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Abstract

Compiler-compilers are tools that generate substitutes for hand-written compiler com-
ponents from high-level formal specifications. Such tools exist for lexical, syntactic and
semantic analysis, optimizers and code generation. The established benefits are reduced
development time and increased confidence in the correctness of the resulting software.

This thesis presents a generator for type checkers. Given a description of the type
system by typing rules, the generator yields a type checker that constructs proofs using
the typing rules. Unlike earlier approaches, we derive suitable notions of proof and typing
rule from an analysis of type systems and from corresponding constructs in mathematical
proof theory. The approach thus respects the structure and intention of the typing rules,
rather than expressing the rules in some pre-existing formalism.

The given applications comprise type checkers for imperative, object-oriented and func-
tional languages, including ML type inference. The typing rules for these checkers directly
represent those found in the literature. They naturally describe the typing of single lan-
guage constructs and they can be re-used in different checkers.

We use the generator to develop the language SAGA for generic programming. Generic
programming has become a standard approach to creating reusable and reliable software,
particularly through the wide-spread use of the C** Standard Template Library (STL).
Existing C*t compilers cannot type-check generic algorithms before instances are gener-
ated, hence errors manifest themselves only when the algorithms are used. SAGA overcomes
this problem by a novel language design that enables generic algorithms as found in the
C*™* STL to be type-checked such that the correctness requirements stated in algorithm
interfaces are obeyed and instantiation never fails. It therefore turns the aims of the earlier
proposal SUCHTHAT into a concrete language design.






Zuammenfassung

Compiler-compiler generieren aus formalen Spezifikationen Komponenten fiir Compiler,
um dort handgeschriebenen Code ersetzen. Solche Generatoren existieren fiir die lexika-
lische, syntaktische und semantische Anlayse, fiir Optimierer und die Coderzeugung. Es
hat sich gezeigt, dafl die Entwicklungszeit abnimmt und gleichzeitig das Vertrauen in die
Korrektheit der Software steigt.

Die vorliegende Dissertation beschreibt einen Generator fiir Typchecker. Er erzeugt
aus einer Spezifikation eines Typsystems, die in Form vom Typregeln gegeben ist, einen
ablauffahigen Typchecker, der Typherleitungen mit Hilfe der gegebenen Regeln konstruiert.
Abweichend von fritheren Vorschlédgen werden passende Definitionen fiir Typherleitung und
Typregel durch Analyse existierender Typsysteme und der mathematischen Beweistheorie
gewonnen. Auf diese Weise reflektiert der Ansatz die Struktur und Intention der Typsys-
teme, anstatt die Typregeln in einem bereits vorhandenen Formalismus auszudriicken.

Als Anwendungen werden Typchecker fiir imperative, objekt-orientierte und funk-
tionale Sprachen, einschlieflich der ML Typinferenz, formalisiert. Die Typregeln dieser
Checker korrespondieren direkt mit den aus der Literatur bekannten. Da sie sich einzelnen
Sprachkonstrukten zuordnen lassen, konnen sie in verschiedenen Checkern wiederverwen-
det werden.

Eine spezielle Anwendung ist die Sprache SAGA fiir die Generische Programmierung.
Die Generische Programmierung ist zu einem Standardansatz zur Erstellung verlaflicher
und wiederverwendbarer Software geworden, insbesondere durch die weite Verbreitung der
C** Standard Template Library (STL). Der C** Compiler kann allerdings die gener-
ischen Algorithmen erst dann priifen, wenn konkrete Instanzen generiert werden. Fehler
in den Algorithmen manifestieren sich daher erst bei der Benutzung. SAGA 16st dieses
Problem durch eine neues Sprachdesign, das es erlaubt, generische Algorithmen der STL
so zu uberpriifen, dal die deklarierten Korrektheitsbedingungen erfiillt sind und die In-
stanzgenerierung nie fehlschlagt, wenn der Typchecker die Algorithmen akzeptiert. Damit
realisiert SAGA die Ziele des fritheren Sprachvorschlags SUCHTHAT in einem konkreten
Sprachdesign.
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Chapter 1

Introduction

Type systems are essential to many modern programming languages and type checkers are
standard components of their compilers. Like lexers, parsers and code generators, type
checkers must be specified and implemented accurately by the compiler writer. Unlike
these other components, they do not enjoy any specific tool support: There is no accepted
notion of a type check generator.

In this thesis, a type check generator is understood to be a program that takes some
description of a programming language’s type system as input and generates a type checker
to be used in the semantic analysis phase of the language’s compiler (Figure 1.1, adapted
from [Muc97)).

token stream parse tree intermediate code
Semantic
ical ical Analyzer
Lexica Syntactica > Y Translator Code generator
analyzer analyzer
type
checker
A

description of type check
—>
type system generator

Figure 1.1: The Generated Type Checker in a Compiler

I will use the term type checker regardless of the actual task that the component
performs: For a particular language, it may be sufficient to check that the type annotations
given by the programmer are consistent; for a different language, the type checker may
perform type inference (type reconstruction). For most languages, the type checker lies
inbetween these extremes: Even in languages with program annotations, at least the result
types of expressions must usually be reconstructed; in languages with type inference, the
results may be matched against an optional function or module signature provided by the
programmer. The perspective on type systems must therefore be biased slightly towards
type inference.

In this thesis, the emphasis in semantic analysis is on type checking. Hence, the im-
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plementation of the type check generator adapts the compiler structure, such that the
language’s syntax is specified along with its type system (Figure 1.2). This approach
allows for a tight integration of parser and type checker and facilitates prototyping of
new languages. A limited amount of translation is available by rewriting; the result of
translation is output textually.

Output of tcg

|

| |
program text — ;exer & > Type Checker |—» Translator —»

, arser |

P R

Input to tcg i| Grammar | Type System | Rewrite Rules
|

Figure 1.2: Emphasis on Type Checking

1.1 Statement of the Thesis

From a software-engineering point of view [CHWO98], in order to design a type check gen-
erator it is necessary to find a common abstraction of existing type systems, and then to
implement that abstraction. Four essential requirements must be fulfilled by the chosen
abstraction to match the situation outlined in Figure 1.2:

1. The abstraction must capture the entire process of type checking a raw parse tree.

2. The abstraction must be uniform, that is a specific type checker must be obtained by
(mechanically) instantiating the abstraction. This is contrary to software-engineering,
where the construction of instances may (and will) involve human activity, for in-
stance by implementing a design pattern [GHJV95].

3. The abstraction must be stated formally: Type systems deal with programs as re-
cursive objects, which necessitates strong invariants. Furthermore, the semantics
of compilation may depend on the type check, for instance for overloaded identifiers
[GR80, Cor82, Str97, WB89, HHJW96, Jon99] and conversions [BTCGS91]. At least
in principle, the generated type checker must be verifiable by reasoning about the
type system’s specification (assuming that the generator is implemented correctly).

4. Despite the formality, the type checker’s behaviour must also have an intuitive de-
scription: The straightforward portions of type system should be expressible without
going through a formal process. Furthermore, it should be possible to prototype a
type system [Rep84, BS86, BCD*89, LP03].

Several abstractions of type systems have been proposed (see Section 5.1), but none of
them fulfills all of the above requirements. In particular (2) and (4) are not implemented
satisfactorily. Consequently, the available tools mostly require an insight into the workings
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of type checkers in order to describe a type system. This failure seems to be mainly due
to the fact that type checkers are expressed in some pre-existing formalism, rather than
in a formalism tailored to type systems. I therefore suggest that a new abstraction is
needed and it should be designed with as little prejudice as possible. The following, fifth,
requirement captures this intention:

5. The abstraction should result from an analysis of the common structure of type
systems.!

Motivation of the Thesis There is vast diversity of type systems with different aims,
points of emphasis and application areas. However, the systems exhibit a common ten-
dency to express implications between typing judgments, which is made explicit in their
presentation by deduction (or inference) rules.

For concreteness, consider the simply-typed A-calculus with its basic constructs of vari-
ables, functions and function applications [Mit90]:

'Ff:s—t I'ke:s LU{z:s}tke:t r:sel
, (apply) _ (abs)  ———
I'E(fe):t 'FAre:s—t 'Fz:s

(var)

To type-check an application (fe), the function f and argument e are checked indepen-
dently, and if they agree on the actual and expected argument type, then the function
application can be performed. Similarly for a function Ax.e, if the type check of e succeeds
under the assumption that the argument type is s, then the expression will have (function-)
type s — t. The last rule states that the type assumptions are used for variables. Any
typing of some expression e must be obtained by constructing a derivation (or proof) by
these three rules.

The form of presentation by deduction rules is ubiquitous. This observation alone would
justify using rules as an abstraction according to the practice of domain analysis [Cop98].
Furthermore, it appears that the commonality in formulation is not a coincidence: Type
systems approximate the meaning of programs, they derive true propositions about the
behaviour at run-time.2 Hence, the main mode of inference is to constructively deduce true
propositions from other true propositions, possibly using assumptions. Therefore, even if a
new style of presentation were to emerge, its fundamental concept of type checking would
likely be implication as well.

Statement of the Thesis

I propose type-checking-as-proof-search as a suitable abstraction for designing
a type check generator: Type systems can be understood and formalized as
logical systems such that there is a typing derivation if and only if there is a
proof in the logical system. Moreover, the description of the type system will
be natural (relative to the specification by deduction rules), and proof search
can be implemented effectively.

T am aware of the interaction between abstractions and structure, but hope that the fifth requirement
nevertheless clarifies the intention as stated above.
Pierce [Pie02] speaks of “lightweight formal methods”.
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1.1.1 REMARK. In this general form, this statement is complementary to the well-known
Curry-Howard isomorphism phrased as formulae-as-types (or propositions-as-types) (e.g.
[How80, CH88, Bar91l, TS00]): There, proof search starts with a type (as an encoding
of a formula to be proven) and the aim is to find a A-term with the type. That term is
then a direct encoding of the found proof and type checking means proof checking. In
the above thesis, on the contrary, proof search is the means to find a type for a given
term. Furthermore type checking for programming languages cannot be straightforwardly
reduced to type checking for higher-order logics; this is true in particular for type inference
(see Sections 1.2.3.5 and 5.3.2).

1.1.2 REMARK. Deduction rules in the literature serve as specifications of type systems,
they are not expected to convey the operational semantics of the type checker. This
distinction is particularly important where type checkers perform type inference, possibly
with computations on hand-crafted data structures, in order to determine the correct
instantiations of (meta-)variables in the rules. In such cases, it will be necessary to re-
factor the deduction rules to make them suitable to proof search. This step may at first
seem to be an immediate disadvantage of the proposed approach over conventional typing
algorithms. However, in the examples analyzed in Chapter 4 (also Sections 2.4.1.2, 5.3.2),
the re-formulation reveals new relations between type systems and yields a new conception
of their structure.

Discussion The choice of proof search as an abstraction for type checking has some
immediate consequences, which I will discuss briefly now. A more thorough motivation of
the thesis through analysis of existing type systems can be found in Section 1.2.

As the first consequence of the proposed abstraction, type checking is a completely
symbolic process. Compare this to the conventional approach, where deduction rules are
used for specifying a type system, while the type checker is a general algorithm with general
data structures. For most type systems of programming languages, that generality is not
needed, as types are terms, and the basic operations only decompose them and substitute
variables. We can also observe that most type systems of conventional imperative languages
have even simpler notions of “type”, because they compare types by name rather than by
structure. Nevertheless, some type checkers employ more generality. For instance, recursive
types are often represented as cyclic graphs [AHS86, AC93, Wri94]. Although the type
check can be done symbolically [BH97], there remains a discrepancy.

Next, the choice of proof search establishes a direct connection to the well-developed
field of automatic theorem proving: The type check generator can re-use the techniques
employed there. It turns out during the study of existing tools (Chapter 5) that a simple
adaptation of a theorem prover will not be sufficient. The proof structure needed to express
type checkers (Section 1.2, Chapter 2) is akin to proof search with Hereditary Harrop
Formulae [MNPSO91] (or higher-order logic programming [Mil91, NM98]|, theorem proving in
higher-order logic [Pau86, Pau94|, Section 5.3.2) rather than first-order techniques ([Rob65,
Gal86], Prolog [And92]).

Finally, the generated type checkers are sound by construction (assuming that the
generator is implemented correctly): Every successful type check explicitly (Chapter 3)
constructs a proof that can be interpreted as a type deduction. This property is a distinct
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advantage in prototyping type systems for new languages.

Related Work Related work needs to be considered in three directions:

1. The proposed abstraction over type systems can be compared to other possible ab-
stractions. Abstractions based on constraints (Section 5.2) have recently attracted
interest [OSW99, Sul00, SS01, Sul01, AF02, AF04]. The central idea is to separate
type checking into two phases, constraint generation and constraint solution. It is
expected that constraint generation is a straightforward recursion over the parse tree,
while the main part of the type checker focuses on the solution of constraints. Con-
straints in this sense arise naturally in a variety of type systems, foremost perhaps
those including subtyping [Mit91, EST95b, JP99, AWL94, Pot01]. A novel line of
research [SS01, SSW04] has come from the application of constraint handling rules
to constraint solution. TCG is complementary to this line of research, as it considers
the construction of the type derivation, which is implicit in the recursive traver-
sal for constraint generation. If desired, T'cG’s deferred goals (Section 2.3) can be
interpreted as unsolved constraints (Section 6.2.3).

2. The resulting type check generator can be compared to other tools used for ex-
pressing type checkers. This will be done in Section 5.1. In this direction, research
began in the early 1980s, and concentrated on formal descriptions of programming
languages, with the double goals of generating programming environments and rea-
soning formally about the specification (and implementation). The programming
environments included (incremental) type checkers, mostly for Pascal-like, impera-
tive languages [Des84, CDDKS86, BCD*89, TR81, RT88, Deu9l, TDO1]. However,
in this period the aim was to express type checkers in a given formalism, rather
than devising a formalism for type checking. The specific features, for example poly-
morphic let, had to be handled by mechanisms outside the scope of the formalism
[Des84, CDDKS86].

3. The type check generator processes a description of a type system that is conceived as
a logical system, and it implements general mechanisms for dealing with that system.
This intention is related to the area of logical frameworks [Pfe01]. A comparison is
given in Section 5.3. In a case study Section 5.3.2 shows how the Hindley-Milner
type system for ML [Mil78, DM82| can be expressed in ISABELLE [Pau94].

Contributions The main contribution of this thesis is a novel understanding of the tasks
of type checking and type inference.

e [ design a formalism to capture the specifications of type systems (Section 1.2, 3.1).

e The design (Section 1.2) exhibits a strong structural relation of type systems to
conventional proof-theoretic constructions in logic. This relation explains several
features, foremost the ML-style generalization (Section 1.2.3.5) and constraint-based
type systems (Section 1.2.3.6).

e The formalism can be given an operational semantics for proof search (Chapter 2).

Towards the implementation of type checkers for compilers, four results have been attained:
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I implement a type check generator (Chapter 3).

e The main features of several widely employed type systems have been formalized
(Chapter 4).

e That formalization exhibits many commonalities among the systems, such that typ-
ing rules valid in one system can re-used in new systems. This result facilitates
prototyping of new programming languages [LP03].

e The type check generator can be understood as the missing generalization of con-

straint generation for constraint-based type inferences (Sections 1.2.3.7,1.2.3.8, 6.2.2).

It thus complements recent developments with constraint handling rules [SSO1].

Towards language support for generic programming

e [ present in Section 4.5 the language design and type checker of SAGA, which re-
fines and implements Schwarzweller’s [Sch02, Sch03] proposal to use signatures and
adjectives to describe the interface of generic algorithms [MS94, Sch96a, Sch96b].

Finally, there is a minor contribution to compiler implementation in logic programming
with higher-order abstract syntax [PESS].

e The study of the Hindley-Milner system in Section 5.3.2 shows that the classical type
inference Algorithm W can be implemented directly in ISABELLE . This result solves
a long-standing question [Pfe88, DP91, Lia97, Han98, Lia02].

Scope Before we embark on the investigation, it must be made explicit that type systems
are too vast an area for capturing every proposed system within a single framework.

e The type systems’ motivations range from mathematical logics [ML84, CH88, Hin69,
BGO0] to the necessity to distinguish data types for compilation [KR88, Rit93, Str97].
In between these extremes, there is room for compiler optimizations [AWL94, Wri94,
Ler98|, static analysis [NNH99, Chapter 5], software-design methodologies [Boo91,
SOM93, GJS00, BCKT01], and safety-considerations on executable code [MWCG99,
Nec97].

e They encompass the tasks of checking the consistency of type annotations [JW85,
Wir88, Str97], to reconstructing the type of every expression and function in a pro-
gram [Mil78, DM82, WBS&9).

e They embrace programming language features from numeric calculation, over mod-
ule systems [HL94, Ler00], dynamic dispatch for object-oriented programming [Str97,
AC96, GJS00, EST95b, BSG03, OW97, AFM97], and parameterization [Mil78, AC96,
Str97, AFM97] to algebraic considerations behind the program text [JS92, Web93,
San95, Sch96a).

e Their descriptions take the form of natural language standards documents [JW85,
ISO98], deduction systems [DM82, CDDKS86, Bar91], algorithms [Mil78] and con-
straint systems [Wan87, Pot01, OSW99, AFFS98, EST95b].

Even this very brief sketch indicates that the scope of the type check generator needs
restriction. For an analogy, the established parser generators do not support every language



1.2 Designing a Type Check Generator 7

syntax imaginable, but they provide a framework that can be adapted conveniently to a
certain class of syntax constructs commonly found in programming languages.

In designing the type check generator (Section 1.2) I will therefore start out from the
simply typed lambda calculus, gradually adding language constructs to keep the design
self-contained and well-defined. Section 4.1 retraces these steps with the resulting system.

I explicitly exclude from the investigation systems with dependent types [XP99, Aug98|,
higher-order polymorphism [Bar91, OL96, Car93| and type systems that serve to repre-
sent logics via the Curry-Howard isomorphism [How80, CH88, Bar91] (except for those
fragments found in programming languages). Although, for example the Calculus of Con-
struction version with S-normal types [CH88, Section 6.1] seems amenable to a treatment
in Tca, the area introduces too many further questions.

1.1.1 Overview

The remainder of this introductory Chapter is organized as follows: Section 1.2 intro-
duces the design of T'cG by motivating examples taken from programming languages. It
is organized around the typing constructs of languages and justifies the choice of type-
checking-as-proof-search as the key abstraction.

Chapter 2 gives an operational semantics to the proof formalism proposed in Sec-
tion 1.2, in essentially the same manner that operational semantics can be assigned to
Prolog programs [And92].

Chapter 3 describes the implemented interpreter for TcG. In particular, I show how
the proof structure of Chapter 2 can be implemented efficiently.

Chapter 4 applies the constructed tool to an extensive number of examples. Starting
from the basic A-calculi with polymorphism, I proceed to imperative and object-oriented
languages.

Chapter 6 concludes with a summary and future directions of research.

1.2 Designing a Type Check Generator

Deduction rules in the literature on type systems are meta-level objects: They serve to
formalize a type system, but they are not formalized themselves. In order to make proof
search a vehicle for type checking, we must fix the form of deduction rules. In a more
general sense, the aim of this section is thus to establish a proof theory for type systems.
Several possible approaches can be conceived:

1. Foundational studies on the intention of type checking.

Starting from the semantics of type judgments, it may be possible to give a complete
axiomatization. This approach parallels the basic goal of giving complete deduction
systems for logics (e.g. [Gal86]). It requires a thorough analysis of the commonalities
of the semantic domains, i.e. the meaning of programs, that type systems approxi-
mate. Although much of the existing literature on type systems is concerned with
axiomatizing semantics, it does not intend to establish a common system for all
applications.
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2. Encoding type systems as logics.
The type judgments can be expressed as predicates in a suitable logic: The k-
relation employed in many type systems would be a ternary predicate, and con-
text, expressions and types would be logical terms. The work on TYPOL [BCD*89]
(Section 5.1.4) follows this trail. It has the disadvantage that no support for type
systems is available a priori: Every predicate needs to be axiomatized. This restric-
tion can also be seen as an advantage: The designer of the type system is forced
to make explicit all structural properties about contexts, variables and lookup of
type assumptions. However, the descriptions of type systems resemble type checkers
written in a logical programming language.

3. Abstraction over existing rules.
By regarding proposed typing rules as objects in their own right, one can identify
recurring patterns. The advantage of this approach over those previously considered
is the direct connection to the type systems’ specifications: If all the rules of the
specification can be expressed as an input to the type check generator, then the
resulting typings will trivially obey the specification.

I will follow last approach in this section. At the center of the study is the type system
for MINIML [CDDKS86], which will eventually be implemented in T'CG in Section 4.1.
With each added construct, I will discuss related issues in the literature and their possible
integration into T'CG.

I will also briefly outline the relation to logical systems according to the above ap-
proach 2 in Section 1.2.2. The comparison focuses on the relation between natural de-
duction and sequent style formulations. It is based on the textbooks by Troelstra and
Schwichtenberg [T'S00], Negri and von Plato [NP01], and Gallier [Gal86], and on the clas-
sical presentations by Gentzen [Gen35] and Prawitz [Pra65].

1.2.1 Preliminary Considerations

Before we can explore the commonalities of type systems, I establish the common back-
ground against which the examples are set. (A strictly inductive procedure would be less
prejudiced (Section 1.1), but also far less directed and probably less readable.)

1.2.1.1 Notation

In citing material from diverse fields of type literature, we face the problem of varying
notation. Obviously, there are two alternative solutions that can be adopted: Either cite
all material with the exact notation used in the original paper, or transliterate the material
to a common notation.

I have decided for the latter alternative for two reasons: First, the overall presentation
will be more coherent. I wish to emphasize commonalities, without being disturbed by
superficial variabilities of notation. Second, the changes to be made are minor, they
consist in the replacement of symbols for the most part. I will use the following naming
convention.
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Meaning

syntactic equivalence

equality

derivability

r, ... | Types and type schemes

Type variables

Substitutions

Context (type assumptions)

g Expressions

z Identifiers (variables) in expressions

w
<
=
o
=5

&S T

= QD
ﬁvmf“
=
(@Y

o

8 o
<

In those rare cases where the structure of the presented material must be modified in
non-trivial ways to exhibit a commonality, I include the original material verbatim in a
footnote.

1.2.1.2 Levels of Reasoning

In the subsequent discussion, we will frequently have to distinguish several levels (or layers)
of discourse: Some proof system, language, notation etc. will be used to describe a different
proof system, language, notation, etc. Following established usage, I will refer to the
described system as the object-level system (or object for short), and the system employed
for the description as the meta-level system.

This terminology suggests that there are but two levels involved in the discourse. This
is in general not the case: On the contrary, the reduction of one problem to another
problem is an ubiquitous technique in computer science. (Not only in theoretical computer
science, but even down to the very practical fields of modules and abstract data types, e.g.
[Hoa72].) Several reductions must usually be applied in a chain to obtain the solution,
and each reduction introduces a new level of reasoning about the correctness of the final
solution. I will therefore extend the notions of meta-level and object-level to each pair of
consecutive levels.

1.2.1.3 Typing Judgments and Derivations

We study type systems formulated by deduction rules. Consequently, the notation and
terminology will be taken from proof theory [NPO1, T'S00, Gal86]. Throughout the text, I
will use the prefix typing- to emphasize a relation to type systems, as opposed to logics or
the type check generator.

Proof systems relate judgments (or assertions), which may be for instance formulae,

propositions, or sequents. In this section, the exact form of judgments will be determined
by the type system in question.
1.2.1 REMARK. In logic, it is customary to distinguish between assertions and propositions
[NPO1]: A proposition is an object under consideration, while the assertion, that the
proposition holds, belongs to the meta-level. Consequently, a proposition P must be
distinguished from the assertion - P (read as “P is derivable”). Deductions (see below)
are hence labeled with assertions - P, which is abbreviated as a label P.
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A rule consists of a sequence of premises P, .. P, and conclusion C. (The term
“premises” is often spelled premisses [NP01]). Each of the P, and C is a judgement.
The rule is written with a horizontal line:

P .. P,
C

A rule without premises (n = 0) is also called an aziom. I will also write deduction rule to
distinguish this form of rule from others, for instance rewrite rules.

The judgments of rules may contain meta-variables which designate an arbitrary object
of a given class. A rule instance is a rule in which meta-variables have been replaced by
concrete objects. A rule that contains meta-variables is also called a rule schema.

Given a fixed set of rules, a deduction (or derivation) is a (finite) tree labeled with
judgments, in which each node is the consequence of some rule instance, and its children
are the premises of the same rule instance. That node is then an application of the rule
(schema). Equivalently, all possible proofs are generated inductively by application of rules,
where the basis are applications of axioms. In this view, we call proofs also derivations of
the conclusion from the axioms.

In many type systems [Mit90, CW85, Pie02] a typing judgement is a ternary relation

I'ke:t

between an expression e, a type t and context I' = {x; : s;}I;, in which z; are pairwise
distinct identifiers (variables), and s; are types. (The context I' is also called the type
assumptions, type assignment or basis.) The turnstile F here denotes derivability from
assumptions I'.

This conception takes judgments as atomic objects in deductions, that is there is no
intrinsic relation between the left-hand side and right-hand side argument of the turnstile.
The typing relation - can thus be regarded as a predicate. This view will be sufficient up
to Section 1.2.2, where I will discuss briefly the view of typing judgments as sequents.

1.2.1.4 Type Checking and Type Inference

Strictly speaking, a type checking procedure takes as inputs some type assumptions I', an
expression e and a type t. It then verifies that the relation I' - e : ¢ holds, that is there
is a deduction of that judgement using the typing rules. Such a procedure is usually not
sensible as a “type checker” of a compiler, as it would require the programmer to supply,
besides explicit declarations for parameters, also the result types of every expression in the
program.

Type checking in this strict sense is useful, however, when types are read as encodings
of logical propositions via the Curry-Howard isomorphism [How80, GTL89, CH88, Bar9l,
TS00]. Types encode propositions, and terms encode proofs; under this reading type
checking implements proof checking. While proof construction (called the type inhabitation
problem in this context) is usually undecidable, proof checking thus remains decidable and
efficient. Furthermore, type checking can be implemented by a program that is small
compared to an automated theorem prover. The checker may thus be verified to increase
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the confidence in the machine-checked proof. This chain of reasoning has found applications
in the execution of untrusted code [Nec97, WNKNO4].

The other extreme approach consists in type inference or (type reconstruction), where
the programmer does not supply any types in the program, but the compiler computes all
necessary type information, including types of function parameters and result types. This
mode of “type checking” has been first investigated by Hindley [Hin69] for the A-calculus
and Milner [Mil78] (with Damas [DM82]) for programming languages. It has led to a
series of flexible, yet statically type safe languages like ML [Mil78, MTHM97] and Haskell
[WB89, Je99].

The type checker of a concrete programming language will usually fall in between these
two extremes, as it infers at least the “obvious” types, such as result types of expres-
sions. On the other hand, type inferencers need to check computed types against explicit
annotations in the program.

For type inference to be feasible, the type system must be restricted such that every
expression can be assigned a single type. (The other possible choice is to refrain from
computing explicit types altogether and generate constraints about the possible types only.
See Sections 1.2.3.8,1.2.3.6 and 5.2 for a discussion.) When type variables are involved, this
aim involves describing the infinitely many possible substitution instances of inferred types
with a single type. Again, this is efficient if among these substitution instances, there is one
“best” instance, from which all the other instances can be obtained by substitution. This
“best” instance is called the principal type scheme (or principal typing) for the expression
[DM82] and type systems for type inference aim at establishing the property that every
possible expression has a principal type. This is the case for languages of the ML family
by most general unifiers on first-order terms [Rob65]. It continues to hold if constraints
are added in a judicious manner ([Jon94, Sul00, Reh97], Section 1.2.3.6).

The relation between type checking and type inference is twofold: In the one direction,
given a type inference algorithm and a fully typed program, it is possible to reconstruct
the types after erasing them [Mit90]. In the other direction, every type inference algorithm
has to return a typing such that a type deduction exists (otherwise it would not be a sound
implementation of the given type system). In this sense, the task of type inference is to fill
the meta-variables in rule schemas with concrete types, such that a type deduction with
valid rule applications is constructed. This view of type inference will be expressed in the
design of TcaG.

The latter view can also be imposed on general proof construction with rule schemas,
since these are implicitly V-quantified over their meta-variables.®> For the example of -
abstraction, we have

Nrz:ske:t
‘THXze:s—t

Vs, t

Before that rule can be applied, the quantifier must be eliminated, which happens by
replacing s and ¢ with unknowns [Pau94] «, 5. (Unknowns are existentially quantified
variables. As will be made precise in Section 5.3.2, they closely correspond to type variables

3This view abuses notation and anticipates the treatment of rules as objects in Section 1.2. The symbol
“Y” is usually reserved for object-level formulae [Pau94, Pfe01].
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[Hin69, Mil78, Wan87].) This steps yields a rule with undetermined types:

MNr:akFe:p
'FXXze:a—p

With this setup, the unknowns will be filled by unification [Pau94, Wan87| as the type
check proceeds. Note that this step strictly speaking is possible only if the language of
types includes unknowns. Otherwise, one has to argue about the groundness of types in
completed derivations. This is the reason why the meta-variables x and e are not shown
quantified in the same manner: They are ground and must be determined at the point
that the rule is applied.

1.2.2 Comparison with Calculi for Logics

In this section, I briefly sketch natural deduction and sequent calculi as approaches to
defining logical calculi.* The intention of this presentation is to establish terminology for
the later discussion of the T'cG design. I demonstrate that despite superficial correspon-
dences, conventional typing rules fall between the two approaches when considering the
details of the formalisms. Hence, a direct application of established formalisms to TCG is
not possible. However, brief comparisons with specific typing rules already in this section
motivate that the design of T'CG benefits from proof-theoretical considerations for logics.
The presentation is based on [Gen35, Pra65, NP01, TS00, GTL89].

The formulations of many type systems are based on a judgement written I' F e : ¢,
which assigns type t to expression e in context I' (Section 1.2.1.3), and they use deduction
rules to specify the typing judgement. The precise structure of the resulting proofs does
not seem to have been investigated widely in the type systems literature. The main goal
there is to prove soundness of the deduction system relative to some semantics of programs.
(For examples in varying settings, see [Mil78, Tof90, Mit91, WF92].) The formalization
of the typing relation appears as a meta-level vehicle towards that end. One exception
to this tendency is Mitchell and Plotkin’s treatment of abstract data types by analogy to
intuitionistic existential quantification [MP88]. In Section 4.3 of that article, the authors
motivate their choice of typing rules by comparison with the logical rules.

Through the Curry-Howard-isomorphism [How80], the proof structure of typing judg-
ments has a well-studied counterpart in logic [ML84, CH88, GTL89, Bar91, BG00, Ghi99,
Tro99, TS00]: The simply typed A-calculus is isomorphic to natural deduction systems
(with labeled assumptions), where S-reduction corresponds to cut-elimination. These stud-
ies are mostly concerned with the correspondence of cut-elimination and S-reduction, not
with natural formulations of type systems, and they do not consider type checking of
programming languages.

T omit axiomatic (or Hilbert-style) systems because I wish to study the structure of inference rules.
Note, however, that in the context of logical frameworks (Section 5.3, also [Pau86, Pau89]) the object logic
is encoded as axioms in the meta logic, which provides a fixed set of inference rules.
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1.2.2.1 Natural Deduction

Natural deduction, introduced by Gentzen [Gen35], intends to model and formalize the
proof methods found in mathematical texts. In this system, derivation trees are labeled
with formulae. (But see Remark 1.2.1.)

Propositional Fragment FEach logical connective is characterized by a pair of introduc-
tion and elimination rule. The introduction rule describes the connective in terms of the
proof(s) that must be constructed to justify the connective in a formula. The elimination
rule describes the use that can be made of a proven formula with that connective. For
instance, the conjunction A has rules

A B ANB ANB

A/\—B(/\I) T(/\El) B (AEs2)

The second characteristic of natural deduction is its treatment of assumptions (or hypothe-
ses, hence hypothetical reasoning). Assumptions are noted above the derivation that may
use them; they then appear as leaves of the derivation. For instance, the connective D for
implication is introduced as:

A
B
ADB

(20)

The assumption A from this subproof is discharged at the (DI) application, meaning that
it is not considered an assumption further down in the derivation. Assumption that are
not discharged within the derivation are called open. (For an inductive definition of open
and closed assumptions, see [NPO1, Definition 8.1.1], [T'S00, Definition 2.1.1]). In the
graphical notation, the distinction is made clear by surrounding discharged assumptions
with brackets. Discharges can also concern unused assumptions, by introducing D D A,
where the derivation of A does not depend on D at all. Such discharges are called vacuous.

To make the point of discharge explicit, assumptions can be labeled (with names or
numbers), and the label of the discharged assumption is noted at the application of the
rule. The explicit annotation with discharged assumptions is crucial to make the deductions
precise [T'S00, Section 1.3]. For instance, there are two derivations of A D A D A (where all
applied rules (DI) are indicated by the discharged assumption; the underlined discharges
are vacuous).

A AY
v U
ADA AY ADA AY
A A (1.2.1)
u v
ADA ADA

w —)w

AD(ADA) AD(ADA
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The elimination rule of O is modus ponens:

ADB A

=~ (oF)
Inversion Principle Negri and von Plato [NP01, Section 1.2] show how the elimination
rule(s) for a connective can be obtained from its introduction rule via a general inversion
principle:  “Whatever follows from the direct grounds for deriving a proposition must
follow from that proposition.” [NP01, Page 6] (for earlier formulations see also [Pra65,
Section I1.1], [Gen35, Section I1.5.13]%). In short, this principle ensures that by introducing
a connective, no information is lost compared to using the already derived premises of the
introduction rule directly (e.g. [Pra65, inversion theorem, Section II.1]). For example, in
the case of A, the elimination rule thus found is

4,5

ANB C
(AE')

According to rule (AI), the direct grounds for introducing A A B are precisely A and B,
which by this rule may be used to infer C. Note that (AE’) is a generalization of (AE) in
that it allows to derive all consequences of A, B, not only A and B themselves. (The rule
is, however, not stronger than (AE), since the same judgement C' under assumptions A, B
can be obtained by applying (DI) twice on A D B O C. Using (DE) twice with (AE) then
yields the conclusion C.)

Natural Deduction in Sequent Style The formalization of open assumptions in nat-
ural deduction is not very concise, as the open assumptions for a judgement can be deter-
mined only by examining the entire deduction tree above it. A solution is to keep track of
open assumptions in each judgement, which leads to Natural Deduction in Sequent Style
[T'S00, Section 2.1.8][NP01, Sections 1.3, 5.2, Chapter 8][GTL89, Sections 5.3, 5.4]. Here,
derivability of a formula is captured by I' = A, where I' is a multi-set of the open, labeled
assumptions in the derivation of A. It is important to note that this definition does not
include unused assumptions in I' (see derivation (1.2.1) above). As Negri and von Plato
[INPO1, Chapter 8] point out, this is the main difference to the meta-level notion of deriv-
ability under assumptions I' + A, which denotes the existence of a (natural deduction)
derivation of A from assumptions contained in T.

The inference rules of natural deduction in sequent style are derived from those of natu-
ral deduction. They deviate sufficiently from the classical sequent calculi (Section 1.2.2.2)
to afford a forward reference at this point: First, there are no left-rules, but elimination
rules for the connectives. Second, according to the definition of I' detailed above, the
antecedent of a rule’s conclusion is the concatenation of the antecedents of its premises.

SGentzen already conjectures that “[bly making these ideas more precise, it should be possible to
display the E-inferences as unique functions of their corresponding I-inferences, on the basis of certain
requirements.” [Gen35, Section I1.5.13]
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(This feature is termed “sequent calculi with independent contexts” by Negri and von Plato
[NPO1, Section 5.1].) In the following example rules [T'S00, Section 2.1.8], the subscript S
indicates “sequent style”; the notation [u : A] means that assumption u : A may be present
or absent (if it is not used in the derivation) in the context, and u does not occur in I

F[u:A]:>B(313> I'=ADB A:>A(DE5)
'=ADBHB 'nN=B
=4 A:B(AIS) I'= Ag AN Ay (AEL)
'N=AANB I'= A;

Comparison with Type Systems Type systems are often specified in two equiva-
lent formulations (e.g. [DM82, Jon94, Sul00]): The logical formulation describes how type
constructors can be introduced and eliminated, thus following the spirit of natural deduc-
tion. The second form is syntax directed, meaning that there is exactly one derivation
rule for each programming language construct. The equivalence is obvious for the simply
typed A-calculus, where function application corresponds to elimination of the function
type constructor, and A-abstraction corresponds to introduction of that constructor. It
breaks down, for example, for ML-style let-polymorphism [Mil78]: Because polymor-
phism is implicit, there is no syntactically marked point for introducing and eliminating
the V quantifier. The solution is to adopt a proof normal form, in which V introduction
occurs only at let-bindings and V elimination is executed at variable references. (See
also [CW85, Pfe88, CH88, Car93, OL96| for the relation to explicit polymorphism with
A-abstraction over types.)

Type systems usually do not make use of hypothetical reasoning explicitly. The open
assumptions concern program variables, and they are captured in context I' of typing
judgments. However, these judgments I' F e : ¢ bear only a superficial correspondence with
natural deduction in sequent style: The context I' contains the assumptions on the types of
all variables bound in the surrounding term, not just the used ones. This difference brings
the typing judgement nearer to the meta-level reading of derivability under assumptions
(see [NPO1, Chapter 8]). The difference can be closed by a technique used by Mitchell
and Plotkin [MP88, Section 4.3]: From the context I" of the typing judgement, select only
those entries x : s, for which z appears free in the expression e to be typed.

Concluding, natural deduction is not the only ingredient to the deduction structure of
type systems: Although superficially e : ¢t can be seen as a proposition, and I" contains
assumptions of the same form, the correspondence breaks down when considering the
details and intentions of the different formalisms.

Quantifiers Quantifiers in natural deduction are introduced and eliminated like the
connectives. We start with the V quantifier.

Aly/x] VA
VA (V1) Alt/x]

(VE)

The most important point of these rules is in the side-condition on the choice of the
eigenvariable (or proper variable) y in rule (VI) [NPO1, Section 4.1.(b)]: Either x = y, or
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y must not appear free neither in A nor in the open assumptions from which A[y/x] has
been derived. This restriction ensures that y stands for an arbitrary individual.

In the intuitionistic interpretation of existential quantification (e.g. [ML84]), the in-
troduction of 3 must be justified by exhibiting an example term ¢, for which the desired
quantified proposition can be derived. In elimination, the desired conclusion from an ex-
istentially quantified proposition must be derived for an arbitrary y, representing that
unknown example term [NPO1, Section 4.1.(b)]:

(Aly/a]
Alt/x] :

dzA (30)

drA C’
C

The restriction on y in (FE) is that it does not occur free in 3z A, C, nor in any (open)
assumption that C' depends on [NP01, Section 4.1.(b)]. Again, this restriction entails that
no further assumptions on the individual y can be made.

(3E)

Comparison with type systems The quantifier rules for V parallel the type theoretic
treatment of polymorphism. Introduction and elimination correspond to the programming
language notions of generalization and instantiation.

I'Fe:s a¢FV(D) I'-Va.s
(GEN) _—
I'FVa.s I'ke:slt/a]

(INST) (1.2.2)

The eigenvariable condition also parallels the logical formulation in sequent style natural
deduction, where I' corresponds to the open assumptions of a derivation. However, the
correspondence is not precise, since a direct translation would yield a technically weaker
proviso®

a ¢ FV(Llrve) (1.2.3)

The introduction and elimination of V are rarely used in programming languages, since
only some experimental languages with explicit polymorphism (e.g. [Car93, CH88, Bar91])
have syntactically marked points for their application. As mentioned above, the logical
formulation of a type system is usually substituted with an equivalent syntax directed
version. The ambiguity about applications of these rules is overcome by using normal
forms of derivations: (GEN) is allowed only in connection with let bindings, where it
generalizes all type variables not excluded by the side-condition aw ¢ FV(I'). Rule (INST)
is applied only at variable references, where it eliminates all existing quantifiers.

Mitchell and Plotkin [MP88] introduce the 3 quantifier as a type-theoretic formulation
of data abstraction. In Section 2, they motivate their interpretation by the desired effect
of data abstraction, referring to existing languages for justification. In Section 4, they
refer to the formulae-as-types notion for a second justification of their typing rules from
the intuitionistic interpretation. In Section 4.3, they treat existential quantification from
this direction, by briefly comparing their typing rules to those from [Pra65].

5For the practical purpose of type inference, the proviso is not weaker: Type variables from I' can only
appear in the type s if e contains a variable from T.
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Mitchell and Plotkin’s introduction rule for 3 is tied to the syntactic construct pack
[MP88, Section 3.4], which is comparable to module definitions in programming languages.
In the following rule, ¢ is the representation type of the abstract type a.”

I'F M :slt/al
' packt M to Ja.s : Ja.s

Note how the example type ¢ parallels the example term ¢ in (3I). The (typing-) jus-
tification for the substitution [t/a] has already been given by Morris [Mor73]: Within
the definition of the abstract type, the abstract name « is convertible to and from the
representation type t.

Abstract data types are introduced with a limited scope in which the new type oper-
ation names may be used [MP88, Section 3.4].%

'EM:3as T)[x:s]EN:t
'+ abstype a withx:cis M in N : ¢t

This rule comes with the following variable restriction [MP88, Section 3.4] (transliterated
according to Section 1.2.1.1): “provided that « is not free in ¢ or the type I'(y) of any free
y # x occurring in N.” This proviso is the same as the one for (JE) (see also (1.2.3)): The
type t corresponds to proposition C, the open assumptions above C are precisely those
variables from I' that occur free in N. The first proviso y ¢ FV(3zA) of (3E) is not
necessary, as (after renaming) « is the bound name of the existential type.?

1.2.2.2 Sequent Calculi

Sequent calculi, introduced by Gentzen [Gen35], aim at formalizing reasoning with hy-
potheses [Gen35, Section III.1.1]. Their assertions take the form of sequents

AlAn:>Ble

where A;, B; are formulae, possibly n = 0 and/or m = 0. Derivations are then labeled
with sequents. (But see Remark 1.2.1.) A;.. A, is the antecedent of the sequent, B; .. B,
its succedent. Unlike the turnstile -, the arrow = is an object-level symbol, derivations
are concerned with assertions - I' = A.

The classical reading of sequents is denotational [Gal86]: A sequent is interpreted as a
formula A, A; O VJ2, B;. Negri and von Plato [NP01, Page 47] point out that the A,
may also be read as open assumptions while the B; can be read as open cases.

"Unlike in most programming languages, however, the name of the abstract type can be changed by
a-conversion once the module definition is complete.

8The presentation corrects a typing mistake in the rule (Section 3.4, page 483): The original has in
the conclusion “abstype s with” but uses “Jt.0” in the premise, contradicting the condition (AB.1),
Section 2, page 474, which is explicitly referenced as a justification for the typing rule.

9This forced renaming can be avoided by representing identifiers as names with stamps (e.g. [Ler95])):
During a-conversion, only the stamp part is changed, the name part remains the same for access of the
data type’s components.
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The derivations in sequent calculus (e.g. [NP0O1, Section 2.2, system G3ip|) start, at
the leaves, with initial sequents (or azioms) of the form

Al = A

The sequent at the derivation’s root is called the endsequent.
In what follows, we will be concerned with the single-succedent sequents, which capture
intuitionistic derivability of B under assumptions A; .. A,:

AlAn:>B

Like natural deduction in sequent style, they make explicit the assumptions usable in the
derivation of B. However, at rules with more than one premise, the contexts of the premises
are shared. Hence, A, .. A, are not the open assumptions of the derivation of B, but the
assumptions potentially usable in that derivation (cf. Section 1.2.2.1).

The introduction rules of natural deduction become right rules. They capture the proof
obligations for the logical connectives. For instance, to prove A A B, one has to prove both

A and B.
I'= A I'= B

I'=AAB

The elimination rules are replaced [GTL89, Sections 5.3, 5.4] by left rules, which describe
the handling of a connective in the antecedent of a sequent.

(AR)

A B T'=C
INNANB=C

Three observations about left rules are relevant to the later treatment of type systems.

1. The connective A is explained in terms of two extra-logical constructs: The two
premises A and B in (AR) express the required construction of proofs for both A
and B. (This and is a meta-level construct.) The rule (AL) explains A in terms of
the comma (multi-set union) in the antecedent.

2. The left rules can be read as forward-reasoning within the antecedent of a sequent:
To prove C' under A A B, we can assume both A and B. This corresponds to the
natural deduction formulation

[AN B] [A N B]
A . B

C
ANBDC

The two derivations at the leaves transform the assumption A A B into the more
basic forms A and B, which may then perhaps be more easily reached by backwards
proofs from C'.
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3. Unlike elimination rules, left rules do not introduce a new formula in the premises
that was not present in the consequence. Sequent calculi thus have the subformula
property [NPO1, p. 15]: “All formul[ae] in a sequent calculus derivation are subfor-
mulfae] of the endsequent of the derivation.” This property is very desirable for proof
search, because no arbitrary choices of terms or formulae need to be made within the
derivation.

An interesting case is the connective D of implication. Its meaning is explained in terms
of the extra-logical, object-level symbol =-:

A= B ADBTI=A B,I'=C

"~ (OR L
F:ADBD) ADB,I'=C (5L)

The rule (DR) introduces D by adding the premise A to the antecedent (set of assumptions)
for a proof of B. Reading this rule downward, the assumption A can be removed from the
set of assumptions (i.e. in natural deduction terminology, it can be discharged) by writing
it as the premise of D.

The rule (DL), the counterpart of natural deduction cut (or modus ponens), employs
the implication A D B by first proving A, and then deriving C' from B. Note that also
(DL) preserves the subformula property. This is contrary to rule (DE) in natural deduction,
where the cut formula cannot be obtained by inspection of the conclusion. Again, sequent
calculi seem more appropriate for automatic provers, as the search space is limited.

Besides the left rules, which allow modifications of the antecedent, sequent calculi
have a second characteristic: Antecedent and succedent of a sequent are perceived as
sequences or multisets, rather than sets, of formulae. (We deviate from the restriction to
single-succedent, intuitionistic sequent calculi to illustrate the symmetry.) Then structural
properties of proof systems can be made explicit in proofs. The basic structural rules
[Gen35, Section II1.1.21] are thinning, contraction and interchange, each of which can be
applied to both antecedent and succedent.

thinni = A I'=A
Hng AT = A T=A A
. AAT = A '=AAA
contraction AT = A T=A A
) AA BT =@ I'=AAB,®
interchange

ABAT=® T=ADBAd

The rules explicate the treatment of the sequences in a sequent as sets of assumptions and
formulae to be proven. Other perceptions of sequents are possible; restrictions in the set
of structural rules then lead to substructural logics.

Quantifiers The quantifier rules of natural deduction introduced an eigenvariable con-
dition that refers to the open assumptions of a judgement. With the explicit statement of
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the open assumptions in sequents, their formulation thus becomes [NP01, Section 4.1.(c)]

A(t/x),VzA I = C I'= A(y/x)

VAT = C (VR) ['=VzA (VR)
Aly/x),JzA,T = C I'= A(t/x)
JxA,I' = C (3R) I'= dzA (3R)

where in (VR), variable y must not occur free in I'; Yz A, and in (3L), y must not occur
free in dx A, I' and C. In other words, in these rules the eigenvariable must not occur in
the lower sequent.

Comparison with Type systems Type systems, as found in the literature, do not
usually contain left rules. However, Mitchell [Mit90, Section 2.2.1] points out that the
notation I' - e : s is often read as a sequent with antecedent I', although its common
interpretation is natural deduction derivability under assumptions I'. (See the comparison
in Section 1.2.2.1)

Consequently, the forward reasoning enabled by left rules must be made explicit in typ-
ing rules. For instance, the logical system (1.2.2) for ML-style implicit polymorphism needs
the following rule for variable references, which combines the “lookup” of the variable x in
context I' with an instantiation of the bound type variables:

z:Vatel
['Fax:t[s/a]

This can be expressed by forward reasoning, or left rules ((INST)" denotes multiple, pos-
sibly zero applications of rule (INST)):

z:Vatel
(VAR)
I'kFxz:Vat
INST)*
I'kx:t5/a]

Despite the possibility of such reductions of typing rules to more basic constructs, left rules
come at the severe price of being inadequate for backwards reasoning, which can be seen as
the main mode of proof construction in syntax-directed type checkers [Car87]. Therefore,
for the present work, I will not be concerned with left rules, but introduce explicit forward
reasoning steps where necessary.

The discharge of assumptions in the DR has also been noted in constraint-based type
systems as “shifting of assumptions from the left-hand side to the right-hand side of the
turnstile” (cf. [Jon94, Sul00], Sections 1.2.3.6, 5.2.1).

Substructural restrictions in the area of type systems model restrictions on the use of
values, leading for instance to linear types (following [Gir87]), which enforce that every
variable in a context can be referenced only once, which facilitates memory management
[Wad90]. In the subsequent text, we will be concerned with sets of type assumptions only,
since this conception prevails in most type systems.
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1.2.3 Proofs

This section presents T'CG’s notion of proof, which will be defined in Chapter 2, by way
of motivation. Each subsection presents a specific feature found in type systems in the
form of a prototypical typing rule. Then, it shows how this construct is incorporated to
the design of T'cG as a general principle of proof construction. Finally, the principle is
applied to similar constructs from typing to indicate its usefulness apart from the original
motivation.

The overall design goals in this process are conceptual simplicity and a minimal set
of features. Where a new feature can be reduced to one already introduced, it is done.
In some instances, this comes at the price that the original typing rule cannot be written
down directly in TcG. However, I will argue that in these cases T'cG’s formulation clarifies
the intention of the original rule and establishes a connection with the logical calculi in
Section 1.2.2.

1.2.3.1 Typing Rules

Typing rules are at the object-level in TcG. They will in general have premises P; .. P,
and a conclusion C. The meta-variables contained in the typing rules (Section 1.2.1.3)
are noted as bound variables in T'CG rules. We say that the rule is quantified over these

variables. TCG rules thus have the form
Voi .. [P .. P = C
which we also render as
V(vl .. vm) M
C

1.2.3.2 Static Scope

Statically typed programming languages also have static scope: The accessible identifiers
at each program point must have been introduced in some surrounding construct. It is
obvious that the typing context I' (Section 1.2.1.3) serves to capture exactly the scoping
behaviour and available identifiers (if the structure of the typing derivation is aligned with
the nested scopes of the program, of course). The prototypical rule is variable lookup.

z:tel
I'kFe:t

If we were to introduce the predicate x : ¢t € I' as a primitive notion in TcG, we would
fix the form of typings assignable to identifiers, excluding for example type schemes with
constraints Va.m = ¢ [Jon94].

Instead, we will make the context I' itself hold T'CG rules, and we make rule application
from I" the primitive operation. Since in general a rule has premises, we have an application
of the form

Ty F P[/3] .. Ty - Pofi/3] (v@ M) cT
T~ where C
L'+ Clt/7]

t1..1, terms

(1.2.4)
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We leave open for the moment how the I; are derived. A type assumption z : t is encoded
as an axiom, that is a rule without premises:!°

First-Order Polymorphic Values First-order polymorphic values can obviously be
encoded by quantified rules. For instance, the operation fst, which extracts the first
component of a pair of values, has the type expressed by

Va, 3

fst: (o, 03) — «

Type Names In the same manner, we can capture a type name c that is defined in the
current environment by assigning it kind .

[

Type constructors with parameters, for instance lists and pairs, have higher kinds of the
form k — k’. The well-formedness of type expressions is then checked by recursively
checking all applications of type constructors.

Type Abbreviations A declaration

defines the type constructor ¢ as an abbreviation that is to be expanded into s, replacing
the identifiers o;; with the actual parameters. This definition is captured by a rule!!

c(vr .. vp) = s[vr .. vp /g .. ay)

Return Types If I contains a special rule ret(r) capturing the return type of the current
function, then the imperative return statement is modeled by a rule:

Fke:r [k ret(r)

I' - return e

1.2.3.3 Application

Probably the most fundamental language construct is function application. The typing
rule must check that the applied object is a function and that the type of the argument

10We will usually drop the line delimiting the empty premises from the conclusion.
Moy .. vy /a1 .. ay) is the meta-level simultaneous substitution of vy .. v, for a; .., throughout s.
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matches the type expected by the function. The result of the application is the result that
the function is specified to return:

'Ff:s—t T'ke:s

CE(fe):t (apply)

This rule partially answers the questions about how the I} of the premises in (1.2.4) are
obtained: If nothing else is specified, they are the same as the context I' of the judgement
where the rule is applied. A second characteristic, as explicated by Wand [Wan87], is the
implied equality constraint between the formal and the actual argument.

Variations Variations of the application for multiple arguments are a primitive for mul-
tiple arguments, as in imperative languages, and tuple arguments and curried application
as in Standard ML.!2

fis1..8, ="t e :51..e,: 8,

(fer..ey):t (applya)
fi(si..sn)—t (e1..ey):(s1..5n) (applyeuonc)
(f(e1..en)):t e
fisg—= - —5,—>1t e1:8..€,:8,
(applyeurry)

((fer)...en):t

Procedures and Statements Imperative procedure calls fit the function application
pattern by introducing type void that does not have any values [KR88]. In functional
languages with imperative features, those functions which are called for their side-effects
only receive return type unit, which differs from void in that it has a single value ()
(hence the type name).

