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Abstract

This dissertation attempts to shed new light on the mechanisms used by hu-
man subjects to extract features from visual stimuli and for their subsequent
classification. A methodology combining human psychophysics and machine
learning is introduced, where feature extractors are modeled using methods
from unsupervised machine learning whereas supervised machine learning is
considered for classification. We consider a gender classification task using
stimuli drawn from the Max Planck Institute face database. Once a feature
extractor is chosen and the corresponding data representation is computed,
the resulting feature vector is classified using a separating hyperplane (SH)
between the classes. The behavioral responses of humans to one stimulus,
in our study the gender estimate and its corresponding reaction time and
confidence rating, are compared and correlated to the distance of the fea-
ture vector of this stimulus to the SH. It is successfully demonstrated that
machine learning can be used as a novel method to “look into the human
head” in an algorithmic way.

In a first psychophysical classification experiment we note that a high
classification error and a low confidence for humans are accompanied by a
longer processing of information by the brain. Furthermore, a second classi-
fication experiment on the same stimuli but in a different presentation order
confirms the consistency and the reproducibility of the subjects’ responses.

Using several classification algorithms from supervised machine learn-
ing, we show that separating hyperplanes (SHs) are a plausible model to
describe classification of visual stimuli by humans since stimuli represented
by features distant from the SH are classified more accurately, faster and
with higher confidence than the ones closer to the SH. A piecewise linear
extension as in the K-means classifier seems however less adapted to model
classification. Furthermore, the comparison of the classification algorithms
indicates that the Support Vector Machine (SVM) and the Relevance Vector
Machine (RVM), both exemplar-based classifiers, compare best to human
classification performance and also exhibit the best man-machine correla-
tions. The mean-of-class prototype learner, its popularity in neuroscience
notwithstanding, is the least human-like classifier in all cases examined.
These findings are corroborated by the stochastic nature of the human clas-
sification between the first and second classification experiments: elements
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close to the SH are subject to more jitter in the subjects’ gender estimation
than elements distant from the SH.

The above classification studies also give a hint at the mechanisms re-
sponsible for the computation of the feature vector corresponding to a stim-
ulus, in other words the feature extraction procedure which is defined by
the combination of a data type with a preprocessor. Gabor wavelet filters
reveal to be the most suited preprocessor when considering the image pixel
data type. The biological realism of both Gabor wavelets and the image
data confirms the validity of our approach. Alternatively, the information
contained in the data type defined by the combination of the texture and the
shape maps of each face, these maps bringing each face into spatial corre-
spondence with a reference face, is also shown to be useful when describing
the internal face representation of humans. Non-negative Matrix Factoriza-
tion applied on the texture-and-shape data type is demonstrated to describe
well the preprocessing of visual information in humans, and this has three
implications. First, humans seem to use a basis of images to encode visual
information, what may suggest that models such as kernel maps are less
adapted since they do not use a basis to decompose (visual) data. Second,
this basis seems to be part-based, in contrast to Principal Component Anal-
ysis which yields a holistic basis. Third, this part-based basis is spatially
not too sparse, excluding Independent Component Analysis. Both for the
encodings and for the basis, a medium degree of sparseness is shown to be
most adapted.

Alternative approaches to model classification of visual stimuli by hu-
mans are subsequently introduced. In order to get novel insights into the
metric of the human internal representation of faces, the above data is an-
alyzed using logistic regression interpolations between the mean subjects’
class estimate for a stimulus and the distance of this stimulus to the SH
of each classifier. We show that a representation based upon the subjects’
gender estimates is most appropriate, while the classification performance
is demonstrated to be a poor measure when comparing man and machine.
A novel psychophysical experiment is then designed where the hypotheses
generated from machine learning are used to generate novel stimuli along
a direction—the gender axis—orthogonal to the SH of each classifier. The
study of the subjects’ responses along these gender axes allows us then to
infer the validity of the prediction given by machine learning. The results
of this experiment—SVM and RVM are best while the prototype classi-
fier is worst—validate the models given by machine learning and close the
“psychophysics-machine learning” loop.

We finally show in a psychophysical experiment that it is more difficult to
cast concepts from machine learning into a formalism describing the memory
mechanisms of humans. However, machine learning is demonstrated to be an
appropriate model for feature extraction and classification of visual stimuli
in humans given the particular task we chose.
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Zusammenfassung

Diese Dissertation befasst sich mit den Mechanismen, die Menschen ver-
wenden, um Merkmale aus visuellen Reizen zu erzeugen und anschliessend
zu klassifizieren. Es wird eine experimentelle Methode entwickelt, die men-
schliche Psychophysik mit maschinellem Lernen verbindet. Im Mittelpunkt
der Arbeit steht ein Geschlechtsklassifikationsexperiment, das mit Hilfe der
Kopfdatenbank des Max Planck Instituts durchgeführt wird. Hierzu wer-
den verschiedene niedrig-dimensionale Merkmale aus den Gesichtsbildern
extrahiert. Das Klassifikationsverfahren auf diesen Merkmalen ist durch
eine Trennebene zwischen den beiden Klassen modelliert. Die Antworten
der Versuchspersonen werden verglichen und korreliert mit der Distanz der
Merkmale zur Trennebene. In dieser Arbeit wird bewiesen, dass maschinelles
Lernen ein neues und wirksames algorithmisches Verfahren ist, um Einblicke
in menschliche kognitive Prozesse zu erhalten.

In einem ersten psychophysischen Klassifikationsexperiment wird gezeigt,
dass eine hohe Fehlerrate und ein niedriges Vertrauen der Versuchsperso-
nen einer längeren Verarbeitung der Information im Gehirn entsprechen.
Ein zweites Klassifikationsexperiment auf den selben Reizen aber in unter-
schiedlicher Reihenfolge, bestätigt die Konsistenz der Antworten der Ver-
suchspersonen und die Reproduzierbarkeit der folgenden Resultate.

Es wird gezeigt, dass Trennebenen ein adäquates Modell sind, um die
Klassifikation visueller Reize bei Menschen zu beschreiben. Reizmerkmale,
die entfernt von der Trennebene sind, werden dabei genau, schnell und
mit hohem Vertrauen klassifiziert. Es stellt sich heraus, dass Verfahren,
die auf einer stückweis-linearen Trennebene basieren, weniger geeignet sind.
Dahingegen beschreiben beispielbasierte Verfahren wie die Support Vector
Machine oder die Relevance Vector Machine am besten das Verhalten der
Versuchspersonen. Dies wird belegt durch Studien, die sowohl den Klassi-
fikationsfehler vom Menschen und der Maschine vergleichen als auch deren
Verhalten korrelieren. Der weitverbreitete Prototypenlerner schneidet am
schlechtesten ab. Diese Resultate werden unterstützt durch eine Studie der
stochastischen Komponente des menschlichen Klassifikationverfahrens: die
Schätzung des Geschlechts ist inkonsequent zwischen dem ersten und zweiten
Klassifikationsexperiment auf den Mustern nahe zur Trennebene.

Im weiteren Rahmen erlauben die in dieser Arbeit durchgeführten Stu-
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dien Aussagen über die Mechanismen der menschlichen Merkmalsextrak-
tion. Die biologisch-bewiesene Relevanz von Gaborfilterantworten erweist
sich auch in dem Kontext der hier durchgeführten Studien als geeignete
Kodierung von Pixeldaten. Desweiteren erweist sich die Information enthal-
ten in der Kombination von Textur- und Form-Flussfeldern als gut geeignet
zur Beschreibung der menschlichen Merkmalsextraktion. Hier werden räum-
liche Korrespondenzen der Bildreize miteinbezogen. Mit Hilfe dieses Daten-
typs kann gezeigt werden, dass Menschen für diese Aufgabe wahrschein-
lich eine Bilderbasis verwenden, die aus Musterteilen besteht und nicht
aus Gesamtmustern. Letztlich werden die Merkmalsextraktionsverfahren
hinsichtlich ihrer Spärlichkeit untersucht, wobei sich ein mittlerer Grad an
Spärlichkeit als am besten erweist.

Im weiteren werden Verfahren zur Modellierung des menschlichen Ver-
haltens bei Klassifikation von visuellen Reizen untersucht, die Aussagen über
die Metrik der internen Gesichtsdarstellung erlauben. Dafür wird eine logis-
tische Regression zwischen der Geschlechtseinschätzung der Versuchsperson
für einen Reiz und der Distanz dieses Reizes zur Trennebene verwendet.
Es wird gezeigt, dass eine Darstellung, die auf Antworten der Versuchsper-
son basiert, sich besser eignet, als eine Darstellung, die auf dem wahren
Geschlecht basiert. Es stellt sich heraus, dass der Klassifikationsfehler ein
schlechtes Mass zwischen Mensch und Maschine ist. In einem weiteren psy-
chophysischen Klassifikationsexperiment werden die Trennebenen der Mas-
chine verwendet, um neue Gesichtsreize zu erzeugen: diese liegen auf einer
Geschlechtsachse, die senkrecht zur Trennebene steht. Die Unterscheidung
durch die Versuchspersonen der Reize auf dieser Achse bestätigt die obigen
Vorhersagen: die Support Vector Machine und die Relevance Vector Ma-
chine erweisen sich als besser als der Prototypenlerner, um das menschliche
Klassifikationsverfahren zu modellieren. Mit diesem Experiment wird die
“Psychophysik-maschinelles Lernen” Schleife geschlossen.

In einem abschliessenden psychophysischen Experiment wird gezeigt,
dass es schwieriger ist, maschinelles Lernen auf das Gedächnissverhalten
des Menschen anzuwenden, obwohl sich maschinelles Lernen als gut erweist,
um Merkmalextraktion und Klassifikation visueller Reize bei Menschen zu
modellieren.
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Chapter 1

Introduction

Das wird nächstens schon besser gehen,
Wenn Ihr lernt alles reduzieren
Und gehörig klassifizieren.

Mephistopheles in
Faust, Der Tragödie Erster Teil
Johann Wolfgang Goethe

Motivation

The aim of this dissertation is to obtain a better understanding of the mech-
anisms and principles underlying classification as well as feature extraction
of visual stimuli by human subjects. For this, we combine machine learning
and psychophysical techniques to gain insight into the algorithms used by
human subjects during visual classification of faces. In this “psychophysics-
machine learning” research we substitute a very hard to analyze complex
system—the human brain—by a reasonably complex system—a learning
machine—that is complex enough to capture some essentials of the human
behavior but is amenable to close analysis, allowing us to make predic-
tions about human behavior based on the properties of the machine. This
research is focused on a novel methodology allowing to bridge the gap be-
tween human psychophysics and machine learning by extracting quantitative
information from a high-level psychophysical setup. Bringing together theo-
retical modeling and behavioral data is arguably one of the main challenges
when studying the “computational brain” [Churchland and Sejnowski, 1992].
The last decade has seen important technological advances in neuroscience
from a microscopic scale (e.g. multi-unit recordings) to a macroscopic scale
(e.g. functional Magnetic Resonance Imaging). However, on an algorithmic
level, the methods and understanding of brain processes are still limited.
Can we generate testable hypotheses about the algorithms used by humans
to extract features from visual inputs and subsequently classify them? This
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would be of utmost interest for human psychophysics. Can we find feature
extractor and classifier pairings performing significantly better in gender
classification than others? If so, this would be of interest for the next gen-
eration of human interface designs where computer systems should respond
intelligently towards the agent they are interacting with. Currently high-
level vision research, with its intrinsically complex stimuli, is seriously ham-
pered by a lack of identifying methods, at the algorithmic level, as to what is
happening during high-level classification. The here-presented method has
the potential to overcome this obstacle.

Object classification plays a central role in visual neuroscience and it is
an issue well adapted to the interdisciplinary nature of neuroscience. In-
deed the study of classification involves psychophysics, physiology (single
cell recordings, functional Magnetic Resonance Imaging, Electroencephalo-
grams, Magnetoencephalograms, . . . ) as well as theoretical modeling as is
illustrated in an overview by [Tarr and Bülthoff, 1998]. However, before a
visual pattern can be recognized or classified, it must be represented in the
brain. For this, a feature extractor is required in order to convert the signal
arriving on the retina into a representation useful for the brain: a feature
vector. In this dissertation we address the question on how to look into peo-
ple’s heads using a novel methodology combining psychophysical techniques
and machine learning. Such a method provides insight into the algorithms
used by man, in contrast to imaging techniques which deal essentially with
functional anatomy. For this, the theoretical framework chosen in this dis-
sertation is supervised and unsupervised machine learning. We hope to show
that machine learning is well suited for our enterprise of explaining feature
extraction and classification in human subjects given a human psychophys-
ical classification experiment. Of course other theoretical approaches exist.
Reinforcement learning [Sutton and Barto, 1998] deals with decision-making
of an agent in a state space given a reward scheme. The policy chosen by
the agent models the internal mechanisms of the brain implying the agent’s
high-level behavior. Modeling on a neuronal level and extensions of the lat-
ter to group of neurons is treated in [Dayan and Abbott, 2001]. This type
of methods are closely related to the biological mechanisms encountered
in the nervous system. The link to high-level classification experiments is
however less obvious. Both of these approaches apply to different contexts
and would thus require other studies and different experimental setups and
would finally address different issues and functions of the brain.

As far as the feature extractor is concerned, the following questions may
arise as also pointed out by [Peterson and Rhodes, 2003], and in particular
by [Bülthoff and Bülthoff, 2003]. What algorithms best describe the way
humans extract features from their visual inputs? Indeed the representation
of objects for the purpose of recognition is a fundamental issue in biological
and computer vision as has been shown by [Bülthoff and Edelman, 1992].
Furthermore, does our brain extract parts from the objects (part-based ap-
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proach) or does it use them as a whole entity (holistic approach)? There have
been some contradictory attempts to answer this question. A psychological
study has been done by [Pelli, Farell, and Moore, 2003] where words stand
for the holistic representation whereas letters for the part-based one. It was
suggested that humans adopt a part-based scheme where words are ineffi-
ciently recognized. Further evidence of a part-based representation in the
context of object recognition was obtained by [Biederman, 1987] using the
so-called “geons” approach. However [Gauthier, Curran, Curby, and Collins,
2003] suggests a holistic processing of visual information. Similar question
have been asked in the context of face recognition: do we use face patches
or attributes to classify faces or do we rather consider the face as a whole?
Here the holistic approach is predominant [O’Toole, Defenbach, Valentin,
McKee, Huff, and Abdi, 1998, Valentin, Abdi, Edelman, and O’Toole, 1997,
O’Toole, Abdi, Deffenbacher, and Valentin, 1993]. Further, is the encoding
used by the brain sparse? And how about its image basis, if any?

For the classifier, we may ask the following questions. What algorithms
describe best the way the brain classifies its visual inputs after feature extrac-
tion? Might humans use something akin to hyperplanes for classification?
If so, is the learning rule as simple as in mean-of-class prototype learners
(classification according to nearest prototype) or are more sophisticated al-
gorithms better candidates? Early work trying to elucidate the principles of
pattern recognition and classification of visual stimuli by humans is due to
[Reed, 1972] using face-like stimuli (line drawings) and is followed by [Rosch,
Mervis, Gray, Johnson, and Boyes-Braem, 1976]. Both studies rely on the
theoretical side on the mean-of-class prototype learner and on the Content
Model where classification is done using the similarity to all patterns in
the dataset. Although the psychophysical experiments have only slightly
changed since then, the evolution of learning theory has been essentially
ignored by experimentalists. These baseline models for classification are
still in use nowadays in psychological literature [Lamberts, 1997, Palmeri,
2001] and in physiology [Sigala and Logothetis, 2002, Sigala, Gabbiani, and
Logothetis, 2002]. They show a discrepancy between the state-of-the-art
modeling and the methods effectively in use in experimental research. In
particular, the concept of prototype plays a central role in experimental
neuroscience. It has been used for instance by [Leopold, O’Toole, Vetter,
and Blanz, 2001] in a psychophysical setup to study aftereffects induced
by adaptation using the MPI face database. The center of the face space,
i.e. the prototype, was used to create an “anti-face”, the latter being shown
to play a central role in adaptation. Although there is no classification, the
concept of prototype is still present. Is this justified? And is sparseness of
the classification algorithm an important issue?

To answer the above questions we developed a novel methodology to
bridge quantitatively the gap between psychophysics and supervised and
unsupervised machine learning. An early attempt was communicated in
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[Graf and Wichmann, 2004]. The psychophysical classification experiment
is a behavioral study where machine learning is used to help understand
human feature extraction and classification behavior. Feature extractors
are modeled using methods from unsupervised machine learning (absence of
class labels) whereas the classification is modeled using supervised machine
learning (the class labels are used). This approach may be termed as psy-
chophysical machine learning or in short PSYCHO ML. We hope to shed
new light on the concepts underlying classification and feature extraction
by humans and supply alternatives to the presently commonly-used meth-
ods by using elaborate theoretical models from machine learning. In this
way we demonstrate the usefulness of machine learning to describe some
fundamental mechanisms of the brain.

Classification and Feature Extraction: a pairing?

Classification may be argued to be used by the brain in order to discretize
the continuous perceptual world [Rosch, Mervis, Gray, Johnson, and Boyes-
Braem, 1976]. The visual world perceived by a human observer can be fully
described by a five-dimensional, continuous function, the plenoptic function
[Adelson and Bergen, 1991]: P = P (x, y, t, λ, Vx), where P is the light-
intensity distribution as a function of space (x, y) on the observer’s retina,
time (t) as processed by temporal filters, wavelength (λ) as sampled by the
three cone types and Vx are two samples along the x (eye-eye)-axis taken by
the two eyes. One task of early vision is to measure the plenoptic function
such that it provides as much information about the visual world as possible.
Consequently early vision is still continuous. Visual cognition, on the other
hand, is discrete, where the world is perceived as a discrete set of objects,
resulting from perceptual categorization. The determination of the relative
quantity of visual objects can be seen as the counting of discrete elements,
the latter being provided by classification. This counting ability can be
argued to be the basis of the numerical and computational functions of the
brain. The prefrontal cortex in monkeys was shown to participate in visual
representations which could contribute to judgments of quantity and seems
thus to be one of the “counting” centers of the brain [Nieder, Freedman, and
Miller, 2002]. Thus classification is a fundamental issue since it may lay the
foundations of a computational theory of the brain.

The ability of the brain to classify, i.e. to group objects into meaningful
categories, is a fundamental cognitive process. How does the brain classify,
what categories does it form and how does it represent stimuli, or what
aspects of the plenoptic function are measured, extracted and thereafter
grouped into classes? In the following we shall consider feature extraction
and classification in its well-specified machine learning interpretation in or-
der to avoid the richness and semantic connotations of the terms “feature
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extraction” and “categorization” as used in cognitive psychology: we will
refer to feature extraction and classification as a process that is purely data-
driven, most akin to perceptual categorization in the psychological literature.

The image formed on the retina, projected onto its photoreceptors, can
be represented by a high-dimensional input vector of dimension 100 − 150
million. A crucial aspect of early vision is to reorganize this vast input space
into a more manageable format. This is the feature extraction step stud-
ied in this thesis. Research suggests that early visual processing attempts to
find a sparse code for image representation and that this enterprise is greatly
helped by the redundancy of the visual input vectors [Rao, Olshausen, and
Lewicki, 2002]. Moreover, in order to use machine learning classifiers, a
dimensionality reduction of these input vectors is required. Note the termi-
nology difference in machine learning and vision sciences: preprocessing in
vision science stands for feature extraction in the machine learning litera-
ture.

From a purely theoretical point of view, there exists a clear distinc-
tion between input images, the feature extraction step and the classification
method. However, mathematically certain preprocessing and classification
algorithms are incompatible with each other, or contain elements of each
other, or are even inseparably intermingled. The following is an attempt to
describe what appear logically separable steps under separate headings: the
feature extractors are drawn from unsupervised machine learning whereas
the classifiers are drawn from supervised machine learning. Further, as en-
countered in most applications of machine learning such as computer vision
[Graf, Smola, and Borer, 2003, Wallraven and Graf, 2004], it is not pos-
sible to separate preprocessing from the actual classification algorithm: a
good preprocessor combined to a bad classifier can yield similar results as
a bad preprocessor combined with a good classifier. This is why we here
study both the (unsupervised) preprocessor combined with the (supervised)
classifier.

Relation to Physics

Learning theory, in particular classification, is a fundamental problem and
has attracted scientists from apparently distant disciplines such as theoret-
ical physics, as for instance [Engel and den Broeck, 2001] where methods
from statistical mechanics are applied to classification. The information
conveyed and processed in the brain can be modeled using spatiotempo-
ral electric wave patterns both on the microscopic level (neurons and their
action potentials as measured by microelectrodes) and on the macroscopic
level (brain states i.e. behavior as measured by functional Magnetic Reso-
nance Imaging). The mesoscopic level aims to bridge the gap between the
latter levels using the concept of wave packets [Freeman, 2003], a funda-
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mental concept in quantum mechanics. This level is created by local state
transitions, can be measured in electroencephalogram studies and seems to
be a precursor of awareness. Furthermore, cortical imaging methods mo-
tivated an approach for modeling the dynamics of the interaction between
populations of neurons based upon statistical mechanics. In this approach
a probabilistic model of the dynamics of interacting neurons, instead of a
classical model enumerating the neurons and their connections, has been
introduced by [Sirovich, 2003]. The state of a population of neurons is
then replaced by their probable states, yielding a formalism of operators
and their eigentheory. This formalism bears again quite some analogies
to quantum mechanics. Moreover, some eminent physicists have converted
from theoretical and applied physics to the neurosciences. Amongst others
Leon Cooper (Nobel Prize in Physics with J. Bardeen and J.R. Schrieffer in
1972 for their studies on the so-called BCS theory of superconductivity) has
developed the Bienestock-Cooper-Munro (BCM) model for synaptic plastic-
ity [Bienenstock, Cooper, and Munro, 1982]. He is now investigating the
biological mechanisms that underlie learning and memory storage. Brian
Josephson (Nobel Prize in Physics in 1973 for his theoretical predictions
of the properties of a supercurrent through a tunnel barrier, in particular
those phenomena which are generally known as the Josephson effects) has
recently been examining from the viewpoint of theoretical physics complex
phenomena in the brain, in particular language [Josephson, 2004]. He is
currently attempting to understand what may loosely be characterized as
intelligent processes in nature associated with some functions of the brain.

As our understanding of the mechanisms of the brain evolves, novel links
to physics will emerge. Subsequently such connections will allow to apply
the well-established methods of theoretical physics to the neurosciences, and
ultimately link both disciplines.

Dissertation Setting

In our attempt of comparing the classification behavior of man and machine,
we use high-level vision stimuli since they are meaningful and biologically
important. We opt for gender classification of images from human faces,
indeed a highly relevant biological task for strongly social beings like our-
selves.

The stimuli are drawn from a processed (or cleaned) version of the Max
Planck Institute (MPI) face database where all faces are centered in the
image, have same pixel-surface area and same mean and standard deviation
of the intensity. Fig.1.1 gives an overview of the methodology used to study
feature extraction and classification in man and machine. The responses
of humans to one stimulus, in our study the gender estimate and its cor-
responding reaction time (RT) and confidence rating (CR), are recorded.
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Figure 1.1: General flowchart of the experiments bridging the gap between
human psychophysics and machine learning.

Machine classification is modeled using separating hyperplanes in the space
of the feature vectors corresponding to the stimuli. For each subject the
distance δ of each feature vector to the hyperplane is computed. The re-
sponses of man are then compared and correlated to δ. On the hand of these
results, we may get a hint at the mechanisms and strategies used by humans
to classify visual stimuli. Furthermore, to validate the approach introduced
here, a novel psychophysical experiment is designed where the hypotheses
generated from machine learning are used to generate novel stimuli along a
direction orthogonal to the separating hyperplane of each classifier. These
stimuli are then presented to the subjects in a gender discrimination task and
their responses allow us to study the validity of the gender-axes predicted by
machine learning. By doing so, we close the psychophysics-machine learning
loop. Finally the mechanisms involved in the memorization of visual stimuli
are studied using machine learning.

The algorithms chosen in this study both for feature extraction and clas-
sification are the most representative members of each family of algorithms
sharing a similar theoretical foundation. These algorithms are enumerated
in Fig.1.2 but a complete description with corresponding details will be given
later in Chapters 2 and 4. One of the fundamental principles of machine
learning is Occam’s razor: No more things should be presumed to exist than
are absolutely necessary, or as rephrased by Albert Einstein: Everything
should be made as simple as possible, but not simpler. This principle has
found its main application in supervised and unsupervised machine learn-
ing through regularization theory [Chen and Haykin, 2002] which enforces
smoothness and simplicity on the solutions of a problem. However it may
also be argued that Nature can be described in a similar way. We shall
thus apply this principle in the choice and hypothesis made throughout this
dissertation by keeping them as simple as possible. Although we are aware
that a multitude of mechanisms may be involved in feature extraction and
classification as suggested by [Ashby and Ell, 2001], we take the following
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Figure 1.2: Flowchart of the machine part of the experiment with a list of
the algorithms chosen for feature extraction and for classification.

approach: one model is used to explain feature extraction and one linear
model is used for classification. Both models are as simple as possible, and
most of them are consequently linear.

We here show and demonstrate a methodology, PSYCHO ML, and for
this we use a human face database. This framework can however be adapted
to other types of stimuli in a straightforward manner. The choice of the face
stimuli is due to the fact that face stimuli are clearly one of the most biologi-
cally meaningful stimuli for humans. Humans see faces from the day they are
born and face preference was suggested to be present before the birth of the
child [Bednar and Miikkulainen, 2003], the latter remaining however able to
learn new ones at all ages. This may show the coexistence of fixed and flexi-
ble internal preferences for faces in the human brain. This is chronologically
the first learning i.e. classification task in our lifetime. Further, gender clas-
sification is an important biological tasks since it is a prerequisite for mating
and thus one can expect humans to be good at it. Further, face recognition
gains in importance in computer vision and other industrial applications
for purpose of surveillance [Phillips, Grother, Micheals, Blackburn, Tabassi,
and Bone, 2003]. While humans perform generally well in gender discrimi-
nation, machines have been found to be relatively bad at this task [Graf and
Wichmann, 2004, Bromley and Säckinger, 1991, Gray, Lawrence, Golomb,
and Sejnowski, 1995, Blackwell, Vogl, Dettmar, Brown, Barbour, and Alkon,
1997]. Ever since the beginning of machine learning, gender discrimination
has thus been a central theme and a benchmark for any computer vision
system. Finally, the results obtained here for faces may generalize to other
object types since faces and non-faces have been argued to share common
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early visual processing stages and to rely on similar mechanisms [Gauthier,
Curran, Curby, and Collins, 2003]. Using functional Magnetic Resonance
Imaging studies in humans and electrophysiology in monkeys, faces have
been demonstrated to be not “special” and that other objects can be repre-
sented by similar neural activities [Gauthier and Logothetis, 2000].

Dissertation Structure

The dissertation is structured as follows. The MPI face database is described
in Chapter 2 and the inhomogeneities in texture and shape of the faces are
removed in a cleaning step. The data type and preprocessors, composing
together the feature extraction step, are subsequently described. Consid-
erations on the sparseness of the so-obtained encodings are given and their
applicability in a gender discrimination task is studied. Chapter 3 deals with
the analysis of the psychophysical classification experiments and represents
the foundation for the studies which will follow. In Chapter 4 the methodol-
ogy allowing to bridge the gap between psychophysics and machine learning
is detailed, the choice of classifiers is motivated and some corresponding ex-
perimental paradigms are outlined. The classification behavior of man and
machine is first compared and then correlated in Chapter 5, while stabil-
ity criteria on the subjects’ responses allow to validate the corresponding
findings and the reproducibility of the results. These findings are discussed
and related to other studies in machine learning, in psychophysics, and in
neurophysiology. In Chapter 6 alternative approaches to analyze the data of
man and machine are introduced, allowing us to design a novel psychophysi-
cal discrimination experiment where the hypothesis from machine are tested
experimentally. The possible extension of models from machine learning to
explain memorization of visual stimuli by humans is considered in Chapter
7 and Chapter 8 concludes this dissertation.
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Chapter 2

The Database and its

Encodings

In this chapter the Max Planck Institute (MPI) human face image database is
described and inhomogeneities in texture and shape are eliminate in a cleaning
step. Feature extraction is defined using various data types provided by the
MPI database and various preprocessors from unsupervised machine learning.
The resulting image bases are discussed, in particular their spatial sparseness.
The sparseness of the encodings as much as their discriminability in gender
classification studies are subsequently analyzed.

2.1 The MPI Face Database

When considering an image database of human faces, it is important to no-
tice that faces differ in texture and shape information. The parametric face
modeling technique developed by [Blanz and Vetter, 1999] allows to create
novel, textured 3D faces from a database of existing 3D laserscans (geomet-
rical and textural data) of 200 individuals (real human faces). Each face in
this model is represented by a texture and shape vector thus defining a vector
space of faces. In order to create this vector space, each 3D head was brought
into a pixel-by-pixel correspondence with an internal average reference head
in a bootstrapping procedure with the help of a dense optical flow process
and fine-tuning by hand. A dimensionality reduction (Principal Component
Analysis, PCA) on the optic flow data yields 200-dimensional texture and
shape vectors. Both of these vectors define the face vector space. Multidi-
mensional 3D morphing of faces, i.e. the generation of new faces can now be
done simply by linearly combining elements in the face space. The morphing
capacities of the MPI face database1 have been shown to be very efficient in
the context of face recognition studies [Blanz and Vetter, 2003]. Morphable

1To be found at http://faces.kyb.tuebingen.mpg.de .
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models of the faces of the database are fitted to the studied face by estimat-
ing the texture and shape information, allowing thus to learn class-specific
information. The advantages of the above correspondence representation
over a pixel-based representation are reported in [Vetter and Troje, 1997]
both on a computational and on a psychophysical ground: the texture &
shape framework was shown to allow a better generalization to new faces
and a better reconstruction of faces from a low-dimensional representation
such as PCA.

2.2 Cleaning of the Database

We consider in this study a greyscale version of the faces in the MPI database.
Indeed, there is some evidence that color cues do not affect significantly rapid
scene categorization in man and monkeys [Delorme, Richard, and Fabre-
Thorpe, 2000]. In the similar context of images of natural scenes, it was
demonstrated that the color cue does only slightly improve the recognition
memory of human subjects [Wichmann, Sharpe, and Gegenfurtner, 2002].
It was argued that this is mainly due to the fact that color increases atten-
tion and improves segmentation. Since we here want to make the gender
classification task of intermediate difficulty, the removal of the color cue is
justified. Frontal 256x256 pixels 8-bit grey-scale ([0, 255]) views of the 200
heads composing the MPI face database are generated from the laser scans.
The database is gender-balanced and contains 200 Caucasian faces. It was
shown by [Mamassian and Goutcher, 2001] that the human visual system
uses a prior knowledge, which was modeled using a Bayesian approach by
[Mamassian and Landy, 1998] in the context of line drawings, on the illumi-
nation position. In particular the light is assumed to come from above and
slightly off-center. Thus the faces from the MPI face database are rendered
under above and off-center illumination (elevation Θ = 65◦ and azimuth
Φ = 40◦) to take into account the natural bias of the human visual system.
A selection of faces as described above is shown in the first two columns of
Fig.2.1. The mean and standard deviation of the intensity of the face in
the image, its pixel-surface area and its location are represented in the first
column of Fig.2.2. The following inhomogeneities in shape and texture can
then be observed, as already mentioned in [Graf and Wichmann, 2002]:

1. the male faces are darker than the female ones on average

2. the male faces are larger than the female ones on average

3. the faces are not centered

We suppose that the above are the source of the problems encountered
by [O’Toole, Vetter, and Blanz, 1999] when finding a discrepancy in the
recognition between the male and the female data. In the cleaning of the
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original heads cleaned heads

Figure 2.1: Comparison of some faces from original (two left columns) and
cleaned (two right columns) databases. The first four rows represent male
faces whereas the last four show female faces.

database, the above cues are eliminated since they are too obvious for man
and machine and create too great homogeneities for an artificial learning
machine. Moreover, these cues cannot always be considered as biologically
relevant in a real environment. The luminance cue in determining gender is
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Figure 2.2: Comparison of parameters of faces from original (left column)
and cleaned (right column) databases. These parameters are the mean and
standard deviation of the intensity of the face in the image (first and second
rows), its pixel-surface area (third row) and the offset of the center of mass
(CM) of the face with respect the center of the image (fourth row).
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certainly present but not crucial since the determination of gender cannot
depend upon the illumination conditions of the subject i.e. recognition of
the gender must be as efficient in a shady as in a bright environment. The
size cue is obviously not important since the latter varies as function of the
distance between observer and subject.

The faces are therefore processed, or cleaned, such that all faces have the
same mean and standard deviation of the intensity, same pixel-surface area
and are centered, the latter allowing to increase the homogeneity among the
images. Setting the standard deviation of the intensity is almost a histogram
equalization. The latter reveals however to be a non-unique iterative proce-
dure which introduces visible inhomogeneities on the face and was thus not
used to clean the database.

One of the central parts of this cleaning procedure is the generation of
a “mask” for each face. This mask is obtained by generating a face from
the MPI face database with a background set to 0 and a face in the image
whose intensity is set to 255. Instead of cleaning the face images themselves,
this procedure is applied to the texture and shape coefficients as explained
below and shown in Fig.2.3. In other words it is assumed that the cleaning

Head database

head mask

head database
    Cleaned

    database
Texture & shape

    database

    Cleaned
texture & shape

Figure 2.3: General flowchart of the cleaning procedure of the MPI face
database. A head and its mask are extracted from the “raw” database.
The corresponding texture and shape coefficients are computed and cleaned
according to the parameters of the “raw” face image. Finally a cleaned
database is generated from the cleaned coefficients.

of the heads in the images is equivalent to the cleaning of the corresponding
texture and shape coefficients. The cleaning of the MPI face database is
then done as follows:

1. Generate the raw 8 bit greyscale head images with their masks

2. Determine the pixel-surface area of each head and the position of its
center with respect to the center of the image using the masks
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3. Center the heads and their masks individually such that each head is
centered on the center of the image

4. Resize the heads and their masks individually such that each head
has the same pixel-surface area, this size corresponding to the mean
pixel-surface area over all heads before resizing

5. Compute the intensity parameters for each head as follows:

(a) compute the mean intensity of each face in the image using its
mask

(b) set the background of the image to the mean over all faces of the
mean intensity of each face

(c) adjust the mean intensity of each face to the value of the back-
ground

(d) compute the standard deviation of the intensity of each face in
the image using its mask

(e) adjust the standard deviation of each face to the mean over all
faces of the standard deviation of the intensity of each face in the
image

Using the parameters computed in the above cleaning of the images, the
texture and shape coefficients can then be cleaned as follows:

1. Generate the raw texture and shape coefficients for each head

2. Center and scale the flowfields around the center of the reference head

3. Adjust the mean and standard deviation of the texture of each head,
and set the background

4. Generate the cleaned heads from the cleaned coefficients

Fig.2.1 shows the original and the cleaned faces: the effect of the cleaning
step is visible. Furthermore the parameters (intensity, size and position of
center) of the original and the cleaned database are compared in Fig.2.2,
demonstrating quantitatively the cleaning process.

