
Andreas Schilling (Hrsg.)

Festschrift

zum 60. Geburtstag von

Wolfgang Straßer

ISSN 0946-3852 WSI-2001-20

ISSN 0946-3852

Wilhelm-Schickard-Institut für I nformatik

Graphisch-Interaktive Systeme

Auf der Morgenstelle 10/C9

D-72076 Tübingen

Tel.: +49 7071 29-75462

Fax: +49 7071 29-5466

URL: http://www.gris.uni-tuebingen.de/

printedi nG ermany

copyright 2001 by WSI-GRIS©

WSI-2001-20

Contents

Vorwort . 8

1 Reconstructing from Partial Information 9
V. Blanz, T. Vetter
1.1 Introduction 10
1.2 Representation of Class-Specific Knowledge 12
1.3 Incomplete Measurements. 13
1.4 Prior Probability versus Matching quality. 15

1.4.1 Bayesian Approach to Reconstruction 15
1.4.2 Combined Cost Function 16

1.5 Special caseL = idn . 17
1.6 Application to Face Data 18

1.6.1 Reconstruction of Novel Faces 20
1.6.2 Correct Reconstruction of Training Faces 22
1.6.3 Noisy Feature Point Coordinates 23
1.6.4 Robustness with respect toL 23
1.6.5 Results on Real Images 24

1.7 Conclusion 25
1.7.1 Acknowledgements. 26

2 Object Extraction from Volume Data 27
H.-H. Ehricke
2.1 Introduction 28
2.2 System architecture. 30
2.3 Low-level image processing 32
2.4 Control system . .. 32
2.5 Results. 33

3

4 CONTENTS

2.6 Summary and conclusion 34

3 History between the Realities 39
L. M. Encarnac¸ão, O. Bimber, M. Billinghurst
3.1 Introduction .. 40
3.2 Motivation . 40
3.3 Technological Approaches. 41

3.3.1 Display technologies for Cultural Heritage Exhibits –
The Virtual Showcase 43

3.3.2 Interaction Technologies for Cultural Heritage Exhibits 45
3.4 Discussion . .. 51
3.5 Case Study: Treasures from a Lost Civilization 52

3.5.1 The Experience 53
3.5.2 The User Response. 53

3.6 Conclusions .. 54

4 Scientific Visualization of Large Datasets 57
T. Ertl
4.1 Introduction .. 58
4.2 Data compression 60
4.3 Adaptive and progressive mapping algorithms 61
4.4 Exploiting advanced rasterization hardware 63
4.5 Conclusions .. 64

5 Connectivity Coding 67
S. Gumhold
5.1 Introduction .. 68
5.2 Edge Breaker Coding 69
5.3 Constraints .. 73
5.4 Conditional Unities 74
5.5 The State Machine 77
5.6 Numerical Solution 83
5.7 Results. 84
5.8 Conclusion .. 87

6 Weber et al., Real-Time Fluid Animation 91
R. Klein, T. May, S. Schneider, A. Weber
6.1 Introduction .. 92

CONTENTS 5

6.2 The Sequential Algorithm 93
6.2.1 Simulation program 93
6.2.2 Volume renderer 96

6.3 Parallel Architecture 96
6.3.1 Communication and synchronization between renderer

and solver components 97
6.3.2 Parallelization of simulation program 97
6.3.3 Parallelization of the projection step 99
6.3.4 Using large step sizes and interpolation 101

6.4 Results. 102
6.4.1 Performance measurements 102
6.4.2 Animations. 103

6.5 Conclusion 103

7 Efficient Multiresolution Models 109
R. Klein, A. Schilling
7.1 Introduction and previous work 110

7.1.1 Handling huge textures 111
7.1.2 Dealing with geometry 112

7.2 The multiresolution model. 114
7.2.1 The simplification algorithm 115
7.2.2 Storing the model 119
7.2.3 Storing and transmitting the geometry data 122

7.3 Rendering the model 124
7.3.1 The geometric and the screen space errors 124
7.3.2 The extraction algorithm 124
7.3.3 Frame to frame coherency. 126

7.A Coding the transitions 126

8 High Quality 3D Models 131
H. P. A. Lensch, M. Goesele, H.-P. Seidel
8.1 Introduction 132
8.2 3D Object Acquisition Pipeline 133
8.3 Image-Based Acquisition Techniques 134

8.3.1 Photographic Equipment 134
8.3.2 Lighting Equipment 135
8.3.3 Camera Calibration. 136

8.4 Appearance Acquisition 139

6 CONTENTS

8.4.1 Reflection Properties 140
8.4.2 Measuring Reflection Properties 141
8.4.3 Measuring Spatially Varying BRDFs 142
8.4.4 Normal Maps 145

