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Abstract

Bose-Einstein condensates can be considered as sources of coherent matter. When atoms
are extracted from a trapped Bose-Einstein condensate, a coherent, monoenergetic atomic
beam is generated. Such a source is commonly referred to as an atom laser. Previous atom
lasers were based on Bose-Einstein condensates of atoms in field-sensitive Zeeman states.
Such atom lasers thus suffered form fluctuations of the chemical potential caused by stray
magnetic fields.

In this work, a novel type of atom laser is demonstrated. A coherent atomic beam is
generated by outcoupling of atoms from a magnetic field-insensitive Bose-Einstein con-
densate. The here developed experimental procedure does not require magnetic shielding
of the apparatus in order to create quasi-continuous beams.

The presented experiments are based on quasistatic dipole traps for the confinement of
cold #Rb atoms, which is realized with mid-infrared radiation emitted from a CO,-laser
operating near A = 10.6 pm. Because of the extreme laser detuning, a state-independent
confinement is realized. Atoms in different spin-projections can be confined. Moreover,
decoherence from photon scattering is negligible.

Evaporative cooling to quantum degeneracy (“all-optical BEC”) is achieved in two op-
tical dipole trapping geometries. In preliminary experiments, a crossed beams configura-
tion was studied. This trap is formed by two CO,-laser beams intersecting each other at
a 90° angle, each of them having a 35pm beam waist. The measured initial atom colli-
sion rate was about 7kHz. A high initial atomic phase space density allowed to reach the
quantum degenerate regime via evaporative cooling of the trapped atoms, which was ac-
complished through a continuous lowering of the optical confining potential. In this way,
Bose-Einstein condensates with 1.0 x 10* were generated after 3 s of evaporative cooling.

In a second stage of this work, a single beam dipole trap was used for the confinement
and the direct production of Bose-Einstein condensation of rubidium atoms. The trap was
realized by tightly focussing a CO»-laser beam to beam waist of 27 pm. In this trapping
geometry, evaporative cooling successfully led to BEC after a forced evaporation period of
7s. The number of atoms in the degenerate regime was measured to be 1.2 x 10%.

In both trapping geometries, the state independent confinement allowed for the pro-
duction of spinor condensates. In particular, F = 1 spinor condensates were generated:
Bose condensed atoms populated the three spin-projections of the hyperfine ground state
|551/2, F = 1). The analysis of such spinor condensates was performed through a Stern-
Gerlach experiment.
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Particularly interesting is the possibility to achieve all-optical BEC in the single beam
dipole trap. This represents the easiest realizable confining geometry for an optical dipole
trap. Thus, experimental efforts towards all-optical Bose-Einstein condensation are con-
siderably simplified.

In the single dipole trapping geometry, the confinement along the axis of the trap-
ping beam is relatively weak. This feature allows one to remove atoms in field-sensitive
states from the trap, when a moderate magnetic field gradient is applied throughout the
forced evaporation phase. In the here presented experiments, an applied field gradient of
10 G/cm induces a force which is stronger than the confining optical dipole force. Atoms
in mp = =£1 states are removed from the trap, and only those in the field-insensitive state
(mp = 0 state) remain trapped and therefore reach quantum degeneracy.

This realizes a magnetic-field insensitive Bose-Einstein condensate. The stability of the
chemical potential of this mr = 0 Bose condensate is orders of magnitude higher than
that of Bose-Einstein condensate based on atoms in field-sensitive states. The residual
sensitivity to magnetic fields is as low as 14 fK/(mG)* and determined by the quadratic
Zeeman effect only. The here demonstrated technique for the direct achieving of Bose-
Einstein condensation of atoms in such mp = 0 states may pave the way for the application
of Bose condensates precision atom interferometry.

The work culminates in the demonstration of an all-optical atom laser. An output cou-
pling of our optically trapped Bose-Einstein condensates is not possible with radiofre-
quency fields, as done in conventional atom lasers based on magnetic traps, since the
optical dipole force acts on all Zeeman states. Instead, an output coupling of the field-
insensitive Bose-Einstein condensate is achieved by smoothly lowering the CO;-laser power
in few hundreds milliseconds.

When the the optical dipole force does not sustain atoms against gravity anymore, a
well collimated, monoenergetic atomic beam is observed. Unlike earlier devices, this atom
laser is insensitive to stray magnetic fields. The generated atomic beam has an estimated
brightness of typically 7 x 10%” atoms s> m~>. The length and the flux of atoms in the beam
can be adjusted by varying the lowering rate of the output coupling ramp. The transverse
mode of the extracted coherent atomic beam does not suffer from lensing effects present in
atom lasers based on RF-output coupling. This eliminates unwanted interference structure
in the transverse mode of the atomic beam.

In future, atom lasers may allow for improved atom interferometers and atomic clocks.
Furthermore, it is anticipated that field-insensitive states can also advance the field of pre-
cision atom optics for guided structures, which may allows, e.g., for improved atomic
gyroscopes.
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Introduction

Einstein predicted in 1925 that an ideal gas of bosons of a given density, below a certain
critical temperature would undergo a phase transition in which a macroscopic population
of the lowest energy quantum state is measurable. This phenomenon is known as Bose-
Einstein condensation (BEC) [1].

The quest for Bose-Einstein condensation in dilute atomic gases started in 1978 with
studies based on spin-polarized hydrogen. It took almost two decades until the experi-
mental demonstration of this new quantum phase transition: BEC was successfully ob-
served in rubidium, sodium and lithium gases in 1995 [2, 3, 4], and in hydrogen gases in
1998 [5]. Undoubtedly, the success of those works on alkali atoms has to be ascribed to the
ability of controlling and manipulating internal and external atomic degrees of freedom
through laser cooling and atom trapping techniques, developed in the ‘80s and in the early
'90s [6, 7, 8]. It has also built much on the understanding of the physics of atomic gases at
very low temperatures that had been obtained using these techniques. The achievement of
BEC and the impressive investigations of its properties were awarded by the Nobel prize
in physics of 2001 [9, 10].

Efforts to reach BEC in dilute bosonic gases had been undertaken both in optical and
magnetic traps. So far, many laboratories have succeeded in the production of the quan-
tum degenerate regime in magnetic traps. The “conventional route” towards the quan-
tum degenerate regime comprises an initial laser cooling and trapping of alkali atoms and
a subsequent forced evaporation of magnetically trapped spin-polarized atoms [11]. In
magnetic traps, evaporative cooling is accomplished by applying a radiofrequency radi-
ation field, which removes the hottest atoms from the trap by spin-flip transitions. The
remaining atoms rethermalize to a Maxwell-Boltzmann distribution of lower temperature,
and eventually reach the critical temperature for the onset of the quantum degeneracy.
Moreover, since the first demonstration of magnetic trapping of atoms [12], its technology
has advanced a lot: today, e.g., magnetic traps offer new capabilities through miniaturiza-
tion [13, 14].

On the other hand, the use of magnetic traps prevents the study of multiple spin-states
species, diamagnetic atoms and molecules, since such traps only confine weak-field seek-
ing spin states. Since the true ground state is always strong-field seeking, weak-field seek-
ing states can inelastically scatter into the lowest energetic spin state. This so called dipolar
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relaxation causes heating and losses of the trapped sample.

In addition, Bose-Einstein condensates in magnetic traps suffer from fluctuations of
the chemical potential from stray magnetic fields. This imposes stringent limitations on
precision experiments. Notably, the field of e.g. atomic clocks and atom interferometers
benefits from the use of atoms in magnetic-field insensitive states (mp = 0 states) [15].

While magnetic traps cannot confine atoms in such states, optical dipole traps certainly
do. Indeed, for a suitable choice of the laser detuning with respect to the atomic frequency,
such traps realize a state-independent confinement. Atoms in different spin-projections,
diamagnetic atoms, and even molecules can be confined in far detuned optical traps [16].

Moreover, the use of laser light allows one to realize various confining geometries,
ranging from spatially isotropic traps to optical lattices. Optical lattices are “microarrays”
of well spatially ordered optical dipole traps, created by the interference of two or more
laser beams. There is a huge amount of experimental work carried out with ultracold
atoms confined in optical dipole traps and optical lattices [17]. Very recently, the appli-
cation of dipole traps and optical lattices has opened a door to the physics of lower di-
mensions [18] and has permitted the observation of the Mott-insulator transition with an
atomic gas [19]. In these experiments, involving Bose condensates, optical dipole traps
served as secondary confining mechanism, as the quantum degenerate regime was first
achieved in magnetic traps. It is clear that the formation of BEC directly in an optical
dipole trap would definitely simplify these complex experiments.

By virtue of these and other considerations, the achievement of quantum degeneracy
in optical dipole traps has been a longstanding goal in the atom physics community.

In 2001 Chapman’s group demonstrated Bose-Einstein condensation by direct evapo-
rative cooling of rubidium atoms in a CO,-laser crossed dipole trap [20]. Because of the
state-independent confinement realized by far detuned optical dipole traps, evaporative
cooling cannot be achieved by radiofrequency transitions into untrapped states, as usually
performed in magnetic traps. Instead, evaporative cooling most simply proceeds through
a continuous lowering of the optical trapping potential. Since then, three other experimen-
tal groups achieved Bose-Einstein condensation with only optical methods. The group of
Grimm and collaborators achieved Bose-Einstein condensation of cesium atoms in 2002
in a levitating optical dipole trap [21]. Also fermionic degeneracy has been demonstrated
by all-optical methods in a CO;-laser optical dipole trap by Thomas and collaborators in
2002 [22]. In March 2003, our group at Tiibingen University observed BEC in these initial
experiments using a CO»-laser crossed dipole trap [23]. In the same year, Bose-Einstein
condensation of ytterbium atoms was reported by Takasu et al. [24].

Although the experimental procedure for an “all-optical formation” of BEC is concep-
tually simple and offers both technical and theoretical advantages over the conventional
root pursued in magnetic traps, the demanding initial conditions on the atomic phase
space density and on the atom collision rate represent a major obstacle. Previously, Friebel
et al. had shown that, in quasistatic dipole traps, simple polarization gradient optical cool-
ing techniques alone can accumulate atoms to phase space densities three orders of mag-
nitude below the onset of BEC [25]. However, the absence of a “runaway regime” in the
evaporation course, as observed in pioneering works by Chu in Yag-laser dipole traps [26],
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was seen as an insurmountable obstacle for the success of this cooling technique.

In this work, I report on the all-optical formation of Bose-Einstein condensation in qua-
sistatic dipole traps and on the realization of a novel type of atom laser. One of the dis-
tinctive features of this work is the possibility to directly Bose condense alkali atoms in a
running wave dipole trap realized by tightly focussing a CO,-laser beam [23]. This is the
easiest realizable geometry for an optical dipole trap. Note that previous experiments on
BEC in optical dipole traps required more alignment sensitive geometries [20] or Feshbach
resonances to enhance the atom collision rate [22, 21].

Bose-Einstein condensation is considered as a starting point of complex experiments
which explore the research areas of, e.g., strongly correlated systems and quantum com-
puting in optical lattices. All-optical BEC, according to the scheme here developed, might
become a workhorse for future experiments, since it simplifies the experimental efforts
towards the quantum degeneracy.

Bose-Einstein condensates which are described by three or more order parameters (so
called “spinor condensates”) display a rich, although complex dynamics [27]. Magnetic
traps prevent the formation of spinor condensates. Usually, the study of such systems is
carried out in a far-detuned optical dipole trap after the transfer from a magnetic trap [28].
In our experiments, spinor condensates are directly created by evaporative cooling atoms
in COs-laser dipole traps. This dramatically reduces the complexity of experiments on
spin dynamics.

Another focal point of this work is the direct creation of magnetic-field insensitive Bose-
Einstein condensates [23]. When a sufficiently strong magnetic field gradient is applied,
the resulting magnetic force can be larger than the confining optical dipole force along the
weakly confining axes of the CO,-laser beam. As results, atoms in field-sensitive states
are removed in the final stage of the forced evaporation. Only atoms in field-insensitive
states (mr = 0 states) remain trapped and therefore are allowed to reach the quantum
degeneracy. The chemical potential of a mr = 0 Bose-Einstein condensate displays an
exceptional robustness against any stray magnetic field. Let us point out that the chemical
potential of a Bose-Einstein condensate of spin-polarized atoms is subjected to fluctuations
on the order of AB x 67 nK/mG, where AB is the fluctuation in the magnetic field. On the
contrary, the residual magnetic-field sensitivity of a mr = 0 Bose condensate is determined
only by the quadratic Zeeman effect. The stability of the chemical potential is in this way
increased to a value of ~ 10 fK/(mG)?.

Let us observe that an alternative way to produce magnetic-field insensitive Bose con-
densates is to use spin-singlet ground state atoms as, e.g., recently demonstrated by Takasu
etal. with Yb atoms. Nevertheless, our technique is reliable, easy to implement and might
open Bose-Einstein condensation a door to atom interferometry and metrology fields, for
which atoms in mp = 0 states are widely used.

One of the most striking physical properties of a Bose-Einstein condensate is the ex-
istence coherence. Interference between two spatially overlapped Bose condensates has
been observed [29]. Moreover, the spatial coherence of such a degenerate system of bosons
has been measured [30]. On the other hand, the formation of a Bose-Einstein condensate
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is based on bosonic stimulation [31, 32]. Because of these two embedded properties, Bose-
Einstein condensates are considered as sources of “coherent matter”. Indeed, it is possible
to extract atoms from a trapped Bose-Einstein condensate and therefore produce coher-
ent, diffraction limited, monoenergetic beams, which in literature are usually referred to
as “atom lasers” [33, 34, 35, 36, 37].

For the first time, in this work an all-optical atom laser is demonstrated. This atom laser
is based on atoms extracted from a mr = 0 Bose condensate, and therefore displays an ex-
ceptional robustness to stray magnetic fields [37]. Hitherto, atom lasers were produced
out of magnetic-field sensitive Bose condensates, where the output coupling is realized by
transfer from field-sensitive into field-insensitive spin-projections, as first demonstrated
by Ketterle and coworkers [33]. Such atom lasers experienced first-order sensitivity to
magnetic field fluctuations. Inevitably, glitches in the magnetic field caused a reduction
of the temporal coherence of an atom lasers, and only a pulsed operation could be real-
ized. Hansch and collaborators showed that an appropriate magnetic shielding of the ex-
perimental apparatus can reduce such detrimental effects [36]. Although successful, this
technique cannot be easily scaled: reductions of fluctuations of the chemical potential on
the order of fK seem unattainable with the present technology employed in magnetically
trapped spin-polarized Bose-Einstein condensates. The scenario dramatically changes if
one considers Bose-Einstein condensates of atoms in field-insensitive states, as achieved in
this work.

Because the optical confining potential is not Zeeman selective, the here developed
experimental procedure does not require radiofrequency fields or magnetic shielding of
the experimental apparatus to create a quasi-continuous output coupler. Once a mr = 0
Bose condensate is formed in a single CO,-laser dipole trap, the confining potential is
smoothly ramped down over a period of few hundreds milliseconds. When the optical
confining potential does not sustain the condensed cloud against gravity any more, the
atoms near the chemical potential surface spill out and a well collimated atomic beam is
observed. A high brightness of the atomic beam is achieved. Moreover, changing the
lowering rate of the optical power, it is possible to vary the flux of the extracted atoms and
the length of the realized atomic beams. In this way, a well collimated atomic beam of up
to 1 mm length can be observed.

Very recently, experiments characterizing some of the physical properties of atom lasers
have been performed. For example, the temporal coherence of a quasi-continuous laser
beam has been measured by Kohl et al. [38]. Moreover, the angular divergence of an atom
laser has been determined by Aspect and collaborators [39]. An interesting result of that
experiment was that the angular divergence here is primarily caused by interactions be-
tween the atoms in the laser beam and the remaining atoms inside the Bose condensate.
On the other hand, this interaction can be described as an interactive lensing effect which
leads to a interference structure in the transverse mode of the atomic beam [40]. For the
sake of clarity it is important to note that these experiments have been carried out with
atom lasers based on magnetically trapped Bose condensates, for which the extraction
mechanism was based on spin-flip transitions of the trapped atoms inside the condensate.

In this work, instead, the output coupling mechanism does not require radiofrequency
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transitions, and the output coupled atoms are those which are near the (downward di-
rected) side of the condensate. In this way, the extracted beam does not transit the residing
atomic cloud, eliminating an unwanted interference pattern in the atom laser mode.

Thesis structure

In the first chapter the theory of Bose-Einstein condensation in dilute gases is introduced.
Most of the experimentally observed phenomena can be described in the framework of a
mean field theory. The limit of negligible kinetic energy, namely the Thomas-Fermi regime,
is reviewed. In this regime, it is possible to derive hydrodynamic equations for a trapped
Bose condensate, which can be used to describe the output coupling of the all-optical atom
laser demonstrated in this work.

In the second chapter an introduction to optical dipole traps for neutral atoms is pre-
sented. I will focus on the possibility to realize a state-independent confinement by em-
ploying quasistatic dipole traps. The relevant physical parameters as the potential depth
and the trap frequencies are studied for two trapping geometries, realized by using CO»-
laser radiation.

In the third chapter the experimental apparatus for the study of ultracold atoms in qua-
sistatic dipole traps is presented. The system has been built in the laboratories at Tiibingen
Universitdt and allows for a reliable production of Bose-Einstein condensates of atoms in
magnetic-field insensitive states.

The fourth chapter is devoted to the experimental description of the “all-optical path”
towards BEC. This relatively new experimental approach is accomplished both in a sin-
gle and a crossed dipole trap geometry. Based on the single beam geometry, we demon-
strate a novel technique for generating magnetic-field insensitive Bose-Einstein condensa-
tion (BEC in mp = 0 states).

In the last chapter, I report on the realization of the all-optical atom laser. Gravity
is used to achieve a quasi-continuous output coupling of the Bose condensed atoms. A
simple model which describes the used extraction process is developed. Measurements on
the brightness and on the beam profile will be presented and discussed.






Chapter 1

Bose-Einstein condensation in dilute
atomic gases

The concept of Bose statistics was introduced in 1924 by Bose [41] to derive the Plank’s
law using a statistical argument. One year later, Einstein extended the Bose statistics to
massive particles [1]. Below a critical temperature, trapped bosons undergo a phase tran-
sition, where a macroscopic occupation of the lowest energy state of the system is achieved.
Bosons in this regime are described quantum mechanically by a unique macroscopic “con-
densate” wave function, which can be measured and manipulated in the laboratory.

One major problem encountered to test Einstein’s predictions is that at densities and
temperatures required for BEC, almost all materials equilibrate towards the solid state
(He* is an exception because it is fluid even at T = 0). To date, this limitation has been
sidestepped by studying very dilute systems, for which the relaxation to the solid state is
dramatically reduced.

In this chapter, Bose-Einstein condensation in dilute, trapped gases is introduced. In
the first part, the model of non-interacting trapped atoms is reviewed. This allows to
extract useful physical quantities as the critical temperature (T.) and the fraction of con-
densed atoms below T, namely N.. Current experiments are carried out in dilute regime,
where the interparticle interaction are essentially binary collisions. The physics in this
regime of negligible thermal component (when T ~ 0) is described by a Gross-Pitaevskii
equation (GP equation). When the interparticle energy is greater than kinetic energy, the
properties of the condensed system are well described in the so called Thomas-Fermi ap-
proximation. As conclusion of the chapter, the hydrodynamics of a trapped Bose conden-
sate is introduced. This theory allows one to discuss the output coupler process in the
formation of an “all-optical atom laser”.