2.3 Feature Extraction

We here present various manners to represent the MPI face database prior
to its use for classification by the machine. The data after feature extrac-
tion is referred to as encoding. A data type is extracted from the MPI
face database. Subsequently the preprocessors perform feature extraction
in the machine learning sense by finding different types of representations
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or embeddings of the data. For the purpose of numerical tractability, all the
considered preprocessing algorithms also perform dimensionality reduction
in the sense that they find an encoding of the data of lower dimensionality
than the original data. An overview is given in Fig.2.4. The context con-

database
High dimensional Extraction of

data type

Preprocessingdatabase
Low dimensional

Figure 2.4: General flow chart of the representation of the MPI face
database. A data type is extracted form the high dimensional database.
A preprocessor is applied to this data type and yields the low dimensional
database of the encodings. The dashed arrow indicates a procedure which
is not possible for all types of preprocessors. The choice of the data types
and preprocessors is explained in the text.

sidered here is thus different from the one encountered in early vision where
preprocessing is used to make the input sparse rather than low-dimensional.
From a biological point of view, the question whether we could treat the
preprocessing algorithms considered below as a combined low-level (sparse
encoder) and mid-level (dimensionality reduction) preprocessor arises. We
finally discuss and study properties of the preprocessors and conclude by
considerations on the sparseness of the encoding obtained from the various
types of preprocessing and on the linear separability of the encodings with
respect to gender classification.

2.3.1 Data Types

In the context of the present studies, we consider the following data types:

• the image vector I ∈ R
2562

resulting from the pixel matrix of the image

• the texture vector T ∈ R
1·2562

of the face in the image

• the shape vector S ∈ R
2·2562

of the face in the image

• the vector resulting from the combinations of the texture and shape
vectors of the face in the image as [T S] ∈ R

3·2562
where [·] represents

the vector concatenation operator. Notice that any permutation in
this concatenation does not change the amount of information carried
by the vector and is thus not considered.
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All the information conveyed in the image, texture or shape vectors is
rescaled to the range [−1, 1] as below:

~xi ← 2
~xi −mini ~xi

maxi ~xi −mini ~xi
−~1 ∈ [−1 1] (2.1)

where ~xi is a vector from the dataset. The above amounts to scale and
translate identically all the elements of the dataset. This procedure aims at
presenting the preprocessors with data of the same order of magnitude. This
is especially important when combining the texture and shape information in
order to give both cues the same weight since we have no a priori knowledge
on their mutual importance.

2.3.2 Preprocessors

We here deal with the preprocessing algorithms P which are applied to the
data types. The operators P compute an embedding and a dimensional-
ity reduction of the data. Below we mention and motivate the choice of
the preprocessing operators P, some of them being described thoroughly in
Appendix A:

• Principal Component Analysis (PCA, [Duda, Hart, and Stork, 2001]):
eigenvalue decomposition of the data along the directions of largest
variance in the data.

• Locally Linear Embedding (LLE, [Roweis and Saul, 2000]): neighbor-
hood-preserving dimensionality reduction.

• Independent Component Analysis (ICA, [Cardoso, 1998, Bartlett, Movel-
lan, and Sejnowski, 2002]): extraction of statistically independent vari-
ables from the data. For ICA I the independence of the patterns (the
images) is maximized whereas for ICA II, the components of the pat-
terns (the pixels) are made independent.

• Non-negative Matrix Factorization (NMF, [Lee and Seung, 1999]): de-
composition of data using only non-negative values.

• Empirical Kernel Maps using Radial Basis kernel functions (RBF)
[Schölkopf and Smola, 2002]: eigenvalue decomposition of the data
using a nonlinear extension of the Gram matrix of the data.

• benchmarks in artificial computer vision: image size reduction and
intensity histograms only of the face in the image.

• benchmark in biologically-inspired computer vision and a crude ap-
proximation to human/monkey early vision models: Gabor wavelet
filters [Hubel and Wiesel, 1962] followed by a linear empirical kernel
map in order to reduce the dimensionality of the feature vector.
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We set the number of nearest-neighbors of LLE to be 15 according to [Graf
and Wichmann, 2002]. The number of iterations of the NMF algorithm is
set to 1000 for the sake of numerical tractability. The Gabor filters are
considered on 3 scales and for 6 orientations.

We have 200 different faces in the database and thus the intrinsic di-
mensionality of the database is 200. The above preprocessors are then used
to create an encoding of the data type of dimensionality 200, except for im-
age size reduction and the histograms where this encoding is of dimension
16 × 16 = 256 and 28 = 256 respectively as summarized in Table 2.1. The

preprocessor P(I) P(T ) P(S) P([T S])

PCA 200 200 200 200
LLE 200 200 200 200

ICA I & II 200 200 200 200
NMF 200 200 200 200

Kernel Maps 200 200 200 200
Image size reduction 256 - - -

Histograms 256 - - -
Gabor Wavelets 200 - - -

Table 2.1: Possible combinations of preprocessors with data types and the
dimensionality of the resulting encodings.

preprocessors PCA, ICA I & II and NMF are invertible in the sense that
the data can be reconstructed from the encodings (see Sec.2.3.3). In these
cases, we may thus expect to have a perfect reconstruction—no reconstruc-
tion error—since we keep all 200 components of the encodings.

One of the first attempts to use PCA in the context of face recogni-
tion on the pixel information is due to [Sirovich and Kirby, 1987]. Related
studies have given rise to the so-called “eigenface” representation [Turk and
Pentland, 1991] and attempts have been made to biologically motivate this
type to representation using for instance artificial neural networks (ANN).
An overwhelming amount of literature on gender classification using PCA
applied on the image data type followed these two papers. PCA and an au-
toencoder ANN were used in [Valentin, Abdi, Edelman, and O’Toole, 1997]
to study facial analysis. The robustness of this approach (assessed using
the stability of the eigenvectors) as much as its ability to perform novelty
detection—in this context the recognition of faces from another race or the
so-called “other race effect”—were studied. The eigenvector corresponding
to large eigenvalues were shown to contain low frequency information, to
be stable and allow good generalization, the contrary being true for those
corresponding to small eigenvalues. The eigenvectors of small eigenvalue
were shown to be unstable i.e. vulnerable to degradation. This inspired
the authors to lesion i.e. perturb the autoencoder ANN and its behavior
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was qualitatively compared to that of human neurological deficits. This
comparison made the authors conclude on the biological plausibility of the
encoder network. In the framework of this thesis, we propose a more rigor-
ous study relating man to machine. The effect of the eigenvalues are further
studied in [O’Toole, Abdi, Deffenbacher, and Valentin, 1993] in the context
of face recognition. The small eigenvalues were shown to account for face
recognition whereas the large ones for gender classification. Thus, the selec-
tion of a subset of the eigenvalue spectrum is task-dependent. This finding
has a limited impact on this study since we consider the whole spectrum.

PCA and LLE are compared in [Graf and Wichmann, 2002] on a gender
classification task using the MPI face database. While the optimal number
of nearest-neighbors for LLE was determined for this database, it was shown
that PCA clearly outperforms LLE. ICA I and ICA II have been shown to
outperform PCA in the context of face recognition by [Bartlett, Movellan,
and Sejnowski, 2002, Baek, Draper, Beveridge, and She, 2002]. The specific
algorithm used to implement ICA, its architecture (ICA I or ICA II) and
other algorithmic properties as much as the type of database are compared
and benchmarked in [Draper, Baek, Bartlett, and Beveridge, 2002].

The kernel maps compare different stimuli using a Gaussian window
(RBF function) i.e. they extract global similarities between different pat-
terns. The Gabor wavelet filters on the other hand are applied on each
stimulus and compare regions on each stimulus i.e. they extract local prop-
erties of each stimulus. Furthermore the RBF of the kernel map and the
Gabor filter have very different spectral characteristics, some of the main
properties of Gabor filters being reported in [Daugman, 1985]. These two
preprocessors are thus fundamentally different. An elaboration of the Ga-
bor filter model is the model by [Riesenhuber and Poggio, 2000, 2002]. This
model performs feature extraction using a hierarchical tree of linear and non-
linear “maximum”-like branches. The nodes of this tree are Gabor filters
as considered here and we thus assume that Gabor wavelet filters represent
this model in the context of the studies done in this thesis.

Other possible methods to represent the data and perform dimensional-
ity reduction include most notably multi-dimensional Fisher Analysis (see
[Duda, Hart, and Stork, 2001] and [Lu, Plataniotis, and Venetsanopoulos,
2003] for a non-linear extension applied in the context of face recognition)
which is intrinsically different from the above methods since it relies on the
labels of the data points i.e. it is a supervised preprocessing. We do not
consider this method for preprocessing in the context of this study since
we need to clearly separate the (unsupervised) preprocessing step from the
actual (supervised) classification procedure.

As an extension to the above choice of preprocessors, we could consider
their combinations, the latter being popular in artificial computer vision
and data analysis. Gabor wavelets, PCA and ICA have been combined by
[Liu and Wechsler, 2003] in order to form an independent Gabor feature
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detector for face recognition using a feature-based probabilistic classifier.
The idea is to use ICA to reduce the redundancy of the information given
by the Gabor filter. The framework for ICA I and ICA II has also been
extended by [Bartlett, Movellan, and Sejnowski, 2002] in the context of face
recognition by considering the combined ICA recognition system consisting
of the two ICA representations. This combination was shown to yield better
recognition than its components individually. The ICA problem has been
solved using non-negativity constraints on the sources similarly to NMF in
[Plumbley, 2003] and yields the nonnegative ICA algorithm. This algorithm
is based on nonlinear PCA and has been tested in the context of image and
audio analysis. The more stages the preprocessor has, the more difficult it is
to infer biological plausibility. Moreover combining many preprocessors may
result in overfitting and may thus violate the general principle of “keeping
it simple”, also known as Occam’s razor [Duda, Hart, and Stork, 2001]. We
shall thus not consider combinations of preprocessors, unless unavoidable
such as for the linear Kernel map following Gabor filters or the PCA step
prior to ICA (see Appendix A).

Finally, following Occam’s principle, we do not consider non-linear ex-
tensions of the above preprocessors i.e. we do not kernelize them. Indeed,
such an extension would introduce a difficulty in the interpretation of the
forthcoming results of this study since it relies on the mapping to a possibly
unknown high-dimensional feature space. This approach has however been
successfully used in computer vision (see [Schölkopf, Smola, and Müller,
1998] for PCA).

2.3.3 Discussion

The preprocessing/decomposition algorithms PCA, ICA I & II and NMF
are linear and can thus be written in the form:

X = BE (2.2)

where X is the original data matrix, B is the basis matrix and E the matrix
of encodings. Once B and E are determined by the algorithm, the original
data may be reconstructed. In other words, these algorithms are invertible
and the quality of the decomposition can be assessed by computing the
reconstruction error. In Appendix E the reconstruction error, a sample
of original and reconstructed heads and a subset of the basis vectors are
displayed for the various data types. Moreover, for PCA, the eigenvalue
spectrum and the cumulative variance are also displayed. For convenience,
Fig.2.5 presents the first four basis elements of the above preprocessors for
the image data as also shown in Appendix E. This figure allows to assess
and visualize the sparseness in space of the preprocessing algorithms i.e. the
sparseness of the basis vectors. We further discuss below the main results
for each type of preprocessing and define the reconstruction error as the
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Figure 2.5: Four faces of the basis for the image data type for PCA, ICA I
& II and NMF (first to fourth column).

Euclidean distance between two faces in their pixel representation. This
distance is however different from the perceptual distance between two faces2

which can only be assessed using psychophysical experiments as done for
instance in [Vetter and Troje, 1997]. Thus we also plot some original and
reconstructed images in Appendix E in order to cover both the Euclidean
and perceptual distances.

For PCA, the eigenvalue spectrum is decreasing and has no flat regions
for all data types. The PCs find (orthogonal) directions which explain the
data well. The cumulative variance plot for the shape data indicates that
only a few number of PCs explain almost all the data. This is not the
case for the image and texture data. The combination of texture and shape
data then yields, as could be expected, an intermediate behavior. PCA is
thus well suited to describe the shape data. As could be expected, for all
data types the reconstruction error is nil when considering all the 200 PCs.
The decreasing behavior of the reconstruction error is similar for all data
types. This perfect reconstruction is confirmed when comparing the original
and reconstructed images. When considering the face basis obtained from
PCA, we see that for all data types, this basis is holistic and non-sparse

2For example, the perceptual distance between a face in light and dark conditions is

close to nil whereas the Euclidean one is high.
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(see also Fig.2.5). In the case of the image or texture data, the intensity
of the image is globally changed. In the case of the shape data, the face
is globally distorted. For the texture and shape data, a combination of
both behaviors appears. It is difficult to draw further conclusions since the
unconstrained nature of the encodings allow for complicated addition and
subtractions from these basis images to recreate one face from the database.

For ICA I, the reconstruction error is nil for all data types, suggesting
thus a perfect reconstruction of the data. This is confirmed by considering
the original and reconstructed heads. The basis for all data types is clearly
sparse and part-based in a highly-localized manner (see also Fig.2.5). In
other words, the parts are reduced to very small surface subsets of the
image. For the image and texture data, local intensity spots illustrate this
part-based behavior. For the shape data, the part-based behavior translates
to small deformation of the face and to strong changes of the position of the
face in the image. For the combination of texture and shape information,
an intermediate behavior is observed.

As for ICA I, the reconstruction is perfect for ICA II as testified by
the value of the reconstruction error and the images from the original and
reconstructed dataset. The basis of faces is here however clearly holistic (see
also Fig.2.5) and similar considerations as for PCA apply here. However, the
holistic nature of the basis vectors is here much more pronounced than for
PCA and yields quite similar results as Vector Quantization [Duda, Hart,
and Stork, 2001, Haykin, 1999]. Such a basis consists almost of “prototypes”
of whole faces, and an extreme sparseness in the encoding can be expected
in a winner-takes-all manner. Such a basis bears some similarities with the
so-called “grandmother” cells discussed in [Barlow, 1972].

For NMF, we have a close to perfect reconstruction of the data as testi-
fied by the reconstruction error3 and the images of the original and recon-
structed heads. The quality of the reconstruction depends upon the choice
of the maximum number of iterations, here 1000. This number could be
increased in order to improve even further the reconstruction performance.
However this would result in unacceptable high computational costs. The
basis for all data types is clearly part-based and sparse (see also Fig.2.5).
The pixel surface of the parts is here however larger than for ICA I, and
carries thus more biologically-meaningful content. These parts correspond
to what psychophysicist would call “features”, for instance the eyebrows, the
eyes or the nose. Similar considerations as for ICA I apply here, although
the loss of centering is here less apparent.

In summary, the linear preprocessors can be described as follows. The
basis images of PCA and ICA II are holistic whereas those corresponding to
ICA I and NMF are part-based. The spatial sparseness—the regions of the

3The norm of the difference between the original and reconstructed image vectors is of

the order of ∼ 10, which is negligible for a vector of size ∼ 105.
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face used in the basis images—is very high for ICA I and lower for NMF.
Finally, while the holistic basis images of PCA are slightly blurred, those of
ICA II are almost patterns of the dataset.

The remaining non-linear preprocessors shown here cannot be formal-
ized as PCA, ICA or NMF, i.e. they do not allow a decomposition of the
data in an encoding and a basis matrix. Thus no basis of images exits, nor
a reconstruction error. While LLE and kernel maps are applied to all data
types, image size reduction, histograms and Gabor wavelet filters can only
be applied on the image data. The real part of Gabor wavelet filters on 3
scales and for 6 orientations are displayed in Fig.2.6 and the magnitude of
their application on one image of the database, the corresponding images
being downsampled. The elliptic shape of the filters can be seen and repre-

Figure 2.6: Real part of Gabor wavelet filters on 3 scales and for 6 orienta-
tions (first to third rows) and magnitude of their downsampled application
to an image (fourth to sixth rows).
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sents orientation selectivity. The higher the scale i.e. the smaller the spatial
localization of the filter, the better a face can be recognized. At such scales,
a Gabor filter acts as an edge detection algorithm: it finds the contours in
the image. At lower scales the filtered segmented image gets more blurred,
this face being used to proceed to downsampling.

2.4 Sparseness of Encodings

Sparseness is argued to be a biologically plausible description of efficient
neural codes [Olshausen and Field, 1996, Willmore and Tolhurst, 2001]. In
some of the above cases, the sparseness of the basis was apparent by con-
sidering its images: NMF and ICA I led to part-based (spatially sparse)
bases whereas PCA and ICA II yielded a holistic (spatially non-sparse) ba-
sis. What about the sparseness of the corresponding encoding, i.e. of the
low-dimensional representation? We study below this sparseness using the
developments of [Willmore and Tolhurst, 2001]. The sparseness of a vector
~x ∈ R

M is computed using its kurtosis as:

s =

[

1

M

M
∑

i=1

(

xi − µ

σ

)4
]

− 3 (2.3)

where µ, σ are respectively the mean and the standard deviation of ~x. A
sparseness of s = 0 indicates a Gaussian distribution of xi whereas s > 0
represents a supergaussian (highly peaked distribution) and s < 0 a subgaus-
sian distribution (distribution with flat regions). A distribution with many
small values and only a few large ones yields a high value of s, whereas a
uniform distribution has a small value of s. In oder to accommodate large
variations in the order of magnitude of s, it is useful to define sparseness by
applying a transfer function to the above definition as:

S = log(|s|+ 1) (2.4)

Assume X ∈ R
p×n is the data matrix of the encodings given by the appli-

cation of P on the data type, p being the number of patterns and n their
dimension. In other words each row of X is a stimulus and each column is a
vector representing a given dimension of all the encodings. In order to get an
intuitive description of the concept of sparseness for the data matrix X , we
follow the lines of [Willmore and Tolhurst, 2001] and define each dimension
of the data, i.e. each column of X , as a neuron. We then have n neurons,
each one producing p responses, and have the following two possible different
definitions of sparseness:

1. the vector ~x is a column of X . The resulting sparseness Sl is called
lifetime sparseness and describes codes in which each neuron’s lifetime
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response distribution has high kurtosis i.e. the firing rate of each neu-
ron is sparse. In other words, each neuron gets rarely activated, but
when it fires, it produces a response of large magnitude. A lifetime-
sparse coding is represented by neurons that respond to stimuli using
spikes which occur rarely but convey a large amount of information.
Lifetime sparseness can be seen as the sparseness in the n components
of the encodings.

2. the vector ~x is a row of X . The resulting sparseness Sp is called
population sparseness and indicates that a small subset of neurons
from a large population is active at any time in response to a stimulus.
Also different subsets of neurons are activated by different stimuli. A
population-sparse coding is energetically efficient since few neurons
fire at any time; few neurons are necessary to convey the information
relative to a stimulus. Population sparseness can be interpreted as the
sparseness in the number p of the encodings.

The lifetime and population sparseness as defined above are represented
in Fig.2.7 for all preprocessors and data types. It can be seen that both
sparseness definitions of S are not correlated. The highest sparseness is
achieved by ICA II both for Sl and Sp in all cases, indicating that this
preprocessor yields the sparsest representation of all the considered ones. On
the image data type PCA, the kernel map and Gabor filters have Sp � Sl

which indicating energetically-efficient encodings. For the other data types,
PCA, the kernel map and ICA I also have Sp � Sl. This suggests that the
components of the patterns are sparsely represented rather than the patterns
themselves. This could be expected for ICA I by construction and for PCA
this corroborates the findings of [Willmore and Tolhurst, 2001]. For LLE,
we have Sp ' Sl and neither of the codes is really sparse. NMF shows an
intermediate degree of sparseness both for Sl and Sp. Furthermore, Sl ' Sp,
indicating an encoding which saves energy while having an intermediate
sparseness of the firing rate. This fact may hint at the fact that, overall,
NMF may be a good candidate to encode visual information.

2.5 Discriminability of Encodings

The encodings of the faces i.e. the datasets obtained by combining the data
types with the preprocessors shall be used in the context of this study for
gender classification tasks. It is thus cautious to check whether the re-
sulting two classes are not too much overlapping or intermingled, in which
case the preprocessor shall not be considered further. For this, we pro-
ceed to a Fisher Linear Discriminant Analysis (FLDA, [Duda, Hart, and
Stork, 2001]). FLDA seeks a direction in the dataset most efficient for
discrimination—the Fisher direction—by maximizing a discrimination score
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Figure 2.7: Lifetime and population sparseness for each data type and pre-
processor.

based upon variances in each class and between each class. FLDA finally
projects the data on this line, yielding a one-dimensional representation al-
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lowing to visualize discriminability. Clearly the direction of the Fisher line
for which the projected data is well separated is the result of an optimization
process, which reveals to be solvable analytically.

For this, we first compute the means (or center-of-mass) of each class:

~µ±1 =

∑

i|yi=±1 ~xi
∑

i|yi=±1 1
(2.5)

where ~xi for i = 1, . . . , p are the encodings of each pattern and yi their class.
The latter allow to determine the within-class scatter matrix:

Sw =
∑

k=±1

∑

i|yi=k

|~xi − ~µk〉〈~xi − ~µk| (2.6)

and the in-between class scatter matrix:

Sb = |~µ+1 − ~µ−1〉〈~µ+1 − ~µ−1| (2.7)

Using the lines of [Duda, Hart, and Stork, 2001], the direction of best sepa-
rability is then given by:

~w = S−1
w (~µ+1 − ~µ−1) (2.8)

The projection of a data point ~x on this line is then given by 〈~w|~x〉. The
above allow the computation of the Rayleigh quotient or Fisher linear dis-
criminant:

J(~w) =
〈~w|Sb ~w〉

〈~w|Sw ~w〉
(2.9)

The above is a measure of the discriminability of the two classes. There
exists a non-linear extensions of the above using the kernelization of the
dual space expression of FLDA [Mika, Rätsch, and Müller, 2001].

In practice, computing J over the whole dataset would result in overfit-
ting and thus bad generalization ability. We thus evaluate J using a 5-fold
cross-validation scheme as below:

1. randomize data

2. perform a cross-validation scheme as:

(a) use the training set to compute ~w

(b) use the testing set to compute Sw and Sb

(c) use ~w, Sw and Sb to assess J

(d) project the testing data onto ~w

3. compute mean and standard deviation of J

28



PCA LLE NMF ICA I  ICA II Ker. map Size red. Hist. Gabor
0

0.2

0.4

0.6

0.8

1
image data

PCA LLE NMF ICA I  ICA II Ker. map
0

0.2

0.4

0.6

0.8

1
texture data

PCA LLE NMF ICA I  ICA II Ker. map
0

0.2

0.4

0.6

0.8

1
shape data

PCA LLE NMF ICA I  ICA II Ker. map
0

0.2

0.4

0.6

0.8

1
texture & shape data

Figure 2.8: Projection of the dataset along the Fisher direction (data
rescaled to [0, 1]) and Rayleigh quotient J for each data type and prepro-
cessor.
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The projected classes and the corresponding Rayleigh quotients are repre-
sented in Fig.2.8 for each data type and preprocessor. The score J is a
measure of how well the data is linearly separable in the space spanned by
the preprocessor. When considering the image data, Gabor wavelets allow
the best discriminability of the two classes. We can notice that overall PCA
and ICA I show for all data types the best discriminability: the value of
J is high and the projections of the data are distinct. These preprocessors
are thus globally most well suited for classification studies, especially on
the data types different from the image one. The discriminability of kernel
maps, although similar to the one of PCA and ICA I on the image and
texture data, is less good on the shape and texture & shape data. The
discrimination for NMF, although possible, is not as good as for the above
preprocessors for all data types. For the image data, size reduction and
histograms are poorly adapted for classification studies. Most importantly,
LLE and ICA II show no discriminability at all for all cases: J = 0 and
the projections of the classes are totally overlapping. It was also verified
that applying classifiers on these datasets resulted in a classification error of
∼ 50%, which is chance (results not reported here). These types of prepro-
cessors are thus not adapted for classification studies when considering the
face database. In particular, classification using a linear decision function
is not possible i.e. the data seems to be linearly not separable in the space
span by these preprocessors. They are thus not considered any further in
this dissertation.
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Chapter 3

Human Classification

Behavior

This chapter deals with the description and analysis of two psychophysical clas-
sification experiments. Human subjects are asked to classify images of faces
according to their gender and their responses are subsequently analyzed. Both
experiments present the same stimuli but in a different order, allowing us to
assess the consistency of the subjects’ responses and the reproducibility of the
results which will follow in the next chapters of this dissertation.

3.1 Classification Experiment I

In this first psychophysical experiment, 55 human subjects were asked to
classify sequentially 152 from a possible 200 faces from the MPI face database
(see Chapter 2) according to their gender. We recorded three responses:
the estimated gender (i.e. female/male) with the corresponding reaction
time (RT) and subsequently a confidence rating (CR= 1, 2, 3) on a scale
from 1 (unsure) to 3 (sure). Stimuli were presented against the mean lumi-
nance (50 cd/m2) of a carefully linearized Clinton Monoray CRT driven by
a Cambridge Research Systems VSG 2/5 display controller. Neither male
nor female faces changed the mean luminance. Subjects viewed the screen
binocularly with their head stabilized by a headrest. The temporal envelope
of stimulus presentation was a modified Hanning window (a raised cosine
function with a raising time of ttransient = 500ms and a plateau time of
tsteady = 1000ms, for a total presentation time t = 2000ms per face) to
avoid aftereffects of the stimuli on the subjects’ retinae. After the presenta-
tion, an empty screen with mean luminance was presented for 1000ms before
the presentation of the following stimulus. Subjects were asked to classify
as fast as possible to obtain perceptual, rather than cognitive, judgments.
Most of the time they responded well before the presentation of the stim-
ulus had ended (mean RT over all stimuli and subjects was approximately
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900ms). The subjects were however not constrained on the time needed to
indicate their confidence. All subjects had normal or corrected-to-normal
vision and were paid for their participation. No feedback upon the correct-
ness of the subjects’ answers was provided. Most of them were students
from the University of Tübingen and all of them were naive to the purpose
of the experiment. A training phase of 8 faces (4 male and 4 female faces)
precedes the actual classification experiment in order to acquaint the subject
with the stimuli and with the setup: the corresponding results are discarded.
Details about the experimental setup may be found in appendix D. This
classification paradigm bears some similarities with the one considered in
[O’Toole, Defenbach, Valentin, McKee, Huff, and Abdi, 1998], the latter us-
ing however less well-controlled stimuli and less adequate timings, both for
the stimulus presentation and for the recording of the subjects’ responses.

We present below the evaluation of the data from this psychophysical
classification experiment. Analysis of the classification performance of hu-
mans is based on signal detection theory as presented in Appendix C. When
averaged across subjects, we get the discriminability d′ and the male bias
log(β) as reported in the first row of Fig.3.1 for all subjects, for male and
for female subjects. The values of d′ indicate that the classification task
is comparatively easy, despite the fact that the images of the faces have no
hair, make-up . . . , although without being trivial (no ceiling effect). We also
observe a strong male bias (a large number of females classified as males but
very few males classified as females). There are thus more misclassifications
for female stimuli than for male ones, similarly to what was observed by
[O’Toole, Defenbach, Valentin, McKee, Huff, and Abdi, 1998]. There is no
significant difference in discriminability or in male bias across the subjects’
gender and thus, in the rest of this study, we consider all subjects.

The plots of the second row of Fig.3.1 show the correlations of RT and
classification error, classification error and CR, and RT and CR for all stim-
uli, for only the male and only the female stimuli. The error bars represent
the standard error around the mean. First, RTs are longer for incorrect
answers than for correct ones, reflecting a longer processing of difficult in-
formation. Second, a high CR is correlated with a low classification error
and thus subjects have veridical knowledge about the difficulty of individual
responses—this is certainly not the case in many low-level psychophysical
settings. Third, the RT decreases as the CR increases, i.e. stimuli easy to
classify are also classified rapidly. It may thus be concluded that a high
error (or equivalently a low CR) implies higher RTs. This may suggest that
patterns difficult to classify need more computation, i.e. longer processing,
by the subjects’ brain than patterns easy to classify. Moreover subjects are
less confident when classifying difficult stimuli. We now consider the above
analysis for all stimuli and for each gender separately. When considering all
data, we get, as expected, the mean trend in the subjects’ responses. We
see that when making no error, the subjects respond faster for male than
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Figure 3.1: Human classification behavior. First row: discriminability and
male bias. Second row: mutual dependencies of the subjects’ responses.
Third, forth and fifth rows: mean temporal evolution of these responses, the
thick curve indicating the mean, the grey one the standard deviation and
the horizontal lines indicate chance level.
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for female stimuli. Moreover, the subjects take longer to make a mistake for
male than for female stimuli. In other words, they only make a mistake for
a male face after long cerebral processing. For male stimuli, when subjects
are confident, their decision is almost always correct. This effect is not as
clear for female stimuli. However, unsure subjects mainly misclassify male
stimuli, whereas female stimuli are better classified. Finally, for high CR,
male stimuli are classified faster than female ones. It may be concluded that
male faces are easier to classify (less error, faster and higher confidence)
than female ones. This corroborates the above finding of a male bias in the
subjects’ responses.

One of the crucial assumptions for our enterprise of comparing man to
machine is the stability of the internal representation of faces in the sub-
jects’ brain. In other words, the exposition of the subjects to face stimuli
should not modify their internal representation acquired during their life-
time. Consequently there should be no transient learning dynamics on the
timescale of this experiment. Indeed, would the subjects’ responses vary
as the experiment proceeds, this would indicate that they create or refine
their internal face representation. The modeling of the human classifica-
tion behavior would then require different types of classification algorithms
than those presented in Chapter 4, namely on-line learning algorithms. The
stability of the internal face representation of the subject is thus a key hy-
pothesis of the present study. The third, fourth and fifth row of Fig.3.1
address this point by showing the mean of the subjects’ responses (thick
line) and the corresponding standard deviation (thin line) as function of the
time of appearance of the stimuli i.e. their presentation index, the horizontal
lines indicating the chance level. It may be concluded for each response that
there is indeed no learning during the experiment. The subjects do not get
“experts” and do not learn some features allowing to enhance their classifi-
cation performance, RT or CR. The subjects also do not get tired or loose
their concentration. The internal representation of faces in the subjects’
brain seems thus to be stable.

We analyze here also the subjects’ responses on a stimulus-by-stimulus
basis by averaging the subjects’ responses for each face across all subjects.
The subjects’ responses are then for each stimulus the probability Pmale

to classify this stimulus as male, the corresponding reaction time RT and
confidence rating CR. We then obtain Fig.3.2 where each cross stands for
one head stimulus. We note that when Pmale is extremal (i.e. Pmale →
0 or 1), subjects answer fast and are also confident. In other words the
subjects seem to know when stimuli are very typically male (Pmale → 1) or
female (Pmale → 0). On the other hand, when Pmale ∼ 0.5, the subjects
are unsure, which is reflected by a high RT and a low CR. Finally, we
here corroborate the relations between the subjects’ responses deduced from
Fig.3.1.
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Figure 3.2: Human classification behavior on a stimulus-by-stimulus basis.
Each of the 200 crosses stands for a stimulus and represents the RT, re-
spectively the CR, associated with a stimulus as function of the probability
Pmale that this stimulus is classified as male (left and right respectively).

3.2 Classification Experiment II

In order to assess further the stability of the subjects’ internal representation
of the faces, we consider their responses to stimuli and proceed to a second
classification experiment subsequently to the first one. This psychophysical
experiment is identical to the first one and the stimuli are the same except
that they are shown in a different order. The same types of responses are
gathered. Fig.3.3 compares the tied rank of the responses of the subjects
between the first and the second classification experiment on a stimulus
basis i.e. for each stimulus, the subject’s responses are averaged such that
each cross in the plots stands for a stimulus. We compute Spearman’s
rank correlation coefficients r (linear correlation between the tied rank of
one variable and the tied rank of the other) between the subject’s responses
(classification error, RT and CR) for the first and for the second classification
experiment. The mean value of r and its standard deviation are obtained by
averaging over 1000 random pooling of 90% of the stimuli in a bootstrapping
manner.

The analysis of these scatter plots indicates that the crosses correspond-
ing to the stimuli are close to diagonal, although not perfectly aligned with
it, and the high value of r confirms this tendency for all responses. These
results suggest the overall consistency and stability over time of the average
responses over all subjects for each stimulus. Consequently, we here have a
second hint at the stability over time of the subjects’ internal representation
of faces. Furthermore, we can conclude on the reproducibility of the human
classification behavior for this database of faces. This validates the results
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Figure 3.3: Stability of the subject’s responses between the first and the
second classification experiment. Each of the 200 crosses stands for a stimu-
lus and represents the tied rank of a subject’s response (classification error,
reaction time or confidence rating) in the first and second classification ex-
periment, the scales ranging from 1 to 200.

obtained in this dissertation.

One of the central issues addressed in this experiment is the stochastic
nature of the human classification behavior. In particular, the inconsistency,
or jitter, in the subjects’ classification to some specific stimuli will be of cen-
tral importance in the studies done in Chapter 5 comparing classification in
man and machine. Indeed, under the hypothesis that hyperplanes between
the classes account for classification, inconsistency in the labelling of ele-
ments near these hyperplanes will indicate a classifier which might model
the classification behavior of humans: elements near to the hyperplane are
difficult to classify and thus subject to inconsistency in labelling. The hor-
izontal and vertical aggregations for the subject error (first plot of Fig.3.3)
indicate such stimuli which have been correctly classified in one experiment
and incorrectly in the other: these are the main outliers from the diagonal
trend in the scatter plots. These elements are the patterns difficult to clas-
sify and are responsible for the relatively low value of r for the subject error.
Most importantly, these stimuli are “marginal” patterns that illustrate the
jitter of the subjects’ classification on some specific stimuli.

3.3 Experimental Details

Every subject had to classify 152 faces in the first psychophysical experi-
ment, and thereafter again 152 faces in the second one, making a total of
304 trials per subject. The duration a subject spent for both experiments,
including instruction time, was on average 40 minutes. Considering all 55
subjects, this amounts to 16720 trials or more than 37 hours of experimental
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time.
Before running the final experiment as described above, a number of pilot

studies had to be conducted. In a first set of 21 pilot subjects, the parame-
ters relative to presentation of the stimuli were tuned in order to make the
subject’s categorical judgment accurate enough while avoiding to a certain
extent cognitive processing in the decision process, i.e. too long presenta-
tion and response times. The monitor was also calibrated and its parameters
were set. Furthermore, the geometrical setup of the room (position of the
observer, of the monitor . . . ) was measured and the corresponding values
kept in the subsequent experiments. These settings were tested on a second
set of 46 pilot subjects. At this stage the stimuli were still shown without the
adjustment of the standard deviation of the intensity of the face as described
in chapter 2. This fact allowed an easier gender discrimination since some
elements of the faces such as beards or pimples were still strongly apparent.
The stimuli were then modified accordingly at the end of these studies and
the second classification experiment, with the same parameters as the first
one, was added.
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Chapter 4

Machine Classification

Behavior

This chapter presents the methodology chosen to bridge the gap between the
classification algorithms from supervised machine learning and human psychophys-
ical experiments. Some classification algorithms are presented and their choice
is motivated. Finally some experimental methods allowing us to use these clas-
sifiers are outlined.

