
1

RAVEN: Real-Time Analyzing and

Verification Environment1

Jürgen Ruf
Wilhelm-Schickard-Institute

University of Tübingen, Sand 13, 72076 Tübingen, Germany
ruf@informatik.uni-tuebingen.de

http://www-ti.informatik.uni-tuebingen/~ruf/raven.html

1 Introduction
Formal verification has become an important task in the design of systems. Techniques like symbolic
model checking have reached industrial applicability. These techniques are well suited for fully synchro-
nous systems modeled with qualitative time (clock cycles). If systems are embedded in a real-time envi-
ronment and upper bounds for reaction times are important to guarantee a proper and save functionality,
the verification of real-time properties is very important. We target at this application area with our tool
RAVEN.

RAVEN is a real-time model checker extended by analysis algorithms. The system description is
specified as a network of communicating parallel working real-time processes. Each process is a time
extended finite state machine (I/O-interval structure [1,2]). The properties are specified in the quantita-
tive temporal logic CCTL. RAVEN provides different algorithms to determine critical delay times of the
design. The queries for the analysis capabilities cover minimum, maximum and maximal stability com-
putations. RAVEN is able to generate counter examples and witnesses for CCTL formulas. Analysis
results can be visualized by traces. All traces are graphically presented in an integrated wave form
browser. Moreover, RAVEN offers additional checks. For instance, it can detect dead- and live locks and
visualizes traces to these "locks" in its integrated wave form browser tool. It is also possible to generate
random simulations of the composed system.

RAVEN uses MTBDDs [5,6] for a symbolic representation of the systems [8]. This data structure
results in a compact system representation and efficient verification algorithms. All algorithms are alter-
natively implemented for an ROBDD [7] representation.

2 Architecture and information flow
The main tasks of RAVEN after parsing the input file,
is the construction of the MTBDDs for each process,
the composition and synthesis of the MTBDD for the
system transition relation. The resulting MTBDDs are
then used for checking specifications and for answering
timing queries. After the composition, RAVEN can be
switched to an interactive mode allowing the user to
manipulate his specifications and queries and to add
new ones. The architecture of RAVEN is shown in the
figure on the right.

After calling xraven, the graphical user interface appears. In this window the user specifies the
input file and chooses some global options. Afterwards, the RIL-compiler (RAVEN input language, see
Section 3) and the composition engine are started. After the composition is completed, RAVEN activates
the window of the interactive proof manager. A screen shot showing the proof manager window, the

1.This work is sponsored by the German Research Grant (DFG-Project GRASP)

userRIL-file

graphical user interface

interactive

R IL-compiler composition proof

MTBDD package

engineengine

proof manager

2

wave form browser and the wave-form order window is printed below. The proof manager window
shows all specifications and their proof state. Also the analysis queries and their computed values are
shown. New specifications or queries may be typed in this window or read in from an external file.

In the following section, we introduce the RAVEN input language RIL. First we briefly describe I/O-
interval structures since each RIL-module represents one I/O-interval structure. Afterwards we introduce
the temporal logic CCTL and describe the syntax of CCTL in RIL together with the analysis querying
syntax. In Section 4 we present the modeling of an timed bus arbitration protocol (J1850) and the imple-
mentation in RIL.Then we introduce step by step the windows of the graphical user interface in Section
5. Together with the graphical user interface, RAVEN supports the user by showing counter examples or
simulation runs in a wave form browser. This tool is presented in Section 6. For advanced users or for
batch jobs, RAVEN provides a textual user interface which is described in Section 7. Section 8 shows
the BNF grammar of RIL.

3 The input format RIL

RIL (RAVEN input language) is a simple format for specifying networks of communicating time
extended finite state machines (I/O-interval structure), property specifications as temporal logic formu-
las and analysis queries. Each RIL module contains one I/O-interval structure. The structures are defined
as state transition graphs. The transitions are labeled with time intervals and input restrictions. Inputs are
functional connected to output variables of other modules. The following paragraph introduces the I/O-
interval structures.

3

3.1 I/O-Interval structures

Structures are state-transition systems modeling HW- or SW-systems. The funda-
mental structures are Kripke structures (unit-delay structures, temporal struc-
tures) which may be derived from FSMs. Our basic models for real-time systems
are interval structures, i.e., state transition systems with additional labelled transi-
tions. We assume that each interval structure has exactly one clock for measuring
time. The clock is reset to zero if a state is entered. A state may be left if the
actual clock value corresponds to a delay time labelled at an outgoing transition.
The state must be left if the maximal delay time of all outgoing transitions is
reached. One clock tick is the lowest granularity for the time modeling. To
expand interval structures by a possibility for communication, we have extended
them to I/O-interval structures. These structures carry additional input labels on each transition. Such an
input label is a Boolean formula over the inputs. We interpret this formulas as input conditions which
have to hold during the corresponding transition times. For instance input-insensitive edges carry the for-
mula .

The I/O-interval structure of the figure above may be expressed by the following RIL-description:

An I/O-interval structure is introduced by the keyword MODULE (alternatively the keywords FSM or
MODEL may be used) followed by the module name. The next part of the module description introduces
the signals. Since the actual version only supports Boolean signals, the type identifier may be left out.
The definition of several signals is a white space separated list of signal definitions. Each module has to
have at least one signal.

The next section defines the input signals of a module. These definitions have the syntax (details
about the BNF syntax may be found in Section 8):

ident := formula (1)
Input definition is a Boolean formula over the signals (or definitions resp. states) of other modules (it is
not allowed to use local signals or other input variables here). The identifier of other modules are speci-
fied by the module name and the signal name separated by a dot. This is the only interface of a module to
other modules, i.e. the remaining module description may only access local identifiers. The input defini-
tion may access all signals (states, definitions) of all other modules, i.e. there exist no hiding of local
variables.

The following section describes definitions. A definition is an abbreviation of a boolean equation by
an identifier. These definitions have the same syntax like the input definition with the exception, that
only local signals, input signals and local definitions may be used in the formula. The section is opened
by the keyword DEFINE. This keyword is followed a white space seperated list of assignments:

ident := formula (2)
All identifiers used for signals, inputs and definitions have to be unique in a module. Different modules
may use identifiers with the same name.