Henceforth, for a description of the Bose-Einstein condensation (BEC) in inhomoge-
neous systems, the approaches outlined in the review papers [42] and [43] are followed.
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1. BOSE-EINSTEIN CONDENSATION IN DILUTE ATOMIC GASES

1.1 Bose-Einstein condensation of non interacting gases

The center of mass motion of N bosonic atoms, trapped in an external harmonic potential,
can be approximated, under certain conditions, by a N harmonic oscillators, each having
potential

m
Vext(r) = E(cuixz + w§y2 + w?z?), (1.1)

where m is the mass of the bosons and wy,. are the trap frequencies of the harmonic
confining potential. If the atom-atom interaction is neglected, the many-body Hamiltonian
is the sum of single-particle Hamiltonian, each with an energy spectrum given by the well
known formula:

1 1 1

In the context of grand canonical ensemble, the mean number of atoms 7 in the single-
energy eigenstate |ny, 1y, n,) with energy €, n,n, is given by

_ 1
= e(enxnynzf}l)/kBT o 1’ (13)

where y is the chemical potential and is fixed by the total number of bosons

1
x/My, Mz

The chemical potential is large and negative for T — 0. As the temperature decrease,
it increases monotonically. If at some temperature T (critical temperature) the condi-
tion (1.4) can be met with y — . = €pp,0, then below T the occupation of the lowest
single-particle state (|0, 0,0)) is of the order N, while the other 7 are still of the order unity
or less!. This condition is the occurrence of BEC, namely a macroscopical occupation of the
quantum ground state of the system. The critical temperature is calculated transforming
the sum (1.4) into an integral. The validity of this “semiclassical” approximation implies
that the relevant excitation energies are much larger than the level spacing fixed by the
trap frequencies:

dnydnydn,

N:/oo
0 exp[(enmyn. —u)/kpT] —1

+NL. (1.5)

In this last equation the contribution of the lowest state (the ground state), indicated with
N,, is separated out [44, 45]. The integral (1.5) gives

N—M:§@<“TY, (1.6)

ha)hg

1The possibility of a fragmentated condensate is not discussed here
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1.2. Weakly interacting Bose gas

where &(n) is the Riemann function and wy, = (wyw,w;)'/? is the geometric average of
the oscillator frequencies. For a detailed account of trapped BEC conditions see [46]. The
critical temperature is obtained by imposing N. — O at T = T:

N 1/3
)> ~ 0.94hw;,,N/3. (1.7)

kpT, = hwp, <§<3

For temperatures higher than T, the chemical potential is smaller than y, and becomes a
function on N. The thermodynamic limit is obtained by letting N — oo and wy,, — 0 while
keeping Nw3 constant. The fraction of condensed atoms for T < T is given by the well

known relation?
3
N, T
c

As conclusion of this paragraph, it is worth pointing out that bosons can be considered
as quantum mechanical object whose wavepackets have a spatial extent of the order of

Ag = \/27th? / (mkpT). This quantity can be regarded as the position uncertainty associ-
ated with the thermal momentum distribution. The lower the temperature, the larger is
Agp. When the atomic temperature is close T, A 5 becomes comparable to the interparticle
distance, and the atomic wavepackets start to overlap. As results, the indistinguishability
of particles becomes important, and the Bose statistic plays a role. At this temperature, the
trapped bosons undergo a phase transition, with almost all bosons occupying the same
quantum mechanical state. The occurrence of BEC may be regarded as an effect of the
Bose statistics only. Actually, It is possible to demonstrate that this phase transition is re-
inforced in case of interactions among bosons [43]. This tendency of bosons to “cluster” is
very generic [47].

1.2 Weakly interacting Bose gas

In the previous section, the bosonic system has been assumed to be composed of non in-
teracting particles. A richer panorama is revealed when interparticle interactions are taken
into account. In a Bose-Einstein condensate the ground state wave function is the product
of the single-particle harmonic oscillator wave functions:

CD(I‘l, N ,I‘N) = (Po(ri) (19)

e

with ¢o(r) = [mewy,/ (7h) 1> 4exp[ — (m/2h) (wex* + wyy* + w.2z?)] being the ground state
wave function of each particle. The density distribution is then 7(r) = N|¢o(r)|?, in which
N is the total number of atoms in the condensate. It is important to notice that, in this

2In a homogeneous gas the dependence on the temperature is N. /N = 1 — (T /T,)3/?
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1. BOSE-EINSTEIN CONDENSATION IN DILUTE ATOMIC GASES

approximation, the size of the Bose condensed cloud is independent on N and equals the
harmonic oscillator length:
no\1/2
apo — < ) . (110)

mdyp,

However, experiments show that the size of the condensed cloud is somewhat larger than
ap,- This is the clear evidence of the presence of interparticle interactions.

The easiest way to take into account interparticle-interactions is to introduce a mean
tield approach. This approach describes a weakly interacting system of bosons, in the
limit of negligible thermal compound and high condensate’s fraction. The many-body
Hamiltonian, describing N interacting bosons confined in an external potential V,,;, in the
second quantization picture reads

hZ

— %VZ + Vext]‘ij(r)‘F

A= /dr‘i”(r)[
% [ e 6 () Vi (6 — ¥ () (), (111)

where ¥ (r) and ¥(r) are the boson field operators of creation and annihilation, respec-
tively, and Vj,;(r — r') is the interparticle potential. In dilute regime, the scattering length
is much smaller than the interparticle distance:

nlal® < 1, (1.12)

where 4 is the scattering length 3. Because of diluteness, the interaction potential is as-
sumed to be punctual [48]:

V=gé(r—7), (1.13)
where g is the coupling constant [44, 48], and its value is given by
4rtha
= . 1.14
= (114)

The idea of mean field theory was introduced by Bogoliubov [49], and it consists in sepa-
rating out the condensate contribution to the bosonic field operator. The field operators are
considered as linear combinations of single particle operators of annihilation and creation,
namely Y(r) = ¥, Ya(r)a, , where ¥,(r) are single-particle wave functions and a, are the
corresponding annihilation operators. In Fock space, the bosonic operators of creation and
annihilations are defined through the relations

allng,my,... na, ..y = \/ng +1|ng,ny, ..., ng+1,...)
Ay|no, My, ... Ny, ..) = /Nglno, M1, ..., ng —1,..0) (1.15)

where 1, are the eigenvalues of the number operator fi, = a}a,.

3Here the modulus appears since Nature has provided atomic species with negative scattering length as
well.
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1.3. Thomas Fermi approximation

Bose-Einstein condensation occurs when the number of atoms in the ground state ng =

No > 1. In this limit, Ny + 1 ~ Np and the operators ag = a9 = /Ny become c-numbers.
The field operator is then

Y(r,t) = O(r,t) + ¥ (r,t). (1.16)

The quantity ®(r, t) is called “order parameter” [50, 51], and it is the average value of the
bosonic field operator: ®(7,t) = (¥(7,t)). Its modulus fixes the condensate density

no(r,t) = |®(r, )% (1.17)

On the other hand, the quantity ¥ (r, t)’ is the remaining quantum microscopic contribution
of the bosonic field. It is worth noticing that this residual part describes the excitations
caused by the thermal component. Neglecting this last term, the equation of motion for
the order parameter becomes [42, 52]

_Ad(r,t) [ VP 2
ih o = < — W + Vext +g\q>(1'/ t)‘ )CD(I', t) (118)

This is known as the time dependent Gross-Pitaevskii equation. The term ¢|®(r, t)|? is the
interaction potential. The time independent GP equation is derived when the following
ansatz is done: ®(r,t) = ¢(r)exp(—iut/h), where p is the chemical potential and ¢ is a
real function such that [ d7¢? = Np. The GP equation in the stationary case reads

RAve >
(= T+ Vot 510 ) (6) = o) (119
This is a non linear Schrodinger equation, because of the term n(r) = |¢(r)|%. In case of

negligible interparticle interaction, the quadratic term in ¢ vanishes, and the condensate
wave function is the harmonic ground state function, as it has been shown at the beginning
of this section.

1.3 Thomas Fermi approximation

Generally, the GP equation can be solved numerically. However, it is possible to obtain an
analytical solution in the limit of strong interparticle interactions. Comparing the interac-
tion energy and the kinetic energy possessed by the bosons, one finds

Eint N|a‘
X —.
Ekin Aho

(1.20)

In current experiments on BEC, this ratio is much greater than 1, and in the GP-equation
the kinetic energy can be neglected. This is the Thomas Fermi (TF) regime, and is met even
if n|a|®> < 1. In the TF regime, the density of the trapped Bose-Einstein condensate is then
described by the following equation

1

n(r) = [p(r)]> = g[y — Vext]. (1.21)
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1. BOSE-EINSTEIN CONDENSATION IN DILUTE ATOMIC GASES

In our work the ratio E;,; / Exi, ~ 100 and the TF approximation is valid. Equation (1.21)
is valid where y > V,y, otherwise the condensate density is assumed n = 0. The peak
density is
K

ny = 3 (1.22)
The relation between the chemical potential and the total number of particles in this regime
is given through the relation
 Teop <15Na>2/ 5

1.23
2 Apo ( )

The density profile has the form of an inverted parabola, which vanishes at the turning
point R defined by the condition u = V,,;. For a spherical harmonic potential:

1/5

1

R = a,w< 2?”) (1.24)
0

The Thomas-Fermi density is inadequate to describe the system only near the turning
point R [53]. The shape of the outer part of the condensate is fixed by the balance of
the zero-point kinetic energy and the external potential. In order to take into account the
effect, one usually introduces the “healing length”, defined as the minimum distance over
which the order parameter “heal”: the distance over which the density grows from 0 to
n. This distance is given from the balance between the kinetic energy and the interaction
energy [42, 43]:

& = (87nyaxa) /2 (1.25)

In typical Bose-Einstein condensates, the healing length is large in comparison with the
scattering length, but generally smaller than the typical trap dimensions.

1.4 Hydrodynamic equations

As conclusion of this chapter, we would like to extend the Thomas-Fermi approximation to
the time dependent case. In this case, the system is described by a Newton’s equation, and
the Bose condensed cloud behaves as a classical particles under the effect of an external
potential. Based on this approximation, it is possible to describe the output couple dy-
namics of the all-optical atom laser demonstrated in this work [37]. For completeness, let
us note that the time dependent Thomas-Fermi approximation is commonly encountered
in the experiments in which the external trapping potential has a temporal dependency, e.
g. in ballistic expansion, or in the collective excitation of a Bose condensate to modulations
of the trap frequency [11].

For this purpose, it is convenient to write the complex order parameter ® according
the well known hydrodynamic representation (a modulus plus a phase):

O(r, t) = \/n(r, 1)eS) (1.26)

12



1.4. Hydrodynamic equations

the phase S(r, t) fixes the velocity field as follows:

h

n(r, t)v(r,t) = %(QD*VCD — OVPY), (1.27)

so that "
v(r, t) = %VS(r,t). (1.28)

The GP equation (1.18) can be rewritten in the form of two coupled equations for the den-
sity and the velocity field:

%n +V-(vn)=0 (1.29)

2 2
m2v+V(V3xt+gn— f V2y/n + %) =0 (1.30)

ot 2my/n

The first one is the equation of continuity, while the second establishes the irrotational
nature of the superfluid motion.

The classical hydrodynamic approximation consists in neglecting the quantum pres-

sure term %Vzﬁ in the equation (1.30). If we denote with d the typical length scale of

variation of the condensate density #n, and with ¢ the healing length (see equation (1.25)),
then the condition for neglecting the quantum pressure is [54]

d>¢. (1.31)

Remembering that V (3mv?) = m(v - V)v, equation 1.30 can be cast into:

(2 AV D)V = T (Ve + ). (1.32)
This is a Newton’s equation in presence of an external force field written in Euler’s point
of view (the quantity in the brackets on the left side is the convective derivative).
In the case of the atom laser, the external potential is the sum of two terms: V. = Vj, +
Verav- However, since the gravitational term is stronger than the interparticle potential g7,
it is possible to neglect this last term. The equation (1.32) becomes

d?
mﬁr(t) =F(r,t) = =V(Vio + Verav)- (1.33)

The condensate behaves as a classical particle in a force field given by the sum of the optical
and the gravitational potentials. Based on this equation it is possible to estimate the output
emission time of the atom laser as will be explained in the chapter on the realization of the
atom laser.

13



1. BOSE-EINSTEIN CONDENSATION IN DILUTE ATOMIC GASES

14



Chapter 2

Optical Dipole Traps

An optical dipole trap consists of a laser field configuration with one or more points of sta-
ble equilibrium for the atomic motion, such that any displacement of an atom from these
points results in an average restoring force. The trapping force (the optical dipole force)
arises from the coherent interaction between the electric field associated with a far detuned
laser field and the induced atomic dipole moment [55, 56, 57]. Such traps are suitable for
storing particles. Indeed, for a suitable choice of the laser detuning with respect to the
atomic frequency such traps realize a state-independent confinement. Atoms in different
spin-projection states can be trapped, as well as diamagnetic atoms and molecules. This is
an advantage over magnetic traps, for which only spin polarized atoms can be confined.
The photon scattering rate, which is responsible for the maximum lifetime of the trapped
atoms, can be reduced by increasing the laser detuning. Moreover, laser light fields al-
low one to realize a great variety of different trap geometries, ranging from symmetric to
anisotropic traps, from mesoscopic traps to spatially ordered optical lattices [17, 58, 59].
In this chapter, the optical dipole potential for an atom in a detuned laser light field
is derived. First, a classical model based on the concept of the atomic polarizability is
introduced. From this picture, it is possible to get an easy and rapid insight in the matter.
Subsequently, an approach based on the ac-Stark shifts of the atomic levels in the presence
of a detuned laser field is presented. With these theoretical tools, it is possible to gain a
better understanding of the properties of optical dipole traps. Afterwards, the study of two
CO;-laser optical dipole trap geometries is exposed. The relevant physical parameters as
the potential depth and the trap frequencies in both laser field configurations are extracted.
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2. OPTICAL DIPOLE TRAPS

2.1 Optical potential and photon scattering rate

The force acting on an atom placed in a laser field can be viewed as the Lorentz force
exerted by the electric field associated to the laser light on the induced atomic dipole mo-
ment. The force has three components resulting, respectively, from the absorption, spon-
taneous emission, and induced emission of photons by the atoms. The first two of these
represent the scattering force, which is used for dissipating the atomic kinetic energy. For
far-detuned laser radiation, the scattering force is negligible and the third contribution
plays a role in the atom-laser interaction. This contribution is called optical dipole force; it
has a dispersive nature, and is directed along the gradient of the laser field intensity. For
the sake of completeness, off-resonant absorption and subsequent spontaneous emission
play a fundamental role in the heating rate of the trapped atoms.

It is already possible to get an insight in the matter, if the laser field is treated classically
and the atom as an harmonic oscillator (as long as the saturation effects can be neglected).
If an atom is placed in a laser field, the electric field E associated to the laser light, oscillat-
ing at pulsation w; = 27, induces an oscillating atomic dipole moment d. If the electric
field is given by E(7,t) = éE(¥)e ™! + h.c., then the induced atomic dipole moment reads
d| (7,t) = dé(F)e '“t! + h.c., where ¢ is the unit polarization vector, and d is the amplitude
of the induced dipole moment, which is related to the atomic polarizability a(w) through
the relation

d=a(w)E. (2.1)

Note that « is a complex function, depending on the laser frequency. The interaction po-
tential of the induced dipole moment d in the driving field E is given by

E - - - o
Vap = —( [ d(E)-dE) = —3 (- B) = 5 (aE?), @2)

where the angular brackets denote the usual time average over the rapidly oscillating
terms; the factor 1/2 is present because the atomic dipole moment is not permanent but
induced. It is easy to show that the optical potential is related to the laser field intensity by

Viip(t) = —5—Re(a)I(r), (2.3)

where I = 1/2¢yc|E|? is the laser light intensity. Note that the dipole potential is propor-
tional to the real part of the atomic polarizability. The optical dipole force is given by the
gradient of the optical dipole potential:

1

?OCRe(a)VI(r). (24)

Fiip(x) = =VVyip = —
It is evident that this force is directed along the gradient of the laser field intensity.
The residual photon scattering rate, which leads to a heating of the atoms, is calculated

as follows. In a classical picture, between the times ¢ and dt the atomic electron moves
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2.1. Optical potential and photon scattering rate

from r to dr and the driving electric field carries out a work dW = ¢E - dr on it. The average

power absorbed by the atom is Py, = E - (d). The photon scattering rate is inferred as the
averaged absorbed power per photon energy:
P abs 1

heor f()clm(“ﬂ(r)' (2.5)

1-‘sc =

Expressions (2.4) and (2.5) are valid for any polarizable particle in an oscillating electric
field, i.e. for an atom in a far off-resonant laser field or a molecule in a microwave field as
well. The frequency dependency of the atomic polarizability can be calculated by using the
Lorentz’s model of a classical damped oscillator in an external driving field. The oscillator
has a characteristic frequency w4 corresponding to the optical transition. The damping
rate is given by the well known Larmor formula of a radiating accelerated charge [60]:

T/ w>
o= 67re0c3 A

——, (2.6)
wy —w? — z%‘l"
where T’ is the on-resonant damping rate which can be calculated quantummechanically

by introducing the simple model of a two-level atom:

3
37eghc®

[(e|d]g) I, 2.7)

with d representing the dipole atomic operator. The above expressions allow to write down
the strength of the optical potential and the photon scattering rate in the regime of negli-
gible saturation:

37”2( L L )I(r) ~ 7 (2.8)

Vaip(r) = ~ 20 A

208 \wa—wp  wa+wr

3 fwa\’ r r 3 (T 2
B 2hw134 <WL> (wA — wp, + wa + a)L>I(r> - Zhwi (A) I(r), (29)
where A = wy — w, is the laser detuning relative to the atomic resonance.

Note that, on the right side of the equations (2.8) and (2.9) the rotating wave approxi-
mation is assumed?, which is valid when the detuning A > T, and A < wy4. The optical
dipole potential is proportional to the laser field intensity. Depending on the sign of the
laser detuning, two typologies of optical dipole traps are possible, as it is shown in Fig. 2.1.

For blue traps (A > 0; wy, > w4) the optical potential has the same sign as the laser field
intensity. This causes that the minima of the atomic motion coincide with the minima of
the laser field. In this case, the dipole force attracts atoms towards the minima of the light
tield. On the other hand, for red traps (A < 0;wp < w,) the minima of the atomic motion
correspond to the maxima of the laser light field. In this latter case, the optical dipole force
pushes atoms towards the maxima of the laser field.

sc

%In the rotating wave approximation, the counter-rotating term, which oscillates at frequency wy +w, is
neglected.
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2. OPTICAL DIPOLE TRAPS

Figure 2.1: Optical Dipole Traps: (a) Scheme of a red detuned dipole optical trap (A < 0);
the intensity of the laser light has a gaussian form, and atoms are attracted towards the
maxima of the laser light. (b) Blue detuned optical dipole trap (A > 0); such traps can be
realized with, e.g., “hollow beams” that is by using Laguerre-Gauss beams or Bessel-Gauss
beams. In this case, atoms are dragged towards the minima of the laser light field.

It is clear that the choice of the laser detuning is important. In general, it depends on
the trapping geometry, on the total amount of laser power available and the maximum
photon scattering rate that atoms are allowed to experience. The photon scattering rate as
a function of the optical potential reads

Ise = %Vdip. (2.10)
The maximum kinetic energy that the confined atoms can posses in an optical dipole trap is
referred to as the potential depth of the trap. This is a fundamental concept in the physics
of atom trapping. Each time an atom absorbs a photon from the laser light field, its kinetic
energy increases in average by one recoil energy E,.. ~ 7*k?/m, where k is the photon
wave-vector and m the atomic mass. Therefore, the absorbed photons limit the lifetime of
the trapped atoms, since they increase the atomic kinetic energy. It is necessary to operate
at a large laser detuning A in order to guarantee long trapping times. On the other hand,
larger laser detuning means shallower optical potential depth, see equation (2.8). How-
ever, because in near resonant dipole traps the optical potential scales as I /A whereas the
scattering rate as I/ A2, there is room for adjusting the laser detuning in order to minimize
the number of absorbed photons, and, at the same time, to guarantee sufficiently strong
potential depths.

