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Zusammenfassung

Die Theorie der starken Wechselwirkung, die sog. Quanten Chromo Dynamik
(QCD), ist eine relativistische Quantenfeldtheorie, und ist, wie die QED, eine Eich-
theorie, allerdings mit der Eichgruppe SU(3). Durch die unendliche Zahl an Frei-
heitsgraden in einer Quantenfeldtheorie kommt es zu Divergenzen, welche durch
eine sog. Regularisierung behoben werden müssen. Der hierfür weit verbreitete
Ansatz ist die Störungstheorie. Allerdings ist der störungstheoretische Ansatz im
Niederenergiebereich stark wechselwirkender Theorien nicht einsetzbar, wodurch
Phänomene wie der Farbeinschluss oder die Brechung der chiralen Symmetrie nicht
mit störungstheorethischen Methoden behandelbar sind. Der Farbeinschluss, auch
(Colour) Confinement genannt, ist die Tatsache, dass keine freien Teilchen, die eine
nichtverschwindende Farbladung tragen, experimentell beobachtet werden können.
Chirale Symmetrie ist die Symmetrie zwischen links- und rechtshändigen Quarks,
welche im Grundzustand des QCD-Vakuums spontan gebrochen ist. Pionen, die
Goldstone Bosonen dieser spontanen Symmetriebrechung, besitzen als nahezu mas-
selose Teilchen eine herausragende Rolle im Teilchenspektrum. Da sich diese Ar-
beit mit dem Confinement-Problem beschäftigt, wird ein nicht-störungstheoreti-
scher Zugang benötgt. Die Gittereichtheorie, in der die QFT durch Einführen eines
Raum-Zeit-Gitters regularisiert wird, bietet einen direkten Zugang zum nichtper-
tubativen Regime. Zugleich ist es der derzeit einzige nicht-störungstheoretische
Zugang, der frei von unkontrollierbaren Näherungen ist. Alle Untersuchungen für
diese Arbeit werden mit Hilfe der Gittereichtheorie vorgenommen. Gluonen, die
Austauschteilchen der starken Wechselwirkung, werden in der Theorie durch Eich-
felder dargestellt. Diese Eichfelder können durch ihre topologische Ladung, auch
Windungszahl genannt, klassifiziert werden. Die Topologie der Eichfelder kann mit,
z.B. semi-klassischen, Objekten, wie Instantonen, verknüpft sein. Diese Diplomar-
beit untersucht solche topologische Objekte im Rahmen der Gittereichtheorie. Ein
besonderer Augenmerk wird dabei auf zwei Arten solcher Objekte gelegt, Instan-
tonen im ersten Teil der Arbeit und Vortizes im zweiten Teil.
Genauer gesagt beschäftigt sich der erste Teil dieser Arbeit mit der Wahrschein-
lichkeitsdichte von niedrigen Eigenmoden des hermitschen Wilson-Dirac Operators
H(κ) = γ5DW(κ) und ihrer Verbindung zur Topologie. Position und Ausdehnung
der Eigenmodendichte und der topologischen Ladungsdichte sowie der Wirkungs-
dichte werden verglichen. Diese Vergleiche werden für SU(3) Hintergrundfelder, die
mit einem Monte-Carlo Verfahren hergestellt wurden, und für Hintergrundfelder,
auf die ein einzelnes Instanton gesetzt wurde, gemacht. Position und Ausdeh-
nung der Eigenmodendichte und der topologischen Ladungsdichte werden durch
das Anfitten eines Instanton Modells verglichen. Topologische Ladungsdichte, Wir-
kungsdichte und Eigenmodendichte werden als 3-D Schnitt durch das 4-D Raum-
zeitgitter visualisiert und geplottet. Es wird gezeigt, dass für nackte Quarkmassen
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m0 mit 0 ≤ m0 ≤ 2 nicht nur Nullmoden, sondern alle niedrigen Eigenmoden
des hermitschen Wilson-Dirac Operators eine starke Korrelation mit topologischen
Objekten zeigen. Diese Objekte können Instantonen, oder topologische Fluktua-
tionen sein. Es wird gezeigt, dass Eigenmoden heisser SU(3) Konfigurationen für
den gesamten Bereich von m0 starke Korrelationen mit Objekten aufweisen, die in
der topologischen Ladungsdichte nach zwölf Kühlschritten eindeutig identifiziert
werden können. Objekte, die in der Eigenmodendichte gefunden werden haben un-
gefähr die selbe Grösse wie die zugehörigen Objekte in der topologischen Ladungs-
dichte. Für solche heissen SU(3) Konfigurationen findet man, dass mindestens die
niedrigsten zwanzig Eigenmoden starke Korrelation zur Topologie aufweisen. Da-
bei kann nur eine sehr schwache Aufweitung der Korrelation festgestellt werden.
Bei der Betrachtung von Eigenmoden gekühlter SU(3) Konfigurationen stellt man,
im Vergleich zu heissen Konfigurationen, einen Unterschied fest. Nur Eigenmoden
für kleine Massen m0 weisen die beschriebenen starken Korrelationen auf. Für Ei-
genmoden für grössere Massen m0, aber m0 ≤ 2, werden diese Korrelation zur
Topologie sehr schwach, d.h. die Eigenmoden sind nur noch schwach lokalisiert.
Im zweiten Teil dieser Arbeit wird die Verbindung zwischen Zentrumsvortizes und
Confinement untersucht. Um dünne Zentrumsvortizes zu identifizieren sind meh-
rere Schritte notwendig. Zuerst werden im Monte-Carlo Verfahren mit 3-Loop ver-
besserter Wirkung hergestellte SU(3) Hintergrundfelder in die maximale Zentrum-
seichung (MCG) gebracht. Dazu wird die mesonische Eichbedingung maximiert.
Für die eichfixierten Links UΩ

µ (x) wird dann das Zentrumselement Zµ(x) gefunden,
welches den Link am besten repräsentiert. Mit diesen Zentrumselementen wird der
Zentrumsfluss durch jede Plaquette berechnet und somit definiert, ob ein Vor-
tex die Plaquette durchstösst. Die Unabhängigkeit der physikalischen Vortexdichte
von Gitterabstand a wird gezeigt. Dies legt nahe, dass die derart identifizierten
Vortizes physikalisch sind. Um den Einfluss von Zentrumsvortizes auf das Farbcon-
finement zu testen wird das statische Quark-Antiquarkpotential für volle SU(3)
Konfigurationen, für Konfigurationen die nur Vortizes enthalten und für Konfi-
gurationen aus denen die Vortizes entfernt wurden, berechnet. Der Einfluss der
Eichbedingung auf dieses Verfahren wird durch die Implementierung der idealen
Zentrumseichung (ICG), als Vergleich zur maximalen Zentrumseichung, getestet.
Es wird gezeigt, dass eine Theorie, die nur Zentrumsvortizes besitzt, Confinement
aufweist, wohingegen die entsprechende Theorie aus der die Vortizes entfernt wur-
den kein Confinement mehr aufweist, also die Stringspannung verschwindet. Die
Stringspannung für die Vortextheorie beträgt aber nur ungefähr 62% der vollen
SU(3) Stringspannung für MCG Vortizes und nur ungefähr 58% für ICG Vortices.
Daher wird vorgeschlagen, dass die mesonische Eichbedingung eine gute Näherung
für die ideale Eichbedingung ist. Desweiteren werden Vorschläge gemacht wie das
Rätsel der fehlenden 40% Stringspannung gelöst werden könnte. Diese Vorschläge
beinhalten eine mathematische Erklärung und die Laplace Zentrumseichung.
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Abstract

In this diploma thesis different topological objects are examined using Lattice
Gauge Theory. As a first part the probability density of low-lying eigenmodes of the
hermitian Wilson-Dirac operator H(κ) = γ5DW(κ) and its connection to topology
is examined. Comparisons in position and size between eigenvectors, topological
charge and action density are made. This is done for standard Monte-Carlo gen-
erated SU(3) background fields and for single instanton background fields. Both
hot and cooled SU(3) background fields are considered. Sizes and positions of
eigenmode and topological charge density are compared by fitting an instanton
model. Visualisations of topological charge, action and eigenmode densities are
provided. It is shown that not only zero modes, but all low-lying eigenmodes of
the hermitian Wilson-Dirac operator are strongly correlated to topological objects
for bare quark masses m0 with 0 ≤ m0 ≤ 2. These objects can be instantons or
topological fluctuations. For all m0, eigenmodes of hot SU(3) configurations are
seen to display strong correlations to objects, which can be identified in the topo-
logical charge density of twelve sweep cooled configurations. The objects in the
eigenmode density are found to have roughly the same size as the corresponding
topological object. For such configurations the twenty lowest eigenmodes are seen
to have strong correlations to topological objects with only little broadening for
higher eigenmodes. Eigenmodes of twelve sweep cooled configurations are found
to have a different behaviour. They are strongly correlated to topological objects
for small m0 and weakly correlated with such objects for large m0.
In the second part the connection between center vortices and confinement is ex-
amined. To identify thin center vortices Monte-Carlo generated SU(3) background
fields are gauge fixed to Maximal Center Gauge (MCG) by maximising the mesonic
gauge condition. The background fields considered are created with a three-loop
improved action. Vortices are then identified by finding the closest center ele-
ment Zµ(x) for each link Uµ(x) and calculating the center flux for each plaquette.
It is shown that the vortex density in physical units is independent of the lat-
tice spacing a. This suggests that center vortices identified by MCG gauge fixing
are physical. To test the confining properties of center vortices the static quark-
antiquark potential is considered for full SU(3), vortex-only and vortex removed
configurations. The influence of the gauge condition on this procedure is tested by
implementation of the ideal gauge condition (ICG) as a comparison. It is shown
that a vortex-only theory is confining, whereas the corresponding vortex-removed
theory is non-confining, i.e. the string tension vanishes. The string tension of the
vortex-only theory is found to be roughly 62% of the full SU(3) string tension for
MCG vortices and 58% for ICG vortices. It is suggested that the mesonic gauge
condition is a good approximation to the ideal gauge condition. Ideas of how to
solve the missing string tension puzzle are presented.
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What songs the Syrens sang, or what name Achilles assumed when
he hid himself among women, although puzzling questions, are not
beyond all conjecture.

Sir Thomas Brown
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Chapter 1

Introductory thoughts

The standard model of todays particle physics includes all we know about the fun-
damental forces of electromagnetism, the weak and the strong interaction. It is
a (special) relativistic Quantum Field Theory (QFT) and has been tested in great
detail for energies up to approximately 100 GeV. Like QED it is a gauge theory,
but with the gauge group SU(3)c ⊗ SU(2)L ⊗ U(1)Y .

Creating a Quantum Field Theory, which means quantising a field theory with its
infinitely many degrees of freedom is not a straightforward issue. Too naive ap-
proaches lead to divergent results. In the process of creating a meaningful QFT
some kind of regularisation scheme has to be introduced. Usually this is done
by introducing an ultra-violet cut-off. However this has to be done in a gauge
invariant way and the integration measure of the fields in the path integral has to
be specified, as well. There are different approaches to this regularisation issue.
Maybe the oldest one being the perturbative approach. In Perturbation Theory
the path integral is expanded in orders of the coupling constant. The resulting
Feynman diagrams are then regularised order by order. This perturbative approach
gives impressive results, especially in weakly interacting theories like QED. E.g. the
anomalous magnetic moment of the electron is the theoretically best understood
quantity in physics.

However, perturbation theory has an important problem. It is just an asymptotic
expansion, the sum of all orders diverges. By using this approach we therefore
can not define the theory beyond perturbation theory. Perturbation theory, how-
ever, is useless in the low energy regime of strongly coupled theories, like QCD.
Nevertheless there are important phenomena, like confinement, chiral symmetry
breaking or the Higgs mechanism, which can only be studied appropriately by a non-
perturbative approach. Confinement, or more exact colour-confinement is the fact,
that no free particles having colour-charge can be found in the physical spectrum.
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Colour-charge can be understood as some kind of generalised electric charge. All
asymptotic particle states found in nature are colour singlets and either consist of a
quark-antiquark pair (mesons) or three quarks (baryons)1. No proof from first prin-
ciples of this experimental fact has been found up to now. Chiral symmetry is the
symmetry between left- and right-handed quarks. It is spontaneously broken by the
QCD groundstate, which follows from < 0|Q̄Q|0 >=< 0|Q̄LQR + Q̄RQL|0 > 6= 0.
The confinement mechanism will be studied in this work, thus a different approach
to regularize the QFT than perturbation theory is needed to carry out this study.
Introducing a space-time lattice by replacing the space-time continuum with a
mesh of discrete lattice points is a clean way of doing this. This lattice theory is
not an approximation to the continuum, but rather defines the theory in the critical
limit of vanishing lattice spacing. To recover continuum physics the theory has to
be renormalized by sending the lattice spacing, usually denoted a, to zero while
adjusting the bare couplings accordingly. The lattice regularisation, usually called
Lattice Gauge Theory (LGT) respects local gauge symmetries. The space-time
symmetries violated through the introduction of the lattice are recovered in the
continuum limit. All calculations for this work are carried out with this beautiful
tool of LGT2.

