first computed. These two parameters were chosen because they

represent image characteristics that neurons in early visual areas are known to be

sensitive to (Hubel & Wiesel, 1977). Both parameters were extracted at four spatial

resolutions by applying filters of a fixed size to scaled versions of an image. For

the highest resolution, images had their original size of 256 by 256 pixel. With

each scaling step, the image size was reduced by a factor of four by bisecting the

side length of the image. Luminance information was computed by convoluting the

scaled images with a 2-D Gaussian, while four pairs of oriented Gabor filters, each

pair with a different orientation, were used to calculate edge density (see Figure

2.16 for examples of filtered images). Each feature map was rescaled to half the

image size, irrespective of the image size used during the filtering process. For

both parameters, the maps at different spatial resolutions were combined following a

model by Itti et al. (1998) to form maps representing more higher-order information.

These maps depicted the saliency of luminance or edge information at a particular

image location. The saliency maps computed for both sets of natural scenes are

shown in Figure 2.17. In total, four luminance, 16 edge, and two saliency maps

showing the saliency of luminance and edge features were generated for each image.

Since the absolute values of these maps were not of interest, map values were rescaled

to span the range from 0 to 1.



124 CHAPTER 3. RESULTS

Using these maps, the properties of the diagnostic regions could be computed and

compared to other image regions. In most cases so far, diagnostic regions were de-

fined as the image region with a p-value of less than .01 in the statistical maps. This

definition was not practical here for two reasons: First, the properties of diagnostic

regions needed to be contrasted with other image parts, which had to be of the same

size, and should be non-overlapping with the diagnostic regions. The usual criterion

did not easily lead to an objective rule for the construction of control regions that

fulfilled these criteria. In addition, using a criterion like p≤.01 generated diagnostic

regions with varying size, introducing unwanted variability in the results. A differ-

ent method was therefore chosen to define diagnostic regions. Here, image pixels

were included in the diagnostic regions if their p-values belonged to the 30% small-

est p-values. Non-overlapping control regions of the same size could then simply

be generated by selecting image regions with p-values belonging to the 30% largest

p-values. A similar approach has already been used to construct controlled masks

to verify the Bubbles results for the monkeys (see Section 3.1.2). A size of 30% was

chosen so that the resulting diagnostic regions were not too small. Changing the

size of the diagnostic regions to 10% of the image size did, however, not affect the

results.

The properties of the diagnostic and non-diagnostic regions were then quantified by

averaging the normalized feature values from all pixels within these regions. Spatial

resolutions were treated separately, but the four orientation maps at each resolu-

tion were averaged. Figures 3.16 and 3.17 show the average values for luminance,

edge energy, luminance saliency, and edge saliency in diagnostic and non-diagnostic

regions for monkey and human observers. To generate the plot for the monkeys,

the results from both experiments involving natural scenes were combined, i.e. each

monkey contributed six diagnostic regions and their control regions. For the human

results, the data collected from all subjects tested with stimuli of a size of 256 by 256

pixels were combined. These results were therefore based on 27 diagnostic regions

from nine observers.

For the monkeys, no consistent differences were found between diagnostic and non-

diagnostic regions in terms of their average luminance at any of the scales (paired

t-tests at each of the resolutions; t(11)≤1.23, p>.24 at all spatial resolutions). The

same was the case for both luminance and edge saliency. Diagnostic regions could not

be distinguished from non-diagnostic regions based on these parameters (t(11)=1.31,

p=.20 for luminance saliency, t(11)=0.19, p=.85 for edge saliency). However, di-

agnostic regions contained more oriented edges than the non-diagnostic regions,

at least when edge energy was computed at the coarsest resolution (t(11)=3.62,

p=.004). Differences were not significant for the three finer spatial resolutions
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Figure 3.16: Physical properties of the diagnostic regions for monkey observers (black
bars). The properties of non-diagnostic regions are shown as a control (white bars). Stars
indicate differences between diagnostic and non-diagnostic regions significant at p≤.05. A,
Luminance distribution. B, Edge information. C, Saliency maps. Error bars correspond
to the standard error of the mean.
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Figure 3.17: Physical properties of diagnostic and non-diagnostic regions for human
observers. Notation is identical to Figure 3.16.
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(t(11)≤1.76, p≥.11 for resolutions 1 to 3). In contrast, diagnostic image regions

of human observers consistently differed from the non-diagnostic regions in all com-

puted parameters. For all paired comparisons, these differences were highly signifi-

cant (t(26)≥3.41, p≤.002 for all comparisons).

Since some image features were found to consistently differ between diagnostic and

control regions, it was tested whether the pronounced presence of some of the image

features could be used to predict the diagnostic image regions. In each of the

feature maps, the locations were identified where the feature values belonged to the

highest 30% of the values (the “feature regions”). Feature regions therefore had the

same size as the diagnostic regions used here, and their locations could directly be

compared to the locations of the diagnostic regions. If, for example, an observer

identified a scene by its bright regions only, the luminance feature region would

correspond to the diagnostic region. Feature regions were defined as regions with

high values for luminance, edge, and both saliency maps. Since dark image regions

might be as diagnostic as bright image regions, the image regions with luminance

values belonging to the lowest 30% were additionally identified. The overlap between

these feature regions and the diagnostic regions was then computed, to measure

which percentage of the diagnostic region could be attributed to the pronounced

presence of one of the features. As a comparison, the same was done for the non-

diagnostic regions.

The performance of the physically defined image properties was additionally con-

trasted with how well the presence of an object, or an animal’s head, could predict

the diagnostic regions. For this analysis, the image part covered by the foreground

object was determined. These object regions represented on average 23% of a scene,

therefore being slightly smaller than the feature regions. For all scenes containing

an animal, the location of its head was also identified. For scene N6, the upper

part of the plant was outlined. Obviously, the head region was smaller than the

other regions defined so far, covering on average 14% of a scene. The overlap be-

tween the object or head region and the diagnostic and non-diagnostic regions was

subsequently computed.

Results can be found in Figure 3.18 and 3.19. It is evident from these plots that for

none of the parameters, image regions with extreme values in this parameter covered

more than 50% of the diagnostic regions. This was the case both for monkey and

human observers. For the monkey observers, a comparison between diagnostic and

non-diagnostic regions showed that regions with high luminance in the images had

no predictive power for the diagnostic regions (paired t-tests, t(11)≤0.2, p≥.84 for

all resolutions). Dark image regions overlapped somewhat more with diagnostic than

non-diagnostic regions, except for the coarsest resolution; however the differences at



3.1. BEHAVIORAL RESULTS 127

Edges

Luminance high Luminance low

Saliency and 
Object Information

50

0

%
 C

o
n

tr
ib

u
tio

n
 t
o

 a
R

e
g

io
n

50

0

%
 C

o
n

tr
ib

u
tio

n
 t
o

 a
R

e
g

io
n

1 2 3 4
Spatial Resolution

1 2 3 4
Spatial Resolution

1 2 3 4

Spatial Resolution

A B

C D

Diag.

Non-Diag.

Lum.
Sal.

Edge
Sal.

Obj. Head

* * *

*
*

25

25

50

0

50

0

25

25

Figure 3.18: Overlap between the image regions in which a feature is maximally expressed
(feature regions), and the diagnostic regions of monkey observers (black bars). White bars
indicate the overlap between feature regions and non-diagnostic regions. Stars indicate
differences between diagnostic and non-diagnostic regions significant at a level of p≤.05.
A, Overlap with image regions with high luminance values. B, Overlap with dark image
regions. C, Overlap with feature regions computed from edge density maps. D, Overlap
with salient or object regions. Error bars show the standard error of the mean.
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the finer resolution also only just approached significance (resolution 1: t(11)=1.95,

p=.08; resolution 2: t(11)=2.00, p=.07; resolution 3: t(11)=1.85, p=.90; resolution

4: t(11)=1.09, p=.3). In contrast, edge information seemed to explain more of

the diagnostic regions only when computed with a coarse resolution (resolution

1: t(11)=1.04, p=.32; resolution 2: t(11)=1.45, p=.18; resolution 3: t(11)=1.77,

p=.1; resolution 4: t(11)=3.32, p=.007). Neither luminance nor edge saliency could

predict diagnostic regions better than non-diagnostic regions (t(11)=1.10, p=.29 for

luminance saliency; t(11)=-0.03, p=.97 for edge saliency). In contrast, for human

observers almost any feature region could explain more of the diagnostic than the

non-diagnostic regions (t(26)≥3.01, p≤.006 for all comparisons of high luminance,

edge, and saliency regions). Dark image regions consistently overlapped more with

the non-diagnostic than the diagnostic regions.

The overlap between object and diagnostic regions was as large as the overlap be-

tween the feature and the diagnostic regions. This was the case although the object

regions were on average smaller than the defined feature regions. The head region

explained less of the diagnostic regions than other features; however, these regions

were much smaller than any other region.

In summary, the results showed that for the monkeys, diagnostic regions differed

from non-diagnostic regions only in their edge content. For humans, each of the

parameters distinguished between diagnostic and non-diagnostic regions. Despite

these differences, the diagnostic regions could not be completely explained by how

certain physical image features were distributed in the natural scenes. In addition,

no feature exceeded the others in terms of how much it could predict the diagnostic

regions. Simply using the location of a foreground object worked equally well to

predict the location of the diagnostic regions.
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3.2 Physiology results

The first two parts of this section describe the effects of stimulus occlusion on the

responses of single neurons in area TE, as well as on the LFP responses. Finally,

the single unit behavior will be compared to the LFP behavior for signals recorded

at the same electrode.

3.2.1 Effects of occluder placement on single TE neurons

The aim of the neurophysiological experiments was to establish how occlusion of

different image parts influences responses of TE neurons. The previously described

behavioral experiments successfully established that information is distributed non-

homogeneously across natural scenes for monkey observers. Monkeys rely more on

some regions than others to identify an image. These results were taken into ac-

count when constructing occluded versions of an image. Two categories of occluded

stimuli were generated for each image. In the first category (the diagnostic condi-

tions), occluders were placed so that the image regions with behavioral relevance

remained visible. In the non-diagnostic conditions, these regions were covered and

behaviorally irrelevant image regions were visible. Thus, the diagnosticity of differ-

ent image regions determined the position and the shape of the occluders. It was

in addition necessary to specify the occluders’ extent. The experiments by Kovács

et al. (1995) suggest that occluder size has an impact on the responses of TE neu-

rons. Consequently, the extent of the occluder (the “visible stimulus size”) was

varied in addition to the occluder position. Occluders covered either 10, 30, or 50%

of the images. To summarize, occluded image versions varied along two factors,

diagnosticity and visible stimulus size.

Combining the two factors resulted in six occluded versions per tested image. Section

3.1.2 outlined the computation of these occluded stimuli. Since masks were based

on each monkey’s individual Bubbles results, the monkeys had their own, individual

stimulus sets. Each monkey had behaviorally been tested on six natural scenes. To

reduce the number of conditions, and also because no diagnostic regions could be

obtained for some of the images, four out of the six images were selected per monkey,

and used for further testing. These were scenes N1, N3, N5, and N7 for G00, and

N2, N3, N5, and N6 for B98.

As described above, the effects of occlusion on TE responses were studied with re-

spect to two parameters, diagnosticity and visible stimulus size. The behavioral

effect of these parameters has already been described in Section 3.1.2. Most im-
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portantly, the tests confirmed that occluder placement has a pronounced effect on

the recognition rates for partially occluded images. Furthermore, the behavioral

tests indicate that the visible stimulus size does not strongly influence the behav-

ior. Even at the largest visible stimulus size, non-diagnostic conditions could not

be identified. Similarly, the smallest visible stimulus size was sufficient to recognize

images in the diagnostic conditions. Occluder placement and occluder extent thus

have behaviorally different consequences. This opens up the possibility to study

whether the influence of an occlusion parameter on behavior determines how much

this parameter affects neural responses in TE.

Masking the images generated stimulus conditions with a known diagnosticity. At

the same time, the occlusion introduced differences in the physical image properties

between the stimuli. Since it would be difficult to disentangle the influences of

occlusion and physical image properties on the neural responses, care was taken to

equalize the low-level stimulus properties as much as possible. It is impossible to

change the local properties of an image without affecting the image content, and

possibly changing the diagnosticity of a region. Only global image characteristics

were therefore adjusted to equalize the images. This concerned the mean luminance

of the visible image regions, as well as the global contrast, measured as the standard

deviation of the luminance of all visible image pixels. Mean luminance was set

equal for all stimuli and all conditions; the global contrast was equalized for all

seven conditions of an image (the full image and six masked versions).

Differences in local image properties between diagnostic and non-diagnostic stimuli

were quantified thereafter. Every masked stimulus was filtered at three spatial

resolutions to compute the local luminance and edge energy content, as has been

described for the full images in Section 3.1.5. As before, edge energy was quantified

for four different orientations. Only three spatial resolutions were considered, since

the small visible image portion in some of the masked stimuli did not justify filtering

at the coarsest spatial resolution. Luminance and edge maps were again combined in

a luminance saliency, and an edge saliency map. Finally, the physical properties of

each stimulus were summarized by averaging the computed feature values across all

visible image parts. For the edge maps, the different orientations were also averaged.

Stimulus regions covered by the mask were not taken into account when averaging,

even if the filtering process generated differences in luminance or edge energy across

these regions because of the spatial extent of the implemented filter kernels.

For each of the features, the 12 diagnostic stimuli in a monkey’s stimulus set were

compared to the 12 non-diagnostic stimuli by means of a t-test. In case of the

stimulus set for monkey B98, the global adjustments were sufficient to remove any

major local differences as well. Neither luminance nor edge energy values differed
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at any of the three scales (t(22)≤1.70, p≥.10 for the six tests). Similarly, there

were no differences in either luminance saliency (t(22)=.47, p=.65) or edge saliency

(t(22)=-0.71, p=.49). For monkey G00, stimuli were also equal in terms of their

luminance content (t(22)≤.40, p≥.70 at the three spatial scales), and both saliency

features (luminance saliency: t(22)=0.73, p=.47; edge saliency: t(22)=-1.09, p=.29).

However, edge energy showed differences between diagnostic and non-diagnostic

conditions at two of the spatial resolutions. There were no significant differences

at the finest resolution (t(22)=1.10, p=.28); but at both coarser resolutions, there

were more edges in the diagnostic than in the non-diagnostic stimuli (t(22)≥3.07,

p≤.006 for the two tests). Since this was the only noticeable difference between

diagnostic and non-diagnostic stimuli, it was unlikely that observed neural effects

could be traced back to low-level differences. This is even more the case because

the difference was only present in the stimulus set of one of the monkeys. For any

effects present in both monkeys, low-level differences could therefore be excluded as

a reason.

The activity of single neurons in area TE was recorded while the monkeys performed

a simple fixation task. Each trial began with the presentation of a fixation spot in

the center of the screen. After the monkeys had acquired and maintained fixation

on this position for at least 400 ms, one of the stimuli appeared behind the fixation

spot for 500 ms. The monkeys were required to maintain the fixation during this

interval. For successful fixation, they were rewarded with a drop of juice after

stimulus offset. All 28 stimuli were shown in pseudo-random order, until between

10 and 20 repetitions had been collected per stimulus.

The behavior of an exemplar neuron recorded from monkey B98 is shown in Figure

3.20. This neuron responded to the presentation of scene N6 with an elevation

in its firing rate. As can be seen in the raster plot in Figure 3.20B, presentation

of the full – i.e. the unoccluded – stimulus elicited a vigorous response from the

neuron about 100 ms after stimulus onset. The difference between the baseline

firing rate computed from a 200 ms interval before stimulus onset, and the stimulus

evoked firing rate in the interval from 100 to 400 ms after stimulus onset, yielded

on average 4.9 spikes/s (see the black bar in Figure 3.20D). The significance of any

response was tested by comparing the firing rate during stimulus presentation to

the one in the baseline period with a t-test. Here, this difference in firing rate was

significant (t(20)=-2.80, p=.01).

For the exemplar neuron, occluding parts of the image led to a general decrease in the

firing rate. The reduction in firing rate depended on how much of the image remained

visible; the more of an image was occluded, the stronger the firing rate was reduced.

This trend can clearly be seen in the rastergrams shown in Figure 3.20C, as well as
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Figure 3.20: Behavior of an exemplar TE neuron recorded from monkey B98. A, Stimu-
lus evoking the illustrated responses. B, Rastergram showing the response to the unoccluded
(full) stimulus. Black bars in the rastergrams denote the occurrence of a spike at a specific
point in time during the trial. Stimulus onset is at 0 ms. Along the y-axis, activity dur-
ing repeated presentations of the same stimulus is plotted. C, Neural activity for occluded
stimuli. The left column contains the diagnostic, the right column the non-diagnostic con-
ditions. Labels indicate the percentage of the original stimulus visible through the mask.
D, Net firing rate of the neuron for the different conditions. Net firing rate was computed
by subtracting the baseline firing rate observed in the 200 ms interval prior to stimulus
onset from the stimulus elicited firing rate during the interval from 100 to 400 ms after
stimulus onset. In this and all following plots, the error bars indicate the standard error
of the mean.
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Figure 3.21: Another exemplar TE neuron, recorded from monkey G00. The neuron
responded significantly to scene N2. A, Net firing rate for stimuli in which 10% of the
original stimulus were exposed. The upper row shows the stimuli, the lower row the net
firing rates. B, 30% of stimulus visible. C, 50% of stimulus visible. The net firing rate for
the full stimulus is repeated in each bar graph to help the comparison between firing rates.

in the net firing rates plotted in Figure 3.20D. In addition to this general influence of

occlusion, there was a pronounced difference between diagnostic and non-diagnostic

conditions. In the diagnostic conditions, presentation even of the stimulus containing

only 10% of the original stimulus was sufficient to elicit a visual response from

the neuron that was significantly greater than baseline (t(20)=-2.16, p=.04). In

contrast, when the diagnostic stimulus regions were occluded, 50% of the image

had to be visible before the neuron started to respond significantly above baseline

(non-diagnostic conditions, 10% of stimulus visible: t(18)=-.011, p=.91; 30% visible:

t(18)=-0.67, p=.51, 50% visible: t(18)=-3.45, p=.003). As a result, firing rates in

all diagnostic conditions were significantly greater than in the corresponding non-

diagnostic conditions. The significance of the influence of both factors was confirmed

by subjecting the net firing rates in the occluded conditions to an ANOVA with

factors diagnosticity and visible stimulus size. With respect to the factor size, the

ANOVA resulted in a significant main effect (F(2,54)=8.04, p<.000). In addition,

there was a significant main effect for diagnosticity (F(1,54)=5.02, p=.029), but no

significant interaction between diagnosticity and visible image size (F(12,54)=1.59,

p=.21).