2.2 Multi-level atoms

The expressions of the dipole potential and the scattering rate have been derived for a two-
level atom model. In reality, atoms have a rich multi-level structure. For multi-level atoms
the expressions previously obtained get more complicated. However, this is not a merely
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2.2. Multi-level atoms

drawback, since a richer panorama of phenomena emerges, e. g. a laser polarization de-
pendency of the atomic dipole potential [17].

The interaction between a laser light field and a multi-level atom is better described in
the dressed-state approach [61]. The effect of off-resonant laser light on the atomic levels
can be treated as a perturbation in second order of the electric field. We calculate this light
shift in a dressed atom approach. For non degenerate states, the energy shift of the i-th
state is given by the well known formula

. H, . 2
AE; = 27| Ul Hine | ) 2.11)
A G
where the atom-laser interaction is included in the term H;,; = —d- E, and ¢, is the un-

perturbed energy of the i-th state, considering the atom plus the laser field as an unique
system. In its ground state |g), the atom has zero energy, whereas the laser field has an
energy equal to nfiwy, with n the number of photons. The energy of the ground state of
the “atom+field” system is €, = nfiw,. If one photon is absorbed from the laser field, the
atom undergoes an electronic transition to the excited state |e), and the total energy of the
system is €, = hwa + (n — 1)hwy, = —hA + nhwy. These two states are coupled by the
laser field. After some algebra, the formula (2.11), in the limit A >> T, reads

7o) |2 2
AEg,.(x) = i“‘e'dggﬂwﬁ - ii_ZC; £I(r), (2.12)
where the signs + correspond to the ground and excited state, respectively.

It is worth pointing out that this formula has been derived for a laser field with de-
tuning A much below the optical frequency w4, and for a two-level atom. Optical dipole
traps which relay on this approximation are called “near-resonant” dipole traps. For such
a system, the sign of the light shifts depends on the laser detuning, realizing a state depen-
dency on the detuning A, as represented in Fig 2.2.

(a) _ (b)
A
_/\ @)
v == I N Sy
ho, I hiw, ho, how,
L |g) /\
%00 ® 8

Figure 2.2: Scheme of ac-Stark shifts. (a) The atom-laser interaction shifts the atomic energy
levels downwards or upwards. For A < 0, with a laser beam which presents a maximum
in space, the ground state is trapping in the maxima of the light, while the excited level is
anti-trapping. (b) When A > 0, the excited state becomes trapping.
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2. OPTICAL DIPOLE TRAPS

The scenario dramatically changes as soon as atoms are regarded as objects with an elec-
tronic substructure. In this case, one has to sum over all possible excited states |e;) starting
from a specific ground state |g;) (of which one wants to calculate the light shift). The dipole
matrix element for these transitions is given by the well known formula y;; = ¢;j || p ||,
where || u || is the reduced matrix element and c;; is the relative line strength of the in-
volved transition. The energy shift of an electronic ground state |g;) is

37’ CZZ].

AE; = Iy —, 2.13
=50 24, 213)

where T’ is the spontaneous decay rate, I the laser intensity, and A;; the laser detuning
relative to the involved transitions.

Many experiments on laser cooling and atom trapping employ alkali atoms, which
of course have a complex electronic structure. In particular, in this thesis isotope 8 Rb
of rubidium atom has been investigated. The spin-orbit coupling, being responsible for
the fine structure, leads to the D-line doublet 5S1,, — 5P;/5,5P5,,, with an energy split-
ting 1AL ~ 7200GHz. The two D-lines are at wavelength of 794.8 nm (D1-line) and
780.2 nm (D2-line), respectively. Moreover, the coupling with the nuclear spin I = 3/2
is responsible for the hyperfine splitting of both ground and excited states, with energies
hAgrs ~ 6.8GHz and 1A} =~ 500MHz. It is evident that the three splitting energies
represent three relevant atomic energy scales: Apg > Aprs > Ajypg. For example, when
the laser detuning A > Al the optical potential becomes [17, 62]

T (2+P 1-P
Viip = 37t < + Pgrmp n ngF>I(r),

27 Aor Arr (2.14)
in which gr is the Landé factor and P is the laser polarization (P = 0 for linearly polar-
ized laser light and P = =1 for circularly ot light, respectively). The two detunings A, r
and A r refer to the energy difference between the particular ground state 5S> F and the
center of the hyperfine splitting 5P, ,, and 5P /,, respectively.

As a further example, let us consider the case of a laser detuning which greatly exceeds
the fine-structure splitting A¢. If A denotes the laser detuning with respect to the center
of the D-line doublet, then Ay = A;p = A > AL The hyperfine splitting is therefore
negligible, and expression (2.14) can be approximated by

2 A
i:%g (1 + ;ngmp£5> I(x). (2.15)
Deeper discussions about the role of the laser detuning in optical dipole traps go beyond
the aim of this work. It is nevertheless interesting to point out that, in this last case, if a
laser with linearly light is employed (P = 0) all magnetic sub-levels are shifted of an equal
quantity, contrarily to that of a ¢ laser light, which induces light shifts that depend on the
mr spin-projection.
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2.3. Quasistatic dipole traps

2.3 Quasistatic dipole traps

So far, we have assumed that the laser detuning A is much smaller than the absolute laser
frequency. In this approximation, the counter-rotating term in the expression of the atom-
field interaction in equations (2.8) and (2.9) can be neglected.

In the case of CO;-laser dipole traps, the laser wavelength is one order of magnitude
bigger than the wavelength associated to D1 and D2 lines, and both the hyperfine and fine
atomic structures are not resolved. As a result, the rotating and the counter-rotating terms
contribute to the optical potential with roughly the same weight [63].

The trapping potential is given by the lowest order perturbation theory expression for
the Stark-shift of a ground state|g), due to the excited states |e) [61, 64]:

1 Lo 1 1
AE, = —— Y |d,. - E|? + , 2.16
8 4h;’ 3 ‘ Weg — WL Weg + WL ( )

where w,; = (E. — Eg)/h. This expression can be simplified using the atomic polariz-
ability. In general, when the laser frequency w; is much smaller than any of the reso-
nant atomic frequencies weq, the scalar polarizability can be approximated by the expres-
sion [65]

— Z S (2.17)
675 g - wL
where f. is the absorption oscillator strength of the ¢ — e transition:

2mw, .
o= ey 1y | (lIpler) P, 218)

Fig. 2.3 shows the behavior of the rubidium dynamic polarizability versus the exciting
laser frequency (in cm™1), both for the ground and excited states of rubidium atoms. By
means of equations (2.17) and (2.18), the light shift formula (2.16) becomes

o1 &s EJ2
Viip = =3 [1— (wr/w1)?] EF @19)

where w; is the frequency of the first dipole transition (D1-line), and xg denotes the static
atomic polarizability (in the limit w; — 0).

At the CO,-laser wavelength (A ~ 10.6 um) this latter equation approaches the static value
(in the limit w; — 0):
1 =
Viip = —Easusy? (2.20)
The value of the static polarizability of the rubidium ground state 5S;/, used in this ex-
perimental work is 5.26 X 10-¥Cm?/V [66, 67, 68]. For the sake of completeness, let us

note that in addition to the electric dipole force, there is a light shift contribution from the
magnetic dipole interaction with the ground state hyperfine levels. This shift is a factor
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Figure 2.3: Rubidium dynamic polarizability. (a) Ground state dynamic polarizability. At
CO;-laser frequency, the dynamic polarizability approximately equals the static values. (b)
Dynamic polarizability of the first electronic excited state 5P.

2;4% o/ (Aswr) smaller than the Stark-shift [69]. In the case of 87Rb atoms this factor is of
the order of 1078.

One advantage of such quasistatic dipole traps, is the possibility to realize a state-
independent confinement. For example as it is shown in Fig. 2.3, the static atomic po-
larizability of rubidium atoms is positive both for the ground- and the excited states 5S
and 5P, respectively, in contrast to near-resonant dipole traps, for which the excited states
are antitrapping (when A < 0). This applies also to other alkali atoms. Moreover, because
the laser wavelength is 10.6 um, fine and hyperfine structures are not resolved. As result,
all hyperfine components of the ground state 55, and excited states 5P/, and 5Ps,;, are
trapped.

The photon scattering rate is estimate in this way. For a multi-level atom, the total
scattering rate is composed by two terms: I'sc = FRayleigh + I'rRagman. The first one is the
contribution of the Rayleigh scattering describing an elastic process, the latter term is the
Raman scattering, which leaves the atom in a different hyperfine or Zeeman sublevels
i.e. initial and final states are different [70]. The Rayleigh scattering is given by the usual

formula
2

) (2.21)

y Js

e Weg

87{1%1(0%
IﬂRayleigh = T

where 7 is the classical electron radius. At the CO;-laser radiation (w; >~ w1 /10) this for-
mula is almost exact. At laser frequency w;, ~ w1/2 the Rayleigh scattering is within 70%
exact. In particular, for alkali atoms, the ratio between the Raman and Rayleigh scattering,
e. g., at frequency wy ~ w;/2 is approximately given by

Fam 30 o)
rRaylei oh 9 (U% . .
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2.4. Dipole trapping geometries

In the case of CO»-laser radiation this ratio is negligible.
If a gaussian laser beam is used for trapping atoms (laser intensity I = 2P/ (tw3) with
P the laser power), then the Rayleigh photon scattering rate reads

16r(2)P

Mels 2 3
p 2.23
3hw ( ) wi (223)

e2

1ﬂRayleigh =

where wy is the beam waist of the gaussian beam. Typical values of this photon scattering
rate in our experiments with 8Rb are 1 photon scattered every 10 minutes. This results
in a realization of a conservative trap, where decoherence caused by absorption of laser
photons is highly suppressed.

2.4 Dipole trapping geometries

In the experiments carried out in this work, Bose-Einstein condensation is reached by “all-
optical methods” in CO;-laser optical dipole traps. Two laser beam geometries have been
realized for this purpose: a single running wave tightly focussed optical dipole trap, and
a crossed beams configuration. In Fig. 2.4 is presented a scheme of the two CO»-laser
beam geometries. The laser wavelength of the trapping radiation in our experiment is

M
t
(@) (b) \ &

Figure 2.4: Scheme of two CO»-laser optical dipole traps. (a) Single running wave config-
uration. Inside a UHV chamber a couple of ZnSe lenses tightly focuses a laser beam down
to a beam waist wp. Atoms are trapped in the focus of the laser beam. (b) Crossed beams
geometry. Two tightly focussed CO,-laser beams intersect each other in the beam waist
plane. The overlapping zone defines the trap.

near 10.6 um, and the ratio between the laser frequency and the frequency of the doublet
D1 — D2 (of ¥Rb) is < 1/10. The approximation of quasi-electrostatic trap applies here,
see equation (2.20). Moreover, because the laser detuning is negative, the dipole force
attracts the cold rubidium atoms towards the maxima of the laser light field.

In the experiments with a single running wave geometry, the optical dipole trap has
been realized by focussing a gaussian laser beam. The COs-laser beam travels inside an
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2. OPTICAL DIPOLE TRAPS

ultra high vacuum chamber along the z axis, which is perpendicular to the gravity axis
(x axis). According to the equation (2.20), the optical potential realized by a single tightly
focussed gaussian beam is

r2 1
_— —-2————, 2.24
1+ (z/zo)z] exp( w%1+(z/zo)2> (.24

Vdip = _Vdepth
where zg = 7tw3/ A is the Rayleigh length, wy is the beam waist of the gaussian beam, and
r? = x2+ y2 [71]. The quantity Viepy, = asP/ (ﬂeocw(z)) is the potential depth at the focus
(inr = 0 and z = 0). In Fig. 4.9 a numerical simulation of a single optical dipole trap is
shown. The inferred potential depth for an optical power of 28 W and a beam waist of
27 um is about 1.4mK. The available laser power sets the maximum temperature of the
trapped cold atomic ensemble, for a fixed laser beam waist.
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Figure 2.5: Single optical dipole trap. The optical power is 28 W and the beam waist is
27 pum. (a) 3D view (xz-plane view) of a focussed gaussian beam realizing a single running
wave optical dipole trap. The vertical scale gives the potential depth in mK. (b) Contour
plot of the laser beam intensity(xz-plane view). The brighter areas correspond to higher
intensity values.

The analytical expression for the optical potential of a crossed dipole trap is somewhat
more complicated in the case of two generic laser beams, with different polarizations €;
and e, different k-vectors k; and k,, and with frequencies wy, and wy, intersecting at
an arbitrary angle ¢. However, in the realized experimental setup two linearly polarized
CO;,-laser beams, separated 40 MHz in frequency, crossing each other at 90 degree, are
employed. The frequency separation allows one to neglect any contribution to the optical
potential arising from interference of the two laser beams. In this case, the total dipole
potential is given by the sum of the two independent dipole potentials.

Let {O, x,y,z} be a cartesian reference system, oriented in such a way that one beam
propagates along z and the other one along x and with the origin in the intersection point
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2.4. Dipole trapping geometries

(at this point the two beams are focussed to beam waists wy; and wq,, respectively). The
total dipole potential reads:

1
Vcross = _Vdgpth

2 2
exp(_zx +vy 1 >
[1+ (2/20)7] wh 1+ (z/20)?

24,2
+2z 1
T ( —2Y ) (2.25)
TP+ (x/20)7] P wly 1+ (x/x0)2
The potential depth of the crossed trap is the sum of the two individual ones:
p P
Viepth = — —5-1 fst2 (2.26)

Tceqwl,  TTeews,

where Pjand P, are the laser powers.

In the experiment presented in this work, the optical power in each beam has been
chosen to be nearly the same. In general, one has to add also the gravitational potential
energy mgx which the trapped atoms posses. However, in many experiments the optical
confinement is stronger than the gravity, and it is possible to neglect this additional force.
This issue will be discussed later in the context of the realization of a novel type of atom
laser. In Fig. 2.6 a numerical simulation of a CO,-laser optical dipole trap in the crossed
geometry is represented. The optical power is 12 W, and each beam waist is 35 um. It is
clear that with respect to a single beam geometry, a crossed beams configuration offers a
stronger spatial confinement, although the potential depth is the same in both cases.

(@) (b)

Vo (mK)

z (pm)

-10 0 10
X (pm)

Figure 2.6: Crossed optical dipole trap. Both beams have the same optical power (12 W)
and the same beam waist (35 pm), which reproduce the experimental features of the real
trap. (a) 3D view (xz-plane view). The vertical scale gives the potential depth in mK. (b)
Contour plot of the laser beam intensity(xz-plane view). The brighter areas correspond to
higher intensity values.
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2. OPTICAL DIPOLE TRAPS

The motion of ultracold atoms in the optical dipole traps, can be well approximated by
an harmonic oscillator. Since the optical potential has a minimum in the laser beam focus
region, it is possible to expand the confining optical potential to the second order in the
coordinates. The hamiltonian of the center of mass of a trapped atom is given by:

1 3 13
H= Y p?+2 Y ka? (2.27)
2m = L2 - !

where p; is the momentum conjugated to x;, and k; are the spring constants derived by a
diagonalisation of the 92V, / axiaxj]() matrix of the second derivatives of the optical po-
tential Vj;p.
For a single CO,-laser beam dipole trap, the vibrational frequencies are:
1 4ngP
V;/ —_ 74
27 TTcegmwy

1 [ 205PA2
Vp= —y | — L
° 21\ mcegmu

where v, is the vibrational frequency in the transversal x,iy plane and v, in the longitudinal
direction, i.e. along the laser beam propagation axis. Typical experimental values in our
experiment are v, = 4.8kHz and v, = 350 Hz, for a laser power of 28 W and a beam waist
of wy = 27um. The trap has a cigar shape geometry. The tightly confining plane is the
xy-plane.

Instead, for a crossed dipole trap with beams crossing at a 90 degree angle, one can
expect that all vibrational frequencies are of the same order of magnitude:

1/ 4as "2/ P PAZ N2
7T \ 7TC€EQM Wy, 2w,
1/2 1/2
1 4o P P,
vy = — S —4+— (2.29)
27T \ 7TCEQM Wy, Wy
1/ 4as \'"?*( PA2 P \'?
V2= 5o 2.6 T
27T \ 1TCEQM 2wy, Wy
With a typical CO,-laser power of 12 W in each beam and typical beam waists wy = wp =
35pum, the trap frequencies are near 1.7 kHz in all three directions.

(2.28)

In the next chapter, we will describe the experimental setup constructed within this work
for the realization and the characterization of such optical dipole traps for ultracold rubid-
ium atoms.
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Chapter 3

Experimental apparatus

For this experimental work, a complete new experimental setup has been built. The used
experimental setup allows for a direct condensation of 8Rb atoms in purely optical dipole
traps. In order to reach the quantum degenerate regime in dilute alkali gases, laser cooling
and atom trapping techniques have been implemented. Such techniques required reliable
laser sources, with tunable radiation and frequency stabilization against frequency fluc-
tuations. For the formation of a Bose-Einstein condensate is mandatory to reduce three
body collisions. This condition is met in dilute atomic gases. Diluteness is reached when
bosonic gases are trapped in conservative traps (optical traps and magneto-optical traps)
in conditions of ultra-high vacuum (UHV).

A vacuum system which guarantees a pressure of the background gases of 1 x 10~ °mbar
has been assembled. One of the characteristics of this system is the possibility to have good
optical access for realizing and optically resolving 1D and 2D mesoscopic optical lattices.

After the description of the vacuum system, the diode laser sources for the preparation
of the cold atomic ensemble are presented. Bose-Einstein condensation is reached by evap-
oratively cool ultracold 8 Rb atoms in a CO,-laser optical dipole trap. This cooling tech-
nique is accomplished by lowering the purely optical confining potential over time: a suit-
able control of the optical confining power is required. The employed optics for the pure
optical dipole trapping of atoms are presented. This optical system has been optimized for
the realization of both a single single beam dipole trap and a crossed beams dipole trap,
employing radiation derived from a commercial CO»-laser. Finally, the absorption imag-
ing system, which permits to analyze the trapped quantum degenerate atomic cloud at the
end of an experimental run, is presented.

27



3. EXPERIMENTAL APPARATUS

3.1 Vacuum system

The vacuum system permits to reach a pressure of the background gas of roughly 1 x
10 %mbar. Such a low value is mandatory to achieve sufficiently long trap lifetimes,
which permit to employ more effective evaporative cooling techniques on longer time
scales. The vacuum system is made out of steel. It is composed by two parts: a main
vacuum chamber, in which experiments on ultracold atoms are performed, and a vacuum
pump body, where the vacuum pumps are installed. The main vacuum can has a spherical
form with an average diameter of 162 mm, as Fig. 3.1 shows. The pump system body has

Figure 3.1: Front view of the vacuum chamber.

a cylindric form (with a diameter of 11 cm and a height of 18 cm), and presents a big opti-
cal window. This window is used for coupling a near-resonant laser beam employed for
absorption imaging technique. This vacuum pump body is attached to the main vacuum
can through a CF63 flange. In Fig. 3.2 the rear part of the vacuum system is shown. An
ion pump (VTS, 251/s) is attached to the vacuum pump can, through a UHV-valve, and
allows to reach background pressure of 5 x 10~?mbar. This ion pump is always on and it is
placed ~ 50 cm away from the center of the main vacuum chamber. Moreover, in the vac-
uum pump body, a titan-sublimation pump and a pressure gauge (Ionivac) are installed.
The Ti:sublimation pump is activated regularly once in two-three weeks, to maintain the
desired background pressure of 1 x 1071 mbar.

