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Abstract

In this thesis, new algorithms and architectures are presented for the acquisition and

rendering of displacement maps. Displacement mapping is a popular rendering technique

commonly found in commercial rendering packages, it modifies the surface of an otherwise

flat triangle by displacing its points according to a height field, giving the impression of a

structured surface. Although widely used in software renderers for many years, hardware

accelerated rendering was long missing, because of the difficulties involved. The main

focus of this work is on adaptively rendering techniques, especially adaptively tessellating

triangular meshes to improve rendering performance and reduce bandwidth requirements.

Following a general definition of displacement maps, possible sources of displacement

maps are presented and examples are given. To allow adaptive tessellation, sophisticated

sampling techniques are required, and multiple sampling strategies are described and

compared with respect to quality and ease of implementation. The presented strategies

range from locally defined geometry tests to image-based methods like edge-detection.

Possible modifications to available graphics hardware pipelines are discussed to enable

support for adaptive tessellation with as little modifications as possible.

With the latest generation of commodity graphics chips, it has become possible to

approximate displacement mapping by a variation of ray-casting. Sample implementations

are given and compared to other approaches, implemented on the same hardware platform.
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Zusammenfassung

In dieser Arbeit werden neue Verfahren und Architekturen zur Erzeugung und Darstellung

von Displacement-Maps vorgestellt. Das Displacement-Map Verfahren ist eine populäre

Technik zur Darstellung von Oberflächenstrukturen die in kommerziellen Programmpa-

keten zur Bilderzeugung Verwendung findet. Bei diesem Verfahren wird die Erscheinung

eines sonst flachen Dreiecks durch Verschieben von Punkten der Oberfläche wie in einem

Höhenfeld vorgegeben modifizert, um den Eindruck einer fein strukturierten Oberfläche

zu erwecken. Obwohl es in Programmpaketen zur Bilderzeugung bereits breite Verwen-

dung gefunden hat, gab es lange Zeit keinerlei Beschleunigung durch dedizierte Hardware-

entwicklungen, hauptsächlich bedingt durch die Komplexität der notwendigen Berech-

nungen. Das Hauptaugenmerk dieser Arbeit ruht auf adaptiven Verfahren, besonders der

adaptiven Triangulierung von Dreiecksnetzen, um die Darstellungsgeschwindigkeit zu er-

höhen und die notwendige Bandbreite zu reduzieren.

Nach einer genaueren Definition von Displacement-Maps werden Verfahren zu ihrer

Generierung aus unterschiedlichen Ausgangsdaten vorgestellt. Für die adaptiven Verfah-

ren sind ausgeklügelte Abtastverfahren nötig. Verschiedene Verfahren werden vorgestellt

und in Hinsicht auf Qualität und Komplexität einer Implementierung verglichen. Die vor-

gestellten Verfahren reichen von lokalen Geometrietests, hin zu bildbasierten Verfahren,

wie beispielsweise Kantendetektion.

Erweiterungen für aktuell erhältliche Graphikprozessoren auf Basis von NVidia NV3X

oder ATI Radeon R3X0 zur adaptiven Triangulierung von Dreiecksnetzen werden vorge-

stellt, die möglichst geringfügige Änderungen am bestehenden Aufbau benötigen.

Diese neueste Generation von kommerziell erhältlichen Graphikprozessoren erlaubt es,

eine Approximation von Displacement-Mapping mittels Strahlverfolgungsverfahren durch-

zuführen. Es werden Beispielimplementierungen vorgestellt und mit anderen Ansätzen, die

auf der gleichen Zielarchitektur arbeiten, verglichen.
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Chapter 1

Introduction

1.1 Introduction to Displacement Maps

Ever since the early 1970s, when raster graphics was introduced with the Alto system

of Xerox PARC, where its rise began, it has not stopped to evolve and dominates our

technical life, starting with digital wrist watches ranging up to high end visualization

systems. With the ever increasing computational power as stated in Moore’s law, raster

graphics was soon used to display 3D graphics, first off-line, later in real-time. 3D graphics

has come a long way from crude line drawings to highly detailed and realistically colored

renderings. The driving force has always been – and still is – the quest for more visual

realism. The prominent drawing primitive in todays 3D graphics architectures is still a

triangle, as effective and fast rasterization routines exist. Rasterization is the process

of converting an analytical geometrical object like a triangle, square or even a line to a

representation that can be shown on a raster graphics display. For raster graphics the data

element is a pixel, an abbreviation for picture element, that is stored in dedicated memory,

the framebuffer. Thus, rasterization is the process of mapping a geometric primitive to

the discrete 2D grid of the screen.

Although triangles may be very easy to rasterize and manage, they are hardly an ade-

quate primitive for modeling our natural, highly irregular environment. In order to make

objects defined with triangles look more realistic a great number of techniques has been

developed, enhancing the rasterization process to add more surface detail and make the

result look more realistic. Already in 1976, Blinn and Newell [18] introduced a technique

for adding color to every rasterized pixel of a surface according to a 2D bitmap image,

called texture map. Additionally a technique for simulating reflective surfaces was de-

scribed. Later in 1978, Blinn added another technique called bump mapping [17], where

the surface of a triangle gets a structured appearance using lighting effects. All these tech-

1



1.1 Introduction to Displacement Maps 2

(a) Solid color (b) Texture mapped (c) Bump mapped

(d) Displacement mapped

Figure 1.1: The evolution of rendering algorithms for surface rendering used on a

terrain model of the Grand Canyon1.

niques have been widely adopted and are implemented in almost any graphics hardware

available today. Because of its widespread use, texture mapping has been analyzed thor-

oughly [28] and many improvements have been made in the area of filtering the textures

[47, 41].

A common feature of all these algorithms is that the given geometry is not changed but

only the visible appearance is modified, giving the illusion of a structured surface. This

causes problems in cases where the desired visible effects are not only local to a pixel but

also have a global influence, as for example the silhouette and self-occlusion. Displace-

1Data is obtained from The United States Geological Survey (USGS), with processing by Chad Mc-

Cabe of the Microsoft Geography Product Unit.
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ment mapping as introduced by Cook [20] in 1984 on the other hand actually modifies the

geometry thus avoiding all the problems with bump mapping. Displacement mapping was

adopted by commercial rendering software packages like Maya [44] or Softimage [30], and

is widely used in that area. Hardware support for accelerated rendering of displacement

maps was not available until recently the Matrox Parhelia [38] was announced, although

other rendering techniques as texture mapping or bump mapping are available even in

commodity graphics hardware for quite some time now [32]. Most hardware vendors

however lack native support for displacement mapping.

(a) Bump mapped

(b) Displacement mapped

Figure 1.2: Rendering of a half donut shaped height field, in (a) bump mapped and

in (b) displacement mapped.

Figure 1.2 demonstrates the difference between bump and displacement mapping with

a half-donut shaped height field applied to a quadliteral. In 1.2(a) the polygon is bump

mapped and in 1.2(b) the same polygon is rendered with the height field is applied as

a displacement map instead. From a viewpoint perpendicular to the polygon surface,
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Displaced Surface Base Surface Normal

Base Surface Triangle

Figure 1.3: Tessellated triangle with displacement performed along the surface nor-

mals.

it both algorithms produce similar results and the bump mapped polygon gives a good

visual impression of an elevated surface. If the polygon is tilted to the side however,

the bump mapped version quickly looses its realistic appearance, and if tilted more, the

missing silhouette becomes more obvious.

Displacement maps allow for simple adding of more detail to any surface that can be

parameterized. Surfaces are usually defined as triangle meshes with texture coordinates

defined at the triangle vertices. With these texture coordinates, it is possible to address

a displacement map to modify the polygon surface. If the surface is given in another

representation it is generally tessellated with triangles before rendering. A displacement

map can be defined as a height field that is applied by elevating a point on the surface by

the height read from the height field at the point’s texture coordinates. In Figure 1.3 an

example of a tessellated triangle that is being displaced by its surface normals resulting

in a structured surface. This thesis’ focus is on efficient rendering of such displacement

maps, mainly targeted at graphics hardware architectures.



Chapter 2

Displacement Map Theory

2.1 Types of Displacement Maps

In general, a displacement map can be any function f that for a set M ⊂ R
n with a

parameterization p : U ⊂ R
m 7→ M defined as

f : U × M 7→ R
n (2.1)

or

f(x, p(x)) 7→ R
n, x ∈ U. (2.2)

The function describes a displacement of all points of M . For a given point x of the

set M , the corresponding displaced point x′ can be expressed as

x′
x := f(p−1(x), x). (2.3)

For practical uses, only displacement maps defined on a 2D parameterization of a 2-

manifold are considered and are used throughout the following chapters. The manifold

that is to be displaced is called the base domain surface or just base surface. In case of a

2D parameterization p(u, v) the surface normal ~nx for a point x = p(u, v) on the surface

M is defined by:

~nx :=
~sx

|~sx|
(2.4)

with

~sx :=
∂p

∂u
× ∂p

∂v

where ∂p

∂u
and ∂p

∂v
are the partial derivatives of the surface p along the surface directions u

and v.

5



2.1 Types of Displacement Maps 6

For the displaced surface, the new surface normal ~nx′ is defined as

~nx′ :=
~sx′

|~sx′| . (2.5)

with

~sx′ :=
∂f(u, v, p(u, v))

∂u
× ∂f(u, v, p(u, v))

∂v

The new surface normal can be costly to calculate, in particular when the employed map

is discrete. As a result of this the surface normal is often precomputed from the height

field.

2.1.1 Vector Displacement Maps

This is a generalized type of a displacement map where the displacement is given by a

vector ~dx along which the surface points x are moved.

∀x ∈ M : x′ := x + ~dx. (2.6)

The displacement vector can either be defined as a replacement of the surface normal, or

relative to it, for example as a bump map.

Vector displacement maps are particularly difficult to handle and render as little or no

assumptions can be made about the resulting geometry. As a result they are used very

rarely. If no special care is taken about the base domain that is being displaced with a

specific vector displacement map the topology of the resulting surface can easily change

substantially from the original base domain surface. Useful combinations can be obtained

when performing mesh compression by generating a low resolution base domain mesh and

a corresponding displacement map containing the detail as the resulting surface is already

known, and well behaved.

2.1.2 Scalar Fields

The simplest type of a displacement map is a scalar field or height field. In this case only

a scalar displacement value is used and the displacement is performed as an elevation of

the surface with the relative height given by the scalar value.

The points x on the base domain surface M are displaced along their respective surface

normals ~nx with the scalar factor dx ∈ D, with D the applied displacement map.

∀x ∈ M : x′ := x + dx · ~nx. (2.7)

In Figure 2.1 a very simple example with a one-dimensional height field is shown.
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n

M

1

0
u

Figure 2.1: One-dimensional height field applied to a curved line. The one-dimensional

displacement function on the left is applied to the base domain M in direction of the

gradient n.

The scalar field can be thought of as a special case of a vector displacement map with

only the height stored in the map and the direction of displacement defined by the surface

normal of the base domain surface. As the base domain surface’s shape is likely to change

considerably when it is displaced, the surface normals have to be recalculated. The new

surface normal at a specific position cannot be directly determined by the displacement

value at its position, the neighborhood has to be taken into account. Analytical calculation

of the new surface normal as described in Equation 2.5 is only suitable for precomputation

which is not always desirable or possible. If precomputation is used, the surface normals

are generally not stored absolutely, but rather relative to a surface normal. Storing the

normal relative to a normal vector as a perturbation allows to apply the precomputated

normal to any base domain surface geometry. This technique is commonly called also

bump mapping [33]. If the shape of the base domain surface contains non-convex regions,

Base domain surface

Displaced surface

Self intersection

Figure 2.2: Non-convex base domain surface resulting in self-intersections when dis-

placed.

problems may occur as the displaced surface may contain unexpected changes in topology

like self-intersections as it is shown in Figure 2.2, where a height field with constant height
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was used.