The abbreviations of the define section may be used to define the states of an I/O-interval structure.
Therefore the section may be preceded by the keyword STATE instead of DEFINE. Since states (in the
symbolic representation used in RAVEN) are composed by the valuations of all signals, it is important to

[1,3] a

a

0 1 2 3 tim e

i¬

true

MODULE structure
SIGNAL a : BOOL
INPUT i := other_module.output
DEFINE
s0 := !a
s1 := a

INIT s0
TRANS s0 & !i & s1’ :[1,3]

END

4

ensure that different states have different valuations of the signals. As an shortcut for the definition of
states, the following syntax will also be accepted by RAVEN:

ident := { signal-list } (3)
The signals enumerated in the comma separated list (signal-list) are interpreted by RAVEN as positive
signals, while non-existing signals are interpreted as negative. For instance, if we have a module with the
signals i1, i2 and i3, then the following definition:

idle := {i1} (4)
is equivalent to

idle := i1 & !i2 & !i3 (5)
The signal list may only contain local signals, but no input signals or definition identifiers. In contrast to
this signal enumeration, the conventional definition syntax may use any local identifiers in the definition
formula.

The next part of the module definition specifies the initial states of a module. This definition is a
Boolean formula. In the example, it is the state s0. If several states are initial states, they may be con-
nected by the Boolean disjunction. It is also possible to define the initial values of every signal, e.g.

INIT i1 = 0 & i2 = 1 & i3 = 0 (6)
If no initial section appears in the module, all states are initial. RAVEN sets the clock of all initial states
implicitly to zero, i.e. there exist no possibility to specify initial states with an other clock value than
zero.

The last part of the module description is the specification of the state transition possibilities. This
part is introduced by the keyword TRANS. The transitions are specified by a (white space separated) list
of boolean formulas extended by time bounds. The formulas may use all local signals, all input signals
and all definitions. Additionally there exist a quote operator which allows the formula to access the value
of a signal (input, definition) in the successing state. An example is shown in the module description
above. If the quote operator is applied to a definition (or an input signal), all signals of the definition are
quoted.

The time bounds are comma separated lists of intervals or single expressions over natural numbers.
All specified values are interpreted as possible delay times. The expressions may use the addition, the
substraction and the multiplication. There exists also the possibility to use global time constants (see
next subsection). All specified values have to be greater than zero.

RAVEN allows to mix timed modules with full synchronous modules. The transition relations of
these modules are preceded by the keyword NEXT. Then the transition relation is defined by a conjunc-
tive connected sequence of boolean formulas with no timing information. The usual way to specify these
modules is by transition functions for each signal. The following description shows an example of a syn-
chronous module. All state changes take implicitly one unit time step.

The module description is terminated by the keyword END.

3.2 Global definitions in RIL

Besides the specification of temporal logic formulas and the analysis queries (which are described in the
following subsections), there exist two kinds of global definitions.

MODULE sync
SIGNAL
a : BOOL
b : BOOL

INPUT i := om.output
INIT a & b
NEXT a’ = i & b
 b’ = i & a

END

5

The fist one are time definitions. RAVEN can only work with constant time values, but for an easier
instantiation of modules with different times there exist the possibility to define global time constants
which may be used in the delay time specification of the modules. The time constant definition has to be
the first part of a RIL-description. This part is introduced by the keyword TIME. Then there follows a
white space separated list of definitions of the form:

ident := nat-expression (7)
The expression over natural numbers may contain the addition, the substraction, the multiplication, con-
stant values and other (preceeding) time constants.

The second kind of global definitions are boolean functions associated with identifiers. This part of a
RIL-description follows the global time definitions and has to appear before the modules are described.
These global functions can be interpreted as modules without signals (and therefore without a transition
relation and without states). This definition part is preceded by the keyword DEFINE. This keyword is
followed by a white space separated list of definitions of the form:

ident := formula (8)
The Boolean formula uses other global definitions or local signals (definitions) of modules. In the latter
case, the signals (definitions) are accessed by the dot operator, the first identifier specifies the module
name and the second identifier represents the local signal (definition):

ident.ident (9)
All global defined identifiers (time-constants, global definitions, module names, specification names and
analysis query names) have to be unique, but the same identifiers may be used inside a module defini-
tion.

3.3 Property specification in RIL

CCTL [1] is a temporal logic extending CTL
with quantitative bounded temporal operators.
It is used to describe the real-time specifica-
tions. Two new temporal operators are intro-
duced to ease the specification of timed
properties. The syntax of CCTL is shown in
(10); where is an atomic proposition,

 and are time bounds. All
interval operators can also be accompanied by a single time-bound only. In this case the lower bound is
set to zero by default. If no interval is specified, the lower bound is implicitly set to zero and the upper
bound is set to infinity. If the X-operator has no time bound, it is implicitly set to one. The semantics of
CCTL is given in [2].

The property specification part of a RIL description appears after the global definitions and the mod-
ule definitions. It is introduced by the keyword SPEC. A white space separated list of specifications is
following the keyword. Each CCTL formula is specified through:

ident := cctl-formula (11)
The formulas are build upon the signals, definitions and inputs of modules as well as the global defini-
tion names. For identifying local signal names, they are preceded by the module name and separated by
a dot. Detailed information about the syntax may be found in Section 8.

3.4 Analysis queries in RIL

RAVEN also allows the computation of critical time delays of the given system, e.g., minimal reaction
times of an embedded system or the maximal wait time of a work piece in a production automation sys-
tem. For these tasks the current version of RAVEN supports three different algorithms:

 (10)ϕ

p | ϕ¬ | ϕ ϕ∧ | ϕ ϕ∨ | ϕ ϕ→ | ϕ ϕ↔
| EX a[] ϕ | EF a b,[]ϕ | EG a b,[] ϕ | E ϕ U a b,[] ϕ()

| E ϕ C a[] ϕ() | E ϕ S a[] ϕ()

| AX a[] ϕ | AF a b,[]ϕ | AG a b,[] ϕ | A ϕ U a b,[] ϕ()

| A ϕ C a[] ϕ() | A ϕ S a[] ϕ()









:=

p P∈
a IN ∈ b IN ∞{ }∪∈

6

• MIN requires two sets of configurations: the start and the destination configurations. A configuration
is a pair if an I/O-interval structure state and a time value of the clock. Then this algorithm computes
the minimal delay time which is necessary to reach a configuration of the destination starting in a
configuration of the start set.

