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Zusammenfassung

Bis zum heutigen Tag stellt das Phänomen des Farbeinschlusses (color confine-
ment) in der Quantenchromodynamik (QCD) ein faszinierendes Problem dar.
Der Zentrumsvortexmechanismus beschreibt eine mögliche Erklärung des Farb-
einschlusses im rein gluonischen Anteil der QCD. In der vorliegenden Dissertation
konzentrieren wir unsere Untersuchungen auf die Bedeutung der Zentrumsvortizes
für die Physik im infraroten Bereich der SU(2) Yang-Mills-Theorie mit Hilfe von
Monte-Carlo-Simulationen der SU(2) Gittereichtheorie.

Am Anfang geben wir einen kurzen Überblick über die Gittereichtheorie und
die verwendeten numerischen Algorithmen, die für die Monte-Carlo-Simulationen
notwendig sind. Anschließend führen wir das Bild der Zentrumsvortizes für den
Farbeinschluß ein und erklären den Phasenübergang von der Confinementphase in
die Deconfinementphase mittels des Perkolation-Deperkolation-Phasenübergangs
der Zentrumsvortizes.

Durch einen Vergleich der räumlichen Stringtension sowohl der dreidimen-
sionalen reinen Yang-Mills-Theorie als auch der dreidimensionalen Yang-Mills-
Theorie gekoppelt an adjungierte Higgsfelder mit der Stringtension berechnet mit
zentrumsprojizierten Linkvariablen, weisen wir nach, daß die räumliche Stringten-
sion zentrumsdominant ist. Desweiteren finden wir eine Vortexflächendichte, die
übereinstimmt mit den Ergebnissen aus der vierdimensionalen reinen Yang-Mills-
Theorie. Beide Ergebnisse stützen das Zentrumsvortexbild der Hochtemperatur-
phase der vierdimensionalen Yang-Mills-Theorie.

Darauf folgend untersuchen wir die Bedeutung der Zentrumsvortizes für das
Verhalten der Greenschen Funktionen, d.h. der Gluon- und Geistformfaktoren,
im Infrarotbereich und ihren Einfluß auf den Farbeinschluß. Mit Hilfe von neuen
numerischen Algorithmen berechnen wir direkt die Formfaktoren, die die Ab-
weichung eines Propagators von einem freien Propagator angeben. Die Berech-
nungen der Formfaktoren werden in der Landaueichung vollzogen. Die in den
Formfaktoren enthaltene Information über den Farbeinschluß wird extrahiert, in-
dem die Zentrumsvortizes aus den Konfigurationen der Linkvariablen eliminiert
werden. Dies führt auf ein Modell, das keinen Farbeinschluß besitzt.

In der vollständigen, farbeinschließenden Theorie besitzt der Gluonformfaktor
ein ausgeprägtes Maximum im mittleren Impulsbereich, während das bekannte
Ergebnis aus der Störungsrechnung bei hohen Impulsen reproduziert wird. Nahe
den verschwindenden Impulstransfers zeigt der Gluonformfaktor ein von einer
Masse dominiertes Verhalten. Betrachtet man das nicht-farbeinschließende Mod-
ell, so verliert der Gluonformfaktor im mittleren Impulsbereich an Wert und zeigt
eine klare Abweichung von dem Verhalten des Gluonformfaktors der vollständigen
Theorie. Desweiteren finden wir einen divergenten Geistformfaktor im Infrarot-
bereich. Unser Ergebnis stimmt mit der Gribov-Zwanziger-Bedingung für den
Farbeinschluß überein. Diese Bedingung setzt die Divergenz des Geistformfak-
tors am Gribovhorizont in direkten Bezug zu dem Farbeinschluß. Betrachten
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wir das nicht-farbeinschließende Modell, so divergiert der Geistformfaktor im
Infrarotbereich nicht mehr. Die im Geistformfaktor beinhalteten Signale des Far-
beinschlusses gehen verloren, wenn der Beitrag der Zentrumsvortizes eliminiert
wird.

Da die laufende Kopplung direkt aus den Gluon- und Geistformfaktoren berech-
net werden kann, zeigen wir ihre Abhängigkeit von den Zentrumsvortizes im
Infrarotlimes. Die laufende Kopplung der vollständigen Theorie und des nicht-
farbeinschließenden Modells reproduzieren das perturbative Verhalten in dem
Bereich, in dem die Störungsrechung gültig ist. Im Bereich der mittleren Im-
pulse ist die laufende Kopplung des Modells stark unterdrückt und scheint im In-
frarotlimes zu verschwinden, wohingegen die laufende Kopplung der vollständigen
Theorie stark ansteigt und sich im Infrarotlimes einer nicht-verschwindenden
Konstante anzunähern scheint.

Anschließend vergleichen wir unsere Meßdaten mit den Ergebnissen, die man
aus dem Dyson-Schwinger-Zugang erhalten hat. Beide Resultate stimmen quali-
tativ gut überein. Auch werden die Formfaktoren bei endlichen Temperaturen
berechnet. Unsere Resultate bei hohen Temperaturen stimmen ebenfalls mit
einer nicht verschwindenden Stringtension überein. Abschließend betrachten wir
den Einfluß der Gribovkopien auf die Formfaktoren in der Landaueichung. Die
Formfaktoren sind qualitativ stabil gegenüber dem Gribovrauschen.

Schlußendlich konnten wir die Bedeutung der Zentrumsvortizes für das In-
frarotverhalten der Greenschen Funktionen der reinen Yang-Mills-Theorie und für
den Farbeinschluß aufzeigen. Unsere Resultate stellen eine Beziehung zwischen
dem Confinementmechanisum der Zentrumsvortizes und dem Gribov-Zwanziger-
Confinementkriterium her.
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Abstract

Down to the present day, the phenomenon of color confinement represents still a
challenging problem of quantum chromodynamics. In the pure gluonic sector of
QCD, the center vortex confinement mechanism describes a possible explanation
of color confinement. In the present thesis, we concentrate our investigations on
the relevance of center vortices for the infra-red physics of pure SU(2) Yang-Mills
theory by means of Monte-Carlo simulations of SU(2) lattice gauge field theory.

At the beginning, we give a short review of lattice gauge field theory and of
the numerical algorithms needed for our Monte-Carlo simulations. Subsequently,
we introduce the center vortex mechanism of color confinement and we explain
the confinement-deconfinement phase transition of pure Yang-Mills theory by the
percolation-depercolation phase transition of center vortices.

By a comparison of the spatial string tension of the three-dimensional pure
Yang-Mills theory as well as three-dimensional pure Yang-Mills theory coupled
to adjoint Higgs fields with the value of the string tension obtained from the
pure center vortex content, we show that the spatial string tension is center
dominated. Furthermore, we find a vortex area density being in accordance with
the vortex area density of the four-dimensional theory. Both findings support the
center vortex picture of the high temperature phase of four-dimensional Yang
Mills theory.

Afterwards, we investigate the relevance of center vortices for the behavior of
Green’s functions, i.e. the gluon and ghost form factors, in the infra-red region
and their importance for color confinement. By using novel numerical algorithms,
we measure directly the form factors giving the deviation of the propagators from
the free ones. The calculations of the form factors were performed in Landau
gauge. The information of color confinement encoded in the form factors is
extracted by removing the center vortices from the ensemble of link variables by
hand. This results in a non-confining model.

In the full, confining theory the gluon form factor has a rather pronounced
peak in the medium momentum range, while at high momenta the result ob-
tained by perturbative Yang-Mills theory is reproduced. Close to zero momentum
transfer, the gluon form factor is mass dominated. Considering the non-confining
model, the gluon form factor looses a good part of strength in the medium momen-
tum range showing a clear deviation form the gluon form factor of the confining
theory. Furthermore, we find a divergent ghost form factor in the infra-red re-
gion. Our result is in accordance with the Gribov-Zwanziger criterion for color
confinement which directly relates the divergence of the ghost form factor at the
Gribov horizon to color confinement. If we consider the non-confining model,
the ghost form factor ceases to diverge in the infra-red limit. Hence, the signals
of confinement encoded in the ghost form factor are lost when the center vortex
content of the theory is eliminated.
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Using the fact that the running coupling constant can be obtained directly
from the gluon and ghost form factors, we show its dependence on the center
vortex content in the infra-red limit. The running coupling constants of the full
theory and of the non-confining model reproduce nicely the perturbative running
coupling constant in the region where perturbation theory holds. In the region
of medium momenta, the strength of the running coupling of the non-confining
model is strongly suppressed and seems to vanish in the infra-red limit, whereas
the running coupling of the full theory increases and seems to reach a non-zero
constant in the infra-red limit.

Subsequently, we compare our measured data with the results obtained by the
Dyson-Schwinger approach. Both findings are in good agreement on a qualitative
level. The form factors are also computed at finite temperatures. Our results at
high temperatures agree with a non-vanishing spatial string tension. Finally, we
consider the influence of Gribov copies on the form factors in Landau gauge. On
a qualitative level, the form factors are stable against Gribov noise.

In conclusion, we have shown the relevance of center vortices for the infra-red
behavior of Green’s functions of pure Yang-Mills theory and for color confine-
ment. Our results establish a connection between the center vortex mechanism
of confinement and the Gribov-Zwanziger confinement criterion.
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Chapter 1

Introduction

At present, the Standard Model of Particle Physics molds our world view of the
elementary constituents of matter and of the fundamental interactions in which
they are involved. The Standard Model regards three of four fundamental in-
teractions: strong interaction, electromagnetic and weak interaction. The latter
two are unified to the Glashow-Salam-Weinberg theory of the electroweak inter-
action. The fourth and last fundamental interaction, gravitation, is negligible in
particle physics1 and is not incorporated into the standard model so far. The
discovery that the variety of physical processes of the universe can be explained
in terms of few elementary particles acting under the influence of a small number
of fundamental forces is one of the most significant scientific progresses of the
last century.

The quark model [GM64], [Zwe64] and the parton model [BP69], [Fey69]
describe the known hadron spectrum by introducing quarks and gluons on a
phenomenological basis. That hadrons have a substructure was shown in deep
inelastic scattering experiments of leptons on hadrons [Bjo69]. From the exper-
imental data one can conclude that the hadrons are a composite of point like
particles. If the momentum transfer of the scattering leptons is large, the point
particles of matter behave like free particles. This behavior is called asymptotic
freedom. Quarks are spin-1/2 particles with fractional charges and they come in
six different species, i.e. in six flavors. Assigning quarks to the fundamental repre-
sentation of the SU(3)flavor group, one obtains the phenomenologically successful
SU(3) schemes for baryons and mesons. In the early days, the model seemed to
have difficulties to reconcile Fermi statistics for quarks for all known hadrons, i.e.
for the ∆++ particle. It has a charge of +3/2 , a spin of +3/2 and consists of
three up quarks violating the Pauli exclusion principle. This problem is resolved
by postulating a new internal quantum number for quarks, the color quantum
number. If a quark of each flavor has three color states, Fermi statistics is again
fulfilled. The quarks are bound into hadrons by the strong interaction, which is

1Only at extremely high energy (1019 GeV, the Planck energy), gravitation has to be con-
sidered.

1
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mediated by the gluons being gauge bosons. A striking characteristic of quarks
is that they are not observed as free particles up to now. They appear in color-
less multiplets of SU(3)flavor transforming as singlets, octets or decouplets. The
permanent embedding of quarks inside colorless bounded states is called color
confinement.

Nowadays, the fundamental starting point of a theoretical description of
hadronic physics are the symmetry principles. For instance, a quantum field
theory has to respect Lorentz invariance restricting the form of the action to be
a Lorentz-scalar. Lorentz invariance is a symmetry of space-time, but fields can
also transform in an internal space. The Maxwell Lagrangian is invariant under
local, continuous transformations of the Abelian group U(1), (i.e. under gauge
transformation Ω(x) ∈ U(1)). The invariance under U(1) transformations results
in a conserved electric current which itself gives rise to conservation of electric
charge. This is the so called Noether theorem. The Noether theorem states that
a symmetry of the action of a theory leads to the conservation of a current. On
the other hand, we can think of a conserved charge as the generator of the local,
continuous transformation under which the Lagrangian of our theory should be
invariant. This is the modern approach to construct a relativistic quantum field
theory of the basic constituents of matter.

Within the standard model, quantum chromodynamics (QCD) is the quan-
tum field theory describing the strong interactions of the fundamental building
blocks of matter. Generally, it is assumed that the strong interactions act only
on the color quantum numbers. Up to now, no flavor dependences of strong
forces are known. All flavor-dependent effects can be explained by the quark
mass differences. The basic degrees of freedom of QCD are thus quarks and glu-
ons, since they are the only fundamental particles carrying the color quantum
number. Treating color similarly to the electric charge in electrodynamics and
having the Noether theorem in mind, the entire structure of QCD emerges from
the requirement of local gauge invariance of the Lagrangian with respect to a
phase rotation of the quark fields and from the requirement of renormalizabil-
ity. Since in QCD we have three different colors, the gauge transformation U
becomes a (complex valued) unitary (3 × 3)-matrix, i.e. U †U = UU † = 1, with
det[U ] = 1. Hence, QCD is based on a non-Abelian gauge group SU(3) and
is thus called a non-Abelian gauge theory [YM54]. Non-Abelian gauge theories
were established as possible candidates for the standard model by the discovery
that non-Abelian gauge theories are renormalizable [tH71b], [tH71a], even if their
symmetry group is spontaneously broken and the theory thus becomes massive.
On this groundwork, the theory of the strong interactions is finally given by the
Lagrangian

L = − 1

4 g2
F a

µνF
a µν + q̄(iγµDµ −m)q, (1.1)

with the covariant derivative Dµ = ∂µ − iAµ and the coupling strength of the
strong interaction g. As mentioned before, the gauge group is SU(3) with the



3

quark fields q in the fundamental representation whereas the flavor index of the
quark fields is suppressed and m is the quark mass. The quarks of different flavors
have different masses.

The gluons are defined in the fundamental representation by the gauge fields
Aµ = Aa

µT̂
a, where T̂ a are traceless hermitian (3 × 3)-matrices. The matrices T̂ a

are the generators of the SU(3) gauge transformations. The gluon field strength
tensor is given by

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]. (1.2)

The crucial difference between electrodynamics and QCD is the presence of the
commutator on the r.h.s. of eq. (1.2). This commutator gives rise to the gluon-
gluon interactions, since the gluons carry color charge and can therefore interact
with each other. The color fields do not simply add like in electrodynamics. The
QCD field equations are non-linear giving rise to a non-trivial dynamics of strong
interactions.

From scattering experiments we know that quarks behave as free particles at
high momentum transfers and accordingly at short distances. A striking discov-
ery was that this property, called asymptotic freedom, only occurs in the presence
of non-Abelian gauge theories [GW73], [Pol73]. The running coupling g of the
strong interaction decreases logarithmically at increasing momentum transfer, so
that QCD appears to be a free theory in the high momentum regime. This is
the phenomenon of scaling and indicates that quarks act as free particles at high
momentum transfers. In this regime, observables calculated in perturbative se-
ries in g agree with experimental data showing the validity of QCD in the high
momentum regime. On the other hand, the running coupling increases at de-
creasing momentum transfers. A large coupling constant implies that the quarks
bind more tightly together. This is called infrared slavery which is the flip side
of asymptotic freedom. The problem of color confinement is not addressable by
perturbation theory, since the running coupling becomes large in this domain and
perturbative series with respect of the running coupling g are not valid anymore.

Since perturbation theory cannot give evidence of the phenomenon of color
confinement, a non-perturbative treatment is needed. Before one defines a non-
perturbative approach it is reasonable to simplify the theory. The first approxi-
mation is that we only regard the pure gluonic sector of QCD, which defines the
pure SU(3) Yang-Mills theory. The masses of the dynamical quark fields are set
to infinity so that they appear as static quarks which couple as colored back-
ground fields to the dynamical gluons. A potential can be defined between the
statical quarks separated by a distance. A demonstrative picture thereof is that
the streamlines of the gluonic fields are bundled into a color electric flux tube due
to the self interaction of the gluons. If the static quark-antiquark potential rises
linearly with distance, we say that the quarks are confined, since it would need an
infinite amount of energy to separate the static quarks. The effect of spontaneous
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dynamical quark-antiquark pair generation2 is not included in pure Yang-Mills
theory, because of the infinite mass of the quarks. The second approximation is
performed by considering the SU(2) group as the gauge group of our theory in
contrast to the SU(3) color gauge group of QCD. Despite this simplifications,
it is believed that pure SU(2) Yang-Mills theory is sufficient to understand the
basic mechanism of color confinement.

In the following chapter we introduce a non-perturbative approach to pure
Yang-Mills theory which is suitable to give insight in the color confinement prob-
lem: the SU(2) lattice gauge field theory in quenched approximation. We show
that the lattice gauge theory recovers the true pure SU(2) Yang-Mills theory in
the continuum limit and we show further how measurement data are related to
continuum observables.

The third chapter covers how color confinement is related to the static quark
antiquark potential and how color confinement appears in lattice gauge theory.
Afterwards, we introduce the center vortex confinement mechanism [Man76],
[MP79], [tH78] as a possible candidate of an explanation of color confinement.
Since it is believed that there exists a phase transition from the confinement phase
to a non-confining phase [Lin79], [Shu80], i.e. to the quark-gluon plasma, it is
shown that the phase transition can be explained by a percolation-depercolation
phase transition of center vortices [LTER99], [ELRT00].

In the next chapter, we address the dimensionally reduced SU(2) pure Yang
Mills theory on the lattice in three dimensions which can be viewed as the high
temperature limit of the four dimensional theory. In particular, we want to know
if the basic observables are dominated by the center vortex content of the gauge
fields. If the measurement value of an observable stems mainly from the center of
the gauge fields, we say that the observable is center dominant. Center dominance
means that the relevant degrees of freedom for observables are center vortices.

In the last three chapters, we concentrate on the Green’s function in Landau
gauge of pure SU(2) Yang-Mills theory on the lattice. They are of particular
interest mainly because of two reasons: 1) We can compare our results with
another non-perturbative approach to QCD: the Dyson-Schwinger equations. In
this approach, Green’s functions are the basic quantities. The Dyson-Schwinger
approach suffers mainly from the highhanded truncation of the infinite Dyson-
Schwinger series, whereas the lattice approach suffers from the finiteness of the
lattice. Hence, a comparison of observables of both approaches is an exciting topic
by itself. 2) The gluon and ghost propagators are the basic Green’s functions of
pure gauge theory. The relevance of center vortices on the behavior of Green’s
functions in the infra-red limit might shed light on the color confinement problem.
Our investigations are extended to Green’s functions of the three dimensional
theory to achieve a complete view of the center vortex impact on confinement

2In the flux-tube picture, hadronization is considered as a breaking of the color electric flux
tube. New quarks emerge at the ends of the flux tube forming new hadrons.
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physics. Finishing, we address the ambiguities of the gauge fixing procedure, the
Gribov copies. Gauge fixing is needed for the calculation of Green’s functions
and we investigated the importance of Gribov copies for the values of Green’s
functions measured in lattice simulations.
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Chapter 2

Gauge Field Theory on the
Lattice

2.1 The Partition Function and the Euclidean

Path Integral

The close connection between quantum statistical mechanics and quantum field
theory is based on the formulation of the Feynman path integral. This analogy
is seen by comparing the quantum field theory in Euclidean path integral form
with quantum statistical mechanics in the canonical ensemble, i.e. the path
integral represents a canonical ensemble in d-dimensional space-time. Especially
for lattice field theories, the two languages are absolute precisely equivalent.

The fundamental quantity of quantum statistical mechanics is the partition
function of the theory under consideration:

Z[β] = exp {−F (β)}
= Tr [exp {−βH}] =

∑

n

〈n| exp {−βH} |n〉, (2.1)

where F (β) is the free energy, H is an hermitian Operator representing the Hamil-
tonian of the theory and β = 1/(kBT ), with T the temperature and kB the Boltz-
mann’s constant. The states |n〉 form a complete, orthonormal basis set and
the sum is taken over all these states. The expectation value of some quantum
mechanical operator Ô corresponding to an observable O is given by

〈Ô〉 = Z−1 Tr
[

Ô exp {−βH}
]

= Z−1
∑

n

〈n|Ô exp {−βH} |n〉, (2.2)

where the sum is taken again over all eigenstates of the Hamiltonian. In general,
the eigenvalues of the Hamiltonian H are not known and we want to evaluate the
trace of eq. (2.2) without diagonalizing H. A modus operandi is given by the
Euclidean path integral.

7
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Consider a Hamiltonian H which is bounded from below. This operator is
decomposed into two operators in the following way

H = H0 + V,

where H0 is a free Hamiltonian and V is an interaction operator. With a contin-
uous basis set {|α〉} of H, the trace of the partition function eq. (2.1) becomes

Z[β] =

∫

dα 〈α| exp {−βH} |α〉 =

∫

dα 〈α| exp {−β (H0 + V)} |α〉

= lim
N→∞

∫

dα 〈α|
(

exp

{

− β

N
H0

}

exp

{

− β

N
V

})N

|α〉, (2.3)

where we used the exact Trotter product formula [Tro59], [Suz71] for two non-
commuting operators A,B

exp {A + B} −→
N→∞

(

exp

{
A

N

}

exp

{
B

N

})N

, N ∈ N (2.4)

and

exp

{
A

N
+

B

N

}

≈ exp

{
A

N

}

exp

{
B

N

}

exp

{

− 1

2N2
[A,B]

}

.

From the last equation we see, that we make an error of the order O(1/N 2), if
we neglect the last product on the right hand side. Especially, if the operators
do commute up to a constant, [A,B] ∈ C, the error made is only an irrelevant
constant.

To convert this into a path integral, we insert the completeness relation
∫

dα |α〉〈α| = 1

between the individual products

Z[β] = lim
N→∞

∫

dα

∫ N−1∏

j=1

dαj

N∏

j=1

〈αj| exp

{

− β

N
H0

}

exp

{

− β

N
V

}

|αj−1〉, (2.5)

where periodic boundary condition are imposed

|αj=N〉 = |αj=0〉 = |α〉. (2.6)

The main point here is that we have defined the path integral Eq. (2.5) as a
limiting procedure for N → ∞.

If we interpret the inverse temperature β as the Euclidean time1 for a short
time, the factor β/N in the exponent can be seen as a small time slice ε. The

1The relation between the inverse temperature and a (Euclidean) time stems from the an-
alytical continuation (Wick-rotation) of the real world (Minkowski) time to imaginary time:
t → −iτ and β = 1/kBT . With imaginary time, the Schrödinger equation transforms into a
diffusion equation, which is a typical thermodynamic equation.
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integrand of eq. (2.5) becomes a time-like discretization of the transition ampli-
tude

〈αN | exp {−βH} |α0〉 =

= lim
N→∞

∫ N−1∏

j=1

dαj

N∏

j=1

〈αj| exp {−εH0} exp {−εV} |αj−1〉

= lim
N→∞

∫ N−1∏

j=1

dαj

N∏

j=1

〈αj| exp
{

− ε

2
V
}

exp {−εH0} exp
{

− ε

2
V
}

|αj−1〉

= lim
N→∞

∫ N−1∏

j=1

dαj

N∏

j=1

〈αj|T|αj−1〉

with the transfer matrix T. An important property of the transfer matrix T

is that it is a Hilbert-Schmidt operator, i.e T is a compact operator which has
an orthonormal basis {α} with

∑

α ‖T|α〉‖2 < ∞. With the help of the transfer
matrix the calculation of the partition function of many physical problems reduces
basically to the evaluation of the largest eigenvalue of the operator2 T.

Concluding, we may rewrite the partition function eq. (2.5) formally as

Z[β] =

∫

[Dα] exp {−SE[β]} , (2.7)

which yields the Euclidean path integral with the Euclidean action

SE[β] = lim
ε→0

Nε=β

N∑

j=1

εH =

β∫

0

dτ ′ H(τ ′) (2.8)

and with the functional integral measure

lim
N→∞

N−1∏

j=1

∫

dαj =

∫

[Dα] .

As a next point, we want to discuss the relationship between thermal cor-
relation functions, the basic quantities of statistical physics, and propagators
(Green’s functions), the basic observables of a quantum field theory. Thermal
correlation functions can be derived from the generating functional Z[β, j] which
is defined by

Z[β, j] =

∫

[Dα] exp

{

−SE[β] +

∫ β

0

dτ j(τ)α(τ)

}

, (2.9)

2This method calculates the free energy directly in terms of the largest eigenvalue of the
large matrix T.
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where j(τ) is an appropriate source term for α. Functional differentiation with
respect to j(τ) gives the thermal average of the correlation functions in imaginary
time

G(2)(α(τ1), α(τ2)) := 〈α(τ1)α(τ2)〉 =
1

Z[β, j = 0]

δ2 Z[β, j]

δj(τ1) δj(τ2)

∣
∣
∣
∣
j=0

(2.10)

=
1

Z[β, j = 0]

∫

[Dα]α(τ1)α(τ2) exp {−ZE[β, j = 0]} .

The path integral in the equation above can now be identified as the thermal
average (cf. eq. (2.2)) of time-ordered operators in the Heisenberg picture,

〈T[α̂(−iτ1)α̂(−iτ2)]〉β =
1

Z[β]
Tr [exp {−βH}T[α̂(−iτ1)α̂(−iτ2)]] . (2.11)

If we identify α as field variables, this equation defines the time ordered propa-
gator of the corresponding fields.

From the cyclicity of the trace of thermal averages (i.e. Tr[ÂB̂] = Tr[B̂Â]) or
from the periodicity, cf. eq. (2.6), of the paths in the path integral formalism,
the following property of the propagator is deduced

〈T[α̂(−iβ)α̂(−iτ)]〉β = 〈T[α̂(0)α̂(−iτ)]〉β. (2.12)

Furthermore, we can continue back from Euclidean space to Minkowski space (i.e.
−iτ → t), if our theory obeys the Osterwalder-Schrader (reflection) positivity
which involves time reflections and complex conjugations [OS73], [OS75]. Then
we can define the two-point functions ∆>(t1, t2) and ∆<(t1, t2) with t1 > t2 as
follows:

∆>(t1, t2) = 〈α̂(t1)α̂(t2)〉β (2.13)

∆<(t1, t2) = 〈α̂(t2)α̂(t1)〉β = ∆>(t2, t1). (2.14)

If a complete set of eigenvectors of the Hamiltonian is inserted in the equations
above and the condition of their convergence is taken into account, then it follows
that ∆>(t1, t2) is defined for −β ≤ Im(t1 − t2) ≤ 0 while ∆<(t1, t2) is defined
for β ≥ Im(t1 − t2) ≥ 0. Booth functions can be defined as distributions on
the boundary of their domain. If the fact is used that Uβ := exp{−βH} is an

evolution operator in imaginary time, U †
βα̂(t)Uβ = α̂(t+ iβ), and the cyclicity of

the trace is used, the Kubo-Martin-Schwinger relation is derived [LB96]

∆>(t1, t2) = ∆<(t1 + iβ, t2). (2.15)

If we go back to imaginary times, we can now release the restriction that τ has
to lie in the interval [0, β]. We may identify the imaginary time propagator with

∆(τ) =

{
∆>(−iτ, 0) for τ ∈ [0, β]
∆<(0,−iτ) for τ ∈ [−β, 0] (2.16)
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Because of the Kubo-Martin-Schwinger relation (2.15) and with periodic bound-
ary conditions (i.e. τ − β = τ) the propagator obeys the periodicity condition

∆(τ − β) = ∆(τ). (2.17)

Hence, even if we calculate propagators in the Euclidean space with the restriction
of τ to the interval τ ∈ [0, β], we can extend the interval of τ to negative values
and we can relate our results to propagators calculated in continuous Minkowski
space.

In conclusion, the partition function eq. (2.1) of the theory under considera-
tion can be written as the Euclidean path integral

Z[α] = lim
β→∞

lim
ε→0

Nε=β

∫

[Dα] exp {−SE[β]}

=

∫

[Dα] exp

{

−
∫ β

0

dτ ′ H

}

. (2.18)

The partition function of a continuum quantum field theory in Euclidean space
is derived, if we first take into account the Kubo-Martin-Schwinger relation eq.
(2.15) so that we can extend the interval of possible values of τ to τ ∈ [−β, β].
Secondly, we have to take a two-fold limit. The first limit describes the infinite
volume limit, i.e. t→ ∞. The second limit is the continuum limit ε→ 0. Finally,
the partition function for a continuum theory in real time is given by

Z[t] = lim
t→∞

lim
ε→0

Nε=β

∫

[Dα] exp

{

−i
∫ t

−t

dt′ H

}

. (2.19)

The generalization from one variable to four dimensional space-time is straight
forward.

The expectation value of an observable is also given by a two-fold limit process

〈O[α]〉 = lim
t→∞

lim
ε→0

Nε=T

∫

[Dα]O[α] exp

{

−i
∫ t

−t

dt′ H

}

. (2.20)

If the Hamiltonian H of the discretized theory respects the Osterwalder-
Schrader positivity property, then we can in principle perform a Wick rotation
back to real times, −iτ → t, so that the propagators of the theory being calcu-
lated in Euclidean space are recovered in Minkowski space.