2.2 Data Sources for Displacement Maps

In general any kind of data that represents or approximates a surface can be used for

constructing a displacement map. The most difficult task is to find a suitable base do-

main surface for applying the displacement map to, especially when the desired type of

displacement map is a height field.

Once a suitable base domain surface is known the displacement map can be obtained by

casting rays along the surface normal from the base domain surface and determining the

intersection with the source surface. If the source surface is not continuous, like in a point

cloud, a local surface approximation has to be calculated first, using moving least squares

or other methods [16]. In order to avoid sampling artifacts the number of rays cast has to

be sufficiently high, especially when the sampling distance for the new displacement map

is constant, which is most likely the case. The quality of the resulting displacement map

is strongly dependent on the base domain surface used as can be seen in Figure 2.3. In

this case the base domain surface does not adapt good enough to the shape of the source

surface, resulting in undersampling in the specified area.

Figure 2.3: Badly adapted base domain surface (left) and improved base domain

surface (right).
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Figure 2.4: Problem with badly adapted base domain surface and the resulting pro-

jection of two source points to the same location.

In some cases, especially when using point clouds as source data, it may be easier to

work in the reverse direction and to project the source points onto the prospective base

domain surface. The problem here is finding the corresponding base domain surface point

with the fitting normal, as the displacement can only be performed along this direction.

As an approximation the point on the surface with the minimum distance to the source

point may be used, if the used base domain surface is not well adapted to the source data

problems may arise with multiple source points being projected to the same base domain

surface position as shown in Figure 2.4.

2.2.1 Point Clouds and Range Scanner Data

As described before the problem with scattered data is the lack of a surface for the

intersection calculation. A number of techniques for approximating a surface from point

clouds exist, given that the density of points is sufficient for a robust surface approximation

[29]. If at all possible it should be avoided to triangulate the point cloud before sampling.

It is favorable to directly project the points to a suitable base domain surface.

When using range scanner data the geometric constellation of the machinery used to

obtain the data is known and can be used to simplify the construction process. Commonly

used scanners as the Cyberware CyberScanner [22] often have a cylindrical geometry. The

distance is measured using a laser scanner rotating around the object to be sampled. In

this case the resulting base domain surface is a cylinder and the distance can be directly

assigned to a displacement map as the laser scanner is performing the sampling in the

same way as described before for the point clouds. In Figure 2.5 the process of generating a

height field from a point cloud is shown. The points were projected onto a plane passing
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(a) Point cloud (b) Resulting fil-

tered height field

(c) Wireframe ren-

dering

(d) Additional tex-

ture applied

Figure 2.5: Generation of a height field from a point cloud.

through the center of the point cloud and the distance to the plane was stored in 2D

gray scale image. The raw height field was enhanced using standard image processing

algorithms to smooth out noise and fill holes.

2.2.2 Mesh Data

To obtain a displacement map for a highly refined mesh, for example a triangle mesh, a

standard mesh reduction algorithm is used, and after the reduced triangle mesh is suffi-

ciently small, rays are cast from this surface to the source mesh. If the targeted rendering

hardware supports displacement mapping, this provides a simple form of geometry com-

pression. Lee [35] used a subdivision surface generated by simplifying the source data as

an intermediate base domain surface. The simplified subdivision surface is first subdivided

two to three times using Loop’s [36] subdivision scheme and afterwards rays are cast from

the now smooth subdivided surface to the source surface, capturing the fine detail. This

can also be used as a simple form of mesh compression, as a small base domain surface

mesh and a corresponding displacement map, which can be very easily compressed using

well-investigated and highly effective image compression algorithms, typically consume

far less memory than the fully tessellated mesh.

As an example the mesh of a molded plate was converted to a displacement map. The

mesh in Figure 2.6 was sampled with 1024 × 1024 rays from a flat base domain surface.

The obtained height field in Figure 2.7 was then applied to a base domain surface with the

same dimensions as the source mesh projected to a plane, but with only two triangles. The
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Figure 2.6: Source mesh for acquiring a displacement map. The input mesh has about

8000 triangles.

Figure 2.7: Height field acquired from the input mesh in Figure 2.6. The mesh was

sampled by casting 1024 × 1024 rays from a flat base surface.

Figure 2.8: Result of applying the height field obtained in Figure 2.7. For generating

the mesh adaptive tessellation was used, described in chapter 4. The mesh shown has

only 4500 triangles.
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result of the displacement process can be seen in Figure 2.8. Using adaptive tessellation

the triangle count could be reduced by almost 50% compared to the input mesh.

2.2.3 Continuous Forms of Data

Similarly as the point clouds and triangle meshes, any data source that forms some sort of

a surface can be used as input. In particular mathematical objects like free form surfaces

as non-uniform rational B-splines (NURBS), which are difficult to render otherwise, can

be rendered through the use of a displacement map. Direct hardware accelerated render-

ing of NURBS surfaces is a difficult task and a couple of hardware architectures have been

proposed, but no implementations have emerged. Especially if the NURBS surface is not

triangulated [34], and not rendered using a conventional triangle rasterizer, but a special

purpose scan converter is used, a lot of difficulties arise, complicating a possible implemen-

tation. In [1] a graphics hardware architecture for adaptively tessellating a triangle mesh

with a user definable rule set is presented, maintaining the connectivity information when

adding triangles. This not only allows for adaptively rendering displacement maps – with

the displacement map sampling tests presented later on in section 3 for controlling the

adaptive tessellation – but also for the rendering of subdivision surfaces or other curved

surfaces. If hardware accelerated support for displacement maps would be available, they

could be used as a cheap replacement for an otherwise costly scan converter.

In essence, the same rules apply for generating a base domain surface/displacement

map pair. The crucial part is again finding an appropriate base domain surface. After a

base domain surface is found, rays can be cast and the NURBS surface is sampled.

2.3 Displacement Map Filtering

As a displacement map can be thought of as a texture map, the same sampling and

filtering problems might arise. As it turns out, displacement maps are even more subject

to sampling artifacts and the effect of undersampling can cause more severe errors, even

at close distances. A standard approach for texture filtering is mipmapping as presented

by Williams [47]. This provides an effective means of retrieving levels of detail in color

textures that match the screen size of an object. But for displacement mapping, the

averaging effect of mipmapping will smooth over areas of high detail in the displacement

map, creating popping artifacts when the levels of detail are switched and distinct, sharp

peaks are being smoothed out. In [27], it is proposed to use mipmapping, but with a

maximum filter to overcome this.
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2.4 Conclusions

Displacement maps are commonly used in the form of simple height fields or vector dis-

placements, whereas the vast majority are simple height fields. Apart from syntheti-

cally created displacement maps, they can be obtained by sampling other surfaces, either

smooth continuous NURBS surfaces or other piece-wise linear surfaces like meshes. By

using an appropriate projection, point clouds are likewise usable as a data source for a

displacement map.



Chapter 3

Sampling

Correct sampling of a displacement map plays a vital role for the quality of almost any

rendering algorithm. It is important to detect where to sample and especially how ac-

curately a region needs to be sampled. Depending on the type of algorithm and the

target architecture – software or hardware – used for rendering, the amount of informa-

tion available about the map can be very different. As the rendering algorithms usually

use texture coordinates and texture mapping hardware is found in commodity graphics

cards, the possibilities for filtering are important. It has to be analyzed whether the

filtering methods used in texture mapping algorithms can be transferred to displacement

mapping algorithms.

3.1 Sampling Tests

In this Section different test schemes for sampling are discussed and evaluated according

to their possible applications and limitations.

3.1.1 Surface Normal Variance Test

This new test [2] operates solely on the surface normal of the displaced surface. The

surface normals of two or more sample points are compared for example by calculating

the absolute distance of the normal vector components. If the result is above a given

threshold, more sampling is needed between the points, or if one of the sample points was

a candidate for insertion, the point needs to be added.

As an example consider the situation as shown in Figure 3.1. Here a triangle mesh

is used as a rendering primitive and detail is added by adaptively inserting triangles.

Between the two endpoints V1 and V2 of an edge a candidate for insertion V1,2 was

14
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V2V1,2

N2N1,2

V1

N’1 N’1,2
N’2

N1

Figure 3.1: Example candidate for insertion in a base domain surface triangle mesh.

placed in the middle of the edge. To perform the actual test, the resulting displaced

surface normals N’1,N’2 and N’1,2 of the corresponding surface normals N1,N2 and N1,2

have to be compared.

The actual comparison of the normals can be done with any kind of norm that is suited

to detect change in direction of the normal vector. In this case it is sufficient to calculate

the difference between the vector components and to compare all of them to a threshold.

If the difference between any of the components is greater than the given threshold nthr,

the vertex is added at V1,2.

A boolean value for the Normal Test, nt can be defined as

nt = (N’1,2|x − N’1|x < nthr) OR (N’1,2|y − N’1|y < nthr) OR

(N’1,2|z − N’1|z < nthr) OR (N’1,2|x − N’2|x < nthr) OR

(N’1,2|y − N’2|y < nthr) OR (N’1,2|z − N’2|z < nthr)

This test is well suited to detect change in normal direction which often occurs in

regions where the displacement map contains higher frequencies. It can also be seen as

a high pass filter for the displacement map. As such it will miss low frequency changes

in the map like larger changes in height. Additionally as the test uses point sampling it

is subject to aliasing. The threshold nthr has to be specified by the user and is strongly

dependent on the structure of the displacement map. If the test is combined with a second

test, which will detect low frequency changes in the map, better results can be achieved.

The test is relatively cheap to implement, because only the new surface normals have

to be calculated – which has to be done anyway if the sample point is added – and no

additional preprocessing is necessary.



3.1 Sampling Tests 16

Figure 3.2: Simple point sampling missing a strong change in height although being

very close to it.

3.1.2 Local Area Average Height Test

In contrast to the normal test in Section 3.1.1 this new test [2] works well for detecting

low frequency changes in the displacement map or average changes in height. The basic

idea is to compare the height or displacement of two or more sample points. The simplest

way to do this is to compare the height at the desired sample points and to check if the

difference is above a given threshold. As this is a form of point sampling it is subject to

aliasing and would not yield satisfying results. As shown in Figure 3.2 it will miss even

strong changes in height in close proximity to the sample points, which is undesirable.

To avoid problems with point sampling filtering techniques may be used. Good re-

sults can been achieved when using a Summed-Area Table, introduced by Crow [21]. A

Summed-Area Table is a two dimensional array containing at each cell the sum of all

values that fall inside the rectangle formed by that cell and one corner of the array. To

calculate the sum of all values within a rectangular area in the table only the four val-

ues at the corners of the area are needed. The Summed-Area Table can be represented

as a bivariate function SAT (x, y) that returns the sum of all heights within the region

(0 → x, 0 → y), where the origin is in the bottom left of the table. The sum of the values

within a rectangular area is calculated using the function S(Z) defined as

S(Z) = SAT (xtr, ytr) − SAT (xtl, ytl) −
SAT (xbr, ybr) + SAT (xbl, ybl) (3.1)

where Z is (xtr, ytr, xtl, ytl, xbr, ybr, xbl, ybl), the corners of the rectangular area in the

Summed-Area Table, using the subscripts tr top right, tl top left, br bottom right, bl

bottom left for the four corners of the rectangle .