Primitive Operations Primitive operations are obviously subsumed by considering
their specialized typing rules as operator definitions:

i:Int j:int

— becomes
1+ :1int + : Int — Int — Int

Ad-hoc Overloading Operator overloading requires at least the enumeration of all
possible typings and can be reduced to a search for possible proofs [GR80, Cor82, Bak82].
The selection of a “best” match [Str97], however, is problematic. (See Section 4.3.4.)

Method invocation The type-theoretical treatment of object-orient languages, at least
since [Red88]|, has focused on encoding their specific features into domains, whose typing
properties are understood [Red88, CHC89, PT94, EST95a, EST95b, AC96, Cas95, Pie02].

12An n-ary function A\zj .. z,.e is translated to an n-fold abstraction Az; .. Az,.e [Thi94].
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Method invocations in conventional class-based [AC96, GJS00, Str97] object-oriented lan-
guages differ from ordinary function application in the special role of the first this (or
self) argument. In theoretical work, it is modeled as a fixpoint construction [CHC89,
Section 2]:

C=Xself {m1 =e1..m, =e,} (1.2.5)
I=Y(C) (1.2.6)
C' = Xself .S(self) with {m} =¢€}..m!, =e } (1.2.7)

The term C' in (1.2.5) models a class, which describes the structure of its instance objects
as records. In (1.2.6), an instance [ is created by taking the fixpoint of its class C'. This
step binds the name self, which may occur in the methods e; . .e,, to reference the object’s
record. Finally, a derived class C” is created from some superclass in (1.2.7) by extending
and modifying the record of fields and methods. The typing rule for method calls is derived
from the typing rules for application and record selection.

The above procedure is contrary to a compiler-construction view of objects. Here, the
method call is indicated by a special syntax:

e.m(ey ..ep)

The compiler (e.g. [gcj04, typeck.c]) searches the class tree explicitly for a method with
matching name m and signature for types of e; .. e,. A corresponding typing rule is
(e.g. [ON99], [AC96, Section 7.2, Section 12.4]):

I'Fe:class(C)

' C ::methods(my : S11 .. S1g, — t1 - My = Sp1 -« Sk, — )
m =1m;

€1:8i1.-€n: Sin

(method-call)  (1.2.8)
em(er..ey) : t;

An indirection through the class name C' is required in the first premise [ON99]: The
method signatures may refer to class ' again, or they may be even mutually recursive
with other classes, so the methods(...) would need to have a recursive structure, if we
were to attach it to e directly [CHC89, CHCS89].

Type Expressions The application of type constructors can be checked for well-formed-
ness by introducing kinds, which can be thought of as “types of types” [Bar91]. The rule
for application of type constructors is (following [Bar91, Definition 3.2]):

'-Fuork—r TFT:k
L'k FE(T):: K

Jones [Jon95] uses a kind layer to ensure that the constructor variables of his Haskell
extension always lead to well-formed instantiations.
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1.2.3.4 Functions

Type checking a function Az : s.e requires a type check of the body e with access to the
parameter = of type s. Within e, the identifier x is bound to the function’s parameter, the
identifiers  bound at outer scopes become invisible.

[,x:ske:t
I'FXx:se:s—t

(1.2.9)

The removal of the previous entries for x in I' can be avoided by renaming the bound
variable x before applying the rule. However, this requires a separate binding analysis on
the parse tree and thus contradicts our intention of processing raw parse trees (Section 1.1).
The main novelty of the abstraction rule is that the context in the premise is a modified
version of the context in the conclusion. With the encoding of type assumptions as rules
(Section 1.2.3.2), the operation I, requires the removal of all rules which have the form

Vo

x:s
Subsequently a new rule for x : s has to be introduced. The notion of context modifier
comprises these desired modifications. Let M; be context modifiers. Then the general form
of a rule is
_ MyFP ..M, P,
v

C

A context modifier M will hold instructions +R to add some rule R and —s to remove all
rules matching a selector s (Section 3.1.1). Writing the application of M to context I' as
['@QM, we have a new form of rule application, which adds to (1.2.4) the specification of
the contexts in premises.

Vi MiFP ..M, FP, r
IQ(Mo) b Pio.. TQ(M,0) b Pyo ‘ ¢ ) 1.2.10
Tk Co t1..1, terms, ( )
o= [t/7]

Multiple Arguments As in Section 1.2.3.3, functions and procedures with multiple ar-
guments can be accommodated by n-ary functions, functions that take tuples as arguments
or currying. The treatment of the return type in Pascal-like functions has already been
given in Section 1.2.3.2.

Methods Methods of classes have access to a much richer context than single functions
or procedures, as they may refer to instance variables, other methods and global variables.
Much of the new complexity is due to the recursive references, which are resolved in a
two-pass process (Section 4.4). Static methods relate to functions and application directly
(albeit in a context extended by the static data members of the class) [Lip96].
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Type Abstraction The abstraction over values can be paralled by an abstraction At.M
over types [CH88, Bar91]. The kinds check for type abstraction then parallels the type
check for ordinary abstraction.!?

Definitions Deferring polymorphism to Section 1.2.3.5, a definition let z = e in ¢
requires the same modifications of contexts as function application. Mutually recursive
definitions like letrec allow the defining expressions to reference defined names. They are
also contained in the current design. Here is a prototypical rule

fori=1..n:T4 . U{ry:s1..2,: 8.} Fei:s;
Loy ayU{zr sy oxp sy be ot

I'+letrecx; =¢,..2,=¢,ine : ¢

The same approach also yields recursively defined types, for instance algebraic data types
in ML [MTHM97] or mutually recursive class definitions [GJS00, Str97]. (See also Sec-
tion 4.4.)

1.2.3.5 Polymorphic Let

ML-style polymorphic let [Mil78, DM82] has the following typing rule, which cannot be
modeled with the rules presented so far.

'Fe:s a=FV(s)\FV(I') T',,z:Vaske:t
I'Fletx=eine :t

Earlier approaches [CDDKS86, Des84], including some recent ones [AF02], have chosen a
direct rendering by a primitive operation gen(I', €) which computes just the desired variable
set. However, this would require the gen operation to appear within the added rule at the
third premise, thus mixing the TcaG-level rule with the type-system-specific function gen.
Furthermore, the operation appears somewhat ad-hoc, since it must be modified with the
type system. For instance, Jones [Jon94, Figure 4] uses gen(I', P = 7).

Inner Variables A cleaner approach is obtained by considering the intention of com-
puting & as FV(e) \ FV(I'). We have that for any application of rule (let)

I'kFe:so if domo Ca
Hence, the value of e is indeed polymorphic, in that all instances of s can be derived as its

type as well. A more detailed analysis is given in Section 2.4.1.2. This observation can be
transferred to entire derivations. Consider the following application of the let rule, where

13Barendregt [Bar91] points out that abstraction and application can be re-iterated on the validity of
kind expressions: Just as ¢ : * expresses that ¢ is a well-formed type expression, x :: [J expresses that x
is well-formed kind, with the axiom * :: [J. Hence, the exact sorts and their axioms are parameters of a
generalized type system.
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Dy, D, D' and D" denote the derivations above these marks.
D :The:s D" :TU{Vi|[]=uz:s}te:¥
D:Thklet x=¢ in ¢ :5

DO : PO F € - to
In order to obtain arbitrarily many instances of e : so, we must instantiate the deriva-
tion D'o, without affecting the remainder of the derivation Dy. This requires

domo CFV(D')\FV(Dy\,)

where Dy\ p, is the derivation tree Dy where the branch D’ has been pruned. We call these
variables the inner variables of derivation D'. Let us write IV (D', Dy) for these. Since I' is
within Dy and outside of D’, the proposed formalization is sound, that is no more variables
than FV(e) \ FV(I') will be generalized. For completeness, we have to show that I' is
indeed the only shared part between D’ and D,. This result can, however, in principle not
be shown for arbitrary derivations: The notion of derivation in Section 1.2.1.3 does not
forbid renaming arbitrarily some variables in D’, such that they coincide with variables
from D’. Hence, completeness can, as usual, be shown only with regard to a particular
strategy of proof construction. We derive the necessary theorem in Section 2.4.6.

Subproof Extraction and Forward Resolution Besides determining the inner vari-
ables 0, the rule Vo[|] = =z : s must also bring together z and s in the conclusion.
However, this cannot be achieved by actually writing down s outside of D’, because that
would cause the inner variables to become empty. TCG therefore implements an atomic
operation subproof extraction that converts the sub-derivation D’ in a single step to a rule

V(IV(D',Dy))[] =€ s
The desired rule is obtained through forward resolution [Pau94] with
bind, =V(f,t)[f:t| =z : ¢

By resolving the premise f : ¢t against the conclusion e : s, we obtain the new conclusion
x : s, still quantified over the inner variables of D'.

1.2.2 REMARK. For an additional motivation, observe that the forward resolution with
bind, corresponds to a cornerstone of the soundness proofs for (let), the substitution
lemma (e.g. [Pie02, Lemma 9.3.8]) which reads:

Ilz:ske:tand 'k e :s, then I' - ele’/z].
The subproof of I' F e : s from D’ entails that the variable x, which is bound to e, can
be given type t as well, because we can copy the subproof for e to any place where z is
referenced.
The instructions to perform subproof extraction and forward resolution are embedded

naturally into the context modifier +r (Section 1.2.3.4), where r no longer a single rule,
but a rule expression of the form

ru=R | fwd(R,r) | extract(i)

where R is a rule and 7 is the number of the premise, whose derivation is to be extracted.
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Extensions In Section 1.2.3.6 we will see that the introduced formulation generalizes
to Jones’ [Jon94] qualified types. Note also that the eigenvariable condition for quantifier
introduction in sequent calculi (Section 1.2.2.2) uses a similar reasoning be requiring that
the quantified variable is not free in the lower sequent of the rule instance.

Polymorphism and Recursion In Section 1.2.3.4 we have introduced the standard
letrec rule as an instance of variable binding. The question arises naturally whether the
treatment of polymorphism in this section carries over to recursive bindings — the compu-
tation FV(D')\FV(Dy) can only be performed after derivation D’ is completely available.
Polymorphic recursion, that is the availability of typing x : Va.s in the derivation of e : s
is in general undecidable, since semi-unification [KTU93| can be reduced to polymorphic
recursion [Hen89b, Hen93]. We therefore do not attempt to model the semi-algorithms
presented in [Hen89b).

1.2.3.6 Constraints

With syntax-directed typing rules, the construction of derivations directly parallels the
term structure of the checked expression. Thus, the derivation is constructed by a straight-
forward recursive traversal of the syntax tree, and the main proof obligation consists in
the compatibility of the involved types. Wand [Wan87] has introduced this distinction to
the usual function application rule to obtain a simpler proof of type inference.

Ef:t Tkhe:s tV=s—1t s=¢
CH(fe):t

Apart from the equality constraints, a derivation exists for every expression e, hence e is
well-typed iff all equality constraints in its derivation are satisfied. For type inference, one
chooses distinct type variables for each variable and each non-variable subexpression. The
task then is to find a substitution for the type variables such that all the equalities are sat-
isfied. Type inference thus becomes a two-phase process, with a straightforward recursion
to the syntax tree and a subsequent unification to solve all equalities simultaneously. The
two phases are commonly termed constraint generation and constraint solution.

The intuitive, and technical, appeal of the proceeding is that it decouples two essential
tasks in type inference, the recursion through the source program and the treatment of
relations between types. Unlike the tree-structured source code with bound variables, the
constraints are (essentially) a flat set, which simplifies their treatment. The other way
around, the main complexity of type inference is confined to constraint solution, and can
be handled by specialized solvers [AFFS98, Pot01]. Furthermore, the interface between
the tasks can be specified without reference to the source language: It is sufficient to know
the structure of types and the language of constraints (e.g. [AFFS98, Sul00, SS01], see also
Section 5.2).

Wand’s approach has been generalized by Jones [Jon94]. Jones introduces predicates
that can restrict the possible instances of type schemes. His applications are Haskell’s type
classes [WB89], extensible records and subtyping [Jon94, Section 3|. Unlike the equality
constraints, predicates are possibly not solvable directly, hence they remain as open as-
sumptions (in the sense of Section 1.2.2.1). Jones’s formulation can be seen as switching
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from this natural deduction conception to sequent calculus conception (Section 1.2.2.2).
He extends the judgments to contain all open predicates.

P|Tke:t

The discharge of open assumptions (Section 1.2.2.2) is effected together with polymorphic
generalization (Section 1.2.3.5). Hence, Jones considers type schemes of the form

Va.P =t

This type scheme denotes all instance types ¢ = o(t), such that the predicates o(P)
hold. More precisely, at the point where a value with that type scheme is used, all of
its predicates must be entailed [Jon94, Section 3, Definition 2| by the predicates of the
judgement (adapted from [Jon94, Figure 4]).

(z:Va.P'=s)el PI[t/a|+ P
P|TFx:s[t/dl

(var)

The polymorphic let then has the rule [Jon94, Figure 4]:

P|T'ke:s P |T,,z:VaP=skée:t a=(FV(s)UFV(P))\FV(I)

1.2.11
P |TkHletx=eine :t ( )

Sulzmann, Odersky and Wehr [OSW99, Sul00] present a further generalization in the
HM (X) framework. HM (X) extends the constraint language used for qualified types by
existential quantification (projection on type variables). Starting with a non-empty set 2
of tokens (or predicates), the language is [Sul00, Section 3.1]:

C:i=w|Ci ANCy | Fal w e N

Sulzmann [Sul00] develops the theory of constraint systems and abstracts over the structure
of tokens. He argues that Jones’s discharge of open assumptions P in (1.2.11) is meaningful
only in lazy languages, where e will be evaluated by need. If in rule (1.2.11) the set P
of predicates is inconsistent (that is, its denotation is empty), the expression e should be
considered erroneous, because it can never be used. Hence, (1.2.11) would allow erroneous
subexpressions in a typable expression, as long as the bound variable x is never referred
to. He proposes to use the following rule instead, where the discharged assumptions are
kept in the conclusion with the intention of checking their satisfiability:

CuDT'ke:7 a¢FV(C)UFV(D)
cuda.D,I'Fe:Va.D =1

(VIntro)
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Deferred Judgments Rather than introducing predicates P to judgments, TCG takes
the natural deduction view of qualifications as open assumptions. Proof construction
simply exempts some judgments from processing, and these are interpreted as constraints.
We call these goals deferred to indicate that they must be resolved later on. The notation
of qualification P = 7 from (1.2.11) then reduces to operations on the proofs: The type
assignment x : Va.P = 7 is identified with a rule Va [P] —> x : 7. Correspondingly, the
judgement P | I' = M : 7 is identified with a proof of I' = M : 7 from deferred judgments P.

An immediate consequence is the direct integration with polymorphism by inner vari-
ables (Section 1.2.3.5): Since the deferred goals are part of the normal derivation, they are
considered for quantification in just the same manner as the goals of the result type s of e
are. Furthermore, the choice integrates with the representation of variable declarations by
Tca rules (Section 1.2.3.2). Finally, deferred goals fit well into a framework with backward
proof construction (Section 1.2.3.7).

Jones’ entailment H- is a monotone, transitive relation that is closed under substitution
[Jon94, Section 3]. The above formulation for TCG uses set inclusion, which obviously
satisfies these axioms. Jones’s remaining rules for A abstraction and function application
are also compatible with the interpretation of predicates as open assumptions, as they pass
on the predicates P unmodified.

P|THf:s—t P|T'ke:s
P|TkFfe:t

P|T,,s:ske:t
P|THFAe:s—t

(—E)

—1)

Instance: Coercions In imperative languages it is customary to change the representa-
tion of values if necessary. These transformations are called conversions (or coercions) (see
Section 4.2.7). For example, a function application f(e) would be translated to a internal
form f(c(e)) with conversion ¢ by

fis—t e:s c:8~s

['E fe) ~ flele) - ¢

The necessary conversion ¢ can be determined only when both s' and s are known, which
will eventually be the case since enough type annotations are provided by the programmer.
The judgement ¢ : s’ ~» s should therefore be deferred until the available type information
has actually propagated. The alternative is, of course, to reason about the order of rule
application, which may also require a re-formulation of rules. This second solution therefore
contradicts the desire to provide declarative specifications of type systems.

1.2.3.7 Proof Construction

Tca’s approach to proof construction is backward resolution of goals [Gal86]. Unlike Pro-
log, however, it chooses its goals from the local context of the judgments (Section 1.2.3.2).
Therefore, the resolution steps is akin to the higher-order extension AProlog [Mil91, NM98].
Tca augments this strategy, however, with subproof extraction and forward application
(Section 1.2.3.5). The lack of these features makes it hard to write a type inferencer for
polymorphic let in AProlog [Lia97, Han98, Lia02].
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The resolution of goals also does not proceed strictly from left to right: Some goals can
be deferred (Section 1.2.3.6) for later processing and may remain as open assumptions. The
method of selecting deferred goals is still under development. The current implementation
uses syntactic predicates on terms, called selectors (Section 3.1.1). However, the Tca
basic formalism as presented in Chapter 2 does not depend on the exact mechanism.

Tree Structure The TCG proof trees are constructed from the root to the leaves. There-
fore, proof trees will be modeled explicitly as mappings from a tree domain [Cou83| to
judgments. The special quality of proofs is the application of a suitable rule at each inner
node, which is represented by an annotation function (see also [Gal86, Definition 3.4.5],
[Ric78, Definition 4.1.7]).

States of Judgments The operation of rule extraction comes with a technical obstacle:
The order in which the subtrees of the proof are constructed becomes relevant. In the
(let)-example, the context of the second premise of the rule (let) is not available before the
first premise has been completed. Hence, TCG proofs must allow judgments in five states:

pending A premise of a rule that does not yet have a corresponding node in the proof
tree, because its context modifier could not yet be executed.

unresolved A goal to which no rule has yet been applied.

deferred A goal that is kept unsolved for later reference.

solved A judgement resolved by application of a rule.

discharged After rule extraction, the deferred judgments can be considered solved. Much
of the development in Chapter 2 treats discharged judgments like deferred judgments,
and discharged judgments are introduced in Section 2.5.1.

The stated demand on the order of resolution is directly parallel to the implementation of
type checkers. Jones’ checker for Haskell [Jon99, sec. 11.3] contains the following clauses:

tiEzpr as (Ap e f) tiEzpr as (Let bg e)
= do (ps,te) — tiEzpr as e = do (ps,as’) — tiBindGroup as bg
(gs,tf) — tiExpr as f (gs,t) <« tiExpr (as’++as) e
t— newTVar Star return (ps++qs,t)

unify (fn tf t) te
return (ps ++ ¢s,t)

Here ps and g¢s are lists of predicates [Jon94] for Haskell’s type classes, the variables
with prefix t are types, the as are type assumptions on the variables. The left clause
checks function application by recursively checking the operator and operand positions
independently. It combines the results by concatenating the predicates. The second clause
checks the let-construct. It displays the dependency of the second premise on the result
of the first premise by the transfer of as’ (the type assumptions bindings in bg) between
the premises.
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Relation to Deferred Judgments The choice of backward resolution motivates the
decision to refrain from introducing a set of predicates P to judgments in Section 1.2.3.6:
If the constraints remain as normal judgments, they can still be processed by backward
resolution. In Section 5.2 we will also investigate briefly the use of constraint handling
rules (CHR) [Fri98] for that process.

Operational Semantics The formulation of the Prolog language starts from a declara-
tive semantics of a program, from which its desired properties can be inferred (e.g. [HJ90]).
Then, an operational semantics complements and implements the declarative one (e.g.
[And92]). It would be straightforward to reformulate the Definition 2.3.3 of proofs as
an inductive definition. However, the given one would still be needed to reason about
incomplete proofs, as is done in Section 2.4.

1.2.3.8 Constraint Solution

We have seen in Section 1.2.3.6 how unsolved judgments can be integrated with TcG’s
proof-based approach to type checking and type inference. However, T'CG does not cur-
rently support the solution of constraints beyond backward resolution (Section 1.2.3.7;
it includes unification for syntactic equality constraints). The reason is simply that the
constraint domains commonly considered in type inference require extensive separate treat-
ments. Therefore, TcG should be understood as a complementary framework: Given a
constraint domain, it allows to specify a programming language and type system that
generates the constraints. Note that this differs from, and generalizes, Jones’ [Jon94] and
Sulzmann’s [Sul00] work (see also [AF02]), both of which investigate constraints in the
setting of a particular language.

Subtyping Subtyping constraints were among the first constraint domains to be consid-
ered (e.g. [CW85, Mit91, AC93, EST95a]). The motivation for subtyping stems from mod-
eling the inheritance relation in object-oriented languages (e.g. [CW85, EST95b, GM94,
Lit98]), conversions [HR95], and their application to soft-typing (e.g. [Wri94, AWL94]).

The type checking problem for subtyping with recursive types is well-investigated and
a relatively direct extension of type equality checking [AC93]. Also a formulation that
can be input to TcG is published [BH97]. However, this is not sufficient: As noted in
Section 1.2.1.4, a minimal amount of type inference is necessary in practical programming
languages. TcG handles coercions and sub-class relations (Sections 4.3.3 and 4.4) as they
occur in existing languages, thus solving subtyping constraints in special cases.

However, the full type inference problem with subtyping constraints is more complex,
as it requires solving a system of general inequalities between types. Unlike Hindley-
Milner type inference, it is in general not possible to find a substitution of types for type
variables that solves all constraints. Instead, type inference checks for the satisfiability of
constraint sets [AW93, EST95a, JP99, Pot01], which is sufficient to show soundness of the
type system. This process requires closing the generated subtyping constraints under the

rules
s<r sS<t t<t
————— (trans)
s<t t<r s—=t<s =t

(decomp)
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Note that the closure for (trans) requires multi-headed rules [Frii98] to match constraints
s < tandt < r toproduce s < r. The checked expression is considered well-typed if
no unsatisfiable constraints arise. With this closure, the problem of type inference for
subtyping is similar to that of data flow analysis [Hei92, FF96, FF99, NNH99]. The
number of constraints in the closure grows exponentially, and dedicated mechanisms for
handling them have to be devised [AFFS98, Pot01]. The main task is to simplify the
closed constraint sets, that is to eliminate constraints without changing the denotation of
the entire set.

1.2.3.9 Summary

In this Section 1.2.3, I have motivated the design of proofs in TcG. They will be pre-
sented formally in Chapter 2. I hope to have clarified that with this design, the typing
features found in widely used programming languages can be expressed in TcaG. A further
investigation, under the more concrete premises of the given implementation, is found in
Section 4.1.

I have furthermore examined the relation to conventional logical calculi in natural
deduction (Section 1.2.2.1) and sequent style (Section 1.2.2.2). Although superficial sim-
ilarities exist with both formalisms, none of them alone can capture the intended field of
applications. In particular, the type inference for polymorphic let (Section 1.2.3.5) seems
genuine to T'CG.
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Chapter 2

Proofs

Proofs are fundamental to TCG’s conception of type checking. They represent both in-
termediate and final results, the atomic derivation steps are proof transformations, and
complete proofs are interpreted as typing deductions in the formalized type discipline.
This chapter formalizes TCG’s notion of proof in Sections 2.2 and 2.3, building on term
structures as introduced in Section 2.1. Section 2.4 defines the necessary atomic steps to
extend partial proofs towards complete proofs. To establish the well-definedness of the
steps, the proof structure is shown to be an invariant of the derivation process. Among the
well-definedness results, the Instantiation Theorem 2.4.7 is a generalized version of lem-
mata found in conventional presentations of the ML type system (e.g. [Tof90, Lemma 4.2],
[WF92, Lemma 4.5]). The final Section 2.5 adds straightforward extensions that facilitate
the pratical application of T'ca in Chapter 4.

2.1 Terms

The structure and definition of proofs in this chapter is largely independent of the terms
used to encode the specific typing judgments. The derivations steps in Section 2.4 likewise
depend only on a small set of atomic operations. Therefore, this section axiomatizes terms
as abstract objects with a fixed set of operations.

The standard definition of terms as a freely generated set over function symbols and
variables [Gal86, BS01] is an obvious instance of our term structure. Infinite regular
trees [Cou83] with cyclic graph-unification [AHS86] fulfill the axioms as well. Higher-order
patterns [Mil91, Nip93] with bound names can be integrated with minor modifications to
the existing definitions. (See [Mil91, MNPS91, NM98]| for integrating A-terms with logic
programming.)

2.1.1 Terms and Substitution

We study first the operation of substitution on terms with variables. The axioms both for
application and composition are straightforward and we state the standard properties of
these operations as lemmata.

35
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2.1.1 DEFINITION (Terms). A term structure with substitutions is a tuple
T = <Ta V7 27 FV7 @Sa O>

where 7 and V are countable sets with V C 7', FV: 7 — P(V) and, o: S xS — §

with S .= v 1 T, Qg : 7 xS — T. T are the terms, L is equality and FV are the
free variables. S are the substitutions, Qg is application of substitutions, the function o
is composition of substitutions. We write the substitutions as {v; — t; .. v, — t,}. The

elements v; — t; are the bindings of the substitution. We canonically extend FV and z
to sets of terms. FV is extended to substitutions as

FV (o) := FV(range(c)) U dom(o)

A term structure satisfies the following equalities for substitutions o, oy, 09, o3, terms t,
and variable v.

v teo = t#v (2.1.1)
tage L ¢ (2.1.2)

vaso L {U(U) ifve a'fom(a) (2.1.3)

v otherwise

tQgo = tQg0|pv (2.1.4)
(01003) 003 = 01 0 (03 0 73) (2.1.5)
tQg(o o) L tQgrQgo (2.1.6)
FV(tQgo) Z FV(t)\ dom(o) UFV (range(o|rv())) (2.1.7)

By (2.1.2) 1 := @ is the identity substitution.

2.1.2 NOTATION. We write to and o(t) as short forms for t@Qgo in view of (2.1.3). By (2.1.5),
o" is the n-fold composition of ¢ with itself.

We will write s = ¢ for s = t, because L is the only equality needed on terms (including
variables).

The first lemma about term structures shows that the equational characterization of
composition relative to application makes that operation the same as in conventional pre-
sentations [Rob65, Definition 5.5].2

2.1.3 LEMMA. 00T = 0|ggom(r) U{v — s | v € dom(T), s =vQgs7Qg0 # v}

Proof. Let ¢ := o o7 and ¢' = 0|ggomr) U{v — s | v € dom(7), s = vQg7Qg0 # v}.
By definition of substitutions as functions, two substitutions are equal if they agree on
every v € V. We proceed by case distinction. If v ¢ dom(c) U dom(7), then

(2.1. (2.1.4), (2.1.2

1. 6
o(v) =7 vQgo ) vQg7TQg0 L 212, @' (v)

In a generic implementation of term structures an embedding function is necessary to adapt the
representation [Gas01, Appendix A.2].

2C- denotes set complement.
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If v € dom(o), v ¢ dom(T) then by the same reasoning ¢(v) = vQgo = o(v) = ¢'(v).
If v € dom(7), then ¢(v) = vQg7TQgo, but by (2.1.1) this component must not be included
if it is the identity. Hence, we have ¢(v) = ¢'(v). °

2.1.4 COROLLARY. A substitution o is idempotent® iff FV (range(a)) N dom(c) = @.

2.1.5 COROLLARY. Ifo, T are substitutions such that dom o, range o, dom T and range T
are pairwise disjoint, then coT =700 =0UT.

2.1.6 DEFINITION. A term t matches a term p, if there is a substitution ¢ with ¢(p) = t.
The matching relation is written as p <’ t, or p < t if the substitution is not relevant.
Define the relation rigid match by

TRUE p<t
p<,t: =S FALSE p%tAPrp <tr

l otherwise

We also say that p is (not) matched by ¢ rigidly.

2.1.7 REMARK. The name rigid indicates an analogy with rigid heads in higher-order
unification [Hue75]. If p &, t then there is no way for substitutions to change this relation,
just as rigid heads cannot be changed by unification to allow a unifier.

2.1.2 Unifiers and the Generalization Order

Unification is the basic procedure on terms needed by the derivation steps (Section 2.4).
We therefore define the notion of terms with most general unifiers as a property of term
structures. A second, derived operation is the extension of unification to substitutions,
which leads to least upper bounds on (idempotent) substitutions. Eder [Ede85] gives a
detailed account on the necessary prerequisites for such an operation, albeit for freely
generated terms. His study carries over to our term structures and we trace the main
results. Palamidessi [Pal90] extends Eder’s work to an algebraic theory of substitutions;
his motivation is a clear semantics for parallel execution of Prolog programs.

2.1.8 DEFINITION (More general substitutions). Let o and 7 be substitutions. 7 is more
general than o (or equivalently o is more special than T), if there is a substitution ¢
with ¢ o 7 = o. This relation is written 7 < o, and ¢ can be omitted where it is
irrelevant. The two substitutions are equivalent (written o ~ 7) if both ¢ <7 and 7 < 0.

2.1.9 LEMMA. The relation < is a pre-order on S by associativity (2.1.5).

2.1.10 DEFINITION (Most General Unifiers). A substitution o is a unifier of a finite set S
of terms iff so = to for all s,t € S. A unifier o is a most general unifier for a finite set S
of terms if o < ¢’ for any unifier ¢’ of S. A term structure has most general unifiers iff for
any set S of terms that does have a unifier, S has a most general unifier.

By extension, o is a (most general) unifier of a finite set of finite sets of terms iff it is
a (most general) unifier of each of the sets. It is a (most general) unifier of the pair (s, t)
iff it is a (most general) unifier of {s,¢}, and likewise for the equation s =¢. o is a (most
general) unifier of a set of equations if it is a (most general) unifier of each of them.

3that is 02 = ¢
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2.1.11 REMARK. If 0 is a most general unifier of S, then dom o C FV(S), because any
binding v +— r € o, v ¢ FV(S) can be removed without affecting So by (2.1.4).

The ~-relation between equivalent substitutions (Definition 2.1.8) can be characterized
by the notion of renamings, which are injective substitutions into the variables.

2.1.12 DEFINITION (Renaming). A substitution p is a renaming if range(p) C V and there
isap! with popt=prtop=1.

2.1.13 LEMMA ([Ede85, Lemma 2.10]). For equivalent substitutions o ~ T, there are
renamings p, p' such that T =poo, o0 =p ot, and p' = p~.

Proof. Eder’s proof is formulated in terms of substitutions as total functions that are the
identity almost everywhere; the main ideas carry over to the setting of Definition 2.1.1,
where substitutions are finite functions. By assumption, 7 = poo and o = p’ o7 for some p,
p'; we show that these substitutions have the claimed properties. First, by assumption o =
p' o (poo), such that for all x € FV(range(o)) p'(p(x)) = x; as p(xz) € FV(range(p o
0)) = FV(range(7)), p is an injective function FV (range(c)) — FV (range(r)). Because
these sets are finite, it follows that |FV(range(o))| < |FV(range(r))|. By symmetry,
also p : ¥V (range(1)) — FV (range(o)) and |FV (range(7))| < |FV(range(o))|. Hence,
|FV (range(7))| = |FV(range(c))| and both p and p’ are renamings and inverse to each
other. .

2.1.14 CONVENTION. In the remainder of this thesis, we identify equivalent unifiers and
o = mgu(S)

denotes that o is a most general unifier of set of terms S (or set of set of terms, or set of
equations, respectively) if it exists. Among the equivalent unifiers of S, mgu chooses an
arbitrary one. If S does not have a unifier, then mgu(S) :=|.

The starting point for Eder’s discussion is that a (finite) set of substitutions that has an
upper bound with respect to < does not necessarily have a supremum. This property holds,
however, for the idempotent substitutions modulo ~ [Ede85, Theorem 4.9]. The main
point of the proof is that idempotent substitutions can be characterized (up to renamings)
as unifiers of finite sets of finite sets of terms [Ede85, Proposition 4.5]. Obviously, an
idempotent substitution o = {z; — ¢;}, is a unifier of {{z;,¢;}}7,. Conversely, the
idempotent substitutions are exactly the unifiers of finite sets of finite sets.

2.1.15 LEMMA ([Ede85, Proposition 4.5]). If o is a substitution, then (a) and (b) are
equivalent.

(a) There is a finite set of finite sets M such that o is a most general unifier of M.
(b) There is an idempotent substitution ¢’ which is equivalent to o.

2.1.16 LEMMA ([Ede85, Lemma 4.6]). If M and N are sets of sets of terms and o is a
most general unifier of M, then

(a) M U N is unifiable iff No is unifiable.
(b) If T is a most general unifier of No, then T o ¢ is a most general unifier of M U N.
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2.1.17 LEMMA ([Ede85, Proposition 4.8]). Let M and N be two finite sets of finite sets of
terms. Then
mgu(M U N) = sup{mgu(M), mgu(N)} .

Eder concludes [Ede85, Theorem 4.9] that the idempotent substitutions modulo ~ form
a lattice with smallest and greatest element. More important for the later application in
Tca is a consequence of the previous Lemma that Eder mentions: It allows the computa-
tion of the supremum (with respect to <¢, up to equivalence ~) of a pair of substitutions.

2.1.18 THEOREM. Let o and T be idempotent substitutions in a term structure with most
general unifiers. The supremum of ¢ and 7 can be determined by unification, if it exists:

ot = (mgu( {{z,7(2)} | v € dom(7)}o)) o

If the supremum does not exist, we write o LT =|.

Proof. Define M = {{z,0(x)} | x € dom(o)} and N := {{z,7(x)} | x € dom(7)}}.
Obviously, o € mgu(M) and 7 € mgu(N). Therefore,

o U1 = sup(mgu(M), mgu(N)) Lemma 2.1.17

Lemma 2.1.16

mgu(M U N)
mgu(oN) oo = mgu(c{{z,7(x)} | x € dom(1)}) o0 o

2.1.3 Fixed Term Structure

In the remainder of this chapter, we fix a term structure 7 with most general unifiers
and speak of the terms, substitutions, etc. although it is understood that these notions
remain parameters of the calculus and only the properties of Definition 2.1.1 are used. In
examples, we freely choose a suitable term language with function symbols and predicates
found in the respective type theories.

2.2 Rules, Contexts and Judgments

The definition of a rule must be inductive according to the analysis in Section 1.2: When a
rule is applied, it may modify the context in which its premises are to be proven, including
the addition of rules to this context. The definition can be structured further by two
auxiliary notions, context modifiers and rule expressions. Both of them serve as indirections
to the point in the proof where a rule is applied (Section 2.3).

2.2.1 DEFINITION. The sets Rule, Rule expression and Context modifier and the relation
references are defined inductively. The induction base is given by n = 0 in cases 1 and 3.

1. Let vy .. v, be variables, ag .. a, terms, and M; .. M, context modifiers, such that if
a rule expression in M; references j, then j < i. Then the following is a rule:

Vvl..vm[Mll—al..Mnl—an]ﬁao

The rule is quantified over vy .. v,,; if m = 0 then the quantifier V may be omitted.
The components M; I a; are the premises of the rule, ag is its conclusion.
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2. A rule expression has one of the forms

RE = Rule basic rule
| RY(i) extract and quantify
| R/(Rule,RE) forward reasoning

A rule expression r references j if r contains a subexpression RY(j). Define the set
REL(r) == {i | R¥(4) is a subexpression of r}.

3. A context modifier is a sequence M = m;..m,, where for alli = 1 .. n either m; = +r
with a rule expression r or m; = —3V.t with a set of variables V' and term ¢. By
extension, a context modifier M references j if M contains some rule expression that

references j. Define also RYH (M) :=J_,cp RV (7).
A context is a set of rules.

The definitions of the free variables and substitution are extended to rules, context
modifiers and contexts in the obvious manner. The only notable point concerns the treat-
ment of quantification: The quantified variables in rules are considered bound (in the usual
sense) in the rule. However, the rule expression RY does not introduce any bound variables:
The binding takes place only when the rule expression is evaluated during rule application
(Definition 2.2.11). This construction leads to variable capture, which is desirable in the
intended application of the polymorphic let (Section 4.1.3.3).

2.2.2 DEFINITION. The free variables of rules, rule expressions and context modifiers are
defined by structural induction over the rule expressions:

FV(YV[M Fai.. M, & a,] = ay) = (FV(ao) U 0 FV(M;)U FV(cu)) \V
FV(R) _ if r =R is arule
FV(r)=¢o if r = R(4)
FV(R)UFV(r) ifr=R/(R, 1)

FV((m1 .. mn)) = U FV(m;)
i=1
FV(+r) :=FV(r)
FV(-3Vit) :=FV(t)\V
The bound variables are defined symmetrically:
BV (VW [M b ay .. M, + a,] = ag) =V U| JBV(M))
=0
BV(R) if r = Ris arule
BV(r):=< o if £ =mR"(i)
BV(R)UBV(r) if E=TR/(R,1")

BV(<m1 . mn>) = U BV (m;)

BV(+r) ::B:V(r)
BV(-3Vit) =V
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Both FV and BV are extended to contexts by set-union.

2.2.3 CONVENTION. We adopt the Barendregt variable convention [Bar84, Conv. 2.1.13]:
Given a set of objects currently under consideration, their bound variables are disjoint from
their free variables, and the sets of bound variables at different quantifiers are pairwise
disjoint. Any collisions are resolved by silently renaming the offending bound variables.

2.2.4 DEFINITION. Application of substitutions is extended to rules and context modifiers.

U(VV [Ml Fap.. M, an} — ao) =YV [U(Ml) Fajo..o(M,) ano} = a0
o(R) if r =R arule
o(ry==4qr if r =R"(4)
RI(o(R),o(r")) if r=R/ (R,
o((s1..5n)) = (o(s1) .. 0(sn))
o(r) = +a(r)
o(—3Vit) = —-3IV.o(t)

For a context I', the application is
o) :={o(r)|reTl}
The properties of free variables and substitution from Definition 2.1.1 carry over to

rules, because application to rules is a homomorphic extension of the basic application to
terms.

2.2.5 LEMMA. Let R be a rule, and let o, T be substitutions.

R1=R
Ro = R0_|FV(R)
R(ocoT)= R7o

FV(Ro) =FV(R) \ dom(c) UFV (range(o|ev(r)))

Proof. By structural induction and Definitions 2.2.2 and 2.2.4, using Definition 2.1.1 for
the base case. °

2.2.6 DEFINITION. A judgement is a proposition I'Fa with a context I and a term a. T’
is also called the context of the judgment. The set of judgments is denoted by 7. The free
and bound variables of a judgement are

FV(I'ta) :=FV{I)UFV(a) BV (I'ta) .= BV(I)

Substitutions are applied to judgments component-wise:

o(P'ta) =o()Fo(a)
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2.2.1 Execution of Context Modifiers

The evaluation of rule expressions (Definition 2.2.11) requires the operation of forward
resolution [Pau94]. Forward resolution combines two rules into a single rule, such that
resolution of a goal with that rule is the same as using the two input rules in sequence.
For example, let R and R’ be rules as in Definition 2.2.7 below. They could be applied in
sequence to obtain the following proof:

Mi(My(T)) & py . My, (Mi(I)) E pry B
M (L) F py My(D) & py .. My(T) F py i (2.2.1)
I'-ec

This example motivates the following definition:
2.2.7 DEFINITION (Forward Resolution). Let two rules

R:VV[Ml l—pl..Mnl—pn}:c
R =VYV'|[M{+Fpy ..M, +Fp,] =

be given such that

n >0
o = mgu(p1,c) #|
dom(oc) CV UV’ (2.2.2)
Then fwd_resolve(R, R') yields the rule
VYV, V'([My - M{ & py .. My - M), = ply, Mo b py.. M, p,| =)o (2.2.3)

otherwise fwd_resolve(R, R') =].

2.2.8 REMARK. Condition (2.2.2) ensures that forward resolution remains a local func-
tion that does not induce a replacement of free variables (Section 2.4.1). Such replace-
ments would be undesirable, because the order of the executed context modifiers (Defini-
tion 2.2.13) would affect the set of result rules, while the user has only limited possibilities
to influence or specify the order. The examples in Chapter 4 use forward resolution with
a rule R whose premises are closed and linear, and rule R’ represents some completely
established fact, which does not need to be modified any further. Thus, the condition does
not restrict the applicability of the construct.
2.2.9 REMARK. The result (2.2.3) does not contain new free variables, because the result
rule is re-quantified over the bound variables of the input rules.
2.2.10 REMARK. The correspondence of fwd_resolve( R, R') with the motivation (2.2.1) is
not perfect, because the rules applicable at a judgement are chosen from the judgment’s
context (Definition 2.3.3). Thus, if M; removes R’ from I', then the proof (2.2.1) cannot
be constructed, while the forward resolution step forces R’ to be applied.

A context modifier M is executed on a context I' by executing the elements of M
sequentially. Because the rule expression RY(-) is intended to refer to subtrees of the proof
under construction, they must be resolved through an indirection, which resembles the
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assignment of values to variables in interpretations of formulae (e.g. [Gal86, Sections 3.3
and 5.3]). The subproof environment ® in the following definition thus will contain the
characteristic parts of subproofs in Definition 2.3.3.

2.2.11 DEFINITION (Evaluation of rule expressions). Let ® be a subproof environment

o:NB PV x (7" xJ)
Define the auxiliary function

AsRule((T;Fp)i,, The) := [l— pr..-F pm] ==

For a rule expression 7, the evaluation of r under ®, written rg, is defined if R (r) C

dom(®). Then rg is given by

Re = {R}
RY(i)e = {VI.AsRule(S)} where ®(i) = (I, S)
RI(R,r)e = {R" | R € 76, R" = fwd_resolve(R, R') #|}

2.2.12 REMARK. Evaluation of a rule expression according to Definition 2.2.11 yields at
most one rule as a result. The formulation in terms of sets of rules avoids making evaluation
a partial function. In this manner, fwd_resolve can act as a filter for newly introduced rules.
Furthermore, in Section 2.5 we will extend R to yield a set of subproofs, and this extension
is anticipated in the above definition.

2.2.13 DEFINITION (Context modification). Let ® be a subproof environment as in Defi-
nition 2.2.11. The ezecution of a context modifier M on a context A is defined by:

AQ%e := A
AQ®(my .. m,) = A'Q%(my .. my,)
, AUrg my = +r
where A" = -
A\{R|R=(Vo[P]=c)€eAand t <, ¢} my=-3Vit

2.2.14 REMARK. The matching in removal is rigid (Definition 2.1.6) to ensure that later
substitutions to ¢ cannot invalidate an executed removal operation (Section 2.4.1): The
match, hence the entire execution of the modifier, is undefined if any instance of ¢ would
require the rule to be removed, even though it is not removed with the present conclusion c.
This proviso will be essential in Section 2.4.1.1.

2.3 Proofs

A proof, as motivated in Section 1.2, is a tree labeled with judgments (Definition 2.2.6) that
represent type checking judgments. The tree structure is expressed as a mapping from a
tree-domain to judgments [Cou83, Gal86], which enables the representation of incomplete
proofs during backwards construction (Section 2.4). The main property of proofs, as
opposed to general trees, is that a node is related to its children by an applicable rule.
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This constraint is expressed by an annotation function, which attaches to each node the
applied rule. We proceed in two steps: Definition 2.3.1 considers only the tree structure.
Definition 2.3.3 adds the requirement that each non-leaf judgement in a proof tree can in
fact be proven by a rule from its context.

2.3.1 DEFINITION. Let ¢ be a tree over judgments (Definition 2.2.6). Its free and bound
variables, and application of substitutions are defined by extension:

FV(t):= |J Fv(p) BV@):= [ BVEp)  to:={p— tplo}edmno -

pEdom(t) pedom(t)

The inner variables of the subtree t{p} are those variables not occurring elsewhere in t.

IV(t,p) == FV(i{p}) \FV(t\))

2.3.2 REMARK. The inner variables reflect a requirement from Section 1.2.3.5: To imple-
ment polymorphic let [Mil78, DM82, CDDKS86], those variables must be identified that can
be replaced independently for each reference to a polymorphic value. These are precisely
the inner variables (see Sections 2.4.1.2, 2.4.6 and 4.1.3.3).

2.3.3 DEFINITION. A pre-proof is either L (failure) or a triple P = <t, 1, F> where £ is a
tree labeled with judgments and F'is a set of fixed variables. The function f maps tree
positions in ¢ to annotations

f: N* — {DEFERRED }URule

and the dom(f) is a tree domain.

A subtree t{p} is complete if dom(t{p}) C dom(f) and for all pg € dom(f), where
f(pq) is a rule with n premises, we have pqgi € dom(t) fori=1..n.

The subproof environment in t at pi (where p # €) is

i—1

o7 = (IV(t,pj), (Ds, i),
where D; = (t[l] | | € leaves(t{pj}), f(I) = DEFERRED)
A pre-proof P is a proof if the following conditions hold:

1. dom(f) C dom(t).
If p € dom(t) \ dom(f), then p is a leaf in ¢.
3. If t[p] =I'ta and

N

ri=f(p)=VV[Mi+d .. M,+d,) =c

then there is a substitution o with dom (o) C V, FV(range(c)) NV = & such that
all of the following hold:

(a) rel
(b) a=co
(c) If pi € dom(t) then
i.i€1..nandt[pi] =TFdo and I'; C Q% (M;0).
ii. for j € RE(M;) the subtree t{pj} is complete.
iii. for j € RIH(M;) we have IV (¢,pj) C F.
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2.3.4 REMARK. Conditions 1 and 2 ensure that the proof is tree-structured and the an-
notation function is defined only on existing tree nodes. Condition 2 adds that all inner
nodes of ¢ are annotated.

The main property that distinguishes proofs from pre-proofs is that each node is related
to its children by an applied rule. It is formalized in 3. Condition 3a requires the applied
rule to be chosen from the local context of the application. 3b and 3(c)i require that the
judgments in the proof are instances of the conclusion and premises of the applied rule, and
that the context modifiers are obeyed. Condition 3(c)iii notes those variables that have
once been observed as inner variables of some subproof as fixed, thus inhibiting further
substitutions involving these variables (Definition 2.3.9). Condition 3(c)ii ensures that
only complete subproofs can be extracted, such that after extraction, the tree structure of
the proofs is fixed as well.

2.3.5 DEFINITION. We use the notation from Definition 2.3.3. A judgemnet at p in ¢ is
called solved iff f is defined at p; an unsolved leaf is a goal and

goals (t, f, F) = {g | g € dom(t) \ dom(f)}

A proof P = <t, f, F> is complete if t[e] is complete according to Definition 2.3.3.

The root judgement t[e] is also called the initial judgement of P, and we say that P
is a proof of t[e]. The context of the root judgement is called the initial context. For p €
dom(f), f(p) = ris arule, we say that r is is applied to judgement t[p] or r is applied at p.
2.3.6 ExaMPLE (Context Modification). The workings of context modification are illus-
trated in rule (—-intro) for A-abstraction:

F,u{z:stte:t
I'EXxe:s—t

The Tca-formalization is (Section 4.1.1, see Section 3.1.3 for the form of context modifiers):

—(i=z);+[z:s]Fe:t
Az.e: (s —t)

v (ac,e,s,t) (lambda)

Suppose there is a A-abstraction to be type-checked at tree node
tlp] =Tk ¢ : s — ¢
with f(p) = lambda. According to 3c, the first and only child is
tpl] =T"+e" : " .

According to 3b and 3¢ we must have ¢/ = ¢” and s’ = s”, for otherwise a matching o
(Condition 3) could not be found. Furthermore, o(z) = 2’ and o(s) = ¢’. We are interested
in I C I'@?(Mo). From Definition 2.2.13 we see that
ra®(Mo) = (F\{[]\Z/] = 2o :u | uany term}) U{[] = x0 : so}
=\ {[M] =" u|uany term}) U{[] =2’ : s’}
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2.3.7 REMARK (State of Judgments). Section 1.2.3.7 postulated four states pending, un-
resolved, solved, and deferred for judgments and a fixed order in which these states are
entered. The states are encoded by the interplay of the functions ¢ and f: A pending
judgement for premise i at p is not present in the proof tree at all, that is t[pi] is unde-
fined. A non-pending, but unresolved judgement has t[pi] defined, but f(pi) is undefined.
A solved judgement can either be resolved by a rule or deferred for later processing, de-
pending on the f(pi).

The order of insertion of pending judgments to t is determined already by the property
that both dom(f) and dom(t) are tree domains [Gal86, Section 2.2] and Condition 1. This
restriction enforces that premises of rules are inserted to the tree t left-to-right. Like-
wise, the cross-references between subtrees by rule expressions R allow only backward
references according to Definition 2.2.1.

2.3.8 REMARK (Weakening). Condition 3(c)i could be simplified to
tlpi] = TQ*(M;o) - d;o .

The simplification concerns the context of ¢[pi], which is to be equal to the context of t[p],
modified according to the rule. Looking at Condition 3a, this is overly restrictive: The
applicable rules are chosen from the context and adding more rules does not invalidate
a proof. In other words, the chosen form 3(c)i introduces weakening (or monotonicity)
(e.g. [Gen3b, RS92]):

'Fa

TUAFaa

The chosen form also integrates more smoothly with the consistency requirements of deriva-
tion steps (see Remark 2.4.8).

The interaction of context modification with application of a substitution o(P) deserves
special attention. If P = <t, f, F> is a proof, we expect P’ = o(P) to be a proof as well.
The details will be considered in Section 2.4.1. The main proviso is that substitutions
must be compatible with P in the following sense.

2.3.9 DEFINITION (Compatible Substitution). Let P = <t, f, F> be a proof and let 7 be a
substitution. 7 is compatible with P if FV (1) N F = @.

2.3.10 DEFINITION. Let P = <t, 1, F> be a proof and ¢ a substitution compatible with P.
Then o(P) := (¢, f', F") where

' ={p — t[plo | p € dom(t)}
f'={p—ro| f(p) =r € Rule}
U{p—al f(p) =a¢ Rule}

We also write Po := o(P).
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2.4 Derivation Steps

This section demonstrates that the proof construction steps implemented in Chapter 3 can
be carried out such that the proof structure of Sections 2.2 and 2.3 is maintained. In this
way, the conditions on proofs stated in Definition 2.3.3 are invariants on the proof process
as motivated in Section 1.2.

2.4.1 Instantiation

At several points during proof construction, a proof P must be instantiated to a proof P’ =
o(P). We are going to show that P’ is a proof if ¢ is compatible with P (Theorem 2.4.7).
As proofs represent type deductions, this result is more than a technical necessity: Poly-
morphic let, which can be implemented by subproof extraction (Section 4.1.3.3), requires
in the soundness proofs a lemma of the form (see for example [Tof90, Lemma 4.2], [WF92,
Lemma 4.5])

'Fe:t implies I'oke:to (2.4.1)

This lemma is an instance of Theorem 2.4.7, if we interpret complete T'CG proofs as type
derivations via some interpretation function Zp:

Theorem 2.4.7
P — Po

7 | |2

Ip(P)  —=  Ip(Po)
The inference (*) is usually proven by reconstructing a typing derivation for the instantiated
judgement in (2.4.1). With Theorem 2.4.7 that derivation is given by interpreting the
instantiated proof Po, whose root judgement is just the instantiated root judgement of the
original P, and that root judgments is interpreted as right-hand-side judgement in (2.4.1).
A closer comparison can be found in Section 2.4.1.2.

2.4.1.1 Instantiation Theorem

The instantiation theorem is proven in three steps, arguing in each one that application of
substitutions do not destroy the invariants on proofs expressed in Definition 2.3.3. First,
we consider the effect of substitutions on rule expressions. Second, we prove that context
modification is not affected. Third, we get the desired instantiation theorem.