Motivated by our preliminary remarks, we can give a prescription for defining
a quantum field theory on a discrete space-time lattice and subsequently taking
the physical continuum limit so that the connection to the corresponding contin-
uum quantum field theory is evident. First, we have to define the lattice version
of the action of the continuum SU(2) Yang-Mills theory (this will be done in the
next section) and afterwards we have to discuss the (physical) continuum limit
of lattice measurements gaining access to continuum observables.
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2.2 Pure Yang-Mills Theory on the Lattice

After the technical remarks above about the relationship between quantum sta-
tistical mechanics and quantum field theory, we want to define the lattice version
of pure SU(2) Yang-Mills action. A motivation for introducing a discrete space-
time lattice was the possibility of numerical simulation with the Monte-Carlo
method. The paradigm of a Monte-Carlo lattice simulation is the Ising spin
model. This model was the starting point of the first lattice gauge field theory
which was introduced by F. Wegner [Weg71]. He looked for models, which could
not magnetize but would have nontrivial phase diagrams. Additionally, those
models should have phase transitions without local order parameters as opposed
to the Ising model where the expectation value of the spin variables can be used
as an order parameter. Hence, the task was to formulate a theory having no local
order parameters and to find a symmetry of the model which can distinguish
two (or more) phases. A solution was the extension of the Ising spin model to a
lattice gauge model.

In contrast to the spin model, where the spins sit on space-time points (sites),
the spins of the gauge model sit on connecting passages between two neighboring
sites (links). The local, nearest neighbor spin interaction of the Ising spin model
is replaced by a local four spins interaction on plaquettes, see fig. (2.1) (In the
following, we restrict ourselves to planar models.). This means that the local
interaction is a product of four spins around the smallest rectangle of four links.
The lattice gauge model is additionally provided with a local gauge group. That
is a spin flipping operator Ω(x), which forbids the occurrence of magnetization,
since a local gauge symmetry cannot break down by Elitzur’s theorem [Eli75].

For a detailed derivation of the lattice version of SU(2) Yang-Mills theory
with a close connection to spin systems see also [Kog79].

2.2.1 The Gauge Model of Wegner

From the start, we consider a cubic lattice in d-dimensional Euclidean space-time
with a side length of L. The points of the discrete lattice, from now on called sites,
are labeled by x and they are subject to periodic boundary conditions x+L = x.
The distance between two neighboring sites is set by the lattice constant a. In
isotropic lattices this constant is the same in all directions and we want to restrict
ourselves to isotropic lattices Λ in the following,

Λ := {x = (an0, a~n) |nµ ∈ N, a ∈ R} and xµ + L = xµ.

The shortest connections between two neighboring sites are the links of the lattice,
those are labeled by a site vector x and by the label µ for the corresponding
direction

link: l(x, µ) = l(x+ µ̂,−µ), (2.21)
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PSfrag replacements

s(x) s(x+ µ̂)

s(x+ ν̂)

S local
ising [s(x)] = J s(x) ·

∑

l̂∈{±µ̂,±ν̂}

s(x+ l̂)

sν(x− ν̂)

sµ(x− ν̂)

S local�
2

[sµ(x)] = J
(
sν(x)sµ(x+ ν̂)sν(x+ µ̂) +

+ sν(x− ν̂)sµ(x− ν̂)sν(x− ν̂ + µ̂)
)
· sµ(x)

Figure 2.1: In the left panel the local action of a spin variable of the
Ising model, in the right panel local action of a spin variable of the�

2 gauge model of Wegner are shown.

where µ̂ denotes the unit lattice vector in µ-direction. The spin degrees of freedom
s(l) = s(x, µ) = sµ(x) = ±1 are placed on the links l(x, µ). The local plaquette
variable Pµν(x) is defined as an ordered product of the spin variables sµ(x) around
an elementary cell,

Pµν(x) = sν(x)sµ(x+ ν̂)sν(x+ µ̂)sµ(x). (2.22)

The plaquettes can take the values

Pµν(x) = ±1.

and thus, the partition function for the
�

2-gauge model is given by

ZW :=
∑

{Si}

exp

{

+J
∑

x,µ<ν

Pµν(x)

}

, (2.23)

where the sum over {Si} is taken over all possible lattice spin configurations
Si = {sµ(x)}i ∀l(x, µ). The parameter J is the interaction constant of the model.

A local gauge transformation is implemented by the spin flip operator Ω(x) =
Ω−1(x) = −1 sitting on the site x. All spins connected to site x′ are flipped
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together. The spins transform under such a operation as

sµ(x) → Ω−1(x+ µ̂)sµ(x)Ω(x). (2.24)

We see that a plaquette Pµν(x) associated with x is invariant under such a spin flip
transformation, since a spin flip operator Ω(x) changes always two spin variables
of a plaquette:

Pµν(x) → Ω(x)−1Pµν(x)Ω(x) = (−1·sν(x))sµ(x+ν̂)sν(x+µ̂)(sµ(x)·−1) = Pµν(x).

The relative orientation of the spins is left invariant by the gauge transformation
Ω(x), but not the orientation of the individual spins. Since the action is defined
only in terms of plaquette variables Pµν(x) which are gauge invariant under the
local gauge transformation Ω(x). The gauge symmetry of the action follows
automatically.

As in contrast to the Ising model, the spin variable sµ(x) cannot be used
as a local order parameter for a magnetization phase transition. Spontaneous
magnetization of this model vanishes for all temperatures T , 〈sµ(x)〉 = 0∀T , as
a result of the local gauge symmetry due to Elitzur’s theorem [Eli75]. Still, the

�
2-

gauge model has a non-trivial phase structure which can be labeled by a non-local
order parameter. A possible gauge-invariant correlation function is the product of
spin variables around a closed path of links W[C] =

∏

l∈C s(l) [Weg71], where C is
a closed path. The expectation value of W[C] will depend on the characteristics of
the closed path C, particular the loop has a perimeter d and a minimal enclosed
surface area A. At high temperature, the expectation value of W[C] falls off
exponentially with the area A (area law), 〈W[C]〉 ∝ exp{−A}, whereas it falls
off exponentially with the perimeter d at low temperature, 〈W[C]〉 ∝ exp{−d}
(perimeter law). This shows that the

�
2-gauge model has distinct high- and

low-temperature phases, see [Weg71], [Kog79], [CJR83].

2.2.2 The Generalization to SU(2) Yang-Mills Theory

Our goal is to define the proper lattice version of SU(2) Yang-Mills theory. To
accomplish this, we first generalize the spin gauge model of Wegner to the case
of continuous, Abelian groups [Wil74], [Pol75] see also [Kog79].

Abelian Field Theory on the Lattice

For an Abelian theory, e.g. QED, the spin variables sµ(x) have to correspond to
gauge vector fields Aµ(x) and the plaquette variables of the spin variables should
be analogous to the curl of the gauge fields, Pµν(x) → ∂µAν(x) − ∂νAµ(x). At
first, the spin degrees of freedom are enlarged in such a way, that the action has
a global Abelian symmetry group. The spin variables sitting on the sites are
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thereby parameterized as

~s(x) =

(
cos (θ(x))
sin (θ(x))

)

,

where θ(x) is an angle variable. The action results from the usual nearest neighbor
interaction of the spin variables

Sab.is. = −J
∑

x,µ

~s(x) · ~s(x+ µ̂) = −J
∑

x,µ

cos (∆µθ(x)) , (2.25)

with the usual forward differential operator ∆µ, eq. (A.9), and the coupling
constant J . This action posses a global, continuous gauge symmetry3. The tran-
sition to a local gauge symmetry on a space-time lattice is done in an analogous
manner as in the transition from the Ising spin model to the

�
2-gauge model.

The spin degrees of freedom are moved from the sites to the links, θµ(x), and a
lattice version of the curl is defined by the tensor θµν(x)

θµν(x) = ∆µθν(x)−∆νθµ(x) = (θν(x+ µ̂)− θν(x))− (θµ(x+ ν̂)− θµ(x)), (2.26)

which is invariant under gauge transformations Ω(x) sitting on arbitrary sites.
The action may now defined in accordance with eq. (2.25) as

S = J
∑

x,µ<ν

(1 − cos (θµν(x))) , (2.27)

where the summation runs over all lattice sites and over all surfaces in positive
directions. The cosine term in the action above may be rewritten in the following
way

cos (θµν(x)) =
1

2

(
e−iθν(x) e−iθµ(x+ν) eiθν(x+µ) eiθµ(x) + c.c.

)

=
1

2

(
s†ν(x)s

†
µ(x+ ν)sν(x+ µ)sµ(x) + c.c.

)

=
1

2

(
Pµν(x) + P†

µν(x)
)
,

where the link variables are given by

sµ(x) = exp {iθµ(x)} . (2.28)

This shows explicitly the path ordered product around an elementary cell giving
the plaquette variable Pµν(x) and the action can be expressed in those plaquette
variables

S = J
∑

x,µ<ν

(

1 − 1

2

(
Pµν(x) + P†

µν(x)
)
)

. (2.29)

3If all spins are rotated by the same arbitrary angle α, the action still remains unchanged.
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Discrete ZN Abelian gauge theories can be defined, if the values of the angular
variable θµ(x) are given by the set θµ(x) ∈ {2πn/N |n ∈ {0, 1, . . . , N − 1}}.
Continuous U(1) Abelian gauge theory can be formulated by allowing the angular
variable to take continuous values , i.e. −π < θµ(x) < π.

The affinity of the above lattice model to continuum electrodynamics becomes
obvious in the naive continuum limit, where the lattice spacing a = β/N goes to
zero: a → 0. In this limit the spin variables θµ(x) are expected to be smooth,
slowly changing functions and the plaquettes can be expanded by its series

Pµν(x) = exp {iθµν(x)} = 1 − iθµν(x) −
1

2
θ2

µν(x) ± . . . .

and the action can be approximated by

S = J
∑

x,µ<ν

(

1 − 1

2

(
2 − θ2

µν(x) ± . . .
)
)

≈ J
∑

x,µ<ν

1

2
θ2

µν(x). (2.30)

If we replace the discrete sum over the plaquettes in the action eq. (2.29) by the
integral over space

∑

x

→
∫

dx

a4
,

with a the lattice constant (in the previous section the parameter ε corresponded
to the lattice constant a). If we perform the limit a→ 0 and replace the angular
variables θ by

θµ(x) → −ageAµ(x), (2.31)

where ge represents the electric coupling constant (i.e. charge e) and Aµ(x) are
the gauge potentials, the continuum action of electrodynamics with zero mass
photons is recovered

SQED ≈ J

∫
dx

a4

1

2
θ2

µν(x) = J

∫
dx

a4

a4g2
e

2
F 2

µν(x) =
1

4

∫

dxF 2
µν(x) (2.32)

with the field strength tensor

Fµν(x) = ∂µAν(x) − ∂νAµ(x).

The interaction coupling J was replaced by J = 1/2g2
e . If we introduce integer

valued sources jµ(x) sitting on the sites and obeying the current conservation,
the gauge invariance is preserved and the partition function is given by

Z lat.
QED[jµ(x)] =

∏

x,µ

+π∫

−π

dθµ(x) exp

{

−SQED +
∑

x

jµ(x)θµ(x)

}

.

Completing this derivation, the partition function of quantum electro dynamics
is recovered without fermions. The limit a→ 0 by constant space-time extension
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is only achieved if N → ∞, and this is exactly the needed limit for the Euclidean
path integral

ZQED[jµ(x)] '
∫

∀paths

[DA] exp

{

−1

4

∫

d4x

(
1

4
F 2

µν − eJµAµ

)

+ g.f.

}

, (2.33)

where g.f. is an abbreviation for the gauge fixing term. This defines the free
Maxwell theory4, with zero mass photons.

Pure SU(2) Yang-Mills Theory on the Lattice

Finally, we want to deal with non-Abelian gauge theories describing the purely
gluonic domain of Quantum Chromodynamics, i.e. SU(N) gauge theory on the
lattice in quenched approximation. For this purpose, we replace the spin vari-
ables with generators of the gauge group under consideration with an additional
unit element. In the following, we restrict us to the gauge group SU(2), the
generalization to SU(N) gauge groups is straight forward. The generators are
then the Pauli matrices σi and the additional unit element is the (2 × 2) unit
matrix � 2. The SU(2) gauge group is obtained, if each element of the generators
and the unit element is multiplied by an arbitrary real number ua. The index
a = 0, 1, 2, 3 labels the color quantum number, whereby the constraint uaua = 1
is additionally imposed. One combines subsequently all four matrices to the link
variable Uµ(x)

Uµ(x) := sµ(x) ∈
{

� u0 + i~u · ~σ |
3∑

a=0

(ua)2 = 1

}

, (2.34)

which is a usual SU(2) matrix in fundamental representation. The link variable
Uµ(x) behaves under a gauge transformation Ω(x) ∈ SU(2) like

Uµ(x) → Ω†(x+ µ̂)Uµ(x)Ω(x), (2.35)

where the gauge transformations Ω(x) reside again only on the sites of the lattice.
The plaquette variable is a path ordered product of the link variables around the
smallest loop of the lattice

Pµν(x) = U †
ν(x)U

†
µ(x+ ν̂)Uν(x+ µ̂)Uµ(x), (2.36)

where the negative oriented link variables, e.g. the oriented link l(x+ ν̂,−ν) from
x+ ν to x, carry the inverse matrix U †

ν(x)

U−ν(x+ ν̂) ≡ U †
ν(x). (2.37)

4On the lattice, the term cos(e0a
2Fµν) induces non-trivial self interactions causing the

Coulomb’s weak coupling phase to give way to a confining strong coupling phase by magnetic
flux condensation.
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The plaquette variable Pµν(x) is a special case of the Wilson loop W[R, T ] [Wil74].
For the definition of the Wilson loop we consider a rectangular closed path C in
four-dimensional Euclidean space-time, with a space-like extension of R and a
time-like extension T . The Wilson loop is defined for a general path C as the
path order product of link variables belonging to the path C:

W[C] :=
1

2
Tr [U [C]] =

1

2
Tr



P




∏

lµ∈C

U(lµ)







 , (2.38)

with lµ = (x, µ), U(lµ) = Uµ(x) and P[U ] denotes the path ordering of the
link variables. For SU(N) pure gauge theory the expectation value of a Wilson
loop 〈W[C]〉 is given by the expectation value of 1/N Tr [U [C]], where U [C] is the
path ordered product of the link variables Uµ(x) along the closed path C in the
fundamental representation of the gauge group. The Wilson loop and its special
cases play an important role for investigations of confinement in pure Yang-Mills
theories which is the subject of the next chapter.

With the plaquette variables eq. (2.36) and motivated by the action eq. (2.29)
of lattice QED, a most local, gauge invariant choice for the lattice version of the
pure SU(2) Yang-Mills action , the Wilson action [Wil74], is given by

S lat.
SU(2) [Uµ(x)] = β

∑

x,µ<ν

(

1 − 1

4
Tr
[
Pµν(x) + P†

µν(x)
]
)

, (2.39)

where β is the only free parameter of the theory. This parameter plays later an
important role for the continuum limit and may not be confused with the inverse
temperature.

Finally, if we introduce sources jµ(x) sitting on the sites, the lattice generating
functional is given by

Z lat.
SU(2) [jµ(x)] =

∫

[dUµ(x)] exp

{

−S lat.
SU(2) [Uµ(x)] +

∑

x,µ

jµ(x)Uµ(x)

}

, (2.40)

where the integration measure [dUµ(x)] is given by

∫

[dUµ(x)] =
∏

x,µ

∫

dUµ(x). (2.41)

This is the Haar measure being an invariant measure under the action of a topo-
logical group. This measure meets the following properties:

normalization
∫

[dΩ] = 1
right & left invariance

∫
[d(ΩΩ′)]f(Ω) =

∫
[d(Ω′Ω)]f(Ω) =

∫
[dΩ]f(Ω)

(2.42)
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where Ω is an element of a topological5 group Γ, Ω ∈ Γ.
The Haar measure is a more general and an abstract extension to the Lebesgue

measure. However in most cases it can be shown that it leads to a measure
that is different from the Lebesgue measure by only a factor of proportionality.
Nowadays, it is the most used measure for probability measures, because it allows
existence and uniqueness proofs in a fairly general setting. We do not want
to go into details, the important point is that it can be used as a probability
measure with the properties above, which allows us to use statistical physics and
its probabilistic language for compact groups like SU(2). Note that the Haar
measure also emerges in the partition function of the continuum pure Yang-Mills
theory [Rei96].

The next step is to show that our lattice action S lat.
SU(2) [Uµ(x)], eq. (2.39),

produce the continuous SU(2) Yang-Mills theory in the naive continuum limit.
As in the Abelian theory, the plaquette variable can be expanded as (compare
with eq. (2.30))

Pµν(x) = 1 − a2gFµν(x) +
1

2
a4F a

µν(x)τ
aF b

µντ
b ± . . . , (2.43)

with the following representation for the link variables

Uµ(x) = exp {−agAµ(x)} = exp
{
−agAa

µ(x)τ a
}
, (2.44)

with τ a = iσa. The field strength is then defined as

Fµν =
i

g0

[Dµ,Dν ] = ∂µAν − ∂νAµ − ig0 [Aµ, Aν ] , (2.45)

with the covariant derivative Dµ = ∂µ−ig0Aµ. The continuous parameters are the
gluon gauge field Aµ = 1

2
τaAa

µ living in the Lie algebra of color SU(2). Respecting
the trace of the plaquettes, this leads to the following action of the pure SU(2)
Yang-Mills theory

β
∑

x,µ<ν

(

1 − 1

4
Tr
[
Pµν(x) + P†

µν(x)
]
)

−→
a→0

− β

∫

d4x
g2

16
Fµν(x)

aF a
µν(x),

where the trace of the plaquettes has been taken into account. If we identify the
lattice parameter β with the coupling constant g, β = 4/g2, the action reduces to
the usual Yang-Mills action for the SU(2) gauge group. Hence, the lattice action
S lat.

SU(2) [Uµ(x)] corresponds to the continuum SU(2) Yang-Mills theory. Further-
more, it was shown that the Wilson action fulfills reflection positivity condition
[Sei82], [OS78] which allows the analytical continuation back from Euclidean time
to Minkowski time, see also [MM], [Roe].

5A topological group is a continuous group which posses a Hausdorff topology, e.g. Lie-
groups.
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2.3 The Continuum Limit and Renormalization

In the preceding sections, we have shown the relationship between statistical
physics and quantum field theory on the lattice. It was emphasized that the true
partition function of a quantum field theory is obtained in the continuum limit
a → 0 and in the thermodynamic (the infinite volume) limit Vol[Λ] → ∞. In
the following we want to address the correlation between the expectation values
of an observable Ôlat on the lattice and its corresponding continuum observable
Ôphys. The lattice expectation value of an observable is given by

〈Ôlat.[U ]〉 = Z−1
SU(2)

∫

[dU ]O[U ] exp
{
−β S lat.

SU(2)[U ]
}
, (2.46)

where ZSU(2) is the partition function of the Wilson action. The continuum value

of an observable Ô is obtained by taking the following limits

〈Ô[U ]〉 = lim
Vol[Λ]→∞

lim
a→0
Na=l

〈Ôlat.[U ]〉, (2.47)

where we consider a cubic discrete space-time lattice Λ with extension l. The
lattice value of an observable is extrapolated to the physical continuum if we
take the thermodynamic limit by inserting more and more lattice points into
the lattice volume. The continuum limit is taken by tuning the β-parameter
in an appropriate manner. The β-parameter is the only free parameter of the
pure SU(2) lattice gauge field theory. We know that the β-parameter is related
to the coupling, β = 4/g for SU(2) Yang-Mills theory. The strength of the
coupling g depends on the momentum and thus it depends on distance via Fourier
transformation. This means that by changing the β-parameter, we choose our
scale of length and hence the lattice spacing a. Additionally, the space-time lattice
Λ provides the field theory with a momentum cut-off π/a rendering the possible
infinities of momentum loop-integrals finite. By implementing the continuum
limit a→ 0 the cut-off goes to infinity and divergences in observables are generally
produced in the case of a four dimensional field theory. As a consequence thereof,
we have to renormalize our lattice theory to obtain finite results for physical
quantities.

The Continuum Limit of a Lattice Observable

At the beginning, we consider the Ising model which is a mathematical model for a
ferromagnet. At high temperatures, the magnetic spin variables of a ferromagnet
have random spin orientations and the average magnetization vanishes. If the
temperature drops below a critical temperature Tc, the Curie temperature, a
phase transition occurs The spins prefer to align themselves in one direction and
a net magnetization appears. For a characterization of the phase transition, we
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introduce the connected spin-spin correlation function

G(r) = 〈s(r)s(0)〉 − 〈s(r)〉 〈s(0)〉. (2.48)

The correlation function depends only on the distance r between the two spins,
since translation invariance holds. The connected correlation function is a mea-
sure for information transport of the spins over a distance r. It can be shown
that the correlation function is well represented for large r by [LB88], [Lan02]

G(r) =
g(r/ξ)

rd+η−2
, with g(r/ξ) ∼ exp {−r/ξ} for r À ξ, (2.49)

where d is the number of space dimensions and η is the anomalous dimension.
The correlation length ξ represents the characteristic length scale of spin-spin
correlations which specifies the size of spin clusters. If the critical temperature
Tc is approached, the correlation length diverges indicating a second order phase
transition,

ξ ∝ |T − Tc|−ν for T ∼ Tc, (2.50)

with the critical index ν being equal to one for the two-dimensional Ising model.
On the other hand, the mass spectrum of a pure gauge theory, like in quan-

tum mechanics, is measured by the connected Green’s functions of appropriate
plaquette operators

G(τ) = 〈OP(τ)OP(0)〉 − 〈OP(τ)〉 〈OP(0)〉 =
∑

n6=0

|〈0|Ô|n〉|2 exp {−(En − E0) τ} ,

(2.51)
where En are the eigenvalues of the Hamiltonian of the theory and E0 is the
eigenvalue of the ground state. The mass spectrum is expected to begin with
a first state above the vacuum and having a positive definite mass m1 which
is called the mass gap of the theory. It represents basically the mass of a well
defined excitation being like a particle. For τ sufficiently large the connected
Green’s function decays exponentially like

G(τ) −−−→
τ→∞

exp {−(E1 − E0) τ} = exp {−m1(g) τ} = exp {−τ/ξphys} . (2.52)

By comparison with the spin-spin correlation function, it is apparent that the
correlation length ξphys is given by the inverse of the mass gap

ξphys = m−1
1 (g) = (E1 − E0)

−1. (2.53)

If we go over to lattice units, we have τ = an and τ/ξ = n/ξlat. Since ξphys =
m−1

1 (g) is a physical quantity with a dimension of length, it must remain finite
in the continuum limit a → 0. This implies that the lattice correlation length
has to diverge. The divergence of the correlation length ξlat is the trademark
of a second (or higher) order phase transition. Thus, the non-trivial continuum
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limit is reproduced in the limit a → 0 if and only if the β-parameter can be
tuned in such a manner so that ξphys is kept constant. Adjusting the β-parameter
corresponds to tuning the running coupling constant g because of β = 4/g2 for
the SU(2) gauge group. Consequently, the lattice action S lat.

SU(2) [Uµ(x)] eq. (2.39)

can only describe continuum pure SU(2) Yang-Mills theory if a critical value gc

exists in such a way that the correlation length ξlat(g) diverges,

lim
g→gc

ξlat(g) = ∞, so that a ξlat(g) = const = ξphys. (2.54)

On the other hand, if the lattice action does not exhibit a critical value gc for the
running coupling, then this action cannot describe any quantum field theory.

Generally, the expectation value O of a physical observable Ô having a mass
dimension of dÔ is related to corresponding lattice quantity Olat.(g) by

〈Ô〉(g, a) =

(
1

a

)d
Ô

〈Olat.〉(g) (2.55)

The lattice observable is a function of the dimensionless coupling g only. The
behavior of g(a) is determined by the requirement that an arbitrary lattice ob-
servable Olat assumes its physical value Ophys in the continuum limit

〈Ô〉(g, a) a→0−→ Ophys.

With the help of eq. (2.55), the needed relation for lattice quantities is obtained

〈Olat〉(g) a→0−→ ad
ÔOphys.

As noted above, the inverse of the lattice constant represents the momentum cut-
off Λ. If we consider perturbation theory then performing the continuum limit
means to move the momentum cut-off to infinity and the occurring of divergences
are absorbed in the bare coupling so that physical observables obtain finite values.

Fixing the value of Ophys corresponds to choose a scale µ = O
1/d

Ô

phys (in perturbation
theory this is equivalent to defining the renormalization point).

A functional relation between the coupling constant g and the lattice constant
a, i.e. g = g(a), has to be available for the existence of the physical limit of an ob-
servable. The functional behavior of g(a) has to fulfill another two requirements:
1) The running coupling g(a) has to feature scaling properties. This means that
the function g(a) extracted with the help of an arbitrary observable has to hold in
the limit a→ 0 for all well-defined physical observables having finite values in the
continuum limit. 2) There may exist several possible values for the critical point
gcr for a variety of correlation lengths by which phase transitions of the lattice
theory occur. Thus there are possibly zero, one or several continuum field theo-
ries contained in a single lattice theory. For this reason the true critical point has
to be found which describes the features of QCD in quenched approximation. In
particular, the weak coupling limit should be present, where perturbation theory
is valid.
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Renormalization and the Running Coupling

In order that our lattice theory represents pure SU(2) Yang-Mills theory, we re-
quire that the continuum limit, which is now given by g(a) → gcr, corresponds to
the weak coupling expansion exhibiting an asymptotically free theory6 at short
distances [GW73],[Pol74]. Divergences occur generally in higher order perturba-
tion theory of QCD. They can be removed by either introducing a cutoff momen-
tum scale Λco or by analytically continuing the number of space-time dimensions
away from four (d→ 4 − ε), i.e. performing a dimensional regularization, subse-
quently followed by a charge, mass and wave function renormalization. We use
the first method for regularization and consider unrenormalized functions describ-
ing vertices and self-energies involving nB external boson lines and nF external
fermion lines. They are defined in terms of the momentum cutoff Λco = π/a and
the bare coupling constant g0 by

Γu
nB,nF

= Γu
nB,nF

(pi, g0,Λco), (2.56)

where pi denotes the external momenta. The renormalized functions Γr are given
in terms of a scale parameter µ, a renormalized coupling constant g(gcr,Λco/µ)
and renormalization constants ZB(Λco) and ZF(Λco) for external boson and fermion
wave functions respectively by

Γr
nB,nF

(pi, g, µ) ≡ lim
Λco→∞

(ZB(Λco))
nB (ZF(Λco))

nF Γu
nB,nF

(pi, gcr,Λco). (2.57)

The scale µ is utilized by demanding that Γr be equal to some predetermined
function at an Euclidean momentum p2 = −µ2. Thus for a one-boson and two
fermion vertex we obtain

Γr
1,2(0, p,−p)

∣
∣
p2=−µ2 = lim

Λ→∞
Z2

FZBΓu(0, p,−p)
∣
∣
∣
p2=−µ2

≡ g(gcr,Λco/µ), (2.58)

where the unrenormalized function Γu is independent of µ, while the renormalized
function Γr and the renormalization constants, ZB(Λ) and ZF(Λ), will depend on
the scale µ. By differentiating eq. (2.57) with respect to µ, subsequently multi-
plying both sides with scale parameter µ and performing some transformation,
see e.g. [Col98], we obtain the renormalization group equation

(

µ
∂

∂µ
+ βRG(g)

∂

∂g
+ nBγB(g) + nFγF(g)

)

Γr(pi, g, µ) = 0, (2.59)

where the renormalization group functions are given by

βRG(g) = µ
∂g

∂µ
, γB(g) = − µ

ZB

∂ZB

∂µ
, γF = − µ

ZF

∂ZF

∂µ
. (2.60)

6The short distance properties of QCD are the correct explanation of large momentum
physics.
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The behavior of any generalized vertex function Γr under a change of scale µ→ λµ
is governed by these universal functions.

The βRG-function has to be evaluated to higher orders in perturbation theory
because the perturbative expansion coefficient is not particularly small. The
series is usually written as

βRG(g) = −βRG
0

g3

16π2
− βRG

1

g5

(16π2)2 + . . . , (2.61)

with the coefficients7

βRG
0 =

11

3
C2(A) =

22

3
(2.62)

βRG
1 =

34

3
(C2(A))2 =

136

3
, (2.63)

where only the contributions of the gauge bosons were considered. The contribu-
tions from spin- 1

2
fermions and scalars are neglected since we analyze pure SU(2)

Yang-Mills theory. The fermionic or scalar dynamical degrees of freedom are not
considered in pure SU(2) Yang-Mills theory. The relation between the βRG-func-
tion and the lattice constant a is seen if we take into account the constancy of a
physical observable in the continuum limit with respect to a change in scale (see
also eq. (2.60))

a
d

da
Ophys = a

d

da
a−d

Ô〈Olat〉(g) = 0 ⇔ d ln〈Olat〉(g)
dg

· βRG(g) = −dÔ,

βRG(g) ≡ −µdg

dµ
= −adg

da
. (2.64)

We investigate now the behavior of the βRG-function under a change of scale,
a→ λa. With new variables t = lnλ and ḡ(g, t) = g(g0,Λco/λa), the relation for
the βRG-function can be written as

dḡ(g, t)

dt
= β(ḡ), ḡ(g, 0) = g(g0,Λco/µ) = g. (2.65)

The behavior of ḡ with increasing t describes the region of large momentum scales
and depends on the sign of βRG(g). Consider βRG(0) = 0 and suppose that βRG

assumes a value of zero at the points ḡ = 0, g1, g2, . . . . Under the assumption
that β(ḡ) > 0, ḡ increases from its t = 0 value ḡ = g until a zero gi of βRG(ḡ)
is encountered: ḡ → gi as t → ∞. On the other hand, if βRG(ḡ) < 0, then
ḡ decreases from ḡ = g at t = 0 until again a zero gi of βRG(ḡ) is encountered.
Hence, in either case, the coupling ḡ approaches a zero of the βRG-function. Those
zeros are fixed points since dḡ/dt = 0.