A Summed-Area Table can be precalculated for a displacement map the same way as

for a normal texture map. As an example for using the test consider again the example

in Figure 3.1. The vertex V1,2 is to be checked against V1 and V2. A rectangle in the

Summed-Area Table corresponds to the sum of all heights of the same rectangle in the



3.1 Sampling Tests 17

w = u   − u

w/2

h/4

2

h = v   − v2

V

h/2
V

w/4

V
1

1,2

2

1

1

Figure 3.3: Using the texture coordinates of the vertices to calculate the summed

height.

displacement map, thus we can compare the average height around the three sample points

if we normalize the values read from the Summed-Area Table with the rectangle size. The

size of the rectangle has to be chosen carefully as a too large area will smooth out large

differences between the sample points, due to the averaging nature of the Summed-Area

Table.

As an example in Figure 3.3 the area surrounding the midpoint V1,2 was enlarged to

detect changes in a larger area between the vertices. To calculate the four corner points of

the rectangle around the vertices of the edge the texture coordinates at the vertices U1, U2

and U1,2 are used as shown in Figure 3.3. Using the texture coordinates the differences of

the areas can be calculated and compared with a threshold.

A boolean value for the height test, sht can be defined as

sht =

(

S(V1,2)

2
− (S(V1) + S(V2))

)

< shthr

where shthr is the summed height threshold. Note the normalization of the values caused

by the difference in size of the compared areas.

The Summed Height Test combines very well with the Normal Test of Section 3.1.1 as

it is able to detect the low frequency change in a displacement map. In Figure 3.4 two

examples for a possible cross Section of a displacement map are shown where one of the

tests fails and the other succeeds.

3.1.3 View Dependency Test

The new view dependency test [2] differs from the proceeding ones because it has a

negative response, it is used to avoid resampling where no more information can be added
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V’1,2
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Figure 3.4: The solid line represents a contour line across the displacement map

between the texture coordinates of the vertices of one edge of a triangle with the newly

inserted point in the middle. The dashed lines indicate the area over which the height

is averaged to calculate the Summed Height value. In (a) the Normal Test fails, but

the Summed Height Test succeeds. In (b) the Normal Test succeeds but the Summed

Height Test fails.

to the outcome. his specific test can be used for controlling re-triangulation by limiting

the insertion of new vertices. The assumption is that the region between two points

differing less than one pixel in position when transformed to screen space doesn’t need to

be resampled any more. Thus when a transformation unit is available, two points around

the region of interest – in case of a triangle edge, the starting point V1 and end point V2 of

the connecting edge – are transformed to screen space using the viewing transformation. If

the Manhattan distance between the two sampling points is below one, no more sampling

is necessary because adding any more sampling points between the two points would only

add a sub-pixel sized triangle. In Figure 3.5 the displacement map of a human head was

applied to a cylinder at different viewing distances. When rendered at a larger distance,

the detail added is limited by the minimum triangle size. As this test works in screen

space it is view dependent and provides view dependency for any algorithm that uses

re-triangulation or adaptive sampling.

3.1.4 Refinement Limit Test

Similarly like the view dependency test in Section 3.1.3 the new refinement limit test [2]

has a negative response for stopping resampling. Its use is limited to discrete types of

displacement maps as it solves a problem only occurring with discrete maps. Consider the

example in Figure 3.6, where the sampling distance is already below the distance between

two entries in the displacement map.

Due to always occurring rounding errors when performing the interpolation of the new

sample point positions and the approximation errors, several unnecessary sample points

might be inserted close to the original displacement map value or between the two sample
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(a) Rendering of a human head at close distance. The result is fully tessellated with fine

detail in the region of the eyes and mouth.

(b) The same base domain and displacement map as in (a) but at a bigger distance. On

the right side the tessellation result is enlarged, showing the reduced detail.

Figure 3.5: Result of applying the view dependency test from Section 3.1.3 to the

displacement mapped rendering of a a human head.
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Original Displacement Map points
Snap to gris positions

Starting sample points Unnecessary sample points

Figure 3.6: Oversampling caused by rounding and approximation errors. On the right

side the starting sample points are snapped to the original displacement map positions.

points in Figure 3.6.

To avoid this unnecessary sampling a comparison of the sample positions can be used.

The idea is to stop sampling when the resolution of the displacement map has been reached

and to move the sample positions to the next displacement map grid position.

Given two sample positions p1, p2 with the respective texture coordinates t1, t2, with

ti = (ui, vi), and a displacement map with the dimensions dw×dh. The texture coordinates

have to be limited to the interval [0, 1] which can be easily achieved by removing the

integer part of texture coordinates. The texture coordinates are then scaled with the

displacement map size:

t′1 = (dwu1, dhv1) = (dw, dh) · t1
t′2 = (dwu2, dhv2) = (dw, dh) · t2.

By comparing the integer parts of t′1 and t′2 the oversampling occurring in Figure 3.6 can

be easily detected. If the integer parts are equal or differ by less than one when using

a Manhattan distance calculation no more sampling is necessary as the resolution of the

displacement map has been reached.



3.2 Curvature Based Tests 21

3.2 Curvature Based Tests

3.2.1 Curvature Calculation

As noted before, increased sampling should occur in regions of the displacement map with

strong changes in height or high curvature.

To calculate the curvature of the displacement map a number of methods can be used.

Mathematically the curvature can be approximated with derivatives of the original map.

Given a 2-dimensional displacement map

f : R
2 7→ R, (3.2)

the gradient ∇f of the displacement function f can be expressed with partial derivatives

[23]:

∇f(x0, y0) =

(

∂f(x0, y0)

∂x
,
∂f(x0, y0)

∂y

)

. (3.3)

The gradient ∇f(x0, y0) has a number of useful properties:

• ∇f(x0, y0) points in the direction of the largest slope at position (x0, y0).

• The gradient is orthogonal to the surface defined by the height field

• The norm of the gradient ∇f(x0, y0):

|∇f(x0, y0)| =

√

(

∂f(x0, y0)

∂x

)2

+

(

∂f(x0, y0)

∂y

)2

(3.4)

corresponds to the slope of the displacement function f .

The gradient function is not directly usable to detect change in the displacement func-

tion. To obtain the actual change in the map, the second order derivative defined as

∇2f(x, y) =
∂2f(x, y)

∂x2
+

∂2f(x, y)

∂y2
(3.5)

∆f = ∇2f. (3.6)

has to be used. ∆f is called the Laplace Operator and describes change in the gradient

which directly corresponds to curvature in the original map.

In case the displacement map is given in a discrete form, the Laplacian Operator needs

to be discretized before use. To compute the discretized form of the Laplacian Operator
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the components of Equation 3.5 can be calculated independently:

∂2f(x, y)

∂x2
=

∂

∂x

(

∂f(x, y)

∂x

)

≈ ∂

∂x

(

f(x + ∆x, y) − f(x, y)

∆x

)

≈ f(x + ∆x, y) − f(x, y) − (f(x, y) − f(x − ∆x, y))

∆x2

=
f(x + ∆x, y) − 2f(x, y) + f(x − ∆x, y)

∆x2
.

If we set ∆x = 1, which is the minimum because of the pixel grid, we obtain:

∂2f(x, y)

∂x2
≈ f(x + 1, y) − 2f(x, y) + f(x − 1, y). (3.7)

Symmetrically the second partial derivative along y is given as:

∂2f(x, y)

∂y2
≈ f(x, y + 1) − 2f(x, y) + f(x, y − 1). (3.8)

Expressed as a convolution filter the discretized Laplacian Operator L is defined as:

∆f =
∂2f(x, y)

∂x2
+

∂2f(x, y)

∂y2

≈ f(x + 1, y)− 2f(x, y) + f(x − 1, y) +

+f(x, y + 1) − 2f(x, y) + f(x, y − 1)

=











0 0 0

1 −2 1

0 0 0











+











0 1 0

0 −2 0

0 1 0











=











0 1 0

1 −4 1

0 1 0











= L (3.9)

In Figure 3.7 the Laplacian filter kernel was applied to two example height fields, a

synthetic half donut shaped height field and a range scan of Crater Lake. While the filter

works as expected on the synthetic donut shaped height field, the result of the Crater

Lake height field is very noisy and the relevant geometric features are not well detected.

Since the footprint of the employed Laplacian is rather small it is very sensitive to small

local changes and high frequency noise often present in data obtained from laser range

scanners and thus is almost unusable without any low-pass filtering applied beforehand.
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(a) Half donut shaped height field, brighter colors corresponding to higher elevation.

On the right the filter kernel from Equation 3.9 was applied

(b) Height field of Crater Lake with the same discrete Laplacian filter kernel applied

on the right.

Figure 3.7: Discretized Laplacian filter kernel defined in Equation 3.9 applied to exam-

ple height fields. In the filtered images (right side), darker colors correspond to higher

curvature values.
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3.2.2 Laplacian-of-Gaussian

A commonly used filter function for removing high frequency noise is the Gaussian func-

tion:

Gσ(x, y) =
1√

2πσ2

(

e
−(x2+y

2)

2σ2

)

. (3.10)

For the actual application of the Gaussian function from Equation 3.10 it has to be

convolved with the input signal, in this case with the displacement map. The convolution

operator ∗ is defined as:

f(x) ∗ g(x) =

∫ ∞

−∞

f(y)g(x− y)dy. (3.11)

Marr and Hildreth [37] combined the Laplacian Operator with the Gaussian function

to the so called Laplacian-of-Gaussian (LoG) Operator:

LoG = ∆Gσ(x, y) (3.12)

= ∇2(Gσ(x, y)

= − 1√
2πσ4

(

2 − (x2 + y2)

σ2

)

e−
(x2+y

2)

2σ2 (3.13)

To apply the LoG Operator to a displacement function f it has to be convoluted with it:

LoG(x, y) ∗ f(x, y) = ∆Gσ(x, y) ∗ f(x, y). (3.14)

The Gaussian function acts as a low-pass filter and the Laplacian Operator acts as a

high-pass filter effectively forming a bandpass filter.

A discretized version of the LoG Operator is shown in Equation 3.15. Here, a size of

9 × 9 sample points was used as footprint for the LoG Operator:

LoG =







































0 1 1 2 2 2 1 1 0

1 2 4 5 5 5 4 2 1

1 4 5 3 0 3 5 4 1

2 5 3 −12 −24 −12 3 5 2

2 5 0 −24 −40 −24 0 5 2

2 5 3 −12 −24 −12 3 5 2

1 4 5 3 0 3 5 4 1

1 2 4 5 5 5 4 2 1

0 1 1 2 2 2 1 1 0







































. (3.15)

In Figure 3.8, the discretized Laplacian-of-Gaussian filter kernel was applied to the

two example height fields already used in the previous secion, a range scan of Crater Lake
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and a synthetic half donut shaped height field. As an effect of the smoothing operation

the result is less noisy and distinct features as the river, visible on lower left corner of the

Crater Lake image, are enhanced.

3.2.3 Curvature Based Testing Schemes

Direct evaluation of the curvature of a displacement map at a specific position is quite

expensive due to the amount of memory accesses necessary and thus it is impracticable

for hardware implementation or even real time applications. On the other hand it is not

necessary to store the absolute curvature values of the displacement map in a second map

and evaluating it in a test function. Instead the information about where to sample is

stored in another map. Two example schemes are presented here, a very simple and space

efficient scheme and a more sophisticated algorithm.