Lattice gauge theory is, of course, not free of problems. Fermion doubling, Gribov
copies and explicit chiral symmetry breaking, just to mention some. The fermion
doubling problem arises when latticising the free Dirac field. Due to zeros of the
polarisation tensor at the edges of the Brillouin zone the continuum limit gives rise
to 2d species of fermions, with d being the number of dimensions. To obtain the
correct continuum limit, these extra species must be eliminated. But there is one
subtelity, the ”no-go” theorem found by Nielsen and Ninomiya [3]. It states that a
lattice fermion action can not simultaniously obey locality, translational invariance,
chiral symmetry and be doubler free. Different doubler free lattice actions have
been developed which then break one of the other three constraints. The stan-
dard Wilson action, for example, explicitly breaks chiral symmetry. A method for
creating a doubler free lattice action obeying chiral symmetry, which is important
for studying chiral symmetry on the lattice, is to have a moderate non-locality.
The overlap action [4, 5], see sec. 1.1, is an example of a doubler free action not
explicitly breaking chiral symmetry. Gribov ambiguities arise if the gauge fixing
procedure is not unique, meaning that for each configuration satisfying the gauge
condition there are other, gauge equivalent configurations, the Gribov copies, also
satisfying the gauge condition. However, there are gauges, e.g. the Laplacian

1First evidence for exotic states, i.e. five quark states, have been found recently. Nevertheless
these are colour singlets, too.

2For a thorough introduction to LGT see the excellent books by Montvay, Münster [1] and
Rothe [2].
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gauge, which do not suffer from Gribov copies, or apropriate methods for data
analysis have to be used. Being able to do accurate calculations even on coarse
lattices is important for saving computer time. For this purpose so called improved
actions have always been developed since the introduction of LGT. Such actions
suppress lattice discretisation errors to higher orders in a. This allows the use of
coarse lattice for calculations. Improved actions need to have an enhanced rota-
tional symmetry, physical results, e.g. the quark-antiquark potential, should have
the same values, if computed from diagonal or straight elements of the lattice.

Topological excitations of the QCD vacuum are believed to have significant influ-
ence on non-perturbative phenomena like chiral symmetry breaking and confine-
ment. Gaining more insight into these phenomena is therefore directly connected
to examinations of topology. Different possibilities for topological objects exist on
the lattice, but I will concentrate on two - probably the most prominent ones -
namely instantons, or instanton like objects, and vortices. In the next two subsec-
tions I will describe why and how I consider these topological objects.

1.1 Low-lying eigenmodes and instantons

It is generally believed that topological objects like instantons are connected to
spontaneous chiral symmetry breaking. This is due to the fact that instantons and
anti-instantons could create a number of small non-zero eigenvalues of the Dirac-
matrix [6]. With the Banks-Casher relation [7] this leads to spontaneous chiral
symmetry breaking. Meaningful exploration of chiral symmetry on the lattice is
only possible with an operator that does not break chiral symmetry explicitly.
Naturally one is therefore interested in the connection of such an operator, e.g.
the overlap operator, and topology. The overlap operator is defined by

Dovlp =
1 + γ5ε(H)

2
, ε(H) =

H√
H2

. (1.1)

with H being a hermitian Dirac operator called the ”kernel” of the overlap for-
malism. DeGrand [8] found such a connection by examining zero modes of the
overlap operator. These are strongly localised, which was shown in previous works
by Edwards, Smith and Jansen [9, 10, 11, 12], as well as correlated to topological
objects, which could be instantons. Guided by these ideas I examined to which
extend similar properties are already manifested at the kernel level of the overlap
formalism [13].

As an overlap kernel, and thus as the operator used for the calculations, I utilised
the hermitian Wilson-Dirac operator H(m0) = γ5DW. This operator is based on
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the standard Wilson-Dirac operator DW and is defined in sec. 2.3.1. The main
interest lies in the localisation of eigenmodes. For this purpose the eigenvalue
problem DWψ(x) = λψ(x) is solved for the first four low-lying eigenvalues. To get
an idea how the behaviour of the eigenmodes changes at the edges of the physical
region of the overlap formalism some further points just outside the physical region
are calculated as well. The physical region of the overlap operator in terms of the
bare quark mass m0 is given by 0 ≤ m0 ≤ 2. Actual calculations are performed
with the hopping parameter κ, which is related to the bare quark mass m0 by

κ = (8 − 2m0)
−1. (1.2)

Thus the region where the actual calculations are performed is the κ-region start-
ing slightly below the critical value of κ = κc and extending slightly beyond the
point where doublers appear in the continuum limit of the overlap formalism. I
consider 0.115 ≤ κ ≤ 0.26 at tree level. Since the critical κ-value shifts from its
free field value of 0.125 to some higher value for non-zero gauge coupling, one has
to adjust the κ-range accordingly.

Eigenmodes are found by an accelerated conjugate gradient routine [14] which is
further improved by using dynamic state renormalisation. The major advantage of
a conjugate gradient algorithm besides its almost perfect parallel structure is that
it yields not only eigenvalues with appropriate degeneracies, but eigenvectors, as
well. For selected κ-values up to 20 eigenmodes are calculated. In the following,
the phrase ”low-lying eigenmodes” should be understood to mean eigenmodes cor-
responding to the low-lying eigenvalues.

In order to examine localisations of calculated eigenmodes I plot the probability
density ρ(x) =‖ ψ(x) ‖2 for three dimensional cuts through the lattice. For
comparison the action density as well as the topological charge density for the
appropriate configuration are plotted in the same way. The calculations are made
on 83×16, 164 and 163×32 lattices with anti-periodic fermion boundary conditions
in the time direction. On the 83×16 lattice the correlation of low-lying eigenmodes
with a single instanton configuration and standard Monte-Carlo generated SU(3)
background fields are tested. For the latter background fields hot, 5-sweep and
12-sweep cooled configurations are considered. Calculations on the larger lattices
are to verify the conclusions obtained from the smaller lattice. An instanton model,
more closely described in sec. 2.3.2, is used to quantify the results further.

1.2 Why consider vortices?

Confinement, one of these problems in QCD requiring a non-perturbative treat-
ment, is still not understood from first principles, in spite of people trying to find
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a derivation ever since the introduction of QCD as the fundamental theory of
hadronic physics. The confinement problem is such an interesting topic, that the
Clay Mathematical Institute3 offered a one million dollar prize for solving it. The
official problem description by Jaffe and Witten is found in [15]. There have been
quite a few proposals during recent years in how to solve the mystery, that no
free particles with a non-zero colour charge are found in nature, including work in
the field of string/M-theory and lattice gauge theory. On the LGT side most pro-
posals see the reason for confinement in topological objects, including instantons,
monopoles and vortices. Working on the confinement problem using instantons
provides a nice connection between localisations of low-lying eigenmodes and the
confinement problem. However, center vortices, as first suggested by ’t Hooft [16]
in the early 1980ies, seem to be the more promising candidates for solving the con-
finement puzzle. Recent numerical simulations in SU(2) LGT [17, 18, 19, 20, 21]
and SU(3) LGT by Faber, Langfeld and Stack [22, 23, 24] showed very interest-
ing results and made center vortices a prime ansatz for work on the confinement
problem. Center vortices are closed areas, in four dimensions, or closed loops, in
three dimensions, carrying a quantised magnetic flux. To identify center vortices
one looks at Wilson-loops. Note that my definition of a Wilson-loop includes the
trace, see appendix A.2. The quantised flux of a center vortex imprints a fac-
tor of a gauge group center element on the Wilson-loop, see sec. 2.4. In the
case of an SU(N) gauge group the center elements are Z = exp

(
i2π

N
m

) �
, with

−N
2
< m ≤ N

2
and m ∈ �.

Some new strong evidence that center degrees of freedom indeed are important will
be presented in this work. See sec. 4.1 for details. These new results show that the
phase distribution of large Wilson-loops for full lattice configurations is strongly
peaked at values φ = −2π

3
, 0, 2π

3
corresponding to center fluxes of m = −1, 0, 1.

But how do I show that the center vortex ansatz, or any other idea tells us some-
thing about confinement?
In order to find out if certain degrees of freedom have a confining capability, one
needs to reduce the pure Yang-Mills theory under retention of its confining capabil-
ity. On the lattice the confining capability of a theory is best tested by calculating
the static quark-antiquark potential. If it rises linearly for large distances the theory
is confining, if the potential is flat for large distances the theory is non-confining.
The degrees of freedom we are interested in must obey at least three criteria:

• (i) the degrees of freedom are sensible in the continuum limit,

• (ii) they are connected to confinement,

• (iii) they are weakly interacting.

3http://www.claymath.org
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Figure 1.1: A thin vortex visualised in a 3-D cut through the 4-D lattice, with
topological charge density.

Criterium (i) is obvious, as one would like to have physical degrees of freedom.
Criterium (ii) should be obvious, as well. One would like to explain confinement,
thus the degrees of freedom one is interested in using for this explanation should be
connected to the concept of confinement. Criterium (iii) follows from the physical
intuition, as one would like to describe a theory with weakly interacting degrees of
freedom. For center degrees of freedom Criterium (ii) is always fullfilled, as one
definition of the confinement problem involves the gauge group center. For more
on this definition see the excellent review by Greensite [25]. I will show in this work
that the other two criteria are satisfied in the center vortex picture, as well. The
random vortex model with randomly distributed percolating vortices satisfies the
criteria and is able to describe a confining static quark-antiquark potential. Thus if
the vortex texture found in the lattice simulations performed for this work, is similar
or close to the random vortex model, one can assume that the criteria are satisfied.

A technique for reducing the pure Yang-Mills theory to a center vortex theory has
been proposed by DelDebbio et al. [20, 26] based upon gauge fixing to the so
called maximal center gauge (MCG), followed by center projection SU(N) → ZN.
Vortices appear as dynamical degrees of freedom of the ZN gauge theory. For
SU(2) gauge theory it has been shown, firstly by [20, 26], that a Z2 gauge theory
reproduces a good deal of the string tension and a theory where the Z2 vortices
have been projected out has no more confining capability. Throughout this work I
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will call the ZN gauge theory a vortex-only theory and the theory with the vortices
projected out a vortex-removed theory. When not explicitly mentioning anything
else, vortices are to be understood as thin-, or p-vortices. In this diploma thesis I am
going to present further work on the vortex picture in SU(3) gauge theory, for which
a three-loop improved action is used. The improved lattice configurations used in
this work were kindly provided by the CSSM4 lattice collaboration. Problems
connected to the MCG vortices in SU(3) LGT and ideas how to solve them, will
be presented, as well. These ideas include an ideal center gauge, where the gauge
transformation best in bringing the full SU(3) configuration close to the vortex
texture, is found. Results for this ideal center gauge are then compared to MCG
results.

1.3 Structure

This work is organised as follows. Following this introductory part there is a part
explaining the technique, where in sec. 2.1 improved action and topological charge
operators will be described. A short overview of the simulation parameters follows
in sec. 2.2. Sec. 2.3 gives a introduction to the hermitian Wilson-Dirac operator
and technical details of the low-lying eigenmodes and instanton issue. Algorithms
for maximal center gauge fixing and vortex identification are described in sec. 2.4,
followed by the static quark-antiquark potential, an important tool to show whether
a theory is confining or not, in sec. 2.5.
The next part is then dedicated to the numerical results. Within this part chapter
3 gives detailed results for the low-lying eigenmode and instanton examination,
whereas results for the center vortex picture of confinement are presented in chapter
4. The last chapter of this work will be left for the conclusions and outlook.

4Special Research Centre for the Subatomic Structure of Matter
http://www.physics.adelaide.edu.au/cssm
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Chapter 2

Lattice techniques

2.1 Improved lattice actions and topological charge

2.1.1 The lattice action

Accurate lattice calculations at small lattice spacings require a high computational
effort. To increase accuracy and reduce computer time people have always tried to
improve the standard ”naive” lattice fermion action, by identifying and algebraically
removing discretisation errors, ever since the introduction of the ”Wilson Term”
[27]. The standard Wilson action

SW = ψ̄(x)

[
∑

µ

(

γµ∇µ − 1

2
ra∆µ

)

+m

]

ψ(x), (2.1)

where ∇µ and ∆µ are the standard covariant first and second order lattice deriva-
tives,

∇µψ(x) =
1

2a

[
Uµ(x)ψ(x+ µ) − U †

µ(x− µ)ψ(x− µ)
]
,

∆µψ(x) =
1

a2

[
Uµ(x)ψ(x+ µ) + U †

µ(x− µ)ψ(x− µ) − 2ψ(x)
]
,

explicitly breaks chiral symmetry at O(a). To reliably extrapolate continuum
physics computations have to be performed on fine lattices, which are compu-
tationally very expensive. Scaling properties of this action at finite lattice spacing
a can be improved by introducing any number of higher dimensional operators.
Such operators vanish in the continuum limit and are therefore called irrelevant.
The first action to use this method is the so called Sheikholeslami-Wohlert (clover)
action [28], which introduces an additional irrelevant dimension-five operator to
the standard Wilson [27] quark action,

SSW = SW − iaCSWr

4
ψ̄(x)σµνFµνψ(x), (2.2)

23
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where CSW is the clover coefficient which can be tuned to remove O(a) errors.

CSW =

{
1 at tree-level ,
1/u3

0 mean-field improved ,
(2.3)

with the tadpole improvement factor u0 which corrects for the quantum renormal-
isation of the operators. CSW can be tuned nonperturbatively to all powers in g2.
Such non-perturbative (NP) O(a) improvement [29] shows excellent scaling.
However, there are drawbacks to the clover action which make further improve-
ments necessary. One of the problems are the associated exceptional configura-
tions. In such configurations the quark propagator encounters singular behavior
as the quark mass becomes small, therefore making meaningful measurements im-
possible. In practice, the use of coarse lattices is prevented by this, which means
lattice spacings have to be smaller than a = 0.18 fm for actual calculations. A
second drawback is the plaquette version of Fµν commonly used in eq. 2.2. It has
large O(a2) errors, which can lead to errors of the order of 10% in the topological
charge, even on smooth configurations.
In order to perform faster and more accurate calculations there is still a need for
further improvements. Such improvements in the lattice action and topological
charge operator will be described in the next two sections.