2.4.1 NOTATION. For the remainder of this Section 2.4.1.1, we use the notation of Condi-
tion 3, Definition 2.3.3 and Definition 2.4.1: P = <t, 1 F> is a proof and 7 is an idempotent
substitution compatible with P. t[p] is a judgement to which the rule

VYV My b dy .. M, Fd,| = ¢

has been applied. o is the local substitution of Condition 3 and pi is a path in dom(t) as in
Condition 3c. j € REH(M;) is any of the references. The corresponding entities in P’ = Po
are denoted by t', M/, d;, ¢/, o’. As usual, local fresh definitions of these names override
the ones above.
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2.4.2 LEMMA. Substitution does not influence the inner variables of extracted subproofs.
For any q € dom(t) such that

IV(t,q) C F (2.4.2)
we have

IV(tr,q) =1V (t,q)

Proof. First, we abbreviate the mentioned subtrees by:
A:=t{q} B:=t\,
Let us state two consequences of the precondition that 7 is compatible with P and (2.4.2)
IV(t,q) N (dom(7) UFV (range(r))) = &

hence (by ANB =9 = AN(CB = A)

IV (t,q) NCdom(r) NCFV (range(tlev(m))) = IV(t,q) (2.4.3)
A second consequence from

dom(T) NIV (t,q) = dom(t) N (FV(A)\FV(B)) =2 (2.4.4)
is that 7 can never introduce variables into B which it does not introduce into A at the

same time. Hence,

(2.4.4)
Tlpv(a) = 7'|FV(A)m(FV(B)uGFV(B)) =" T|pv(a)nFv(B)

and therefore

FV (range(T|pv(a))) \ FV (range(t|pv(s)))
= FV(range(T|ev(ann))) \ FV (range(t|ev(p))) = @ (2.4.5)
With these two observations, we can compute (using idempotence of 7 at (x)):
IV(tr,q) =FV (A7) \ FV(Br7)
(2.1.7) =(FV(A)\ dom(r) UFV (range(7|pv(a))))\
(FV(B) \ dom(7) UFV (range(r|pv(s))))
=((FV(A) NC dom(7)) UFV (range(t|pv(a))))
N ((CFV(B) U dom(7)) N CFV (range(t|pv(s))))
=(FV(A)NCdom(r))n (CFV(B)U dom(7)) N BFV(mnge(T!FV )
() UFV (range(t|pv(a))) N (CFV(B) U dom(7)) N CEV (range(t|rv(s))))
=FV(A4) NCdom(r) NCFV(B) N CFV (range(r|pv(s)))
UFV (range(7|pv(a))) N CFV (range(7|rv(s))) N CEV(B)
=(FV(A) \ FV(B)) N C dom(7) N CFV (range(r|pv(p)))
UFV (range(7|pv(a))) N CEV (range(7|rv(s))) N CEV(B)
=IV(t,q) N Cdom(r) NCEV (range(r|ev(p)))
UFV (range(7|pv(a))) N CEV (range(7|pv(z))) N CEV(B)
(2.4.3), (2.4.5) =IV(t,q) .
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2.4.3 LEMMA. Formation of subproof environments commutes with substitution.
(®])r = of;
Proof. Immediate from the Definition 2.3.3 and Lemma 2.4.2. °

2.4.4 LEMMA. Forward resolution commutes with substitution. Let R, R’ be two rules as
in Definition 2.2.7.

If fwd_resolve(R, R") #] then fwd_resolve(RT, R'T) = (fwd_resolve(R, R'))T

If fwd_resolve(R, R') =| then fwd_resolve(Rt, R'T) may be defined.
Proof. The first part is direct by Definition 2.2.7, the required substitution is

o' :={v = 7(0(0))}vcaom(o) = (T © 0)laom(c)
By Convention 2.2.3, FV(7)N(VUV’) = @, and by Definition 2.2.7 dom (o) = dom(c’) C
V UV’ hence py7o’ = d7T0’ by Corollary 2.1.5.
The second statement follows from restriction (2.2.2): If unification of p; with ¢’ requires
instantiating some free variables, thus failing (2.2.2), the substitution 7 may contain just
the required instantiation. °

2.4.5 LEMMA. Evaluation of the rule expressions commutes with instantiation.

(T’T)@ﬁ D) (’I"q)fi)T
Proof. The claim is proved by a direct structural induction on r, using Definition 2.2.13.
Let @ := ®}" and 9’ := P},
r=Re Rule (Re)T=Rr=(RT)sr
r=Ri) Let ®(i)=(V,S), d'(i)= (V' 5.
(R¥(i))7p ""2*" (VV.AsRule(S))r
Def, 239 VV.(AsRule(S)7) Def- 2241 VV.AsRule(ST)

et 242 gyt AsRule(S') = RY (i) = (RY(i)7) s

r=R/(R.r") By Lemma 2.4.4. Note that the set-inclusion can be strict. °
2.4.6 LEMMA. Let I" and I be a contexts and M a context modifier.
' OTr — T'@* Mr D (TQ% M)r (TH)

Proof. By induction on the length of M. The case M = ¢ is clear.
M={(+r)-M Let ® := & and & := ®}.. Assume I' DO I'7. To make the induction
more visible, define

A/ = FIU<7"7')¢/ AZIFUTq)
By Lemma 2.4.5 and assumption, we have A’ O A7. Then conclude, using Definition 2.2.13
'a® Mr = (I'U (r7)e) @ M7
, . TH .
=AN'Q® M7 D (AQ®M)7T
= ((TU7re)@°M)7 = (TQ°M)T
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M = (—3V.t)- M Asin the previous case, define two contexts

A=T\{R|R=(NU[P]=c) €Tt < ¢}
A =T'"\{R|R=(VU[P] = o)T € ', tr <, c7}

LI\{R|R= (W

P} = co)r € ' i1 <, ¢}

The equality (T) is by Definition 2.1.6 of rigid matching: If the instantiation of ¢ were to
induce t < ¢, then ¢ <, ¢ is undefined. Hence from assumption I’ D I't we have A’ O Ar,
and we can proceed by induction as in the previous case. °

2.4.7 THEOREM. The set of proofs is closed under application of substitution. For any
proof P and substitution T compatible with P

Pr= <t7‘, fr, F>

is a proof.

Proof. We check the compliance of P7 with Definition 2.3.3. Conditions 1 and 2 are
clearly satisfied. It remains to check Condition 3 on the correct application of rules. We
use the notation from the definition. By definition r7 € I't, validating 3a. As the required
substitution, use

o = (too)ly

where o is the existing substitution for P. This cxhoice validates Condition 3b. By
Convention 2.2.3, we have

domtNV =&
FV(rangeT)NV =@

Hence

4.7

2
P proof .y Lemma 213 AT|edomo Y{v — vo1 | v € domo,voT # v} @47 cro’
—— ™

aT

v~

(2.4.6) =o'
=7

For Condition 3(c)i, use a similar reasoning and Lemma 2.4.6 (with [V = I') for

P proof Lemma 2.4.6

I'imr= C (F@q)MiO')T - FT@q)/MiT

Condition 3(c)ii is clear. Condition 3(c)iii follows from Lemma 2.4.2. o

2.4.8 REMARK. The proofs of Lemma 2.4.5 and 2.4.6 show at two places that weakening
(Remark 2.3.8) appears naturally: In Lemma 2.4.6, the pattern for removal may be in-
stantiated such that fewer terms are removed. In Lemma 2.4.5 the forward resolution may
deliver more result rules. The applications in Chapter 4 do not depend on this behaviour,
their type systems are formalized such that in both places a further instantiation is not
possible, either because the terms are ground already, or because they contain only bound
variables.
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2.4.1.2 Relation to the Instantiation Lemma

The fixed variables F' of a proof <t, fF > have a structural counterpart in conventional
presentations of type systems, where they occur in the proofs of the counterpart of Theo-
rem 2.4.7. For instance, Tofte [Tof90] proves the following lemma:*

LEMMA ([Tof90, lemma 4.2]). IfT't e :t and o is a substitution, then I'o - e : to.

The proof of the lemma is by induction on the structure of e (or equivalently on the
structure of the typing derivation, because the typing rules are syntax-directed). All cases
are straightforward, except for the (let)-rule being applied as the last rule in the derivation.
The (let)-rule employs a closure operation to compute the variables to be generalized.

Closrt := Va.t where @ =FV(t) \FV(I') .

Fke:ty TU{z + Closrt1 } Feq: t

I'Flet r=¢; in ey :t

(let)

The induction step constructs a new derivation of I'c  let © = e; in ey : to from
derivations of specialized premises. Unfortunately, it is not sufficient to apply the induction
hypothesis to the first premise: The result I'c F e : ty0 is correct, but it is not useful to
prove the second premise. For that premise, the induction hypothesis yields

(FU{QJ — ClosFtl})a ey to
but to obtain the structure of the (let)-rule, we need
Closr(t10) .

Note that the very proof obligation of Lemma 2.4.5 arises here again: The application of
o and the Clos operation must commute. This is not the case in general, because o may
substitute terms for the type variables in FV (¢) \ FV(I'), thus influencing the closure.

Tofte’s proof continues by restricting o locally, that is only for the derivation step under
consideration. Let Closrt; = Va.t; and choose a renaming p = {«; — [;}7, with fresh j;.
Then define

O'/ = O"Fv(p) U 1% (248)
Since the a; do not occur in I' by definition of Clos, we have I'c’ = I'oc and so by the
induction hypothesis

Tok e :tio. (1)

4The original statement is in terms of a type environment TE, substitution S, expression e and type 7.
Tofte writes TE —° TE' [Tof90, Definition 4.1], because due to renamings of bound variables, the applica-
tion of substitution is not a function but a relation. The lemma is then: “If TE - ¢ = 7 and TE —° TE’
then TE' - e = S7.” We have simplified that statement to TE' = ¢(TE), since by Convention 2.2.3 the
distinction is not relevant to the discussion.
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Now, the restricted substitution ¢’ and Clos do commute in the desired sense:

o(Closrty) = o(Va.ty)
= VB't1(0'|FV(t1)\d Up) by definition of substitution and binding
= V3.t (o]pvr) Up) FV(t) \ (FV(t;) \FV(I')) =FV(t;) nFV(I)
=VA3.t10" = Clospyt,0"

For the last equality, say Closp,ti0’ = V7.t10" with ¥ = FV(t,0') \ FV(I'o). Now argue
that 7 = /3. Since none of the 3; is free in 'o, but does occur in ;0" (o is free in t1), we
have 4 D 3. Conversely, assume there is a v; ¢ . Since v; € FV(t10'), there must be
some 0 € FV(t;) with v; € FV(do’) (possibly ¢'(§) = §) with § € FV(I') (if 6 ¢ FV(I)
then § € @). But with v; € FV(d0’) and 6 € FV(I'), also v; € FV(I'¢’), contrary to our
assumption.

(T’ U{z — Closrt}) = I'oc U {z + Closp,t10'}
Fo U {x + Closr,t10'} ey : to (1)

An application of rule (let) to the two premises (1) and () yields conclusion I'c |- e : to.

Relation to Fixed Variables The structural correspondence with the fixed variables
of Definition 2.3.3 is exhibited clearly in the choice of ¢’ in (2.4.8): ¢’ acts as a renaming
on the fixed variables and behaves like o on the remaining variables. Consequently, o
can only replace freely the non-fixed variables, which is just the condition of compatibility
(Definition 2.3.9) in our definitions. Contrary to our setting o is arbitrary in the lemma
itself. The reason is that Tofte can discard the derivation I'c F e : to entirely and
reconstruct the derivation of I'oc F e : to’. In other words, the substitutions for &, which
we disallow, are immaterial in Tofte’s setting, only because he does not need to preserve
the previous proof. Our fixed variables overcome the necessity of rebuilding the proof
structure.

2.4.2 Resolution
Define for proof P = <t, fHF > a partial function

<t, f, F> Re}:—o;ve> <t’,f’,F’>

with preconditions

p & dom(f)

tlp] =TFa

R=VV[M Fdy..M,Fd,]=cel

p is a renaming with dom(p) =V, range(p) NFV(P) = @.
o = mgu(a,cp) #| with FV(e)NF = @.

Then define

S

t':=te  fl:=(fU{p—R})o F :=F
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2.4.9 LEMMA. If P is a proof and P % P’ 2| then P’ is a proof.
P

Proof. Since o is compatible with P, by Theorem 2.4.7, Po is a proof. The extension of f
at p satisfies Condition 3 of Definition 2.3.3. °
2.4.10 REMARK. Precondition 5 does not restrict the useful resolution steps that are pos-
sible on P, since FV(a, R) N F # & is never forced by the given definitions.® Consider
Definition 2.3.3, that could force variables into F'. Since p ¢ dom(f), no subproof contain-
ing p can have been extracted by Condition 3(c)ii, hence Condition 3(c)iii does not apply.
Furthermore, no inner variables that are fixed by in Condition 3(c)iii are removed from
their subproof, since Definition 2.2.11 quantifies the extracted rules over those variables.
Hence, neither goal a nor rule R can contain fixed variables from this source.

2.4.3 Adding a Pending Goal
Define for proof P = <t, f, F> a partial function

(61 F) =5 (01 F)

with preconditions

L fp)=VYVI[Mtd ..M, Fd,] =c

2. for j=1..0i—1: pj € dom(t)

3. If j € REH(M;) then t{pj} is complete.
Let o be the substitution of Condition 3 in Definition 2.3.3. Then define

t':=tU{pi— I‘@‘bfiMial—dia}
and
Fr=Fu |J 1IV(tpk)
kERESE(M;)

2.4.11 LEMMA. If P = <t, fs a> is a proof and P A—d‘d> P’ #£| then P’ is a proof.
pi
Proof. Check the conditions of Definition 2.3.3. Conditions 1 and 2 are clear. It remains

to check 3, which holds by the preconditions and definition of the operation. °

2.4.4 Deferring a Goal
For proof <t, fF > define the partial function

Defer

<t7.f7F> - <t7f,7F>
P
under the precondition
p € dom(t) \ dom(f)

Then define
f:= fU{p+— DEFERRED}

5 Although, of course, F can be enlarged arbitarily without contradicting the definitions.
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2.4.12 LEMMA. If P is a proof and P Deler, pr #| then P’ is a proof.
p

Proof. Immediate from Definition 2.3.3. °

2.4.5 Grafting Proofs

The implementation of the branch-expand mechanism (Section 3.3.4.5) combines indepen-
dently constructed proofs. This operation is justified by the following definitions.
Let P = <t, f, F> and P’ = <t’, 1, F’> be proofs. Define the partial function

P — P = <t”,f”,F”>
if the following preconditions are met

1. p € dom(t)\ dom(f)
2. p: FV(P)\ F' — V\FV(P) a renaming.
3. o is a most general substitution such that t[ploc = '[e]pc and FV (o) N (FUF’) = @.

Then define

t" :=tolg, U{pg — Jpo | qg— J €t"}

"= folg, U{pg — apo | g —a € f"}
F":=FUF'

2.4.13 LEMMA. Let P and P’ be proofs. If P+, P' = P" #| then P" is a proof.

Proof. Check the conditions in Definition 2.3.3. Conditions 1 and 2 are fulfilled, because P
and P’ are proofs. Condition 3 is clear for all the inner nodes except for p and its parent
node, because all of the sub-conditions are local and relative to the proof nodes. (Condi-
tion 3(c)ii with Precondition 1 ensures that ¢{p} has not been extracted before.) For the
node p, observe that the entire structure of P’ has been copied there, replacing the original
node t[p]. For the parent of p, use the Precondition 3. o
2.4.14 REMARK. The computation of the substitution ¢ in Precondition 3 is prohibitively
expensive, because it requires set unification [Sto99] on the context I'. It can be avoided if
the derivation steps keep track of each application of a substitution and P’ is constructed
starting from the judgement ¢[p| itself. Then we have

({e = t[p]}, @, F) —* P/

In this situation, o is just the substitution accumulated through the inference steps. The
procedure can be extended to several independent judgments £k =1 .. n with

<{€ — t[pk) }s @,F> —* P

If this yields substitutions oy .. 0,, then the sought substitution is ¢ = o U --- U g, by
Theorem 2.1.18 (for idempotent substitutions). Section 3.3.1.1 shows how this computation
can be accomplished efficiently.
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2.4.6 Outer Variables

The proof structure defined in Definition 2.3.3 is sufficient to interpret the proofs con-
structed by TcG as typing derivations in Chapter 4, which ensures soundness of the gen-
erated type checkers. One further invariant on the proof construction process is necessary
to demonstrate completeness of polymorphic let by subproof extraction (Section 4.1.3.3).
Its typing rule is [Mil78, DM82, CDDKS6]:

I'Fe:s a=FV(s)\FV(I') TI'z:Vastkeée:t
I'Fletz=eine :t

In Tca, the quantified variables & are computed as the inner variables I of the subproof
for the first premise. Soundness of this procedure of obvious, as the variables in I' are
certainly not in I, thus never among the quantified variables. For completeness, we have
to argue that any variable v € FV(s)\ [ is in FV(I") as well. We are now going to establish

[ =FV(s)\FV(D) (2.4.9)

by a proof-theoretical argument, paralleling the proof-theoretic motivation for the notion
of inner variables. Suppose that the first premise is located at position p in proof P.
Oberserve that when the premise is inserted to P, I' is “outside” of the suproof at p, while s
is “inside”, hence (2.4.9) is satisfied. This distinction between ¢{p} and t\ , motivates the
following definition.

2.4.15 DEFINITION. Let t be a tree of judgements and p € dom(t). Define the outer
variables of the subtree t{p} by

OV(t,p) :=FV(t{p}) NFV(\,)

The outer variables are extended to subproofs by OV((t, f, F){p}) := OV (¢, p).

The outer variables of subproof P{p} are those variables from P{p} that cannot be
inner variables of P{p} because they have already been observed outside of that subproof.
We are going to establish that a variable cannot become “outer” to p by coincidence, but
only because it gets unified with some variable that is already outer to p. For motivation,
note that in the let-example, when the first premise is inserted we have

FV(T) = OV(P, p) (2.4.10)

Furthermore, a characterization of the outer variables yields a characterization of the inner
variables by using A\ B= A\ (AN B):
IV(P p) = FV(P{p}) \FV(P\))
=FV(P{p}) \ (FV(P{p}) NFV(P\))) (2.4.11)
= FV(P{p}) \ OV(P p)

2.4.16 REMARK. Although the outer variables are in this sense complementary to the
inner variables (Definition 2.3.1), the already established results do not carry over. The
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inner variables of a subproof could be kept constant (Lemma 2.4.2) by restricting the
applicable substitutions to those compatible with P (Definition 2.3.9). That restriction, in
turn, is sensible only because the inner variables of complete subproofs need not be touched
again. No such restriction is possible for outer variables, as they necessarily change during
resolution of goals, otherwise the characterization of polymorphic let would not be possible.

The most general unifiers (Definition 2.1.10) must be restricted to obtain the result.
The restriction is obeyed by standard unification algorithms for first-order terms [BS01]
and DAGs, and higher-order terms [Hue75, Nip93], as these algorithms only introduce
fresh variables to the unification problem, if at all. These new variables can be chosen
arbitrarily, in particular they can be chosen such that they do not come from a given
set U.

2.4.17 DEFINITION. Let U be a set of used variables and E a set of equations. The unifier
o = mgu(E) respects U if FV(range 0) C FV(E) UCU.

By Remark 2.1.11, we have dom o C FV(FE) since o is a most general unifier.

2.4.18 LEMMA. Assume P is a proof and unification respects FV(P) and

P Resolve P/
R,q

with unifier 7. Then for p € dom(P)

OV(P',p) C FV(r(OV(P,p))) (2.4.12)

Proof. Both of the proof cases below conclude using the following equation (by (2.1.7)):

FV(7(OV(t,p))) = FV(7lovy (OV(t p)))

2.4.13
= OV (t,p)N Cdom Tlovp) U range(T|ov(tp)) ( )

p<gq LetP= <t, fF > Since unification respects FV(P) and 7 is a most general unifier

domt CFV(tlq]) CFV(t{q}) CFV(t{p}) (2.4.14)
range T C FV(t[q)) UCFV(¢t) C FV(t{p}) UCFV (1) (2.4.15)

The following elementary computation yields the result. The underlined terms indicate
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the use of (2.4.13).

OV(tr,p) = FV(t{p}7) NFV(\,7)

FV({p}r) NFV(\,Tleveiannrve,)) by (2.4.14), (2.1.4)

FV(t{p}7) NFV(t\,7lov(p)
= (FV(t{p}) N C dom 7 U range T|gv((py))
N (FV(t\p) NC dom 7|ov(ip) U range T|ov(p))
=FV(t{p}) NCdom N FV(t\p) N C dom Tlov(p)
UFV (t{p}) N Cdom N range 7|ovp)

U Tange T|ev(t{p}) ﬂFV(t\p) NCdom T|ov(tp)

J/

-~

by (2.4.15)CFV (¢t{p})UCFV (¢)
U range T|pv(¢{py) N range T|ovp)
by (2.4.13) CFV(r(OV(t,p)))
p £ q Then, because g € goals(P), also ¢ £ p, that is t{p} and t{q} are disjoint subtrees
of t. By analogous reasoning as before, we have
OV(tr,p) =FV(t{p}r) NFV(t\,7)

=FV(t{p}7loviy) NFV(t\,7)

= (FV(t{p}) NC dom 7|ov(p) U range Tlov))

N (FV(t\p) N C dom 7 U range )

=FV(t{p}) NCdom t|ov(y N FV(t\,) N Cdomr

UFV (t{p}) NCdom 7|ovip N range T

CFV(t[g])CFV(t\,)

U range Tlovy) NFV(E\,) N Cdomt

U range T|ov ) N range T

by (2.4.13) CFV(7(OV(t,p))) o

2.4.19 THEOREM. Let P = (t, f,F) be a proof, p € dom(t) \ dom(f) and P —* P’
such that unification respects the free variables of all intermediate proofs. Let o be the
composition of all substitutions applied in the derivation.

OV(P',p) CFV(c(OV(P,p))) (2.4.16)

Proof. Proceed by induction on the number of derivation steps. The claim is obvious for
zero steps, where P’ = P and 0 = @. In the induction step

P—*p_p
we have two substitutions & and ¢’ with o = ¢’ o 6. We have

OV (P',p) CFV(c'(OV(P,p)))
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by case distinction on the applied derivation step. For resolution use Lemmata 2.4.18. For
grafting P — P’ use the same Lemma twice, once for the renaming p within P’ and next
for the unifier o on P and P’. For the addition of a goal, observe that subproof extraction
does not modify the outer variables, because Definition 2.2.11 quantifies over the inner
variables of subproofs before extracting them.

The induction hypothesis (2.4.16) yields

OV(P,p) CFV(6(OV(P,p))

such that finally

OV(P',p) CFV(d'(OV(P,p)))
CFV(d(FV(6(OV(P,p)))))
=FV(o'(6(OV(P,p))))
=FV((¢' 06)OV(P,p)) = FV(0,0V(P,p)) °

2.4.20 REMARK. Theorem 2.4.19 with (2.4.10), (2.4.11) establishes the completeness of
the let-rule. Suppose P is a proof, to which the rule’s first premise has just been added
at p

Plp]=T*Fs

and P —* P’  where P'{p} is complete. Let o be again the composition of all substitutions
applied. This entails
P'lp| =To + so

At the point where the inner variables are determined, we thus have

IV(P',p) £ FV(P'{p}) \ OV(F,p)

2 FV(P'[p]) \FV(a(OV(P,p)))
(2.4.10) D FV(so) \ FV(T'o)

2.5 Extensions

The formalism presented in the preceding sections exhibits the central integrity constraints
of Tca proofs and their maintenance through derivation steps. The main technical point is
contained in Theorem 2.4.7 on application of substitutions to proofs, the derivation steps
in Section 2.4 are well-defined by straightforward corollaries. However, the formalism
does not yet establish a convenient working ground for the applications in Chapter 4:
Although, for example, the prototypical language MINIML [CDDKS86] can be modeled
(see Section 4.1), several features found in practical type systems would require encodings
and “programming” in TCG, rather than declaratively specifying the typing rules.

This section therefore adds straightforward extensions to the formalism, which do not
alter the structure of the existing definitions and proofs, yet would introduce mere technical
complications that are not motivated by an additional gain of insights.
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2.5.1 Rule Expressions

Type systems often include a notion of renaming of identifiers. For instance, when a mod-
ule M defining an identifier x is included, the qualified name M.x accesses the identifier x
within M. A different form of import makes x an alias for M.x. This notion can be
expressed succinctly in the T'cG rule:

FMax:t
V(x,t) x—xt (unqualify—M)

However, if a name M.z is noted in the context, the rule would be applied at every reference
to x, which is clearly inefficient. It would be desirable to add x : ¢ to the context for
each M.z : t as soon as the module M is imported. This can be accomplished by forward
application with the rule (unqualify—M) if we allow rule expressions (Definition 2.2.1) to
reference the context of the current goal:

RE @:=--- | ENV

Technically, the subproof environment & (Definition 2.3.3) needs to be augmented with
the context of the judgement ¢[p]. Then the evaluation of rule expressions (Definition 2.2.11)
extends to the new case straightforwardly. The proofs of the lemmata in Section 2.4.1 go
through because no new dependencies on inner variables (Lemma 2.4.2) are introduced.

Subproof extractions with quantification models the soundness proofs and type infer-
ence for polymorphic let (Section 2.4.1.2, 4.1.3.3). If more than one value is to be defined
simultaneously, then a single subproof extraction is not sufficient: We need one extraction
per value, and these occur at several points within a subtree (Section 4.1.3.6). We therefore
extend extraction with a second parameter ¢, which designates a path within the subtree
at premise 7:°

RE := - | R"(i,q)

The subproof environment ®” (Definition 2.3.3) has to be extended to contain all the
proof nodes piq, then evaluation of rule expression (Definition 2.2.11) can handle the path gq.
Quantification, however, still occurs over the inner variables of the subproof P{pi}, not over
the inner variables of P{piq}. The sequence of lemmata in Section 2.4.1 goes through, the
proofs never refer to the exact shape of the extracted rule’s conclusion. Also the discussion
in Section 2.4.1.2 remains valid, because with the reconstructed derivation at P{pi}, we
have implicitly reconstructed a derivation at P{piq}.

It is sometimes desirable to extract a subproof as a rule (Definition 2.2.11) without
quantifying over its inner variables. For instance, the type check for patterns (Section 4.1.4)
introduces fresh type variables for the pattern variables, and these assigned typings can be
obtained by subproof extraction, but the fresh variables must not be polymorphic. The
rule expressions are extended by non-quantified extraction, which includes an additional
path ¢ as in the previous extension.

RE:::--~\RV(i,q)

5The Tce input language replaces ¢ with more readable named ezports (Section 3.1.3).
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The interaction of non-quantified extraction with the lemmata in Section 2.4.1 is more sub-
tle: As soon as the expression R” is executed in an add goal derivation step (Section 2.4.3),
the inner variables of P{pi} do occur outside of P{pi}, hence cease to be inner variables.
This step only lessens the requirement imposed by Condition 3(c)iii of Definition 2.3.3, but
subproof extraction in 3(c)i will not be able to quantify over the previously inner variables.
Rule expression R” therefore must not extract a subproof that has been extracted with
RY before.

Thus there are two consequences of the new form of subproof extraction: First, as
soon as it has been performed, a subsequent extraction with R on the same subproof
is equivalent to using R” again. Second, if R has been performed before R”, fixed
variables of the proof may occur in unsolved judgments, which cannot happen with R
alone, because the fixed variables become bound variables in the extracted rule. Hence,
the implementation (Chapter 3) must explicitly tag fixed variables.

Summarizing, the new operation R” introduces a dependency on the order of execution
relative to RY. That interference occurs only when the same subproof is extracted with
both operations at the same rule application (if one extraction occurs in the subproof
extracted by the other reference, the order is again irrelevant due to the definitions of
IV and OV). This situation, however, should rarely be encountered in practice, since a
judgement is meant to model either polymorphism or monomorphism, but not both.

Both forms RY and R” can also be modified to discharge the deferred, hence non-
resolved goals of the extracted subtree (Definition 2.3.3). Let L be those leaves. The
variants

RVDISCHARGE(Z:7 q) 72'1>;,ISCHARGE (Z7 q>
in addition to extraction modify the proof <t, fF > into <t, fF > where

f'= fler U{l — DISCHARGED |l € L} .

The range of the annotation function of Definition 2.3.3 must be changed accordingly. The
new tag DISCHARGED is treated like DEFERRED in the proofs of the preceding sections,
the stated properties continue to hold.

2.5.2 Lists

Most realistic programming languages abound in repetition constructs: Rather than bind-
ing just one variable in let, they allow several to be defined simultaneously (and recur-
sively); rather than having one (tuple) argument for a function, they allow several argu-
ments. From the theoretical point of view, this iteration does not introduce complications,
yet practical type checkers have to cope with it. For that purpose, we introduce lists with
special constructors :: (cons, infix) and [] (nil) in the input language. The notation is
complemented by the following mechanisms, which recognize the special constructors.

In checking a sequence of list elements, one often needs to perform the same check on
each of them. The obvious way to check a predicate p(e) for each element e of a list [ is
two use a new predicate p and two rules

ple) p(e)

e o) (step) ]5(— (base) (2.5.1)



2.5 Extensions 61

Writing these pairs of rules is a purely mechanical effort. TcG supports iteration over
lists by iteration premises. Simply adding an ellipsis ... to the premise to be solved for
each element of e generates just the above rules for a new constructor p and replaces the
original premise with p(é).

pe)...

If e is not a variable, but a constructed term with several variables, then all variables are
treated as lists, and they are traversed simultaneously. For instance, writing

p(e,t)...

checks p(e;, t;) for each pair of elements e; € (e1 .. e,) and t; € (t1..t,). If ¢ is a variable
and € is a ground term to be checked, then this simple iteration yields ¢ instantiated with
the results of checking e.

If not all variables in the premise are list variables, the iteration variables can be
specified explicitly; the remaining variables in € remain fixed throughout the iteration.

Finally, both subproof extraction and exports integrate very well with iteration constructs.
Take for example the declaration sequence ds = (:171 =e€1..%p, = en), where every e; may
refer to each e; with j < 7 as a polymorphic value. This requires that the outcome of each
check is entered to the context for iteration, which can be accomplished by the following
rule; the reference to 1 is explained by the internal realization via two rules (2.5.1):

ds...+R"(1)

The premises in the input language thus take the following general form (see also Sec-
tion 3.1.3, -* denotes optional elements):

?
branch’ term (export id)’ ( ..emod” ( [z .. ) )? > cmod’

[\

Vv
specification of iteration

Without iteration, the meaning is clear from the definition of proofs and rules. If an ellipsis
is present, then term is the premise to be iterated, either by simple iteration or by iteration
over zy .. x,. The outer cmod is attached to the premise directly, while the inner cmod’
is attached to the second premise in the iteration step (2.5.1). By using extraction on
premise 1, therefore, the later steps of the iteration may refer to the results of the earlier
steps.
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Chapter 3

Implementation

This chapter describes an interpreter tcg for the calculus of Chapter 2. The main objective
is to provide a platform for the applications in Chapter 4, and to explore the viability of
implementing T'CG efficiently. The overall structure of the interpretation process is outlined
in Figure 3.1. The input fragments f; .. f, (Section 3.1) containing the formalization of a
type system are gathered by a translator, which creates a one-to-one internal representation
of the contained rules (Section 3.1.3), the initial context (Definition 2.3.5), and a parser
for the syntax of the formalized language (Section 3.1.2; Figure 1.2). The abstract syntax
tree of the parsed program together with the initial context forms the initial goal. The
interpreter resolves this goal and produces a set of complete result proofs.

fl_tcg initial
context
parser

program AST

Figure 3.1: Structure of the Interpretation tcg

initial
goal

fn-tcg

Section 3.1 specifies the T'cG input language. An operational semantics of the language
constructs is given informally relative to the proof structures and derivation steps from
Chapter 2. Section 3.2 briefly outlines the translation process necessary to obtain the
initial goal. Section 3.3 contains the interpreter for TcaG.

3.1 Tcg Language

Let us call the pair of syntax and type system to be formalized together the target language.
The basic structure of the TCG input aims at accumulating that formalization as a set
of atomic and independent constituents. The input consists of a set of fragments, each of
which is contained in a single input file. Each fragment in turn is a set of the following
basic elements, which will be described in the remainder of this section.

63
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Token, Syntax, Precedence capture the input syntax of the target language. Accord-
ing to Section 1.1, TcG includes a LEX/YAcCC-based parser generator to facilitate
experimental developments.

Rule A typing rule (Definition 2.2.1).

Environment The initial context, specified by references to defined rules.

Defer, Proof Grammar These instructions modify the search strategy for a proof. They
are introduced in Section 3.1.4.

External Formatting of internal data- and term structures for output.

Use Inclusion of another fragment.

Each of these elements, except for rules, can be preceded by an optional label, which is
used by TcaDoc (Section 3.6) to establish references. Rules are labeled with their names
by default. The syntax of an input file is thus:

fragment = ( ( label’ labeled_element ) | rule)™
labeled_element ::= tokens | syntaz | precdecl | use | extern
defer | proofstructure | env
[ label’ id °]°
‘use’ ( file name )

label ::
use

The use f element can be explained directly: f is an arbitrary string that continues to the
end of the input line. All period characters in f are replaced by the directory separator for
filenames, then a suffix .tcg is appended. The resulting file is searched for in the include
path given on the command line of the TcaG call. The first found file is parsed and the
elements from the resulting fragment are added to the current one.

3.1.1 Terms

The basic format of terms in the first production below is standard: It allows identifiers,
string literals and application of function symbols. The semantic value notation $i is
allowed only in the right-hand side of grammar productions (Section 3.1.2). The second line
below introduces opaque values, or opaques for short. These enclose the semantic values
of tokens matched in the input language, and preserve them unchanged through proof
construction to the output phase. An opaque value cla] has a class ¢ and an argument a.
The class captures the token category matched, the argument is the actual semantic value
as a string. The argument may also be an identifier (second alternative in the second
row), in which case the term is an opaque pattern, and the identifier must be a variable
in the enclosing rule. It can unify only with opaques that have the same class as the
opaque pattern. Note that the variable will be bound to the entire opaque value, not to
its argument.

= ID | STRING | ’$’ [0-9]* | >’ term *)’ | ID >’ term™ *)°
| ID ’[’ (STRING | SEMVAL ) *]’ | ID *[* ID °1°
| fmt | special

term ::

The last line of the above production allows two classes of terms, the format terms and
special terms. The purpose of the special terms, as defined next, is a simplified infix
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notation for frequently occurring symbols in type systems. The grammar as shown is
slightly inaccurate: The infix symbols may be followed immediately, without whitespace,
by an identifier, which becomes part of the infix symbol. For instance, <=c is a variant of
<= used for “a subtype by conversion” in Chapter 4.

special =[]’ | term *::’ term
| term ’:° term
| term ’<=’ term | term ’=’ term | term ’>=>’ term

The format terms are used to generate sequential textual output from internal terms.

fmt == [ term™ °]°
| 2|’ term |’ term™ °]° | ’@.” | ’@\n’.
| ?@ARG’. ’(’ term ’)’ | PQCLS’ > (’ term ’)’
| ’@ID’ °(’ term ’)’ | @STR’ *(’ term ’)’

Proceeding bottom-up, left-to-right through the term, the following output is generated
for the above constructors:*

"..." String constants (Grammar term) are output literally.

[...] Concatenation of the elements

@\n Line break, @. line break with flush

@[<i> ...] A box, whose content is indented by 7 characters, relative to its first line.
@[lsep| seqs] The arguments seqs are output in turn, with sep between them. Let
seq be one of the arguments. If seq is a list built from the special constructors : :
(cons) and []1 (nil) (see Section 4.1.3.5), then the list elements are output one by
one, with the separator sep between them. The separator is again a general term,
possibly containing formatting instructions.

e QCLS(x), @ARG(x) A string representation of an opaque’s class and argument.

e OSTR(x) The output of x is enclosed in "... ", after adding escapes to make it a valid
string literal for most programming languages.

Complementary to terms are the selectors, which specify predicates on terms. The first
line below contains the recursion base: A term matches [] if it is a variable, the STRING
and NAT if it is a constant of that value, @CLS ¢ if the term is an opaque of class c¢. A
term matches the second line f.i.s if its top function symbol is f and the ith argument
matches selector s. f may also be one of the special constructors defined above. Finally, &
and | denote logical conjunction and disjunction of the results of the individual selectors.

selector == [1° | STRING | NAT | ’eCLS’ ID
| selid >.> NAT ’.’ selector
| selector *&’ selector | selector |’ selector
selid == TID | 2:7 | 2<=> | =>> | = | "[1° | ?::?

!The notation follows the OCaml standard Format [OCa03] library.
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3.1.2 Parser Generator

Tca includes a description of the syntax of the target language. It uses LEX and YACC
[Her92] to generate the actual parser, but adapts their input format to the conception of
a formalization as a set of elements, rather than a sequence. Token declarations can be
interspersed with syntax productions and precedences are given numerically, rather than
by the order in the input file.

The tokens are specified as pairs of identifiers and regular expressions. A token’s
semantic value is the string matched by the regular expression in the input, except for
regular expressions that match a constant string, they do not have a semantic value.

tokens ::= ’tokens’ ( ID ’=’ regezp )* ’end tokens’

regezp = CHAR/|’.> | ’\> CHAR |’ [’ charset *1° | > regexp *)’
| regexp ’|’ regexp
| regexp *?° | regexp ¥’ | regexp ’+’

charset == >~’" ( CHAR | CHAR ’-> CHAR )*

The syntax productions resemble those of YACC; however, they may contain keywords
in double quotes, which are automatically added to the declared tokens. Furthermore,
the final action of a production may be replaced by a term (Section 3.1.1), which will be
constructed as the production’s result.

productions = ’syntax’ (ID ’:’ prodrhs ( ’|’ prodrhs )* )*
prodrhs = (ID | STRING )* >-->’ term prec’
| (ID|STRING )* ’{!> CHAR* >'}’ prec’

Precedence specifications can appear at the end of productions, and then have the same
meaning as in YACC: The default precedence of the rule, which is the precedence of the
last token, is overridden. Precedence declarations at the top level of a fragment assign
precedences to the given tokens.

prec = ( >%left’ | *%right’ | *%nonassoc’ ) INT
precdecl := prec (ID | STRING)"

The LEX and YACC input files are generated from the declarations straightforwardly: The
tokens are gathered from the explicit tokens and the productions; keywords, that is tokens
with regular expressions matching a specific string, are put first in the LEX file, the order
of the remaining tokens is unspecified. The YAcCCc file receives the precedence declarations,
sorted by numeric value, and the grammar productions themselves. The action of the
YAcc production is either the a literal copy of the action given between {! !}, or an
expression that constructs the internal representation of the term on the right-hand side
of ==>. Semantic values $i refer to the semantic values on YACC’s stack.

3.1.3 Rules

The rules from Section 2.2 have a direct representation in the T'cG input language. The
grammar also accounts for the extensions from Section 2.5. Besides the premises and
conclusion, a rule also specifies its quantified variables and its parameters. Parameters
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are place holders that are replaced with concrete terms (Section 3.1.1) when the rule is
referenced.

rule == ’rule’ ID ( > [ ids *]’ )" (’forall’ > (’ ids *)’)’
conclusion premises’
ids == 1ID (°,” ID )*
conclusion = term
premises = ’if’ premise (’and’ premise)*

Each premise of a rule has the following structure (see grammar below): A term defines
the goal to be proven; that task can be modified by the remaining items in the premise
production. First, the optional '[branch]’ specifies that the goal is to be proven by an inde-
pendent sub-search (Sections 3.4, 2.4.5, 3.3.3.1). Then, the subproof created for the goal
can be exported (Section 2.5.1) for later reference in a rule expression. Finally, a context
modifier (Section 2.2.1) is written down. The special premise expand is an instruction to
direct the search process. Its implementation is treated in Section 3.3.4.5.

An export specification provides a label to be attached to the node in the proof tree: The
label * (propagate) indicates that exports from the children of the node are to be propagated
downward in the tree; the optional ID names the node as an export. The exclamation
mark ! indicates a solved premise: A solved premise creates no proof obligations, but is
exported under the given name. It therefore serves to state facts for later reference.

The ellipsis ... makes the premise an iteration premise (Section 2.5.2). With the
premise, a context modifier to be executed in each step and a list of iteration variables can
be given optionally.

premise = [branch]’’ term export’ ellipsis’ rulecmod’
| ’expand’ | ’!’
export = ’export’ ’*’7 (ID ’1°7)’
ellipsis :== ...’ cmod* (> [’ ids °17 )’
rulecmod ::= ’under’ cmod*

The context modifiers have exactly the form from Section 2.2.1, with the extensions from
Section 2.5: They insert the rules given by a rule expression or remove all rules matching
a given selector.? The guard adapts the selector mechanism to exported rules.  Since
their conclusions will in general not be known beforehand, a guard | — r implements
conditional removal: For any rule that is added after the guard, and whose conclusion
matches [0 for some substitution o, the removal instruction —ro is executed. The guard
thus allows to state, for example, that for any newly inserted assumption x : s, any previous
assumptions x : t become invalid. Context modifiers will be executed in the same order in
which they are found in the input file.

cmod =+ ruleexp | 1= (2 gelector ?)° | guard
guard = selector >==>’ selector

Rule expressions define new rules to be inserted into the context of some goal in the
proof. They are recursively nested and are evaluated during proof construction according
to Definition 2.2.11.

2Using selectors is merely a convenient alternative to the existentially quantified terms of Section 2.2.1.
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ruleexp = ID ([’ term™ 2]’ )’
| ’load’ term

| ’environment’

| ID > ( ruleexp™ ?)°

| < INT (2 ID? (2 ID* 017 ) )7 0>

The first case is a rule reference with optional arguments. It inserts the designated rule,
with the rule’s parameters replaced by the given arguments. The number of arguments
must match the number of parameters, otherwise the rule expression is not well-formed.
The next case loads the rules contained in the file designated by term. That term is output
as a string using format constructors (Section 3.1.1) and taken as a file name. The case thus
is just another form of inserting rule constants of Definition 2.2.1. The ’environment’
refers to the context at the rule application itself. The forward resolution r(a; . .a,) resolves
the premises of the rule r against the conclusions of the results of a; .. a,. The result is
a rule with the conclusion of r and the premises of the a;, in the order of occurrence
(Definition 2.2.7). If a; = —, then the ith premise of r will be skipped in the process.
The last case rule extraction <i> extracts the subproof at the ¢th premise of the rule;
that premise must precede the premise containing the rule expression. The parameters
following the colon specify the details of the extraction (Section 2.5.1). First, an ID e
selects all the exports named e of the extracted subproof instead of the entire subproof.
In general, when the ¢th premise is found at position ¢ in the later proof, the exports
labeled e will be found at some higher position qq; if no export name is given, then ¢y = ¢
is the only extracted subproof. Furthermore, several resolution goals may be unsolved in
the subproof at qy. Therefore, for each proof node ¢y in ¢ labeled with e, the following

situation arises.
[QO]F = go

[T g
The remaining IDs are options and detail the treatment of extracted subproofs. The
possible options are quantify, discharge, inner goals and keep context. Their meaning will
be clarified now.

The inner variables of the subproof at g are those free variables that occur only in the
subproof at g (Definition 2.3.1). Let I be the inner variables of g. If option quantify is set,
then the result rule is quantified over the inner variables. Let V' = I in this case, otherwise
V=g.

A goal among the I  g; that does not contain inner variables gets copied unchanged
to any application of the extracted rule, thus creating unnecessary copies of the same
proof obligation. The inner goals are the goals that do contain inner variables; if the
parameter inner goals is set, then only those goals are considered for the further processing.
Let G C {1 .. n} be the selected goals.

When the option discharge is given, all goals from G are considered solved after the
rule extraction. The option’s name has been adopted from natural deduction [Gen35|
(under the complete discharge convention [TS00, Section 2.1.9]). TcaG’s rule extraction
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mechanism in this reading captures the intermediate implication P, .. P, = @ 2 in the
following situation as a rule. Here, the P; .. P, can be safely discharged, because they are
re-introduced as proof-obligations in every use of the implication.

7] [P

Q
— (=1)
extracted rule ~ P, .. P, = @ P..P,

Q

A similar reasoning underlies the Haskell type class constraints [Jon94, Sul00].

The keep context option specifies whether the contexts I; are represented in the premises
of the result rule. If it is set, the context-modifiers of these premises remove all rules
and then re-insert those from the I;. Otherwise, the context modifiers are empty, as in
Definition 2.2.11. Then the premises will be proven in the context found at the application
sites of the rules. Let ¢; be the context modifier thus defined.

Rule extraction then produces the following result rule; note that the quantification
VYV captures variables in the ¢; and g;.

(=E) = use of extracted rule

(¢i F gi)ica
90

vV

3.1.4 Deferred Goals and Proof Structure

The search for a proof in TcG can be guided by two means: First, goals can be excluded
from processing by a predicate on their term structure; this implements the deferred goals
of Definition 2.3.3. Second, the rules applicable at a proof node can be restricted by a
proof grammar.

For each inference step, T'CG searches a proof for its left-most open goal and then
resolves that goal. However, some goals need to be deferred, either because the search
space would be prohibitively large (Examples in Section 4.2.7 and 4.4.7) or because the type
system requires the goals to remain as constraints. A goal is suspended from processing
if it matches a defer selector defined below. It will be re-considered for processing in the
next inference step, thus the DEFERRED annotations of Definition 2.3.3 may change; once
the a deferred goal is extracted, the DEFERRED marks becomes permanent to maintain the
reasoning by Condition 3(c)ii of Definition 2.3.3. When deferred goals are discharged in a
subproof extraction (Section 3.1.3), the tag DISCHARGED is attached to them and excludes
them from further processing. The identifier ID has only documentation purposes, it does
not influence the proof process.

defer ::== ‘’defer’ ID ’if’ selector

The second means of influencing the proof search is the proof grammar, which is a variant
of tree grammars [CDG99] that restricts the shape of the proof tree. We cite the relevant
definition for the reader’s convenience.

3Read this implication as a short notation for P, = --- = P, = Q.
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3.1.1 DEFINITION ([CDG™99, Section 2.1.1]). A tree grammar G = (A, N,F, R) is com-
posed of an aziom set A, a set N of non-terminals (with arity 0) with A € N, a set F of
terminal symbols (with arity) and a set R of production rules of the form X — [ where
X € N and (3 is a tree over FF'N N.

The derivation relation on pairs of terms is s — t if and only if s = C[X] for some
context C';, X — 3 € Ris arule and t = C|[]. The language generated by G is the trees
reached from the axiom: £(G) = {s| A —T s} where —7 is the transitive closure of —.

A regular tree grammar is normalized if all of the productions are of the form X —
f(Xy .. X,) with X, X; € N.

Tca employs the following formulation to enable partially specified proof grammars, as
are necessary for local restrictions of the proof tree structure: Each node in the proof tree
is tagged with a non-terminal that specifies the tree structure of the subproof. A default
non-terminal * is attached to proof nodes if nothing else is specified. The productions of
the proof grammar are of the form

I — f(ry..m0)

where f is a terminal of the proof grammar and r; are again non-terminals to be attached
to the children of the proof node labeled [. For proof trees, the terminal f is taken to be
the name of the rule applied to the proof node labeled I.

The input of TcG reflects the latter reading more directly by the notation f : [ —
ri..7n, where f is the name of a rule. After this declaration, rule f will only be applicable
at proof nodes labeled [ and the goals created for f’s premises are labeled ry .. 7, (see
Section 3.3.4.1 for the implementation).

proofstructure := (ID *:’ pstag >-->’ pstag* )*
pstag == x| ID

3.1.5 External Presentations

External representations are created from TCG’s internal terms by leftmost-outermost
rewriting. The choice of the rewriting strategy is dictated by the need to base case dis-
tinctions on subterms, hence the children of a term node must still be in internal form
when the term node is rewritten (see also [Pau94]). Rewriting must result in a term that
contains only formatting constructors (Section 3.1.1) and string literals. That term is the
output left-to-right, bottom up in a sequential form. For each desired output format, a
different set of rewrite rules can be specified; the set designated by an identifier ID.

extern = ’external’ ID ( ’forall’ > (’ ids *)’ )" rwrule®
rwrule = term ’-->’ term

3.2 Translator

The TcG translator (Figure 3.1) converts the external representation of a target language,
which may be distributed over several fragments and contain cross-references, into an
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internal form where all references are resolved into pointers between internal data structures
(Section 3.3). Its tasks are implemented by standard techniques from compiler construction
(e.g. [App98]). The assembly of rules follows named rule references and resolves the
variable and parameter bindings lexically. Parameters are substituted by arguments, which
have been been internalized previously in the same manner. The YAcC/LEX input files
are generated according to the description in Section 3.1.2.

3.3 Interpreter

An interpreter for the T'CG calculus is obtained directly from the presentation in Chapter 2,
which suggests an architecture with the four basic layers terms, proofs, inference steps and
search; a fifth layer GUI inspector is added to facilitate the incremental development of
the target language. The responsibilities of the layers are summarized in the following
table. They will be made precise in the subsequent sections.

Layer Responsibilities

Terms e Substitution
e Unification
e Matching
e Backtracking of substitutions

Proofs e Proof structure of Section 2.3
e Structure sharing between inference steps
e Structure sharing between alternative proofs

Inference Basic steps from Section 2.4 as functions from proofs to proofs

Search Apply inference steps in depth-first search for proofs

GUI Inspector Display the data structures and inference steps

The operational requirements of the interpreter are dominated by backward resolution
[Pau94] (or SLD-Resolution [Gal86]) of open goals during proof search. Therefore, the
presentation will frequently refer to well-established principles from the implementation
of Prolog systems [VR94]. However, the definitions in Chapter 2 assume that proofs are
accessible as objects, whereas in Prolog the resolved goals can be discarded. This difference
makes it infeasible to parallel the Prolog developments and at the same time give a one-
to-one implementation of T'cG’s definition.

3.3.1 Terms

TcaG’s terms are standard first-order terms (e.g. [Gal86]). They include variables, constants
and function applications. To these they add (Section 3.1.1) opaque values, opaque pat-
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terns and format terms. The representation of these does not involve particular problems.
Variables are discussed in Section 3.3.1.3.

3.3.1.1 Structure Sharing

It has long been recognized [BM72] that the sharing of data structures is crucial to the
efficiency of resolution provers [Rob65]: Applying the unifier in each resolution step would
mean copying the term structure of the input clauses. In their landmark article [BM72],
Boyer and Moore introduce a very general solution: Substitutions need never be applied
at all if every term node is annotated with the substitution that would have been applied.
(The pair of term and substitution has also been termed a molecule [Bru82, VR94]. A
similar technique, explicit substitutions, has been re-discovered by Abadi et al. [ACCL91] to
formalize the implicit renaming of the Barendregt variable convention (Convention 2.2.3).)
If unification encounters a variable which is annotated with a substitution containing a
binding for the variable, then it proceeds with the binding instead. New bindings are
always recorded in the substitution found at the respective variable. This scheme also
works in the presence of V-quantification: The structure of ¢ in s = Va.t[a] does not
need to be copied if different uses of s are annotated with different substitutions, thus
implicitly renaming « to a fresh variable for each use. (Boyer and Moore use a shared
binding environment and introduce indices, i.e. small integers, that uniquely identify
different uses of s. An expression is then a pair of term node and index. In later Prolog
implementations, environments become vectors of variables, and variables in terms become
offsets into the vector [FKS94, Li98]. This representation is akin to the usual environment
data structures of functional languages [Jon87].)

The Boyer-Moore structure sharing scheme trades a reduction in memory consumption
for an increase in run-time: Unification must visit the binding environment at each variable
it encounters; on the other hand, garbage collection time and other run-time penalties for a
large memory footprint will possibly be avoided. Although the implications on run-time are
not resolved for either alternative [Bru82, Mel82|, many later Prolog systems have adopted
structure copying as their strategy [VR94], that is the term structure of rules is copied for
each application, including the variables, which hold the substitutions as pointers.

The Tca interpreter implements structure copying as well. However, unlike Prolog
rules, T'CG rules are not necessarily closed, and it is essential to maximize structure sharing
for non-closed rules. For example, the typing rule for A-abstraction (Section 4.1)

—(i=za); +[z:s]Fe:t
Az.e: (s —t)

\V/ (x,e,s,t)

inserts rule x : s into the context. Its term structure never needs to be copied on subsequent
applications, it is shared with the structure of type s — t. TCG therefore distinguishes
generic terms, which contain bound variables, from terms that the do not contain bound
variables. Only the generic terms are copied. (This distinction has been adapted from the
representation of types and type schemes in the OCaml compiler [OCa03].)



3.3 Interpreter 73

3.3.1.2 Lazy Paths

As an auxiliary data structure, we will need paths that indicate positions in some tree
structure [Cou83]. The required operations for the data type path are - (append), A
(longest common prefix), and < (prefix check). These operations are readily implemented
using lists, yet the run-time is unacceptable:

e If the input positions of A and < have a large common prefix, that prefix is traversed
without contribution to the computation. Furthermore, the prefix cannot be shared.

e In the specific application of TCG, most of the results of A are never queried, because
they are stored at variables that get instantiated later on.

The first problem is solved using a binary trees with shared left subtrees for common
prefixes. This representation yields a logarithmic run-time in the length of input paths for
both A and <, while - remains constant time. However, - and A are not functional, that
is the results of two different invocations p - a (with paths p and element a) are not equal.
The same holds for p A ¢ (with paths p and ¢). A functional behaviour is not required,
however, because - is used only to label new proof nodes at the time of their creation and
the results of A operations are used only with prefix checks <, which respects the internal
data structures. The second problem is addressed in the canonical way, by evaluating the
operation A lazily (on demand).

3.3.1.3 Variables

Variables are mutable records with fields link, index and gpath, which represent substitu-
tions, the variable binding and auxiliary information for subproof extraction (Section 2.2).

Substitutions are represented by destructively updating the link field in variables. For a
binding {t/v}, v’s link is set to the term representation of ¢. Access to terms dereferences
the links until an uninstantiated variable or a constructed term is found. (Compare to
quadratic DAG unification in [BN98].)

The index field for bound variables consists of the level i and the offset j (written
(1,7)); for free variables, the indez is set to FREE. Note that bound variables have a link
field as well: In this way, unification of a goal with a rule conclusion can proceed without
requiring the rule structure to be copied first, the copy can be delayed until the entire
unification has been successful and the rule can be applied.