4.1 From Machine Learning to Psychophysics

We place ourselves in the context of supervised machine learning. We thus
assume being given an empirical labeled dataset D = {(~xi, yi)}

p
i=1 where

~xi ∈ R
n are the patterns and yi = ±1 the target values i.e. the class of

the patterns. In this study we look for a family of classification algorithms
having a common formulation, albeit different principles of classification.
We also seek algorithms that give an intuitive measure characterizing their
classification behavior and allowing to compare them to the classification
behavior of humans. The biological plausibility of algorithm in such a for-
malism can then be assessed using comparisons and correlations with human
classification behavior.

We propose the dual formulation of a learning algorithm as a common
ground for the present studies. For this we consider linear separating hy-
perplane algorithms given by an offset (bias) b and a normal (weight) vector
defined as a linear combination of the patterns of the dataset:

~w =
∑

i∈S

αi~xi (4.1)

where S is a subset of {1, . . . , p} and ~α is a vector resulting from the spe-
cific classification algorithm. Duality indicates that the normal vector is
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expressed as a linear combination of patterns of the dataset. We also im-
pose sparseness on the learning algorithm in the sense that for classification,
only a small set of patterns is necessary to compute the separating hyper-
plane. In other words, we consider sparse dual space classification. The
elements used to compute this hyperplane are termed the expansion vectors
or also the representations. They capture the essence of the dataset (i.e. they
represent it), and only the latter are needed for classification. They are a
minimal representation of the dataset and are of two types:

• they belong to the dataset: ~rj ∈ D, j = 1, . . . , r. In this case the
classifier is referred to as exemplar-based.

• they are generated from elements of the dataset ~rj ∈ G(D), j = 1, . . . , r
where G 6= id is the generation operator of the representations given
the dataset. These generated patterns do in general not belong to the
dataset and the corresponding classifier is not exemplar-based.

These types of algorithms allow an easy extension to nonlinear decision
function through the use of a kernel function by replacing the scalar products
arising in the algorithm by a nonlinear kernel function as: 〈~x|~y〉 ← K(~x, ~y).
These kernels yield in most cases better classification performance of the
algorithms and are thus widely-spread in the machine learning community.
However, their use implies first a loss of interpretability of the results since
the data lies then in a high dimensional feature space which is in most
cases not explicitly known [Schölkopf and Smola, 2002]. Second, the kernel
function itself as much as its parameters would then have to be determined,
which is still an open problem. Using kernel functions would finally yield a
huge amount of degrees of freedom to the studies of this dissertation. We
will thus not consider further the concept of kernel function and will follow
the principle of Occam’s razor stating to “keep it as simple as possible”.
Linear classifiers, despite their apparent simplicity, will be shown in this
dissertation to model well the classification of visual stimuli by humans.

Linear separating hyperplane (SH) algorithms have an easy geometrical
interpretation: they are planes in a high dimensional space. Their classi-
fication behavior can then be characterized using the signed distance of a
pattern ~x to the SH as

δ(~x) =
〈~w|~x〉+ b

‖~w‖
(4.2)

Notice that |δ| reflects the construction rule of the classification hyperplane
rather than the generalization ability of the algorithm. Most importantly,
the measure δ(~x) is the machine counterpart of the human classification
error, the reaction time (RT) and the confidence rating (CR) as defined in
the previous chapter. Indeed, the classification error of machine is given by:

ε(~x) =
|sign(δ(~x))− y(~x)|

2
∈ {0, 1} (4.3)
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where y is the class of ~x. A “probabilistic” output of a classifier is then
obtained using a sigmoidal logistic function σ(x):







P (y = +1|~x) = σ(δ(~x)) = 1
1+exp(−δ(~x)) ∈ R

P (y = −1|~x) = 1− P (y = +1|~x) ∈ R

(4.4)

Since the function σ is monotonically increasing, we can state:

The confidence rating CR of a subject for a stimulus ~x should
positively correlate with |δ(~x)|.

Furthermore, we may also deduce:

The probability to make a classification error for a stimulus ~x,
or the subject’s classification error, should negatively correlate
with |δ(~x)|.

Finally, one may also expect the following:

The reaction RT of a subject for a stimulus ~x should negatively
correlate with |δ(~x)|.

The identical definitions of classification error, RT and CR for machine re-
flect the fact that all these parameters are tightly related given the above
assumptions. The relation between these parameters for man was already
demonstrated in Chapter 3. Moreover it would not be very useful to com-
pare for instance the execution times of the various algorithms to get a
measure for the RT since these are hardware and implementation depen-
dent. Further the values of the subjects’ RT also indicates that responses
are far over the lower temporal limit of the visual system as suggested by
[Fabre-Thorpe, Delorme, Marlot, and Thorpe, 2001]. We are thus in a range
above threshold, which allows us to proceed to further studies. In order to
make the measure δ meaningful, we have to assume that the subject’s in-
ternal representation of the stimuli is learnt i.e. the classes are built and in
the context of SH algorithms δ is independent of time. In other words, the
subject is in a testing phase, and learning has already been done previously.
We hypothesize that using the SH formalism, it is possible to bridge the gap
between a human psychophysical classification experiment and supervised
machine learning.

4.2 Hyperplane Classifiers

Here we motivate the specific choice of the linear SH classification algorithms
made in this study. A thorough analysis of these algorithms is presented in
Appendix B. The main idea of this thesis is not to present an exhaustive
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study of all SH classifiers and to compare them to humans. Instead, we try
to isolate families of hyperplane classifiers that represent a distinct classifi-
cation behavior and then consider one of the elements of this family. The
biological plausibility of a classification mechanism is then inferred rather
than a specific algorithm implementing it. In this study we consider the four
SH classification algorithms presented below and represented in Fig.4.1 on
a two-dimensional toy example.

SVM RVM

Prot Kmean

Figure 4.1: Comparison of the linear classifiers in dual form. The thick line
represents the SH, the thick circles the representations and the thin lines
the contours of the function f(~x) = 〈~w|~x〉+ b.

The Support Vector Machine (SVM, [Vapnik, 2000, Schölkopf and Smola,
2002]) is a state-of-the-art maximum margin classification algorithm rooted
in statistical learning theory. SVMs have a rather intuitive geometrical in-
terpretation: they classify by maximizing the margin separating both classes
while minimizing the classification errors. This trade-off between maximum
margin and misclassifications is controlled by a parameter C which is mainly
set by cross-validation. The dual space parameter ~α is obtained by maximiz-
ing

∑

i αi −
1
2

∑

ij yiyjαiαj〈~xi|~xj〉 subject to
∑

i αiyi = 0 and 0 ≤ αi ≤ C.
The offset is computed as: b = 〈yi − 〈~w|~xi〉〉i|0<αi<C .

Probabilistic Bayesian classification is represented by the Relevance Vec-
tor Machine (RVM, [Tipping, 2001]). It optimizes the expansion coef-
ficients of a SV-style decision function using a hyperprior which favors
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sparse solutions. The RVM classifies patterns by maximizing a conditional
probability of class membership P (~y|X, ~β) given the data X = {~xi}

p
i=1

and some hyperparameter ~β. The class membership P (~y|X, ~α) is mod-
eled using a Bernoulli distribution. Sparseness for ~α is introduced using
a Gaussian distribution for P (~α|~β). Learning then amounts to maximizing
P (~y|X, ~β) =

∫

P (~y|X, ~α)P (~α|~β)d~α with respect to ~β, allowing the computa-
tion of ~α, and thus also ~w and b. Since this integral cannot be solved analyt-
ically, the Laplace approximation (local approximation of the integrand by
a Gaussian) is used for solution, yielding an iterative update scheme for ~β.
Contrary to SVMs, RVMs do not allow an easy geometrical interpretation,
although an attempt to visualize their classification behavior is presented in
[Graf, Bousquet, and Rätsch, 2004a].

Common classifiers in neuroscience, cognitive science, psychology and
philosophy—Platon already talked of the most typical example of each ob-
ject to live in the world of “ideas”—are variants of the Prototype classifier
(Prot, [Reed, 1972]). Their popularity is partly due to their utmost sim-
plicity: they classify according to the nearest mean-of-class prototype. In
the simplest form all dimensions are weighted equally but variants exist
that weight the dimensions inversely proportional the class variance along
the dimensions. As we cannot estimate class variance along all 200 dimen-
sions from only 200 stimuli, we chose to implement the simplest Prot with

equal weight along all dimensions. Defining the prototypes ~p± =
∑

i ~xi(yi±1)
∑

i(yi±1) ,

the weight vector is then expressed as: ~w = ~p+ − ~p− and the offset as:

b = ‖~p−‖2−‖~p+‖2

2 . Note that due to the homogeneity of the faces in the
MPI face database this is very likely close to the ”best” possible prototype
classifier [Graf and Wichmann, 2002].

An extension of the prototype classifier is to consider multiple proto-
types in each class computed using the K-means clustering algorithm. By
combining these prototypes with a nearest-neighbor classifier, we obtain the
Kmeans classifier (Kmean, [Duda, Hart, and Stork, 2001]). We use the
benchmark algorithm in the unsupervised learning, namely Kmeans, and
adapt it to a supervised learning context. The number of means K is as-
sumed to be the same for both classes and its value is determined using
cross-validation. The SH obtained here is piecewise linear. Kmean repre-
sents thus the family of piecewise linear SH algorithms, the latter being a
natural extension of the single SH ones. The extension of the prototype
algorithm to a multi-prototype has also been considered by [Edelman, 1995]
in the context of the “chorus of prototype” approach. The latter is however
less transparent than the Kmean algorithm introduced above and cannot be
applied to the formalism proposed in this dissertation.

We define as representations—the thick circles in Fig.4.1—the patterns
corresponding to αi 6= 0 for SVM and RVM i.e. the Support Vectors (SVs)
and the Relevance Vectors (RVs). The prototypes and means are the rep-
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resentations of Prot and Kmean respectively since only the prototypes and
the means are needed for classification. However, here we have αi 6= 0 ∀i
i.e. all points of the dataset are used to compute these representations, and
their number is always 2 for Prot and 2K for Kmean. The sparseness of the
classifiers is then defined using the number of the representations. Clearly
SVM and RVM are exemplar-based since the SVs and the RVs are elements
from the dataset whereas Prot and Kmean are not because the prototypes
and means are computed using the elements of the dataset but do not belong
to it.

SVM, Prot and Kmean are distance models whereas RVM are probabilis-
tic models [Reed, 1972]. Distance models are dependent upon the choice of
the metric. We restrict ourselves to the Euclidean metric for the sake of
the interpretability of the results and in order to get a linear SH. Other
metrics, such as a Minkowski metric, could be considered, similarly to what
is done when kernelizing an algorithm. Similarity measures and a weighted
Minkowski norm yield the in psychology widespread General Context Model
(GCM) and its derivatives [Lamberts, 1997, Palmeri, 2001, Nosofsky, 1991,
Knapp and Anderson, 1984]. Whereas in prototype learning classification
of a pattern ~x is done using ‖~x − ~p±‖ and ~p± the prototype of each class,
the GCM proceeds to classification according to

∑

i|yi=±1 ‖~x − ~xi‖. The
GCM has thus no sparseness and does not allow a hyperplane formulation,
what makes it not suited for the studies in this dissertation. Prot and GCM
belong to the same family of distance-based classifiers where classification is
done using the distance of a new pattern to all existing ones, either directly
as for GCM or indirectly through the prototype. The prototype learner is
finally chosen to represent the “psychology-inspired” models. A whitened
version of the prototype classifier, namely Fisher linear discriminant clas-
sifier (FLD, [Fisher, 1936, Mika, Rätsch, Weston, Schölkopf, and Müller,
2003]), will be considered in Chapter 6.

There are other manners to extend the Kmeans clustering algorithm to
a classifier. Indeed, any classifier can be applied to the means obtained
by Kmeans clustering. The application of a nearest-neighbor rule as above
yields a piecewise linear decision function. Applying SVM, RVM or Prot
on these means would yield a linear SH. Such an approach can yield a first
“sparsification” stage to any classifier, albeit the concept of sparseness is
not well-defined for such an ensemble of (sparse) classifiers. However in the
context of this study, this would make any conclusions on the biological
plausibility of a classification mechanism hazardous since two mechanisms
are used in the classification stage. Furthermore, such an approach would
violate Occam’s razor and is thus not consider any further. Finally, in order
to take into account that the male and female classes are not balanced
(recall the male bias in the subjects’ responses as shown in Chapter 3), one
could consider a different number of means in each class, say K+ and K−

for the male and female class respectively, and in particular one could set

44



K+ > K−. However such an approach would increase the number of free
parameters of the algorithm (K+ and K− instead of K) and would thus be
prone to overfitting while violating Occam’s razor.

The K-nearest neighbors classification algorithm [Duda, Hart, and Stork,
2001] has a piecewise linear SH with a large number of segments, and may
result in severe overfitting and poor generalization ability. Further the num-
ber of such segments cannot be determined beforehand and the sparseness
of such an algorithm is usually very low. Since the K-nearest neighbors al-
gorithm belongs to the same family as Kmean, it is not considered further.

One of the most popular classifiers are Artificial Neural Networks (ANN,
see [LeCun, Bottou, Orr, and Müller, 1998]). The latter are not adapted for
the present study since they do not yield a (sparse) dual space formulation
and the corresponding SH. However, under some conditions, their output
may be interpreted as a posterior probability of class membership, and thus
be quite similar to δ. The absence of a dual space representation also implies
that the concept of representation (for instance the SVs, the RVs, the pro-
totypes or the means) does not exist for ANN, this concept being of impor-
tance as will be shown in Chapter 5. Moreover, ANN should mainly be used
in cases where there are more patterns than dimensions (p � n, [Bottou,
2003]). Although this is increasingly the case when considering nowadays
databases since their size is growing faster than the computational power,
this is not the cases for this study since we have p = n. Moreover, ANN
have some intrinsic limitations: they are polynomial approximators and they
have many free parameters such as the learning rate or the number of hid-
den units. For wrongly chosen parameters, the ANN will not converge while
training, will get stuck in local minima or will overfit on the training dataset.
The lack of a thorough theory to select these parameters makes them not
usable in the context of the present study. Finally SVMs can be thought
of as a more principled version of two-layered feedforward ANNs [Haykin,
1999, Schölkopf, Burges, and Vapnik, 1995, Vapnik, 2000].

Perceptrons are arguably one of the first attempts to model neurons
[Rosenblatt, 1958]. Although they can be modeled as proceeding to classifi-
cation using a SH [Cristianini and Shawe-Taylor, 2000], they are not sparse.
The same is true for Adaboost which is an increasingly popular classifier
based upon boosting i.e. an efficient combination of weak learners [Freund
and Schapire, 1995]. Since both Perceptrons and Adaboost can be inter-
preted as maximum margin classifiers (a maximum margin is a property of
these algorithms but no notion of margin appears in their definition, see
[Graepel, Herbrich, and Williamson, 2001] and [Schapire, Freund, Bartlett,
and Lee, 1998] respectively), SVMs are assumed to represent them in the
following studies.

Finally RVMs represent the family of (sparse) Bayesian inference clas-
sification using Gaussian Processes (GPs, [Williams and Barber, 1998]). A
mean field approach as derived from Statistical Physics has been applied
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to binary classification with GPs in [Opper and Winther, 2000] and SVMs
have been shown to be closely related to GPs.

4.3 Classification with Spiking Neurons

We mention below two learning, and thus also classification methods, de-
rived from spiking neural networks: SpikeNET and the Liquid State Ma-
chine. These algorithms are supposed to imitate cortical microcircuits. It
is certainly biologically-plausible or at least biologically-inspired to model
single neurons using spike trains on the lowest level and then to extend the
model to populations of neurons [Gerstner and Kistler, 2002]. Although not
as straightforward as in the context of machine learning, learning and thus
also classification can be considered using spiking neuron models [Gerstner
and Kistler, 2002, Feng, Sun, Buxton, and Wei, 2003]. One huge differ-
ence to machine learning is the introduction of time though the learning
dynamics. Although such approaches are promising for future research, the
lack of a clear general theory, the absence of a usable implementations and
the difficulty to fit these methods into the here-introduced general frame-
work stimulus-man-machine excludes them from the studies considered in
this dissertation. Further, as they are, these algorithms do not fit into the
context of the studies proposed here since they do not allow a (sparse) dual
formulation and cannot be interpreted using hyperplanes for classification.

The first spike following a stimulus has been shown to have important
properties in the visual cortex such as orientation selectivity [Delorme, 2003].
SpikeNET [Delorme, Gautrais, Rullen, and Thorpe, 1999, Delorme and
Thorpe, 2003] allows to model large networks of spiking integrate-and-fire
neurons and is an example of a computational model where a biologically-
inspired concept yields high computational performance. In this type of
spiking neuron model, only the neurons emitting a spike are further pro-
cessed while the remaining ones are ignored. The underlying assumption is
that only a small set of strongly excited neurons fire at least one spike in a
small time delay. This low computational cost is argued to be biologically-
plausible in [Thorpe, 2002]. This classification based upon the first spikes
corresponding to a stimulus allows to introduce naturally the concept of RT,
and this is, from the perspective of this thesis, the greatest advantage of this
formulation. In this framework, face processing (detection and localization)
was investigated by [Rullen, Gautrais, Delorme, and Thorpe, 1998] where
computational studies showed that visual processing using only one spike
per neuron seems to be possible, reducing thus computational costs.

A Recurrent Neural Network (RNN) is a neural network with some (de-
layed) feedback loops [Haykin, 1999]. These loops yield to rich range of
possible dynamical evolutions and rise issues about for instance attractors
and their stability. In the Liquid State Machines (LSM) [Maass, Natschläger,
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and Markram, 2002b], Integrate-and-Fire neurons are used in a RNN cre-
ating thus a dynamical system with high-dimensional states argued to be
a model of a generic cortical microcircuit. Only the neurons that read
out the information of the RNN are trained by a classifier. LSM com-
bine high-dimensional dynamical systems with statistical learning theory
[Maass, Natschläger, and Markram, 2003], with Bayesian inference or a lin-
ear classifier [Natschläger and Maass, 2004]. The output neuron can give
a stable response despite the fact that its input signals are transient and
of high dimension. One of the main domains of application of LSM is the
real-time processing of time-varying inputs such as visual stimuli [Maass,
Legenstein, and Markram, 2002a]. At this point, we can compare ANNs
and LSMs. ANNs are a polynomial approximator: they create high dimen-
sional highly nonlinear decision functions. This complexity is most probably
not biologically-plausible. LSMs on the contrary put the stimuli in a ran-
dom system of states and then retrieve the states using a simple decision
function. This simple manner to retrieve information is robust and thus
more biologically-plausible.

4.4 Tricks of the Trade

As most practitioners in machine learning may know, applying the classi-
fication algorithms directly on the raw data, the encodings as defined in
Chapter 2, may lead to convergence problems and numerical instabilities.
To avoid these, in the context of this study the data is centered and nor-
malized prior to classification. The centering step ~x ← ~x − 1

p

∑

i ~xi makes

especially sense when followed by a normalization step ~x← ~x
‖~x‖ . Centering

can also be argued as being biologically meaningful when considering the
saccades of the occulomotor system [Yarbus, 1967]. Notice that for PCA,
LLE and ICA, the data is already centered. Since we only consider linear SH
algorithms, normalizing the inputs is equivalent to making the algorithms
classify in a normalized (feature) space. Classification in normalized spaces
has been shown to be advantageous for linear classifiers [Herbrich and Grae-
pel, 2001], and in particular for SVMs [Graf and Borer, 2001, Graf, Smola,
and Borer, 2003]. When normalizing, the data points lie on a unit hyper-
sphere, resulting thus in the loss of one dimension of the data out of 200 or
256 depending on the data type. To assess this loss of information, a Fisher
analysis (see Chapter 2) is done on the centered and normalized encodings in
Fig.4.2. By comparing Fig.4.2 to Fig.2.8, it can be seen that normalization
affects only slightly the separability of the classes and the same conclusions
as for the non-normalized encodings apply. Thus the loss of one degree of
freedom though normalization is negligible for the sake of classification. Fi-
nally, normalization is a sensible approach, particularly since it allows to get
the parameter of machine, namely δ, in the same range for all types of data,
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Figure 4.2: Projection of the centered and normalized dataset along the
Fisher direction (data rescaled to [0, 1]) and Rayleigh quotient J for each
data type and preprocessor.
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preprocessors and classifiers. As an alternative to normalization, whitening
can be considered after centering the data. In this case, every component
of a vector is divided by the standard deviation over the whole dataset of
this component. The effect on the discriminability of the classes is reported
using a Fisher analysis as in Fig.4.3. It can be seen that whitening destroys
or strongly reduces the discriminability of the data in all cases. Whitening
thus changes the nature of the vectors of the database and is therefore not
considered further in the present study.

SVMs and Kmeans have one free parameter: the regularization param-
eter C and the number of means K. This parameter is set automatically
by the machine using an M -fold cross-validation procedure [Duda, Hart,
and Stork, 2001]. Indeed, setting this number by hand to a user-defined
value may result in overfitting and thus in a loss of generalization of the
algorithm. Cross-validation consists of splitting the dataset into M equal-
sized subsets of patterns. Then M classifiers are created by training on
all possible M − 1 subsets and the corresponding classification errors are
computed on the remaining subset. The M -fold cross-validation classifica-
tion error on the whole dataset is then the average of the M classification
errors obtained for each subset. The parameter of the algorithm which min-
imizes this error is finally chosen. Cross-validation is also used to estimate
the classification error of an algorithm over a dataset. When the classifica-
tion algorithm has also a free parameter, a double M -fold cross-validation
scheme is used in a two-stage manner. In the cross-validation studies con-
sidered in this study, the order of the cross-validation M and the range of
K or C can be varied. The set of values for cross-validation with SVM is
set to C ∈ {1, 2, . . . , 10, 13, 15, 18, 20, 30, 40, 50, 100, 500, 1000}. If different
values of the parameter give the same error, the minimal value of C is taken
such as to enforce a large margin rather than reduce the classification errors.
The range of possible values of K is limited to 2, . . . , 10 in order to avoid
“overfitting” and avoid to have more means in each class than data points,
which is not trivial since in the subject dataset (see Chapter 5) the classes
are not at all balanced (strong male bias). If different values of K give the
same error, the minimal value is chosen in order to minimize the number
of representations, and consequently the complexity of the piecewise linear
decision function. Note that there is an alternative way to determine the
optimal K using the eigenvalues of the covariance matrix of the data. The
eigenvalues above a user-defined threshold are used to determine the number
of means. Since here again we need a heuristic to determine this threshold,
we do not gain much from this approach compared to cross-validation.
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Figure 4.3: Projection of the centered and whitened dataset along the Fisher
direction (data rescaled to [0, 1]) and Rayleigh quotient J for each data type
and preprocessor.
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Chapter 5

Classification Behavior of

Man and Machine

We attempt to describe in this chapter the mechanisms used by human subjects
for feature extraction of visual stimuli and their subsequent classification. For
this, the classification performance of man and machine are compared and their
classification behaviors are correlated for various feature extractors and classifiers
from machine learning. The corresponding results are then corroborated using
studies on the stochastic nature of human classification. General conclusions
and a discussion are finally given while a literature review closes this chapter.

5.1 Overview

In this section we present, describe and motivate the methods and tech-
niques used to study the classification behavior of man and machine. The
results of these studies allow to compare man and machine for a given fea-
ture extractor (data type and preprocessor) and classifier, and may allow us
to infer on the mechanisms and strategies used by human subjects to classify
visual stimuli. The comparison of the classification performance of man and
machine is only a weak indicator of which combination may or may not be
adapted to describe human classification. The actual comparison between
the classification behavior is done in the correlation studies between the man
and machine. Studies on the stochastic nature of human classification follow.
For all these studies we introduce a methodology where machine learning
is used to extract quantitative measures from a psychophysical setup, al-
lowing to bridge the gap between machine learning and psychophysics. On
the basis of these studies, we hope to unravel the mechanisms used by the
human subjects to extract features from visual stimuli and to perform their
subsequent classification.

The face stimuli presented to man are generated using both the shape and
the texture information. When comparing the classification performance of
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man and machine, both information must also be shown to machine. In this
case, we thus only consider as data types the image data I and the texture
& shape data [T S]. Indeed, it would be unfair to compare man who was
shown all the information content of the stimuli and machine which would
only have been shown the texture or shape data. However, the correlation
studies can be done for all data types since in this case we are not comparing
the classification performance of man and machine per se, but rather try to
unravel the mechanisms of classification in man and the underlying feature
extraction process. Thus allowing the machine to work only on the texture
or shape data allows to assess whether this type of data may allow high
correlations between the classification behavior of man and machine.

In the studies below, we consider two types of stimulus datasets: the true
and the subject datasets. The patterns in both datasets are the encodings
corresponding to each feature extractor—the pairing of a data type with a
preprocessor. The true dataset is constituted by the encodings combined
with the true labels of the stimuli—their true gender as given by the MPI
face database. The subject dataset is composed of the encodings combined
with the labels of the stimuli as estimated by the subjects in the first psy-
chophysical classification experiment, in other words the estimated gender.
This dataset represents what we assume to be the subjects’ internal repre-
sentation of the face space. Both the true and the subject datasets contain
an ordered list of 152 stimuli out of a possible 200, this list being different
for every subject. Thus both datasets can be seen as the subject’s personal
datasets.

In the next three sections of this chapter (the classification, correlation
and stability studies), the methodology is first introduced and the results are
subsequently presented in two steps. In a first step the methodology is illus-
trated on PCA applied to the texture & shape data type, as already done in
a previous study by [Graf and Wichmann, 2004], since this combination will
be shown a posteriori to illustrate best the difference between the various
classification algorithms presented in Chapter 4. Furthermore this feature
extractor can be considered a priori as a benchmark since it uses PCA, a
widely-spread preprocessor whose biological plausibility has been hypothe-
sized [Turk and Pentland, 1991, O’Toole, Abdi, Deffenbacher, and Valentin,
1993, Vetter and Troje, 1997, O’Toole, Defenbach, Valentin, McKee, Huff,
and Abdi, 1998]. Finally, using the texture & shape data solves the problem
of correspondence between faces (a nose is mapped to a nose, . . . ) and is
thus intrinsically adapted to the stimuli considered in this study. For the
other data types and preprocessors, the reader is referred to Appendix F
for the complete set of plots. In a second step, summary plots allow the
comparison of the various feature extractors and classifiers. The result are
finally discussed and a literature review concludes this chapter.
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5.2 Classification Performance of Man and Ma-

chine

5.2.1 Methodology

We compare the classification errors of man and machine for each subject
individually both on the true and subject datasets. These errors allow a
crude comparison between the combinations of the various data types, pre-
processors and classifiers and give a first hint on the mechanisms humans
might have used for classification. It also allows to compare the true and the
subject dataset i.e. the real representation of the stimuli and the subject’s
internal one.

For humans, the classification error on the true dataset is simply ob-
tained by considering the mean and standard deviation over all stimuli of
the difference between the estimated class to the true one. The classifi-
cation error on the subject dataset cannot be computed directly since the
subject’s labels are not known beforehand. This error is thus estimated us-
ing a method derived from cross-validation. For each stimulus shown to the
subject, we compute the mean error the other subjects made on this stim-
ulus by defining as an error when the other subjects responded differently
than the considered subject. In other words we compare the subjects gender
responses on common stimuli and compute the mean consistency between
subjects. We then compute the mean and standard deviation of this error
over all presented stimuli.

For machines the mean and standard deviation of the classification error
is obtained, both for the true and the subject datasets, using a single 5-fold
cross-validation for RVMs and Prots and a double 5-fold cross-validation to
determine C for SVMs and K for Kmeans1. We also determine the mean
and standard deviation of the number of representations ](SV ), ](RV ) and
Kopt which are a measure of sparseness of the classifier (see Chapter 4).
Furthermore ](SV ) is also an indicator of the generalization ability of the
SVM classifier.

Since every subject gets a different set of 152 randomly chosen faces from
the 200 available, the mean and standard error over all subjects of the mean
and standard deviation of the classification errors of man and machine and
of the number of representations are finally computed.

5.2.2 Results

When classifying the true dataset for PCA applied on the texture & shape
data type, Fig.5.1 shows that none of the classifiers yields a classification
performance comparable to that of humans. The prototype classifier, pop-

1We also studied 7 or 10-fold cross-validation schemes. These gave similar results to

the 5-fold one, however these schemes were much more computationally expensive.
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Figure 5.1: Comparison of the classification performance of man and ma-
chine on the true and subject dataset using a cross-validation scheme.

ular in neuroscience, psychology and philosophy, performs on average much
worse than humans and thus cannot possibly be used by humans for classi-
fication given the linear PCA representation applied to the texture & shape
data type. The better classification performance of Kmeans compared to the
simple prototype classifier may be explained by the piecewise linear decision
function. The low classification errors of SVMs and RVMs indicate that
the two classes—the genders—can be separated well given the PCA repre-
sentation on the texture & shape data. An intriguing fact is that SVMs
and RVMs perform better than man. The subjects were presented with
human faces with some high-level features such as hair, beards, or glasses
removed. However, such features were likely used by the subjects to create
their representation of gender-space during their lifetime. The subjects are
thus trained on one type of data and tested on another. The machines on
the other hand are trained and tested on the same type of stimuli: stimuli
from the MPI face database. This may explain the quite disappointing per-
formance of man in such a biologically-relevant task compared to machine.
This result is corroborated by [Moghaddam and Yang, 2000] comparing the
classification performance of man and SVMs on a different face database
and by [Golomb, Lawrence, and Sejnowski, 1991, Gray, Lawrence, Golomb,
and Sejnowski, 1995, Blackwell, Vogl, Dettmar, Brown, Barbour, and Alkon,
1997] where humans are compared to Artificial Neural Networks (see Section
5.6).

The classification error on the subject dataset as shown in Fig.5.1 rep-
resents the ability of the classifier to learn what we, based on the responses
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of the subjects, presume to be their internal representation of face-space.
The machines have more difficulty in learning the datasets with the sub-
ject’s labels than the one with the true labels, which may suggest that the
subject’s internal representation of the stimuli is not optimal for the ma-
chine and makes classification a harder task for machine. Given our aim of
re-creating the subjects’ decision boundaries using artificial classifiers, this
makes Kmeans a mediocre, and the prototype learner a rather poor candi-
date using the PCA representation. Furthermore we can see that humans
have a similar classification performance to SVMs and RVMs, making the
latter good candidates for modeling the classification performance of the
human subjects on for visual stimuli.

For both datasets, we notice that ](SV ) � ](RV ). This shows that
SVMs need much more representations for classification than RVMs. This
high number of SVs indicates that the classification task is difficult. How-
ever the generalization ability of SVMs is still good as shown by the low
classification errors in Fig.5.1. The low number of Kopt for both datasets
indicates that the classes have few intrinsic clusters and can be assumed to
be smooth manifolds.

As a first step allowing to isolate groups of models for feature extraction
and classification, we study the classification performance on the subject
dataset since the latter is the most meaningful for the studies to come. As
mentioned before, such a study is only relevant for the image and texture &
shape data types. Fig.5.2 shows these plots for the data types, the prepro-
cessors and the classifiers, the horizontal lines indicating the performance of
man. The image data—or the pixel information—can be seen as the input
arriving on the retina, making this data type a priori biologically mean-
ingful. Moreover Gabor wavelets have been found to describe the receptive
fields in V1 in physiological studies [Hubel and Wiesel, 1962] and have been
successfully used in computational models of spatial vision such as in [Itti,
Koch, and Braun, 2000]. We here experimentally verify that such Gabor
wavelets are also a sensible choice for face processing since they are the only
preprocessor on the image data with similar classification error as humans.
With this feature extractor, SVMs performs most similarly to man and,
surprisingly, Prots and RVMs perform similarly bad.

The texture & shape data yields overall classification performances closer
to those of humans than on the image data. This may suggest that the infor-
mation contained in the texture & shape data is useful for human subjects
to build their internal representation of faces as already suggested by [Troje
and Bülthoff, 1996, Vetter and Troje, 1997]. A similar finding was obtained
by [O’Toole, Vetter, and Blanz, 1999] where it was shown that humans rely
on both the texture and the shape information to classify faces according
to their gender. PCA, ICA I and NMF are most adapted in this respect.
SVMs and RVMs are the classifiers which best reflect human classification
performance whereas Prots and Kmeans are much worse.
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Figure 5.2: Summary plots showing the mean classification error on the
subject dataset for each classifier, data type and preprocessor. The hori-
zontal lines represent the mean and standard deviation of the classification
performance of man on the subject dataset.

5.3 Classification Behavior of Man and Machine

5.3.1 Methodology

Although useful to assess the classification performance of a classifier, a
cross-validation scheme is not appropriate when correlating the classification
behavior of man and machine mainly because of the lack of interpretability.
Indeed, in order to validate the separating hyperplane (SH) model for clas-
sification, we postulate that we can model the classification behavior of man
using a single SH and not M SHs as required by a cross-validation scheme.
Consequently we train the hyperplane algorithms on the whole dataset in
order to obtain a single SH. In the case of SVMs and Kmeans, in order to
determine the optimal value of C and K respectively, we need to proceed
to a single 10-fold cross-validation on the classification error. However, the
classifier is still trained on the whole dataset using this optimized value of
C or K, yielding thus a single SH. Notice that this cross-validation step is
done on the classification error and not on the man-machine correlations as
defined below.
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We first study the mean and standard deviation of the following errors
of the various algorithms for each subject:

1. the training error on the subject dataset

2. the classification error on the subject dataset determined using the un-
seen stimuli with, as labels, the sign of the mean of the other subjects’
responses for each of these unseen stimuli

3. the classification error on the true dataset computed using the unseen
stimuli with their true labels

where the unseen stimuli are the remaining 48 stimuli out of the 200 which
have not been seen by man, and thus neither by machine. These values are
averaged and the standard error is computed over all subjects. As before,
for each subject, ](SV ), ](RV ) and Kopt are a measure of the sparseness
of the classifier and ](SV ) allows to assess the generalization ability of the
SVM classifier. Their mean and standard deviation over subjects is then
computed. In this first study, and in particular through the training error,
we assess the “quality” of the parameters of the SH and thus the domain
of validity of the conclusions drawn from the correlation studies to be pre-
sented below. Furthermore, this training error indicates the ability of the
classifier to recreate the subject’s classification behavior and in particular
the subject’s internal representation of the stimuli. Finally, the comparison
of the two classification errors with the ones obtained previously using a
cross-validation scheme allows to assess the necessity of a cross-validation
scheme in the present studies.

From this point on, we shall only consider the SHs obtained on the
subject dataset since only these SHs reflect what we hypothesize to be the
internal representation of the subjects. In other words, for each subject a
personal SH is computed using the labels estimated by this subject. The
distance δ to this SH of each stimulus presented to this subject is then com-
puted for each classification algorithm. In the case of Kmeans this distance
is computed using the piece of hyperplane constructed using the mean of
each class nearest to the considered stimulus. The distance δ represents the
classification behavior of machine (see Chapter 4).