The behavior of two more neurons is illustrated in Figures 3.21 and 3.22 to exemplify

the range of effects observed in the population of neurons. The neuron depicted in
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Figure 3.22: Third exemplar TE neuron, recorded from monkey G00. The neuron exhib-
ited a very nonlinear behavior. Responses to scene N3 are plotted in the same format as
Figure 3.21.

Figure 3.21 distinguished strongly between diagnostic and non-diagnostic conditions.

It responded significantly to scene N3 (t(30)=-3.99, p<.000), and maintained its

firing level for all three diagnostic conditions (t-test between the net firing rate for

the full and each diagnostic condition; 10% of stimulus visible: t(30)=-1.87, p=.07;

30% visible: t(30)=-1.30, p=.20; 50% visible: t(30)=-1.86, p=.07). The neuron

however did not respond to any of the non-diagnostic conditions above baseline level

(non-diagnostic conditions, 10% of stimulus visible: t(30)=0.17, p=.87, 30% visible:

t(30)=-1.46, p=.16, 50% visible: t(30)=-1.80, p=.08). Consequently, the difference

between corresponding diagnostic and non-diagnostic conditions was significant for

all three sizes. Again, an ANOVA was performed on the net firing rates in all six

occluded conditions, using the factors diagnosticity and visible stimulus size. The

only significant main effect was an effect of diagnosticity (F(1,90)=82.52, p<.000).

Neither the effect of visible stimulus size (F(2,90)=0.03, p=.97), nor the interaction

between the two factors (F(2,90)=0.85, p=.43) became significant.

The third neuron exhibited a nonlinear behavior. It did not respond to the full im-

age (difference between baseline and stimulus evoked firing rate: t(38)=1.29, p=.20).

However, when large parts of the image were occluded so that only diagnostic image

regions were visible, the neuron vigorously responded to the stimulus (mean net

firing rate for the condition in which 10% of stimulus were visible: 13.67 spikes/s;

comparison to baseline level: t(38)=-4.29, p<.000). Increasing the exposed amount

of the diagnostic region decreased the firing rate (mean net firing rate for the 30%
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condition: 9.67 spikes/s, comparison to baseline: t(38)=-2.35, p=.02); the neu-

ron became unresponsive when 50% of the stimulus were visible (mean net firing

rate: 3 spikes/s; t(38)=-1.38, p=.18). In the non-diagnostic conditions, the neuron

was mostly unresponsive, if not weakly inhibited (comparison to baseline: 10% of

stimulus visible: t(38)=0.86, p=.40; 30% visible: t(38)=2.08, p=.04; 50% visible:

t(38)=0.09, p=.93). The neuron’s behavior again demonstrated differences between

diagnostic and non-diagnostic conditions. More interestingly, the effects suggest a

complex interplay between different scene regions in determining the neural response.

A total of 423 neurons (216 from monkey B98, 207 from monkey G00) were recorded

from area TE. Since the results of both monkeys were similar, their data were pooled.

From these neurons, only neurons were considered further which responded signifi-

cantly and excitatory to at least one stimulus in one condition (p<.05 in the t-test

between baseline and stimulus firing rate, Bonferoni corrected for the 28 necessary

comparisons). Using this criterion, 129 neurons were included in the following anal-

yses. Influences of occlusion on the neural population were quantified in two ways:

First, to assess the dynamic behavior of the population, each neuron’s response was

characterized by a spike density function. Spike density functions were generated

by convolving the spike trains of individual trials with a Gaussian kernel, and sum-

ming across trials. The spike density function represents the probability of a spike

occurring at a certain time point after stimulus onset. Spike density functions were

first computed for all 28 stimuli, and the data from different neurons were averaged.

Differences in spike rates influence the amplitude of the spike density functions.

When pooling data across neurons, the average would therefore be dominated by

the neurons with high firing rates. Spike density functions were thus normalized

before averaging. The comparisons of interested involved occluded conditions of one

image, but not conditions of different images. Hence, the normalization was re-

stricted to the conditions of a single image. Spike density functions were normalized

to the maximum occurring across all seven conditions of an image. This normal-

ization preserved the ratio between peak values from different conditions for each

image. The normalized spike density functions were finally averaged across neurons

and images.

Neurons most often only responded to one or two of the four images. An additional

exclusion criterion was therefore used when averaging across images: From the com-

plete data set collected for a neuron, the seven conditions of an image were only

included in the average if the neuron responded significantly and excitatory to at

least one of them (using the same p-level as above). As a consequence, each neuron

could contribute in principle between 1 and 4 times to the population spike density

function. Throughout the rest of the text, the term “case” will be used to denote
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Figure 3.23: Behavior of the population of visually responsive TE neurons. A, Population
spike density function as a function of time after stimulus onset. The three diagnostic
conditions have been averaged, as well as the three non-diagnostic conditions. Solid lines
show the average spike density function in a condition; the dashed lines correspond to the
standard error of the mean at each time point. B, Average net response in each of the
conditions. Both plots are based on the average of 220 cases generated from 129 neurons.

the data collected from a single neuron for all conditions of one image. With the

chosen significance criterion, the average was based on 220 cases from the selected

129 neurons.

The population spike density functions for different conditions are plotted in Figure

3.23A. For easier interpretation, data from all diagnostic, and all non-diagnostic

conditions have been averaged. All spike density functions showed a steep rise from

baseline level at about 100 ms after stimulus onset. The peak level of the response

was influenced by occlusion: In general, occlusion reduced the response rate. This

effect was however much stronger for non-diagnostic than for diagnostic conditions.

The differences between full, diagnostic, and non-diagnostic conditions were evident

for the interval up to about 300 to 400 ms.

Based on these results, the time window from 100 to 400 ms was considered whenever

the strength of a neural response to a stimulus was quantified. In the second analysis,

the average net firing rates were computed as a function of the occlusion condition.

Net firing rates were calculated as the average firing rate in the interval from 100 to

400 ms after stimulus onset, minus the firing rate in the baseline period 200 ms prior

to stimulus onset. Net firing rates were averaged across neurons and images. As for

the spike density functions, only the data from images evoking significant responses

in at least one condition were included. The average net response was therefore based
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on the same 220 cases. The average net response confirmed the observations made

for the population spike density function (see Figure 3.23B). Occlusion generally

reduced the average response rate. However, the response reduction was much

stronger in the non-diagnostic conditions. Furthermore, the average showed little

effect of the visible stimulus size on the response rates for diagnostic conditions.

In contrast, the responses in non-diagnostic conditions were most strongly reduced

when little of the stimulus was exposed by the mask. Response rate recovered in

these conditions when more of the image became visible. This suggests that as long

as diagnostic image material is visible, even very small image parts are sufficient

to drive a neuron. In contrast, much more of an image has to be presented in the

non-diagnostic conditions to evoke a response.

The general effect of occlusion on the neural responses was confirmed by perform-

ing a paired t-test between the unoccluded condition and any other condition. All

six t-tests were highly significant (t(219)≥4.43, p<.000 in all cases). Systematic

differences between the set of occluded conditions were assessed by performing a

repeated measures ANOVA on the data (factors diagnosticity, visible stimulus size).

The ANOVA resulted in a significant main effect of both factors (diagnosticity:

F(1,219)=27.43, p<.000; visible size: F(2,438)=7.22, p=.001), as well as a signif-

icant interaction between them (F(2,438)=4.58, p=.01). The interaction reflected

the fact that diagnostic and non-diagnostic conditions were differently influenced

by the visible stimulus size. Comparing diagnostic and non-diagnostic conditions

separately at each size confirmed that the evoked firing rates were nonetheless sig-

nificantly higher in diagnostic than non-diagnostic conditions, irrespective of the

visible stimulus size (paired t-test, t(219)≥2.17, p≤.03 for the three tests).

Differences between diagnostic and non-diagnostic conditions were not only evident

at the population level. The influence of occlusion condition on individual neurons

was tested by the following analysis. For each visually responsive case, the firing

rates in the diagnostic conditions were plotted against the ones in the non-diagnostic

conditions revealing the same amount of the stimulus. The same 220 cases as before

were tested. Figure 3.24 shows the resulting scatter plots for the three sizes. Cases

with a higher firing rate in a diagnostic than in a non-diagnostic condition – i.e. the

cases displaying the same behavior as the general trend – fall above the diagonal

in these plots, while cases with the reverse pattern fall below the diagonal. The

number of cases belonging to these two categories was quantified for each visible

stimulus size. Numbers are listed in Figure 3.24 above and below the diagonal in

the upper right-hand corner of each graph. At all sizes, the proportion of cases

in which diagnostic conditions evoked higher firing rates was significantly greater

than the proportion of cases showing the reverse (χ2-test between the number of
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Figure 3.24: Influence of occlusion on neural responses for individual cases. For each
case, the net firing rate in an diagnostic condition was plotted against the one in the
corresponding non-diagnostic condition. Points above the diagonal indicate cases with a
higher firing rate in the diagnostic condition. The numbers above and below the diagonal
give the number of cases falling into the respective part of a graph. A, 10% of stimulus
visible. B, 30% of stimulus visible. C, 50% of the stimulus visible. Gray symbols show the
behavior of the exemplar neurons described above. u: exemplar unit 1; H: exemplar unit
2; s: exemplar unit 3.

cases in each category; 10% of stimulus visible: χ2(1)=16.51, p<.000; 30% visible:

χ2(1)=8.24, p=.004; 50% visible: χ2(1)=5.95, p=.02). In conclusion, diagnostic

conditions evoke higher firing rates in TE than non-diagnostic conditions.

When constructing masks for the occluded conditions, care was taken that the diag-

nostic and non-diagnostic conditions had no image regions in common. Inevitably,

this made the visible stimulus regions in the two conditions cover different parts of

the visual space. TE neurons have mostly been reported to have receptive fields

larger than the size of the experimental stimuli with receptive field centers at the

fovea; inhomogeneities in the receptive fields could nonetheless be present. It there-

fore had to be excluded that differences between diagnostic and non-diagnostic con-

ditions were simply generated because of their spatial positions instead of their

difference in behavioral relevance.

The influence of stimulation at different spatial positions was quantified for single

neurons by the following analysis: Diagnostic and non-diagnostic conditions were

constructed to show disparate image regions, and to expose up to 50% of the full

image. Hence, the extent of the full image was completely probed across the six

occluded conditions. Considering only the response to one image, a spatial response

profile could therefore be computed for each neuron which specified the effect of
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visual stimulation at a particular point in visual space. This spatial profile – the

“response image” – was computed by determining the partially occluded versions of

an image which elicited at least 70% of a neuron’s maximal response. The image

regions visible in these conditions indicate at which spatial positions image material

could evoke robust responses (the “effective” image regions). A criterion of 70% of

the maximal response was chosen because it guaranteed that only conditions with

robust responses were considered. However, similar results were obtained when

including all conditions which evoked at least a firing rate of 50% of the maximal

firing rate. Each response image showed the effective spatial locations for one of

the images. Across the four images, diagnostic regions were usually located at

different positions in space. Comparing a neuron’s four response images thus showed

whether the neuron was mainly responsive to the presentation of image material at a

particular location, or whether the effective spatial location depended on the image

and followed the diagnosticity of image regions.

Response images for two exemplar neurons are shown in Figure 3.25. For both

neurons, occluded conditions of three of the four images evoked responses at least as

large as 70% of the maximal response. For each image, the regions visible in effective

conditions are highlighted in Figure 3.25. The plots already indicate that for the

different images, very different spatial regions evoke responses from the neuron.

Responses to a partially occluded stimulus seem not to be generated because a

certain spatial region was visible. Instead, the diagnosticity of an image region

seems to trigger the responses.

Response images were computed for 46 out of the 129 visually responsive neurons.

These neurons were selected because occluded versions of two or more images evoked

responses at least as large as 70% of the maximal response. Across all response

images, the regions effective in triggering a neural response spanned about 36.8%

of the complete image extent. However, for individual neurons the overlap between

the effective regions of different images only amounted to 10.3% of the image region.

This suggests that in different images, very different regions elicited neural responses.

In conclusion, neural responses were not bound to presentation of image material at

a particular position. In contrast to a simple receptive field model, the diagnosticity

determined whether image material presented at a particular position generated a

neural response. Differences between diagnostic and non-diagnostic conditions are

therefore not due to their different spatial positions.

The influence of two additional sources of artifacts needed to be considered. As ex-

plained at the beginning of the section, stimuli were equalized in terms of their global

low-level image properties. With respect to the tested parameters, this seemed to

be sufficient to also equalize more local properties of the images. However, although
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Figure 3.25: Response images for two exemplar units. Black regions indicate which
image regions were visible when the neuron fired at least with 70% of its maximal rate.
The white regions enclose image regions visible in the largest diagnostic condition. A,
Response images for a unit from monkey G00. B, Response images for a neuron from
monkey B98. In the second and third plot, the response image completely overlapped with
the diagnostic regions.
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the differences in the physical properties of diagnostic and non-diagnostic conditions

were too small to be significant, they could have been potentiated in the neural re-

sponses. The effect of low-level physical image properties on the neural responses

was therefore quantified in the following way. For each neuron, firing rates for a total

of 28 stimuli were available. Each of these stimuli had slightly different low-level

parameters, captured by the luminance, edge energy, luminance saliency and edge

saliency maps computed before. For each stimulus, individual parameter maps were

reduced to a single value by averaging across the visible stimulus parts. Again, edge

energy maps of different orientations were averaged. In summary, each stimulus

could be characterized by a total of eight parameters, corresponding to luminance

and edge energy values at three spatial scales, and one value each for luminance and

edge saliency.

To assess the influence of a parameter on the firing rate of a neuron, the 28 values

of this parameter for the complete stimulus set were correlated against the firing

rates for these stimuli. With eight different parameters, eight correlation coefficients

were computed for each neuron. Taking only the visually responsive neurons into

account, the number of neurons with significant correlations (p<.05) was counted

for each of the parameters. For all eight parameters, these numbers were very low,

ranging between six and 15 neurons out of the 129 neurons. No parameter seemed to

influence firing rate more strongly than the others. In summary, since correlations

were low between the computed low-level properties and the firing rate, differences

at least in the captured physical properties could be excluded as a reason for the

differences between diagnostic and non-diagnostic conditions.

Finally, TE neurons are known to be responsive to object parts. Diagnostic re-

gions usually contained more object features than non-diagnostic regions. Since the

presence of objects may be the reason for the diagnosticity of a region, there was

no possibility to avoid this difference between conditions. However, the strategy of

monkey B98 for some of the images made it possible to begin to disentangle the influ-

ence of object features and diagnosticity. Scene N2 was selected for further analysis.

For this scene, diagnostic regions fell onto background regions. As a consequence,

the non-diagnostic conditions contained more object features than the diagnostic

conditions. If neural responses only follow the presence of object features, but not

the diagnosticity, than the responses should be higher to the non-diagnostic versions

of scene N2. In contrast, the encoding of diagnosticity predicts higher responses for

the diagnostic conditions.

The analysis was restricted to the conditions with a visible stimulus size of 10%.

At this occluder size, the differences in the amount of object features was maximal

between conditions. A total of 19 neurons from monkey B98 were responsive to the
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Figure 3.26: Influence of physical image properties on neural responses. Neurons from
monkey B98 responsive to scene N2 were selected (N=19). A, Diagnostic and non-
diagnostic condition with a visible stimulus size of 10%. B, Mean response rate for the
unoccluded, the 10% diagnostic, and the 10% non-diagnostic condition.

scene. Their mean firing rate in the three relevant conditions is plotted in Figure

3.26. This plot shows that although here the non-diagnostic condition contained

more object features, firing rates were not higher in the non-diagnostic condition.

Instead, the trend was in the opposite direction. The difference between conditions

was not significant for the mean net firing rate (t(18)=0.47, p=.65), but nonetheless

more neurons (11 out of 19) had higher firing rates in the diagnostic than the non-

diagnostic condition. The fact that firing rates were not higher for non-diagnostic

than diagnostic conditions ruled out that differences in the presence of objects were

the sole reason for the observed influences of diagnosticity on the neural firing rate.

However, since for the selected neurons the firing rates did not distinguish between

the two conditions, some influence of the presence of objects cannot be excluded.

In conclusion, neural firing rates were systematically affected by the diagnosticity

of a stimulus. The higher the information content of a stimulus, the higher was

the firing rate of the neurons. This effect was evident both on the population level,

and for individual neurons. It could neither be attributed to stimulation at different

spatial locations, nor to differences in low-level properties between diagnostic and

non-diagnostic conditions.
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Figure 3.27: Tuning curves. Net firing rates are plotted as a function of stimulus rank,
computed for the pool of 129 visually responsive neurons. The stimulus rank was deter-
mined from the responses in the full condition. 1 corresponds to the best, 4 to the worst
stimulus. A, 10% of stimulus visible. B, 30% of stimulus visible. C, 50% of stimulus
visible. The tuning curve in the full condition is identical in A-C.

3.2.2 Influence of occlusion on neural selectivity

Section 3.2.1 described the effects of occlusion on the responsiveness of TE neurons.

In the analyses, results from different images were indiscriminately pooled. This

section is concerned with the effects of occlusion on the selectivity of neurons, which

is reflected in the spike rates evoked by different images. Every analysis was again

based on the pool of the 129 visually responsive neurons selected by the criteria

described in Section 3.2.1.

To assess the neural selectivity, a method from Kovács et al. (1995) was adopted.

For each neuron, the four images were ranked according to their net firing rate in

the unoccluded condition. Averaging across all visually responsive neurons, the net

response was then calculated as a function of stimulus rank for each condition. The

ranking was solely based on the responses in the unoccluded condition. Thus, if a

neuron’s stimulus preference changed for occluded stimuli, then there should be no

relationship between the firing rate in the occluded condition and stimulus rank.

In contrast, a monotonic decrease of the average response with stimulus rank in an

occluded condition indicates that the stimulus preference was maintained despite

the occlusion.
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In the unoccluded condition, the pool of TE neurons exhibited a strong tuning to

certain images (see Figure 3.27). While the neurons responded with an average

of 9 spikes/s to their preferred image, the worst image did not evoke a response

larger than baseline level. Occlusion changed the selectivity to a certain degree.