Decision Maps

This new scheme is fairly easy to implement and requires almost no preprocessing other

than calculating the curvature. It is very light on resources while performing the actual

sampling [3].

After the curvature of the displacement map has been calculated all curvature values

are compared to a user defined threshold and all values above the threshold are marked.

The resulting one bit deep image has non-zero values at positions where the displacement

map has high curvature values, thus needs to be sampled more accurately. This one bit

image is further-on called Decision Map as it controls the sampling process.

Although this information alone is already sufficient to control the sampling process

the generated decision bit is again subject to point sampling artifacts when structures

as in Figure 3.2 are present. To avoid this, all non-zero values in the Decision Map are

spread out in a circular manner by a user defined radius as shown in Figure 3.9, effectively

enlarging the area of influence of values with higher curvature than the threshold.

In Figure 3.10 the Decision Map creation process for the Crater Lake height field is

shown. Later in the rendering process it is only necessary to lookup the value in the

Decision Map to decide whether to sample more accurately at a specific position. The

additional storage necessary for the Decision Map is very moderate and the additional

lookup can be avoided when the map is stored with the displacement map by enlarging

the displacement map entries with the one extra bit.

The specification of the threshold and the enlargement size of a sample above the

threshold is not straightforward and depends strongly on the displacement map and the
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(a) Discretized Laplacian (left) and the Laplacian of Gaussian filter kernel (right)

applied to the half donut shaped height field.

(b) The same filter kernels as in (a) applied to the Crater Lake height field.

Figure 3.8: Discretized Laplacian-of-Gaussian defined in Equation 3.15 applied to

the same height fields as in Figure 3.7 with the result from Figure 3.7 shown on the left

for comparison.
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Figure 3.9: A small section of the curvature of a displacement map with the resulting

Decision Map. On the left the curvature of the map is shown with darker values corre-

sponding to higher curvature. In the middle the result of the thresholding and on the

right the spreading is applied, too.

geometry it is applied to, which makes this scheme somewhat difficult to use. The sam-

pling information is due to the only one bit deep Decision Map of course very limited and

every region that has a non-zero Decision Map value will be sampled until the maximum

sampling accuracy of the rendering algorithm is reached.

Curvature Maps

The Decision Map introduced in Section 3.2.3 can produce satisfying quality if some care

is taken about the parameters and the base domain surface sampling density. To make

the sampling process more adaptive to the displacement map’s shape, more information

than just one bit has to be stored. In the new Curvature Map [4] not only the information

where to sample is stored, but also under which circumstances, more specifically when to

stop.

Typically adaptive sampling is a tail-recursive process. Starting from a coarse level

of resolution a refining process is performed, that continues until a chosen error metric

drops below a given threshold or a maximum recursion level is reached. In order to get

more control over the adaptive sampling process the error threshold should be dependent

on the present recursion level. When the recursion level increases, the threshold should

increase as well because the covered area of the sample point is much smaller and thus

should only be resampled when large changes in curvature values are present.

In Figure 3.11 an example of a recursive refinement scheme is shown. The algorithm

begins with the outer two black sample points and evaluates the middle point of the edge,

h. The curvature at point h is, although smaller than at point e, large enough to trigger
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(a) Laplacian of Gaussian (b) Thresholded curvature (c) Final Decision Map

Figure 3.10: Decision Map creation for the Crater Lake height field. After thresholding

the LoG filtered image all samples are spread out to avoid sampling errors. White areas

in the thresholded image correspond to curvature values above the threshold and white

entries in the Decision Map mark areas where more sampling is necessary.

hdb fc e ga

Figure 3.11: Example of an adaptive sampling scheme. Lighter sample colors indicate

a higher recursion level.

the insertion of the point. The algorithm then continues in a similar manner to insert

points b, d and f . After point f has been inserted, e and g are tested. At point e the

curvature is high enough to trigger the insertion of the point even though the recursion

level is higher but at point g the curvature is, although slightly higher than at point h, not

high enough. This corresponds nicely to the shape of the curve as no more detail would

be added by adding point g and unnecessary oversampling would occur at that position.

Similarly for point a, where the additional point wouldn’t add any additional accuracy to

the sampling result.
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Figure 3.12: A small section of the curvature of a displacement map and an example

step when creating the corresponding Curvature Map. On the left the curvature of the

map is shown with darker values corresponding to higher curvature. In the middle the

result of the thresholding and on the right side the spreading for the darker colored sam-

ple has been done. To complete the Curvature Map the spreading has to be performed

for all positions in the middle image.

To calculate the Curvature Map a similar approach as for the Decision Map is used. The

displacement map is processed using the LoG filter and the resulting curvature values are

compared against a user defined threshold and all values above the threshold are marked

with one and stored in a map. To avoid missing small features the non-zero values are

spread out by drawing a circle with a radius depending on the curvature value, higher

curvature corresponding to a larger circle, around the entry in the map. The circle is

drawn by increasing the map entries by one as shown in Figure 3.12.

The spreading of the thresholded values results in higher values in the Curvature Map

for samples in proximity of values of high curvature. To ease the evaluation of the Curva-

ture Map during rendering, only the maximum tessellation recursion level for that further

sampling should occur is stored in the Curvature Map, so that by a simple comparison a

decision can be made while rendering.

As the range of possible recursion levels is usually far smaller than the range of possible

entries in the Curvature Map, it has to be quantized to allow for a one-to-one mapping

from recursion level to Curvature Map entry. The quantization can be performed either

in a linear fashion with equidistant ranges per recursion level or an exponential mapping

with increasing ranges for higher recursion levels, as a preprocessing step.

To map an entry c from the unquantized Curvature Map we have to find the interval

fd, where d corresponds to the corresponding recursion level, so that:

d ∈ [0 : rmax] : c ∈ fd =
[

edk, e(d+1)k
[

(3.16)



3.3 Quality and Error Control 30

where rmax is the maximum recursion level, and k is derived from the maximum value

fmax in the unquantized Curvature Map:

k =
1

rmax

log (fmax), (3.17)

In Figure 3.13 unquantized Curvature Maps and final Curvature Maps for the example

displacement maps from Figure 3.7 are shown.

3.3 Quality and Error Control

As there exists an unlimited number of possible displacement maps and base domain

surfaces it is important to measure the performance of the different sampling tests and

combinations of them. When the sampling tests are used for tessellation as described

in Section 4.3 the quality of the tessellation result can be measured by calculating the

difference between the resulting mesh and an optimally tessellated mesh. An optimal

mesh with respect to accuracy for a discrete displacement map can be easily created by

using one sample point per position in the original displacement map and adding a vertice

at that position. Any additional vertex will not add any more information to the mesh

as it is only a linear combination of the already existing points.

The distance between two triangle meshes can be measured using the algorithms de-

vised by Cignoni et al. [19]. The distance is calculated by sampling the surfaces with

different algorithms like Montecarlo sampling, Subdivision sampling and Similar Triangles

sampling. This error measure is basically the integral of the simple vertical error across

the triangle mesh surface.

3.4 Conclusions

Different schemes for sampling displacement maps are feasible with distinct advantages

and weaknesses. In order to obtain satisfactory results a combination of the schemes

is often necessary. The most difficult problem with sampling displacement maps is the

locality of changes, it is almost impossible to predict the shape of a displacement map

at a specific position, even when the surroundings are fully known. To avoid sampling

artefacts by missing distinct geometric changes in the map it is necessary to presample

the map to some extend and identify important areas.

Efficient ways to detect these areas are to measure the curvature of the map and to

store it in a second map, a Curvature map. Altough the Curvature map contains only
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(a) Curvature Maps for the half donut shaped height field before (left) and after(right)

quantization

(b) Unquantized and quantized Curvature Maps for the Crater Lake height field

Figure 3.13: Curvature Maps for the donut shaped displacement map and the Crater

Lake height field from Figure 3.7.
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the areas of change in the displacement map, so that it is very easy to decide whether a

specific position needs to be sampled more accurately, the problem of finding the position

in the first place persists. By spreading out the information about the curvature it can be

at least detected whether a point in the map is in close proximity to a change in height.

If a suitable spread radius is chosen sampling errors caused by missing features can be

avoided. The process of finding an appropriate radius is somewhat cumbersome as it

depends not only on the input height field, but also on the used base domain surface.

Alternatively the average height of an area can be precomputed and stored in a

summed-area table. This allows to determine the average height of any rectangular area

in the map, and especially to compare the average height of regions in the map. Hardware

support for fast reading from summed-area tables is not available nor expected anytime

soon so it has to be emulated using normal texture memory, requiring four read accesses.

A convenient way to detect changes in a map is to simply compare the surface normals

of the resulting displaced vertices. The distinct advantage is that no extra memory or

lookup tables are necessary to perform the test. Although this is of course again subject

to aliasing, being a form of point sampling, it works very well when the input data has

only small features like ripples or small bumps and combines very well with the height

average test.



Chapter 4

Algorithms for Hardware Rendering

Rendering displacement mapped surfaces is a process that involves a significant number

of geometric and arithmetic operations. When applied to a triangle mesh, it involves prior

retessellation of the base domain surface and transformation of the vertices and normals.

Even on fast CPUs, it is a time consuming operation, wasting bandwidth and processing

power. As for all expensive rendering algorithms, the ultimate goal is to reimplement

them using dedicated hardware or reusing present (graphics-) hardware to get interactive

rendering performance and reduce the strain on the CPU. Currently only one commercially

available graphics card [38] is capable of directly rendering displacement maps. Adding

displacement map rendering to currently available hardware architectures presents several

problems. For analyzing the capabilities of present hardware architectures, the OpenGL

rendering pipeline can be used as a starting point.

4.1 The OpenGL Rendering Pipeline

A defacto standard for 3D graphics rendering is the OpenGL graphics API introduced

by SGI in 1993 [42]. It provided an open standard for writing 3D graphical programs

and a standardized way to access the available 3D graphics hardware. In Figure 4.1 a

schematic diagram of OpenGL is shown. The vertex and pixel data flow as shown in the

Figure is still mostly valid for todays graphics hardware, only the computing power of

some units has seen a massive increase in the last few years, in particular the Vertex and

Fragment Processor. Apart from the vastly improved computing power the flexibility and

programmability of these processors has increased. Some important units of the pipeline

are described in more detail in the next sections.

33
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Figure 4.1: Block diagram of the OpenGL pipeline.

4.1.1 The Vertex Processor

The Vertex Processor is responsible for executing all operations that have to be done per

vertex like the transformation from object space to view space, and the lighting calculation

for Phong shading [40]. The first generations of OpenGL graphics architectures featured

only hardwired transformation and lighting operations and were actually calculated by the

CPU since the computing power in the graphics hardware pipeline was not sufficient. This

has undergone a great change, the fixed operation unit was replaced with an programmable

vector processor.

The Vertex Processor processes one vertex at a time, completely isolated from the sur-

rounding geometry and has no concept of higher order geometric shapes or even simple

objects like triangles. All the data associated with the vertex being processed is trans-

ferred to the vertex processor, the geometry data – vertex position and surface normal if

applicable in model space – color information and texture coordinates. The input data

is then transformed either using a fixed function transform with a user supplied transfor-

mation matrix, or in case of a programmable processor a corresponding vertex processor

program. The transformed data is thereafter fed into the rasterizer, where all coordinates

are linearly interpolated across the primitive the vertex belongs to.