7The quantity C2(A) represents the quadratic Casimir operator for the adjoint representation
of the gauge group G.
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If β′
RG(ḡ) < 0 as t → ∞, an ultraviolet fixed point is approached, if β ′

RG >
0 an infrared fixed point is approached for t → −∞. This is the domain of
small momentum scales and accordingly the domain of large distance scale. If
an ultraviolet fixed point is at the origin (βRG(0) = 0 and β ′

RG(0) < 0) then
perturbation theory gets better and better for t → ∞ since ḡ(t) → 0. A theory
featuring this behavior is called asymptotically free which is a characteristic of
pure SU(2) gauge theory and has to be reproduced by our lattice theory.

The differential equation (2.64) can be solved for a(β) (here β is our free
parameter of the lattice theory) with the eq. (2.61) for βRG(g)

a2(β) = a2
fix(βfix) exp

{

−6π2

11
(β − βfix)

}

(2.66)

where the relation between the lattice β parameter and the coupling constant g
was used. The value of the integration constant afix(βfix) = (〈Olat〉(βfix)/Ophys)

1/d
Ô

has to be determined by choosing a physical value Ophys for an arbitrary observ-

able Ô.
The favored observable Ophys which is used to fix the scale is the string tension

σ. This quantity is defined as the limit

lim
T→∞

χ(R̂, T̂ ) = σa2, (2.67)

where R̂ and T̂ are space-like and time-like extensions respectively. The functions
χ(R̂, T̂ ) are the Creutz ratios [Cre80] being defined by

χ(R̂, T̂ ) = − ln

{

W(R̂, T̂ )W(R̂− 1, T̂ − 1)

W(R̂, T̂ − 1)W(R̂− 1, T̂ )

}

(2.68)

and W(R̂, T̂ ) are rectangular Wilson loops eq. (2.38). The dependence of the
lattice spacing and the β-parameter is approximated by

σa2(β) ' 0.12 exp

{

−6π2

11
(β − 2.3)

}

, σ := (440MeV)2; (2.69)

for an improved relation see [BCLM04]. Figure (2.2) shows different Creutz ratios
in dependence of the β-parameter and the scaling function (2.69). For a detailed
discussion of the scaling property of the Creutz ratio and the extraction of the
string tension from measurement data see [GM84].

The range of the β-values has to be set to β ∈ [2.1, 2.6] which defines the
scaling window. In this range, our simulations can be related to perturbation
theory. The lower bound is set because of discretization errors occurring by large
distances of the sites. The upper bound is set because of the size of the lattice
which would be to small for higher values of β with respect to the number of
lattice sites used on our simulations.
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Figure 2.2: Creutz ratios and scaling function for SU(2) Yang-Mills
theory. The scaling window is given by the range β ∈ [2.1, 2.6] where
the scaling function σa2(β) coincides with the Wilson loops and in
this range the proper scaling behavior is given. The Creutz ratios
were calculated on a 124 lattice.
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2.4 The Monte Carlo Method

In this section, we want to explain the basic numerical methods used in lat-
tice Yang-Mills field theories. Our starting point is a discrete four, dimensional
space-time lattice Λ = {x = (an0, a~n)|nµ ∈ � , a ∈ � +} with periodic boundary
conditions nµ + Lµ = nµ where Lµ is the number of sites in direction µ of the
lattice. At each link between two sites resides a link variable Uµ(x). A configu-
ration of link variables U is defined as the set of all link variables Uµ(x) residing
on the links of the lattice. When evaluating expectation values eq. (2.46) of an
observable 〈O[U ]〉, a single measured value of O[U] should be weighted according
to the Boltzmann factor

ρ(U) ∝ exp
{
−S lat.

SU(2)[U]
}
. (2.70)

We can generate random configurations U and accept them with probability ρ(U)
and sum over the number of configurations to obtain averages of observables.
Since the number of configurations with a particular energy increases exponen-
tially with energy, most of our randomly generated configurations will have a
very high energy. Consequently, those configurations have a vanishingly small
probability of acceptance and most of the time spent to produce configurations
is for naught which is obviously very inefficient.

A possible solution is to abandon the idea of constructing statistically in-
dependent configurations. A new configurations Uτ is constructed against the
probability distribution of the antecedent configuration Uτ−1. This new sequence
of configuration is called a Markov chain and the index τ represents the Markov
time at which the configuration is constructed. An ergodic Markov chain is de-
fined as an ensemble of configurations satisfying basically two conditions: 1) Ev-
ery configuration included in the ensemble should be producible from every other
configuration within a finite number of steps (connectedness or irreducibility). 2)
After visiting a particular configuration, it should not be possible to return to
the same configuration except after t = nk steps, where k is fixed and n ∈ � .
For an ergodic Markov chain, the Boltzmann distribution becomes independent
of t for large t.

2.4.1 The Metropolis Monte Carlo Algorithm

Our goal has to be to find an ergodic Markov chain of configurations {U} =
{U1,U2, . . . ,UN} which produces the required Boltzmann distribution ρ(U), eq.
(2.70). We must therefore find a transition probability P (U′|U) from configu-
ration U to configuration U′ which leads to the given Boltzmann distribution
ρ(U). The transition probabilities are additionally normalized:

∑

U′

P (U′|U) = 1. (2.71)
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If a new configuration is chosen, the change in the distribution function is basically
determined by two processes: 1) Going from configuration Uτ at Markov step
τ to U′

τ+1 at τ + 1 leads to a decrease of ρ(U) and 2) going from U′
τ at step

τ to Uτ+1 at step τ + 1 increases the value of the Boltzmann weight. These
mechanisms can be summarized in the master equation

ρτ+1(U) − ρτ (U) = −
∑

U′

P (U′|U) ρτ (U) +
∑

U′

P (U|U′) ρτ (U
′). (2.72)

Since we are interested in stationary distribution (i.e. τ independent, ρτ+1(U
′) =

ρτ (U)), we can give a particular solution to the master equation

P (U′|U) ρ(U) = P (U|U′) ρ(U′), (2.73)

which holds for all pairs of configurations. This identity is called the detailed
balance solution8 of the master equation.

The transition amplitude may now be written as the product of two factors

P (U′|U) = T (U′|U) pa(U
′|U). (2.74)

The first factor T , the so called trial step probability, on the right hand side
of eq. (2.74) is the probability that the system travels from the configuration
U to the configuration U′. Furthermore, the trial probability is symmetric, i.e.
T (U′|U) = T (U|U′), and satisfies 0 ≤ T (U′|U) ≤ 1 and

∑

U′ T (U′|U) = 1.
The second factor pa(U

′|U) of eq. (2.74) is the probability of accepting the new
configuration U′. The acceptance probability may assume values between zero
and one, pa(U

′|U) ∈ [0, 1]

Substituting eq. (2.74) into the detailed balance solution eq. (2.73) of the
master equation (2.72) leads to a detailed balance relation for the acceptance
probability pa(U

′|U)

pa(U
′|U)

pa(U|U′)
=
ρ(U′)

ρ(U)
. (2.75)

Consequently, the algorithm is divided into two stages. In the first stage, a new
configuration U′ is generated from U with probability T (U′|U). In the second
stage, the Boltzmann factors of both configurations are compared. If ρ(U′) >
ρ(U) then pa(U

′|U) is chosen to be one. On the other hand, if ρ(U′) < ρ(U)
then pa(U

′|U) is to be chosen as the quotient of both distributions ρ(U′)/ρ(U).
The new configuration is accepted and replaces the old one if a random variable
is smaller than pa(U

′|U).

8This means physically that a statistical system is in equilibrium.
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This results in the Metropolis algorithm [MRR+53] as follows

P (U′|U) = T (U′|U) pa(U
′|U); (2.76)

∑

U′

T (U′|U) = 1, T (U′|U) = T (U|U′); (2.77)

T (U′|U) > 0, ∀U,U′; (2.78)

if ρ(U′) < ρ(U) then pa(U
′|U) =

ρ(U′)

ρ(U)
,

U′ is accepted if a random variable r ≤ pa(U
′|U)

if ρ(U′) > ρ(U) then pa(U
′|U) = 1,

U′ is automatically accepted.

A disadvantage of the Metropolis algorithm is that the sequence of configurations
Uτ+1,Uτ+2, . . . is strongly correlated. This holds especially for the beginning of
a sequence, since it is difficult to choose a starting configuration U0 being a
proper member of the sequence. To obtain a proper sequence of configurations,
one chooses an arbitrary starting configuration U0 and discards it together with
the first few generated configurations from it, this is sometimes called thermal-
izing the distribution ρ(U). A certain number of configurations between two
configurations U and U′ are additionally discarded so that autocorrelations are
reduced.

2.4.2 The Heat-bath Algorithm for SU(2) Yang-Mills
Theory

For the simulation of lattice SU(2) Yang-Mills theory, a variant of the Metropolis
algorithm is generally used: the heat-bath algorithm [Cre80],[CJR83]. In this
algorithm, the fact is adopted that an update step involves one or a few degrees
of freedom and the remaining ones are kept fixed. This can be read off directly
from the Boltzmann factor of SU(2) Yang-Mills theory. If the link variable Uµ′(x′)
is updated, the Boltzmann factor factorizes into two parts, one containing Uµ′(x′)
and one without Uµ′(x′):

exp
{
−S lat.

SU(2) [U]
}

= exp
{

−S̃ lat.
SU(2) [Uµ′(x′)]

}

· exp
{
−S lat.

SU(2) [U/Uµ′(x′)]
}

(2.79)

with

S̃ lat.
SU(2) [Uµ′(x′)] = β

∑

ν

(

1 − 1

4
Tr
[

Pµ′ν(x
′) + P

†
µ′ν(x

′)
])

,

with {ν | ν ∈ {±0,±1,±2,±3} ∧ ν 6= ±µ′} and the action S lat.
SU(2)[U/Uµ′(x′)] con-

tains only those plaquettes which do not contain the link variable Uµ′(x′). Since
the acceptance probability of the new variable depends only on the six plaque-
ttes containing the particular link, one needs only to consider their contribution



30 CHAPTER 2. GFT ON THE LATTICE

to the action. The new link is accepted with the same prescription as in the
Metropolis method with the sole difference that ρ(U′) depends only on the link
variable Uµ′(x′) because the other link variables are kept fixed. The heat-bath
algorithm satisfies the detailed balanced condition and is equivalent to applying
successively an infinite number of Metropolis steps to Uµ′(x′) with U/Uµ′(x′) kept
fixed.

For the numerical implementation, see also [CJR83], we parameterize the
SU(2)-link variables as in eq. (2.34)

Uµ(x) =

{

� u0 + i~u · ~σ
∣
∣
∣
∣
∣

3∑

a=0

u2
a = 1

}

. (2.80)

The normalized, invariant Haar measure takes the form (see appendix (A.3))

dU =
1

2π2
δ(1 − u2)d4u =

1

4π2

√

(1 − u2
0) du0 dΩ, (2.81)

where the vector ~u was parameterized in spherical coordinates (r, ϑ, φ) and the
r integration was performed, dΩ represents the differential solid angle of ~u. The
contribution of link variable Uµ′(x′) to the action can be written as

S [Uµ′(x′)] = −1

2
Tr

[

Uµ′(x′)
∑

ν

B(ν, x′, µ′)

]

(2.82)

with {ν|ν ∈ {±0,±1,±2,±3} ∧ ν 6= ±µ′}, (2.83)

where the bails B(ν, x′, µ′) are given by

B(ν, x′, µ′) = Uν(x
′ + µ′)U †

µ′(x
′ + ν)U †

ν(x
′). (2.84)

The sum over the six bails yields a SU(2) matrix up to a constant

B̄ :=
∑

ν

B(ν, x′, µ′) = k Ū , with Ū ∈ SU(2) and k =
√

det[B̄]. (2.85)

The Boltzmann factor takes the form

dU ′ ρ(U ′) ∝ exp

{
β k

2
Tr
[
U ′Ū

]
}

dU ′, (2.86)

where we have set U ′ := Uµ′(x′). With the variable substitution V = U ′Ū we
obtain

d(V Ū †) ρ(V Ū †) ∝ exp

{
β k

2
Tr [V ]

}

d(V Ū †)

∝ 1

2

√

1 − v2
0 exp {β k v0} dv0 dΩ, (2.87)
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where the right invariance of the Haar measure d(V Ū †) = dV and the parame-
terization of appendix (A.3) were used. A new link variable U ′ is generated by
choosing randomly v0 from the interval [−1, 1] with the weight factor

dρ(v0) ∝
√

1 − v2
0 exp {β k v0} dv0. (2.88)

In order to simplify the distribution, we set η = exp{β k v0}. The random variable
η is uniformly generated in the interval η ∈ [exp{−2β k}, exp{2β k}] and the new
value of v0 is accepted with the probability pa(v0) = (1 − ln2(η)/(β k)2)1/2. The
direction of ~v is selected randomly on the 3-sphere, with cos(ϑ) ∈ [−1, 1] and
ϕ ∈ [0, 2π] and |~v| = (1− v2

0)
1/2. This completes the generation of V . Finally, we

have to recover the link variable U ′:

U ′ = V Ū †. (2.89)
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Chapter 3

Confinement of Quarks on the
Lattice

As mentioned in the introduction, the hypothesis of confinement in quantum
chromodynamics lacks a thorough explanation and derivation from first princi-
ples. The color confinement problem was defined as the absence of colored states
built together of quarks and gluons in the spectrum of QCD, i.e. all asymptotic
particle states are color singlets.

It is general believed that the confinement problem can be completely ad-
dressed without dynamical fermions and that it can be entirely solved in terms
of pure Yang-Mills gauge theory. Consequently, the fermionic degrees of freedom
do not appear as integration variables but they can be introduced as external
sources. Those sources can be used to probe the ground state of pure Yang-
Mills theory. A similar definition of color confinement for pure gauge theory is
given by the Wilson criterion [Wil74] which states that the potential between
static colored sources rises to infinity when the separation between the sources
increases. Suppose we have a very heavy quark and anti-quark pair being a
color-neutral, bounded system. On a qualitative level, we can assume that color
electric fluxes emanating from the quarks are squeezed into string-like configu-
rations (flux tubes) with a constant energy density per unit length. Since string
breaking and thus hadronization are forbidden by the restriction of the quenched
approximation of QCD, the potential between the constituents rises with their
distance. This means that the energy of free quarks is infinite, i.e. free quark
states are not present in the spectrum.

It has been a cornerstone of lattice pure gauge field theory that quark con-
finement is verifiable by calculating the static quark and anti-quark potential
(qq̄-potential) in computer simulations [Cre80]. In the following we give the re-
lation between the static qq̄-potential and the fundamental observable on the
lattice, the Wilson loop [Wil74]. Afterwards, we work out the relation of the
string tension σ to the qq̄-potential.

So far, we mentioned the definition and the detection of color confinement

33
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but not why it exists. Motivated by lattice investigations, the current point
of view is that quark confinement is produced by some special class of gauge
field configurations, e.g. instantons, Abelian monopoles or center vortices, which
dominate in the vacuum state on large distance scales. In this thesis we want to
concentrate on the center vortex picture of confinement and discuss its relevance
for the confinement mechanism.

3.1 The Wilson Loop and the qq̄-Potential

First, we want to give the relation between the Wilson loop eq. (2.38) and the
static qq̄-potential. For detailed derivations see [BW79], [Pol78], [LSG91], we
give here only a short, qualitative version. For this we consider the energy of a
system composed of a quark q at x = (t,0) and an anti-quark q̄ at x(t, r). The
qq̄-state at time t can be written as

|q(t,0) q̄(t, r)〉 =
∑

∀C
(t,r)
(t,0)

C(C(t,r)
(t,0)) S[q̄(t, r), q(t,0), C(t,r)

(t,0)] |0〉, (3.1)

where C(t,r)
(t,0) is a path joining 0 and r at the same time t and C(C(t,r)

(t,0)) is a complex
number depending on the path C. We have defined the path ordered, gauge
invariant operator as

S[q̄(t, r), q(t,0), C(t,r)
(t,0)] = q̄(t, r)U(C(t,r)

(t,0))q(t,0) = q̄(t, r) P





l′µ=(t,r)
∏

l0µ=(t,0)

U(lµ)



 q(t,0),

(3.2)

where P[U ] is the path ordering operator. The operator S[q̄(t, r), q(t,0), C (t,r)
(t,0)]

has a nonzero matrix element between the vacuum and the quarkonium state1

involving a pair of classical heavy quarks separated at the distance r as well as
gluon fields generated by these sources. Next, we consider the overlap between
|qq̄〉 at t = 0 and the |qq̄〉 at t = T ,

M(R, T ) = 〈0|S[q̄(0,R), q(0,0), C(t,0)
(t,r) ] S[q̄(T,R), q(T,0), C(t,r)

(t,0)]|0〉. (3.3)

If we insert a complete set of energy eigenstates and take the limit for large T ,
then the smallest energy eigenstate will dominate. The smallest energy eigenvalue
corresponds to the potential energy of the qq̄-state separated by a distance R

lim
T→∞

M(R, T ) ∝ exp {−V (R)T} . (3.4)

1We consider here the ground state of a Hamiltonian involving only relatively light gluon
degrees of freedom, while the heavy quark degrees of freedom and the distance between the
quarks are frozen.
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Since the quark state is a heavy quark state, the quark fields can be regarded as
external sources probing the vacuum. The quark propagator can be expressed as

〈0|q(t′,x)q̄(t,x)|0〉 ∝ U
[

C(t′,x)
(t,x)

]

exp {−m|t− t′|} , (3.5)

where the gluon fields were treated as background fields. Inserting the explicit
quark representation of S[q̄(t, r), q(t,0), Cr

0
] eq. (3.2) into eq. (3.3) and using the

quark propagator eq. (3.5), we obtain

M(R, T ) = 〈0|q̄(0,R)U [C(0,R)
(0,0) ]q(0,0) q̄(T,0)U [C(T,0)

(T,R)]q(T,R)|0〉

∝ 〈0|Tr
[

U [C(T,R)
(0,R) ]U [C(0,R)

(0,0) ]U [C(0,0)
(T,0)]U [C(T,0)

(T,R)]
]

|0〉] exp {−2mT}
∝ 〈0|W[R, T ]|0〉 exp {−2mT} , (3.6)

with the Wilson loop W[R, T ] which was defined in eq. (2.38). Hence, in the
limit of large separation, the expectation value of the Wilson loop 〈W (R, T )〉
describes the change in the vacuum to vacuum transition amplitude induced by
the presence of an external quark current (apart from the constant factor 2mq).
This represents the creation of a quark-antiquark pair in the limit of infinite quark
mass at time T and with a spacial separation of a distance R. This two sources
propagate for a certain time interval and subsequently annihilate.

A comparison of eq. (3.6) with eq. (3.4) provides the relation between the
static qq̄-potential and the expectation value of the Wilson loop

V (R) = − lim
T→∞

1

T
ln {〈W(R,T)〉} . (3.7)

We say that the theory is confining, if the Wilson loop decays according to an
area law, i. e.

〈W (R, T )〉 ∝ exp {−σRT} , (3.8)

then we have an asymptotically, linearly increasing potential

V (R) ∝ σR. (3.9)

The constant σ is the string tension σ and may be read off by such a decay rate.
On the other hand, if the Wilson loop falls off according to a perimeter decay
law,

〈W (R, T )〉 ∝ exp {−ε(R + T )} , (3.10)

then the resulting qq̄-potential is constant V (R) ∝ ε. This describes the self-
energy of the created sources. Such a theory ceases to confine the sources and
would describe free particles.

Furthermore, there exists a theorem [Sei78], [Bac86] denoting that the force
between a static quark and anti-quark is everywhere attractive and that the force
cannot increase with distance,

dV (R)

dR
> 0 and

d2V (R)

dR2
≤ 0. (3.11)
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The proof is given in lattice gauge theory and holds for any gauge group and for
any number of space-time dimensions. This theorem inflicts that the upper bound
for the qq̄-potential is given by a straight line. The slope of the straight line is
the value of the string tension σ which can only be asymptotically reached in R.
On the other hand, the qq̄-potential has a lower bound, since large Wilson loops
can be bounded from above by a perimeter law decaying exponentially [SY82], so
that the qq̄-potential is bounded from below by a Coulomb type potential. The
static qq̄-potential is shown in fig.(3.1) which is taken from [BSS95].
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Figure 3.1: The static qq̄-potential of SU(2) Yang-Mills theory. The
picture is taken from [BSS95] and K is the string tension.

If we take into account the self energy contributions of the sources, we assume
that the expectation value of the Wilson loop decays according to

〈W(R, T )〉 = exp {−(σTR + ε(R + T ) − γ)} , (3.12)

where γ represents sub-leading terms which are neglected in all following con-
siderations. The self energy term competes with the term proportional to the
area law and for the extraction of the string tension one wants to eliminate the
terms proportional to the perimeter decay law. For this reason one measures the
Creutz ration [CJR83]

χ(R, T ) = − ln

{〈W(R, T )〉 〈W(R− 1, T − 1)〉
〈W(R, T − 1)〉 〈W(R− 1, T )〉 ,

)

(3.13)
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which eliminates the terms proportional to the perimeter of the Wilson loop and
the string tension is isolated by studying these Creutz ratios. If the expectation
value of the Wilson loop depends on R, T in the way described above, the Creutz
ratios χ(R, T ) will be independent of these variables and will coincide with the
string tension

lim
T→∞

χ(R, T ) = σa2(β). (3.14)

As mentioned in the chapter before, only numbers are measured. The Creutz
ratio will not directly produce the string tension but a dimensionless function
being related to the renormalization group equation (2.66).

Concluding, we want to emphasize that the string tension σ is a constant
which is the slope of the linear rising qq̄-potential in the limit of large distance
between the quark sources.

3.2 The Phase Structure of SU(2) Yang-Mills

Theory

It is generally believed that a phase transition occurs from the confinement phase
to a deconfinement phase at high temperatures and/or at high densities. In the
deconfinement phase the quarks and gluons are not confined to hadrons anymore
but they constitute a quark-gluon plasma. This phase transition can also occur
in a pure gauge field theory at finite temperature and is seen in Monte Carlo
simulations. It is generally believed that strongly interacting matter changes its
behavior drastically at extreme temperatures and/or densities (e.g. big bang,
super nova or neutron star). It was argued [CP75] that hadronic matter appears
as an asymptotically free gas of quarks and gluons, the quark-gluon plasma. The
qualitative differences of the quark-gluon plasma at asymptotically high energy
and hadronic matter at low energy indicates that a phase transition occurs from
the confinement phase to a deconfinement phase at high temperatures and/or
at high densities. The existence of a phase transition was shown in the strong
coupling limit of lattice QCD [Pol78], [Sus79].

The phase transition can be verified by the structure of the correlation func-
tion of two Polyakov loops. The Polyakov loop is defined by the trace of a Wilson
line whose path winds around once through the lattice in periodic time direction:

P(x) = Tr

[
nt∏

0

U(x, t)

]

, (3.15)

with nt the extension in the time direction. The time ordered product is closed
because of the periodic boundary condition. In a lattice field theory, the tem-
perature is given by the inverse of the extent of the lattice in time direction
T = 1/(a(β)nt). A characterization of the different phase can be the broken
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or unbroken realization of a global symmetry2 of the Lagrangian. The action
of a pure SU(N) gauge theory is invariant under the global center symmetry
transformation on a finite periodic lattice

U0(x, t0) → zU0(x, t0), z ∈ �
N , ∀x, (3.16)

where
�

N is the subgroup composed of all center elements of the gauge group and
only the links in time direction are transformed. Because the factors z and z−1

cancel each other in time-like closed loop, the time-like plaquette variable Pµν(x)
and therefore the action are invariant under this symmetry transformation.

However, there exist gauge-invariant operators being changed by such a global
symmetry transformation and one of them is the Polyakov loop which transforms
under (3.16) like

P(x) → zP(x). (3.17)

The global center symmetry can now be realized in one of two ways

〈P(x)〉 =

{
0 unbroken center symmetry phase

6= 0 broken center symmetry phase
(3.18)

A comparison of the definition of the static qq̄-potential with the expectation
value of the correlation function of two Polyakov loops separated by a distance
shows that one Polyakov loop can be interpreted as a massive static quark at
a spatial position x propagating only in the time direction. In this picture, the
expectation value of the Polyakov loop decays accordingly to

〈P(x)〉 ∝ exp

{

− 1

T
F

}

,

where F is the free energy of the isolated quark. The free energy of an isolated
quark is finite in the deconfinement phase, i.e. 〈P(x)〉 6= 0, whereas the free
energy is infinite in the confinement phase, i.e. 〈P(x)〉 = 0. Therefore, we have
a direct relation between the realization of the global center symmetry and the
confinement phase:

unbroken center symmetry ⇔ confinement phase

and thus confinement holds for a vacuum state which is invariant under a global
center symmetry transformation [Pol78]. Finally, the confinement-deconfinement
phase transition is associated with the breaking of the global center symmetry
which originates from the fact that the Polyakov is a true disorder parameter
(zero in the confinement (low-temperature) phase, non-zero in the deconfinement
(high temperature) phase).

2A local symmetry like the gauge symmetry cannot by broken due to Elitzur’s theorem.
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3.3 The Center Vortex Picture of Confinement

In the previous section it was shown that confinement may be indeed a prop-
erty of QCD. An explanation from first principle would be desirable and some
possible mechanisms of confinement were suggested. One particular example is
confinement due to the effects of Abelian monopoles and the picture of the dual
superconductor [tH75], [Man76], [Par75]. This proposal is based on the physics
of a type II superconductor in which magnetic fields are squeezed into flux tubes
and all other magnetic fields are piled out by the Meissner effect. Because the
roles of electric and magnetic fields of QCD are interchanged with regard to a
type II superconductor, one refers to the dual superconductor and to the dual
Meissner effect.

A second possible explanation is given by the center vortex mechanism [tH78],
[Mac], [NO79], [AO80]. A possible definition for a center vortex in three-dimensions
is a closed tube which has a finite thickness and carries a quantized magnetic flux.
This means that a Wilson loop being non-trivially pierced by a center vortex ob-
tains a factor proportional to a nontrivial center element of the gauge group
because of the magnetic flux carried by the center vortex. The center

�
of a

group G is defined as the set of all elements of G which commute with every
element of G. The center

�
of the group SU(N) is the cyclic group

�
N which is

defined as �
N := {exp{i 2πk/N}|k ∈ � } . (3.19)

Random fluctuations of the number of vortices piercing a Wilson loop result in
an area law and consequently to confinement [ACY78], [ELRT98].

3.3.1 Center Vortices and Their Properties

We want to give a detailed description of the center vortex mechanism for con-
finement. Let us consider firstly a

�
2 lattice gauge field configuration which may

be produced by the Wegner action, eq. (2.23) introduced in [Weg71]. The link
variables can take the values

�
2 = ±1 and hence the plaquettes can take the

values Pµν(x) = ±1. If a plaquette consists of an odd number of negative links,
it will be negative and it is said to be pierced by a (magnetic) center vortex:

center vortex pierces plaquette ⇔ Pµν(x) = −1.

The vortices are the only non-trivial configurations of a
�

2 theory and every
Z2-configuration is characterized by its vortex content up to a

�
2 gauge transfor-

mation which leaves the value of the plaquettes unchanged.
The center vortices are easily detected in a

�
N theory since the degrees of

freedom of the link variables are all elements of the center group and hence
the plaquettes can take only values corresponding to the factor product group.
Considering pure Yang-Mills theory again, we first have to detect the center
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vortices in a SU(N) lattice gauge theory. A possible procedure was proposed in
[DDFG+98], [DDFGO98], [DDFGO97b]. Note that the dynamics of the resulting�

N configurations is governed by the SU(N) action. The revitalization of the
center vortex picture, which was first suggested at the end of the seventies and in
the beginning of the eighties [tH78], [Mac], [NO79], [AO80], came with the proof
that the pure vortex vacuum produces the full string tension and has the right
scaling behavior towards the continuum limit [LRT98].

The localization of center vortices is achieved by fixing the link configuration
to a certain gauge and by a following center projection. A configuration of link
variables {Uµ(x)} is transformed into a certain gauge by using gauge transfor-
mations Ω(x) with the constraint that some functional F

[
{UΩ

µ (x)}
]

is zero or
extremal which defines the gauge. We want a gauge which leaves the residual
ZN part of the link variable in the fundamental representation unchanged. The
fundamental representation of a link variable may be decomposed into its center
part Zµ(x) and its coset part Ũµ(x) ∈ SO(3) ∼= SU(2)/

�
2 as follows

Uµ(x) = Zµ(x)Ũµ(x). (3.20)

We use the (direct) maximal center gauge with the following gauge fixing condi-
tion

F
[
{UΩ

µ (x)}
]

=
∑

x,µ

Tr [Uµ(x)]2 → max. (3.21)

This gauge tries to move the full link variables Uµ(x) via gauge transformations
Ω(x) as close as possible to the center elements Zµ(x)(∈ �

2 = {±1} for SU(2)
theory). The effect of this gauge condition is that one concentrates as much as
possible of the information being relevant for confinement contained in the link
configurations on particular collective degrees of freedom, in our case magnetic
vortices. With this procedure we hope to get a good approximation of the dy-
namics by neglecting the residual deviations away from those collective degrees
of freedom, i.e. we subsequently conduct the center projection being defined by

Zµ(x) = sign
[
Tr
[
UΩ

µ (x)
]]

for SU(2) (3.22)

and thus the center gauge fixed links UΩ
µ (x) are projected onto the nearest center

element Zµ(x) of the group. Again, we say that a plaquette is pierced by a center
vortex if the product of its center projected fields Zµ(x) bordering the plaquette
multiply to Pµν(x) = −1.