Based on the previous analysis of the firing rates, an overall reduction in the firing

rate had to be expected for the occluded conditions. However, for all occluded

conditions, the firing rates for the best stimulus decreased, while the firing rates

for the worst stimulus increased. This effect could only be generated because the

stimulus preference of a neuron changed for occluded stimuli. The rank order was

based on a neuron’s behavior in the unoccluded condition. If with occlusion the

neuron preferred a different image, then the firing rate for an image occupying one

of the ranks 2 to 4 increased beyond the response to the image at rank 1. In turn, the

differences in firing rates between ranks will be leveled out. Selectivity was changed

for all conditions, but the effect seemed to be more pronounced for the non-diagnostic

conditions. For these conditions, tuning curves remained almost flat irrespective of

how much of an image was exposed. The degree of tuning was characterized by

comparing the responses to the best and worst images with a paired t-test. For the

non-diagnostic conditions, these effects did not reach significance at any of the visible

stimulus sizes (t(128)≤1.73, p≥.09). In contrast, the tuning curves in the diagnostic

conditions recovered with increasing visible stimulus size. At a visible stimulus size

of 10%, the best stimulus could not be distinguished from the worst based on the

firing rates (t(128)=1.89,p=.06). When 30% of an image were visible, both the best

and the second best stimulus evoked significantly larger firing rates than the worst

(best stimulus: t(128)=3.98, p<.000; second best: t(128)=2.33, p=.02). The same

was the case for a visible stimulus size of 50% (best stimulus: t(128)=3.55, p<.000;

second best: t(128)=3.56, p<.000).

Changes in selectivity were furthermore quantified by computing for each neuron

the rank order of images in each of the occluded conditions. The rank of the best

unoccluded image could then be determined in the occluded conditions. If a neu-

ron’s selectivity was preserved under occlusion conditions, then the best unoccluded

image should always occupy rank 1 in the occluded conditions. If selectivity was

however changed, the best unoccluded stimulus would occupy different ranks as well.

Figure 3.28 shows the distributions of ranks for the best unoccluded image. As can

be seen, although an image evoked the highest responses in the unoccluded condi-

tion, it did not necessarily do so in the occluded conditions. Instead, the best image

from the unoccluded condition occupied all ranks. This was the case for all condi-

tions. However, there were differences between the diagnostic and non-diagnostic

conditions. These effects confirmed the conclusions drawn from the tuning curves.

In the non-diagnostic conditions, the best unoccluded image was equally likely to be
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Figure 3.28: Agreement in selectivity between unoccluded and occluded condition. The
best image was determined in the unoccluded condition. The rank of this image in the
tuning curve in an occluded condition was then determined. Each plot shows the distri-
bution of the ranks for one of the occluded conditions. The higher the percentage of rank
1 cases, the more agreement between the selectivity in the unoccluded and occluded condi-
tion. A, Diagnostic conditions. B, Non-diagnostic conditions. Dashed lines indicate the
chance level, i.e. an equal number of neurons for all ranks. Stars denote rank 1 percentage
significantly higher than chance (tested with a χ2-test).
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found at all ranks. It was quantified for how many neurons the preferred stimulus re-

mained the same despite occlusion. For all but the largest non-diagnostic condition,

the percentage of these neurons did not significantly deviate from the percentage

expected by chance (χ2-test between the number of rank 1 cases against chance

level; visible stimulus size of 10%: χ2=0.002, p=.96; 30%: χ2=1.86, p=.17; 50%:

χ2=4.28, p=.04). In contrast, the distributions for the diagnostic conditions show

that here the selectivity indeed recovered. At least for the 30 and 50% condition,

the number of neurons with matching selectivity in occluded and unoccluded con-

ditions was significantly larger than chance (visible stimulus size of 10%: χ2=1.03,

p=.31; 30%: χ2=10.90, p<.000; 50%: χ2=17.49, p<.000). In conclusion, occlusion

did change the selectivity of the TE neurons. However, selectivity was changed more

in the non-diagnostic than the diagnostic conditions.

If different images result in very different firing rates, observation of a specific re-

sponse allows to determine which of the images was presented. The neural tuning

curve therefore has an important functional implication, since it limits how much

information a receiver – like a higher order brain area – can gain from the observa-

tion of a certain spike count about which image was presented in a trial. Using an

information theoretic approach, the amount of information transmitted by a neuron

can be quantified (Shannon & Weaver, 1949; Rieke et al., 1997). In this analysis, the

brain is treated as a noisy communication channel. Images presented to the eye are

the input into the communication channel. The output of the channel is taken to be

the number of spikes generated by a TE neuron in a fixed time period. This spike

count is used to deduce which image has been presented to the eye. In the given ex-

perimental situation, all four images are equiprobable as long as no spike count has

been observed. After detection of a particular spike count, the uncertainty about

the image identity can be reduced if the spike count is more likely to be elicited by

certain images than by others. The reduction in uncertainty is equal to the mutual

information between spike count and image identity. Computation of the mutual

information involves the probability of showing a particular image, the probability

of observing a certain spike count, and most importantly, the joint probability with

which an image leads to a specific spike count. With four equiprobable images,

as used in the present experiment, the mutual information could maximally reach

2 bits of information. At this optimal limit, the image identity could be determined

without errors from the spike count. If less information is transmitted by a neu-

ron, observation of a certain spike count reduces the number of possibly presented

images, but does not allow a more precise determination of the stimulus identity.

In a first analysis, mutual information was computed from the spike counts in the

interval from 100 to 400 ms after stimulus onset, the same interval used before for
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Figure 3.29: Influence of occlusion on the image information transmitted by the spike
rate. A, Mutual information between the spike count and image identity in each of the
seven conditions. Here, the spike count was obtained from the interval from 100 to 400 ms
after stimulus onset. Data were averaged across 129 neurons. B, Influence of the counting
window duration on the mutual information. Each window began at stimulus onset. Data
from the diagnostic conditions have been averaged, as well as the data from non-diagnostic
conditions.

computation of the net firing rates. Mutual information was computed separately

for each condition and each neuron. The average over the pool of visually responsive

neurons is plotted in Figure 3.29A. Mutual information was highest with unoccluded

stimuli. Even in this condition, only about 0.3 bits of information were transmitted

by the spike count, far less than the optimal value of 2 bits. In the diagnostic

conditions, observation of a specific spike count conveyed as much information about

the identity of the presented image as in the unoccluded condition. Performing

paired t-tests between the mutual information in the full condition and the one

in a diagnostic condition yielded non-significant results in all cases (10% visible:

t(128)=1.39, p=.17; 30%: t(128)=1.96, p=.05; 50%: t(128)=1.43, p=.16).

In contrast, the spike rate transmitted significantly less information in the non-

diagnostic conditions than in the unoccluded condition (t(128)≥4.32, p<.000 in all

cases). In addition, the differences in mutual information between diagnostic and

non-diagnostic condition were significant as well. Here, a repeated measures ANOVA

was used to assess the robustness of the differences (factors diagnosticity, visible

stimulus size). Mutual information was higher in diagnostic than non-diagnostic

conditions (main effect factor diagnosticity: F(1,128)=25.87, p<.000). It was –

in contrast to the average net firing rate – not influenced by the visible stimulus
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Figure 3.30: Differences between the mutual information in diagnostic and non-
diagnostic conditions on the level of single neurons. For each neuron, the mutual informa-
tion in an diagnostic condition is plotted against the one in the non-diagnostic condition.
Numbers in the upper right-hand corner denote the number of units falling above or below
the diagonal in a plot. A-C, Different amounts of visible stimulus size.

size (main effect factor size: F(2,256)=.93, p=.40; interaction between the factors:

F(2,256)=1.63, p=.20).

Differences between the conditions were again not only present on the population

level, but also for individual neurons. As for the net firing rate, a neuron’s mutual

information in a diagnostic condition was plotted against the one in the correspond-

ing non-diagnostic condition (see Figure 3.30). Neurons were again divided into two

categories, depending on whether the mutual information was higher in the diagnos-

tic or the non-diagnostic condition. For all three visible stimulus sizes, the number

of neurons in the first category was significantly higher than the number of neurons

in the latter (χ2-test, χ2 ≥ 9.98, p≤.002 for all three tests).

To compute the mutual information, it was assumed that the spike rate of a neuron

represents the output of a communication channel that transmits image identity.

From the observation of a spike rate, the receiver tries to deduce which image has

been presented to the monkey. The spike rate, however, depends on the interval

during which action potentials are counted. So far, the counting interval was set

from 100 to 400 ms after stimulus onset. In the final analysis, the start of the interval

was fixed at the stimulus onset, while its length was varied from 50 to 400 ms in

steps of 50 ms. This analysis made it possible to assess how a receiver starting to

count spikes with stimulus onset would accumulate information with time, and to

determine after which counting duration the diagnostic conditions began to deliver

more information than the non-diagnostic ones.
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Figure 3.29B shows the mutual information between spike rate and image identity

as a function of counting window length. Data have been collapsed across visible

stimulus size. Up to a window duration of 100 ms, i.e. for counting intervals ending

before or at 100 ms after stimulus onset, mutual information was very low, and rose

only slowly. However, since the spike density function showed an average neural

response latency of about 100 ms, most neurons have not started to respond to

the stimulus in this time period. Mutual information began to rise more steeply

as soon as the counting interval ended after the neural response latency, i.e. at

least 150 ms after stimulus onset. From this time point on, mutual information

was consistently higher for diagnostic than for non-diagnostic conditions (t-tests

at each window length: t(772)=2.82, p<.005 for all window lengths from 100 to

500 ms; only exception: window length 450 ms: t(772)=2.39, p=.02). For the full

and the diagnostic condition, increasing the window duration increased the mutual

information until an asymptote was reached at a window length of about 300 ms. In

the non-diagnostic condition, mutual information seemed to be still increasing even

with very long counting times.

Both the analysis of the tuning curves, as well as the mutual information between

spike rate and stimulus identity highlighted another distinction between diagnostic

and non-diagnostic conditions on the neural level. Neural selectivity was higher for

diagnostic conditions. Based on the firing rates for diagnostic stimuli, the presented

image could be identified with less errors than in the non-diagnostic conditions.

3.2.3 Influence of recording location on the behavior of sin-

gle neurons

Since across all sessions the recording sites spanned a relative large extent of area

TE, it could be tested whether neurons throughout the covered region behaved

homogeneously, or whether neurons with a particular behavior clustered in a subre-

gion of TE. On every recording session, the location of each electrode tip was noted.

Electrode locations were specified by their distance from the chamber’s center along

the anterior-posterior and the medial-lateral direction. In addition, the recording

depth was measured as the distance from the electrode tip to the border between

the STS and the upper bank of TE (i.e. the ventral end of the STS). Based on these

coordinates, the influence of the different stimulus conditions could be analyzed as a

function of recording location. As before, the analysis collapsed responses to differ-

ent images, including only images for which at least one condition evoked significant

responses. On a few occasions, the recording depth could not be unambiguously

determined with respect to the sulcal boundaries; these cases were excluded from
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the analysis. Therefore, the data set contained 216 cases, 87 from monkey B98 and

129 from monkey G00.

Plotting the topography of occlusion effects required a very compact description of

the behavior of individual cases. To this end, the effectiveness of the two stimulus

manipulations, i.e. changes of diagnosticity and changes of visible stimulus size, was

characterized for each responsive case. An experimental factor is very effective if

the firing rate follows changes in this factor to a large degree. Effective factors

therefore introduce large modulations in the firing rate. This also implies that

changes in an effective factor underly large proportions of a neuron’s variance when

considering responses across trials of different conditions. Ineffective factors do

not modulate the firing rate, and therefore contribute only little to the response

variability. Effectiveness of diagnosticity and visible stimulus size were therefore

quantified in terms of their explained variance. In this analysis, the two stimulus

manipulations were treated as acting independently on the neural responses. First,

the variance in firing rate was computed across all trials for a responsive case. Trials

were then grouped according to the different levels of one of the factors, i.e. either

according to whether the presented stimulus was diagnostic or not, or according to

how much of an image was visible. The mean firing rate within each group was

computed, and used to derive the variance of the group means. Assume that a firing

rate was completely determined by the particular level of a factor. In this case,

all firing rates within a group would be equal, and the variance between groups

would equal the total variance of the whole data set. If, however, the factor level

had no influence at all on the firing rate, the average firing rate would be the same

for all factor levels, and the variance between groups would be zero. To compute

a normalized measure, the explained variance was finally given by the ratio of the

variance between groups and the total variance (Bortz, 1993).

The explained variance is a measure that captures trial-to-trial variability. It was

therefore based on the firing rates from individual trials. In a later section, the

explained variances for individual neurons will be compared against the one for local

field potential sites. The latter data could not be corrected for baseline influences.

To allow for a fair comparison, the firing rates were therefore also not corrected for

the baseline firing rate when computing the explained variances.

To illustrate the possible outcomes of this analysis, the variance explained by either

diagnosticity or visible stimulus size was computed for the three exemplar units

shown in Section 3.2.1. Unit 1 (see Figure 3.20D) discriminated between diagnostic

and non-diagnostic conditions, but the visible stimulus size exerted an even larger

effect on the firing rates, increasing responses irrespective of a stimulus’ diagnosticity.

Consequently, changes in diagnosticity explained about 5% of the total variance,
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while changes in visible stimulus size amounted to about 20% of the total variance.

In contrast, the firing rates of unit 2 (see Figure 3.21) were mainly determined by the

diagnosticity of a stimulus, with little influence of the visible stimulus size. Here, the

factor diagnosticity explained 47% of the variance, while the factor visible stimulus

size only contributed about 0.05%. Finally, the last unit (see Figure 3.22) displayed

a more complex behavior. Here, differences in firing rates between diagnostic and

non-diagnostic stimuli contributed about 16% to the total variance, while about 7%

could be explained by how much of a stimulus was visible.

Based on the explained variances, the influence of each of the two stimulus manip-

ulations on a neuron could now be expressed in a single number. Before analyzing

any influences of recording locations, the dependency between the two factors was

first investigated. Explained variances for both factors were computed from the

same pool of trials. The explained variances for the two factors thus depend on each

other. Assuming that no additional noise is present, they have to sum to 100%,

since in this case the influences of the stimulus manipulations are the only source of

variability in the data. Consequently, the two factors together have to explain the

complete variance on the firing rate. In the real data, additional noise is present,

and the explained variances of diagnosticity and visible stimulus size will sum to

less than 100%.

Two types of dependencies are conceivable. First, the effect of the two stimulus

manipulations could be positively correlated. In this case, neurons in which changes

in diagnosticity robustly influenced the firing rate should also show reliable effects of

the visible stimulus size. Second, neurons could be either encoding diagnosticity or

visible stimulus size. In this case, high values of explained variances for one factor

should be coupled with low values for the other factor. The latter was the case:

Most cases with high explained variance values for diagnosticity had low explained

variances for visible stimulus size, and vice versa. Figure 3.31A and B plot the

explained variances for diagnosticity versus the ones for size. Each plot also shows

the 90th percentile of the explained variance data of the respective factor. In both

plots, it is evident that – with the exception of a few cases – cases above the 90th

percentile for one factor were below the 90th percentile for the other factor. In

conclusion, for these cases observed changes in the firing rate indicated the levels

of only one of the factors but not both. The data suggest that diagnosticity and

visible stimulus size are independently encoded in TE neurons.

Since each case was influenced only by either diagnosticity or visible stimulus size,

cases were categorized as “diagnosticity” or “size” cases, based on whether their ex-

plained variance values fell above or below the 90th percentile for the corresponding

factor. The recording location of these cases was then plotted. The center coor-
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Figure 3.31: Influence of the two stimulus manipulations. The variance explained by
changes in diagnosticity is plotted against the variance explained by changes in the visible
stimulus size. A, Results for monkey G00. B, Results for monkey B98. The green and red
lines indicate the 90th percentile of the explained variances for the two factors. Red dots
highlight cases above the 90th percentile for diagnosticity, green dots for visible stimulus
size. Blue indicates cases which fall above the 90th percentile of both factors.

dinates of the recording chambers were different for the two monkeys, and their

data were thus treated separately. The resulting topographies are plotted as 2-D

projections on coronal and sagittal views of the monkey brain in Figure 3.32. It was

tested whether cases of the same type clustered in certain regions by splitting the

covered recording area into two equally large subregions along the anterior-posterior

axis, as well as the medial-lateral axis. Along the dorsal-ventral axis, the recording

sites were categorized as either falling into the lower bank of the STS or lateral TE,

depending on whether they fell above or below the white matter region separating

the two regions. The boundaries between individual subregions are indicated in

Figure 3.32 by the dashed lines. The number of diagnosticity and size cases in each

of the subregions was then counted. Table 3.2 lists these numbers, in addition to

the results of a binomial test used to assess the significance of differences along the

three directions.

For the diagnosticity cases, no clustering was found along the AP direction. This

was the case for both monkeys. With respect to recording depth, diagnosticity cases

seemed to be present more often in the lower bank bank of the STS than in lateral

TE. Although the difference between the number of cases in the two regions reached

significance only for monkey G00, the same trend was present in the topography for

monkey B98. Finally, there was also a tendency for diagnosticity cases to cluster
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Figure 3.32: Location of diagnosticity and size cases, shown on 2-D projections of the
monkey brain. A and C present data from monkey G00, B and D from monkey B98. A and
B illustrate the distribution along the AP axis on a sagittal view of parts of the temporal
lobe. This view is generated by cutting a slice along the line shown in the uppermost small
figure on the left. For the boxed region in the second small figure on the left, the slice shows
the lower bank of the STS separated from lateral TE by a band of white matter. C and D
show the distribution along the ML axis on a coronal view of the region below the STS.
The picture on the left indicates the position of this enlarged view. Each dot corresponds
to the location of one case. Large dots show diagnosticity and size cases, while small black
dots indicate the location of the rest of the cases not falling into these groups. To allow
a better separation of different cases, the AP and ML positions of cases were randomly
jittered by a small amount. Lines in the lower left corner of each graph are scale bars. The
length of each scale bar leg is 1 mm. Dashed lines indicate the boundaries used to divide
the recording region into smaller subregions. The views of the temporal lobes are not based
on the exact anatomy of a monkey; instead they are only approximate sketches to help the
interpretation of the plots. Abbreviations: WM - White matter; A - Anterior subregion;
P- Posterior subregion; M - Medial subregion; L - Lateral subregion; D - Dorsal subregion;
V - Ventral subregion.
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Table 3.2: Number of diagnosticity and size cases falling into the different subregions
of the covered TE part. For the subregions’ labels, see Figure 3.32. The significance
values give the p-values computed from a binomial test comparing the numbers in different
subregions.