A variable’s last field is its quantification path (or gpath, for short): Rule extraction with
quantification (Sections 2.2.1, 4.1.3.3) needs to determine the inner variables of a subproof;
for efficiency, this must be accomplished without traversing the entire term structure of
the constructed proof to gather the variable occurrences [Car87, Rém92]. Therefore, the
gpath of a variable holds the path from the root to the highest proof node below which
the variable does not occur. In other words, a variable is an inner variable to the subproof
at q if ¢ is a prefix of its gpath field.*

4 A similar technique has been employed by Rémy [Rém92] to handle generalization in polymorphic
let: He assigns an integer rank to each typing judgment, as the depth of the judgement in the typing
derivation. Then, he assigns a rank to a variable as the least rank of the typing judgments at which it
occurs. The rank information of variables is updated during unification. In an application of the let rule
at rank n, all the variables with rank > n can be generalized.
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3.3.1 REMARK. The converse does not hold, that is a variable need not actually occur in
the judgement indicated by its gpath field. If a variable occurs both in P, and P, and qq
is the largest prefix of ¢; and go, then the gpath of v would be ¢.°

(1] Py ‘ [q2] P

[QO]P 0

(root)

For bound variables, which occur only in rules and not in goals, the ¢path field has a
related meaning: A variable annotated with path (i) occurs only within the ith premise of
the rule; all other variables have the empty path . Like in Remark 3.3.1, this annotation
does not necessarily mean that they do occur in the conclusion of the rule. The paths of
bound variables are called relative paths, because they characterize the occurrences of a
variable relative to a possible application of the rule. To emphasize the difference, qpaths
of free variables are also called absolute paths.

The relation between relative and absolute paths is depicted in Figure 3.2. During

rule application

forward - rule
application application

rule extraction

Figure 3.2: Interaction of Relative and Absolute Paths

rule application at proof node ¢, a bound variable with relative path (i) becomes a free
variable with path ¢- (7). Also during rule application, unification (see below) may modify
absolute paths of variables. In the reverse direction, proof extraction (Section 2.2.1) at
node ¢ may find an inner variable v leaf node at ¢ - p, and with gpath q - p. If that leaf
becomes the ith premise of the extracted rule, then v becomes a bound variable v’ with
relative path (7). If, on the other hand, v occurs in several leaf nodes, or has a qpath
smaller than ¢ - p, then v will be annotated with relative path . Forward application
(Section 3.3.4.3) several rules are combined to a single rule and the relative paths of the
bound variables must be re-computed.

3.3.1.4 Substitutions

Application of substitutions destructively updates the link field of variables (Section 3.3.1.3).
Structure sharing between different proofs is achieved by the standard technique of trails

5Note that Rémy’s ranks [Rém92] (Footnote 4) would record the lower of g1, g2 as the rank of v, which
allows v to be generalized unsoundly at that lower judgement. In the case of the let rule, which Rémy
handles, his characterization is sufficient, because variables occur in two branches iff they also occur in
the context at their highest common ancestor. In T'CG, variables may be moved through the proof by rule
extraction, such that a more general mechanism is needed. As an optimization, the user may be given the
option to replace paths with integers and the operations from Section 3.3.1.2 with min and <.
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[Bru82, VR94, McC94|, which record the modifications done during unification, such that
they can be undone for other proof attempts during backtracking search. In TcG, the
branch and expand mechanism (Section 3.3.3.1) requires that the trail can also be re-done:
When the solutions from the different branches are combined, their respective substitutions
must be combined as well, and search continues under the result substitution.

In the same manner, the gpath fields of variables must also be trailed to allow structure
sharing. Therefore, a substitution is a pair (subst, proj), where subst is the trail of link
modifications and proj (projection, for similarity with [Nip93]) is the trail of gpath mod-
ifications. The proj trail is a list of triples (v, poid, Pnew) recording the old and new value
of v’s gpath field. In the subst list, the old value is always the null-substitution, thus the
list contains only pairs (v, tpey)-

The basic operations on substitutions are apply, undo and U (the supremum of two sub-
stitutions, Section 2.1.2; see also [Ede85, Pal90]). Apply and undo walk the substitutions
and effect or revoke the recorded field modifications. The supremum o LI 7 is computed as
the most general unifier of set (Section 2.1.2; [Ede85, Proposition 4.8, Theorem 4.9]):°

{r =20 =27 |z € dom(c) U dom(7)}

The chosen representation of substitutions makes the operation L efficient: Walk the sub-
stitution lists of ¢ and 7 and unify the recorded variable with the recorded binding; if
the variable is in the intersection of the domains, unification will dereference any previ-
ous bindings automatically. The necessary modification of the proj fields are effected by
unification likewise.

3.3.1.5 Unification

Unification in T'CG is standard first-order unification [Rob65, BS01, BN98]: It instantiates
free variables by destructively setting their link fields and trails these modifications in a
substitution (Section 3.3.1.4), which is returned as a result. Bound variables of level 0
are treated like free variables, assuming that the intention is to instantiate the term (see
below), as is the case in the inference steps (Section 3.3.4).

The only noteworthy detail are the gpath fields. Whenever a variable v with absolute
path p is instantiated with a term t[u; .. u,,], then the path ¢ of variable u; must be
changed to gy A p (Section 3.3.1.2), because uy now appears at all positions where v used
to occur. Following Nipkow’s [Nip93] presentation of higher-order pattern unification, we
call this step projection. If t = u with path ¢, that is v is instantiated with another variable,
then both paths p and ¢ are changed to p A q.

3.3.1.6 Instantiation

When a rule is applied to a goal, its premises become new goals. According to Sec-
tion 3.3.1.1, the generic terms contained in the rule are not shared between applications,
thus their structure is copied. At the same time, bound variables with index (0, j) in the
term structure are replaced with fresh free variables,” and their (instantiated) link term is

SWe assume xp = z for ¢ dom(p) for any substitution p (Definition 2.1.1).
"Note the correspondence with renaming p in Section 2.4.2.
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transferred. As mentioned before, it is essential that the copy can be postponed to the time
that the rule application has been found to be successful. The separation of unification
and instantiation achieves just this goal.

3.3.2 Rules and Contexts

Rules directly represent the definitions from Sections 2.2, 2.5 and 3.1.3. A rule contains
premises, conclusion and quantifier. The quantifier contains pointers to the bound variables
and is needed only during instantiation (Section 3.3.1.6) to choose a sufficient number of
fresh variables, and during forward application to adjust the gpath fields (Section 3.3.1.3).
A context modifier in a premise either adds another rule determined by a rule expression,
or removes rules by a selector. A rule expression, finally, can be either a single rule, a
reference to a subproof to be extracted, a forward application step, a reference to the
context or a file name (Section 3.1.3).

Contexts provide operations for adding rules, removing rules based on a selector and
filtering for unifiable terms. Term indexing [Gra96, RSV01] can be implemented if desired.
For the example applications (Chapter 4) a simple filter for the top-level symbol has proved
to be sufficient.

3.3.3 Proofs

TcG represents constructed proofs entirely to implement the calculus of Chapter 2 as
directly as possible. Proofs thus are trees of proof nodes, each of which contains pointers
to its parent node and children to represent the tree structure. (The root node’s parent
pointer points to the node itself.)

Each node contains a goal, that is a proof obligation to be solved by backward resolution.
A goal can be in two states according to Section 2.3. A pending goal waits for some other
goals to be resolved before its context modifier can be executed. By the restriction on
context modifiers (Definition 2.2.1), the dependency will be resolvable in a left-to-right
processing of goals. Once a pending goal’s context modifier can be executed, the goal
becomes an ordinary resolution goal. Besides these two main proof obligations, goals can
also be search instructions: Branching goals are resolution goals, possibly pending, that
are to be solved in an independent sub-search. An expand instruction is resolved by
expanding all preceding branch goals, that is by combining their independent solutions
(Section 3.3.4.5).

A proof node has a field solved indicating whether its goal has been resolved already.
The field has three possible values: An unsolved proof node still needs to be resolved; a
solved node has been resolved, but the subproof rooted at the node does contain unsolved
proof nodes; the subtree at a complete proof node does not contain unsolved proof nodes.
Finally, a proof node has an export tag (Section 2.5) with an export name and an export
propagation flag.

As in Section 2.3, the goals of a proof are the unsolved leaf proof nodes of the proof tree.
The context will clarify whether a “goal” relates to a single proof node’s proof obligation
or more specifically to an open proof obligation at a leaf node.
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3.3.3.1 Structure Sharing

If structure sharing for terms is important (Section 3.3.1.1) it is vital for proofs. The
data structure of solved goals must not be copied at inference steps. TCG proofs therefore
generalize the structure sharing of substitutions (Section 3.3.1.4) to structure sharing of
proof trees. Inference steps destructively modify the pointers of a proof tree, but they keep
a trail of these modifications.

This behaviour is encapsulated in the notion of proof deltas and proof sets. A proof
delta is a pair A = (0,0). o is a substitution (Section 3.3.1.4) and § is a list of triples
(p, z,y), where p is some place, that is a mutable variable, = is the old value found at p
and y the new value to be installed at p.¥ We define

dom(6) = {p | Jz,y.(p,z,y) € 0}
Three classes of places need to be modified in the proof search:

e A proof node’s pointer to its children (from none to a list of children).
e A proof node’s goal (from pending to resolution).
e A proof node’s solved field (from unsolved to solved and complete).

Like a substitution, a proof delta A = (o, ) is applied by applying o and for each (p, z,y) €
0 in order, replacing the value x at p with value y. Note that application is partial, it is
undefined if at any element of § the expected old value z is not found. If P is a proof and
A a proof delta, then the application of A to P yields a new proof P’ if all elements of §
can be applied. This operation is written

P2 p.
In the other direction, a proof delta A = (7,d) can be undone by undoing o and execut-

ing the elements of § in reverse order, replacing new values with old values. Again, the
operation is undefined unless the expected new values are found. The operation is written

pa-ip,
A defined application can be undone, that is
P2 p Aipy (3.3.1)

is defined if the application is defined, and then P” = P.

Each inference step in Section 3.3.4 thus takes a proof and computes a proof delta
to represent the new proof. The proof deltas carry tree structure themselves: At each
inference step, there are in general several alternative ways to proceed with the proofs,
and each is characterized by a single A. Writing application of deltas as arrows as above,

8The actual implementation keeps three lists instead of one to avoid case distinction during application.
The presentation is simplified by assuming that all places can be treated alike, disregarding typing.
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we have, for example:
éy Fo \A(iz
AN A Aos
13 14 25
p;/ \P4 P5/
Such a collection of proofs is called a proof set. Each proof is a member of exactly one
proof set, and each proof set is a tree with a designated root proof. The important invariant
on proof sets is that at each point in time, there is some proof P in the set, such that
exactly the deltas on the path from the root proof Fy to P have been applied. P is then
called the selected proof of the proof set. The entire structure sharing between proofs can
be encapsulated in a single interface function select_proof( P'). Starting from the currently
selected proof P of the proof set of P’, it executes the necessary number of undo steps to
make a common ancestor P” of P and P’ the selected proof. Then it applies the deltas
on the path from P” to P’, thus making P’ the selected proof. This operation is always
defined by (3.3.1).

The tree structure of a proof set is established by a parent pointer each proof, where
the parent of the root proof is the proof itself. Furthermore, each proof contains the proof
delta from its parent to itself. This structure enables select_proof, as described above, to
be implemented directly: From the sequence of ancestors of proofs P and P’, take the
greatest common prefix to find P”.

In the expand operation (Section 3.3.4.5) independently discovered proofs for indepen-
dent goals must be combined into a single proof. This step can also be accomplished with
structure sharing: The merge operation on two proof deltas is the partial function that
computes the supremum of the deltas’ substitutions and concatenates the modification
lists:

(0,0) U{c", 8"y :=(ocUo’,§-0") ifolo #]

Merge is obviously associative and we write
| (A A =Aa0- 04,

Furthermore, if dom(d) N dom(0") = &, then U is commutative, which we indicate by
AUA" and | [{A1 A = [(A..A)

3.3.3.2 Subproof Extraction

Subproof extraction converts a subtree of a proof tree into a rule (see also Section 3.1.3).
Its input consists of proof nodes py at position gy and p at position ¢, such that p is an
ancestor of py, and the proof tree rooted at py may have several unsolved resolution goals.

[(h]rl + g1 . [Qn]rn - 9n
[q0]T" F g0

Mng
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The result is a rule representing the subproof at ¢y. The details depend on the extraction
parameters, as specified in Section 3.1.3. The implementation proceeds as follows.

Computation of the Inner Variables Using the gpath fields (Section 3.3.1.3), a prefix
test against ¢ (Section 3.3.1.2) determines which of the free variables of I}, g; and g are
inner variables. The remainder of the proof need not be consulted. Let V' be the inner
variables.

Selection of the Premises The inner goals option is implemented by directly filtering
the open goals by their free variables: The goal is excluded from all further steps unless it
contains at least one inner variable.

Discharging Premises Depending on the application, the selected goals G are consid-
ered to be solved after the rule has been extracted. The parameter discharge is implemented
by returning a proof delta that sets the proof nodes’ solved field accordingly.

Construction of the Output Rule If quantify is set, then bound variables are chosen
for the variables in V' and those parts of the term structure of I';, ¢g; and go that contain
variables from V' are copied, the chosen bound variables replacing the inner variables. Let
us call the results of these copies I, ¢; and gj. If quantify is not set, let these values be
pointers to the original G;, ¢g; and gy (using structure sharing from Section 3.3.3.1). The
result rule is then constructed according to the keep context parameter. If it is set, the
result rule is

(:= (content(I})) F gl)icc

96

vV

otherwise, it is
(et giiec
VW—
90

3.3.4 Inference Steps

The presentation of the inference steps in this section proceeds top-down, starting from
the step function at the top level. That function takes a proof P as input and seeks to
extend the proof towards a complete proof. It has five possible results:

1. Failure (L): The proof cannot be completed because one of its goals is not solvable.

2. Completed (T): The proof is already complete and need not be processed any further.

3. Branch (P, P'): Proof P, is to be completed in an independent search and before
resuming the processing of P’. Proof P, contains a link to the branch goal in P’ to
which the result proofs are to be connected.

4. Proceed (P; .. P,): Proceed with alternative proof extensions P; .. P,.

The proofs in these results are derived from P by a single proof delta (Section 3.3.3.1).
The first three cases are instructions to the calling search procedure (Section 3.4), they
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are returned after a simple inspection of the selected goal (Section 3.3.4.1). The last
case enumerates alternative successful proof attempts for the selected goal of P; the proof
deltas A; are contained in corresponding the P; (Section 3.3.3.1).

N

P P,

3.3.4.1 Goal Selection and Proof Structure

At each inference step, a single goal from the input proof is chosen for processing. Towards
that end, the unsolved goals of the input proof P are scanned in order. Resolution goals
and branch goals are skipped according to the defer declarations of the formalization
(Section 3.1.4), expand goals cannot be skipped. The first non-skipped goal is selected.

Besides defer declarations, Section 3.1.4 introduces proof grammars to guide the search
for proofs in TcG. That mechanism is not implemented by run-time data structures, but
by modification of the input rules. When a declaration

TZNO—>N1..Nm

specifies that rule » may only be applied at proof nodes carrying non-terminal Ny, then r’s
conclusion ¢ is modified to a new conclusion Ny(c), that is the non-terminal is taken as a
new function symbol in the conclusion term. (It is prefixed with a @ to ensure uniqueness.)
The non-terminals Ny .. N, are attached to r’s premises in the same manner. The special
non-terminal * marks all proof nodes not assigned a non-terminal explicitly by the proof
grammar. [t does not modify the conclusion or premise at all. It must be specified also
for expand premises that cannot carry a non-terminal.

3.3.4.2 Rule Application

Rule application is the most important and most frequent inference step in T'cG. If no
context modifiers (Section 2.2.1) and branches are present, this step amounts to SLD-
resolution [Gal86], except that the applicable rules are taken from a local context rather
than from a global set. This section contains a more detailed analysis of the interaction
with structure sharing (Section 3.3.3.1) to demonstrate that context modification can be
incorporated into the process with reasonable efficiency: All the cross-references between
the goals introduced by proof extraction can be implemented as pointers between data
structures, and the base case without modifiers can be kept simple.

Figure 3.3 shows an example in which all possible references are present. All resolution
goals contain a context or context modifier, the goal to be resolved and a pointer to the
goal’s children. Pending goals are indicated by dashed lines. The applied rule is taken
from I' at the goal g to be resolved:

cmy F g1 cme gy expand cmg b g3 T

C
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The context modifier ¢mgy extracts the subproof at premise 1 and ¢mgs extracts the sub-
proofs at premises 1 and 2. (Both possibly name exports (Section 2.5), but this detail is
immaterial for the present discussion.)

Rule application first unifies goal g with the rule’s conclusion ¢ to obtain the substitu-
tion o. It then translates the rule’s premises to goals in a left-to-right scan as sketched in
Figure 3.3. During the scan, it maintains information about the preceding premises:

1. the goals created for the preceding premises
2. the currently open branches

extract

extract

________________________

Figure 3.3: References at Rule Applications

For premise ¢ then

1. The term g; is instantiated (Section 3.3.1.6)
2. The context modifier ¢m; is instantiated, and either

(a) executed on I' to obtain the context, if the modifier does not involve rule ex-
traction (Goal 1 in the example)
(b) translated to an internal form where the numeric references to premises are

replaced by pointers to the already created proof nodes of preceding premises
(Goals 2 and 4).

3. expand premises become expand goals, which reference the currently open branch
goals. The list of open branch goals becomes empty.

The connection to structure sharing (Section 3.3.3.1) is seen in Figure 3.3 by the exact
target point of the arrows: Each of the four goals consists of two layers (Section 3.3.3), a
proof node and a goal contained in the proof node. The pointers always refer to the outer
proof node, such that the later inference steps can

e Start an independent search for branch goals, and substitute the complete proof trees
at the proof node during expand. (Section 3.3.4.5)

e Replace pending goals with resolution goals (Section 3.3.4.6) when they are selected
for processing (Section 3.3.4.1). At this point, all branch goals referenced in the
context modifiers must have been expanded.
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3.3.4.3 Context Modification

Context modifiers (Section 2.2.1) are lists of addition or removal instructions. Their eval-
uation is straightforward: Starting from a context I, the execution of a context modi-
fier my .. m,, is by iteration on ¢ =1 .. n:

o If m; = +r with rule expression 7, then r is evaluated according to Definition 2.2.11
(see also Section 3.3.2) and the resulting rules are added to I;_; in an unspeci-
fied order, yielding a new context I;. The main challenges during evaluation are
rule extraction and forward application. The extraction of subproofs as rules has
been implemented in Section 3.3.3.2, forward application will be implemented in
Section 3.3.4.4.

e If m; = —s with a selector s (Section 3.1.1), then Tj is obtained from T;_; by deleting
all rules whose conclusions match s.

3.3.2 REMARK. Path-based term indexing methods [Gra96, Section 5.3, Section 6.1] can
speed up not only retrieval of rules from contexts, but also their removal by context
modifiers: Selectors proceed by matching (sets of) paths in terms, such that selection
directly parallels the tree data structures used for indexing.

3.3.4.4 Forward Application

Forward application is requested by a rule expression (Sections 3.3.2 and 2.2.1)
r(rey .. re,)

where r has n premises and either re; is a rule expression or re; = —. In the first case, the
rules resulting from evaluating re; are resolved against the ¢th premise of r according to
Definition 2.2.7, in the second case the premise is retained in the result rule.

The main challenge in implementing fwd_resolve is the handling of bound variables.
fwd_resolve must re-quantify the bound variables in the result rule according to Re-
mark 2.2.9, and must re-compute their relative paths according to Section 3.3.1.3. Both
goals are accomplished by the representation of bound variables, which have a link field
for substitutions (Section 3.3.1.4). Unification can proceed as usual, yielding a unifier o.
The re-quantification is effected by choosing fresh bound variables and instantiating (Sec-
tion 3.3.1.6) the input rules with these new bound variables.

Also the relative paths of the fresh bound variables are determined naturally during
unification, and o contains the necessary projections (Section 3.3.1.4). Suppose 7; is a
rule obtained by evaluating re;. Then the following tree has been constructed by forward
application (it does not show the context modifiers, as they are not important for the
current discussion):

P, ..P,. pP.,..P

—_— _r,
o e (3.3.2)
_ L= 3.3.2
Pl Pn
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By definition, the bound variables in the result rule must have relative gpath (k)
iff they occur only in the result rule’s kth premise. This outcome can be effected by
unification, if we note the similarity of (3.3.2) with rule application: Suppose the kth
result premise is the jth premise of the ith rule in (3.3.2). Then any (bound) variable with
relative qpath (i, j) will receive relative path k in the result rule. Thus, unification handles
relative paths in just the same way as it handles absolute paths: In the “small” proofs of
forward application, the relative paths of bound variables play the role of absolute paths
in backward proof construction.

3.3.4.5 Expand

Expanding subproofs consists of multiple simultaneous grafting operations (Section 2.4.5).
The resulting proof tree and substitution is determined directly by merging the proof trees
(Section 3.3.3.1). It remains to show that the operation can be carried out efficiently, in
particular without the renaming of tree positions of Section 2.4.5, but retaining structure
sharing (Section 3.3.3.1).

Suppose that n independent proofs P; .. P, are branched off for the judgments J; .. J,
within P. After some derivation steps, these proofs are extended by Ay .. A,

A /
F; ’ Pi+1

Now these proofs are to be grafted onto P. The merge operation (Section 3.3.3.1) efficiently
joins the Ay .. A,, thereby accumulating the substitutions and extensions to the proof
trees done in the P/ .. P!. Since the structures of the proof trees P/ are pairwise disjoint,
the merge can be computed in any order. However, the operation may fail if the A;
request contradictory instantiations of variables, such that the least upper bound of the
substitutions is undefined. The desired result proof is then obtained by applying

3.3.4.6 Pending Goals

Pending goals in Definition 2.3.3 do not occur in the constructed proof tree at all (Re-
mark 2.3.7), they are inserted to the tree only when their context modifier can be exe-
cuted. This construction simplifies the definitions, because the proof tree contains only
a single form of goals. For the implementation, it is more straightforward to introduce
pending goals directly into the data type for goals, which already allows resolution goals
and branching goals. A pending goal then consists of instantiated copies of the premise to
be resolved and the context modifier to be executed for the premise.

Since these copies are clearly inefficient in the most frequent cases where the context
modifier is either empty or contains only elements that do not reference subtrees at all,
the resolution step directly inserts premises as resolution goals, instead of creating pending
goals that are converted to resolution goals later on (Section 2.4.3). Pending goals are only
created in case the execution of the context modifier fails because of subproof references.
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3.4 Search

Searching for proofs is essentially straightforward: Starting from a proof F, in its own proof
set (Section 3.3.3.1), a search S = (Py..P,, Cy..Cy,) holds the currently found partial proofs
Py .. P, and the complete proofs ] .. C,,. By Section 3.3.3.1, all of these proofs are given
by their proof delta from F,. To extend a proof P;, i € {1..n}, that proof is made the
selected proof, such that its pointer structure is intact for the subsequent operations. Then,
one of P;’s goals is chosen according to the defer declarations (Section 3.3.4.1) and one
inference step (Section 3.3.4) is applied to that goal. The result consists of proofs Pj; .. Py,
each with a new A;;. The partial proof P; in S is replaced by the P, .. P;. If a proof P
does not have a selectable goal, either because it has no open judgments, or all of its open
judgments are deferred, then the proof is moved to the complete proofs as C,,,1 = P;.
This process is repeated until no more partial proofs remain.

To account for a branch goal, the main search forks off a new, independent sub-search
to solve this goal. The main search continues when the sub-search is finished and then
grafts (Section 3.3.4.5) the found proofs onto the partial proof, replacing the branch goal.
Since branching is in general recursive, the overall search data structure is a stack of
sub-searches.

The search strategy within each sub-search is depth-first in the current implementation,
although the data structures presented in the preceding sections would also support a
breadth-first or mixed approach. The partial proofs of a search are treated as a stack, by
selecting P, for processing in each inference step and replacing it with the result proofs.

The shared data structures of proofs (Section 3.3.3.1) work optimally for depth-first
search without branches. Then the proof deltas are accumulated for each inference step
until the proof is complete. They must be undone only in case of backtracking. This pro-
cedure parallels standard Prolog implementations [VR94] where substitutions are undone
upon backtracking.

3.5 GUI Inspector

The input language and formalization of T'CG is designed to make the descriptions of type
systems as declarative as possible. Nevertheless, the declarations may contain errors, in
that the generated type checker does not behave as expected. Very often, the causes for
the short-comings lie in the details of the search process: A single term constructor is
misspelled, a single rule is missing from the initial context, a single forward application
fails. In order to test and debug type system descriptions, it is therefore essential to
make these details accessible to the user in a straightforward, convenient fashion. The
GUTI inspector yields a graphical method of investigating the single constructs of the data
structures, ranging from the overall search structure to the context modifiers of pending
goals.

Figure 3.4 shows a screenshot of the main window. It is divided horizontally into
three areas for the search, the proof tree and the context and context modifier. As a basic
principle, selection of an item in one area shows its details in the next area to the right.
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Figure 3.4: Screenshot of the GUI Inspector

Search Starting from top to bottom, the first field shows the stack-of-stacks data struc-
ture of Section 3.4. The second field contains the complete proofs of the main search. The
third field contains the failures. Whenever a selected goal in a proof cannot be resolved by
any inference step, the search terminates for that proof and the proof is noted as a failure.
The field in the GUI inspector provides for a further filter: If any parent goal of the failing
goal either has been solved already or may be solved in the future within some proof still
in the search stacks, then the failing proof is not (yet) displayed in the failures field. This
filtering is most sensible for case distinctions by different typing rules: Since at most one
rule will succeed, the user should not have to deal with the failures of the other cases.
The failures field will contain the proofs of the case distinction as soon as all alternatives
have been found to fail. The fourth field shows the search space as a tree, including the
already processed search nodes. Alternatives are denoted by single lines, while branches
are indicated by =>, and the structure of the sub-search is shown in a new tree besides
that symbol.
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Proof Tree The second area shows three views on the proof tree for the currently selected
search node. The goals list contains the currently open goals, the proof tree exhibits the
entire constructed proof tree. In these views, a single goal can be selected. Its context (or
context modifier for pending goals) is displayed in the third area, and its ancestor nodes
in the proof tree are displayed in the parents list.

Context The context display is rudimentary at the moment. It shows the names of the
rules in the currently selected goal. The rule names are taken directly from the T'CG input,
such that the user can identify them easily. For generated rules, such as proof extraction
and forward application, the names of the original rules are maintained in the result rule’s
input. The extracted rules are named with the point of rule extraction. When a rule is
selected from the list, its term structure is displayed in the lower part of the context area.
Context modifiers are displayed in a similar manner.

Tracker Displaying the elements of the interpreter’s data structures yields a merely static
picture: The display can only capture the current state at a specific point in time. The
search for proofs fails, however, between these snapshots, in the applied inference steps.
The tracker module of the implementation accounts for this circumstance by noting the
key events in the inference steps and making them accessible to the user. For example, it
notes goal selection, tried rules in resolution and failing unification. The amount of data
saved for the single events is very small, the records consist of a few pointers to the data
structures involved in the event. The events have a tree structure that corresponds tightly
to the call tree of the functions implementing the inference steps. The data is discarded
after a configurable number of inference steps to limit the memory consumption.

Figure 3.5 shows the GUI view on the data of the tracker. It displays the tree data
structure of the events and adds the details of the attached data when one event is selected.

3.6 Documentation Generator

The syntax of the T'CG input language (Section 3.1) is designed to reflect the internal
structure of the formalization (Chapter 2) directly. This choice entails that the written
rules’ details are intelligible to the fluent user of Tca, although they may not appeal to
the expectations of the casual reader who wants to comprehend the workings of a single
type system expressed in T'cG. The documentation generator T'caDoc bridges the gap
between the internal details and the conventional external presentations, by translating
the rules to KTEX output reminiscent of conventional typing rules.

The architecture of TcaDoOC is geared towards extensibility in two directions: First,
the output should be adaptable to different formats, ranging from visual I¥TEX represen-
tations to mere markup of the input in HTML. Second, as type systems are specified
as sets of individual and largely independent fragments, the representation of the typing
rules should also be independent and contained in the fragments themselves (see also Sec-
tion 4.2). The solution to both challenges is well-established (e.g. [Pau94]): TccDoc
generates the output through an indirection of rewriting rules, proceeding in four steps:
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Figure 3.5: Tracking Actions

1. Read the input fragment in to an AST.

2. Gather from the fragment, and all of its used fragments recursively, the ezxternal
declarations relating to the desired output format.

3. Translate the AST into a term representation.

4. Rewrite the term representation to a normal form under the accumulated external
declarations.

5. Output the resulting term. This step fails if the term contains non-format construc-
tors (Section 3.1.1).

Step 3 takes care also of the static binding of variable names in the TCG input language
(see also Section 3.2) by replacing an identifier x with opaques VAR[x], or PARAM[z] if it is
statically bound in a rule. Otherwise, x is tagged as ID[z|. Using opaque patterns, the
external specifications can adapt the rendering for the different classes of identifiers. Fach
internal node of the AST data structure is represented directly by a term constructor in
upper-case letters. Step 4 employs a leftmost-outermost strategy to allow case distinctions
on child terms (see also Section 3.1.5).

The output of TcaDoOC consists of one file per labeled element of the input fragment,
where labeled refers to the [1abel] construct of Section 3.1.5. The name of the output file
is the concatenation of the path and name of the input and the label. Rules are always
labeled with their names, because they are most frequently referred to.

The tool tcgdoc takes a sequence of input fragments and processes them in order as
described above. If one of the inputs is a directory, that directory is searched recursively
for files with suffix .tcg, and these files are processed in turn. tcgdoc accepts a command
line option —p prelude, which causes it to gather the external declarations from prelude.tcg
before processing the main input files. Typically, that prelude contains the external decla-
rations for the term constructors of AST nodes introduced in Step 3 above. The command
line option -I adds an include directory to the search path for use directives.
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Chapter 4

Applications

This chapter contains applications of TcG. The implemented languages are prototypical
examples: Real-world programming languages tend to exhibit many particularities that
have been introduced in the course of their development and their deployment. We will
therefore concentrate on their main typing mechanisms, thus implementing representatives
for families of languages rather than specific languages. The representatives are sufficient,
however, to demonstrate that with some purely technical effort the remaining details can
be provided.

Tca also constitutes a framework for comparing languages, and for exploiting com-
monalities in their formalization. Section 4.2 therefore establishes a set of basic language
constructs that together form a library of TcG fragments to be reused in the subsequent
exploration of specific typing features.

The rule names in this chapter obey the following convention: Type-writer names
indicate that the rule is generated from the TcG source files using the tool TcaDoc
(Section 3.6). All other rules are labeled in Roman font, probably with symbols.

4.1 Exploring Tcg

Most of the T'cG formalization of the later applications is based on a few recurring patterns.
These patterns also form a common ground of type systems, and they explain and motivate
the definitions in Chapter 2. They are illustrated by the series of typed A-calculi presented
in this section. At the end of the sequence, we will have treated MINIML [CDDKS6],
which serves as a canonical object of study in the literature.

The presentation in this section deliberately repeats and summarizes parts of the input
language (Section 3.1) to keep the text self-contained. The development of Section 1.2 is
re-traced to exhibit the consequences of the design decisions taken there.

In the chosen family of typed A-calculi, the difference between type-checking and type-
inference consists in changing type equality checks into (syntactic [BS01]) unification con-
straints over types [Hin69, Mil78, Wan87, Sul00]. Since syntactic unification is available
at the meta-level, we do not require type annotations in the programs.

89
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Table 4.1: Rules for Curry-style type inference [Mit90]

4.1.1 Simply-Typed Lambda Calculus

The simply-typed A-calculus lies at the heart of almost every programming language: It
embodies the basic requirements that a variable has a single type throughout its scope
and that in a function application, the actual parameter’s type matches that of the formal
parameter. The introductory presentation by Mitchell [Mit90] gives the typing rules shown
in Table 4.1: The typing judgement I' > M : o checks that M has the type ¢ under the
assumption that the variables in M have the types assigned to them by I'. The typing
context I' is a relation {x; : 7y .. x, : 7,} between variables and types where the z; are
pairwise distinct. Rule (var) allows to retrieve the type of  in I'. The structural rule (in
the sense of [Gen35]) (add hyp) provides weakening, in that extraneous elements of I' that
are not needed in the proof of M : o, may be discarded without changing the type of o.
The assignment of types to constants (cnst) will be treated in Section 4.1.2.

The remaining two rules check functions and their application. Rule (—Intro) assigns
to a term A\z.M a function type ¢ — 7, where o is the type assigned to the parameter z
throughout the body M and 7 is the result type of M. The notation I', x : o also includes
the removal of any previous entry for x, thus effectively expressing shadowing of variables.
The complementary rule (—Elim) types a function application M N by checking that M
is a function and that N yields a result of M’s parameter type.

Table 4.2 (Page 91) shows the T'cG input formalizing the above type system. The file
consists of series of top-level elements, each of which starts with corresponding keyword
and an optional label. The label is used by TccDoc for extracting specific elements for
documentation. (Rules are labeled with their name by default.) There are five basic cat-
egories of elements: Tokens and syntax describe the input grammar and the construction
of the abstract syntax tree. Rules state the type checking rules, which can be inserted to
the context by environment lists. Finally, the external elements declare rewrite rules from
the internal terms to trees of strings and other formatting instructions, which can then
be output textually. The rewrite rules are split into groups by the identifier following the
external keyword; in the example, latex rules are used to generate the documentation
shown in this section. We now consider the single elements in more detail.

Tokens introduce lexical elements for the input grammar. They are specified by a name
and a regular expression. If the regular expression is non-constant, then the matched string
from the input is accessible by the token name. In the example, we have identifiers starting
with a lower-case letter, followed by any alpha-numerical character or the underscore.

The input grammar is specified by syntax declarations in a YAccC-like format with a
distinguished start non-terminal file. In the example, the top-level file grammar is a
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[label tokens]
tokens

ID=[a-z] [a-zA-Z0-9_]*

end tokens

[label file] syntax

file: top_wrap EOF {! run “save: [ (input.base”".rls",

[ ("define", "save_defined") 1) 1 $1 '}

top_wrap: tops --> tops($1)
tops: top -=> $1 :: []
| top ";;" tops -—> $1 :: $3

top: exp ——> $1

[label exp] syntax
exp: ID

| exp exp

I ||\\|l ID n . n exp
I n ( n eXp n ) n
rule apply
forall(f,e,s,t)

apply(f,e) : t
if f : fun(s,t)
and e : s

rule lambda
forall(x,e,s,t)

--> id[$1]

--> apply($1,%$2)

--> lambda(id[$2],$4)
-—> $2

lambda(x,e) : fun(s,t)

if e : t

under -( :.1.=x) + [ x : s ]

rule tops
forall(es,ts)
tops(es)

if [branch] es : ts export* ...
environment apply,lambda,tops

external latex

forall(tops,id,x,e,f)

tops(tops) --> @[l@\n| tops ]

id[id] -—> [ "\\mathrm{" @ARG(id) "}" ]
lambda(x,e) --> [ "\\lambda" x "." e ]
apply(f,e) --> [ "(" £ "\," e ")" 1]

external latex
forall(s,t)

fun(s,t) —_—> [ u(u s "\\tO" t n)n ]

Table 4.2: Simply-Typed Lambda Calculus
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sequence of expressions, separated by double semi-colons.

The right-hand sides of productions either specify an abstract syntax tree (AST) to be
constructed (after -—=>) or an action to be executed (within {! !}). AST construction can
be observed at the tops and exp non-terminals. In tops, the constructors a::b and []
will be transformed into simple terms ::(a,b), [1; however, these list constructors enjoy
support of several auxiliary built-in functions that will be shown in the subsequent intro-
duction. The production exp: ID exhibits the construction of an opaque term id[$1];
opaque terms will be discussed further in Section 4.1.2. For this introductory example,
we will not consider associativity and precedence of operators; they will be used in Sec-
tion 4.2.2.

The non-terminal file must always execute an action to initiate the type checking
process. Usually it is sufficient to apply the provided command run to the file’s abstract
syntax tree. Optionally, the results of the type checking process can be extracted and
saved to files; the first argument to run will be discussed in Section 4.1.5.

The two type checking rules apply and lambda represent the orignal rules (—Elim)
and (—Intro). Using the given external declarations, TcGDoOC transforms the source

1 rule apply 1 rule lambda

2 forall(f,e,s,t) 2 forall(x,e,s,t)

3 apply(f,e) : t 3 lambda(x,e) : fun(s,t)

4 if £ : fun(s,t) 4 if e @ t

5 and e : s 5 under -( :.1.=x) + [ x : s ]

into IXTEX to generate the following output. After this introductory Section 4.1, we will
only show the external form.

Ff:i(s—t)
V (fre.t) - ?f :) —— (apply)

—(i=a);+[z:s|Fe:t
Az.e: (s —t)

V(:v,e,s,t) (lambda)

The rule apply can be read directly as a Horn-clause that specifies how to prove a goal
apply(f,e):t by backward resolution. Differing from the presentation of Table 4.1, the
context I' of the judgments is implicit in the rules and relative to the point of rule appli-
cation (Section 1.2.3.2): Goals in proofs have the form I' - p, and if a rule is applied at
this proof node
Fll—qunl—qn
'kFp

then the I; have been derived from I' through context modifiers. These context modifiers
appear on the left-hand-side of the turnstile in the rules above, and after the under keyword
in the source code. If the context modifier is empty, then the context I' is copied unchanged.

Rule lambda contains an example of a context modifier. To obtain the context of
the premise from that of the conclusion, the rules assigning a type to x are removed.
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This is accomplished by a selector (Section 3.1.1) defining a predicate on terms. The
expressible predicates concern paths from the root of the term: They check intermediate
function symbols and descend into the given argument positions recursively. At the leaves
of selectors, an atomic check for term equality and other properties can be specified. If a
rule in the context satisfies the predicate, it is removed. In the example, the predicate

=

states that the top symbol must be : and its first argument must be equal to x. Having
thus removed previous bindings for identifier x, a new rule (without premises)

x:t

is entered. This is an anonymous inline rule, as opposed to top-level, named rules. The
internal treatment of both forms of rules is identical. In general, all rules have the same
shape as the top-level rules, there is no restriction on the structure for recursively nested
rules. As a convention, rules with empty premises will be shown without a line, as x : ¢ in
the example lambda above.

The inserted rule = : ¢ removes the need to reproduce rule (var) in the T'cG input:
Proof construction proceeds by backward resolution, and to resolve a goal I' - p, all rules
from I' are tried in turn. Thus, if a goal I' F x : ¢ arises, the rule inserted at the nearest
binding Az will be applied by resolution. The rule (add hyp) does not need a counterpart
in TcG either, because the basic formalism includes weakening (Remark 2.3.8).

Finally, the documentation generator TcGDOC requires a translation of all internal
term structures to format terms (Section 3.1.1). Format terms are special terms that
contain only a few reserved constructors that request a specific sequential representation
of a term.

This finishes the first exposition of the TCG input language. More constructs will be
added in the subsequent sections.

4.1.2 Constants

Constants and primitive data types are added in a straightforward manner in input file
cnst.tcg. Its first line use lambda causes the fragment lambda defined in Section 4.1.1
to be read and parsed. Its elements are then added to the current fragment as if they had
been placed there literally. The language syntax is extended by new tokens

tokens
INT=[0-9]+
STR="[”\H]*"
end tokens

e oW N =

which are subsequently entered to the expression grammar:
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1 syntax

2 exp:

3 INT -=> int[$1]

4 | STR --> str($1]

5 | "false" --> bool["false"]
6 | "true" --> bool["true"]

In these productions, the literal values are kept in opaque terms (or opaques, for short).
For example, int is the class of the opaque, and then semantic value $1 is its argument.
Opaque terms cannot be analyzed during type inference, but the argument and class can
be separated for output. Strings and booleans are treated likewise. (Note that the constant
tokens "true" and "false" will not yield their string as a semantic value, hence the opaque
argument has to be provided explicitly.)

The following rule cnst_int uses the opaque pattern int [i] to recognize integer literals
for type checking: The variable ¢ will get bound to the entire opaque (as oposed to its
argument) during unification and matching. Thus the rule assigns type int to every
integer literal. The same technique applies to string and boolean literals.

V(i) int[i] : int (int_cnst)
Primitive operations are added by rules without premises, for example:
add : (int — (int — int)) (add_cnst)
Conditionals likewise are straightforward: The syntax is

1 syntax
2 exp: "if" exp "then" exp "else" exp --> ifthenelse($2,$4,$6)

and their type checking rule is

F el : bool
Fe2:t
Fed:t

V(el,eQ,ef)’,t) (1fexp)

if el then €2 else e3 : t

We skip the external declarations that have produced the above output of the rules, they
contain no new language constructs.

4.1.3 Bindings

The construct let = e in €' binds the value of e to the identifier x for use in €’. Its
semantics can be defined as (A x.¢')e (although the typings of the two expressions differ in
the treatment of polymorphism (Section 4.1.3.3)).
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4.1.3.1 Monomorphic Let

The typing rule for monomorphic let is derived from those of A-abstraction and applica-
tion: x is given a single type that must satisfy all of its uses in e.

'ke:s Tyx:ske:t

let x = e in €' : t

A type checker would implement the rule in three steps:

1. Type check e : s.
2. Assign the type s to x during a type check of €’ : t.
3. The type of the entire expression is t.

There are two aspects in the checker that are not present in the rule: First, the order
of the type checks is fixed, as the type of e must be known before the type of €' can be
computed. Second, the type s is transferred from Step 1 to Step 2. Because T'CG is to yield
an operational type checker, the formalization must specify these two additional aspects.
As the order of premises in T'CG rules is fixed, the first aspect is solved. Only the transfer
of the type s remains to be effected.

An obvious solution is to exploit the unification of proof search, which leads to a
rule in the spirit of logic programming (the context modifier is the same as in lambda,
Section 4.1.1):

Fe:s
—(1=a);+[z:s] et
letz = eine’ : ¢t

W (z,e,e’,s,t) (let_prolog)
This formalization is sufficient for the case at hand and has been used in previous attempts
to generating type checkers for ML [CDDKS86, Des84]. However, it does not generalize

properly:

e Polymorphism requires the variables @ = FV(s) \ FV(I') to be computed. Then z
is assigned not the type s, but the type scheme Va.s [Mil78, DM82]. Clément et al.
[CDDKS6] hide this computation in specialized predicates freevars, setminus and
bind, which are implemented separately from their tool’s core calculus TYPOL.

e Haskell [WB89] adds type classes to ML to treat overloaded identifiers. Technically,
type classes have been considered as constraints on type variables [Jon94, Sul00]:
The typing judgment has the form

CTlke:t

where C' = {¢; (o)}, specifies that type a; must be in class ¢;. (The generalization
to constructor classes by Jones [Jon95] adds nothing to the current investigation.)
Thus for Haskell, it will never be sufficient to transfer only a single type-term without
transferring the associated constraints.!

LOf course, it is possible to write a type checker using backward resolution only by essentially “Typing
Haskell in Prolog” (cf. [Jon99]). But this approach destroys the chance to employ meta-level mechanisms
to ease the implementation.
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4.1.3.2 Monomorphic Let in Tcg

Tca supports the above generalizations by the rule extraction mechanism, which is inte-
grated tightly with the structure of proofs introduced in Chapter 2. Consider the proof
tree for an application of the let rule, as it has been constructed when the second premise
is to be solved:
- (proof of e : s)
'Fe:s I"'Fée :t

'Flet 2 = e in € :t

TcaG takes the view that the proven fact e : s is to be used within I'. Note the contrast
with the earlier intention of transferring the type s alone: Whereas e : s is a goal to be
proven, and thus is a proper object of the T'cG formalism, the type s depends on the
specific interpretation of the binary predicate :, thus belongs to the level of the formalized
type system.

Rule extraction is a primitive step that turns a subtree of the proof (or a subproof for
short) into a rule. Briefly speaking, (see Sections 1.2.3.5, 3.1.3, 3.3.3.2)

e the subtree’s root becomes the rule’s conclusion and
e the subtree’s unproven leaf judgments, if any, become the rule’s premises.

In this setting, subproofs and rules are complementary expressions of the same proven fact
at the subproof’s root: Whereas the subproof represents goals that have to be proven, or
have successfully been proven, the rule takes a more active role in using the already proven
goals. For the operational behaviour of T'CG, rules can best be understood as knowledge
that can be used to derive further knowledge by proof construction.

Since unproven goals of the extracted subtree remain as premises, rule extraction can be
applied even to incompletely constructed subproofs without destroying soundness: When-
ever the extracted rule is used to resolve some goal, its premises re-enter the proof as
unproven goals.?

Extracting the subproof is not enough, however: In the let rule, we will need the
assumption that x, instead of e, has type s. This new reasoning step can be accomplished
by forward application of rules. (Note that the V-quantifier below is justified by using the
second rule only in the special case of a let binding.)

(goals of subproof)

e:s
Is of sub f
N (goals of subproof) (4.1.1)
! . t xZ . t
(e ) <

Considering again rules as pieces of knowledge, forward application derives new knowledge
from existing knowledge in a single step. Of course, forward application generalizes to
more than one premise.

2Sulzmann [Sul00, Section 3.5.1] discusses whether the V-introduction rule in constraint type systems
should discharge the constraints under consideration, or should leave them existentially quantified. The
same question can be raised for the discharge of unproven goals in proof extraction. TCG offers extraction
both with and without discharge, such that the language designer can choose the appropriate behaviour.
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We can now re-formulate the let rule in this spirit: The context modifier for the second
premise extracts the subproof of the first premise (which will not have any open goals in
this section), and perform the forward reasoning. The forward application is written as a
rule application, subproof extraction is indicated by angle brackets:

Fe:s
— (:1 =x); + [Llet_binding[z]] ((1)) F €’ : ¢

letz = eine :t

V (z,e,¢',5,t) (let_subproof)

Rule let_subproof contains a rule reference to the following auxiliary rule:

ot
V (ent) i (let_binding [y] )

This rule has a parameter y, which can be instantiated with a term for each reference to rule
let_binding, thus sharing terms with the referencing context. In the above application,
the variable z, hence the 1let-bound identifier, will be shared with the rule, thus producing
exactly the situation from (4.1.1) above.

We have seen that the context modifier + may specify the rule to be added in several
forms. T'cG generalizes these patterns to rule expressions (Section 3.1.3); evaluating a rule
expression then yields a set of rules to be inserted into the context. Rule expressions are
inductively defined by the following constructions:

e A rule reference, which can again be

— An inline rule [p] (by syntactic restriction without premises and quantifier).

— rule[parameters] A reference to the named rule. The variables in the parameters
have lexical binding, they are resolved against the bound variables of the con-
taining rule.

(1 : options) Rule extraction of the subproof constructed for the ith premise of the
rule. The referenced premise must be left of the one containing the rule expression.
The options control quantification and discharge of open goals.

o rule(rule expressions) Forward resolution of the rule, given as a rule reference, against
the arguments. Premises are resolved left to right, and extraneous premises remain
in the result rule. A premise of the rule can be exempt from resolution by insert-
ing an argument “—” in the corresponding argument position; it then remains as a
premise of the result rule. Since each of the argument expressions yields a set of
rules in general, all combinations are tried, and the result consists of the successful
resolution steps.

e use(term) The term is output to a string, using formatting instructions (Sections 4.1.1
and 3.1.5). The result is taken as the name of a file, which must contain rules that
have been saved by a previous run (Section 4.1.5 and 3.1.3).

e environment References all rules in the context of the rule application.
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4.1.3.3 Polymorphic Let

Type inference for polymorphic let is defined by the following typing rule [Mil78, DM82]:

I'Fe:s a=FV(s)\FV(I') TI'z:Va.skeé:t
'Fletz=eine :t

The bound variable z is assigned the type scheme Va.s, which allows z to be used poly-
morphically, with a new instance of the type scheme at each reference. The instantiation
takes place in the variable reference rule:

r:Vatel t =t[5/4]
'zt

(var)

Consider again the problem of deriving the knowledge x : Va.s from the proof of e : s.
In the previous Section 4.1.3.2, we have already established the creation of = : s by rule
extraction and forward application. It remains to find the quantified variables &. Just
as rule abstraction, this form of quantification is tightly integrated with T'CcG’s notion of
proof: The & are exactly the inner variables (Sections 1.2.3.5, 2.4.6, Remark 2.4.20) of the
subproof at e : . An inner variable is a free variable that occurs in the subproof and that
does not occur in the remainder of the proof. During rule extraction, T'cG can efficiently
(Section 3.3.1.2) compute the inner variables and quantify the extracted rule over them.
Forward application maintains the quantification information.

In the example of polymorphic let, the typing rule is then

Fe:s
— (11 =12); + [Let_binding[z]] ((1: [V])) F €' : ¢
14

let z = ein €' :

\ (x,e,e’,s,t)

(let_poly)

Note that rule extraction specifies the option V, written with the quantify keyword in the
textual input:

1 rule let_poly

2 forall(x,e,e’,s,t)

3 let(x,e,e’) : t

4 if e : s

5 and e’ : t

6 under -(:.1.= x) +let_binding[x](<1: [quantify]>)

The use of inner variables for quantification is motivated from three observations, which are
discussed next. First, we pragmatically check that the inner variables coincide with those
variables computed by the original (let) rule. Looking at a proof node where let_poly is
applied, we see that no more than the desired variables will be quantified:

- (proof of e : s)
F'ke:s "Ee:t

'Flet = e in € :t

let_poly
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The variables in I are not inner variables of the left subproof, so they will never be included
in the quantifier. For the converse, consider how the proof construction of e : s proceeds: A
(type) variable introduced in that subproof can only escape the subproof if it gets unified
with some type in I' — but then it would not be quantified in the standard rule as well, as
it now appears in I'.

A second motivation is found in the intended meaning of type schemes and polymorphic
values. The scheme e : Va.s captures the fact that a proof for e : s[t/a] could be obtained
by replacing the & throughout the deduction of e : s. The meta-theoretical soundness
proofs formalize this intention in a standard sequence of Lemmata (see Section 2.4.1.2):
First, one shows (by structural induction on the proof derivation) that T'c F e : so for
any substitution ¢ and I' - e : s. If we restrict o, such that dom(oc) NT' = @, then
also I' - e : so. The largest sensible dom(o) that satisfies the restriction is obviously
FV(s) \ FV(I'). Thus the standard quantifier captures just these variables that may be
replaced in s without changing I'. Compare this reasoning to TCG’s inner variables: The
existence of derivation I'c - e : so corresponds to a copy of the subproof at e : s, with
substitution o applied throughout. If we restrict dom(o) to the inner variables of the
subproof, then o does not affect the remainder of the proof — we can thus obtain arbitrary
instances e : so, as long as dom(o) is restricted to the inner variable of the subproof.

A third motivation stems from standard proof-theoretical studies of natural deduction
and sequent calculi. For natural deduction, the eigenvariable condition for V-introduction
can be formulated as [Pra65, Section 2.A] (see also [Gen35, Section 2.21]):

A
Va.A(x/a)
where “a must not occur in any assumption on which A depends”. By identifying the
typing context I" with the open assumptions of natural deduction [NPO1, Section 1.3,

Chapter 8], this formulation becomes akin to the standard (let) rule. For example, Negri
and von Plato [NP0O1, Definition 8.1.2] formulate:

L

Ay/z)
Va.A

“if y does not occur free in I'" or Vz.A”. Since the latter restriction can be avoided by
choosing a suitable y, the restriction is the same as that on polymorphism.

On the other hand, sequent calculi suggest TcG’s view in formulating [Gen35, Sec-
tion 1.22] (see also [T'S00, Section 3.1]):

I'F0O,J(a/x)
'+ o,Vx.J(z)

Here, the “object variable [...] a [...] must not occur in the lower sequent of the inference
figure”. Allowing for a suitable renaming of free variables, this restriction captures TCG’s
inner variables. Note, however, that such a “suitable renaming” would incur a performance
penalty, while T'CG’s more strict notion avoids creating the need for renaming in the first
place, without sacrificing generality.
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4.1.3.4 Recursion

The standard rule for a recursive let binding assumes that z has type s in the check that
its definition e has type s:

Mx:ske:s a=FV(s)\FV(I') I'Vaste:t

I'letrecx=c¢ine : t

It can obviously be formalized in T'CG by using an additional context modifier in the first
premise. Mutual recursion can be obtained by defining tuples (Section 4.1.4) of values
recursively (as in [CDDKS86]), but this solution is too cumbersome for practical languages.
Tca’s formalization of mutual recursion is explained in Section 4.1.3.6, as it uses exports
from the next Section 4.1.3.5 in an essential way.