Second, the histograms (frequency of occurrence) of δ for each classifier
over all datasets shown to the subjects, i.e. the ensemble of all δ obtained
for all subjects, are computed for two groups of stimuli: the representations
(the Support Vectors, the Relevance Vectors, the Prototypes and the Means)
and the non-representations (the remaining patterns presented to the sub-
ject). These plots allow to visualize the actual geometrical configuration of
these stimuli with respect to the SH. In particular, they indicate the ge-
ometrical regions most useful for classification for each algorithm i.e. the
position relative to the SH of the elements the classifier actually uses for
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classification. Further, these plots also allow to visualize the effect of the
combined effect of the classifier and the feature extractor on the distribution
of the stimuli in the dataset, and in particular on the discriminability of the
two classes (see also Chapter 2). These histograms thus also give a one-
dimensional visualization of the data manifold resulting from the pairing
feature extractor—classifier.

Third, the classification behavior of man and machine is correlated with
all parameters of man and machine averaged over subjects and over sets of
stimuli. In other words, the mean of the subject’s classification error, RT,
and CR of the first psychophysical classification experiment for a given set
of stimuli are correlated to the mean distance of these stimuli to the SH for
the four types of hyperplane classifiers. The average and standard deviation
over stimuli are computed over the following sets for each subject:

1. the set of correct and incorrect gender responses: E = 0, 1

2. the RTs which have been discretized over three bins as follows:

α +
i− 1

3
(β − α) ≤ RT (i) ≤ α +

i

3
(β − α), i = 1, 2, 3

where α = min(RT ) and β = max(RT ).

3. the three sets of CRs: CR = 1, 2, 3

The mean and standard error over the subjects is then computed from the
mean and standard deviations of the above parameters. This study allows to
assess a global averaged classification behavior i.e the correlations between
the classification behavior of man and machine on a wide scale.

Fourth, we finally assess the correlation of the classification behavior of
man and machine on a stimulus-by-stimulus basis: the parameters of man
and machine are averaged only over subjects. In other words, we compute,
for each stimulus and classifier, the relation between the mean value of the
distance |δ| to the SH over all subject datasets and the mean response of the
subjects (classification error, RT or CR from the first psychophysical clas-
sification experiment) for this stimulus. The resulting scatter plots relating
man on the ordinate axis to machine on the abscissa are shown for each
classifier and for each type of response, each of the 200 scatter points repre-
senting one stimulus. To quantitatively assess this correlation, we perform a
non-parametric rank correlation analysis using the tied rank of the subject’s
response and of |δ| across the set of stimuli by computing Spearman’s rank
correlation coefficient r. The mean value of r and its standard deviation are
obtained using a bootstrap method by averaging over 1000 random poolings
of 90% of the 200 stimuli.
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5.3.2 Results

The first row of Fig.5.3 assesses the classification errors on the true and on
the subject datasets using PCA combined with the texture & shape data
type without using a cross-validation scheme. Comparing this figure to
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Figure 5.3: Comparisons of training and classification errors of machine
without a cross-validation scheme (first row). Histograms of distances of
(non-)representations to the SH (second row). Correlation of classification
behavior of man and machine with parameters averaged over subjects and
sets of stimuli (third row).

Fig.5.1, we conclude that a complete cross-validation scheme is superfluous
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for both datasets, although the actual classification errors may slightly differ.
This is however not of concern in the correlation studies since we are here
more interested in the comparison between quantities rather that in their
actual value. Further, the same conclusions as before apply for the number
of representations of the classifiers. The training error on the subject dataset
is, as it should be, smaller than the corresponding classification error. The
training error indicates that SVMs and RVMs are well suited to learn the
subject’s internal representation given the PCA representation since both
have a low training error. However Prots and Kmeans are badly adapted
for this task.

The second row of Fig.5.3 compares the histograms of δ for each classifier
between the representations and the non-representations for PCA applied
to the texture & shape data type. For SVMs the distribution of the repre-
sentations is peaked near the margins i.e. the representations are localized
near or on the margins. For RVMs, the representations are almost uniformly
distributed across the dataset with a slight peak around δ = 0 i.e. RVMs
use patterns sampled from the whole dataset for classification. Further-
more, for RVMs and SVMs there are more representations on the female
side (δ < 0) i.e. on the side where most errors are made (the subjects have
a male bias i.e. more females are classified as males then the contrary as
shown in Chapter 3). In other words, these algorithms put their represen-
tations where classification is difficult—around the SH, in the margin stripe
or in the difficult class. Such a behavior may be argued to be meaningful.
The contrary is true for Prots and Kmeans where the representations are
only put in the middle of the classes where classification is easy. The non-
representations are spread almost uniformly on a large subset throughout
the dataset for Prots and Kmeans. For RVMs this subset is much smaller
and is located around the SH. SVMs, according to their classification prin-
ciple, create a margin stripe between classes with as few patterns inside as
possible.

The studies on the geometrical position of the representation with re-
spect to the SH for all feature extractors using the above histograms are
given in Appendix F. Essentially the same conclusions as above apply, al-
though these histograms dependent on the geometry of the space given by
the feature extractor. This suggests that, despite the fact that the dimen-
sionality of the encodings is equivalent to the number of patterns, we get a
rich plethora of spaces spanned by the encodings corresponding to the var-
ious feature extractors. Generally, RVMs “sample” best the dataset since
their representations are spread throughout the dataset, although with an
increase towards the SH. This peak is absent for preprocessors such as the
size reduction or the histograms and for data types such as the shape data,
these feature extractors being anyhow shown below to be poor candidates
to model feature extraction in humans. In other words, a good feature ex-
tractor allows RVMs to put its representations around δ = 0 and RVMs can
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use best all information available in the dataset by sampling the whole of
it. On the contrary, SVMs use patterns near or on the margin to proceed to
classification for all feature extractors. Both RVMs and SVMs concentrate
their representations on the elements difficult to classify i.e. elements with
low |δ|. The worst case is represented by Prots and Kmeans which only use
easy elements, which is reflected by the histograms of the representations
that are essentially two peaks near the middle of the classes for all feature
extractors.

The classification behaviors of man and machine are correlated for PCA
and the texture & shape data type as feature extractors and results are sum-
marized in the third row of Fig.5.3 with parameters averaged over subjects
and stimuli. We observe, first, that the error of the subjects is high for |δ|
low, suggesting that elements near the SH are more difficult to classify. Sec-
ond |δ| is low for high RTs: the elements near the SH seem to require more
processing in the subjects’ brain resulting in a higher RT. Third, the high
CR for high |δ| indicates that the subject is sure when stimuli are far from
SH. Thus elements far from the SH are classified more accurately, faster and
with higher confidence than those near to the SH. This intuitive behavior is
a first hint at the validity of the assumption that hyperplanes may be used
to account for classification by humans. SVMs and RVMs choose among ex-
isting elements to build their SH and they maximize a margin, respectively
a conditional probability, and have a low δ as already seen in the above
histograms. This may imply that they classify in an efficient manner. Prots
and Kmeans generate new elements to compute their hyperplane and have
a high δ (see also the histogram plots), what may hint at a robust classifi-
cation. On the basis of these plots, it is difficult to compare the classifiers
among each other. The following correlation analysis solves this problem.

Fig.5.4 presents the scatter plots corresponding to an analysis on a face-
by-face basis for each classifier and for each type of response when averaging
only over subjects given our choice of the feature extractor (PCA and the
texture & shape data type). This plot is the central plot for the correlation
analysis between man and machine. SVMs and RVMs show most correla-
tion between the subject’s response and |δ|. The prototype algorithm again
behaves in the least human-like manner of the four classifiers. The cor-
relation between the classification behavior of man and machine indicates
for RVMs, SVMs and to some extent Kmeans, that heads far from the SH
are more easily processed by humans: the subjects’ brain needs to do more
processing (higher RT) to classify stimuli close to the decision hyperplane,
while stimuli far from it (high |δ|) are classified more accurately (low error)
and with higher confidence (high CR). Thus, as already mentioned above,
modeling the classification behavior of humans using hyperplanes seems to
be a plausible approach. Further, the poor correlation for Kmeans indicates
that it is unlikely that the subjects are using this type of piecewise linear
decision function.
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Figure 5.4: Correlation of classification behavior of man and machine with
parameters averaged over subjects. On the borders: scatter plots and cor-
relation coefficients relating on a stimulus basis the classification behavior
of man (classification error, RT or CR) to the classification behavior of ma-
chine (distance |δ| of a stimulus to the SH). The tied rank of the variables
are plotted and the scales range thus from 1 to 200. In the center: polar
representation of the absolute value of the correlation coefficient for each
classifier and human response. The origin corresponds to |r| = 0 and the
outer circle to |r| = 1.

Except for Kmean, both the RT and the CR show slightly more man-
machine correlation than the subjects’ classification error, although all these
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performance measures are related as was shown in Chapter 3. In other
words, if there is a good man-machine correlation for one of the subjects’
responses, we may expect to get roughly a similarly good correlation for
the other responses. The above finding is consistent with the fact that RTs
have been reported to play a central role in neuronal modeling where, for
instance, the RT of neurons—the time of the first spikes—can be used to
model face processing [Rullen, Gautrais, Delorme, and Thorpe, 1998] and
orientation selectivity in the visual cortex [Delorme, 2003].

In a second attempt to isolate a smaller group of feature extractors and
classifiers, we proceed to a summary analysis of the mean correlation 〈|r|〉
between the human responses and machine. Fig.5.5 shows theses summary
plots for each data type, preprocessing algorithm and classifier. We also plot
a selectivity “threshold” allowing to eliminate some potential candidates.

As far as the data type is concerned, the shape representation is less
relevant to model human classification and the texture more; the image
representation is an intermediate case. The shape thus helps less than the
texture to discriminate genders for the considered face stimuli. The texture
alone tells more about the gender of the stimuli than the image i.e. using the
correspondences of the MPI face database increases the man-machine cor-
relations. The combination of shape and texture information decreases the
relevance of the latter. Further, adding the shape information also increases
the classification error compared to the one obtained for the texture data
alone (see Appendix F). Thus considering the shape information in addition
to the texture decreases the classification performance and the man-machine
correlation. This is rather unintuitive since one may expect that adding
information would improve at least the classification performance of a clas-
sifier. This may suggest that an exhaustive representation is less adapted
than an efficient one. Furthermore, this effect may be due to the fact that
the texture and shape vectors, both rescaled to [−1, 1], each have a unit
weight in the texture & shape vector (uniform weighting as mentioned in
Chapter 2). Further studies could assess the effect of this linear cue com-
bination on the man-machine correlations presented here. This would give
an insight on the actual importance of the texture and of the shape cues in
gender classification tasks.

For the preprocessors, if we consider the image data, histograms and im-
age size reduction exhibit, as could be expected, the lowest correlation coef-
ficients, making them poor candidates to model feature extraction. Gabor
wavelet filters on the other hand provide best correlation among all prepro-
cessors. This makes again the combination of Gabor wavelet filters and the
pixel data a biologically plausible feature extractor as already mentioned in
the classification performance studies. Furthermore we show that the com-
bination of PCA on image data with a prototype learner as considered in
[Valentin, Abdi, Edelman, and O’Toole, 1997] seems least likely to be used
by humans. PCA, ICA I, NMF and the Kernel maps behave similarly well
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Figure 5.5: Summary plots showing the mean over the subjects’ responses of
the absolute value of the correlation coefficient 〈|r|〉 relating the classification
behavior of man to machine for each classifier, data type and preprocessor.
The horizontal line represents the threshold set at 0.7.
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on the texture data whereas NMF outperforms the others on the texture &
shape data type. Given the relevance of the texture & shape data type, NMF
thus seems overall to be a good candidate to model preprocessing. Kernel
maps are also good candidates on the image and texture data, suggesting
that mechanisms similar to Gaussian windows may be used by humans to
compare stimuli. Both NMF and ICA I rely on a part-based representation.
However the extreme sparseness of the ICA I basis (see Chapter 2) may make
it a worse candidate than NMF to model feature extraction. In conclusion,
a moderately sparse part-based representation as for NMF may be a good
model for feature extraction of visual stimuli. As for the detailed study for
PCA on the texture & shape data type, SVMs and RVMs best correlate
human to machine classification behavior and clearly outperform Prots and
Kmeans. Prototype learning is thus ruled out despite the findings of [Reed,
1972] on human classification of faces and those of [Rosch, Mervis, Gray,
Johnson, and Boyes-Braem, 1976] in naming tasks. The bad performance of
Prots is however confirmed by [O’Toole, Defenbach, Valentin, McKee, Huff,
and Abdi, 1998] where it has been argued that prototype learning could
not be a model for classification. Further, linear SHs seem to be a plausible
model for classification by humans as indicated by the high values of 〈|r|〉 for
all the feature extractors. The bad correlation of Kmeans again indicates
that a piecewise linear SH seems not to be appropriate to model human
classification.

At this point we may assess the sparseness of the classifiers determined
using the number of elements needed to compute the SH. The sparseness S
of a dual space classifier is determined using the number of representations
r and the total number of elements of the dataset t = 152 as follows:

S = log(
t

r
) (5.1)

We clearly have: limr→t S = 0 and limr→0 S =∞. Fig.5.6 presents this mea-
sure of sparseness for the four classifiers investigated on the subject dataset
and for all the considered feature extractors. The sparseness for the Prots
is constant since this algorithm uses by construction one prototype in each
class. Also it is difficult to conceive an algorithm with a higher degree of
sparseness, although for RVMs one RV may be enough to proceed to clas-
sification for some easy toy datasets. Kmean is very sparse whereas SVMs
are least sparse, RVMs having an intermediate behavior. These behaviors
apply throughout data types and preprocessors. The sparseness of the con-
sidered classifiers is thus robust and stable across feature extractors. Since
the highly-sparse Prots and Kmeans have been shown to perform worst in
every respect in the previous studies, the sparseness of a classifier does not
seem to be a good criterion to indicate whether an algorithm can be used
to describe the mechanisms used by subjects to classify visual stimuli. In-
deed the highly non-sparse SVMs have been shown to perform well in our
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Figure 5.6: Sparseness of each classifier on the subject dataset for the various
data types and preprocessors.

approach. It is however important to see the above results on sparseness un-
der the following perspective: whereas SVMs and RVMs use elements from
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the dataset as representations, the representations for Prot and Kmean are
computed using all patterns of the dataset. If one pattern is added to the
dataset or one pattern of the dataset is modified, both the prototypes and
the means have to be recomputed. On the other hand, depending upon the
”location” of these patterns in the space of the feature extractor, the SVs
and the RVs may not be modified. SVMs and RVMs may then be argued to
be more robust both to noise in the patterns and to novel patterns, which is
not the case for Prot or Kmean. This is certainly an important point when
modeling the classification behavior of humans, since it is unlikely that hu-
mans recompute their internal decision function for every new stimulus.

5.4 Stochastic Classification Behavior of Man

5.4.1 Methodology

We here study the stochastic nature of the classification behavior of man, in
particular the jitter in the subject’s classification error on the patterns near
the separating hyperplane. We also conduct the correlation analysis relating
man to machine on a stimulus basis as done above, however for both the
first and second psychophysical classification experiment. The implications
of these studies are two fold.

First, under the assumption of the SH model for classification, patterns
near the SH should be subject to more jitter (instability in the subjects’ re-
sponses) than those far from the SH. We use this stochastic effect to investi-
gate yet another time the mechanisms used by humans for feature extraction
and classification. For this, we compute the error difference ∆ = |e1 − e2|
between the subject’s classification error in the first (e1) and second experi-
ment (e2) for each stimulus. This error difference is then correlated with the
distance |δ| to the SH obtained from the first classification experiment for
each stimulus using the subject dataset. In the case of a meaningful model
of human classification, we expect ∆ to be high near the SH (i.e. for low |δ|).
A classifier showing no dependency between ∆ and |δ| can then be argued as
being not meaningful. In other words, we here study the inconsistencies of
the subject’s gender estimate as function of the distance of the correspond-
ing stimuli to the SH. This study is only done for the subject classification
error since the RT or CR associated with a stimulus are not expected to be
submitted to jitter: a pattern close to the SH, i.e. difficult to classify, may
be associated to either of the classes (jitter of the classification error), but it
will always take long for subject to decide (constant high RT between both
experiments) and the subject will never be confident (constant low CR).

Second, from these studies we also get a measure of the consistency of
all the subjects’ responses and can thus assess the stability of the subject’s
internal representation of the face stimuli (see also Chapter 3). Indeed the
comparison of the man-machine correlation coefficients computed using the
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subjects’ responses from the first and second psychophysical classification
experiments is then an indicator of the stability of human classification be-
havior and of the reproducibility of the results of these studies.

At this point it should be noted that the noise in the subjects’ labeling is
stochastic. In other words, both in the first and in the second classification
experiments, the labels are endowed with noise. We do not have access to
unnoised responses, and consequently to an unnoised SH. In the studies of
this section we thus compare two noised responses, and hope to use this fact
to corroborate the previous findings on the mechanisms used by humans to
classify visual stimuli.

5.4.2 Results

The man-machine correlation coefficients corresponding to the first and sec-
ond psychophysical classification experiments are compared in Fig.5.7 for
PCA applied on the texture & shape data. Considering the polar plot, we
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Figure 5.7: On the right: scatter plots and correlation coefficients on a
stimulus basis of the difference ∆ in the subject’s classification error between
the first and the second classification experiment and the distance |δ| of the
stimuli to the SH. On the left: polar representation of the absolute value
of the correlation coefficients for each classifier and human response for the
first “+” and second “x” classification experiment, the “◦” on the error axis
representing this coefficient for the plots on the right. The axes are scaled
as in the previous correlation plots.

can conclude that the correlation coefficients relating the responses of man
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and machine on a stimulus basis (i.e. responses averaged across all subjects)
are similar, if not identical, between the first and the second classification ex-
periment. In other words these correlations are consistent over time, which
is a consequence of Fig.3.3 in Chapter 3 where it was shown that the sub-
jects’ responses were stable on a stimulus basis (responses averaged across
subjects). This suggests the stability of the subjects’ internal representation
of the faces and the reproducibility of the subjects’ answers. The latter is a
fundamental point in every scientific investigation. Furthermore the scatter
plots indicate that SVMs and RVMs exhibit the highest correlation between
the difference ∆ in the subject’s classification error between the first and
second classification experiment and the distance to the SH. In both cases,
most jitter in the subjects’ gender estimate is observed near the SH i.e. sen-
sitive patterns lie near the SH. This is a meaningful behavior given the SH
model of classification and the mechanisms underlying RVMs and SVMs
seem to be most suited to model human classification given our choice of
feature extractors. The Prot and Kmean classifiers, as before, seem least
adapted for this enterprise.

As a final step in assessing the feature extractors and classifiers best
suited to model the classification of humans, we consider the stability of the
subject’s classification error—the correlation between ∆ and |δ|—for all data
types, preprocessors and classifiers in Fig.5.8 using a selectivity threshold.
As for the previous correlation analysis, these plots indicate that the shape
data is less adapted to model human classification. Confirming the previous
findings, Gabor filters on the image data and NMF on the texture & shape
data type are the preprocessors which show best man-machine correlations.
Under the hypothesis of hyperplane classification, SVMs and RVMs are the
most adapted classifiers (most jitter near SH) and Prots and Kmeans the
least adapted ones (jitter uniformly distributed). The good man-machine
correlations of Kernel maps on the image and the texture & shape data type,
what can also be observed in Fig.5.5, may also suggest that humans may
use something akin to Gaussian windows to compare stimuli.

5.5 Summary & Discussion

From the studies of this chapter we can deduce that humans may use a
mechanism akin to SVMs and RVMs for classification of visual stimuli. As
for the feature extractors, the table below relates the combinations of data
type and preprocessor which relate best man to machine in the three studies
considered in this chapter. Gabor wavelet filters on the image data and NMF
applied on the texture & shape data type are shown to compare and correlate
overall best with human classification behavior. They may be considered
as good candidates to model feature extraction of visual information by
humans.
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Figure 5.8: Summary plots showing the absolute value of the correlation
coefficient r relating the difference ∆ in classification errors of the subjects
to |δ| for each classifier, data type and preprocessor. The horizontal line
represents the threshold set at 0.5.
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class. error correlation stoch. class.

I Gabor wav. Gabor wav. Gabor wav.
- Kernel map Kernel map
- - PCA
- - ICA I

T - NMF NMF
- PCA PCA
- ICA I ICA I
- Kernel map Kernel map

S - - -

[T S] NMF NMF NMF
PCA - -
ICA I - -

Table 5.1: Best combinations of data type and preprocessor for the three
types of studies done in this chapter.

As far as the classifiers are concerned, hyperplanes reveal to be suited to
describe classification of visual stimuli in the human brain. Stimuli near this
hyperplane are classified by the subjects less accurately, with higher reaction
time and lower confidence than those far from it. In other words, the brain
needs to do more processing for elements difficult to classify. Piecewise linear
decision functions seem however not suited for modeling the classification
behavior of humans. At this point it may be useful to stress the point
that the optimal parameters of SVMs and Kmeans (C and K respectively)
were set by a cross-validation scheme on the classification error and not on
the man-machine correlation. Thus the computation of the SH for all four
classifiers did not take the human responses into account since this would
strongly bias the man-machine correlations.

Simple and very sparse algorithms such as the prototype learner and the
Kmean classifier reveal to be poor candidates to model classification in the
human brain. However, more elaborate and less sparse classifiers such as
SVMs and RVMs seem to be more appropriate. In other words too much
simplicity is bad, as already stated by Einstein (see Chapter 1). Furthermore
one may speculate that the classification of visual stimuli by human subjects
is done in a probabilistic manner, for instance by maximizing the conditional
probability of a class membership as done by RVMs, or in a statistically op-
timal manner, for instance by maximizing of the margin separating both
classes as done by SVMs. In other words, our results seem to indicate that
exemplar-based classification algorithms may be well-suited to describe the
classification behavior of humans. Although the entire dataset is needed for
training, only the representations are used to define the SH, and thus also
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to classify novel patterns. While the representations for SVMs, the SVs, are
gathered near the margin, the RVMs spread their representations, the RVs,
throughout the dataset. Therefore RVMs make a more exhaustive use of the
dataset for classification and do not “waste” the data outside of the margin
stripe when classifying novel patterns as is the case for SVMs. A clustering
combined with a nearest-neighbor classifier and a mean-of-class prototype
classification using a uniform distribution of the dual space coefficients were
shown to be poor candidates for modeling classification in humans. One of
the main problems arising when using prototype learners is the absence of
update rule for the computation of the prototypes, which may yield a lack of
“exploration” of the database since classification is solely done using 2 non-
optimized patterns. Boosting the prototype classifier brings the algorithm
to “divide & conquer” as shown in [Graf, Bousquet, and Rätsch, 2004a],
yielding an interesting extension of the mean-of-class prototype learner, and
solving the problem 7.12 stated in [Schölkopf and Smola, 2002]. The pro-
totype formalism was also extended in [Graf, Bousquet, and Rätsch, 2004a]
to allow more sophisticated update rules, among others SVMs and RVMs.
In a nutshell, the SH is computed using its normal vector, the latter being
defined by two patterns. These patterns are then constrained to belong to
the convex hull of the dataset and are then defined as the “generalized”
prototypes. In this way, most of the SH algorithms can be cast into the
prototype learning formalism, the prototype being however not a simple
mean-of-class but is computed according to the classification algorithm rep-
resented by the SH. Finally, a whole family of algorithms was cast in this
prototype framework, allowing thus to derive a novel and powerful visual-
ization of their classification behaviors and allowed us to gain novel insights
into the principles of classification.

In order to model feature extraction in the human brain, Gabor wavelets
on the image data and the combination of the texture & shape type with
NMF seem most appropriate to account for the processing of visual informa-
tion in classification tasks. The image formed on the retina is clearly most
similar to the image data type and Gabor wavelets seem to be implemented
in the brain [Hubel and Wiesel, 1962]. The fact that this feature extractor
is revealed by the studies of this chapter as a good candidate to model the
encoding of visual information is an a posteriori proof of the validity of our
approach. While the image data is clearly biologically relevant since the
image on the retina is comparable to a pixel representation, the texture &
shape data type suggests that a spatial correspondence principle may also
be useful when describing the internal face representation of humans. The
optimal preprocessor NMF suggests that humans may use a part-based basis
to represent their visual information. Furthermore, sparseness in the encod-
ing seems less important, and sparseness of the images of the basis may be
moderate. Indeed, too much sparseness in the basis as for ICA I reveals to
give a poor description of human feature extraction. In other words, while
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the encoding has low sparseness, a part-based basis seems most plausible to
be used by humans, thus ruling out PCA with its holistic basis. A similar
result was obtained by [Pelli, Farell, and Moore, 2003] in the context of word
recognition: words (holistic representation) are recognized worse then letters
(part-based representation). Furthermore the plausibility of local features
was also verified in a different context, namely viewpoint invariant recogni-
tion by [Tarr, Bülthoff, Zabinski, and Blanz, 1997] and part-based elements
are the basis for the “geons” theory of [Biederman, 1987]. However, our
findings are opposite of those obtained by [O’Toole, Defenbach, Valentin,
McKee, Huff, and Abdi, 1998, Valentin, Abdi, Edelman, and O’Toole, 1997,
O’Toole, Abdi, Deffenbacher, and Valentin, 1993] where PCA is used as
a (holistic) representation for faces and of the findings by [Gauthier, Cur-
ran, Curby, and Collins, 2003] where object processing in humans has been
studied using a psychophysical setup combined with electrophysiology. Also
notice that one of the main drawbacks of PCA on a theoretical ground is
the indeterminacy of the directions (eigenvectors) having similar eigenval-
ues: this degeneracy may hamper the use of PCA to efficiently encode visual
information. It can also be noticed that PCA and ICA I have similar classi-
fication behaviors: their classification performance and their man-machine
correlations are roughly identical, although their basis images are totally dif-
ferent (holistic versus part-based). This similarity could be expected since
when working with linear classifiers, PCA and ICA I are identical up to a ro-
tation and a translation—ICA I has a PCA preprocessing step when whiten-
ing of the data. Kernel maps, although good candidates for some data types,
are outperformed by NMF, hinting at the fact that humans may use a basis
of images to encode visual information. Furthermore NMF exhibits a lower
Fisher J separability score between classes than those for PCA, ICA I and
Kernel maps. There thus seems to be no relation between the geometrical
discriminability between classes and the relevance of a preprocessor for the
corresponding classification tasks. Nature may thus not implement a feature
extraction separating classes in an optimal way with respect to the Fisher
score. Finally, histograms and neighborhood-preserving maps such as LLE
have been shown to be less suited to model feature extraction in the human
brain.

Obviously our results rely on some crucial assumptions. Indeed we as-
sume the representativeness of the face space spanned by the MPI face
database. In other words, the question is how well the MPI face database
samples the real internal representation of faces in the human brain. In
particular, when rejecting the prototype learner as a plausible candidate
for human classification, we assume that the mean face of our human sub-
jects’ is close to the sample mean of our database. Clearly, a larger face
database would be welcome, but is not trivial as we need the texture and
shape flowfield maps. Furthermore, there is the different learning regime.
Machines were trained on the dataset proper, whereas humans were assumed
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to have extracted the relevant information during their lifetime, and they
were tested on faces with some cues removed. In order to avoid the above
assumptions, future research will deal with the use of novel low-level stim-
uli. In such a framework the subject will have to learn and classify: there
will be a training and a testing phase for the subject. The modeling aspect
will then deal with on-line learning and reinforcement learning [Sutton and
Barto, 1998].

5.6 Some Related Studies

There have been some previous attempts to model classification and feature
extraction in the brain using psychophysical setups. In these studies man
and machine are compared, and their classification behaviors are not cor-
related. As shown in this dissertation, comparing man and machine is not
sufficient to account for a true description of the classification mechanisms
used by humans. The correlation framework introduced in this dissertation
allows to pinpoint these mechanisms much better.

The first attempts to compare the classification performance of man
and machine in the context of gender classification were done using Artifi-
cial Neural Network (ANN) classifiers applied on a PCA representation of
the image information using an antoencoder network. ANN were shown to
classify better than man, although not much, using the so-called SEXNET
architecture [Golomb, Lawrence, and Sejnowski, 1991]. Further studies as
done in [Gray, Lawrence, Golomb, and Sejnowski, 1995] using various reso-
lutions of the stimuli images but without the PCA stage indicate that the
gender classification problem using images of faces seems to be linearly sepa-
rable since a simple Perceptron yielded results similar to a multi-layer ANN.
Face stimuli with different expressions, orientations, noise and masks were
considered by [Blackwell, Vogl, Dettmar, Brown, Barbour, and Alkon, 1997]
in the above context: man versus ANN on the images directly (no feature
extraction). At low noise levels, man outperformed machine whereas at high
noise levels, humans were much worse than ANN. While the results for stim-
uli corrupted by noise are corroborated by the findings in this dissertation,
adding noise to the face stimuli considered in this dissertation would cer-
tainly be a future direction to take to investigate feature extraction in the
human brain. In conclusion, from the studies comparing man to ANN on
a face database, humans were shown to perform better than machine. This
finding is contrary to what was reported in [Bromley and Säckinger, 1991]
where human experts and ANNs are tested on digits from the postal service
database USPS. This discrepancy may be due to the nature of the stimuli
and to the fact that for digits, a 10-class classification problem is considered
instead of a dichotomic one as done for gender classification studies.

Gender classification on face images was done by [Moghaddam and Yang,
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2002] on 21x12 pixels images using the state-of-the-art SVMs. In this ap-
proach no feature extractor was necessary since the image vectors were small
enough. SVMs where shown to outperform classical methods such as Fisher,
Nearest-neighbor or RBF classifiers. This study is purely computational and
SVMs were mainly considered in the nonlinear case, i.e. with nonlinear kernel
functions, to achieve best classification performance. SVMs have been used
in the same context on the PCA and LLE of real-sized 256x256 pixels images
from the MPI face database [Graf and Wichmann, 2002]. PCA was shown to
be superior to LLE for this classification task, similar to the findings of this
dissertation: LLE does not allow class separability and makes it a bad pre-
processor for classification studies. Further, the classification performance
of SVMs and humans has been compared by [Moghaddam and Yang, 2000].
The stimuli were considered at two resolutions: a low one (21x12 pixels)
and a high one (80x40 pixels). In both cases SVMs performed better than
humans, as also observed in this dissertation. Whereas the performance of
SVMs was shown to be constant over the two resolutions, human subjects
classified much better at high resolution, as could be expected.

The face recognition vendor test [Phillips, Grother, Micheals, Blackburn,
Tabassi, and Bone, 2003] is an evaluation of available face recognition sys-
tems for industrial large-scale real-world applications. Although not com-
paring directly man to machine, it exhibits some behaviors of machine which
are quite human-like. Machine was evaluated among others on its reaction
time i.e. the time for novelty detection. The RT of subjects was also shown in
this dissertation to be of high importance since it had a good man-machine
correlation. It was also shown that male faces are more easily recognized
as female ones—there are more mistakes for female faces—implying thus a
male bias and corroborating the findings of this dissertation.

In the context of the “other-race effect”, it was shown that subjects are
better at recognizing people from their own race than people from other
races [Goldstone, 2003, Furl, Phillips, and O’Toole, 2002], an explanation
for this fact being that one is more accustomed to people of the same race.
Some basic classifiers using PCA, Fisher Discriminant Analysis or Gabor
jets were trained on images of people from one race and tested on images of
people from another one. The biological plausibility of the classifier was in-
ferred using the other-race assumption. It was concluded that the other-race
effect was only present for algorithms which created “distorted” or warped
face representations to emphasize features allowing classification. Although
not tested, SVMs have this feature: they find a decision function which
maximally discriminates the classes, i.e. maximizes the margin between the
classes. The classification algorithms do not share a common ground as the
ones used here (hyperplane classification) and there is no clear distinction
between the feature extraction step and the classifier itself. These facts
make any conclusions with respect to the mechanisms involved in the brain
quite tenuous. This study can be seen as an attempt to bridge the gap
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between psychophysics and theoretical modeling. This approach is however
less fruitful than the one introduced in this dissertation since it does not
correlate man and machine.

Learning categories from examples was studied in man and machine by
[Fass and Feldman, 2003] using concepts based upon the minimum descrip-
tion length (MDL) principle, a concept which can be linked with Bayesian
inference. The study differs from this dissertation on one main point: there
was a learning and testing phase for the subjects. MDL was shown to
provide a good description of the subject’s performance. Furthermore, hu-
man subjects were supposed to use “complexity-minimization principles”
and “cognitive codes”. In this dissertation, we have provided a more thor-
ough account on the former and latter using supervised and unsupervised
machine learning respectively.

One of the first attempts to model classification is due to [Reed, 1972]
where human faces are classified. Some baseline classifiers such as the the
General Context Model (GCM) and the prototype learner (see Chapter 4)
are used to describe the classification behavior of man. It was concluded
that humans use a prototype classification rule, contrary to the finding of
this dissertation.

5.7 And what about Neurophysiology?

We proceed below to a brief review of some findings of neurophysiology
and/or functional Magnetic Resonance Imaging (fMRI) which can be related
to the studies done here. We try to draw parallels in methodology and/or
findings between studies done in man and monkey.

The mechanisms underlying classification of visual stimuli and the cor-
responding feature extraction have been investigated in man and monkey by
[Sigala, Gabbiani, and Logothetis, 2002]. Similarity-rating tasks were per-
formed on line drawings of faces and fish with four parameters, two of them
being diagnostic ones i.e. useful for classification. Humans and monkeys
were shown to behave similarly. A comparison to some baseline classifica-
tion models used in the psychology community revealed that the prototype
learner was least adapted to model classification and feature extraction and
that a linear boundary between the classes could account for classification.
These two findings are corroborated by some of the results of this disserta-
tion. Further considerations on the physiological level as done in [Sigala and
Logothetis, 2002], revealed that neurons in the inferior temporal (IT) cortex
respond more strongly (i.e. have a larger activity) to the diagnostic features
than to the non-diagnostic ones. Thus categorization of visual stimuli seems
to be done by neurons in IT on the basis of the diagnostic features. Both
studies rely on the comparison between man, monkey and machine. The
approach introduced in this dissertation would allow a promising extension:
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correlate man, monkey and machine using the distance of the stimuli to the
separating hyperplane i.e. the decision function. One of the main criticism
of this study is that the theoretical methods used to model classification
in machine are derived from [Reed, 1972, Nosofsky, 1991]. The develop-
ments of machine learning, both supervised and unsupervised, are valuable
replacements of such methods with more thorough theoretical foundations.

Classification in monkeys has also been investigated by [Freedman, Riesen-
huber, Poggio, and Miller, 2001, 2002] in the context of a category-matching
task of images of cats and dogs using a morphing software allowing to create
new stimuli from these two classes, and in particular stimuli on the boundary
between these classes. The importance of the elements between the classes
has been demonstrated in the studies of this dissertation (see Section 5.5).
Multiple visual features of the stimuli were used by monkey. The class of
the visual stimuli was related to the neural activity in the lateral prefrontal
cortex (PF) whose circuitry is assumed malleable, allowing thus learning
and memorization. It was concluded that neurons in this area code for
classification. Further studies [Freedman, Riesenhuber, Poggio, and Miller,
2003] comparing IT to PF revealed that IT seems to be responsible for the
analysis of shapes as already obtained by [Sigala, Gabbiani, and Logothetis,
2002, Sigala and Logothetis, 2002] while PF seems to encode classes, mem-
ory effects and the relation to behavior. This study makes also use of the
computational model by [Riesenhuber and Poggio, 1999, 2000] which mod-
els object recognition in IT cortex using the combination of a hierarchical
model, receptive fields, linear combinations and nonlinear “maximum” op-
eration gates. This model describes feature extraction, however not the
classification stage. A general discussion of these findings can be found in
[Riesenhuber and Poggio, 2002]. Although these studies are related to the
ones done here, there is no direct comparison or correlation of the classifi-
cation behavior of monkey and machine. Further, while the physiological
experiments deal with classification, the model deals with feature extraction,
making a comparison quite hazardous.