• MAX analogously computes the maximal delay time which may appear between a configuration of
the destination starting in a configuration of the start set.

• STABLE requires one set of configurations. This algorithm computes the length of the longest path
which do not leave the given set.

The set of configurations are specified by CCTL formulas, e.g. if we are interested in the maximal delay
time from the moment the input signal rises until the output becomes high, we may write this query as
follows:

 (12)

The analysis queries appear at the end of a RIL file. They are introduced by the keyword ANALYSIS.
The syntax is equivalent to the property specifications, with the exception, that the right side of a defini-
tion is a query.

The analysis algorithms are described in [4]. A formal definition of the query operators is given in
[10].

4 An example: the J1850 bus arbitration
As an case study we want to examine the arbitration mechanism of a bus protocol. We modeled the
J1850 protocol arbitration [9] which is used in on- and off-road vehicles. The protocol is a CSMA/CR
protocol. Every node listens to the bus before sending (carrier sense, CS). If the bus is free for a certain
amount of time, the node starts sending. It may happen that two or more nodes simultaneously start send-
ing (multiple access, MA). Therefore, while sending, every node listens to the bus and compares the
received signals to the send signals. If they divide, it looses arbitration (collision resolution, CR) and
waits until the bus is free again. A sender distinguishes between two sending modes, a passive and an
active mode. Active signals override passive signals on the bus. Succeeding bits are alternately send
active and passive. The bits to be send are encoded by a variable pulse width: a passive zero has a pulse
width of , a passive one bit takes , an active zero bit takes and an active one bit
takes . The bus is simply the union of all actively send signals. The arbitration is a bit-by-bit arbi-
tration, since a (passive/active) zero shadows a one bit. Before sending the first bit, the nodes send an
SOF (start of frame) signal, which is active and takes . In the following figure some examples of
arbitration are shown. We assume an exact frame length of 8 bits. After sending the last bit, the sender
sends a passive signal of , the end of frame (EOF) signal.

One bus node is modeled by two sub-modules: a sender/receiver and a counter. Initially, all modules
are in their initial states. If the node decides to send (indeterministically) the sender/receiver listens to the
bus. If the bus stays low for time units, the module changes to the SOF state. The counter is trig-
gered by the continue high/low states of the sender. In the initial state, the counter module sends the

 signal. After sending the SOF signal, the sender sends alternately passive and active one and zero

q := MAX input EXinput∧¬ output,()

64µsec 128µsec 128µsec
64µsec

200µsec

280µsec

SO F 0 0 1 0 0 0
EO F

node 1

node 2

node 3

bus

node 3 looses a rbitra tion
node 2 looses a rbitra tion node 1 winns arbitration

SO F 0 0 1 0 1

SO F 0 1

SO F 0 0 1 0 0 0

δCS

count

7

bits. If the bus becomes active while sending a passive bit, the sender/receiver changes to the CS state
and tries sending again later.

The following RIL program describes the J1850 arbitration as described in the diagrams.

TIMES
EOF_time := 280
SOF_time := 200
CS_time := 300
SP0_time := 64
SP1_time := 128
SA0_time := SP1_time
SA1_time := SP0_time
min := 8*SP0_time+EOF_time
max := SOF_time + 8*SP1_time + EOF_time-1+

2*(SOF_time+8*SP1_time+ EOF_time)

DEFINE
extern_bus := node1.active | node2.active | node3.active

MODULE node1
SIGNALS

send : BOOL
active : BOOL
alternate : BOOL
high : BOOL

INPUTS
BUS := extern_bus
count := counter1.init

STATES
init := {}
CS := {alternate}

init

carrie r
sense (C S)

start of
fram e (SOF)

send passive
high

send passive
low

send ac tive
high

send ac tive
low

continue
high

continue
low

end of
fram e (EO F)

δSO F δSO F

δSA l 1–δSAh 1–

co
u

n
t

¬

b
u

s
δ E

O
F

,
¬

init s1

t

SOF
SOF¬

s7 s2

t¬t¬ t

t SOF∨¬

sender:
counte r:

t

δCS bus¬,

b
u

s
δ S

P
h

,
¬

b
u

s
δ S

P
l

,
¬

δ C
S

b
u

s
¬,

SOF
SOF

co
u

n
t

¬

co
u

n
t

¬

co
u

n
t

¬
countcount

8

SOF := {send,high,active,alternate}
SP0 := {send}
SP1 := {send,high}
SA0 := {send,active}
SA1 := {send,active,high}
continue := {send,active,alternate}
EOF := {send,alternate}

INIT
init

TRANS
init & init’ : 1
init & init’ & BUS : 1
init & init’ & !BUS & BUS’ : [1,CS_time-1]
init & SOF’ & !BUS : CS_time

// the following three transitions cover a typical situation:
// starting in state CS, if the BUS-signal is low for
// CS_time time steps, then the system changes to the state SOF
// (transition three)
// But, if at one time point before the time CS_time the BUS
// signal becomes high, the condition for changing to SOF fails
// and the system remains in state CS. Now the clock is reset and
// the BUS signal has to stay low again for CS_time time steps
// before the system may change to state SOF.