8.5 Acquisition of 3D Geometry 146
8.6 Registration of Geometry and Texture Data 148

8.6.1 Manual Registration 149
8.6.2 Automatic Registration 149
8.6.3 Texture Preparation. 151

8.7 Interactive Display 153
8.7.1 Rendering with Arbitrary BRDFs. 153
8.7.2 Rendering with Normal Maps 154
8.7.3 Spatially Varying BRDFs 155

8.8 Examples . .. 155
8.9 Conclusion .. 158
8.10 Acknowledgements 160

9 Fast Accurate Integration 167
F. Reck, G. Greiner
9.1 Introduction .. 168
9.2 Particle Tracing in Tetrahedral Grids 169

9.2.1 Numerical Integration Methods 169
9.2.2 Local Exact Integration 171
9.2.3 Comparison 173

9.3 Modification of Nielson’s Approach 174
9.3.1 Overview of the local exact method 174
9.3.2 Data structure 174
9.3.3 Preprocessing 176
9.3.4 Calculation of path lines in world coordinates 177

9.4 Results. 178
9.4.1 Regular vs. non-regular cells 178
9.4.2 Precision 179
9.4.3 Memory Requirement 182
9.4.4 Time behavior 182
9.4.5 Advantages 183

9.5 Acknowledgements 183

CONTENTS 7

10 Notes on Sampling 185
A. Schilling
10.1 Introduction 186
10.2 Discretizing Continuous Signals 186

10.2.1 Sampling and Reconstruction 187
10.3 Application Areas .. 188

10.3.1 Image Synthesis 188
10.3.2 Natural Images 190
10.3.3 Image Sequences 191
10.3.4 Voxel Data . 191
10.3.5 Geometry .. 191

10.4 Errors . 192
10.4.1 Aliasing Errors — Sampling Theorems 192
10.4.2 Errors Resulting from Filtering 194
10.4.3 Errors due to Reconstruction 195
10.4.4 Errors Resulting from Non-Linearities 197
10.4.5 Errors Caused by Perception 198

10.5 Antialiasing — Optimal Approximation 198
10.6 A Note on Mip-Mapping 200
10.7 A Note on Creating Geometrical Multiresolution Models . . . 203

11 Physically-based techniques 209
F. Wagner, D. Jack̀el
11.1 Introduction 209
11.2 Motion control . .. 210

11.2.1 Controller .. 211
11.2.2 Optimization techniques 212
11.2.3 Constraints. 213

11.3 Dynamics formulations 214
11.3.1 Lagrange multiplier formulation (LMF) 214
11.3.2 Other approaches 216
11.3.3 Comparison and valuation of the LMF 218

11.4 An animation system based on the LMF 219
11.5 Conclusion 222

Vorwort

Die vorliegende Festschrift ist Prof. Dr.-Ing. Dr.-Ing. E.h. Wolfgang Straßer
zu seinem 60. Geburtstag gewidmet. Eine Reihe von Wissenschaftlern auf
dem Gebiet der Computergraphik, die alle aus der

”
Tübinger Schule“stammen,

haben — zum Teil zusammen mit ihren Sch¨ulern — Aufsätze zu dieser Schrift
beigetragen.

Die Beiträge reichen von der Objektrekonstruktion aus Bildmerkmalen
über die physikalische Simulation bis hin zum Rendering und der Vi-
sualisierung, vom theoretisch ausgerichteten Aufsatz bis zur praktischen
gegenwärtigen und zuk¨unftigen Anwendung. Diese thematische Buntheit
verdeutlicht auf anschauliche Weise die Breite und Vielfalt der Wissenschaft
von der Computergraphik, wie sie am Lehrstuhl Straßer in T¨ubingen betrieben
wird.

Schon allein an der Tatsache, daß im Bereich der Computergraphik zehn
Professoren an Universit¨aten und Fachhochschulen aus T¨ubingen kommen,
zeigt sich der pr¨agende Einfluß Professor Straßers auf die Computergraphik-
landschaft in Deutschland. Daß sich darunter mehrere Physiker und Mathe-
matiker befinden, die in T¨ubingen für dieses Fach gewonnen werden konnten,
ist vor allem seinem Engagement und seiner Ausstrahlung zu verdanken.