Feature extraction has been considered in monkeys by [de Beeck, Wage-
mans, and Vogels, 2001] using low-dimensional parametrized shapes by study-
ing the neural basis of the low-dimensional representations corresponding to
these stimuli. Similarities between shapes are then parametrized in a low-
dimensional space obtained using Multi Dimensional Scaling (MDS). Psy-
chophysical studies and single-cell recordings in IT suggest that the order
between stimuli is kept while their distance is distorted. As seen in this
dissertation, these results rely on the choice of the feature extractor. MDS
belongs to the same family as LLE, which was shown to be not adapted for
classification studies, at least given our face stimuli. A promising extension
of the studies of [de Beeck, Wagemans, and Vogels, 2001] would thus be
to consider other feature extractors, in particular Gabor wavelet filters and
NMF which were shown in this dissertation to work best in the context of
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visual classification in the human brain.
The above physiological studies in monkeys (single-unit recordings) make

the following question arise: if we understand what happens in monkeys,
how does it translate to humans? It was shown by [Tsao, Freiwald, Knut-
sen, Mandeville, and Tootell, 2003] using fMRI that man and monkey have
similar brain architectures for the processing of visual objects. In particu-
lar, it was shown that monkeys have face-selective patches which are similar
in size and number with those found in humans. Furthermore the role of
learning, a concept tightly linked with classification, of such face-patches is
shown to have some similarities in man and monkey.
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Chapter 6

Other Approaches to Model

Classification in Humans

In this chapter we present alternative approaches to the ones considered so
far in this dissertation to model classification of visual stimuli by humans. The
classification system composed of a linear feature extractor and a linear classifier
can be visualized and allows feature ranking without use of prior information. A
novel manner to analyze the data from the previous psychophysical experiment
using machine learning is introduced. Finally, the hypotheses generated from
machine learning are used to generate novel stimuli which are shown to the
subjects in a novel psychophysical discrimination experiment.

6.1 Overview

We attempt to understand visual classification by human subjects. For
this, we consider as in the previous chapters, the combination of human
psychophysics with machine learning in the context of gender classification
of images of human faces. We first choose one (linear) feature extractor and
four (linear) classifiers. The studies relating man and machine introduced
in Chapter 5 are then done for these choices. Because we combine a linear
feature extractor with linear classifiers, we have a linear classification system
allowing us to visualize the decision image corresponding to the normal
vectors of the separating hyperplanes (SHs) of the classifiers trained on the
true gender labels of the stimuli as well as on the gender labels assigned by
the human subjects. On the basis of these decision images, feature ranking
is discussed. These results are compared to those obtained by Recursive
Feature Elimination (RFE).

Along the lines of [Graf, Wichmann, Schölkopf, and Bülthoff, 2004c],
we also apply RFE to the PCA components until both man and machine
show equal classification performance since the classification performance of
some machines outperforms that of human subjects. This results in three
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sets: (i) the distances of the stimuli to the separating hyperplane (SH) of
the machines trained on the true labels, (ii) the distances of the stimuli to
the SH trained on the subject labels, and (iii) the distances in the RFE-
reduced-dimensionality space of the stimuli to the SH trained on the true
labels. We perform a logistic regression on the average proportion of correct
classification against the three sets of stimulus-to-SH distances. It will be
shown that humans subjects and machines often classify faces quite differ-
ently. However some machines can re-create the internal representation of
faces for human subjects very well.

Using the novel concept of decision image, we predict that the female-to-
maleness transition along certain directions in face-space—normal to the SH
of the linear classification system closest in behavior to human subjects—
should be faster than those along other directions. A psychophysical dis-
crimination experiment using novel stimuli computed using the normal vec-
tors to the SH for each classifier corroborates this prediction as shown in
[Wichmann, Graf, Simoncelli, Bülthoff, and Schölkopf, 2004]. The results
of this experiment validate the models given by machine learning to help
understand the classification of visual stimuli by humans. This experiment
finally allows us to close the psychophysics-machine learning loop.

6.2 Some Algorithms from Machine Learning

For the studies of this chapter, we need to generate novel stimuli from the
low-dimensional decision space where classification is performed. We choose
to use the image data type to be able to visualize the faces corresponding to
the novel patterns of the decision space without using the morphing algo-
rithm. Furthermore, we require the preprocessor to be invertible, excluding
thus Gabor wavelets although they were shown to model best human clas-
sification behavior in Chapter 5. Since we have shown that PCA and ICA
induce by construction similar classification behaviors, this reduces the can-
didates for preprocessing to PCA and NMF. Because of its benchmark role
in unsupervised machine learning, we choose PCA, despite the fact that the
studies of Chapter 5 indicate that NMF may be slightly more adapted to
model visual classification in humans on the basis of the man-machine corre-
lations. Extending the studies of this chapter using NMF is clearly a future
line of research. The PCA data is the already centered and since we will need
to reconstruct the face stimuli given their low-dimensional representation,
we do not normalize the data.

The results of Chapter 5 hint at the fact that it is unlikely that humans
use something akin to a piecewise linear decision function as studied for
the K-means classifier. Instead we here study the Fisher linear discrimi-
nant classifier (FLD, [Fisher, 1936, Mika, Rätsch, Weston, Schölkopf, and
Müller, 2003]) which finds a direction in the dataset allowing the best sepa-
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ration of the two classes. This direction is then used as the normal vector of
the separating hyperplane, with the offset being optimal in the least mean
square error sense as: b = −〈~w| ~p++~p−

2 〉 where ~p± are the prototypes of
each class. The vector ~α is the dominant eigenvector of M~α = λN~α. The
between-class Gram matrix is defined as: M = |~m− − ~m+〉〈~m− − ~m+| and
the within-class Gram matrix as: N = CCT −

∑

i=± ](yi = ±1)|~mi〉〈~mi|.
The parameters in these expressions are given as: Cij = 〈~xi|~xj〉 the Gram
matrix of the dataset and ~m± = 1

](yi=±1)C
~1± where ~1+ a vector of size p

with value 0 for ~xi|yi = −1 and value 1 for ~xi|yi = +1 and ~1− = ~1 − ~1+.
The normal vector obtained here is identical to the one computed by ap-
plying the prototype classifier on the whitened data. In fact FLD is ar-
guably a more principled whitened variant of the prototype classifier. In-
deed, the FLD weight vector can be written as ~w = S−1

w (~p+ − ~p−) where
Sw is the within-class covariance matrix of the data. Consequently, if
we disregard the constant offset b, we can write the decision function as

〈~w|~x〉 = 〈S−1
w (~p+ − ~p−)|~x〉 = 〈S

−1/2
w (~p+ − ~p−)|S

−1/2
w ~x〉, which is a proto-

type classifier using the prototypes ~p± after whitening the space with S
−1/2
w

as pointed in [Wichmann, Graf, Simoncelli, Bülthoff, and Schölkopf, 2004].
FLD was not considered in Chapters 4 and 5 since it belongs to the category
of the prototype classifiers. In the studies of this chapter, we also consider
the Support Vector machine (SVM), the Relevance Vector Machine (RVM)
and the (classical) mean-of-class prototype classifier (Prot).

6.3 Classification in Man and Machine

We here redo the studies presented in Chapter 5 to assess the effect of a non-
normalized input space and to study the classification behavior of FLD. The
plots comparing the classification performance of the classifiers to humans
are shown in Fig.6.1. The classification error on the true dataset is similar
between humans, SVM and FLD. Prot on the other hand has a much higher
classification error than humans on both datasets. The subject dataset
makes classification a harder task as illustrated by its higher classification
errors when compared to the true one. Given these results, it is highly
unlikely that humans use something akin to prototype classifiers, at least
given the PCA representation.

The first row of Fig.6.2 shows that SVM and FLD have no training
error. These classifiers are thus able to recreate the subjects’ internal rep-
resentation of the decision space associated to face stimuli. This results
corroborates the previous finding that the classification error of humans,
SVM and FLD are similar. The second row of Fig.6.2 shows the dis-
tribution of the (non-)representations—in the case of FLD, they are de-

fined as ~f± =

∑

i|sign(αi)=±1 αi~xi
∑

i|sign(αi)=±1 αi
. Both SVM and FLD separate the non-
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Figure 6.1: Comparison of the classification performance of man and ma-
chine on the true and subject dataset using a cross-validation scheme.

representations such as to form two peaks around the SH while RVM and
Prot have this data more spread out through the dataset. Compared to the
non-representations, the representations of SVM, RVM and FLD are near
the SH. The last row of Fig.6.2 shows that FLD has least correlation be-
tween man and machine for the three responses of the subjects. This fact
is corroborated by the correlation plots of Fig.6.3. The first row is another
visualization of a previous results: SVM and FLD can recreate perfectly the
subjects internal representation while RVM is less good at it. The prototype
classifier is by far the worst at this task. Considering the following rows,
we notice that the correlation man-machine for FLD is even worse that for
the prototype classifier. The same applies when studying the stability of
the subjects’ responses in Fig.6.4. By comparing the above plots obtained
without normalizing the PCA space to the corresponding ones in a normal-
ized PCA space (see Appendix F), we notice that the normalization only
affects slightly the results and does not affect the comparison between the
classifiers.

The prototype classifier has a high training error and a low man-machine
correlation. The prototype classifier can not learn the subjects’ internal rep-
resentation and thus it may be argued that no conclusions can be drawn from
the low man-machine correlation. On the other hand, FLD has no training
error, indicating that it can perfectly recreate the internal representation of
humans. Thus, from its low man-machine correlation, it maybe concluded
that humans do not use a mechanism akin to FLD for classification. Of
course, these results hold given the PCA representation.

The bad man-machine correlation of FLD could be expected. Indeed,
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Figure 6.2: Comparisons of training and classification errors of machine
without a cross-validation scheme (first row). Histograms of distances of
(non-)representations to the SH (second row). Correlation of classification
behavior of man and machine with parameters averaged over subjects and
sets of stimuli (third row).

for 152 or 200 pattern in 200 dimensions, an algorithm such as FLD overfits
and separates by construction the data in a binary way: δ(~x) = ±d for some
d ∈ R. When considering the subject dataset, each of the 152 stimuli has
a value of |δ| = di for i = 1, . . . , 55. Averaging on a stimulus basis, we
may expect to get roughly the same mean 〈|δ|〉 for each stimulus. This then
results in low values of the man-machine correlation.
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Figure 6.3: Correlation of classification behavior of man and machine with
parameters averaged over subjects. First row: the subjects’ error as function
of the training error of machine on a stimulus-by-stimulus basis. On the
borders: scatter plots and correlation coefficients relating on a stimulus
basis the classification behavior of man (classification error, RT or CR) to
the classification behavior of machine (distance |δ| of a stimulus to the SH).
The tied rank of the variables are plotted and the scales range thus from
1 to 200. In the center: polar representation of the absolute value of the
correlation coefficient for each classifier and human response. The origin
corresponds to |r| = 0 and the outer circle to |r| = 1.
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Figure 6.4: On the right: scatter plots and correlation coefficients on a
stimulus basis of the difference ∆ in the subject’s classification error between
the first and the second classification experiment and the distance |δ| of the
stimuli to the SH. On the left: polar representation of the absolute value
of the correlation coefficients for each classifier and human response for the
first “+” and second “x” classification experiment, the “◦” on the error axis
representing this coefficient for the plots on the right. The axes are scaled
as in the previous correlation plots.

One manner to avoid this problem is to consider the mean SH over all
subjects defined by ~w = 〈~wi〉 and b = 〈bi〉 where the SH for each subject
is defined by ~wi and bi. The distances δ of the stimuli to this mean SH
are then computed. For FLD, this will result in non-binary values for δ.
Using this approach, the classifiers are trained either on all 200 stimuli of
the true dataset or on the 152 stimuli presented to each subject. There is
no testing phase and a single separating hyperplane (SH) is obtained for
each classifier, as opposed to multiple SHs as obtained when doing cross-
validation to estimate the classification error as done in Chapter 5 or in [Graf
and Wichmann, 2004]. The histograms of the distance δ(~x) of the stimuli to
the SH are used to describe classification for each classifier and dataset as
shown in Fig.6.5. For all classifiers, the training error on the true dataset is
smaller than on the subject dataset. The histograms are also wider for the
subject dataset than on the true one, suggesting that the subjects’ labels
make learning a harder task for the machines as already noticed previously.
All classifiers except the prototype classifier have a low training error on
the subject dataset showing their ability to reproduce the subjects’ class
labeling. The larger training error of the prototype classifier is also reflected
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Figure 6.5: Histograms of the distance δ(~x) of the faces to the SH for each
classifier for the true and the subject dataset. The corresponding training
errors are indicated in the titles. The light line indicates the female stimuli
whereas the dark one the male stimuli.

by the overlap of the histograms for male and female stimuli. For FLD, we
see that, as expected, the histogram of δ on the true dataset is binary because
of the overfitting done by FLD on 200 patterns in 200 dimensions. On the
other hand, this histogram on the subject dataset, computed using the mean
SH, spreads these two peaks into distribution of non-zeros supports.

6.4 The Decision Images

We introduce below the concept of decision image (see also [Wichmann,
Graf, Simoncelli, Bülthoff, and Schölkopf, 2004, Graf, Wichmann, Schölkopf,
and Bülthoff, 2004c]) and show its relation to another important issue re-
lated to classification: feature ranking. We subsequently compare our find-
ings with those obtained using a principled method from machine learning,
namely Recursive Feature Elimination (RFE).

The data matrix X ∈ R(200 × 2562) is defined by the 200 faces of size
256x256 from the MPI face database. Using the same experimental proce-
dures as previously described in Chapter 3, 55 human subjects are asked to
classify a random subset of 152 of the 200 faces and the subjects’ gender es-
timate ŷ is recorded for each presented face with the convention that ŷ = −1
for a female face and ŷ = +1 for a male face. We consider no dimensional-
ity reduction and thus keep all 200 components of the PCA when applied
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to the data matrix X. This implies that the reconstruction of the data is
perfect and we can write: E = X̄BT ⇔ X̄ = EB where E ∈ R(200 × 200)
is the matrix of the encodings (each row is a PCA vector in the space of
reduced dimensionality), B ∈ R(200 × 2562) is the orthogonal basis matrix
and X̄ the centered data matrix. The combination of the encoding matrix
E with the true class labels y of the MPI database yields the true dataset,
whereas its combination with the class labels ŷ of the subjects yields the
subject dataset.

To model classification in human subjects, we use methods from super-
vised machine learning. In particular, we examine linear classifiers where
classification is done using a SH defined by its normal vector ~w and offset b.
Furthermore we require the classifier to be in dual form: the normal vector
can be written as a linear combination of the patterns ~xi ∈ R

200 (the ith row
of E) as ~w =

∑

i αi~xi.
The combination of a linear feature extractor X̄ = EB and a linear

classifier y(~x) = 〈~w|~x〉+b yields a linear classification system: ~y = ~wT ET +~b
where ~b = b~1. We define the decision image as the vector ~W ∈ R

2562

effectively used for classification as: ~y = ~W T X̄T +~b. The decision image is
an image vector incorporating the feature extraction and the classification
algorithms and can be used for a compact and efficient visualization. The
classification of an image is then done by comparing it to this decision image.
We then have ~wT ET = ~W T X̄T ⇔ ~wT B−T X̄T = ~W T X̄T where B−1 is the
pseudo-inverse of B. From the last condition, we obtain a definition of the
decision image ~W = B−1 ~w ∈ R

2562
. In the case of PCA where B−1 = BT ,

we simply have ~W = BT ~w.
Fig.6.6 shows the decision images ~W for the four classifiers, SVM, RVM,

Prot and FLD. The decision images in the first row are those obtained if the
classifiers are trained on the true dataset; those in the second row if trained
on the subject dataset, marked on the right hand side of the figure by “true
data” and “subj data”, respectively. Decision images are represented by a
vector pointing to the positive class and can thus be expected to have male
attributes (the negative, − ~W , of it looks female). The inspection of the
decision images is instructive since it allows to proceed to feature ranking :
both dark and light regions are more important for classification than the
grey regions. For the prototype learner, the eye and beard regions are most
important. SVM, RVM and FLD have somewhat more “holistic” decision
images. Equally instructive is the comparison of the optimal decision images
of the classifiers in the first row and those in the second row where the
machines attempt to re-create the decision boundaries of the subjects. The
decision images for the subject dataset are slightly more “face-like” and less
holistic than those obtained using the true labels; the eye and mouth regions
are more strongly emphasized. This trend is true across all classifiers. This
suggest that human subjects base their gender classification strongly on the
eye and mouth regions of the face—clearly a sub-optimal strategy as revealed
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Figure 6.6: Decision images ~W for each classifier for both the true and the
subject dataset; all images are rescaled to [0, 1] and their means set to 128
for illustration purposes (different scalers for different images).

by the more holistic true dataset SVM, RVM and FLD decision images. A
decision image thus represents a way to extract the visual cues and features
used by human subjects during visual classification without using a priori
assumptions or knowledge about the task at hand. It allows one to proceed
to feature ranking by highlighting the regions of the image most useful for
classification. In addition this method does not require multiple training
and testing iterations as is typical for feature ranking methods in machine
learning such as recursive feature elimination (see below).

We can also define the generalized portraits ~W±. This term was intro-
duced by [Vapnik and Lerner, 1963] with the idea in mind that when trained
on a set of portraits of members of a family, one would obtain a “generalized”
portrait which captures the essential features of the family as a superposi-
tion of all family members. The generalized portraits ~W± can be seen as
“summary” faces in each class reflecting the decision rule of the classifier.
They can be viewed as an extension of the concept of a prototype: they are
the prototype of the faces the classifier bases its decision on. We note that ~w
can be written as: ~w =

∑

i αi~xi =
∑

i|sign(αi)=+1 αi~xi−
∑

i|sign(αi)=−1 |αi|~xi.

This allows to define the generalized portraits as ~W± which are computed by

inverting the PCA transformation on the patterns ~w± =

∑

i|sign(αi)=±1 αi~xi
∑

i|sign(αi)=±1 αi
.

The vector ~w± is constrained to be in the convex hull of the data in the
respective class in order to yield a “viewable” portrait. The generalized
portraits for the SVM, RVM and FLD together with the Prot, where the
prototype is the same as the generalized portrait, are shown in Fig.6.7.
Again, on the subject data, the mean SH across all subjects is considered.
The generalized portraits can be associated with the correct class: ~W+ are
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Figure 6.7: Generalized portraits ~W± for each classifier for both the true
and the subject dataset; all images are rescaled to [0, 1] and their means
set to 128 for illustration purposes (different scalers for different images).
[Unfortunately the downsampling (low-pass filtering) of the faces necessary
to fit them in the figure makes all the faces somewhat more androgynous
than they are viewed at full resolution.].

males whereas ~W− are females. The SVM and the FLD use patterns close to
the SH (see Fig.6.2) for classification and hence their decision images appear
androgynous, whereas Prot and RVM tend to use patterns distant from the
SH resulting in more female and male generalized portraits. The compari-
son of the optimal, true, generalized portraits to those based on the subject
labels shows that classification has become more difficult: the generalized
portraits have moved closer to each other in gender space, narrowing the
distance between the classes and thereby diminishing the gender typicality
of the generalized portraits for all classifiers.

We have previously studied the decision images and mentioned their
function in feature ranking. Recursive Feature Elimination (RFE, [Guyon,
Weston, Barnhill, and Vapnik, 2002]) is a benchmark method in machine
learning used to rank features. We here use RFE to rank features and in the
next section to study the classification error of the machine classifiers when
successively removing components from the PCA space. RFE is used to find
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the components of the stimuli in the PCA space—which correspond to the
features in the image space—most useful for each classifier to perform gen-
der classification. The classification performance of humans is then used to
define the size of the set of most important features, i.e. the dimensionality
of the decision space. To apply RFE, we first compute the normal vector ~w
for each classifier using the entire true dataset. Feature are removed succes-
sively one-by-one by eliminating the least important feature k = arg mini w

2
i

from all the patterns of the dataset at each iteration and by training the
classifier on the remaining ones. These remaining features are those most
important as a group and not necessarily individually. At each step of the
RFE algorithm, the training error of each algorithm is computed as shown in
Fig.6.8. If classification performance was a meaningful measure, the reduced
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Figure 6.8: First row: training error of machine as function of the number of
removed features, the horizontal line indicating the mean subject error and
the vertical one the corresponding number of removed feature Nrf indicated
in the title. Second row: decision images obtained after RFE rescaled to the
range [0, 1] and with means set to 128.

set of features yielding the same classification error for machine and humans
should result in machines similar in behavior to our human subjects. For
each classifier these features of ~w are kept whereas the remaining ones are
set to zero. This issue is studied further in the next section.

The decision image corresponding to this “reduced” normal vector are
displayed in Fig.6.8 for each classifier. Similarly to the previous decision
images on the true and subject datasets, a low intensity (dark region) in-
dicates a feature used to determine female faces whereas a high intensity
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(a light region) shows regions of the face used for a male decision. Both
regions are of importance for classification. For the prototype learner, the
eye and beard regions are most important whereas the other classifiers ap-
pear more “holistic”. These decision images, although computed using the
true dataset, result in machines with the subjects’ classification error. These
RFE-decision images are roughly similar to the ones obtained on the true
and on the subject dataset and yield no additional clues on the classification
mechanisms used by man and machine. However, as will be shown in the
next section, the decision space induced by RFE is very distinct from the
one obtained for the true and the subject datasets.

6.5 Man-Machine Analysis Using Logistic Regres-

sion

We here give a novel approach aiming at comparing linear classifiers to hu-
man visual classification as presented in [Graf, Wichmann, Schölkopf, and
Bülthoff, 2004c]. We attempt to gain more understanding of the classifi-
cation of visual stimuli by human subjects using techniques from machine
learning. Ultimately we would like to understand (the metric of) the human
internal representation of faces.

After preprocessing the p = 200 face stimuli using Principal Component
Analysis (PCA) resulting in the input patterns ~xi, i = 1, . . . , p, we train
a Support Vector Machine (SVM), a Relevance Vector Machine (RVM), a
prototype classifier (Prot) and a Fisher linear discriminant classifier (FLD)
on the true labels of the stimuli (true dataset) as well as on the labels as-
signed by the human subjects (subject dataset). On the true dataset some
machines outperform the human subjects on our gender discrimination task
as far as the classification performance is concerned (see Fig.6.1). To equate
the performance of human subjects and machines in terms of classification
error, we apply Recursive Feature Elimination (RFE) to the PCA compo-
nents of the stimuli and remove their components one-by-one until both man
and machine show equal classification performance. This results in three sets
of distances δ(~xi) of the stimuli ~xi to the separating hyperplanes (SHs) of
each classifier:

1. the set of distances ∆true = {δtrue(~xi)}
p
i=1 of the stimuli to the SH

computed using the machines trained on the true dataset

2. the set of distances ∆subj = {δsubj(~xi)}
p
i=1 to the stimuli to the mean

SH across all subjects computed using the machines trained on the
subjects dataset

3. the set of distances ∆RFE = {δRFE(~xi)}
p
i=1 of the RFE-reduced-

dimensionality stimuli to the SH computed using the machines trained
on the RFE-reduced-dimensionality stimuli with the true labels
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Averaging across all the 55 subjects, we can assign a proportion correct to
every one of our stimuli: this is the probability that a given stimulus will
be correctly classified by human subjects. Thus we can perform a logistic
regression on the average proportion correct of a stimulus across subjects
against the three sets of stimulus-to-SH distances. If any of the machines
trained on one of the three sets of distances ∆true, ∆subj and ∆RFE may
have captured more than just the input-output (classification error) map-
ping of the human subjects but instead captured some aspects of the human
internal representation of faces, then the distance of a face to the SH should
reflect the classification difficulty. Thus a regression of a monotonic func-
tion against the ∆-sets on the x-axis and the classification probabilities of
the human subjects on the y-axis should yield a good fit, an “averaged”
psychometric function.

The “subjects’ outputs” are the mean probability P (ŷ = +1|x) that a
stimulus x is classified as male across all our subjects. Looking at the prob-
abilities we find that they are almost uniformly distributed over the interval
[0, 1], that is, there are some faces that are correctly classified as females by
all subjects (P (ŷ = +1|x) = 0.0), some faces that are correctly classified as
males by all subjects (P (ŷ = 1|x) = 1.0) and almost all values in between
appear such as faces that half the human subjects classified as females and
half as males (P (ŷ = 1|x) = 0.5). This situation is typical for virtually
all psychophysical tasks where human performance is a smooth, monotonic
function of task difficulty. If the distance of a face to the SH reflected the
classification difficulty, then a regression of a monotonic function against the
different sets of distances (∆true, ∆subj and ∆RFE) on the x-axis and the
classification probabilities P (ŷ = +1|x) on the y-axis should yield an “aver-
aged” psychometric function. We fit “psychometric functions”, henceforth
simply referred to as logistic regressions, using the constrained maximum-
likelihood methods described in [Wichmann and Hill, 2001a]. Goodness-of-
fit is assessed using a deviance-variant D/p, the log-likelihood ratio statistic
normalized by the number of data points (the p = 200 faces).

We plot in Fig.6.9 the logistic regression for the set of distances ∆true

computed using the true labels. The relative high values of the deviance
D between the logistic regression function and the data indicates that the
combination of the distance set ∆true for all studied classifiers does not
reflect the essential structure of the human internal representation of faces.

In Fig.6.10 we show the logistic regression for the set of distances ∆RFE

computed in the RFE-reduced-dimensionality face space and using the true
labels. The even higher values of D indicate that this type of set of distances
∆RFE is even worse for modeling the human internal representation of faces
than the previous distance type ∆true using the true labels. First we recall
that all the machines, despite classifying in the space of reduced dimen-
sionality, have same classification error as humans who are shown stimuli
from the full space. Second, the logistic regression of the subjects’ gender
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Figure 6.9: Logistic regression of the subjects’ probability to answer male
as function of the distance of the stimuli to the SH for ∆true.

estimate to ∆RFE of machine is very poor, and even worse than human
responses compared to machine classifying using the full input of the true
dataset ∆true. This may suggest that the classification error per se is not
a good measure. Moreover, PCA may not be the right representation for
stimuli given a gender classification task of human faces, unlike the results
of [Turk and Pentland, 1991, O’Toole, Abdi, Deffenbacher, and Valentin,
1993].

The best fit between the subjects’ data and one of our sets of distances is
obtained in Fig.6.11 for the distance set ∆subj computed using the subjects’
gender labels. The low values of D for SVM and FLD are striking: both
machines are not only able to re-create the decision boundaries of human
subjects in terms of classification error (i.e. 0% training error, implying 14%
classification error on true labels as the subjects as shown in Fig.6.1) but they
appear to capture the human internal representation of faces to a remarkable
degree. For this task, RVM is also a rather good candidate. However,
the prototype classifier again fails at this, as already noticed in [Graf and
Wichmann, 2004]. Furthermore, the prototype learner is the classifier where
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Figure 6.10: Logistic regression of the subjects’ probability to answer male
as function of the distance of the stimuli to the SH for ∆RFE .

for each of the three sets of distance, the goodness-of-fit D of the logistic
regression to the data is consistently the worst.

The good performance of FLD here seems to be in contradiction with
its bad man-machine correlation as shown at the beginning of this chapter.
This may be explained by the fact that here we take the mean SH over all
subjects to compute δ, whereas in the correlation studies δ was computed
for each subject and then averaged over stimuli. The good logistic regression
for the data computed using FLD demonstrates the efficiency of taking the
mean SH to compute δ. On the other hand, the other classifiers behave as
in the correlation studies: SVM and RVM behave most human-like whereas
the prototype classifier is least appropriate to model human classification.
This illustrates that FLD, more than any of the other three classifiers, is
sensitive to the (data) analysis—classification, correlation and regression
studies. FLD can thus be considered as a poor candidate to model the
classification of visual stimuli by humans.
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Figure 6.11: Logistic regression of the subjects’ probability to answer male
as function of the distance of the stimuli to the SH for ∆subj .

6.6 Going Orthogonal, and Closing the Loop

We here introduce a novel psychophysical setup where machine learning is
applied to perception in order to account for human gender discrimination
as presented in [Wichmann, Graf, Simoncelli, Bülthoff, and Schölkopf, 2004].
We use the vector ~w of each classifier to generate testable hypothesis about
the classification mechanisms used by humans: we generate novel stimuli
by adding (or subtracting) various “amounts” (λ ~w

‖~w‖) to the origin of the

PCA space. The novel image stimuli, I(λ), are generated by inverting the

PCA transformation as I(λ) = PCA−1
(

λ ~w
‖~w‖

)

. The correlation studies at

the beginning of this chapter reported that the subjects’ responses to the
faces—proportion correct, reaction times and confidence ratings—correlated
very well with the distance of the stimuli to their separating hyperplane
(SH) for support and relevance vector machines (SVMs, RVMs) but not for
simple prototype (Prot) classifier or for FLD. If these correlations really im-
plied that SVM and RVM capture some crucial aspects of human internal
face representation the following prediction must hold: already for small
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|λ|, ISV M (λ) and IRV M (λ) should look male/female whereas IProt(λ) and
IFLD(λ) should only be perceptually male/female for larger |λ|. In other
words: the female-to-maleness axis of SVM and RVM should be closely
aligned to those of our subjects whereas that is not expected to be the
case for FLD and Prot. A psychophysical gender discrimination experiment
confirms our predictions: the female-to-maleness axis of the SVM and, to
a smaller extent, RVM, are more closely aligned with the human female-
to-maleness axis than those of the prototype (Prot) and a Fisher linear
discriminant (FLD) classifier. In other words, from the analysis of the ma-
chines we make predictions for human subjects which we subsequently test
psychophysically. By doing so, we close the man-machine loop, and demon-
strate that machine learning is a suitable method to model the classification
of visual stimuli, at least on the considered face database.

In the studies of this section only the subject dataset is considered since
the latter reflects what we hypothesize to be the subjects’ internal repre-
sentation of faces and we consider the mean SH across all subjects for each
classifier. We first visualize some faces along a direction orthogonal to the
SH of each classifier. The patterns in the PCA space are defined as:

~x(λ, ~z) = ~z + λ
~w

‖~w‖

where ~z is a point of the PCA space. The face images are then obtained by
inverting the PCA transformation. Fig.6.12 represents such faces computed
from the origin of the PCA space, ~z = 0, i.e. from a neutral genderless
face. When starting from the prototypes of each class (~z = ~p±), we obtain
the faces of Fig.6.13. These faces lie along an axis assumed to allow the
sharpest categorical decision in the decision space of each classifier. The
four considered classifiers yield different “optimal” decision directions as
shown by the novel stimuli generated on them. This effect is strongest for
the extremal values λ = ±18 where we obtain female and male “caricatures”
along an axis defined by each classifier.

In order to yield a more quantitative measure of the class transition be-
tween female and male stimuli, we compute an estimate of the probability
of male answer P (ŷ = +1|x) for each of the novel face stimulus given λ.
For each novel stimulus, the 25 patterns in the PCA space with most simi-
lar δ are considered—considering the closest ones would be less meaningful
since δ was shown to be most appropriate to model classification in humans
[Graf and Wichmann, 2004]. An average over the subjects’ responses over
these “nearest” patterns is then computed to get an estimate of the class
probability for the novel patterns. The function relating P (ŷ = +1|x) for
the novel patterns to λ can then be displayed as done in Fig.6.14. The
prototype learner exhibits the slowest class transition, the latter being also
non-monotonic. This hints again at the fact that this classifier is poorly
adapted to model visual classification by humans. All the other classifiers
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Figure 6.12: Novel face stimuli generated on a direction orthogonal to the
SH staring from the origin of the PCA space.

have a steep monotonic transition. SVM and FLD have the strongest slope,
indicating a sharp perceptual boundary between both classes as was already
observed for ∆subj in the logistic regression studies of the previous section.
The male bias of the human subjects observed in Chapter 3 explains that
P (yest = +1|~x) does not drop to 0 in the female class (λ < 0). For SVM,
RVM and FLD we notice that the transition happens for values of λ in the
range [−3, 3]. The above functions are obtained by estimating the subjects’
responses on the novel stimuli generated along a direction orthogonal to the
SH using the subjects’ gender estimates on the stimuli of the dataset. Be-
low, we proceed to a psychophysical experiment where the subjects actually
classify these novel stimuli for values of λ in the range [−3, 3].

Four observers—one (FAW) with extensive psychophysical training and
three näıve subjects paid for their participation—took part in a standard,
spatial (left versus right) two-alternative forced-choice (2AFC) discrimina-
tion experiment. Subjects were presented with two faces I(−λ) and I(λ)
and had to indicate which face looked more female. Stimuli were presented
against the mean luminance (50 cd/m2) of a carefully linearized Clinton
Monoray CRT driven by a Cambridge Research Systems VSG 2/5 display
controller. Neither male nor female faces changed the mean luminance. Sub-
jects viewed the screen binocularly with their head stabilized by a headrest.
The temporal envelope of stimulus presentation was a modified Hanning
window (a raised cosine function with rise and fall times of 500 ms and a
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Figure 6.13: Novel face stimuli generated on a direction orthogonal to the
SH staring from the prototypes of each class of the PCA space.

plateau time of 1000 ms). The probability of the female face being pre-
sented on the left was 0.5 on each trial and observers indicated whether
they thought the left or right face was female by touching the corresponding
location on a Elo TouchSystems touch-screen immediately in front of the
display; no feedback was provided.

Trials were run in blocks of 256 in which eight repetitions of eight stim-
ulus levels, ±λ1 . . . ± λ8, for each of the four classifiers were randomly in-
termixed. The näıve subjects required approximately 2000 trials (roughly 8
blocks) before their performance stabilized; thereafter they did another five
to six blocks of 256 trials. All results presented below are based on the trials
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Figure 6.14: Estimate of the probability P (ŷ = +1|x) that a face, lying on
a direction orthogonal to the mean SH over all subjects, is classified as male
by the subjects as function of λ.

after training; all training trials were discarded.

Fig.6.15a shows the raw data and fitted psychometric functions for one
of the observers. Proportion correct gender identification on the y-axis is
plotted against the stimulus level λ on the x-axis on semi-logarithmic co-
ordinates. Psychometric functions were fitted using the psignifit toolbox
for Matlab which implements the constrained maximum-likelihood method
described in [Wichmann and Hill, 2001a]. 68%-confidence intervals (CIs),
indicated by horizontal lines at 75 and 90% correct in Fig.6.15a, were esti-
mated by a bootstrap method also implemented in psignifit [Wichmann
and Hill, 2001b]. The raw data appear noisy because each data point is
based on only eight trials. However, none of the fitted psychometric func-
tions failed various Monte Carlo based goodness-of-fit tests [Wichmann and
Hill, 2001a].