G00 B98

Diagnos-
ticity

Size Diagnos-
ticity

Size

A 6 13 5 3

P 7 0 4 6

Sig. A-P 1.0 <.000 1.0 .51

M 4 7 1 4

L 9 6 8 5

Sig. M-L .27 1.0 .04 1.0

D 11 11 6 5

V 2 2 3 4

Sig. D-V .02 .02 .51 1.0

in lateral positions, which was evident in a significant difference for the number

of cases in the medial and lateral region in monkey B98, and a trend in the same

direction for monkey G00. In monkey G00, size cases were clustered in the anterior

part of the lower bank of the STS. However, this pattern was not consistent across

monkeys, since the distribution of size cases was homogeneous in monkey B98.

So far, the locations of cases that could clearly be assigned as being influenced ei-

ther by the diagnosticity of a stimulus, or its visible stimulus size, were plotted.

To test for a systematic distribution present in the whole population, the explained

variances of all cases were plotted against their AP position. Since the purpose of

this analysis was to identify globally present relationships between the behavior of

neurons and their location, the data from both monkeys were combined. The analy-

sis was restricted to dependencies on the AP position because the recording sites in

monkey G00 spanned a too small range of ML positions. The plots (see Figure 3.33)

agreed with the above observations: No global pattern emerged for the distribution

of diagnosticity sites along the AP axis. Although the explained variances for the

factor diagnosticity were lowest for the most posterior locations, the range of values

observed was relatively constant throughout the rest of the covered region. This was

also reflected in the fact that the values from both monkeys were in good agreement.

The independence of the explained variances from the AP position was confirmed

by computing a correlation between the two parameters. Correlation coefficients

were not significantly different from zero for the whole data set, as well as for each
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Figure 3.33: Explained variance as a function of AP position. Data from both monkeys
has been combined. A, Influences of diagnosticity. B, Influences of the visible stimulus
size. Each dot represents data from one visually responsive case.

monkey’s data set tested independently (p≥.46 for all three tests). For the vari-

ance explained by changes of the visible stimulus size, the results were incongruent

between monkeys. While they increased with AP position in monkey G00, they

decreased with AP position in monkey B98. As a result, the correlations between

explained variance and AP position were significant when the monkeys were ana-

lyzed separately (G00: r=.28, p=.001; B98: r=-.32, p<.000), but not for the whole

data set (r=-.02, p=.77).

In summary, neurons throughout the whole anterior-posterior extent of the covered

TE region were influenced by changes in the diagnosticity of a stimulus. There was

a tendency for these neurons to cluster more in the lateral part of the lower bank

of the STS than in more medial and ventral parts. Neurons for which the firing

rate was modulated with the visible image amount were distributed homogeneously

throughout the whole recording region.

3.2.4 Representation of occluded stimuli by the LFP

The analysis so far was concerned with the behavior of single TE neurons. Their

activity was measured by identifying action potentials in the signal recorded at an

electrode, and computing the timing of these action potentials. Any other changes

in the neural signal were discarded. However, the neural signal is indeed a com-

prehensive signal consisting of several components (for a thorough summary of the
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topic, see Logothetis, 2002), and the action potentials analyzed so far are actually

superimposed on relatively slow varying field potentials. To capture all signal com-

ponents, spikes and slower voltage variations are usually separated from one another

by applying high- and low-pass filtering, respectively, to the signal detected at an

electrode. The high-pass filtered version of the signal contains the large action po-

tentials generated by neurons very close to the electrode tip. It also reflects the

weighted average of the spiking activity of neurons within a sphere of about 0.3 mm

radius with the electrode at its center, a signal component called the multi-unit

activity. The low-pass filtered version – the so called local field potential (LFP) –

on the other hand is thought to predominantly represent synaptic events like the

excitatory or inhibitory postsynaptic potentials. In the LFP, signals from the neural

population within 0.5 - 3 mm of of the electrode tip are captured.

This section describes the changes induced in the LFP by the different conditions.

During the recordings, the LFP was isolated by applying a low-pass filter (1 - 100 Hz)

to the detected signal. To remove any slow drifts and other artifacts, the recorded

LFP signals were additionally filtered offline between 5 and 80 Hz. Because de-

pending on the signal quality different amplification gains had been used during

the recordings, any LFP data needed to be normalized before signals from different

sites or sessions could be combined. For this purpose, the 100 ms baseline period

preceding stimulus onset was chosen as a reference. In each trial, the mean and

standard deviation of the LFP signal were computed for the baseline period, and

the LFP signal from the whole trial was then z-transformed using these parameters.

As a consequence, the LFP from each trial was centered around zero in the baseline

period, and was given in units of baseline standard deviation.

Fluctuations in the LFP traces from individual trials were usually large, and any

influences of the stimulus were masked by noise. Systematic influences of visual

stimulation on the LFP were therefore first identified by averaging the LFP from

trials with the same stimulus, computing the so called visual evoked potential (VEP).

Before averaging, all trials were aligned with respect to the stimulus onset. Using

this procedure, consistent, stimulus locked LFP components were enhanced in the

average, while stimulus uncorrelated, inconsistent components were suppressed.

Besides assessing stimulus influences, the VEP was also used to determine whether a

site was visually responsive to a stimulus at all. To be included in any of the further

analyses, the VEP amplitude in at least one condition of a particular image needed

to exceed either 1.5 or -1.5 times the baseline standard deviation at three consecutive

time points during the stimulus presentation. Different thresholds were tested and

led to comparable results. When collapsing data across images, the responsiveness

of a site was tested separately for each image. As for the single units, responses
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Figure 3.34: Identification of VEP components. A, Grand average VEPs from mon-
key B98. VEPs were averaged across images and recording sites. Diagnostic and non-
diagnostic conditions of the same were pooled; conditions are referenced by the amount
of image visible. The dashed lines indicate the latency of the three prominent peaks in
the VEP for the unmasked images. Peak latencies in other conditions are indicated by
the small markers. 0 ms corresponds to stimulus onset. B, Peak latency of the three
components, compared across conditions.

in the seven conditions for an image were included if at least one condition evoked

large enough VEP responses. A single site could therefore contribute multiple times

to the average.

Applying this selection criterion, VEPs of the different conditions were pooled across

images and recording sites. For monkey G00, 293 cases from 102 recording sites

contributed to the analysis; for monkey B98, averages were based on 165 cases

from 112 sites. On first inspection, a number of peaks could be identified in these

grand averages. Peak amplitude seemed to be influenced by stimulus condition, but

there were also differences in peak latencies between conditions, as well as between

monkeys. In turn, before the peak amplitude could be analyzed further, the latencies

of interesting peaks needed to be determined. Since the main factor influencing

latency seemed to be the visible stimulus size, and non-diagnostic conditions did

sometimes not lead to identifiable peaks in the grand averages, peak latencies were

determined from VEPs in which diagnostic and non-diagnostic conditions with the

same visible stimulus size were collapsed. The analysis was performed separately

for each monkey.
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Figure 3.35: VEP components for monkey G00. A, Grand average VEPs. B, Latency
of the VEP peaks for the different conditions. Layout of the graph is identical to Figure
3.34.

Figure 3.34 and 3.35 plot the resulting grand average VEPs for the two monkeys.

In each of the conditions, the latency of three peaks was identified. These were a

negative peak around 100 ms after stimulus onset, a positive peak around 130 ms,

and a negative peak around 200 ms. The analysis was restricted to these three

peaks, since they were detectable in both monkeys. Following a convention used in

the EEG literature, the three VEP components will be referred to as N100, P130,

and N200. Peak latency of a component was determined in the average VEPs as

the time point of the maximal or minimal VEP amplitude. For both monkeys,

peak latency was clearly influenced by how much of a stimulus was visible: When

only 10% of a stimulus could be seen, peak latencies were longest; increasing the

visible stimulus amount decreased the latencies almost to the same values as in the

unoccluded condition. In addition, there was an overall difference between the two

monkeys: Peaks appeared on average about 18 ms later in monkey B98 than in

monkey G00. Both effects could be seen for each of the three peaks.

The goal of the subsequent analysis was to quantify differences between conditions

in the mean VEP amplitude during the N100, P130, and N200. Because of the dif-

ferent peak latencies, different time windows had to be specified for each condition

and monkey. Time windows were centered on the peak latencies determined from

the grand average, and had a duration of 20 ms. Increasing the duration to 30 ms

did however not change the results. Identical time windows were used for diagnostic
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VEP amplitudes were averaged in 20 ms time windows around the peak latencies for the
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Figure 3.37: Influence of stimulus conditions on the mean LFP amplitude for monkey
G00. A, Mean VEP in the N100 period. B-C, Mean responses for the P130 and N200.

and non-diagnostic conditions of the same visible stimulus size. Within each time

window, the VEP amplitude was then averaged. The mean VEP amplitude was av-

eraged across images and recording sites. Figures 3.36 and 3.37 show these averaged

mean amplitudes for all seven conditions during the time interval of the N100, P130,

and N200. Since for the LFP both monkeys led to different results, their data were

analyzed separately.

For monkey B98, there was a clear-cut distinction between diagnostic and non-

diagnostic conditions. While diagnostic conditions evoked VEP amplitudes of the

same polarity and almost the same magnitude as the unoccluded condition, non-

diagnostic VEPs had only very small amplitudes that sometimes even had different

polarities than the VEP in the unoccluded condition. VEP amplitude was also mod-

ulated by how much of a stimulus could be seen through a mask: The more of a
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stimulus became visible, the larger the amplitudes of the VEP. The significance of

these observations was verified by performing a repeated measures ANOVA with fac-

tors diagnosticity and visible stimulus size on the VEP amplitudes. ANOVAs were

computed for each of the three time intervals. For the time window corresponding

to the N100, as well as the P130, both factors resulted in a significant main effect

(N100: diagnosticity: F(1,164)=44.30, p<.000; size: F(2,328)=5.61, p=.004; P130:

diagnosticity: F(1,164)=55.18, p<.000; size: F(2,328)=10.79, p<.000), while the

interaction between the factors was not significant (N100: F(2,328)=1.98, p=.14;

P130: F(2,328)=2.14, p=.12). For the N200, the main effects again were highly sig-

nificant (diagnosticity: F(1,164)=43.57, p<.000, size: F(2,328)=8.81, p<.000), but

this time the interaction also became significant (F(2,328)=8.81, p<.000). Perform-

ing paired t-tests between corresponding diagnostic and non-diagnostic conditions

confirmed that they differed reliably, irrespective of how much of the stimulus was

visible (t(164)≤-2.84, p≤.005).

For monkey G00, the effects of different stimulus conditions on the VEP amplitude

were more complex. In general, while for B98 diagnosticity had been the main de-

terminant of the VEP amplitude, both factors influenced the VEP of monkey G00.

Also, differences between the different temporal VEP components were more pro-

nounced for G00 than for B98. In the case of the N100, all conditions with the

exception of the smallest diagnostic condition led to very small VEP amplitudes.

For the P130 and the N200, diagnostic conditions evoked slightly larger VEP am-

plitudes than the non-diagnostic conditions. Differences between diagnostic and

non-diagnostic conditions were most pronounced when only 10% of a stimulus were

visible. For the diagnostic conditions, showing only 10% of a stimulus elicited the

same responses as showing 30% of a stimulus. In contrast, if the visible stimulus

regions were not diagnostic, showing 10% of an image led to small VEP amplitudes,

in the case of the P130 even with the opposite polarity than in the unoccluded

condition. Increasing the visible stimulus size increased the amplitude of both diag-

nostic and non-diagnostic conditions. These effects were more pronounced for the

non-diagnostic conditions. As a consequence, VEP amplitudes at a visible stimu-

lus size of 30 and 50% did no longer strongly distinguish between diagnostic and

non-diagnostic conditions.

For each of the time intervals, differences between conditions were again tested us-

ing a repeated measures ANOVA with the same factors as above. For all three

VEP components, both main effects, as well as the interactions became significant

(diagnosticity: F(1,292)≥42.58, p<.000; size: F(2,584)≥100.98, p≤.000; interaction:

F(2,584)≥33.90, p<.000), making a comparison between the corresponding diagnos-

tic and non-diagnostic conditions necessary. In the case of the N100, differences were
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significant when 10 or 30% of a stimulus were exposed (paired t-tests between di-

agnostic and non-diagnostic conditions; 10%: t(293)=-20.02, p<.000; 30%: t(293)=

-2.33, p=.02), but not when 50% of the stimulus were visible (t(293)=1.67, p=.10).

For the P130, the only significant difference was obtained when comparing diagnos-

tic and non-diagnostic conditions with 10% visible stimulus size (10%: t(293)=9.68,

p≤.000; 30 and 50%: t(293)≤1.93, p≥.051). In contrast, for the N200 all diagnostic

and non-diagnostic conditions differed significantly (t(293)≤-3.51, p≤.001).

To summarize, occlusion did have systematic effects on the LFP behavior. Comput-

ing the grand average VEPs showed very consistent differences between diagnostic

and non-diagnostic conditions in monkey B98. For monkey G00, the diagnosticity

and the visible stimulus size influenced the VEP equally strongly.

3.2.5 Influence of recording location on the LFP behavior

For the rest of the analysis, the influences of the different stimulus manipulations on

the LFP were quantified by computing the variance in the LFP amplitudes that could

be attributed to changes of either diagnosticity or stimulus size. As for the single

units, the explained variances for each factor were computed at each recording site.

Explained variances quantify how much of the variance occurring at a site could be

attributed to modulations because of changes in one factor. The analysis therefore

needed to be based on the data from individual trials. Besides the corrections

already performed, there is currently no method available to correct the LFP data

from individual trials for the ongoing activity. Thus, the raw LFP amplitudes from

each trial were used to compute the explained variances. Explained variances were

calculated separately for the N100, P130, and N200. As before, 20 ms time windows

were constructed around the peak latency appropriate for a condition, and each

trial’s LFP amplitude was averaged over these time intervals. Using these mean

LFP amplitudes, the same analysis could be carried out that had before been applied

to the firing rate of single neurons (see Section 3.2.3). The analysis collapsed the

LFP responses to different images, while only including responsive cases. In a few

sessions, the recording depth could not be clearly identified with respect to the sulcal

boundaries. These sessions were excluded. A pool of 278 cases from monkey G00

and 158 cases from monkey B98 was analyzed.

Similar to the analysis performed on the neural data, the explained variance data

were first used to investigate whether separate pools of LFP sites responded to

changes in the two factors, or whether the influences of the two manipulations on

a LFP site were similar. The interdependence of the two factors was assessed by
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plotting the variance explained by diagnosticity against the variance explained by

the visible stimulus size (see Figure 3.38 and Figure 3.39). As for the single unit

data, these plots demonstrated a negative correlation between the two factors. Cases

where diagnosticity explained a large amount of the variance had low values for the

variance explained by visible stimulus size, and vice versa. Cases could therefore

be unambiguously characterized as either being influenced by diagnosticity, or by

stimulus size.

The grand average VEPs discussed in Section 3.2.4 indicated a different LFP behav-

ior in the two monkeys. The data suggested that while diagnosticity was the main

factor influencing the LFP for monkey B98, both diagnosticity and visible stimulus

size influenced the LFP amplitudes in monkey G00. However, judging from the

explained variances, the LFP behavior seemed not so different in the monkeys. At

least, recording sites could be identified in both monkeys where either diagnosticity

or visible stimulus size strongly affected the LFP amplitudes. It was therefore of

interest whether differences in the VEPs of the two monkeys would disappear if they

were not computed across the whole population, but across selected sites. For each

monkey, cases were selected where the two stimulus manipulations exerted strong

effects. The cases were selected separately for each of the three VEP components.

They had explained variance values above the 95th percentile for either diagnosticity

(the diagnosticity sites), or the visible stimulus size (the size cases) for one of the

VEP components. VEP amplitudes were then averaged across the diagnosticity or

the size cases. Figures 3.40 and 3.41 plot the resulting average VEPs. It is clearly ev-

ident that the monkeys’ VEPs now became more similar. Most importantly, the di-

agnosticity sites from both monkeys show prominent differences between diagnostic

and non-diagnostic conditions. In contrast to the grand average data, even in mon-

key G00 the VEPs from the diagnosticity sites show almost no influence of the visible

stimulus size. This was confirmed by performing a repeated measures ANOVA with

factors diagnosticity and visible stimulus size on the VEP amplitudes for the diag-

nosticity cases of monkey G00. At the N100, both factors led to a significant main

effect (diagnosticity: F(1,14)=45.81, p<.000; size: F(2,28)=12.03, p<.000). There

was no significant interaction between the factors (F(2,28)=2.30, p=.12). For the

P130, VEP amplitudes only distinguished between diagnostic and non-diagnostic

conditions; there was no significant influence of the visible stimulus size (diagnostic-

ity: F(1,13)=160.14, p<.000; size: F(2,26)=.99, p=.39; interaction: F(2,26)=2.59,

p=.09). Finally, at the N200, both the main effect of diagnosticity, as well as the

interaction between both factors were significant (diagnosticity: F(1,13)=760.07,

p<.000; size: F(2,26)=1.14, p=.33; interaction: F(2,26)=6.56, p=.005). A paired

t-test at each of the three visible stimulus sizes confirmed that despite the interac-
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Figure 3.40: VEP amplitudes for selected LFP cases. LFP cases in monkey B98 were
selected which either were strongly influenced by diagnosticity or the visible stimulus size.
A, VEP amplitudes averaged over the diagnosticity cases for the N100, P130, and N200.
B, Average VEP amplitudes for the size cases. VEPs of between 8 and 10 cases were
averaged.

tion, VEP amplitudes were significantly larger in a diagnostic condition than in the

matching non-diagnostic condition (t(13)≤-10.32, p<.000 for all three tests).

Finally, the influence of recording location on the behavior of the LFP was assessed.

Cases were again categorized as diagnosticity or size cases based on the explained

variances. The analysis proceeded separately for each time window. The distribution

of the selected cases along the AP axis is plotted in Figures 3.42 and 3.43. Since no

consistent pattern emerged along the ML axis, the topographies along this direction

are not plotted. Instead, the numbers of cases falling into the medial and the lateral

part of the recording area are given in Table 3.3.

As a first result, Figures 3.42 and 3.43 indicate that at different time points, different

populations of recording cases were strongly influenced by the stimulus manipula-

tions. Whether these cases clustered in particular regions was tested by dividing the

recording region into an anterior and posterior subregion, as well as a dorsal and

ventral subregion. The same divisions as in Section 3.2.3 were used. The number
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Figure 3.41: Amplitudes for the three VEP components. VEP amplitudes were computed
for selected cases from monkey G00. Between 14 and 16 cases contributed to the averages.
For a legend, see Figure 3.40.

Table 3.3: Number of diagnosticity and size cases in the medial and lateral parts of the
recording regions for the two monkeys.