Neben der Hochachtung vor den wissenschaftlichen Leistungen von Pro-
fessor Straßer hat sicherlich seine Pers¨onlichkeit einen entscheidenden An-
teil an der spontanten Bereischaft der Autoren, zu dieser Festschrift beizutra-
gen. Mit außergew¨ohnlich großem pers¨onlichen Einsatz f¨ordert er Studenten,
Doktoranden und Habilitanden, vermittelt aus seinen reichen internationalen
Beziehungen Forschungskontakte und schafft so außerordentlich gute Voraus-
setzungen f¨ur selbständige wissenschafliche Arbeit.

Die Autoren wollen mit ihrem Beitrag Wolfgang Straßer eine Freude
bereiten und verbinden mit ihrem Dank den Wunsch, auch weiterhin an
seinem fachlich wie menschlich reichen und bereichernden Wirken teilhaben
zu dürfen.

Eine Auswahl der Beitr¨age wird durch Vermittlung von Prof. Hans-Peter
Seidel in der Zeitschrift IT+TI erscheinen, zusammen mit weiteren Aufs¨atzen,
die aufgrund des engen zeitlichen Rahmens hier nicht mehr aufgenommen wer-
den konnten.

Andreas Schilling November 2001

Chapter 1

Reconstructing the Complete
3D Shape of Faces from
Partial Information

Volker Blanz, Thomas Vetter�

Based on the assumption that a class of objects or data can be repre-
sented as a vector space spanned by a set of examples, we present a general
method to estimate vector components of a novel vector, given only a sub-
set of its dimensions.

We apply this method to recover 3D shape of human faces from 2D im-
age positions of a small number of feature points. The application demon-
strates two aspects of the estimation of novel vector components: (1) From
2D image positions, we estimate 3D coordinates, and (2) from a small set
of points, we obtain vertex positions of a high-resolution surface mesh. We
provide an evaluation of the technique on laser scans of faces, and present
an example of 3D shape reconstruction from a photograph.

Our technique involves a tradeoff between reconstruction of the given

�Graphische Datenverarbeitung, Universit¨at Freiburg, Germany. E-Mail:
fvolkerjvetterg@informatik.uni-freiburg.de

9

10 CHAPTER 1. RECONSTRUCTING FROM PARTIAL INFORMATION

measurements, and plausibility of the result. This is achieved in a Bayesian
approach, and with a statistical analysis of the examples.

1.1 Introduction

Arguments by analogy are a useful mode of reasoning if we lack sufficient
information about a problem for a rigirous conclusion, but are provided with
many instances of solutions for similar settings. In this paper, we address the
problem of estimating the components of a vector, given only some of the
components’ values. More generally, the input may be the result of any linear
mapping to a lower dimensional space. The prior knowledge that helps to
solve this ill-posed problem is represented by a set of examples of vectors,
and the assumption that any novel solution is in the span of these examples.
Moreover, we exploit the statistical properties of the examples to obtain an
estimate of prior probability. The correlation of vector components within the
set of examples is the core property that makes an estimate of unknown vector
components possible.

As an example of a vector space of objects, we apply our method to the
geometry of faces. The morphable face model approach [BV99] provides a
representation of facial shapes in terms of shape vectors, such that any linear
combination of vectors describes a realistic face. Shape vectors are defined
by concatenating thex, y, andz coordinates of a large set of surface points
to a single, high-dimensional vector. The technique for selecting these surface
points on individual faces ensures that each component of the shape vector
refers to corresponding points on all faces, such as the tip of the nose.

In this paper, we estimate full 3D structure of a face from 2D image posi-
tions of a subset of the morphable model’s vertices. Image positions are taken
from a front view of the face, and with orthographic projection. However, the
system can also be applied to any other viewing direction, or a combination
of views. Restricted to linear mappings of the original data, the system cannot
handle perspective projection from close viewpoints. For larger distances, the
difference between perspective and orthographic projection decreases, and our
technique provides realistic results.

The morphable face model has previously been used to estimate 3D shape
from a single image [BV99]. Comparing color values of the image with those
obtained from the model, this system iteratively matches the morphable model
to the image. Similar to the approach presented here, the system relies on the

1.1. INTRODUCTION 11

vector space structure of faces for estimating 3D structure. However, it also
exploits shading information from the image. Matching the entire facial surface
to the image, the result recovers many facial details. In contrast, the method
presented here relies only on a relatively small set of feature points provided
by the user. However, the matching problem solved here is computationally
much simpler, and can be solved in a single step in a robust way. Therefore,
the algorithm is considerably faster and may be applied in interactive tools for
face reconstruction.