Improving the action

If the Wilson action is constructed using a linear combination of the plaquette and
the average of the 1 × 2 and 2 × 1 rectangular Wilson loops O(a2) errors can
be eliminated. Higher order error terms can be eliminated with the inclusion of
other loops in this method. This was previously used by deForcrand et al. [30]
to construct an action free from O(a2) and O(a4) errors by using the five planar
Wilson loops

• L(1,1) = W
(1×1)
µν

• L(2,2) = W
(2×2)
µν

• L(1,2) = 1
2

(

W
(1×2)
µν +W

(2×1)
µν

)

• L(1,3) = 1
2

(

W
(1×3)
µν +W

(3×1)
µν

)

• L(3,3) = W
(3×3)
µν .

With these a general improved action can be written

SIMP = c1S(L(1,1)) + c2S((2,2)) + c3S(L(1,2))

c4S(L(1,3)) + c5S(L(3,3)), (2.4)
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where c1, · · · , c5 are the improvement factors which Bilson-Thompson, et al. [31,
32] find to take the values

c1 = (19 − 55c5)/9

c2 = (1 − 64c5)/9

c3 = (640c5 − 64)/45

c4 = 1/5 − 2c5

with c5 being a free parameter which can be used for tuning the action. Tuning
the action means that by setting c5 to c5 = 0 or c5 = 1/10 contributions towards
the general improved action SIMP from L(3,3) and L(1,2), L(1,3) respectively can be
eliminated. In this way a 4-loop and a 3-loop improved action can be created. It is
important to note, however, that the 3-loop and 4-loop improved actions are just
special cases of the 5-loop improved action and for all choices of c5 the actions
are free from discretisation errors up to and including O(a4). The O(a6) errors,
however, are different which leads to slightly different results for calculations with
3-,4- and 5-loop actions.

2.1.2 The topological charge

The topological charge on the lattice is calculated as the sum of the local topo-
logical charge density over all lattice sites,

Q =
∑

x

q(x) =
1

32π2

∑

x

εµνρσTr (Fµν(x)Fρσ(x)) . (2.5)

As the standard definition of Fµν has discretisation errors of order 10%, see above,
there are rather large errors in computing the topological charge the standard way.
Fortunately the topological charge can be improved in much the same way as the
lattice action.
For the standard topological charge I use the traceless definition of Fµν extracted
from the consideration of 1 × 1 plaquettes alone [33]

gFµν =
−i
8

[(

W (1×1)
µν −W (1×1)†

µν

)

− 1

3
Tr

(

W (1×1)
µν −W (1×1)†

µν

)]

, (2.6)

where W
(1×1)
µν is the clover-sum of four 1× 1 Wilson loops lying in the µ, ν plane.

Note that the tracelessness of the Gell-Mann matrices is enforced by subtracting

one-third of the trace of W
(1×1)
µν −W (1×1)†

µν . Although this is the standard definition
of Fµν not everyone enforces the tracelessness.
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The improved field-strength tensor

To improve the topological charge it is a good approach to improve the field-
strength tensor Fµν directly, by analogy with the improvement of the action, and
then insert the improved Fµν into the definition of the topological charge (eq. 2.5).
To construct the improved field strength-tensor the same five planar Wilson loops
as in the construction of the improved action, see 2.1.1, are used with the difference
that in this case W

(m×n)
µν is calculated from the clover average of four planar m×n

Wilson loops in the µ, ν plane. The improved field strength tensor can then be
written as

Fµν(IMP) = k1Fµν(L
(1,1)) + k2Fµν(

(2,2)) + k3Fµν(L
(1,2))

k4Fµν(L
(1,3)) + k5Fµν(L

(3,3)), (2.7)

where k1, · · · , k5 are the improvement factors which were found by Bilson-Thompson,
et al. [31, 32] to take the values

k1 = 19/9 − 55k5

k2 = 1/36 − 16k5

k3 = 64k5 − 32/45

k4 = 1/15 − 6k5

and k5 being a free parameter which can be used to create 3-, 4- and 5-loop
improved definitions of the field strength tensor. Again, as these are all versions
of the 5-loop improvement, all definitions are O(a4) improved and differ only in
higher order error terms.
In their work Bilson-Thompson, et al. [31, 32] find that the most accurate results
are obtained using the full 5-loop improved definition of the field-strength tensor
with k5 = 1/180, which is between the 3-loop choice of k5 = 1/90 and the 4-
loop choice of k5 = 0. However, the results obtained with the 3-loop definition
are only slightly different from the 5-loop results, but calculations using the 3-
loop Fµν are considerably cheaper than calculations using the 5-loop version. The
3-loop definition produces integer topological charge on approximately self-dual
configurations to better than 4 parts in 104. This makes the 3-loop improved
definition of the field-strength tensor

Fµν =
−i
8

[(
3

2
W 1×1 − 3

20u4
0

W 2×2 +
1

90u8
0

W 3×3

)

− h.c.

]

Traceless

, (2.8)

which is made traceless by subtracting 1/3 of the trace from each diagonal element
of the 3 × 3 colour matrix, the choice for most of the calculations performed for
this work.
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2.2 Simulation parameters

The studies reported in this work are carried out on four different lattice sizes.
Namely being 83 × 16, 123 × 24, 164 and 163 × 32 lattices. For evaluating the
low-lying eigenmode problem the 83 × 16, 164 and 163 × 32 lattices were used,
with the 164 just being used for the single instanton background. 123 × 24 and
163 × 32 lattices were used with Monte Carlo generated background fields in the
vortex analysis. In both cases the smaller lattices were used to get some rough
ideas and to verify the algorithms. Production runs were done on 163×32 lattices.
Parameters for the lattices are found in table 2.1, with

√
σ = 440 MeV being used

to set the values for aσ.
These configurations are generated in a Monte-Carlo method with a plaquette plus
rectangle improved action with mean-field improved coefficients. Further details of
the action are found in sec. 2.1.1. I like to thank the CSSM lattice collaboration,
especially D. B. Leinweber and A. G. Williams, for kindly providing these improved
configurations.

β Volume Nconfigs a
√
σ aσ [fm] ρlat ρphys

4.10 123 × 24 15 0.611(20) 0.272(9) 0.1414(4) 0.379(25)
4.38 163 × 32 100 0.368(5) 0.165(3) 0.0539(2) 0.398(30)
4.53 163 × 32 100 0.299(11) 0.134(5) 0.0339(2) 0.380(28)
4.60 163 × 32 100 0.272(11) 0.122(5) 0.0281(2) 0.380(31)
4.60 123 × 24 15 0.272(11) 0.122(5) 0.0289(5) 0.391(32)
4.80 163 × 32 100 0.207(5) 0.093(2) 0.0173(2) 0.404(20)

Table 2.1: Simulation parameters β, volumes, string tension a
√
σ, lattice spacings

a and vortex densities. The values for the lattice spacings for the 163 × 32 lattices
have been obtained by using 50 configurations each. For the small β = 4.60 lattice
estimates are taken from the larger lattice.

2.3 Low-lying eigenmodes techniques

2.3.1 Hermitian Wilson-Dirac operator

I am going to examine localisations of eigenmodes and correlations to topological
objects at the kernel level of the overlap formalism. Let me first define the hermitian
operator used in the kernel.

H(m0) = γ5DW(−m0), (2.9)
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is the hermitian Wilson-Dirac operator with DW(−m0) being the Wilson-Dirac
operator defined in the standard way

[DW(κ)ψ](x) = ψ(x) − κ
∑

µ

[(1 − γµ)Uµ(x)ψ(x+ µ)

+(1 + γµ)U
†
µ(x− µ)ψ(x− µ)], (2.10)

where the hopping parameter κ is related to the bare mass by

κ = (8 − 2m0)
−1. (2.11)

The calculations are done for bare quark masses 0 ≤ m0 ≤ 2, which is equivalent
to 0.125 ≤ κ ≤ 0.25 at tree level. Thus I examine eigenmodes in and just outside
the region mc < m0 < 2, where mc is the “critical-mass” which is 0 at tree-level
but for non-trivial gauge fields shifts away from 0. This is the range of the mass pa-
rameter m0 corresponding to the physical region in the overlap formalism. Modes
of H(m0) crossing zero in this region are accompanied by the abrupt appearance of
exact zero modes of the overlap-Dirac operator at the corresponding m0 value [34].

2.3.2 Instanton Model

As one would like to quantify sizes and correlations of localised eigenmodes and
topological objects I fit an instanton model to the obtained data. For this instanton
model one needs to distinguish between a model for action or charge densities and
a model for the zero-mode density [35],

p(x)act = c · 6

π2
· ρ4

((x− x0)2 + ρ2)4 , (2.12)

p(x)zero = c · 2

π2
· ρ2

((x− x0)2 + ρ2)3 , (2.13)

where x is the distance from the instanton peak at x0 to the calculated densities.
The normalisation factor c allows to fit to the instanton shape and prevents the fit
from being dominated by the maximal value of the fitted object which is affected by
periodic images due to the finite volume of the 4-torus. Both models are continuum
results derived from the standard ’t Hooft ansatz. Eq. (2.12) is the action density
and is used to fit action and charge densities. Eq. (2.13) is the density of the
fermion field in the zero-mode and is used to fit eigenmode densities. As I will
describe in the results section this fit works very well, even if one cannot be sure,
whether the objects found are really instantons. Nevertheless the model is useful
for quantifying sizes and positions of the relevant objects.
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2.3.3 Smooth Instanton background

In this section I will describe how a smooth instanton background is created. Such
a smooth instanton background will later be used to test correlations between
eigenmodes and topological objects. In this case the topological object will be
the created instanton. A single instanton background on a lattice is created by
performing the path integration of

Aµ(x) =
x2

x2 + ρ2

(
i

g

)

(∂µS)S−1, (2.14)

with

S =
x4 ± i−→x · −→σ√

x2
, (2.15)

where + is an instanton and − an anti-instanton, to create the link variable. One
finds in the regular gauge

U reg
µ (x) = exp

[

iaµ(x) · σφµ(x; ρ)
]

, (2.16)

φµ(x; ρ) =
1

√

ρ2 +
∑

ν 6=µ(xν − xν)2
tan−1

√

ρ2 +
∑

ν 6=µ(xν − xν)2

ρ2 +
∑

ν(xν − xν)2 + (xν − xν)
,

(2.17)

a1(x) = (−x4 + x4, x3 − x3,−x2 + x2),
a2(x) = (−x3 + x3,−x4 + x4, x1 − x1),
a3(x) = (x2 − x2,−x1 + x1,−x4 + x4),
a4(x) = (x1 − x1, x2 − x2, x3 − x3). (2.18)

In the singular gauge one finds1

U sing
µ (x) = exp

[

ibµ(x) · σ
(
φµ(x; 0) − φµ(x; ρ)

)]

, (2.19)

b1(x) = (x4 − x4, x3 − x3,−x2 + x2),
b2(x) = (−x3 + x3, x4 − x4, x1 − x1),
b3(x) = (x2 − x2,−x1 + x1, x4 − x4),
b4(x) = (−x1 + x1,−x2 + x2,−x3 + x3). (2.20)

The singular gauge instanton is clearly recognisable on the volume rendered action
density plot as seen in fig. 3.1 (a), which is described more closely in sec. 3.1. The
outer surface shown is half the peak height.

1Note that the analogous result of [10] inverts the roles of instantons and anti-instantons
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2.4 Revealing the vortex texture

To reveal if center vortex degrees of freedom are relevant for confinement one
needs to look at configurations {Zµ(x)}, Zµ(x) ∈ ZN which are closest to, and
as such represent best, the full link configurations {Uµ(x)}, Uµ(x) ∈ SU(N). ZN

being the center of the group SU(N), i.e.

Zµ(x) = exp

(

i
2π

N
m

)

, −N
2
< m ≤ N

2
, m ∈ �. (2.21)

The maximal overlap of a center configuration with the corresponding full config-
uration is achieved by minimising the functional

∑

x,µ

[
UΩ

µ (x) − Zµ(x)
]† [

UΩ
µ (x) − Zµ(x)

] Ω,Zµ−→ min, (2.22)

with

UΩ
µ (x) = Ω(x)Uµ(x)Ω†(x+ µ) (2.23)

being gauge transformed links. Minimising the functional (2.22) directly implies
the maximisation of the overlap

Rideal =
1

Nl

∑

x,µ

Re
1

N
Tr

(
UΩ

µ (x)Z†
µ(x)

)
, (2.24)

with Nl being the number of links of the lattice. It is |R| ≤ 1, with R = 1 implying
that the full configuration can be entirely expressed in terms of center elements
Zµ after being gauge transformed. One directly sees that a suitable gauge needs
to be chosen in order to achieve the maximal overlap. For this purpose several
gauges have been proposed in the literature.
Most of the recent works [36, 22, 37, 17, 23, 38, 18] used a center gauge fixing
method followed by center-projection. Although there were other approaches, as
Abelian gauge fixing [24] and a method without gauge fixing [39], the use of the
center gauge approach is most promising. There are different center gauges one
can use:

• Laplacian center gauge (LCG) [23, 21]

• Indirect maximal center gauge (IMCG) [20]

• Maximal center gauge (MCG) [36, 22, 23]

with a review of all methods found in [25]. All these methods have advantages and
disadvantages with MCG being the most established gauge. In the next section I
will take a closer look at the MCG for SU(N) lattice gauge theory and will then
specify this for SU(3).
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2.4.1 Maximal Center Gauge

Unfortunately the determination of Zµ and Ω directly from the overlap condition
(eq. 2.24) is a non-trivial task. Although it is, in principle, possible to use a
”simulated annealing” algorithm, the actual calculation of Zµ and Ω to the needed
precision is very costly and therefore beyond the scope of this work. But I will come
back to the ideal gauge condition Rideal (eq. 2.24) using an iteration overrelaxation
algorithm and a previously MCG gauge-fixed configuration in sec. 4.5. If one agrees
to choose one of the suboptimal gauges already proposed in the literature and
mentioned in the previous subsection, the calculation will be feasible. The most
established gauge being MCG, for which the gauge condition formally follows from
eq. 2.24 with the assumption that 1

N
TrUΩ

µ (x) comes close to a center element.
This assumption leads to two gauge conditions [22, 23] called ”baryonic” and
”mesonic”:

Rbar =
1

NsiteNdimNN

∑

n,µ

Re
(
[TrUµ(n)]N

)
, (2.25)

Rmes =
1

NsiteNdimN2

∑

n,µ

|TrUµ(n)|2, (2.26)

where Nsite is the number of lattice sites and Ndim the number of dimensions. R
satisfies |R| ≤ 1 for both equations. The use of the mesonic gauge condition (eq.
2.26) allows for a Cabibbo-Marinari [40] inspired method of maximizing R. This
method for SU(N) was derived from a SU(2) method [26] by Montero [36]. It is
interesting to note that maximising R via eq. 2.26 is equivalent to maximising the
trace in the adjoint representation which is not affected by center gauge transfor-
mations. It is not clear whether the ”mesonic” gauge condition (eq. 2.26) really
yield the larger overlap in eq. 2.24, or if the ”baryonic” gauge condition (eq. 2.25),
or even a combination of both, would be best. This problem and some resulting
difficulties will be addressed in the ”results” section in more detail.