4.1.3.5 Parallel Bindings

The basic typing features of MINIML [CDDKS86| have now been covered. Practical lan-
guages usually extend the language for the ease of the programmer, very often allowing
several instances of a construct where MINIML allows only a single occurrence. For exam-
ple, a single 1et may bind several variables at the same time with the following syntax:

1 syntax
2 exp: "let" bind_group "in" exp -—> let($2,%$4)
3 | "let" error "in let expression"
4 bind_group: bind -—> $1 :: 1
5 | bind "and" bind_group --> $1 :: $3
6 bind: ID "=" exp --> bind(id[$1],$3)
The abstract syntax for bind_group uses the special constructors “::” and “[]1”, which

are read cons and nil. At the internal term level, they are not distinguished from other
constructors, and they do not extend the notion of proofs (Chapter 2). However, TcG
provides a few auxiliary functions that can facilitate the processing of lists of the form
x1::(xg::(-++ ::[])). The binding groups of this section are a prototypical example ap-
plication of the list constructs. (One other instance has already been seen in the formatter
@[l] (Section 3.1.5).

The second new element of the syntax is error: When a syntax error is encountered,
YAccC starts removing items from its stack until a reduction with an error rule becomes
possible. At this point, the shown production issues the given error message, printing
the location information of the error automatically in the standard filename:line num-
ber : message format.

Although binding groups do not change the type theory of the language significantly,
the type checker must nevertheless check the bindings one by one. In the T'cG formulation,
the constructed proof for the expression now takes the following form:

€1:8 -+ €n:Sy

(check binding group) T xy:81,...2,: 8, Fe:t

let z;,=¢;...2,=¢,Ine:t
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As a consequence, the reasoning about rule extraction in Section 4.1.3.2 and 4.1.3.3 does not
apply immediately: The knowledge to be extracted does not appear at the first premise, but
is scattered throughout its subproof. T'CG provides exports as a straightforward extension
of rule extraction to the above situation: Each node in the proof tree can be labeled with
an identifier that can be referenced in rule extraction. The rule expression (i : exp) then
extracts all subproofs labeled exp in the subproof of premise 7. The search for exports in
a subproof can be controlled: Only if a node propagates exports, its children are included
in the search. Propagation is indicated with a second label [*]. The above proof tree thus
changes to:

[bindle; 181 -+ [bindle, : s,
- (all nodes labeled [*])
[*](check binding group) ', (extract exports bind) e : t

let 11 =€3...2, =€, ine:t

Note that the considerations about inner variables do carry over directly: At the point of
extraction, the inner variables of the whole subproof of the left premise can be selected for
quantification, because which each copy of that subproof, also a fresh copy of the extracted
subproof is obtained.

It remains to construct the elided subproof (check binding group). Essentially, the
following two rules are needed to iterate over the list of bindings and create a goal for each
binding:

F b[bind] F bind_group(l)[*]

bind_group(b: :1) bind_group([])

For practical languages, this approach is cumbersome and error prone: For every list in
the abstract syntax tree, a similar pair of rules has to be provided to check the elements.
TcG frees the user from that burden by generating the required rules automatically for
iteration premises, which are indicated by an ellipsis “...” behind the usual premise. In
the current example, the T'CG rule is

F bs : ts export bind...
+ [exp_binding] ({1 : bind[V])) F e : ¢

let bsine:t

V(b,bs,e,t,ts,bs’) (let)

The first premise specifies that bs : ts is to be proven for each element of bs separately; the
corresponding types will be found in the list ¢s, which is, however, not referred to in the
above rule. Each of generated premises is labeled with export bind, and all the intermediate
proof nodes will be labeled [*] as propagating exports. The behaviour of iteration premises
is defined by automatically generated, auxiliary rules — it does not require modifications
to the definition of proofs (Chapter 2).

A single binding is checked canonically by the following rule. Note that the goal gathers
all available information about the binding in a single place. This technique is important

for the later extraction.
Fe:t
V(:v,e,t) —t (blnd)
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The second premise then extracts and inserts all exports simultaneously. Like the previous
rules for let, it uses forward reasoning with the following auxiliary rule to create the

desired rules:
Frx=c¢e:t
V (z,e,t) — (exp_binding)
T

To complete the introduction to iteration premises, here is the rule for recursive let from
the T'cG input. Note how by iteration premises the extension from single to multiple
bindings requires only a minimal notational overhead; hence, the straightforward extension
of the theory is paralleled by a straightforward extension of the implementation.

rule let
forall(b,bs,e,t,ts,bs’)
let(bs,e) : t
if bs : ts export bind ...
and e : t
under + exp_binding(<1l: bind [quantify] >)

D ot s W N

4.1.3.6 Recursive Bindings

Mutual recursion introduces a significant amount of overhead into type checkers: To check
r1 =€1..Ty, =€y

where each e; may refer to each of the z;, the ML type checker will first choose a new type
variable a; as a type for z;, then add @1 : oy .. 2, : o, to the context and proceed to check
€1 : Qq..e, : . Unification then instantiates the type variables as necessary. In languages
with type annotations, the sequence x; : s;1 = ey..2, : s, = e, must be traversed to gather
the s; beforehand. Generally speaking, the complication is that the simple recursive process
of type checking is broken up, and a limited form of “look-ahead” has to be implemented.

In Tca, iteration premises again circumvent these problems. The letrec with mutual
recursion is implemented by the following rules:

+ bindgroup(bs) export*
—(:1=12 — 1 = z); + [exp_binding| ((1 : bind[V]))

Fe:t
v S,€,0,T 1 t
(bssc1.2) letrec bsine:t (Letrec)
F bs : ts export fwd!...
— (11 =2 — 1 = x); + [exp_binding] ((1 : fwd))
Fobs:t t bind...
V (bs,ts,2) 5 73 OXPOTL o1n (bindgroup)

bindgroup(bs)

The main work is done in rule bindgroup, which checks the recursive bindings in the
first premise of rule letrec, whose second premise requires that the types of the bindings
are confined to one subtree in order to quantify correctly. We have already discussed the
working of rule bindgroup: By iteration, each element in bs is checked and the goal is



4.1 Exploring Tca 103

exported as fwd. Note that the types ts are actually fresh variables a; .. a,,, for they
do not appear anywhere else in the rule. The fwd goals thus have the form x = e : «;
however, no proof obligation is associated with them — the proposition “z is associated
with the newly chosen type variable o is already true. Therefore, the premise is made
a solved premise, which is indicated by the ! behind the export name. The purpose of
solved premises is to state a fact, rather than create a new proof obligation. Like iteration
premises, solved premises do not require modifications to proofs (Chapter 2): Only their
context is modified to contain a single rule Vp.p.

With these definitions, the following expression can be type checked; both even and
odd are assigned type int — bool as expected:

1 letrec even
2 and odd
3 in even 5

\x. if (eq_int x) O then true else odd ((sub x) 1)
\x. if (eq_int x) O then false else even ((sub x) 1)

4.1.4 Tuples and Matching

An n-tuple is a heterogeneous sequence of n values. Tuples are constructed by writing a
(non-singleton) sequence of expressions between a pair of parentheses.®> Type checking a
tuple expression means checking each of its components separately.

Fes:ts...
(es) : (ts)

Decomposition of tuple values is accomplished by a match expression of the form

V (es,ts) (tuple)

match exp = pat in ¢’

The pattern pat is a nested tuple expression with variables at the leaves:

1 syntax

2 pat: ID -—> id[$1]

3 | "(" pats_opt ")" --> tuple($2)
4 pats_opt: /* empty */ --> []

5 | pats -—> $1

6 pats: pat -—> $1 :: []
7 | pat "," pats -—> $1 :: $3

To type check match, the pattern must have the same type as the expression. The pattern
variables receive the type of the value found at their position within exp’s value. The
following T'CcG rule uses exports to access the inferred types of the pattern variables and
introduces a new predicate :, for type-checking patterns.

Fe:s
Fp:p s export”
+ (2:patvar) e : ¢

match e=pin e :t

A (p,e,e’,s,t) (match)

3We ignore any ambiguities with parentheses in expressions for this introductory example.
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Checking a linear pattern is a simple recursive process through the tuple constructors; the
pattern variables are solved premises (see Section 4.1.3.6).

F id[z] : t export patvar!
id[z] o ¢

Y (,t) (pat_var)

F ps:, ts export™...
(ps) = (1s)

With these definitions, the following expression receives type int X int X o — a X int:

V (ps,ts) (pat_tuple)

1 \x. match x = (u,v,w) in (w,((add u) v))

Records with Labeled Fields Record types {z; : t;..x, : t,} with structural matching
can be implemented in the same manner, if the check for type-equality is made explicit.
Even type checking with width-subtyping [Pie02, Chapter 15] is possible.

However, type-inference for records with structural subtyping (where a record can al-
ways be used where a record with fewer fields is expected) does not generalize straightfor-
wardly [Wan91, Wri94, EST95a, AC96].

Alternatively, ML-style records can clearly be implemented within the given framework.
Here, a label is assigned to exactly one record type by declaration [OCa03].

4.1.5 Saving and Loading Results

Many languages allow separate compilation of source files, hence their type checker has
to save the typing information computed for one file to disk, and re-load it when process-
ing the next file. A special case is the description of modules in separate interface and
implementation files: Here, the interface file must be checked for consistency before the
implementation is type checked and matched against the interface. Having identified rules
as the primary pieces of typing knowledge before, we can devise a general mechanism to
support the mentioned disk operations:

e When the type check of a file is complete, its proof is searched for exports, starting
from its root node. The exported subtrees are then extracted as rules to be serialized
to a file.

e The context modifiers (Section 3.1.3) are extended by a load facility, which loads
some previously saved rules from a file. As the new feature represents merely a
different form of rule constants, the formalism does not need to be modified.

We now extend the running example with simple define clauses that specify bindings to
be recorded on disk. A using clause then allows to re-read previously saved rules.

1 syntax
2 top: "define" ID "=" exp --> define(id[$2],%$4)
3 top: "using" ID "{" tops "}" --> using(file[$2],$4)
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The define clauses are checked by the following rule and marked as exported to prepare
the saving. Because the conclusion of a rule cannot be exported, the auxiliary non-terminal
define’ is introduced.

I define’ z:t = e export define .
Y (z,e,t) N P — (define)
Fe:t
v xI,e d f i ’
(1) define’ 7:t = e (define’)

The run command in the action of non-terminal file (Section 4.1.1) initiates the actual
extraction. It takes an optional parameter save, which is a list of triples; each element
triple is processed in turn.

(export id, forward rule, file)

The export id designates the exports to be selected, and file names the destination file.
(A predefined record input holds information on the name of the input file, such that the
name of the output file can be composed.) Finally, forward rule allows a single forward
resolution step? (Section 4.1.3.3) to discard any unused material before the rule is written.”

{! run "save: [ ("define", "save_defined", (input.base”".rls")) ] $1 '}

The auxiliary rule save_defined discards the expression from a definition

I define’ z:t = ¢
Y (z,e,t) . (save_defined)
T

The using clause reloads dumped rules from the context. The argument of load must be
a format term (Section 4.1.1).

+ load(f.rls) & tops : tys ...

usin
using ftops : void ( g

Y (f,tops,tys)

Renaming all imported identifiers x to qualified identifiers f.z can be easily effected by
adding to the load rule expression a forward resolution step with the following rule:

Fz:s
V (,s)

F 2 s (rename [f] )

4One may allow a general rule expression, only the question of notation arises (Footnote 5).

5The actions must be programmed in the implementation language of TcG, which is currently OCaml
[OCa03]. ~save: indicates that the optional parameter save follows; the square brackets denote a list
literal; and round brackets with the comma denote a tuple literal; = is string concatenation.
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4.2 A Library of Language Constructs

Tca’s fragment mechanism (Section 3.1) allows the formalization of a type system to be
factored into independent pieces, such that parts shared between languages can be reused.
This section describes the basic constituents of type systems of the subsequently formalized
languages. As a general guideline, a construct has been included in the library if it is used
more than once, or is expected to be of general interest. The description in this section
intends to give an overview.

Each of the fragments identified for the library formalizes a particular language con-
struct by the following four aspects:

The input syntax is extended by new productions.
The internal term representation is fixed.

The relevant judgments are introduced.

The (type-) checking requirements are given by rules.
The external form for IXTEX output is defined.

The library is organized around language constructs, which have been divided into the
following categories.

lex The lexical conventions of the example languages include identifiers and literals of
various types.

exp Expressions form the basic elements of computation. Their distinguishing property
is that they return a value, hence can be assigned a type. Expressions include
function application and A-abstraction, constants and variables. The functional let
expressions are included here, rather than in the decl below, because they produce
a value.

sm Statements are the basis of imperative languages with the common if, while, for con-
structs; blocks serve to delimit the scope of declarations contained in the statements.
In contrast to expressions, statements do not produce a value.

top The top level of a file usually has a special meaning: Some declarations (or definitions)
are allowed only here, and type checking is initiated for each top level component.
Also, a test bed for incompletely formalized languages is provided by top level queries
that check particular language constructs.

tyexp Type expressions in all but the most trivial languages are subject to well-formedness
conditions, just as expressions are subject to well-typedness: At least, all the men-
tioned types and type constructors must have been defined before. Kinds, as “types
of types” provide just this desired check for well-formedness.

decl Declarations tend to re-occur in language families, even though the particulars may
be different. For example, imperative languages often allow variables to be declared
within statement blocks, and the surrounding features, such as object-oriented con-
structs, do not matter.

conv Conversions change the representation of some value of a given to type, such that
it has a different type. Probably the most frequently used conversion in imperative
languages is that from an l-value to an r-value. As only the type checker can detect
the necessity for conversions, they have been integrated into the library.
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4.2.1 Design Guidelines

The fragments in the library each define a specific feature of type systems. Although they
are largely independent, they interact in some points, notably the form of judgments: If
some fragment B wishes to reuse a rule from fragment A, then the premise to be proven
must obviously match the conclusion of the rule from A. A second link occurs in the use of
forward rules (Section 4.1.3,3.1.3), whose premises must match the premises of fragment A,
while their conclusions must match the exported premises of fragment B: Their role in
this context is precisely to transform the internal premises of A to knowledge that can
be used by B. To keep the library consistent, it is therefore necessary to establish a few
general principles of designing these interfaces.

4.2.1.1 Compilation

In processing a program, there are several tasks that the type checker can perform con-
veniently, because the necessary information becomes available without further efforts: It
can insert conversions whenever it needs to modify the type; it can resolve the binding of
names and shadowing because each rule about a name is created at some specific binding;
thus it can resolve (ad-hoc) overloaded identifiers just by keeping in each rule a unique
name for each instance. The names are generated by a built-in predicate "~ . In any of
these cases, the result of a type check is not only success or failure, but a new term that
captures the specific choices made by the checker. Unlike the simplistic demonstration
checkers in Section 4.1, the subsequent checkers will each be geared towards this form of
compilation.

For the predicates involved, this means that they have clearly marked inputs and out-

puts. For example, the type check for an expression is not only
e:t but erse it

This predicate is to be read as: “After modifying e to €/, the latter can be assigned type ¢.”
(see also [HR95]). The choice of — is arbitrary, but TCG provides the infix notation =>
which makes the source code of rules more readable.

In general, the library consistently introduces predicates

I
T X Y

where ¢ is a category of objects under consideration. For example, if x and 2’ are types
and y is a kind, then ¢ = k. The type checking judgement above drops the annotation ¢
to ease the writing in this most frequent case.

4.2.2 Expressions

The expressions in this section are designed to emulate the basic features of expressions
in existing languages. The languages considered range from functional (ML [MTHM97],

OCaml [OCa03], Haskell [Je99]) to imperative and object-oriented ones (C/C*+ [KRSS,
Str97], Java [GJS00]). Since the syntactic features differ greatly between these languages
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Operators Precedence | Associativity
O (function application) 100 left

[] (subscripting)

. (member selection)

++, - 90 (prefix/postfix)
I

-+

&

*

:> (infix type cast)

&, | 80 left
*,/ % 70 left
+,- 60 left
= == l= <> <= >= < > 50 none
&& 40 left
N 30 left

, 20 left
1= 10 none
A-abstraction 5 right

Figure 4.1: Precedence and Associativity of Operators

— for example, Haskell has an offside-rule that allows curly braces to be replaced by
indentation — the expressions implemented here model only those features that have an
impact on typing. To obtain readable example input, however, some infix mechanisms are
provided nevertheless.

4.2.2.1 Syntax and AST

The syntax of expressions is generated by the non-terminal exp. The provided primitives
include function application (with infix operators) and A-abstraction. Because we wish to
treat both functional and imperative languages, the development of expressions is required
twice: Once for the curried function applications (exp.curry) and once for argument
vectors (exp.argvec). The shared functionality resides in exp directly.

Expressions in both cases introduce precedences among operators as shown in Fig-
ure 4.1. The selection of the relative order follows that of C/C™ [Str91, Section 3.2].°
Precedences in TCG are given numerically, deviating from the YACC convention of using
the relative order of precedence declarations: With numeric specifications, the inclusion
order of fragments is irrelevant.

SHowever, we have given the binary & and | (which in C++ are bitwise operators) a higher precedence
than the comparison symbols, because this models more closely the division of expressions into terms and
formulae in logic [Gal86].
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The internal representation of application is

app(f,a)

where f is the applied operator and a is the argument, or list of arguments, respectively.
Application of infix operators are likewise encoded by

app(app(idfop], a1), az)
app(id[op],a;::ag:: [1)

Here, the op is the operator name, as found in the input file. Prefix and postfix operators
indicate their argument position with a “.”, for example the prefix * is represented by
id["*."]. A non-terminal op_name allows the user to write down operator names outside
of expressions; for example ‘*. yields the opaque id["*."].

Other identifiers are handled by the opaque id [name]. Literals for strings, integers and
booleans are contained in exp.str, exp.int, and exp.bool, respectively. For example,
the integer literals add a token and a new production:

1 tokens
2 INT=[0-9]+ 1 syntax
3 end tokens 2 exp: INT --> int[$1]

4.2.2.2 Type checking

Type checking expressions consistently uses the predicate (see Section 4.2.1)

er—ée it

The standard rule for function application in exp.curry.apply is simply:

Ff—flis—t
Faw—a :s
fa—fad:t

V (£.1",0.0",5.t) (apply_std)

The version for argument vectors in exp.argvec.apply only adds an iteration premise to
traverse the arguments.

F args — args’ : formals . ..
v (f,args,f’,args’,) F f s f/ : (formals) — 1
F(args) — [ (args’) ¢

There is also a variation that creates independent sub-proofs for arguments and operator
and combines the results at the end.

(apply_std)

formals,t

 [branch]args — args’ : atys . ..
v (fﬂrgs,argsgfg) F [branch]f — f': (atys) — rty
args’ ,atys,rty f(a/r’gs) — f’(args’) . rty

(apply_branch)
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The A-abstraction with one argument for curried function calls is standard:

—(i=a); +[z:s]be:t
Ar.e:s—t

\V/ (:v,e,s,t) (lambda_std)

To complement argument vectors, A-abstraction in exp.argvec.lambda allows for multiple
parameters. The iteration premise creates goals with fresh variables and solves them
immediately (see Section 4.1.3.6).
Foas e gs’ s export lambda_bound_name!...
+[exp_lambda_bound_name] ({1 : lambda_bound_name}))
Fere :t
A (a:s,ans’,e,e/,s,t)

lambd
Azs.e — Axs'.e 1 (s) = t (Lambda)

The typing rules for literals use opaque patterns (see Section 4.1.2), for instance:
V(i) int[i] — 7 : int (int)

The usual operator constants on integers and booleans are defined in exp.intops and
exp.boolops. For example, the following rule declares the operator >= on the integers.
Note that its translation has resolved a possible overloading of the operator.

>=1+— ge_int : (int, int) — bool (geq_int_cnst)

4.2.3 Type Expressions and Kinds

As soon as user-defined type constructors are introduced, the consistency of parsed type
expressions must be checked: All constructors must be defined and they must be applied
to the right number of arguments. Kinds (e.g. [Jon95]) provide a simple framework for
performing these checks: They parallel the assignment of types to expressions with an
assignment of kinds to type expressions. Type constructors have kind (ki .. k,) — Ko,
where the x; are again kinds, while types without further arguments have kind *. For
instance, the array constructor has kind * — %, because it expects a single type and then
yields a complete type. The fragment kind.star defines the constant k_star and its
external formats. The kinding predicate employed in tyexp is

ty —p ty K

Each fragment in tyexp introduces a single type constructor, its syntax, kinding rules and
external format. For example, the type constant int is introduced by

1 syntax
2 tyexp: "int" --> int

and its kind assignment is handled by

int -, int :; * (int_kind)
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Likewise, an n-tuple is a type for each n € N. The file tyexp.tuple provides the syntax

1 syntax
2 tyexp: "<" tyexp_comma_list ">" --> tuple($2)

and checks the kind by iteration over the arguments

F args —y args’ o x ...

A (args,args’) (tuple_kind)

(args) vy (args’) 1y *

Further defined type constructors are arrays, boolean, references, strings and void.

4.2.4 Statements

Statements include the standard if, while, for constructs, blocks delimited by begin/end,
and return. Furthermore, variables may be introduced within each block, they remain
visible until the end of the block. The type checking rules are clear; they use a predicate

/
SM . SM

where ¢ stands for compile. A prototypical rule is that for if-then: It checks that the
expression is a boolean value and then recursively compiles the then branch.

Fer— e :bool

Fsml —,. sml’
! ! ¢
V {e,sml,e’,sm1

ifthen
if ¢ then sm1 . if ¢/ then sm1’ ( )

A special case is the return statement: It retrieves the return type of the current environ-
ment using the special constant return_type. That constant can be easily inserted into
the context after checking the header with the declared return type:

F return-type : ¢
Fere:t

W (e,e/,e/,s,t)

- (return)
return e —_. return e

Variable declarations are allowed wherever a statement is allowed:

1 syntax
2 sm: "var" id ":" tyexp --> vardecl($2,%$4)

Variable declarations check the declared type and export an sm_seq stating that identifier
x is an l-value of the stated type.” The special predicate =~ expects to find an opaque
value a at the left and a variable v at the right; it then instantiates v with a variant of a,
which is certain not to be chosen at any other application of the predicate. Here, the

"We use the C*t+ notion that l-values are interchangeable with reference types.
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predicate is used to generate unique names for the different variables, such that in the
type checked result, all variable references are obvious.

newopq
Fz — o

F oty gty g x
Fax— 1’ &(ty') export sm_seq!

V (2,0 ty,ty") (vardecl)

var z : ty —. var z’ : ty

The checker for sequences of statements then takes care to insert these exports for the
remainder of the sequence: The context modifier noted at the iteration premise is executed
for each iteration step; because only the local context is augmented, the declarations are
automatically visible only until the end of the sequence.

F sms —. sms’ export® ...+ (1 : sm_seq)

A (sms,sms’) (sm_seq)

sms . sms’

4.2.5 Top-level Constructs

The prototypical languages in this chapter have a very simple file structure: A file consists
of a sequence of zero or more top-level elements. This simple structure is captured in
top.tops_wrap

1 syntax

2 file: error "in file"

3 tops_wrap: tops --> tops($1)
4 tops: top --> $1 :: []

5 | top tops -—> $1 :: $2

This file also provides the trivial rule tops0 for checking the empty file. However, it misses
the initial file: production, because the “save: parameter (Section 4.1.5) varies for each
language. File top.tops adds the trivial production

1 syntax
2 file: tops_wrap EOF {! run $1 !}

and the rule
k- [branch]ts export* ...

Y (is) (tops)

tops(ts)

for checking very simple languages with completely independent top-level clauses.

4.2.6 Declarations

The part decl provides auxiliary features for declarations that appear in similar forms
across a number of languages. Currently only the notion of formal parameters is imple-
mented. File decl.formals thus introduces the syntax
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1 syntax

2 formal__opt: --> []

3 | formal_--> $1

4

5 formal_: formal --> $1 :: []

6 | formal ";" formal_ --> $1 :: $3

7

s formal: id ":" tyexp --> formal($1,$3)

The consistency checking is done by a predicate
frrf
The basic rules follow those for bindings (Section 4.1.3) and definitions (Section 4.1.5):

F formal’(z +— ', 1 +— t') export formal

Y (m,t,x’,t’)

zit—pa (formal)

newopq
Fz — 2

Ftop o *

V (z,a',t,t") (formal’)

formal’(z +— ', t +— t')

The predicate formal’ serves to gather both the input and result of the — predicate in
one place, such that the exports can be translated properly. The rule

F formal’(x — 2/, t +— 1/
Y (x,x’,t,t’) ( )

(fwd_formal_to_typing)
z—ax ot

presents a checked formal parameter as a newly available value, while the following rule
produces a newly available variable

- formal’ (z +— ', t — t')
z— x': &(1)
Records in imperative languages (without object-oriented extensions [JW85, KR88]; see
Section 4.4 for the treatment of classes) are introduced as new types incomparable to any

other type. In the following grammar productions, the auxiliary non-terminals for iterated
field definitions are left out for conciseness:

Y (z,0",t,t") (fwd_formal_to_typing_ref)

1 syntax
2 recdef: "record" ID rdfields_opt "end" --> recdef(tid[$2],$3)
3 rdfield: ID ":" tyexp --> rdfield(recfield[$1],$3)

Checking a record definition involves choosing a unique name for the record type and
checking the well-formedness of the fields’” types. Note that iteration over the fields is only
in the variables fields and fields’, the variables name and name’ remain fixed.

- name """ name’
F name —y, name’ :;, x export reckind!
- fieldname(name’) : fields — fields’

v (name,ﬁelds, ) export recfield... [fields, fields']

(recdef)

name’,fields' recordnamefieldsend
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Each field in the definition is checked by checking that the declared type has kind *
(Section 4.2.3).

'—f neW,_)Oqu,
F oty g ty g %

(rdfield’)

(name,name’,f,)
ty.f by’ fieldname(name’) : f : ty — f': ty
The proofs for recfield are extracted using the following rule fwd_recfield. It asserts

that the (unique) record type rec’ has a field f with unique name f’, and that field is an
l-value of type ty’.

rec,f,rec’ f’ l_ﬁeldTCC 7“66/ : cty — /Zt/
v( Sorectd ’ty’> (rec): f:ty— 1" ty (fwd_recfield)

rec’.f — f': &(ty')

ty’

4.2.7 Conversions

Conversions allow the compiler to automatically change the representation of a value to
satisfy some typing requirements. (Some authors prefer the term coercions for these auto-
matic conversions.) Conversions are requested by the predicate

e:t<.e:t

where e is an expression of type ¢ and €’ is an expression of type t'. The use of symbol
<, rather than — , indicates the similarity with subtyping [Car93, Mit91, EST95a, JP99].
(See for example [BTCGS91, HR95] for the use of coercions as subtyping.)

The part conv of the library provides rules to solve these predicates. Fragment conv.refl
establishes reflexivity of <. by

V(et) e:t <.e:t(conv_refl)
Transitivity declared in conv.trans
Fe:t<.e:t
Fe:t/ <. e:t!

\ e,e’ e’ t,t' "
( ) e:t<.e":t"

(conv_trans)

The fragment conv.ref_deref accesses l-values, which have reference type, by introducing
the automatic dereference operator *, (auto_deref).

V (et) e : &(t) <. #,(€): t (deref_conv)
The rule subsume inserts the conversion predicate into a normal typing deduction:
Fer—e:s
Fe:s<.e:t

er— et

A (e,e’,e”,s,t)

(subsume)

This rule resembles the following standard rule for subsumption in subtyping disciplines,
which allows a value of type s to be assigned any supertype of s. Only the modification
of e to €” is peculiar to the conversion case.

I'Fe:s s<t
I'kFe:t
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4.3 Imperative Languages

This section discusses prototypical elements of imperative languages. Because of the sim-
ilarities, the name of PASCAL has been chosen for the example language.

The type systems of many, if not all, imperative languages are distinguished from those
of functional languages (Section 4.1) by their pragmatism: Because automatic coercions,
the handling of 1- and r-values, and overloaded operators on primitive types have become
standard assets, and thus are expected by programmers, type inference is not a feasible
approach. As type annotations are thus required for all variables and parameters, the type
checking of expressions usually deals with monomorphic types without type variables.
Where generic functions are allowed, such as in C** [Str97], their instantiation must be
determined by the types of the actual parameters alone, the return type is not considered.
Where even this limited form of type inference would require major extensions to the type
checker, explicit instantiation information is required. All of these features lead up to
a single consequence: Type checking is a process local to single language constructs, as
opposed for example to ML type inference, which takes into account all uses of a variable
to determine its type.

Most typing features have already been treated in the library: The expressions in
exp.argvec (Section 4.2.2) and statements in sm (Section 4.2.4) are geared toward imper-
ative languages; the conversions in conv are sufficient for elementary purposes; Section 4.2.6
formalizes record types. It remains to assemble the parts into a self-contained language.

4.3.1 File Structure

The top-level file structure is a sequence of top elements (Section 4.2.5). The start non-
terminal file saves the defined procedures for later reference (Section 4.1.5). The generic
component top.usefile adds the corresponding inclusion mechanism for interface files.

1 syntax

2 file: tops_wrap EOF {!

3 run “save: [ ("procedure",

4 "fwd_procedure_to_typing",
5 input.base”".hdr") ] $1

6 '}

The auxiliary rule fwd_procedure_to_typing will be defined below.

The record definitions imported from decl.record (Section 4.2.6) are integrated as
top-level components; when the check of a record definition is completed, the computed
knowledge about its name and fields becomes available in the context:

F recordnamefieldsend export*
+ [fwd_recfield] ({1 : recfield));
v <name,ﬁelds, ) + (1 : reckind) I tops(tops) export*

ops (tops_recdef)

tops(recordnamefieldsend, tops)

An example input file is shown in Figure 4.2 (Page 116).
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procedure fac(i : int) : int
begin
var n : int;
n :=1;
while i > 0 do
begin
n:=n % ij;
i:=1i-1
end;
return n
end

procedure main(j : int)

begin
var k : int;
k :=3j + 10;
fac(k + 1)
end

record point

X : int;
y : int
end

procedure move(p : point; dx : int; dy : int)

begin
p-X = p.x + dx;
p.y :=p.y +dy
end

Figure 4.2: Example Input for the PASCAL Checker
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4.3.2 Procedures

Procedures use the following syntax, where the non-terminal formal__opt is defined in
decl.formals (Section 4.2.6).

1 syntax
2 top: "procedure" id_or_op "(" formal__opt ")" ret_opt "begin" sm_seq "end"
3 —=> procedure($2,$4,$6,$8)

To keep the discussion concise, we will not consider mutually recursive procedures. The
general mechanisms for handling mutual recursion has been discussed in Section 4.1.3.6,
a second more elaborate example appears in classes with mutual references (Section 4.4).
Nested procedures do not complicate the type checking significantly either: Shadowing of
outer variables is the common case in typed A-calculi (Section 4.1.1).

Type checking a procedure involves two steps: After checking the well-formedness of
type expressions in the procedure head, the procedure body is checked under new assump-
tions for the formal parameters and the return type. Here, type expressions are checked by
computing kinds (Section 4.2.3). Following the technique from Section 4.2.6, the auxiliary
predicate predicate procedure’ contains both input and result of the type check in a single
place, such that all relevant information is available for determining the procedure’s type
by rule extraction.

name,name’,

 procedure’ name/name’(fnames’ : ftys') : ret’
begin body/body’ end export procedure
procedure name(formals) : ret begin body end

formals,

Y | fnames’ ftys',
ret,ret’ body,
body’

(procedure)

newopq ’
F name —  name

- formals — fnames’ : ftys’ export*. ..
F ret i ret’ o *
+[fwd_formal_to_typing_ref] ((2: formal));
+ [return—type : ret’} F body +—. body’
procedure’ name/name’(fnames’ :
ftys') : ret’ begin body/body’ end

name,name’,
formals,

Y | fnames’ ftys’,
ret,ret’ body,
body’

(procedure’)

Rule procedure’ chooses a new, unique name for the procedure, and infers kinds for the
type formal parameters and return type. Finally, the procedure body is compiled after
adding the formal parameters and return type to the context (Section 4.2.4). (The rule
fwd_formal_to_typing interfaces (in the sense of Section 4.2.1) with decl.formal and is
thus defined in that fragment (Section 4.2.6).) Note that fnames’ is a sequence of unique
names for the parameters (Section 4.2.6), such that all references in body’ be resolved.

In remains to integrate procedures to the context in which they appear. The rule
top_procedure checks a procedure element of the file and adds its type information to the
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context of the remaining top-level elements.

t [branch|procedure name(formals)
: ret begin body end export”*
expand
+[fwd_proc_to_typing] ((1 : procedure))
v (name,formals, ) + tOpS(tOps) export*

(top_procedure)

ret,body, tops tops(procedure name(formals)

: ret begin body end, tops)

It uses the auxiliary rule fwd_procedure_to_typing to extract the required information
from the procedure’ predicate. The same rule is also used for saving the results of type
inference in the file: action (Section 4.3.1).

name,name’,

+ procedure’ name/name’(fnames’ :

formals, ! ! : !
tys’) : ret’ begin body/body’ end
Y | fnames’ ftys', f 4 ) & ; y/ ; Y ; (fwd_proc_to_typing)
name — name’ : (ftys') — ret

ret,ret’ body,
body’

4.3.3 Conversions

Conversions are found in imperative languages in two areas: First, dereferencing of vari-
ables is a very frequent operation, such that a conversion of an l-value (or reference type)
to an r-value is inserted automatically where necessary. Second, the primitive atomic
data types are not distinguished strictly, an extreme example being C [KR88|. We will
be concerned with the dereferencing in this section and treat an example of subtyping in
Section 4.4.

The typing rules in the library (Section 4.2) have been designed to reflect standard situ-
ations from the literature, and these do not provide for conversions. However, Section 4.2.7
defines the rule subsume:

Ferse:s
Fe:s<.e:t

er— et

A (e,e',e”,s,t)

(subsume)

An unrestricted application of this rule leads to cycles in the deduction and non-termination
— an explicit restriction of the proof structure (Section 3.1.4) becomes necessary. The
restriction is specified by a tree grammar [CDG*99] for the proof tree. The production

riC—D1..Dn

attaches the non-terminal ¢ to the conclusion of rule » and non-terminal p; to its ith
premise. The symbol * is a special default non-terminal that is attached to all conclusions
and premises not mentioned explicitly in the grammar .

The non-terminal sub labels those instances of the predicate - +— - : - where a conversion
may be applied. The following productions locate these instances in the typing rules from
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Section 4.2:
apply_branch : % — sub,
recfield_acc : *x —— sub, %
return : x — %, sub

Then the rule subsume must be tagged for resolving these instances
subsume : sub — %, *

The above instructions create goals e : t <. €' : o with a variable o whenever the target
type of the conversion has not been instantiated by other rule applications. Solving these
goals enumerates all the possible target types, even though only one will be picked in the
end. An ad-hoc solution is to order the premises in the typing rules such that the target
type is ground whenever a conversion goal is created. T'CG provides a more general solution
by the defer mechanism (Section 3.1.4): We can specify that a conversion where the target
type is still a variable will not be resolved. The selector (Section 3.1.1) used for describing
the deferred goals has been explained in Section 4.1.1. Here, the second argument of <=c
must be an application of :, whose second argument is a variable.

defer conv : <=cy:9({var)

4.3.4 Overloading

Imperative languages usually provide overloaded versions for operators, at least for prim-
itive numeric types: Using the typing information on a and b, the compiler determines
whether a+b is to invoke integer or floating point addition, and the generated code reflects
the chosen operator instance directly. The general task of the compiler is therefore to
replace each overloaded function symbol in the syntax tree with a non-overloaded func-
tion symbol such that the type constraints between the actual and formal parameters are
satisfied.

The possible choices for unique functions interact with available conversions: If there is
a conversion from int to real, then a+b may denote either integer or real addition for a,
b : int. Therefore, overload resolution is not unique without imposing further conditions,
and several choices are possible:

e CT1 [Str97] insists that overloading is resolved locally at each operator application.
The possible operator instances are selected by the number and types of the actual
arguments, taking into account the defined conversions. Among these operators, a
single best match is sought with respect to the number and type of conversions. (The
details of the process are intricate [ISO98] and are governed by traditions and the
expected behaviour in specific cases.) If no best match is found, compilation fails. A
similar strategy is chosen by Java [GJS00].

e Ada [Bar95, GR80, Bak82] resolves overloading by taking into account the context
of the operator application as well: An expression is checked recursively, delivering
all possible choices of unique function symbols. At a surrounding operator applica-
tion, those resolutions not matching any formal parameter type are discarded. After
proceeding in this manner for an entire expression, a single possible resolution must
remain.
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TcaG inherently supports overload resolution by non-deterministic proof search: The stan-
dard application rule

b args — args’ : formals ...
\v/ <f,args,f’,args’7> l_ f — f/ : (fO'f’malS) — t
F(args) — f'(args) 1

enumerates all possible resolutions for the arguments in turn and finally tries to apply all
declared operators f, assuming that f’ is a unique name. Unfortunately, argument 7 will
thus be re-checked for each combination of resolutions for arguments 1 to ¢ — 1, even if it
does have a single resolution only: Deviating from the Baker-Algorithm for Ada [Bak82],
the arguments are not checked independently.

The branching mechanism (Section 3.3.4.5) solves this efficiency problem by starting in-
dependent sub-searches for several goals. The rule apply_branch from exp.argvec.apply,
which PASCAL uses, branches for the individual arguments and operators. An expand di-
rective tells TCG to generate at this point all possible combinations of result proofs from
the preceding branches; if no expand is given, it is appended to the list of premises. Thus
in the following rule, the arguments are checked independently and the implicit expand de-
termines all possible combinations with operators. Incidentally, any deferred conversions
(Section 4.3.3) between actual and formal argument types will become ground at this point
and will be resolved.

(apply_std)

formals,t

 [branch]args — args’ : atys . ..
v <f7args7args/7f/7> l_ [bral’lCh]f — f/ . (atyS) — T’ty

apply_branch
args’,atys,rty f(CLT’gS) N f/(CLT’gS/) . ’I"ty ( pply_ )

The option unique forces TCG to check that a single result is obtained for the branch.

F [branch :uniquele — €’ : t

W (e,e’,t)

P (sm_exp)
TcG thus can be made to simulate the Baker-Algorithm [Bak82] directly, and with minimal
notational overhead over languages without overloading. However, T'CG does not currently
allow a set of preferences between solutions to be given, thus a C**-like regime for local
resolution cannot be implemented: Preferences are necessarily outside of the usual proof
search for goals, because they need to consider several proofs at once. A reasonable point
of extension would be the expand directive: If it were equipped with some predicate for
comparing the result proofs after expansion, it could choose between alternatives. However,
the details of this mechanism can only be fixed after studying several example applications,
which is deferred to future work.

4.4 Object-Oriented Languages

Object-oriented languages support a classical set of features [Boo91, Section 2.2][AC96,
Part I][Str97, Chapters 5 and 6]. The language CLASS described in this section captures
the following selection.
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Objects An object consists of (member) variables [Str97] which together form the state of
the object. Besides the variables, an object has a set of methods that operate on its
state. State and methods are inseparable from the object and they can be accessed
only by designating a single object. (We leave aside static methods [GJS00][Str97],
their treatment is similar to that of procedures in Section 4.3.) Member variables
are mutable variables in the sense of Section 4.3. In the subsequent material, we will
call the member variables and methods collectively the fields of an object.

Methods Within the methods of one object, the object itself is accessible as a compound
data structure this (or self). this can be understood as an implicit parameter passed
to methods whenever they are invoked. For brevity, a field x in this can also be
accessed by x alone; the type checker inserts the implicit indirection this.x.

Encapsulation An object declares fields as either public or private: Public fields con-
stitute the object’s interface, they are accessible from the outside; private fields are
accessible only to the object’s own methods.

Classes Class-based languages [AC96] add to the notion of objects that of classes. A class
is a template for objects with the same set of fields, and the class acts as a type for
the object (but see e.g. [CHC89, LW94, SGM02]). A new object of a class is created
(or initialized [Str97]) by calling one of the class’s constructors, which are methods
whose this references uninitialized memory.

Inheritance A class may inherit from a super class, in which case the class receives all
the fields and methods of the super class. The class is then called a derived class
(of the super class). It may add new fields and methods. It may also override
methods defined in the super class, meaning that the implementation of the method
is replaced by a new one. In a method invocation, the method found in a particular
instance object will be called, regardless of static typing. Concerning encapsulation,
a derived class may access also the private fields of its super classes. (A more detailed
specification by protected fields [Str97] could be accomplished within the framework
presented in this section.)

Subtyping Inheritance induces a subtype relation: A value of a derived class is always
acceptable where a value of a super class is expected. This relation is transitive. For
practical reasons, object-oriented languages also allow down-casts that force conver-
sion from a super-class to a sub-class.

Mutual Recursion This feature is implicit in standard presentations of object models:
They assume that the definitions of classes may refer freely to (the interfaces of)
other defined classes. It is listed here because it will have some impact on the overall
structure of the type-check to be executed.

4.4.1 REMARK. A wholly different tradition of object-oriented programming has been de-
veloped for functional languages (see for example [Red88, Wan91, Rém91, CM94, EST95b]):
An object is perceived as a record value, where the this reference is implemented by fix-
point operators [Red88|, and methods become A-abstractions. In this setting, the typing
properties of objects can be derived from the elementary rules for functions, records and
fixpoints. Classes are not needed in these languages: Objects have (recursive) record types;
subtyping between objects is likewise subtyping of records [Pie02]. Type-inference can be
accomplished in two ways: First, row variables [Wan91, Rém91, OCa03] enable ML-style
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inference by an extended unification procedure. Second, the type inference is expressed as
a constraint satisfaction problem to be solved [EST95b, EST95a].

4.4.1 Syntax

The syntax for classes follows CT* and JAvA, but adapts the choice of keywords to those of
the library (Section 4.2). Figures 4.3 and 4.4 show example code. The top-level structure
of a file consists of a set of classes, which may refer to each other (see mutual recursion
above). Each class declares a name, a super class (or OBJECT by default) and its fields:

1 syntax
2 top: "class" ID inherit_opt "begin" field_ "end" --> cls(tid[$2],$3,$5)

Fields are either variables or methods:

1 syntax

2 field_cnt: "var" id ":" tyexp --> var($2,$4)

1 syntax

2 field_cnt: override_opt "method" id "(" formal__opt ")" ret_opt
3 "begin" sm_seq "end" --> method($1,$3,$5,%7,%9)

Following Cardelli [AC96, Section 12.2], overriding of methods must be stated explicitly:

1 syntax
2 override_opt: —--> introduce
3 | "override" --> override

The convention of C*t*/JAvA, where overriding methods are identified by matching the
signature against inherited methods could be implemented by a search as well; it does not
contribute to the typing mechanisms, however.

4.4.2 Type Checking

Mutual recursion at the file level forces the type checker to proceed in three phases:

1. Gather the class names to enable subsequent kind checks.
2. Check variables and method headers for well-formed types.
3. Type check the method bodies.

Note that mutual recursion across files can be established by saving the results of Passes 1
and 2 separately and reloading that information for each involved file.
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class cell
begin
private var cnt : object
public method get() : object
begin
return cnt

end
public method set(x : object)
begin
cnt = X
end
public constructor()
begin
cnt := null
end

public constructor(c : object)
begin
cnt :=c
end
end

class backup inherits cell
begin
private var backup : object
public method restore()
begin
cnt := backup
end
public override method set(x : object)
begin
backup := x;
super.set (x)
end
public constructor(c : object)
begin
super(c);
backup := null
end
end

Figure 4.3: Input for Checker Crass (I)
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class integer

begin
private var i : int
public method get() : int

begin
return i
end
public method set(j : int)
begin
i:=j
end
public constructor(j : int)
begin
i:=j
end
end

class main

begin
public method main()
begin
var cell : cell;
cell := new backup(new integer(4));
var i : integer;
i := cell.get() :> integer;
cell.set(new integer(i.get() + 1))
end
end

Figure 4.4: Input for Checker Crass (II)
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The rule tops to be used for a parsed file displays the three phases clearly in three
separate goals:

 [branch|top,(tops) export*. ..
expand
+ (1 : cls_name) I [branch]top,,(tops)
export® ...+ (1 : cls_inherits);
+ [fwd_method_in_cls] ({1 : c1s_method))
expand
+ (1 : cls_name);
+ [fwd_method_in_cls] ({3 : cls_method));
+ [fwd_var_in_cls| ((3: cls_var));
+ [fwd_ctor_in_cls] ((3 : cls_ctor));
+ (3 : cls_name); + (3 : cls_inherits)

 [branch|top,;;(tops) export*. ..
V (tops)

tops
tops(tops) (tops)

Each top-level goal augments the context with the newly proven facts from the preceding
phases. Then the goal is proven separately for each class in the file by an iteration premise.

4.4.3 Predicates

Following the lead of Section 4.2.1, we state the predicates used in the subsequent develop-
ment beforehand. Fields in classes are described by their type and access rights; by slight
generalization, the predicate
in c(a) : p
states that class ¢ contains a declaration, as stated by predicate p, which is accessible
as a € {public,private}. The second pass will add such a predicate to the global context
for each field found during the check.
Encapsulation of fields is handled by the following predicate:

access c as a

This predicate states that the fields with access a € {public, private} within class c are
visible. The context of a goal will contain all the ACCESS predicates to describe its access
rights to fields.

Inheritance of derived class ¢ from super class s is recorded introducing the following
predicate into the context for Pass 3:

¢ inherits s

4.4.4 Checking the Interface

Pass 1 consists in the following single rule which only exports a fact about the class name
(see Section 4.1.3.6):

F cls vy, cls :; x export cls_name!

(cls Jinherits,

iheri ) : PR (top_I_cls)
fields,inherits’ ) top,(class cls inherits inherits fields end)
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Pass 2 checks that all types in inheritance declarations, variables and methods are known
by assigning the kind * to each of them: (Section 4.2.3).

F inherits v+, inherits’ i, *
F cls inherits inherits’ export cls_inherits!
(czs,mhmts, ) - field e e’ (felds) export® ... [fields]

fields,inherits’

: o : (top_II_cls)
top,;(class cls inherits inherits fields end)

Methods and variables are checked like procedures (Section 4.3), but the bodies are left
out. The following rule displays the similarity, using the formals from Section 4.2.6 again.

ls.ace.name, = formals — fnames’ : ftys' ...
/
name’,formals, Foret oy ret’ 1y *
v / ’ cls,acc / (methOd_II ’ )
fnames’ ftys’, methodH’ name/name s
ret,ret! formals — fnames’, ftys' : ret, ret’

Introduced and overridden methods create different proof obligations: For new fields, a
fresh name must be chosen, such that the field can be uniquely identified within the class.
Note that for example a C** compiler would at this point assign a new index in the virtual
table.

newopq ’
F name —  name

cls,inh,acc, - method;lf’““ name /name’ 4scls,
name,formals, formals — fnames’, ftys' : ret, ret’
ret,body, export cls_method ) )
\ ) T - (field_II_meth_intr)
name', field;;""" (field,..introduce method name

frames.ftys', | (formals) : ret begin body end)

ret’

For overridden methods the old declaration in the super class must be found to establish
the unique name of the method. Note that the goal method_II’ is not exported, as the
method is already known in the base class.

cls,inh,acc, - method " *“ name/name’,
name,formals, formals — fnames’, ftys' : ret, ret’
ret,body, Fin inh(acc) : name — name’ : (ftys') — ret’ _
v ) T - (field_II_meth_ovr)
name, field;,"" (field ,..override method name
frames’ ftys', (formals) : ret begin body end)
ret’ acc’

Constructors receive the same treatment as methods, and a special name ctor to distin-
guish them from ordinary fields.

newopq
Fctor —  name’

ls,acc, '7
v cacemame - formals — fnames’ : ftys' ... ( 11°)
formals, ctor
l —
fnames’ fiys’ constructor. > formals — fnames’ : ftys'



4.4 Object-Oriented Languages 127

4.4.5 Checking the Method Bodies

Pass 3 of the type check does the main work: For each class and each method, the method’s
body is type checked. In this pass, the encapsulation attributes private/public, the
inheritance relation and the access to this become relevant. As these ingredients remain
unchanged within each class, the rule for classes can setup the context accordingly:

F inherits —, inherits’ :, *
+ decl_this[cls|; + open_this;

cls,ace, + decl_super[inherits']; +allow_private|cls]
inherits cls,inherits’
’ - field;; elds) ... |fields
Y | inherits’ fields, HT (ﬁ ) [ﬁ } (t Op_III_ClS)

inherits top,;;(class cls inherits inherits fields end)

inherits’

The context modifier deserves attention: The auxiliary rules
this — this : cls (decl_this [cls] ) super — super : cls (decl_super [cls] )

define the this keyword as referring to the current object, and the super keyword as
referring to the same object, but with the static type of the immediate super class. The

rule
F this — this’ : cls

<cls,acc,this/,z,> Fin cls(ace) : z—a' ot
a’,t id[z] > this’.z’ : ¢

(open_this)

allows the abbreviation of field this.f as just f; note that the implicit reference is inserted
in the compiled (Section 4.2.1.1) version of the expression.

Finally, the access rights must be adjusted: The private parts of the current class (and
all of its super classes, see Section 4.4.7) are open to all of the class’s methods. Therefore,
the corresponding access predicate is inserted to the context:

access cls as private (allow_private [cls| )

The member variables have already been checked in Pass 2, they can be skipped in Pass 3.
As the context as already been prepared by top_III_cls above, the type check of methods
is the same as for procedures (Section 4.3.2):

F formals — fnames’ : ftys’ export*. ..

F ret vy, ret’ o, x

+[fwd_formal_to_typing_ref]| ((1: formal));
+ [return—type : ret’] F body —. body’

cls,acc,name,
name’,formals,

Y | fnames’ fys',

(method_III’)

ret.ret! body, method " name [ name 4, cls(fnames’ :
body’ ftys') : ret/ret’begin body/body’ end

Constructors deviate from procedures in that the constructors of super classes are accessi-
ble. (See base-class initializers in C*t* [Str97].) Following JAVA, calls to these constructors
are written as function applications

super(args)
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thus it is sufficient to introduce the rule

Fin cls(acc) : constructores — name’ : (ftys) — cls

v (name’7ftys,acc (super_ctor[cls])

super — name’ : (ftys) — cls

into the context for checking the constructor body.

4.4.6 Field Access

The usual syntax
x.f z.f(args)

accesses field f in object . The second notation integrates method calls smoothly if x.f
returns a function type. The check of x.f is accomplished by rule member:

F e e :tid]c]
I access c as acc
v <e,m,e’,m’,t,c, ) Fin C(CLCC) s me—m it

acc

— (member)
emi—e.m ;i

It first ensures that e has a non-constructed type, then checks the current access rights for
that type and finally delivers the typing for the named field by matching against a field
declaration in the context.

As derived classes contain all the fields of their super classes (possibly overriding some
method bodies), the search a declaration in the member rule may not stop at the class ¢
The desired field may also be found in one of ¢’s super classes. This iterative search is
implemented by the following two rules:®

Fin cls(acc) : p

V(cls,accvp) in ClS(aCC) - p

(inherit_base)

F cls inherits super
Fin super(acc) : p

W (cls,super,acc,p) (inherit_step)

in cls(acc) : p

Like conversions (Section 4.2.7), these rules lead to non-termination if applied freely. A
simple proof-grammar is used to restrict applicability:

inherit_base : il — *
inherit_step : icl — %, icl
member : x  ——  sub, x, icl
open_this x  — %, icl

8Using a Prolog ! (cut) operator would stop the search at the first found declaration.
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4.4.7 Super Class Conversion and Downcast

As a general principle, a value of a derived class may be used wherever a value of its super
class is expected. Because conversions for automatic dereferences (Section 4.2.7) have to
be introduced anyway, it is straightforward to integrate super class conversions:

 cls inherits super

Y (e,e’,cl&super) (super_conv)

e : tid[cls] <. e : tid[super]
Conversions in CLASS are transitive by the rules

Fer—eée:s
Fe:s<.e:t

\V/<e,e’,e",s,t) P, 6// 7 (subsume)
Fe:t<.e:t
'_ / . t/ < n . t”
Y (ever e .t/ ") ¢ ~c © (conv_trans)

et <.e":t
V(et) e:t <.e:t(conv_refl)

The following proof grammar guides the application of the rules such that a linear chain
of conversions is created (cf. also Section 4.3.3):

super_conv : convl —
deref_conv : convl —

conv_refl : conv —
conv_trans : conv — convl, conv

Furthermore, super class conversions can be restricted to the following rules and premises:

apply_branch : x ——  sub, *
return : x —— ok, sub
new_op : x  —— ok, sub

subsume : sub — %, conv

The automatic conversion to super classes is complemented by a manual downcast facility
e:>c
which asserts that expression e yields an object of class ¢, even though the type checker may
be only able to infer a less precise super class of c. A prototypical example is expression
i := cell.get() :> integer;

in Figure 4.4, where cell class asserts that the get () method returns an object, while
the programmer is certain that an integer will be found.

Downcasts are handled by the following rule; the predicate inherits_trans calls for
a recursive search through all of the super classes, it is implemented by a straightforward
pair of rules inherits_trans_base and inherits_trans_step.