We extend and generalize a method that has been applied to estimate dense
optic flow fields in image data [HBVL00], using a data set of flow vectors
obtained by a 2D projection of a 3D morphable face model. The modifica-
tion presented in this paper makes the system more robust, which proves to be
crucial to achieve high overall quality of the estimate.

The problem addressed in this study is related to the statistical problem of
regression. In regression, a set of measurements(x i; yi) of a random variable
y for different values of the known parameterx is used to estimate the expec-
tation valuey(x) at anyx. Regression techniques select a functiony from a
family of functions, which can be linear mappings, polynomials, or any other
function space. If the capacity of the function space is too large, some methods
produce overfitting effects (see [DHS01]): the function fits the measurements
precisely, but varies drastically in between, rather than being smooth. The de-
sired generalization ofy(x) to novel values ofx tends to be poor.

As we demonstrate in Section 1.6, a similar effect may occur here, if the
low-dimensional input vector is subject to noise or other sources of error, or if
the desired solution cannot be entirely captured by the model.

To overcome the problem of overfitting, most regression techniques im-
pose a smoothness constraint on the solution, or restrict the family of functions
[Vap95, DHS01]. In our approach, we restrict solutions to the span of a set of
examples, and impose an additional penalty on solutions far from the observed
average. The result will be a tradeoff that is both plausible a priori, and still fits
the given measurements well.

In the following section, we give a definition of object classes in terms of a
probabilistic criterion for class membership. Section 1.3 presents a direct ap-
proach to estimating vector components from sparse data. Section 1.4 derives
a framework to avoid overfitting and accomodate noisy measurements. Section
1.5 discusses a special case that relates the theory to a straightforward projec-
tion into the span of examples. In Section 1.6, we present results obtained with
3D models of faces.

12 CHAPTER 1. RECONSTRUCTING FROM PARTIAL INFORMATION

1.2 Representation of Class-Specific Knowledge

We assume that the examples of class elements

vi 2 IRn; i = 1; : : : ;m (1)

are given in a vector space representation such that linear combinations

v =
mX
i=1

aivi (2)

describe new elements of the class. However, the coefficients of the linear
combinations must be restricted by additional conditions to ensure realistic
results.2

An estimate of the prior probability of vectors within the span of examples
can be obtained by a Principal Component Analysis (PCA, see [Hay98]). The
original data are centered around the origin by subtracting the arithmetic mean

xi = vi � v; v =
1

m

mX
i=1

vi; (3)

and concatenated to a data matrix

X = (x1;x2; : : : ;xm) 2 IRn�m: (4)

The covariance matrix of the data set is given by

C =
1

m
XXT =

1

m

mX
j=1

xjx
T
j 2 IRn�n; (5)

PCA is based on a diagonalization of the covariance matrix,

C = S � diag(�2i) � ST : (6)

SinceC is symmetrical, the columnssi of S = (s1; s2; : : :) form an orthogonal
set of eigenvectors.�1 � �2 � : : : � �m are the standard deviations within

2Coefficients might be constrained to the convex hull byai 2 [0; 1] and
Pm
i=1 ai = 1. The

first constraint is replaced here by a probabilistic measure. The second is enforced implicitly by
forming linear combinations relative tov: Any linear combinationv =

Pm
i=1 bixi + v can be

shown to satisfy
Pm
i=1 ai = 1 in terms of (2) and (3).

1.3. INCOMPLETE MEASUREMENTS 13

the data along each eigenvectorsi. The diagonalization ofC can be calculated
by a Singular Value Decomposition (SVD, [PTVF92]) ofX.

Having subtracted the arithmetic mean, them vectorsx i are linearly de-
pendent, so their span is at mostm0 = (m � 1) dimensional, and the rank of
X andC is at mostm0. Therefore,�m = 0, andsm is irrelevant.

In the following, we use the eigenvectors as a basis,

x =

m0X
i=1

ci�isi = S � diag(�i)c: (7)

An important property of PCA is that variations along the eigenvectors are
uncorrelated within the set of examples. Assuming a normal distribution in
each of the directions, the probability density atx is

p(x) =

m0Y
i=1

1p
2��i

e
� 1

2�2
i

hsi;xi
2

=

m0Y
i=1

1p
2��i

e�
1
2 c

2
i (8)

=
1

(2�)m0=2
Q

i �i
e�

1
2 kck

2

: (9)

The probability density forc can be rescaled to

p(c) = �c � e� 1
2kck

2

; �c = (2�)�m=2: (10)

The exponentkck2 is often referred to as Mahalanobis Distance.