G00 B98

Diagnos-
ticity

Size Diagnos-
ticity

Size

N100 M 5 13 2 1

L 9 1 6 7

P130 M 4 11 3 1

L 10 3 5 7

N200 M 0 13 5 1

L 14 1 3 7
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Figure 3.42: Distribution of responsive LFP cases. A-C, Topographies for the three time
intervals. The plots show the location of diagnosticity and size cases for monkey B98
on sagittal views of the recording region. As in Figure 3.32, the view was generated by
cutting a brain slice along the red line shown in the inset. Large dots correspond to cases
classified as diagnosticity or size cases. Small dots show locations of the unclassified cases.
The AP position of each case was randomly jittered by a small amount to allow a better
separation of individual cases. Dashed lines indicate how the recording region was divided
into subregions. Scale bars are given in the lower left corner of A. The two scale bars have
a length of 1 mm. D, Number of cases in each of the subregions. p-values give the results
of a binomial test between two subregions. Labeling of the subregions is shown in A-C,
abbreviations are listed in Figure 3.32.
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Figure 3.43: Distribution of diagnosticity and size cases for monkey G00. For a legend,
see Figure 3.42.
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of cases of the two categories was then counted in each of the subregions. These

numbers are given in the tables in Figures 3.42D and 3.43D. A binomial test was

used to assess whether the occurrence of recording cases with a particular property

was significantly biased towards certain subregions. The results of this test are also

listed in the tables in Figures 3.42D and 3.43D.

For the diagnosticity cases, a clear clustering in more anterior recording locations

emerged. The results were most consistent between monkeys for the P130. For this

component, the diagnosticity cases were clearly clustered in the anterior recording

locations, with significant differences between the number of cases in the anterior

and posterior regions in both monkeys. Results were somewhat more complicated

for the other two VEP components: For the N100, diagnosticity cases clustered

anteriorly for monkey B98, but were homogeneously distributed for monkey G00.

In the case of the N200, the reverse was the case, with a clear clustering in monkey

G00, and a more homogeneous distribution in monkey B98. However, despite the

variability, there was no incident with more diagnosticity cases in the posterior than

the anterior half. With respect to the effects of recording depth, there was a trend of

diagnosticity sites to cluster in the lower bank of the STS; however, the comparisons

did approach significance only in the case of the N100 component for monkey B98.

Similarly, there was no consistent clustering of the size cases, which seemed to be

equally present for all recording subregions.

The described results have been generated from the distribution of only the cases

strongly influenced by the stimulus manipulations. To quantify trends present on

the population level, the explained variances of all cases were plotted as a function

of their AP position (see Figure 3.44). To test whether the results were consistent

between monkeys, their data were combined. The resulting plots confirmed that the

more anterior a recording site was located, the more the LFP amplitudes differed

between diagnostic and non-diagnostic conditions. For all three time windows, a

positive correlation emerged between AP position and the variance explained by

the factor diagnosticity. This was the case for each monkey individually, as well as

for the combined data. Correlations were significant when computing them across

monkeys (r≤.008 for the three time windows), as well as in most cases for each

monkey individually (G00: N100: p=.97, P130: p<.000, N200: p<.000; B98: N100:

p=.03, P130: p=.08, N200: p=.001). In contrast, the variance explained by changes

in the visible stimulus size did not correlate with AP position. It also differed

consistently between monkeys, with lower values in monkey B98 than in monkey

G00. Correlation coefficients were in most cases not significantly different from

zero as long as the monkeys were tested separately (G00: p≥ .27 for all three time

windows; B98: N100: p=.72, P130: p=.07, N200: p=.28). When computing the
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Figure 3.44: Dependency of the explained variance on AP position. The results from
both monkeys have been collapsed. A-C, Variances explained by changes in diagnosticity
for the N100, P130, N200. D-F, Explained variances for the factor visible stimulus size
at the three time windows. Plots summarize all visually responsive cases. The plots in
A-F show the data of all cases. To confirm the observed trends, the recording region was
divided into 2 mm wide bins, and the mean variances within these bins were computed.
Mean variances are shown in G-I.
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correlation between the explained variance for the visible stimulus size and the AP

position across monkeys, the lower values in monkey B98 in combination with their

overall more anterior locations generated significant negative correlations for the

P130 and the N200 (N100: p=.29, P130 and N200: p<.000).

In conclusion, the LFP behavior changed in a characteristic way when moving from

posterior to anterior recording locations. Along this axis, the influence of diag-

nosticity on the LFP systematically increased. No such trend was obvious for the

influences of the visible stimulus size. The LFP behavior is therefore in contrast

to the single unit behavior, for which no dependency on the recording location was

observed.

3.2.6 Relationship between LFP and SUA

Two neural signals were simultaneously recorded at each electrode – the spiking

activity of single neurons, and the local field potential. While the LFP is a mass

signal reflecting the synaptic events in a larger neural population surrounding the

electrode tip, the spiking activity captures the output of a few, isolated neurons very

close to the electrode. Since the signals were recorded simultaneously, they could

directly be compared, allowing to assess how much the behavior of the LFP at a

particular site correlated with the behavior of the single neurons recorded at the

same site.

When analyzing the spiking activity, the firing rates in a time interval from 100 to

400 ms after stimulus onset have been used. In contrast, three time intervals centered

around prominent VEP peaks were discussed for the LFP data. Before further

discussing relationships between LFP and single unit activity, the timing of the VEP

peaks was compared to the timing of the neural responses. Pooling across images,

the onset latencies of the visually responsive neurons were computed separately for

all conditions. Latencies were defined as the first 10 ms bin in which the number

of spikes significantly exceeded the baseline level, followed by at least one equally

significant bin. Figure 3.45 plots the determined distribution of latencies. The

results for diagnostic and non-diagnostic conditions with the same visible stimulus

size were pooled, to allow a direct comparison to the peak latencies determined for

the VEP. VEP peak latencies are also plotted in Figure 3.45. As the graph shows,

more than 25% of the neurons were already active at the time of the N100. The

occurrence of the N200 fell at or after the onset latency of 75% of the neurons. The

most interesting relationship was observed between the latency of the P130 and the

neural latencies: Figure 3.45 shows that the median response latency corresponded
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Figure 3.45: Comparison between neural latencies and the latencies of the three VEP
components. Box plots show the distribution of latencies observed in the population of
single units. The upper and lower end of each box are placed at the upper and lower quartile
of the distribution, respectively. The middle bar indicates the median of the distribution.
Overlayed on each box plot are the latencies of the N100, P130, and N200. A, Distributions
for monkey G00. B, Results for monkey B98.

well to the peak of the P130. As the P130 latency, the median response latency was

prolonged when only small stimulus portions were visible. It also showed the same

shift of about 20 ms across monkeys.

To compare the functional properties of LFP sites and single units, two analyses

were carried out. In each of these analyses, the characteristics of a LFP site were

compared against the characteristics of the single units recorded at the same site, i.e.

at the same electrode. If multiple units could be isolated at an electrode, the LFP

results were tested against each of these units. In the first analysis, the influence of

the different experimental conditions on the LFP and single units were compared.

The second analysis more generally compared the stimulus selectivity of the two

neural signals.

In Sections 3.2.3 and 3.2.4, the explained variance was used to quantify how much

either firing rates or LFP amplitudes were influenced when the diagnosticity of a

stimulus was changed, or the visible stimulus size was varied. These measures could

be directly compared between LFP and single units. As described in Section 3.2.3,

the single unit behavior was found to be very homogeneous throughout TE. In con-

trast, more anterior LFP sites were more strongly influenced by diagnosticity than

more posterior sites. These different topographies already suggest a low correlation

between the behavior of neurons and the LFP. This hypothesis was confirmed by

plotting the explained variance data for the single units against the data for the
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LFP amplitudes. Data were pooled over images. As before, responses of a LFP site

were only included if at least one condition of an image evoked significant responses

at this site. However, all single neurons were considered, irrespective of whether

they responded significantly to a visible stimulus or not.

Figures 3.46 and 3.47 show the results for monkey B98 and G00. These plots

also show the correlation coefficients between LFP and single unit data, and their

significance. Irrespective of whether all or only the visually responsive single neurons

were considered, there were no apparent correlations between the LFP and the single

unit properties. The only exception was the N100 time period in monkey B98, in

which LFP and single units recorded at the same electrode were influenced with

related strength by changes in the factor diagnosticity.

Comparing the distribution of the explained variances for the visually responsive

single unit cases against the distribution of the corresponding LFP values, higher

values were observed for the single units. Paired t-tests between the variances ex-

plained by diagnosticity for single units and LFPs were significant at all three time

windows for monkey G00, with a higher mean explained variance for single units

than for the LFP (t(67)≤-2.95, p≤.004 for the three time windows). For monkey

B98, the same trend was observed in the mean, but the difference did not reach sig-

nificance at any of the time windows (t(33)≥-1.12, p≥.27 for the three comparisons).

With respect to the factor size, the mean explained variance was again higher for

the single units than for the corresponding LFPs. This difference was significant

for the N100 time period in monkey G00 (t(67)=-3.11, p=.003), as well as all time

periods in monkey B98 (t(33)≤-2.10, p≤.04).

Occlusion differently affected LFP and single unit responses recorded at the same

electrode. In a second analysis, the selectivity of LFP and single units was therefore

compared. This provides a handle on more general response properties of the two

signals. To quantify the selectivity, only the responses to the unmasked images were

taken into account. For the LFP sites, mean amplitudes during the N100, P130,

and N200 were considered as response. The firing rate was taken as the single unit

response. Selectivity was then measured as the variance in the response strength

that could be attributed to differently strong responses to different images. The

explained variance for the factor image was thus computed.

As before, the explained variance values for the single unit were plotted against

the ones for the LFP amplitudes measured at the same electrode (see Figure 3.48).

Only LFP cases were considered in which at least one unoccluded image evoked

significant responses. All single units were again considered. Individual neurons were

taken to be visually responsive if at least one unoccluded image evoked significant
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Figure 3.46: Comparison between single unit and LFP properties for signals recorded at
the same electrode (monkey B98). The plots compare the explained variance data for the
single units against the data for the LFP sites. The upper row (A-C) contains the variance
explained by the diagnosticity, the lower row (D-F) the variances explained by the visible
stimulus size. Each plot corresponds to one VEP component. LFP cases were restricted
to visually responsive cases. Black dots indicate that the single unit case was not visually
responsive; gray dots are visually responsive single unit cases. Correlation coefficients
computed for the LFP and single unit data are given in each plot, together with their
significance. Black values give the correlation coefficients for the complete data set, gray
values the correlation coefficients considering only visually responsive single units.
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a legend, see Figure 3.46.
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Figure 3.48: Selectivity of single units versus the selectivity of LFP sites. Selectivity was
quantified as the variance in response rate explained because of the presentation of different
images. Only the unmasked images were considered. LFP sites were restricted to the ones
showing visual responses. A-C, N100, P130, and N200. Black dots show the behavior of
these LFP sites compared to the behavior of the single units recorded at the same location,
with the single units being not visually responsive. Gray dots show the comparisons with
visually responsive single units. Results from both monkeys were pooled. The inset text
gives the correlation coefficients between the LFP and spike data (black: complete data,
gray: significant single units only).

responses. Effects were similar in both monkeys, and their data were therefore

pooled, so that the analysis was based on 212 LFP cases. Again, no correlation

became evident for the N100 and P130. In the case of the N200, the selectivity

of the responsive single units was significantly correlated with the LFP selectivity.

Comparing the range of explained values observed for the LFP and the single units,

an even stronger tendency for higher values for the single units became obvious.

Paired t-tests between the explained variances for single units and LFPs showed

these differences to be significant at all time windows (t(211)≤-3.33, p≤.001 for the

three tests). The same was the case when only including the visually responsive

single unit cases (t(55)≤-5.33, p<.000).

For spikes as well as for the LFP, explained variances were computed on the raw

data. Firing rates were not corrected for baseline activity, and LFP recordings were

not corrected for stimulus uncorrelated fluctuations. These random influences will

reduce the explained variances. If one assumes that the contributions of spontaneous

activity were generally lower for the spikes than the LFP, this might well explain

why explained variance values were generally lower for the latter signal. In the

final analysis, the selectivity of LFP sites and single units was therefore quantified

based on the VEP amplitudes and the net firing rates. N100, P130, and N200 were

analyzed separately. The analysis was carried out identically for single units and
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Figure 3.49: Selectivity of single units versus the selectivity of LFP sites. Selectivity
was here quantified by how monotonic a tuning curve decreased with stimulus rank. This
monotonic decrease is measured by the correlation coefficient between the response of a
neuron or the VEP amplitude of a LFP site, and the stimulus rank order. A-C, N100,
P130, and N200. As before, black dots show the behavior of these LFP sites compared to
the behavior of the single units recorded at the same location, with the single units being not
visually responsive. Gray dots show the comparisons with visually responsive single units.
Results from both monkeys were pooled. The inset text gives the correlation coefficients
between the LFP and spike data (black: complete data, gray: significant single units only).

LFP sites. The four images were rank ordered according to the response that they

evoked when presented without an occluder. The best image was assigned to rank

1, the worst to rank 4. The responses were then correlated against the rank. This

tests whether responses linearly decrease from best to worst image. The regression

coefficient gives a measure for the monotony of a tuning curve. It underestimates

selectivity, because very selective neurons or sites may only respond to one of the

images, and therefore show no monotonic tuning curve.

Figure 3.49 plots the correlation coefficients of LFP sites against the ones for single

units. Confirming the explained variance results, no correlation became evident

between LFP and single unit behavior. However, when selectivity was characterized

by the monotony of the tuning curves, LFP sites were as selective as the single units.

108 single units had significant correlation coefficients (p<.05); for the three VEP

components, correlation coefficients were significant at 144, 101, and 122 LFP sites,

respectively.

To compute a tuning curve, stimuli had to be rank ordered according to the response

which they evoked. This rank order could be used to assess whether the image

that evoked the highest responses from a neuron similarly generated the highest

VEP amplitudes. To this end, each neuron’s best image was selected. The rank

of this image was then determined for the corresponding LFP site based on the
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Figure 3.50: Similarity of the stimulus preferences between LFP and single units. For
each neuron, the best image was determined. It was then tested which rank this image
occupied in the tuning curve of the LFP site, based on the VEP amplitudes. A-C, VEP
components. Open bars sum all cases, gray bars the visually responsive neurons only. The
thin dashed line indicates chance level for all cases, the thick dashed line the chance level
for the visually responsive ones.

VEP amplitudes. A rank of 1 implies that the neuron’s preferred image was also

the best stimulus for the LFP sites. Larger ranks indicate that the LFP site did

not preferentially respond to the neuron’s best stimulus. The histograms in Figure

3.50 show the distribution of ranks at the three VEP components. These plots

clearly demonstrate that all rank positions were about equally likely. There was

no indication of a similar image preference for neurons and the corresponding LFP

sites. To confirm the significance of the observation, the number of rank 1 cases was

tested against the chance level expected for an equal distribution across all ranks.

Irrespective of whether the complete data or only the visually responsive neurons

were considered, there was no significant deviation from chance level (χ2-test, χ2 ≤
3.56, p≥.06). In conclusion, the selectivity of single units and LFP sites was very

different.

All analyses performed in this section highlight that the properties of the LFP

recorded at an electrode are not correlated with the properties of the single neurons

recorded at the same electrode. This was the case for the effects of occlusion, as

well as the general stimulus selectivity.



Chapter 4

Discussion

The aim of this Ph.D. thesis was to characterize how occlusion influences the repre-

sentation of learned visual form by neural populations in the temporal lobe. In an

initial, purely behavioral study, the influence of different spatial placements of an

occluder on the recognition of monkeys was tested. The results of the behavioral

part indicate that monkeys rely more on some parts of images than on others. These

results were used to study the responses of neurons in area TE. Here, changes in fir-

ing rate and LFP responses with different occluder placements were analyzed. The

results show how the diagnosticity of an image region influences neural responses

measured in area TE. The discussion will first concentrate on the behavioral results,

followed by the conclusions drawn from spike and LFP data.

4.1 Behavioral results

4.1.1 Effects of occlusion on the performance of monkeys

In most cases, monkeys were able to identify partially occluded images. However,

despite their overall good performance, occlusion introduced recognition errors. The

effects of a mask were dependent on which image parts were occluded: Whereas the

occlusion of certain image regions consistently impaired performance, the occlusion

of others had little or no effect. This is the first report of such effects for Rhe-

sus monkeys. Previous studies have tested humans and pigeons with the Bubbles

paradigm. The have similarly shown that the placement of the occluder determines

whether an image could be identified (Gosselin & Schyns, 2001; Gibson et al., in

179
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press). It therefore seems that partial occlusion affects the perception of different

species in a similar way.

The observed systematic interactions of occluder and recognition performance im-

ply that the monkeys preferentially used information from specific image regions

to perform their task. We could thus successfully determine the diagnosticity of

each region in the natural scenes. The current study is the first in which this was

possible. Because of the complexity of natural scenes, diagnostic regions in natural

scenes could so far only be indirectly determined. They were either deduced from

the errors in classification tasks (D’Amato & van Sant, 1988; Macé et al., 2005),

from the groups into which large numbers of stimuli were classified (Sands et al.,

1982), or from the behavior towards manipulated images (Vogels, 1999). These

methods relied on the intuition of the experimenter about which features could be

diagnostic. Furthermore, none of the studies could determine with certainty all di-

agnostic regions. Here, diagnostic regions were determined with the actual stimuli.

The paradigm did not require any prior expectations about stimulus diagnosticity,

and exhaustively sampled all image regions. The current study therefore provides a

much more complete picture of the monkeys’ behavior than the previous ones.

The monkeys differed markedly in which image regions they found diagnostic for

the task. Both monkeys only partially agreed with human observers about the

diagnosticity of different image regions. Thus for the tested task, the behavior of

human observers could not be used to predict the monkeys behavior. It seems that in

human observers, the bias to use object parts to identify an image is much stronger

than in monkeys. It can be speculated that these differences are generated because

the observers use different levels of abstraction to encode the stimuli.

When recording the eye movements evoked by an image, the distribution of fixations

has been taken to indicate which image regions an observer finds informative. It

has been shown that the fixation density for an image changes depending on the

information that an observer needs to extract from the image. This result was

confirmed for monkeys. Fixation densities changed when the monkey was performing

a task on an image, instead of freely inspecting it. Nonetheless, neither the fixation

locations during free viewing, nor the ones during the task necessarily agreed with

the Bubbles results.

A number of reasons may explain the discrepancy: First, it is known that at least the

locations of the initial fixations depend on low-level image properties (see Section

3.1.4). However, it is unclear how the influence of low-level properties on fixation

placement develops over time. Furthermore, the monkeys were not forced to look

at the image the whole time. As a consequence, they usually studied the image for
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some time, but eventually looked away from the image. These periods of looking

elsewhere were often followed by another period of fixations falling onto the image.