This main chamber has several windows for the optical access of resonant light and
mid-infrared light. The designed vacuum system allows for a realization of different op-
tical dipole trap geometries, and in particular it permits to realize and optically resolve
mesoscopic 1D and 2D optical lattices [72]. For all these purposes, a total of 16 flanges are

28



3.1. Vacuum system

Figure 3.2: Pump system body

present on the main vacuum chamber. There are eight standard flanges (CE38). In par-
ticular, four of them mount ZnSe windows for coupling in and out the vacuum chamber
COzy-laser light. Other three standard flanges mount quartz plates. Two of these are used
for the optical access of the MOT beams propagating along the axis of the MOT magnetic
coils, and the third one for the detection of fluorescence light from the trapped atoms, us-
ing a calibrated photodiode. The last standard flange is used for the rubidium getters. The
remaining eight flanges require non standard mountings and are used as optical ports.
Their inner diameter is of 20mm. These flanges present quartz windows for coupling
near resonant laser light. These windows are attached to the flanges by using Helicoflex
elements (type HNV 200 Al, from Cefilac).

Moreover, the main vacuum can has one big optical windows, mounted on standard
CF63 flanges, as displayed in Figs. 3.1. The imaging system (lenses plus CCD camera) is
placed in front of this big window. This window is 66 mm away from the center of the
main vacuum chamber, and allows for a solid angle of approximately 57.4 degree. This
angle is suitable for high resolution imaging of 1D and 2D mesoscopic optical lattices.

The alkali atom source consists of three metal filaments (model RbNS 34/12FT, by
SAES Getters S.p.A.), enriched with RbCr, which release rubidium atoms when current
flows through them. These rubidium dispensers are mounted in the main vacuum cham-
ber at a distance of 3 cm away from the center of the chamber. Typical values of the heating
current are 2.7 — 3 A.
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3. EXPERIMENTAL APPARATUS

3.2 MOT system

To date, magneto-optical traps (MOT) represent a workhorse for the production of ultra-
cold atoms in quantum optics experiments. Atoms in a MOT experience a dissipative
force, which depends on the atomic velocity, and an optical restoring force because of
the presence of an external inhomogeneous magnetic field. The dissipative force allows
to reach atomic velocities corresponding to an atomic temperature on the order of 10 pK.
The position dependent force is realized, when a radial quadrupole magnetic field is em-
ployed in conjunction with three pairs of counterpropagating laser beams with oppositely
circular polarizations o travelling along the three axes of a cartesian reference frame [73].
The laser beams are detuned few MHz to the red side of a strong atomic resonance. They
intersect each other in the zero of the quadrupole magnetic field.

In Fig. 3.3 the scheme of the realized MOT. The MOT coils are oriented at an 45° angle
with respect to the propagation axes of the CO,-laser beams.

MOT beams

CO,-laser beam

Figure 3.3: Scheme of the realized MOT and optical dipole trap. Three c* pairs of coun-
terpropagating laser beam intersect in the center of the vacuum chamber, at the zero of a
magnetic quadrupole field. The magnetic coils are placed outside the vacuum chamber.
The CO»-laser optical dipole trap is overlapped with the MOT.

For a MOT with 8 Rb atoms, two laser sources are needed: a “cooling” laser, whose fre-
quency is red detuned with respect to the hyperfine transition |55 5, F = 2) — |5P; 5, F' =
3), and a“repumping” laser whose frequency radiation is resonant with the hyperfine tran-
sition |5S1/5, F = 1) — |5P;/5, F' = 2). The repumping laser is necessary to “close”the
cooling transition. The existence of off-resonant excitations drive populations into |F' = 2),
from which atoms decay into the |F = 1) state. Atoms in this level need to be repumped
into the cooling cycle.
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3.2. MOT system

3.2.1 Cooling laser

The laser light, tuned near the cooling transition, is provided by a grating stabilized diode
laser system (master laser), whose radiation is amplified by a second, high power diode
laser (slave laser). The corresponding optical scheme is shown in the lower half of Fig. 3.4.
The lasers is controllable in frequency and stabilized against frequency fluctuations. The
external cavity reduces the spectral width of the emitted radiation, and the grating permits
a selection of the radiation wavelength. The mechanical setup of these laser diodes is tem-
perature stabilized. These laser sources are frequency stabilized by employing electronic
servo loops, which stabilize their feed current.

The master laser has an extended cavity in Littrow configuration [74] (diode laser Hi-
tachi 7851G, with nominal power of 50 mW). This light passes an optical isolator (Gsdnger
60 dB), with a transmission efficiency of 85 %. After this isolator, almost 1 mW of the mas-
ter’s light is used for the injection technique. Nearly 2mW of this light is sent to a sat-
uration spectroscopy line, which gives a reference signal for a rough alignment of the
resonance. The rest of the master laser light is used for the frequency stabilization. For
splitting this laser light combinations of A /2 wave-plates (A/2 plates) and cube polarizer
beam splitters (PCB) are used.

The slave laser (diode CW-C1-780.015S-PD, SLI, with nominal power of 150 mW) is a
free-running wave diode laser, and it is injected by the master light derived by the first
pair A/2 plate PCB. The light from the slave laser, passes an optical isolator (Gsdnger
60dB), with a transmission efficiency of 90%, and then afterwards also an acousto-optic
modulator (IntraAction, with operative frequency of 40 MHz). The first diffraction order
from this AOM is used for the MOT. In order to increase the efficiency of the first order
diffracted light (up to values of 80 %), the diameter of the laser beam is reduced to less
than 1 mm. After the AOM, the light form the first order of diffraction is divided in two.
A beam with few hundreds of microwatts is coupled into a single mode optical fiber, and
sent to the vacuum chamber for imaging diagnostic. The other beam is spatially filtered by
a 50 pm pin-hole, and then expanded by a telescope to a beam diameter of 2 cm (the lenses
of this telescope have focal lengths f; = 50 mm and f, = 700 mm). The optical power after
the pin-hole is 45 mW, see Fig. 3.4. Additional optical elements are used for dividing the
beams in three and to give the correct polarizations ¢, to realize a 3-beams MOT.

3.2.2 Repumping laser

The repumping light is delivered by another laser source, see the upper half of Fig. 3.4.
This is a grating stabilized diode laser (Sanyo DL7140-201, with nominal power of 70 mW).
An optical isolator (Gsdnger 60 dB) prevents retro-reflection of light into the laser cavity.
The transmission from this isolator is 85 %. The optical power after this optical isolator
is 20mW. About 2mW of this light is sent to a spectroscopy line for a frequency sta-
bilization. The remaining light is split again. Nearly 3mW of this repumping light is
sent to a frequency offset locking system. The remaining light travels through an acousto-
optic modulator (IntraAction, with operative frequency of 80 MHz). The light in the first
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3. EXPERIMENTAL APPARATUS
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Figure 3.4: Scheme of the MOT laser system. OI: optical isolator; PCB: polarizer cube
beam-splitter
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3.3. Dipole trapping laser optics

diffraction order is almost 90 %. This light is spatially filtered by a 50 pum pin-hole and then
expanded by a telescope to a beam diameter of nearly 2cm. The optical power after the
pin-hole is 10 mW. The beam is spatially overlapped with the cooling laser radiation, and
then sent to the vacuum chamber for realizing the MOT.

3.2.3 Frequency Offset Lock

For the frequency stabilization of the cooling laser source, a novel lock scheme has been
developed [75]. Light from the cooling laser is superimposed to that of the repumping laser
(which acts as a reference oscillator) on a fast photodiode. The beat signal between the two
laser frequency (about 6.8 GHz), is mixed with a microwave reference signal, derived from
a frequency synthesizer. Let us remember that the difference in frequency between the two
lasers nearly equals the hyperfine splitting of the ground state 5S; /,. After the mixing, the
signal is split in two. One part is sent to a spectrum analyzer (for monitoring the mixed
down signal) and the other part to an error-signal-circuit (ESC). The output of this ESC is
an error signal which is sent to an electronic servo loop. The main advantages of this new
lock technique is to have a steep slope of the signal error and to change in few hundreds
of microsecond the lock point frequency, by varying the frequency of the microwave local
oscillator. The capture range is of several hundreds MHz. This allows for a fast frequency
detuning of the cooling laser source in the different phases of the experiment (MOT-phase,
dark-MOT phase and detection).

3.2.4 MOT magnetic field coils

To generate a quadrupole magnetic field, a pair of coils, in anti-Helmholtz configuration,
(each of them has 300 copper wire windings) is used. These coils are centered on two CF38
flanges and their axis is at 45 degree with respect to the horizontal and vertical CO,-laser
beam directions. Moreover, they have the middle point 91.5mm far away from the cen-
ter of the vacuum chamber. Their mean diameter is 33 mm. The value of the gradient
tield used in the experiment for MOT and dark-MOT phase is nearly 10 Gauss/cm, rela-
tively to a current I = 4.5A. In order to produce a magnetic field offset, three pairs of
Helmholtz coils (about 30 copper wire windings each) are used. These compensation coils
have a mean diameter of 15cm. Two pairs have as axes the horizontal and vertical axes
of the vacuum chamber(namely the CO;-laser beam axes). The axes of the third pair is
perpendicular to the plane individuated by the two CO,laser beams.

3.3 Dipole trapping laser optics

After collecting a cold atomic cloud of 87RB atoms in the MOT, these atoms are transferred
to a quasistatic dipole trap. The dipole trapping radiation is derived from a commercial,
RF-excited CO»-laser (GEM-50S Coherent-Laser). The maximum optical power is 54 W
for A = 10.6pm. A tunable grating is mounted inside the laser cavity for adjusting the
laser wavelength within the range (9.3 — 10.6) pm. The free spectral range, defined as
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3. EXPERIMENTAL APPARATUS

vers = ¢/(2L), is 111 MHz, where L is the laser cavity length (135cm). The used laser
model has a piezoelectric actuator which allows to change the length of the laser cavity in
arange 15 — 25 pm. In the setting up of the laser system, the single frequency operation of
the CO,-laser has been checked. This task has been accomplished by using a Fabry-Perot
interferometer, with a free spectral range of ~ 300 MHz.

The scheme of the CO,-laser optics is shown in Fig. 3.5. The mid-infrared light emitted
by the laser passes an acousto-optical modulator (Weiss & Schulz, with RF drive frequency
of 40.68 MHz, and RF power of 60 W), which is used to control the optical power during the
experiment and to allow for an optical isolation of the laser. Almost 60% of the incoming
light is transferred into the first diffraction order, which is used for trapping the rubidium
atoms. After this AOM (master AOM) the mid-infrared light passes a 2.5 : 1 telescope,
formed by ZnSe lenses (L1 and L2, with focal length f; ~ 10cm and f, = 3.8cm, from
Coherent). After the telescope, the mid-infrared laser light passes a second AOM. This
AOM has a function of a beam divider, and it is used only in the experiments carried out
with CO,-laser crossed dipole traps. Note that the zero’s and first order diffracted beams
differ in frequency, which eliminates unwanted standing-wave effects. By controlling the
RF drive radiation, it is possible to balance the optical power in each diffracted beam. In
general, a ratio of 50% is chosen. For experiments with a single running wave CO,laser
optical dipole trap, this AOM beam divider is omitted and the mid-infrared laser beam is
directed to the vacuum chamber directly after the telescope.

telescope Fabry-Perot
cavi
/ N I 1 ty
v L A a
Horizontal
beam
0" order
CO,-laser GEM 50
% Coherent
¥ord AOM 1"order AOM
oraet beam divider master

Figure 3.5: Scheme of CO»-laser optics. Mid-infrared laser light is derived from a commer-
cial RF-excited CO,-laser. The optical power is controlled by using the first AOM (master
AOM). The beam waist is adjusted by acting on a telescope L1-L2. For crossed trap geome-
tries, a second RF-driven AOM is used. A visible He-Ne laser is employed to get a rough
alignment of the invisible CO,-laser beams.

For a rough alignment of the CO,-laser beams, a visible guiding laser beam is used.
This guiding light is derived from a He-Ne laser (wavelength A = 632nm) and is spatially
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3.4. Absorption imaging technique

overlapped with the mid-infrared light using a beam-combiner (P/N 033-084-01, Coher-
ent) placed after the beam divider AOM, as shown in Fig.3.5. After the beam divider,
the CO,-laser beams are stirred using gold mirrors, and they enter the vacuum chamber
through ZnSe windows. The CO,-laser radiation propagates through the vacuum chamber
along two perpendicular axes: the horizontal axis z and the vertical axis x of the vacuum
chamber (x is gravity axis). In particular, for the horizontal beam the first diffraction or-
der is employed. Inside the vacuum chamber, correspondingly to the CO,-laser axes, are
placed spherical corrected ZnSe lenses in order to focus the mid-infrared radiation beams
down to a minimum beam waist of 20um. These diffraction limited lenses (Coherent,
f = 38mm) are installed in 20 cm long steel holders. Micrometers screws allow one to
move and to translate these holders [76].

The size of the CO;-laser beam waist is adjusted by acting on the external telescope. For
the crossed trap geometry, a beam waist of 35 pm is chosen, whereas for a single running
wave geometry a beam size of 27 pm in the trapping region is used.

In optical dipole traps, evaporative cooling proceeds by reducing the optical potential
depth with time. In the experiments presented here, this task is performed by decreasing
the RF drive power supplied to the first AOM (master AOM) with time. The AOM RF-
drivers have a both a digital and analog input. The digital input is used for switching on
and off the RF, while the latter one is used for controlling the RF drive power level. The
switching time of the RF drive power is less than 1us. By regulating the analog voltage,
the RF drive power is controlled. The digital level for operation is 1.5 V. The analog input
has been varied from a maximum of 10V to a minimum of —3 V. The values for the beam
divider AOM are 1.5V for the digital input, and 3.3V for the analog input.

3.4 Absorption imaging technique

The knowledge of the properties of Bose-Einstein condensates and in general of ultracold
atoms (such as the number of trapped atoms, the atomic temperature and the atomic den-
sity as well) is inferred from the analysis of time of flight images (TOF). In particular, in
this thesis absorption imaging technique is employed. This is a suitable technique for opti-
cally dense atomic cloud, as for example an atomic Bose-Einstein condensate. The method
is destructive, since it is based on the absorption of resonant photons and subsequent in-
coherent emission of them. A collimated spatially filtered laser beam irradiates the ultra-
cold atoms during their ballistic fall, after having switched off the CO,-laser optical dipole
traps. Shadows of atomic clouds are imaged onto a CCD camera, as shown in Fig. 3.6.

When laser light propagates through a medium, atoms in general absorb and phase
shift this light [70]. In the performed experiments, since resonant light is employed, only
absorption occurs 1.

Let y be the direction of propagation of a collimated, linearly polarized laser light beam.
If Iy is the laser intensity before the interaction with the atomic cloud, then the transmitted

10ther imaging techniques rely on phase shift effects such as phase contrast imaging, where off-resonant
laser light is used.
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Figure 3.6: Scheme of the setup for optical absorption imaging. A resonant beam excite
atoms, which absorbs photons from this beam. A shadow of the atomic cloud is imaged
onto a CCD camera, by employing a doublet lens. w; and w; are the two big windows in
the experimental setup.

laser intensity I after the interaction is
I = Iy J nxy2)dy (3.1)

where 1(x,y, z) is the atomic density and ¢, the photon cross section for linearly polarized
light, given by the following equation

7 3)\2 1
A S — (3.2)
2012

Let us note that these two equations are valid in regime of negligible saturation. Integrat-
ing the equation (3.1) along the interaction direction y, it is possible to extract information
about the atomic density distribution in the imaging plane (x,z):

1 1. I(x,z)

7 D002) = [ w2y = = -t 2y

(3.3)

From this last relation, it is clear that the knowledge of I(x,z) and Iy(x,z) allows one to
extract information on the atomic density.

The light for the absorption imaging of cold atoms is derived from the cooling laser
source, as it is shown in Fig. 3.4. During the detection phase, the laser frequency is tuned
exactly into resonance with respect to the |551/,, F = 2) — |5P3/,, F' = 3) optical transi-
tion. After the cooling laser AOM, part of the first order diffracted light is split by using a
pair A/2 plate cube polarizer beam splitter. By controlling the RF-power of the laser cool-
ing AOM, it is possible to reduce in 1 s the amount or resonant light to values of 20nW.
In order to completely extinguish this resonant light, a mechanical shutter is used (closing
time ~ 400 ps). This shutter is open only during the detection time, namely for less then
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3.5. Experiment control

100 ms. The probing beam dimensions are reduced by using a 2:1 telescope (see Fig. 3.4).
This collimated beam is injected into a single mode optical fiber (Schéfter+Kirchhoff, PMC-
850-5,5-NA011-3-APC-300P, and 60SMS-1-4-A8-02 for the coupling optics), and then sent
to the vacuum chamber. This probing beam enters the vacuum chamber from the back side
(from the big window present in the pump body), and travels inside the vacuum chamber
along the y direction. A small angle with this axis minimizes interference patterns due to
multiple reflections on the windows.

The laser beam diameter after the optical fiber is 8mm. The light intensity at this
point is about 150 uW/cm?. This value is well below the D2-line saturation intensity
Iy = 1.16mW/cm?, and relations (3.1) and (3.2) hold. The probing light pulses are 80 ps
long. This allows to detect atomic density distribution with a reduced blurring effect.
Indeed, it is possible to show, see [11], that if in a time At an atom scatters N, pho-

tons, it acquires a random velocity vyus = /Ny, which leads to a random position
Trms = ( N,/ 3)vrecAt, where vy is the recoil velocity. Here, the number of scattered

photons is about 60, and this leads to a random position of 2 um.

The images of the shadow of the atomic cloud is created onto a slow-scan CCD camera
(Sony XC-55 progressive, 659 x 494 pixels with a cell size of 7.41m), placed outside the
vacuum chamber. A spherically corrected doublet lens (Melles Griot, f = 145 mm) is used
to provide a magnification of nearly 2.6.

All physical information necessary to study the ultracold atomic clouds is embedded
in the atomic density distribution given in equation (3.3). Our aim is to extract D(x, z)
from the recorded shadow images. For this purpose, three images are taken. An image is
taken with atomic cloud present is recorded. The image onto the CCD camera is denoted
by lexp (x,z). Soon after, a second image is taken without atoms, in order to have only the
laser intensity distribution Ip,.,(x,z). Afterwards, a third image is taken without probing
beam and without atomic cloud, to have a background offset Ibg(x,z). All these images
are taken with the same exposure time.

If we account for the camera background, we can determine the ratio I(x,z)/Ip(x, z) in
equation (3.3) from our experimental data using the formula:

Lexp(x,2) — Ibg(x,z)

IO,exp(x, Z) — Ibg(x, Z) ’ (34)

The systematics errors, due to laser time intensity drift are minimized by repeating this
procedure at the end of each experimental cycle. The discussion of the image analysis of
the thermal and Bose condensed clouds is exposed in Appendix A.

3.5 Experiment control
For a successful operation of the experiment, various laser beams must be switched on and
off during the experimental cycle following an exact temporal sequence. Moreover, the

laser frequency of the cooling laser must be tuned during the several experimental phases,
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3. EXPERIMENTAL APPARATUS

with precision of tenths of microseconds. All these tasks are accomplished by using a “real
time” system control device.