// condition fails at time zero
CS & CS’ & BUS : 1

// condition fails between time 1 and CS_time-1
CS & CS’ & !BUS & BUS’ : [1,CS_time-1]

// condition holds for CS-Time time steps
CS & SOF’ & !BUS : CS_time

// the following two transitions starting in SOF
// create an indeterminism
SOF & SP0’ : SOF_time
SOF & SP1’ : SOF_time

SP0 & !BUS & SA0’ : SP0_time
SP0 & !BUS & SA1’ : SP0_time
SP0 & !BUS & CS’ & BUS’ : [1,SP0_time-1]
SP0 & BUS & CS’ : 1

SP1 & !BUS & SA1’ : SP1_time
SP1 & !BUS & SA0’ : SP1_time
SP1 & !BUS & CS’ & BUS’ : [1,SP1_time-1]
SP1 & BUS & CS’ : 1

SA0 & continue’ : SA0_time - 1

SA1 & continue’ : SA1_time - 1

continue & SP0’ & !count : 1
continue & SP1’ & !count : 1
continue & EOF’ & count : 1

9

EOF & init’ & !BUS : EOF_time
EOF & CS’ & !BUS & BUS’ : [1,EOF_time-1]
EOF & BUS & CS’ : 1

END

MODULE counter1
SIGNALS
c0 : BOOL
c1 : BOOL

INPUTS
start := node1.SOF
trigger := node1.continue

STATES
init := {}
s0 := {c0}
s1 := {c1}
s2 := {c1,c0}

INIT
init

TRANS
init & init’ & !start : 1
true & s0’ & start : 1
s0 & s0’ & !trigger & !start : 1
s0 & s1’ & trigger & !start : 1
s1 & s1’ & !trigger & !start : 1
s1 & s2’ & trigger & !start : 1
s2 & s2’ & !trigger & !start : 1
s2 & init’ & trigger & !start : 1

END

// The models of all bus nodes and counters are equivalent
// for the specifications, we assume three bus nodes

...
SPEC
// these specifications show, that it might happen, that a node
// which wants to send a message will never be able to do that
not_fairnes1 := !(AG (node1.SOF -> AF node1.init))
not_fairnes2 := !(AG (node2.SOF -> AF node2.init))
not_fairnes3 := !(AG (node3.SOF -> AF node3.init))

// If only one node is sending a message, it will finish this action
// within a certain time bound
live1 := AG((node1.SOF & !node2.SOF & !node3.SOF) ->

AF[min,max] (node1.init))
live2 := AG((!node1.SOF & node2.SOF & !node3.SOF) ->

AF[min,max] (node2.init))
live3 := AG((!node1.SOF & !node2.SOF & node3.SOF) ->

AF[min,max] (node3.init))

// if two nodes are sending parallel, one of both will win the
// arbitration and will finish this action within a certain time bound

10

live4 := AG((node1.SOF & node2.SOF & !node3.SOF) ->
AF[min,max] (node1.init | node2.init))

live5 := AG((node1.SOF & !node2.SOF & node3.SOF) ->
AF[min,max] (node1.init | node3.init))

live6 := AG((!node1.SOF & node2.SOF & node3.SOF) ->
AF[min,max] (node2.init | node3.init))

// if three nodes are sending parallel, one of them will win the
// arbitration and will finish this action within a certain time bound
live7 := AG((node1.SOF & node2.SOF & node3.SOF) ->

AF[min,max] (node1.init | node2.init | node3.init))

// If one node is sending a message, the bits on the bus are
// equivalent to the bits it sends until the node terminates the message
cor1 := AG((node1.SOF & !node2.SOF & !node3.SOF) ->

A((node1.active <-> extern_bus) U node1.init))
cor2 := AG((!node1.SOF & node2.SOF & !node3.SOF) ->

A((node2.active <-> extern_bus) U node2.init))
cor3 := AG((!node1.SOF & !node2.SOF & node3.SOF) ->

A((node3.active <-> extern_bus) U node3.init))

// If two nodes sending parallel a message, the bits on the bus are
// equivalent to the bits one node is sending
// until the node terminates the message
cor4 := AG((node1.SOF & node2.SOF & !node3.SOF) ->

(A((((node1.active <-> extern_bus) |
A((node2.active <-> extern_bus) U node2.init)) &
((node2.active <-> extern_bus) | A((node1.active <->
extern_bus) U node1.init))) U (node1.init | node2.init))))

cor5 := AG((node1.SOF & !node2.SOF & node3.SOF) ->
(A((((node1.active <-> extern_bus) | A((node3.active <->
extern_bus) U node3.init)) & ((node3.active <-> extern_bus) |
A((node1.active <-> extern_bus) U node1.init))) U
(node1.init | node3.init))))

cor6 := AG((!node1.SOF & node2.SOF & node3.SOF) ->
(A((((node2.active <-> extern_bus) | A((node3.active <->
extern_bus) U node3.init)) & ((node3.active <-> extern_bus) |
A((node2.active <-> extern_bus) U node2.init))) U (node2.init |
node3.init))))

// If three nodes sending parallel a message, the bits on the bus are
// equivalent to the bits one node is sending
// until the node terminates the message
cor7 := AG((node1.SOF & node2.SOF & node3.SOF) ->

A((((node2.active <-> extern_bus) | A((((node1.active <->
extern_bus) | A((node3.active <-> extern_bus) U node3.init)) &
((node3.active <-> extern_bus) | A((node1.active <->
extern_bus) U node1.init))) U (node1.init | node3.init))) &
(((node1.active <-> extern_bus) | A((((node2.active <->
extern_bus) | A((node3.active <-> extern_bus) U node3.init)) &
((node3.active <-> extern_bus) | A((node2.active <-> extern_bus)
U node2.init))) U (node2.init | node3.init))) &
((node3.active <-> extern_bus) | A((((node2.active <->
extern_bus) | A((node1.active <-> extern_bus) U node1.init)) &
((node1.active <-> extern_bus) | A((node2.active <->
extern_bus) U node2.init))) U (node2.init | node1.init))))) U
(node2.init | (node1.init | node3.init))))

ANALYSE
// The queries check the minimal and maximal times from the

11

// time a node starts sending a message until it stops
// sending a message
m1 := MIN(node1.init & EX node1.SOF,node1.EOF & EX node1.init)
m2 := MAX(node1.init & EX node1.SOF,node1.EOF & EX node1.init)
m3 := MIN(node2.init & EX node2.SOF,node2.EOF & EX node2.init)
m4 := MAX(node2.init & EX node2.SOF,node2.EOF & EX node2.init)
m5 := MIN(node3.init & EX node3.SOF,node3.EOF & EX node3.init)
m6 := MAX(node3.init & EX node3.SOF,node3.EOF & EX node3.init)

5 The graphical user interface (gui)
After calling xraven (which is a Tcl/Tk-script using version 8.0), The RAVEN window appears. This
window consists of three parts
• At the top there is the status information (the file name, time used for RAVEN and memory consump-

tion).
• The middle part is the active part, with the context sensitive control sheets and the global buttons:

New: exits the actual verification session and initializes a new one,

Edit starts an external editor containing the actual file,

About: gives some information to the Version of RAVEN,

Exit: exits the program) .
• The lower part contains the log information, which is the textual information of the communication of

the graphical user interface with the RAVEN tool.