Again, it has not been tested how the physical image characteristics influence these

“rebound” fixations. In conclusion, it is almost impossible to quantify how much

the fixations should be influenced by the low-level image properties. If they strongly

determine the location of fixations under the tested settings, this could explain why

diagnostic image regions did not necessarily receive most of the fixations.

It is also possible that the placement of fixations on an image is generally very stereo-

typed. Low-level image properties could be one source determining the stereotyped

behavior, but other sources like image content are conceivable as well. Even though

the task seems to exert some influence on the placement of fixations, this effect

may not be strong enough to completely overcome the stereotyped behavior. A

closer inspection of Figure 3.13, which sparked the study of fixations, supports this

hypothesis. Although the distribution of fixations varied greatly depending on the

instruction given to an observer, there was nonetheless no condition in which the

portrayed heads received no fixations. When for the tested monkey the fixation den-

sities were compared between a free-viewing and a task condition, it was found that

the same image regions received most of the fixations. Yet, there was a trend for

the diagnostic image regions to receive more fixations in the task condition. There-

fore, it could be hypothesized that the image regions attracting similar numbers of

fixations in both paradigms reflect the stereotyped component of the fixation place-

ment. The additional image regions receiving fixations only during the task could

then result from the small task influence. Precisely these image regions showed more

consistency between the eye movement behavior and the Bubbles results.

Finally, one could conclude that monkeys identify partially occluded stimuli differ-

ently than fully visible stimuli. Since only the eye movements evoked by unoccluded

images have been quantified, this could explain why image regions with high fixation

densities did not predict the diagnostic image regions well. It seems very unlikely

that the monkeys identify occluded and unoccluded images based on different image

regions (see also the discussion below). This hypothesis could possibly be verified

based on the scan patterns evoked by partially occluded stimuli. However, fixations

usually do not fall onto homogeneous parts of an image. The occluded image regions

do not contain structure, and it is thus unlikely that they would attract fixations.

The fixation density on a partially occluded image therefore has to be highest for

the image regions that are visible trough the occluder. However, this effect does

not necessarily indicate a different treatment of the partially occluded stimuli. It

can simply be a product of which image regions contain visible structure that can

attract fixations.
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The diagnostic image regions for the Bubbles task could neither be predicted from

the behavior of human observers, nor from the fixation densities. Predictions based

on low-level image properties were similarly unsuccessful. For monkeys, no dif-

ferences could be found in the average low-level properties of diagnostic and non-

diagnostic regions. Also, even in the best case, only about 40% of a diagnostic region

could be explained by the occurrence of extreme values of some low-level charac-

teristics. About the same portion could be explained for the non-diagnostic image

regions.

Taken together, no parameters have emerged that can predict the behavior of the

monkeys. Most importantly, even though monkeys are often assumed to behave

similar to human observers in visual tasks, the current results suggest that inferring

monkey behavior from human behavior can be very misleading. This emphasizes

the need to directly determine the strategies of monkeys in a particular task. The

observed variability between monkeys strongly supports this claim. While monkey

G00 used mostly object parts to identify a scene, monkey B98 relied on background

patches to identify the same scene. Based on more standard measures of an ob-

server’s performance, this difference in strategies would not have become apparent.

As an example, both monkeys performed with a comparable, very low error rate

when they had to discriminate among unoccluded images.

The current study is not the first to suggest that good performance in a task does not

indicate that monkey observers are behaving similar to human observers. Studies

on stimulus categorization both for monkeys and pigeons draw similar conclusions.

D’Amato & van Sant (1988) trained monkeys to categorize natural scenes based on

whether they contained a person. The tested monkeys seemingly learned the concept

very quickly and could apply it to novel scenes. After a series of experiments, the

authors analyzed the pictures that were misclassified by the monkeys. Based on

the pictures that were erroneously classified to contain a person, it became evident

that in many cases the monkeys were actually using the presence of a red patch to

identify natural scenes that contained a person. This strategy is in strong contrast

to the behavior of a human observer performing the same classification.

Prior to the study by D’Amato & van Sant, Greene (1983) similarly demonstrated

for pigeons that little about the birds’ strategies could safely be concluded from

their obviously good performance in a task. In this study, pigeons were trained in

a number of complex categorization tasks, including a categorization task involving

slides with or without a particular person. In all tasks, it became evident that the

pigeons achieved a good performance because they memorized the large stimulus

sets, not because they extracted the categorization rules. Interestingly, for the

classification of the person slides, the results are reminiscent of the behavior of
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monkey B98. In the initial training, person and non-person slides had distinctly

different backgrounds. When during testing the backgrounds were swapped between

the two categories, pigeons failed to respond to the person slides as before, and

instead responded to the non-person slides. Presumably, pigeons had based their

decisions on the background instead of the person shown in the scenes.

4.1.2 Methodological issues on Bubbles

The present results were obtained using the Bubbles paradigm, by determining the

image regions where occlusion had a systematic effect on performance. For com-

pleteness, this section discusses potential problems with the Bubbles paradigm, and

their consequences on the experimental results. This is also necessary because Mur-

ray & Gold (2004) recently questioned the validity of the Bubbles approach. They

criticized two aspects of the paradigm. First, they suggested that reverse correla-

tion is more appropriate to determine diagnostic regions than Bubbles. Second, they

claim that Bubbles distorts the diagnosticity of image regions and therefore yields

incorrect results.

The first issue is irrelevant for the current project. Reverse correlation in principle

allows the same type of analysis as Bubbles. In a typical reverse correlation exper-

iment, random noise drawn from a Gaussian distribution is added to each image

pixel (see for example Gold et al., 2000). Similar to Bubbles, the observers continue

to perform their task on these noisy images. After the experiment, image regions

are identified in which the addition of noise interferes with the observers’ behavior.

In reverse correlation, each pixel is treated independently. In a given trial, very

different noise values can thus be added to neighboring pixels. As a consequence,

the appearance of the complete stimulus resembles the one of an image received on

a TV channel that is out-of-tune. Although certain stimulus information is deleted

in the noisy image, the stimulus does not generate the impression of a partially

occluded image. Since the goal of the current project was to study the influences of

partial occlusion on behavior, reverse correlation was not suited for the project.

The second issue raised by Murray & Gold however is more relevant. They argued

that because only small fragments of a stimulus are visible on any Bubbles trial, ob-

servers will treat these stimuli differently than the unoccluded stimuli. If observers

change their strategies for the occluded stimuli, the Bubbles results will not truth-

fully capture the diagnostic regions in the original stimuli. As an example, since

natural scenes contain redundant features, it may be that observers normally use

only few of these. Presenting the natural scenes behind occluders may then force
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the observers to use different features on different trials, depending on how the mask

is placed. As a consequence, the diagnostic regions obtained with Bubbles would

include all possibly informative image regions, not only the fewer image regions

usually used. Another potential influence of partial occlusion has been discussed in

Section 3.1.3. Under normal circumstances, at least human observers identify each

image by its foreground object. When images are partially occluded, the lack of

information may make this high-level strategy less successful. In turn, the observers

may begin to use more low-level strategies to perform the task. Image regions with

prominent low-level features do not have to coincide with image regions containing

object information; the diagnostic regions determined with Bubbles would therefore

be a misrepresentation of the diagnostic regions in the unoccluded image.

Based on our experimental data, it seems unlikely that Bubbles strongly interfered

with the subject’s normal strategies. All subjects, both humans and monkeys, were

immediately able to perform the task on the partially occluded images. Strategies

thus must have been transferred from the unoccluded images. In addition, the diag-

nostic regions remained very stable. As has been shown for monkey B98 in Section

3.1.2, the regions determined as diagnostic after prolonged testing were already di-

agnostic during the first session. Thus, diagnostic regions were not a product of

repeated exposure to masked stimuli. This also means that subjects do not adapt

their behavior to the partially occluded stimuli. The two observations can indicate

that subjects use the same strategies for occluded and unoccluded images. They

are, however, also compatible with an immediate change in strategy as soon as oc-

cluded images are introduced. This hypothesis cannot be fully excluded. However,

since masks were random on every trial, it seems unlikely that subjects could adapt

so quickly to the new situation. Finally, a pronounced influence of more low-level

image features during the Bubbles testing can be refuted as well. For none of the

observers could the prominent presence of low-level factors explain more than 40%

of the diagnostic regions. Image regions did thus not become diagnostic because

subjects preferentially concentrated on these features when tested with partially oc-

cluded stimuli. In conclusion, our experimental data suggests that the same regions

are diagnostic for occluded and unoccluded images.

Most importantly, even if Bubbles would change the strategies of an observer, this

would only affect the interpretations of the behavioral data. It would have no conse-

quences for the neurophysiological part of this project. The aim of this thesis was to

characterize the effect of occluder placement on the responses of area TE neurons.

For the neurophysiological data, the main comparisons were performed between dif-

ferent occluded versions of an image. Responses to unoccluded images served only

as a benchmark, to quantify general influences of occlusion. To this end, the goal of
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the behavioral studies was simply to identify image regions where occlusion affected

the monkey’s performance. These tests allowed us to generate interesting conditions

for the single cell recordings. The Bubbles paradigm was used since it performs a

rigorous sampling of the whole image space without imposing any biases for specific

image regions. As confirmed in a separate experiment, the obtained results indeed

could be used to construct occluded image versions that affected the monkeys’ per-

formance. With respect to the physiology study, the Bubbles paradigm thus clearly

served its purpose.

The discussion so far has dealt with specific issues regarding Bubbles. It was initiated

by the concern that the used paradigm influences the strategies of observers, and

can thus not capture the diagnostic regions of the unoccluded images. These effects

may not be present, and are furthermore not important for the project. They are

however one aspect of a general problem regarding diagnostic regions: Diagnostic

regions are not fixed, but depend on the requirements of a task. This general fact,

which is not a product of the Bubbles paradigm, has relevant implications for the

current project. First, the determined scene regions are only diagnostic for the tested

task. The validity of this argument can be inferred from the studies of Gosselin &

Schyns (2001) and Gibson et al. (in press). In both experiments, the diagnostic

regions changed when subjects performed different tasks. It is therefore likely that

if our identification task was replaced by a different task, diagnosticity would be

distributed differently across the scenes. Second, the diagnostic regions depend on

the stimulus set. Here, each stimulus set consisted of three images. Adding further

images, or pairing the tested images with different scenes, would probably change the

diagnostic regions. As a thought experiment, assume that scene N1 would be paired

with two scenes showing the same bird in the same pose, but in front of different

backgrounds. Necessarily, the background would have to become diagnostic instead

of the bird. Because of these two reasons, the determined diagnostic regions cannot

be taken as fixed entities in the natural scenes, but they should be interpreted only

in the context of the task and the stimulus set. These regions reflect the learning of

both task contingencies and stimulus properties.

These caveats should be kept in mind when interpreting any neural effects as well.

It cannot be assumed that images will be split in the same diagnostic and non-

diagnostic regions under all circumstances. As a consequence, it seems unlikely that

the responses of TE neurons would show such a rigid distinction between different

image regions. This implies that, in principle, the responses of TE neurons to

diagnostic and non-diagnostic conditions have to be recorded while the monkey

performs the appropriate task on the correct stimulus set. The data reported here

were collected while the monkeys performed a fixation task; in addition, the stimuli
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from different sets were mixed. However, because of the large amount of trials that

needed to be collected for the Bubbles analysis, the monkeys had been extensively

exposed to the stimuli prior to the recordings. During the behavioral testing, each

stimulus appeared only in one context. As a consequence, the monkeys developed

a very stable preference for certain image regions. Indeed, the re-test of monkey

B98 on the first image set showed that even training on a second image set did not

influence the diagnostic regions. As discussed in Section 1.2.6, the selectivity of TE

neurons is shaped by learning. Because of the repeated exposure to the images and

the presumably stable diagnostic regions within these images, it is very likely that

TE neurons developed a matching selectivity. This explains why the responses of

TE neurons showed a pronounced difference between diagnostic and non-diagnostic

conditions even in the fixation task with stimuli from different sets.

A final methodological issue concerns the selection of parameters for the Bubbles

paradigm. With respect to the occluders, two parameters had to be chosen. These

were the number of bubbles in a mask, and the size of the bubbles. The number of

bubbles varied within a broad range for monkey and human observers. Its influence

on the Bubbles results therefore has to be negligible. The influence of the bubble size

was directly tested for human observers. The results show diagnostic regions to be

largely unaffected by a change in bubble size. For the monkey observers, the influ-

ence of the bubble size was not tested; however, it is unlikely that diagnostic regions

would change drastically with different bubble sizes. When the Bubbles results were

verified, the smallest masks revealed half of an image. In these stimuli, the visible

image parts were largely continuous, a mask configuration that paralleled Bubbles

masks with very large bubbles. Still, diagnostic and non-diagnostic conditions led

to markedly different performances. Also, larger number of bubbles were used for

monkeys than for humans. For the human observers the limiting effects of a smaller

bubble size could be overcome by placing more bubbles in an occluder. Thus, for

the monkeys any influences of a too small bubble size would probably have been

counterbalanced by the large number of bubbles.
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4.2 Single unit responses

Neural responses in area TE were recorded while the monkeys viewed different par-

tially occluded versions of natural images. Six masked conditions were constructed

for each image. Occluded conditions varied in two factors, diagnosticity and vis-

ible stimulus size. Both factors characterize different properties of the occluders.

In the diagnostic conditions, image regions with behavioral relevance were visible;

these regions were occluded in the non-diagnostic conditions. Diagnosticity thus

refers to the spatial placement of the occluder. The visible stimulus size indicates

the occluder’s extent. Behaviorally, the two factors had very different effects: The

diagnosticity of the visible image portion determined whether or not an image could

be identified despite occlusion. In contrast, there were almost no influences of the

visible stimulus size (see Figure 3.9). Decreasing how much of a stimulus was visi-

ble only slightly reduced the recognition rate for diagnostic stimuli. Also, with the

exception of image set 1 for monkey B98, increasing the visible stimulus size did

not improve the performance on the non-diagnostic conditions. In conclusion, the

influence of occlusion on TE responses were studied with respect to two occluder

parameters, one with behavioral consequences, the other one without.

The results of a previous study on occlusion (Kovács et al., 1995) showed how TE

neurons were influenced by occlusion in general, irrespective of the spatial placement

of the occluders. The previous study differed in a number of ways from the current

one: Instead of natural scenes, geometric shapes were tested. Furthermore, occluders

were either moving or static masks consisting of randomly placed texture elements.

Before describing the effects of the occluder placement in more detail, it is thus of

interest to test whether both studies agree on the general influences of occlusion on

TE responses. For this comparison, the diagnostic and non-diagnostic conditions

were pooled.

One effect of occlusion reported previously was a general reduction in firing rate.

Kovács et al. (1995) quantified the effect of occlusion by a so called responsivity

index (RI), which was computed by subtracting the net response to the preferred

shape in an occlusion condition from the net response to the same shape without

occlusion. The difference was then divided by the sum of the two responses. RI

values near 0 show that responses were comparable with and without occlusion.

Values near 1 are generated if a neuron is not responsive to the occluded shape

at all. For a moving occluder covering 50% of a shape, Kovács et al. reported a

median RI of 0.26, indicating that the response strength with partial occlusion was

one-half the response strength with no occlusion. For a stationary occluder also

covering 50% of a shape, a median RI of 0.17 was obtained, which was statistically
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not significantly different from the RI with moving occluders. Increasing the density

of the occluder, i.e. decreasing how much of a stimulus was visible, increased the RI.

For a moving occluder covering 90% of a shape, the median RI reached 0.66.

Judging from Figure 3.23B, occlusion reduced the firing rates at least by a factor of

two in the current study. The size of the response reduction reported by Kovács et al.

thus seems similar to the one observed in our data. To compare the two experiments

more directly, the RI was calculated for our data as well. The analysis was based on

the usual pool of 220 visually responsive cases, and therefore not only included the

preferred images, but any image that evoked a significant response. The responses

to diagnostic and non-diagnostic conditions of the same size were averaged. Median

responsivity indices of 0.37, 0.32, and 0.25 were obtained for the 10%, 30%, and 50%

condition, respectively. Especially the RI for the 50% condition nicely agrees with

the results of Kovács et al., despite the differences between the experiments. In the

10% case, the response reduction seems to have been less pronounced in our neuronal

pool. However, with random occluders covering 90% of a shape, chances are low that

the remaining 10% are the diagnostic shape parts. In the study by Kovács et al.,

most trials with the very dense occluder will therefore have been exposing non-

diagnostic shape features. A fair comparison between the two experiments should

thus probably be based only on the non-diagnostic condition of our study. Indeed,

in our data the 10% diagnostic and non-diagnostic conditions evoked very different

firing rates. Especially the responses in the non-diagnostic conditions were very low.

Computing the RI for the non-diagnostic condition only, the median RI increased

to 0.56, a value more consistent with the strong response reduction seen by Kovács

et al.

Kovács et al. showed another general influence of occlusion on the neural responses.

They reported that neural response latencies to occluded shapes were longer than

the latencies for unoccluded shapes. For a static occluder with a coverage of 50%,

the latencies differed by 20 to 25 ms. Considering Figure 3.45, occlusion also affected

the latency in our study. To compare our data with the experiment of Kovács et al.,

latency differences were quantified between the unoccluded and the 50% condition,

averaging latencies for the diagnostic and non-diagnostic conditions. Differences

were computed for the 147 cases from both monkeys in which latencies could be

determined for the unoccluded and occluded condition. A significant difference of

25.92 ms emerged, by which the responses to occluded images lagged the responses

to unoccluded images (Wilcoxon signed rank test, z=-3.01, p=.003). Again, our

data is in good agreement with the behavior of TE neurons reported previously.

Besides these general effects, occluders exerted different influences on TE responses

depending on how they were placed. As described above, the mean firing rate was
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reduced when images appeared behind occluders. However, the reduction in firing

rate was less pronounced when diagnostic image regions remained visible despite

the occlusion. The effect of occluder placement was strongest when only 10% of the

image remained visible through the mask. In this condition, showing non-diagnostic

instead of diagnostic image parts reduced the firing rate by about a factor of two.

However, differences were also present for other visible stimulus sizes. To summarize,

the responses of TE neurons followed the behavioral relevance of the image portions

which remained visible after partial occlusion.