1.3 Incomplete Measurements

Given a measurementr 2 IRl, l < n, we would like to find the full vector
x 2 IRn such that

r = Lx (11)

with a mappingL : IRn 7! IRl. L can be any linear transformation, and does
not need to be a projection.

If L is not a one-to-one mapping, the solution (11) is not uniquely defined.
Therefore, we restrict the admissible solutions to the span ofx i. As we cannot
expect to find a linear combination of the examples that solves (11) exactly, we
compute a vectorx that minimizes

E(x) = kLx� rk2: (12)

14 CHAPTER 1. RECONSTRUCTING FROM PARTIAL INFORMATION

Let qi = �iLsi 2 IRl be the reduced versions of the scaled eigenvectors, and

Q = (q1;q2; :::) = LS � diag(�i) 2 IRl�m0

: (13)

In terms of model parametersci, Equation (12) is

E(c) = kL
X
i

ci�isi � rk2 = k
X
i

ciqi � rk2 (14)

= kQc� rk2: (15)

The optimum can be found by a Singular Value Decomposition [PTVF92]

Q = UWVT (16)

with a diagonal matrixW = diag(wi), andVTV = VVT = idm0 .
The pseudoinverse (see [Sto99]) ofQ is

Q+ = VW+UT ; W+ = diag

�
w�1
i if wi 6= 0
0 otherwise

�
: (17)

To avoid numerical problems, the conditionw i = 0 may be replaced by a
threshold. The minimum of (15) is

c = Q+r; (18)

which is optimal in two respects [Sto99]:

1. c minimizesE, so for allc0, E(c0) � E(c).

2. Among the set of solutionsfc0jE(c0) = E(c)g, c has minimum norm
kck and thus maximum prior probability (Equation 10).

By Equation (3) and (7),c is mapped toIRn:

v = S � diag(�i)c+ v: (19)

For solving Equation (11), it might seem more straightforward to compute the
pseudoinverse ofL and setx = L+r. However, among vectors with equal
error kLx � rk, this method would return the solution with minimumkxk
rather than minimumkck. Vector componentsx i that do not affectLx would
be zero, and the result would not be in the span of the examples.

1.4. PRIOR PROBABILITY VERSUS MATCHING QUALITY 15

1.4 Prior Probability versus Matching quality

The previous solution will always ensure thatE is minimized, and in particular
thatE = 0 whenever this is possible. Prior probability is only considered
within solutions of equalE(c).

However, it may well be that the measurementr cannot be fully accounted
for by an elementv of the object class. First,rmay be subject to noise or other
sources of error, such as wrong assumptions onL. Moreover, we cannot expect
to cover the full range of the object class with the set of examples.

Therefore, minimizingE(x) = kLx� rk2 may lead to model coefficients
far from the average, and a heavily distorted vectorv. To avoid this overfit-
ting, we propose a tradeoff between matching quality and prior probability of
the solution. This tradeoff will be derived from a Bayesian approach in the
following section.

1.4.1 Bayesian Approach to Reconstruction

For an element of the model that is defined by model parametersc, a noiseless
measurement would be

rmodel = L
X
i

ci�isi =
X
i

ciqi = Qc (20)

We assume that each dimensionj of the measured vectorr is subject to uncor-
related Gaussian noise with a variance�2

N . Then, the likelihood of measuring
r 2 IRl is given by

P (rjrmodel) =

lY
j=1

P (rj jrmodel;j) (21)

=
lY

j=1

�N � e�
1

2�2
N

(rmodel;j�rj)
2

(22)

= �lN � e�
1

2�2
N

P
j
(rmodel;j�rj)

2

(23)

= �lN � e�
1

2�2
N

krmodel�rk
2

(24)

with a normalization factor�N . In terms of the model parametersc, the likeli-
hood is

P (rjc) = �lN � e�
1

2�2
N

kQc�rk2

: (25)

16 CHAPTER 1. RECONSTRUCTING FROM PARTIAL INFORMATION

Given an observed vectorr, we are looking for the estimatec with maximum
probability. According to Bayes Rule [DHS01], this posterior probability is
given by

P (cjr) = � � P (rjc) � p(c): (26)

with a constant factor � = (
R
P (rjc0) � p(c0)dc0)�1:

Substituting (10) and (25) yields

P (cjr) = � � �lN � �c � e
� 1

2�2
N

kQc�rk2 � e� 1
2kck

2

; (27)

which is maximized if the cost function

E = �2 � logP (cjr) = 1

�2N
kQc� rk2 + kck2 + const: (28)

is minimized.