It is possible to start xraven with a file name of a RIL-description. If no file name is specified, it is possi-
ble to browse interactively for a RIL-file. RAVEN comes up with the composition-sheet activated. There
exists a sheet containing global Preferences. The settings made in this sheet influence the verification
session only if they are done before composition. Therefore this is the first sheet we want to describe in
detail.

5.1 The preferences window

The following settings may be adjusted:

12

Mode. RAVEN supports two major modes:

1. multiple delay: This mode uses MTBDDs for the transition relation representation. This mode allows
the optimization techniques (time prediction and time jumps, and MTBDD minimization)

2. unit delay: This mode uses ROBDDs for the transition relation representation. Time delays are
encoded by additional stutter states in the transition relation.

All model checking and analysis algorithms are implemented for both modes.

Count number of states and transitions. This option prints in the log-window the number of states and
transitions before (the addition of all modules) and after the composition.

Print transition relation. This option shows a value table of the composed transition relation. It is only
useful for small transition relations.

Use Gray encoding. During the composition, additional states will be introduced in the transition rela-
tion. These states have to be encoded by additional decision variables. By default, a binary encoding is
used. This option enables a Gray encoding.

Check input clustering. For a correct composition, the transitions have to hold a condition called (input
clustering condition [2]). This option checks if all modules satisfy this condition.

Perform dead-/live lock test. RAVEN may search dead- and live lock states [11]. This option enables
the search algorithms. The result is printed at the log window. If the check button "show trace" is acti-
vated, RAVEN computes a run from an initial state to a dead-/live lock state. This run is displayed in the
wave form browser.

Wave form browser. This option allows to switch between three different wave form browsers. The
JAVA-browser is not longer supported, the Synopsys wave form browser (waves) is not public domain.
The best choice is the tcl/tk browser which is distributed with RAVEN (see the following section).

Wave form file. This text entry field allows the specification of a file name to which the wave form out-
put intermediately is printed. The corresponding browser tool is then started with this file as input.

Print variable order to file. This option may activate the printing of the variables in the order as they
appear in the MTBDDs/ROBDDs. The text entry field specifies the file name to which the variables are
written.

Bitvector unique table size. The bitvector unique table is important for the MTBDD reduction. This
slider defines the size of this table. A larger size may lead to better run times but to a larger memory con-
sumption.

Symbol table size. This table stores all identifiers appearing in the actual RIL-description. If RAVEN
terminates with the error "symbol table overflow", this parameter should be increased.

Output type for value tables. This parameter sets the order of the variables in value tables printed to
the log window. Value tables appear if the option print transition relation is activated or if the option
extension set is activated for model checking. There exists five types for the order:

1. start|input|dest: This option prints the variables of the start state before the inputs and at least the vari-
ables of the destination set. This option is interesting for models before composition.

2. order: the variables appear in their variable order they have in the MTBDD.
3. dfs: The variables appear as they are found in a depth first search in the MTBDD.

13

4. start,time|dest,time: The start variables appear at first, then the additional introduced time encoding
variables, then the destination state variables and at least the time encoding variables of the destina-
tion states. This is the standard option for the composed transition relation (there exist no input vari-
ables anymore).

5. alphabetically

5.2 The composition window

After setting the global options, the next step for a RAVEN user is the composition. There exist several
different composition algorithms and composition options which may be set in this window.

Algorithm. There exist five different composition algorithms:

1. standard: This is the standard algorithm expansion-composition-reduction. This is the preferred algo-
rithm for small or medium sized systems in the multiple-delay mode.

2. restriction: This algorithm computes the set of reachable states after composition and restricts the set
of states in every traversal step in the checking/analysis algorithms by this set. Since the standard
algorithm in the multi-delay mode always handles only the reachable states, this option has no effect
in this mode.

3. prerestriction: This algorithm computes the set of reachable states after composition and cuts the tran-
sition relation with it. This option works well for small and medium sized systems in the unit-delay
mode. This option has only an effect to the composition in the multiple-delay mode, if not the initial
set as start set is chosen (see below). In this case this or the incremental options are recommended.

4. incremental: This algorithms builds the composition structure incrementally by traversing the origi-
nal structures. The resulting structure contains only the reachable states and transitions. This algo-
rithm should be chosen for large systems in the unit-delay mode.

5. combined: This algorithm performs the composition and the reduction in one combined step. This is
the preferred algorithm for large systems in the multiple-delay mode. Since the unit-delay mode
needs no reduction, RAVEN puts a warning and uses the incremental algorithm.

Start set. The reduction operation of the multiple-delay mode may start in different sets of states:

14

1. init: start in the initial states. Practical tests have shown, that this set leads in most cases to faster com-
position results.

2. iprod: This option sets the start set to the product set of all original interval structure sets.
3. one: This option sets the start set to the product of at least one interval structure state and all possible

stutter states.

Optimization. These two options may accelerate the composition in the multiple-delay mode in many
cases.

1. prediction: This is a technique where local timing informations of the modules is used to find times in
which no state change happens. After computation of these times (prediction) this algorithm may
increase the time progress while composition.

2. partition: This option partitions the transition relation such that the structure is stored in an array of
ROBDDs. Composition operations on ROBDDs are often more efficient than on MTBDDs. This
often leads to faster composition but increased memory consumption.

Minimization. There exists two heuristics which try to minimize the MTBDDs computed in the multi-
ple-delay mode:

1. minpath: Build equivalence classes of states which behave same and introduces new transitions. This
operation leads in most cases to a reduced number of MTBDD nodes.

2. reencode: This heuristic reencodes the new introduces encoding variables. We have found examples
in which this heuristic lead to MTBDDs which are 5-times larger than the original MTBDDs [3].

After choosing the options, the user may start the composition and interrupt it. After starting the compo-
sition RAVEN shows in the lower bar the status of processing. The red section is the actual action
RAVEN performs and the green ones are already computed.