One has to locally find the gauge transformation Ω for each lattice site which
maximises the local quantity

Rx =
∑

µ

|Tr{Ω(x)Uµ(x)}|2 + |Tr{Uµ(x− µ)Ω†(x)}|2. (2.27)

Instead of trying to find the optimal SU(N) gauge transformation at once, Ω is
obtained from a SU(2) matrix g = g4

� − i~g~τ which is then included into one of
the N(N − 1)/2 SU(2) subgroups of SU(N). With this Rx can be written as

Rx =
4∑

i,j=1

(
1

2
giaijgj

)

−
4∑

i=1

gibi + c, (2.28)
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with aij being a real symmetric 4×4 matrix, bi a real 4-vector and c a real constant,
all of which are depending on the link variables Uµ(x) and Uµ(x− µ). The SU(2)
matrix g, which maximises Rn in eq. 2.28 can be found using standard numerical
algorithms, see sec. 2.4.1 below.
Once g is found, the SU(N) matrix Ω is known and all links Uµ attached to the
site x are updated. The procedure needs to be repeated for all N(N −1)/2 SU(2)
subgroups of SU(N) and for all lattice sites. Covering the whole lattice once with
this procedure is called one center gauge fixing sweep. The gauge fixing procedure
can stop, if R is stable within a given precision.
To clarify the algorithm, I’m going to go into more details for SU(3) in the next
subsection.

Technical details for SU(3)

In the case of SU(3) gauge theory, the transformation matrix is Ω ∈ SU(3). There
are three SU(2) subgroups one can embed into SU(3). I choose to do it as follows:

Ω1 =

(
g1 0
0 1

)

, (2.29)

Ω2 =

(
1 0
0 g2

)

, (2.30)

Ω3 =





g311
0 g312

0 1 0
g321

0 g322



 , (2.31)

with g1,2,3 ∈ SU(2). For SU(2) matrices the relations g = g0
�

+ i~g~τ , with ~τ being
the Pauli-matrices, and g2

0 + ~g2 = 1 hold.
The goal is to maximise

R =
∑

µ

(
|Tr{Ω(x)Uµ(x)}|2 + |Tr{Uµ(x− µ)Ω†(x)}|2

)
(2.32)

=
∑

µ

(
|Tr{Ω(x)Uµ(x)}|2 + |Tr∗{Ω(x)U †

µ(x− µ)}|2
)
, (2.33)

by finding the local gauge transformation Ω(x) which achieves this.
In order to maximise R in eq. 2.33 one needs to find the corresponding SU(2)
matrix g which maximises

Tr







(
g 0
0 1

) (
M b
cT a

)

︸ ︷︷ ︸

Uµ







= Tr2(g ·M) + a, (2.34)



Chapter 2. Lattice techniques 33

with M being the sum of two unitary 2 × 2 matrices, M = m1 + im2, with
m1/2 = a0

�
+ i~a~τ and a = aR + iaI, which are given from the corresponding link

Uµ(x). Using this decomposition one can write

|Tr{Ω(x)Uµ(x)}|2 = |Tr2(g ·m1) + aR + iTr2(g ·m2) + iaI|2
= (Tr2(g ·m1) + aR)2 + (Tr2(g ·m2) + aI)

2, (2.35)

which is for practical reasons best written in a matrix and vector format

|Tr{Ω(x)Uµ(x)}|2 =

(
g0

~g

)T

A

(
g0

~g

)

+

(
g0

~g

)

~b+ a2
R + a2

I
︸ ︷︷ ︸

c

, (2.36)

with A being a 4× 4 matrix and ~b being a 4-vector both containing the sum over
µ, as well as Uµ(x) and U †

µ(x−µ). Finding the maximum of R can be done via the
Lagrange multiplier method with the constraint g2

0 + ~g2 − 1 = 0. For this method
it is best to change into the eigenvector base of A. Finding the eigenvectors and
eigenvalues can be done via standard numerical algorithms, e.g. Jacobi. This leads
to

R =
∑

k

b2k
4

(
λk

(λk − λ)2
− 2

(λk − λ)

)

+ c, (2.37)

and
∑

k

b2k
4(λk − λ)2

= 1, (2.38)

with λk being the eigenvalues of A, bk being the components of ~b and λ being the
Lagrange multiplier. It is easy to find Rmax with the constraint of eq. 2.38. Then
g can be determined via

~g = −
~b

2(λk − λ)
, (2.39)

and a transformation to the original base.
Once Ω(x) is found, the links touching the site x are updated via

UΩ
µ (x) = Ω(x)Uµ(x)Ω†(x+ µ), (2.40)

UΩ
µ (x− µ) = Ω(x− µ)Uµ(x− µ)Ω†(x), (2.41)

where Ω(x− µ) = Ω†(x+ µ) =
�
. This whole procedure is repeated for all three

SU(2) subgroups and the SU(3) gauge transformations Ω(x) are constructed as in
eqs. 2.29, 2.30 and 2.31. After the updates for all SU(2) subgroups are done one
can move to the next lattice point. Covering the whole lattice in this manner is
called a center gauge fixing sweep.
To get stable values for R within a precision of 10−6 takes roughly 1100 sweeps
for configurations on a lattice with the size of 163 × 32.
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2.4.2 Center Projection

In this section the process of identifying vortices with the help of a center projection
mechanism is discussed. Once the center vortices are identified the vortex density
and other values of interest can be calculated.
The center projection replaces a link Uµ(x) with a center element Zµ(x) of the
gauge group SU(N), which is closest to the Uµ(x) of the full configuration,

Uµ(x) → Zµ(x) (2.42)

where

Zµ(x) = exp

(

i
2π

N
m

)

, −N
2
< m ≤ N

2
, m ∈ �. (2.43)

Note that to find the closest center element to the full configuration one has to
take the gauge transformation Ω into account, as well, as described in sec. 2.4.
The maximal center gauge transformation, see sec. 2.4, or any other gauge trans-
formation used in this work, will be considered ideal for this purpose at the time
of use. Although it might be revealed that some other gauge fixing procedures are
ideal. Therefore the center projection will be done on the gaugefixed links UΩ

µ (x).
To maximise the overlap between UΩ

µ (x) and Zµ(x) one needs to minimise the
functional

∑

x,µ

[
UΩ

µ (x) − Zµ(x)
]† [

UΩ
µ (x) − Zµ(x)

] Ω,Zµ−→ min (2.44)

As mentioned above, the gauge is chosen, therefore the minimisation with respect
to the center elements can be performed locally. Calculate

1

N
TrUΩ

µ (x) = ul exp
(
iϕl

)
, (2.45)

for each link, then the closest center element

Zµ(x) = exp
(
iϕl

m

)
, (2.46)

with

ϕm =
2π

N
m, (2.47)

is the one where

ϕl − ϕl
m → min . (2.48)

The theory based upon configurations created with center projection will be called
”vortex-only”, throughout this work.
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2.4.3 Vortex identification

In order to extract physics, which is influenced by center vortices, one first needs
to identify the center vortices on the lattice. After having performed a center
projection as described above this is easily done. One needs to calculate the
plaquette

v(p) :=
∏

x,µ

Zµ(x) = exp

(

i
2π

N
φ

)

, (2.49)

where φ =
∑

x,µm(x, µ), being the sum over the values for m of the center
elements belonging to the plaquette p. In case of SU(3) one says a vortex with
center charge

z = exp

(

i
2π

N
φ

)

, (2.50)

pierces the plaquette if

φ mod 3 = −1, 1. (2.51)

One says that no vortex pierces the plaquette if

φ mod 3 = 0. (2.52)

2.4.4 Vortex removal

After having identified vortices one is able to create a second configuration sim-
ilar to the one where the vortices where identified, but with all the vortices re-
moved. Creating such a configuration and doing calculations, e.g. the static
quark-antiquark potential, with it, reveals which physical properties are actually
influenced by vortices.
To remove the vortices one simply needs to replace all links Uµ(x) with links U ′

µ(x)
given by

U ′
µ(x) = Z†

µ(x) · Uµ(x), (2.53)

where Z†
µ(x) is the hermitian conjugate of the center element Zµ(x) calculated

as in sec. 2.4.2. In the following, ”vortex-removed” will denote the theory based
upon configurations created with this procedure.
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2.5 The static quark-antiquark potential

The static quark-antiquark potential is probably the easiest and best way to test
confining properties of a theory. A linearly rising potential for large distances shows
that the underlying theory is confining. If there is only a Coulomb part and the
potential is flat for large distances the theory is non-confining. Calculations of the
quark-antiquark potential are fairly straightforward, nevertheless some points need
to be considered.
Several methods for performing and enhancing such calculations have been pro-
posed during the last 20 years. The method used in this work for calculating the
potential consists of ideas by Stack [41] and the enhancement method proposed by
Bali and Schilling [42, 43]. I will describe the method more closely in the following
two subsections.

2.5.1 Ground state overlap enhancement

In lattice gauge theory interesting physical quantities like masses, matrix elements
and potential values, in which we are interested here, are related to asymptotic
properties of exponentially decreasing correlation functions in Euclidean time. This
poses some difficulty in separating physical values from the noise. One is forced
to improve the operator to reach the desired asymptotic behaviour for a small T
region. The so-called overlap enhancement procedure has proven to be a valuable
tool to achieve this.
The relation between Wilson loops W (R, T ) and the ground state potential V (R)
is given by

W (R, T ) = C(R) exp {−TV (R)} + excited state contributions. (2.54)

To increase the contribution from the first term, one needs to enhance the ground
state overlap C(R) for each value of R. In principle this is done by cooling the
spatial links only, replacing Ui(x) → Πi(x), where

Πi(x) = PN

∑

k=±1,...,36=i

Uk(x)Ui(x+ k)U †
k(x+ i), i = 1, 2, 3, (2.55)

with PN being the projector onto the ”closest” SU(N) element. For SU(2) the
effect of the operator P2 is given by

P2M =
1

√

a2
0 + ~a2

(a0 + i~τ~a) , (2.56)

M being an SU(2) matrix given by M = a0 + i~τ~a with the Pauli Matrices τa.
Temporal links are not being touched by this procedure, i.e.,

Π0(x) = U0(x). (2.57)
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In the case of SU(3), however, the projection P3 is computationally expensive. For
further details on the P3 projection operator see [43]. An interesting and effective
way to reduce the computer time needed is a Cabbibo-Marinari inspired method
recently proposed by Langfeld [23].
Let me define the action of the spatial links of a given time slice t by

S(3)(t) =
∑

i>k,1...3

Pik(x), (2.58)

with Pik(x) being the plaquette calculated from the spatial links. In addition, one
needs to consider embeddings of the SU(2) matrix M = a0+i~τ~a, with a2

0+~a
2 = 1,

into SU(3). For details see sec. 2.4.1, i.e. eqs. 2.29, 2.30, 2.31, further up. The
”cooling procedure” now consist of a loop over the three SU(2) subgroups for each
spatial link Ul(x). In more detail: Ul(x) is substituted by U ′ = Ω1Ul(x), then the
action S(3) is locally maximized with respect to Ω1. Subsequently U ′ is replaced
by U ′′ = Ω2U

′ and the action is maximized with respect to Ω2. The third step is
setting U ′′′ = Ω3U

′′ and maximizing S(3) with respect to Ω3. The ”cooled” link is
then defined as

Πl(x) = Ω3Ω2Ω1Ul(x). (2.59)

One sweep repeats this procedure for every spatial link on the lattice. The max-
imization of the action S(3) with respect to one of the SU(2) subgroups can be
implemented very efficiently, thus this procedure can be considered computation-
ally cheap. This whole procedure is gauge covariant.
To enhance the ground state overlap, the above procedure is applied recursively.
The Wilson loop expectation value 〈W (R, T )〉 is then calculated from the en-
semble {Πµ(x)} and not from the original Monte-Carlo generated configuration
{Uµ(x)}. In agreement with Langfeld [23] I find that ten sweeps of this procedure
are enough to yield more than 0.99 ground state overlap.