The center vortices carry a flux proportional to a non-trivial center element
of the gauge group and hence contribute an equivalent factor to any Wilson loop
whose minimal area is pierced by a vortex. This factor is −1 for both the

�
2

theory and for the center projected SU(2) pure Yang-Mills theory. If we consider
a Wilson loop 〈W(C)〉 made up of links l = ±1 which forms the closed path
C enclosing an area A which contains plaquettes p = ±1 then the expectation
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value of the Wilson loop is given by the product of the plaquettes p it encloses
or equivalently, by the product of the links l along the boundary (Stokes’ law):

〈W (C)〉 =
∏

l∈C

l =
∏

p∈A

p. (3.23)

Hence, the Wilson loop measures the magnetic flux through its enclosing area
and consequently the Wilson loop receives a factor −1 from every vortex piercing
the area A.

The magnetic vortices live on a dual lattice with the same lattice spacing a.
They are closed lines in a three-dimensional space time or equivalently closed two-
dimensional surfaces in four-dimensional space-time. If we consider a elementary
cell in three dimensions, then every link contributes to two plaquettes of this
elementary cell and thus the product of all plaquettes of the elementary cell is
one since this product contains every link twice. This is the manifestation of the
Bianchi identity and implies that every such cube has an even number of vortices
piercing its surface.

The next step is, to show that the collective degrees of freedom contain the
relevant physical information. This is empirically tested and the success depends
on the observables under consideration. We conduct a Monte Carlo experiment
with the full Yang-Mills action as weight and measure an observable (e.g. Wilson
loop) using either the full lattice configurations {Uµ(x)} or the center projected
ones {Zµ(x)}. If both results agree, then the collective degrees of freedom are the
physically relevant ones for this observable and we speak of center dominance for
the particular observable. Center Dominance was shown for a variety of variables
[DDFG+98], first of all for large Wilson loops which is seen as evidence that direct
center gauge fixing with subsequently center projection concentrates the physical
information being relevant for confinement onto the vortex configurations. Addi-
tional signs for the relevance of the vortices is given by the center dominance of
the string tension. The asymptotic string tension calculated from vortex config-
urations agrees within reasonable limits with the string tension calculated from
full configurations. It is possible to remove the center vortex degrees of freedom
from the full configurations. First one performs the direct maximal center gauge
followed by the center projection. The located center degree of freedoms are now
used to eliminate the vortex configurations:

{Uµ(x)} DMCG−→ {UΩ
µ (x)} = {Zµ(x)Ũµ(x)}

{Zµ(x) · UΩ
µ (x)} = {Zµ(x)2

︸ ︷︷ ︸

=1

Ũµ(x)} = {Ũµ(x)}.

The string tension calculated from configurations {Ũµ(x)} disappears [DDFGO97a],
[DDFG+98]. In other words, the configurations {Ũµ(x)} are incapable to produce
a linearly rising potential. Thus, SU(2) Yang-Mills theory without center vor-
tex degrees of freedom ceases to have confinement and results in a non-confining
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theory which must not be confused with a theory in the deconfinement phase.
From this it follows that the vortex configurations are accountable for the linearly
rising part of the qq̄-potential.

There exists more evidence for the relevance of the center vortices: the vortex
density scales, i.e the variation of the vortex density with the coupling β goes
as expected for a physical quantity with dimensions of inverse area [LRT98]; the
0++ and 2++ glueball masses are vortex dominant [LS00a]. Further results are
reported in [DDFGO97b] and [FGO98].

3.3.2 The Center Vortex Percolation Transition

A model of color confinement has also to give access to the explanation of the
phase transition to the deconfinement phase. A possible explanation of deconfine-
ment is the center vortex percolation model which was considered in [ELRT98],
[ELRT00] and which is now introduced. For this we consider a two-dimensional
slice of our four-dimensional lattice with an area of L2 = Lµ ×Lν which contains
a Wilson loop with an area of A. A generic vortex will pierce the slice at a point
or not at all, but not in a line. If we assume N of these points to be randomly
distributed on the slice L2 then the probability of finding n such points inside
the Wilson loop area A is given by a binomial distribution:

PN(n) =

(
N

n

)(A
L2

)n(

1 − A
L2

)N−n

(3.24)

and the expectation value of the Wilson loop is given by

〈W 〉 =
N∑

n=0

(−1)nPN(n) =

(

1 − 2ρA
N

)N

−−−→
N→∞

exp {−2ρA} , (3.25)

where the planar density of the intersection points ρ = N/L2 is kept constant as
N → ∞. Hence, an area law is achieved with the string tension σ = 2ρ suggesting
color confinement. An important point is that the Wilson loop has to be pierced
sufficiently randomly by the vortices to generate confinement.

Consider now the same setting as before, but with an upper bound d to
the space-time extension of single vortices or of vortex networks. Then the in-
tersection points of vortices with a slice L2 always comes paired with another
intersection point a finite distance apart, due to the closed character of the vor-
tices precluding an area law. With this additional constraint for the vortices, the
intersection points of vortices with a two-dimensional planar Wilson loop come
in pairs at most a distance d apart. To contribute a factor −1 to a planar Wilson
loop, the midpoints lie in a strip of width d centered on the trajectory of the
loop. Let p be the probability3 that a pair which satisfies the condition above

3This probability includes all geometrical factors (e.g. distances of the midpoints of the



3.3. THE CENTER VORTEX PICTURE OF CONFINEMENT 43

actually does contribute a factor −1. The probability p does not depend on the
macroscopic extension of the Wilson loop. A pair being placed randomly on a
slice of the universe of area L2 has a probability pA/L2 of contributing a factor
−1 to a Wilson loop, where A is the area of the strip of width d centered on
the Wilson loop trajectory. To leading order we have A = Pd, where P is the
perimeter of the Wilson loop and sub-leading corrections are induced by the local
loop geometry.

Placing N pairs on a slice of the universe of area L2 at random, the probability
that n of them contribute a factor −1 to the Wilson loop is given by

PNpairs
(n) =

(
Npairs

n

)(
pP d

L2

)n(

1 − pP d

L2

)Npairs−n

, (3.26)

the expectation value of the Wilson loops yields

〈W 〉 =

Npairs∑

n=0

(−1)nPNpairs
(n) −−−−→

N →∞
exp {−ρpPd} (3.27)

in the limit of a large universe. The quantity ρ = 2Npairs/L
2 is now the planar

density of the intersection points. This is a perimeter law showing that the the-
ory does not have confinement, if the space-time extension of vortices or vortex
networks is bounded. From this it follows that the vortices or networks of vor-
tices (vortices are not forbidden to self-intersect) have to extend over the entire
universe, i.e. to percolate, in order to realize confinement.

Conversely, the deconfinement transition in the vortex picture results, if the
vortices cease to be of arbitrary length, i.e. cease to percolate in the decon-
finement phase. The deconfinement transition can be characterized as a vortex
percolation transition. Numerical analysis [ELRT00] abets the explanation of the
deconfinement phase transition at a temperature around T = 220MeV via the
picture of a vortex percolation transition. As mentioned before, the expectation
value of Polyakov loops does not vanish anymore which is a signature of the
deconfinement phase. In the confinement phase the vortices or vortex networks
extending usually over the whole universe, whereas in the deconfinement phase
they constitute only small loops.

Space-like Wilson loops, however, show an area law behavior at all tempera-
tures T . If we take a spatial-slice at a fixed time, the vortices still percolate in
the space-like hypercube of the universe even at high temperatures.

pairs from the Wilson loop, their angular orientations, the distribution of separations between
their points making up the pairs, and the local geometry of the Wilson loop up to the scale d)
and forms an appropriate average thereof.
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3.3.3 Comments on Center Vortices

The characteristics and physical relevance of center vortices are multifarious and
to mention all facts would go beyond the scope of this work. For an extensive
review see [Gre03] and the references therein. In the following we want to con-
centrate on the facts being relevant for our investigations and for the discussions
of our results.

In the continuum theory, the center vortices can be created on a given back-
ground by performing a singular gauge transformation with a discontinuity [tH78].
Center vortices produced by such transformation are called thin center vortices.
If the thin center vortices are smeared out into a surface-like region with a finite
thickness and finite field strength, we have thick center vortices. In Hamiltonian
formulation, an explicit construction of an operator creating a thin center vortex
is given in [Rei03].

On the other hand, in lattice simulations we have to locate the center vortices
in a given ensemble of link variables. This is performed by the method of cen-
ter projection in an adjoint gauge. An adjoint gauge is a complete gauge-fixing
condition for link variables which leaves a residual center symmetry for the link
variables. The center projection is well defined, whereas the gauge-fixing pro-
cedure is firstly dependent on the gauge-fixing algorithm used and is secondly
influenced by Gribov copies, i.e. it is not possible to find the global maximum of
the gauge-fixing functional. Here we take the point of view that the gauge is not
only defined by the gauge-fixing functional but also by the algorithm used and
results should not really be compared between different algorithms. In practice,
however, there exist no big difference between results of different algorithms. In
the following, we only use the direct maximal center gauge algorithm (DMC). The
center vortices in lattice gauge theory are also called P-vortices, but we generally
speak of center vortices.

After this technicalities, we want to give an abbreviated overview of physical
facts being related to center vortices.

• In gauge-fixed and unfixed frameworks, the absence of vortices implies ab-
sence of confinement.

• In zero temperature lattice calculations using DMC, the planar density ρ ���
of intersection points of center vortices with a given surface was shown to be
a renormalization group invariant which defines ρ � � as a physical quantity
in SU(2) Yang-Mills theory [LRT98]. Also a radial distribution function of
these intersection points on a plane is a renormalization group invariant.

• If the thickness of center vortices is considered, Casimir scaling of the string
tension is obtained [Bal00].

• A modified SU(2) lattice ensemble in which all center vortices had been
removed showed that the chiral symmetry is restored [dFD99] and all con-
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figurations turn out to belong to the topologically trivial sector. The fact
that the topological charge vanishes for a configuration without center vor-
tices suggests that the topological charge might be carried by the center
vortex background. The origin of topological charge in a center vortex set-
ting was discussed in [ER00a], [ER00b] and [Rei02]. Topological charges
emerge from intersection points of the center vortices. Additionally, it was
shown [RSTZ02], [Rei02] that topological charge of center vortices can be
linked to the density of zero modes of the Dirac operator being relevant for
the chiral condensate.
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Chapter 4

Vortices in the Limit of High
Temperatures

The vortex percolation model for the confinement-deconfinement phase transition
was introduced in section (3.3) and it was shown that the vortex picture also
provides an appealing picture of the deconfinement phase transition at finite
temperatures. The vortex ensemble undergoes a phase transition from a phase of
percolating vortices at low temperatures (the confinement phase) to a phase of
small vortex clusters ceasing percolation at high temperatures (the deconfinement
phase). In fact, this depercolation transition is seen in a (2+1)-dimensional space-
time slice of the 4-dimensional lattice universe. At a temperature below the
critical temperature Tcrit, most of the vortices form a vortex cluster which has an
extension of the lattice universe; when the temperature rises above Tcrit, however,
the maximal extension of most of the vortex clusters is well below the extension
of the lattice. In these space-time slices, the vortices partially align parallel to
the time axis [LTER99], [ELRT00]. On the other hand, pure space-like Wilson
loops show an area law behavior at all temperatures. This is an indication that
vortices detected in a spatial hypercube at a given time are still percolating.

In this chapter we will concentrate on the high temperature behavior of the
vortices and their properties. The physics of the high temperature phase of a
Yang-Mills theory is of special interest, since one hopes to understand signatures
of the quark-gluon plasma in heavy ion collisions which should occur in the de-
confinement phase of the theory under certain circumstances. First experiments
providing evidence for a quark-gluon plasma were performed at RHIC [Hei03]
and should be supported by future collider experiments at LHC.

4.1 Dimensionally Reduced Yang-Mills Theory

At high temperature, the Euclidean time extension gets arbitrarily small and it
was expected in the early eighties [AP81] that renormalizable four-dimensional

47
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field theories reduce to effective three-dimensional models. At first a complete
dimensional reduction was supposed, since the degrees of freedom in the temporal
direction which are the non-static modes decouple resulting in a three-dimensional
model of the theory. This approach to the high temperature phase is mainly based
on the Ambjørn-Appelquist-Carazzone theorem which states that the heavy fields
decouple from the low energy sector of the theory [Amb79], [AC75], [CK83]. This
is seen in a perturbative treatment of a thermal field theory in imaginary times,
where free Matsubara propagators occur of the form (k2 + ω2

n +m2)−1 with the
Matsubara frequencies ωn = 2πnT . The frequency ωn acts like a mass, so that
in the high temperature limit, T → ∞, only the static modes (n = 0) should
survive and the non-static modes (n 6= 0) are strongly suppressed. Thus, the
non-static modes decouple and the resulting theory is completely reduced to
three dimensions.

However, there exists an important objection to a complete dimensional re-
duction of a theory in general: at finite temperature heavy masses are generated
thermally. The Ambjørn-Appelquist-Carazzone theorem holds up to terms of
order p/T and m/T . A partial dynamical mass m(T ) ∝ gnT, n > 0, is generated
by the effective three-dimensional theory. Thus, a dimensional reduction takes
only place to terms of order gn even at zero momentum [Lan89]. The correction
terms to dimensional reduction do not vanish in the infinite temperature limit as
they do in case of the decoupling of heavy particles at zero temperature in the
four-dimensional theory. This happens, since in the zero temperature case a small
mass m is an input parameter which does not grow with the mass of a decoupled
heavy field, whereas the mass m at finite temperature acquires a T -dependent
contribution. From this it follows that a complete dimensional reduction can-
not take place in general [Lan89] and at least non-static residual interactions are
induced in the static sector. Consequently, it was shown that four-dimensional
pure Yang-Mills theory reduces to a three-dimensional theory being the purely
static part of the original four-dimensional Yang-Mills theory coupled to a Higgs
field in the adjoint representation [LMR92],[KLM+94] at asymptotic tempera-
tures. The Higgs field originates from the fourth, the temporal, component of
the gauge field.

Starting from the Euclidean action of a pure Yang-Mills theory one can per-
form a perturbative treatment of the non-static modes, because at high tem-
perature the coupling g(T ) becomes small due to asymptotic freedom. If the
gauge fields are expanded into Fourier series in the temporal direction and the
non-static modes are integrated out, the static modes are kept, one obtains a
three dimensional effective action Seff [A, φ] in which the gauge field is minimally
coupled to a Higgs field

Seff [A, φ] = SYM,3d [A] + Sadj [A, φ] + S2 [φ] + S4 [φ] , (4.1)

where A are the space-like gauge fields and φ = A0 is the Higgs field in the adjoint
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representation. The three dimensional pure Yang-Mills action is given by

SYM,3d [A] =
1

2g2
3

∫

d3xTr [Fij(x)Fij(x)] , (4.2)

with g2
3 = Tg2(T ) the temperature dependent coupling constant of the three

dimensional theory and g(T ) is the usual T -dependent coupling of the four di-
mensional theory. An important point is that the coupling constant g3 has a
dimension of temperature as opposed to the dimensionless coupling g in four
dimensions.

The second term in the equation above describes the kinetic term of the static
adjoint Higgs field φ:

Sadj [A, φ] =

∫

d3xTr
[
([Di, φ])2

]
. (4.3)

The last two terms of eq. (4.2) are the actions of the quadratic and quartic self-
interactions of the Higgs field obtained by integrating out the non-static degrees
of freedom in a one-loop approximation [Lan89] of the perturbative expansion in
the temporal direction:

S2[φ] = m2
D

∫

d3xTr
[
φ2
]

and S4[φ] = λ

∫

d3xTr
([
φ2
])2

, (4.4)

with the Debye massmD and the quartic coupling λ. Extending the calculation to
two-loop results into small corrections of the parameters g3, mD and λ [KLRS97],
e.g. the coupling constant g3 comes by a correction term of the fourth order in g:

g2
3 = Tg2(T )

(
1 + O

(
g4
))
. (4.5)

Up to now we have worked in continuous space-time and with this preparing
work we may define our theory on a discrete space lattice. The lattice action
corresponding to eq.4.2 can be written as

S lat
YM,3d [U, φ] = S lat

W [U ] + Shop [U, φ] + Sint [φ] , (4.6)

where U = Ui(x) are the space-like link variables and the Higgs field in adjoint
representation is given by

φ(x) = Aa
0(~x)τ

a Aa
0(x) ∈ R, (4.7)

where the Higgs fields are located on the sites of the lattice. The standard Wilson
gauge field action SW[U ] is given by

SW [U ] = β
∑

~x, i<j

(

1 − 1

2
Tr
[

Ui(~x)Uj(~x+ î)U−1
i (~x+ ĵ)U−1

j (~x)
])

,

= β
∑

~x, i<j

(

1 − 1

2
Tr [Pij(~x)]

)

, (4.8)
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the gauge invariant action Sadj [U, φ] denotes the kinetic (hopping) term

Shop [U, φ] =
β

2

∑

~x, i

Tr
[

φ(~x)Ui(~x)φ(~x+ ı̂)U †
i (~x)

]

, (4.9)

while the pure scalar part of the action Sint [φ] summing up the actions S2 and
S4 of eq. (4.1) becomes

Sint[φ] = −β
2

∑

~x

(

(3 +
1

2
h)Tr

[
φ(~x)2

]
+

1

4
KTr

[
φ(~x)2

]2
)

, (4.10)

where the parameters h and K are related to κ and λ of the continuum theory
as follows

1 − 2λ

κ
= 3 +

1

2
h and

λ

κ2
=
K

2β
.

A comparison with the continuum theory yields the lattice constant a in terms
of the β-parameter

a =
4

g2
3 β

. (4.11)

Before we start our investigations of the vortex physics at high temperature,
we have to say some words about the phase structure of the SU(2) adjoint Higgs
model which has some special features [Nad90] in three dimensions. This lat-
ter model possesses by a SU(2) symmetric and a U(1) symmetric phase, also
called the confined and Higgs phase respectively, and we have to choose the
phase corresponding to the deconfined phase of the SU(2) gauge theory in four
dimensions. It was shown by P. Lacock et. al. [LMR92] using an investigation
of the one-loop effective potential and by L. Kärkkäinen et. al. [KLM+94] using
Monte-Carlo simulations that the physical relevant phase is the SU(2) symmet-
ric one and the corresponding values of the parameters h,K are given in table
(4.1) in section (3.4). In addition, it was shown that the spatial string-tension
σs of four-dimensional Yang-Mills theory scales with the dimensional parameter
g4
3 = g4(T )T 2 and a large scale numerical analysis [Tep99] yields

σs(T ) = c g4
3 = c g4(T )T 2, c = 0.136 ± 0.011, (4.12)

which supports the statement that the confining phase of the effective three-
dimensional theory is the physical one.

4.2 Center Projection in the High Temperature

Limit

To identify and investigate the vortex structure in four space-time dimensions,
we apply (direct) maximal center gauge fixing followed by center projection
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[DDFGO97a], [DDFG+98]. The (direct) maximal center gauge condition in four
dimensions is defined by maximizing the functional

F [{Uµ(x)}] =
∑

x,µ

Tr
[
UΩ

µ (x)
]2 → max, (4.13)

UΩ
µ (x) = Ω(x)Uµ(x)Ω†(x+ µ)

with respect to Ω(x). To maximize this functional for a given link configura-
tion {Uµ(x)}, we evaluate the gauge matrices Ω(x) by using an iteration over-
relaxation algorithm [DDFGO97a], [DDFG+98]. Here we assume that the naive
iteration over-relaxation algorithm is capable to filter out the essential physics
of the center vortex vacuum and that the Gribov problem plays a subordinate
role which may be neglected. After the gauge fixing procedure is completed, we
replace the gauge field link variables by their nearest center element, i.e. we
perform the center-projection SU(2) → Z2:

UΩ
µ (x) → sign

[
Tr
[
UΩ

µ (x)
]]

∈ {− � 2×2,+ � 2×2} . (4.14)

If we decompose the functional eq. (4.13) in a part concerning only the space-like
link variables and in a part with only time-like link variables

F [{Uµ(x)}] =
∑

x,i

(
Tr
[
UΩ

i (x)
])2

+
∑

x

(
Tr
[
UΩ

0 (x)
])2

, i = 1 . . . 3 , (4.15)

and using the fact that the trace of time-like gauge fields Tr [U0(x)] is invariant
under time independent gauge transformations, then the four dimensional max-
imum center gauge at a time slice corresponds exactly to the maximal center
gauge condition for a three dimensional theory

F3d [{Ui(~x)}] =
∑

~x,i

Tr
[
UΩ

i (x)
]2 → max , i = 1 . . . 3 , Ω = Ω(~x). (4.16)

Thus, we have established a relation between the closed vortex surfaces of the
four dimensional theory at high temperatures and the closed vortex loops of the
three-dimensional theory. The vortex loops of the three dimensional theory are
identical to the vortex loops of the four dimensional theory at high temperatures
at a constant time slice.

4.3 Three-dimensional Pure SU(2) Gauge The-

ory

In a first step, we will neglect the coupling to the adjoint Higgs field φ and its
self-couplings. We consider three-dimensional pure Yang-Mills theory with the
Wilson action SW[U ], see eq. (4.8). This is an approximation to the dimensionally
reduced four-dimensional Yang-Mills theory, but it will still deliver insight into
the color confinement mechanism with an emphasis on the center vortex picture
of confinement.
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4.3.1 The Center Dominance of the Static qq̄-Potential

By calculating the Creutz ratios eq. (2.68) in the full and in the center pro-
jected theory, we obtain the expectation values of the first derivative of the static
qq̄-potential. The expectation values are extrapolated afterwards to the contin-
uum limit. The numerical analysis was carried out on a 203 lattice, the (direct)
maximum center gauge was performed with the iteration over-relaxation algo-
rithm, whereby three attempts were made to find the global maximum of the
gauge fixing functional eq. (4.13). Our measured data for the full and center
projected theory are presented in figure (4.1) as functions of the distance r for
β ∈ [3.0, 11.0]. Drawing a comparison with the ansatz V ′(r) = σ3 + α/r for the
first derivative of the potential yields a string tension of

σ3 ≈ 0.11 g4
3 , (pure 3d YM-theory) , (4.17)

for the full theory. For three-dimensional pure Yang-Mills theory, the correla-
tions of Polyakov-loops were measured in high statistics Monte-Carlo simulations
[Tep99] and the following functional behavior of the spatial string tension with
respect to the β-parameter was found

σs a
2 =

1.788

β2

(

1 +
1.414

β
+ . . .

)

for β ≥ 3 . (4.18)

If we replace the β-parameter with the lattice constant, see eq. (4.11), we obtain
for the three dimensional string tension

σ3 a
2 ≈ 0.112 g4

3 a
2, (4.19)

which agrees with our result eq. (4.17). Both values are remarkably in good
agreement to the value (4.12) obtained by a large scale simulation of the full
four-dimensional theory [BSF+93], [BFH+93].

This supports the point of view that space-like Wilson loops are dominated
by the three-dimensional Yang-Mills theory. The qq̄-potential depends on time-
like Wilson loops, thus it appears that the string tension of the four-dimensional
Yang-Mills theory is related to correlations of the adjoint Higgs field at high
temperatures, i.e. its behavior depends strongly on the time component A0 of the
gauge fields and thus its sensitivity on the Higgs gauge field couplings [LMR92].

In a next step, we consider the center projected theory and the first derivative
of the potential thereof. First, we see a slight increase of the projected potential
with increasing r. In the limit of large distances r, the (spatial) string tension
obtained from the center projected potential is in good accordance to the full
(spatial) string tension within statistical errors, whereas the short distance be-
havior due to gluon radiation is changed by center projection, see fig. (4.1). This
behavior is qualitatively the same as seen in the case of the four-dimensional
theory. Finally, we may draw the conclusion that the static qq̄-potential is center
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Figure 4.1: The derivative of the static qq̄-potential calculated from configurations
of the full three-dimensional Yang-Mills theory and calculated from configurations
of the center projected theory.

dominant indicating that, if we restrict ourselves to maximal center gauge, the
relevant degrees of freedom for color confinement are the center elements of the
gauge group SU(2).

4.3.2 The Vortex Area Density

Now we want to address the center projected gauge theory in terms of center
vortices. As mentioned before, we say that a plaquette of the

�
2-theory is pierced

by a center vortex, if its value is −1. The center vortices form closed loops in
three dimensions and accordingly closed surfaces in four dimensions due to the

�
2

Bianchi identity. Since we want to establish the center vortex model as a possible
explanation for color confinement, we have to show that vortices of the projected
theory are in accordance with physical quantities of the full theory. For this we
investigate whether the center vortices extrapolate to the continuum limit a→ 0
by considering the dimensionless vortex area density ρ̂ = ρ a2 for large values of
β. The vortex area density is defined as the fraction of negative plaquettes of a
section through the lattice. An evidence would be the correct scaling behavior
of the vortex area density in units of the lattice spacing in the continuum limit
according to eq. (4.11). Thereby, a physical vortex area density ρ would be
given in the continuum. The scaling behavior is shown by calculating the ratio
of the vortex area density and the derivative of the projected potential V ′

proj(r)
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Figure 4.2: The ratio of the vortex area density ρ and the derivative of the
projected qq̄-potential for several values of β.

as a function of distance r, since this potential extrapolates to the value of the
full string tension, see figure (4.1). Our measured data of the ratio ρ/V ′

proj(r) are
shown in figure (4.2).

The data of the ratio are slightly decreasing for increasing distance r. This
behavior agrees with the slight increase of the derivative of the projected potential
V ′

proj(r), see figure (4.1). The ratio ρ/V ′
proj(r) seems to approach a constant value

in the region r g2
3 > 3 and we conclude that a finite vortex area density exists in

the continuum limit. As a last topic, we compare the asymptotic value of that
ratio with the corresponding value of the ratio of the spatial vortex area density
to the spatial string tension which are calculated in four-dimensional Yang-Mills
theory at temperature T ≈ 2Tcrit

ρ

σs

≈ 0.33, 4d Yang-Mills theory, T ≈ 2Tcrit. (4.20)

From this follows that the ratio eq. (4.20) is in good agreement with our ratio
calculated of the three-dimensional theory within the statistical errors.
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4.4 Three-dimensional SU(2) Adjoint Higgs the-

ory

Finally, we want to address the adjoint Higgs model. As mentioned at the be-
ginning of this chapter, the static qq̄-potential of the high temperature phase
of four-dimensional Yang-Mills theory is well reproduced by the effective three-
dimensional adjoint Higgs model with the action

Seff [U, φ] = SYM[U ] + Shop[U, φ] + Sint[φ] , (4.21)

where SY M is the 3-dimensional Wilson action eq. (4.8), Shop[U, φ] is the action
of the kinetic hopping term eq. (4.9) and Sint[φ] is the self interaction term of the
Higgs field. The dimensionally reduced theory is thus described by the partition
function

Zeff [U, φ] =

∫

[DU ] [Dφ] exp {−Seff [U, φ]} . (4.22)

The integration over the link variables U (on a three-dimensional lattice) takes
into account the Haar measure, while the integration over the φ = φata field,
which lives in the su(2) algebra, is carried out with a flat measure. The Higgs
field φ corresponds to the time component A0 of the gauge field in the continuum.
The alert reader might notice that the Higgs field is not sensitive of the center
of the time like link variable U0 and might suppose this as a contradiction. But
it was shown [LTER99], [ELRT00] that the diameter of the vortices are small at
high temperature. They align themselves in the time direction due to the short
extent of the time direction and are generally closed due to periodic boundary
conditions. The vortices become straight lines along the time direction in the
limit of asymptotically high temperatures and plaquettes with a time and space
component cannot be pierced by such vortices. Therefore we can neglect the
center content of the link variable U0 and the vortex picture is still consistent.

T/Tc β4 β h κ
set 1 2.0 2.50 12.25 −.30 0.106
set 2 3.5 2.80 13.54 −.26 0.094
set 3 6.0 3.00 14.48 −.24 0.086

Table 4.1: Parameter sets of the effective dimensionally reduced theory for a 243

lattice taken from [LMR92].