The used device is an AD-Win System from Keithley, and it has a CPU unit (SHARC-
DSP ADSP21062 with a clock of 40 MHz, and local memory of 256 kByte, and a RAM mem-
ory of 16 MByte). The system is modular, with analog and digital cards. The digital input-
output (I/O) module has 32 channels. In the experiments this module is programmed to
have TTL-logic pulses for controlling the opening and closing times of mechanical shutters
employed for each laser light beam, as well as to initialize digital oscilloscopes to trigger
the CCD camera, and to switch on and off all the magnetic fields. Moreover, electronic
switches for controlling the starting time of external function generators is activated by
TTL pulses from the I/O module as well. Besides, an analog module with eight channels
is used. Each analog channel supplies a signal in the voltage range between £10V, with a
maximum output current of 5mA, through an 16Bit D/ A converter. Analog output signals
are employed to control the analog inputs of each AOM RF-driver in the experiment (for
the cooling laser, the repumping laser and the CO,-laser), in order to have the desired laser
light power during each experimental phase, as described in detail in [76].
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Chapter 4

Bose-Einstein condensation in optical
dipole traps

In the past years, several laser cooling techniques have been developed in order to reach
the critical temperature for the onset of the quantum degeneracy in optical dipole traps [77,
78,79, 80, 81, 82, 83]. However, absorption effects, heating and trap losses due to excited-
state collisions are the main roadblocks to Bose-Einstein condensation by using laser cool-
ing techniques alone. To date, these limitations have been circumvented by forced evapo-
ration of the trapped atoms.

In this chapter, experiments on direct Bose-Einstein condensation (all-optical BEC) of
rubidium atoms in CO;-laser optical dipole traps are presented. The quantum degenerate
regime has been reached via a forced evaporative cooling of atoms both in a single run-
ning wave beam dipole trap and in a crossed beams dipole trap. Particularly interesting
is the possibility to achieve all-optical BEC in the single beam dipole trap. This undoubt-
edly represents an experimental simplification towards the achievement of the quantum
degenerate regime.

The preparation of the cold thermal cloud of rubidium atoms in the magneto-optical
trap (MOT) is the same for both geometries and it will be presented at the beginning of
this chapter. Afterwards, the initial experiments on all-optical BEC in CO»-laser crossed
dipole traps will be shown. From these first experiments we gained insight in the evapo-
rative cooling process to resort to a single beam CO»-laser dipole trap in a later stage of the
experimental work. Optimization of the initial trapping conditions (as the atomic temper-
ature and atomic density) is discussed for both geometries. Subsequently, all-optical BEC
in a tightly focussed CO»-laser dipole trap is presented.

As conclusion of this chapter, a novel technique for generating magnetic-field insen-
sitive Bose-Einstein condensates (mp = 0 Bose condensates) is described. This procedure
suppresses fluctuations of the chemical potential from stray magnetic fields. Such a mag-
netic field insensitive Bose condensate is of interest in the context of atom interferometry,
atom lasers and precision atomic clocks. This mr = 0 Bose condensate constituted the
source of coherent matter for the generation of an all-optical atom laser.
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4. BOSE-EINSTEIN CONDENSATION IN OPTICAL DIPOLE TRAPS

4.1 Precooling and collection of alkali atoms

The starting point of the described experiments on ultracold rubidium atoms (*Rb iso-
tope) is the realization of a MOT. In the previous chapter, the main requirements for the
realization of such a trap have been outlined.

In our experiments, rubidium atoms are collected into the MOT from the thermal back-
ground gas emitted by rubidium alkali dispensers. The duration of the MOT phase has
been chosen in order to maximize the number of the trapped atoms into the CO,-laser
optical dipole traps. Since two types of dipole trapping geometries are implemented, the
duration of the MOT phase is different for the two geometries. In particular, a 5s long
MOT phase is used in experiments with a crossed beams geometry, whereas a 30s long
phase in experiments with a single running wave dipole trap. In both cases, the number
of atoms in the MOT saturates after ~ 30s. When a 5s long phase is chosen, the number
of collected atoms in the MOT is about 1 x 107.

The MOT fluorescence signal is recorded with a calibrated photodiode, such that the
number of the trapped atoms can be inferred. Neglecting two and three body losses, the
number of atoms captured in the MOT grows according the following equation [84]:

N(t) = No(1 —e'/7) (4.1)

By fitting this function to the experimental data, the MOT loading time is derived, which
was typically around T ~ 12s in our experiments. The value of the loading time gives in-
formation about the lifetime of the MOT due to background collisions, which in the present
experimental setup are caused by thermal atoms emitted by the rubidium dispensers. Dur-
ing the MOT phase, the total cooling optical power is 45 mW, whereas that of the repump-
ing laser is 10mW. These values of the optical power correspond to laser intensities well
below the saturation intensity. The cooling laser detuning is chosen to maximize the num-
ber of the trapped rubidium atoms, and it is approximately 18 MHz to the red of the cycling
transition |551,5, F = 2) — |5P 5, F' = 3). The frequency of the repumping laser is locked
on the resonance |5S;,5, F = 1) — |5P;,,, F/ = 2). Fig. 4.1 shows a temporal scheme which
reproduces the main events of a typical experimental run. The MOT magnetic field gra-
dient has been set to 10 G/cm in the zero region. At this stage, the atomic temperature is
measured using time of flight imaging. The magnetic quadrupole is suddenly switched
off and the probe beam irradiates the falling atoms at different times. Typical observed
atomic temperatures are of order 40 uK, which is clearly below the Doppler temperature
(~ 140 puK) [76, 85].

Although it is possible to adjust the experimental parameters, to achieve lower atomic
temperatures in the MOT stage, we have noted that during this precooling phase is more
valuable to obtain a number of trapped atoms as high as possible. The estimated atomic
density is 2.32 x 10! atoms/cm?. This leads to an atomic phase space density of 4.2 x 10~7.

It is important to note that in a MOT the maximum atomic density achievable is limited
by collisions between ground- and excited state atoms during which part of the excitation
energy can be transformed into kinetic energy, and by repulsive forces between atoms
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Figure 4.1: Time sequence of a typical experimental cycle. The duration of the MOT phase
depends on the adopted CO»-laser beam geometry. After the dark-MOT phase, both cool-
ing and repumping lasers are extinguished. Before ramping down the confining CO,-laser
optical power, a 100ms long time is waited allowing for a natural evaporation of atoms.
After condensation, and subsequent manipulation of the trapped atoms, a TOF imaging is
applied as diagnostic tool.
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4. BOSE-EINSTEIN CONDENSATION IN OPTICAL DIPOLE TRAPS

caused by reabsorption of scattered photons from the interior of the trap, as reported in [86,
87, 88]. These limitations can be circumvented by applying a temporal dark-MOT phase.
Indeed, at the end of the MOT stage, the cooling laser is further detuned to the red
of the cooling transition. At the same time, the repumping laser intensity is decreased by
nearly a factor 100, as it is shown in Fig. 4.1. This dark-MOT phase lasts 60 ms (for both
COz-laser dipole trapping geometries), during which the atomic cloud is compressed. To
this aim, the cooling laser detuning is changed in time. In an initial stage of the experiment,
the cooling laser detuning was directly ramped up to a value of 160 MHz in few hundreds
microseconds. In a later stage of this work, improved results were obtained by first chang-
ing the cooling laser detuning to an intermediate value of A; ~ 40 MHz for a 20 ms period.
Subsequently, this frequency is ramped linearly up to 160 MHz in 20 ms and kept constant
to the this final value for an additional 20 ms long period. The use of such a temporally
tailored ramp yielded an improved transfer efficiency into the optical dipole trap of nearly
40 % compared to a dark-MOT with a temporally constant value of some final frequency
detuning. Sometimes, we refer to this improved dark-MOT phase as a “soft” dark-MOT.
Fig. 4.2 shows the cooling laser detuning during the improved dark-MOT stage over time.
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Figure 4.2: Temporal dark-MOT phase. During the dark-MOT phase the cooling laser is
further “red” detuned with respect to the cooling transition. The choice of the starting
detuning A; is done by maximizing the total number of transferred atoms to the CO,-laser
dipole traps. A typical value for A; is 40 MHz.

We observe that, in general, a reduction of repumping light intensity results in an in-
creased accumulation of rubidium atoms in the lowest hyperfine ground state |55 5, F =
1). At the end of the dark-MOT phase, the MOT magnetic field is turned off in few hun-
dreds milliseconds, and both cooling and repumping light are reduced to nW level by
suddenly switching off two independent acousto-optic modulators (AOMs). The switch-
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4.2. Evaporative cooling in optical dipole traps

ing time of these AOMs is shorter than 1ps. Additional mechanical shutters are used in
order to completely extinguish this residual near resonant light. The closing time of these
shutters was measured to be ~ 200 — 400 ps. To prevent losses due to hyperfine changing
collisions, almost all rubidium atoms are pumped in the lowest hyperfine ground state:
|5S1,2, F = 1). This atom pumping is accomplished by setting a delay between the closing
time of the mechanical shutters for the two MOT lasers. In particular, the repumping light
is closed 2 ms before the cooling light. Note that this is a variation of the spatial dark-MOT
tirst realized by Ketterle et al. [89].

This compression and optical pumping stage is mandatory in our experiments, since
without it the number of trapped atoms in CO;-laser dipole traps would be smaller than
10, and this would prevent the success of evaporative cooling towards BEC. During the
MOT and dark-MOT phases, the CO,-laser power is kept at the maximum value. The
focus of this laser beam is overlapped to the MOT center. At the end of the dark-MOT
phase, the atoms are confined by the purely optical potential alone. The atomic cloud is
prepared for subsequent evaporative cooling, which takes place in the optical dipole traps
alone.

In the next paragraph, a simple model of forced evaporative cooling is reviewed. The
study of this model allows a quite sufficient understanding of the evaporative process in
optical dipole traps, i.e. of the physical quantities which play a major role in the success of
this cooling technique.

4.2 Evaporative cooling in optical dipole traps

Evaporative cooling of atoms was originally proposed by Hess, for the case of atomic hy-
drogen [90]. It consists of the selective removal of atoms in the high-energy tail of the
thermal distribution and the subsequent equilibration of the remaining atoms to an en-
ergy distribution of lower temperature. In optical dipole traps, evaporative cooling is usu-
ally accomplished by lowering the confining optical potential during time, as first demon-
strated by the group of Chu [26]. However, in that experiment the cooling process stopped
already three order of magnitude away form the onset of the degenerate regime.

The key parameter in evaporative cooling is the ratio between the potential depth and
the atomic temperature of the trapped ensemble: 1 = U/kpT [91, 92]. When the atomic
temperature drops, the evaporation rate decreases and at a certain point stagnates. In fact,
the number of colliding pairs atoms with enough energy for leaving is proportional to
e 1. In the experiments presented in this thesis, after the plain evaporation (as it will be
explained later) # is about 9 — 10, and this implies a suppression of evaporation by a factor
e~? — e 1% To achieve further cooling, a continuous lowering of the optical potential U is
needed, as it is schematically represented in Fig. 4.3.

It is possible to show that if the confining optical potential is harmonic, and if the
atoms have a temperature kgT < U (the atoms then vibrate near the bottom of the optical
potential), the total energy change due to evaporation of atoms N and change of potential
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Uis :
UE
uz’
where E /2 is the average potential energy and w = (7 —5) /(7 — 4). On the other hand, the
variation of the total energy is E = 3NkpT + 3NkpT. Therefore, the change in temperature
is T o« N(U + akpT — 3kpT), proportional to the difference between the average energy
carried away per particle and the thermal energy 3kpT.

If equation (4.2) is solved for a fixed value of U/kgT = 7, the number of trapped atoms
is found to vary with the trap depth as

N u 3/[2(y'-3)]
ﬁ = <U) ’ (4~3)

E = N(U+ akgT) + (4.2)

where i denotes the initial conditions att = 0, and ' = 1 + a [93].
The phase-space density in the classical regime is p = N (hv)3/ (ksT), where v = v(t) «
 U(t) is the geometric mean of the trap oscillation frequencies. Using equation (4.3), we

get
3(n'—4)/[2(n'-3)] n'—4
p_ (U _(Ni
Pi_(u> _<N> ‘ @9

In typical experiments the potential depth is lowered from initial 28 W to a final value
of 200 mW. For 17 =~ 10 (as indeed measured in a preliminary stage of this work), it is pos-
sible to have an increase in the phase space density of a factor 600. It is interesting to esti-
mate the drop in the collision rate caused by the evaporation. For an energy-independent
scattering cross section, the elastic collision rate for a Bose gas in an harmonic trap is
v = 4nNmov?/ (kgT) scales as:

n'/12(n'=3)]
v <U> , (4.5)

where ¢ = 87a? is the collision cross section for bosons. When 7 = 10 the collision rate
is reduced by a factor 25 if the confining potential depth is decreased by a factor 100. It is
possible to show that 77 remains constant when the optical potential follows the time law

U;
uc) = ————, 46
" (1+t/7)° (0

where 8 = 2(' —3)/#’, and T a time constant given by

1 2,
Z =3 (" —4)exp(—1)vi. (4.7)

If one wants to include background losses I'y,, then the previous equations hold as long as
the 7 is replaced with [1 — exp(—TpgT)/T].
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Figure 4.3: Scheme of evaporative cooling in an optical dipole trap. In far-detuned optical
dipole traps, forced evaporation is usually accomplished by lowering the optical confining
potential with time. However, this leads to a weakening of the confinement of the atoms
and therefore to a reduction of the atom collision rate. For low potential depths longer
rethermalization times are thus expected.

4.3 Quasistatic dipole traps and phase space density

So far, only few experimental groups have achieved quantum degeneracy by means of
“all-optical methods”. The reason is that, in contrary to magnetic traps, where the appli-
cation of rf transitions into untrapped states allows one to work with temporally constant
confinement, in optical dipole traps the so called “runaway regime” in the course of evap-
orative cooling is never met. In fact, when the optical potential is lowered with time, the
trap compression decreases and rethermalization towards lower atomic temperatures re-
quires longer relaxation times. On the other hand, because of gravity, it is not possible to
ramp down the potential depth to extremely low values.

In the light of these considerations, a good strategy for the success of evaporative cool-
ing towards BEC in optical dipole traps is to start with a high atom collision rate and a
high atomic phase space density. Indeed, in quasistatic dipole traps, significantly high
initial atomic phase space densities have been achieved by laser cooling alone.

Although theoretical and experimental works have been produced to model the load-
ing mechanism of atoms into extremely far-detuned optical dipole traps [93, 94], yet it is
not properly understood the reasons why in such traps high atomic phase space densities
can be observed.

A possible explanation, we propose here, relates to the behavior of the atomic polar-
izability of alkali atoms in extremely far detuned laser light fields. In contrast to more
closely resonant dipole traps, in CO;-laser optical traps the atomic polarizability is positive
for both the electronic ground- and excited states of alkali atoms. In the case of rubidium
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atoms, the excited state 5P3; has a polarizability asp,,, = 16.8 X 1073 Cm?2/V. This makes
the excited state a factor ~ 2.7 more trapping than the electronic ground state 5S; /,, which
has a static polarizability asp,,, = 5.26 x 1073 Cm?/V.

With the here used typical experimental parameters of the CO,-laser dipole trap, the
ground state 551/, is lowered by 40 MHz with respect to the unperturbed value, whereas
the excited state 5P;/, experiences a 100 MHz red shift from the unperturbed value.

During the dark-MOT phase, the cooling laser is red shifted by an amount of 160 MHz
away from the cooling transition, while the repumping laser is locked on the repumping
transition. By doing so, the energy levels for an atom in the center of the trap are shifted by
60 MHz to the red side of the D2-line transition frequency, with respect to a free atom. This
leads to an enhancement of the friction force experienced by an atom passing the CO,-laser
beam focus during the dark MOT phase. Therefore, the probability for an atom to remain
captured in the CO,-laser focus is higher than in the case of near resonant optical dipole
traps. This is assumed to be at least partially responsible for the observed accumulation of
atoms to very high atomic densities.

This argumentation might account for the surprising feature of the occurrence of high
initial atomic phase space densities of the laser cooled ensembles. Certainly, a more realis-
tic model of the atom loading must take into account the complex dynamics of the trapped
atoms in laser light field and their thermalization with a bath of cold atoms represented by
the dark-MOT cloud.

4.4 COy-laser crossed dipole trap

In this section, experiments producing Bose-Einstein condensation in a CO;-laser crossed
dipole trap are presented. This trap is formed by two CO»-laser beams with nearly the
same beam waist. The laser beams intersect each other at a 90° angle, as it has been ex-
plained in chapters 2 and 3.

In initial experiments, the quasistatic dipole traps have been characterized and opti-
mized. It has been taken a great care of the maximization of the atom transfer efficiency
from the MOT to the purely optical dipole traps. Moreover, the initial atomic temperature
of the ensemble trapped in the CO,-laser radiation has been optimized as well. The CO,-
laser beams overlap the MOT region, and the trap loading time extends throughout the
precooling phases. The used precooling phase lasts 5 s + 60 ms (MOT + dark-MOT), as
explained in section 4.2. Fig. 4.4 shows an image of a typical trapped rubidium ensemble
in a crossed CO,-laser optical dipole trap.

The trap frequencies are measured by parametrically exciting the trapped rubidium
atoms. The intensity of the mid-infrared radiation is modulated by periodically varying
the power of the RF driving signal of the acousto-optic modulator, which controls the CO»-
laser beams intensity. A loss in the number of trapped atoms is observed when the fre-
quency modulation is twice a trap frequency. With 12 W in each CO»-laser trapping beam,
the observed parametric resonance corresponds to a mean trap frequency of v = 1.7kHz
(this is the geometric average of the three trap frequencies). From this measurement the
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4.4. CO,-laser crossed dipole trap

Figure 4.4: CO;-laser crossed dipole trap. Absorption image of the trapped atoms. The
image is taken few microseconds after the end of the dipole trapping phase. More than
one million of atoms are trapped with a temperature about 100 uK.

value of the laser beam waist is extracted: wp = 35 pm. For a crossed beam geometry, the
vibrational frequencies along the three axes are similar, and the trap has a spherical shape.
In the current setup, it is possible to adjust the laser beam waist by varying the distance
of the two lenses (L1 and L2) forming a telescope for the CO;-laser radiation, see Fig. 3.5.
The estimated potential depth for this crossed beams configuration is about 1.2 mK.

Subsequently to the characterization of the trap, the trap lifetime and the atomic tem-
perature have been measured as follows. After having loaded the CO;-laser dipole trap,
the mid-infrared trapping radiation was kept on at a fixed constant value for a variable
time (delay time), and then switched off, allowing for a free falling expansion of the atomic
cloud. The number of atoms and the atomic temperature were recorded by using absorp-
tion imaging technique at different delay times. The shortest used delay time is 70 ms. For
earlier delay times, the atoms which have not been transferred into the CO,-laser dipole
traps have not fallen out of the detection region. This procedure was repeated for different
values of the confining potential depth (different values of the CO;-laser optical power).
In all measurements, the CO»-laser loading time remains the same. Figs. 4.5 and 4.6 show
the measured number of atoms and relative atomic temperatures for two different values
of the total CO»-laser trapping power. In particular, the data displayed in Fig. 4.5 refers
to a total CO»-laser optical power of 30 W (15W in each beam), whereas in Fig. 4.6 a total
trapping power of 10 W was used (5W in each beam).

If this two sets of measurements are compared, one can observe that, despite the almost
equal number of the trapped atoms, the atomic temperature is lower for smaller laser trap-
ping powers, see Figs. 4.5b and 4.6b. This dependency of the atomic temperature on the
trapping power is ascribed to the failure of the sub-Doppler cooling mechanism for high
CO»-laser power.

Moreover, for the different values of the confining optical power, the behavior of the
number of the trapped atoms is the same: one can observe an initial fast decay and then
a slow one, as shown in Figs. 4.5a and 4.6a. If one compares the behavior of the num-
ber of atoms and the atomic temperature with time, it is evident that a plain evaporation
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Figure 4.5: Typical trap parameters for a crossed dipole trap with total CO,-laser power
of 30 W and beam waist of wy = 35pum). (a) Number of atoms versus trapping time (log
scale). The fast decay can be described by a double exponential decay with a fast and a
slow time constant. (b) Atomic temperature decreases fast within the first second of the
dipole trapping phase, and then continues to decrease slowly.
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Figure 4.6: Typical trap parameters for a crossed dipole trap with total CO,-laser power
of 10 W and beam waist of wy = 35pm). (a) Number of atoms versus trapping time (log
scale). The fast decay can be described by a double exponential decay with a fast and a
slow time constant. (b) Atomic temperature decreases fast within the first second of the
dipole trapping phase, and then continues to decrease slowly.
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happens after the dark-MOT phase. Let us point out that the number of trapped atoms
in Figs. 4.5, 4.6 is not well optimized yet. For these measurements, the dark-MOT phase
was still realized by suddenly increasing the detuning of the cooling laser from a value of
18 MHz to 160 MHz, with a step function in time.