4.1.2 The Fragment Processor

The Fragment Processor operates on the interpolated fragment or pixel values generated

by the rasterizer. In contrast to the Vertex Processor it has access to the graphic hard-

wares texture memory. The amount of texture memory and the number of accesses to

the memory that can be made for every pixel is implementation specific, as well as the
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number of operations that can be performed for every pixel. The performance and pro-

grammability of this unit has increased in an equal manner as the Vertex Processors. In

current implementations, the unit is provided with interpolated position, surface normal,

color and multiple texture coordinates.

The command set is usually smaller and less powerful than in the vertex stage, which is

due to the fact that the data throughput is considerably higher in the fragment processing

stage, since the operations are applied to every pixel and not only to every vertex.

4.2 Rendering using Tessellation

A straightforward way to enable present hardware architectures is to retriangulate the

original mesh according to the displacement map and displace the vertices before the

actual rasterization is performed. In general, the resolution of the base domain surface is

not sufficient to capture the detail contained in the displacement map, as it would result

in one vertex per sample point of the displacement map. Although this obviously leads to

a very high accuracy, the amount of triangles that needs to be rendered is also very high.

For a n × m sized displacement map, 2 × n × m triangles. There is no straightforward

way to limit the tessellation of the base domain surface, if the displacement map is not

discrete. The amount of triangles created is also completely independent of the structure

of the applied displacement map, and many unnecessary triangles are possibly rendered.

4.3 Adaptive Tessellation

A possibility to overcome these problems is to tessellate the individual triangles sequen-

tially and to adaptively add triangles where necessary, until a desired level of accuracy is

reached. When performing adaptive tessellation, it is important to split adjacent triangles

consistently to avoid t-vertices, as shown in Figure 4.3. This simple example contains two

adjacent triangles, where only one was scheduled to be split. As a result on the common

edge of the two triangles a vertex is added only on the triangle to be split. When the

displacement is applied to the triangle vertices afterwards, the edge on the unsplit triangle

will be linearly interpolated, while for the split edge the new vertex is displaced according

to the corresponding displacement map entry. If the displacement map does not happen

to change linearly between the start and end point of the adjacent edge a gap will open

between the vertex and the unsplit edge resulting in a hole in the rendering of the triangle

mesh.
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(a) Fully tessellated (b) Adaptive tessellation

(c) Zoomed out view of an adaptively tessellated triangle mesh with

the Crater Lake height field applied

Figure 4.2: Unnecessary triangles in an even region of the source displacement map.

Adaptive tessellation, as used on the right side, can reduce the triangle count massively.

The complete mesh is shown below.
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T−Vertice GapSplit

Figure 4.3: T-Vertice caused by an asymmetric split of adjacent triangles. Displacing

the vertices afterwards may result in a gap as shown on the right.

While many remeshing algorithms for terrain or height field approximation using tri-

angular meshes exist, few are suitable for hardware implementation because of memory

constraints. A common strategy for finding an optimal solution is the introduction of an

error metric for a triangulation and iteratively minimizing the global error. Measuring

the global error of a triangle mesh involves storing the whole triangulation result – O(n)

space and time is necessary – which may be easy though expensive in CPU oriented al-

gorithms, but in an algorithm targeted at existing graphics hardware architectures the

amount of random access memory is usually very limited and not optimized for this kind

of operation.

Garland et al. [25] analyze variations of the greedy insertion algorithm. The greedy

insertion algorithm tessellates by successively inserting vertices at the position with the

largest error and continues until either a given number of vertices is present or the maxi-

mum error is below a given threshold. A naive implementation of this will consume O(n)

time per iteration, and for an iteration limit of m resulting in m inserted vertices O(nm)

time. With the use of a heap, and updating the error only where necessary, Garland

reduces the time cost to O((m + n) log m, but the memory consumption is increased to

O(m + n). The heap enables the algorithm to easily pick the point with the largest error

and also to compare it to a some threshold. The algorithm starts with a quadrilateral

and inserts points, selecting the position with the largest error. The resulting mesh is a

Delaunay triangulation. As discussed in Section 4.1, graphics pipelines are usually stream

oriented with respect to the geometry, and the random access memory buffers that might

exist for storing such data are strictly limited in size, and only portions of the mesh can

be stored at a time. The necessary presegmentation of the input triangle mesh compli-



4.3 Adaptive Tessellation 38

cates the retessellation process in particular at the segment borders. A simpler scheme

for remeshing, that may not produce the optimal result but rather uses conservative as-

sumptions about quality and still be adequate for a possible hardware implementation is

needed. Thus, only local error criterias can be used, specifically criterias local to at most

one triangle.

4.3.1 Local Edge only Tessellation

It is already a difficult task to maintain connectivity inside a mesh, while retessellating

when using a CPU based algorithm. When moving to a custom hardware algorithm,

it becomes even more challenging, mainly due to memory access restrictions. While

storing and using the connectivity of a triangle may be feasible, accessing the actual data

of an adjacent triangle would require random read and write accesses to the memory

where the triangle list of the mesh is stored. This would hurt pipeline performance

because of memory latency and because of the necessary write access, in this case to

store the information about the updated connectivity, would make parallel execution very

complicated if not impossible.

To avoid these problems the tessellation is performed on a per-triangle-basis where

information local to that triangle is used.

This effectively limits the possibilities of the vertex insertion decision to criterias local

to a triangle. Furthermore, if t-vertices are to be avoided, the available information is

limited to the common edge, as using information about the third, opposing triangle vertex

or the area within the triangle will not be accessible by the adjacent triangle. Thus, the

decision is made solely based on information contained in the edge that is to be split. The

tradeoff of this scheme is that every test performed for the decision is performed twice,

for both triangles adjacent to an edge, although this could be partly avoided through the

use of an edge buffer in the testing stage.

The decision whether and where to insert vertices can be made upon the sampling tests

introduced in Chapter 3.

4.3.2 Triangle Tessellation Strategies

A great number of schemes for tessellating triangles exist. Because of the limitations

imposed on algorithms targeted at a hardware implementation, only few are actually

considered in this thesis. For retessellating a triangle new vertices have to be inserted,

possibly on an edge or inside the triangle. It is necessary to allow inserting vertices
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a) b) c) d)

Normal triangle edge

Triangle edge that needs to be split
Source triangles

Resulting triangles

Figure 4.4: Possibilities for splitting triangles.

along the edges since otherwise the base triangle edges remain unchanged throughout the

tessellation process. If a vertice is added on a triangle edge, it is important to ensure

that the neighboring triangle is split equally along the shared edge as t-vertices could be

created and cracks may appear in the surface, as shown in Figure 4.3. If we limit the

insertion of vertices to one per triangle edge, the number of possible constellations for

the resulting new triangles is limited to four different cases. In Figure 4.4, the four cases

with the resulting splits are shown. For the cases b) and c) the symmetries for the input

triangles are not considered. In case c) the resulting triangulation is ambiguous as two

symmetrical cases exist. As a solution to this and to avoid long and narrow triangles, the

shape of the source triangle can be used. As it can be seen in Figure 4.5, the length of

the bisecting line of the opposite corner to the split edge can be used as criteria. If the

shorter bisecting line is inserted as in a) the resulting triangles are more regular in shape

and the long and narrow triangles as in b) are avoided.

4.3.3 Vertex Insertion and Position Modification

Often the quality of a mesh with displaced vertices can be improved without adding new

vertices, just by moving vertices to a position that adapts better to the displacement maps

shape. In Figure 4.6, the inner two vertices of the edge were moved to the closest points on

the edge with a maximum in curvature. The resulting linear approximation of the curve
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b)a)

Figure 4.5: The two symmetrical tessellation options for a triangle with two split

edges. In case a) the bisector used for splitting the triangle is shorter than in case b)

resulting in smaller and more regular triangles.

Original curve
Approximation

Figure 4.6: Movement of vertices on an edge to improve the sampling and the result-

ing linear approximation of the original shape. The thin line represents the original

displacement map shape and the thicker lines the resulting approximation created by

the respective sampling. On the left side the original sampling is shown and on the right

side the sample points were moved to points with higher curvature thus improving the

sampling result.

adapts far better to the sharp edge in the middle of the curve. If the original vertices

cannot be modified due to the nature of the remeshing scheme, the positioning of new

vertices also has great impact on the outcome. In Figure 4.7 an edge with a sharp peak on

the right end is sampled. On the left side new vertices are only added in the middle of the

edge, and on the right side the new vertice is added at the point of maximum curvature

along this edge. To achieve a similar sampling quality with the midpoint insertion, a lot

more sample points are necessary as if the sampling position is variable. The position

adaption to the curvature features is difficult to implement though, as it is non-trivial to

find these feature points without sampling the whole edge.
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Figure 4.7: Midpoint insertion causing unnecessary oversampling. On the left side the

new vertices are only inserted in the middle of the edge while on the right side the new

vertices are moved to the point of highest curvature on the edge.

4.3.4 Base Domain Surface Tessellation

Not only the amount of vertices in the base domain surface has a strong influence on the

quality of the outcome, the arrangement of the vertices inside the base domain surface

may have an effect. Highly regular base domain surface triangulations, as they are usually

used when the base domain is synthetic, a flat square for example, can cause visible

artefacts, because the base triangulation tends to remain somewhat visible even in the

final tessellation result. Additionally, if the applied displacement map is also very regular

with a frequency close to the base tessellation vertex distances, it can lead to severe

sampling errors as shown in Figure 4.8. Because of this it is favorable not to use too

regular tessellations or add a little jitter to the inner vertices.

4.4 Basic Tessellation Pipeline

To combine the functionality of the tests with the triangle splitting a pipeline has to be

designed. In Figure 4.9 a top-level view of a basic tessellation pipeline is shown. It works

by recursively subdividing triangles with the use of a triangle stack. The base domain

surface triangles are fed to the pipeline and buffered in the Triangle FIFO. In case that

the Triangle Stack is empty the first triangle in the FIFO is selected and forwarded to the

Triangle Test Unit, where some of the tests described in Section 3 are performed on the

triangle. If the Triangle Test Unit detected that some edges need to be split the triangle is

moved to the Triangle Split Unit, otherwise the triangle is forwarded to the rasterization

pipeline. When a triangle needs to be split the Triangle Split Unit tessellates it according

to a user definable rule, for example as described in Section 4.3.2, and feeds the new

triangles to the Triangle Stack. To avoid an overflow in the Triangle Stack, it has a higher

priority than the input Triangle FIFO. The Triangle FIFO’s status is supervised by the

operating systems driver, and no overflow should occur. All the test for the performance
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(a) Regularly tessellated base mesh with a height field containing a sequence of sharp dents.

(b) Jittered base mesh tessellation avoiding the sampling error on (a) caused by the too regular

base mesh tessellation

Figure 4.8: Applying jitter to the inner vertices of a very regular triangle mesh to

avoid visible artefacts and sampling errors.
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Figure 4.9: Basic tessellation pipeline for adaptive tessellation.

and quality of the tests introduced before in Section 3 and the triangle splitting and vertex

insertion strategies were tested with a similar pipeline architecture. Some of the tests can

reuse functional units present later in the rendering pipeline. For example the Surface

Normal Variance Test presented in Section 3.1.1, needs to perform a bump operation on

the surface normal of a vertex that can also be calculated in the vertex shader stage or

even a dedicated bump mapping unit. If possible, the redundant implementation should

be avoided, for example through the use of a feedback loop from the rendering pipeline

to the testing unit.

4.5 Tessellating with the OpenGL Pipeline

A standard OpenGL pipeline as described in Section 4.1 is capable of rendering the

previously tessellated and displaced triangle meshes. However, in order to reduce the

computational load on the CPU, the tessellation should be done on the graphics hardware.