2.5.2 The potential

The relation between the Wilson loop and the potential is given by eq. 2.54. For
T � R one gets for the Wilson loop expectation value

〈W (R, T )〉 → exp [−TV (R)] , T � R. (2.60)

With the overlap enhancement this relation holds for smaller values of T , i.e.,
Langfeld [23] finds a linear behavior in T for − ln 〈W (R, T )〉 for T ≥ 3. For
different values of R one can fit a function linear in T to − ln 〈W (R, T )〉,

− ln 〈W (R, T )〉 = γT + δ. (2.61)
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The coefficients γ can be interpreted as the potential in lattice units V (Ra)a.
This quantity is shown in the potential plots in sec. 4.4. The line shown in these
plots is a fit according to the function

V (r)a = cR− b

R
+ V0, r = Ra. (2.62)

The parameter c can be interpreted as c = σa2, which is the string tension in units
of the lattice spacing. This method is inspired by Stack [41] and was recently used
by e.g. Stack et al. [24].



Chapter 3

The hermitian Wilson Dirac
operator and topology

This chapter is dedicated to the results found for the first main part of this work.
Correlations between low-lying eigenmodes and topological objects, which could
be instantons, are examined. Qualitative results an visualisation of eigenmode-
and topological charge densities are presented in the following two sections. The
qualitative results are then quantified in sec. 3.3. Results from this chapter have
been published in [13].

3.1 Smooth Instanton background

In this section I will present the results for a smooth instanton background field
created as described in sec. 2.3.3. Calculations for this section were performed on
83 × 16 and 164 lattices. As mentioned in sec. 2.3.3 the artifically created singular
gauge instanton is clearly recognizable on the volume rendered action density plot
as seen in fig. 3.1 (a). The outer surface shown is half the peak height.
The results seen on the smaller exploratory lattice are also found on the 164 lattice.
The instanton on the latter lattice is cooled for two sweeps to minimise boundary
effects. Eigenmodes of this configuration are calculated for 0.12 ≤ κ ≤ 0.27 with
an increment of 0.01 between values. The first four eigenvalues of the spectrum
are shown in fig. 3.2, followed by an evaluation of the localisation of ρ(x) for the
first three low-lying eigenmodes for each κ. This is done by plotting ρ(x) as seen
in fig. 3.1 for selected eigenmodes.
For eigenmodes with κ � κc = 0.125 a rather uniform distribution of ρ(x) is
found whereas eigenmodes for all κ, κc < κ < 0.27 are strongly localised. For
the lowest eigenmode this localisation strongly corresponds to the localisation of
the instanton in the action density plot as seen by comparing fig. 3.1 (a) and fig.
3.1 (b), (c). One therefore finds that the eigenmode displays strong correlation

39
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Figure 3.1: (a) Action density of a single instanton configuration on a 164 lattice.
(b) First eigenmode for the single instanton configuration for κ = 0.19. Note
the very strong correlation with the instanton on the action density. (c) First
eigenmode for the single instanton configuration for κ = 0.25. Again note the
strong correlation between the eigenmode and the action density. (d) Second
eigenmode for the single instanton configuration for κ = 0.25. The localisation
has a prolate shape compared to the spherical instanton. (e) Second eigenmode
for the single instanton configuration for κ = 0.19. The localisation has a wall
like shape with a prolate correlation to the instanton. (f) Third eigenmode for the
single instanton configuration for κ = 0.19. The eigenmode has a wall like shape
and is not correlated with the instanton. For all figures a volume rendering of the
corresponding density is shown. The outer isosurface is half the peak density.
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Figure 3.2: Smallest four eigenvalues of the eigenvalue spectrum of a smooth single
instanton configuration on a 2-sweep cooled 164 lattice. For the open triangles
there is strong spherical correlation between the eigenmode and action density and
behaviour as described in the text. For the other symbols there is correlation with
prolate-like shapes and wall-like structures. The shapes are shown in fig. 3.1. For
κ = 0.20, 0.21 and 0.22 the fifth eigenvalue is expected to lie degenerate with the
open triangles.

with the instanton. The size and shape of this correlation varies from broad with
some wall like structures for κ ≤ κc to very small for κc < κ < 0.19 and is getting
broader again for larger values of κ. For higher eigenmodes this localisation gets
broader and less correlated with the instanton. Some higher eigenmodes show no
correlation with the instanton but just wall like structure as seen in fig. 3.1 (f).
Others show prolate-like correlations as seen in fig. 3.1 (d). Some eigenmodes also
show a wall-like structure and a prolate-like correlation as seen in fig. 3.1 (e). It is
useful to note that plane wave behaviour would display uniform behaviour in the
density plot.
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3.2 Monte-Carlo-generated SU(3) gauge field back-

ground

In the last section I showed that the low-lying eigenmodes of the Wilson-Dirac op-
erator are strongly correlated to the instanton on a single-instanton configuration.
As a next step one might be interested if this is also true on standard Monte-Carlo
generated SU(3) background fields. I will show in this section that the idea indeed
holds for Monte-Carlo generated background fields. To do this I investigate three
hot and three cooled configurations on both 83 × 16 (β = 4.38) and 163 × 32
(β = 4.60) lattices. Three-loop improved cooling [31, 32, 44, 30], as mentioned
in sec. 2.1.2, is used to cool the configurations for 12 sweeps. This is just enough
to get clear structure in the action and topological charge. As a reference for
comparison of the eigenmode density the action and topological charge density
of the cooled configuration is used. This is done because those densities are too
rough for the hot configuration and no accurate comparison would be possible. As
there is more structure observed on the topological charge density plot, I use this
as a preferred reference. See fig. 3.4 (a) for a typical topological charge density
plot of a 163 × 32 configuration. However, the action density plot is also useful
for guidance.
One can say an eigenmode is correlated to a topological object if ρ(x) has a
peak within one lattice site of the peak topological charge density. The first
four eigenmodes for values of 0.13 ≤ κ ≤ 0.25 for cooled configurations and
0.15 ≤ κ ≤ 0.29 for hot configurations in steps of 0.01 are calculated. This range
is from approximately 0.02 smaller than κc to a region where doublers appear in
the overlap formalism. I find that the behaviour described in the following is gen-
eral for all configurations: Each of the eigenmodes is localised. This was already
observed for the lowest eigenmode [12]. For κ < κc this localisation weakens and
the density, ρ(x), broadens quickly. An exponential decay of the density ρ(x),
as previously observed [12], seems likely to occur. All low-lying eigenmodes for
κ ≥ κc are correlated to topological objects.
It is possible to track a correlation along the modes for all κ ≥ κc and for one step
smaller than κc. Thus a mode can be labeled by its correlation. Fig. 3.3 shows
eigenmodes of a hot configuration, where the symbol used denotes which topolog-
ical object the localised low-lying eigenmode is correlated with. Careful inspection
of fig. 3.3 reveals the presence of an eigenmode, correlated to one topological
object, but with a spectral flow containing two zero crossings. As the point where
the mode crosses zero is associated with the size of the correlated object, this
suggests that the object is either a lattice artifact, or there are two objects with
different sizes close together. I will take a closer look at this behaviour in the next
section, where the sizes of the objects and eigenmodes are quantified.
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Figure 3.3: Smallest four eigenvalues of the eigenvalue spectrum of a hot configu-
ration showing correlations of eigenmodes to topological objects. Each eigenmode
has a correlation to one topological object and each different symbol indicates a
different topological object. Modes for κ = 0.15 < κc are very broad and weakly
correlated to several objects.

Around κc and towards the upper end of the analysed spectrum, localisations are
weak. However, the correlation of positions is strong. At these κ there is a ten-
dency to get correlations to more than one topological object. The localisations
get stronger and sharper for increasing values of κ until a maximal localisation is
reached for a value κ, which will be defined to be κmax. For κ > κmax the localisa-
tions get weaker again. Fig. 3.4 shows a visualisation of this behaviour. Additional
colour figures can be found on the web [45]. A closer look at this behaviour will
be taken in the next section.

For the lower eigenmodes, which are separated by a gap from the higher eigen-
modes, one finds correlation to one topological object per eigenmode. For higher
eigenmodes , which are closer together with some degenerate modes, one finds
correlations to more than one topological object. In general it can be said that
the closer the eigenvalues and the weaker the actual localisations, the more likely
it is to get correlation with more than one topological object in the corresponding
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Figure 3.4: (a) Topological charge density of a 12-sweep cooled 163 × 32 configu-
ration at β = 4.60. (b) Action density of the same configuration. There is clearly
less structure for the action density than the topological charge density. (c) The
low-lying eigenmode density at κ = 0.14 of the same, but uncooled, configuration
with correlation to the object seen in the action density and the topological charge
density. (d) Eigenmode density at κ = 0.16 showing correlation to the same topo-
logical object. (e) Eigenmode density at κ = 0.18. The localisation is maximal for
this value of κ. (f) Eigenmode density at κ = 0.19. The localisation gets broader
again.
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eigenmodes.

Calculations of 20 eigenmodes for selected values of κ on hot configurations show
only little broadening in the localisations and persistent correlations with topology.
This suggests that this behaviour will not change quickly and such correlations will
persist for even higher eigenmodes.

As mentioned above, the topological charge density of the 12-sweep cooled con-
figuration is used for comparison. The position of eigenmodes on cooled fields
agree perfectly well with the position of topological objects seen in this density.
A typical distance between such positions being 0.05 lattice spacings a. For hot
configurations some of the correlations are slightly offset compared to the struc-
ture in the smoothed configurations whereas other structure in the eigenmodes
has no corresponding structure in the smoothed topological charge. But in those
cases a comparison with a less cooled configuration reveals correlations between
eigenmodes and topological objects which are moved or destroyed by further cool-
ing. This behaviour is expected and understood: Topological objects are known
to move under cooling as instantons and anti-instantons attract each other and
annihilate when they are close enough together.

This clear correlation between ρ(x) of eigenmodes on hot configurations and topo-
logical objects suggests that it is possible to identify areas through the noise of a
hot configuration with significant topology. This allows to “see through” the noise
by using eigenmodes of the hermitian Wilson-Dirac operator.

The spectral plot of the first four eigenvalues of a 12-sweep cooled configuration
looks different compared to the same plot on a hot configuration. Comparing
fig. 3.3 and fig. 3.5 one notices the rhomboid shape with an area without any
eigenvalues in the spectral plot of the cooled configuration. This is expected for
such smoothed configurations [46, 47]. Eigenmodes on the right-hand side of this
rhomboid behave different than eigenmodes on the left-hand side of the rhomboid.
The localisation of the eigenmodes on the left-hand side is approximately the same
as the localisations in the hot configuration. But the eigenmodes on the right-
hand side are much weaker in localisation. Those weaker localised eigenmodes
are related to very high eigenmodes in the hot configuration and the process of
cooling brings them into an area where they can be observed as low eigenmodes.
These eigenmodes must be very high eigenmodes in a hot configuration for they
are much weaker localised as localisations seen for up to the 20th eigenmode in a
hot configuration. Although the behaviour in localisation strength for eigenmodes
of cooled configurations is different from that of eigenmodes of hot configurations
the correlations with topological objects still exist for all eigenmodes. I will take a
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closer look at localisation strength and quantify it in the next section.

Figure 3.5: First four eigenvalues of the spectrum of a 12-sweep cooled configura-
tion. Note the rhomboid shape with the area without eigenvalues. The modes to
the right of the maximum, the filled symbols, are only weakly localised. The open
symbols are strongly localised.

3.3 Quantitative Results

As described above, the localisation of the eigenmodes change shape and size with
changing of κ. In order to quantify this behaviour I found two useful methods.
The first one is fairly simple. I have already showed that most eigenmodes are
localised at one topological object. As the eigenmodes are all normalized, the
maximum, or peak, value of the eigenmode density is an indicator of how strong
this localisation is. Fig. 3.6 shows the plot of such peak values for four eigenmodes
each of three hot 163 × 32 configurations. This plot shows a smooth behaviour
with a maximum for κmax ≈ 0.23 for the lowest eigenmodes. This suggests that
for hot SU(3) configurations the strongest localisation occurs in that κ region.

Fig. 3.7 shows the same plot for four eigenmode densities each for three 12-sweep
cooled 163×32 configurations. This plot shows a different behaviour. Again there
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Figure 3.6: Peak value of four eigenmode densities each from hot 163 × 32 con-
figurations with respect to κ

is a clear peak, but the values drop to almost zero immediately after the peak.
However, after the qualitative observations presented in the previous section, this
was expected. These low maximum values correspond to weakly localised modes,
which are on the right-hand side of the spectrum shown in fig. 3.5. In this case
κmax can not be determined, for it is not clear how the localisations are going to
develop if the the stronger localised eigenmodes would be followed up to higher
values of κ. The one eigenmode that could be followed suggests that κmax ≈ 0.20.
This reduction of κmax is about the same size as the reduction of κc for going from
the hot to the 12-sweep cooled configuration.

To get more information about the shape of the eigenmodes, the instanton model,
eq. 2.14, is fitted to the eigenmodes. This model gives very good fits as

∑

x

(p(x)zero − pM(x))2 = 10−5 (3.1)

where pM(x) is the 6 parameter fit of 34 points of p(x) centered about the peak
of ρ(x). This value is about 1000 times smaller than the peak value and 10−5 is
the worst case with most of the fits of order 10−7 to 10−9. The fit parameter ρ is
then a good measurement for the size of the localisation.
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Figure 3.7: Peak value of four eigenmode densities each from three 12-sweep
cooled 163 × 32 configurations with respect to κ

In fig. 3.8 ρ(κ) is plotted for four eigenmodes calculated on all hot configurations
and in fig. 3.9 for four eigenmodes calculated on all 12-sweep cooled configurations.
One sees a behaviour which corresponds to the behaviour described above for the
peak values of the eigenmodes. For the hot configurations ρ(κ) shows a smooth
behaviour with a minimum around κmax = 0.26. This means the eigenmodes are
maximally localised for this value of κ and are less localised for both ends of the
spectrum. The κmax found this way varies slightly from κmax found by just taking
the peak values of the eigenmode densities. It is about 0.03 larger at 0.26 for the
lowest eigenmode. As mentioned earlier the eigenmodes for low and high values
of κ are localised on more than one topological object. Therefore fig. 3.8 reports
more local maxima than modes at these κ. However in the range 0.18 ≤ κ ≤ 0.28
only one local maximum is found per mode.