However, when a “soft” dark-MOT phase is realized, as it was described before in
section 4.2 (see Fig. 4.2), the number of the transferred atoms into the CO,-laser dipole trap
becomes higher than 10°. It is important to note that even in case of not well optimized
atom transfer, it is possible to observe a fast loss of atoms attributed to a rethermalization
process. Fig. 4.7 shows a set of data corresponding to the optimized dark-MOT phase.
These data correspond to a CO,-laser optical power in each beam of 12W and to a beam
waist of 35 um.
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Figure 4.7: Characterization of a crossed dipole trap with a “soft” dark-MOT phase. The
total CO;-laser power is 24 W and the beam waist is 35 um. (a) Number of atoms versus
trapping time. The initial number of atoms is here above 1 x 10°. (b) Atomic temperature
during the dipole trapping phase versus time.

If the data are fitted with a double exponential function, one can approximate the be-
havior of the trapped atoms with time considering two characteristic decay phases: a fast
and a slow decay with time constants near 100 ms and 12s, respectively. The slow decay
is attributed to losses due to collisions with background gas, which ultimately limit the
available trapping time. On the other hand, the fast decay of atoms and the reduction of
the atomic temperature with time are attributed to a “plain evaporation” of the highest
energetic atoms. This process is effective only for small trapping times when the loss rate
is large.

The measured atomic density after a delay time of 500 ms is 1 x 103 atoms/cm?. The
measured atomic temperature is about 60 pK and the inferred phase space product nA3, ~
1/500, which corresponding to a 1/1500 phase space density if we assume equal distri-
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bution of spin-projections. The inferred collisional rate is 7kHz [23]. These results are
comparable to previous results observed in CO,-laser optical lattice and crossed dipole
geometries [25].

With these parameters, the initial conditions for a successful further forced evaporation
towards Bose-Einstein condensation are met.

44.1 BECin a crossed dipole trap

Once the ultracold bosonic ensemble is prepared, as explained in the previous sections, the
experimental sequence towards BEC proceeds as follows.

After the dark-MOT phase, the CO»-laser optical potential is not immediately ramped
down. A 100ms long period is waited. After this period, the mid-infrared power is re-
duced in a 3.5s long ramp time from initially 12W to a final value of 75mW in each of
the trapping beams according the formula (4.6). In these crossed dipole experiments, op-
timum cooling was achieved using T = 0.3s and B = 1.5 as parameters in the temporal
function (4.6). When the confining potential is ramped down, an increasing of the optical
density is observed . For a characterization of the cooling, shadow images of the expanded
atomic cloud at the end of the evaporation process are analyzed. In Fig. 4.8, absorption
images of the formation of a Bose condensate are shown. The images are taken for a time
of flight (TOF) of 15 ms.

Fig. 4.8a shows data for a final total trapping power 300 mW, corresponding to an av-
erage trap vibrational frequency of 350 Hz. The expanded cloud here has a spherical sym-
metry, since the trapped ensemble is still purely thermal. The measured atomic temper-
ature here is 240 nK. The optical density is well fitted by a gaussian distribution (dashed
line). The phase space density increases when the confining CO,-laser power is ramped
down further. Fig. 4.8b refers to data recorded when the final power is 200 mW, where
a typical bimodal distribution corresponding to an atomic cloud near the transition point
is observed. The central feature corresponds to atoms in the Bose-condensate, while the
wings represent thermal atoms, with a temperature of 200 nK. The critical temperature is
estimated to be T. = 190nK. For a final power of 150 mW, an almost pure condensate is
obtained, as shown in Fig. 4.8c. No thermal component is discernible here.

The pure condensate contains about 1.0 x 10* atoms distributed among the three mp
states of the electronic hyperfine ground state F = 1. This is referred to as a spinor con-
densate. A Bose-Einstein condensate which is described by an order parameter with three
or more components is called spinor condensate [27]. In other measurements, we have
applied a magnetic quadrupole field during the course of the evaporation by leaving on
the MOT coils. This leads to a condensate with about 70 percent population in the mp =1
and 30 percent in the mr = 0 spin projection. For these trap parameters, the magnetic field
gradient leads to a predominant population of one field-sensitive Zeeman state.
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Figure 4.8: Shadow images of Bose-Einstein condensation in the crossed beams optical
dipole trap. (a) Final trapping power of 300 mW for the cooling ramp. In this measure-
ment, the ensemble is still thermal. The optical column density is fitted by a Boltzmann
distribution. (b) For a final potential depth of 200mW a bimodal distribution is observ-
able. The measured atomic temperature is 200 pK. (c) At 150 mW final trap power, a pure
condensate is discernible. The number of the condensed atoms is 1.0 x 10*, which are
distributed among the three spin-projection states mr = £1, 0.

4.5 CO,-laser single dipole trap

From the preliminary experiments on all-optical BEC in a CO,-laser crossed dipole trap,
we gained insight in the evaporation process: a fundamental role in the all-optical BEC
was played by the initial conditions of the forced evaporation as the atomic collisional
rate, which had to be maintained high throughout the cooling process. Based on this un-
derstanding, we resorted to the single dipole trap geometry. This is the easiest realizable
geometry for a red detuned optical dipole trap. However, despite the experimental sim-
plicity of this configuration, successful evaporative cooling is more difficult to achieve
here. Indeed, evaporative cooling process might stop before the onset of the quantum de-
generate regime, since the atom collision rate in a single beam geometry is lower than that
in a crossed beams configuration of same beam focus. As successful strategy, we decided
to tightly focuss the CO,-laser beam to a smaller beam waist. Our experimental setup al-
lowed us for the generation of extremely focussed traps with beam waists down to 20 um.
We found that a good compromise between number of trapped atoms and trap frequencies
was met, when the beam waist of the CO,-laser beam was chosen in the range 25 — 30 um.

In previous experiments on direct BEC in optical dipole traps, this problem had been
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circumvented by enhancing the atom collision rate either using a more alighment-sensitive
crossed dipole trap geometry [20] or Feshbach resonances [22, 21]. However, it is here
demonstrated that by choosing a relatively small laser beam waist the initial atom col-
lision rate is high enough such that forced evaporation to quantum degeneracy can be
successfully accomplished in this trapping geometry.

4.5.1 Crossed versus single dipole traps

Compared to the crossed dipole trap geometry, a single running wave dipole trap gives a
weaker confinement along the beam propagation axis. The cloud has a cigar shape with the
longest symmetry axis z, perpendicular to the gravity axis x. Fig. 4.9 shows an absorption
image of the rubidium cloud confined in a single running wave CO»-laser dipole trap
realized in this work.

Figure 4.9: Absorption image of a single beam dipole trap. The rubidium cloud is confined
in a cigar shaped CO,-laser dipole trap, whose longest axis corresponds to the propagation
direction of the mid-infrared laser beam. The image has been taken few microseconds after
the switching off of the trapping radiation.

The ratio between the longitudinal and the radial frequencies in a single running wave
dipole trap is
Vz AL

Vr worty/2
Whereas for a crossed beams CO,-laser dipole trap this ratio is ~ 1, in a single beam CO,-
laser dipole trap with a beam waist of 35 um, the ratio is ~ 1/15. For a fixed beam waist
and for a given value of the optical power, the mean trap frequency in a single dipole trap
is smaller than that in a crossed beams dipole trap. It is easy to show that, if y; and 7,
denote the atom collision rates for two different values of the geometric mean of the trap
vibrational frequencies v1, and v, respectively, the following relation holds

3
n_ <V1> (4.9)
72 V2
It is clear that the achievable atomic collisional rate in a single dipole trap is a factor
15 smaller than the case of a crossed dipole trap, for which v, ~ v,, under the assumption

(4.8)
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4.5. CO,-laser single dipole trap

of equal beam waist and confining power (and same number of atoms and atomic tem-
perature). However, if one reduce the beam waist of the single CO,-laser dipole trap, it
is possible to again increase the atom collision rate. Indeed, if the dependency of the trap
frequencies on the beam waist is inserted in equation (4.9), we obtain:

w 7
n_ (2> (4.10)

T2 w1

Based on this relation, we have reduced the beam waist of the laser beam down to a
value of wy = 27pm. With this values, the ratio (4.10) is about a factor 35 higher than
the case of a trap with a 35 um beam waist. The atom collision rate is still expected to be
smaller that for a perfectly aligned 35 pm crossed dipole trap. However, the single running
wave geometry is far less alignment sensitive.

4.5.2 Dipole trap characterization

Before the study of evaporative cooling, the single beam CO»-laser dipole trap was charac-
terized as follows. 8Rb atoms are precooled and collected in the MOT. The MOT loading
phase is chosen to be 30s, during which 6 x 107 atoms are captured. The laser cooling
is 18 MHz red detuned to the cooling transition. Afterwards, a 60 ms long “soft” dark-
MOT phase is realized as explained before in section 4.1. At the end of this precooling
stage, all near-resonant optical beams are extinguished, switching off the AOMs and clos-
ing the mechanical shutters. Hyperfine changing collisions are reduced by extinguishing
the repumping light 1 ms before the cooling light. At the end of this dark-MOT stage,
the magnetic quadrupole field is turned off as well. Throughout the precooling stage the
CO;-laser is kept at maximum power. The CO,-laser beam, which overlaps with the MOT
region, travels inside the vacuum chamber along the z horizontal axis, orthogonal to the x
gravity axis, as it has been described in chapters 2 and 3.

In typical experiments, 4 x 10° atoms are captured in the single beam running wave
dipole trap. At full CO;-laser power (28 W), the measured trap frequencies are v, =
4.8kHz and v, = 350Hz, corresponding to vibrations orthogonal and collinear respec-
tively to the beam axes. In this single beam geometry, there is no spherical symmetry and
the longitudinal trap frequency is about 11 times smaller than the radial one. The geometry
of the trapped atomic cloud is cigar shaped, as shown Fig. 4.9.

As the case of the crossed beam geometry, the shortest used delay time is 70 ms after
the end of the dark-MOT phase. At 70ms the number of atoms in the CO,-laser dipole
trap is 4 x 10°, and the corresponding atomic temperature is measured to be 140 uK. Here,
the atomic temperature approaches the Doppler temperature. A trap loss with a decay
time faster than vacuum limited rate is observed. At a total dipole trapping time of 100 ms
(100 ms after the dark-MOT phase), the number of trapped atoms has decreased to one
third (i.e. in only 30 ms the number of trapped atoms drops by a factor 3) and the tempera-
ture has reduced to 90 pK. Fig. 4.10 shows both the number of the trapped atoms and the
atomic temperature in the single dipole trap as function of time.
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4. BOSE-EINSTEIN CONDENSATION IN OPTICAL DIPOLE TRAPS

Similarly to the crossed dipole trap geometry, the number of the trapped atoms and
the atomic temperature display a fast and a slow decay time constant. The first one is
attributed to a fast “natural” evaporation of the trapped atoms, and the latter to collisions
with the background gas.
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Figure 4.10: Characterization of the single running wave CO,-laser optical dipole trap (op-
tical power 28 W, beam waist 27 um). (a) Number of the trapped atoms versus delay time.
A fast decay with a characteristic time of 100 ms is observed. (b) Atomic temperature dur-
ing versus delay time. The temperature decreases at the beginning of the dipole trapping
phase.

After the initial fast decay, the trap loss slows down and the trap gradually reaches
its vacuum limited lifetime of 12 seconds. The inferred atomic density at 70ms dipole
trapping time is  ~ 1.2 x 10! cm~3, and the collisional rate is 6.2 kHz. The atomic phase-
space product at this stage is nA5; ~ 1.2 x 10~*. Since the CO,-laser dipole trap confines all
spin-projection states of the hyperfine ground state |557 5, F = 1), the phase space density
of each of those sub-levels is 4 x 107>, as long as equal population of Zeeman components
is assumed. However, already some 30 ms later, the product 7A3, has already increased
to 0.0016. This high value represents an favorable starting point for a successful forced
evaporative cooling towards BEC.

4.5.3 BEC in a single optical dipole trap

The experimental cycle for directly achieving Bose-Einstein condensation in a single CO,-
laser dipole trap has already been shown in Fig. 4.1. After a delay time of 100 ms, the
power of the mid-infrared beam is ramped down to induce a time-dependent trap po-
tential according equation (4.6). Optimum cooling is observed when choosing parameter
values of the ramp near T = 0.45s and 8 = 1.4. The optical trapping power is reduced in
7's from an initial value of 28 W to a final power of 200 mW.
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4.5. CO,-laser single dipole trap

Fig. 4.11 shows the formation of the condensate at a free falling expansion time of 10 ms.
For the data shown in Fig. 4.11a, the evaporation ramp ended at a final CO;-laser power of
500 mW. In this case, a thermal distribution is observed. The measured atomic temperature
is 350nK. This means that the confining potential should be lowered further in order to
get BEC. When the final CO,-laser power is around 240 mW, it is possible to recognize the
onset of condensation. In Fig. 4.11b a typical bimodal distribution is recorded. The thermal
component has a temperature of 180nK. Here, the mean vibrational trap frequency is
250 Hz. It is possible to obtain almost pure condensates when the power is reduced below
200mW, as shown in Fig. 4.11c. The final optical power of the evaporation ramp here is
200mW and the corresponding mean trap frequency is 190 Hz. The critical temperature
for the onset of the quantum degenerate regime is estimated to be 180 uK. The number
of atoms in the almost pure Bose-Einstein condensate is measured to be 1.2 x 10*. The

measured peak density of the pure Bose-Einstein condensate is 1.3 x 1014 cm 3.

Optical density
0 02 04 06 08

(b)

(urun) uonIsO
o
T

p @ (c)

0.2 L 1 L

Figure 4.11: BEC formation in a single running wave dipole trap. Absorption images at
TOF=10ms. (a) When the evaporation ramp ends at a laser power of 500mW there is
only thermal cloud. (b) At 240mW it is possible to observe bimodal distribution. (c) An
almost pure condensate with 1.2 x 10* atoms is observed when the trapping laser power
is ramped down to 200 mW.

It is interesting to note that in Fig. 4.11c the shape of the condensate appears near spher-
ical in the x, z imaging plane, although the confining trap has a cigar shape, see Fig 4.9. This
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4. BOSE-EINSTEIN CONDENSATION IN OPTICAL DIPOLE TRAPS

behavior is easily understood when one considers that in this asymmetric trap geometry,
soon after the release from the trap, the cloud expands faster along the tightest radial di-
rection than along the axial one, because of the anisotropic release of mean field energy;
see Appendix C for an explanation. This results in a fast expansion of the condensate along
the tightest confining axes (x, y).

In Fig. 4.12 a time-of-flight (TOF) sequence is shown. This sequence illustrates how
the shape of a released Bose condensate changes in a ballistic expansion. The first image

<=
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Figure 4.12: Free expansion of a Bose-Einstein condensate. The images are take at different
times after extinguishing the trapping potential. (a) Condensed cloud soon after the release
from the optical trap. The cloud has a cigar shape along the z axis. (b) TOF image at 8 ms.
Because of the anisotropic release of the mean field energy, the condensate expands mostly
in the tightest confined directions (x,y). (c) TOF picture after 15ms. The field of view is
(for each image) 240 um x 240 ym.

shows a condensate soon after switching off the confining CO,-laser potential (almost no
expansion). At this stage the cloud has a cigar shape and is elongated along the weakly
confining axis. Subsequently, the interaction energy is released and converted into kinetic
energy, causing an expansion in the x, y plane faster than that along the z axis. Figs. 4.12b
and 4.12c give TOF images recorded after a 8 ms, and 15 ms respectively. In particular, in
Fig. 4.12b, the cloud is almost symmetric, while in the final image the symmetry axis is
inverted.

The so formed Bose-Einstein condensate has a spinor nature. Condensed atoms are
distributed among the three Zeeman levels (|mr = +1,0)) of the hyperfine ground state
|551/2,F = 1). To analyze the distribution of the three Zeeman components, a Stern-
Gerlach experiment is performed. After the Bose condensate production, the CO»-laser
optical dipole trap is turned off, and a weak magnetic field gradient is applied during the
free expansion. The induced magnetic force spatially separates the different Zeeman com-
ponents. Fig. 4.13 shows a typical measurement, where a separation into three clouds with
different spin projections is clearly visible. The produced condensates here have typically
12000 atoms distributed among the |F = 1,mp = +1,0) Zeeman components.

In the next section a technique for producing Bose condensates into magnetic field
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insensitive states will be discussed.

Figure 4.13: Stern-Gerlach experiment. A weak magnetic gradient field induces a spatial
separation of the three condensed clouds during the free expansion of the Bose condensate.
TOF of 15ms. The field of view is 380 pm x 380 pum.

4.6 Magnetic-field insensitive BEC

Far detuned optical dipole traps can confine atoms independently on their spin orienta-
tion, offering the possibility of studying multiple spin components ensembles as well as
the properties of spinor condensates. Recently, evolution of spin domains in spinor con-
densates have been experimentally observed [95, 96, 97, 98].

In this work, spinor condensates are directly created in CO»-laser optical dipole traps,
both for a single beam and a crossed beams geometry. However, we can also create Bose-
Einstein condensates of atoms in magnetic field-insensitive states (mr = 0 states). An
alternative way to produce Bose-Einstein condensates in field-insensitive states is to use
spin-singlet ground state atoms as, e.g., alkali-earth atoms. Indeed, very recently Takasu
et al. demonstrated BEC with Yb atoms in a Yag-laser crossed dipole trap.

When an inhomogeneous magnetic field is applied throughout the forced evaporation
phase, only atoms in the field-insensitive state |F = 1, mp = 0) are allowed to condense.
In fact, in the final stages of the evaporative cooling, the optical dipole trap cannot then
anymore confine atoms in mp = =+1 states, because of the presence of a magnetic force.
Only the atoms in the mr = 0 state remain trapped and condense, as shown in Fig. 4.14.

This is already the case when a relatively weak magnetic field gradient of 10G/cm is
added to the optical dipole potential for a laser power depth of 200 mW 2. Fig. 4.14a dis-
plays a Stern-Gerlach experiment with no magnetic gradient applied during the evapora-
tion time. In this case, a spinor condensate is formed with almost 12000 atoms distributed
among the three mp spin-projections. In Fig. 4.14b only a scalar condensate (in particular

2Note that in our setup the minimum of the magnetic field does not coincide with the center of the CO,-
laser dipole trap.
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(a) (b)

Figure 4.14: Results of Stern-Gerlach experiments of Bose-Einstein condensates for a 15 ms
free expansion time. (a) A spinor condensate is analyzed, by applying a weak gradient
field during the detection time. Here, in the dipole trap a mixture of |mr = 0,£1) con-
densates was present, which spatially separate into three clouds during the expansion. (b)
Stern-Gerlach image of an |mp = 0) Bose condensate.

an mp = 0 condensate) is formed, when a magnetic field gradient is applied throughout
the evaporation phase. Both images refer to a free expansion time of 15 ms.

It is interesting to note that the number of atoms in the mr = 0 Bose condensate is
7000. This value is larger than one third of the number of atoms of the corresponding
spinor condensate. We ascribe this phenomenon to a sympathetic cooling which favors
population of the mr = 0 spin-projection.