1.4.2 Combined Cost Function

In this section, we show that the cost function (28) can be minimized in a single
step. To simplify the calculation, we introduce a weight factor� = � 2

N � 0
and minimize

E = kQc� rk2 + � � kck2: (29)

This can be expanded to

E = hQc;Qci � 2hQc; ri+ krk2 + � � kck2 (30)

E = hc;QTQci � 2hc;QT ri+ krk2 + � � kck2 (31)

In the optimum,

0 = rE = 2QTQc� 2QT r+ 2�c; (32)

so
QTQc+ �c = QT r: (33)

Singular Value DecompositionQ = UWVT yields3

QTQ = VWUTUWVT = VW2VT : (34)

3The matrixU 2 IRl�m
0

computed by SVD has the following property [PTVF92]: Ifm0 � l,
U
T
U = idm0 . If m0 > l, only the firstm0 columns ofU are orthogonal, while the others are 0,

soUT
U is not the full identity matrix. However,wi = 0 for i > m0, soWUT

UW = W2

still holds.

1.5. SPECIAL CASEL = IDN 17

From (33), we obtain

VW2VT c+ �c = VWUT r: (35)

Multiplying byVT , this can be solved forc:4

W2VT c+ �VT c =WUT r (36)

diag(w2
i + �) �VT c =WUT r (37)

VT c = diag(
wi

w2
i + �

)UT r (38)

c = Vdiag(
wi

w2
i + �

)UT r (39)

Note that in the special case� = 0, this equivalent to Equation (18).
The overall result is

x =
X
i

ci�isi = Sdiag(�i)c (40)

= Sdiag(�i)Vdiag(
wi

w2
i + �

)UT r: (41)

and
v = x+ v: (42)

1.5 Special case L = idn

In some applications it may be desirable to find the closest element of the span
of examples from a vectorx that is entirely known, or to approximate a given
element of the span by a more plausible solution. Both cases are covered by
the previous results if we setL = idn.

If L = idn, the Singular Value Decomposition ofQ is trivial

Q = S � diag(�i) = UWVT (43)

4If (w2
i + �) = 0, which only occurs ifwi = � = 0, we replace wi

w2
i
+�

by 0, as we did for

the pseudoinverse.

18 CHAPTER 1. RECONSTRUCTING FROM PARTIAL INFORMATION

Figure 1.1: From 26 feature coordinates manually defined on the original im-
age (top left), the system recovered the overall shape of the face (top right).
With an additional texture extraction, color information can be transferred to
the 3D model (bottom line) to generate new views. Vectors for translation and
scaling (Equation 49) were added to the 99 principal components.

with the orthogonal matrixU = S, the diagonal matrixW = diag(� i), and
V = idm0 . Then, Equation (41) reduces to

x = S � diag(�i)idm0 � diag(�i
�2i + �

)ST r (44)

= S � diag(1

1 + �
�2
i

)ST r (45)

=
X
i

1

1 + �
�2
i

hsi; ri si: (46)

The most relevant dimensionssi with large standard deviation�i are affected
less by� than those with small�i. In the special case� = 0, x is given by a
simple projection

x =
X
i

hsi; ri si: (47)

1.6 Application to Face Data

In the morphable face model [BV99], facial surface data that were recorded
with a laser scanner are represented in shape vectors that combinex, y, andz

1.6. APPLICATION TO FACE DATA 19

coordinates of all vertices:

v = (x1; y1; z1; : : : xp; yp; zp)
T 2 IRn; n = 3 � p (48)

Sampled at a spacing of less than 1mm, surface is represented byp = 75972
vertices. Linear combinations of shape vectors will only produce realistic novel
faces if corresponding points, such as the tip of the nose, are represented by the
same vector components across all individual shape vectors. This is achieved
by establishing dense correspondence between different scans, and forming
vectorsvi in a consistent way.

Along with shape, the morphable face model also represents texture. In this
study, texture is not considered, and all images are rendered with the average
texture. The method described in this paper could also be applied to texture
vectors, filling in occluded regions of the face.

The database of 200 individual faces used in this study has been randomly
split into a training set and a test set ofm = 100 faces each. The training
set provides the examplesvi that are available to the system. From these,
we computedm0 = 99 principal components which are used throughout the
following evaluation. The test set provides data for performance assessment on
novel faces.

From the vertices of the full model, we selected sets off = 17, 50, or 1000
vertices (Figure 1.2). The smaller sets are formed by salient points such as
the corners of the mouth, that can be identified in an image. The set of 1000
vertices was selected at random.

Computed by orthographic projection in a frontal orientation, the image
plane coordinates of these feature points form the vectorsr 2 IR l , l = 2 � f ,
that are used for evaluation.