In the previous sections it has been established that low-lying eigenmodes are cor-
related to a single topological object when eigenmodes are non degenerate. It
is also established that an instanton gives rise to a zero crossing in the spectral
flow with the sign of the slope equal to the sign of the topological charge [10].
However, as mentioned above, fig. 3.3 reveals an eigenmode correlated to one
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Figure 3.8: ρ of the fitted instanton model of four eigenmodes from three hot
163 × 32 configurations with respect to κ. Note that there are several correlations
in one eigenmode at both ends of the spectrum.

topological object, but with two zero crossings. The size of the eigenmode varies
from ρ = 1.2 to ρ = 1.0 as κ varies from 0.21 to 0.27. The size of the correlated
object on the topological charge density, which can only be seen on the 5-sweep-
cooled configuration, is ρ = 1.1. It is possible to reproduce similar spectral flows
on single instanton configurations, which have been cooled with the Wilson action
to the point where the topological charge is Q ≈ 0.4, well below 1. Hence the
double zero crossing of the spectral flow in fig. 3.3 either suggests the presence
of a lattice artifact or the presence of small topological objects on top of the
larger observed one. This issue is still work in progress, as it is also interesting
how an improved fermion action acts on such a double-crossing. Some preliminary
results have been reported [48] with some others being currently prepared [49].
This current work suggest that improved actions, such as FLIC, see sec. 2.1.1, do
not remove the double crossings, but rather tend to keep them. An interpretation
for this behaviour is that such double-crossings are a manifestation of short range
topological fluctuations, which are still ”seen” by a ”good” improved action, but
removed by a crude improved action, such as a Wilson action where all links are
smeared.
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Figure 3.9: ρ of the fitted instanton model of four eigenmodes from three 12-sweep
cooled 163 × 32 configurations with respect to κ. Note the jump at κ ≈ 0.19.

The behaviour of ρ(κ) of the cooled configurations shows a jump at κ ≈ 0.19,
where the weakly localised modes set in as described above. Some of these weakly
localised modes are not sufficiently localised to allow a fit to the instanton model.
A fit would result in values for ρ ≥ 10, which are not reasonable for the instanton
model and therefore neglected. Where a fit to those eigenmodes is possible, it
results in large values of ρ compared to the strongly localised eigenmodes. One
finds that ρ is about 2 for strongly localised eigenmodes and about 6 for weakly
localised eigenmodes. For κ ≤ 0.19, ρ(κ) decreases smoothly, but for κ ≥ 0.19
the values of ρ(κ) are higher than at the lower end of the spectrum and do not
show a smooth behaviour. Again it is hard to extract κmax, but it seems that if
the stronger localised modes could be followed further it would be around 0.22.
This is about 0.02 larger than the κmax, which is extracted using the peak values.

The fitting of the models to the eigenmode densities, using eq. 2.13, as well as
to the topological charge densities, using eq. 2.12, allows comparison of the sizes
for the eigenmode localisations with the sizes of the actual topological objects. In
order to do this, the topological object which is located closest to the position of
the eigenmode is found. However the instanton model can only be fitted to topo-
logical charge densities of cooled configurations, as only those are smooth enough.
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Therefore only the sizes of eigenmodes of cooled configurations can be compared
with sizes of actual topological objects. Due to the different localisation strength
for eigenmodes on the left-hand and on the right-hand side of the rhomboid spec-
trum of a cooled configuration, those eigenmodes are considered separately.

Figure 3.10: ρ of the fitted instanton model of one mode of a 12-sweep cooled
163×32 configuration with respect to κ. The × denote the size of the eigenmode
and the + denote the size of the correlated topological object. That the two
graphs cross is a general result and all crossings are found for 0.155 < κ < 0.175.

The fitted positions for the strongly localised eigenmodes agree very well with the
fitted positions of the correlated topological objects lying within a fifth of a lattice
spacing, and most of the times even better. The fitted positions of the weakly lo-
calised modes to the right-hand side of the spectrum agree only within one lattice
spacing with their correlated topological objects. Strongly localised eigenmodes
are correlated to smaller objects in the topological density. Such eigenmodes on
the left-hand side of the eigenvalue spectrum, except those for κ ≤ κc, have a
size between ρ ≈ 1.5 and ρ ≈ 3.5. The correlated topological objects have a
size between ρ ≈ 2 and ρ ≈ 3. The eigenmodes are larger than their correlated
topological objects for smaller values of κ, but as they shrink with growing κ they
get smaller than their correlated topological objects. All followed modes reach the
size of the correlated topological object for 0.155 < κ < 0.175. Fig. 3.10 shows
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an example of this behaviour.

The weakly localised eigenmodes on the right-hand side of the eigenvalue spec-
trum are larger than the strongly localised eigenmodes on the left-hand side of
the spectrum. They turn out to have a size between ρ ≈ 4 and ρ ≈ 6. But the
topological charge density objects correlated with those eigenmodes are themselves
bigger than the topological charge density objects correlated with the stronger lo-
calised modes. The sizes of the topological charge density objects lie between
ρ ≈ 3 and ρ ≈ 4. The weaker localised eigenmodes are always bigger than the
correlated topological objects with ρmode ≈ ρtopQ + 2. For κ = κc the size of the
eigenmodes is between ρ = 3 and 5 with a relation to the size of the correlated
topological objects of ρmode ≈ ρtopQ + 1. Sizes of strongly localised eigenmodes
of hot configurations are of a comparable, but slightly smaller size than the ones
on cooled configurations.

Figure 3.11: ρ of the fitted instanton model of four eigenmodes for one 4-sweep
cooled 163×32 configuration with respect to κ. Note the jump occurring at higher
κ compared to fig. 3.9.

In order to understand why modes on the right-hand side of the rhomboid are just
weakly localised spectra for one configuration with different amounts of cooling are
calculated. This shows that the value of κ where the jump in the localisation size
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occurs becomes smaller with cooling. Compare fig. 3.9 and fig. 3.11. It is known
[10] that zero crossings for larger κ correspond to smaller topological objects. As
the localisation sizes of calculated eigenmodes shrink with growing κ as well, one
can generally think of larger values of κ being associated with smaller objects.
Cooling removes smaller objects first, therefore eigenmodes for large κ become
“unassociated” with small objects. The eigenmodes show a behaviour of weak
localisation which can be seen in fig. 3.9 and fig. 3.11 after the jump. Further
cooling removes larger objects and therefore the value of κ, where the change of
behaviour sets in, becomes smaller.
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Chapter 4

The vortex picture of confinement

In this chapter I will present the results from the vortex part of this work. Calcu-
lations for this chapter were performed on 83 × 16, 123 × 24 and 163 × 32 lattices.
For more informations about the simulation parameters see sec. 2.2 and table 2.1
therein. The smaller lattices were just used for checking the algorithms and getting
rough ideas. Production was done on 16× 32 lattices with four different values of
β, namely β = 4.38, 4.53, 4.60 and 4.80, with 100 configurations each.
In the following sections I will describe the steps needed to establish a vortex
picture of confinement and the results obtained in these steps.

4.1 Wilson-loop phases

Before gauge fixing and identifying center degrees of freedom let me first present
some new evidence that such degrees of freedom indeed play an important role for
calculations connected to Wilson-loops.
Calculations of n × n Wilson-loops W (x) with full Monte-Carlo generated SU(3)
lattice configurations show that the complex phases φ given by W (x) = eiφ are
not uniformly distributed. Instead the probability for having a certain φ is strongly
peaked at three values. These are

φm =
2π

3
m, m = −1, 0, 1, (4.1)

which corresponds to the three center elements of SU(3). Fig. 4.1 shows his-
tograms with the total number of Wilson loops having a phase φ plotted over φ
for different sizes of Wilson-loops. Counts for a 0.001 rad interval are summed.
For n = 1 only the peak at m = 0 is present, but with increasing n this peak
decreases and two more peaks begin to form at m = −1 and m = 1. For n = 4,
which corresponds to a physical size of the Wilson-loop of 0.488 fm × 0.488 fm
for the β = 4.60 lattice shown in the plot, the peaks reach (almost) equal height.
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Even larger Wilson-loops do not change the situation any further. This behaviour
is quantified in fig. 4.2, where the relative peak height of the −2π/3 peak is plot-
ted. The relative peak height is determined by the counts for loops having a phase
φ with −π/3 ≤ φ < π/3 divided by the counts for loops having a phase φ with
−π ≤ φ < −π/3. Although the relative peak height is not purely dependent on
the size of the Wilson-loop, but also on the lattice spacing a one finds that for
large enough Wilson-loops this ratio goes to one.

The result that large Wilson-loops are dominated by center degrees of freedom is
the same as Langfeld finds in his analysis of vortex limited Wilson-loops for SU(3)
[23]. The analysis in [23], however, takes information from Z3 configurations found
after gauge fixing to MCG into account. This might put some kind of bias into the
analysis. Contrary to that, the analysis presented here is performed on full SU(3)
configurations and only the number of Wilson-loops having a certain phase φ is
plotted. Thus this approach is gauge invariant and there is no bias put into this
analysis, at all. Therfore this finding is strong evidence that the center plays an
important role for Wilson-loops, which makes center vortices a prime ansatz for
work on the confinement problem. Note that this finding, of course, agrees with
the Wilson loop expectation values being real. The average of the complex phases
is zero.

4.2 MCG gauge fixing

To correctly determine physical center vortices the Monte-Carlo generated lattice
configurations need to be gauge fixed. For reasons described in sec. 2.4 the maxi-
mal center gauge (MCG), see sec. 2.4.1 for details, is chosen as the ”main” gauge
for this work. ”Main” meaning that most of the work will be done with MCG,
but to highlight some difficulties and possible solutions two other gauges, the ideal
center gauge (ICG) and the Laplacian center gauge (LCG), will be mentioned be-
low.
The gauge fixing is done to a precision of 10−6, which is a reasonable compromise
between accuracy and computational effort. The value of R, as defined in eq. 2.32,
stays stable within that precision after approximately 1100 gauge fixing sweeps.
The values of R reached for different lattice spacings a are shown in fig. 4.3. The
closer the value found for R to one the closer the links are to center elements. It
seems to be the case that for lattices with a smaller lattice spacing a the gauge
fixed configurations {UΩ

µ (x)} are closer to center configurations {Zµ(x)}. How-
ever no conclusion about the quality of these gauge fixed configurations for the
vortex picture can be drawn from that, yet.
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Figure 4.1: Number of Wilson-loops having the complex phase φ plotted over φ
for a full β = 4.60 SU(3) configuration. For small Wilson-loops there is one strong
peak for φ = 0. The larger the loop, the stronger the peaks at φ = ±2π/3. For
n ≥ 4 the phases are equally distributed around φ = ±2π/3 and φ = 0.

After the gauge fixing, vortices are identified and then removed by a projection
procedure. For technical details see sec. 2.4.3 and sec. 2.4.4. The configurations
with the vortices, after the MCG gauge fixing are the basis for a vortex-only theory.
The vortex-removed theory is based upon the configurations created after the
projection procedure.

4.3 The vortex density

After having gauge fixed to MCG, I can now identify the center vortices with the
procedure described in sec. 2.4.3. The first question one is interested in is whether
the vortices identified in such a way are physical. In order to show this I need the
vortex density ρ defined by

ρlat(β) :=
# plaquettes pierced by a vortex

# plaquettes on the lattice
, (4.2)
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Figure 4.2: Relative peak height of the −2π/3 peak to the center peak of fig. 4.1
vs the side length n of corresponding Wilson-loops in fm. The larger the loop the
closer the ratio to one.

which is equivalent to

ρlat(β) = ρa2(β) = Pβ, (4.3)

with Pβ being the probability that a plaquette carries a non-trivial center charge.
If the vortex density is a physical quantity it has to be valid in the continuum limit.
Thus the physical vortex density

ρphys =
ρlat

a2σ
=
ρ

σ
, (4.4)

has to be independent of the lattice spacing a.
Some evidence for asymptotic scaling can already be seen when plotting the vortex
density in lattice units ρlat = ρa2 with respect to β on a logarithmic scale. This is
done in fig. 4.4. The linearity of the values in this scale may be interpreted as some
evidence for asymptotic scaling. The physically more interesting plot, however, is
fig. 4.5. It clearly shows the independence of the lattice spacing a for the vortex
density ρphys in physical units within errorbars. This is very strong evidence that
the center vortex density ρ is a lattice independent quantity and as such sensible
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Figure 4.3: MCG gauge fixing maximization quantity R versus physical lattice
spacing a [fm]

in the continuum limit. One can therfore say that criterium (i) which I proposed in
sec. 1.2 is fulfilled. But what about criterium (iii)? To get more insight I calculate
the average physical vortex density for all lattice spacings a, which is reasonable to
do as ρphys is independent of a. This yields ρ∅/σ = 0.391(27) and with

√
σ = 440

MeV

ρ∅ = 1.97(14)
1

fm2 . (4.5)

This value comes close to the value ρ∅RV
= 0.5σ for the random vortex model.