To summarize the data we extracted the λ required for two performance
levels (“thresholds”), 75 and 90% correct, together with their corresponding
68%-CIs. Fig.6.15b–e shows the thresholds for all four observers normal-
ized by λSV M (the “threshold elevation” with respect to the SVM). Thus
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Figure 6.15: a. Shows raw data and fitted psychometric functions for one
observer (FAW). b–e. For each of four observers the threshold elevation
for the RVM, Prot and FLD decision image relative to that of the SVM;
results are shown for both 75 and 90% correct together with 68%-CIs. f.
Same as in b–e but pooled across observers.

values larger than 1.0 for RVM, Prot and FLD indicate that more of the
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corresponding decision images had to be added for the human observers to
be able to discriminate females from males. In Fig.6.15f we pool the data
across all observers. As the main trend, poorer performance for Prot and
FLD compared to SVM and RVM, is apparent for all four observers. The
difference between SVM and RVM is small; going along the direction of
both Prot and FLD, however, results in a much ”slower” transition from
female-to-maleness.

The psychophysical data are very clear: all observers require a larger λ
for Prot and FLD; the length ratio ranges from 1.2 to nearly 3.0, and aver-
ages to around 1.7 across observers. In the pooled data all the differences are
statistically significant but even at the individual subject level all differences
are significant at the 90% performance level, and five of eight are significant
at the 75% performance level. It thus appears that SVM and RVM capture
more of the psychological face-space of our human observers than Prot and
FLD. From our results we cannot exclude the possibility that some other
direction might have yielded even steeper psychometric functions, i.e. faster
female-to-maleness transitions, but we can conclude that the decision images
of SVM and RVM are closer to the decision images used by human subjects
than those of Prot and FLD. This is exactly as predicted by the correlations
between proportion correct, RTs and confidence ratings versus distance to
the hyperplane reported at the beginning of this chapter—high correlations
for SVM and RVM, low correlations for Prot and FLD.

Comparing the numerical estimate of the probability P (ŷ = +1|x) as
function of λ (see Fig.6.14) to the one obtained above in the psychophysi-
cal experiments (see Fig.6.15a), we notice that human subjects seem to be
slightly more sensitive to gender discrimination—a smaller range for λ is
needed for discrimination—as would be suggested by the corresponding nu-
merical estimate. Moreover, the predictions of both studies are identical for
SVM, RVM and the prototype learner. The results for FLD are, however,
different and this issue is discussed in the next section.

6.7 Summary & Discussion

We studied the classification of face stimuli using linear methods from ma-
chine learning for feature extraction (Principal Component Analysis, PCA)
and for classification (the Support Vector Machine SVM, the Relevance Vec-
tor Machine RVM, the prototype classifier Prot and the Fisher linear dis-
criminant classifier FLD) together with data from human psychophysical
classification experiments.

The combination of a linear feature extractor and a linear classifier al-
lowed us to visualize the decision images of a classifier corresponding to the
vector normal to the SH of each classifier. Decision images can be used for
feature ranking by determining the regions of the stimuli most useful for
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classification simply by analyzing the distribution of light and dark regions
in the decision image. In addition we defined the generalized portraits to be
the prototypes of all faces used by the classifier to obtain its classification.
For the SVM and the RVM, this is the weighted average of all the support
vectors and relevance vectors respectively (i.e. the representations of these
algorithms), and for the prototype classifier it is the prototype itself. The
generalized portraits are, like the decision images, another useful visualiza-
tion of the combination feature extractor-classifier. Feature ranking is also
performed using a benchmark method from machine learning: Recursive
Feature Elimination (RFE). The decision image on the true and subject
datasets and obtained using RFE look quite similar, although the decision
space they define is very different as shown by the studies on the sets ∆.

If trained on the true labels, some machines perform the classification
task quite similarly to humans in terms of classification performance. How-
ever, they classify faces very differently from human subjects as was shown
by the poor logistic regression fits for the distance set ∆true with the mean
human probability to classify a stimulus as male.

SVM and FLD can, however, re-create the decision boundary and the
internal representation of faces for human subjects very well indeed if trained
on the subjects’ labels as shown by the excellent logistic regression for ∆subj .
RVM is already quite a bit worse, and the prototype learner is as bad as for
the true labels.

Finally, equating the classification performance of man and machine
through RFE makes machines even less human-like than if trained on the
true labels. This shows that even if man and machine perform a task equally
well—i.e. same classification error—this does not imply anything about their
internal workings. This was shown by the very poor logistic regression fits
to ∆RFE in the RFE-reduced-dimensionality face space. In addition this
may indicate that PCA may be less biologically meaningful than it is some-
times assumed [Turk and Pentland, 1991, O’Toole, Abdi, Deffenbacher, and
Valentin, 1993].

Clearly our results need to be interpreted with caution: the learning
regimes for man and machine were very different. Human subjects were
trained during their lifetime and tested in this study using a smallish sample
of a specific set of face stimuli. On the other hand, the machines were only
trained on these stimuli. Finally the above results rely on the linearity of
the classification system formed by the feature extractor and the classifier;
incorporating non-linearities is clearly a future direction of research.

Using the decision images, a serie of psychophysical investigation yielded
one of the central result of this chapter: the corroboration of the machine-
learning-psychophysics research methodology. In the machine-learning-psycho-
physics research we substitute a very hard to analyze complex system (the
human brain) by a reasonably complex system (learning machine) that is
complex enough to capture essentials of the human subjects’ behavior but
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is nonetheless amenable to close analysis. Machines were first used to model
and explain the classification behavior of man in Chapter 5 and at the be-
ginning of this chapter. From the analysis of the machines we then derive
predictions for human subjects which we subsequently test psychophysically.
By doing so, we close the man-machine loop, and demonstrate that machine
learning is a suitable method to model the classification of visual stimuli, at
least on the considered face database.

Given the success in predicting the female-to-maleness steepness of the
~wSV M axis we believe that the decision image ~WSV M captures some of the
essential characteristics of the human decision algorithm. This result is
perhaps counter-intuitive given the SVM’s androgynous generalized por-
traits; still, this “classify-close-to-the-margin” algorithm appears closest to
the algorithm used by the human subjects in classifying faces. Because we
can show the relevance of the decision image of SVMs for human observers
psychophysically, this provides us with a much quicker alternative to psy-
chophysical feature extraction techniques such as the “bubbles” [Gosselin
and Schyns, 2001] or the noise classification image [Ahumada, 2002] tech-
niques.

While the results from SVM, RVM and the prototype classifier are coher-
ent in all the studies of this chapter, the results for FLD are quite different.
First, FLD shows low man-machine correlations when δ is computed on a
subject basis. However, the logistic regressions between man and machine
are good, as much as the interpolated ones when estimated the subjects’
responses on stimuli orthogonal to the SH of each classifier. In the actual
psychophysical experiment on such stimuli, FLD does however not exhibit
a human-like behavior. This quite inhomogeneous behavior of FLD is due
to its overfitting of the PCA data. It may be interpreted that on the basis
of the last psychophysical experiment, the man-machine correlation on a
subject basis is valid and that FLD is simply not suited to describe human
classification of visual stimuli. Furthermore, the inconsistency of the results
provided by FLD is another hint that this classification algorithm may not
be adapted in the context of the present studies.
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Chapter 7

Applying Machine Learning

to Model Human Memory

Following the studies of the classification behavior of humans, we may ask the
following question: how are visual stimuli memorized by the human subjects?
Can machine learning also account for the memory behavior of humans using
the MPI face database? To answer these questions, we introduce here a novel
methodology allowing to embed machine learning in a human psychophysical
set of memory experiments using a feedback loop architecture and an online
generation of novel stimuli.

7.1 Overview & Methodology

The memory experiments are structured as follows. After a first gender
classification experiment identical to the one presented in Chapter 3, the
representations—the Support Vectors (SVs), the relevance vectors (RV),
the prototypes (Prots) and the means of Kmeans (Means)—along with some
novel stimuli computed using the SVs are computed for each subject using
the classifiers introduced in Chapter 4. These patterns are randomly inter-
mingled with others drawn directly from the MPI face database. The mem-
ory behavior of the subjects—that is the ability of subjects to retrieve these
representations again from memory— is then studied using a seen/unseen
(or old/new) experiment on this set of patterns. Finally a second gender
classification experiment investigates the classification of the subject on the
whole MPI face database and on the representations. Presenting the subject
with its personal dataset of representations, computed using the first classi-
fication experiment, constitutes the actual feedback loop architecture. The
novelty of this approach is the introduction of this feed-back loop embedding
an artificial classifier from machine learning in a psychophysical framework
in order to obtain insight into the classification and memory process. We
may also note that the concept of memory is tightly related to the concept
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of generalization as already pointed out in [Posner and Keele, 1968]. A
first account on this methodology was communicated in [Graf, Wichmann,
Bülthoff, and Schölkopf, 2004b].

The memory-after-classification experiment aims to assess the various
learning algorithms on the basis of the elements allowing to compute their
separating hyperplane (SH): the representations. That is, the memory ex-
periment is performed in order to assess whether for instance the SVs or
the prototypes are more easily classified as “seen before”. This would give
evidence of an “internal image” as a decision variable during classification
and thus provide insights into the structure of internal memory. Presenting
subjects with unseen stimuli such as the prototypes is an alternative, albeit
more direct, manner to study the aftereffects associated with face images as
done by [Leopold, O’Toole, Vetter, and Blanz, 2001]. In our approach the
aftereffects are directly induced and not merely extrapolated.

7.1.1 Database and Feature Extraction

The emphasis is here put on the classification algorithm and less on the
feature extractors defined in Chapter 2. The MPI face database of 200
stimuli is split into a dataset Σ of 160 patterns and into a dataset Υ of 40
patterns. Since 8 stimuli from Σ are shown in the first presentation aimed
at acquainting the subjects with the setup, Σ is composed of 160− 8 = 152
stimuli. The PCA preprocessor on the texture and shape data type is chosen
as a feature extractor. Indeed, when designing the experiment, there was no
a priori knowledge about the preprocessor best suited to describe human
classification behavior (see Chapter 5). PCA was then chosen since it is a
benchmark preprocessor in unsupervised machine learning and accounts in
literature such as [Turk and Pentland, 1991] hint at its biological relevance.
The texture and shape data type is here the most suited choice since novel
stimuli will be generated online—this data type was specifically intended
for these type of studies since it allows to take advantage of the morphing
capacities of the MPI face database through the face modeler by [Blanz and
Vetter, 1999].

7.1.2 Classification Experiment I

This first classification experiment is the experiment presented in Chapter
3 and analyzed in Chapter 5. We recall that a gender-balanced subset of
152 from the possible 200 faces of the MPI face database are presented to
the subjects using the timing parameters of Table 7.1. The subjects then
perform a gender classification experiment on sequentially-presented faces
of males and females. Their gender estimate along with its reaction time
(RT) and confidence rating (CR) are recorded. No feedback is provided.
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ttransient [s] tsteady [s] tis [s]

classification experiments I & II 0.5 1 1

Table 7.1: Parameters of the Hanning window for the presentation of the
stimuli to the subjects for the first and second classification experiments.
The rising and falling time are represented by ttransient whereas tsteady is
the plateau time and tis is the time between stimuli.

7.1.3 Online Computation of Representations

For the classifiers we consider, as before, the SVM, the RVM, the prototype
learner Prot and the Kmeans classifier Kmean (see Chapter 4). All the
classifiers are trained on the (non-normalized) input PCA data, which is by
definition centered. In order to limit the complexity of the Kmean classifier,
the number of means for each class is set to K = 3, which was to shown a
posteriori to be a reasonable value by the studies of Chapter 5, the trade-
off parameter C of the SVM being set by cross-validation on the training
set. In order to allow (fast) convergence of the SVM and RVM algorithms,
the data is mapped into a normalized feature space as proposed by [Graf,
Smola, and Borer, 2003] by using a normalized linear kernel function defined

as: K(~x, ~y) = 〈~x|~y〉
‖~x‖‖~y‖ . The representations are then the elements of the

input space corresponding to the SVs and RVs computed in this normalized
feature space. Thus all representations are in the (non-normalized) input
space and can consequently be viewed by inverting the PCA transformation
and applying the face modeler (morphing process). This would not have
been the case when working in a normalized input space since every vector
would then be scaled, which results in the loss of one degree of freedom of
the data.

For each subject, the classifiers are trained on the PCA of the texture
and shape data type of the face stimuli presented to them. These vectors
are combined with the subject’s estimate of the gender of this stimulus,
forming the subject dataset as defined in Chapter 5. The corresponding
representations (SVs, RVs, Prots and Means) are then computed and some
novel stimuli (nmSVs and pSVs, see below) are generated as listed in 7.2.
Seen and unseen stimuli as well as male and female stimuli are balanced and
randomly mixed.

All the seen stimuli are patterns from the original MPI face database.
The SVs are separated into two classes: the margin SVs for which αi < C,
mSVs, and the remaining ones for which αi = C, rSVs, yielding SV =
mSV∪ rSV. If not enough SVs or RVs are present1, their class is filled with
elements from mSVs or Σ.

For the unseen stimuli, the elements from Υ are faces from the original

1This may be true for some subjects, especially for the very sparse RVM algorithm.
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29 unseen stimuli 29 seen stimuli

2 nmSV 2 rSV
2 pSV 5 mSV
2 Prot 5 RV
6 Mean 17 [Σ− {SV, RV }shown before]
17 Υ

Table 7.2: Seen and unseen stimuli computed for each subject using the
responses of the first classification experiment.

MPI face database. All the other unseen stimuli are novel types of stimuli
which are computer-generated online during the experiment such as the rep-
resentations for the prototype and for the Kmeans classifiers. Furthermore,
two novel types of SVs are generated. First, the new margin SVs, nmSV,
are the mean of the margin SVs (mSV) for each class. Since the mSVs lie on
two hyperplanes—the margins of the SVM algorithm—these averages also
lie on these margins. They are another instantiation of the prototype algo-
rithm, this time applied only to a small subset of geometrically well-defined
patterns. Second, the actual prototypes, pSVs, of the SVM algorithm are
computed as:

~pSV
± =

∑

i|sign(αi)=±1 αi~xi
∑

i|sign(αi)=±1 αi

assuring that the prototypes lie in the convex hull of the patterns of each
class individually as suggested by [Graf, Bousquet, and Rätsch, 2004a].

Some of the above representations are displayed in fig.7.1 for a two-
dimensional toy example. By construction the SVs are spread on or around
the margins. On this toy dataset it is easy to guess the location of the nmSVs
and the pSVs: they are thus not drawn. The Prots are in the middle of the
classes, whereas the Means are distributed in each class. This toy example
illustrates an important fact: the prototype of each class is not confounded
with one of the Means i.e. Prots /∈Means. The RVs are spread throughout
the dataset. The above descriptions were already done on the MPI face
database in Chapter 5 where the histograms of δ gave similar descriptions.

The above representations are determined online while the subject takes
a rest of approximately 2 minutes after the first classification experiment
and is given instructions about the memory experiment. During this time
the novel stimuli are generated on the subject dataset using the morphing
process and the representations from Σ are defined. Fig.7.2 shows a selection
of these representations computed used the true dataset. At this point it is
important to stress that classification is done in the PCA space of the texture
and shape data type. In this space, and using the true dataset, there is just
one rSVs and we only plot 6 from the 75 SVs. On the subject dataset, as
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SV
RV
Prot
Mean

Figure 7.1: Two-dimensional toy dataset with following representations: SV,
RV, Prot and Mean.

used in the experiments, the situation is different since the subjects’ labels
makes classification a harder task (see Chapter 5) and one expects more
elements to lie in the margin stripe (the rSVs) and not only on the margin
(the mSVs). The pSVs are different from the nmSVs because of the convex
hull condition imposed in their computation. The nmSVs are quite similar
to the Prots since the nmSVs are an average done over 75 from the 200
available patterns. We also represent 6 of the 10 RVs. Finally the means
are different from the Prots as already mentioned above, and seem to sample
better the face space in each class.

7.1.4 Memory Experiment

In the actual memory experiment, human faces are presented sequentially.
The subjects are asked to decide whether the faces are seen or unseen,
i.e. whether they are old or new respectively. The subjects are instructed
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SV

pSV

nmSV

RV

Prot

Mean

Figure 7.2: Plotting of representations computed using the true dataset.

that there are 29 seen and unseen faces and that they can take their time to
make their decision. After the seen/unseen response, subjects are asked to
rate the distinctiveness of the presented faces as 1, 2, 3 from low to high. The
seen-unseen responses and the distinctiveness given by the subjects are the
only parameters, and we do not deal with reaction times. The timing issues
of the presentation of the stimuli are reported in Table 7.3. Pilot studies
revealed that the above task was close to impossible for the average subject.
Thus, in order to make the above task easier, the 29 seen stimuli are first
presented using the timing parameters of Table 7.3 in order to “refresh” the
subjects’ memory on the stimuli they have already been seen during the first
classification experiment. Furthermore, the subjects have been instructed
before the experiment that if they perform well in the memory experiment,
they would get a money reward which was granted to subjects obtaining a
discriminability d′ ≥ 1.5 for the seen/unseen task. However, no feedback
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ttransient [s] tsteady [s] tis [s]

presentation 0.5 3 1
memory experiment 0.5 2 1

Table 7.3: Parameters of the Hanning window for the presentation of the
stimuli to the subjects for the presentation of the seen stimuli and for the
actual memory experiment. The rising and falling time are represented by
ttransient whereas tsteady is the plateau time and tis is the time between
stimuli.

was given during the memory experiment.

7.1.5 Classification Experiment II

After the memory experiment, a second classification experiment is consid-
ered. This experiment is similar to the first one (see Table 7.1 for tim-
ing issues related to the presentation of the stimuli) except that the stim-
uli presented here are the complete set of 200 faces from the MPI face
database combined with the representations computed using the subject’s
responses in the first classification experiment. In general there are more
than 200 + 6 Means + 2 Prots + 2 nmSVs + 2 pSVs = 212 stimuli presented
since some stimuli are SVs and RVs at the same time. The experiment keeps
track of the type of stimulus (Σ, SVs, . . . ) classified by the subject.

7.2 Results

The first classification experiment has been extensively studied in Chapter
5. We analyze below the memory and the second classification experiments.

7.2.1 Memory experiment

The human responses—the seen/unseen estimate and the distinctiveness—
are shown in Fig.7.3 for all subjects. The first plot in the first row of Fig.7.3
of the seen/unseen discriminability d′ indicates that subjects can memorize
the stimuli although, as indicated above, this task is not easy. However the
value of d′ is quite disappointing considering the fact that the subjects were
exposed to exactly these 29 seen faces in the presentation just before the
memory experiment. Furthermore there seems to be no seen/unseen bias.
In the second plot, we notice that stimuli having a high distinctiveness are
accompanied by a low seen/unseen error. There is no significant difference
in this effect if the male, female or all the data is considered. The third
plot shows that a seen stimulus is usually attributed a high distinctiveness
whereas an unseen one is mostly accompanied by a low distinctiveness. The
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Figure 7.3: Analysis of the all the subjects’ responses for the memory ex-
periment.

second and third rows show the mean temporal evolution of the subjects’
responses. From these curves it can be concluded that there are no learning
and fatigue effects in the subjects: their answers stay stable over time. The
seen/unseen error, although high as already noticed above, is below chance
and there is a slight bias to give a high distinctiveness.

The above results allow us to proceed to the actual analysis of the mem-
ory experiment. In particular, the subjects’ responses (seen/unseen and
distinctiveness) are studied on various sets of stimuli:

• the representations: SV (mSV, rSV), RV, Prot, Mean and the novel
SV (nmSV and pSV)

• the non-representations: Σ (without the SVs and the RVs) and Υ

and the results are represented in Fig.7.4, where a good subject is defined
as a subject who satisfies d′ ≥ 1.5 for the seen/unseen task. The first row
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Figure 7.4: The subjects’ responses for each set of stimuli in the memory
experiment. The dark bars indicate seen stimuli whereas the light ones stand
for unseen stimuli. For each set of stimuli, the left bar shows the response
for all subjects and the right one only for the good ones.
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exhibits the seen/unseen error for each set of stimuli. When considering
all the subjects, there is no significant trend as confirmed by an ANOVA
analysis for each response across subjects. Machine learning may help to
explain classification, however it fails to account for memory effects given
this database and experimental setup. For the good subjects, a slight effect
may however be observed. The novel computer-generated patterns—Prot,
Mean, nmSV and pSV—are usually more easily recognized as unseen than
the stimuli drawn from the original MPI face database. This effect is also
observed for the distinctiveness plotted in the second row where for both
types of subjects the stimuli drawn for the original dataset, namely Σ, Υ,
the SV and the RV, are given a high distinctiveness by the subjects. The
novel computer-generated stimuli—Prot, Mean, nmSV and pSV— on the
other hand are given a low distinctiveness by the subjects. The subjects
thus have a veridical knowledge about the original of the presented stimuli,
and this is reflected in the distinctiveness response and the seen/unseen
error to a certain extent. One reason for this might be that the morphing
algorithm removes cues within the faces—such that the face blemish for
example—and that these cues are used and recognized by the subjects. The
quality of this algorithm thus still seems insufficient for controlled scientific
studies on computer-generated face stimuli.

As an alternative quantity to the seen/unseen error, the third and fourth
rows show the proportion of correct memory answers and the discriminabil-
ity d′ corresponding to the seen/unseen estimates. Although as could be
expected, the good subjects are better for both quantities than all of them
(the combination of good and bad subjects), there is again no significant
trend as shown by the ANOVA analysis—it is almost certain that the re-
sponses for all stimuli sets are equal. The fifth row shows that seen stimuli
have a seen bias whereas unseen ones have an unseen bias, as could be ex-
pected. This trend is less strong for the good subjects, which makes them
less biased observers.

The above analyses seem to indicate that the subjects’ responses are
constant across all types of stimuli (representations or non-representations).
We thus not proceed to any further machine learning analysis on this mem-
ory data as we may not expect to gain any meaningful insights from the
data at hand.

7.2.2 Classification Experiment II

The second classification experiment is similar to the first one, except that
here subjects also classify the representations computed using their responses
of the first experiment. This is the actual man-machine feedback loop: the
responses of the first gender classification experiment are used to define stim-
uli (SV and RV) and generate novel ones (Prots, Mean, nmSV and pSV)
which are then classified in a second experiment, again using a gender clas-
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sification task. The subjects’ responses, here the classification error, the
RT and the CR, are computed for each set of stimuli and are presented in
Fig.7.5. The results of the first row—the classification error—are reflected
by those of the fourth representing the corresponding discriminability d′.
The first three rows (gender estimate, RT and CR) show that the subjects
have the worst behavior (high error, high RT and low CR) on the pSV and
the best one on the Σ stimuli, which is corroborated by Fig.7.6 (see below).
We may expect to get roughly similar responses for the first classification
experiment (exp. I) and on the Σ stimuli of the second one. However, we
see here that they are different, although not significantly: subjects seem to
behave better (lower error, lower RT and higher CR) in the second than in
the first experiment on the same stimuli. This may have two explanations.
First, the set Σ is the set of stimuli shown in the first experiment with the
SVs and the RVs removed. The subjects’ classification on the SVs and the
RVs seems thus worse than on the other elements. These representations
are thus difficult to classify, what seems intuitive for the SVs since they lie
near the margin. Second, subjects may exhibit a slight accustomization to
the stimuli. This also corroborates the assumption of Chapter 5 about the
existence of an internal jitter in the subject’s representation of the stimuli.
This jitter is here shown to increase the classification performance. Gen-
erally subjects behave better on the seen stimuli than on the unseen ones.
In the fifth row, we see that the computer-generated stimuli (Prot, Mean,
nmSV and pSV) have no significant male bias, as opposed to the stimuli
drawn from the original MPI face database. The face modeling algorithm
seems thus to remove gender-specific cues, as corroborated by the above
finding that these faces also have low distinctiveness.

We now analyze the results of this second classification experiment us-
ing machine learning. As explained in Chapter 4, the data is normalized in
order to yield comparable ranges for distance |δ| of the stimuli to the SH
when comparing classifiers, the representations being also computed in this
normalized input space. The classifiers are trained on the data from the first
classification experiment and |δ| is computed for the (non-)representations.
Fig.7.6 is a summary plot showing the subjects’ responses on the (non-
)representations as function of |δ| for each classifier, the data being averaged
over sets of stimuli defined by the (non-)representations. The same trends
as for the studies done for the first class experiments can be observed: stim-
uli far from the SH (high |δ|) are in general classified with a small error, a
low RT and a high CR. The subjects behave best (low error, low RT and
high CR) on the seen stimuli from Σ for all classifiers. This may be ex-
plained by the fact that these stimuli are far from the SH in all cases. The
subjects behave worst on pSVs, although they are not the closest stimuli
to the SH. This suggests that yet another instantiation of the concept of
prototype proves to be not biologically meaningful, thus corroborating the
findings of Chapter 5. Finally, the positions of the (non-)representations are
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Figure 7.5: The subjects’ responses for each set of stimuli in the second
classification experiment. The dark bars indicate seen stimuli whereas the
light ones stand for unseen stimuli, the white ones standing for the first
classification experiment.
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Figure 7.6: The subjects’ responses (gender estimate, RT and CR) for each
set of stimuli as function of their distance |δ| to the SH in the second clas-
sification experiment.
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strongly dependent upon the type of classifier, and they reflect the different
classification mechanisms.

7.3 Summary & Discussion

The classification experiment of Chapter 5 is a behavioral study where ma-
chine learning is used to help understand human classification. The studies
done in this chapter aim at assessing the strategies used by humans in mem-
orization tasks. As an extension of the methods used to model classification,
we show that machine learning is not suited to account for the memory be-
havior of humans, at least within the PCA feature space spanned by the hu-
man face database. In particular, the representations from machine learning
computed using a classification experiment could not account for the sub-
ject’s seen/unseen memory behavior. However, this results may also be due
to the fact that the number of stimuli memorized by the subjects (i.e., their
short-/mid-term memory capacity) is quite low, making thus these kind of
studies difficult2. These poor results may be due to the fact that the sub-
jects’ have quite a poor memorization capacity. Furthermore, these results
may also hint at the fact that humans may use something akin to a “mixed”
approach where for instance SVs could be used for training whereas Prots
are used for classification.

Using methods similar to [Sigala and Logothetis, 2002], [Peters, Gab-
biani, and Koch, 2003] investigate memory capacity in classification tasks.
In psychophysical investigations, it is shown that models do not seem to
need a high memory capacity, and that a small set of representations may
be enough. However, the results of [Peters, Gabbiani, and Koch, 2003] are
based upon the matching of the classification performance of man and ma-
chine, which was shown in Chapter 5 and will be shown in Chapter 6 to
be not adapted. In the studies of this chapter, we note that the issue of
memory capacity is a problem both in man and machine.

As far as the MPI face database is concerned, morphing of stimuli using
the face modeler is shown to be cognitively perceivable by the subjects and
to interfere with their classification behavior by producing a noticeable effect
on recognition performance. This problem could be avoided by considering
only novel face stimuli computed as linear combinations of the existing ones.
The subject would then only be confronted with computer-generated stimuli.

Our results rely on one crucial assumption: there is no additional learn-
ing in both the classification and in the memory experiments. The subjects
have already acquired their internal face representation and are just tested
when asked to classify a stimuli as male/female or as seen/unseen. Fur-

2Note that the reason for the large number of stimuli is due to the constraints of

sufficiently sampling stimulus space in order to be able to model it using machine learning

methods.
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thermore, in the memory experiment, we investigate simultaneously two
hypothesis that do not have to be necessarily correlated:

• humans have representations—how do humans learn?

• humans memorize representations—what do humans learn?

The results of the studies of this chapter then imply that either humans do
not classify using representations, or they do not store them in their memory
or, of course, they do neither. From the low seen/unseen discriminability
despite the presentation prior to the memory experiment, we may conclude
that humans are certainly bad at memorizing a relatively large number of
human faces, at least in their short-term memory. This may be due to the
high homogeneity of the considered face stimuli in terms of visual similar-
ity, which was even increased by the cleaning of the MPI face database as
presented in Chapter 2. Low-level stimuli may then be used in this type of
experimental setup to overcome this problem. Low-level random dot stimuli
have been shown to be useful to investigate the combination of classification
and memory mechanisms [Knapp and Anderson, 1984] using models based
upon the storage and addition of “memory traces”. Distributed memory
storage was introduced as an alternative to probabilistic and exemplar-based
classifiers such as General Context Models and prototype classifiers which
store exemplars. It was shown that for a a low number of patterns, novel
stimuli are classified by the subjects according to their similarity to the
learnt patterns, similarly to what is done in the General Context Model.
However, for a high number of stimuli, prototype classification was demon-
strated to be most relevant. This yields a a “two-regime” classification
scheme which is certainly meaningful for low-level stimuli, its application to
high-level stimuli revealing to be more difficult.

One of the first attempts to study the concept of prototype in recogni-
tion (memory) tasks is due to [Posner and Keele, 1968]. The prototype and
its “distortions” are shown to be more easily classified as other stimuli from
the corresponding class. In other words, after memorizing a set of distor-
tions, the subjects recognize the prototype better than other patterns of the
corresponding class, despite the fact that the subjects have never seen the
prototypes before. Furthermore, the authors also argue that patterns close
to the prototype allow best generalization. In the studies of this chapter
we do not get this results: the prototypes are as (badly) classified as the
other (non-)representations. The authors of [Posner and Keele, 1968] also
rise another fundamental issue: is the prototype computed on;line during
learning or is it only retrieved when performing recognition? This question
is answered in [Posner and Keele, 1970]: the prototypes are retrieved during
learning and are most stable over time. Furthermore [Posner and Keele,
1970] investigate the difference in forgetting between the prototypes and its
distortion and the patterns of the dataset. The prototypes are shown to be
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less prone to forgetting over time than the other stimuli. This corroborates
for [Posner and Keele, 1970] the crucial role the prototype classifier plays
for learning.

Exemplar-based model have been studied in [Dailey, Cottrell, and Busey,
1999] to model human memory using an old/new and a distinctiveness
paradigm. In such models, it is assumed that subjects store explicitly some
representations, which is similar to the context of the models of this chapter.
The subjects’ recognition errors have been investigated on face stimuli and
morphs inbetween them. However, the subjects were trained both on the
morphed stimuli and the original one, making a comparison to the stud-
ies of this chapter not meaningful. The main results of [Dailey, Cottrell,
and Busey, 1999] is that outliers in the dataset should be emphasized by
increasing their prior and the width of their kernel function.

Perceptual classification and recognition memory have been investigated
by [Nosofsky, 1991] using schematic human faces in another context as the
one proposed here: the role of features such as nose, mouth or eyes, is in-
vestigated for classification and recognition tasks. The modeling part is
less elaborate than the one considered here: Multi-Dimensional Scaling—a
method belonging to the same family as LLE—is used as a feature extractor
to span a space where General Context Models and prototype classifiers com-
bined with a weighted Euclidean norm are used for classification. However
the theoretical Ansatz is similar to the one proposed here: exemplars are
stored in memory and are retrieved from it for classification or recognition.
The main conclusion of this study is that classification and memory mech-
anisms rely on different set of mechanisms. We get a similar finding: while
machine learning is well adapted to model classification, it seems less suited
to explain the mechanisms of memory in our experimental setting. This
finding is also corroborated by [O’Toole, Abdi, Deffenbacher, and Valentin,
1993] where the PCA representation is shown to be appropriate for the clas-
sification of human faces, but not in recognition tasks such as new versus
old face. Moreover the exemplar-based approach was shown by [Nosofsky,
1991] to predict the subject’s classification, a result which is corroborated
by the results of this dissertation stating that SVMs or RVMs may be used
to model the classification behavior of human subjects (see Chapter 5).

Most of the above previous attempts to model perceptual classification
and recognition memory in man are rather different to the one considered
in this study since subject learn novel stimuli and are then tested on them.
Modeling, in the sense of machine learning, would then involve on-line learn-
ing algorithms. It seems that from the point of view of machine learning,
further methodological advances are needed to be able to fully understand
the processes behind human memory performance—this chapter has pro-
vided an experimental paradigm which might help to validate these further
developments.
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Chapter 8

Conclusions

We developed a novel methodology—PSYCHO ML—allowing to quantita-
tively bridge the gap between human psychophysics and machine learning
to gain insight into the algorithms used by human subjects during visual
classification of faces. In this “machine-learning-psychophysics” research we
substitute a very hard to analyze complex system—the human brain—by a
reasonably complex system—a learning machine—that is complex enough
to capture some essentials of the human behavior but is amenable to close
analysis, allowing us to make predictions about human behavior based on
machine properties. The psychophysical classification experiment is a be-
havioral study and machine learning is used to help understand human
classification behavior. Machine learning allows us to “look into the hu-
man brain” on an algorithmic level and extract quantitative information
from a psychophysical experiment by using unsupervised machine learning
to model feature extraction and supervised machine learning for classifica-
tion. Once a feature extractor is chosen and the corresponding data rep-
resentation computed, the corresponding feature vector is classified using a
separating hyperplane (SH) between the classes. The responses of humans
to one stimulus—the class estimate, its corresponding reaction time and con-
fidence rating—are correlated to the distance of the feature vector of this
stimulus to the hyperplane. These comparisons and correlations between
man and machine then give a hint at the mechanisms and strategies used
by human subjects to classify visual stimuli.

In our study, a gender classification task is considered and the stimuli are
drawn from a processed version of the Max Planck Institute (MPI) human
face database where the faces are centered in the image, have same pixel-
surface area and same mean and standard deviation of the intensity. Such
a task is clearly of high biological relevance, and this is certainly one of
the main arguments in favor of using this database, its choice being further
motivated in Chapter 1.

The classification behavior of man is studied in two psychophysical ex-
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periments. In the first classification experiment, each subject is shown se-
quentially a random subset of the face database. The subjects are then
asked to classify the faces according to their gender and the subjects’ gen-
der estimates are recorded as much as the corresponding reaction times and
confidence ratings. It can then be observed that a high classification er-
ror and a low confidence rating for humans are accompanied by a longer
processing of the relevant information by the subjects’ brain i.e. a longer
reaction time. In a second classification experiment, each subject is shown
a second time the same subset of the face database as already seen in the
first experiment, however in a different presentation order. The classification
task is identical. This experiment is a verification of the consistency of the
subject’s responses. These studies validate the concepts, the reproducibility
of the results and the setting of the experiments, and allow to proceed to
further analysis. Moreover, a jitter in the subject’s gender estimate for “dif-
ficult” stimuli is observed, this fact being used below when using machine
to interpret the human data.