In the following Section the lacking functionality is identified and the necessary additions

are presented. As a base for the analysis currently available high-end commodity graphics

hardware like a nVidia NV3X or ATI R3XX was used.

The computational power in the Vertex Processor – called VP further on – stage is

sufficient to perform the necessary operations, but some essential functionality is missing.

For displacing the vertices, a crucial feature is access to some sort of texture memory

to read the displacement map data. Without any texture storage, only procedural dis-

placement maps or very small maps that fit into the constants register storage usually

present in VPs, can be applied. Once the displacement amount is obtained the actual

displacement of the vertice is a fairly trivial operation, and a previously tessellated mesh

can be displacement mapped. For performing the tessellation in place more connectivity



4.6 Vertex Processor Feedback Loop 44

information is needed though, as the VP only operates on single isolated vertices, with

no information about neighboring vertices or connectivity, which is important for most

sampling tests, as they rely on information about an edge. Additionally it is not possible

to insert new vertices into the rendering pipeline as it is required for creating new tri-

angles. Considering the highly optimized pipeline in the VP, it makes presumably more

sense to insert a tessellation unit before the pipeline and only calculate the displacement

and normal perturbation of the vertices in the VP. A possible simple tessellation unit was

demonstrated in Section 4.4.

4.6 Vertex Processor Feedback Loop

The VP in almost any currently available card has great computational power and flex-

ibility, as already described before in Section 4.1.1, and could be of great use for the

tessellation process. To allow the tessellation units to exploit the computational power in

the VP some changes have to be made to the pipeline. If a vertex buffer is added after

the VP, creating a feedback loop back to the testing units, the VP could be used as a sort

of co-processor in the tessellation process. As a major advantage of this new approach,

the change to the existing pipeline is fairly minimal and unintrusive. New and possibly

better testing schemes can be added, as the flexibility and arithmetic performance of new

VPs increases. The resulting pipeline is shown in Figure 4.10.

The arithmetically complicated test unit required in the basic pipeline in Figure 4.9 can

be replaced with a mere control unit. Whenever a triangle that needs to be tessellated –

for displacement mapping for example – a VP program for performing the tests is applied

to the triangle vertices. For accessing the displacement map data, the control unit needs

access to some sort of dedicated graphics memory. If the VP has texture memory access

of its own, it can of course be omitted in the control unit. The calculation result is then

fed back through a vertex buffer to the tessellation control unit, where further tessellation

or the final rendering is initiated. To avoid pipeline stalls, the triangles are fed back into

the vertex stream through buffers, after the necessary splits have been calculated. The

changes to the rendering pipeline are completely transparent to the VP as it makes no

difference if the vertices are transformed and rendered, or some other testing operations

are performed.
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Figure 4.10: The basic OpenGL pipeline from Figure 4.1 modified for using a vertex

processor as an arithmetic unit for the tessellation pipeline. Additional units are grayed

out in the zoomed view.

4.7 Retessellation Results

In this section, the different sampling strategies presented in Section 3 are applied to

combinations of displacement maps and base domain surfaces, and the results are com-

pared using the measurement algorithms described in Section 3.3. The tessellation results

were compared to an exact tessellation, as described in Section 3, with one vertex per

displacement map point.

4.7.1 Used Sampling Tests

The base domain mesh used as a starting point for the tessellation process has great

influence on the quality of the outcome. In particular the resolution must be taken into

account when choosing the thresholds for the sampling algorithms. The algorithms were

tested on meshes with 4, 25 and 100 vertices with different parameters to demonstrate

the influence of the thresholds on the different algorithms. All thresholds are defined in

the range from 0 to 1. The following tests were used:
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Displacement Map Name Size Description

Ashby 346 × 452 Ashby Gap, Virginia, USA

Crater Lake 336 × 459 West half Crater Lake, Oregon, USA

Ozark 369 × 462 Ozark, Missouri, USA

Volker 512 × 456 Cylindrical scan of the head of Volker Blanz

Donut 512 × 512 Synthetic half-donut shaped map

Peaks 512 × 512 Synthetic flat map with narrow peaks

Table 4.1: Table of Displacement Maps used for tessellation tests.

• Surface Normal Variance Test(SNV), Section 3.1.1

• Local Area Average Height Test(LAAH), Section 3.1.2

• View Dependency Test(VD), Section 3.1.3

• Refinement Limit Test(RL), Section 3.1.4

• Decision Maps(DM), Section 3.2.3

• Curvature Maps(CM), Section 3.2.3.

The following combinations were used to perform the actual tests:

• Local Area Average Height Test, Refinement Limit Test and View Dependency

• Surface Normal Variance Test, Refinement Limit Test and View Dependency

• Local Area Average Height, Surface Normal Variance and Refinement Limit Test

• Decision Maps, Refinement Limit Test and View Dependency

• Curvature Maps, Refinement Limit Test and View Dependency.

The two negative response tests – the View Dependency Test and the Refinement Limit

Test – make little sense to be used individually, since they only remove vertices.

4.7.2 Tessellation Results for the Ozark Displacement Map

The Ozark displacement map is a terrain height field with plenty of high frequency in the

geometry and fine detail. An example rendering of a tessellated and displaced rectangular

mesh is shown in Figure 4.11. On the right side the mesh is drawn with only the triangle
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Figure 4.11: Rendering of the Ozark displacement map with the corresponding triangle

mesh shown.

edges shown. Table 4.3 shows the tessellation results for the Ozark displacement map

for different combinations of testing algorithms and base mesh triangulations. In this

case the Local Area Average Height Test (LAAH) and the Surface Normal Variance Test

(SNV) are listed. The Refinement Limit Test was always applied.

Already for a base mesh with as little as four vertices or two triangles very satisfying

results can be obtained. Increasing the amount of triangles in the base mesh reduces the

error further and more importantly reduces the number of iterations necessary. The tests

were used alone and combined, to show that the combination will yield better results than

expected in Chapter 3. As the displacement map contains many of small changes the

Surface Normal Variance Test performs already very well, and the Local Area Average

Height Test misses a lot of the fine detail due to its averaging nature. If the starting

tessellation is very coarse as in the 2 × 2 case the combined result is tessellated far more

and also better than with the individual ones, although the individual thresholds are

equal. This is due to the fact that the SNV test is likely to miss changes on a too large

scale. If the thresholds for the individual tests are lowered, the SNV test will produce

substantially more triangles than the combination of the tests and still yield a higher error.

The LAAH test produces satisfying results with a lower threshold but the recursion level

has to be increased and the number of triangles created is much higher, too. Equal results

can be seen with the 5 × 5 and 20 × 20 base meshes. For the 5 × 5 case the combined

tessellation tests even result in a lower error although the triangle count is reduced. The

combined tests obviously adapt better to the source geometry than the individual tests.



4.7 Retessellation Results 48

Thresholds Ver-

tices

Error in % Volume

Error

SNV LAAH Maximum Mean Mean

Square

Starting tessellation 2x2 vertices

disabled 0.01 3626 8.4 0.35 0.9 2998

0.3 disabled 4625 7.95 0.22 0.55 1995

0.3 0.01 10837 1.3 0.07 0.1 1221

0.1 disabled 13578 3.4 0.08 0.11 1543

disabled 0.001 13124 1.45 0.07 0.1 1436

Starting tessellation 5x5 vertices

disabled 0.01 12167 1.8 0.08 0.12 1758

0.3 disabled 23996 3.5 0.07 0.11 3467

0.3 0.01 23108 1.36 0.06 0.06 2324

Starting tessellation 20x20 vertices

disabled 0.1 17303 1.33 0.07 0.1 2273

0.3 disabled 20031 1.46 0.07 0.1 2493

0.3 0.1 27015 0.9 0.06 0.08 2914

Table 4.3: Tessellation results for the Ozark displacement map applied to rectangular

base meshes with 2 × 2, 5 × 5 and 20 × 20 vertices.
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Tessellation Level: 0 1 2 3 4

Figure 4.12: Different recursion levels generated while tessellating a rectangular tri-

angle mesh for the Crater Lake displacement map. The upper left corner is zoomed in

to show the adaptive tessellation surrounding a river valley.

Recursion Process

To illustrate the process of retessellating the base mesh, the triangulations at different

iteration levels were calculated and are shown in Figure 4.12. The upper left region of the

result is zoomed in, showing the course of a river with increasing level of detail. The river

area demonstrates the advantages of the adaptive tessellation process, as the very fine

triangulation is only generated at the river valley and not in the surrounding smoother

areas.

Curvature Map Results

When precomputing the curvature maps the user is presented with not only one threshold,

but with three input parameters that have a strong influence on the tessellation result.

Apart from the curvature threshold controlling the initial entry in the curvature map,

also the radius of the spreading circle and the maximum tessellation recursion level are

necessary. In table 4.5 tessellation results for the Ozark displacement map are shown when

using Curvature Maps for controlling the tessellation process. Additionally to the errors

the percentage of tessellated triangles is given. The percentage depends on the maximum

recursion level allowed and is a good indication for the effectiveness of a tessellation. The

tests with a very low curvature threshold show a very high percentage of tessellation, very

close to the theoretical maximum. While this results in very good quality, there is little

or no adaptiveness of the tessellation and little gain from using an adaptive algorithm at

all. Thresholds around 0.5 give very good results and show even better results than the
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more complicated testing algorithms tested before in table 4.3. Increasing the threshold

further, slowly decreases the triangle count and increases the error which is expectable

due to the reduced triangle count.

4.8 Conclusions

A base domain surface with a displacement map applied to it can be rendered by tessel-

lating the base surface triangles first, and displacing the new vertices. The new vertices

are necessary, because the base domain surface resolution is usually far too low to allow a

satisfying adaption to the shape contained in the map. Ideally, the new vertices should be

added only where necessary to reduce the triangle count when rendering afterwards. The

sampling tests presented in the previous Chapter can be used for controlling the adap-

tive tessellation process and lead to very satisfying results. A typical implementation of

the OpenGL pipeline, as it is found in most graphics hardware architectures available

today, lacks important features in the geometry processing stage to enable it to perform

an adaptive tessellation of the base domain surface. With some simple additional units

the graphics pipelines can be changed to very flexible tessellation units that can do more

than just a simple adaptive tessellations for displacement mapped surfaces.
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Threshold Spread Recursion Vertices Error in % Triangles

Maxi-

mum

Mean in %

0.1 5 7 16460 0.56 0.066 99.41

0.2 5 7 15692 0.56 0.067 94.96

0.3 5 7 14336 0.69 0.069 86.77

0.4 3 7 12149 1.35 0.074 99.75

0.4 5 7 12636 0.91 0.073 76.46

0.4 7 7 13236 0.91 0.071 80.05

0.4 9 7 13672 0.69 0.071 82.64

0.5 3 7 10470 2.57 0.078 63.40

0.5 5 7 10907 0.91 0.076 65.95

0.5 7 7 11564 0.91 0.075 69.92

0.5 9 7 12235 0.91 0.073 73.93

0.6 3 7 8652 2.57 0.084 52.37

0.6 5 7 9081 1.93 0.83 54.92

0.6 7 7 9872 1.94 0.811 59.70

0.6 9 7 10567 1.23 0.076 63.84

0.4 3 8 43220 0.92 0.052 65.68

0.4 5 8 44965 0.88 0.052 68.32

0.4 7 8 47013 0.69 0.051 71.42

0.4 9 8 49637 0.64 0.051 75.42

0.5 3 8 36076 1.07 0.054 54.83

0.5 5 8 37889 0.9 0.054 57.56

0.5 7 8 40725 0.9 0.053 61.86

0.5 9 8 43272 0.69 0.052 65.73

0.6 3 8 29303 2.5 0.058 44.54

0.6 5 8 30943 2.1 0.058 47.02

0.6 7 8 34078 2.1 0.056 51.77

0.6 9 8 37016 0.9 0.054 56.22

Table 4.5: Tessellation results for the Ozark displacement map applied to a rectangular

base mesh with 2 × 2 using Curvature Maps.