5.3 The model checking & analysis window

After composition RAVEN switches automatically to the "Model Check & Analysis" window.

This window is split into three parts.

15

Model checking. The list box on the right shows the parsed specifications and their proof state (---:
unproved). The options on the left side have the following meaning:
• prediction: This is a technique which works together with the multiple-delay mode. It allows very fast

model checking of timed specifications.
• time jump: This is also an optimization of the model checking algorithms used in the multiple delay

mode. It works only if time prediction is activated.
• abstraction: If a specification has no quantitative timed operators and no next operators, it is possible

to remove the timing information in the MTBDD representation and use a more compact ROBDD
representation.

• witness: If this option is activated, than all ECCTL (CCTL with only E-path quantors) formulas pro-
duce a trace which shows their correctness. The selected wave form browser is started automatically.

• counter example: If the verification of an ACCTL-formula fails, this option produces a counter exam-
ple showing the error.

• extension set: This option prints the extension sets of checked formulas as value tables on the log
window.

The buttons in the middle have the following meanings:
• check: starts the model checking algorithm with the chosen options for the selected specifications. If

counter example or witness is activated, RAVEN displays the wave forms directly after checking.
Also extension sets are printed automatically to the log window if this option is selected.

• reset: This button resets the proof state to unproved. This might be useful if the same specification
will be checked with different options.

• show: This action prints the selected specification to the text entry field in the lower part of the win-
dow. In this window, the specification may be edited and parsed again.

• interrupt: This button may be used to interrupt the current model checking activity, e.g. if the chosen
options take too much time.

The rectangle above the buttons is for on-line analysis. This kind of analysis does not have a query as
usual analysis has. The two select buttons allow to specify two CCTL formulas representing two sets of
configurations necessary for analysis. After choosing the specifications, the buttons min, max or stable
may be used to start the analysis. The analysis result is not stored and only printed to the log window.

Analysis. The middle part of this window is for analysis of timing queries. There exists four options
which affect the algorithms:
• prediction: This is the same optimization as it is used to accelerate the model checking algorithms
• jump: Also the time jump optimization is also applicable to the analysis algorithms.
• trace: This option makes RAVEN to display a simulation trace which visualizes the result of the anal-

ysis. The following figure shows a screen shot of a min-trace visualized with the wave form browser.
The trace is a run starting in an initial state passing the start set of the min-query and ending at the
destination set of the min-query. The start and the destination elements of the query are highlighted
by using a colored rectangle behind the wave forms (white, yellow).

• arithmetic min: This is an experimental implementation of the min algorithm, which uses another rep-
resentation for delay times than the other analysis and model check algorithms do.

16

The possible actions to perform are:
• analyse: Starts to compute the selected analysis queries. After finishing a computation, the simulation

trace will be displayed if the corresponding option is selected.
• reset: works like the reset button of the model checking part.
• show: see model checking part.
• interrupt: see model checking part.

Miscellaneous. The lower part of the window contains some additional functionality:

The first function is the simulation of the specified model. Since I/O-interval structures may contain
indeterminisms, the simulation is randomly generated. The simulation is driven by the following ele-
ments:
• simulate: starts the simulation for a specified amount of time steps.
• interrupt: stops the simulation. The already computed runs are rejected since the asynchronous inter-

ruption may create faulty wave forms.
• scale: This slider allows the specification of the amount of time steps the simulation should be per-

formed.
• entry: This text entry field is an alternative possibility to enter the number of simulation steps.

The second function is the text entry field for specifications and analysis queries. As described above,
the show button prints the selected specification (query) into this field. The specifications (queries) may
be manipulated or new ones may be typed in. The new button causes RAVEN to parse the typed specifi-
cation (query) and to add them to the corresponding list. If a specification (query) with a same name
exists in the list, the old specification (query) will be rewritten. The syntax of entering a new specifica-
tion (queries) is equivalent to add specifications in RIL: first the keyword SPEC (ANALYSIS) has to
appear followed by the name, the assign operator (:=) and the formula (query) in RIL syntax.

The last functional part of the window is also used to enter new specifications and queries to the corre-
sponding lists. In contrast to the text entry field above, the button read loads a file containing several
specifications and analysis queries. The file is parsed and new specifications (queries) are added to the
corresponding lists. Existing specifications with the same names are rewritten. The file has one specifi-
cation part with several specifications and one analysis part with several queries. The syntax is equiva-
lent to the RIL syntax.

The write button allows the user to dump the actual set of specifications and queries to a file. If no
specifications and queries are selected, all specifications and queries are printed to the file. The text entry
field is for specifying the file name to which the lists have to be dumped out. The browse button allows
the user to search interactively for a file which should be used to read or write.

5.4 The Resources & Statistics window

The last window of the RAVEN user interface is the Resources & Statistics window. This window may
be updated by pressing the button in the lower right corner. The information can only be updated, if
RAVEN is not busy (composition, model checking, analysis or simulation). The information is split into
three parts:
• The RESOURCES part prints detailed information about the run times RAVEN used for different

tasks. Also the number of MT-/ROBDD nodes is printed. If the minimization of MTBDDs is acti-
vated, also the number before the application of the corresponding heuristic is shown. At least the
amount of memory in use is printed.

• The BVEC-PACKAGE window displays detailed information about the usage of the BVEC-unique
table.

• The BDD-PACKAGE window prints detailed information generated by the used BDD package.

17

6 The wave form browser
One important feature of RAVEN is the generation of counter examples, witnesses and analysis-traces.
All these runs are displayed as wave forms in a wave form browser. Together with RAVEN a wave form
browser is distributed. This tool reads a sub-set of the Synopsys wave form interchange format (wif).
The actual version of the browser tool can only handle boolean signals. On the left side of the main
browser window all signals are enumerated together with their type and their usage inside the system
(input, output, state signal). The right side of the window shows the corresponding wave forms.

On the top of the browser window there are some buttons placed which allow to analyze the wave forms
or to change the display parameters:
• exit: terminates the browser.

18

• slider bar: This button activates the slider bar. This bar is for examining time points or for measuring
time delays. Initially the slider bar has the size 1 and appears at the left side of the actual display. The
bar may be moved by clicking it with the left mouse button and drag it to the desired position. The
size of the slider may be increased by clicking the left or right boundary and drag it to the desired
size.