Note that the fluctuations of the chemical potential Ay of such a mr = 0 Bose con-
densate caused by any stray magnetic field are dramatically reduced. Let us remember
that the expression of the chemical potential, in case of zero fluctuation of the magnetic
field, has been already derived in chapter 1, see equation (1.23). For atoms in magnetic
field sensitive states, the fluctuations of the chemical potential are of the order ppAB/kp
(2 AB x 67 nK/mG), where 5 is the Bohr magneton and B the value of the magnetic field.
In our experiments, the residual fluctuations of the chemical potential of a mr = 0 Bose
condensate can estimated using the Breit-Rabi formula [99]:

(gr — 81)* (upB)?
~ , 4.11
a 4 Enrsks (4.11)

where Eprs is the hyperfine energy, and gr and g; are the electron and the nuclear g-
factors, respectively. In our experiments, the residual fluctuations of the chemical potential
are as low as 14 fK/(mG)>.

Based on this result, we have realized a novel type of atom laser, as will be presented in
the next chapter.

4.6.1 Condensate lifetime

To measure the condensate lifetime, once BEC is achieved, the confining potential depth
is kept constant and Stern-Gerlach analysis is performed after different delay times. The
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measured lifetime of the Bose condensates is 5s. This value is shorter than that imposed
by the pressure of the background gas, which is 12s. The inferred peak density for the
generated mr = 0 Bose-Einstein condensate is n ~ 1.1 x 10 cm—3. On the other hand,
the value of the three body recombination rate for Bose condensed atoms is K3 = 5.8 X
10~ cm®s~1, as measured by Burt ef al. [100]. The product K3n? leads to a time decay
constant of 14 s. This value is well above the vacuum limited lifetime that we measured.
We assume that the discrepancy between this three body decay time and the condensate
lifetime derives from the experimental uncertainty on the peak density. This hypothesis
must be corroborated by further measurements in future experiments.

It is interesting to note that, within our experimental uncertainties, the observed life-
time is the same both for spinor and mr = 0 condensates. Researchers have observed
relaxation dynamics of multiple-spin components, which usually evolve during time to-
wards equilibrium of the spin-projection populations [28]. In the experiments carried out
with mr = 0 condensates, no relaxation dynamics has been observed. We believe that
these spin-changing collisions are energetically suppressed due to the second order Zee-
man effect. Indeed, Ho showed that for a F = 1 spinor condensate, the interaction energy
between two atoms in a Bose-Einstein condensate, with spins F; and F, is given by the
following expression

V(I‘l — 1‘2) = 5(1‘1 — rz)(CO — C2F1 . Fz), (4.12)

where ¢y = ‘17;1—?’2(110 +2a3)/3 and ¢; = 4%12(&2 —ap)/3. Let us note that 4y and a, are
the s-wave scattering length in the total spin F channel [27]. Depending on the value of
the singlet and triplet scattering length, a ferromagnetic or an antiferromagnetic behavior
of the spinor condensate is observed. Klausen et al. predicted a ferromagnetic behavior
for F=1 Rb condensates [101]. In general, for the F = 1 manifold, the collisions among

bosons which preserve the angular momentum are the following;:
2]mp = 0> = |mp = 1> + \mp = —1>. (4.13)

The effect of the ferromagnetism is to raise the energy of the mr = 0 component with
respect to the average of the mr = £1 components. The system spontaneously tends to
the right of the above process, since this has then the lowest energy. This analysis is valid
in case of zero external magnetic field.

In our experiments, because of an external bias field on the order of ~ 1 G, it is an-
ticipated that the state of both atoms being in the mr = 0 state, as shown on the left
hand side of (4.13), has the lowest energy. The interplay between the two regimes is ruled
by the ferromagnetic energy |c2|n/2 and the difference in Zeeman energies, which reads
(E41+ E_1 —2Eg)/2[27, 95].

In this last formula, E1 are the Zeeman energies of the three spin-projections mr =
£1, 0. In our experiments, the ferromagnetic energy is 38 Hz. On the other hand, for a mag-
netic bias field of 1 G, the Zeeman energy is —135 Hz, which is caused by the quadratic Zee-
man effect. The mr = 0 state has a lower energy, and then it is stable against spin changing
collisions. Very recently, the dynamics of F = 1 and F = 2 spinor condensates of 8Rb
have been investigated in [97] and [98], respectively. In particular, Chang et al. showed
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the ferromagnetic nature of the F = 1 spinor condensate when the external magnetic field
was opportunely reduced below a certain value. In this experiment, the variation of the
lifetime of the mr = 0 condensate was studied as function of magnetic bias field.
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Chapter 5

All-optical Formation of an Atom
Laser Beam

In this chapter, a novel type of atom laser is described. The device is based on the out-
put coupling of the generated magnetic-field-insensitive Bose-Einstein condensate, and
produces a well-collimated, monoenergetic atomic beam. Unlike previous devices, the
operation of this atom laser does not require any magnetic shielding of the experimental
apparatus or radiofrequency fields for the output coupler in order to generate a quasi-
continuous coherent atomic beam [37].

In the first part of the chapter, the state of the art in this new research field is resumed.
At the core of this quantum device two concepts reside: coherence and bosonic stimu-
lation. This two concepts are also fundamental for a common photon laser. A critical
issue is the output coupling scheme, which should preserve the coherence properties of
the trapped Bose-Einstein condensate, from which the atom laser is generated. In virtue of
these properties, a brief analogy with a common photon laser is presented.

A simple theoretical model of the output coupling mechanism is developed here. This
model is based on Newton’s equation for a mr = 0 Bose-Einstein condensate initially
confined in a time-dependent external potential. When the optical potential is smoothly
ramped down, gravity extracts Bose condensed atoms, and a well collimated atomic beam
can be observed.

In the final part of this chapter, the experimental realization of the all-optical atom laser
is presented. Coherent atomic beams of up 1 mm length have been observed. Measure-
ments of the brightness and the transverse mode profile are presented.
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5.1 A brief History of Atom Lasers

An atom laser beam is generated when Bose condensed atoms are extracted from a trap.
The first demonstration of such a device was given in 1997 by Ketterle at MIT [33]. In that
experiment, a sodium condensate was confined in a magnetic trap and exposed to a se-
ries of radiofrequency pulses which drove spin-flip transitions from trapped to untrapped
states. Under the effect of the gravity, untrapped sodium atoms propagated in free space,
originating a pulsed coherent atomic beam. In 1998, Kasevich showed a pulsed coherent
atomic beam based on the interference of matter waves released from an optical lattice by
tunneling effect [34]. The first demonstration of a quasi-continuous atom laser was given
by Phillips and collaborators in 1999 at NIST laboratories. The outcoupling mechanism
consisted of stimulated Raman transitions between different magnetic sublevels [35]. Also
in 1999, the group of Hansch in Miinchen demonstrated a quasi-continuous output cou-
pler for magnetically trapped Bose condensed atoms. The extraction technique was similar
to that employed by Ketterle. However, a stabilization of the residual magnetic field fluc-
tuations below 100 uG allowed the application of continuous weak radiofrequency output
coupling [36].

In all those experiments, coherent atomic beams were extracted from Bose-Einstein
condensates based on atoms in magnetic-field sensitive states, for which any stray mag-
netic field causes fluctuations of the chemical potential. It is experimentally challenging
to suppress the fluctuations of the chemical potential of a Bose-Einstein condensate in a
magnetic field-sensitive spin-projection.

Although successfully generating a quasi-continuous beam, when applying a magnetic
shielding, the experiments cannot be easily scaled. Reductions of fluctuations of the chem-
ical potential on the order of fK seem unattainable with the present technology employed
in magnetically trapped spin-polarized Bose-Einstein condensates.

The scenario changes completely, if one consider the possibility to create Bose conden-
sates with atoms in magnetic field-insensitive states (mr = 0 states), as demonstrated in
this work. Indeed, in this case, the residual fluctuations of the chemical potential are only
~ 10fK/(mG)?, and at a rather low value even without a magnetic shield of the experi-
mental apparatus. It is clear that atom lasers based on such mr = 0 states would display
an exceptional robustness to stray magnetic fields.

In this work, I demonstrated for the first time an atom laser whose realization is based
on all-optical methods only. A mr = 0 Bose-Einstein condensate is confined in a single
COz-laser dipole trap, and constitutes the “source” of “coherent matter”. In this work,
the output coupling mechanism is realized by smoothly lowering the potential depth over
time. Quasi-continuous, well collimated atomic beams are generated by gravity. The out-
put coupler does not require any magnetic shielding of the experimental apparatus or
radiofrequency fields. The stability of the chemical potential is improved by orders of
magnitude over conventional atom lasers based on Bose condensates in magnetic field-
sensitive states.
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5.2 Analogy between a “photon” laser and an “atom” laser

The definition of an “atom laser” is not trivial [102, 103, 104, 105]; nevertheless, the ac-
cepted one is the following: atom laser is a device which produces a bright coherent beam of
atoms through a stimulated process [106].

Two concepts stand behind this definition: coherence and bosonic stimulation. Coher-
ence means that two atom laser beams, if overlapped in space, can produce a macroscopic
interference pattern. This behavior derives from the long range coherence embedded in a
Bose-Einstein condensate, as recently observed in two impressive experiments [29, 30].

Similarly to laser light, an atom laser is created by stimulated amplification of bosons.
In a photon laser the amplification is created by stimulated emission of photons by the
atoms or molecules constituting the active medium. On the other hand, the analogy be-
tween optical lasers and current atom lasers is not perfect, since the latter ones rely on
equilibrium, while the former ones are far from that. In an atom laser the bosons are rep-
resented by massive atoms, which exhibit a strong interaction.

A photon laser requires a cavity, an active medium and an output coupler. The quantum-
mechanical description of an oscillating laser mode is given through a coherent state. Usu-
ally, above the laser threshold photons mostly occupy one laser cavity mode.

For atom lasers, the “cavity” is represented either by a magnetic trap or by an opti-
cal dipole trap. The macroscopic population of the ground state of the bosonic system is
achieved when a Bose-Einstein condensate is formed. The population of bosons builds up
in the ground state of the external trap through elastic collisions, which bring the system
into thermal equilibrium. Atoms are taken out from a thermal reservoir and transformed
into coherent matter. At room temperatures, atoms scatter among a myriad of possible
quantum states. Below a critical temperature however, atoms scatter predominately into
the lowest energy state of the system. This makes the formation of a Bose condensate a
stimulated process, as in the case of laser light sources. A scheme of the bosonic stimu-
lation process is depicted in Fig. 5.1. The probability that an atom from the thermal gas
reservoir scatters into the “condensate cloud” is enhanced by a factor N¢ 4 1, where N¢
is the number of the atoms already in the condensate state [31]. Thermal equilibrium is
reached when the number of collisions into and out of the condensate are equal. However,
evaporative cooling creates an extremely cold thermal cloud not in thermal equilibrium.
After relaxation, the condensate fraction grows.

Similarly to photon lasers, the high population per mode results in an exceptional high
brightness of the atomic beam. Thermal atomic beams have a population per mode of
typically only 10712 atoms, whereas that of an atom laser beam is >> 1.

The output coupling of Bose condensed atoms can be accomplished in several ways.
In any case, the adopted technique must preserve the long range coherence of the trapped
Bose condensate. In this work, the extraction method is straightforwardly implemented
by reducing the depth of the confining optical potential with time. Gravity extracts Bose
condensed atoms to form well collimated monoenergetic atomic beams.
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Figure 5.1: Bosonic stimulation: (a) For laser light, atoms of the active medium are stim-
ulated to emit photons with a probability proportional to the number of photons in the
laser mode. (b) For matter wave amplification process, the presence of a Bose-Einstein
condensate enhances the probability that an atom from the thermal cloud scatters into the
condensed cloud itself, with a probability proportional to the number of condensed atoms.

5.3 Outcoupling of the field-insensitive Bose-Einstein condensate

The starting point for the experiments on the realization of the all-optical atom laser is the
production of a magnetic field-insensitive Bose-Einstein condensate in a single running
wave CO,-laser dipole trap. After the forced evaporation phase, which lasts 7's, an almost
pure mr = 0 Bose-Einstein condensate is formed when the final CO,-laser power is chosen
to be 200mW. After this cooling stage, the magnetic field gradient is switched off, and
the Bose condensed atoms are confined in the optical dipole trap. At this stage, no output
coupling of condensed atoms is observed, as the value of the chemical potential is much
smaller than the height of the optical potential barrier.

To allow for an output coupling of the Bose condensed atoms, the optical trapping
potential is further reduced with time. The used output coupling ramp is 100ms long
and it is chosen to be relatively smooth to minimize condensate excitations. The CO»-
laser power is reduced from an initial value of 200mW (the value at which a mr = 0
Bose-Einstein condensate is formed) down to a value of 35 mW. Outcoupling of atoms is
experimentally observed when the optical trapping power is near 40 mW, for which the
confining optical force cannot anymore support the Bose condensed cloud against gravity.

In Fig. 5.2 it is shown the atom laser formation. In particular, in Fig. 5.2a an incoherent
atomic beam is shown. For this measurement, the evaporation ramp is stopped before
the onset of Bose-Einstein condensation so that the atomic cloud ensemb]e is still thermal.
Outcoupling is accomplished by lowering in 100 ms the trapping optical potential. Let us
note that this output coupling ramp is too short for a forced evaporation of the trapped
sample. The produced atomic beam is clearly not well collimated, since the “source” of
atoms is thermal (the atoms populate a myriad of quantum states). However, when a Bose
condensate is formed, the outcoupling process results in a well collimated monoenergetic
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atomic beam, as clearly shown in Fig. 5.2b. The velocity spread of the atomic beam is
assumed to be limited by the uncertainty principle. From the length of the atomic beam
displayed in Fig. 5.2b, it is possible to estimate an output coupling time of 9 ms. This
length is 400 pm.
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Figure 5.2: Atom laser formation: absorption images of the released atomic beam. (a) Out-
put coupling of thermal atoms. (b) For an almost pure Bose condensate, a well collimated
beam is observed. In both images the field of view is 300 pm x 625 pm.

In other measurements, with longer and slower ramps, also spatially “fragmentated”
beams were observed, whose origin still remains to be exploited.

5.4 All-optical atom laser: a toy model

In this section a simple model is developed for describing the output coupling rate.
The external potential, in which the mr = 0 Bose condensate is trapped, is the sum of
the optical dipole potential and the gravitational potential:

1 =
Vext (1) = —Eoc5|E(r)]2 — mgx (5.1)
where we assume that gravity is directed along the x axis, and m is the mass of the single
atoms. For our experimental parameters, the gravity force can be neglected for high values
of the laser intensity. However, when the optical trapping power is reduced down to val-

ues of ~ 100 mW, gravity plays an important role. Generally, the gravity force reduces the
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confining potential depth and deforms the trap geometry, as shown in Figs. 5.3. In partic-
ular, Fig. 5.3a shows the external potential without gravity correction, whereas in Fig. 5.3b
the external potential also include the gravity term. For typical experimental parameters,
at the end of the evaporation ramp, the optical confining potential has a depth of 8K,
whereas the value of the chemical, for a number of 7 x 10® condensed atoms, is near 65 nK.
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Figure 5.3: External trapping potential at the end of the evaporation ramp. (a) Trapping
potential without gravity correction. (b) Trapping potential when the gravitational po-
tential is included. In both plots, the CO,-laser power is 200 mW, and the beam waist is
27 pm.

At this stage of the experimental sequence, no output coupling of the Bose condensed
atoms is observed. However, output coupling of atoms is induced by reducing in a con-
trolled way the optical confining potential over time. Figs. 5.4 show the variation of the
potential depth and the chemical potential versus the power of the confining CO,-laser
single dipole trap. These two plots refer to the used experimental ramp for the atom laser
generation, as described in the previous section. It is interesting to note that both the po-
tential depth and the chemical potential decrease when the CO»-laser power is reduced
with time. Nevertheless, the variation of the chemical potential is slower than that of the
potential depth.

Fig. 5.5a shows the used trapping laser power versus time for the last 50 ms of the ramp.
When the confining laser power is near 40 mW, the chemical potential equals the height
of the potential barrier, and for lower laser powers the condensate gradually starts to spill
over the potential barrier. This allows to extract Bose condensed atoms into a coherent
atom laser beam. Fig. 5.5b shows both the trapping potential and the chemical potential as
a function of CO,-laser power in this range.
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Figure 5.4: (a) Potential depth versus the CO,-laser power. (b) Chemical potential versus
CO;-laser power. Both graphs include gravity correction.
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Figure 5.5: (a) CO;-laser power versus time. (b) Chemical potential and potential depth
versus CO,-laser power.
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5. ALL-OPTICAL FORMATION OF AN ATOM LASER BEAM

To describe the output coupler mechanism of the atom laser, we develop a simplified
classical model for the behavior of the trapped atoms.

1. When p < Vjepin, the atoms do not posses enough energy to overcome the potential
barrier. The chemical potential is given by

(5.2)

_ hwp, (15Na\*°
o 2 apo ’

In this regime, the number of condensed atoms is supposed constant and no output
coupling is observable.

2. As soon as Viep, = i, output coupling of atoms takes place. Initially, we shall as-
sume that all unconfined atoms are instantly removed from the trapping region by
gravity, i.e. we shall neglect the inertia of the atoms. The chemical potential during
this outcoupling stage is not given through the formula (5.2) but rather follows the
variation of Vi, over time. During the output coupling, the chemical potential is,
in this model, locked to the height of the potential barrier:

() = Viepm (t). (5.3)

The number of the still trapped atoms can be estimated inverting the relation (5.2), and
using the potential depth Ve, instead of p:

. ﬂho(t) 2Vdepth(t) >/
N(t) = 150 < o () > . (54)
From this equation the number of atoms that are output coupled is estimated from the
decrease of the number of the still trapped atoms. Fig. 5.6 shows the number of the residing
atoms in the COs-laser dipole trap during the final stage of the smooth output coupling
ramp.

From this model, the flux of the atom laser is approximately constant in the first 4 ms
of the extraction process, and it is estimated to be about 1.3 x 10° atoms/s. This value is a
factor ~ 1.5 bigger than the experimental one of 8.4 x 10° atoms/s, as presented in the next
section. The reason of this overestimation will be clarified soon. Moreover, a closer look at
Fig. 5.6 reveals that the number of the trapped atoms is almost zero already after 5 ms the
beginning of the extraction process (at a ramp time of 45 ms in the plot). In contrast, the
observed value of the temporal length of the atom laser beam for the used ramp is such
that the Bose condensed cloud is still populated after 9 ms, as discussed in the previous
section.

It is believed that the reason of this difference is the lack of the inclusion of the atomic
inertia: it implicitly assumes that the atoms near the height of the potential depth imme-
diately spill out of the trap. In reality, this is true only for those residing on the trap edge,
whereas for the ones residing inside the Bose condensed cloud, a finite time is required for
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5.4. All-optical atom laser: a toy model
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Figure 5.6: Number of atoms still confined by the trapping potential during the final stage
of the output coupling ramp (the last 20 ms).

the output coupling. This time can be comparatively long since the atoms inside the Bose
condensed cloud still experience the optical dipole force. To introduce a simple dynamics
of the process, which also qualitatively takes into account the contribution of the mean-
field energy, we assume that Bose condensed atoms in the trap have to roll down a linear
potential, as schematically represented in Fig. 5.7.
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Figure 5.7: Simple output coupling model including the atomic inertia. (a) The Bose con-
densed cloud has a chemical potential i ~ Vg1, The extraction starts. (b) After a time
At, the Bose condensed atom which have an energy higher than AV, roll down the
potential.