Chapter 5

Direct Rendering Algorithms

Although currently available graphics hardware mostly lacks support for inserting new tri-

angles or vertices and sampling a texture map in the geometry processing stage rendering

of a displacement mapped surface is still possible. In contrast to the rendering schemes

from Chapter 4, the base domain surface is not modified according to the displacement

map, but rather simple ray tracing or image based approaches are used. This became

possible with the great increase in flexibility seen in the last few generations of commodity

graphics hardware.

5.1 Prism Renderer

Most approaches to displacement mapping require that the geometry of a given base mesh

can be modified, especially in the sense of adding more detail in the form of retessellated

triangles. Currently available hardware, at which this algorithm is targeted, does not

allow vertices to be added, once the geometry has been transferred to the graphics card.

To work with this restriction this new algorithm [5] does not generate geometry on the

card, but instead creates triangles that cover the area on the screen that could be affected

by the displaced base mesh triangle. When the covering triangles are rasterized a per

pixel calculation is performed to detect an intersection with the displaced surface. The

number of covered triangles should be kept to a minimum to reduce the geometry transfer

overhead. The bounding volume of the surface with a displacement map applied to it is

given by a prism obtained by displacing the base triangle along the vertex normals to the

maximum displacement height.

The area needed to cover the prism is given by its projection on the viewing plane. If

no additional geometry is to be generated the base triangle can be projected parallely to

the viewplane and expanded so that it contains the projected prism. Since the projection

52
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can result in a polygon with more than six vertices as shown in Fig. 5.1, where the

projection is a non convex polygon with seven vertices, the cover triangle is costly to

compute when an optimal solution is desired with only few unnecessary pixels rendered.

A far simpler and more robust approach is to use a quad instead as a cover for the prism.

The cover triangles can be chosen arbitrarily as long as they cover the projected prism of

Cover polygon

Figure 5.1: A possible projection of a prism on the viewing plane resulting in a polygon

with seven vertices. Two possible covers calculated with a single triangle and a quad

are also shown.

the displaced surface.

Since the cover triangles have to cover the extruded prism from all viewing positions,

they either have to be recalculated whenever the viewpoint changes or have to be chosen

in a manner such that they always cover the prism. The most straightforward way to do

this is to render the prism completely by triangulating it. At each pixel of the prism’s

triangles a non-trivial intersection of the viewing ray with the prism has to be performed,

placing a very high burden on the pixel shader pipeline. Since backfacing triangles can be

culled, the amount of used pixels to be drawn is relatively limited. The resulting triangles

are shown in Figure 5.2. The sides of the prism are quads and have to be split into two

triangles, the bottom and top of the prism remain unchanged resulting in eight triangles

to be rendered per base triangle. The displacement prism is displayed by rendering the

triangles and casting rays into the prism from every interpolated pixel. The rays are cast

in the viewing direction from each pixel position. To find out whether the ray intersects
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Figure 5.2: The prism with its resulting triangles used for rendering.

the displacement map, the height of the sampling position is compared to the height of the

displacement map at the interpolated texture coordinate of the sampling position. The

height ranges from zero at the base mesh level to one on the top of the prism. The 3D

texture coordinates need to be interpolated inside the prism, along the viewing direction.

The texture coordinates are local to the prism and a base transform has to be made at all

vertex positions to obtain the viewing direction in local texture space. Given a triangle

with vertices Vi = (xi, yi, zi) with normals Ni and texture coordinates Ui = (ui, vi) for

i = 1, 2, 3, the first step is to add a third coordinate defined by the height of the vertex

in the prism:

U ′
i := (ui, vi, 0) for vertices of the base triangle and U ′

i := (ui, vi, 1) for vertices of the

displaced triangle. To calculate the transformation for vertex V1 for example, on the base

triangle, a local base BTexture is defined with the texture directions e1, e2 along the triangle

edges:

e1 := U ′
2 − U ′

1

e2 := U ′
3 − U ′

1

BTexture := (e1, e2, 1)

In the same manner a local base BWorld is defined with the world coordinates of the
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vertices:

f1 := V2 − V1

f2 := V3 − V1

BWorld := (f1, f2, N1)

The basis transformation from BWorld to BTexture can be used to transform the viewing

direction at the vertex position V1 to local texture space.

To avoid sampling outside of the prism, the exit point of the viewing ray has to be

determined. In texture space the edges of the prism are not straightforward to detect

and a 2D intersection calculation has to be performed. This can be overcome by defining

a second local coordinate system which has its axes aligned with the prism edges. For

this 3D coordinates are assigned to the vertices as shown in Figure 5.3. The respective

name for the new coordinate for a vertex Vi is Oi. Then the viewing direction can be

transformed in exactly the same manner to the local coordinate system defined by the

edges between the Oi vectors:

g1 := O(i+1)modulo3 − Oi

g2 := O(i+2)modulo3 − Oi

BLocal := (g1, g2, 1).

(0,0,1)

(0,1,0)

(0,1,1)

(1,0,1)

(1,0,0)

(0,0,0)

Figure 5.3: The vectors used to define the second local coordinate system for simpler

calculation of the ray exit point.
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In the following the local viewing direction in texture space is called ViewT , and in the

BLocal base representation ViewL. It is assumed that the viewing direction changes linearly

over the face of a prism triangle. The local viewing direction in both coordinate systems

are assigned to 3D texture coordinates and used as inputs to the fragment shader pipeline

in order to get linearly interpolated local viewing directions. The interpolated ViewL

allows us to very easily calculate the distance to the backside of the prism from the given

pixel position as it is either the difference of the vector coordinates to 0 or 1 depending

on which side of the prism being rendered. With this Euclidean distance the sampling

distance can be defined in a sensible way which is important as the number of samples

that can be read in one pass is limited, and samples should be evenly distributed over the

distance. An example of this algorithm is shown in Figure 5.5. In this case four samples

are taken inside the prism. The height of the displacement map is also drawn for the

vertical slice hit by the viewing ray. The height of the third sample which is equal to the

third coordinate of its texture coordinate as explained earlier, is less than the displacement

map value and thus a hit with the displaced surface is detected. To improve the accuracy

of the intersection calculation, the sampled heights of the two consecutive points with the

intersection inbetween them, are substracted from the interpolated heights of the viewing

ray, as shown in Figure 5.4. Because of the intersection the sign of the two differences must

Negative
distance

Intersection point
Positive distance

Displacement map

Sample points

ViewL

Figure 5.4: Improving the intersection point by linearly interpolating between the two

consecutive sample points containing the zero crossing inbetween, shown on a slice of

the displacement map.

differ and the zero-crossing of the linear connection can be calculated. If the displacement

map is roughly linear between the two sample points, the new intersection at the zero-

crossing is closer to the real intersection of the viewing ray and the displaced surface

than the two sampled positions. Although the pixel position on the displaced surface is
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ViewL

Figure 5.5: Sampling within the extruded prism with a slice of the displacement map

shown.

now calculated, the normal at this position is still the interpolated normal of the base

mesh triangle. It has to be perturbed for correct shading, in this case standard bump

mapping using a precalculated bump map derived from the used displacement map is

used. The bump map is obtained by convoluting the displacement map with a Sobel

Operator [37] in both horizontal and vertical direction and storing the result together

with the displacement map in one texture, with the displacement stored in the alpha

channel.

The algorithm was implemented using OpenGL vertex and fragment programs and run

on ATI r3xx and nVidia nv3x class cards. The performance was similar on both cards.

The implementation also showed the limitations of the fragment shader accuracy. The

edges of the prism are obviously very sensitive to rounding errors in the shading pipeline.

On the prism edges the length of the sampling ray into the prism should be equal to zero,

which was arithmetically not always the case, leading to a false miss.
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5.2 Tetrahedral Renderer

Numerical problems can be reduced by simplifying the shape used that the rays are cast

through. The prism is geometrically complex for performing intersection calculations.

Obviously the prism can be split into three tetrahedrons as shown in Figure 5.6. The main

difference in using tetrahedrons instead of the prism is that the texture space coordinates

of the entry and exit point can be interpolated at the same time by the rasterization

units. The sampling points between the entry and exit point can then be obtained by

just linearly interpolating in between them. The tetrahedrons can be rendered using an

adaption of the Projected Tetrahedra (PT) Algorithm by Shirley and Tuchman[43].

5.2.1 Mesh Construction

Using tetrahedrons requires the construction of a tetrahedral mesh from the base domain

surface. It has to be ensured that neighboring tetrahedral edges are aligned in a consistent

way to avoid aliasing effects between adjacent triangles. This can be achieved without

knowledge of the connectivity in the tetrahedral mesh, by just setting up an enumeration

of the vertices in the mesh that allows for an index comparison. The enumeration can

be obtained from the vertex indices as they are usually given in an array. The algo-

rithm iterates over all faces in the triangle mesh folding up a prism by displacing every

vertex of the base triangle along the vertex normal direction. To globally adjust the

amount of displacement, the normal can be multiplied with a user defined scalar. Every

prism is then split into three tetrahedrons following the ordering scheme as schemati-

cally shown in Figure 5.6. The indices v0, v1, v2 are assigned to the lower vertices and

v3, v4, v5 to the upper base vertices. Now every prism is tiled into the three tetrahe-

drons T (v0, v1, v2, v5), T (v0, v1, v4, v5) and T (v0, v3, v4, v5). An additional requirement is

that v0 < v1 < v2 with respect to the consistent numbering scheme of the mesh as noted

before. Hence the algorithm simply works this way:

FOR_EVERY_TRIANGLE_FACE(f)

IF(v0 > v1)

SWAP(v0, v1)

SWAP(v3, v4)

IF(v0 > v2)

SWAP(v0, v2)

SWAP(v3, v5)
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IF(v1 > v2)

SWAP(v1, v2)

SWAP(v4, v5)

CREATE_TETRA(v0, v1, v2, v5)

CREATE_TETRA(v0, v1, v4, v5)

CREATE_TETRA(v0, v3, v4, v5)

v1

v2 v3

v4

v5

v0

Figure 5.6: Subdivision of a prism into three tetrahedrons:

T (v0, v1, v2, v5), T (v0, v1, v4, v5), T (v0, v3, v4, v5)

5.2.2 Rendering

To adapt the PT-algorithm to displacement mapping only a few modifications have to

be applied. In contrast to the standard algorithm where each vertex needs color and

opacity, each vertex is attributed with its respective tangent space consisting of normal,

tangent and bi-normal, each a 3d-vector. The tangent and bi-normal are necessary for

performing the bump map operation while shading the surface. Additionally two texture

coordinates, one for the bump and displacement map, the other for a freely usable tex-

ture, are assigned to each vertex. Before the geometry is sent to the rendering pipeline

a view-dependent preprocessing step has to be performed, where the tetrahedrons are

decomposed into triangles according to the PT-algorithm. In Figure 5.7 the possible pro-

jections of tetrahedrons and the respective decompositions are shown. At point S in the
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diagram the connecting edge between frontside and backside of the decomposed triangles

is calculated. The backside vertex is also called the secondary vertex of all the triangles.