F e e :tid[super]
F clsinherits* super

Y (e,cls,e’,super) (cast_exp)

e > tidlcls] — e’ > cls : cls
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4.5 A Language for Generic Programming

Generic programming seeks to implement algorithms under minimal requirements on their
input data types [MS89, MS94, MS96, Aus98, Sch96a, GSLI7, MSSL99, Gas01].? T present
the design and implementation of a language SAGA'? that supports an STL-style [MS96,
Aus98] formulation of generic algorithms in such a way that the requirements of algorithms
are part of the algorithms’ interfaces. When a generic algorithm A calls another generic
algorithm A’, then it is checked that the requirements of A entail the requirements of A’.
Hence, all instantiations of A may legally call algorithm A’. This is in sharp contrast with
the re-compilation semantics of the C** template mechanism, where errors are detected
only during the generation of instances [SL0O0]. When SAGA is translated to C**, for
example using [Wei03], all instantiations are guaranteed to succeed.

Work by C. Schwarzweller [Sch97, Sch02, Sch03] on verification of generic algorithms us-
ing the M1ZAR proof checker suggests that it is desirable to express separately the required
operations on parameter types and their expected behaviour: The operations constitute
the signature of an algorithm, while their expected behaviour is captured by adjectives,
which are symbolic names for formulae in a suitable logic. This setup allows a fine-grained
description of an algorithm’s requirements, in particular the requirements can vary easily
between algorithms.

The work presented in this section integrates this insight into the design of a pro-
gramming language and shows that the resulting language can be effectively type-checked
using TcG. Schwarzweller [Sch02] has given a basic calculus for reasoning with adjectives,
which has to be extended to be used in a type checker. Foremost, the instantiation of
algorithms, concerning both parameter types and operations on theses types, cannot be
computed in Schwarzweller’s calculus. For instance, consider the simple algorithm swap
[Aus98, Section 12.2].1

algorithm swap
[ (T, ‘= : (&T,T)->void ) with assignable(T, ‘=) ]
(x : &T; y : &T)

begin

var tmp : T;
tmp = Xx;

X =Yy;

y = tmp
end

Even in the trivial call var i,j : int; swap(i,j) the compiler must determine that

1. int is the parameter type T
2. the built-in assignment on integers instantiates the operation =.

9A different reading of the term “generic programming” is concerned with recursion patterns over
algebraic data types in functional programs. The intention is to abstract over the constructors of data
types. (see for example [JJ97]). T do not pursue this interpretation.

10The name is due to Christoph Schwarzweller (“Signatures and Adjectives for Generic Programming”).

" The algorithm’s signature requires one parameter type T and one operator =, which is written ‘= since
it is not in its usual infix position. The with clause introduces the requirement that = is assignment on T.



4.5 A Language for Generic Programming 131

To determine these, the compiler generates a proof obligation
{P} = {assignable(T,=)}

where P are the adjectives valid in the context of the call. For the type int, we have a
declaration
assert assignable(int,=)

which by overload resolution for = gets translated to

assignable(__int, __int_assign) € P

-

Hence, the compiler can deduce that the call is valid with
{T — __int,=+— int_assign} .

The calculus in [Sch02, Section 3|[Sch03, Section 6.2] (see also Section 4.5.1) does not allow
this instantiation to be performed. Using the rule mechanism of TcG, a corresponding
extension is natural and straightforward.

A second detail that has been contributed by the design presented in this section is
the ellipsis construct (Section 4.5.3.5): Since complete specifications of signatures easily
become unwieldy, the type checker can transfer unspecified signature elements, denoted by
“...7, from the definitions of adjectives. In the swap example, it is sufficient to specify

(T,...) with assignable(T,...)

and the type checker infers that the assignment operation is missing; it chooses the name =
from the adjective definition.

A preliminary presentation of the SAGA language itself, aside from the above consid-
erations, is contained in [GS02]. An survey of the material has also appeared in [Sch03,
Sections 6.2 and 6.3].

Overview This section is divided in three parts: Section 4.5.1 reviews the calculus of
signatures and adjectives as presented by Schwarzweller [Sch02]. Section 4.5.2 introduces
the basic programming language, which can be assembled from fragments in the library
(Section 4.2). Section 4.5.3 introduces the features necessary for generic programming,
which comprises signatures, adjective definitions, adjective applications, facts (assertions)
and algorithms. Section 4.5.4 sketches how the result of the type check can be translated to
C**, such that the C** compiler generates (without failures) the template instances. Sec-
tion 4.5.5 applies SAGA to a quick sort algorithm with STL iterators using the presentation
of [Aus98].

4.5.1 The Calculus of Adjectives and Signatures

Schwarzweller [Sch02] gives a characterization of of theorems as triples

T = (Sig(T), Cont(T), Prop(T))
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Here Cont(T) is the content of the theorem, i.e. the main statement; Sig(T) is the signa-
ture, which contains the constants and operator symbols appearing in the content, together
with their arities (types). Finally, Prop(T") is a set properties that elements of the signature
must possess in order for Cont(T') to be valid. These properties are expressed as symbolic
adjectives, resembling the way that predicates are interpreted as relations in first-order
logic. For example [Sch02, Section 2], the theorem

Let R be a (commutative) ring. Then {0} is an ideal in R
would be expressed as a triple
((R,+,%,0), “{0} is an ideal in R”,
{associative(R, +), right-zero( R, 4-0), right-inverse(R, +,0), distributive(R, +, *)})

where the content would be expanded into a first-order formula. A domain D can likewise
be expressed as a pair of a signature and the properties that a domain fulfills.

D = (Sig(D), Prop(D))
As an example, the integers may be described by
SZg<Z) 2 {Z7 +Z> *7, 027 1Z}

Prop(Z) {

associative(Z, +z), commutative(Z, +7), commutative(Z, *z),
distributive(Z, +z, *z), Euclidean(Z, +z, *z, 0z7)

Adjectives are names for properties. Hence, relationships between properties can be ex-
pressed at the symbolic level by rules

P—Q

where P and () are sets of adjectives. Rules are extended to an implication relation —>
between sets of adjectives by the rules in figure 4.5. Schwarzweller defines its meaning as:

):A1:>A22<:> ‘V’DD):AllmphesD):Ag

Schwarzweller gives three rules (B1-3) to reduce a goal P, = P, to the trivial goal
P, — &, which holds by (AX1). The rules are [Sch02, section 3]:

(B1) A goal - P, = P, can be replaced by the goal - P, = P, \ (P N P,).

(B2) A goal - P, = P, such that there is a rule [ — 7 € L and a substitution ¢ with
o(r) N Py # @ can be replaced by the goal - P, = (P \ (o(r) N Py)) Uo(l).

(B3) A goal - P, = P, with P, = & holds trivially.

Schwarzweller claims without proof that these rules are correct for the calculus in Fig-
ure 4.5, i.e. if they reduce a given judgement - P, = P, to the trivial judgement
F P, = o, then there is a deduction using the rules (AX1/2),(R1/2). Completeness
of (B1-3) is not claimed.
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P CP
=71 (AX1)
|_P1:>P2
l—relL
(AX2)
Fo(l) = o(r)
FP— P, P = P
1 2 1 3 (R1)
|_P1:>P2UP3
FP— P, +-P=— P
1 2 2 3 (R2)

FP = P;
Figure 4.5: Implication relation for properties

4.5.2 The Programming Language

SAGA is an imperative language enhanced with abstraction of algorithms over signatures
to support generic programming. We can therefore reuse the T'cG fragments developed in
Sections 4.3, 4.2.4, 4.2.2, and 4.2.7.

4.5.2.1 The Base Language

The type system of the base language has been kept as simple as possible, since our
main interest is in the extension with signatures and attributes. Unlike usual imperative
languages, we provide a function-type constructor and higher-order functions. The type
language is given by the following grammar.

type = tid | ’int’ | *char’ | ’string’ | *bool’
| ’void’

| :array) )(; typ@ )))

| 2< type ’ > type >>’

| 7cell’ *( type *)°

| & type

| 2O typelist’ )’ *— typed
| type (7 O typelist 7))’

| ;(; typ6 ));

typelist := type (>, type )*

The terminal tid allows identifiers starting with upper-case letters, the remaining types
are standard. (< > denotes pairs and & denotes references in the C** sense of mutable
locations.'? As in Section 4.3.3, dereferencing is automatic. We use kinds (Section 4.2.3)
to check the consistency of type expressions. Currently, SAGA does not feature subtyping.
Overloading is permitted only in a form similar to that of the original Ada proposal: All
possible type-correct interpretations of an expression are enumerated. If there is more than

12Note that because SAGA does not include type inference, & does not incur the well-known inconsis-
tencies [Tof90] that a naive combination of references with polymorphism may introduce.
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one interpretation for an expression, the expression is considered illegal. (See Section 4.3.4
for a discussion.) Type checking of SAGA algorithms breaks down the statements to single
expressions (Section 4.2.4) and types these using the standard rules (Section 4.2.2). The
reference to algorithm parameters, variables and the return type is analogous to Section 4.3.
An algorithm’s parameters are not considered mutable to facilitate re-use of library rules.

4.5.2.2 Type Definitions

Type definitions serve to introduce new types and type constructors.
type-def == ’type’ tid (> tid (*,’ tid)* 7))’ )" ’=" type

A type definition type T'(s; .. s,) =t is legal iff ¢ is a well-formed type assuming that s;
are types. These requirements are directly reflected by the following TcG rule. The fresh
name name’ is chosen to resolve later references uniquely.

F extract arg args — args’ :: kinds' export*. ..
+ (1 : tname) b def —y def’ i *
- name """ name’

v (mme’"ame/’ ) + def name/name’(args’) = def’ export tydef!

args,def ,def’, (tydef)

k. args! hinds’ type name(args) = def
In the current implementation, we do not have recursive types, but these are a simple
technical extension as in the case of algorithms (see Sections 4.5.3.8, 4.1.3.6). Similarly
the extension to higher-order type constructors is straightforward, using standard kind-
inference techniques (e.g. [Jon95, Section 5]).

Type definitions are unfolded directly during the validity check for type expressions.
Since by the above rule for type definitions, newly defined type constants must be applied
to zero arguments, type application is the only place that defined types appear.?

F c(args) —y ' (args’) . k

c,c’ args,args’ - (0,7 ar 8,) un'fil)d‘ res
<, ,args,arg ) 9 (1-, app_kind unfold)
res,k C(CL’)”gS) = TES g k - - B

Obviously, this rule introduces an infinite loop into the search, which we break by a lo-
cal proof grammar. That grammar states that a single lookup will be sufficient at each
application.

t_app_kind : ty_app_no_unfold — x, %
t_app_kind_unfold : x ——  ty_app_no_unfold

The unfolding predicate in t_app_kind_unfold needs two rules, one for the case that the
constructor c¢ is defined, and a default case which just constructs an application. Note

3Tt would be possible to insert the empty argument list automatically for defined types by checking
for () — * in every lookup of a tid[t]. However, the typing rules from the library do not anticipate this
indirection.
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; parameterizes leorith
es
polymorphism P a gOT m

generic programming implement determine instance

operations  |paramyeterizes

signature + adjectives

Figure 4.6: Relationship between algorithms and data types

that in the first case, the definition will have been unfolded already during the validity
check of the type definition, such that it does not need processing now. In both cases, the
arguments have already been unfolded in t_app_kind_unfold. (! is the cut operator.)

- c(args) =aer def
!

Y (c,args,def) (t_app_unfold_def)

unfold’

(c,args) "+ def

Y (c,args) (¢, args) nld c(args) (t_app_unfold_undef)

4.5.3 Generic Programming

Generic programming SAGA focuses on algorithms [MS94|. Instantiating generic algo-
rithms replaces their type- and operation parameters with concrete types and operations
determined at the call-site. (When generic algorithms call generic algorithms, these con-
crete arguments may again refer to algorithm parameters.) The parameters themselves
are contained in an algorithm’s signature, which is complemented by adjectives restricting
the possible replacements (Section 4.5.1). On the other hand, generic algorithms can also
be used as operations on data types themselves, hence the overall picture of Figure 4.6
arises. Besides restricting the valid instances of algorithms, adjectives in SAGA, unlike in
the underlying calculus [Sch02], play a second, important role in computing the instantia-
tion of generic algorithms. Consider again the swap example from the introduction to this
Section 4.5. The necessary instantiation is computed in two steps: First, unification of the
actual and formal parameters’ types yields T' = __int, the built-in integer format. Then,
the type-checker seeks to prove

assignable(__int,e)
where e is a variable. In the context of the call, we have a single declaration

assignable(__int,__int_assign)

P ——

and by unification, we get e — __int_assign. (Compound expressions may also be used
to instantiate e.)

At this point, the type checker must ensure that e is indeed bound to an expression of
type (&__int,__int) — void. This is done indirectly: In the definition of the adjective

9 ——
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assignable (Sections 4.5.3.3, 4.5.5), the types of its parameters are fixed, and every use
of the adjective (Section 4.5.3.4) must respect that typing. For example, assignable has
parameters

(T,=: (&T,T) — void)

By unification of the arguments with the declared types the second argument must have
type (&__int, __int) — void.

[

4.5.3.1 Signatures

The signatures and adjectives from Section 4.5.1 have a direct representation in SAGA. A
signature is a sequence of type names and operators with their arities.

signature =’ (’ sig-elem-list *)°
sig-elem-list == ¢ | sig-elem ( >, (sig-elem))*
sig-elem == tid | id ’:’ type

Signature elements are identified by their name and their type, hence operators may be
overloaded within a signature. Note that besides operators, also constants can be sig-
elems. We will continue to speak of the operators, rather than the values, of the signature
nevertheless, because this usage comes closer to the notion of algebraic data types.

4.5.1 CONVENTION. For ease of notation, we assume in the subsequent description that
the type elements of a signature precede the operator elements, i.e. signatures always have
the form (77 ..T,,x1 : t; ..y : t,,). The SAGA language requires only that type name
elements precede their uses in operations’ types.

A signature (T) .. T, @1 : t1 .. Ty - ty) s legal if the types t; of the operators are well-
formed, under the assumption that T; :: * for all all ¢ € 1 .. n. The check is done by the
following rules. They insert each found tid into the context of the subsequent checks. (See
Section 2.5.2 for context modifiers in iteration premises.) The exports vname and tname
will be referenced from outside the check to obtain the available types and operators.
Hence, the check chooses fresh names to make these references unique.

I sign_elem(elems — elems’) export*...+ (1 : tname)

V(e ems,elems’ i
(e fems') (elems — elems’) (sign)
-ty M gy
F ty gty * export tname!
YV (tyty') — ign_elem_tid
) S clem((v3ali)eg — (/1)) (=810
F op epgpd op’

Fty gty o k
F op +— op’ : ty' export vname!
sign_elem((op : ty)op — (0p/0p" : ty')op)

Y (op,op’ tyty’ k) (sign_elem_op)

4.5.3.2 Generalizing Signatures

Signatures act as parameters for generic algorithms. In algorithm calls, these parameters
are variables to be instantiated. The following rules thus replace the newly chosen, unique
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names in a checked signature with T'cG variables and record the choice in exports. We
say that they generalize the signature.

 gen_sign_elem(elems — elems’)
export®...+ (1 : tname)

Y (elems,elems’) (gen_s lgl’l)

gen_sign(elems — elems’)
F ty — ty' : * export tname!
gen_sign_elem((ty0/ty)sy — (ty')ey
F ty =L ty’ 'k k
(op,op/,op”,ty, ) Fop’ — op” : ty' export vname!
ty' gen_sign_elem((op/op’ : ty)op — (00" : ty')op)

i (tyU,ty,ty’)

] (gen_sign_elem_tid)

(gen_sign_elem_op)

Suppose some construct C', for instance an algorithm header, in a SAGA program depends
on signature S. To obtain a generalized, generic version of C', where all the references to S
are replaced by TcCG variables, four steps are necessary:

1. We check S and obtain a new signature S’ with unique names for types and operators.
The mapping from the names in .S and the unique names is recorded in exports tname
and vname.

2. We extend the context with the exports and check C', which yields a C’, where all
names referring to S are replaced by the corresponding unique names in S’.

3. We generalize the signature S’ to S”, where the unique names are replaced by TcG
variables. These are again recorded in exports tname and vname.

4. We extend the the context with these exports and re-check S’ (with the same rules
as Step 2). This effectively replaces the new fresh names with the new variables.

The intermediate versions S” and C” with unique names are introduced solely for overload
resolution: Since the variables in the final version S” of the signature will not provide any
filtering, the generalization can take place only after all references have been made unique.
Note also that the fresh variables can be quantified by rule extraction (Section 3.1.3),
because they certainly appear only in the sub-proofs of the above four steps. This procedure
will be used with type definitions (Section 4.5.2.2), adjective definitions (Section 4.5.3.3),
assertions (Section 4.5.3.7) and algorithms (Section 4.5.3.8).

4.5.2 REMARK. Step 4 above is possible because the internal, compiled (in the sense of
Section 4.2.1.1) form of types and expressions uses the same constructors as the abstract
syntax tree. If th internal form differed from the input form, we would provide a new set
of rules to traverse this representation.

One subtlety arises if C' contains names from outer binding levels, for instance from the
global environment. Then C” will contain the resolved names, which fail to be looked up in
the second pass. Our solution is to explicitly modify the rules from the outer environment
such that the internal names appear to be defined. This is accomplished by forward
resolution with the following rule (and a corresponding rule for type names).

Fid[z] — a2’ it

=zt

V (z,0',t) (fwd_outer_bound_val)
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This solution expresses the intention of the second pass constructively: The names from
the signature are generalized, while the other names remain unmodified. A solution with
a more operational flavor would be to leave untouched those identifiers that are not found
in the second pass. This solution requires the cut, however.

4.5.3.3 Adjective Definition

Adjectives are used as symbolic names for properties of signature elements. To enable the
type-check of operations (see the introduction to Section 4.5.3), they must be declared
with the list of their parameters.

adj-def ’adjective’ id signature meaning

meaning ::= ’means’ formula
| ’informal’ ( StringLit | tid | id )"

An adjective definition introduces id as a name of an adjective with formula or the textual
description as its meaning. The types and operators from the signature may appear in the
meaning clause. The precise shape of formula depends on the logic used for verification.
No choice has been made as yet, and only the informal meaning is available. The second
phrase for meaning can be used to give a textual description if program verification is
not intended. For instance, the STL concepts in Section 4.5.5 are defined informally by
references to Austern’s collection [Aus98].

An adjective definition is valid if the signature is valid and the meaning is defined in
a context enriched with the signature elements. Since in an informal meaning no overload
resolution is possible, any previously declared operators overloaded in the signature are
removed. This accounts for the first four premises.

F [branch :unique] (sign — sign’ ) export*

expand

— (=>1(cls = 1d)); + (1 : tname); + (1 : vname)
- informal(meaning — meaning’) . ..
 gen_sign(sign’ — sign”) export*

— (=>1(cls = id)); + (4 : tname); + (4 : vname)

name,sign, - informal(meaning’ — meaning”) . ..
meaning,sign’, - sig_elem — adjarg(sign, sign”) — formals . ..

v | s F def name(formals) = meaning” export adjdef! ot
meaning’, adjective name for (sign) informal meaning (adjdef)
meaning’’
formals

After the validity of the definition has been established, it must be made available in the
context. To that end, the given signature is generalized and the already checked meaning
is checked again under the generalized environment (see Section 4.5.3.2). The result is
exported under name adjdef and can be added to subsequent contexts via the following
forward rule:

adi.aras '_ d f d = )
V( dj,arg ) ef adj(args) = meaning (exp_adjdef)

meaning ad] ‘s ATYS
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The exported meaning is not currently used. It is intended for a generation of proof
obligations for facts (Section 4.5.3.7, Remark 4.5.4).
4.5.3.4 Adjective Application

An adjective application refers to a defined adjective by name, for instance to include its
defined meaning as a requirement of a generic algorithm. The adjective’s parameters are
instantiated with types and expressions:

adj-apply = id > C° ( type | expr )* *)’

An adjective application is valid if the types match type names in the adjective’s definition
and the expressions yields values of the types required by the signature’s operators. The
following rules capture these requirements.

F name :, formals

v nazne;a,Ctuals’ Fadj_arg (actuals,formals) — actuals’ . .. (chkad)
actuals’, . chka
Jormals adj name(actuals) — name(actuals’) J

¢,0p;ty,€’ Fer— ety

V(") (adj_arg_op)

name a‘dJ*arg ((e)expa (name = 6/ : ty)op) —> (e/>exp

F ty —k ty, kX
adj_arg ((ty)tyexp, (tname = ty’)ty) = (Y )syexp

A (ty,ty’,tname) (adJ _arg_ty)
In these checks, the operators in the adjective instances can be overloaded. To that end,
note that the generalized adjective definitions (Section 4.5.3.3) share the variables for the
signature’s types with the types of the signature’s operators. For instance, writing

assignable(int,e)

already fixes the type of e to (&int,int) — void, and operators in e will be resolved
correspondingly. For example, we can simply write

assignable(int, ‘=)

and the compiler will find out that = is the built-in integer assignment, as postulated in
the introduction to this Section 4.5.3.

4.5.3 REMARK. Because the type elements precede the operators using the types (Sec-
tion 4.5.3.1), this overload resolution will always work on instantiated, ground types.

4.5.3.5 Expanding Signatures

The notions of signatures and attributes serve well to specify the interface of generic
algorithm. Writing them down, however, is tedious. The language SAGA therefore includes
an ellipsis construct “...” that facilitates the most frequent case. If there is a pair of
a signature S = (81 .. Sy, ...) and an adjective application a(p; .. pm, .. .), then the
signature S is expanded such that it contains those parameters from a’s definition that are
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not explicitly given by the p; .. p,,. The type and operator names from a’s definition are
chosen both for the signature and as new parameters to a. For example, the assignable
adjective from the introduction would expand

(...) assignable(...)

into
(T,=: (&T,T) — T) assignable(T,=)

Similarly for
(8,...) assignable(S,...)

(S,=:(&S,8) — 9) assignable(S, =) (4.5.1)

Expansion proceeds from left-to-right. It maps a triple
(signature, actuals, formals)
to a pair of result signature and result actual parameters
(signature’, actuals’)

It thus replaces both ellipses in signature and adjective application with new elements.
Towards that end, it unifies the actuals with the formals sequentially.

There are three cases to consider. When the actuals become empty, then the signature
is not expanded.

V (sign.formats) expand (sign, [|) + formals — (sign, |[]) (exp_ellipsis_base)

When an ellipsis is reached in the actuals, then the remaining formals are added to the
signature.

sign,sign’,  expand/merge(sign, formals) — (sign’, args’) o
( ) (exp_ellipsis_ell)

formals, args' expand (sign, ...) + formals — (sign’, args’)
If both an actual and a formal parameter are left, expansion unifies them. This unifi-
cation instantiates the variables in types of operators following in the formals. (See for
example (4.5.1), where S is transported to the type of = by this unification.)

F expand /unify a = f
(sign,sign’,a,as,) - expand (sign, as) + formals — (sign’, as’)
expand (sign, a::as) + f::formals — (sign’, a::as’)

(exp_ellipsis_step)

as’,f,formals
V (ty,tname) expand /unify (ty)iyexp = (tname = ty)yy (exp_ellipsis_unify_ty)

e,elem,name, .
v <t ) expand/unify (e)exp = (name = e : ty)sp (exp_ellipsis_unify_exp)
y
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The insertion of new signature elements is straightforward using the cut operator. We
show only the match and base case.

!

\V/ elem,sign N . ; _elli is_i _match
(ctem.sign) expand /inselem::sign + elem — elem::sign (exp_ellipsis_ins _match)
V (elem) expand/ins. .. + elem — elem:: ... (exp_ellipsis_ins_ellipsis)
When all expansions are complete, the final . .. in the signature is replaced by [] straight-
forwardly.

4.5.3.6 Solving Proof Obligations

Proof obligations are represented by predicates prove and prove*, where the latter one is
immediately reduced to the former by the rule

F prove(adjs) . . .

W (adjs) (prove_all)

prove*(adjs)

The judgement prove(A) represents a proof obligation A in the form of an adjective that
must be valid in the current context. That context is again represented by T'CG’s context,
and resolution of proof obligations is currently done by T'cG’s built-in search mechanism,
that is SLD resolution with depth-first search. Note that TCG’s unification instantiates
any remaining variables in proof obligation A, a capability that supersedes the calculus in
Section 4.5.1.

4.5.3.7 Facts

Facts capture implications between sets of adjectives, as introduced in Section 4.5.1.

facts = ’assert’ fact™
fact = ’for’ signature rule
rule = {’ adj-apply* *}’ *==>> {’ adj-apply™ ’}’

If one of the sets of adjectives contains a single element, the braces may be omitted. If the
left-hand-side set of adjectives is empty, the braces and the arrow may be omitted.

The facts of an assert clause are checked separately. A fact is valid if the contained
adjectives are valid under the given signature. The following rule checks this requirement.
Afterwards, it generalizes the fact according to Section 4.5.3.2 and exports it for later
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reference.

- expand/rule (sign, rl) — (sign’,{lhs} — {rhs})
- expand/close(sign’ — sign')
- ground?(sign”, lhs, rhs)
= (sz’gn” — sz’gn’”) export*
+ (4 : tname); + (4 : vname)
F adjs lhs — [hs' then rhs — rhs’
- gen_sign(sign” — sign””") export*
+ [fwd_outer_bound_val] (environment);
+ [fwd_outer_bound_ty| (environment) ;
+ (6 : tname); + (6 : vname)
F adjs [hs' +— [hs” then rhs’ — rhs”
- {lhs"} = {rhs"} export factdecl!...[rhs"]

V(sign) sl

sign,sign’,

sign'’  sign'",
Y | sign”” ri,lhs,

Ihs’,lhs' ;Ths,

rhs’ ,rhs’’

(fact)

The export of factdecl is by iteration through rhs” with fixed ths”. The exported im-
plications thus have a singleton right-hand side and can be inserted to contexts as TcaG
rules, where the left-hand side of the implication then becomes a set of proof-obligations
(see Section 4.5.3.6). The following rule is used for forward resolution in rule extraction.

S =1}
+ prove* (/)

Y (1r) (exp_factdecl)

prove(r)

In checking the adjective applications on the right-hand side we assume the adjectives on
the left-hand side, which enables the use of (instances of) generic algorithms as operations.
This construction parallels the natural deduction introduction of implication by discharging
an assumption (Section 1.2.2.1). The following rule implements this dependency by another
context modification.

Fadj lhs — [hs'. ..
- prove(lhs’) export assumption!...
v <lh5,ms7lhs/,) + (2 : assumption) - adj rhs — rhs’. ..

adjs [hs +— [hs' then rhs +— rhs’

(chk_rule_adjs)

rhs’

To continue the introductory example, we can then for example define

adjective swappable
for (T, swap : (&T,&T)->void)
informal swap " swaps values at argument locations"

assert for (T,...) assignable(T,...) ==> swappable(T,swap)

The the last line, we get a TcG rule'* instantiation of the swap algorithm with the required

4 Transliterated from the raw output manually, TcGDOC currently does not handle run-time terms.
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assignment from assignable.

V(T ¢) prove(assignable(T, e))

prove(swappable(T, swap(T,e)))

4.5.4 REMARK. Semantically, a declared implication must be supported by the meanings
of the given adjectives. Hence, there is an implicit proof obligation associated with a
rule declaration: If for some instance of the signature, the meaning of the left-hand side
adjectives are valid, then also the meanings of the right-hand side adjectives must be valid.
These proof obligations could be generated by replacing the types and operators in the
adjectives meaning clauses (Section 4.5.3.3) by the actual parameters.

4.5.3.8 Algorithm Definitions

Algorithm definitions in SAGA have the form

algorithm = ’algorithm’ id sig-params’ val-params’ return’
’begin’ statement-list ’end’
val-params = > (id ?:7 type ( ;7 id > type )* )" 7))’
return = ( ’return’ type )’
sig-params == [’ ( sig-param )* ’]1’
sig-param =  signature ’with’ adj-apply (*,’ adj-apply)*

There are no forward declarations of algorithms. Mutually recursive groups of algorithms
are defined by concatenation with the keyword and. Due to this recursion, each algorithm
group is checked in two phases (see also Sections 4.4, 4.1.3.6): First, the algorithm headers
are checked for consistency and generalized (Section 4.5.3.2). Then, they are inserted to
the context for the check of the algorithm bodies.

The requirements for an algorithm definition to be valid are as follows:

A= algorithm a
[(Si with (Ay)i%); ]

j=1/i=1
(@ * tk) =
return s
begin B end
e All signatures S; are valid.
e All adjective applications A;; are valid in a context enriched with signature .S; for
everyit=1..n,5=1..m;.
e The value-params and return include only well-formed types, possibly referring to
types from the signatures S;.
e The statement-list can be type-checked in a context enriched with

— the types and operators from all the 5;
— the assumptions that A;; hold.

Neither types nor operators are shared between signatures. When the same operator
appears in different signatures, it is overloaded (in just the same way that it is overloaded
when it appears in the same signature with different types).
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F sign+adj : signadj — signadj’ export®. ..
+ (1 : tname) F algarg args — args’. ..
+ (1 : tname) b ret —y, ret’ i *
 choose name/uname — uname’
F name(= uname’) = [sz’gnadj/l (args’) — ret’
export alghead!
F gen_signadj(signadj’ — signadj”) export* ...
+ (6 : tname); + [fwd_outer_bound_ty] (environment)
F extract_type args’ — args” ...
name,uname, + (6 : tname); + [fwd_outer_bound_ty| (environment)
Foret’ —, ret” o, *
F split signadj” sign = params, adjs = adjs
- def name = uname’ (params) : (args") —
ret” requires adjs export algdef!

uname’,
stgnadyj,

signadj’,

Y | signadi”,args, - (alghead)
args’ args’”, check alghead(algorlthm name(= uname) =
params,adjs, [signadj*sz’gnadj} (args) — retbody) — uname’
ret,ret’ ret”,
body,body’

Figure 4.7: Checking the Header of a Generic Algorithm

Header The first phase of the recursion checks the algorithm headers, replacing all iden-
tifiers with unique counterparts to identify the references. The rule alghead (Figure 4.7)
thus enforces the above requirements except for the last one.

We inspect the rule’s premises one-by-one. First, the signatures and adjectives are
checked as described in Sections 4.5.3.1 and 4.5.3.4. With exported type names, the al-
gorithm’s parameters and return types must be valid, which is expressed by the next two
premises. We then choose a fresh, unique name for the algorithm, which is also acces-
sible in the rule’s consequence for later reference. This finishes the validity check, and
the result (with unique, internal names) is recorded in an export. This export will be
referenced by the unique name uname’ before the check of the body. The remaining
premises generalize the signature, and subsequently the remainder of the algorithm head
as described in Section 4.5.3.2. (The auxiliary predicate gen_signadj iterates over all
signatures and adjectives in the header.) The final split judgement separates the sig-
natures, which represent the algorithm’s generic parameters, from the adjectives, which
constrain the instantiation. That generalized interface is also exported for later reference.
Note that in the instance uname’(params) all the instantiation information is bundled with
the unique internal name. Whenever the algorithm is referenced, the compiled expression
(Section 4.2.1.1) will contain the necessary instantiation explicitly.

The export algdef will be referenced via the following forward rule:

F def name = inst : ty requires adjs
v <inst,ty7name,> H prove*(adjs)

adjs

_ (exp_algdef)
name — inst : ty
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Note how the saved adjectives become proof obligations in the context of each call to
the algorithm. The conclusion of the rule, however, resembles an ordinary declaration of
identifier name with internal, compiled representation inst and type ty. Rule extraction
with quantification replaces the type parameters in inst, ty and adjs with bound TcaG
variables, such that the algorithm can be used with different instantiations at each call.

Group To show the link between the head and body checks, here is the rule for the
algorithm groups. Note in particular how the newly chosen unames are handed on from
the headers to the bodies, and how the algdef exports are extracted quantified to allow
mutual references to the generic algorithms.?

I [branch :unique]check alghead(algs) —
unames export®...
expand
+ [exp_algdef] ((1: algdef[V])); + (1 : alghead)
algs, unames, k= [branch :unique|body(unames) : algs —. bodies’ . ..
( ) (alggrp)

bodies' algorithms : algs

Body An algorithm’s body is checked straightforwardly: Using the unique name uname,
the first premise looks up the algdef export stored in the context by alggrp above. An
auxiliary judgement turns the signatures, adjectives and value parameters to referenceable
facts, and algbody proceeds to check the statements under these added facts.

- [trace algbody, uname]
- name(= uname) = [signadj} (args) — ret

head, body, I extract decls from signadj, args export*
name,uname, + decl_return|ret]; + (3 : headdecl) - body —. body’
Vi o - (algbody)
signadj, args, body(uname) : begin body end . body’
ret,body’

It is this setup that lets the body assume that the adjectives stated in the head are indeed
valid, thus enabling the local checks for well-definedness that are at the core of SAGA’s
design.

4.5.4 Translation to Ct"

When a SAGA program has passed all validity checks, the meaning of all algorithm bodies
has been determined by overload resolution and a list of required instances of generic
algorithms can be generated. Furthermore, all variable- and parameter references are
unique because of the fresh names chosen for all bound names. The internal form of
expressions can thus be translated to C*t+ directly, such that the C™* compiler does the
instance generation without further overload resolution. We sketch the translation here, it
can be effected by an external representation (Section 3.1.5).

15The semi-unification problem of polymorphic recursion [KTU93, Hen93] does not arise, since we are
not attempting type inference. Instead, the algdef exports are ground terms, with unique type names
for the algorithms’ parameters.
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Parameters are in general represented by template-definitions. We use class parame-
ters only and wrap up operators into types in the spirit of function objects [MS96,
Section 2.4]. Every such wrapper class has a static method call.

Algorithms are mapped to template class definitions with a single static method call.
We have avoided the use of template functions, because the C* compiler might
accidentally perform overload-resolution on function names, which is not the case for
class names. The schema is

template < class 7)..class 1,,class op,..class op,, >
struct algorithm name {
static rtype call(ty,arg, .. ty,.arg,) {
algorithm body
}

}s

Algorithm calls are then explicitly instantiated references to algorithm structures:
algname<param, .. param,>::call(arg, .. arg,,)

Type definitions have only type parameters. We use the C™* template mechanism to
map a type name with parameters to the representation type. This can be achieved
by a definition
template < class param, ..class param, >
struct type name {

typedef representation type def;

}s

Type references to defined types with given instantiation are compiled into a template
expression
typename<param, .. param,>: :def

Expanding Type Definitions Since SAGA expands type expressions, the above consid-
erations are needed only for files other than the one where the type is introduced; in
that file, all references to the type name have been expanded.

Primitive Operations on built-in data types (Section 4.5.4.1) are provided in a header
file adhering to the above conventions concerning operator calls. The built-in types
are hand-crafted as regular template class definitions.

With this mapping, the C** compiler does not need to resolve any overloading nor instanti-
ation and hence serves only to generate the code for required instances. Furthermore, since
all calls are static and the call method bodies are given in the definition, the optimizer
will be able to inline them.

4.5.4.1 Run-time System

In the subsequent examples (Section 4.5.5) we assume the following minimal run-time
system. It provides primitive built-in types for machine integers, characters and strings.
Both integers and characters have their C-semantics, while strings are handled by the C*t+
string class. Integers provide the usual arithmetic operations; string concatenation is
denoted by operator +. The type & is mapped to C** pointers, the necessary dereferences
are inserted automatically (Section 4.3.3).
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Arrays [T] have reference semantics. There are four built-in operations on arrays,
where [] is written infix as a[i] as usual.

new_array: (int,T) — Array(7T) length: (Array(7T)) — int
=: (& Array(7T), Array(T)) — & Array(T) [1: (Array(T),int) — &T

Pairs <S,T> provide construction and (reference) access to their components.

mkpair: (S,7) — Pair(S,T)
fst: <5, T> — &S
snd: <S,T> — &T

4.5.5 Generic Sorting in Saga

The C** Standard Template Library [MS96] is often cited as an outstanding example of
generic algorithms and data structures. Its flexibility largely stems from the decoupling
of algorithms and the data structures they work on; this goal is achieved by the notion
of iterators. Iterators abstract over the concrete details of data access and replace them
by general movement and dereferencing operators. They come in five categories [MS96,
Chapter 4]: Forward, input, output, bidirectional, and random-access iterators. A forward-
iterator is both an input and an output iterator, a random-access iterator is a bidirectional
iterator, and every bidirectional iterator is a forward iterator. The iterator categories are
characterized by the available operations and their semantics: Forward iterators only re-
quire operator++ to be defined, bidirectional iterators add operator-- and finally random
access is available via operators +=, —= and []. To facilitate reasoning about wide-spread
collections of operations and requirements, Austern [Aus98| groups them into named con-
cepts. (Concepts were present in [MS96], but the Austern’s presentation treats them more
rigorously as objects in their own right.) A type is a model of a concept, iff it fulfills all
the requirements associated with the concept.

We will show how SAGA enables reasoning about generic algorithms and semantic
checking in terms of concepts. The mapping is straightforward: Signatures capture re-
quired operations and adjectives describe the expected properties. We use the concept
names as adjectives. Our example is a fragment of the generic algorithms for sorting as
found in the SGI implementation [Aus98]. We restrict the presentation to the fundamental
swap, partition, median, and sort (quick sort). For lack of a “best match” overload reso-
lution, we cannot represent the efficiency considerations for special cases found in the C*+
implementation. Furthermore, since SAGA does not currently provide a const modifier for
references, we cannot model the overloaded versions of iterator dereferencing. (Overload
resolution for const vs. non-const references requires a “best match” strategy again.)

However, we do not change the requirement specification, which we directly translate
from [Aus98]. In adjective definitions, we give an informal description of the semantics.

4.5.5.1 Basic Concepts

In the STL [MS96, Aus98], the primitive operations == (equality) and = (assignment) are
not taken for granted. Consistently with the design of C™+ [Str97], it is assumed that the
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programmer will in general overload these operators. The following adjectives capture the
existence of the operations.

adjective assignable
for (T, ‘= : (&T,T)->void )
informal "Operator " ‘= " is an assignment on " T

adjective equality_comparable
for (T, ‘== : (T,T)->bool, ‘!= : (T,T)->bool)
informal "Operator " ‘== " is structural comparison on " T

assert assignable(int, ‘=)
assert equality_comparable(int, ‘==, ‘!=)

Note that unlike in C™*, the names of the operators are not fixed. If T is some type and
the structural comparison on T is called equal_struct_T, then we could as well write (\ is
lambda abstraction).

assert equality_comparible(T,equal_struct_T, (\x. ! equal_struct_T(x)))

4.5.5.2 Iterator Concepts

For the sorting example, we are interested in two iterator categories that arise in the
requirements for the partition and sort algorithms. First, partition needs to traverse
a given sequence forward from the beginning and backward from the end. It needs the
following bidirectional_iterator as input. (Saga represents operator names outside of
their infix position by a prefixed single quote. For pre- and postfix operators, the argument
position is indicated with a dot.)

adjective bidirectional_iterator

for (T, VT,
‘= : (&T,T)->void,
‘== . (T,T)->bool, ‘1= : (T,T)->bool,
‘++. ¢ (&T)—>&T, o+ 0 (T)-> T,
C——. : (&T)->&T, Co-—— 0 (&T)—> T,
“x. : (T)->&VT)

informal T "is a bidirectional iterator, with "
‘.-— " as backward step"

Quick sort must access a given pivot element in the middle of the input sequence, hence it
requires random access. (It is not necessary to add the new operations at the end of the
adjective, this is only done by convention.)

adjective random_access_iterator
for (T, VT,
‘= : (&T,T)->void,
‘== : (T,T)->bool, ‘1= . (T,T)->bool,
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“++. : (&T)—>&T, o+ (T)—> T,
C——. : (&T)->&T, Co—— 0 (&T)—> T,
‘x.  : (T)-> &VT,
‘+ : (T,int)->T, ‘- : (T,T)->int)
informal T "is a random access iterator, with "
‘+ " and " ‘- " for random access"

When quick sort calls partition, the type checker must deduce that its requirements are
sufficient to use that algorithm. Therefore, the implication that every random access
iterator is also a bidirectional iterator must be made explicit.

assert
for (T,VT,...)
random_access_iterator(T,VT,...) ==> bidirectional_iterator(T,VT,...)

4.5.5.3 Swap
The basic algorithm swap [Aus98, Section 12.2.1] has the C** interface

template<class Assignable>
void swap(Assignable &a, Assignable &b);

where Assignable is a model of the concept assignable.

In SAGA, we use the above defined adjective assignable in the specification of algo-
rithm swap. When this generic algorithm is instantiated, the operator = will be replaced
with some function f on the instantiation type T’, such that the user has declared the
relation assignable(T’,f).

algorithm swap
[ (T,...) with assignable(T,...) ]
(x : &T; y : &T)

begin

var tmp : T;
tmp = X;

X =Y,

y = tmp
end

4.5.5.4 Partition
The algorithm partition [Aus98, Section 12.8.1] has the interface

template<class Bidirectionallterator, class Predicate>

Bidirectionallterator partition(Bidirectionallterator first,
Bidirectionallterator last,
Predicate pred);
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where BidirectionalIterator is a model of bidirectional_iterator, Predicate is a model of
predicate (i.e. an object applicable to a value to return bool) and BidirectionalIterator’s
value type is convertible to Predicate’s argument type. The second template parameter
Predicate is a peculiarity resulting from the use of function objects [MS96, Section 2.4].
We use A-abstraction instead. As SAGA does not currently feature subtypes, convertibility
reduces to equality'® and the algorithm’s interface can be written down directly:

algorithm partition
[ (T,VT,...)

with bidirectional_iterator(T,VT,...), assignable(VT,...) ]
(fst : T;

1st : T;
pred : (VT)->bool)
return T

The implementation of partition copies the parameters (parameters currently are not
variables) and repeatedly applies operator++ to first and operator-- to last, which
explains the first requirement. The second requirement on the value type of T, i.e. the type
returned by dereferencing an iterator of type T, justifies a call to swap.

var first : T;
var last : T;
first=fst; last=lst;
while (first != last) do
begin
if (pred(* first))
then ++first
else if (pred(* last))

then --last
else swap(x first, * last)
end;

return fst

Note that the operators ——, ++, =, = * in this algorithm are resolved to refer to the generic
parameters, which are introduced to the ellipsis by expansion (Section 4.5.3.5).

4.5.5.5 Quick-Sort

The algorithm sort [Aus98, Section 13.1.1] requires random-access iterators.

template<class RandomAcessIterator>
void sort(RandomAcessIterator first,
RandomAcessIterator last);

6We could introduce an adjective convertible. However, proof obligations with this adjective take
the form of constraints deferred to future work (Section 6.2.3).
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The requirements are that RandomAcessIterator is a model of RandomAcesslterator, and
RandomAcessIteratoris mutable, and RandomAcessIterator’s value type is StrictWeak-
lyComparable, that is there is an operator < implementing a strict weak order [Aus98,
Section 6.4.2].

In SAGA, the algorithm header is therefore

algorithm gsort
[ (RAI,VT,...)

with random_access_iterator (RAI,VT,...),
equality_comparable(VT,...),
strict_weak_order(VT,...),

assignable(VT,...)
]
( first : RAI;
last : RAI )

Note how the requirements on VT can be accumulated in a natural fashion using adjectives.

The implementation uses the median-of-three heuristics for selecting the pivot element,
calls partition and recursively sorts the parts. The requirements from the gsort header
are needed to check the validity of both calls to partition and sort, since the requirements
of generic algorithms are noted in their type assumptions (Section 4.5.3.8).

if (first == last) then return;

var pivot : VT,

pivot = select_pivot(first,last);

var split : RAI;

split = partition(first, last, (\x. x < pivot));
gsort(first,split);

gsort (split,last)
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Chapter 5

Related Work

5.1 Tools

Starting in the 1980s, research on formalisms for programming language descriptions has
been prospering and continues to produce useful tools for generating compiler compo-
nents and programming environments [HK00, BHKO02, HPM*02]. The search is driven
on the one hand by the desire to generate interactive, language-specific programming en-
vironments, on the other hand by the need to check the consistency of formal language
specifications.

For work related with TCG, three basic approaches seem relevant: Attribute grammars,
context relations and inference rules. We choose the original proponent systems The Syn-
thesizer Generator, PSG and CENTAUR to discuss these formalisms. As the differences
from T'CcG manifest themselves in the basic formalism, rather than the specific tool, this
discussion implicitly comprises more recent work based on the same formalisms. A further
development, the ASF+SDF formalism (Section 5.1.3), is based on conditional rewriting.
It has also been used for specifying type checkers [Hen89a, Deu96, TDO1].

A more extensive survey on language description tools, without our focus on type
systems, has been given by Heering and Klint [HK00]. They discuss a number systems
with their respective capabilities [HK00, Table2, Figure 4], on which we have partially
based our selection. A later overview of references is given by Henriques et al. [HPM™02].

A recent contribution by Pierce and Levin [LP03] will be surveyed separately in Sec-
tion 5.1.5. The developments based on constraint solving (e.g. [SS01, Sul01]) are covered
in Section 5.2.

5.1.1 The Synthesizer Generator

The Synthesizer Generator [RT88] provides language-specific editors from language de-
scriptions. It builds on previous work by the authors [TR81, Rep84] and relies on the
formalism of attribute grammars [Knu68] for expressing the context-sensitive aspects of a
language grammar. The generated editors are to incorporate knowledge about the (static)
semantics of the edited language such that immediate feedback on errors can be given to
the programmer. The scope of the treatment comprises imperative languages with finite,
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monomorphic types (Pascal, Ada, Modula). A restricted form of type inference [RTS8S,
Section 7.2] is introduced to check for the inconsistent use of variables in a Pascal dialect.

An attribute grammar [RT88, Chapter 3] is a context-free grammar where each non-
terminal has a set of associated attributes and each production has a set of attribute
equations. Whenever a production is applied, the constructed abstract syntax tree is dec-
orated with attribute occurrences of these attributes. Attribute equations then constitute
side-conditions for the production to be applicable. An equation A = e defines attribute
occurrence A by attribute expression e, which references other attribute occurrences of the
production. If A occurs on the left-hand-side of the grammar production it is synthesized,
while the occurrences on the right-hand side are inherited. Any attribute of a given non-
terminal must either be synthesized or inherited, i.e. an attribute cannot have a defined
occurrence both on the left and the right-hand side of a production. In a well-formed
grammar, the start production must not have inherited attributes and each attribute oc-
currence in a production must be defined exactly once. A grammar is non-circular if there
are no derivation trees with cyclic attribute definitions.

Attribute expressions can be evaluated greedily [RT88, Section 12.1] (or data driven):
Each node in the abstract syntax tree is labeled both with the non-terminal of the deriving
production and the attributes of that non-terminal. As all of the production’s attribute
equations are local to the node (i.e. they are defined in the production itself or in its imme-
diate neighbors), a simple inspection of these attributes determines when a given attribute
equation can be evaluated, yielding a newly defined attribute that may again trigger eval-
uations. Furthermore, the dependencies between attributes indicate when attribute values
become inconsistent, that is they do not satisfy the attribute equations. The detection of
inconsistent attribute values then triggers computations to update these attribute values.
The remainder of [RT88, Chapter 12] is dedicated to the pre-computation of evaluation
strategies by static analysis of the grammar to increase the efficiency.

The flow of information in attribute grammars is inherently directional, somewhat
contradictory to the intention of declarative descriptions for the language’s semantics.
Specifically, the information flow in classical Hindley-Milner [Mil78] type inference cannot
be modeled straightforwardly, since here the type information is propagated by symmetric
unification. Reps and Teitelbaum give a limited form of type inference where the types
of variables are derived from their uses [RT88, Section 12.2]. They work in the finite flat
lattice with types Empty (top), NoType (bottom), Int and Bool. To gather information
on variable uses through synthesized attributes, they compute the meet of inferred types.
They observe that assignments between variables introduce equality constraints (in a set-
ting without coercions) on the types of variables without further narrowing their possible
types. It appears that ML inference can be treated following Wand’s [Wan87] presentation,
if the meet computation is replaced by native unification; this approach is, however, not
supported specifically by the underlying formalism.

5.1.2 The Programming System Generator (PSG)

The PSG system by Bahlke and Snelting [BS86] is a generator for language-specific pro-
gramming environments. Like the synthesizer generator, its main emphasis is on interactive
and incremental static analysis of incomplete program fragments. Its formalism likewise
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assigns attributes to the nodes of abstract syntax trees, which due to incompleteness of the
analyzed fragments are interpreted as representations for the still possible attribute values.
(For contrast, missing fragments in attribute grammars induce yet undefined attributes,
which may propagate through evaluation of attribute equations.) The context-sensitive
part of the language definition is expressed by equations between attributes, but without
the directional constraints of attribute grammars (Section 5.1.1). This leads the authors to
consider context relations between sets of attributes, rather than functional dependencies,
as the fundamental tool in reasoning about the consistency of the program fragment.

Context relations are defined [BS86, Section 4.1] analogously to relations in data base
theory [EN94]: For an abstract syntax tree with nodes N and attribute values A, a con-
text relation CR(A) is a (possibly infinite) set {¢t: N — A}. Each tuple ¢ represents a
simultaneous (and consistent) assignment of attributes to the nodes of the AST. The con-
nection between subtrees is expressed with the relational [EN94] natural join operation: If
a placeholder X in fragment F' is replaced by a fragment G, yielding a new fragment H,
we can compute CR(H) = CR(G) >t CR(F'). The natural join contains pairs of rows from
the two relations that agree on the shared attributes. Context relations are conceptually
infinite objects, they include all still possible attribute assignments. A finite representa-
tion for context relations is obtained by allowing variables in attributes and introducing
unification to the join operation [BS86, Section 4.3]. The static semantics of language
constructs and primitive operations is expressed by basic relations between attributes at
the AST nodes of the constructs.

Context relations do not seem a natural tool for type analyses, and the authors planned
to integrate a different formalism [Des84] in future versions [BS86, Section 2]. With types
as attributes, the link between the declaration and reference of an identifier must be es-
tablished prior to invoking context relations. Hence, scope analysis must be addressed
separately, which Bahlke and Snelting mention as a short-coming [BS86, Section 4.3, Sec-
tion 4.6]. Having settled this issue by external means, context relations naturally express
overloading of predefined identifiers: Overloaded identifiers have basic relations with more
than one tuple. However, this approach does not extend to user-defined functions, be-
cause each declaration has a single type. The solution is to generate basic relations from
user declarations, which is reported to work in an experimental implementation [BS86,
Section 4.3]. However, this procedure is again outside of the formalism.

5.1.3 ASF+SDF

Brand et al. [BHKOO02] survey their ASF+SDF framework for language specifications.
The Syntax Definition Formalism (SDF) describes the context-free and abstract syntax in
a BNF-like formalism. The resulting parser is used to read the definition of the semantics in
the Algebraic Specification Formalism (ASF). ASF is based on conditional rewriting rules,
which are compiled directly to C-functions, using the ATerm library [BHKO02, Section 7.1]
for efficient term data structures. The authors cite extensive experience with ASF+SDF
in [BHKOO02, Table I], including a number of type checkers. Among these, the checkers for
CLaX [TDO01] and Pascal [Deu96] are closest to our own work and appear representative
of the framework’s capabilities in this direction. Since CLaX is a Pascal dialect, we will
restrict the discussion to the latter article.
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Van Deursen [Deu96] contains the source of a static checker for a fragment of Pascal
in ASF+SDF. We focus on Sections 4 and 5, which deal with environments and the type
checks themselves. As an overall observation, the given specification has the flavor of func-
tional programming, as the precise path of the computation is explicit in the rewrite rules.
The following rule, for instance, type checks a constant declaration [Deu96, sec. 5.1.2].!

_id should not be declared in inner block of Fy = Fj5

const-tc(_const, E3) = E4

const-defs-tc(_id = _const, Ey) = E4 + const_id = _const

The phrase “should be” [Deu96, Section 4.4] refers to the expectation that the constant
is undefined. The function returns the original environment if the expectation is met and
extends the environment with an error message otherwise. As a second example, procedure
calls are checked by the following rule [Deu96, Section 5.5.1].

find _id in E;.context = Definition
Definition defines _id as a normal procedure? = TRUE

call-tc( Definition.formal-parameters, _act-par-list, Ey) = Es

proc_call-tc(_id _act-par-list, Ey) = Es

The predicates in the first two premises have to be defined literally by a recursive lookup
in the environment E; (Sections 3.3 and 3.2.4).

Hendriks [Hen89a] shows how type inference for MINIML can be implemented in the
ASF+SDF framework. As unification and substitution is not available at the ASF level,
he must implement it by rewrite rules (Section 7.4.3). The type checker in Section 7.4.4
therefore resembles a purely functional checker (e.g. [Jon99]).

Dinesh and Tip [TDO01] describe an elegant application of the framework to the expla-
nation of type errors. Their rules for type checking rewrite a program fragment either to
its type or to an error message. In the latter case, the rewrite relation can be examined
backwards to find those program parts that have contributed to the subterm of the error
message. The dependency relation between subterms in a single rewrite step can be ex-
tended to dependency tracking between the start and result terms [TDO01, Section 4.2]. It
yields the slice, a collection of subterms, of the program fragment that contributed to the
error message.