Separating hyperplanes (SHs) are shown to be a plausible model to de-
scribe classification of visual stimuli by humans since elements far from the
SH are classified more accurately, faster and with higher confidence than
those near to the SH. A piecewise linear extension as for the K-means clus-
tering algorithm combined with a nearest-neighbor classifier (Kmean) seems
however less adapted to model classification. Support Vector Machines
(SVMs) and Relevance Vector Machines (RVMs) compare best to human
classification performance and also exhibit the best man-machine correla-
tions. The mean-of-class prototype (Prot), its popularity in neuroscience
notwithstanding, is the least human-like classifier in all cases examined. A
probabilistic model (such as RVM) or a statistically optimal one (such as
SVM) seem to better capture the human classification behavior than the
simple Prot and Kmean, suggesting also that exemplar-based models may
describe best the classification behavior of human subjects. Elements near
to the SH as used by SVM or RVM for classification seem to be better suited
for the purpose of classification than elements in the middle to the classes
as used by Prot or Kmean. In other words, neither the patterns “easy” to
classify—stimuli far from the SH (the male or female caricatures)—nor the
most typical ones—stimuli in the center of the classes (the prototypes or
means)—seem to be useful for classification. However, the patterns difficult
to classify—the androgynous faces close to the SH—can be assumed to be
critical for classification. Considering the stochastic nature of the subjects’
class estimation between the first and second classification experiments (the
jitter in the gender estimate as mentioned above), one can expect that stim-
uli close to the SH are subject to more jitter than those distant of the the SH.
The analysis of the corresponding man-machine correlations finally confirms
the above findings: humans may use mechanisms akin to SVMs or RVMs,
but are unlikely to use prototype classifiers.
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Applying the above studies on the encodings corresponding to the stim-
uli obtained for various feature extractors (i.e. the combination of a data
type with a preprocessor), Gabor wavelet filters seem to be a well adapted
model for preprocessing on the image pixel data type for encoding visual in-
formation. This may be expected, and thus also confirms the validity of our
approach, since the data on the retina is clearly an image and Gabor wavelet
filters have been shown in numerous studies such as [Hubel and Wiesel, 1962]
to be biologically plausible. A less intuitive result is the good performance
of the texture-and-shape data type which has an in-built knowledge of the
spatial correspondence between regions of the images. This seems to indi-
cate that, as an alternative approach to using the raw pixel data, the human
subjects may use the information contained in the combination of the tex-
ture and the shape maps of each face to build their internal representation
of visual stimuli. On the texture-and-shape data type, Non-negative Matrix
Factorization is demonstrated to describe well the preprocessing of visual
information in humans, and this has three implications. First, humans seem
to use a basis of images to encode visual information, what may suggest
that models such as kernel maps are less adapted since they do not use a
basis to decompose (visual) data. Second this basis seems to be part-based,
in contrast to Principal Component Analysis which yields a holistic basis.
Third, this part-based basis is spatially not too sparse, ruling out Inde-
pendent Component Analysis which has a maximally sparse basis. Finally,
histograms and neighborhood-preserving methods such as Locally Linear
Embedding do not seem adapted to model feature extraction in humans, at
least given the MPI face database.

The above findings have some implications on sparseness issues in the
representation and processing of visual stimuli in the human brain. A high
sparseness of the classification algorithm does not seem to be relevant for
classification. In other words the SH of SVMs and RVMs, both exemplar-
based classifiers, is computed using a relatively large subset of patterns from
the dataset. This fact may account for good classification performance and a
high robustness of the decision function. However, for the encodings and for
the image basis, a medium degree of sparseness is shown to be most adapted.
For the basis this translates into a part-based basis where “regions” from
the face are highlighted. Thus, a bit of sparseness in the basis and encoding
is good, but too much is bad.

Another important issue related to classification is feature ranking. The
latter is studied using the linearity of the classification system composed of
a linear feature extractor combined with a linear classifier. The resulting
decision images are a direct and principled way to visualize the regions of
the face stimuli most useful for classification both for man and machine
without use of prior information. These images are compared to those
obtained using Recursive Feature Elimination (RFE), a benchmark method
from machine learning. While all these decision images look quite similar,
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they induce very different decision spaces as shown by the following studies.
We then study the metric of the human internal representation of faces using
a logistic regression to interpolate between the subjects’ class estimate for
a stimulus and the distance from this stimuli to the SH. It is shown that
if trained on the true labels some machines perform the classification task
quite similarly to humans in terms of classification performance but they
classify faces very differently from human subjects. On the other hand,
machines can re-create the decision boundary and the internal representation
of faces for human subjects very well if trained on the subjects’ labels. When
machine are trained in a space of reduced dimensionality as obtained by
RFE, we notice that equating the classification performance of man and
machine through RFE makes machines even less human-like than if trained
on the true labels. This shows that even if man and machine perform a task
equally well—i.e. same classification error—this does not imply anything
about their internal workings, corroborating one of the results of this thesis:
the classification performance is not enough to infer on the mechanisms
used by humans. In these studies, SVM and RVM behave best, while the
prototype learner is again the worst candidate to model classification in
humans.

Using the decision images, a novel psychophysical experiment is designed
where the hypotheses generated from machine learning are used to generate
novel stimuli along a direction—the gender axis—orthogonal to the SH of
each classifier. The correlation studies of this dissertation reported that the
subjects’ responses to the faces correlated very well with the distance of the
stimuli to their SH for SVMs and RVMs but not for the simple prototype
classifier. If these correlations really implied that SVMs and RVMs capture
some crucial aspects of human internal face representation, their gender
axis should be closely aligned to those of our subjects whereas that is not
expected to be the case for Prot. A psychophysical gender discrimination
experiment confirms these predictions. In other words, from the analysis
of the machines we make predictions for human subjects which we subse-
quently test psychophysically. By doing so, we close the man-machine loop,
and demonstrate that machine learning is a suitable method to model the
classification of visual stimuli, at least for the MPI face database.

Finally, we investigate the mechanisms responsible for the memorization
of visual stimuli. After a first classification experiment some sets of stimuli—
the representations and the non-representations—are determined for each
subject. The subjects’ labelling of these stimuli as seen/unseen may be a
clue for their relevance during classification. It is shown that given the MPI
face database and the particular task we chose, no effect can be observed: all
stimuli are memorized similarly. We can then conclude that it is difficult to
cast concepts from machine learning into a formalism describing the memory
mechanisms of humans. However, machine learning is successfully used to
model feature extraction and classification of visual stimuli in humans.
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Appendix A

Data Representation

A.1 Overview

In this appendix we consider algorithms relying on unsupervised learning
methods which are used to find different manners to represent and embed
data. These algorithms as thus referred to a feature extractors since they
are assumed to extract the most relevant information from the data. At
the same time, these algorithms perform dimensionality reduction, a useful
property when used as a stage anterior to classification algorithms since cur-
rent techniques experience difficulties when dealing with high-dimensional
datasets. In particular we study below Principal Component Analysis, Lo-
cally Linear Embedding, Independent Component Analysis, Non-negative
Matrix Factorization, Empirical Kernel Maps and Gabor wavelet filters.

We assume ~x1, . . . , ~xp ∈ R
n is the original data where p is the number

of patterns and n their dimensionality. We then define the original data
matrix as: X = (~x1| . . . |~xp) ∈ R

n×p. In the following, we assume n > p. Let
the data in the reduced space, also referred to as encoding, be written as
~y1, . . . , ~yp ∈ R

k where k < n stands for the dimension of the low-dimensional
projection space of the reduced data. We define the matrix of the encoding
as: Y = (~y1| . . . |~yp) ∈ R

k×p. Note that, except for PCA, the presented
feature extractors are not a map Φ : R

n → R
k. In other words, most of

these preprocessors are local, and considering a new pattern amounts to
recompute the whole algorithm to obtain features.

A.2 Principal Component Analysis

Principal Component Analysis (PCA, see [Duda, Hart, and Stork, 2001,
Haykin, 1999]) is considered as a benchmark feature extractor. PCA de-
termines axis in the data space along which the data has largest variance.
These directions are called Principal Components (PCs). The encoding is
then the projection of the data on these PCs. PCA seeks to find a new basis

137



to represent the original data such that the coefficients in this new basis are
uncorrelated i.e. they cannot be linearly predicted from each other; in other
words the PCs are orthonormal. We compute the mean ~µ ∈ R

n over the
patterns of the dataset as:

µi =
1

p

p
∑

j=1

Xij i = 1, . . . , n (A.1)

which allows to center the data as:

D = X − ~µ~1T (A.2)

where ~1T is a line vector of ones of size p. The sample covariance matrix of
the data is then expressed as:

C =
1

p− 1
DDT ∈ R

n×n (A.3)

Since the above matrix is real and symmetric, it can be orthogonally diago-
nalized (spectral theorem). Assume its real eigenvalues are sorted according
to decreasing value: λ1 ≥ . . . ≥ λn, the corresponding orthonormal eigen-
vectors ~vi forming the columns of the orthogonal matrix V = (~v1| . . . |~vn) ∈
R

n×n. The following can then be written:

C = V ΛV T (A.4)

where Λ = diag(~λ) ∈ R
n×n. Since rank(C) = rank(D) ≤ p, at most p

eigenvalues of C are different than 0: λp+1 = . . . = λn = 0. We define
V̄ = (~v1| . . . |~vk) ∈ R

n×k as the matrix of the first k eigenvectors. The
dataset of reduced dimensionality can then be computed from the original
one by projection as:

Y = V̄ T D (A.5)

The columns of Y, i.e. the encoding, are the new data vectors which are
linear combinations of the original ones. The original data can then be
approximated by:

X̃ = V̄ Y + ~µ~1T (A.6)

If ~x is a new pattern in the space of the original data and ~y its corresponding
projection, we have:

~y = V̄ T (~x− ~µ) ⇔ ~x = V̄ ~y + ~µ (A.7)

The PCA algorithm is the only feature extractor presented in this appendix
which allows to represent/project a new pattern without having to recon-
sider all the other patterns. The PCA algorithm as presented above is a
straightforward eigenvalue problem. A three-layered linear artificial neural
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network of the latter, known as an autoencoder network, can alternatively
be considered. The latter requires again the computation of the correlation
matrix and is based upon a weight update based on gradient descent. No-
tice that the matrix V can be seen as rotation matrix around the origin
i.e. a matrix of change of bases. In an extended way, V̄ can be interpreted
similarly. It is thus important that the data is centered around the origin
by subtracting its mean in a first place before performing these rotations.

The computations above mainly hinge upon the determination of the
correlation matrix C. For large values of n, as it is mainly the case, the de-
termination of the eigenvalues is computationally expensive or intractable.
A solution to this problem is provided in the case where k ≤ p by the
Singular Value Decomposition (SVD) algorithm [Press, Teukolsky, Vetter-
ling, and Flannery, 1992]. Another method, sometimes referred to as Snap
Shot Method [Roweis, 1996, Sirovich, 1987] or linear Kernel PCA [Schölkopf,
Smola, and Müller, 1998], searches to express the eigenvectors as linear com-
binations of the data vectors. It allows to find the first few leading eigenvec-
tors in a high dimensional space. It has the computational advantage over
classic PCA that it does not require the computation of a correlation matrix
between the dimensions of the input but between the patterns, avoiding thus
the computation of the pseudo-inverse as required by the SVD decomposi-
tion.

Using the same notations as above, we define the centered patterns as:

~zi = ~xi − ~µ ∀i = 1, . . . , p (A.8)

and write the covariance matrix of the data as:

C =
1

p− 1

p
∑

i=1

~zi~z
T
i (A.9)

We then express the eigenvectors of C as a linear combination of the pat-
terns:

~vj =

p
∑

i=1

αj
i~zi ∀j = 1, . . . , n (A.10)

The eigenvalue problem of C is then written as:

C~vj = λj~vj ∀j (A.11)

Inserting equ.A.9 and equ.A.10 into the above, we get:

∑

kl

~zkGklα
j
l = λj

∑

m

αj
m~zm ∀j where Gij =

1

p− 1
~zT
i ~zj (A.12)

where G is the Gram matrix of the data. The above implies:

G~αj = λj~αj ∀j (A.13)
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Finally, we can rewrite the above in matrix notation. The Gram matrix of
the patterns is defined as:

G =
1

p− 1
DT D ∈ R

p×p (A.14)

Since the above matrix is real and symmetric, it may be orthogonally diago-
nalized (spectral theorem), yielding the real ordered eigenvalues λ1 ≥ . . . ≥
λp and the following:

G = V ΛV T (A.15)

where Λ = diag(~λ) ∈ R
p×p and V = (~v1| . . . |~vp) ∈ R

p×p is the orthogonal
matrix of eigenvectors. The latter allows to write the matrix of change of
base as:

U = GS[DV ] ∈ R
n×p (A.16)

where GS stands for the Gram-Schmidt orthonormalization process. Note
that the eigenvalues are the same for the classic PCA and the Snap Shot
PCA, the eigenvectors however differ by a matrix multiplication with the
original data. When defining the dimensionality of the reduced projection
space as k ≤ p, the first k columns of U represent the matrix of change of
base Ū ∈ R

n×k. Finally, the encoding is expressed as:

Y = ŪT D (A.17)

The approximation of the original data is then written as:

X̃ = ŪY + ~µ~1T (A.18)

Again, the following relation between patterns from the original and reduced
space are valid:

~y = ŪT (~x− ~µ) ⇔ ~x = Ū~y + ~µ (A.19)

The nonlinear extension of PCA using the kernel trick, KPCA, is based
upon the above formulation where in the computation of the Gram matrix
the scalar product is replaced by a kernel function [Schölkopf, Smola, and
Müller, 1998, Schölkopf, Burges, and Smola, 1999].

A.3 Locally Linear Embedding

Locally Linear Embedding (LLE, see [Roweis and Saul, 2000, Saul and
Roweis, 2003]) can be considered as a nonlinear neighborhood-preserving
extension of PCA to perform feature extraction i.e. find an embedding of
the data. Each pattern of the high-dimensional space of the data is expressed
as a linear combination of its K nearest neighbors, yielding thus an local
linear embedding. The patterns are then projected into a low-dimensional
space while preserving this embedding. Fig.A.1 gives a schematic view of the
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Figure A.1: Schematic view of the LLE algorithm.

LLE algorithm. In order to compute the weights wij of the local embedding,
the following error function is to be minimized:

ε =
1

2

p
∑

i=1

‖~xi −

p
∑

j=1,j 6=i

wij~xj‖
2 (A.20)

subject to the constraints:
{ ∑p

j=1 wij = 1 (convexity constraint)

wij = 0 if ~xj /∈ N (~xi)
(A.21)

where N (~xi) is the neighborhood of ~xi. Assume ~ηi
j ∈ N (~xi), j = 1, . . . , K.

The problem above then reduced to the minimization of the error function:

ε =
1

2

p
∑

i=1

‖~xi −
K
∑

j=1

wij~η
i
j‖

2 subject to

K
∑

j=1

wij = 1 (A.22)

The above problem may be solved analytically. Indeed, the Lagrangian
associated to this optimization problem can be expressed as:

L =
1

2

p
∑

i=1

K
∑

j,k=1

wijwikC
i
jk −

p
∑

i=1

λi(
K
∑

j=1

wij − 1) (A.23)

where λi are the Lagrangian multipliers and C i
jk = 〈~xi − ~ηi

j |~xi − ~ηi
k〉 is

the Gram matrix of the data. The saddle point of the above Lagrangian
( ∂L

∂wij
= 0) yields:

λi =
K
∑

k=1

wikC
i
jk i = 1, . . . , p ∀j = 1, . . . , K (A.24)

From the expressions above, we deduce the weights of the local embedding:

wij =

∑K
k=1(C

i
kj)

−1

∑K
k,j=1(C

i
kj)

−1
i = 1, . . . , p j = 1, . . . , K (A.25)
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where (Ci
kj)

−1 is the kjth element of the inverse of the matrix C i ∈ R
K×K .

For each of the elements ~xi of the original dataset, we search a corresponding
embedding element ~yi ∈ R

k, k ≤ p−1 in a low-dimensional space minimizing
the embedding cost function:

Φ =
1

2

p
∑

i=1

‖~yi −

p
∑

j=1

wij~yj‖
2 (A.26)

using the previously-determined weights and subject to the following con-
straints:

{ ∑p
i=1 ~yi = 0

1
p

∑p
i=1 ~yi ⊗ ~yi = I(k)

(A.27)

where I(k) as the identity matrix of size k. The first constraint expresses the
fact that the data in the low dimensional space is centered around the origin
and the second constraint requires the reduced data to be orthonormal.
These constraints avoid thus having an infinite number of solutions. We can
rewrite the cost function as:

Φ =
1

2

p
∑

i,j=1

Mij〈~yi|~yj〉 (A.28)

where Mij = δij−wij−wji +
∑p

k=1 wkiwkj , δij being the Kronecker symbol.
The matrix M ∈ R

p×p is symmetric and with the decomposition:

M = V ΛV T (A.29)

where Λ = diag(~λ) ∈ R
p×p, λ1 ≤ . . . ≤ λp is the diagonal matrix of eigenval-

ues and V = (~v1| . . . |~vp) ∈ R
p×p the orthogonal matrix whose columns are

the corresponding eigenvectors. The first k + 1 eigenvectors, i.e. columns of
V , are considered. One of these eigenvectors is a vector with same values
throughout and corresponds to an eigenvalue of 0. This vector is discarded
and the remaining k vectors correspond to the desired embedding defining
the matrix V̄ ∈ R

p×k. Finally, this yields the encoding as:

Y = V̄ T (A.30)

Since LLE is invariant to rotation, scaling and translation of the patterns,
it may be seen as more biologically relevant than PCA which is is view-
dependent. However, these invariances also imply that LLE is not invertible.

The parameter K is the only free parameter of the LLE algorithm. The
scalar product in the expression of C i

jk can be replaced by a kernel function

(kernel trick), yielding the kernel matrix K i
jk. The computations above are

then still valid when replacing C i
jk by Ki

jk, yielding the KLLE algorithm.
Using a kernel function to compute the Gram matrix i s a nonlinear exten-
sion of the LLE algorithm and accommodates for strongly varying manifolds
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underlying the data. The above eigenproblem of the matrix M should how-
ever not be kernelized since we want the data ~yi to be in a well-defined space
of reduced dimension i.e. the mapping should be explicitly known which is
not the case for most feature spaces associated to kernel functions. The
neighborhood N is mostly defined using the Euclidean norm. As an exten-
sion to the LLE algorithm as presented above, we could consider the use
of a weighted Minkowsky norm with a similarity measure to determine the
neighborhoods.

LLE recovers global nonlinear structure from locally linear interpola-
tions. In this respect LLE is similar to Self-Organizing Feature Maps (Ko-
honen maps) as described in [Duda, Hart, and Stork, 2001] and to multi-
dimensional scaling (MDS). The latter computes embeddings which preserve
pairwise distances between patterns over the whole dataset (and not locally)
along straight lines. Moreover, the extension of MDS which computes these
distances along the shortest paths on the manifold underlying the data is
called Isomap [Tenenbaum, de Silva, and Langford, 2000]. All these methods
belong to a same family—we choose LLE as its representative member.

A.4 Independent Component Analysis

Independent Component Analysis (ICA, see [Cardoso, 1998, Hyvärinen and
Oja, 1999]) can be seen as an unsupervised method to reduce the redundancy
in the data by extracting statistically independent signals from it. In other
words, it aims at expressing a set of random variables as linear combinations
of statistically independent variables, the distribution of the latter being
assumed to be non-Gaussian. This feature can also be used to perform
dimensionality reduction and feature extraction. Early processing by the
brain of sensory data is argued to be explainable by principles similar to
ICA. For the sake of simplicity of the presentation, we assume the original
data to be sphered using for instance PCA. We consider the linear mixing
model which yields a decomposition of the data as follows:

Ŝ = WX
X = BS

(A.31)

where X = X T is the matrix of the original data (observed signals), S ∈
R

k×n the matrix of mutually independent sources (unobserved signals) and
Ŝ its estimate, W ∈ R

k×p the unmixing matrix and B = YT the mixing
matrix and in this context also the matrix of the data in the reduced space
of dimension k < n. The principle of ICA is to recover the estimate of the
unobserved signals Ŝ from the observed mixture of the sources X using the
assumption of mutual independence between the sources. Both the sources
and their mixing are unknown. Below we show how to exhibit W using only
X and the corresponding computation of S and B.
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The differential entropy of a random vector ~s is defined as:

H(~s) = −

∫

f(~s) log f(~s)d~s (A.32)

where f(~s) is the probability density function of the vector ~s, the latter being
seen as an approximation of one of the sources i.e. a row of Ŝ. The variable ~s
is assumed of zero mean (i.e. centered) and of unit variance (i.e. whitened).
The mutual information between the signals si measures the dependency
between these random variables and is defined as:

I(~s) = H(~s)−
k
∑

i=1

H(si) (A.33)

ICA seeks to minimize the mutual information in order to uncorrelate the
signals, or also to maximize the independence between the signals. When
I = 0 the components of ~s are independent. In the assumption of a lin-
ear mixing process, minimizing the mutual information I(~s) is equivalent to
maximizing the sum of the negentropy as:

∑k
i=1 J(~si) as shown by [Hyväri-

nen and Oja, 1999]. The negentropy is defined as:

J(~s) = H(~sgauss)−H(~s) (A.34)

where ~sgauss is a Gaussian random variable of the same covariance matrix
as ~s. The negentropy, like the kurtosis, is a measure of the nongaussianity
of a distribution. One can equivalently say that ICA finds directions of
maximum non-Gaussianity i.e. maximum negentropy. The crucial point is
the estimation of the negentropy, and the following objective function has
been proposed:

J(~s) ≈ (E{G(~s)} − E{G(~ν)})2 (A.35)

where E{·} is the expectation, G is a non-quadratic function called the con-
trast function and ~ν is a Gaussian variable of zero mean and unit variance.
We define ~si = 〈~wi|~xj〉 |

n
j=1 = [WX]i as the ith row of Ŝ, ~wi as the ith row

of the unmixing matrix W and ~xj as the jth column vector of the original
data X. Writing the above in terms of the unmixing matrix W , we get that
minimizing the mutual information is equivalent to the following problem:

max
∑k

i=1 J([WX]i)

subject to E{[WX]i} = 1 ∀i = 1, . . . , k

(A.36)

The resolution of the ICA problem using the above approximations reduces
thus to an optimization problem and yields the unmixing matrix W . This
optimization is done using a fast fixed-point iterative scheme as presented in
[Hyvärinen, 1999, Hyvärinen and Oja, 1997]. The correctness of the choice
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of the contrast function is verified by computing the reconstruction error of
the original data (heuristic procedure).

Upon first consideration, it may be concluded that B is the matrix of
the encoding and S the matrix whose columns represent the corresponding
basis vectors. Recall that applying PCA on X or XT yields similar results
(classic versus Snap Shot PCA). However for ICA the results on X or XT

differ strongly as shown below. Thus we consider two different manners to
apply ICA in this setting, one yielding a holistic and the other a part-based
basis as discussed in [Bartlett, Movellan, and Sejnowski, 2002] in the context
of face recognition. The PCA algorithm on the data matrix X ∈ R

p×n

yields the data of reduced dimensionality R ∈ R
p×k where k < n, the mean

~µ and the matrix of change of basis U ∈ R
n×k. The above are related as:

R = (X − ~1T ~µ)U . We consider below the case where k = p i.e. we use
ICA to represent the data and not to reduce its intrinsic dimensionality. We
have the two following possibilities to compute ICA and obtain the unmixing
matrix W ∈ R

p×p:

1. ICA I—non-sparse encoding and sparse basis: ICA is performed on
the rows of UT and yields:

S = WUT

B = RW−1 (A.37)

The patterns are treated as random variables and their components as
outcomes or trials. We have here independence of the patterns: given
a component, it is not possible to predict one pattern given another
one. The basis S is thus statistically independent, what is not the case
for the encoding B. The basis is thus sparse and non-global and the
encoding non-sparse.

2. ICA II—sparse encoding and non-sparse basis: the ICA algorithm is
run on the rows of RT and yields:

S = (W−1)T UT

B = RW T (A.38)

Here the components are treated as random variables and the patterns
as outcomes. We have independence of the components in the sense
that it is not possible to predict a component given another one on the
same pattern. Here the encoding B is statistically independent and
sparse and the basis S is non-sparse.

In both cases the matrix Y = BT is the matrix representing the encoding
i.e. the data in the reduced space and S is the basis matrix. The recon-
structed data is then given as X̂ = BS +~1T ~µ.
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A.5 Non-negative Matrix Factorization

The Non-negative Matrix Factorization (NMF, see [Lee and Seung, 1999])
algorithm performs a decomposition of the data into non-negative terms as
follows:

X = WH (A.39)

where W ∈ R
n×k is the matrix of the basis vectors of the representation and

H = Y the matrix of the data in the space of reduced dimensionality whose
columns are the encodings corresponding to each pattern of the original data.
This decomposition is similar to PCA and ICA (see above). The encoding
H consists of the coefficients of the linear combination of the basis vectors
of W allowing to reconstruct a pattern from the original data. In the case
of PCA, the constraints on the decomposition are that the columns of W be
orthonormal and that the rows of H be orthogonal. Non-negative matrix
factorization [Lee and Seung, 1999] is an alternative manner to factorize
data where the matrices W and H are constrained to be non-negative. In
this manner, cancellations among the data provided by summing positive
and negative coefficients as for PCA are avoided, allowing thus only additive
contributions of the encodings. The corresponding basis function can then
be expected to represent “parts” of the original data X , these parts being
added to reconstruct X . Sparseness in the basis is thus achieved. The
update rule for NMF is as follows:

1. scale the data X to [0, 1]

2. initialize W and H to random values in [0, 1]

3. update H and W until convergence as:

Hij ← Hij
∑

k Wki
Xkj

(WH)kj

Wij ←Wij
∑

k
Xik

(WH)ik
Hjk

Wij ←
Wij

∑

k Wkj

(A.40)

Alternative algorithms to perform NMF as much as the corresponding cost
functions are presented in [Lee and Seung, 2000]. NMF only works for non-
negative data (it is indeed rather difficult to express a negative value using a
linear combination of positive ones with positive coefficients), so the original
data X is first scaled to [0, 1]. It is thus not necessary to subtract the mean
to the original data (centering) as done for PCA. Further the biological plau-
sibility of NMF is argued to be the sparse basis W representing parts of the
patterns of the original data, the non-negativity of the firing rate of neu-
rons, the constancy of the sign of the strength of synaptic connections and
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finally the sparseness of the neural code. The quality of the reconstruction
is dependent upon the maximum number of iterations of the algorithm.

A.6 Empirical Kernel Maps

The empirical kernel map is an eigenvalue decomposition of a nonlinear
extension of the Gram matrix of the original data. It is thus very similar
to KPCA. We define as the empirical kernel map with respect to the data
{~xi}

p
i=1 the mapping:

~ϕp : R
n → R

p

~x → ~ϕp(~x) = K− 1
2 (K(~x1, ~x), . . . , K(~xp, ~x))T (A.41)

where the matrix Kij = K(~xi, ~xj) for i, j = 1, . . . , p is the kernel matrix
relative to the positive definite kernel function K(~x, ~y) (for more details
see [Schölkopf and Smola, 2002]). This type of mapping may be used to
represent and embed data. Moreover, it is also an easy way to kernelize
any algorithm, in particular the linear classifiers presented in appendix B.
The use of other metrics in algorithms (for classification and/or feature
extraction) can also be implemented using the above kernel maps.

We consider here feature extraction and restrict ourselves to the context
of finding a possibly non-linear embedding using empirical kernel maps and
of reducing the dimensionality of the original dataset. For this, we write the
kernel matrix of the data as (see also [Chapelle and Schölkopf, 2002]):

K = V ΛV T (A.42)

where the columns of the orthogonal matrix V are the eigenvectors and Λ
is a diagonal matrix of the eigenvalues of K. We then compute the feature
map F ∈ R

p×p as:

F = K− 1
2 K = Λ− 1

2 V T K = Λ
1
2 V T (A.43)

such that the kernel matrix can be expressed as:

K = F T F (A.44)

The columns of F = Y represent thus the data in a space of dimensionality
p. The above algorithm is not strictly-speaking a dimensionality reduction
method since it can only produce data in p dimensions; it is not possible to
choose a dimension k 6= p as for PCA, NMF, LLE or ICA.

In the application considered in this thesis, we shall only consider Radial
Basis Function (RBF) kernels, also called Gaussian windows, of the type

K(~x, ~y) = exp
(

−(‖~x−~y‖
c )2

)

. These kernels are normalized i.e. K(~x, ~x) =

1 and they are biologically-plausible since they resemble to some extent
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receptive fields and can be embedding in a neural network scheme, the so-
called RBF networks (see [Haykin, 1999]). These kernels allow a multi-scale
analysis through the choice of the width parameter c. For large values of
c, we have the linear case i.e. the matrix Kij = K(~xi, ~xj) ∼ δij is the
identity matrix. For small values of c all the patterns are orthogonal i.e
Kij ∼ 1. Both cases are limit cases and we propose below a automated
way to determine an “interesting” value of c. We define the range of the
non-diagonal values of the matrix K by Kmin and Kmax. The parameter
c is then chosen such that 0 ≤ Kmin ≤ T (K) ≤ Kmax ≤ 1 for the whole
dataset, where T (K) is the upper triangular part of K, as below:

1. compute the distance matrix d for the whole dataset given by dij =
‖~xi − ~xj‖

2. compute the kernel matrix Kij = exp
(

−(
dij

c )2
)

3. minimize with respect to c in the sense of a least-square error the
function ‖~e‖2 where e(1) = min(K) − Kmin and e(2) = max(K) −
Kmax using as an initial guess for c the median of the non-diagonal
values of d.

The above procedure can be seen as an automated way to determine the
optimal RBF kernel parameter which suits best the data, i.e. allows to ex-
tract most information from the data at hand. In practice, some reasonable
values are: Kmin = 0.3 and Kmax = 0.8. We thus avoid an almost diagonal
kernel matrix or a matrix of ones. Once c is determined, the feature map F
is computed and the encoding is known.

A linear empirical kernel map is identical to PCA if the data is centered.
Indeed, for PCA we have:

DDT = V ΛV T and R = V T D (A.45)

with the same notations as in section A.2 and where R the matrix of encod-
ings. We can deduce that D = V R and thus V ΛV T = DDT = V RRT V T .
This is only possible for R = Λ

1
2 HT where H is orthogonal and we can then

write:

DT D = RT R for R = Λ
1
2 HT (A.46)

For the linear empirical kernel map we have, as shown above:

DT D = WΩW T = F T F for F = Ω
1
2 W T (A.47)

Although the sizes of the matrices for PCA and the kernel map differ, they
have same rank and the results are thus identical. The above comparison is
similar to what was done for classical PCA versus the Snap Shot Method
(linear KPCA).
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A.7 Gabor Wavelet Filters

Gabor wavelet filters, or receptive fields, can be seen as one of the most
widely-spread models in the neuroscience community for the description of
the processing of visual information since the milestone work of [Hubel and
Wiesel, 1962]. This type of preprocessing can be regarded as biologically-
plausible or inspired and has found application in various studies in com-
puter vision [Mel, 1997] and the design of sparse codes [Olshausen and Field,
1996]. Further, these type of filters have been used to model the response
of receptive fields in the visual cortex when confronted with natural scenes
[Willmore and Smyth, 2003]. We apply below such receptive fields as filters
on the images of the original database. The convolution of such filters at vari-
ous scales and orientations with the original images yields a high-dimensional
highly sparse vector for each image of the database. The dimensionality is
subsequently reduced using a linear empirical kernel map.

We define the Gabor wavelet filter following [Liu and Wechsler, 2003] as:

λ =
π2ν+5

d
and θ =

πµ

M
(A.48)

where d is the image size in pixels (i.e. its resolution), ν = 0, . . . , N indicates
the scales and µ = 0, . . . , M the orientations. We then define the following:

k = λ exp(θi) and ~k = (<(k),=(k)) (A.49)

where < and = represent respectively the real and the imaginary part. This
yields the Gabor filter or receptive filed as:

Gµν =

(

‖~k‖

σ

)2

exp

(

−
‖~k‖2s

2σ2

)

(

exp(i
〈

~k|~z
〉

)− exp(−
σ2

2
)

)

(A.50)

where σ = 2π and the position vector ~z is centered on the image and the
elliptic shape of the filter is defined as:

s = (R−θ~z)T

(

2 0
0 1

)

R−θ~z (A.51)

where the rotation matrix is defined as:

Rθ =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

(A.52)

We define I and Gµν the image and Gabor filter matrix respectively. We
denote their Fourier transforms respectively by F(I) and F(Gµν). The
filtering process is the convolution of the image and the filter matrices, or
equivalently the product of their Fourier transforms element by element (and
not the matrix product):

F(IGµν ) = F(I) · F(Gµν) (A.53)
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The above filtered image is then downsampled in order to remove unneces-
sary information. In this procedure, we only consider a centered square of
the filtered image, the size of this square being given by the minimal spatial
extension of the magnitude of the corresponding filter. We then obtain:

ˆIGµν = F−1F( ˆIGµν ) (A.54)

The highly sparse feature vector ~fI = { ˆIGµν}µν corresponding to the image
matrix I is then the concatenation of the filtered image vectors obtained for
each scale and orientation. In order to exploit this huge vector for the pur-
pose of machine learning, an additional preprocessing step is required. We
choose here a linear empirical kernel map (see previous section) as follows:

QT Q = V ΛV T → F = Λ
1
2 V T (A.55)

where Q = (~f1
I | . . . |

~fp
I ) is a matrix whose columns are the feature vectors

~fI and F = Y the matrix whose columns are the vectors corresponding to
each image in a space of dimensionality p.
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Appendix B

Hyperplane Classifiers

B.1 Overview

We assume being in the context of supervised machine learning and are
given an empirical labeled dataset D = {(~xi, yi)}

p
i=1 where ~xi ∈ R

n are
the patterns and yi = ±1 the target values. We present in this section four
supervised dichotomic linear classification algorithms: the prototype learner
(Prot), the K-means learner (Kmean), the Support Vector Machine (SVM)
and the Relevance Vector Machine (RVM).

For all these algorithms, the decision function is modeled by a separating
hyperplane (SH) defined by its normal vector ~w and offset b. The class of
an unlabeled pattern ~x is then given by:

y(~x) = sign(f(~x)) where f(~x) = 〈~w|~x〉+ b (B.1)

where f(·) is the decision function. The goal of supervised machine learning
is to determine the function f such that yi = sign(f(~xi)) ∀i = 1, . . . , p
while allowing a good generalization to new patterns i.e. avoiding overfitting.
The generalization ability is mainly obtained using regularization theory
which ensures smoothness and simplicity of the solution [Chen and Haykin,
2002].

Furthermore these algorithms can be expressed as classifiers in dual form.
In other words, we can write:

~w =

p
∑

i=1

αi~xi (B.2)

where ~α is the vector of dual variables and the ~w the vector of primal
variables. In other words, ~w is expressed using a linear combination of the
patterns and is thus an element in the same vector space as the data—the
primal space.

Finally all these classifiers in dual form proceed to classification using a
a small set of patterns R termed representations: R = {~ri}

l
i=1 with l < p.
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We then have two types of representations. For the SVM and the RVM, the
representations are a subset of the patterns of D: ~ri ∈ D ∀i = 1, . . . , l. To
compute the SH, we only need these elements and we can then write: ~w =
∑

i|~xi∈R
αi~xi. For Prot and Kmean, the representations are not elements of

D: ~ri /∈ D ∀i = 1, . . . , l. They are computed using all patterns of D and we
then have: ~w =

∑p
i=1 αi~xi. The number of representations is closely related

to the issue of sparseness of the classifier in dual form.