To perform our numerical analysis in the physical phase of the effective model,
we set the effective couplings β, h, κ, so that we choose the SU(2) symmetric
phase of the effective adjoint Higgs model which corresponds to the high temper-
ature phase of four-dimensional Yang-Mills theory. The values for the simulation
parameters are taken from [LMR92], [KLM+94] and they are given in table (4.1).
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4.4.1 The Static qq̄-Potential of the Adjoint Higgs Model

Again we calculate the first derivative of the (spatial) static qq̄-potential and
the measured data are shown in fig.(4.3) for the parameters given in table (4.1).
The spatial string tension σs is obtained for asymptotic values of the distance
r. But we have to interpret one direction of the three-dimensional space of the
effective field theory as time-like, so that the measured quantity calculated from
spatial Wilson loops could be interpreted as the (spatial) static qq̄-potential.
The derivative of this potential yields the spatial string tension. Our result of
the full effective theory is compared with both the result calculated with center
projected configurations and with the result obtained from the three-dimensional
pure Yang-Mills theory, see section (4.3.1) and fig.(4.1). First we note that the
spatial string tensions calculated from the full and center projected configurations
agree within statistical errors. Furthermore, we find that our results of the spatial
string tensions coincide with the value (4.12) of the four-dimensional theory.
Secondly, we observe that the values of the string tensions calculated in the
three-dimensional pure Yang-Mills theory and in three-dimensional adjoint Higgs
model are in good accordance. From this it follows that the adjoint Higgs field
yields minor corrections to the spatial static potential and it is hoped the effect
of the adjoint Higgs field can be neglected in future investigations.
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Figure 4.3: The derivative of the spatial static quark potential calculated with
the dimensionally reduced theory. The dashed line indicates the spatial string
tension (4.12) of the full 4-dimensional theory.
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4.4.2 The Vortex Area Density in the Adjoint Higgs Model

Finally, we have calculated the ratio of vortex area density and spatial string
tension for the adjoint Higgs model at temperatures provided by the parameter
sets of table (4.1). The result is shown in figure (4.4). Comparing the scale of
the horizontal axis in figure (4.2) and figure (4.4), we conclude that the above
ratio has not yet reached its asymptotic value for the parameters given in table
(4.1).
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projected quark anti-quark potential at several temperatures (see table 4.1).



58 CHAPTER 4. VORTICES AT HIGH TEMPERATURES



Chapter 5

Propagators in SU(2) Yang-Mills
Lattice Gauge Theory

In the preceding chapters we investigated the influence of center vortices on the
static qq̄-potential and their influence on the phase structure of pure Yang-Mills
theory, whereby the maximal center gauge was used. It was shown that the
vortex content of the theory is relevant for the linear increase of the potentials
in four dimensions as well as in three dimensions due to center dominance of
these observables. Furthermore, evidence was given that a percolation of center
vortices is a possible candidate for the mechanism of quark confinement.

Despite the success of numerical simulations of lattice gauge field theory con-
cerning color confinement, this method has some grave insufficiencies. Simu-
lations of realistic SU(3) quantum field theory with dynamical quarks are still
cumbersome mainly because of the fermion doubling problem which enforces the
usage of non-local actions. These actions are time consuming in numerical cal-
culations even if improved algorithms [Kap92], [NN93], [Vra01] are used and the
computational power has been increased over the past years. In addition, if the
high temperature phase of Yang-Mills theory is addressed to shed some insight to
signatures of the quark gluon plasma hopefully produced by collider experiments
at RHIC and LHC, systems of finite baryon densities have to be considered. But
these systems are hardly accessible in the realistic case of a SU(3) gauge group
[Bar98] in the lattice approach in spite of the recent success [EKKL99], [LS00b].
The fundamental problem of QCD at finite densities is that the effective action
becomes complex after a Grassmann integration over the fermionic fields, be-
cause of the introduction of the chemical potential in the Dirac matrix. This
prohibits the use of standard Monte-Carlo algorithms for the lattice simulations
with dynamical fermions [BMK+98].

A second non-perturbative method to treat Yang-Mills theory is the approach
by Dyson-Schwinger equations (DSE). In contrast to LGT, the fermionic degrees
of freedom can be easily incorporated, an extension to finite baryon densities
is possible [RS00] and the study of hadron phenomenology [RW94] is possible
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by DSE. For a recent review see [AvS01]. But the DSE approach requires a
truncation of the infinite series of equations. This approximation is difficult to
control and to improve systematically. Additionally, the DSE approach uses gluon
and ghost propagators as integral parts. Since propagators are only defined in a
certain gauge of the theory, gauge-fixing is needed. The gauge fixing is usually
done in continuum field theory by the Faddeev-Popov procedure. But in contrast
to the Abelian case, gauge-fixing is not unique in the non-Abelian case. There
exist different gauge fields satisfying the gauge condition and they are related
by a gauge transformation. These are the so-called Gribov copies. It seems to
be that Gribov copies can be neglected in the area of validity of perturbation
theory of QCD [Wil03], but they may be relevant in the non-perturbative regime
which is the relevant domain for the confinement problem. Since the gluon and
ghost propagators can be measured in simulations of LGT, the investigation of
these propagators is a natural way for testing both methods. With a comparison
of the results of both methods, we can check the performance of the truncation
of the infinite Dyson tower of equations and the influence of Gribov copies on
propagators in the non-perturbative regime.

Furthermore, it is a matter of common knowledge that all Green’s functions
carry all information about the physical and mathematical structure of the quan-
tum field theory under consideration. The relevance of center vortices on the
infrared behavior of the propagators is by itself of particular interest. In the
following, we want to analyze the influence of center vortices on these Green’s
functions. Since we use mainly SU(2) Yang-Mills theory in quenched approxima-
tion, we concentrate our interest on gluon and ghost propagators and postpone
the investigation of the impact of center vortices on the quark propagator to fu-
ture work. The form factors are gauge dependent quantities and hence we have to
choose a particular gauge. Our choice of Landau gauge stems from the fact that
this gauge is usually used in the DSE approach for calculating the form factors
and we want to compare our measurement data with the results of the coupled
ghost-gluon Dyson equation of the DSE approach [vSHA98], [vSAH97], [AB98a].
But note that, from the LGT point of view there is nothing special or unique in
the choice of Landau gauge, we can use e.g. Coulomb gauge as well.

The motivation of a non-perturbative treatment of calculating propagators is
based on the fact that the predictions of perturbation theory are in fact in good
accordance with experimental data, if the effective quark-gluon coupling α(p2) is
small, i.e. at high momentum transfers. But on the other hand, if the coupling
becomes large at small momentum transfers, perturbation theory fails. Since this
behavior of the running coupling α(p2) in the infra-red prevents a perturbative
treatment of the theory, non perturbative approaches are needed, e.g. LGT or
DSE.

Our calculations of the form factors are straight forward with the exception
that a novel method is used that allows us to compute the form factors directly
leading to an improvement in statistical errors. The form factors are directly
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calculated, because they are defined as the deviation of the propagators from the
free propagators and hence incorporate all the non-perturbative physics relevant
for the color confinement problem. By removing the percolating vortex cluster
from the SU(2) Yang-Mills ensemble by hand, we produce a non-confining theory
[LSWP99], [B+00]. By comparing the results of the form factors of the confining,
pure SU(2) Yang-Mills theory with the results obtained from the non-confining
model, it is possible to study the relevance of center vortices on the behavior of
the gluon and ghost form factors.

5.1 The Gluon Propagator

5.1.1 Introduction

The gluon propagator is defined in the continuum by

Dab
µν(k) = −i

∫

d4x
〈
0|T

[
Aa

µ(x)Ab
ν(0)

]〉
exp {ikx} , (5.1)

where T is the time ordering operator and Aa
µ(x) are the gluon fields. We can de-

compose the propagator into a transverse and a longitudinal part in the following
way:

Dab
µν(k) = −iδab

[(

δµν −
kµkν

k2

)

dt(k
2) + ξ

kµkν

k2

dl(k
2)

k2

]

. (5.2)

The scalar function dl(k
2) of the longitudinal part reduces to a constant for linear

covariant gauges. This constant can be absorbed by the gauge fixing parameter
ξ which is zero in Landau gauge. In the following, we consider Landau gauge
(ξ = 0). In this gauge the gluon propagator is diagonal in color and transverse
in Lorentz space. The interesting information in the gluon propagator is thus
contained in

D(k) = N
∑

a,µ

Daa
µµ(k2) =: N

F (k2)

k2
, (5.3)

with a normalization constant N and F (k2) represents the gluon form factor
which measures the deviation of the full propagator from the free one. The form
factor contains the full physical information.

Perturbative Yang-Mills theory suggests that the deviation of the full propa-
gator from the free propagator is logarithmically small for large momenta and to
zeroth order in perturbation theory the free propagator is

D0(k
2) =

1

k2
. (5.4)

The asymptotic behavior of the gluon propagator for large momenta is given to
one-loop level in perturbation theory by [DZ89], [Man79]

Duv(k) =
1

k2

(
1

2
ln

(
k2

Λ2

))−dD

, (5.5)
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with the exponent dD = 13/44 in Landau gauge for quenched QCD and the
momentum cut-off Λ.

Concerning the color confinement problem, the infra-red region of the momen-
tum is of great importance. In this region one expects a measurable deviation of
the gluon propagator from the free one. Various lattice simulations have shown
that the propagator falls off quite differently than in perturbation theory. This
led to a couple of interpretations for the functional form of the gluon propaga-
tor. The lattice data in [MMST93] was interpreted in terms of an anomalous
dimension γ being consistent with γ ≈ 1, or in other works [MO87], [G+87] the
data of the gluon propagator in Landau gauge was consistent with a massive
particle propagator. The existence of an effective mass of the gluon is addition-
ally supported by phenomenological considerations [CF94]. On the other hand,
a vanishing gluon propagator at zero momentum was also suggested in [Gri78]
and is motivated by various works [Sti86], [CR91], [vSAH97], [vSHA98].

We are interested in the non-perturbative information contained in the gluon
propagator in the infra-red limit and measure directly the gluon form factor
F (k2). Since there exist different ways to extract the gluon fields, i.e. the gauge
fields Aa

µ(x), from the link variables Uµ(x), we discuss our definition of the gluonic
degrees of freedom which is motivated by continuum Yang-Mills theory.

5.1.2 Gluon Fields From Lattice Link Variables

The gluon propagator is directly defined as a two point Green’s function of the
gauge fields Aa

µ(x), but the degrees of freedom of SU(2) Yang-Mills LGT are the
link variables Uµ(x) ∈ SU(2) being complex (2 × 2)-matrices. Hence, we have
to extract the gluon fields corresponding to the link variables. A frequently used
definition of the gluon fields is given by

Aa
µ(x) =

1

4i
Tr
[(
Uµ(x) − U †

µ(x)
)
τ a
]
+ O(a3), (5.6)

where lattice gauge fields Aa
µ(x) approach the conventional continuous vector

potentials Āa
µ(x) in the continuum limit. There exist alternative definitions of

the gluon fields extracted from the link variables. These definitions are accurate
to higher order in a, but it was shown [GPP+98], [Cuc99] that the occurring
deviations can be absorbed into the multiplicative renormalization constant of
the fields.

We want to introduce an additional definition of the lattice gluon fields which
respects the behavior of the gluon fields under a gauge transformation of the
fundamental matter fields. If we consider the continuum field theory, then the
fundamental matter fields, which are defined in the fundamental representation,
transform under a gauge transformation as follows

ψ(x) → ψ′(x) = Ω(x)ψ(x), Ω(x) ∈ SU(2). (5.7)
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Whereas the gluon fields transform according to the adjoint representation:

Aa
µ
′(x) = Oab(x)Ab

µ +
1

2
εaefOec∂µO

fc (5.8)

Oab(x) := 2tr
[
Ω(x)taΩ†tb

]
, Oab(x) ∈ SO(3). (5.9)

This behavior under gauge transformations is compared with the lattice gauge
field theory, where the link variables transform under gauge transformations as

U ′
µ(x) = Ω(x)Uµ(x)Ω†(x+ µ), Ω(x) ∈ SU(2). (5.10)

In order to allow for comparison with the continuum formulation, the adjoint
links are additionally introduced as follows:

Ũab
µ (x) := 2tr

[
Uµ(x)t̂aU †(x)t̂b

]
, t̂ =

1

2
τ a (5.11)

Ũ ′
µ(x) := O(x)Ũµ(x)OT(x+ µ), O(x) ∈ SO(3), (5.12)

where O(x) is defined as in eq. (5.9) and τ a are the Pauli matrices. The gauge
fields are extracted from the lattice configurations by analyzing the behavior of
the continuum gluon fields under gauge transformations (see eq. (5.7)), whereby
the lattice gluon fields Aa

µ(x) are identified as the algebra valued fields of the
adjoint representation:

Ũ cd
µ (x) :=

(
exp

{
t̂fAf

µ(x)a
})cd

, t̂fac := εafc, (5.13)

with the total antisymmetric tensor εabc being the generator of the SU(2) gauge
group in the adjoint representation. The lattice spacing is again denoted by
a. We obtain the explicit formula for the (lattice) gluon fields Aa

µ(x) defined in
eq. (5.13) in terms of the SU(2) link variables Uµ(x), if we consider the spinor
representation of the link variables

uµ(x) = u0
µ(x) + i~uµ(x)~τ ,

(
u0

µ(x)
)2

+ (~uµ(x))2 = 1. (5.14)

If this representation for the link variables Uµ(x) is inserted into eq. (5.11), we
expand the equations (5.11) and (5.13) in powers of the lattice spacing a, where

~uµ(x) = O(a) and
(
u0

µ

)2
(x) = 1 −O

(
a2
)

were used. Subsequently, if we compare to order O(a), we finally receive for the
gluonic fields the following identity

Ab
µ(x)a+O(a2) = 2u0

µ(x)ub
µ(x), (5.15)

without summation over the space-time index µ. An important point is that this
gauge field Aa

µ(x) has been defined by the adjoint link (5.11). As a consequence,
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the representation of the gluon field (5.15) is invariant under a non-trivial Z2

center transformation:
Uµ(x) → −Uµ(x). (5.16)

To contrast the definition (5.15) of the lattice gluonic fields with the previous
definition of the gauge field from the fundamental link, i.e.

Uµ(x) = exp
{
iaĀb

µt
b
}
, aĀb

µ = 2ub
µ(x) +O(a2), (5.17)

where one must assume that the link field Uµ(x) is close to the unit element, i.e.
u0

µ(x) = 1 − O(a2). Indeed, the gluon field Āµ(x) changes the sign under a non-
trivial center transformation. The previous definition of the gauge field Āµ(x)
therefore contains information on center elements and the coset fields as well.
Here, we propose to disentangle the information carried by the center elements
and the coset fields Aµ(x) and to study their correlation separately. We will
present the correlation function of the coset “gluon” fields Ab

µ(x).

5.1.3 The Lattice Approach to the Gluon Propagator

As pointed out before, the gluon propagator is defined as the two point Green’s
function of the gluon fields. The lattice version thereof is given by

Dab
µν(x− y) = 〈Aa

µ(x)Ab
ν(y)〉MC, (5.18)

where Aa
µ(x) is defined in terms of the coset part of the link variables (see eq.

(5.15)). The subscript MC denotes the Monte-Carlo average which is taken over
a sufficiently large number of properly thermalized gauge configurations.

The Fourier transform of the gluon propagator on the lattice is given by

Dab
µν(p̂) = a4

∑

x

Dab
µν exp {ip̂x} , p̂k =

2π

Nka(β)
nk, (5.19)

where nk labels the Matsubara mode in k-direction and where Nk is the number
of lattice points in this direction. The lattice momentum on the lattice is given
by

pk =
2

a(β)
sin

(
π

Nk

nk

)

. (5.20)

This coincides with the Matsubara momentum p̂k in (5.19) for the limit of nk ¿
Nk. The advantage of this definition is that the free lattice propagator takes the
familiar form 1/p2

k. Since the extension of the lattice in a single direction is Lk =
Nk a(β), with Nk the number of lattice points in the k-direction, the momentum
range covered in the actual simulation induces an UV -cutoff at Λ = π/a(β). The
dependence of the lattice spacing a(β) on the simulation parameter β is given by
renormalization, see eq. (2.69).
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The propagator (5.18) is a rapidly decreasing function in coordinate space
implying that the physical information at large distances |x−y| is washed out by
statistical noise. From this it follows that the information on the low momentum
behavior is lost. The solution that was proposed in [Zwa91], [Cuc99] is to measure
the propagator directly in momentum space. For this we Fourier transform the
gluon fields

Ã(k) :=
∑

x

A(x) exp {ikx} =
∑

x

A(x) (cos (kx) + i sin (kx)) . (5.21)

The Fourier transformed gluon fields are inserted into the momentum-space gluon
propagator being defined by

D̃(k) :=
1

N2

∑

a,µ

〈

Ã(k)Ã(−k)
〉

MC
. (5.22)

This yields the propagator in momentum space

D̃(k) =
1

N2

∑

a,µ

〈(
∑

x

Aa
µ(x) cos (kx)

)2

+

(
∑

y

Aa
µ(y) sin (ky)

)2〉

MC

, (5.23)

where N is the number of lattice points.
If translation invariance of the gluon propagator is used, i.e.

〈
Aa

µ(x)Ab
ν(y)

〉

MC
∝ f(x− y), (5.24)

one finds from (5.23) that the gluon propagator contains the trivial factor 1/k2

which is also present in the free theory. Finally, one obtains for the following
gluon propagator

D̃(k) =
∑

a,µ

∑

x

〈
Aa

µ(x)Aa
µ(0)

〉

MC
cos (kx) . (5.25)

If we directly measure the deviation of the gluon propagator from the free one,
namely the form factor F (k2) implicitly defined in eq. (5.3), we expect a further
increase of numerical accuracy. Without any loss of generality, we choose the
momentum transfer to be in the fourth direction, k = (0, 0, 0, k4), and define

∆tφ
a
µ(x) := Aa

µ(x+ aê4) − Aa
µ(x), (5.26)

with ê4 the unit vector in time direction. A computation, which is given in detail
in Appendix (C.1), yields

F (k2
4) =

1

N

∑

a,µ

〈(
∑

x

∆tφ
a
µ(x) cos(k̂x)

)2

+

(
∑

y

∆tφ
a
µ(y) cos(k̂y)

)2〉

MC

,

(5.27)
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where k4 is the lattice momentum (5.20) in time direction. The free part 1/k2 of
the propagator D(k) is precisely canceled by using the difference operator ∆t and
we are thus capable to calculate directly the gluon form factor F (k2). The Monte-
Carlo average (5.27) defined in this way allows for a high precision measurement
of the gluon form factor.

5.2 The Numerical Simulation

In this section we want to outline our procedure for calculating the gluon form
factor. Properly thermalized configurations are produced by the usual heat bath
algorithm. Afterwards the Landau gauge is implemented by maximizing the
following gauge fixing functional1

FU [g(x)] =
∑

x,µ

1

2
Re Tr

[
g(x)Uµ(x)g†(x+ µ)

]
. (5.28)

We use two different numerical procedures for fixing the Landau gauge iteration:
1) the iterated over-relaxation algorithm (IO) which averages over Gribov copies
and 2) the simulated annealing algorithm (SA) which tries to locate the global
maximum of the gauge functional (5.28). The algorithms used are explained in
detail in the appendix B. The effect of the gauge fixing ambiguities, i.e. Gribov
copies, on the form factors is discussed in chapter 6 where we further discuss
gauge fixing on the lattice. We will refer to the gauge fixed by the IO-algorithm
as IO-gauge, since we will compare this gluonic form factor with one obtained of
configurations which were gauge fixed to the Landau gauge condition (5.28) by
using the simulated annealing algorithm (SA-gauge).

Then the gluon form factor (5.27) is evaluated from the gauge fixed configura-
tions as the mean expectation value of 200 configurations of a Lx×Lt = 163 ×32
lattice, where 1000 thermalization steps were used to thermalize the configura-
tions and 10 thermalization steps were used between two different measurements
of the form factor to cancel autocorrelations between those two configurations.
A flow chart of the simulation is given in figure (5.1).

The gluon propagator and ghost propagator are both functions with respect
to momentum p. Physical units are obtained with the use of the scaling func-
tion eq. (2.69) and the definition of the lattice momentum (5.20). Calculations
with different β-values and fixed numbers of lattice points correspond to simula-
tions with a different UV-cutoff Λ and of different physical volume of the lattice
respectively.

The effect of center vortices on both form factors is disentangled by first
performing the MCG and center projection which produces the center vortex

1Here the Landau gauge is given for the gauge group SU(2), an extension to SU(N) gauge
group can be done easily.
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Figure 5.1: The flow chart for the measurement of the gluon and ghost
form factors for the pure SU(2) Yang-Mills theory and for the non-
confining model. For the full, confining theory, the links ensembles are
gauge fixed to Landau gauge and the form factors are subsequently
calculated. For the non-confining model, the maximal center gauge
fixing, the center projection and the elimination of the center vortex
content of the link ensembles are performed before the gauge fixing
procedure.
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ensemble {Zµ(x)}. Afterwards, the center vortex content is removed from the link
configurations {Uµ(x)} by multiplying every link variable Uµ(x) with its center
content Zµ(x) which extracts the coset content Ũµ(x) of the link variable that
finally defines the ensemble {Ũµ(x)} of the non-confining model. Subsequently,
the center vortex free ensemble Ũ is gauge fixed to Landau gauge and the gluon
and ghost form factors are calculated from the non-confining ensemble. The
differences between the form factors of full Yang-Mills theory and those of the
non-confining model are interpreted as the effect of center vortices.

5.3 Numerical Results: Gluon Form Factor

Our measurement results of the form factor FB(p2) are generally an unrenormal-
ized function of the momentum in physical units. The renormalized form factor
FR(p2) is obtained via multiplicative renormalization

FR(p2) = Z−1
3 (Λ)FB(p2), (5.29)

with the gluonic wave function renormalization Z3(Λ) being chosen to get a fi-
nite value for the renormalized form factor FR at a fixed momentum transfer
which defines the renormalization point. The subscripts will be dropped in the
following and F (p2) always refers to the renormalized form factor. In fig.(5.2)
we present our measurement results of the gluon form factor in the IO-Landau
gauge [LRG02]. The range for the different values of the β-parameter was set
to β ∈ [2.1, 2.6] and the reference scale was fixed by setting the string tension
to σ = (440MeV)2 which assigns physical units to momenta. In order for our
measured data of the gluon form factor at different values of β to give a single
smooth function of the lattice momentum, we have to exploit the property of full
Yang-Mills theory to be multiplicatively renormalizable (see Appendix (D) for
the model independent maximum likelihood method used here). The data of the
gluonic form factor F (p2) obtained with different β-values nicely agree within
numerical accuracy signaling independence of the UV-cutoff and of the lattice
volumes.

In the high momentum region, our data nicely agree with the behavior ex-
pected from perturbation theory,

F (p2) ∝
(

ln
p2

Λ2

)− 13
22

, for p2 ≈ Λ2 À (1 GeV)2. (5.30)

The fit represented in fig.(5.2) has the functional form

Ffit(p
2) = N

p2

p2 +m2
1

(
1

p4 +m4
2

+
s

(ln(m2
L + p2))13/22

)

, (5.31)

which is called the coarse grained mass fit with the fit parameters (N,m1,m2, s).
Momentum p and all mass scales are in units of GeV. The normalization N is
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the sole parameter affected by the multiplicative renormalization, the remaining
parameters are renormalization group invariants. The following values of the
parameters gives a fit function which accords with the data within the statistical
error bars:

N = 8.1133, m1 = 0.64 GeV, m2 = 1.31 GeV,
s = 0.32, mL = 1.23 GeV.

5.3.1 Comparison with Dyson-Schwinger Equations solu-
tions

As a next topic we want to compare our results with those achieved by the second
non-perturbative treatment of QCD: the Dyson-Schwinger equations (DSE). In
this approach, the coupled set of continuum DSEs of the gluon and ghost prop-
agators has been addressed in [vSAH97], [vSHA98] and newer treatments are
given in [AB98a], [Blo01]. It was first pointed out in [vSAH97], [vSHA98] that
the gluon and ghost form factors satisfy scaling laws in the infra-red for a specific
truncation scheme of the infinite tower of coupled Dyson-Schwinger equations:

F (p2) ∝
(
p2
)2κ

, p2 ¿ Λ2
QCD. (5.32)

The concrete values of κ depend on the truncation of the Dyson-Schwinger series
and whether an angular approximation of the momentum loop integral is used.
The given values of κ in the literature have a range of κ ∈ [0.77, . . . , 1]. Our
lattice data are consistent with κ = 0.5 corresponding to an infra-red screening
by a gluonic mass (see fig.(5.2)).

A further interesting topic is the infra-red behavior of the ghost-gluon-vertex
form factor which corresponds to the running coupling strength in four space-
time dimensions. The functional form can by written in terms of the gluon and
ghost form factors in the following way:

α(p2) = α(µ2)F (p2)G2(p2), (5.33)

where G(p2) is the ghost form factor that will be addressed in the following
sections. This function approaches a constant in the limit p2 → 0 that is inde-
pendent of the approximations and truncation schemes used [vSAH97], [vSHA98],
[AB98a], [WA01]. At this point, the running coupling is mentioned, since it was
used in the DSEs as an input at a certain renormalization point:

α(µ = 6 GeV) =
3

22

4π

ln
(

µ2

Λ2
QCD

) ≈ 0.449. (5.34)

Furthermore, the truncation of [vSAH97], [vSHA98] was solved in [FAR02] for
the case of the SU(2) gauge group which yields the DSE result shown in fig.(5.2).
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Figure 5.2: The gluon form factor F (p2) of the lattice data and the
DSE solution from ([FAR02]) as a function of the momentum transfer
(top panel: linear scale; bottom panel: log-log-scale). Remarkable is
the good agreement of the DSE solution and the lattice data on a
qualitative level.
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On a qualitative level, we find an agreement of the DSE solution with our lattice
result. Since there exist a variety of values of κ depending on the truncation
of the DSEs, we do not expect a detailed agreement of both gluon form factors
close to vanishing momentum. We want to emphasize that the peak of the form
factor at the intermediate momentum range is also observed in the DSE approach,
although there are quantitative deviations concerning its steepness.

5.3.2 Signatures of Confinement in the Gluon Propagator

In the preceding chapter 3 we introduced the concept of center vortices as a pos-
sible candidate for the mechanism of color confinement. To investigate the effect
of the center vortices on the gluon form factor, we implement first the maximal
center gauge. In this gauge, the coset part of the links which corresponds to the
gluons in the infra-red physics, is de-emphasized and the center vortices appear
as physical degrees of freedom in the continuum limit [LRT98]. If the full Yang-
Mills theory is reduced to the vortex content alone, the full string tension is still
obtained [DDFGO97a], [DDFG+98] and the qq̄-potential is still linearly rising.
On the other hand, if we remove the center vortex content from the full theory,
i.e. we project on the residual part of the link variables, a vanishing string tension
is measured [DDFGO97a], [DDFG+98], [dFD99] and only the Coulomb part of
the qq̄-potential is recovered. Hence, removing the center vortex content from the
link configurations yields a non-confining model2. See also fig.(5.4) for both qq̄-
potentials in the confining (full) Yang-Mills theory and the non-confining model.
In order to extract the information of quark confinement encoded in the gluon
form factor in Landau gauge, we remove the center vortex content from the link
variables which results in the non-confining theory mentioned before. Afterwards,
we perform the Landau gauge and compare the form factor of the modified theory
with the result of the full SU(2) Yang-Mills theory. The numerical procedure is
outlined in the preceding section (5.2).

Our measurement results of the non-confining ensemble are shown in figure
(5.3). The striking feature is that the strength of the form factor in the interme-
diate momentum range is strongly reduced.

5.3.3 The Gluon Form Factor in MCG-Gauge

If the maximal center gauge is implemented, important parts of the non-trivial
information of the links is shuffled into the center vortex degrees of freedom. A
study of the maximal center gauge in the continuum limit ([ER00a]) has shown,
that the gauge condition (5.28) in the continuum limit corresponds to a back-
ground gauge

[
∂µ + iAB

µ (x), Aµ(x)
]

= 0, (5.35)

2This must not be confused with the deconfinement phase of the full Yang-Mills theory,
where still center vortices are present and we have still a (spatial) string tension.
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Figure 5.3: The gluon form factors F (p2) of the full SU(2) Yang
Mills ensemble and of the modified, non-confining theory. The loss of
strength of the gluon form factor of the modified theory compared to
the gluon form factor of the full theory in the region at 1 GeV is clear
visible.
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Figure 5.4: The static qq̄-potential for full Yang-Mills theory and for
the non-confining model.
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where the back ground gauge field AB
µ (x) marks a specific (thin) center vortex

field. The back ground gauge (5.35) complies with the Landau gauge, if center
vortices are absent in the gauge fields Aµ(x).

The procedure of calculating the gluon form factor in maximal center gauge is
the same as for the Landau gauge with the sole exception that the center gauge is
implemented and not the Landau gauge. If we use the definition (5.15) for the ad-
joint representation of the gluon fields, then the MCG corresponds to the adjoint
Landau gauge and the gluon fields satisfies the Landau condition ∂µA

a
µ(x) = 0.

The gauge condition (5.35) does not imply that the gluon propagator Dab
µν(k)
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Figure 5.5: The gluon form factor F (p2) in MCG-gauge as a function
of the momentum transfer compared with the fit function of the gluon
form factor in Landau gauge (left panel: linear scale; right panel: log-
log-scale).

is transversal. Hence the result of the gluon form factor shown in figure (5.5)
incorporates only parts of the information contained in the gluon propagator of
the maximal center gauge. The gluon form factor of maximal center gauge is
presented only as a comparison with the Landau gauge result.