Projection and orientation also define the mappingL, which is assumed to
be known. For real images, it is important that the system can automatically
adapt at least to translation and scaling. This is achieved if vectors

stx = (1; 0; 0; 1; 0; 0; : : :)T ; sty; stz; and (49)

ss = v (50)

are added to the principal components inS.
The evaluation of the algorithm is based on the following quantities, which

are averaged across all 100 training or test faces:

� Er = kQc � rk, the image plane matching error for all feature points,
measured in units of pixels in a 300x300 image.

20 CHAPTER 1. RECONSTRUCTING FROM PARTIAL INFORMATION

Figure 1.2: The first three images show the sets of 17, 50, and 1000 feature
points used for evaluation. The image on the right illustrates where the error
of 3D shape reconstruction was evaluated.

� kck, the Mahalanobis distance of the resulting face from the average.

� The per-vertex average of distances in 3D space between reconstruction
and original, computed over the entire set of vertices:

Efull =
1

p
k
0
@ xp;reconst:

yp;reconst:
zp;reconst:

1
A�

0
@ xp;orig:

yp;orig:
zp;orig:

1
A k (51)

The neck and the top of the forehead are ignored in this measure, as
shown in Figure 1.2.

For 99 principal components and 50 feature points, the computation takes
1.6 seconds on an SGIO2 with R12000 processor. This includes formingQ
from the much larger matrixS, SVD ofQ, and computation of the full face
model with 75972 vertices. Computation time depends mainly on the dimen-
sions ofS.

1.6.1 Reconstruction of Novel Faces

In this Section, we examine how the technique performs on the test faces that
are not included in the set of examples. The image coordinates of feature points
provided to the algorithm are computed from the 3D vertex positions of the 3D
faces. Forf = 50, m0 = 99, and different values of�, errors are plotted
in Figure 1.3, and results are shown in Figure 1.4. Since the feature point
coordinates of the novel faces may be difficult to recover exactly by the model,
low values of� lead to overfitting: For� = 0 and� = 0:0001, the facial surface

1.6. APPLICATION TO FACE DATA 21

1001010.10.010.0010.0001 avg.0

Er

Efull

||c||
Efull

2.7mm

η

5.4mm

Er

5

10

15

20

30

25

35

Figure 1.3: The effect of � on average reconstruction results for 100 novel
faces, given 50 feature points, and using 99 principal components. As � in-
creases, the feature points are matched less precisely, so Er grows. In con-
trast, kck decreases, as the results become more plausible. The overall 3D
shape error Efull is lowest for a tradeoff between both criteria.

is heavily distorted, and the overall error Efull is large. Still, the feature point
coordinates are precisely recovered, as indicated by the low error E r.

As � increases, Er grows, while kck decreases, indicating that the prior
probability of the solution gains more weight in the optimization. As the
shape becomes more smooth and more plausible, the overall reconstruction
error Efull decreases, and reaches its minimum at � = 2.

If � is too large, the output is too close to the average to fit the data, so both
Er and Efull are high. The values on the right in Figure 1.3 are the baseline
obtained with the average head v.

Table 1.1 demonstrates how the number of feature points and principal
components affects matching quality. The reduced set of 40 principal compo-
nents is formed by those dimensions si with maximum variance. As expected,
the error Efull is lowest with the largest set of feature points and the full set of
99 principal components.

22 CHAPTER 1. RECONSTRUCTING FROM PARTIAL INFORMATION

η=0.1

η=0.001η=0 η=0.0001

η=1 η=10 Average

Original

Figure 1.4: Given the image coordinates of 50 feature points of a novel face
(top left), 3D shape was reconstructed with 99 principal components. The
result depends on a tradeoff between the precision of feature point matching,
and prior probability. This tradeoff is controlled by the parameter �.

1.6.2 Correct Reconstruction of Training Faces

In this section, we verify that the faces of the training set are exactly recovered
by the system, using all m0 = 99 principal components, if f is large enough,
and if the feature point coordinates are precise.

For f = 50 and f = 1000, the dimension of r is l = 2 � f � m0, so
the problem Qc = r has a unique solution. This solution is recovered by the
system, as indicated by the low values of Er and Efull in Table 1.2, for � = 0.

In contrast, the solution for f = 17 is not unique. Within the set of solu-
tions, the method returns a vector that is closer to the average (smaller kck), yet

Efull f = 17 f = 50 f = 1000

40 principal components 3.21 2.81 2.38
99 principal components 3.16 2.72 2.24

Table 1.1: The average 3D shape error Efull for reconstruction of 100 novel
faces at optimal � depends on the number of principal components, and the
number of feature point positions available.