B.2 Prototype Classifiers

One of the simplest and most basic pattern classification algorithms is the
mean-of-class prototype learner. It is argued to be biologically-plausible ac-
cording to findings in psychology [Reed, 1972, Rosch, Mervis, Gray, Johnson,
and Boyes-Braem, 1976, Knapp and Anderson, 1984]. Prototype learning
belongs to the class of distance-dependent winner-takes-all learning rules.
An unlabeled example ~x is assigned to the class whose prototype is closer
to it (one nearest-neighbor approach) i.e classification is done by computing
the distance between the unlabeled pattern and the prototype of each class
as shown in fig. B.1. We consider the Euclidean norm and the following

?

Prots: 

SH 

Figure B.1: Schematic view of prototype classification.

decision function can be written:

f(~x) =
‖~x− ~p−‖

2 − ‖~x− ~p+‖
2

2
= 〈~w|~x〉+ b (B.3)

where the prototypes are defined as:

~p± =

∑p
i=1 ~xi(yi ± 1)
∑p

i=1(yi ± 1)
=

∑

i|yi=±1

αi~xi (B.4)

where αi = yi+1
2]{yi=1} −

yi−1
2]{yi=−1} . The prototype is the center of mass of each

class assuming homogeneous punctual mass distributions on each pattern.
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Clearly, the prototypes stand for the representations. They can be expressed
using a weighted sum of the patterns of the database. The parameters of
the SH are then written as:

~w = ~p+ − ~p− =
∑

i

αiyi~xi and b =
‖~p−‖

2 − ‖~p+‖
2

2
= −
〈~w|
∑

i αi~xi〉

2
(B.5)

Prototype learning can be seen as a powerful “Ansatz” to elaborate novel
algorithms which can easily be used and interfaced with (existing) experi-
mental protocols. Moreover, prototype classifiers can be shown to be limit
cases of other algorithms: setting C → 0 in the SVM algorithm yields pro-
totype classification and boosting a prototype learner yields a SVM [Graf,
Bousquet, and Rätsch, 2004a].

B.3 Kmeans & Nearest-neighbor

We present here a novel algorithm combining the Kmeans clustering algo-
rithm to a nearest-neighbor classifier. This algorithm is a piecewise linear
extension of the classical mean-of-class prototype learner. Kmeans[Duda,
Hart, and Stork, 2001] is used to compute more than one “prototype” per
class (for a conceptually similar approach, see the chorus of prototypes by
[Edelman, 1995]). Once the K means for each class are obtained, a new pat-
tern is assigned to the class whose means is nearest. In other words, for a
new pattern to be classified, the nearest means of each class are determined
and a prototype-like decision rule is applied as shown in fig.B.2. The means

Means: 

SH 

Figure B.2: Schematic view of Kmean clustering combined with Nearest
Neighbor classification.

of each class {~µj}
K
j=1 are determined as follow, assuming the data of this

class is given by {~zi}
l
i=1:

1. initialization of the means ~µj , using for instance the first K principal
components of {~zi}

l
i=1 i.e. the first K eigenvectors of the covariance

matrix of the data
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2. update ~µj until convergence, for instance of the norm of the difference
of the new and old means, as follows:

(a) for every pattern ~zi, determine the nearest ~µj according to ui =
arg minj=1,...,K ‖~zi − ~µj‖

(b) recompute the new ~µj as the mean over the patterns nearest to
the old ~µj according to ~µj ← 〈~zi|ui=j〉 where 〈·〉 is denoting the
mean

This algorithm computes the best embedding of the K means in the data
and follows similar principles as Locally Linear Embedding [Roweis and Saul,
2000].

Learning of the discriminant function is then done using a nearest-
neighbor rule. Assuming the means of each class {~µ±

j }
K
j=1 determined, the

mean of each class nearest to the pattern ~xi is computed as:

~ki
± = ~µ±

v±
i

where v±i = arg min
j=1,...,K

‖~xi − ~µ±
j ‖ (B.6)

Learning is done similarly to prototype learning i.e. these means are consid-
ered as the prototypes and a linear decision function is computed as follows:

f(~xi) =
‖~xi − ~ki

−‖
2 − ‖~xi − ~ki

+‖
2

2
= 〈~wi|~xi〉+ bi (B.7)

where the parameters of th SH are defined as:

~wi = ~ki
+ − ~ki

− and bi =
‖~ki

−‖
2 − ‖~ki

+‖
2

2
(B.8)

where i = 1, . . . , K2 since there are only K means in each class. Globally, a
piecewise linear decision function is obtained with a maximum of K2 pieces.
For each of these pieces, the dual space variable ~α is to be computed using a
matrix pseudo-inverse since the Kmeans algorithm does not have a closed-
form solution. When considering one piece of the decision function, we have
its normal vector ~wk and an index vector of the elements of the dataset this
hyperplane is separating: ~uk = {i|~xi used to compute ~wk} ∈ R

q. We then
define the matrix Xk = (~xu1

k
| . . . |~xul

k
) ∈ R

n×q and we can express the normal

vector using a weighted sum over the corresponding patterns as:

~wk = Xk~αk (B.9)

where ~αk ∈ R
q is the vector of dual variables for this hyperplane. This

vector of dual variables can be computed using the matrix pseudo-inverse of
the previous expression as

~αk = (Xt
kXk)

−1XT
k ~wk (B.10)
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Finally the vector of dual variables ~α for the whole set of hyperplanes is
written as: ~α|~uk

= ~αk.

Notice that for K = 1 we get the classical mean-of-class prototype learn-
ing algorithm and for K = p, every pattern is the center of its own cluster
and classification amounts then to a nearest-neighbor rule. The Means are
the representations and their number K can either be user-defined or deter-
mined using cross-validation.

B.4 Support Vector Machines

Support Vector Machines (SVMs) [Vapnik, 2000, Cortes and Vapnik, 1995,
Schölkopf and Smola, 2002] arose from statistical learning theory and hinge
upon the idea of determining the optimal way to separate both classes i.e. to
find a decision hyperplane which divides the dataset such that both classes
are as far away as possible from this decision hyperplane. In other words,
SVMs maximize the margin between classes (in order to avoid overfitting)
while minimizing the number of misclassifications as shown in fig. B.3. It

iξ  >1

iξ  <1 ρ

i

i

ξ  =0

ξ  =0

SVs: 

SH

Figure B.3: Schematic view of SVM classification. The two margins are
separated by a distance ρ.

can be shown that the distance between both classes is given by ρ = 2
‖~w‖

for a canonical representation of the hyperplane i.e. a hyperplane such that
{| 〈~w|~x〉+ b|}~x∈margin = 1 . This yields a constrained quadratic optimization

problem searching the ~w, b and ~ξ minimizing the following 1−Norm soft-
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margin cost function:

Φ(~w, ~ξ) =
1

2
‖~w‖2 + C

p
∑

i=1

ξi (B.11)

such that ~w, ~ξ and b satisfy the constraints for i = 1, . . . , p:
{

yi(〈~w|~xi〉+ b) ≥ 1− ξi

ξi ≥ 0
(B.12)

The slack variables ξi allow a class overlap (wrongly-classified patterns for
ξi > 1 and correctly-classified patterns falling inside of the margin stripe
for 0 < ξi ≤ 1). The regularization parameter C > 0 defined the trade-off
parameter between the width of the margin and the number of misclassifica-
tions. This parameter is usually determined using cross-validation methods.
The resolution of the above problem hinges upon the determination of the
saddle points of the following Lagrangian:

L(~w, ~ξ, b, ~α, ~β) = Φ(~w, ~ξ)−

p
∑

i=1

αi(yi(〈~w|~xi〉+ b)− 1 + ξi)−

p
∑

i=1

βiξi (B.13)

where ~α ≥ 0 and ~β ≥ 0 are the Lagrange variables corresponding to the
two constraints of equ.B.12. The saddle points of this Lagrangian yield
~w =

∑

i αiyi~xi and the constraints of the corresponding dual problem which
corresponds to the primal one of equ.B.11. The latter consists of the con-
strained maximization over ~α of the expression:

W (~α) =

p
∑

i=1

αi −
1

2

p
∑

i,j=1

αiαjyiyj〈~xi|~xj〉 (B.14)

subject to the constraints:
{

0 ≤ αi ≤ C i = 1, . . . , p
∑p

i=1 αiyi = 0
(B.15)

The vectors of the dataset corresponding to αi 6= 0 are termed Support
Vectors (SVs) and correspond to the representations. The SVs can easily
be interpreted geometrically. The SVs are elements of the dataset which
lie on the margin (ξi = 0), in the margin stripe (ξi < 2) or outside of the
margin side in the wrong class (ξi > 2). When ξi = 0, or equivalently
0 < αi < C, the SVs are termed margin SVs since they lie on the margin
according to one of the Karush-Kuhn-Tucker complementarity conditions:
αi (yi(〈~w|~xi〉+ b)− 1 + ξi) = 0 i = 1, . . . , p. The vector ~w and the decision
function revert the following form:

~w =
∑

i∈SV

αiyi~xi and f(~x) =
∑

i∈SV

yiαi〈~x|~xi〉+ b (B.16)
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where b = 〈yi(1 − ξi) −
∑

j∈SV yjαj〈~xi|~xj〉〉i∈SV is computed as an average
over all SVs of the Karush-Kuhn-Tucker complementarity condition men-
tioned above.

B.5 Relevance Vector Machines

For probabilistic classification, we consider Sparse Bayesian Learning [Tip-
ping, 2000, 2001], and in particular the Relevance Vector Machine (RVM).
The RVM is a particular case of Bayesian inference well adapted to our
setting. The decision function allows in this case to compute the posterior
probability P (y|~x) of membership to a class y ∈ {0, 1} given the input ~x:

P (y = 1|~x) = s(~x) and P (y = 0|~x) = 1− s(~x) (B.17)

where we assume the following logistic regression “Ansatz” and decision
function:

s(~x) =
1

1 + exp(−f(~x))
and f(~x) = 〈~w|~x〉 =

p
∑

i=0

αi〈~xi|~x〉 (B.18)

The offset is here included in ~w =
∑p

i=0 αi~xi using the convention: w0 = b
and xi0 = 1 ∀i = 1, . . . , p. The possibly sparse dual space variable ~α
(allowing to compute both the normal vector and the offset of the SH) is
then to be determined in the learning process. Using the patterns of the
dataset, we can write:

f(~xi) =

p
∑

j=0

〈~xi|~xj〉αj = [Φ~α]i and si = s(~xi) =
1

1 + exp(−[Φ~α]i)
(B.19)

where Φij = [~1| 〈~xi|~xj〉] is the “extended” Gram matrix of the patterns in
the dataset. The two classes of the classification task define two possible
“states” which can be modeled by a Bernoulli distribution:

p(~y|X, ~α) =

p
∏

i=1

syi

i [1− si]
1−yi (B.20)

where X = {~xi}
p
i=1 makes the dependency on the data patterns explicit.

Gaussian hyperparameters ~β are introduced to ensure sparseness and smooth-
ness of the dual space variable ~α:

p(~α|~β) =

p
∏

i=1

N (αi|0, β
−1
i ) (B.21)
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Learning of ~α then amounts to maximize with respect of ~β the probability
of get the targets ~y given the patterns X according to:

p(~y|X, ~β) =

∫

p(~y|X, ~α)p(~α|~β)d~α (B.22)

It is not possible to perform this integration analytically and the Laplace
approximation can then be used. The latter approximates the integrand
locally using a Gaussian around its most probable mode ~αMP according to:

p(~y|X, ~α)p(~α|~β) ' N (~α|~αMP , Σ) (B.23)

The log posterior of the integrand of equ.B.22 can be written as using
equ.B.20 and B.21:

log
(

p(~y|X, ~α)p(~α|~β
)

=

p
∑

i=1

[yi log si + (1− yi) log(1− si)]−
1

2
~αT B~α (B.24)

where B = diag(~β). We can then write an iterative update scheme for ~β
which maximizes equ.B.22:

1. Initialize ~β.

2. The vector ~αMP is the value of ~α maximizing equ.B.24 for a fixed ~β
i.e. the most probable value of ~α given ~β. We can thus write:

~∇~α log
(

p(~y|X, ~α)p(~α|~β)
)

|~αMP = 0 (B.25)

The resolution of the above using equ.B.24 and B.19 yields:

B~αMP = ΦT (~y − ~s(~αMP )) (B.26)

where the dependency of ~s on ~α has been made explicit. The resolution
of the above equation, using for example an iterative scheme, then
yields ~αMP .

3. The variance matrix Σ = −
(

~∇~α
~∇~α logN (~α|~αMP , Σ)

)−1
is the vari-

ance matrix of the Gaussian approximation of the integrand. We can
thus write:

~∇~α
~∇~α log

(

p(~y|X, ~α)p(~α|~β)
)

|~αMP = −Σ−1 (B.27)

which yields using equ.B.24 and B.19:

Σ = (ΦT CΦ + B)−1 (B.28)

where C = diag(~γ) and γi = si(1− si).
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4. The hyperparameter update is then computed as:

βi ←
1− βiΣii

(αMP
i )2

5. Go back to 2. until convergence is reached.

In the update of ~β, some βi → ∞, implying an infinite peak of p(αi|βi))
around 0. This is then equivalent to setting αi = 0. This feature of the
RVM ensures sparseness and defines the Relevance Vectors (RVs): βi <
∞⇔ ~xi ∈ RV . The latter are the representations of the RVM.

Since RVMs are based on probabilistic concepts, they do not allow an
intuitive geometric explanation as for SVMs for example. Especially, there is
no easy way to explain or interpret the RVs. It may just be mentioned that
the difficulty of the classification task defines the sharpness of the decision
function, this sharpness being proportional to the distance of the RVs to the
SH. In easy classification tasks such as in linearly separable datasets, the
RVs are far apart. On the other hand, difficult classification tasks such as
linearly not separable datasets yield RVs which are close to the SH.

B.6 Comparison of classifiers

The SHs and the representations of the above classifiers are compared in fig.
B.4 on a two-dimensional toy dataset. On this dataset, the classification
performance is perfect, i.e. there are no misclassifications in any algorithm.
The piecewise linear SH of the Kmean algorithm can clearly be seen, as much
as the corresponding contour levels of the decision function. The latter also
bring to light the regions of each class as selected by the Kmeans clustering
algorithm. RVMs and Prots have a low number of representations, whereas
SVMs have a high number. The representations of the SVM algorithm are
closest to the SH, whereas for the Prot and Kmean algorithms they lie in
the middle of the classes. For the RVM, the representations are spread
throughout the dataset i.e. they are close of the SH, far of it and in the
middle of the dataset. In other words, SVMs deal with the patterns difficult
to classify (the SVs) since the decision function has a sum only over the SVs
(αi 6= 0), the remaining patterns of the dataset being unused (αi = 0). Prot
and Kmean learning consider central elements of each class i.e. very typical
patterns. Finally RVM consider elements in a large spectrum of distances
from the SH.

Fig.B.5 compares schematically prototype to SV learning and clearly
shows the essential difference between both algorithms. SVMs find a SH
that separates best the data by taking into account the “geometry” of both
classes. On the other hand, prototype classifiers ignore all geometrical infor-
mation by solely considering the mean of each class for classification purpose.
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SVM RVM

Prot Kmean

Figure B.4: Comparison of classifiers. The thick line represents the SH,
the thick circles the representations and the thin lines the contours of the
function f(~x).

Some advantages and limitations of the various algorithms are summa-
rized in the tabular below.

Prot Kmean SVM RVM

classification perf. poor medium excellent good
representations Prots /∈ D Means /∈ D SVs ∈ D RVs ∈ D
](representations) high user-defined med.→ low high
user-defined param. none K C none
multi-class yes yes no yes
probabilistic output no no no yes

In the case of RVMs, considering a multi-class problem amounts to consider
a multinomial instead of the Bernoulli distribution of equ.B.20. In the case
of the Prot, respectively Kmean, algorithms, the multi-class case is accom-
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SVM

PROT

Figure B.5: Schematic difference between prototype and SV classification.

modated by placing one, respectively K, prototypes in each class and using
the nearest neighbor algorithm for classification. SVMs, on the other hand,
are intrinsically binary classifiers, although some studies related to their ex-
tension to multiple cases exist [Platt, Cristianini, and Shawe-Taylor, 2000,
Weston and Watkins, 1999, Kressel, 1999]. RVMs are the only algorithm
considered here that by construction yield a probabilistic output. Although
this is not very well understood in the case of the other three algorithms, the
decision function can be put into a logistic regression as s(~x) = 1

1+exp(−f(~x))

in order to yield a probabilistic output (see [Vapnik, 2000] in the case of
SVMs).

The data fed into the SVM needs some “preprocessing”, especially for
high-dimensional data. One of the most fundamental type of preprocessing is
normalization of the data i.e. its projection on a unit hypersphere. Although
in this process one degree of freedom in the data is lost, it can be shown
experimentally that it is most advantage, see [Graf and Borer, 2001, Graf,
Smola, and Borer, 2003] in the case of SVMs. Moreover, loosing one degree
of freedom can usually be neglected when considering high-dimensional data
i.e. n� 1. Notice that in the case of SVMs and RVMs, normalizing the input
patterns creates representations (SVs and RVs) that are also normalized.
This is not the case for the Prot and Kmeans algorithms, i.e. neither the
Prots nor the Means lie on the unit hypersphere even though the patterns
lie on it.

B.7 Nonlinear Extension

The four learning algorithms described above are considered in the input
space. It is possible to extend these algorithms to accommodate for nonlinear
decision functions using the kernel trick. For this, the elements from the
input space R

n are nonlinearly mapped into a high dimensional feature space
F as:

~ϕ : R
n → F (B.29)
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Classification in F is then “easier” according to Cover’s theorem i.e a linearly
not separable problem may become linearly separable i.e. the data can be
separated by a hyperplane. The essential step is to replace the scalar product
in F by a kernel function, yielding the corresponding substitutions:

~x→ ~ϕ(~x) and 〈~x|~y〉 → 〈~ϕ(~x)|~ϕ(~y)〉 = K(~x, ~y) (B.30)

The mapping ~ϕ is mostly unknown whereas the kernel function K is known.
If an algorithm accepts a dual form, the decision function makes only use
of scalar products between patterns and thus only the function K(~x, ~y) is
needed explicitly.

In the case of SVM and RVM, the extension to a non-linear feature space
is immediate by substitution of the scalar product with a kernel function in
equ.B.14 and equ.B.16 for the SVM and in equ.B.18 and equ.B.19 for the
RVM. However, this procedure is accompanied by a loss in the interpretabil-
ity of the SH since the weight vector exists then only in the (unknown)
feature space.

In the case of the Prot and Kmean algorithms, considering a feature
space makes the following question arise: are the representations computed
in the input space or in the feature space? Assume a representation can
be written as: ~r± =

∑

i ζ
±
i ~xi where ζ±i can be computed in closed form for

Prot but may require a matrix pseudo-inverse computation in the case of
Kmean. We then have the two following possibilities, where classification is
performed in the feature space:

• Representation ~r± in input space:

‖~ϕ(~x)− ~ϕ(~r±)‖2 = K(~x, ~x)− 2K(~x,~r±) + K(~r±, ~r±) (B.31)

implying a decision function as follows:

f(~x) = K(~x,~r+)−K(~x,~r−) +
K(~r−, ~r−)−K(~r+, ~r+)

2
(B.32)

• Representation
∑

i ζ
±
i ~ϕ(~xi) in feature space:

‖~ϕ(~x)−
∑

i

ζ±i ~ϕ(~xi)‖
2 = K(~x, ~x)−2

∑

i

ζ±i K(~x, ~xi)+
∑

i,j

ζ±i ζ±j K(~xi, ~xj)

(B.33)
with the following decision function:

f(~x) =
∑

i

(ζ+
i − ζ−i )K(~x, ~xi) +

∑

i,j(ζ
−
i ζ−j − ζ+

i ζ+
j )K(~xi, ~xj)

2
(B.34)

Notice that the representations of Kmean cannot be computed as
above since the latter involves averages of vectors in the unknown
feature space to determine ζ±i . A prototype learner in feature space is
often referred to as a Parzen Window Estimator [Schölkopf and Smola,
2002].
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In conclusion, using a feature space destroys the interpretability of the
parameter ~w of the SH, unless the mapping ~ϕ is known. Moreover, it also
makes unclear how to proceed for classification in the case of Prot and
Kmean. On the other hand, the main advantage of using a feature space is
a better classification performance of the algorithms. Moreover, normalizing
the feature space is equivalent to normalizing the Kernel function. This is
most advantageous as far as the classification performance is concerned and
a modification of the SVM algorithm may also be introduced as shown [Graf,
Smola, and Borer, 2003].
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Appendix C

Elements from Signal

Detection Theory

C.1 Detection of a Signal in Noise

We place ourselves in the context of an experiment where an observer has
to decide whether a signal is present (signal trial) or absent (noise trial).
The analysis of the classification performance of the observer is based on
signal detection theory [Wickens, 2002]. For this, we assume that both the
signal and the noise trials can be assumed to be drawn from a Gaussian
distribution, with same unit variance and different means as follows:

Xn ∼ fn(x) = N (x|0, 1) and Xs ∼ fs(x) = N (x|d′, 1) (C.1)

Fig.C.1 gives a schematic representation and the main parameters. The

0 d’λ

noise or A signal or B

Figure C.1: Noise and signal, respectively stimulus A and B, univariate
normal distributions of means 0 and d′. The parameter λ is the decision
threshold.

fact that one of the signals is centered at 0 just represents a shift in the x-
axis. The fact that both distributions have the same variance is a stronger
hypothesis and has to be verified experimentally. Choosing a unit variance
then just amounts to rescale the values of x. We want to determine the
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position of the signal distribution i.e. d′ as much as the decision threshold
(or criterion) λ defined as:

{

x > λ→ answer yes (signal)
x < λ→ answer no (noise)

(C.2)

The answers of the observer fall into four categories as shown below:

no yes

noise ](correct rejection) ](false alarm)
signal ](miss) ](hit)

The values filling the above tabular are given by the observer’s responses.
The latter are used to define the following rates:

• the hit rate: h = ](hit)
](signal trial) = ](hit)

](miss)+](hit)

• the false alarm rate: f = ](false alarm)
](noise trial) = ](false alarm)

](correct rejection)+](false alarm)

• the miss rate: m = 1− h and the correct rejection rate: c = 1− f

Since m and c bear no additional information, we shall only work with h
and f . The probabilities of making a hit or a false alarm can be computed
as follows:

PF = P (yes|noise) =
∫∞
λ fn(x)dx = Φ(−λ)

PH = P (yes|signal) =
∫∞
λ fs(x)dx = Φ(d′ − λ)

(C.3)

where Φ is the cumulative normal distribution with zero mean and unit
variance. Under the approximation that the samples from the experiment
at hand are statistically meaningful (PF ' f and PH ' h), we can compute:

d′ = Z(h)− Z(f) and λ = −Z(f) (C.4)

where Z = Φ−1 is the inverse of the cumulative normal distribution with
zero mean and unit variance. The above quantities allow to compute the
observer’s bias as:

log β = log

(

fs(λ)

fn(λ)

)

=
1

2

(

Z2(f)− Z2(h)
)

(C.5)

with:






log β < 0→ signal (yes) bias

log β = 0→ no bias, λ = d′

2
log β > 0→ noise (no) bias

(C.6)
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C.2 Two-alternative Forced-choice Model

We consider here an experiment where an observer has to decide whether a
stimulus belongs to class A or class B. Both stimuli are assumed to follow
Gaussian univariate distributions with different means as below:

XA ∼ N (x|0, 1) and XB ∼ N (x|d′, 1) (C.7)

with the same parameters as shown in fig.C.1. We compute d′ and the
decision criterion λ defined here as:

{

x > λ→ answer class B
x < λ→ answer class A

(C.8)

The following tabular summarizes the different cases:

ŷ = A ŷ = B

y = A ](correct A) ](false A)
y = B ](false B) ](correct B)

where y the true class of the stimulus and ŷ is the estimated one. We define
the correct classification rates for both stimuli as:

• the correct A rate: pA = ](correct A)
](A trial) = ](correct A)

](correct A)+](false A)

• the correct B rate: pB = ](correct B)
](B trial) = ](correct B)

](false B)+](correct B)

The probability to make a correct classification of A or B is computed as:

PA = P (ŷ = A|y = A) =
∫ λ
−∞ fA(x)dx = Φ(λ)

PB = P (ŷ = B|y = B) =
∫∞
λ fB(x)dx = Φ(d′ − λ)

(C.9)

Under the assumption that PA ' pA and PB ' pB (the distributions describe
well the samples), the above can be solved, yielding:

d′ = Z(pA) + Z(pB) and λ = Z(pA) (C.10)

The observer’s bias to say B can then be written as:

log β = log

(

fA(λ)

fB(λ)

)

=
1

2

(

Z2(pB)− Z2(pA)
)

(C.11)

where:






log β > 0→ B bias
log β = 0→ no bias
log β < 0→ A bias

(C.12)
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Appendix D

Experimental Setup

The psychophysical setup is located in a black chamber. For the presen-
tation of the stimuli, a Cambridge Research Systems VSG 2/5 framebuffer
is connected to a fast-phosphor monochrome display by Clinton Monoray.
Linearization of the display is performed using a VSG OptiCAL photometer.
The responses of the subject are gathered on a four-button VSG response
box and on a numerical keypad. The experimenter has his own monitor to
program and supervise the experiment. More details can be found below.

The psychophysical laboratory is a black chamber with the subject’s side
separated from the experimenter’s side by a curtain. On the experimenter’s
side, a keyboard and monitor allow, among others, to program, start, mon-
itor and stop the experiment. The experiment is run on the monitor on the
observer’s side. The observer’s chin is placed on a headrest at 1.48m viewing
distance from the monitor showing the stimuli. The viewing window is of
size 340× 250mm and is centered at 1.18m off the ground.

The PC computer and its peripheral devices are as follows:

• Motherboard: ASUS P4T-E Motherboard with a 1.8GHz Pentium IV,
running WindowsXP Professional

• Framebuffer: Cambridge Research Systems (http://www.crsltd.com/)
VSG 2/5 with a 32 bit PCI bus interface to the PC. The VSG card has
an embedded 32 bit microprocessor running at 50MHz for on-board
look-up table animation and pixel operations with 32 MB VRAM and
8 MB DRAM for storing programs, look-up tables and off-screen im-
ages. Moreover, it has an extensive external interface capability to
support other experimental equipment, a hardware reaction timing
and a sophisticated video output circuitry.

• Photometer: Cambridge Research Systems OptiCAL photometer with
a 44mm2 silicon sensor, 13 degree fixed field-of-view. The full-scale
range is 2400 cd

m2 with a resolution of 0.1 cd
m2
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• Response boxes: Cambridge Research Systems CT3 Response Box
(four buttons) and IBM Numerical Keypad

The monitor is a Multisync Clinton Monoray CRT display from Clin-
ton Electronics (see http://www.clintonelectronics.com/), which is a
modified version of a Richardson Electronics MR2000HB-MED. It has a
20 inch monitor using the phosphor type DP104 and has a visible area of
363× 272mm. The frame rate (vertical frequency) is set to 150Hz and the
scan rate (horizontal frequency) to 105kHz. The resolution is 848 × 636
pixels at 150Hz and the luminence varies between 0.2 and 246 cd

m2 .
All of the programs are written in MATLAB, except for the morphing

algorithms of the face database and the SVM code which are written in
C, the former being compiled under Linux and the latter under Windows.
The morphing code, generously provided by Dr. V. Blanz [Blanz and Vet-
ter, 1999], is executed remotely on a Linux PC. The SVM code (LIBSVM
version 2.36 by [Chang and Lin, 2001]) is locally compiled under Windows.
All the MATLAB code is home-made except for the RVM implementation
(SparseBayes version 1.0 by [Tipping, 2002]), the code for ICA (FastICA by
[Hyvärinen and Oja, 1997]) and the psignifit toolbox by [Wichmann and
Hill, 2001b].
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Appendix E

Visualization of Parameters

of Preprocessors

E.1 Overview

We present in this appendix various visualizations and reconstruction errors
corresponding to some of the preprocessors used in this thesis as below:

• PCA

The eigenvalue spectrum is first computed (value of the eigenvalue
corresponding to a given PC) as much as the cumulative variance
(rescaled to [0, 1]), the latter being the sum of all eigenvalues before
the eigenvalue corresponding to a given PC. We then plot the mean
of the reconstruction error over all elements of the database as func-
tion of the number of PCs considered to reconstruct the data. The
reconstruction error is defined as the norm of the difference between
the vectors corresponding to the original and the reconstructed face:
‖~xoriginal−~xreconstructed‖. We then display 5 original and reconstructed
faces to assess visually the quality of the reconstruction. Finally, the
20 first elements from the basis of faces are shown.

• ICA I, ICA II & NMF

The reconstruction error ‖~xoriginal−~xreconstructed‖ for each face in the
database is first computed as much as its mean value over the whole
database. We then display 5 original and reconstructed faces to assess
visually the quality of the reconstruction. Finally, 20 elements from
the basis of faces are shown.

In order to be able to plot the basis images, the following is done to recon-
struct the faces from:

• the texture data: application of the morphing software on the recon-
structed texture data and on the mean of the shape data over the
whole dataset
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• the shape data: application of the morphing software on the recon-
structed shape data and on the mean of the texture data over the
whole dataset

• the texture and shape information: direct application of the face mor-
phing software on the texture and on the shape data

In other words, the reconstructed faces for the texture data have all same
shape and those for the shape data have all same texture.

172



E.2 PCA—Image Data
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Figure E.1: Eigenvalue spectrum (left) and rescaled cumulative variance
(right).
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Figure E.2: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.3 PCA—Texture Data
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Figure E.3: Eigenvalue spectrum (left) and rescaled cumulative variance
(right).
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Figure E.4: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.4 PCA—Shape Data
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Figure E.5: Eigenvalue spectrum (left) and rescaled cumulative variance
(right).
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Figure E.6: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.5 PCA—Texture & Shape Data
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Figure E.7: Eigenvalue spectrum (left) and rescaled cumulative variance
(right).
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Figure E.8: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.6 ICA I—Image Data
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Figure E.9: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.7 ICA I—Texture Data
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mean reconstruction error: 3.97e−14 ± 9.23e−15

Figure E.10: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.8 ICA I—Shape Data
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mean reconstruction error: 1.03e−12 ± 5.15e−13

Figure E.11: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.9 ICA I—Texture & Shape Data
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Figure E.12: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.10 ICA II—Image Data
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Figure E.13: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.11 ICA II—Texture Data
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mean reconstruction error: 4.25e−14 ± 8.80e−15

Figure E.14: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.12 ICA II—Shape Data
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Figure E.15: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.13 ICA II—Texture & Shape Data
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Figure E.16: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.14 NMF—Image Data
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Figure E.17: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.15 NMF—Texture Data

4

5

6

head index

||x
i−

x ire
cs

t ||
mean reconstruction error: 4.92e+00 ± 3.93e−01

Figure E.18: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.16 NMF—Shape Data
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Figure E.19: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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E.17 NMF—Texture & Shape Data
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Figure E.20: Reconstruction error (first row), original and reconstructed
heads (second and third rows) and the first 20 basis vectors (fourth to sev-
enth row).
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Appendix F

Plots Relating Man and

Machine

F.1 Overview

In order to avoid overloading this appendix, we do not put a caption on each
of the plots but mention below the captions to be applied.
Left page (descriptions sorted by increasing value of the row)

• Comparison of classification performance of man and machine on the
true and subject datasets using cross-validation, only for Image or
Texture & Shape data.

• Comparison of training and classification errors of machine on the true
and subject datasets without cross-validation, and number of repre-
sentations.

• Histograms of distances of (non-)representations to SH.

• Correlation of classification behavior of man and machine with param-
eters averaged over subjects and sets of stimuli.

Right page (descriptions sorted by increasing value of the row)

• Correlation of classification behavior of man and machine with pa-
rameters averaged over subjects. On the borders: scatter plots and
correlation coefficients r relating the classification behavior of man
(classification error, RT and CR) and machine (distance |δ| of the
stimuli to the SH). In the center: polar representation of the |r| for
each classifier and human response.

• Stability analysis with parameters averaged over subjects. On the
right: scatter plots and correlation coefficients r relating the jitter in
the subject’s classification error and |δ|. On the left: polar represen-
tation of |r| for each classifier and human response for the first “+”
and second “x” classification experiment, the “◦” on the error axis
representing this coefficient for the plots on the right.
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F.2 Image Size Reduction
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F.3 Histograms
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F.4 Gabor Filters
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F.5 PCA—Image Data
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F.6 PCA—Texture Data
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F.7 PCA—Shape Data
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F.8 PCA—Texture & Shape Data
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F.9 Kernel Map—Image Data
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F.10 Kernel Map—Texture Data
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F.11 Kernel Map—Shape Data

SVM RVM Prot Kmean
0

0.2

0.4

0.6

er
ro

r
subject dataset
SVM: #(SV)=130 ± 6
RVM: #(RV)=20 ± 3
Kmean: K

opt
=5 ± 2

true dataset
SVM: #(SV)=125 ± 3
RVM: #(RV)=21 ± 2
Kmean: K

opt
=5 ± 3

training error on subject dataset
classification error on subject dataset
classification error on true dataset

−0.1 0 0.1 0.2 0.3

0

500

1000

SVM

#(
re

p)
#(

no
n−

re
p)

δ
−0.5 0 0.5

600

400

200

0

200

RVM

δ
−0.4−0.2 0 0.2 0.4

400

300

200

100

0

Prot

δ
−0.5 0 0.5

300

200

100

0

Kmean

δ

no error error
0

0.1

0.2

|δ
|

SVM
RVM
Prot
Kmean

bin 1 bin 2 bin 3

|δ
|

RT (binified)
1 2 3

CR

|δ
|

208



r=−0.43 ± 0.02

su
bj

ec
t e

rr
or

|δ|

r=−0.42 ± 0.02

R
T

|δ|

r=0.49 ± 0.02

C
R

|δ|

r=−0.28 ± 0.02

su
bj

ec
t e

rr
or

|δ|

r=−0.26 ± 0.02

R
T

|δ|
r=0.28 ± 0.02

C
R

|δ|
r=−0.07 ± 0.02

su
bj

ec
t e

rr
or

|δ|
r=−0.05 ± 0.02

R
T

|δ|

r=0.05 ± 0.02

C
R

|δ|

r=−0.07 ± 0.02

su
bj

ec
t e

rr
or

|δ|

r=−0.03 ± 0.02

R
T

|δ|

r=0.03 ± 0.02

C
R

|δ|

 SVM  RVM

 Prot Kmean

SVM r=−0.34 ± 0.02

∆ 
su

bj
ec

t e
rr

or

|δ|

RVM r=−0.19 ± 0.02

∆ 
su

bj
ec

t e
rr

or

|δ|

Prot r=−0.06 ± 0.02

∆ 
su

bj
ec

t e
rr

or

|δ|

Kmean r=−0.07 ± 0.02

∆ 
su

bj
ec

t e
rr

or

|δ|

 SVM  RVM

 Prot Kmean

209



F.12 Kernel Map—Texture & Shape Data
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F.13 ICA I—Image Data
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F.14 ICA I—Texture Data
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F.15 ICA I—Shape Data
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F.16 ICA I—Texture & Shape Data
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F.17 NMF—Image Data
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F.18 NMF—Texture Data
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F.19 NMF—Shape Data
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F.20 NMF—Texture & Shape Data
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