It is apparent that the form factors of Landau and maximal center gauge differ
in the intermediate region. In the maximal center gauge, the non-perturbative
content of information of the degrees of freedom is shuffled into the center part
of the links, whereas the gluon form factor is calculated from the residual (coset)
part of the link variables. On the other side, most of the information is contained
in the residual part of the link variables in Landau gauge. This explains why the
gluon form factor of maximal center gauge represents the behavior of the form
factor of the non-confining model. Our findings support the fact that the center
vortices are the relevant degrees of freedom for the infra-red physics.
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5.4 The Ghost Propagator

In this section we will investigate the relevance of the center vortices on the
ghost form factor G(p2). The ghost fields emerge in a continuum field theory
because of the need of gauge fixing which is required to be able to calculate
a well defined gluon propagator. The continuum field theory is usually gauge
fixed in its functional description with the the Faddeev-Popov method. In this
method, the gauge-fixing condition G[AΩ] ≡ δ

δΩ
F[AΩ] = 0, see e.g. eq. (5.28),

is implemented by inserting into the functional integral of the pure Yang-Mills
theory

Z [Uµ(x)] =

∫

[DUµ(x)] exp {−βSYM [Uµ(x)]} (5.36)

the quantity3

∫

[DΩ(x)] δ
(
G
(
AΩ
))

det

[

δG
(
AΩ
)

δΩ(x)

]

, (5.37)

where Ω denotes the gauge transformation used to fulfill the gauge fixing condition
G[Ω] ≡ G(AΩ). In contrast to QED, where the Faddeev-Popov determinant is
independent of the gauge fields Aa

µ(x), the gauge fields contribute to the Faddeev-
Popov determinant of Yang-Mills theories. The Faddeev-Popov determinant is
given in components by

det
[
( � )ab

xy

]
:= det

[

δG
(
Aa,Ω

µ (y)
)

δωb(x)

]

, (5.38)

with the components ωb(x) of the gauge transformation Ω(x). This determinant
can be represented as a functional integral over a new set of anti-commuting fields
(Grassmann numbers) belonging to the adjoint representation:

det
[
( � )ab

xy

]
=

∫

[Dc] [Dc̄] exp

{

i

∫

d4x c̄a(y)
(
−( � )ab

xy

)
cb(x)

}

, (5.39)

with the (anti-) ghost fields (c̄a(y)) cb(x). The following matrix ( � )ab
xy defines

the Faddeev-Popov operator � for the Landau gauge condition ∂µAµ = 0:

( � )ab
xy =

(
∂2 − f abcAc

µ(x)∂µ

)
δ4(x− y), (5.40)

where a, b are the color indices and x, y are the space-time coordinates. The
ghost propagator G(x− y) in Landau gauge is then given in terms of the inverse
of the Faddeev-Popov operator �

G(x, y) := δab
〈(

( � )ab
xy

)−1
〉

MC
, (5.41)

3Strictly speaking, the absolute value of the Faddeev-Popov determinant has to be used,
but this requirement is usually dropped corresponding to a insertion of a zero instead of unity
[BRS96], [BS98], [Sch99]. More about this ambiguity follows in chapter (6), see also eq. (6.1).
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where the subscript MC indicates again the Monte-Carlo average over the field
configurations. The ghost propagator in momentum space is given by

G(k) =
∑

x,y

(

cos

(
2π

N
x

)

( � −1)ab
xy cos

(
2π

N
y

)

+ (5.42)

+ sin

(
2π

N
x

)

( � −1)ab
xy sin

(
2π

N
y

))

,

with N the number of lattice points in time (fourth) direction. The lattice ghost
propagator was first calculated in [SS96] for pure SU(2) and SU(3) Yang-Mills
theory. The operator for the direct measurement of the ghost form factor is given
in the next section.

5.4.1 The Ghost Form Factor

To improve our numerical statistics, we want again to evaluate directly the devi-
ation of the ghost propagator from the free propagator, namely the ghost form
factor Ḡ(k) = k2G(k). The ghost form factor is defined by an improved Faddeev-
Popov operator M̄ :

Ḡ(x, y) =
〈
(M̄−1)ab

xy

〉

MC

=
〈
( � −1)ab

x+1 y − 2( � −1)ab
x y + ( � −1)ab

x y+1

〉

MC
, (5.43)

which cancels exactly the contribution of the free ghost propagator. From this it
follows the ghost form factor in momentum space:

Ḡ(k) =
∑

x,y

(

cos

(
2π

N
x

)

( ¯� −1)ab
xy cos

(
2π

N
y

)

+ (5.44)

+ sin

(
2π

N
x

)

( ¯� −1)ab
xy sin

(
2π

N
y

))

,

A detailed derivation of the ghost form factor and of the action of the Faddeev-
Popov operator on an arbitrary element ω(x) = ωa(x)τ a in the algebra of the
gauge group SU(2) is given in the appendix (C).

5.5 Numerical Results: Ghost Form Factor

The numerical simulation of the ghost form factor is identically to the description
given for the gluon propagator (see sec.(5.2)). The lattice volume was vol[Λ] =
163 × 32 sites and 100 Monte-Carlo configurations were used to calculate the
averages.
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For the evaluation of the ghost form factor, we used a Gauss-Seidel pre-
conditioned Conjugate-Gradient method. This new algorithm gives a benefit
of time roughly about a factor of two (see app.(C)).

In the high momentum region, our data nicely agree with the behavior ex-
pected from perturbation theory

G(p2) ∝
(

log
p2

Λ2

)− 9
44

, for p2 ≈ Λ2
UV À (1GeV)2. (5.45)

We use the high momentum region (p > 1.8 GeV) of the ghost form factor and
the left hand site of eq. (5.45) multiplied by an irrelevant normalization constant
to fix our “momentum cutoff”

ΛUV = 1.09(78), for pÀ 1.0GeV. (5.46)

With ΛUV set, we use the following functional form as a fit function

RG(p) = Ng
c1 + p2κ

p2κ




4π

β0




1

ln p2

Λ2
UV

− 1
p2

Λ2
UV

− 1









9
44

, (5.47)

where Ng is an irrelevant normalization factor and β0 = 22/3 for the SU(2) gauge
group. The functional form of the fit function was chosen in such a way, that
a scaling behavior in the infrared limit might be extracted. It was shown by
investigating the coupled set of Dyson-Schwinger equations [vSAH97], [vSHA98],
[AB98b] that the ghost propagator behaves as G(p) ∝ p−2−2κ at small momenta.
The ghost form factor shows a scaling behavior in the infrared limit. We obtain
for our fit parameters4

κ = 0.471(821), Ng = 0.849(296). (5.48)

As mentioned before, the values of κ have a range of κ ∈ [0.5, 1.0] which depends
on the truncation scheme of the DSE. Our lattice data supports an infra-red
diverging form factor with κ = 0.5. Our fit function does not represent our
lattice data in the high momenta region which is no surprise, since the functional
form was chosen to be simple and at the same time to give a good agreement in
the infrared region.

4The fit parameters were calculated by only considering the statistical errors. For a better
estimate of the values of the fit parameters, one has to include the systematical errors. Since
a unique estimation of the systematical errors was not possible up to now, only the result for
for the statistical errors is show. First attempts with systematical errors have shown that κ
increases.
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Figure 5.6: The ghost form factor G(p2) as function of the momentum
transfer, the DSE result stems from (top panel: linear scale; bottom
panel: log-log-scale).
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5.5.1 Comparison with the Dyson-Schwinger Equation So-
lution

We used again the possibility of multiplicative renormalization of the lattice ghost
form factor to compare the results obtained by the Dyson-Schwinger equations
with the data obtained from our lattice calculations. It is remarkable that the
agreement between the ghost form factor of the DSE approach5 [FA02] and the
ghost form factor obtained from the lattice with different β-values is so good.
Even in the region around the maximum of the gluon form factor, both results
are in good agreement. The slight difference between the lattice data and the
DSE result in the infra-red compared to the result published in [L+02] stems from
the fact that we used here a model independent method for the multiplicative
renormalization of the lattice data which uses the maximum likelihood method
(see app. D).

5.5.2 Signature of Confinement in the Ghost Form Factor

The impact of the center vortices on the ghost form factor is investigated in the
following. A divergent ghost form factor indicates color confinement by virtue of
the confinement criterion of Gribov [Gri78]. This criterion states that the behav-
ior of the ghost form factor in the infra-red limit is important for confinement
[Zwa92]. In the case of Landau gauge, the ghost form factor diverges in the
infra-red limit showing confinement. If the ghost form factor ceases to diverge,
we have a non-confining setting.

To single out the effect of the center vortices we again transform the confining
SU(2) Yang-Mills theory to a model without confinement. After projecting out
the center vortices from the theory, we perform the Landau gauge via the IO-
Algorithm, see appendix B.2.1, and calculate the ghost form factor. Afterwards
we compare the ghost form factor of the modified theory with the previous results
of the full SU(2) Yang-Mills theory. Our measurement data are shown in fig.(5.7).

It is in evidence that the ghost form factor looses drastically its strength in
the low momentum region and it ceases to diverge in the low momentum regime
[GLR04].

Consequently, we can conclude that the divergence of the ghost form factor in
the infrared limit is caused by the presence of center vortices. By removing the
center vortices from the full field configurations, the ghost form factor ceases to
diverge in the low momentum region and thus the confinement criterion of Gribov
is violated. This fact is in agreement with the behavior of the non-confining qq̄-
potential of the modified theory which does not rise linearly with distance both
indicate the lack of color confinement. On the other hand, if the center vortices
are present, i.e. full Yang-Mills configurations are considered, the ghost form

5We want to thank Ch. Fischer for sharing his DSE results and for the illuminating discus-
sions
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Figure 5.7: The ghost form factor G(p2) of the confining and of the
non-confining theory. The loss of strength in the infrared limit is clear
visible.

factor diverges in the infrared limit and the potential rises linearly with distance.
Both indicate color confinement.

5.6 The Running Coupling αs(p
2) of the Strong

Interaction

The next quantity we want to consider is the running coupling αs(p
2) of the

strong interaction. In Landau gauge, this quantity can be directly obtained from
the ghost-gluon vertex which incorporates only the ghost and gluon form factors.
For this, we consider the ghost-gluon vertex in Landau gauge which contributes
an additional term to the pure Yang-Mills Lagrangian

Lc̄Ac = gf abckµc̄ cAa
µc

b, (5.49)

where g denotes the coupling parameter and c̄, c denote the anti-ghost and ghost
fields respectively. Due to multiplicative renormalizability, all Green’s functions
can be rendered finite by renormalizing the fields and parameters of the La-
grangian. This is done without changing the functional form of the Lagrangian.
The relations between the bare quantities, in the following labeled by 0 in the sub-
script, and the corresponding renormalized ones are given by the multiplicative
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renormalization constants Z3, Z̃3 and Zg

Aa
µ,0 →

√

Z3A
a
µ (5.50)

c̄c0 →
√

Z̃3 c̄
c (5.51)

cb0 →
√

Z̃3 c
b (5.52)

g0 → Zg g. (5.53)

From the definition of the ghost-gluon vertex renormalization constant Z̃1 and
from Γabc

µ,0 → Z̃1Γ
abc
µ follows the relation between the renormalization constants

of the constituents and of the vertex function and its renormalization constant

Z̃1 = ZgZ̃3Z
1
2
3 . (5.54)

This leads to the renormalized contribution of the ghost-gluon vertex to the
Lagrangian

Lren.
c̄Ac = Z̃1gf

abckµc̄cAa
µc

b. (5.55)

The running coupling constant is finally defined by

α :=
g2

4π
. (5.56)

We can transform this into the following relation

α(Λ2) =
α(µ2)

Z̃2
3 (µ2,Λ2)Z3(µ2,Λ2)

, (5.57)

where we used the renormalization eq. (5.53) and eq. (5.54) with the identity
Z̃1 ≡ 1 in Landau gauge [Tay71]. The behavior of the renormalization constant Z̃1

and of the running coupling α(Λ2) was also numerically investigated in [BCLM04].
From the multiplicative renormalization scheme of the fields follows the renor-

malized ghost and gluon form factors

G(p2,Λ2) = Z̃3(µ
2,Λ2)G(p2, µ2) (5.58)

F (p2,Λ2) = Z3(p
2,Λ2)F (p2, µ2). (5.59)

Note that the choice of the renormalization point µ is arbitrary. By substituting
this into Eq. (5.57) and renormalizing once at renormalization point µ and once
at a specific value of momentum p, we achieve

α(Λ2)G2(p2,Λ2)F (p2,Λ2) = α(µ2)G2(p2, µ2)F (p2, µ2) = α(p2)G2(p2, p2)F (p2, p2).
(5.60)

Imposing the renormalization condition

G2(p2, p2)F (p2, p2) = G2(µ2, µ2)F (µ2, µ2) = 1 (5.61)
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on Eq. (5.60) yields for the running coupling

α(p2) = α(µ2)G2(p2, µ2)F (p2, µ2). (5.62)

This defines the non-perturbative running coupling α(p2) of the strong interaction
in Landau gauge QCD [vSAH97], [vSHA98], [AB98b], [AB98a]. The running
coupling α(p2) defined in such a way does not depend on the renormalization
point µ, i.e. the defining relation of the coupling constant is a renormalization
group invariant [Man79].

In the following, we show the non-perturbative running coupling constant
αlat.(p

2) for the confined theory and for the non-confining model, which are de-
duced from out lattice form factors. We choose µ = 3 GeV as our renormalization
point and set

G(p2, µ2) = F (p2, µ2) = α(µ2) = 1, for µ = 3 GeV. (5.63)

Our choice of the renormalization point and the value of the form factors and the
running coupling at this point are arbitrarily. Since we are concerned with pure
SU(2) Yang-Mills theory, there exists no measurement data from experiments. If
someone wants to related his data with our results, he is free to use the possibility
of multiplicative renormalization to match our data to his results.

In the following figure, fig. 5.8, we show our lattice running coupling αlat.(p
2)

of the confining theory and the non-confining model, i.e with and without center
vortices respectively. The huge difference in the infra-red momentum region is
quite evident: For the confining theory, the running coupling rises strongly in the
infra-red and seems to converge to a value well above six in the limit of vanishing
momentum. Our assumption of an existence of a fixed point at p = 0 stems from
a comparison of results from Dyson-Schwinger equations with lattice data (see
[BCLM03], [L+02]). In contrast, the running coupling of the non-confining model
fails to rise, even vanishes, in the infra-red limit. A vanishing running coupling
shows clearly the fact that a theory without center vortices ceases to confine and
gives further evidence to the importance of center vortices for confinement.
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5.7 The Green’s Functions at Finite Tempera-

ture

Finally, we want to address the gluon and ghost form factors at finite tempera-
tures. It was mentioned in chapter (4) that the dimensional reduced pure SU(2)
Yang-Mills theory can be regarded as the high temperature limit of the usual
four-dimensional theory. Furthermore, it was shown that the theory is in the
SU(2) symmetric phase, i.e. in the confining phase. This follows from the fact
that a non-vanishing string tension is measured in the spacial hypercube indicat-
ing a linearly rising qq̄-potential. Additionally, a percolation of center vortices is
still extracted from the spatial cube of the space-time lattice. This indicates a
non-vanishing string tension too, since the Wilson loop are randomly pierced by
those center vortices which leads to an area law for the potential.

The gluon and ghost form factors are calculated directly with the algorithm
introduced in the preceding chapter. In doing so, we only consider the spatial
link variables Uµ=i(x) with i ∈ 1, 2, 3 and hence we concentrate on the purely
spatial part of our space-time lattice,

D(~x− ~y) = 〈Ai(~x)Ai(~y)〉MC . (5.64)

This corresponds to the usual finite temperature propagators without summing
over the Matsubara frequencies

ωn =
2π n

β
= 2π nT. (5.65)

Hence, the only contribution to the form factors arises from the part with a
vanishing Matsubara frequency ωn=0 = 2πn/β = 0. This is valid in the limit
of high temperatures, since the correction term to the next leading order of the
Matsubara frequencies (ω1) is of the order O(1/T 2), e.g. with a fixed temperature
of T = 420 MeV (or T ∝ ∞ for the dimensional reduced theory) we have a
correction term of the order O(1/(420 MeV)2) ≈ 1/(1.7 · 105(MeV)2). For a
detailed introduction to finite-temperature field theory see e.g. [Kap], [LB96].

Monte-Carlo simulations at finite temperatures are obtained, if one dimension
of the space-time lattice is compactified, Λ = S1 × � 3. Practically, this adds up
to shorten the length of one dimension drastically compared to the remaining
extensions. The temperature is then given by the relation

T :=
1

Nt a(β)
, (5.66)

with Nt the number of sites in the reduced lattice dimension and a(β) the β-
dependent lattice constant.

First, we consider the form factors at high, finite temperatures. We choose a
temperature of T = 420 MeV which is well above the critical temperature of the
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confinement-deconfinement phase transition. The values for β to the different
lattice extensions Nt are given in table (5.1), so that the fixed temperature is
obtained. The gluon and ghost form factors are invariably calculated in the
spatial domain of the lattice volume and are shown in fig.(5.10) and fig.(5.11)
respectively.

Nt 2 3 4 5 6 7
β 2.146(38) 2.297(01) 2.403(89) 2.486(79) 2.554(52) 2.611(79)

Table 5.1: The numbers of lattice points and the corresponding values
of β are given so that a temperature of T = 420 MeV is achieved.

For the form factors of the dimensionally reduced theory, we disregard the
Higgs field as a simplification. We have seen that the Higgs field incorporates a
correction on the level of 10% to our measurement results in our investigation of
the reduced Yang-Mills field theory. Since we are only interested in the qualitative
behavior of the gluon and ghost form factors this additional correction factor is
left for subsequent investigations.

Note additionally, that the three dimensional running coupling g3 has a di-
mension of mass, i.e. β = 4/(a g2

3). We consider a scaling function for the lattice
constant a(β) for three dimensions which was introduced first in [Tep99],

βI a
√
σ = c0 +

c1
βI

, with βI = β × 〈 1

Nc

Tr [Pµν(x)]〉MC, (5.67)

where the color index Nc is set to two for SU(2). The β-dependent expectation
values of trace of the plaquette 1

2
Tr[Pµν(x)] are given in the following table:

β 4.0 5.0 6.0 7.0 8.0
〈1

2
Tr[P]〉 0.727(46) 0.786(68) 0.824(56) 0.851(23) 0.870(45)

Table 5.2: The expectation values of the trace of the plaquettes are
given for different β-values.

The constants c0 and c1 are read of table 18 in [Tep99] and are thus set to

c0 = 1.341, and c1 = −0.421.

Again, the measurement data are calculated with the same numerical procedures
as explained in the preceding sections and in the appendices. Our measurement
results for the gluon and ghost form factors support our previous picture of the
spatial sub-domain of our space-time lattice at finite temperature and of the pure
three dimensional lattice. Both gluon form factors are still enhanced in the low
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Figure 5.10: The gluon form factors for T=420 MeV and at asymp-
totic temperatures, i.e. dimensional reduced theory (Nt = 0). The
left panel represents the measurement data in linear scale, the right
one in logarithmic scale. Here p̄ denotes the absolute value of the
spatial momentum ~p at vanishing Matsubara frequency, ω0 = 0.
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Figure 5.11: The ghost form factors for T=420 MeV and at asymp-
totic temperatures, i.e. dimensional reduced theory. The left panel
represents the measurement data in linear scale, the right one in log-
arithmic scale.

momenta range and both ghost form factors are divergent in the infrared limit.
Our findings are in agreement with the fact that the three dimensional theory is
in the confining phase and that the center vortices are still percolating in three
dimensions. Further, the Gribov picture of confinement is also supported. The
same arguments are valid for the spatial domain for the field theory at finite
temperatures.
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Figure 5.12: The ghost-gluon vertex functions for T=420 MeV and at
asymptotic temperatures. The left panel represents the measurement
data in a linear scale, the right one in a logarithmic scale.

Finally, we address the gluon-ghost vertex function which corresponds directly
to the running coupling constant in four dimensions, see eq. (5.62). In both cases,
we see an increase in the low momentum range and the vertex functions are well
above the vertex function of the non-confining theory. With the exception of
the non-confining model, the other three settings are in the confining phase.
Motivated from our measurement data we suppose that the limit value of the
running coupling constant may be not the relevant quantity for confinement, but
rather the functional behavior of the running couplings in the low momentum
range may be of importance, i.e. the enhancement of the running coupling in the
low momentum range.



Chapter 6

Gauge Fixing and Gribov Noise

In general, we do not have to choose a particular gauge of Yang-Mills theory to
perform lattice simulations. Lattice gauge theory is a non-perturbative approach
to non-Abelian field theories and we can construct lattice operators which are
gauge invariant observables, e.g. the Wilson loop operator. With gauge invariant
operators, one has access to fundamental phenomenological quantities, e.g. the
string tension, gauge-invariant correlation functions, e.g. correlation functions of
two Polyakov loops, or of arbitrary (polynomial) functions of Wilson loops, e.g.
the Creutz ratios.

On the other hand, non-perturbative lattice gauge fixing is needed if we want
to analyze quantities being gauge dependent, such as propagators of the funda-
mental fields of a gauge field theory. Propagators are only well defined in certain
gauges. For example, the expectation value of the gluon propagator would be
zero without gauge fixing, since the sum over all field configurations contain neg-
ative and positive contributions to the path integral which cancel each other in
the average. In particular, the ghost propagator is not defined without a gauge,
since the ghost propagator is given by the inverse of the Faddeev-Popov operator
which can only be defined by the use of a gauge fixing condition. Our motivation
in calculating the gauge-dependent quantities is that we want to compare our
lattice predictions with results stemming from perturbation theory and/or from
the Dyson-Schwinger-Equations approach to QCD. In the infrared region where
perturbation theory ceases to be valid, a comparison of propagators calculated
by the DSE approach with propagators measured on the lattice is of particular
interest.

The problem of gauge fixing is that gauge fixing procedures do not produce
generally a unique gauge field configuration but a number of copies exists fulfilling
the gauge condition: Gribov copies. As mentioned before, Gribov copies play a
minor role in the perturbative regime of the theory but may be relevant for the
non-perturbative dynamics of the theory.
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6.1 Gauge Fixing and Gribov Copies in the Con-

tinuum

The gauge fixing procedure is commonly performed both in the continuum theory
and in the DSE by the non-perturbative Faddeev-Popov method [FP67]. The
gauge fixing procedure is done by inserting the quantity

∫

[DΩ(x)] δ
(
G
[
AΩ
])

det

[

δG
[
AΩ
]

δΩ(x)

]

(6.1)

into the generating functional of the theory

Z [Uµ(x)] =

∫

[DUµ(x)] exp {−βSYM [Uµ(x)]} , (6.2)

where the gauge fixing functional G is defined as a set of conditions

G[Ω] = G
[
Aa,Ω

µ

]
≡ 0. (6.3)

If ghost fields being Grassmann variables are introduced, the Faddeev-Popov
determinant can be incorporated into the Lagrangian of the theory by the identity

det

[

δG
[
Aa,Ω

µ (y)
]

δωb(x)

]

= det
[
( � )ab

xy

]
∝

∝
∫

[Dc̄] [Dc] exp

{

−i
∫

d4y d4xc̄ a(x)( � )ab
xyc

b(y)

}

. (6.4)

The partition function Z can be multiplied by an arbitrary factor, since only
normalized partition functions are of physical relevance. This may be used to
incorporate a gauge fixing condition into the Lagrangian. Then, the Lagrangian
obtains the form

Leff. = L + Lgf. + LFP, (6.5)

where Lgf. is the gauge fixing term and LFP is the Faddeev-Popov ghost term
eq. (6.4). This is then the starting point for perturbation theory in a particular
gauge and of the derivation of the Feynman rules for QED or QCD.

As mentioned before, the Faddeev-Popov method cannot produce a unique
solution of a field configuration in a particular gauge. Rather, it suffers from
Gribov copies [Gri78]. This means that there exists multiple solutions of the
gauge fixing functional G[Aa,Ω

µ ] = 0 for a given ensemble of field variables Aa
µ.

The quantity eq. (6.1) being inserted into the generating functional does not
have a single value anymore, but causes that the functional integral sums over all
Gribov copies, i.e. over all configurations fulfilling the root equation of the gauge
fixing condition. A summation over all zeros of an equation corresponds basically
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to summing over all maxima and minima of the primitive F[Aa
µ] of the gauge fixing

functional. This leads to an alternating sign of the Faddeev-Popov determinant
which results in rather inserting a zero than inserting a one into the partition
function [Sch99]. Taking the absolute value of the Faddeev-Popov determinant is
not a complete solution, since a summation over maxima and minima of the gauge
fixing functional still occurs. The partition function is in fact well defined and
Gribov copies may be irrelevant as far as perturbative expansions are concerned.
But the Gribov copies may be relevant for non-perturbative dynamics, because
the distance in function space between the copies is large [Smi].

The problem of Gribov copies can be circumvented, if one restricts oneself to
the fundamental domain [Zwa94] in which only the global minima of the primitive
of the gauge fixing functional lies. We do not want to investigate the problem
of Gribov copies in detail, for an introduction see [vB00] and the references in
there.

6.2 LGT: Gauge Fixing and Gribov Copies

The numerical gauge fixing procedure on the lattice [Cre77] is obtained by using
the gauge invariance of the Lagrangian and by using the right invariance of the
Haar measure in the partition function.

The link variables Uµ(x) are gauge rotated by gauge transformations Ω(x) as
long as the primitive F[UΩ

µ ] of the gauge condition G[UΩ
µ ] reaches an extremal.

The gauge fixing condition is not incorporated into the Lagrangian but enters the
lattice simulation as an additional constraint on the ensemble of the link variables
{U},

Z[U ] =

∫

[D(ΩU)] exp {−SYM[(ΩU)]}

=

∫

[DU ] exp {−SYM[U ]} , (6.6)

with the constraint
F[UΩ

µ ] → (global) extremal . (6.7)

From this we can deduce the prescription for the numerical algorithm for gauge
fixing on the lattice:

• thermalize the ensemble of link variables {U} according to the gauge in-
variant Gibbs factor exp{−S[U ]};

• the gauge transformations Ω(x) are computed by an algorithm prescribed
by a particular gauge;

• the link variables of the ensemble are rotated until the gauge fixing condition
is fulfilled within certain accuracy {U} → {UΩ}gf ;
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• the expectation value of an observable is given then by the average of the
values of the operator evaluated of the gauge fixed ensemble of a set of
configurations.

Note, that this prescription of gauge fixing introduces neither a Faddeev-Popov
determinant nor terms involving Faddeev-Popov ghosts into the Lagrangian.

Generally, one may fix the link variables by gauge transformation to arbitrary
prescribed values and the expectation values of gauge invariant observables Ogi

are unchanged,

〈O[U ]〉 = Z−1

∫

[DUΩ]Ogi[U
Ω] exp

{
−S[UΩ]

}

= Z−1

∫

[DU ]Ogi[U ] exp {−S[U ]} . (6.8)

On the other hand, for gauge dependent observables, the expectation values
are certainly changed by gauge fixing and they depend on the particular choice
of gauge. Since the Haar measure and the Gibbs factor are both gauge invariant,
different expectation values of a gauge dependent quantity in different gauges
stems from the operator itself and neither from the gauge transformation of the
Haar measure nor from the gauge transformation of the Gibbs factor.

So far, we were only concerned with gauge fixing on the lattice, but we did
not consider the Gribov problem. In lattice gauge simulations, the gauge fixing
procedures reduce to find numerical the (global) extremum of a functional F[UΩ].
The problem of Gribov copies in the continuum theory transforms into the im-
possibility of finding the global extremum of F[UΩ] in finite time, since many
different extrema of the functional may exist. A numerical gauge fixing proce-
dure finds in most cases a local extremum. To succeed in reaching the absolute
extremum is nearly impossible. The different extrema are called lattice Gribov
copies.

The mean value of a gauge invariant observable is not changed by the pres-
ence of Gribov copies. It was shown in [Sha84] that Gribov copies do not affect
normalized functional integrals in general, if only gauge invariant observables
Ogi[U ] are considered. The effect of Gribov copies is that the mean value of an
observable is multiplied by the number of Gribov copies, because the observable
has the same value for each Gribov copy. This factor is then canceled by the nor-
malization, since the delta-function of the gauge condition is also inserted which
gives the additional factor of the number of Gribov copies to the normalization
constant. In a lattice formulation of a gauge field theory, the expectation value
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of an gauge invariant observable is given by

〈Ogi[U ]〉 =

∫
[DΩU ]O[UΩ]δ[G[Ω]] exp{−S[UΩ]}
∫

[DΩU ]δ[G[Ω]] exp{−S[UΩ]}

=

∫
[DU ]

n(U) O[U ]
︷ ︸︸ ︷(
Ogi[U

Ω1 ] + · · · +Ogi[U
Ωn(U) ]

)
exp{−S[U ]}

n(U)
∫

[DU ] exp{−S[U ]} (6.9)

=
n(U)

n(U)
〈Ogi[U ]〉, (6.10)

where n(U) is the number of Gribov copies which depends on the ensemble {U}.
We want to point out that the cancellation of the number of Gribov copies is
only possible, since the observable is gauge invariant. If we measure a gauge
dependent quantity, the quantity in the integral of the second equation above is
not just the quantity multiplied by the number of Gribov copies, but a quantity
which may depend on each Gribov copy. This means that a cancellation of n(U)
in the numerator and denominator is not possible in general. Consequently, a
comparison of our lattice measurement results with the results stemming from
analytical calculations or Dyson-Schwinger Equations is not complete without
considering the influence of Gribov copies on our measurement results, since the
latter approaches can restrict themselves to the fundamental domain, i.e. can
consider only the global extremum of a gauge fixing condition by construction.

6.2.1 The Gribov Noise of the Form Factors in Landau
Gauge

To investigate the effect of Gribov copies on the form factors, we consider two
methods for Landau gauge fixing. The iterated over-relaxation algorithm (IO-
algorithm), which locates the nearest maximum of the Landau gauge fixing func-
tional in most cases. The mean value of the form factors are calculated from
ensembles residing in an arbitrary local maximum of the Landau gauge fixing
functional. The second method is the simulated annealing algorithm, which finds
the global maximum of F[UΩ] with a higher probability than the IO-algorithm.
The numerical expense of finding the global minima with the SA-algorithm is
huge. With our setting, the SA-algorithm needed roughly thirty times as long as
the IO-algorithm to reach the (global) maximum of the functional F[UΩ]. (The
IO-algorithm requires approximately a quarter of an hour to reach a (local) min-
ima, the SA-algorithm seven hours for a 163 × 32 lattice for β = 2.3.)