With this one can assume that criterium (iii) holds.
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Figure 4.4: Vortex density ρ in lattice units over β in logarithmic scale. Evidence
for asymptotic scaling.
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Figure 4.5: Vortex density ρ in physical units. Within errorbars ρ is independent
of the lattice spacing a.
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4.4 The potential in the MCG vortex picture

Now that vortices found after MCG gauge fixing are established as physical objects
let me take a closer look at the confining properties of the vortex theory. This
will be done by examining the static quark-antiquark potential for the full SU(3)
theory, the vortex-only theory and the vortex-removed theory. Details about the
quark-antiquark potential are to be found in sec. 2.5.
As a reference the potential of the full SU(3) gauge theory is plotted in each po-
tential plot, see figures 4.6, 4.7, 4.8 and 4.9. The black line is a fit according to
the function 2.62. The potential is the standard confining QQ̄-potential with a
Coulomb part for small r

√
σ and a linearly rising part, the confining part, for large

r
√
σ.

The potential calculated in the vortex-only theory, see fig. 4.6, shows, as expected,
only the linearly rising part. Thus the vortex only theory is a confining theory.
However, in contrast to SU(2) [20, 26] and preliminary SU(3) [22] results the
vortex-only configurations reproduce only about 62% of the full string tension.
Complete string tension data for vortex-only and vortex-removed theories, as well
as, different gauges, is to be found in table 4.1. This result agrees with Langfeld
[23], who used background gauge fields created with the standard Wilson-action.
Thus the use of improved operators does not seem to change the MCG vortex
behaviour significantly. One straightforward thought is the missing string tension
might have something to do with the Gribov copy problem affecting the MCG
gauge fixing procedure. If this was the case at least some vortex configurations
should show a much larger string tension. However this is not found, thus one can
conclude that Gribov copies are not a problem for the MCG vortex picture. Ideas
of how to account for the missing 38% of the full string tension will be presented
in the following subsections.

The string tension almost vanishes for vortex-removed configurations in MCG.
The best data is obtained from the larger physical volumes, see the differences in
fig. 4.7. It is therefore desired to do the calculations on large enough lattices. For
the lattices used in this work, large enough seems to be the case for β = 4.38,
β = 4.53 and β = 4.60. For the β = 4.60, 163×32 lattice this corresponds roughly
to a physical volume of (1.49 fm)3 × 3.35 fm. With this straightforward method it
seems that this is about the smallest volume for which one gets a non-confining
vortex-removed theory. For all physical volumes, even for the smallest one, the
remaining string tension in the vortex-removed theory is much smaller than the
missing string tension in the vortex-only theory. The straightforward conclusion
from this fact is, that the missing string tension can not be due to vortices not
found during the vortex identification process. If this was the case the remaining
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Figure 4.6: Static quark-antiquark potential for the MCG vortex-only theory and
the full SU(3) gauge theory for comparison. The black line is a fit according to
eq. 2.62

string tension in the vortex-removed theory would be at least of the order of the
missing string tension, thus some other possibilities have to be considered, as will
be done in the next sections.

4.5 Ideal center gauge

The last section showed that MCG center vortices in a vortex-only theory, reproduce
only about 62% of the full string tension. It immediately comes to ones mind that
this could be due to the mesonic gauge condition, of which one does not know
if it really yields the best overlap, see sec. 2.4.1. To test if the overlap can be
improved, I take the MCG gauge fixed configurations and imply the ideal gauge
condition (eq. 2.24) via an iteration overrelaxation procedure, which maximises
Rideal. One sweep of this procedure consists of the following two steps at each
lattice site. Firstly, get a new center element Zµ(x) with the probability of

p = exp
[
βfReTrUΩ

µ (x)Z†
µ(x)

]
, (4.6)
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Figure 4.7: Static quark-antiquark potential for the MCG vortex-removed theory
and the full SU(3) gauge theory for comparison. Note that only for β ≤ 4.60
the string tension vanishes. The vanishing of the string tension depends on the
physical lattice volume.

where βf is a free parameter for the algorithm, which allows sub-optimal updates
with a certain probability. After finding a new Zµ(x) the one needs to find a gauge
transformation Ω(x), which achieves

ReTr
(
UΩ

µ (x)Z†
µ(x)

)
→ max. (4.7)

For getting the optimal Rideal, the free parameter βf can be tuned. My tuning
procedure finds a βf which changes Rideal more than 5% from its start value. Then
20 sweeps are done with this value for βf to leave a possible local maximum of
R. After that βf is successively increased by 0.35 every 20 sweeps. This ensures
that no maximum will be missed due to large jumps for the Zµ. In the following,
the gauge produced by this procedure will be called ideal center gauge (ICG). A
random start version of ICG, where one sweep of random gauge transformation is
performed before the start of the ICG procedure, was tested, as well. No significant
difference was seen between the random start and standard ICG gauge fixing, see
the β = 4.38 potential in fig. 4.8 and fig. 4.9, thus I concentrated on the standard
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ICG gauge fixing.

ICG inherits the desired properties from MCG. The vortex density is independent of
the lattice parameter β, but with a value of ρ∅/σ = 0.508(31) it is slightly higher
than for MCG, but even closer to the random vortex model value of ρ∅RV

= 0.5σ.
Again using

√
σ = 440 MeV one gets

ρ∅ = 5.04(15)
1

fm2 . (4.8)

These values were obtained using 20 configurations each for β = 4.38, 4.60 and
4.80. There are relatively large statistical errors in the potential plots when using
only 20 configurations, but it is still sufficient to see if there are any severe differ-
ences between the two gauges.

In order to see the differences in the confining properties between MCG and ICG the
static quark-antiquark potential for the vortex-only, fig. 4.8, and vortex-removed,
fig. 4.9, theories found after ICG gauge fixing is calculated. The string tension for
the vortex-only and vortex-removed theories are calculated, however the situation
is not changed by the ICG gauge condition. The String tension for the vortex-only
theory is only about 58% of the full string tension, thus even a few percent lower
than for MCG. This shows that the ideal gauge condition does not yield better
results than the mesonic gauge condition, but rather similar values. Thus MCG
implemented in the described way seems to be a good approximation to the ideal
case. For detailed results of the MCG/ICG vortex-only and vortex-removed string
tension in percentage of the full SU(3) string tension see table 4.1.

One big drawback of this gauge fixing method is the ambiguity in technical details
of the iteration overrelaxation algorithm. How strong should the gauge condition
be implied during the procedure? Of course one would like to have a strong gauge
fixing condition which really maximises Rideal. In reality, however, it seems to be
the case that weaker the gauge condition employed the larger the string tension
reproduced by the vortex-only theory. In principle one could therefore try to de-
termine the best set of parameters for the algorithm on a trial and error basis.
However, it is not clear whether the best set of parameters necessarily yields the
full string tension in the resulting vortex-only theory. But even if this was the case,
this trial and error method yields no clean gauge condition, which could provide
more insight in the physics of the connection between center vortices and confine-
ment.

The last two sections showed that neither the mesonic nor the ideal gauge condition
yield a vortex theory which reproduces the full string tension with vortices only and
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Figure 4.8: Static quark-antiquark potential for the ICG vortex-only theory. The full
SU(3) gauge theory is plotted for comparison. No significant difference between
MCG (fig. 4.6) and ICG potentials is seen. The random start ICG vortex-only
theory has a slightly smaller string tension than standard ICG version.

no string tension without vortices. I will show two ways of dealing with this problem
in the following two sections.

4.6 The missing string tension

The first way is to find a possible explanation for the missing string tension. As
mentioned above the vortex-only theory reproduces only about 60% percent of
the full string tension, however the vortex-removed theory has almost no string
tension. This is a puzzling result as, if one tries to account the missing 40% of
the string tension to some objects other than the vortices, these 40% should still
be present in the vortex-removed case. The conclusion from this result is, that the
missing string tension is produced by something removed with the vortices, but
not present for center vortices only. An idea of incorporating this into the vortex
picture has been proposed by Jeff Greensite and Stefan Olejnik [50]. The idea is
to introduce an additional phase κ, which can represent the missing string tension.
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Figure 4.9: Static quark-antiquark potential for the ICG vortex-removed theory.
The full SU(3) gauge theory is plotted for comparison. No significant difference
between MCG (fig. 4.7) and ICG potentials is seen. Random start and standard
ICG show no difference.

This phase is incorporated into the Wilson-loop expectation value in the following
way, for details please refer to appendix B.1:

〈W (C)〉 = (1 − 3p)
〈

W̃0(C)
〉

exp[−κA], (4.9)

exp[−σA] = exp[−(σcp + κ)A]
〈

W̃0(C)
〉

, (4.10)

with p being the probability that a vortex flux of m = +1 flows through a Wilson-
loop, σ being the full string tension and σcp being the string tension of the vortex-
only theory. The missing string tension will then be represented by κ. 〈W (C)〉
being the expectation value for the full theory and

〈

W̃0(C)
〉

being the expectation

value for Wilson-loops having the center flux 0.

Eq. 4.10 shows a possibility of how the phenomenon of the missing string tension
in the vortex-only theory combined with the vanishing string tension in the vortex-
removed theory could be explained. However, it is completely unclear at the



Chapter 4. The vortex picture of confinement 67

β σFull σMCGVort σMCGNo−Vort σICGVort σICGNo−Vort

4.38 100 62 0 56/52 0/0
4.53 100 66 0 n.a. n.a.
4.60 100 61 0 58 0
4.80 100 61 5 58 5

Table 4.1: String tension for vortex-only and vortex-removed theories, both for
MCG and ICG, in percentage of the full SU(3) string tension. MCG vortex-only
theory yields slightly larger values. The second values for β = 4.38 ICG are for the
random start method. Values are approximations.

moment how the κ-parameter can be related to physics. A second drawback
in this method is that neither the numerical value of the missing string tension
can be explained, nor why there is no missing string tension in LCG, for which a
similar calculation can be performed. Nevertheless, this shows that the missing
string tension can be incorporated into the center vortex picture. In principle one
could even do calculations on the lattice in order to find the value of κ. One
just needs to calculate Wilson-loop expectation values 〈W (C)〉 for the full theory
and for Wilson-loops 〈W−,0,+(C)〉 having center flux m = −1, 0, 1 separately and
determine κ via eq. 4.10. In practice, however, it is too costly to determine the
Wilson-loops to the accuracy needed for a calculation of κ.

4.7 Laplacian Center Gauge

A second possibility to deal with the missing string tension is not to use MCG for
gauge fixing, but to use a different gauge – the Laplacian center gauge (LCG).

For technical details about the LCG procedure please refer to [51]. A very brief
outline of the procedure follows.
The functional Rmes (eq. 2.26) can be rewritten as

Rmes =
1

Nl

∑

x,µ

1

N2

[
TrOT (x)Rµ(x)O(x+ µ) + 1

]
, (4.11)

with the adjoint matrices being defined by

Oab(x) = 2Tr
{
taΩ(x)tbΩ†(x)

}
, Rab

µ (x) = 2Tr
{
taUµ(x)tbU †

µ(x)
}
, (4.12)

and ta,b being the generators of the SU(N) algebra. Eq. 4.11 can be rewritten as

N2Rmes =
1

Nl

OTRO + 1, (4.13)
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where the vector O of the combined coordinate and colour space
{
Oab(x)

}
→ O

has been introduced. R is the adjoint Laplacian operator, i.e.

Rab
xy =

1

2

∑

µ

[
Rab

µ (x)δy,x+µ +Rba
µ (x− µ)δy,x−µ

]
, (4.14)

which is up to a term proportional to the unit matrix. The vector O is constrained
by the set of vectors na with Oab = {n1(x), n2(x), n3(x)}ab being orthonormal. For
the gauge fixing these constraints are relaxed and the N −1 largest eigenvalues of
the supermatrix R are found. With the help of Gram-Schidt orthogonalisation the
adjoint gauge transformations Oab(x) are then reconstructed from the eigenvec-
tors. It is important to point out that the LCG procedure also seeks to maximise
the mesonic gauge condition. However, due to the re-orthogonalisation of the
eigenvectors, the value for the overlap Rmes achieved with LCG is significantly
smaller than the one achieved with MCG. Simulations for LCG were performed for
β = 4.38, 4.60 and 4.80 using the same improved configurations, kindly provided
by the CSSM lattice collaboration, as for MCG.
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Figure 4.10: The LCG vortex density in physical units ρ/σ and scaled with a
√
σ

is plotted. ρa/
√
σ is independent of the lattice spacing a within errorbars.
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A vortex only-theory for LCG has been shown to reproduce the full string tension
with the vortex-removed theory having no string tension [51, 23]. However LCG
has the drawback that the vortex density diverges in the continuum limit, but in
some controlled way. For LCG not the physical vortex density ρphys = ρlat/a

2σ,
but the quantity ρlat/a

√
σ is almost independent of the lattice spacing [23]. There

is only a very small rise seen in fig. 4.10. It is not clear at the moment why this
is the case and how the vortices found in LCG can be related to physical vortices.
No speculations about any possibilities will be done here, but the example of LCG
should stress out that it is possible to get a vortex-only and vortex-removed theory
with full and vanishing string tension respectively.
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Chapter 5

Conclusions

5.1 Low-lying eigenmodes concluded

This work showed that not only zero modes, but all low-lying eigenmodes of the
hermitian Wilson-Dirac operator DW are strongly correlated to topological objects
for κ ≥ κc. These objects can be instantons for which S/S0 = Q, Q ∈ Z, or
topological fluctuations with S/S0 > Q. One eigenmode is correlated to at least
one topological object with correlations to more than one object becoming more
likely as eigenvalues become degenerate and eigenmodes become broader in size.
For κ < κc the correlations broaden very quickly and are lost for values smaller
than about (κc−0.02). For κ > κc the correlations become sharper until κ = κmax

for which the correlations are strongest. For κ > κmax the correlations broaden
again.
Eigenmodes of 12-sweep cooled configurations show a different behaviour depend-
ing on whether they belong to eigenvalues on the left or right-hand side of the
rhomboid-shaped eigenvalue spectrum of a cooled configuration as seen in fig.
3.5. Eigenmodes belonging to the left-hand side of the eigenvalue spectrum are
strongly localised and show the same behaviour as eigenmodes of hot configura-
tions. Eigenmodes belonging to the right-hand side of the eigenvalue spectrum are
very weakly localised, but are still correlated to topology. This suggests that those
eigenmodes correspond to very high eigenmodes in a hot configuration, which are
lowered by cooling.
The value of κ where the weakly localised eigenmodes set in becomes smaller with
cooling. This supports the idea of high values of κ corresponding to localisations
on small topological objects. Small topological objects are removed first under
improved cooling thus eigenmodes for high values of κ are the first ones to loose
the strong localisation.
When an instanton model is fitted to the eigenmode density, using eq. (2.13), and
to the topological charge density, using eq. (2.12), strongly localised eigenmodes
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have about the same size for ρ as the correlated topological objects. For κmax

eigenmodes are slightly smaller than the correlated topological objects and for κ
smaller than κ ≈ κmax − 0.02 eigenmodes are slightly larger.
On a single instanton configuration the correlation to the instanton persists strongly
only for the lowest eigenmode and is then gradually lost for higher eigenmodes. On
SU(3) background fields correlation for the 20 lowest eigenmodes is seen. There
is only little broadening which suggests that the correlations will persist for eigen-
modes higher than 20.
For hot configurations these correlations allow to “see through” the noise to un-
derlying topological objects. This enables one to track the movement of these
objects as a function of cooling.