Differences in firing rates between diagnostic and non-diagnostic conditions could

not be attributed to a number of possible confounds. Diagnostic and non-diagnostic

regions covered different spatial locations. The influence of receptive field locations

and inhomogeneities therefore needed to be considered. However, image material

at a fixed spatial location could or could not evoke responses from a neuron simply

depending on its diagnosticity. This clearly argues against an influence of the spa-

tial position at which stimulus material was presented. Similarly, low-level image

parameters could be excluded as a source for differences between diagnostic and

non-diagnostic conditions. All occluded versions of an image had the same global

luminance and contrast as the unoccluded image. In most cases, this also equalized

luminance and contrast locally. In addition, the firing rates of only very few neu-

rons significantly correlated with the low-level properties of an image, as shown by

the analysis in Section 3.2.1. Finally, diagnostic regions – as had to be expected

– usually contained some part of the object shown in the images. TE neurons

are known to be responsive to object features. Differences between diagnostic and

non-diagnostic conditions could therefore also be due to the presence or absence

of an object, instead of differences in diagnosticity. Although it is very difficult

to disentangle the influences of diagnosticity and objects, a limited analysis could

be performed on the neurons from monkey B98 that responded to scene N2. To

identify this scene, the monkey used information from a background region, and

non-diagnostic conditions contained the scene’s object. In this case, no differences

emerged between the diagnostic and non-diagnostic condition. The results therefore

demonstrate that the presence of an object partially contributes to the differences

between conditions. It is strong enough to counterbalance the influence of diagnos-

ticity, so that responses to diagnostic and non-diagnostic conditions become similar.

Yet, since the responses were not stronger in the non-diagnostic condition, the mere

presence of an object cannot completely explain the differences in firing rates for

diagnostic and non-diagnostic conditions.

Besides differences in mean firing rate, occluder placement also affected the selec-

tivity of TE neurons. Nevertheless, neurons maintained more of their selectivity in
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the diagnostic conditions than in the non-diagnostic conditions. The spike counts

also transmitted more information about which image was presented in a diagnostic

condition. The mutual information in the diagnostic conditions even reached the

same values as in the unoccluded condition. Two conclusions can be drawn from

these observations. First, based on partial occlusion with random masks, Kovács

et al. (1995) concluded that TE neurons remained selective despite the occlusion.

Our data show that this conclusion is limited: Selectivity is only preserved in the di-

agnostic conditions. Second, diagnostic regions are image regions that the monkeys

used to discriminate among the different images. Therefore, it is interesting to see

that neural responses are also better able to distinguish among diagnostic regions of

different images, than among non-diagnostic regions. However, it should be kept in

mind that selectivity was computed across four images selected from two image sets.

While the monkeys had extensive experience in discriminating the images from the

same set, they were never required to perform a comparison across image sets. It is

understandable that selectivity developed for the members of an image set, but it is

not as clear why the neurons should show selectivity across the members of different

image sets.

In contrast to diagnosticity, the visible stimulus size only had a small influence on the

neural responses. For the mean firing rates, enlarging the visible image portion only

affected the non-diagnostic conditions. Here, firing rates increased when more of

an image became visible. This effect is most likely due to the fact that with larger

visible image regions, the non-diagnostic conditions may begin to include image

regions with a somewhat higher diagnosticity. Neural selectivity was equally little

influenced by the visible stimulus size. For the non-diagnostic conditions, increasing

the visible stimulus size did not restore the selectivity found without occlusion. In

the diagnostic conditions, selectivity increased with larger visible stimulus sizes.

However, the major improvements were seen when increasing the visible stimulus

size from 10 to 30%. Further improvements were small when moving from a visible

stimulus size of 30% to one of 50%. Finally, the mutual information between spike

count and image identity was unchanged by the visible stimulus size. With respect

to neural selectivity, the selectivity in the diagnostic conditions became somewhat

more pronounced when the largest amount of the image was exposed. As for the

mean firing rates, this effect may be explained by the fact that larger non-diagnostic

regions may begin to include more diagnostic image parts.

For an additional analysis, the influences of both stimulus manipulations were quan-

tified by the size of firing rate modulations they could introduce. These modulations

were captured in the variance explained by either changes in diagnosticity, or changes

in visible stimulus size. Based on the explained variance data, it was possible to
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study whether the neural behavior systematically changed with recording location.

At least along the anterior-posterior direction, no influences of recording position

could be identified for the single units: When plotting the AP recording positions

of neurons strongly affected by one of the two factors, no clustering emerged in

any of the monkeys. Since recording chambers were placed slightly differently in

the two monkeys, the dependency of the explained variances on the AP recording

position could be tested for a relatively large extent of TE. Again, no consistent pat-

tern emerged for the two factors. In summary, the behavior of single neurons was

relatively constant throughout the covered TE region. Most importantly, this also

implies that different subregions in TE are similarly engaged in encoding stimulus

diagnosticity.

In conclusion, the influences of occlusion on TE neurons parallel its behavioral con-

sequences: Occluder placement determined whether or not a stimulus could be iden-

tified. These large behavioral effects were accompanied by large changes in firing

rates and selectivity. In contrast, changing how much of an image could be seen

had little influence on the recognition rate as long as the visible parts remained di-

agnostic. At the neural level, the addition of physical information introduced some

changes, but these were of a different magnitude than the changes generated by

diagnosticity.

Reducing an image to its diagnostic region diminished the firing rates somewhat;

reduction to the non-diagnostic regions had a very pronounced effect on the firing

rates, demonstrating that images can be split into regions that result in different TE

responses. Since the responses were also reduced for the diagnostic conditions, all

image regions seem to contribute to some degree to the response to the full image.

However, diagnostic regions have more impact on the firing rate than non-diagnostic

regions. This result in general could have been predicted from the experiments by

Tanaka et al., described in Section 1.2.6. These studies reported that TE neurons

responding to a complex object often also responded to specific parts of the object,

but not to others. Yet, no unifying criterion for the critical features emerged from

these studies. Our data show that the critical image features that drive TE neurons

are the regions of behavioral relevance. This finding is consistent with a number of

studies, all of which have shown that diagnosticity plays a large role for the responses

of TE neurons. Along diagnostic dimensions, TE neurons express higher selectivity

than along other dimensions (Sigala et al., 2002; Baker et al., 2002). Furthermore,

during visual search, TE neurons remain silent to large parts of natural scenes, but

begin to respond to the regions indicative of the appropriate response to the scene

(Sheinberg & Logothetis, 2001).
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The data also point to another property of TE neurons. The formation of diagnostic

regions is a result of experience. Besides preferences resulting from general experi-

ence with visual input, there is no reason why an observer should, a priori, find one

image region more diagnostic than another. Similarly, it is possible that TE neurons

in näıve animals show some distinction between different image regions because of

the general experience with visual input. Our data, however, show clear differences

between the image regions that were diagnostic or non-diagnostic for the task. The

fact that these differences were present after extensive discrimination training thus

provides another instance of how selectivity in TE is shaped through experience.
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4.3 LFP responses

4.3.1 Representation of occluded scenes by the LFP

LFPs are a measure of neuronal activity complementary to spike trains, as mentioned

in Section 3.2.4. The latter reflect the activity of isolated pyramidal cells close to

the electrode tip (Logothetis, 2002). In contrast, the LFP is a mass signal that

is influenced by currents originating from axons, somata and dendrites around the

electrode (Mitzdorf, 1987; Logothetis, 2002). While the behavior of single neurons

in TE has been studied for several years, there has been far less effort devoted to

the study of the LFP properties in area TE (Kreiman et al., 2004). Our study is the

first in which stimulus effects on the LFP recorded in area TE are systematically

studied.

The LFP reflects both ongoing cortical activity and stimulus evoked components

(Mitzdorf, 1987). In a first analysis, the influence of a stimulus was separated

from the ongoing activity by computing the VEPs. Because VEPs are derived by

averaging repeated LFP measurements time-locked to the onset of the stimulus, any

components without a fixed relationship to the stimulus are discarded. Presentation

of natural scenes evoked three peaks in the VEPs of both monkeys, which were

labeled N100, P130, and N200 to indicate their polarity and latency. Partial stimulus

occlusion reduced the amplitudes of all three components, and increased their peak

latencies. These effects systematically depended on how much of a stimulus was

covered by an occluder. The more of an image was occluded, the stronger the

amplitude reduction, and the longer the peak latency. Occlusion effects were similar

across monkeys, although there was a consistent latency difference between the two

animals.

In addition to general influences of occlusion, the VEP was also influenced by which

image parts an occluder covered. Figures 3.40 and 3.41 show that in both monkeys

there were sites at which the VEP amplitudes distinguished between diagnostic and

non-diagnostic conditions. At these sites, the VEP amplitudes were only slightly

influenced by the visible stimulus size of a condition. Similarly, there were sites

in both monkeys where the VEP amplitudes were influenced mostly by the visible

stimulus size, although the effects of the visible stimulus size were more pronounced

for G00. These differences between occlusion conditions were observed for all three

VEP components. In conclusion, the LFP recorded in area TE is sensitive to the

placement of an occluder.



194 CHAPTER 4. DISCUSSION

To analyze the effects more closely, individual recording sites were characterized by

how strongly the two stimulus manipulations influenced the LFP amplitudes. As for

the single units, the explained variance was computed for both factors. Since this

measure characterized trial-to-trial variability of a signal, explained variances had

to be computed from the raw LFP traces of each trial, and not from the VEP. Based

on the explained variances, a clear influence of recording position on the behavior

of LFP sites could be identified. The more anterior a recording site was located, the

stronger the modulation of the LFP amplitude with stimulus diagnosticity. Also,

the LFP sites with particularly strong influences of diagnosticity clustered anteriorly

in both animals. This trend was present within each monkey. Furthermore, the data

agreed well between monkeys. In contrast, the influence of visible stimulus size was

homogeneous across the recording area.

The current data therefore shows a distinction between LFP and spikes. For the

LFP, the influence of diagnosticity progressively increased from posterior to anterior

locations. Yet, the single units in the whole area homogeneously encoded diag-

nosticity. To explain this difference, the sources generating the LFP need to be

studied more closely. The LFP reflects the postsynaptic potentials in a certain re-

gion around the electrode tip. Postsynaptic potentials are generated because of the

fibres providing input into an area from other brain regions. However, slightly more

than half of the axonal tree of a pyramidal neuron remains within an area, while

the other half leaves the area and forms long-range connections (A. Schüz, personal

communication). Postsynaptic potentials from the axon parts that remain within

the area will generate local contributions to the LFP. Thus, the LFP reflects both

the local processing within a brain region, as well as the input into this region.

Since our recordings were carried out in TE only, the local processing component of

the LFP can be assumed to be constant. This is also justified because the behavior

of neurons was homogeneous throughout the region covered by the recordings. How-

ever, the input component differs between posterior and anterior TE. Considering

only the major projections (see Section 1.2.1), both regions receive input from TEO,

and project to each other. However, posterior TE exclusively receives projections

from area V4. In conclusion, the input into posterior TE is dominated more by

the influence of earlier visual areas than the input into anterior TE. Because the

local part of the LFP was assumed to be constant, differences in the LFP between

posterior and anterior TE point to a distinct behavior of the earlier visual areas.

Our data suggest that the input into posterior TE from earlier visual areas carries

only very limited information about stimulus diagnosticity. Yet, spiking activity of

the single neurons in posterior TE, which reflects the processing within this brain

region, discriminated between diagnostic and non-diagnostic conditions. Taken to-
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Figure 4.1: Model proposed based on the influences of diagnosticity on LFP and spike
data. V4 and TEO are included because they provide the main input to area TE, which
is here subdivided into posterior TE (TEp) and anterior TE (TEa). The bar plots given
for each area show hypothetical firing rates to diagnostic (black bar), and non-diagnostic
(white bar) conditions. Arrows indicate connections between areas. As suggested in the
text, neurons in V4 and TEO do not distinguish between diagnostic and non-diagnostic
conditions. These conditions are first discriminated in TEp.

gether, our results imply that the diagnosticity of an image feature is first encoded

in posterior TE. Earlier visual areas like V4 or TEO do not encode this stimulus

dimension.

Neurons in V4 respond to object features of intermediate complexity, resembling

parts of an object boundary (Pasupathy & Connor, 1999, 2002). Similarly, TEO

also responds to complex shapes (Kobatake & Tanaka, 1994). It has not been tested

so far whether the encoding of these shape parts is influenced by their diagnosticity.

Our data suggest that this is not the case. V4 and TEO most likely provide TE

with a description of shape parts; the processing in TE then assigns weights to these

parts according to their diagnosticity.

The general model is outlined in Figure 4.1. Not only does it integrate our LFP and

spike data, it also agrees with the reported effects of lesions in area TE. If, indeed,

earlier visual areas do not extract diagnosticity, lesions of area TE have to result

in the observed impairments in any task taxing the ability to identify diagnostic

stimulus features.

The explained variances have been used to characterize spatial dependencies of the

LFP and spike behavior. In both cases, data were not corrected for the ongoing or
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spontaneous activity. This could not be avoided, because the random fluctuations

present in the LFP can currently not be modeled. Consequently, their contributions

could not be removed from the individual trial data. However, it is unlikely that

differences in the spontaneous activity can account for the distinctly different spatial

dependencies of LFP and spike data. Larger levels of noise lead to lower explained

variance values. Different levels of spontaneous activity may thus explain why ex-

plained variances were generally lower for the LFP than for the spikes. However, to

explain the spatial patterns, one has to assume that the spontaneous activity sys-

tematically decreases with more anterior recording locations only for the LFP. This

already seems improbable at the outset. It furthermore predicts that for the LFP,

the explained variances for the visible stimulus size should similarly increase from

posterior to anterior locations. The reverse pattern was obtained experimentally,

dismissing the possibility of artifacts because of the spontaneous activity.

Finally, the dependence of the LFP behavior on the recording location can explain

the differences in the grand average VEPs from both monkeys. As mentioned above,

there were sites in both monkeys at which the VEP amplitudes distinguished only

between the diagnostic and non-diagnostic conditions, and the visible stimulus size

had no effect. Nonetheless, the grand average VEP showed this effect only for mon-

key B98. For monkey G00, both diagnosticity and visible stimulus size influenced

the VEPs equally strongly. The recording chamber was placed more posteriorly in

monkey G00 than in monkey B98. Thus, the recordings from monkey G00 mostly

sampled TE parts in which diagnosticity had only a small effect on the LFP am-

plitudes. In contrast, the more anteriorly located recording sites in monkey B98

showed stronger effects of diagnosticity on the LFP. This bias in sampling explains

the differences in the grand average, which combined the data of all recording sites.

4.3.2 Comparison between the monkey LFP and the human

EEG

Since no further LFP data is available for area TE, the observed effects can only

be compared against EEG results from human observers. Similar to the LFP, the

EEG captures the synchronized synaptic events of a neuronal population. However,

the comparison between LFP and EEG is limited by a number of factors. The LFP

reflects activity within a 0.5 - 3 mm radius around the electrode tip (Logothetis,

2002), with the electrode being placed in the brain area under study. In case of the

EEG, electrodes are placed at the scalp, and therefore have a much larger distance

from the cortical sources of the field potentials. Sources of EEG signals are thus

most probably compact regions of cortex in which the local field activities of neurons
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are synchronized on the cm2-scale. In addition, the generated local fields have to

be similarly oriented by cortical geometry. Under these conditions, the interference

of the fields of individual neurons generates a strong enough far-field EEG signal

reaching the scalp by volume conduction (see e.g. Makeig et al., 2004). In addition

to the EEG sources themselves being larger, volume conduction from other brain

sources, as well as non-brain sources like muscles also influences the EEG signal

recorded at an electrode. It is therefore rather difficult to attribute a recorded EEG

component to a particular brain region (Schroeder et al., 1998). In any comparison

between LFP and EEG, it has therefore to be kept in mind that the sources gen-

erating a signal change may be very different between the two signals. In addition,

the polarity of a recorded signal depends on the positions of recording and reference

electrode in the electromagnetic field. Because of the different placement of LFP

and EEG electrodes, the same signal components may appear in LFP and EEG

with different polarities. Finally, monkey and human brains have different sizes.

It is therefore possible that the same components have longer latencies for humans

than for monkeys.

The study by Doniger et al. (2000) described in Section 1.1.1 provides information

on how occlusion affects the human VEP. Working with so called Snodgrass stimuli

(Snodgrass & Feenan, 1990), Doniger et al. deleted varying amounts of complex

objects. The study took advantage of the fact that objects can be recognized de-

spite a certain level of deletion. The level of deletion at which objects can just be

recognized is called the level of identification. If more of the object is deleted, sub-

jects are no longer able to identify the object. VEPs were computed at the level of

identification, and three larger deletion levels. Object presentation evoked a series

of four VEP components: a positivity around 100 ms after stimulus onset (the P1),

followed by a negativity around 170 ms (the N1), and a positivity at 220 ms (the

P2). Finally, onsetting at the peak of the P2 and peaking at about 290 ms, there was

a negative deflection in the VEPs (termed the Ncl). Both P1 and N1 were maximal

at occipital sites, and were not influenced by stimulus deletion. The same was the

case for the P2, which peaked at medial electrode sites (Doniger et al., 2001). In

contrast, the amplitude, and judging from the figures in the paper, the latency of

the Ncl systematically changed with occlusion. The less of a stimulus was deleted,

the larger was the amplitude of the Ncl, and the shorter the latency. In addition to

this gradual change with deletion level, there was a disproportionately large increase

in the Ncl amplitude when the identification level was reached. Interestingly, the Ncl

peaked at occipito-temporal scalp positions, suggesting that this component could

be generated by activity in the LOC.
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In the monkey grand average VEPs, the most consistent effects of occlusion were

seen about 200 ms after stimulus onset. No influences of occlusion were present

in the human VEPs at this time. Human VEPs began to differ between occlusion

conditions about 30 ms later; the maximal occlusion effects were not reached until

90 ms after they reached their maximum in the monkey. As mentioned above,

the latency of human EEG components could lag the latency of the corresponding

monkey components. A factor of 5/3 between human and monkey latencies has been

suggested to account for these differences (Doniger et al., 2000). The component

corresponding to the monkey N200 therefore should have a latency of 330 ms in the

human VEP, which is slightly longer than the actually observed latency of the Ncl.

If the assumption of longer latencies in humans than in monkeys is correct, the Ncl

in the human VEP may tentatively be identified with the N200 seen in the monkey

VEP during recordings in area TE. A source for the Ncl in the LOC is consistent

with this hypothesis.

With respect to earlier components, consistency between human and monkey VEP is

less clear. For the N100 and P130, the monkey VEPs showed effects of occlusion. In

the human VEP, no effects of occlusion were observed for the components preceding

the Ncl. However, P1, N1 and P2 had different topographies than the Ncl, which

suggests that these components were most likely generated from different sources.