We deduce from the fig.(6.1) and fig.(6.2) that the qualitative behavior is not
changed by summing over the set of ensembles considering all possible Gribov
copies or by summing over the reduced set of ensembles which considering only
global Gribov copies with a high probability. There may by a deviation in the
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exponents of fit functions to the form factors, but within our statistical and
systematical errors we cannot predict any clear difference.

If we consider the statistical relative error of the form factors, the relative
errors of both form factors are of the same magnitude and quality. The error made
by the IO-algorithm is hidden in the statistical error of our measured quantities.
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Figure 6.1: The gluon form factors in Landau gauge for IO-algorithm
and SA-algorithm. The top panel represents the measurement data
in linear scale, the bottom panel in logarithmic scale.
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Chapter 7

Conclusions

On the basis of the assumption that center vortices are the relevant residual
degrees of freedom for color confinement in pure SU(3) Yang-Mills gauge theory,
we investigated their significance for the infra-red physics of the theory via Monte
Carlo simulations of SU(2) lattice gauge field theory.

First of all, we compared the spatial string tension of three dimensional pure
Yang-Mills theory as well as three dimensional pure Yang-Mills theory coupled to
adjoint Higgs fields with the value obtained from the pure center vortex content.
The latter theory is the dimensionally reduced theory which describes the high
temperature phase of four dimensional pure Yang-Mills theory. The vortex en-
semble generates the spatial string tension of the full theories within a numerical
accuracy of 10%. We argued that the error mainly results from the gauge fixing
procedure and is largely produced by the average over Gribov copies.

In the limit of high temperature, we find further evidence that the vortex area
density extrapolates to the continuum limit of vanishing lattice spacing. Only a
small difference was found between the vortex densities of the pure Yang-Mills
theory and of the theory with the adjoint Higgs fields. Therefore, a vortex area
density is estimated which is in accordance with the spatial vortex area density
of the four dimensional theory.

Consequently, our findings support the center vortex picture of the high tem-
perature phase of four dimensional Yang-Mills theory. In the spatial part of
the hypercube, the vortices still percolate whereas the center vortices are aligned
along the direction of the time axis. Further, our results of dimensionally reduced
theory based on the center vortex picture are in accordance with the findings of
dimensional reduction of the four dimensional theory.

In the main part of this thesis, we investigated the relevance of center vortices
for the behavior of Green’s functions in the infra-red region. In doing so, we
concentrated our investigations on the gluon and ghost form factors in Landau
gauge.

Firstly, we studied the gluon form factor F (p2) both in Landau gauge and in
maximal center gauge. By using a novel numerical operator, we were capable to
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measure directly the gluon form factor giving the deviation of the gluon propaga-
tor from the free one. Close to zero momentum transfer, the gluon form factor is
consistent with an effective mass. The mass would be m = 650 ± 20 MeV where
a string tension of

√
σ = 440 MeV was used to fix the scale. The uncertainty is

due to statistical errors as well as to Gribov copies. A rather pronounced peak
is found in the medium momentum range while at high momenta our numerical
data nicely reproduce the result obtained by perturbative Yang-Mills theory. Our
data are well fitted over the whole momentum range by a coarse grained mass fit
which might be useful for further phenomenological oriented investigations.

The information on quark confinement encoded in the gluon propagator in
Landau gauge was a major topic of our research. By removing the confining
vortices from the ensemble by hand, we are left with an ensemble of link variables
which does not confine quarks. After the implementation of Landau gauge, a good
part of strength of the gluon form factor is removed in the medium momentum
range. Consequently, we established a relation between the infra-red strength of
the gluon form factor in Landau gauge and color confinement.

Afterwards, we investigated the behavior of the ghost form factor in Landau
gauge. The importance of the ghost form factor lies in fact that it might be
related to quark confinement: This was firstly supposed by Gribov and worked out
subsequently by Zwanziger. Especially, the relevant information for confinement
in Landau gauge is encoded in the infra-red properties of Green’s functions. The
gauge configurations being relevant in the thermodynamic limit are concentrated
on the Gribov horizon. In this case, the ghost form factor in Landau gauge would
diverge at zero momentum transfer showing that the above horizon condition is
satisfied. Using lattice simulations, Suman and Schilling obtained first indications
that the ghost propagator of SU(2) Yang-Mills theory in Landau gauge is indeed
more singular in the infra-red than the free ghost propagator.

For the direct calculation of the ghost form factor in Landau gauge of the full
Yang-Mills theory, we used a novel operator which is based on the operator used
by the calculations of the gluon form factor. Our results show clearly a divergent
ghost form factor in the infra-red limit. This is in accordance with the findings
of Suman and Schilling and with the Gribov-Zwanziger criterion for confinement.

It was hypothesized that the center vortex picture and the Gribov-Zwanziger
picture are compatible if the center vortex configurations lie on the Gribov hori-
zon. Using the same procedure for our investigations of the gluon form factor, we
demonstrated that the center vortex picture and the Gribov-Zwanziger picture
are indeed compatible: By removing the center vortex content from the link con-
figurations, the signals of confinement in the ghost form factor are eliminated; the
singularity of the ghost form factor in the infra-red limit disappears. While the
ghost form factor of full SU(2) gauge theory diverges in the infra-red limit, our
results suggest that it approaches a constant slightly above one in the infra-red
limit for the non-confining theory.

We compared our results of gluon and ghost form factors with those results
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obtained by solving Dyson-Schwinger equations in continuum Yang-Mills theory.
The results of both approaches are qualitatively in good agreement but do not
coincide at the quantitative level, except in the high momentum, perturbative
regime. The power law behavior of the gluon form factors in the vanishing mo-
mentum limit are different. The peak in the medium momentum range of the
DSE solution of the gluon form factor is less pronounced provided that both gluon
form factors give same results in perturbative momentum regime. Remarkable is
the good agreement of both ghost form factors. We want to emphasize that both
methods used for the calculations are completely different: Lattice gauge field the-
ory breaks explicitly the Lorentz invariance, because of the discrete space-time
lattice. But the gauge invariance is preserved. On the other hand, the Dyson-
Schwinger approach explicitly breaks gauge invariance, because of the truncation
of the infinite tower of the Dyson-Schwinger equations, but Lorentz invariance is
conserved. The nearly complete accordance of the form factors is astonishing.

Using the fact that the running coupling constant can be obtained directly
from the gluon and ghost form factors, we demonstrated the relevance of center
vortices for the behavior of the running coupling constant in the infra-red limit.
The behavior of both, the full SU(2) theory and the one with the center vortices
removed, is the same in the region where the perturbation theory holds and nicely
reproduce the perturbative behavior. Since the ghost form factor approaches a
constant in the vortex removed case and the gluon form factor is suppressed in
the infra-red region compared with the free one, it is no surprise that the running
coupling seems to vanish in the infra-red limit. The running coupling constant is
largely suppressed in the infra-red region when the center vortices are removed.
The finding of the behavior of the ghost form factor are in accordance with the
results of the gluon form factor after the elimination of center vortices. These
results underline the importance of center vortices in the infra-red regime as the
effective degrees of freedom for color confinement.

In conclusion, pure SU(2) Yang-Mills theory looses its capability to confine
quarks when the confining vortices were removed. At the same time, the diver-
gence of the ghost form factor at vanishing momentum disappears. Our findings
therefore establish a connection between the vortex picture of confinement and
the Gribov-Zwanziger confinement criterion. Furthermore, the running coupling
constant is drastically reduced in the intermediate momentum region. This also
indicates a tight relation between the vortex picture and the spontaneous chiral
symmetry breaking. Spontaneous chiral symmetry breaking occurs only, if the
integrated strength at intermediate momenta exceeds a critical value.

The form factors were also investigated in the spatial subspace of the lattice
volume at finite temperatures and in three dimensions which is the high tem-
perature limit of the four dimensional theory. We found that the strength of
the gluon form factor is enhanced in the medium momentum range and that the
ghost form factor still diverges. Consequently, the running coupling constant is
enhanced in the infra-red limit. All our findings are in consensus with the facts
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that the center vortices are still percolating in the pure spatial part of the four
dimensional theory at finite temperature and that a non-vanishing spatial string
tension is measured.



Appendix A

Notation

A.1 Conventions

We choose natural units,

c = ~ = kB = 1, (A.1)

which gives us the relation

197.327 fm MeV = 1, (A.2)

where we used

c~ = 3.1615 · 10−26 Jm = 197.327 fm MeV. (A.3)

A.1.1 Minkowski Space

We use the standard metric of the Minkowskian notation

ηµν = ηµν = diag[1,−1,−1,−1] (A.4)

The contra-variant 4-vectors like the coordinate x, momentum p or current den-
sity j are given in components by:

x = (x0, . . . , x4) = (t,x), p = (E,p), j = (j0, j). (A.5)

For the covariant vectors like the derivative operator (∂µ := ∂/∂xµ) and the
vector potential Aµ we use the convention

∂ = (∂0, ∂), A = (A0,A). (A.6)

The scalar product is given in this notation by

x · y = 〈x, y〉 = ηµνx
νyµ = x0y0 − x · y. (A.7)

99



100 APPENDIX A. NOTATION

A.1.2 Euclidean Space

The time is Wick rotated from real to imaginary time t→ −iτ with τ ∈ � . The
Euclidean metric is then given by

x2 = −(τ 2 + x2), (A.8)

In momentum space the corresponding operation is k0 → −ik4.

A.1.3 Lattice Operators

The lattice forward derivative is defined by the finite difference operator

∆f
µφ(x) :=

1

a
(φ(x+ aµ̂) − φ(x)) , (A.9)

with µ̂ the unit vector in µ-direction. The backward finite difference operator is
given by

∆b
µφ(x) :=

1

a
(φ(x) − φ(x− aµ̂)) , (A.10)

where the following relation holds

∆b
µ = −(∆f

µ)†. (A.11)

The Laplace and d’Alembert lattice operators are given by

∆φ(x) := −2φ(x) := ∆f
µ∆b

µφ(x) = ∆b
µ∆f

µφ(x) = (A.12)
∑

µ

(φ(x+ µ) − 2φ(x) + φ(x− µ)).

A.1.4 The Spin Pauli Matrices

The Spin Pauli matrices are defined as usual

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

, (A.13)

and the multiplication is given by

σiσj = δij + iεijkσk (A.14)

where εijk is the total antisymmetric tensor.
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A.1.5 The Generators of the SU(2) Gauge Group

The generators of the SU(2) gauge group are given with help of the Pauli matrices

τi = i σi (A.15)

with the multiplication
τiτj = −δij − εijkτk. (A.16)

The SU(2) matrix (link variable) is then parameterized as follows

Uµ(x) = u0
µ(x) � 2×2 + ~uµ(x) · ~τ . (A.17)

A.2 The Haar Measure

The path integration over the link variables Uµ(x) involves the Haar measure
[dU ]. We need to evaluate the Haar measure since the Haar measure is needed
as a part of the probability measure for the heat bath algorithm.

First, we consider the parameters (coordinates) of a group multiplication with
V,Ω, U ∈ SU(2):

V (v) = Ω(ω)U(u), det [V (v)] = 1, V (v) = v0 � + ~v~τ , (A.18)

where the variables in the brackets are the parameters of the gauge transforma-
tions and not the space-time index. The multiplication table for the parameters
v are given by

mv(ω, u) = mv(v0; v1; v2; v3)

= mv(ω0u0 − ω1u1 − ω2u2 − ω3u3;ω0u1 + ω1u0 + ω2u3 − ω3u2;

ω0u2 + ω2u0 − ω1u3 + ω3u1;ω0u3 + ω3u0 + ω1u2 − ω2u1).

(A.19)

The multiplication table is used to evaluate the Haar measure which is defined
for compact Lie groups as follows

dv1 ∧ dv2 ∧ · · · ∧ dvr = det

[
∂mj

v(ω, u)

∂ui

]

du1 ∧ · · · ∧ dur. (A.20)

For U(u) = � , eq.(A.20) reduces to

drv = det

[
∂mj

v(ω, u)

∂ui

]∣
∣
∣
∣
U(u)= 	

dru (A.21)

and the determinant yields

det

[
∂mj

v(ω, u)

∂ui

]

= ω2
0 + ω2

1 + ω2
2 + ω2

3 = 1. (A.22)



102 APPENDIX A. NOTATION

The non-normalized Haar measure for SU(2) is then given by

δ(1 − v2) d4v = δ(1 − ω2)d4ω, (A.23)

where we took into account the condition det[Ω(ω)] = 1. As next step we have
to normalize the integration over the group parameters. The SU(2) group is
isomorph to the SO(3) group and we can parameterize the coordinates v by
spherical coordinates of four dimensions

δ(1 − v2) d4v = δ(1 − r2)det

[
∂[vj(r, ϑ, φ, ϕ)]

∂[r, ϑ, φ, ϕ]

]

drdϑdφdϕ

= δ(1 − r2) r3 sin2 ϑ sinφ drdϑdφdϕ. (A.24)

With an integration over the volume with ϑ ∈ [0, π], φ ∈ [0, 2π], ϕ ∈ [0, 2π] and
r ∈ [0,∞), we obtain the normalization factor for the Haar measure of the SU(2)
group

VolSU(2) = 2π2. (A.25)

Finally, we obtain the Boltzmann factor by integrating over |~u| parameterized
with spherical coordinates in three dimensions which leads to the appropriate
weighting

dU =
1

2π2
r2 δ(1 − u2

0 + r2) drdu0dΩ

=
1

4π2
δ(1 − u2

0 + r′)
√
r′ dr′du0dΩ, with r′ = r2

=
1

4π2

√

1 − u2
0 du0dΩ. (A.26)



Appendix B

Lattice Gauge Fixing

B.1 The Maximal Center Gauge (MCG)

Maximal center gauge (MCG) is defined by the requirement to choose link vari-
ables on the lattice as close as possible to the center elements of the gauge group
as the gauge freedom will allow. The (direct) maximal center gauge is defined in
the lattice formulation of Yang-Mills theory by the maximum of the functional:

F
mcg
U [Ω] =

∑

x,µ

(
1

2
Tr
[
Uµ(x)Ω(x)

]
)2

(B.1)

with respect to local gauge transformations Ω(x). This fixes the gauge up to
gauge transformations of center elements z ∈ �

2 of the gauge group SU(2)

Uµ(x) → U
�
µ (x), F

mcg
U [Ω] = max. (B.2)

The plaquettes P
�
µν(x) constructed from center projected links

U
�
µ (x) → zµ(x) = sign

[
Tr
[
U
�
µ (x)

]]
= ±1 (B.3)

have values of ±1
P
�
µν(x) = ±1. (B.4)

The center projected vortices (being closed surfaces in four dimensional space
with periodic boundary conditions) are made from the plaquettes being dual to
plaquettes with P

�
µν(x) = −1.

The maximum center gauge moves ,as much as possible, information of the
link variables which may be relevant for confinement near the center elements of
the gauge group. Subsequently, the link variables are projected onto the centers
of the group. If the expectation value of an observable calculated only from the
center elements reproduces the expectation value of the observable calculated
from the full link variables (within a certain accuracy), then the observable is

103



104 APPENDIX B. LATTICE GAUGE FIXING

called center dominant and the center vortices are the relevant collective degrees
of freedom.

Any link variable Uµ(x) can be formally decomposed into its center part
zµ(x) ∈ �

2 and its coset part Ũµ(x):

Uµ(x) = zµ(x)Ũµ(x), zµ(x) = sign [Tr [Uµ(x)]] = ±1. (B.5)

Using maximal center gauge and subsequently projecting on the center elements,
the center content of a link variable can be removed

Uµ(x) → zµ(x)Uµ(x) = Ũµ(x) :=

1
︷ ︸︸ ︷

zµ(x)zµ(x) Ũµ(x). (B.6)

This produces our non-confining model.

B.1.1 The Numerical Implementation of MCG

Our derivation of MCG-algorithm follows the outline given in [DDFG+98]. To
implement the MCG-algorithm we have to maximize the following local functional
at the lattice site x

Fmcg
x [Ω(x)] =

1

4

(
∑

µ

Tr [Ω(x)Uµ(x)]2 +
∑

µ

Tr
[
Uµ(x− µ̂)Ω†(x)

]2

)

, (B.7)

with respect to the local gauge transformation Ω(x). We consider infinitesimal
gauge transformations at a fixed space-time point x:

Ω(x) = ω4 � − ~ω~τ (B.8)

Uµ(x) = u4(l = µ) � + ~u(l = µ)~τ (B.9)

Uµ(x− µ̂) = u4(l = µ+ 4) � + ~u(l = µ+ 4)~τ , (B.10)

where the sign before the imaginary parts are for convenience, the index l =
1, 2, . . . , 8 is introduced which labels the eight link variables connected to the site
x. After some calculations (see app. B.1.2) we obtain

Fmcg
x [Ω(x)] =

1

2

8∑

l=1

(
4∑

k=1

ωkuk(l)

)2

, (B.11)

which has to be maximized under the constraint that Ω(x) is unitary. For this
reason we introduce a Lagrange multiplier

F̃[Ω(x)] = Fmcg
x [Ω(x)] +

λ

2

(

1 −
4∑

k=1

ω2
k

)

. (B.12)
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Hence, one gets the following condition for a maximum of the functional (B.7):

4∑

j=1

8∑

l=1

ui(l)uj(l)ωj = λωi, (B.13)

4∑

k=1

ω2
k = 1. (B.14)

The procedure for the maximum center gauge is know reduced to an eigenvalue
problem of the form:



~ω = λ~ω, (



)ij =

8∑

l=1

ui(l)uj(l).

The unitarian condition changes to the norm condition ~ω~ω = 1. Now, finding the
gauge transformation Ω(x) maximizing the functional condition is reduced to an
eigenvalue problem of a (4×4)-matrix. This eigenvalue problem can be solved by
standard procedures. The eigenvector with the highest eigenvalue corresponds
to the gauge transformation maximizing the gauge functional at the space-time
point x.

B.1.2 MCG: Auxiliary Calculation

Fmcg
x [Ω(x)] =

1

4

{
4∑

l=1

Tr [(ω4 � − ~ω~τ) (u4(l) � + ~u(l)~τ)]2 +

+
8∑

l=5

Tr [(u4(l) � − ~u(l)~τ) (ω41 + ~ω~τ)]2
}

=
1

4

{
4∑

l=1

Tr [ω4u4(l) � − ωiuj(l)τiτj + (ω4uk(l)τk − u4ωnτn)]2 +

+
8∑

l=5

Tr [ω4u4(l) � − ωiuj(l)τiτj + (ω4un(l)τn − u4ωkτk)]
2

}

=
1

4

{
4∑

l=1

(2ω4u4(l) + 2ωiui(l))
2 +

8∑

l=5

(2ω4u4(l) + 2ωiui(l))
2

}

=
8∑

l=1

(
4∑

k=1

ωkuk(l)

)2

.

From step two to three we used the relation eq. (A.16) and Tr[τi] = 0.
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B.2 The Minimal Landau Gauge

In our lattice simulations, we use the Landau gauge for calculating the gluon and
ghost form factors. We want to calculate form factors for two reasons: 1) to inves-
tigate of the impact of center vortices onto the form factors, 2) to get in contact
with results of perturbation theory and of the Dyson-Schwinger Equations.

B.2.1 The Iterated Overrelaxated Algorithm

On the lattice the (minimal) Landau gauge is achieved by finding gauge trans-
formations Ω(x) which maximize the following functional F

mlg
U [Ω(x)]:

F
mlg
U [Ω(x)] ≡

∑

x,µ

1

2
Re Tr

[
Ω(x)Uµ(x)Ω†(x+ µ)

]
. (B.15)

With the usual continuum definition of the gauge transformation Ω(x) and its
linearization thereof

Ω(x) = exp {ωa(x)τ a} ' � + ω(x) + O(ω2(x)), ω(x) = ωa(x)τ a. (B.16)

One can evaluate the condition for the minimal Landau gauge if one considers the
maximum of F

mlg
U [g(x)]. The first variation of FU has to be zero for the maximum

δFmlg
U [Ω]

δΩ
= 0. (B.17)

Hence, one obtains

δ

δΩ
F

mlg
U [Ω] =

1

2

∑

x,µ

Tr
[
UΩ

µ (x) − Uµ(x)
]

=
1

2

∑

x,µ

Tr [( � + ω(x))Uµ(x) ( � − ω(x+ µ)) − Uµ(x)] + O
(
ω2
)

=
1

2

∑

x,µ

Tr [(ω(x) − ω(x+ µ))Uµ(x)]

=
1

2

∑

x,µ

Tr [(ω(x) − ω(x+ µ))a τ aUµ(x)] .

For next steps we insert the parameterization (A.17) of the SU(2) matrices:

(ω(x) − ω(x− µ))a τ a
(
u0 � + ui(x)τ i

)
=

= (ω(x) − ω(x+ µ))a (u0(x)τ a + ui(x)τ aτ i
)

= (ω(x) − ω(x+ µ))a (u0(x)τ a + ui(x)(−δai − εaikτk)
)

= (ω(x) − ω(x+ µ))a (u0(x)τ a − ua(x) � − ui(x)εaikτk
)

= − (ω(x) − ω(x+ µ))a (ua(x) � + ui(x)εaikτk − u0(x)τ a
)
.
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The terms containing the τ matrices are zero with respect to the trace operation.
We obtain

1

2
Tr [(ω(x) − ω(x+ µ))a τaUµ(x)] = (ω(x+ µ) − ω(x))a ua(x). (B.18)

The condition for the minimal Landau gauge reads

δ

δΩ
F

mlg.
U [Ω(x)] =

∑

x,µ

(ω(x+ µ) − ω(x))a uµ(x). (B.19)

For a local gauge transformation update step, only the dependency on ω(x) is
needed:

δ

δΩ(x)
F

mlg
U [Ω(x)] =

∑

x,µ

(ω(x+ µ) − ω(x))a ua
µ(x)

=
1

2

∑

x,µ

(
(ω(x+ µ) − ω(x))a ua

µ(x) +

+ (ω(x) − ω(x− µ))a ua
µ(x− µ)

)

=
∑

x,µ

ωa(x)
(
ua

µ(x− µ) − ua
µ(x)

)

=
∑

x

ωa(x)
∑

µ

(
ua

µ(x− µ) − ua
µ(x)

)
,

and finally the condition for the minimal Landau gauge is achieved

0 ≡ δ

δΩ(x)
F

mlg.
U [Ω(x)] =

∑

x

ωa(x)
∑

µ

(
ua

µ(x− µ) − ua
µ(x)

)
. (B.20)

From this conditions follows the equation for the gauge transformation Ω(x) for
the iterated overrelaxation algorithm:

Ω(x) = det [Ω′(x)]
− 1

2 Ω′(x), (B.21)

with

Ω′(x) =

((
∑

µ

u0
µ(x− µ) + u0

µ(x)

)

� +

(
∑

µ

ui
µ(x− µ) − ui

µ(x)

)

τ i

)

. (B.22)

B.2.2 The Simulated Annealing Algorithm

The accomplishment of minimal Landau gauge fixing needs the maximization of
a multidimensional functional. The IO-algorithm searches for the nearest (local)
maximum and not for the global one. But we need to search for the global one,
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since we want to communicate and compare our results to people performing their
calculations analytically. In the analytical modus operandi, the Landau gauge
is fixed a priori and resides in the global maximum of the Landau gauge fixing
functional leading to a prevention of Gribov copies.

A further numerical method to find the global extremum of a multivariate
function is the simulated annealing algorithm. The name of the method derives
from the physical process of heating and then slowly cooling a substance to obtain
a crystalline structure containing very few defects. The temperature is slowly
lowered step by step so that the system freezes and no further changes occur. At
each step of the simulation, the system must reach a steady equilibrium. The
system is thermalized and the time required for thermalization is the decorrelation
time, i.e. correlated micro-states are eliminated.

We want to summarize briefly the annealing schedule for a general functional
F[Ω] to be minimized. We start the algorithm with a temperature of T = a0 and
wait a sufficiently long time for the Markov chain {Ωn} to get close to its station-
ary state. A possible probability of acceptance of the new state Ωn+1 is given by
pa = min [1, exp{(F[Ωn] − F[Ωn+1])/T}]. This is the Metropolis step (explained
in section (1.6)) and the fundamental procedure of simulated annealing. The
metropolis step allows a chance to accept a state which produces an increase of
F[Ω]. In our implementation of the SA-algorithm it is efficient to use the heat
bath algorithm as a supplement for the Metropolis step.

The temperature is then successively lowered step by step, whereby at each
step until the steady state has to be reached. This is sometimes called the cooling
schedule. After the k-th change of the temperature T , the Markov chain will be
close to the stationary regime and therefore for k → +∞, one expects for large
enough n that the global minimum of F is reached with a high probability, i.e.
δF[Ω]/δΩ → 0.

The ensemble {U} of link variables is a back ground field, the degrees of
freedom are the gauge transformations Ω(x). We initialize the ensemble {Ω}
with

Ω̄(x) =
3∑

µ=0

−U †
µ(x) + Uµ(x− µ) (B.23)

Ω(x) =
(
det
[
Ω̄(x)

])− 1
2 Ω̄(x).

The same heat bath algorithm of the updating scheme of the link variables is
used, see sec.(2.4.2), with the exception that for the contribution of a gauge
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transformation Ω(x) to the action of the gauge fixing procedure we use now:

V̄ (x) :=
3∑

µ=0

(
U †

µ(x− µ)Ω†(x− µ) + Uµ(x)Ω†(x+ µ)
)

(B.24)

V (x) =
(
det
[
V̄ (x)

])− 1
2 V̄ (x) (B.25)

S̃mlg[Ω(x)] = −1

2
Tr [Ω(x)V (x)] . (B.26)

The action Smlg[Ω] of Landau gauge is given by

Smlg[Ω] := βfix

∑

x

(

1 − 1

2
Tr [Ω(x)V (x)]

)

, (B.27)

where βfix = 1/T is the inverse cooling temperature. If the temperature is low
enough, one hopes to have the ensemble of gauge transformation {Ω} which
transforms the link ensemble {U} to an ensemble of link variables being near the
global maximum of the Landau gauge condition with a higher probability than
the IO-algorithm.

Subsequently, the IO-algorithm is used so that the near maximum is reached
to a high accuracy.
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Appendix C

Concerning Form Factors

C.1 The Gluon Form Factor

C.1.1 Warm up: The Propagator of the Klein Gordon
Field

To see that the Gluon form factor can be directly calculated without the need of
a Fourier transformation and the multiplication with p2, we perform firstly some
easy calculations. Consider the lattice action of the Klein Gordon field with the
action

S0[φ, a] =
1

2

(
φ,
(
2 +m2

)
φ
)

=
1

2

∑

x,y

a8φ(x)
(
2 +m2

)

xy
φ(y), (C.1)

with the d’Alembert operator eq.(A.12). We start with the ansatz

∑

y

a4(2 +m2)xyG(y, z; a) = a−4δxz (C.2)

and perform a Fourier transformation

G(x, y; a) =

π
4∫

−π
a

d4p

(2π)4
exp {ip(x− y)} G̃(p; a) (C.3)

111



112 APPENDIX C. CONCERNING FORM FACTORS

with the integration boundary chosen in such a way, so that the periodic boundary
conditions are fulfilled. Inserting this into Eq.(C.2) one obtains

∑

y

a4(2 +m2)xy

π
4∫

−π
4

d4p

(2π)4
exp {ip(y − z)} G̃(p; a) = a−4δxz

π
4∫

−π
4

d4p

(2π)4
a4
∑

y

(2 +m2)xy exp {ip(y − z)} G̃(p; a) = a−4δxz

π
4∫

−π
4

d4p

(2π)4
a2eip(x−z)

(
∑

µ

(2 − eip(aµ) − e−ipaµ +m2)

)

G̃(p; a) = a−4δx,z

π
4∫

−π
4

d4p

(2π)4
eip(x−z)

(

2

a2

∑

µ

(1 − cos(pµa)) +m2

)

G̃(p; a) =

π
4∫

−π
4

d4p

(2π)4
eip(x−z) � .