• move to next event left: It is possible to move the slider to an event happens on a signal. It is neces-
sary that one signal is selected. In this case this button moves the left end of the slider to the next
event (raising or falling edge of the signal) on the left.

• move to next event right: This button moves the right boundary of the slider to the next event occur-
ring right to the slider.

• position: This field displays the actual position of the left end of the slider bar.
• increase slider to next event left: This button increases the slider such that the right end does not

change it position and the left end is resized to the next event (of the selected signal) in the left of the
current position.

• increase slider to next event right: This button increases the slider such that the right boundary is
moved to the next event and the left boundary stays constant at the actual position.

• slider size: This field shows the size of the slider. For instance, with the resize buttons it is possible to
determine the size of an impulse. First move the slider in the middle of the impulse you want to
examine. The slider has to be smaller than the impulse. Then activate the signal of the impulse, press
both increase slider buttons. The slider is now exactly as wide as the impulse is. The size of the slider
is the size (delay time) of the impulse.

• zoom in: This button increases the zoom factor of the x-axis of the wave forms.
• zoom out: This button decreases the zoom factor of the x-axis of the wave forms.
• zoom to original size (100%): This button resets the zoom factor to 100%. This is the value the wave

forms appear after launching the browser.
• zoom factor: This field prints the zoom factor of the x-axis of the wave forms.
• order window: This button activates a new window which allows the reordering and en-/disabling of

signals.

The order window. The order window has some buttons and one text entry field at the top and a list of
all signals in a large list box below. Clicking and dragging signal names in the list box with the middle
mouse button moves signals to new positions in the order window. All modifications inside the order
window have no direct influence to the ordering of the signals in the browser window. But if the export
button is pressed, only the actual selected signals appear in their order in the browser window. The but-
tons have the following meanings:
• close: This button closes the ordering window. The actual order chosen in the window does not affect

the signal order in the browser window.
• sort: Sorts all signals alphabetically by their names.
• export: This button exports the actual selected signals to the browser window. Nonselected signals

disappear in the browser window. The order of the selected signals in the order window is also
exported to the browser window.

• The three check buttons are for selecting state signals (sig) inputs (in) outputs (out). The selection
becomes active, if the select button will be pressed.

• The text entry field allows to specify names of signals which should be selected if the select button
will be pressed. Wildcards as for file names may be used (*,?) inside the names. For instance to select
all signals, inputs and outputs of the AndGate, write "AndGate.*" inside the text field and press the
select button.

• select: A selection via the check buttons and the text entry field becomes active only if this button
will be pressed. Only results matching the text entry field and one of the activated check buttons will
be selected. Single signals may be directly selected in the list box via the left mouse button.

19

7 The textual interface
calling raven (instead of xraven) directly starts the textual interface of RAVEN. This call is important for
batch jobs which do not run with human interaction. The syntax for calling the textual interface of
RAVEN is:

raven <option-list> <filename>[.ril] (13)
The suffix .ril has not to be specified, RAVEN searches automatically for files with this suffix. The fol-
lowing table presents all options. Options are preceded by a "+" to enable them or by a "-" to disable
them. Options which have nothing to en- or disable may be preceded by "+" or "-" alternatively (e.g.
choosing the composition algorithm). The options may be abbreviated by an unique prefix (write -comp
instead of -composition). Calling RAVEN with no arguments results in a printing of all options and their
meanings.

Table 1: the command line options

option description default

verbose [scrmp] There exists five verbose modes:
s: print the original structures
c: print information while composing
r: print information while restricting
m: print info while minimization
p: print info while proving

off

composition <alg> specifies the composition method (see gui description):
standard, restriction, prerestriction, incremental, combined

standard

startset <set> specifies the start states for the reduction (see gui description):
init, iprod, one

init

order <file> writes the variable order into file

minimization <alg> disactivates or activates minimization heuristics: minp, reenc minp

unitdelay use unit delay model for composition and model checking off

prediction use time prediction for the composition on

partition use transition relation partitioning for the composition on

locktest en/disables the dead-lock test before model checking on

timeprediction use time prediction for model checking on

jump use time jumps for model checking on

transition prints the transition relation off

number prints number of states and transitions off

statistics prints statistic information off

extensionset prints the extension sets of the specifications off

simulation <n> simulates n steps the system off

interactive turns on/off interactive mode off

20

If the option "+interactive" is activated, RAVEN switches after the composition into an interactive user
mode. In this mode, it is possible to check formulas or to compote analysis queries or to add new formu-
las etc. After finishing the composition the raven prompt appears (raven>). Now the user may interac-
tively enter commands. The possible commands are enumerated in the following table. Commands may
also be abbreviated by unique prefixes.

counterexample turns on/off counter example generation on

witness turns on/off witness-, lock-trace- and analysis-trace-generation on

bvecsize <n> determines the size of the bitvector unique table 10000

symbolsize <n> determines the size of the symbol table 5000

tabletype <n> determines the order of signals in function tables (1,2,3,4,5 see
gui description)

2

graycode use gray encoding for time variables instead of binary encoding off

abstraction use stutter state abstraction while model checking untimed
specifications

on

background starts wave form browser asynchronously off

browser <name> select the wave form browser:
TCL/TK, SYNOPSYS, JAVA

TCL/TK

wif <file> specifies the file for the wave forms .wif

icc this option turns on/off the input clustering check on

amc this option turns on/off the alternative min computation off

Table 2: interactive RAVEN commands

command description

help, ? prints all commands

check [formula | all] checks the specified formula

analyse [query | all] starts analysis of the specified query

stable formula computes stability of the specified formula

min formula1 formula2 computes minimum between the formulas specified as
arguments

max formula1 formula2 computes the maximal time between the two formulas

simulate n starts simulation for n time steps

reset [formula | query | all] resets the proof state of the specified formula or query