So far all the processing has to be done on the driver side by the host computer’s CPU.

S
S

SS

Projected tetrahedron

Decomposited triangles

Figure 5.7: Possible decompositions of projected tetrahedrons into triangles.

Every triangle vertex (primary vertex) sent into the first stage is attributed with texture

coordinates and tangent space vectors. Likewise the vertex on the backside (secondary

vertex) of the decomposed tetrahedron is transfered as attribute including its texture

coordinates and tangent space vectors. With these parameters the vertex shader computes

homogeneous texture coordinates for the primary and secondary vertex. It also computes

the modelview projection transformation of the vertices and finally transforms per vertex

viewing and light direction into tangent space. In the second stage of this pipeline the

pixel shader performs the intersection calculation between eye vector and the displacement

map. To achieve this the pixel shader performs four lookups in the displacement map

given by the interpolated texture coordinates of the primary and secondary vertex and

two interpolated positions in between. The intersection between eyevector and displaced

surface is then calculated by substraction of the sampled displacement value from the

interpolated texture coordinates. A sign change indicates the interval where the eyevector

hits the displaced surface. In case no surface was hit the pixel is removed. Otherwise the

pixel will undergo a final shading step. Here, bump mapping was used to perturb the

interpolated normal and Phong shading using the fragment shader stage. An overview of
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Input Triangle Mesh

Input Displacement Map

Vertex Shader

Host

Pixel Shader

Figure 5.8: Overview of the pipeline for displacement map rendering using projected

tetrahedrons.

the rendering process is shown in Figure 5.8.

5.2.3 Accuracy and Performance

The presented approach is very flexible since no assumptions are made about the shape

of the displacement map or the base domain surface and apart from tetraeder generation

no preprocessing is necessary. The only thing that has to be ensured is a reasonable base

domain surface resolution to avoid sampling errors. Currently, the very limited amount

of sample points presents a serious problem. In the example shown in Figure 5.9, only

four samples inside a tetrahedron are taken. If the tetrahedrons are too large, features

are easily missed and the error is untolerable. On the other hand the amount of triangles

should be kept as low as possible, as the cost for every additional triangle is very high.

The price of the flexibility is that the amount of additional geometry is considerable. For

each base domain triangle a prism consisting of three tetrahedrons is created, with four

triangle faces each, resulting in 12 triangles all together. For each of these 12 triangles’

pixels a costly fragment shader program needs to be executed.

5.2.4 Adaptive Tetrahedrons

In order to improve accuracy without creating more triangles the shape of the prisms

can be adapted to the rendered displacement map, for the cost of loosing some flexibility.
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Sample points

Slice through prism
Viewing ray

Tetrahedron border

Displacement Map

Base domain surface Triangle vertex

Figure 5.9: Sampling error caused by a too coarse base domain triangulation and the

limited number of sample points.

Apart from pathological cases the difference in height in a local area of a displacement

map is limited. Since the extruded prism always covers the full range of values that the

displacement map may contain, mostly empty space is sampled, thus reducing effective

accuracy. As a possibility to avoid sampling empty space we adapt the height of the

extruded prism and the resulting tetrahedrons to the displacement map’s shape. For

a given base domain triangle the minimum and maximum height values of the covered

displacement map need to be calculated. The exact values are difficult to obtain, since that

involves rasterizing the texture coordinates of the triangle. A rough but already sufficient

approximation can be provided by a mipmap which is commonly used for texture map

filtering as described in section 2.3. In contrast to the common mipmapping algorithm

where the different mipmap levels are calculated by averaging the samples of the lower

levels, the minimum and maximum values are stored.

When generating the extruded prisms for the tetrahedrons the lower and upper bound

are read from the previously created mipmap and the bottom and the top of the prism

are adapted as shown in Figure 5.10. The effective distance that needs to be sampled is

reduced to a fraction of the original prism. As a result, the base domain triangulation

resolution can be reduced.
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Extruded Prism

Triangle Base Domain Surface Displacement Map

Figure 5.10: Improving the sampling by adapting the size of the extruded prisms.

On the left the standard approach with the full sized prisms is shown and on the right

the adapted prisms. As a result the distance that needs to be sampled is reduced and

accuracy is improved.

5.3 Vertex Streams

In [45] Vlietinck demonstrates hardware accelerated displacement mapping through the

use of vertex streams. Vertex streams were introduced by Microsoft with the DirectX

API in version 8 [39] and allow the use of multiple vertex input streams in the VP. The

algorithm uses a modified mipmapping scheme to store multiple levels of detail of the

displacement map and feeds two consecutive levels of detail into the VP using the vertex

stream API. The VP interpolates trilinearly between the two detail levels and displaces

the vertices. As the VP cannot insert new vertices to create triangles, the triangles that

may have to be inserted are transmitted as degenerate triangles and are discarded when

no triangulation is necessary.

Although a lot of computation can be performed on the VP the algorithm still consumes

CPU time and in particular bandwidth as the two levels of detail that are needed have

Additional (degenerate) triangle edge

LOD i LOD i+1 LOD i+2

Figure 5.11: Three levels of detail of a tessellation and the trilinearly interpolated

vertices between them. For levels i and i + 1 the degenerate triangles are drawn with

thicker outlines.
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Viewing directions
Reference surface

No intersection

Displaced surface

Base surface

Figure 5.12: Precomputing viewing directions for the View-Dependent Displacement

Maps. The ray on the right which doesn’t intersect the surface is marked specially.

to be first identified and tessellated on the CPU and then sent to the graphics pipeline.

5.4 View-Dependent Displacement Maps

In [46] Wang et al. presented an alternative approach to directly rendering displaced

surfaces using precomputation of possible viewing directions. Similarly as Kautz in [31]

proceeded for rendering BRDFs using pixel shading pipelines, Wang precomputes the dis-

tance to the displaced surface for every possible viewing direction and texture coordinate

on the surface, shown in figure 5.12. With a simple lookup on the generated precomputed

so called View-Dependent Displacement Maps (VDM) the distance to the underlying sur-

face can be obtained and also whether or not there is an intersection with the surface

at all, which is necessary for correct rendering of the surface’s silhouette. As the base

domain surface’s shape also influences the distance, the map has to be precomputed for

different values of local curvature of the base surface. To reduce the high memory re-

quirements a singular value decomposition is carried out, but still the size of possible

source displacement maps is limited, as well as the amount of precomputed viewing di-

rections. In the presented implementation it is limited to 32× 16 viewing rays. Because

the distance to the displaced surface is known for every position in the map, it can be

not only calculated for the viewing direction, but also for the direction of a light source,

enabling simple detection of self shadowing of the surface. In Figure 5.13, an example of

a shadowed point is shown. In this case the distance of point P to the surface along the

light direction (Light-intersection distance), is larger than the distance of the intersection
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Viewing ray
Light direction

V L

P

Light-surface distance

Light-intersection distance

Figure 5.13: Determining whether point P is shadowed, by comparing the light-

intersection distance from point P to L to the surface distance stored in the VDM

at point L along the light direction.

point L of the light direction with the surface (Light-surface distance), which is stored in

the VDM. The smaller Light-surface distance must be caused by an obstacle in direction

of the light source, and point P is shadowed.

5.5 Conclusions

Efficient utilization of the available resources in available graphics hardware allows for

approximations of displacement mapping by either a form of ray casting, precomputation

of possible distances or linear interpolation between two levels of detail and the use of

vertex streams. When used with an appropriate base domain triangulation the extruded

prism perform very well without the need for any kind of precomputation, thus allowing

for real time animations through the use of multiple textures or even streaming video data.

Due to the limited memory bandwidth available, the sampling is subject to aliasing, but

with increasing memory performance of upcoming graphics architectures this is likely to

change. What cannot be neglected though is the great amount of additional geometry,

that needs to be transformed and rasterized, although if more samples can be taken per

ray in the tetrahedrons, the base triangles can be enlarged und thus the base domain

surface triangle count can be reduced.

The precomputed distance maps are less subject to these sampling artefacts, and have

distinct features like self-shadowing, which is not possible with any other algorithm in
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a direct fashion so far. The fair amount of preprocessing and limited size for the input

displacement map, as well as the low resolution of viewing directions are disadvantages.



Chapter 6

Applications and Examples

Apart from the obvious application of adding more surface detail to a otherwise flat

or bump-mapped surface, displacement maps can be used for solving other rendering

tasks. As described in Section 2.2, almost anything that approximates a surface and can

be sampled, is usable as a source for a displacement map. Otherwise hard to render

surfaces like NURBS or procedural height fields, can be easily rendered when converted

into a displacement map. As a more tangible example, displacement maps as a form of

geometry compression are presented.

6.1 Geometry Compression

As the displacement map is usually only a gray-scale image it can be processed as such,

in particular the highly sophisticated image compression algorithms can be applied to

it when storing the map. Geometry compression algorithms for triangular meshes are

equally sophisticated and often very complicated and require long computation times,

when compressing. If some predicates are met, displacement maps can be used as a form

of geometry compression. The shape of the source surface should in some way resemble

a height field, at least partially. Shapes like a head with bent hair on it are unlikely

to produce good compression results, because the resulting base domain surface will be

almost as complicated as the source surface was. As an example the laser range scan of

a human head1 was chosen. The range scan contains 512 × 456 sample points. When

the mesh is fully tessellated it contains 233 thousand vertices. Typical compression rates

for triangular meshes range from 15 to 20 bits per vertex, resulting in roughly 400 to

600 kilobytes memory for storing the mesh [26]. Using image compression like PNG [24]

1The model was obtained by using a CyberWare [22] Scanner and was kindly contributed by Volker

Blanz.
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the height field information can be stored within 40 kilobytes. The base domain surface

mesh does not need to be explicitly stored, only the radius and height of the cylinder is

necessary in this case. Even though the potential compression rates are very competitive,

displacement maps cannot be used as a general geometry compressing facility, since the

achievable rate strongly depends on the topology of the input geometry.



Chapter 7

Conclusions

This thesis discussed various aspects of rendering displacement mapped surfaces, espe-

cially by rendering using adaptive tessellation. The main focus was to explore new tech-

niques suitable for hardware implementation in order to reduce the bandwidth strain on

the system bus by moving the tessellation process onto the graphics subsystem.

A number of sampling techniques that can be implememented in custom hardware in

a straightforward way have been developed and analyzed using a sample implementation

of an adaptive tessellation pipeline. With only minor user interaction or conservatively

predefined input parameters the sampling schemes produce adaptive tessellations with

very low error measures.

The sampling techniques range from pre-processed curvature measurements to the

comparison of perturbed surface normals and summed-area tables. All implementations

result in roughly similar tessellation quality with varying complexity of implementation,

though. Depending on the available hardware resources of the targeted hardware platform

an appropriate sampling scheme may be selected.

Adaptively tessellating a triangle mesh – especially in a hardware context – requires

special treatment of neighbouring triangles to avoid rendering artefacts caused by T-

vertices or badly shaped triangles. These problems were adressed by performing adaptive

tessellation based on local information of the edges of the triangles.

To enable currently available commodity graphics hardware to render displacement

mapped surfaces, a rendering algorithm is presented. This novel algorithm does not

depend on adaptive tessellation or special features in the rendering pipeline, and employs

a modified form of raycasting to sample the height field along a viewing ray. Sampling is

very sparse due to limited memory bandwith, but this will be accommodated as soon as

forthcoming graphics cards with more powerful graphics pipelines emerge.
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