5.1.4 CENTAUR and TYPOL

The CENTAUR system [BCD'89] is a formalism for specifying the syntax and semantics
of programming languages. It is based on natural semantics [Kah87] and includes a parser
generator (METAL), a pretty printer (Ppml), an abstract data type for processing many-
sorted ASTs (VTP), and the logical engine TYPOL [Des84]. TYPOL has been used to
specify type inference for MINIML [CDDKS86| and type checking for various PASCAL-like
languages [Des84, Section 6.

!The SDF translates the phrase “should not be declared in inner block of” to a term constructor.
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The representation of ASTs is handled by the virtual tree processor (VTP) [BCD*89,
Section 2|. It allows manipulation and persistent storage through an abstract interface
and includes editing operations for interactive environments. Trees are many-sorted by the
notion of formalisms. Each operator belongs to a phylum and must be declared with its
operand phyla. Formalisms then are collections of phyla. A tree belongs to the formalism
of its top operator, it can be constructed only if the subtrees’ phyla match the operands’
declared phyla. VTP can handle mutable positions in trees as contexts and annotations
can be attached to tree nodes (such that attribute grammars can be handled by the VTP).

Both the static and dynamic semantics of a language are specified using the TYPOL
component [Kah87, Des84]. The basic unit of specification is an inference rule with a
numerator and denominator. Variables may occur in both and can be instantiated for
each application of the rule. The numerator contains an unordered collection of premises.
The formulae in the premises fall into two categories, sequents and conditions. Conditions
are boolean expressions, which can be defined either again in TYPOL or by external
procedures. A sequent has the form A - C where A is its antecedent and C' its consequent;
C' must be a predicate, while A can have more general structure. (For example, one can
store type assumptions, but this structure is not supported specifically by the formalism.)
To structure the specifications further, rules can be grouped in named rule sets.

TYPOL specifications are compiled to Prolog for execution [Des84, Section 3.6]. Before
the translation, the occurring syntax trees are type checked according to the formalisms of
operators and types of variables are deduced. Furthermore, the arguments of predicates are
classified as in or out (termed the arguments’ kinds). The types and kinds of a predicate’s
arguments are used for overload resolution to avoid possible ambiguities in the generated
Prolog program. The order of rules is determined by placing the best matching choice
first, such that the more specific rules supersede the more general rules.

Type checking and -inference can be specified concisely in TYPOL [Des84, Sections 4,
5][Kah87, Section 6]. However, the specification resembles a logic programming formulation
of the type checking algorithm, both in the lookup of variables in the environment and in
the polymorphic let construct. The respective rules are [Kah87, Figure §]:

type-of
p F identz:o

pFident x : 7 (7 = inst(7))

FPm:p pEEy:m p+p'EE T

v /
pFlet P=Eyin By -7y (0" = gen(p, )

The functions gen (for generalization), inst (for instantiation) and + (merging of envi-
ronments with static scoping) must be programmed explicitly without support from the
formalism itself. The gen predicate relies on native auxiliary predicates to extract the Pro-
log variables from Prolog terms, but the exact relation between type variables and Prolog
variables is left implicit.

The rule set TYPE_OF describes a linear search through the environment. Scoping
and shadowing of variables are implicit in the order of the entries.

pkhz:o

xiobkx:io
P pry:otxio
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The exact relation between natural semantics as a formalism and the executable Prolog pro-
gram are left unspecific. Indeed, the intuitive isomorphism fails as Prolog interpretations
omit the occurs check in unification: According to the remarks in [Kah87, Section 6.4], the
type inferencer for MINIML erroneously assigns a recursive type to the expression \x.x x,
which is not typable in ML’s basic type discipline due to the constraint 7 = 7 — 7’ for
any type-assignment x : 7 and some 7’

5.1.5 Tinker Type

TINKERTYPE [LP03] is a language to manage independent parts of formal systems, which
are not necessarily type checkers, and assemble them into a complete system by selection.
Its formalism is based on features and clauses [LP03, Section 2]:

Fts a set of features
Cls C Names x P(Fts) x Cnt

The features Fts and Names a symbols (the name of a clause is also called a label). The
content Cnt of a clause is an uninterpreted string. Dependencies between features are
specified by a dependency relation

Dep C P(Fts) x P(Fts)

For a given set of features F, the closure(F) is the least superset F’ of F' that is closed
under the dependency relation. A set F' dominates a set F' if closure(F) 2O closure(F").

The assembly of a formal system for selected features Fy is guided by the feature
annotations of the clauses: A clause (n, F,c) is eligible for inclusion if closure(Fp) O
closure(F), that is the requested features include the features for which the clause is
relevant (under the dependency relation). If several clauses with the same name are eligible
for inclusion, the clause with the maximal set of features (with respect to D) is chosen, if
it exists. If the maximum does not exist, an error is signaled. This procedure ensures that
the most specific applicable clause is chosen (cf. [LP03, Section 3.1]).

Features also implement a consistency check based on a set of propositional formulae
over features that must be true for the set Fy of selected features. For instance, to capture
that in some variants (kfsub/ffsub) of F.. (see also [Car93]) joins cannot be computed
(feature calcjoin), but have to be supplied by the programmer (feature anotjoin), the
following formulae are checked during assembly [LP03, Section 5.6

sub A (bool V variant) = calcjoin @ anotjoin
—(kfsub A ffsub)
= (ffsub A calcjoin)

One of the applications of TINKERTYPE is the assembly of a type checker for a given set of
features of a type system. The clauses then contain branches of a Caml match statement
like the following [LP03, Section 4] (where T-If is the clause’s name and {# and #} delimit
its verbatim content).
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T-If
{#TmIf(fi,s1,s82,s83) —>
if tyeqv ctx (typeof ctx s) TyBool then
let tyS = typeof ctx s2 in
if tyeqv ctx tyS (typeof ctx s3) then tyS
else error fi "arms of conditional have different type"
else error fi "guard of conditional not a boolean"#}

This fragment computes the types of the guard expression s1 and the two arms s2, s3
and checks that s1 has type bool and s2, s3 have the same type (all checks are modulo
convertibility as is necessary in higher-order type systems [Bar91]). The result is the type
of s2.

The approach of TINKERTYPE to the generation of type checkers is to represent a
variety of checkers that are alike in their conventional implementation and that can be
composed by concatenating single clauses textually. The feature dependencies, in their
role of consistency checks [LP03, Figure 3-6, Section 5], determine which clauses cannot or
must be applied together. A similar mechanism may be useful if Tca libraries (Section 4.2)
are built and deployed by different users.

5.2 Constraints

A well-studied abstraction views type systems as the connection of two largely independent
components: A recursive traversal of the program’s parse tree generates a set of constraints
and the program is well-typed if these constraints have a solution — the type checking and
type inference problems are reduced to the constraint solution problem.

In this light, Hindley-Milner type inference is reduced to equality constraints over
the Herbrand universe of types [Wan87] and type inference with subtyping is reduced to
set containment [Mit91, AW93]. By encoding objects as records of functions [RedS88],
subtyping also yields type inference for object-oriented languages (and recursive types)
[EST95a, EST95b]. By considering type classes [WB89] as constraints, overloading can be
treated in a uniform manner [Jon94, Jon95]. A restricted form of dependent types allows
integer constraints over the types’ parameters [XP99]. More generally speaking, constraints
allow the designer of a type system to factor the essential consistency conditions that the
type system imposes on the language from the treatment of standard language constructs.

Solving constraints in this context does not necessarily mean exhibiting a syntactic
substitution of types for variables such that constraints are satisfied. Instead, it may also
mean checking for satisfiability, which is given by the existence of a wvaluation® (in the
sense of logic, e.g. [Gal86, Sections 3.3, 5.3|) assigning (semantic) types to type variables
and interpreting the constructors of type expressions as functions on types. In the case of
subtyping, for example, Aiken and Wimmers [AWO93, Section 2| distinguish syntactic type
expressions from types, which are ideals in a semantic domain [MPS86]. The solution of a
constraint problem is then a valuation assigning types to variables, such that all subtyping

2This term is not standard in the literature, the term “substitution” is often used. Because substitution
is a strictly syntactic notion in the remainder of this thesis, I prefer to introduce “valuation” instead.
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constraints are satisfied. Instead of exhibiting solutions, the type inferencer only checks
for their existence. This is achieved [AW93, Section 7] by successively transforming a
constraint system to a simpler form such that the set of solutions does not change, but
such that the result is satisfiable by its structure. Simplification for subtyping constraints
is done (essentially) by decomposition® and transitivity (similar to first-order unification
[MMS82, BS01]). Decomposition simplifies for example a constraint s — ¢t < s’ — ¢’ into
two constraints s’ < s (contravariance) and ¢t < t’. Transitivity adds for two constraints
s < a,a <t a new constraint s < t. Satisfiability is then checked indirectly. Aiken
and Wimmers prove that if a constraint set is fully simplified, that is no simplification
rule applies, and it does not contain a constraint that is unsatisfiable (or inconsistent) by
incompatible type constructors, then the constraint set is satisfiable.

Since constraint sets in subtyping grow linearly with the program size, a proper notion
of simplification is required that effectively reduces, rather than enlarges, the constraint
set. Pottier [Pot98, Pot01] gives such a method. (Eifrig et al. [EST95b, Appendix A]
propose a precursor.) Again, his simplification is based on closure of constraints under
decomposition and transitivity to check for satisfiability. Using the notions of reachability
and polarity, he removes constraints that do not restrict the result type of the expression
under consideration — these constraints can be discarded without influencing the solutions
of the constraint system in an essential manner.

This exemplary introduction already clarifies the relation of constraint-based type sys-
tems to TcaG: Briefly put, TcaG is a framework to formalize specifically that part of typing
problems that constraint-based systems assume as given, namely the recursive traversal of
programs. Rather than taking the involved typing rules as straightforward, it investigates
their structure. TcCG cannot be, and therefore does not aim to be, a general mechanism
for solving constraints. (Although for example the decomposition rules of subtype closure
can be captured, the complementary transitivity rule would require multi-headed* Tca
rules, which again would contradict the tree structure of proofs.

To give a more detailed impression of this claimed difference, I review briefly the HM (X))
framework, a widely recognized abstraction from constraint-based type systems in Sec-
tion 5.2.1 and survey several formulations of constraint solutions in Section 5.2.2.

5.2.1 The HM(X) Framework

Sulzmann [Sul00, OSW99] presents a framework HM(X) for type inference with con-
straints. The form of the occurring constraints is the parameter X, a constraint system.
Sulzmann aims at identifying sufficient conditions on X for type inference with constraints
from X to be sound and complete [Sul00, Sections 3.3, 4.3] for a A-calculus with polymor-
phic let [Mil78].

A cylindric constraint system [Sul00, Section 3.1] is a structure

(Q,F¢, Var, {3a | a € Var})

in which © is the set of tokens or (primitive) constraints and ¢ is entailment between
(finite) sets of constraints. (These sets are also written as a logical conjunction A of

3The term is not used in [AW93], but in related literature.
4In the sense of [Frii98], see also Section 5.2.2.3.
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primitive constraints.) Entailment satisfies C' ¢ D for each D € C and transitivity. The
projection operators

Ja : P(Q) — P(Q)

(for each variable o) must be compatible with entailment [Sul00, Definition 3] in the
following sense.

CH3Ja.C CHF' D = Fa.CF°3Ja.D Ja.{C,Ja.D} =° {(3a.C), (3a.D)}

A constraint system is sound [Sul00, Definition 9] if its projection operators can be inter-
preted as the existence of monotypes p that satisfy the constraint.

The framework extends the Hindley-Milner calculus [Mil78, DM82], which allows poly-
morphism by type schemes ¢ = Va.7 in judgments I' - e : . Sulzmann’s generalization
adds a constraint C' to both the type schemes and judgments

oc=Va.C=r1 Cl'kFe:o.

This formulation generalizes earlier work by Jones on qualified types [Jon95, Jon94|, which
again generalizes Haskell’s type class formalism [WB89].

The main point of constraints in type derivations [Sul00, Section 3.2] is seen in the
following typing rule. A part D of the “current” constraint C' from a judgement can be
transferred to a type scheme, thus restricting the possible instantiations of the bound
variables @. Furthermore, Sulzmann requires that there is at least one possible instantia-
tion by keeping 3&.D, which inhibits unsatisfiable constraints in type schemes (cf. [Sul00,
Section 3.5] for a comparison with other policies).

CADTFe:r a¢FV(C)UFV(D)

I
(v Intro) CA3&.DTFe:VaD=r1

In the corresponding elimination rule, the constraint associated with the type scheme must
be checked for the desired instantiation of the quantified variables.
C.,'ke:VYa.D =1 CF°[7/alD

C,T'ke:[t/a]r’

(V Elim)

Sulzmann’s interpretation of type schemes justifies this reasoning [Sul00, Section 3.3.1].
The denotation of a type schema is the set of monotypes that are instances of the type 7
and satisfy the constraint C.

sem(Va.C = 1) = (| {sem([/alr) |+ [i/6]C}

The remainder of the typing rules merely propagate constraints. Proofs have a normal
form [CDDK86, DM82] where (V Intro) appears only at let-bound variables and (V Elim)
appears only at variable references [Sul00, Figure 3.2].

In Chapter 4, Sulzmann investigates type inference for the HM(X) framework. Whereas
the logical, normalized typing rules (see [Sul00, Figure 3.2]) merely collect and eliminate
constraints from different branches of the derivation, type inference also checks them for
satisfiability and simplifies them. The central notion of this process is normalization [Sul00,
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Section 4.2], which abstracts from the simplification in the introduction to this Section 5.2.
Sulzmann starts from a term constraint system with unitary unification, that is a system
where (primitive) constraints are terms that have unitary unifiers. He first introduces
a semi-lattice structure with (<, U) on constraint problems, which are pairs (C,¢) of
constraints and substitutions. (¢; Ll ¢ exploits the lattice structure on substitutions, see
Section 2.1.2):

(D1, ¢1) U (D2, ¢2) = (¢(D1 A D3),¢) where ¢ = ¢1 Ll ¢

Given a constraint problem (D, ¢), the least solved constraint problem (C,) such that
(D, ¢) < (Cv) is the principal normal form of (D, ¢). Principal normal forms are unique
up to =° (equivalence under constraint entailment) and normalize denotes the function
from a constraint problem to its principal normal form (if it exists). Principal normal
forms defined in this way are not necessarily equivalent up to variable renaming [Sul00,
Definition 24, Lemma 24]. Type inference [Sul00, Figure 4.1] is then defined by collecting
and normalizing the occurring constraints in each derivation step.

5.2.2 Solving Constraints

Although TcG does not aim to be a constraint solver, several of the analysis engines
presented in this section are used for type inference and their merits relative to TCG must
be clarified. The constraint handling rules in Section 5.2.2.3 in particular have generated
some interest in describing type checkers in a declarative language. A second motivation
for presenting a selection of available systems is a possible future integration to TcaG
(Section 6.2.3).

5.2.2.1 The Berkeley Analysis Engine (BANE)

Aiken et al. [AFFS98] present a toolkit BANE (Berkeley Analysis Engine) for construct-
ing program analyses. BANE is a library that supports the solution of constraints over
sorts Term, FlowTerm, and Set. Each sort s provides a constraint symbol C, and a solver
for these constraints. The sort Term interprets C as symmetric equality (optionally with
recursive constraints). FlowTerm supports directed flow analyses with constructed val-
ues, Set enhances this capability with set intersection, union and a restricted complement
[AW93]. All sorts have common simplification rules for transitivity and contravariant posi-
tions. Constraints over different sorts can be mixed by declaring constructor symbols with
arguments from different sorts. In decomposing constraints, the corresponding constraint
symbols are chosen for each argument position.

Constraints for a given program must be generated by a hand-written traversal function
[AFFS98, Section 3] and by calls to the BANE constructor functions. After constraint
solution, the result must be interpreted as the desired solution.

BANE is reported to perform equivalently to hand-written constraint solvers and to
sometimes even outperform these due to specialized optimizations in the BANE solver.
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5.2.2.2 Wallace and Dalton

Type inference with subtyping must solve the satisfiability problem. Although the problem
does not permit an efficient algorithm in general (see [Sim03, Section 1.1] for a survey on
the complexity of different subtyping problems), it can be argued that the constraints
arising from practical programs may be handled with sufficiently optimized constraint
solvers. Two such solvers, Wallace [Pot00] and Dalton [Sim03], are available as Caml
libraries. Both libraries draw their efficiency from constraint simplification [Pot98, Pot01]
which reduces the size of the constraint systems interleaved with solving the satisfiability
problem.

5.2.2.3 Constraint handling rules

Constraint handling rules (CHR) are a formalism for specifying constraint solvers [Frii98].
Rules are divided into [Fri98, Definition 4.1] simplification rules

Hl..Hi<=>G1..Gj|Bl..Bk

and propagation rules®
Hl..Hi==>G1..Gj | B, .. By

In these rules, Hy..H, is the (multi-) head, B .. By is the body and G, ..G; are the guards.

Rules operate on a state (F, FE, D), where F', E, and D are sets of constraints. F
contains the goals yet be solved, E the constraints to be simplified by rules, and D the
solved built-in constraints, including equality. The process continues until either F' be-
comes empty (written as true) and E does not permit further simplification, or until D
becomes fail. In the first case, the goals initially in /' have been solved successfully,
otherwise the constraints do not have a solution. Processing happens in four ways [Frii98,
Definition 4.4]. Solve chooses a built-in constraint C' from F' and moves it to D, possibly
simplifying D A C. Introduce moves a constraint from F' to E for further processing. Sim-
plify chooses a simplification rule H<=>G | B such that the head atoms H are unifiable
with atoms H' C F and G is satisfied from D and then introduces B to the F' component of
the result state. Thus the body of the rule contains new goals to be solved, while matched
head atoms are removed from E. Propagate chooses propagation rule H==>G | B and
proceeds in the same way as simplify, except that it leaves the matched atoms H' in E
instead of removing them.

Multi-headed rules with guards are essential to solving constraints [Frii98, Section 3.2].
With them, for example, one can specify the closure under transitivity as a propagation
rule [Frii98, Section 2].

transitivity @ X=<Y, Y=<Z ==> X=<Z

Constraint handling rules have recently attracted interest for specifying and imple-
menting constraint-based type inference [Sul01, SS01, SS04, AF02, AF04]. Sulzmann and
Stuckey [Sul01, SS01, SS04] instantiate the HM(X) framework (see Section 5.2.1). In

®The simpagation rules Hy .. H; \ Hiy1 .. Hi<=>G1 .. G, | By .. By in [Frii98, Definition 4.1] can be
understood as an abbreviation [Frii98, Section 4.1].
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HM(CHR) the constraint system can be given by user-defined constraint handling rules,
while the type inference algorithm, including polymorphic let, remains fixed. The authors
apply their framework to checking of metric units in numerical computations, overloading,
record types and security protocols.

Alves and Florido [AF02, AF04] follow a similar path, but specify their type inference
engine as Horn clauses to be executed in Prolog, for which CHR solvers are available [Frii98,
Section 7]. Unfortunately their treatment of let polymorphism, a possible connection point
with T'CG’s intentions, is not presented fully. Like the approach in Section 5.1.4, they
represent type variables as Prolog variables and employ predicates gen and inst to handle
type schemes, but they do not make their implementation precise.

5.3 Logical Frameworks

Logical frameworks [HHP93, Pfe96, Pfe01] offer environments for expressing logics and
provide generic tools for reasoning in these logics. They reduce the effort necessary to
build theorem provers and proof assistants for specific logics. By using well-tested core
implementations they increase the confidence in the conducted proofs. The presentation
in Section 5.3.1 is based on the survey by Pfenning [Pfe01]. The presented material has
been selected based on similarities with T'cG. To highlight the similarities and clarify the
differences, we formalize type inference for MINIML in Isabelle [Pau94] in Section 5.3.2,
including a novel approach to polymorphic let.

5.3.1 Overview

If a logical framework is to support reasoning in a given logic, the object logic, then three
notions must be represented in the framework’s meta logic: The object logic’s (abstract)
syntax, its derivations and its proof search. It is crucial that the representation is adequate,
meaning that exactly the notions of the object logic can be represented and exactly the
valid object-logic proofs can be conducted. (Some authors prefer to call the representation
faithful if the representation does not permit theorems in the meta logic that are not
derivable in the object logic and adequate if that representation is complete.) An adequate
representation allows then to reason in the meta logic, but to interpret the reasoning in the
object logic. The following subsections can but give a brief sketch of these considerations.

5.3.1.1 Syntax

First-order terms provide a direct representation function -1 of object terms, given an
enumeration i, o, ... of the variables and constants c’fc for all k-ary function symbols f.

"x, = var(n)
TR )T = (T )

The representation of quantifiers is

"Vor. A7 = forall("z7,"A")
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which requires an explicit treatment of bound names.

Adequacy of "7 requires that exactly the object level terms can be represented. This
does not hold in general because general first-order terms may have, for example, non-
variable terms in the first argument of forall and a non-numeric argument to var. There-
fore, adequacy must be ensured by some external means.® (Pfenning [Pfe01] uses a Horn-
clause theory.) Furthermore, since we expect "TA7T=T"A"" for A = A, equivalence modulo
a-conversion must be implemented, also substitution must respect the bound names and
must be specified explicitly. Where object logics involve bound names frequently and these
must have their usual properties, a first-order representation is cumbersome.

Higher-order abstract syntax (HOAS) [PES88] solves this problem. It is based on a
(simply) typed lambda calculus. A suitable choice of types ensures that only adequate
terms can be constructed, while the meta-level A-abstraction treats bound names. As a
general principle, object-level bound names are represented by meta-level bound names.
For example, the V quantifier is represented by a constant forall.

"Vz. A7 = forall(Az." A7)
A substitution A[t/x] is represented by a (-redex
(Ax.A)t

which again treats the necessary renamings in the meta logic.

For proof search, HOAS requires unification of A-terms modulo - and a-conversion.
The problem of higher-order unification [Hue75, Dow01] is in general undecidable (although
[-equivalence in the simply typed A-calculus is decidable due to strong normalization).
However, most concrete unification problems occurring in proof search have been found
to be special cases [Pfe01][Pau94, Section 1.3.1]. The restriction to higher-order patterns
[Mil91] has a deterministic unification algorithm (e.g. [Nip93]). Where the restriction does
not apply, constraints between unknowns (flex-flex constraints) remain in the solution and
these can be instantiated by the user explicitly in the interactive setting of proof assistants.

5.3.1.2 Derivations

To encode derivations, the inference rules of the object logic must be encoded in the frame-
work’s meta logic. The one closest to T'CG seems to be intuitionistic natural deduction
with Hereditary Harrop Formulae [MNPS91, Mil91]. This meta logic encodes inference
rules as higher-order axioms [Pau86] with the following form:

H:P|T|H1/\H2 |H13H2|V$H (531)

The essential differences to Horn clause logic are embedded implication and embedded quan-
tification in the last cases. These permit parametric and hypothetical reasoning (Sec-
tion 1.2.2) to be treated. As an example application of embedded implication, consider
the encoding of (=1).

VAVB.((nd(A) D nd(B)) D nd(A = B))

SFor an example in type inference see [Gas01].
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The predicate nd denotes “derivable in natural deduction”, = is the constant representing
object-level implication and D is meta-level implication. Embedded quantification can be
observed in the encoding of (VI), which uses an embedded quantifier Yy to capture the
eigenvariable condition on y (Section 1.2.2).

VA((Yy.nd(Ay)) D nd(forall(Az.Ax)))

The meta-level A-abstraction is taken from higher-order abstract syntax. The applica-
tion Az can be read as “A which possibly contains z”.

Miller et al. [MNPS91] observe that Hereditary Harrop Formulae allow for a direct
proof search similar to SLD resolution on Horn clauses. This observation leads to the
design of AProLOG [Mil91, Fel93, NM98|, a logic programming language with clauses
from H.

Comparison Towards a comparison with TCG, observe that quantification and impli-
cation are similar to those of nested T'CG rules (Section 2.2). Embedded quantification
in H also plays the role of context modification (Section 2.2) in T'cG. For proof search
(Section 5.3.1.3), meta-level assumptions are represented in sequents and meta-level impli-
cation is interpreted by adding the premise to the sequent’s antecedent (Section 1.2.2.2).
These connections are not surprising, given that TCG’s formalism is explicitly based on an
analysis of logical calculi (Section 1.2.2).

Encoding Proofs The derivability considered so far does not yield derivations as ob-
jects. For many applications (e.g. [Nec97]) it is desirable to have derivations encoded,
for example for verifying the constructed proof after it is completed, thus increasing the
confidence in its correctness. Dependently typed A-calculi form a basis for this encod-
ing (e.g. [HHP93]), using the Curry-Howard isomorphism [How80, CH88, ML84, Bar91].
Dependent types arise from meta-level quantification (written as II).

' A: type '-Tz:A-M:B
'E(Azx:AM):1lxz: AB

5.3.1.3 Proof Search

Once a logic is captured in a framework, a method to construct proofs is required. Since
the application is mostly an interactive environment, proof search does not need to be
automatic nor complete — the user can guide the framework to find proofs. A wide-
spread approach is to have the user apply a tactic, which is a function from theorems
to theorems, where a theorem represents a partially completed proof. The tactic’s result
theorem is constructed such that whenever it is proven, then the input theorem is also
proven. (A tactic may also return alternative proof attempts [Pau94], any of which can
be completed to complete the input proof.) In the original proposal [GMWT79], theorem
is an abstract data type and tactics are the only operations on that type. If the tactics
allow only logically valid inference steps to be conducted, then any constructed proof will
be valid as well. In the setting of Hereditary Harrop Formulae, tactics resolve open goals
in a sequent-style meta-logic [Pfe01, Section 4.1][Pau94, Chapter 6].
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Frequently, a sequence of tactics re-occurs in interactive proofs several times. It is then
desirable to name that tactic and refer to the name later on. Following [GMW79], tactics
are usually programmed in a meta-level programming language and that language’s binding
constructs can be used to compose and name tactics. Using higher-order programming
[GMWT9, Fel93] frequent patterns of composition can also be coded and named. These
compositions are termed tacticals, they are functions from tactics to tactics. For example,
t; ORELSE t, applies tactic t;. If it succeeds, its result is the result of the entire tactic.
Otherwise, the result is obtained by applying ¢,. Similar constructs can be given for
sequencing and repetition (e.g. [Pau94, Chapter 7]) and new tacticals can be provided in
the meta-language if the need arises.

5.3.2 MiniML in Isabelle — A Case Study

This section contains the development of type inference for MINIML [CDDKS6] in Is-
ABELLE [Pau89, Pau94|. The language includes polymorphic let, which is commonly be-
lieved to be fundamentally incompatible with higher-order abstract syntax [Pfe88, DP91,
Han98, 1ia97, Lia02]. However, a closer examination in Section 5.3.2.3 shows that the
problematic generalization operation can be accomplished using the definition of higher-
order pattern unification [Mil91, Nip93]. The ISABELLE source code in this section is
deliberately shown in plain textual form, disregarding the presentation facilities for theo-
ries NPWO02, Chapter 4]. I hope to make more clear in this manner the actual working of
the formalization.

5.3.2.1 Syntax

[SABELLE employs a polymorphically typed A-calculus for terms. We introduce new types
for each category of terms we would like to distinguish: Types ty, expressions exp, type
schemes tys are canonical, the auxiliary index and tylst allow a single type scheme to
quantify over a set of type variables in Section 5.3.2.3. Finally, the object-level proposi-
tions o represent typing judgments.

types
o
ty
exp
tys
index
tylst

The terms of these types are specified in ISABELLE by constants denoting term construc-
tors. We start to define the types ty with the following constants. (Further ones can
obviously be added if desired. The infixr keyword is described below.)

int :: ty
bool :: ty
fun :: "[ ty, ty ] => ty" (infixr "->" 40)
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The indexes to type lists are represented by constants zi (zero index) and ni (next indezx).

zi :: index
ni :: "index => index"

The type list constants” have mizfiz declarations. The numerical annotations are priorities
[Pau94, Section 10.1] which establish precedences of non-terminals. If non-terminal A
derives sentence v with priority p, then that derivation can be used in some production B —
.- AW ... where A has priority ¢, if p > ¢. A left-associative infix operator o with
precedence p can thus be realized by a production A®) — A® o AP+ and likewise for right-
associative operators. The keywords infixl and infixr abbreviate these productions.

cons :: "[ ty, tylst 1 => tylst" (infixr "++" 70)
nil :: "tylst" ("[1" 1000)

On type lists we also provide an auxiliary constant nth denoting access to some element
in the list. Predicate get_nth will later be axiomatized to actually yield that type from a
specific list constant.

nth :: "[ tylst, index ] => ty"
get_nth :: "[ tylst, index, ty ] => o"

MINIML expressions are also constants with mixfix syntax as specified by the following
declarations.

If :: "[ exp, exp, exp ] => exp" ("if _ then _ else _" [ 0,41,40 ] 40)
Lam :: "(exp => exp) => exp" (binder "lam" 11)

App :: "[ exp, exp ] => exp" (infixl "‘" 30)

LET :: "[ exp, tys, (exp => exp) ] => exp"

Constants If and App are straightforward. (We have to add an auxiliary operator ¢ for
curried application to avoid ambiguities with meta-level function application in ISABELLE’s
Pure theory.) The constant Lam represents an abstraction Az.e in higher-order abstract
syntax by a term Lam(%z.e) (where % is ISABELLE’s meta-level \-abstraction, see also
Section 5.3.2.1, [Pfe01, Section 2.2]). The declaration binder in this constant’s declaration
tells ISABELLE to generate the necessary translations from external to internal presentation
and vice versa. In case of constant LET with its special sequence of arguments, we must
provide translations explicitly. LET takes as arguments the bound expression, its inferred
type scheme and the body expression. The bound variable is implicit in the A-abstraction
on the let body. To provide the usual external syntax for the programmer, we first introduce
an auxilary constant QLET, which will only be created temporarily during the parse process
and whose external presentation is the usual one. Note that the bound variable is an
explicit parameter of that constant, that is the temporary representation is first order.

"Theory MiniML is derived from Pure, the theory containing only ISABELLE’s meta-logic, such that
polymorphic lists as in ISABELLE/HOL are not available. To keep the presentation simple, we introduce
only the required monomorphic instance.
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syntax
"QLET" :: "[ exp, ty, exp, exp ] => exp"
("let _ : _ = _din _" [ 0,0,0,0 ] 29)
The intermediate presentation must then be translated to the internal form LET. The \-
abstraction contained in the rewrite rule effects the name capture on the bound variable.

translations
(exp) "let x : t = el in e2" == (exp) "LET(el, t, %x. e2)"

A similar procedure, albeit without bound names, applies to the infix notation for + and *.
The intermediate constants take two parameters.

"Oplus" :: "[ exp, exp ] => exp" (infixl "+" 15)
"O@mul" :: "[ exp, exp ] => exp" (infixl "x" 16)

These constants have two parameters, but type checking works on expressions with curried
application. Two further translations thus pre-process the parse tree to use the (also
declared) constants cplus and cmul.

(exp) "el + e2" == (exp) "cplus ¢ el ¢ e2"
(exp) "el *x e2" == (exp) "cmul ¢ el ‘ e2"

Integer constants are embedded to the expressions by the constant i1it (for integer literal).
The mixifix annotation "_" allows ISABELLE to convert the built-in numbers to expressions
during parsing.

ilit :: num => exp ("_" 1000)

There are two type assignment operators. The first one is used for typing judgements
and A-bound identifiers. The second one assigns a type scheme, rather than a type, to an
identifier. We use a different symbol to avoid ambiguities.

typeof :: "[ exp, ty 1 => o" (infixl ":" 10)
tYSOf N "[ exp, tys ] => o" (il’lfin "t 10)

Finally, the object level propositions are identified with meta-level propositions by the
constant Trueprop, which represents derivability in the sense of [Pfe01, Section 3] (see also
Section 5.3.1.2, Remark 1.2.1). We use the mixfix notation "_" again to insert Trueprop
automatically where necessary.

Trueprop :: "o => prop" ("(L)" 7)
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5.3.2.2 Simply Typed M-Calculus

Type checking rules are represented by ISABELLE theorems, which are named Hereditary
Harrop Formulae (Section 5.3.1). For example, function application

'Ff:s—t T'kFe:s
'k fe:t

becomes the theorem funE.®
funE "[| f : s >t; e : 8 |] =>f ¢ e : t"
In a similar manner, the constant If is checked by
tyif "[|l a : bool; b : t; ¢ : t |] ==> if a then b else c : t"
The typing rule for A-abstraction
Nr:ske:t
'FAze:s—t

involves higher-order abstract syntax and inner quantification.

funI "(!''y . (y : s ==> (e(y) : t)))
==> lam x . e(x) : s -> t"

We can read the consequence lam x. e(x) directly as “a A-abstraction, where x may
occur in e”. When the rule is applied, the conclusion has been parsed into the internal
form Lam(%x.e(x)). To solve a goal Lam(%z.E), where z may occur in F, higher-order
unification [Hue75, Nip93, Dow01] recursively matches the term structure of E against
variable e. The meta-level treatment of bound names ensures that the bound occurrences
of z in F become bound occurrences of x in e.

After this unification is complete, %x.e(x) is instantiated to a A\-abstraction a-equivalent
to %z.E. The premise of funI exploits this representation. It introduces a fresh name y
(an eigenvariable in the sense of Section 1.2.2) and establishes the new goal

y:s=>e(y) :t

The application e (y) after S-reduction reveals the term structure of the body expression E
again, but all references to the bound z are replaced by the fresh y.
The other constants can be trivially checked, we only mention them for completeness.

tyilit "ilit (i :: num) : int"
typlus "cplus : int -> int -> int"
tymul "cmul : int -> int -> int"

In this setup, type inference for the simply typed A calculus can be conducted by repeatedly
applying the given typing rules to the first open goal until no goals remain. In this process,
ISABELLE’s unknowns (existentially quantified variables) play the role of type variables to
be instantiated during the inference.

8==> denotes meta-level implication, the brackets [| and |] surround multiple premises, which are
separated by ;. The notation : is parsed to constant typeof defined above, ¢ is App. All identifiers that
are not declared as constants are considered variables and these are quantified at the theorem. Equivalently,
we could have prefixed the expression by !!f,e,s,t, representing meta-level quantification.
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Instantiation Instantiation of type schemes occurs at variables references [DM82]. The
corresponding ISABELLE rule is (binder ALL is introduced in Section 5.3.2.3):

var "[| x :*% ALL a . t(a); inst(t(bs),t’) |] ==> x : t>"

Note how in the type scheme t the bound name a is replaced by a fresh unknown bs,
representing a list of type unknowns. The predicate inst produces a copy of t, where
all references by nth have been replaced by fresh type unknowns. The case distinction is
straightforward, except for inst_var. That rule tentatively unifies its argument with a
constant TYV, which occurs nowhere else. Hence, the unification succeeds iff it meets an
unknown (which represents a type variable).”

inst_nth "get_nth(bs,i,ty) ==> inst(nth(bs,i),ty)"

inst_var "inst(TYV(a),a)"

inst_int "inst(int, int)"

inst_bool "inst(bool, bool)"

inst_fun "[| inst(s,s’); inst(t,t’) |] ==> inst(s -> t, s’ -> t’)"

We remove the auxiliary constructor TYV later on by rewriting with
remove_TYV "TYV(a) == a"

The auxiliary predicate get_nth uses a standard Prolog programming technique: It in-
stantiates its second parameter, a list of fresh unknowns, while it retrieves a desired entry.
Hence the first time that entry 7 is accessed, a new unknown is created. All later references
to ¢ return the same unknown.

get_nth_zi "get_nth(a ++ as, zi, a)"
get_nth_ni "get_nth(as,i,a) ==> get_nth(b ++ as, ni(i), a)"

5.3.2.3 Polymorphic let

Consider now the rule for polymorphic let

'Fe:s a=FV(s)\FV(I') TI'z:Vaske:t
'Fletx=cine :t

(let)

We will represent type schemes in the canonical way [Pfe01] by mapping quantified type
variables to meta-level bound names. (This is the same procedure as for A bound names
in Lam.) We represent the vector & by a single bound name z which is indexed to provide
simultaneous abstraction over several variables.

A1l :: "(tylst => ty) => tys" (binder "ALL" 20)

A direct specification of (let) fails:

9An alternative solution consists in using match_tac [Pau94, Section 6.1.3] with the rules for type
constants. Matching fails if any unknowns in the goal would be instantiated. If all constants are tried,
only variables can remain.
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letI0 "[|
e : s;
gen(z,zi,s,li, s’);
(My. (y :x A11(s’)) ==> e’(y) : t)
|] ==> let x : Al1l(s’) = e in e’ (x) : t"

In this rendering, the premise requests name capture of the & in the generalized type s’
— an operation that is carefully avoided in higher-order abstract syntax. It has been
observed [Han98, Lia97, Lia02] that this is a fundamental obstacle to programming ML
type inference in languages with HOAS, in particular APROLOG [NM98]. Furthermore, the
second premise requires a computation with meta-level objects, the unknowns contained
in s and I". I now present the solution to both problems.

Put the other way around, we must enable the type s in (let) to contain the bound
variables . In ISABELLE terminology, this means that we must apply the variable s to
the bound name z, in the same way that we have applied e(x) in the conclusion of funI
to allow the bound x to appear in e. The first premise of the 1etI theorem exhibits this
strategy: It surrounds both the type inference on e and the generalization with a meta-
level quantifier that introduces a new name z standing for the vector . Now z may appear
in s and s’, the generalized version of s.°

letI "[|
(Mt z (e : s(z)) &
(gen(z,zi,s(2),1i, s’°(2)))));
(My. (y :* A11(s?)) ==> e’(y) : t)
|] ==> let x : Al11(s’) = e in e’ (x) : t"

The second premise and the conclusion follow the pattern of funI above, except for A11(s’)
which notes down the inferred type scheme for later checks.

Identifying Generic Variables We will employ the treatment of scopes in higher-
order pattern unification [Nip93] to identify the generic variables & in (let).!! Unification
treats scoping by applying unknowns to those bound names that may legitimately occur
in substitutions for the unknown.'? When u occurs nested in some A-abstractions

Ayt N (- u(2) )

then 2 C {y; .. yn}, because only the y; may occur in substitutions for u. If u also occurs
in a smaller context

Ay ANYnge- (o u(2) )

10The auxiliary symbol P&Q is not part of ISABELLE’s meta-logic, but is introduced as an abbreviation
for P — Q = true.

HRémy [Rém92, Section 2] proposes a similar identification scheme to improve the efficiency of ML
type inference. He assigns an integer, the rank, to each type variable and typing judgment such that the
variable can be generalized iff its rank is equal to the rank of the first let premise. It is instructive to
compare his proofs to the ones given below.

12Miller [Mil92] proposes a different approach.
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then 2 C {y1 .. yn_r} C {v1 .. yn}. By this reasoning, the bound names Z given indicate
the highest nesting level at which u occurs.

Consider now again the meta-level quantification ! !z in the first premise of 1letI. Goals
in ISABELLE are represented by closed terms of the form [Pau94, Section 1.5.2]

Vior .. 0] = ¢

At each !'z quantification, the set 7 is enlarged. Hence, like in the A-term above, the
bound names at every unknown indicate at which outermost nesting let-level the unknown
occurs, and this is precisely the information required by the gen predicate.

In the remainder of this section, we will also use for brevity

(uet):=(ueFV()) and u(z) et

to say that u occurs in t and is applied to Z in this occurrence.'3
The goal gen in letI has two auxiliary parameters zi and 1i, which implement the
numbering of several generalized variables. Let us assume for the theoretical development

that gen could instantiate s’ directly with a A abstraction.
s'+— %i.s  where u = {u(z) €s|ze€ z} (5.3.2)

We will see later how this instantiation is effected in ISABELLE.

Correctness of gen Let us confuse types and type schemes for the moment, because
they play similar roles in the subsequent development. Then our typing judgments have
the form

VZJyr:s1..Yn:sn] = et

Consider now the nesting of lam expressions and expressions in the first premise of let.
Each let application introduces a new name z into Z. (We disregard the y added to Z by
funI.) Let us mentally annotate each y, with that subset Z; C & that was noted at the
typing judgment that added y; to the type assumptions. We then have judgments

VE [yt syt s, = et
5.3.1 DEFINITION. Let
J = V:E[[yffl . tl .. y;lf;n . tn]] = €. thrl

be a typing judgement and let z,,, := . We say that J is a proper typing judgment iff
forallie1..n+1and u(2) €t

FCH and 2CE = 3y i CTAuEl (5.3.3)

13 A more common notation is t[u(Z)], where t denotes a context, which is a term with a designated place
containing u(Z). We feel that the chosen € notation expresses better that u is a free variable in ¢ in the
first place and is applied to z additionally.
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5.3.2 PROPOSITION. Let J be a proper unsolved typing judgment and Jo be the judgment
once it has been proven by the typing theorems. Then Jo is a proper typing judgement.

Proof. We use the notation from Definition 5.3.1 for the assumption that J is a proper
typing judgement. We have to show that for alli € 1 .. n+ 1 and v(Z') € t;0

7Ca and FCE = I, CiHAvELo (5.3.4)

Application of substitutions respects bound names, applying ¢ never enlarges the set of
bound names at a variable [Hue75, Nip93]. Therefore, the first part of (5.3.4) is immediate
by assumption (5.3.3). For the second part, fix some v(Z’) € t;0 such that v € t;o with
I; C Z;. We show that z’ C #;. There must be some w;(2;) € t; and u;(2;) € t; with'*
o(u;) = s;[v] and o(u;) = s;[v] (possibly u; = v and/or u; = v). We have 2’ C Z; by
definition of substitution, Z; C z; by (5.3.3) and finally Z; C ; by assumption.

The converse is proven by induction on the size of the proof. If the proof is by using
a typing assumption, then ¢, is unified with one of the ¢; .. ¢, and o is the unifier. Fix
some v(Z') € t;o such that 2/ C Z;. We show that there is some y; such that z; C %;
and v € tjo. By definition of unification, there is a maximal set {uy(Z;) € t;, | wp #
v, 0(ug) = Sg|v]}rex. If the set is empty, then v € ¢; and we are done by (5.3.3). Otherwise,
by definition of unification, we have 2’ = (. Z. Since 2’ C Z;, the set {k | 2, C ;} is not
empty. Select that k such that #;_ is minimal. (The minimum exists because the y; have
been inserted linearly, hence the #; are linearly ordered w.r.t. C.) Then we have Z, = 7;, .
(Suppose this was not the case, that is Z; C Z;,. Then by assumption (5.3.3), there was
some t;,, [ug] with some yet smaller Ty, , contradicting minimality of Z;, .) With this result,
we have

_ _ choice of z;; _
T;, = 2k C X;

The same reasoning applies for var with inst, since inst only introduces fresh variables,
which are annotated by .

At rule funI, we prove a goal

J = Vj'[[¢1 .. (bn]] = lam y.e : tpt1 — Tnyo

where (5.3.3) holds. The premise of funI generates a goal'®

J=VYE[¢1 .. bn,y" tns1] = €ty

We have only shifted ¢,,1 by one position, hence that goal again satisfies (5.3.3). By
induction hypothesis, the instance Jo satisfies (5.3.4). We show that J'o satisfies (5.3.4).
The claim is clear for any ¢ < n by induction hypothesis. For : = n+ 1 and i = n + 2
observe that these types are inserted under the same z,,.1 = 7,12 =  and use the induction
hypothesis.

For funE, we solve

T =Vir.. o] = fee:t

MNotation for contexts s; and 55.
15Recall that we include in & only the z introduced in let.
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where (5.3.3) holds. The goals J;, J, we generate obviously satisfy (5.3.3), hence, the
proof for J'o also contains two proofs for Jio, Jyo, for which (5.3.4) holds by induction
hypothesis. But then (5.3.4) is immediate for J'c. Rule tyif and the rules for constants
are treated likewise.

For letI, we prove (we omit the type scheme annotation for y for brevity)

J =Vi.]p1..¢n) = let y=e in € : t
where (5.3.3) holds. The two main judgments are
Jy =Vi,z b1 .. ¢n] = e:s5(F,2) S =VI[p1.. Pn,y"  ALL(s)] =€ : t

Suppose we are given a proof of J'o. It contains proofs for Jio and Jyo. Both J; and J;
satisfy (5.3.3) directly: For the ¢y .. ¢,, we use (5.3.3), and the unknown s fulfills (5.3.3).
For J, observe that the abstraction s, not the application s'(z) appears in the new type
assumption, hence (5.3.3) is satisfied with the annotation y®. By induction hypothesis,
Jio, Joo satisfy (5.3.4). In particular, this is the case for the derived type t, which is
copied to the conclusion Jo, which hence also fulfills (5.3.4). )

Generalization We exploit the Proposition 5.3.2 to implement the predicate gen. It
takes five parameters: The bound name which is introduced for quantified variables, the
last used index in the vector & and the type to be generalized. Parameters 4 and 5 are the
result, consisting of the new last used index and the generalized type.

Let us consider the straightforward cases of function-, boolean and integer types first.
Note how the last used index is handed on between the premises of gen_fun to ensure that
each index is used at most once. Note also that these rules cannot be applied arbitrarily,
precisely because they would instantiate remaining unknowns in the types; Section 5.3.2.4
gives the necessary tactics for applying them in correct order.

gen_fun "[| gen(z,i,s,i’,s’); gen(z,i’,t,i’’,t’) |[]
==> gen(z,i,s -> t, i’’, s’ -> t’)"

gen_int '"gen(z,i,int,i,int)"

gen_bool "gen(z,i,bool,i,bool)"

The main case arises when gen meets an unknown wu, applied to various bound names 2z
(for unification [Nip93]) in a goal

gen(z,i,u(2),i,4'(2))

where ¢/ and u' are variables to be instantiated with the result. Using Proposition 5.3.2,
gen decides whether to generalize the unknown u by setting ' := z, or whether to leave
the unknown as a monomorphic type variable, setting u' := w.

The first rule instantiates u(Z) with a new term nth(z, ), that is, it generalizes the
unknown. By definition of higher-order unification, this rule succeeds only if z € Z. By
the Proposition, this condition coincides with the condition & = FV(s) \ FV(I') in (let).
The new last used index must be incremented if the rule is applied.
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gen_gen_n "gen(z,i,nth(z,i), ni(i), nth(z,i))"

The second time that we try to generalize an unknown, this rule fails because the index i@
has changed in the second argument, while the index of the first generalization is found in
the third argument. Hence, we need yet another rule which just retains the old index.

gen_gen_o "gen(z,i,nth(z,i’), i, nth(z,i’))"

If these two rules fail, then z ¢ Z and w must not be generalized, but left as a type
unknown. To check that indeed an unknown is present, we tentatively instantiate it with
a constructor TYV that is used nowhere else. (Note that any other occurrence of u will
be replaced simultaneously, hence the result variables for all of these occurrences will be
unified. The constructor is removed later as in instantiation.)

gen_var "gen(z,i,TYV(a),i,a)"

5.3.2.4 Proof Search

Proof search for type inference is essentially straightforward, since the type system is syn-
tax directed, that is there is exactly one typing rule for each language construct. Therefore,
all our tactics will resolve the first goal in the proof state, deviating from the ISABELLE
convention to make the goal to be treated a parameter of the tactic. The only intricate
point is the predicate gen, which must make sure that the rules are applied in the ap-
propriate order, as captured by the following tactic. Note that tactical FIRST does not
create alternatives for backtracking: The first successful tactic is chosen. After the gen
predicates are resolved (tactical REPEAT1 fails if the repeated tactic is not applied at all),
the auxiliary TYV constructors are removed.

val gen_tac =

(REPEAT1 (FIRST [ (resolve_tac [ gen_gen_n ] 1),
(resolve_tac [ gen_gen_o ] 1),
(resolve_tac [ gen_var ] 1),
(resolve_tac [ gen_fun ] 1),
(resolve_tac [ gen_int ] 1),
(resolve_tac [ gen_bool ] 1) ] ))

THEN (rewrite_tac [ remove_TYV ]);

Instantiation with inst works in the same manner. For let-bound variables, their type
schemes must be instantiated. This happens in three steps: First, using rule var, a goal
with predicate :* is created, which is resolved against the assumptions to obtain the type
scheme. We then know that the second goal of var is still pending and resolve it with
inst_tac.

val var_tac =
((resolve_tac [ var ] 1)
THEN (assume_tac 1)
THEN inst_tac);
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Finally, the complete tactic for type checking tries the different possible cases of expressions
in turn: assume_tac looks up A-bound identifiers in the assumptions, var_tac treats
let-bound variables, cnst_tac treats literals, if, let and application and A\ abstraction.
land_tac resolves the auxiliary &.

val ty_tac =
REPEAT1
(FIRST [
(assume_tac 1),
var_tac,
cnst_tac,
land_tac,
gen_tac

1);

To go one step further, we define a function to type check a given expression. ISABELLE
prints the result when the proof is complete.

fun tychk e = prove_goal MiniML.thy e (fn _ => [ ty_tac ]);

5.3.2.5 Example Typings

We now give some example applications with the answers generated by ISABELLE.!® The
first example is restricted to the simply typed A-calculus. It essentially adds 1 and 2,
returning an integer.

tychk "(lam £ . £ ¢ 1) ¢ (lam x . (x + 2)) : 7t";
val it = "(Qam f. £ ¢ 1.0) ¢ (lamx. x + 72.0) : int" : thm

The second example show that the type of A-arguments is inferred by unification.

tychk "lam x . x + 1 : 7t";
val it = "lam x. x + 1.0 : int -> int" : thm

The first example involving polymorphic let type-checks the identity function and applies
the function to itself. The type scheme inferred for £ should be read as Vag.ap — ay.

tychk "let f : ?7tf = lam x . x in f ° f : 7t";

val it =
"let f : ALL z. NTH(z, 0) -> NTH(z, 0) = lam x. x in f ¢ f
7s? => 7s’" : thm

The next example involves a vector of generalized variables for the type scheme of A\z.\y.x.
That type scheme is Vayg, ay.a9 — a1 — ay.

tychk "let fst : 7tfst = lam x. lam y. x in fst ¢ fst : 7t";

val it =
"let fst : ALL z. NTH(z, 0) -> NTH(z, 1) -> NTH(z, 0) = lam x y. X
in fst ¢ fst : ?s’ -> 7s’a -> 7s’b -> 7s’a" : thm

16The notation ?u denotes an unknown w in ISABELLE. val it = indicates the last derived fact.
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Finally, we consider the expression
AbAx.let f=Ay.if b then z else y in f

The type of y cannot be generalized, because by the rule for if, it must be equal to the
type of x, which is bound outside of the 1let. Our implementation correspondingly refuses
the generalization of ?s’, because in the application of tyif, the types of x and y are
unified. At that point, the type of y looses its annotation with the bound name z.

tychk "lam b x. let £ : 7tyf = lam y. if b then x else y in f : 7t";
val it =
"lam b x.
let £ : ALL z. ?s’ -> ?s’ = lam y. if b then x else y in £
bool -> 75’ -> 75’ -> 75’" : thm

5.3.2.6 Conclusion

The theory MiniML developed in this section shows that it is feasible to use a logical
framework like ISABELLE to encode and execute type checkers. However, I wish to stress
two observations that justify an independent development like TCG:

e [SABELLE’s parser generator treats only grammars that extend the meta-logic. This
works well for mathematical notations, which may also be modified to suit the frame-
work. A parser generator for programming languages should not be prejudiced in
this way. For instance, it was necessary to introduce the auxiliary operator ¢ for
application, because the usual application by juxtaposition was already used in the
Pure function application. (Strictly speaking, Pure uses f(a; .. a,) which creates
ambiguities nevertheless. The ambiguities can be resolved by type annotations, since
only type correct parses are accepted, but this is cumbersome.)

e The use of higher-order abstract syntax facilitates the encoding of bound names.
However, it fixes the form of typing rules and moreover introduces a significant
problem of type inference for polymorphic let, which could only be solved by a novel
development.

e The solution for polymorphic let in this section bears similarities with T'CG’s notions
of inner and outer variables (Sections 1.2.3.5, 2.3, 2.4.1) which also characterize
the occurrence of variables in the proof tree relative to the application of the (let)
inference rule. In terms of Section 1.2.2, T'cG’s formulation is in the style of natural
deduction and reasons about entire deductions, while the ISABELLE theory, driven
by the representation of goals, is in sequent style.
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Conclusion

6.1 Summary

I have presented an approach to obtaining executable type checkers from descriptions
of type systems, the Type Check Generator (T'cG). The approach is based on the key
abstraction of type-checking-as-proof-search: Type systems are formalized as sets of rules,
and an interpreter constructs proofs for a given typing judgement.

Suitable notions of rule and proof (Chapter 2) have been derived by analyzing com-
mon typing rules and the proof theory of type systems and logics (Section 1.2).  The
most characteristic feature of TCG’s proofs is subproof extraction (Section 1.2.3.5), which
converts a sub-tree of the proof tree to a T'cG rule. Subproof extraction captures type
inference for polymorphic let (Section 1.2.3.5, 4.1.3.3) and exhibits close meta-theoretical
connections to the soundness proofs for that construct (Section 2.4.1.2). It also enables
direct renderings of typing rules that otherwise would have to be programmed, rather than
declared (Chapter 4).