Indeed, both P1 and N1 are usually taken to reflect endogenous processing of visual

stimuli (for summaries of the properties of P1 and N1 see Itier & Taylor, 2004a;

Carmel & Bentin, 2002). The P1 is interpreted to reflect attention in spatial and

non-spatial visual tasks. Its sources are estimated to lie in areas V3, V3a, and V4 for

the early part of the component, and the fusiform gyrus for the late part (Di Russo

et al., 2001). The N1 amplitude is larger if subjects perform a discrimination task

than if they simply have to detect a stimulus. It is therefore taken to reflect a general

discrimination process applied to a specific spatial location (Vogel & Luck, 2000).

Source localizations show this component also to be generated from occipital brain

regions (Itier & Taylor, 2004a,b). There are less studies on the P2 with respect

to visual processes. However, it seems that the P2 recorded over the occipital

cortex could reflect the processing of global figural geometry (Oka et al., 2001). As

mentioned above, the P2 seems also to be generated by sources different than the

sources for the Ncl. In conclusion, the VEP seems to be dominated by the influence

of earlier visual areas before the onset of the Ncl. P1 and N1 thus most likely

capture the behavior of brain regions whose activity does not affect the monkey

VEPs measured directly in area TE. A comparison between the earlier components

in the human VEP and the earlier components in the monkey data is thus not

justified.
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While the influence of categorization tasks on the human VEP has been studied,

there is almost nothing known about which VEP responses are evoked by the di-

agnostic features themselves. The only available data come from an experiment

by Smith et al. (2004), in which the Bubbles paradigm was combined with EEG

recordings. Human observers were asked to classify faces based on their gender or

expression. During the task, faces were only partially revealed by the usual random

Bubbles masks. Behavioral responses were registered for every trial; at the same

time, the EEG was recorded during the stimulus presentation. Sorting the Bubbles

masks according to the behavioral responses revealed that – in agreement with the

previous results by Gosselin & Schyns (2001) – different face regions were diagnostic

for the two tasks. Whereas the eye region indicated the gender of a face, the mouth

region was used to determine the expression. Bubbles masks could also be sorted

based on the raw EEG amplitudes from each trial, to quantify the influence of the

visibility of different face regions on the EEG. Bubbles masks from trials in which

the EEG amplitudes at a particular time point were above the mean were contrasted

with the masks from trials with amplitudes below the mean. The analysis was re-

stricted to two components in the VEP, the P300 recorded over the parietal cortex,

and the N170 recorded over occipito-temporal sites. The visibility of specific face

regions correlated well with the amplitude of the EEG during these time periods.

During the P300, the EEG amplitude was modulated by the presence of the diag-

nostic features, following the changes in diagnostic regions with task. In contrast,

during the N170, EEG amplitudes were only influenced by the presence or absence

of the eye region, irrespective of the task that the subjects performed. In contrast to

the P300, the N170 seems therefore not to be influenced by stimulus diagnosticity.

The experiment of Smith et al. (2004) shows that in principle the contributions

of diagnostic features to a certain VEP component can be quantified. Yet, it is

difficult to relate the findings to our data. First of all, because of the recording

location, only the N170 is relevant in this context. The N170 is taken to be a face-

specific component, since its amplitude is larger for faces than for any other object

category (Bentin et al., 1996; for a review, see e.g. Rousselet et al., 2004). The N170

sources are most likely found in a lateral temporal region near the superior temporal

sulcus (Itier & Taylor, 2004b), a region also showing activation in fMRI studies on

face perception and recognition (Haxby et al., 2000). Whether the N170 is specific

to human faces or to faces in general, and how expertise with an object category

contributes to this component is a matter of current debate (e.g. Rousselet et al.,

2004; Rossion et al., 2004). Although animal faces were present in almost all images

in our experiment, they covered only small portions of the scenes. In contrast, any

study on the N170 has used close-up views of faces. Because of its face specificity,

it is unclear whether the human N170 could even be elicited by the presentation of
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our images. A comparison between the behavior of the human N170 and any of the

monkey VEP components thus seems very far-fetched.

No further data are available on how the occlusion of specific image regions influences

the human VEP. However, some conclusions about how the successful recovery of a

partially occluded object affects the human VEP can be drawn from the two experi-

ments by Doniger et al. (Doniger et al., 2000, 2001). Since the visibility of diagnostic

features determines whether or not an image can be recognized, this comparison may

give further insights into possible similarities between human and monkey VEPs. In

both studies, the Ncl amplitudes followed the recognition performance of observers:

At a fixed deletion level, the Ncl amplitudes were more negative when an object was

identified than when identification failed. Furthermore, after repeated presentation

of the same object, observers could identify the objects despite much higher amounts

of deletion. The Ncl amplitude at a large level of deletion was more negative for

the repeated object presentation than for the initial presentation, during which the

object could not be identified. In conclusion, the Ncl amplitude indicates whether

or not a partially visible object contour can successfully be completed into the full

object. In parallel, the differences in the monkey VEP with diagnosticity implicate

that the N200 amplitudes follow whether or not an image can be recognized despite

the occlusion.

In conclusion, some similarities were observed between human and monkey VEP.

These regard the Ncl in the human VEP, and the N200 in the monkey VEP. However,

any conclusions are severely limited by the difficulty to precisely determine the

sources of the scalp EEG. The topic thus requires further research. As a first step,

the scalp EEG could be measured for the monkeys to allow more direct comparisons

between LFP and EEG data.
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4.4 Comparison of single unit and LFP responses

Next to the analysis of general differences, LFP and single unit behavior can be

compared at a much finer scale. These comparisons take advantage of the fact that

both signals were recorded with the same electrode. In agreement with the findings

of Kreiman et al. (2004), little consistency was observed between corresponding

LFP and spike data. LFP sites were in general more weakly influenced by changes

in diagnosticity and visible stimulus size than the single units. The same was the

case for stimulus selectivity, as long as it was quantified in terms of the explained

variance. These effects can be explained by the fact that the LFP pools signals over

a relatively large number of neurons. Diversity in this neuronal pool will reduce the

net result of the different stimulus manipulations. Also, the LFP depends on the

geometry of the sources generating the local fields, and therefore on the geometry of

axons and dendrites. The LFP signal thus is not a simple average of the activity of all

neurons in a region. Instead, local fields of individual neurons interfere depending

on their orientation. Again, this can reduce effects seen in the LFP. A further

explanation is also possible. The explained variances include random influences of

the spontaneous activity. If these random fluctuations are higher in the LFP, the

explained variances will also be lower for the LFP than for the single units.

While differences in the level of selectivity probably have to be expected when

comparing LFP and spike data, it is more striking that LFP and neurons recorded at

the same electrode respond maximally to completely different stimuli. Similarly, at

a LFP recording site influenced strongly by diagnosticity, the chances of recording

a neuron also strongly influenced by diagnosticity were not higher than at other

recording sites. The same held true for the visible stimulus size. It therefore seems

that the functional properties of the LFP and single units are quite distinct.

Since the LFP pools responses across a larger spatial extent, the fact that any

selectivity could be observed at all implies a somewhat systematic topographical

arrangement in the sources generating the LFP. Combining the LFP and MUA data,

Kreiman et al. (2004) suggest that this conclusion concerns area TE. A clustering

of TE neurons with similar selectivity would agree with the proposed columnar

organization of area TE (Fujita et al., 1992; Wang et al., 1998). However, this

hypothesis is inconsistent with our data. If the LFP behavior truly captures the

properties of a group of neighboring TE neurons, then the behavior of individual

neurons from this group should at least partially mimic the LFP behavior. In

contrast, we consistently found no correlation between LFP and single cell behavior

recorded at the same electrode. Since a large pool of neurons was tested, and because

sometimes multiple neurons were recorded from the same electrode, it seems very
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unlikely that these effects were simply generated due to chance sampling of only non-

representative single units. Most likely, the TE spiking output therefore does not

represent the sources of the LFP signal. Instead, it seems more plausible to identify

the LFP with the input into TE, as has been assumed before. In this context,

our data suggest that input into TE arrives in an orderly fashion, in the sense

that the LFP arises from neuronal pools with relatively homogeneous properties.

This seems plausible, since both V4 and TEO are still organized in a retinotopic

manner (Gattass et al., 1988; Boussaoud et al., 1991). Furthermore, the foveal

representation of V4 contains group of cells with similar orientation preferences,

suggesting that some functional organization may exist in V4 (Ghose & Ts’o, 1997).

At the same time, our results highlight that the input that a neuron TE receives does

not necessarily predict the functional behavior of the neuron in a straightforward

manner.
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4.5 Further experiments

A number of interesting questions arise from the findings of this projects, which could

be pursued in further experiments. Behaviorally, monkeys found other image regions

diagnostic than human observers. Especially puzzling was the finding that monkey

B98 relied more on background regions than on object parts. In our experiments the

monkeys only had to discriminate among three images, which were always presented

at the center of the screen. Because of the positional invariance and the limited

stimulus set, in addition to the complex backgrounds of natural scenes, almost any

image region contained sufficient differences between the three images to be used

to discriminate between them. In human observers, the bias to use object features

seems to have been strong enough to still rely on object regions. However, this bias

seems not to be as pronounced in monkeys. It has been demonstrated that monkeys

need additional processing time to perform a categorization task in comparison to a

simple stimulus detection task (Macé et al., 2005). This could be an indication that

they have to extract additional, possibly more general features in the categorization

task. However, the results by D’Amato & van Sant (1988) show that this does

not necessarily have to be the case. As a first additional experiment, it would

be interesting to test which object features become diagnostic when monkeys have

to perform a more complex task than simple image identification. One possibility

is to test them on a categorization task. Another possibility is to use the same

identification task as before, but to manipulate the members of the stimulus set.

Images for example could be shown at different screen positions, or they could

appear in several rotations. Based on the outcomes of these experiments, further

conclusions about Rhesus monkeys’ ability to generalize can be drawn.

A second experiment, which would be interesting both behaviorally and neurophys-

iologically, follows along the same lines. It has been argued several times that

diagnostic features are determined by the task and the stimulus set. The described

experiments by Gosselin and Schyns indeed demonstrate that one stimulus set can

have different diagnostic regions, depending on the task. Behaviorally, determin-

ing diagnostic regions for the same stimuli under different task constraints provides

another instance of testing the monkeys’ ability to generalize. On the neurophysio-

logical level, the fact that different features of a stimulus are diagnostic for different

tasks makes it possible to disambiguate the encoding of a certain feature from the

encoding of its diagnosticity. It can be tested whether TE neurons always respond

to the presence of a certain feature, or whether they follow the diagnosticity of the

features, and thus truly indicate diagnosticity.
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The following experiment is therefore proposed: Monkeys will be trained to perform

two discrimination tasks on one fixed image set. Because of the success with hu-

man and pigeons, a good option would be to train them to discriminate faces either

based on the gender or the expression. Using Bubbles, the diagnostic regions of the

faces will then be determined for each of the tasks. If different regions are used to

determine the gender or expression, these results can be used to construct stimuli

for a subsequent neurophysiological study. As in our experiment, stimuli will be

constructed by masking the faces, so that either the diagnostic regions of the gen-

der task, or the diagnostic regions of the face task remain visible. Neurons will be

recorded in area TE, while the monkey actively performs the two tasks. Recording

sessions will start with one of the tasks; after sufficient data collection, the mon-

keys will be switched to the other. To test how TE neurons follow the changes in

diagnosticity across tasks, it is necessary to always record neural responses to the

diagnostic regions of both tasks. However, it is not straightforward to collect this

data because of the following reason: Assume that the monkey performs the gender

task. Presentation of full faces will elicit correct responses, as will the presentation

of the diagnostic regions for the gender task. Yet, ideally the diagnostic regions for

the expression task are not diagnostic for the gender task, and the monkey cannot

use these regions to correctly perform the task. This introduces differences in the

recognition rates that can be expected for the different conditions, and poses prob-

lems with respect to rewarding the monkey. The simplest solution to the problem

seems to be as follows. While the monkey performs a task, trials will be randomly

interspersed in which no response is required, and simple fixation on the stimulus is

sufficient for reward delivery. These trials could be indicated to the monkey e.g. by

a change in the color of the fixation spot. In our present experiment, the selectivity

shaped by training proved sufficient to detect differences between diagnostic and

non-diagnostic conditions even without the context of an identification task. For

the suggested experiment, it is assumed that the performance of a task provides the

necessary framework and adjusts the neural selectivity accordingly, which should

also be seen in the fixation trials. The monkey will be asked to perform the task

only on the full faces and the diagnostic regions for the current task. Fixation trials

will contain the full faces and the task-matched diagnostic regions for comparison, in

addition to the diagnostic regions of the other task. This however will result in the

task-matched diagnostic regions to be shown more often. To mask these differences,

a certain proportion of the task trials could contain faces masked with the standard

Bubbles masks. Comparing the responses to full faces and the task-matched diag-

nostic regions between task and fixation trials can later serve to detect any possible

differences due to the different trial types. If these are not present, responses to the

diagnostic regions of the two tasks can safely be compared. In conclusion, it can
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be tested whether TE neurons respond to a particular face region irrespective of its

diagnosticity, or, alternatively, whether the diagnosticity determines the responses

to certain features.

Finally, it was suggested that the encoding of diagnosticity is a property which is

first achieved in area TE. The hypothesis is consistent with lesion data. In addition,

a modulation of neural firing rate with diagnosticity is consistent with previous

studies in area TE. However, it has not been tested so far whether neurons in areas

V4 and TEO can distinguish between diagnostic and non-diagnostic conditions. In

our project, the conclusions about the properties of these areas were drawn from

the LFP data. To confirm the model, single cell recordings should be carried out

directly in area V4 and TEO. If the assumptions prove to be correct, neurons in these

areas will not respond differently to diagnostic and non-diagnostic conditions. It can

then safely be concluded that area TE does not only encode diagnosticity, but that

one function of this area is to extract the diagnosticity of features. Simultaneous

recordings in areas V4, TEO, and TE could also be used to address another issue.

Our data showed that the LFP behavior recorded at an electrode did not correlate

well with the behavior of the single neurons recorded at the same electrode. It

was suggested that this effect could be explained by the assumption that the LFP

behavior reflects the selectivity of the areas projecting to TE, but not of TE itself.

The simultaneous recordings could address this question. If the hypothesis is correct,

than the spiking activity in V4 or TEO should be a better predictor of the LFP

recorded in area TE than the spiking activity of TE neurons.
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Conclusions

Monkeys were trained to discriminate between natural scenes. Covering images

with randomly constructed occluders during the discrimination task revealed that

the occlusion of certain image regions interacted with the monkeys’ recognition per-

formance. Each natural scene could thus be subdivided into a diagnostic and a

non-diagnostic region. The diagnostic regions were characteristic for each monkey.

They could not be predicted from the behavior of human observers, nor from the

physical characteristics of different image regions. Instead, they reflected the ob-

servers’ particular strategy and biases. The data thus show that it can be misleading

to infer monkey behavior from human behavior, as is commonly done. This is the

case even if according to standard measures like the percentage of correct trials, the

monkeys seem to perform similarly to human observers.

The behavioral data was subsequently used to test how the placement of an occluder

influences the responses of TE neurons. Two parameters were used to construct dif-

ferent occluders: Occluders could be placed to cover diagnostic or non-diagnostic

image regions (factor: diagnosticity), and they could have one of three sizes (factor:

visible stimulus size). The two factors had different behavioral consequences for the

monkeys: Recognition performance was unimpaired despite occlusion as long as the

diagnostic image parts were visible. In contrast to this pronounced effect of diagnos-

ticity, the visible stimulus size had little effect on recognition rates. The responses

of TE neurons systematically varied with occluder placement. Large differences

were observed between diagnostic and non-diagnostic conditions. In general, the

neurons were more responsive and more selective in the diagnostic conditions. In

contrast, the visible stimulus size had only little impact on the neural behavior. The

effects of occlusion on TE responses therefore followed the behavioral consequences

of the occluder. As long as an image could be identified despite the occlusion, the
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neurons remained responsive. With respect to the responses evoked by unoccluded

images, occlusion led to a general response reduction. This reduction was however

significantly larger for the non-diagnostic than for the diagnostic conditions. In con-

clusion, these experiments reveal how different parts of natural scenes contribute

to the neural responses to the full scene. The results suggest that the impact of

an image region on the firing rate in TE is determined by the diagnosticity of the

region.

Together with the spiking activity of individual neurons, the LFP was recorded

at each electrode. Stimulus-locked components in the LFP were characterized by

computing the VEPs. Analysis was performed on three major VEP components,

the N100, P130, and N200. Occlusion had effects on all three components in both

monkeys. LFP sites could be identified where VEP amplitudes distinguished among

diagnostic and non-diagnostic conditions (diagnosticity sites). The visible stimulus

size had little effect on the VEP amplitudes at these sites. Similarly, there were

sites where the VEP amplitude was mostly influenced by the visible stimulus size

(size sites). Both types of LFP sites were present in both monkeys. The size

sites were distributed homogeneously throughout the TE region covered during the

recording. In contrast, the diagnosticity sites were localized mainly in anterior

TE. This trend could also be seen when analyzing the modulations in raw LFP

amplitudes introduced by changes in diagnosticity, or changes in the visible stimulus

size. Again, the influence of diagnosticity on the LFP was stronger in the anterior

part of TE than in the posterior part. This was the case for each monkey individually,

as well as for the combined data. For the spike data, there was no such dependency

on the recording locations. The LFP reflects local processing, as well as the input

of other visual areas into the studied brain region. The behavior of the single units

indicates that the local processing is homogeneous throughout TE. Because of the

constant local processing, differences in the LFP across TE thus have to be due

to differences in the input into the anterior and posterior part. Indeed, anterior

and posterior TE receive inputs from different brain regions. Most notably, the

projections from area V4 terminate in posterior TE exclusively. Since diagnosticity

did not exert strong effects on the LFP amplitudes recorded in posterior TE, our

results imply that the earlier visual areas exclusively projecting to posterior TE

are not sensitive to the diagnosticity of a stimulus feature. Based on the observed

behavior of the single neurons, diagnosticity is clearly encoded in the output of

posterior TE. Our data therefore suggest that stimulus diagnosticity is first encoded

in posterior TE, but not in the earlier visual areas. The model not only explains the

dependency of the LFP behavior on recording location. It is also consistent with

the effects of lesions in area TE, which impair tasks taxing the ability to extract

diagnostic information from visual input. The LFP results therefore allow to extend
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the conclusions drawn from the single unit behavior: It seems that neurons in area

TE do not just encode diagnosticity, but that it is one function of area TE to extract

this information.
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