5.2 Conclusions and outlook for the vortex picture

This work showed that the phase distribution of large Wilson-loops for full Monte-
Carlo generated SU(3) lattice configurations is strongly peaked at values of φm =
2π
3
m with m = −1, 0, 1. This corresponds to the center elements of SU(3).

It indicates that large Wilson-loops are center dominated. Thus center degrees
of freedom, i.e. center vortices, are important objects if one examines physical
properties via Wilson-loops. The confining capability examined in this work is a
good example for such a degree of freedom.
Different methods exist to identify degrees of freedom which might give a picture
about confinement. With the help of three constraints

• (i) the degrees of freedom are sensible in the continuum limit,

• (ii) they are connected to confinement,

• (iii) they are weakly interacting,

one can choose the right method. If one chooses a center vortex degree of freedom,
criterium (ii) is immediately satisfied [25]. One now has to choose between differ-
ent methods of center vortex identification. With the help of the remaining criteria
one can find a suitable method. The procedure chosen to start with, namely gauge
fixing to MCG using the mesonic gauge condition (eq. 2.26) followed by center
projection, satisfies both remaining constraints. The MCG vortex density is found
to be independent of the lattice spacing a. With a value of ρ∅ = 1.97(14)fm−2

it is close to the random vortex value, thus a weak interaction according to the
random vortex model is possible.
In order to find out more about the confining properties of such vortices in SU(3)
LGT the static quark-antiquark potential has been calculated for the full, the
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vortex-only and the vortex-removed theory. After removing the vortices the string
tension vanishes for lattices with a large enough physical volume, leading to a non-
confining theory. My finding is that the volume should be at least (1.49 fm)3 ×
3.35 fm, corresponding to a 163 × 32 lattice with β = 4.60. On the other hand,
a vortex-only theory recovers about 62% of the full string tension. This is con-
trary to SU(2) LGT, where the full string tension is recovered by the vortex-only
theory. Further analysis was done to find an explanation for the missing string ten-
sion. The first idea was to test if the use of the ideal gauge condition (eq. 2.24)
implied with an iteration overrelaxation algorithm resolves the puzzle of the miss-
ing string tension. Even with the, compared to MCG higher, vortex density of
ρ∅ = 5.04(15)fm−2 the vortices identified with this ICG procedure still have the
desired properties. However this gauge condition again yields not the full string
tension, but only about 58% of the full string tension in a vortex-only theory. This
shows that the mesonic gauge condition yields, for practical use, a satisfying over-
lap between center elements Zµ(x) and links UΩ

µ (x). Neither mesonic, nor ideal
gauge condition yield the full string tension for the vortex-only case, but both give
almost zero string tension for the vortex-removed theory. Greensite and Olejnik
[50] showed that this at first sight puzzling result could be incorporated in the
center vortex picture by introducing an additional phase κ. Unfortunately this is
only a proof of principle, it is not clear if there is any physical meaning behind
this parameter. A calculation to clarify this, although possible in principle, is not
feasible at the moment due to the noise in large Wilson-loops.
On the way of finding some other gauge condition, which could lead to full string
tension, an old friend – the Laplacian Center Gauge – has been proposed. Contrary
to MCG and ICG gauges discussed above LCG vortex-only and vortex-removed the-
ories yield full and zero string tension respectively. However, there is one drawback,
the physical vortex density ρphys = ρlat/a

2σ diverges in the continuum limit. But
this divergence happens in a controlled way. The quantity ρlat/a

√
σ is independent

of the lattice spacing a. Unfortunately this behaviour is not yet understood.

The confinement problem in lattice QCD is still an unsolved, but very exciting
problem. The center vortex ansatz has promising properties with physical vortices
for MCG and full SU(3) string tension in a vortex-only theory for LCG. More work
to gain a deeper understanding of the vortex texture making it possible to combine
those desired properties in one simple procedure and allowing a physical insight
into the confinment problem is still necessary. I hope however, that this work
helped to put some small pieces in the big puzzle of quark properties, topology
and confinement.
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Appendix A

Useful tools

A.1 Conversion of physical units

Throughout this work natural units, ~ = c = kB = 1, are used. Thus energy
and mass have the dimension of inverse length. The scale for conversion of lattice
units in physical ones is set by

√
σ = 440 MeV. This converts into a length via

1fm ≈ 5.1 · 10−3 1

MeV
. (A.1)

A.2 Wilson-loop

I define the Wilson-loops to include the trace. A 1 × 1 Wilson-loop is then given
by,

Wµν =
1

3
Tr[Uµ(x)Uν(x+ µ)U †

µ(x+ ν + µ)U †
ν(x)], (A.2)

with Uµ(x) ∈ SU(3) being the link variables.

A.3 Pauli Matrices

σ1 =

(
0 1
1 0

)

(A.3)

σ2 =

(
0 −i
i 0

)

(A.4)

σ3 =

(
1 0
0 −1

)

(A.5)
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A.4 Gamma Matrices

The gamma matrices in chiral basis are used for this work,

γ0 =

(
0 i

�
2

−i�2 0

)

, (A.6)

γi =

(
0 σi

σi 0

)

, i = 1, 2, 3, (A.7)

γ5 =

( �
2 0

0 −�
2

)

, (A.8)

with σi being the Pauli matrices and γ4 = γ0.
The following relations hold for the gamma matrices,

Trγµ = 0, (A.9)

{γµ, γν} = 2δµν
�

4, (A.10)

and

{γµ, γ5} = 0. (A.11)



Appendix B

Calculations

B.1 Greensite-Olejnik Hypothesis

In this section I will perform the explicit calculation of Jeff Greensite’s and Stefan
Olejnik’s idea [50] how to incorporate the missing string tension in the center vor-
tex picture.

The relation between Wilson-loop expectation value and the string tension for a
full and for a vortex only theory are,

〈W (C)〉 = exp[−σA], (B.1)

〈Z(C)〉 = exp[−σcpA] = (1 − 3p), (B.2)

with p being the probability that a vortex flux of +1 flows through a Wilson-loop,
corresponding to 〈W (C)〉 = exp[i2π

3
]. Inside the expectation value the Wilson-loop

can always be factorised in a center part and a rest.

〈W (C)〉 =
〈

Z(C)W̃ (C)
〉

(B.3)

= p exp[−2πi

3
]
〈

W̃+(C)
〉

+ p exp[+
2πi

3
]
〈

W̃−(C)
〉

+(1 − 2p)
�〈

W̃−(C)
〉

. (B.4)

With exp[+2πi
3

] = − exp[+πi
3
] and exp[+2πi

3
]
〈

W̃−(C)
〉

being the hermitian con-

jugate of exp[−2πi
3

]
〈

W̃+(C)
〉

one gets

〈W (C)〉 = (1 − 2p)
〈

W̃−(C)
〉

− 2pRe

(

− exp[+
πi

3
]
〈

W̃+(C)
〉)

. (B.5)

77



78 B.1. Greensite-Olejnik Hypothesis

〈

W̃+(C)
〉

can be written as
〈

W̃+(C)
〉

=
〈

W̃0(C)
〉

+ ∆W . Inserted into eq. B.5

this yields

· · · = (1 − 2p)
〈

W̃0(C)
〉

− 2pRe

(

exp[−πi
3

]
〈

W̃0(C)
〉

+ exp[−πi
3

]∆W

)

= (1 − 3p)
〈

W̃0(C)
〉

− 2pRe

(

exp[−πi
3

]∆W

)

. (B.6)

With 2pRe
(
exp[−πi

3
]∆W

)
= pδW̃ and the positivity of the Wilson loop expec-

tation value,

pδW̃ < (1 − 3p)
〈

W̃0(C)
〉

, (B.7)

is valid. If one then assumes that pδW̃ is only exponentially smaller than (1 −
3p)

〈

W̃0(C)
〉

, pδW̃ can be written as,

pδW̃ = (1 − 3p)
〈

W̃0(C)
〉

(1 − exp[−κA]) . (B.8)

Inserting eq. B.8 in eq. B.6 one gets for the Wilson loop expectation value

〈W (C)〉 = (1 − 3p)
〈

W̃0(C)
〉

exp[−κA], (B.9)

exp[−σA] = exp[−(σcp + κ)A]
〈

W̃0(C)
〉

, (B.10)

with σ being the full string tension and σcp being the string tension of the vortex-
only theory. This is equation 4.10 as given in sec. 4.6.



Appendix C

Code overview

A big part of work done in the field of lattice gauge theory is code develop-
ment. This appendix gives a short overview of the modules developed for this
diploma thesis. Questions about and requests for the source code are welcome at
djkuster@tphys.physik.uni-tuebingen.de.
All of the modules were developed in Fortran90, with special High Performance
Fortran extensions used for modules designed for the Orion supercomputer.

C.1 Low-lying eigenmodes codes

Production for the low-lying eigenmodes part of this work was done one the Orion
supercomputer, courtesy to the Center for Subatomic Structure of Matter (CSSM),
the South Australian Partnership for Advanced Computing (SAPAC) and the Na-
tional Computing Facility for Lattice Gauge Theory. Orion is a SUN Technical
Compute Farm with 40 nodes. The code was parallelised with the help of High
Performance Fotran and MPI.

C.1.1 Lanczos type eigenvalue solver

Routine for finding eigenvalues of Dirac matrices. This routine was later discarded
for a conjugate gradient routine. Lanczos is not parallelisable and does not yield
eigenvectors.

C.1.2 Conjugate gradient eigenvalue and -vector routine

Main advantage of a conjugate gradient routine is its parallelisability and that it
yields eigenvalues and eigenvectors. The main routine was written by Waseem
Kamleh and modified by myself to yield the eigenvector norms.
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C.1.3 Instanton fitting routine

Fits an instanton (see eq. 2.12 and eq. 2.13), depending on whether the object to
be fitted is topological charge, or eigenmode density. Yields size and location of
the object.

C.2 Vortex codes

Production for the vortex part of this work was done on the CIP computer pool
at the Institut für Theoretische Physik, Universität Tübingen. The code is purely
written in Fortran90.

C.2.1 MCG gauge fixing routine

Gauge fixes a Monte-Carlo generated SU(3) lattice configuration to MCG by max-
imising Rmes given by eq. 2.26. All technical details about maximal center gauge
fixing in SU(3) are to be found in sec. 2.4.1.

C.2.2 ICG gauge fixing routine

Gauge fixes a previously MCG gauge fixed SU(3) lattice configuration to ICG by
an iteration overrelaxation procedure, which maximises Rideal given by eq. 2.24.
For more details on the procedure see sec. 4.5.

C.2.3 Vortex identification and removal

Several small subroutines find the closest center element Zµ(x) for each link Uµ(x)
on gauge fixed configurations, identify plaquettes which are pierced by a vortex,
calculate the corresponding vortex density and remove the vortices. The con-
figurations {Zµ} are written out as vortex-only configuration and the

{
Z†

µUµ

}

configurations are written out as vortex-removed configurations.

C.2.4 Wilson loops

A subroutine calculating n×m Wilson-loops with

Wµν =
1

3
Tr[Uµ(x) · · ·Uµ(x+ (n− 1)µ)Uν(x+ nµ) · · ·

Uν(x+ nµ+ (m− 1)ν)U †
µ(x+mν + (n− 1)µ) · · ·

U †
µ(x+mν)U †

ν(x+ (m− 1)ν) · · ·U †
ν(x)], (C.1)
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With Uµ(x) ∈ SU(3) being the link variables. This subroutine is used for checking
the Greensite-Olejnik hypothesis and for calculating the static quark-antiquark
potential.

C.2.5 qq̄-potential

Main analysis tool for vortex-only and vortex-removed configurations. Uses the
overlap enhancement and fitting method described in sec. 2.5. Vortex-only con-
figurations are not overlap enhanced.
A subroutine of this program fits the function

Vlat = σR − b

R
+ V0 (C.2)

to the data and calculates the points for the potential Vphys in physical units.

Vphys(r) =
Vlat − V0√

σ
, (C.3)

with r = R
√
σ. In this way not only the potential, but also the string tension σ is

found.

C.2.6 Vortex Visualisation plotfile routine

This routine tracks all vortices via a recursive subroutine. It writes out coordinates
for each point, where a plaquette is pierced by a vortex. Plotfiles created in this
way can the be used to do a visualisation of center vortices on the lattice. The
visualisations themselves were kindly done by Derek Leinweber with Advanced
Visual Express (AVS)1.

1http://www.avs.com
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