The TcG proofs and rules permit an interpreter based on backward, Prolog-style reso-
lution of judgments (Section 2.4, 3.3.4). The interpretation process is factored into atomic
steps, which are functions from proofs to proofs and which maintain the invariants on
the structure of proofs. Proof construction is then a depth-first backtracking search for
complete proofs under repeated application of atomic derivation steps.

TcG is complementary to constraint-based approaches to type checking (Section 5.2).
These approaches assume that a given type checker traverses the parse tree of the program
and generates a set of constraints over types that must be satisfied for the program to
be well-typed. Constraint-based abstractions thus capture the treatment of constraints
once they have been generated, while TCG captures the process of traversing the parse
tree, abstracting over the programming language. The integration of T'CG with constraint
handling formalisms is a matter of future research (Section 6.2.3). Tca differs from most
previous, Prolog- or rewriting-based, approaches to describing type checkers (Section 5.1)
in that its formalism is tailored to the specific format of typing rules to permit a declarative
description of the type system.

[ have given a structure-sharing implementation of TcG (Chapter 3), where proofs
share their data structure with alternatives and predecessors and each derivation step

179
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records only the pointer modifications necessary to construct the result proof from the input
proof. This strategy is particularly well-suited for depth-first search, where the incremental
modifications between steps are small. It generalizes the Prolog trail of substitutions
[Bru82, AK91, VR94] to maintenance of the entire proof structure. The implementation
directly represents the proofs, rules and inference steps from Chapter 2. An inspection
mechanism with a graphical user interface permits the user to observe the type checker’s
operation in detail. Although due to structure sharing the efficiency is reasonable, a faster
interpreter will be necessary for checking longer programs (Section 6.2.1).

Chapter 4 contains extensive applications of T'CG to functional, imperative and object-
oriented languages, treating their salient features, including ML-style type inference. In
most cases, the type requirements for a language construct can be captured directly in
single TcG rule — unlike many earlier approaches (Section 5.1) there is no need for “pro-
gramming” the type checker by rules. Since the typing rules are thus arranged around
language constructs, they are largely orthogonal and exhibit a high potential for re-use,
which T exploit in a library of TcaG rules. That library also forms the imperative ker-
nel of SAGA, a novel language design aiming at generic programming (Section 4.5). It
permits the statement of generic algorithms with requirements on their parameter types
[MS89, MS94, Sch96a, Aus98|. The requirements arising from an algorithm call are checked
locally against the context of the call, such that generation of concrete instances never fails
if the type checker accepts the program.

6.2 Future Directions

6.2.1 Implementation

Term Indexing The current implementation (Section 3.3.2) filters rules before applica-
tion by their conclusions’ top-level symbols. Since type assumptions are represented by
rules and they all share the top-level symbol (which marks them as type assumptions),
this filter is clearly insufficient for type checking larger programs. A suitable extension are
discrimination tree indexes [Gra96, Section 6.1]. However, two adaptations are required:
First, the positions within terms that should contribute to discrimination must be declared
by the user. For example, indexing a type assumption z — z’ : ¢ (Section 4.2.1.1) in the
internal name 2’ and type ¢ only consumes memory, it does not improve the filter, since
already x alone is unique (apart from overloading (Section 4.3.4), where it is desirable to
find all alternatives). The choice of a discrimination tree entails that nested name spaces
are mapped to nested sub-indexes in much the same way that maps represent environments
in hand-written type checkers. As a second adaptation, the structure of indexes must be
shared between judgments to a large degree, otherwise the positive effect on the run-time
is canceled by a negative effect on memory consumption. In the batch interpreter to be
sketched in the next paragraph, only one context will be accessible at any point in time,
hence structure-sharing can be implemented analogously to that of proofs (Section 3.3.3.1).

Batch Interpreter The implementation of Chapter 3 is designed to represent the defi-
nitions from Chapter 2 directly to demonstrate their adequacy for describing type checkers
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and to make the effects of T'CG rules visible in detail (Section 3.5). However, it maintains
solved, intermediate judgments that are not accessed in the subsequent proof search. For
a batch interpreter, it is sufficient to build proof construction around a recursive function
solve that resolves a single judgement and returns the necessary substitution and the
exports and deferred judgments of the constructed sub-proof (Section 2.5.1). The existing
implementation should also be used to identify frequent special cases of rules.

6.2.2 Extensions

Bound Names in Terms Since lexically bound variables are ubiquitous in typed lan-
guages, it is desirable to provide bound variables in TCG terms for their representation
[Pfe01] (also Section 5.3.1). Higher-order pattern unification [Nip93, Mil92, Dow01] has
already been used in conjunction with logic programming [Mil91, NM98, Wic99] and a
similar synthesis is possible with T'cG.

Proof Selection Type checking for realistic languages often involves disambiguation
rules that are not strictly part of the type system, but choose between several type-correct
interpretations of the program source. The most frequent cases are overload resolution
based on a “best match” selection (C**, Java) and selection of coercions. Such decisions
appear orthogonal to the questions considered in this thesis. We have identified TCG proofs
with type-correct interpretations of the program source, hence any constructible proof is a
valid answer to the typing question. The disambiguation rules then serve to select among
the valid answers.

One a priori selection mechanism is already implemented by the proof grammars (Sec-
tion 3.1.4). They deliberately restrict the set of proofs that can be constructed by over-
laying the proof tree with a regular tree grammar [CDG'99]. An a posteriori selection of
completed proofs should be connected with the branch goals (Sections 2.4.5, 3.1.3), since
this is the only place where collections of proofs are accessible in the construction process.
A predicate could be added to the expand instruction to select the desired proof. How-
ever, it remains to be investigated which characteristics of proofs should be accessible to
the predicate and in what formalism the predicate should be written. A first solution is a
general ML function that accesses the internal proof structures through a custom interface.

Types for Tcg For a formal interpretation of TCG proofs as type derivations, it is
necessary to derive the form of terms that are substituted for variables in rules [Gas01,
Chapter 2|[Pfe01, Section 2|. The same information would be desirable to check stati-
cally for mistakes that lead to judgments without matching rules; furthermore, groundness
of terms in specific positions is often required for the termination or efficiency of the
type checkers. These questions have been well-investigated in type inference for Prolog
[HJ90, FSVY91, Hei92, JB92, GAW92, DZ92, GAW94, AL94, TTDI97, DTTI7, CP9s].
The main concern, the propagation of terms by unification, is shared with TcG’s model
of execution. Hence, with adaptations for approximating the contexts of judgments, the
developed techniques are applicable.
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6.2.3 Constraint Handling

Since an extensive set of constraint domains and corresponding constraint solvers is avail-
able (Section 5.2) it would be desirable to make their expressive power accessible to Tca
type checkers. This would make a wide variety of type systems amenable for treatment,
including general subtyping constraints [Mit91, AW93, EST95a, Pot01], and dependent
types over integer domains [XP99]. Also non-syntactic type equality, for example modulo
B-reduction [ML84, CH88, Bar91]' or with cyclic dependencies (recursive types) [AC93],
then becomes an option.

The linking point with the existing TcG proofs (Chapter 2) are the deferred judg-
ments (Section 1.2.3.6), which represent proof obligations that cannot be solved sensibly
by a backtracking search. Operationally, the desired extension is straightforward. The
special instructions expand and cut (Section 3.1) are complemented with an instruction
solve(iy .. i,), which is resolved by handing the deferred judgments in the sub-proofs for
premises 4; .. %, to a constraint solver. The result is a proof delta (Section 3.3.3.1) that
is applied to the input proof to obtain the result of the derivation step. The proof delta
includes a substitution for variables, addition of new judgments and solving of existing
judgments. Hence, for example a normalization step in the sense of [Sul00, Section 4.2]
can be expressed. Choosing constraint handling rules (CHR [Frii98]) as the formalism
to specify constraints links T'CG to recent work on type checking by constraint solving
[SS01, Sul01, AF02, AF04].

However, the result of constraint solving is not necessarily a proof in the sense of
Section 2.3 and a corresponding extension of the notion of proofs is required. A straight-
forward solution [Jon94, Sul00, EST95a, Pot01] is to augment judgments with a set of
constraints P. The defer step (Section 2.4.4) would be complemented with an axiom

Constraint
PU{d}|FI—d( onstraint)

The set P could be implemented as a structure-shared, mutable list (Section 3.3.3.1) that is
attached directly to the solve instruction introduced above. Since the context I' is no longer
available in resolving d € P, (Constraint) can be applied only when the context becomes
immaterial. Hence, the existing mechanism for deferring goals temporarily (Section 3.1.4)
is still needed. For example, Haskell’s type class constraints [WB89, Jon94] must be
simplified under the instance declarations in the context of the judgement [Jon99], which
depends on the static environment of the type-checked expression.

!Since SB-reduction is strongly normalizing in the presence of kinds, the equality constraints could be
also solved with the current T'cG by programming (-reduction explicitly [CH88, Section 6.1].



Appendix A

Notation and Trees

Notation

Symbol | Meaning

X the sequences over X
€ empty sequence

px,p-x,p-q,pq | concatenation
p<q (p<gq) |pisa (proper) prefix of ¢

T1..%p the elements of a set or sequence

x — 7 — where n is irrelevant

(X1 .. 1) a sequence

= syntactic equivalence

= equality

t[s1/x1 .. 8p/xy] | simultaneous (capture-avoiding) substitution of s; for x;.
N natural numbers including 0

N, positive natural numbers

L least upper bound

r greatest lower bound

— function space

fin function with finite domain

! “undefined” (or L) for partial functions

flp function f restricted to D

fleo function f restricted to the complement of D
Cx set complement

@ application if infix symbol is required
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Tree Notation

t[p] tree node in t at path p

t{p} subtree of ¢ rooted at path p

t\, tree t pruned at p (={d—1l|d— 1€ t,p Ld})

Defined Concepts

v inner variables (Section 2.3)

ov outer variables (Section 2.4.6)
Naming Conventions

a, 3,7,0 type variables

o, T, ¢ substitutions

p renaming

r type assumptions

s,tyr, ... types and type schemes

e, f,g expressions

T, Y, 2 identifiers (variables) in expressions

Trees

DEFINITION. (Tree Domain [Gal86, Section 2.2.1])
A tree domain D is a nonempty subset of strings in N* satisfying the conditions:

1. For each u € D, every prefix of u is also in D.
2. For each u € D, for every ¢ € N, if wz € D then, for every j, 1 < 7 <1, uj is also
in D.

DEFINITION. (Trees [Gal86, Section 2.2.2))
Given a set ¥ of labels, a 3-tree (for short, a tree) is a total function ¢ : D — X, where D
is a tree domain.



Bibliography

[AC93]

[AC96]

[ACCLY1]

[AF02]

[AF04]

[AFFSO8]

[AFM97]

[AHSS6]

[AKO1]

[AL94]

Roberto M. Amadio and Luca Cardelli. Subtyping Recursive Types. ACM
Transactions on Programming Languages and Systems, 15(4):575-631, 1993.

Martin Abadi and Luca Cardelli. A Theory of Objects. Monographs in Com-
puter Science. Springer-Verlag, 1996.

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions.
Journal of Functional Programming, 1(3):375-416, October 1991.

Sandra Alves and Mario Florido. Type inference using constraint handling
rules. Electronic Notes in Theoretical Computer Science, 64:17, 2002.

Sandra Alves and Mério Florido. Type inference for programming languages:
A constraint logic programming approach. Technical Report DCC-2004-5,
Departamento de Ciéncia de Computadores, Universidade do Porto, 2004.
http://www.ncc.up.pt/fcup/DCC/Pubs/treports.html.

Alexander Aiken, Manuel Fahndrich, Jeffrey S. Foster, and Zhendong Su. A
Toolkit for Constructing Type- and Constraint-Based Program Analyses. In
Leroy [Ler98|, pages 78-96.

Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding Type Param-
eterization to the Java Language. In Proceedings of the 1997 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages € Appli-
cations (OOPSLA ’97), volume 32 (10) of SIGPLAN Notices, pages 49-65,
Atlanta, Georgia, October 1997. ACM.

Aho, Hopcroft, and Sethi. Compilers — Principles, Tools, Techniques.
Addison-Wesley, 1986.

Hassan Ait-Kaci. Warren’s abstract machine: A tutorial reconstruction. MIT
Press, 1991.

Alexander Aiken and T. K. Lakshman. Directional Type Checking of Logic
Programs. Technical Report UCB/CSD 94-791, Computer Science Division
(EECS), University of California, Berkeley, California, 1994.

185


http://www.ncc.up.pt/fcup/DCC/Pubs/treports.html

186 BIBLIOGRAPHY

[And92]

[App9sg]

[Aug9g]

[Aus9g]

[AW93]

[AWL94]

[Bak82]

[Bar84]

[Bar91]

[Bar95]

[BCD+89)

[BCK*01]

[BGOO]

James H. Andrews. Logic programming : operational semantics and proof
theory. Distinguished dissertations in computer science. Cambridge University
Press, Cambridge, 1992.

Andrew W. Appel. Modern Compiler Implementation in ML. Cambrigde
University Press, Cambridge, United Kingdom, 1998.

L. Augustsson. Cayenne — a language with dependent types. In Proceed-
ings of the third ACM SIGPLAN international conference on Functional pro-
gramming, pages 239-250, Baltimore, Maryland, United States, 1998. ACM
SIGPLAN.

Matthew H. Austern. Generic Programming and the STL — using and ex-
tending the C** Standard Template Library. Addison-Wesley, 1998.

Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and
type inference. In Conference on Functional Programming Languages and
Computer Architecture, pages 31-41. ACM press, 1993.

Alexander Aiken, Edward L. Wimmer, and T.K. Lakshman. Soft Typing
with Conditional Types. In 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages ’94, pages 163-173, Portland,Oregon,
1994. ACM.

T.P. Baker. A One-Pass Algorithm for Overload Resolution in Ada. ACM
Transactions on Programming Languages, 4(4):601-614, 1982.

H.P. Barendregt. The Lambda Calculus—Its Syntaxr and Semantics. North-
Holland, Amsterdam, 2nd edition, 1984.

Henk Barendregt. Introduction to generalized type systems. Journal of Func-
tional Programming, 1(1):125-154, January 1991.

John Barnes. Programming in Ada 95. International computer science series.

Addison-Wesley, Wokingham, 1995.

P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual. CENTAUR: the system. ACM SIGPLAN Notices, 24(2):14-24,
February 1989.

Gilad Bracha, Norman Cohen, Christian Kemper, Steve Marx, Martin Oder-
sky, Sven-Eric Panitz, David Stoutamire, Kresten Thorup, and Philip Wadler.
Adding generics to the java programming language: Participant draft specifi-
cation. Sun preliminary specification, April 2001.

Henk Barendregt and Silvia Ghilezan. Lambda terms for natural deduction,
sequent calculus and cut elimination. Journal of Functional Programming,
10(1):121-134, 2000.



BIBLIOGRAPHY 187

[BH97]

[BHKO02]

[BM72]

[BNOS]

[Boo91]

[Bru82]

[BS86]

[BSO1]

[BSG03]

[BTCGS91]

[Car87]

[Car93]

[Cas95|

Michael Brandt and Fritz Henglein. Coinductive Axiomatization of Recursive
Type Equality and Subtyping. In Philippe de Groote, editor, Third Interna-
tional Conference on Typed Lambda Calculi and Applications, TLCA °97, vol-
ume 1210 of Lecture Notes in Computer Science, pages 63-81, Nancy,France,
2—4April 1997. Springer.

M.G.J. van den Brand, J. Heering, P. Klint, and P.A. Olivier. Compiling
language definitions: The ASF+SDF compiler. ACM Transactions on Pro-
gramming Languages and Systems, 24(4):334-368, July 2002.

R.S. Boyer and J S. Moore. The sharing of structure in theorem-proving pro-
grams. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 7,
pages 101-116. Edinburgh University Press, 1972.

Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
University Press, Cambridge, 1998.

Grady Booch. Object oriented design with applications. Benjamin/Cummings
Publishing Company, Redwood City, CA, 1991.

Maurice Bruynooghe. The memory management of Prolog implementations.
In Clark and Térnlund [CT82].

Rolf Bahlke and Gregor Snelting. The PSG system: From formal language
definitions to interactive programming environments. ACM Transactions on
Programming Languages and Systems, 8(4):547-576, October 1986.

Franz Baader and Wayne Snyder. Unification theory. In Robinson and
Voronkov [RV01], chapter 8, pages 445-533.

Kim B. Bruce, Angela Schuett, and Robert von Gent. PolyTOIL:A Type-Safe
Polymorphic Object-Oriented Language. ACM TOPLAS, 25(2), March 2003.

Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov.
Inheritance as Implicit Coercion. Information and Computation, 93:172-221,
1991.

Luca Cardelli. Basic polymorphic typechecking. Science of Computer Pro-
gramming, 8(2), April 1987.

Luca Cardelli. An implementation of F_.. Technical Report 97, DEC Systems
Research Center,Palo Alto, February 1993.

Giuseppe Castagna. Covariance and Contravariance — Conflict without
a Cause. ACM Transactions on Programming Languages and Systems,
17(3):431-447, May 1995.



188 BIBLIOGRAPHY

[CDDKS6]

[CDG*99]

[CHSS]

[CHCS9)]

[CHWOg]

[CMO4]

[Cop98]

[Cor82]

[Cou83|

[CPY8]

[CT82]

[CWS5]

[Des84]

Dominique Clément, Joélle Despeyroux, Thierry Despeyroux, and Gilles
Kahn. A Simple Applicative Language: Mini-ML. In Proceedings of the
1986 ACM Conference on LISP and Functional Programming, pages 13-26,
Cambridge, Massachusetts, USA, August 1986. ACM.

Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis
Lugiez, Sophie Tison, and Marc Tommasi. Tree Automata — Techniques and
Applications. http://www.grappa.univ-1ille3.fr/tata/, October 1999.

Thierry Coquand and Gérard Huet. The Calculus of Constructions. Informa-
tion and Computation, 76(2/3):95-120, February 1988.

William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not
subtyping. In Proceedings of the 17th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 125 —135, San Francisco, Cal-
ifornia, United States, 1989. ACM.

James Coplien, Daniel Hoffman, and David Weiss. Commonality and vari-
ability in software engineering. IEEE Software, pages 37-45, November 1998.

Luca Cardelli and John C. Mitchell. Operations on records. In Gunter and
Mitchell [GM94], pages 295-350. Also appeard as: SRC Research Report 48,
1989, Digital Equipment Corporation; Mathematical Structures in Computer
Science, vol. 1.

James O. Coplien. Multi-Paradigm Design for CT*. Addison-Wesley, 1998.

G.V. Cormack. An Algorithm for the Selection of Overloaded Functions in
Ada. ACM SIGPLAN Notices, 16(2):48-51, 1982.

Bruno Courcelle. Fundamental Properties of Infinite Trees. Theoretical Com-
puter Science, 25:95-169, 1983.

Witold Charatonik and Andreas Podelski. Directional Type Inference for
Logic Programs. In Static Analysis, 5th International Symposium, SAS 98,
volume 1503 of Lecture Notes in Computer Science, pages 278294, Pisa, Italy,
September 1998. Springer-Verlag.

Keith L. Clark and Sten-Ake Tarnlund, editors. Logic programming. A.P.1.C.
studies in data processing. Academic Press, London, 1982.

Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction,
and Polymorphism. Computing Surveys, 17(4):471-520, December 1985.

Thierry Despeyroux. Executable specification of static semantics. In Seman-
tics of Data Types, International Symposium, number 173 in Lecture Notes
in Computer Science, pages 215-231, Sophia-Antipolis, France, June 1984.
Springer-Verlag.


http://www.grappa.univ-lille3.fr/tata/

BIBLIOGRAPHY 189

[Deu9l]

[Deu96]

[DMs2]

[Dow01]

[DPY1]

[DTTY7]

[DZ92]

[Edes5]

[ENO4|

[EST954]

[EST95b]

A. van Deursen. An algebraic specification for the static semantics of pascal.
Technical Report CS-R9129, Centrum voor Wiskunde en Informatica (CWI),
1991.

Arie van Deursen. Appendix: “Pascal should be type checked; A readable
approach to formalizing the static semantics of Pascal” of “The static seman-
tic of Pascal”. In Arie van Deursen, Jan Heering, and Paul Klint, editors,
Language Prototyping: An algebraic specification approach, AMAST Series in
Computing. World Scientific Publishing Co., 1996.

L. Damas and R. Milner. Principal type-schemes for functional programs.
In Proc. Ninth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 207-212, Albuquerque, New Mexico, January 1982.

Gilles Dowek. Higher-order unification and matching. In Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume II,
chapter 16, pages 1011-1062. Elsevier Science, Amsterdam, The Netherlands,
2001.

Scott Dietzen and Frank Pfenning. A declarative alternative to ”assert” in
logic programming. In Vijay A. Saraswat and Kazunori Ueda, editors, Logic
Programming, Proceedings of the 1991 International Symposium, pages 372—
386, San Diego, California, USA, Oct 28 - Nov 1, 1991. MIT Press.

Philippe Devienne, Sophie Tison, and Jean-Marc Talbot. Solving classes of
set constraints with tree automata. In Gert Smolka, editor, Proceedings of
the Third International Conference on Principles and Practice of Constraint
Programming (CP 97), volume 1330 of Lecture Notes in Computer Science,
pages 62-76, Linz, Austria, October 29-November 1 1997. Springer-Verlag.

Philip W. Dart and Justin Zobel. A Regular Type Language for Logic Pro-
grams. In Frank Pfenning, editor, Types in Logic Programming, Logic Pro-
gramming, chapter 5. MIT Press, Cambridge, Massachusetts, 1992.

Elmar Eder. Properties of substitutions and unifications. Journal of Symbolic
Computation, 1:31-46, 1985.

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of database systems.
Benjamin/Cummings, Redwood City, CA, 2nd edition, 1994.

Jonathan Eifrig, Scott Smith, and Valery Trifonov. Type inference for re-
cursively constrained types and its application to OOP. FElectronic Notes in
Theoretical Computer Science, 1, 1995.

Jonathan Eifrig, Scott F. Smith, and Valery Trifonov. Sound polymorphic
type inference for objects. In Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), pages 169-184, 1995.



190 BIBLIOGRAPHY

[Fel93]

[FF96]

[FF99]

[FKS94]

[Friio8]

[FSVYO1]

[Gal86]

[Gas01]

[gcj04]

[GAW92]

[GAW94]

[Gen35]

Amy Felty. Implementing tactics and tacticals in a higher-order logic pro-
gramming language. Journal of Automated Reasoning, 1993.

Cormac Flanagan and Matthias Felleisen. Modular and polymorphic set-based
analysis. Technical Report Rice COMP TR96-266, Department of Computer
Science Rice University, P.O. Box 1892, Houston, TX 77251-1892, November
1996.

Cormac Flanagan and Matthias Felleisen. Componential set-based analysis.
ACM Transactions on Programming Languages and Systems, 21(2):370-416,
March 1999.

Zsuzsa Farkas, Péter Koves, and Péter Szeredi. MProlog: an implementation
overview. In Evan Tick and Giancarlo Succi, editors, Implementations of Logic
Programming Systems, pages 103-117, Boston 1994, 1994. Kluwer Academic
Publishers.

Thom Frithwirth. Theory and practice of constraint handling rules. Journal
of Logic Programming, 37(1-3):95-138, October 1998.

Thom Frithwirth, Ehud Shapiro, Moshe Y. Vardi, and Eyal Yardeni. Logic
programs as types for logic programs. In Proceedings, Sixth Annual IEEE

Symposium on Logic in Computer Science, pages 300-309, Amsterdam, The
Netherlands, July 1991. IEEE Computer Society Press.

Jean H. Gallier. Logic for Computer Science — Foundations of Automatic
Theorem Proving. Harper & Row Publishers, 1986.

Holger Gast. Generic Programming with Views: Type- and Class-inference
with Polymorphic Subsumption by Resolution Theorem Proving. Techni-
cal Report WSI-2001-17, Wilhelm-Schickard Institut,Universitat Tiibingen,
November 2001.

GNU Compiler for the Java programming language. http://gcc.gnu.org/
java, April 2004.

J.P. Gallagher and D.A. de Waal. Regular approximations of logic programs
and their uses. Technical report, Department of Computer Science, University
of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, U.K., March
1992.

J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of
logic programs. In Pascal Van Hentenryck, editor, Proceedings of the Eleventh
International Conference on Logic Programming, pages 599-613. The MIT
Press, 1994.

Gerhard Gentzen. Untersuchungen tiber das logische Schliessen. Mathema-
tische Zeitschrift, 39:176-210, 405-431, 1935. English translation in [Sza69,
pages 68-131].


http://gcc.gnu.org/java
http://gcc.gnu.org/java

BIBLIOGRAPHY 191

[Ghi99]

[GHIVO5]

[Gir87]

[GJS00]

[GM9]

[GMW79

[GRS0]

[Gra96)|

[GS02]

[GSLOT]

[GTLS9)

[Han9s]

[Hei92)]

[Hen89a|

Silvia Ghilezan. Natural deduction and sequent typed lambda calculus. Nowi
Sad Journal of Mathematics, 29(3):207-218, 1999.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns — Elements of Reusable Object-Oriented Software. Professional Com-
puting Series. Addison-Wesley, 1995.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102,
1987.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, 2nd edition, 2000.

C. Gunter and J.C. Mitchell, editors. Theoretical Aspects of Object-Oriented
Programming: Types, Semantics, and Language Design. MIT Press, Cam-
bridge, MA, 1994.

Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF,
volume 78 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1979.

Harald Ganzinger and Knut Ripken. Operator Identification in ADA: Formal
Specification, Complexity, and Concrete Implementation. ACM SIGPLAN
Notices, 15(2):30-42, February 1980.

Peter Graf. Term Indezring, volume 1053 of Lecture Notes in Artificial Intel-
ligence. Springer-Verlag, 1996.

Holger Gast and Christoph Schwarzweller. Local Checks for Semantic Require-
ments of Generic Algorithms. (unpublished manusript), September 2002.

H. Gast, S. Schupp, and R. Loos. Completing the Compilation of SuchThat
v0.7. Technical Report 97-12, Rensselaer Polytechnic Institute, December
1997.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Number 7
in Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1989.

John Hannan. Program analysis in lambda prolog (tutorial slides). Presented
at PLILP 98, Pisa, Italy, September 1998. available from http://www.cse.
psu.edu/ hannan/papers.html.

Nevin Heintze. Set Based Program Analysis. PhD thesis, School for Computer
Science, Computer Science Division, Carnegie Mellon University, Pittsburgh,
USA, 1992.

P.R.H. Hendriks. Typechecking Mini-ML. In J.A. Bergstra, J. Heering, and
P. Klint, editors, Algebraic Specification, ACM Frontier Series, chapter 7.
ACM Press, 1989.


http://www.cse.psu.edu/~hannan/papers.html
http://www.cse.psu.edu/~hannan/papers.html

192 BIBLIOGRAPHY

[Hen89b]

[Hen93]

[Her92]

[HHIW96)

[HHPY3]

[Hin69]

[HJ90]

[HKO00]

[HL4]

[HoaT2]

[How80)]

[HPM*02]

Fritz Henglein. Polymorphic Type Inference and Semi- Unification. PhD thesis,
Courant Institute of Mathematical Sciences, New York, NY, USA, April 1989.
Appeared as NYU/Courant Institutte of Mathematical Sciences Technical
Report 443, May 1989.

Fritz Henglein. Type Inference with Polymorphic Recursion. ACM Transac-
tions on Programming Languages and Systems, 15(2):253-289, April 1993.

Helmut Herold. Lex und Yacc : lexikalische . syntaktische Analyse. UNIX
und seine Werkzeuge. Addison-Wesley, Bonn, 1992.

Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L.
Wadler. Type Classes in Haskell. ACM Transactions on Programming Lan-
guages and Systems, 18(2):109-138, 1996.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40(1):143-184, January 1993.

Roger Hindley. The Principal Type-Scheme of an Object in Combinatory
Logic. Transactions of the American Mathematical Society, 146:29-60, De-
cember 1969.

Nevin Heintze and Joxan Jaffar. A Finite Presentation Theorem for Approx-
imating Logic Programs (Extended Abstract). In Seventeenth Annual ACM
Symposium onn Principles of Programming Languages, pages 197-209, San
Francisco, California, January 17-19, 1990. ACM Press, New York.

Jan Heering and Paul Klint. Semantics of programming languages: A tool-
oriented approach. SIGPLAN Notices, 35(3):39-48, March 2000.

Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-
order modules with sharing. In Proceedings of the 21st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 123-137,
Portland, OR, January 1994.

C.A.R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(1):271-281, 1972.

W.A. Howard. The formulae-as-types notion of construction. In J.P. Seldin
and J.R. Hindley, editors, To H.B. Curry: FEssays on Combinatory Logic,
Lambda Calculus and Formalism, pages 479-490. Academic Press, London,
1980.

Pedro Henriques, Maria Varanda Pereira, Marjan Mernik, Mitja Lenic, Enis
Avdicausevic, and Viljem Zumer. Automatic generation of language-based
tools. Electronic Notes in Theoretical Computer Science, 65(3), 2002.



BIBLIOGRAPHY 193

[HR95]

[Hue75]

[1SO98]

[TB92]

[Je99)]

[1J97]

[Jon87]

[Jon94]

[Jon95]

[Jon99]

[JP99]

[7592]

[TWS85]

Fritz Henglein and Jakob Rehof. Safe polymorphic type inference for a dy-
namically typed language: Translating Scheme to ML. In Proc. ACM Conf.
on Functional Programming Languages and Computer Architecture (FPCA),
La Jolla, California. ACM Press, 1995.

G.P. Huet. A Unification Algorithm for Typed A-Calculus. Theoretical Com-
puter Science, 1(1):27-57, 1975.

[SO. International Organization for Standardization: Programming languages
— C++. Number ISO/IEC 14882, 1998.

G. Janssens and M. Bruynooghe. Deriving descriptions of possible values
of program variables by means of abstract interpretation. Journal of Logic
Programming, 13(2&3):205-258, 1992.

Jones and Hughes (eds.). Report on the Programming Language Haskell
98 — A Non-strict,Purely Functional Language. http://www.haskell.org/
definition/haskell98-report.ps.gz, February 1999.

P. Jansson and J. Jeuring. PolyP - a polytypic programming language exten-
sion. In Conference Record of POPL "97: The 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 470-482, 1997.

Simon L. Peyton Jones. The Implementation of functional Programming Lan-
guages. Series in Computer Science. Prentice/Hall, May 1987.

Mark P. Jones. A theory of qualified types. Science of Computer Programming,
22(3):231-256, June 1994.

Mark P. Jones. A system of constructor classes: overloading and implicit
higher-order polymorphism. Journal of Functional Programming, 5(1):1-35,
January 1995.

Mark P. Jones. Typing Haskell in Haskell. In Erik Meijer, editor, Proceedings
of the 1999 Haskell Workshop, number UU-CS-1999-28 in Technical Report,
pages 1-14, Paris, France, October 1999. University of Utrecht, Institute of
Information and Computing Sciences. Also available from http://www.cse.
ogi.edu/"mpj/thih/.

Trevor Jim and Jens Palsberg. Type inference in systems of recursive
types with subtyping. available from http://www.cs.purdue.edu/homes/
palsberg/publications.html, June 1999.

Richard D. Jenks and Robert S. Sutor. AXIOM : the sientific computation
system. Springer-Verlag, New York, 1992.

Kathleen Jensen and Niklaus Wirth. Pascal — User Manual and Report.
Springer Verlag, New York, 3rd edition, 1985.


http://www.haskell.org/definition/haskell98-report.ps.gz
http://www.haskell.org/definition/haskell98-report.ps.gz
http://www.cse.ogi.edu/~mpj/thih/
http://www.cse.ogi.edu/~mpj/thih/
http://www.cs.purdue.edu/homes/palsberg/publications.html
http://www.cs.purdue.edu/homes/palsberg/publications.html

194 BIBLIOGRAPHY

[Kah87]

[Knu6s)]

[KR88]

[KTU93]

[Ler95]

[Ler9g]

[Ler00]

[Lio8]

[Lia97]

Lia02]

[Lip96]

[Lit98]

Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-
Naquet, and Martin Wirsing, editors, 4th Annual Symposium on Theoretical
Aspects of Computer Science, volume 247 of Lecture Notes in Computer Sci-
ence, pages 22-39, Passau, Germany, February 1987. Springer.

D.E. Knuth. Semantics of context-free languages. Math. Syst. Theory,
2(2):127-145, June 1968.

Brian W. Kernighan and Dennis M. Ritchie. The C programming language.
Prentice Hall software series. Prentice Hall, Englewood Cliffs, NJ, 2nd, ANSI
C edition, 1988.

A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of the semi-
unification problem. Information and Computation, 102:83-101, 1993.

Xavier Leroy. Applicative functors and fully transparent higher-order mod-
ules. In Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 142-153, San
Francisco, California, January 1995. ACM Press.

Xavier Leroy, editor. Types in compilation : second international workshop
(TIC98), volume 1473 of Lecture Notes in Computer Science, Kyoto, Japan.
March 1998, 1998. Springer.

Xavier Leroy. A modular module system. Journal of Functional Programming,
10(3):269-303, May 2000.

Xining Li. A new term representation method for Prolog. Journal of Logic
Programming, 34(1):43-58, 1998.

Chuck Liang. Let-polymorphism and eager type schemes. In Michel Bidoit
and Max Dauchet, editors, TAPSOFT’97: Theory and Practice of Software
Development, 7th International Joint Conference CAAP/FASE, Lille, France,
April 14-18, 1997, Proceedings, volume 1214 of Lecture Notes in Computer
Science, pages 49-501. Springer, 1997.

Chuck Liang. Compiler construction in higher order logic programming. In
Shriram Krishnamurthi and C. R. Ramakrishnan, editors, Practical Aspects
of Declarative Languages, 4th International Symposium, PADL 2002, volume
2257 of Lecture Notes in Computer Science, pages 47-63, Portland, OR, USA,
2002. Springer.

Stanley B. Lippman. Inside the C++ object model. Addison-Wesley, 1996.

Vassily Litvinov. Contraint-based polymorphism in cecil: towards a practical
and static type system. In Proceedings of the 13th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pages
388 — 411, Vancouver, British Columbia, Canada, 1998. ACM Press.



BIBLIOGRAPHY 195

[LP03]

[LW94]

[McC94]

[Mel82]

[Mil78]

[Mil91]

[Mi192]

[Mit90]

[Mit91]

[ML84]

[MMS82]

[MNPSO1]

[Mor73]

[MP8S]

Michael Y. Levin and Benjamin C. Pierce. TinkerType: A language for play-
ing with formal systems. Journal of Functional Programming, 13(2), March
2003.

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyp-
ing. ACM Transactions on Programming Languages and Systems (TOPLAS),
16(6):1811-1841, November 1994.

William W. McCune. Otter 3.0 reference manual and guide. Technical Report
ANL 94/6, Argonne National Laboratory, January 1994.

C.S. Mellish. An alternative to structure sharing in the implemenatation of a
Prolog interpreter. In Clark and Tarnlund [CT82].

Robin Milner. A Theory of Type Polymorphism in Programming. Journal of
Computer and System Sciences, 17:348-375, 1978.

Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4):497—
536, 1991.

Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computa-
tion, 14(4):321-358, October 1992.

J.C. Mitchell. Type systems for programming languages. In Jan van Leeuwen,
editor, Handbook of Theorectical Computer Science, volume B — Formal Mod-
els and Semantics, chapter 8, pages 367-458. Elsevier and MIT Press, 1990.

John C. Mitchell. Type Inference With Simple Subtypes. Journal of Func-
tional Programming, 1(3):245-285, July 1991.

Per Martin-Lof. Intuitionistic type theory. Bibliopolis, 1984.

Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems, 4(2):258-282, April
1982.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied
Logic, 51:125-157, 1991.

James H. Morris. Types are not sets. In Proceedings of the 1st annual
ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, pages 120-124, Boston, Massachusetts, 1973.

John C. Mitchell and Gordon D. Plotkin. Abstract Types Have Existen-
tial Type. ACM Transactions on Programming Languages and Systems,
10(8):470-502, July 1988.



196 BIBLIOGRAPHY

[MPS86]

[MS89)]

[MS94]

[MS96]

[MSSL99]

[MTHMY7]

[Muc97]

[MWCG99)

[Nec97]

[Nip93]

[NMOS]

[NNH99]

INPO1]

[NPW02

David McQueen, Gordon Plotkin, and Ravi Sethi. An Ideal Model for Recur-
sive Polymorphic Types. Information and Control, 71(1/2):95-130, 1986.

Musser and Stepanov. Generic programming. In Proceedings of the ACM
SIGSAM International Symposium on Symbolic and Algebraic Computation,
19809.

David R. Musser and Alexander A. Stepanov. Algorithm-oriented generic
libraries. Software - Practice and Experience, 24(7):623-642, 1994.

David R. Musser and Atul Saini. STL Tutorial and Reference Guide. Addison-
Wesley, 1996.

David R. Musser, Sibylle Schupp, Christoph Schwarzweller, and Riudiger
Loos. The TECTON Concept Library. Technical Report WSI99-2, Wilhelm-
Schickard Institut, Universitat Tiibingen, 1999.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Defini-
tion of Standard ML (Revised). MIT Press, Cambridge, Massachusetts, USA,
1997.

Steven S. Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann, San Francisco, California, 1997.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F
to typed assembly language. ACM Transactions on Programming Languages
and Systems, 21(3):528-569, May 1999.

G.C. Necula. Proof-carrying code. In Proceedings of the 24th ACM Symposium
on Principles of Programming Languages, pages 106-119. ACM Press, 1997.

Tobias Nipkow. Functional unification of higher-order patterns. In Proceed-
ings, Fighth Annual IEEE Symposium on Logic in Computer Science, pages
64-74, Montreal, Canada, 19-23 June 1993. IEEE Computer Society Press.

Gopalan Nadathur and Dale Miller. Higher-order logic programming. In
Handbook of Logic in Al and Logic Programming, volume 5, pages 499-590.
Oxford University Press, 1998.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Pro-
gram Analysis. Springer, Berlin, 1999.

Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge University
Press, 2001.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
a proof assistant for higher-order logic. Number 2283 in Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 2002.



BIBLIOGRAPHY 197

[OCa03]

[OL96]

[ON9Y]

[0SW99)]

[OW97]

[Pal9o]

[Paus6)

[Paug9]

[Pau94|

[PESS]

[Pfess)]

[Pfe96]

Objective Caml 3.07. http://caml.inria.fr, September 2003.

Martin Odersky and Konstantin Laufer. Putting Type Annotations to Work.
In The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 54—67. ACM, ACM Press, January 1996.

David von Oheimb and Tobias Nipkow. Machine-checking the Java specifi-
cation: Proving type-safety. In Jim Alves-Foss, editor, Formal Syntax and
Semantics of Java, volume 1523 of LNCS, pages 119-156. Springer, 1999.
http://isabelle.in.tum.de/Bali/papers/Springer98.html.

Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with
constrained types. Theory and Practice of Object Systems, 1999.

M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice.
In Proceedings of the 24th ACM Symposium on Principles of Programming
Languages (POPL’97), Paris, France, pages 146-159. ACM Press, New York
(NY), USA, 1997.

Catuscia Palamidessi. Algebraic properties of idempotent substitutions. In
Mike Paterson, editor, Automata, Languages and Programming, 17th Inter-
national Colloguium, ICALP 90, Warwick University, England, July 16-20,
1990, Proceedings, volume 443 of Lecture Notes in Computer Science, pages
386-399. Springer, 1990.

L. C. Paulson. Natural deduction as higher-order resolution. Journal of Logic
Programming, 3(3):237-258, October 1986.

Lawrence C. Paulson. The foundation of a generic theorem prover. Journal
of Automated Reasoning, 5(4):363-397, 1989.

Lawrence C. Paulson. Isabelle — A Generic Theorem Prover. Number 828 in
Lecture Notes in Computer Science. Springer-Verlag, Berlin Heidelberg, 1994.

Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proceedings
of the ACM SIGPLAN 1988 conference on Programming Language design and
Implementation (PLDI), volume 23 (7) of SIGPLAN Notices, pages 199-208,
Atlanta, Georgia, June 22-24 1988. ACM Press.

Frank Pfenning. Partial polymorphic type inference and higher-order unifi-
cation. In Proceedings of the 1988 ACM conference on LISP and functional
programming, pages 153 — 163, Snowbird, Utah, United States, July 1988.
ACM Press.

Frank Pfenning. The practice of logical frameworks. In Hélene Kirchner,
editor, Proceedings of the Colloquium on Trees in Algebra and Programming,
pages 119-134, Linkoping, Sweden, 1996. Springer-Verlag LNCS 1059.


http://caml.inria.fr
http://isabelle.in.tum.de/Bali/papers/Springer98.html

198 BIBLIOGRAPHY

[Pfe01]

[Pie02]

[Pot9g]

[Pot00]

[Pot01]

[Pra65]

[PT4]

[Red88]

[Reh97]

[RémI1]

[Rém92]

[Rep8&4]

[Ric78]

[Rit93]

[Rob65]

Frank Pfenning. Logical frameworks. In Robinson and Voronkov [RVO01],
chapter 17.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cam-
bridge, Massachusetts, 2002.

Francois Pottier. Type inference in the presence of subtyping: from theory to
practice. Research Report 3483, INRIA, September 1998.

Francois Pottier. A versatile constraint-based type inference system. Nordic
Journal of Computing, 7(4):312-347, November 2000.

Francois Pottier. Simplifying subtyping constraints: A theory. Information
and Computation, 170(2):153-183, November 2001.

D. Prawitz. Natural Deduction : A Proof-Theoretical Study. Almqvist &
Wiksell, Stockholm, 1965.

Benjamin C. Pierce and David N. Turner. Simple type-theoretic founda-
tions for object-oriented programming. Journal of Functional Programming,

4(2):207-247, April 1994.

Uday S. Reddy. Objects as closures: Abstract semantics of object oriented
languages. In Proceedings of the 1988 ACM Conference on LISP and Func-
tional Programming, pages 289-297, Snowbird, Utah, USA, July 1988. ACM
Press.

Jakob Rehof. Minimal typings in atomic subtyping. In Proceedings POPL’97,
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 278-291, Paris, France, January 1997. ACM.

Didier Rémy. Type Inference for Records in a Natural Extension of ML.
research report 1431, INRIA, Rocquencourt, France, May 1991.

Didier Rémy. Extension ML type system with a sorted equational theory on
types. Technical Report 1766, INRIA, Rocquencourt, France, October 1992.

T. Reps. Generating Language-Based Environments. M.IL'T. Press, Cam-
bridge, MA, 1984.

Michael M. Richter. Logikkalkile, volume 43 of Studienbiicher (Informatik).
B.G. Teubner, Stuttgart, 1978.

Dennis M. Ritchie. The development of the C language. In The second ACM
SIGPLAN conference on History of programming languages, volume 28 (3) of
ACM Sigplan Notices, pages 201-208. ACM Press, March 1993.

J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(1):23-41, January 1965.



BIBLIOGRAPHY 199

[RS92]

[RSVO1]

[RTSS)

[RVO01]

[San95]

[Sch96a]

[Sch96b]

[Sch97]

[Sch02]

[Sch03]

[SGM02]

[SHS7]

[Sim03]

Mark Ryan and Martin Sadler. Valuation Systems and Consequence Rela-
tions. In S. Abramsky, Dov M. Gabbay, and T. S.E. Maibaum, editors, Hand-
book of Logic in Computer Science, volume 1, pages 1-78. Oxford University
Press, Walton Stress, Oxford, 1992.

I. V. Ramakrishnan, R. C. Sekar, and Andrei Voronkov. Term indexing. In
Robinson and Voronkov [RV01], chapter 26.

Thomas W. Reps and Tim Teitelbaum. The synthesizer generator: A system
for constructing language-based editors. Texts and Monographs in Computer
Science. Springer-Verlag, New York, 1988.

Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Rea-
soning. Elsevier Science, Amsterdam, The Netherlands, 2001.

Philip S. Santas. A type system for computer algebra. Journal of Symbolic
Computation, 1995.

Sibylle Schupp. Generic Programming Such That One can build an algebraic
library. PhD thesis, Wilhelm-Schickard Institut,Universitiat Tiibingen, 1996.

Sibylle Schupp. How to Lift a Library. Technical Report 96-7, Wilhelm-
Schickard InstitutUniversitat Tiibingen, 1996.

Christoph Schwarzweller. MIZAR verification of generic algebraic algorithms.
PhD thesis, Universitat Tiibingen, 1997.

Christoph Schwarzweller. Symbolic deduction in mathematical databases
based on properties. In S. Colton and V. Sorge, editors, Proceedings of the
Second International Workshop on the Role of Automated Deduction in Math-
ematics (RADM2002), Kopenhagen, Denmark, July 2002.

Christoph Schwarzweller. Towards formal support for generic programming.
Habilitationschrift der Fakultat fiir Informatik der Universitat Tiibingen, Jan-
uary 2003.

Clemens Szypersky, Dominik Gruntz, and Stephan Murer. Component Soft-
ware. Component Software Series. Addison-Wesley / ACM Press, 2nd edition,
2002.

Peter Schroeder-Heister. Structural frameworks with higher-level rules, July
1987. Habilitationsschrift, Universitdat Konstanz.

Vincent Simonet. Type inference with structural subtyping: A faithful formal-
ization of an efficient constraint solver. In Atsushi Ohori, editor, Proceedings of
the Asian Symposium on Programming Languages and Systems (APLAS’03),
volume 2895 of Lecture Notes in Computer Science, pages 283-302, Beijing,
China, November 2003. Springer-Verlag.



200 BIBLIOGRAPHY

[SLOO]

[SOMO3]

SS01]

SS04]

[SSW04]

[St099]

[Stro1]

[Str97]

[Sul00]

[Sul01]

[Sza69]

[TDO1]

[Thi94]

[Tof90]

Jeremy Siek and Andrew Lumsdaine. Concept checking: Binding parametric
polymorphism in C++. In Proceedings First Workshop on C++ Template
Programming, Erfurt, Germany, 2000.

Clemens Szypersky, Stephen Omohundro, and Stephan Murer. Engineering
a programming language: The type and class system of Sather. Technical
report, ICSI, Berkeley, 1993.

Peter J. Stuckey and Martin Sulzmann. A systematic approach in type system
design based on constraint handling rules. Technical Report TR2001/30, The
University of Melbourne, Department of Computer Science, 2001.

P. J. Stuckey and M. Sulzmann. A unifying inference framework for Hind-
ley/Milner with extensions. Technical Report TR12/04, The National Uni-
versity of Singapore, 2004.

Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny. Improving type error
diagnosis. In Proceedings of Haskell Workshop (Haskell’04), May 2004. To
appear.

Frieder Stolzenburg. An algorithm for general set unification and its complex-
ity. Journal of Automated Reasoning, 22(1):45-63, 1999.

Bjarne Stroustrup. The C++ programming language. Addison-Wesley, Read-
ing, Massachusetts, 2nd ed. edition, 1991.

Bjarne Stroustrup. The C*+ programming language. Addison-Wesley, Read-
ing, Mass., 3rd edition, 1997.

Martin Sulzmann. A General Framework for Hindley/Milner Type Systems
with Constraints. PhD thesis, Yale University, Department of Computer Sci-
ence, May 2000.

Martin Sulzmann. TIE: A CHR-based type inference engine. Technical Report
TR2001/27, Department of Computer Science, University of Melbourne, 2001.

M.E. Szabo, editor. The collected papers of Gerhard Gentzen. Studies in Logic
and the Foundations of Mathematics. North-Holland Publishing Company,
Amsterdam, 1969.

F. Tip and T.B. Dinesh. A slicing-based approach for locating type errors.
ACM Transactions on Software Engineering and Methodology, 10(1):5-55,
January 2001.

Peter Thiemann. Grundlagen der funktionalen Programmierung. Leitfaden
der Informatik. B.G. Teubner Stuttgart, 1994.

Mads Tofte. Type Inference for Polymorphic References. Information and
Computation, 89:1-34, 1990.



BIBLIOGRAPHY 201

[TR81]

[Tro99)]

[TS00]

[TTD97]

[VR94]

[Wad90]

[Wan87|

[Wan91|

[WBS9]

[Web93|

[Wei03]

[WF92]

[Wic99]

T. Teitelbaum and T. Reps. The Cornell Programm Synthesizer: A syntax-
directed programming environment. Communications of the ACM, 24(9):563—~
573, September 1981.

Anne S. Troelstra. Marginalia on sequent calculi. Studia Logica, 62(2), March
1999.

A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Number 43 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2nd edition, 2000.

J. M. Talbot, S. Tison, and P. Devienne. Set-Based Analysis for Logic Pro-
gramming and Tree Automata. In Proceedings of the Static Analysis Sym-

posium, SAS’97, volume 1302 of Lecture Notes in Computer Science, pages
127-140. Springer-Verlag, 1997.

Peter Van Roy. 1983-1993: The wonder years of sequential Prolog implemen-
tation. Journal of Logic Programming, 19/20:385-441, 1994.

Philip Wadler. Linear types can change the world! In M. Broy and C. Jones,
editors, Programming Concepts and Methods, Sea of Galilee, Israel, Amster-
dam, April 1990. North Holland.

Mitchell Wand. A simple algorithm and proof for type inference. Fundamenta
Informaticae, 10:115-122, 1987.

Mitchell Wand. Type Inference for Record Concatenation and Multiple In-
heritance. Information and Computation, 93(1):1-15, 1991.

Philip Wadler and Stephen Blott. How to Make ad-hoc Polymorphism Less
ad-hoc. In J. Hughes, editor, Conference Record of the Sixteenth Annual ACM
Symposium on Principles of Programming Languages, pages 60-76, Austin,
Texas, January 1989.

Andreas Weber. Type systems for computer algebra. PhD thesis, Universitat
Tiibingen, 1993.

Roland Weiss. Compiling and Distributing Generic Libraries with Heteroge-
neous Data and Code Representation. PhD thesis, Wilhelm-Schickard Institut
fiir Informatik, Eberhard-Karls Universitat Tiibingen, Germany., 2003.

Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type
Soundness. Technical Report TR91-160, Department of Computer Science,
Rice University, Houston, Texas, June 1992.

Philip Wickline. The Terzo interpreter for A\Prolog. http://www.cse.psu.
edu/~dale/1Prolog/terzo, 1999.


http://www.cse.psu.edu/~dale/lProlog/terzo
http://www.cse.psu.edu/~dale/lProlog/terzo

202 BIBLIOGRAPHY

[Wirss]

[WNKN04]

[Wri94]

[XP99)]

Niklaus Wirth. Programming in Modula 2. Texts and monographs in computer
science. Springer-Verlag, Berlin ; Heidelberg, 4th edition, 1988.

Martin Wildmoser, Tobias Nipkow, Gerwin Klein, and Sebastian Nanz. Pro-
totyping proof carrying code. Proc. 3rd IFIP Int. Conf. Theoretical Computer
Science (TCS 2004), 2004.

Andrew K. Wright. Practical Soft Typing. PhD thesis, Rice University, Hous-
ton, Texas, August 1994.

Hongwei Xi and Frank Pfenning. Dependent Types in Practical Program-
ming (extended abstract). In Symposium on the Principles of Programming
Languages 99, pages 214-227. ACM SIGACT/SIGPLAN, January 1999.



	Introduction
	Statement of the Thesis
	Overview

	Designing a Type Check Generator
	Preliminary Considerations
	Comparison with Calculi for Logics
	Proofs


	Proofs
	Terms
	Terms and Substitution
	Unifiers and the Generalization Order
	Fixed Term Structure

	Rules, Contexts and Judgments
	Execution of Context Modifiers

	Proofs
	Derivation Steps
	Instantiation
	Resolution
	Adding a Pending Goal
	Deferring a Goal
	Grafting Proofs
	Outer Variables

	Extensions
	Rule Expressions
	Lists


	Implementation
	Tcg Language
	Terms
	Parser Generator
	Rules
	Deferred Goals and Proof Structure
	External Presentations

	Translator
	Interpreter
	Terms
	Rules and Contexts
	Proofs
	Inference Steps

	Search
	GUI Inspector
	Documentation Generator

	Applications
	Exploring Tcg
	Simply-Typed Lambda Calculus
	Constants
	Bindings
	Tuples and Matching
	Saving and Loading Results

	A Library of Language Constructs
	Design Guidelines
	Expressions
	Type Expressions and Kinds
	Statements
	Top-level Constructs
	Declarations
	Conversions

	Imperative Languages
	File Structure
	Procedures
	Conversions
	Overloading

	Object-Oriented Languages
	Syntax
	Type Checking
	Predicates
	Checking the Interface
	Checking the Method Bodies
	Field Access
	Super Class Conversion and Downcast

	A Language for Generic Programming
	The Calculus of Adjectives and Signatures
	The Programming Language
	Generic Programming
	Translation to C++
	Generic Sorting in Saga


	Related Work
	Tools
	The Synthesizer Generator
	The Programming System Generator (PSG)
	ASF+SDF
	CENTAUR and TYPOL
	Tinker Type

	Constraints
	The HM(X) Framework
	Solving Constraints

	Logical Frameworks
	Overview
	MiniML in Isabelle -- A Case Study


	Conclusion
	Summary
	Future Directions
	Implementation
	Extensions
	Constraint Handling


	Notation and Trees