The Bose condensed atoms that have an energy higher than the potential depth Vieps
see a linear potential whose slope is determined by the variation of the chemical potential
over time. The acceleration possessed by these atoms can be estimated as follows. Let us
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Figure 5.8: Simplified dynamic model of the output coupling time. (a) Atoms at three dif-
ferent initial positions in the trap (p;). (b) Trajectories of atoms for different initial positions
in the trap. Atoms at different positions leave the trapping region at different times.

suppose that at time t = 0 the relation 1(0) = Vjp,(0) holds, and therefore the extraction
starts. After a time ¢, the height of the trap is Vdepth(t), and the reduction of the potential
depth is therefore AVy.p(t) = Viepsn(t) — Viaepsn(0), as schematically shown in Fig. 5.7.
The acceleration possessed by the trapped atoms (whose energy is greater than Vj,,,(0))

is then

AViepin(t
a(t) = ;dA”j() (5.5)

This acceleration is a time dependent function and changes during the extraction process.
However, in order to estimate the output coupling time of the atom laser beam, we can
introduce an average acceleration defined as a,y = AVj,p, (At)/mAx, where At is taken as
the time in which the number of atoms confined by the trapping potential decreases to 1/¢
of the initial atom number. In other words, we can determine At from the value of the plot
of Fig. 5.6, from which we arrive at At ~ 2.8 ms.

With this assumption, the average acceleration of the atoms inside the optical trap is
found to be ~ 0.075g, where g is the earth’s gravity acceleration. From the knowledge of
Amean, ONe can derive the dynamics of the outcoupling for classical atoms in different re-
gions of the trap. Fig. 5.8 presents a scheme of the outcoupling for atoms initially located
in three different positions. Each atom has its own trajectory and thus its own outcoupling
time. The temporal spread of the trajectories far from the trap is estimated ~ 4ms. If we
take into account an additional delay of this order due to the atomic inertia, the experi-
mentally observed value of time 9 ms seems to be much better understood.

It is clear that atoms in a Bose-Einstein condensate are indistinguishable, i.e. before
the position measurement each atom actually is in a coherent superposition of all possible
spatial positions.

In chapter 1, we have derived the hydrodynamic equations for a trapped Bose-condensate
in a time-dependent potential, see equations (1.29) and (1.30). The full dynamics of the ex-
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5.5. Transverse mode and Brightness of the atom laser beam

traction process, as well as the profile of the monoenergetic atomic beam is embedded in a
non-linear time dependent Schrodinger equation. The solution of this problems is difficult
to obtain because of the presence of a inharmonic external potential which varies in time.
To the best of our knowledge, this problem has not yet been faced. At the present stage,
we are collaborating with Dr. Kramer in Miinchen to obtain a more realistic model of the
output coupling process [107].

5.5 Transverse mode and Brightness of the atom laser beam

Recently, experiments characterizing the physical properties of an atom laser, such as its
temporal coherence or the angular divergence have been performed [38, 39].

In this section, we present measurements on the transverse mode and estimations of
the brightness of the all-optical atom laser [37]. Fig. 5.9 shows the transverse distribution
of the averaged optical column density. Particularly interesting is the transverse mode of
our atom laser. The experimental data are fitted quite well with an inverted parabola. This
trial function is obtained when assuming that the transverse mode of the atomic beam
maps the typical Bose condensate density profile, which in the Thomas-Fermi limit is an
inverted parabola. Note that in atom lasers based on radiofrequency output coupling, the
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Figure 5.9: Transverse mode of the output coupled atomic beam.
transverse mode often exhibits fringes [40]. These fringes are caused by a lensing effect
due to interactions among the atoms in the laser beam and the remaining atoms inside the

Bose condensate. Indeed, in order to reach the high flux regime, in atom lasers based on
magnetic traps the output coupling happens in the interior of the Bose condensate [36]. The
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5. ALL-OPTICAL FORMATION OF AN ATOM LASER BEAM

output coupled atomic beam is formed by atoms which do experience interactions with the
residing, magnetically trapped atoms in the interior of the condensate. On the contrary, in
the present scheme, the untrapped atoms are those residing not in the internal part of the
Bose condensed cloud but rather on the downward directed side of the condensate. Mean
tield effects from the internal residing atoms are, in this manner, minimized.

Another physical quantity of relevance is the “brightness”. This quantity is defined as the
flux of atoms over the velocity uncertainty:

o)

5.6
AvyAv,Av, (5:6)

where @ is the flux of atoms and Av; is the velocity uncertainty in the corresponding
direction x; [108]. From a fit of the experimental data, the atomic flux is estimated to
be 8.4 x 10° atoms/s. Velocity uncertainties are estimated as follows. The uncertainty
over the velocity v, (along the z direction) is well below the experimental resolution of
0.3mm/s. We here assume that Av, is limited by the uncertainty principle, as it is ex-
pected for an atom laser. The uncertainty Az is assumed as the FWHM of the transverse
mode of the laser beam, see Fig. 5.9. This transversal width has a value of 26 um. Using the
uncertainty principle, we get Av, = 11/ (2mAz) = 0.0225 mm /s for the velocity uncertainty
along z. The velocity uncertainties along the directions y and x are similarly estimated.

If we assume the dimensions x and y of the condensate almost the same end equal
the condensate radius R, then we can introduce the uncertainty AR of the radius of the
condensate as

Wz
AR = —Az, (5.7)
Wy
where w, and wy, are the trap frequencies along z and v , respectively. The uncertainty on
y and therefore on x is AR = 1.894 ym. From this we get Av,, = 11/ (2mAR) = 0.33mm/s.
With these values, a brightness of 7 x 10% atoms s> m is inferred. This is orders of mag-
nitude above results achieved with thermal sources, such as atomic beam produced with
a Zeeman slower [109] or atoms from a MOT [110]. On the other hand, the brightness esti-
mated here, is about a factor six below a similarly derived value obtained in conventional
atom laser based on spin flip transitions [36]. However, it is important to note that in the
present experimental setup, low power diode laser sources are employed. This yields to
a relatively small number of atoms in the MOT and therefore in the Bose condensate. We
expect atom lasers in high flux regime, when the number of the trapped atoms in the CO»-
laser optical dipole trap is increased. This would require the use of more powerful laser
sources.

5.6 Discussion

As conclusion, I would like to summarize the focal points of the all-optical laser.
The peculiarity of the all-optical atom laser consists in the use of a mr = 0 Bose-Einstein
condensate. This results in an unprecedented stability on the chemical potential against
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4—

8

Figure 5.10: Atom laser beam for a temporally relatively slow time. The output coupling
time here is 100 ms. Field of view: 1.2 mm x 220 pm

fluctuation of the magnetic field. In contrary to other coupling mechanisms, extraction by
gravity does not spoil the transverse mode of the monoenergetic atomic beam. Moreover,
by changing the lowering rate of the optical confining potential, both the brightness and
the length of the generated beams can be varied. It is possible to observe up to 1 mm
long intense, well directed beams of atoms, as Fig. 5.10 shows. Also for longer beams, the
momentum spread is attributed to be limited by the uncertainty principle only.
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Outlook

In this work, experiments realizing all-optical Bose-Einstein condensation of atoms in two
different optical dipole trapping geometries were reported. The study successfully culmi-
nated in the demonstration of a new type of atom laser. At the hearth of this new device
resides the generation of a magnetic field-insensitive Bose-Einstein condensate.

Today, Bose-Einstein condensation undoubtedly represents a starting point for a num-
ber of fascinating experiments in atom physics, ranging from strongly correlated systems
in lower dimensions, to the formation of weakly bound molecules and the subsequent
exploration of the crossover between BEC and BCS regimes in degenerate dilute molecu-
lar gases. Moreover, the synergy between Bose-Einstein condensates and optical lattices
seems very promising for the demonstration of quantum computing with schemes based
on cold coherent collision among ultracold atoms.

The ability to achieve Bose-Einstein condensation in a single optical dipole trap, as
demonstrated in this work, may become a new standard procedure for the future exper-
iments aiming to the quantum degeneracy, because of the experimental simplicity of the
approach. However, CO;-laser optical dipole traps require a suitable technology: radiation
near 10.6 um is absorbed by common quartz glass. This poses some technical constraints
on the experimental setup. Further, it is technically demanding to frequency and inten-
sity stabilize such lasers, since sensitive dc-photodiodes do not exist in the mid-infrared
region.

An alternative to CO,-lasers could be the use of tunable optical fiber lasers (OFL),
which emit radiation in the spectral range 1 — 3 um and offer high output optical pow-
ers [111]. In this spectral range, it is possible to find atomic species whose polarizability
of the first excited electronic states is positive. As described in section 4.3, it is antici-
pated that it is critical for the achieving of comparatively high phase space densities of
the laser cooled sample that the upper electronic state of the cooling transition is bound
more strongly than the ground state. This allows for a successful evaporative cooling to-
wards BEC. Optical fiber lasers offer several advantages, e.g., they allow one to use optical
elements made out of quartz or fused silica. This would cause an considerable simplifica-
tion of experimental apparatus. Further, power stabilization of these lasers can be realized
with well established techniques. By virtues of these considerations, optical fiber lasers
traps might become a considerably simpler alternative route than magnetic traps for the
achieving of quantum degeneracy.

The generation of field-insensitive Bose-Einstein condensates in optical dipole traps
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might open Bose-Einstein condensates a door to the fields of precision atom interferometry
and atomic clocks. For example, the application of such a magnetic-field insensitive Bose-
Einstein condensate in a microgravity environment can lead to substantial improvements
in high precision spectroscopy. Indeed, by adiabatically lowering the confining optical po-
tential, Bose-Einstein condensates could then spread out by less than 1 cm/minute, which
would allow for rf and microwave spectroscopy with mHz linewidths.

The improvement and the more detailed characterization of all-optical atom lasers is
believed to deserve a great interest in the future. In the present experimental setup, low
power diode lasers have been employed for the collection and the precooling of rubidium
atoms in the MOT. Naturally, this limited the number of atoms in the mr = 0 Bose-Einstein
condensate. An increase in the number of Bose condensed atoms is expected when more
powerful laser sources are used. This would also lead to a further increase of the flux of
the atom laser. As a side effect, longer coherent atomic beams could be generated.

The achieved stability of the condensate chemical potential is in our scheme limited
by intensity fluctuations of the CO,-laser used for confining the mr = 0 Bose-Einstein
condensate. An active stabilization of the confining optical power may enable a series
of investigations on tunneling of atoms through macroscopic barriers, which would be
possible when the confining CO,-laser power is then lowered extremely smoothly with
time.

At present, the intensity noise of the used CO»-laser is limited to 4 %, which is mainly
caused by slow drift of the cavity length. This causes intensity variation, since the gain
curve of the CO,-laser is of similarly spectral width than the cavity free spectral range.
However, within the atom laser outcoupling time this intensity noise is negligible.

An important issue that has to be addressed in the future is to compare the temporal
coherence of all-optical atom lasers with that of atom lasers based on spin-flips output
coupling. Moreover, it remains to be experimentally confirmed the angular divergence of
the here demonstrated atom laser, which is expected not to be caused by interactive lensing
effects.

There exist many applications in fundamental research and industry where coherent
atomic beams might be used in future: atomic clocks, precision measurements of funda-
mental constants, tests of fundamental symmetries and atom lithography. For example,
an atom laser beam could enhance interferometric capabilities, allowing for fringes to be
obtained on a small scale with moderate illumination times. It is believed that all-optical
atom lasers in future will help to push the experimental constraints of atom optics along
these technically and fundamental fascinating physics goals.
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Appendix A

Rubidium data

In the following table, important data on 8 Rb are resumed. In the formula of the scattering

length, ag is the Bohr’s radius: a9=0.529 x 10~ m. The transition 55 — 5P; /, is denoted
as D1-line, whereas the transition 5S — 5P;,, is denoted as D2-line.

87Rb Physical Properties

Atomic Number Z 37
Relative Abundance 27.83%
Nuclear Spin I 3/2
Mass 1.44316060 x 10~ Kg [112]

D1-line transition energy

1.559 590 99 (6) eV [113]

D2-line transition energy

1.589 049 439(58) eV

D1-line wavelength in vacuum

794.978 850 9(8) nm [113]

D2-line wavelength in vacuum

780.241 209 686(13) nm [113]

5P, /, state lifetime

26.24(4) ns [113]

5P;; state lifetime

27.70(4) ns [113]

D1-line natural linewidth

277 - 5.746 MHz [113]

D2-line natural linewidth

27 - 6.066 MHz [113]

D1-line recoil velocity

5.7754 mm/s

D2-line recoil velocity

5.8845 mm/s

D1-line recoil energy

27 - 3.6325 kHz

D2-line recoil energy

27 -3.7710kHz

D1-line saturation intensity(7r light) 4.484(5) mW /cm?
D2-line saturation intensity (7t light) 2.503(3) mw /cm?
D2-line saturation intensity (cF light) 1.669(2) mW /cm?

Triplet scattering length ar

106 £ 4 ap [101]

Singlet Scattering length ag

90 + 1 ag [101]

Three body recombination rate

4.3(1.8) x 1072 cm®/s [100]

77




193.741 MHz
266.650 MHz
5P
w T I 72.911 MHz
229.852 MHz 156.947 MHz
A
750241 1 302.074 MHzl j 72.218 MHz
12816.549 cm™ '
7123.012 GHz
5 P1/2 812.4 MHz
N I 510.410 MHz
794.979 nm
12578.951 cm™
v  / I 2563.006 MHz
5 Sm 6834.683 MHz

4271.677 MHz

Figure A.1: 87Rb level scheme (D1 and D2 lines).
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Appendix B

Experimental sequence

In this section we resume the experimental sequence that leads to a mr = 0 Bose-Einstein
condensate. Let us remember, that for the generation of the atom laser Bose-Einstein con-
densation is achieved in a single running wave optical dipole trap. Once a mr = 0 Bose
condensate is formed, the CO,-laser power is smoothly ramped down in few hundreds of

milliseconds (50-100 ms) from an initial value of 150 mW to a final one of 30-40 mW.

Stage

Description

Duration

MOT loading phase

6 x 107 rubidium atoms are collected in the MOT.
The laser cooling detuning is 18 MHz, with a power
of 45mW. The repumping laser power is 10mW.
The applied magnetic MOT field is 10G/cm. The
COs-laser radiation is kept on at full power 28 W.
The laser beam waist is 27 pm.

30s

dark-MOT phase

The cooling laser frequency is further “red” detuned
by 160MHz. The repumping laser power is de-
creased by a factor 100. More than 4 x 10° 8Rb
atoms are confined in the single beam CO,-laser
dipole trap. MOT field is kept on.

60 ms

Delay time

The optical potential is kept at full power: 28W.
Plain evaporation is observed, with initial atomic
phase-space density 1 x 107*. 1In the first 30ms
of delay phase, the number of atoms in the single
dipole trap is reduced by a factor 3, and the atomic
temperature decreases from 140 uK to 90 uK. The
inferred phase space density after this fast decrease
is about 0.016

100 ms

Evaporative cooling

The CO,-laser dipole trapping potential is adiabat-
ically lowered to near 150 mW, in order to gener-
ate an almost pure Bose-Einstein condensate. MOT
field is kept on.

7s

Detection

Stern-Gerlach experiment: mp = 0 Bose condensate
with 7000 atoms is detected. The intensity of the
probe beam is about 100 mW /cm?

80 — 100 ps
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Appendix C

Analysis of Ultracold Atoms

The knowledge of physical properties of the atomic ensemble realized in the experiments,
is derived from the analysis of time of flight of ultracold ensemble, as already mentioned
in the third chapter. Thermal clouds and Bose condensates are imaged in free expansions
after release from the CO,-laser dipole trap.

Thermal clouds

When the CO,-laser trapping radiation is switched off, the trapped atoms fly ballistically
from their position in the trap with a certain velocity. If an atom starting from point ry
arrives at a point r after a time t of free expansion, then its momentum is p = m(r —rp) /t.
Integrating over all positions 1 it is possible to determine the density distribution as a
function of the expansion time ¢:

1 3 7.3 1 3
Miof = ﬁ/drodp oH(ro.p) /ksT—pt _ 15 (I‘ — Iy — pt/m)

3 2
uom 2 W
“ (e (or (it - s 5 () )]

At larger expansion times (t > 1/w;), by neglecting the collisions during the expansion,
the density profile becomes isotrope, and can be well described by the equation

(C.1)

7’1]’2
Miog = —5-gay2 (V™22 /F8T), (C2)

where Agp = (27th* /mkpT)"/?, z(x) = exp((u — V(r)) /kgT), with p the chemical potential
and T the atomic temperature. The Bose funct1on is given by g; = Y;z'/i/. For high
temperatures and longer expansion times, the function g3,,(z) is linear z + O(z?), and is
approximated by a gaussian density distribution:

no k
o = 73 € /T (C3)
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with ng = e"/%T. Information about the number of atoms and atomic temperature is
extracted by absorption images, as follows. The absorption function is mapped into the
optical density distribution D(x, z) by recurring to equation (3.3). The number of atoms is
obtained by integrating the optical density in the x — z plane

A

N =225 D(wz), (C4)

where A, = A, = 2.36um is the size of the region in the object plane which is imaged
onto a single pixel of the used CCD camera. In order to extract the temperature of the
atomic cloud, first the measured optical density is fitted by the theoretical optical density
integrated along the y direction giving the following function

2kpT (14 wjt?) y
wj
2.2

2.2
_om wx w2z
ex”{ T T 1wl T 1 +w§t2)} (©5)

Dy, (x,2,t) = oanm(x,2,t) = oxnror(0,0)

The temperature is deduced from the measured oy or ¢, width, according the following

formula [11]
2
_om ws ’

T= 2kp <1+w§t2>gx' (©6)

Pure Bose-Einstein condensate

For pure Bose condensates, the atomic density is given by the Thomas-Fermi equation:

1
ne(x,y,z) = g(V‘VhO(r))
15 N, x?
::Mm&o_;w> (©7)

where R; is the half-lengths of the condensate, determined by the chemical potential and

the trap vibrational frequencies as R; = |/2u/mw?. It is shown that when such a conden-

sate is released from the trap, it evolves simply as a rescaling of its parabolic shape [114,

115]. This means that the density remains a parabola in the free expansion. For release from

a cigar shaped optical dipole trap with radial frequency w, and aspect ratio w,/w, = €71,

the half-lengths of the condensate evolve according to the following equations

Ro(t) = Ry(0)y/1+wit?

R.(t) = R,(0) (1 + €*[tarctanT — In /1 + 72 ) , (C.8)
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with T = w,t and p = x? + y2. The expansion of the condensed cloud can be divided in
three stages.

1. Soon after the release from the trap interaction energy is converted into kinetic en-
ergy (for times f < w,’ 1), and the radial direction expands a little.

2. For times w, < t < e‘2wp_ !, a radial expansion and a little axial expansion beyond

the original axial size are observed.

3. For expansion times t > efzwp* !, the radial and the axial expansions reach an asymp-
totic aspect ratio: R;(t)/Ry(t) = me?/2.

After integration of the parabolic profile of the expanded cloud, the optical density of the
condensate images is

B o 2n N, 2 2\%?
D, —Unﬂc(xlzrt) _UH5RX(O)RZ(O)<1_R§_R§) (C9)

The experimental data are fitted according this last function, in order to extract the value

of the chemical potential as:
2

_m( % 2
=3 <l n wﬁ)R"(t) (C.10)
From the knowledge of i, the total number of the atoms is extracted:
5/2
Apo 2‘14
= : A1
‘" 154 <hwho> (1D

Bimodal distribution

In the process of BEC formation, (when the atomic temperature is in the range between T
and T = 0), abimodal distribution is observed. As the temperature lowers, more and more
atoms scatter into the lowest energy state of the optical dipole trap. Experimentally, it is
observable a parabola distribution (which describe the Bose-Einstein condensate density
in the TF-regime) sets on a isotropic gaussian, which represents the thermal distribution
of the not yet condensed atoms. In this regime, the optical density can be described by the
sum of two independent density distributions [11]:

3/2
D(x,z) = Unnth(o)gZ(el—xZ/Uf/th—ZZ/az,th) 400y (1— LZ B i / | 1)
’ (1) RZ R2,
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