Finally, the propagator for the Klein Gordon field is given by

G̃(p; a) =
1

2
a2

∑

µ

(
sin2 apµ

2

)
+m2

. (C.4)

C.1.2 The Gluon Propagator and the Gluon Form Factor

Form perturbation theory one knows that renormalized gluon propagator in the
continuum is given to one-loop level for large momenta p2 [Man79], [DZ89] by

Dpt(p
2) ∼ 1

p2
ln

(
p2

ΛQCD

)−13/22

. (C.5)

For the lattice version we use the form

D(p̂2) =
F (p̂2)

p̂2
, (C.6)

where F (p̂2) is the gluon form factor being looked for. On the lattice, the sites are
numbered from 0 to N − 1, with N the number of lattice points in one direction.
There are a number of N − 1 different momenta which depend on the lattice
constant a. Now consider the lattice version of the δ-function:

N−1∑

x=0

exp

{

i
2π

N
x(k − q)

}

= Nδkq, (C.7)
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which is proved with the help of the geometric series

1 − ei2π(k−q)

1 − ei 2π
N

(k−q)
= 0, for k 6= q; k, q 6= ν N (C.8)

because (k − q) ∈ Z and exp{i2πn} = 1 for n ∈ Z/{0}. This leads to the lattice
version of the Fourier transform of the field:

φ(x) =
N−1∑

k=0

exp

{

i
2π

N
kx

}

ϕ̃(k), (C.9)

which is periodic φ(x+N) = φ(x).
The lattice propagator is now (for simplicity, we consider only one space-time

dimension) given by

2φ(x) = φ(x+ 1) − 2φ(x) + φ(x− 1)

=
N−1∑

k=0

ei 2π
N

kx
(

ei 2π
N

k − 2 + e−i 2π
N

k
)

ϕ̃(k)

=
N−1∑

k=0

ei 2π
N

k
(

−4 sin2 π

N
k
)

ϕ̃(k). (C.10)

The Measurement of the gluon propagator is usually performed on a space-time
lattice

D(x− y) = 〈φ(x)φ(y)〉, (C.11)

but one is generally interested of the gluon form factor in the momentum space

D(k) = 〈ϕ̃(k)ϕ̃(k)〉

=

(
∑

x

φ(x) cos

(
2π

N
kx

))2

+

(
∑

x

φ(x) sin

(
2π

N
kx

))2

=
∑

x,y

φ(x)φ(y)

(

cos

(
2π

N
kx

)

cos

(
2π

N
ky

)

+ sin

(
2π

N
kx

)

sin

(
2π

N
ky

))

=
∑

x,y

φ(x)φ(y) cos

(
2π

N
k(x− y)

)

. (C.12)

Our goal is, to evaluate the gluon form factor directly, since we are interested
in the deviation of the non-perturbative gluon propagator from the free one in
the one infra-red limit. To obtain an algorithm for a direct measurement of the
gluon form factor we make the ansatz

F (x, y) = 〈(φ(x+ 1) − φ(x))(φ(y + 1) − φ(y))〉. (C.13)



114 APPENDIX C. CONCERNING FORM FACTORS

With the lattice Fourier transform of the fields φ(x), we obtain

(φ(x+ 1) − φ(x)) =
N−1∑

k=0

ei 2π
N

kx
(

ei 2π
N

k − 1
)

ϕ̃(k) (C.14)

and

(φ(x+ 1) − φ(x)) (φ(y + 1) − φ(y)) =

=
N−1∑

k,q=0

ei 2π
N

kxei 2π
N

qy
(

ei 2π
N

k − 1
)(

ei 2π
N

q − 1
)

ϕ̃(k)ϕ̃(q) (C.15)

If we use the relation
〈ϕ̃(k)ϕ̃(q)〉 = f(q)δk,−q, (C.16)

because translation invariance holds, we obtain the proof that our ansatz Eq.(C.13)
indeed calculates the gluon form factor

F (x, y) =
N−1∑

k=0

ei 2π
N

k(x−y)
(

1 − ei 2π
N

(−k) − ei 2π
N

k + 1
)

ϕ̃(k)ϕ̃(−k)

=
N−1∑

k=0

ei 2π
N

k(x−y)2

(

1 − ei 2π
N

k + e−i 2π
N

k

2
ϕ̃(k)ϕ̃(−k)

)

= 2
N−1∑

k=0

ei 2π
N

k(x−y) sin2
( π

N
k
)

ϕ̃(k)ϕ̃(−k)

=
N−1∑

k=0

ei 2π
N

k(x−y)p2D(k). (C.17)

C.2 The Ghost Propagator for LGT

C.2.1 The Ghost Propagator in Continuum Gauge Field
Theory

In the functional approach of continuum gauge field theory, the gauge is usually
fixed by the Faddeev-Popov procedure. In this method, the gauge-fixing condition

G[AΩ] ≡ δ

δΩ
F[AΩ] = 0 (C.18)

is implemented by inserting the ”identity”

1 =

∫

[DΩ(x)] δ
(
G
(
AΩ
))

det

[

δG
(
AΩ
)

δΩ(x)

]

(C.19)
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into the functional integral of pure Yang-Mills theory, where AΩ represent the
gauge transformed gauge fields A

AΩ = ΩAΩ† − i(∂U)U †, Ω = eiωa(x)t̂a , (C.20)

where t̂ are the generators of the gauge group and all space-time indices were
ignored. The infinitesimal form of eq.(C.20) is given by

Aa = Aa + f abcAbωc + ∂ωa, (C.21)

with the structure constants f abc of the gauge group under consideration.
In QED, the determinant in Eq.(C.19) is independent of the gauge fields

A and can hence be covered up to a normalization factor. Whereas in QCD,
this determinant depends on the gauge fields and thus contributes new terms
to the Lagrangian. The Faddeev-Popov determinant can be represented as a
functional integral over a new set of anti-commuting fields belonging to the adjoint
representation:

det
[
i( � )a,b

x,y

]
=

∫

[Dc] [Dc̄] exp

{

−i
∫

d4x c̄(y)
(
(M)a,b

x,y

)
c(x)

}

, (C.22)

where c, c̄ are the ghost and anti-ghost fields respectively. The Faddeev-Popov
matrix ( � )a,b

x,y for the Landau gauge is given by

( � )a,b
x,y =

(
∂2 − f abcAc

µ(x)∂µ

)
δ4(x− y). (C.23)

This explicit expression of the Faddeev-Popov matrix follows from the Landau
gauge fixing condition

G
[
AΩ
]

= ∂AΩ = 0 (C.24)

and the explicit definition of the Faddeev-Popov matrix

( � )a,b
x,y =

δF
[
Aa

µ
Ω(x)

]

δωb(y)

∣
∣
∣
∣
∣
ωb(y)=0

=
δF
[
Aa

µ
Ω(x)

]

δAc
ν
Ω(z)

δAc
ν
Ω(z)

δωb(y)

∣
∣
∣
∣
∣
ωb(y)=0

, (C.25)

where the identity Eq.(C.18) was used and a summation over µ is implied. The
Faddeev-Popov matrix exhibits a diagonal structure in the algebra space.

The corresponding ghost propagator is defined by the inverse of the Faddeev-
Popov operator1

G(x− y) δab :=
〈
c̄ a(x)cb(y)

〉
=
〈(

� −1
)a,b

x,y
δab
〉

. (C.26)

1It is seen from the path integral quantization that propagators are generally given by the
inverse of the operator appearing in the quadratic term in the Lagrangian.
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C.2.2 The Faddeev-Popov Determinant in LGT

Before we can give the lattice definition of the ghost form factor, the lattice
version of the Faddeev-Popov determinant has to be worked out in detail. For
this, we investigate the infinitesimal variation of a gauge transformed gauge field
from the link variables Uµ(x), see also [Zwa94], [SS96]. We use the following
definition for the extraction of the gauge fields Aa

µ(x) from the link variables
Uµ(x),

Aa
µ(x) := −tr [τ aUµ(x)]

2
.

From this it follows the variation of the gauge fields under a finite gauge trans-
formation, whereby we concentrate on the SU(2) gauge group for simplicity:

δ Aa
µ
Ω(x) = −1

2
tr
[
τ a
(
UΩ

µ (x) − Uµ(x)
)]

= −1

2
tr
[
τ a
(
Ω(x)Uµ(x)Ω†

µ(x+ µ) − Uµ(x)
)]

= −1

2
tr [τ a (( � + ω(x))Uµ(x) ( � − ω(x+ µ)) − Uµ(x))]

= −1

2
tr
[
τ a
(
ω(x)Uµ(x) − Uµ(x)ω(x+ µ) + O(ω2)

)]

= −1

2
tr
[
τ a
(
ωbτb

(
u0

µ(x) � + uc
µ(x)τ c

)
−
(
u0

µ(x) � + uc
µ(x)τ c

)
ωb(x+ µ)τb

)]

= −1

2
tr
[
ωb(x)u0

µ(x)
(
−δa,b − εabcτ c

)
+ ωb(x)uc

µτ
aτbτ c

−ωb(x+ µ)u0
µ(x)

(
−δa,b − εabcτ c

)
− ωb(x+ µ)uc

µ(x) τ aτ cτb
︸ ︷︷ ︸

tr[τaτcτb]=−tr[τaτbτc]

]

= −1

2
tr
[
(−ωa(x) + ωa(x+ µ))u0

µ(x)
]

−1

2
tr
[
ωb(x)uc

µ(x)
(
−δa,b − εabdτd

)
τ c + ωb(x+ µ)

(
−δab − εabdτd

)
τ c
]

= −1

2
tr
[
(−ωa(x) + ωa(x+ µ))u0

µ(x)
]

−1

2
tr
[(
ωb(x) + ωb(x+ µ)

)
uc

µ(x)
(
−εabd

(
−δcd − εdcfτ f

))]

= −1

2
tr
[
(−ωa(x) + ωa(x+ µ))u0

µ(x)
]

−1

2
tr
[
εabc

(
ωb(x) + ωb(x+ µ)

)
uc

µ(x)
]
.

Finally, one achieves for the variation of the SU(2) gauge field

δAa
µ
Ω(x) = u0

µ(x) (ωa(x) − ωa(x+ µ)) − εabcuc
µ(x)

(
ωb(x) + ωb(x+ µ)

)
. (C.27)
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Now, inserting Eq.(C.27) in the definition of the Faddeev-Popov matrix Eq.(C.25)
and using the lattice description of the Landau gauge fixing condition

F
[
Aa

µ
Ω(x)

]
= Aa

µ
Ω(x− µ) − Aa

µ
Ω(x), (C.28)

we obtain the the explicit lattice version of the Faddeev-Popov matrix for Landau
gauge:

( � )a,b
x,y = δab

(

u0
µ(y)δ(x− µ− y) −

(
u0

µ(y) + u0
µ(y − µ)

)
δ(x− y)

+u0
µ(y − µ)δ(x+ µ− y)

)

−εabc
(

uc
µ(y)δ(x− µ− y) − uc

µ(y − µ)δ(x+ µ− y)

+
(
uc

µ(y − µ) − uc
µ(y)

)

︸ ︷︷ ︸

=0, lgf

δ(x− y)
)

= δab
(

u0
µ(y)δ(x− µ− y) −

(
u0

µ(y) + u0
µ(y − µ)

)
δ(x− y)

+u0
µ(y − µ)δ(x+ µ− y)

)

(C.29)

−εabc
(

uc
µ(y)δ(x− µ− y) − uc

µ(y − µ)δ(x+ µ− y)
)

.

C.2.3 Numerical Evaluation of the Ghost Propagator

In the preceding subsection, we derived the Faddeev-Popov matrix for Landau
gauge. To obtain the ghost propagator, we need the inverse of this matrix. The
Faddeev-Popov matrix � = ( � )a,b

x,y is a real symmetric matrix acting on the
algebra space A of the gauge group. But � is a singular matrix in Landau
gauge. Therefore, we have to take out the zero modes, v0 ∈ A0, from the algebra
space and perform the inversion only on the regular part, Areg. := A/A0, thereof.
Following [SS96], we decompose the algebra space into two disjoint parts,

A = A0 ⊕A1, (C.30)

so that the zero modes are separated from the regular modes,

� v0 = 0, for v0 ∈ A0 and � v

{
6= 0, for v ∈ A1

= 0, for v = 0.
(C.31)

For the calculation of the ghost propagator, we have to solve the following linear
equation

� ( � v) = � c, (C.32)

for arbitrary v and a given source term c. Note that � v belongs to the regular
part of the algebra space A1. A usual way to solve the algebraic linear system
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is the conjugate gradient method (CG). The algorithm starts from some initial
guess v0 and achieves an approximation to the solution by adding α dk to the
current value vk at each iteration step k:

vk → vk+1 = vk + α dk,

where α is defined in the fourth line of the CG-algorithm (C.1):

Set b = � c, thus b ∈ A1. Note that � is real, symmetric and
positive definite.
1: choose arbitrary v(0) ∈ A1, i.e. x(0) = � v(0)

2: r(0) = b− � v(0), d(0) = r(0)

3: for k = 0, 1, . . . do

4: α(k) =
||r(k)||22

〈d(k), � d(k)〉
, save � d(k)

5: v(k+1) = v(k) + αkd
(k)

6: r(k+1) = r(k) − αk � d(k)

7: βk =
||r(k+1)||22
||r(k)||22

, save ||r(k+1)||22
8: d(k+1) = r(k+1) + βkd

(k)

9: if
|| � v(k+1)−b||22

||b||22
< ε then stop and end for

Algorithm C.1: The algorithm for the conjugate gradient method.

Since � ( � v) = � c ensures that both, the starting vector v0 and the source
vector c belong to the algebraic subspace A1, vk and α dk will be also a member
of the regular part A1 of the algebraic space A. The iteration will therefore
converge to a unique solution within A1.

The vector-matrix multiplication is explicitly given by

va(x) := ( � )a,b
x,y c

b(y)

= u0
µ(x) δab

(
cb(x) − cb(x+ µ)

)
−

−u0
µ(x− µ) δab

(
cb(x− µ) − cb(x)

)
−

−εabc
(
ub

µc
c(x+ µ) − ub

µ(x− µ)cc(x− µ)
)
, (C.33)

where an addition over the direction index µ and over the color indices is implied.
The vector components ca(x) and va(x) live in the algebra of the gauge group,
i.e.

v := va(x)τ a and in the following ~v(x) :=





v1(x)
v2(x)
v3(x)



 . (C.34)
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C.2.4 CG-Method with symmetric Gauß-Seidel Precon-
ditioning

In the preceding section, the CG-method was introduced as a method for solv-
ing the algebraic linear system eq.(C.32). Here, an improvement of the CG-
method, the Gauß-Seidel preconditioned CG-method (GSP-CG method), is sug-
gested which can solve linear systems with Hermitian, positive definite matrices
� . This algorithm is applicable to solve our linear system, since the Faddeev-
Popov matrix is a symmetric, real and positive definite matrix. The symmetric
Gauß-Seidel preconditioning leads in many cases to an acceleration of convergence
and exhibits no significant additional expenses.

For our purpose we separate the Faddeev-Popov matrix as follows

� :=

 − � − � ?, (C.35)

where



labels the diagonal part of � , � and � ? label the lower left and upper
right part of � respectively.

With the definition of the source vector Eq.(C.34) the multiplication separates
as follows

~v(x) = [− � ]µx ~c(x− µ) + [



]µx ~c(x) + [− � ?]µx ~c(x+ µ), (C.36)

where we again sum over µ. The matrices are parameterized by the space-time
index x of the corresponding color vector ~c(x) which multiplies to the diagonal
part of the Faddeev-Popov matrix. The diagonal part



is given by



x′ := −

(
u0

µ(x′) + u0
µ(x′ − µ)

)
� 3×3, (C.37)

whereby an addition over the direction index µ is again implied. The lower-left
matrix � of the Faddeev-Popov matrix is given by

[− � ]µx′ :=





u0
µ(x′ − µ) −u3

µ(x′ − µ) u2
µ(x′ − µ)

u3
µ(x′ − µ) u0

µ(x′ − µ) −u1
µ(x′ − µ)

−u2
µ(x′ − µ) u1

µ(x′ − µ) u0
µ(x′ − µ)



 (C.38)

and the upper-right matrix � ? is given by

[− � ?]µx′ :=





u0
µ(x′) u3

µ(x′) −u2
µ(x′)

−u3
µ(x′) u0

µ(x′) u1
µ(x′)

u2
µ(x′) −u1

µ(x′) u0
µ(x′)



 . (C.39)

Note, that the symmetry of the Faddeev-Popov matrix is respected by this de-
composition, since [− � ?] is the transpose of [− � ] and the µ-addition to the
space-time index for the next row is canceled in [− � ], see the following abstract
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representation of the Faddeev-Popov matrix:

x′ = x− µ x′ = x x′ = x+ µ

[− � ]µx′ [



]µx′ [− � ?]µx′ x′ = x− µ
[− � ]µx′ [



]µx′ [− � ?]µx′ x′ = x

[− � ]µx′ [



]µx′ [− � ?]µx′ x′ = x+ µ,

(C.40)

where in the first row the indices x′ label the space-time index of the correspond-
ing column. The indices in the last column label the space-time index of the
vector ~c(x′), so that a matrix-vector multiplication for the middle row of the
matrix above results in ~v(x) of Eq.(C.36).

This decomposition is now used for the symmetric Gauß-Seidel precondition-
ing for the CG-method. The main difference between the CG-method and the
GSP-CG-method lies in the fact, that the matrix-vector multiplication occurring
in the CG-method (line 4 in the CG-algorithm) is separated into two parts (line 4
and 5 in the GSP-CG-method), where the multiplication occurs only over the half
matrix, i.e over the lower-left part with the diagonal part or over the upper-right
part with the diagonal part. Those two linear systems can be now solved by the
symmetric Gauß-Seidel method for linear equations. The numerical expense is
approximately halved compared to the CG-method, see fig.(C.1).

Set b = � c, thus b ∈ A1. Initialize � :=

 − � − � ? being real,

symmetric and positive definite.
01: choose arbitrary x(0) ∈ A1, i.e. x(0) = � x(0)

02: solve (

 − � ?)s(0) = b− � x(0), w(0) = s(0)

03: for k = 0, 1, . . . do
04: solve (


 − � )d(k) =


w(k), save



w(k)

05: solve (

 − � ?)gk =



w(k) − 


d(k)

06: v(k) = d(k) + g(k)

07: αk = 〈sk, � sk〉

〈v(k), � w(k)〉

08: x(k+1) = a(k) + αkd
k

09: s(k+1) = s(k) − αkv
(k)

10: βk = 〈s(k+1), � s(k+1)〉

〈s(k), � s(k) 〉
11: w(k+1) = s(k+1) + βkw

(k)

12: if
|| � x(k+1)−b||22

||b||22
< ε then stop and end for

Algorithm C.2: The algorithm for the conjugate gradient method
with symmetric Gauß-Seidel preconditioning. The underlined num-
bers indicate new or changed lines in the algorithm with respect to
the CG-algorithm.

The GSP-CG-algorithm needs less than the half iterations steps of the CG-
algorithm which leads to the half time needed to solve the linear equation. As a



C.2. THE GHOST PROPAGATOR FOR LGT 121

0 50 100 150
# iteration steps (i.e. # of k)

0.0001

0.001

0.01

0.1

1

r(
x)

GSP-CG Algorithm
CG-Algorithm

The Relative Residuum
the cosinus source part

0 20 40 60 80 100
# of iteration steps (i.e. # of k)

0.0001

0.001

0.01

0.1

1

r(
x)

GCP-CG Algorithm
CG Algorithm

The Relative Residuum
the sinus source part

Figure C.1: The relative residue r, algorithm (C.1) line 2, is shown
for the cosinus and sinus part for the GSP-CG-method and the CG-
method. The calculation was done at a 124 lattice at β = 2.3 which
leads to 6 different values for the momentum. Clearly, the GSP-CG-
method is at least twice as fast as the CG-method.

byproduct, we see that the cosinus part needs more iteration steps than the sinus
part and the momentum dependence of the relative residue of the cosinus part is
greater than that of the sinus part.2

C.2.5 The Ghost Form Factor in LGT

Since we are interested in the deviation of a general ghost propagator from the
free one, i.e. the ghost form factor, we try again the trick used for the gluon
form factor. This means we have to find an operator which gives us directly the
expectation value of the ghost form factor.

We make the ansatz

G(x, y) =
〈(

� −1
)a,b

x,y
−
(
� −1

)a,b

x+µ̂,y
+
(
� −1

)a,b

x+µ̂,y+µ̂
−
(
� −1

)a,b

x,y+µ̂

〉

, (C.41)

to get directly the form factor of the ghost propagator in Landau gauge. Here, µ̂
is the unit vector of the space-time lattice which corresponds in the following to
the direction of the momentum.

If we consider the expectation value of the inverse Faddeev-Popov operator
( � −1)a,b

x,y and we use again the translation invariance of the expectation value,
i.e.

〈

˜� k,q

〉

= f(q)δk,−q,

2This calculation was done for the ghost form factor directly and not for the ghost propa-
gator, see the following subsection.
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we obtain

〈(
� −1

)a,b

x,y

〉

=
∑

k,q

exp

{

i
2π

N
kx

}(

˜� −1
)a,b

k,q
exp

{

i
2π

N
qy

}

=
∑

k

exp

{

i
2π

N
kx

}(

˜� −1
)a,b

k,−k
exp

{

−i2π
N
ky

}

.

This defines the ghost propagator in Landau gauge, since we are interested in the
ghost form factor, we start with the Fourier transform of our ansatz (C.41) and
show that the ghost form factor is given by

F (k2) = k2G(k2) := FT [G(x, y)] . (C.42)

For a better survey of our ansatz (C.41) , we separate it into two parts

〈(
� −1

)a,b

x,y
−
(
� −1

)a,b

x+1,y

〉

=
∑

k

[

ei 2π
N

k(x+1) e−i 2π
N

ky − ei 2π
N

kx e−i 2π
N

ky
] (

˜� −1
)a,b

k,−k

=
∑

k

[

ei 2π
N

kx e−i 2π
N

ky
(

1 − ei 2π
N

k
)](

˜� −1
)a,b

k,−k

and with the same procedure for the second part

〈(
� −1

)a,b

x+1,y+1
−
(
� −1

)a,b

x,y+1

〉

=
∑

k

[

ei 2π
N

kx e−i 2π
N

ky
(

ei 2π
N

k(1−1) − e−i 2π
N

k
)](

˜� −1
)a b

k,−k

=
∑

k

[

ei 2π
N

kx e−i 2π
N

ky
(

1 − e−i 2π
N

k
)](

˜� −1
)a b

k,−k
.

Summarizing both parts, we obtain
〈((

� −1
)a,b

x,y

)

−
(
� −1

)a,b

x+1,y
+
(
� −1

)a,b

x+1,y+1
−
((

� −1
)a,b

x,y+1

)〉

=

=
∑

k

ei 2π
N

kxe−i 2π
N

ky
(

2 − ei 2π
N

k − e−i 2π
N

k
)(

˜� −1
)a,b

k,−k

=
1

2

∑

k

eik(x−y)

(

2 sin

(
π

Nk

k

))2 (

˜� −1
)a,b

k,−k
.

The sinus term in the equation above corresponds again exactly to the lattice
definition of the dimensionless, discrete lattice momentum

klat. = 2 sin

(
π

Nk

k

)

. (C.43)

Hence, we obtain directly the Fourier transform of the ghost form factor in mo-
mentum space with our ansatz. A back Fourier transformation leads to the ghost
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form factor in momentum space, cf. eq.(C.12). With this, we get for our source
terms of the ghost and anti-ghost fields

ca1(x, k) = c̄ a
1 (x, k) = cos

(
2π

Nk

kx

)

(C.44)

and

ca2(x, k) = c̄ a
2 (x, k) = sin

(
2π

Nk

kx

)

, (C.45)

with Nk the number of lattice sites in the k-direction. If we combine these source
terms in the following way,

ba1,2(x, k) = ca1,2(x, k) − ca1,2(x− 1, k), (C.46)

the lattice expectation value of the ghost form factor in Landau gauge is given
by

〈G(k)〉MC :=
〈

b̄a1,2(x, k)
(
� −1

)a,b

x,y
bb1,2(y, k)

〉

MC
(C.47)

=
〈

b̄a1(x, k)
(
� −1

)a,b

x,y
bb1(y, k) + b̄a2(x, k)

(
� −1

)a,b

x,y
bb2(y, k)

〉

MC
,

where a summation is implied over the space-time points x, y and the color indices
a and b.
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Appendix D

Multiplicative Renormalization
of Lattice Measurement Data

In general, the measurement data achieved by lattice gauge simulations depend
on the free parameter β of the theory. The physical scale is fixed by the depen-
dence of the lattice spacing a with respect on β, cf. eq.(2.66). But still there
is a dependence of the data on β: the measurement results of different β-values
ceases to fall on an unique graph of the observable under consideration, e.g. the
gluon form factor cf. (fig.(D.1)). In this appendix we explain how multiplica-
tive renormalization is used to bring the lattice data of form factors on a unique
graph.

From perturbation theory we know, that physical quantities can be extracted
form divergent quantities, the bare ones, by the theory of renormalization. A pos-
sible way is the method of multiplicative renormalization, where the divergences
stemming from loop integrations are countervailed by multiplicative constants
being divergent. For simplicity we consider a field Φ in the following:

Φ0 = Z
1/2
3 Φren, (D.1)

with the divergent, bare field Φ0, the divergent renormalization constant Z3 and
the renormalized, physical field Φren. The renormalization constant Z3 depends
on the momentum transfer µ and the momentum cutoff Λ and we make the ansatz

Z3 = Z3(µ
2,Λ2) := Z3(µ

2)Zβ(Λ2). (D.2)

Note that lattice simulations with different β values correspond to simulations
with different UV-cutoff Λ := π/a(β). We use the renormalization constant
Zβ(Λ2) to bring our lattice data on the same functional graph of the observable
and the constant Z3(µ

2) to renormalize the total quantity under consideration at a
specific renormalization point µ′ so that a finite (given) value of the renormalized
quantity is achieved at the renormalization point µ′.

125
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In the next section we are concerned with the numerical procedure for mul-
tiplicative renormalization of lattice data with the goal to achieve the collective
graph of the data points.

D.1 Lattice-MR, A Model Independent Approach

The goal is to find the maximum overlap of the lattice data to the functional form
of a given observable. Generally, the functional behavior of the observable is not
known and one performs a model analysis. Since the lattice data are calculated
at some different β-values, a direct involvement of the model is tempting, but
might lead to a false interpretation of the measurement data. For this reason,
we purpose a model independent procedure which is based on the simulated
annealing algorithm combined with a linear least square fit of the lattice data
to a graph of the model independent function f(p). The cost function of the
simulated annealing algorithm is the chi-square of the lattice data with respect
to f(p).

The chi-square is generally defined as

χ2 :=
N∑

i=1

(
y(xi) − f(xi)

σ(y(xi))

)2

, (D.3)

where y(xi) are the measurement data at points xi, σ
2(y(xi)) is the variance of

y(xi), N is the number of measurement data and f(xi) := f(xi; a1, . . . , am) is
usually the searched fit function depending on the m parameters a1, . . . , am. The
common use of χ2 is to find the fit function f which minimizes χ2 with respect to
the parameters aj to the given measurement data y(xi). The resulting function
f exhibits the maximal likelihood that it represents the measurement data.

Since our problem is quite different, we purpose the following procedure: Our
goal is, to find the optimal renormalization constants Zβ so that the following
extended chi-square,

χ2 =

nβ∑

β=1

Nβ∑

i=1

(

Zβ yβ(xβ
i ) − f(xβ

i )

Zβ σ(yβ(xβ
i ))

)2

, (D.4)

is minimized by Zβ. Here, β labels the nβ sets of measurement data obtained at
nβ different β-values, i.e. different momentum cut-offs Λβ = π/a(β). Note that
the fit function f is of no interest, f is only used to renormalize the measurement
data so that the measurement data results in a (not yet specified) graph with a
maximal likelihood.

To get the renormalization constants, we firstly divide the domain of the
measurement data into ng intervals. The intervals ng are not equidistant but
include the equal number of measurement data, so that every contribution of the
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intervals to the chi-square function eq.(D.4) has the same weight cf. fig.(D.1). In
every interval, a (dummy) fit function fng is defined. We choose a polynomial of
degree three

f(x) =
∑

ng

fng(x) =
∑

ng

3∑

n=0

an,ng x
n. (D.5)

The main reasons for this choice is that we need a function being stiff enough
to scale the data points and we want to incorporate the possibility of a change
of the local curvature. All this conditions are fulfilled by polynomials fng(x) of
degree three with a minimum of free parameters an,ng. At the interfaces of the
intervals we demand that f(x) is continuous and at least 1-times differentiable,

fng−1(xi) = fng(xi), with xi a point at the interface (D.6)

f ′
ng−1(xi) = f ′

ng(xi).

This results in a reduction of the number of fit parameters an,ng.

0 1 2 3 4 5
p in [GeV]

0

0.5

1

1.5

F(
p2 )

β = 2.10
β = 2.15
β = 2.20
β = 2.30
β = 2.45
β = 2.50

Gluon Form Factor, Unrenormalized
data points and fit polynomials of 3rd degree
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Figure D.1: The un-renormalized data points of the gluon form factor
F (p2) and the four starting fit polynomials are shown.

To find the (global) minimum of χ2 with respect to the renormalization con-
stants Zβ, we use a simulated annealing algorithm combined with the downhill
simplex method of Nelder and Mead. The result of our method is shown
in fig.(D.2). The effect of multiplicative renormalization is clearly visible. Al-
though, not all data points lie on the graph of the fit function f(x) within their
statistical error. Their are some systematical errors left from the discretization
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Figure D.2: The renormalized data points of the gluon form factor
F (p2). The four fit polynomials are shown, which yield a minimum
of the χ2.
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Figure D.3: The renormalized data points of the gluon form factor
F (p2) in dependence of different number of fit polynomials. The data
lie all within the statistical errors, so that the independence on the
number of fit polynomials is shown.

and the finiteness of our lattice, which have to be incorporated if we want to
discuss different models of the form factors.

That our procedure of renormalization is independent of the number of inter-
vals ng is shown in fig.(D.3). It should be clear, that a high enough number of
intervals is needed for the renormalization procedure. But the number of inter-
vals should not be to high, since then all data points could be fitted to arbitrary
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polynomials. The independence of the chi-square χ2 of the number of intervals is
an indication that the procedure is independent of the number of fit parameters
within a certain range.
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