Table 1: the command line options

option description default

21

8 RIL syntax
In this section we present the syntax of RIL in BNF. The BNF symbols have the following meaning:

new SPEC name := formula adds a new or rewrites an existing formula

new ANALYSIS name := query adds a new or rewrites an existing query

read filename reads an input file with formulas and queries

write [formula | query | all] file writes the specified formula (query) or all formulas and
queries to the specified file

quit terminates interactive mode

info prints some information about the system and the proof
states

show [formula | query | all] prints one formula, query or all formulas and queries.

statistics prints statistics about the used time, the BVEC-PACKAGE
and the BDD-PACKAGE

option [+|-]
[prediction | jump |
extensionset | verbose | winess |
counter_example |
abstraction | amc]

allows to en-/disable some options (see gui description)

garbage initiates a garbage collection of the BDD package

Table 3: BNF notation

BNF notation meaning

rilfile The start symbol

something The string "something" itself (terminal symbol)

something something replaced by its definition

(something) something

something1 ::= something2 something1 is defined by something2

something1 something2 something1 is concatenated with something2

something1 | something2 something1 or something2 (lowest priority in BNF)

[something] nothing or something

{something}* nothing or something concatenated arbitrary often

Table 2: interactive RAVEN commands

command description

22

Comments can be included anywhere in the text. Comments start with // and ends with a new line.

rilfile ::= [time_var_defs]
[global_defs]
{model}*

[specs]
[anas]

time_var_defs ::= TIMES {time_var_def}+

time_var_def ::= ident := nat-expression

global_defs ::= DEFINE[S] {global_def}+

global_def ::= ident := formula

model ::= (MODULE | FSM | MODEL) ident body END

body ::= SIGNAL[S] {ident [: BOOL] }+

[INPUT[S] {inputdecl}+]
[(STATE[S] | DEFINE[S]) statedecl+]
[INIT formula]
[transdecl]

inputdecl ::= ident := formula

statedecl ::= ident := (enum | formula)

enum ::= { {ident}* }

formula ::= TRUE | FALSE | INIT | ident
| ident . ident
| ! formula
| formula’
| formula | formula
| formula & formula
| formula -> formula
| formula <-> formula
| formula xor formula
| (formula)

transdecl ::= TRANS { transition }*

| NEXT { formula }*

transition ::= fornmula : timebound {, timebound }*

timebound ::= nat-expression
| [nat-expression , nat-expression]

nat-expression ::= number
| ident
| nat-expression - nat-expression
| nat-expression + nat-expression
| nat-expression * nat-expression
| (nat-expression)

specs ::= SPEC[S] {spec}+

{something}+ something {something}*

Table 3: BNF notation

BNF notation meaning

23

spec ::= ident := cctl-formula

anas ::= ANA[LYSIS] analysis

analysis ::= ident := anatype

anatype ::= STABLE (cctl-formula)
| MIN (cctl-formula , cctl-formula)
| MAX (cctl-formula , cctl-formula)

cctl-formula ::= atom
| predicate
| compound

compound ::= ! cctl-formula
| (cctl-formula)
| cctl-formula <-> cctl-formula
| cctl-formula -> cctl-formula
| cctl-formula xor cctl-formula
| cctl-formula | cctl-formula
| cctl-formula & cctl-formula

atom ::= TRUE
| FALSE
| INIT
| ident . ident
| ident

predicate ::= EX [opttime] cctl-formula
| EF [inter] cctl-formula
| EG [inter] cctl-formula
| E (cctl-formula U [inter] cctl-formula)
| E (cctl-formula wU [inter] cctl-formula)
| E (cctl-formula B [inter] cctl-formula)
| E (cctl-formula wB [inter] cctl-formula)
| E (cctl-formula S [opttime] cctl-formula)
| E (cctl-formula C [opttime] cctl-formula)
| AX [opttime] cctl-formula
| AF [inter] cctl-formula
| AG [inter] cctl-formula
| A (cctl-formula U [inter] cctl-formula)
| A (cctl-formula wU [inter] cctl-formula)
| A (cctl-formula B [inter] cctl-formula)
| A (cctl-formula wB [inter] cctl-formula)
| A (cctl-formula S [opttime] cctl-formula)
| A (cctl-formula C [opttime] cctl-formula)

optinter ::= [nat-expression [, inf-expression]]

opttime ::= [nat-expression]

inf-expression ::= nat-expression | INF[INITY]

ident ::= letter { letter | digit }*

number ::= digit+

letter ::= a | ... | z | A | ... | Z | Z

digit ::= 0 | ... | 9

Bibliography
[1] J. Ruf and T. Kropf. Symbolic model checking for a discrete clocked temporal logic with intervals.

24

In CHARME 97, Montreal, Canada, Oct. 1997. Chapman and Hall.
[2] J. Ruf and T. Kropf. Modeling and Checking Networks of Real-Time Systems. In CHARME 99, Bad

Herrenalb, Germany. Springer Verlag, Septemper 1999.
[3] J. Ruf and T. Kropf. Using MTBDDs for composition and model checking of real-time systems. In

FMCAD 1998, Palo Alto.Springer.
[4] J. Ruf and T. Kropf. Analyzing Real-Time Systems. In DATE 2000, Paris, France. IEEE Computer

Society Press.
[5] E. Clarke, K. McMillian, X. Zhao, M. Fujita, and J.-Y. Yang. Spectral Transforms for large Boolean

Functions with Application to Technologie Mapping. In DAC 93, Dallas, TX, June 1993.
[6] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Algebraic Decision

Diagrams and Their Applications. In ICCAD, Santa Clara, CA, Nov. 1993. ACM/IEEE, IEEE CSP.
[7] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on

Computers, August 1986.
[8] J. Ruf and T. Kropf. Using MTBDDs for discrete timed symbolic model checking. Multiple-Valued

Logic – An International Journal, 1998. Gordon and Breach publisher.
[9] SAE. J1850 class B data communication network interface. The Engeneering Society for Advancing

Mobility Land Sea and Space; October 1995.
[10] J. Ruf. Formal Verification of Timing Properties of a Holonic Material Transport System,

Technical Report, WSI-2000-3, Februar 2000.
[11] J. Ruf. A Toolset for the Symbolic Examination of Finite State Transition Systems. In Me-

thoden und Beschreibungssprachen zur Modellierung und Verifikation von Systemen. GI/
ITG/GMM Workshop, 2000, Frankfurt, Germany.