1.6. APPLICATION TO FACE DATA 23

Training data f = 17 f = 50 f = 1000

Er 8.9e-5 1.4e-4 3.7e-3
kck 5.8 9.9 9.9
Efull 2.1 0.0017 5.6 e-05

Table 1.2: Average reconstruction errors for all training faces, given different
numbers of feature points f . With all 99 principal components and � = 0, the
problem Qc = r is solved exactly, so Er is low . However, for f = 17, the
solution is not uniquely defined.

produces an error Efull > 0. Still, this is the best guess, given the ambiguous
information.

1.6.3 Noisy Feature Point Coordinates

As discussed in the previous section, the shape of training faces can be recov-
ered prefectly from 50 feature points if their coordinates are precise. In this
case, � > 0 would impair the quality of the result, as shown by the solid line
in Figure 1.5.

However, if Gaussian noise is added to the 2D point coordinates, r becomes
more and more difficult to recover, and overfitting occurs. This is demonstrated
by the large errorsEfull observed for small � if noise with a standard deviation
of �N = 0:1 and �N = 1 pixels is added to the horizontal and vertical image
coordinates of each feature point.

As we observed previously with novel faces, the values of E full in Figure
1.5 have a clear minimum for intermediate values of �. In fact, these minima
occur at � = �2N , so matching quality is best for the vectors with maximum
posterior probability (Section 1.4.1).

1.6.4 Robustness with respect to L

A similar effect to noise occurs if the matrixL used for reconstruction is differ-
ent from the mapping that produced the feature coordinates in r. This mismatch
is relevant for real images, since the geometry of the imaging setup will in gen-
eral be unknown. In particular, perspective projection produces results that are
slightly different from what is simulated by the orthographic projection in L.

24 CHAPTER 1. RECONSTRUCTING FROM PARTIAL INFORMATION

1001010.10.010.0010.0001 avg.0

σN = 1.0Efull

1.9mm

η

5.4mm

1000

σN = 0.1

σN = 0.0

0.8mm

Figure 1.5: The average shape reconstruction errors for 100 training faces
depend on the level of noise �N added to each feature point coordinate. While
noise-free data are best analyzed with � = 0 (solid line), reconstruction quality
is best at � = �2N for noisy data.

Figure 1.6 shows overall shape errors Efull obtained with 50 feature co-
ordinates that were computed for a frontal view. The matrices L used for re-
construction include rotations of � = 0Æ, 1Æ, 2Æ, and 4Æ around the vertical
axis. While the training faces are perfectly recovered with the correct mapping
� = 0Æ for � = 0, performance at angles � > 0Æ is improved significantly with
appropriate values of �.

1.6.5 Results on Real Images

Figure 1.1 shows an example of 3D shape reconstruction from a set of 26 fea-
ture points that were selected by the user. With the limited information about
the face, the method cannot capture details of face shape as precisely as an op-
timization based on color values in the image [BV99]. However, the overall
shape is recovered well, and if texture is extracted from the image [BV99], the
technique provides realistic 3D head models.

1.7. CONCLUSION 25

1001010.10.010.0010.0001 avg.0

ϕ = 4oEfull

η1000

ϕ = 2o

ϕ = 1o

ϕ = 0o

1mm

5mm

Figure 1.6: Reconstruction from 50 feature coordinates of the training faces at
frontal orientation with an incorrect mappingL that includes rotations around
the vertical axis. 3D shape error Efull is reduced by choosing appropriate
weights �.

1.7 Conclusion

We have presented a method that infers vector dimensions of data vectors from
incomplete measurements. The method is based on a vector space spanned
by a set of examples, and on statistical properties of the data. Derived from a
Bayesian framework, the technique finds the vector with maximum posterior
probability, given the measurement and the examples.

With the vector space of faces provided by a morphable face model, we
estimated 3D shape of a high resolution face model from the positions of a
small set of feature points in an image. We evaluated reconstruction quality in
terms of 3D displacements from the veridical shape of faces, and investigated
sensitivity to noise and misalignments.

Clearly, a small set of feature positions is insufficient to recover all details
of a face, such as the shape of the nose. However, the technique reliably esti-
mates the overall shape and aligns the 3D face with the image, which can be
useful for many application. Since the reconstruction is calculated in a single

26 REFERENCES

step, the computation is performed fast enough for interactive tools.
In the future, we are planning to develop methods for choosing the optimal

weight factor � by techniques such as cross validation within the training set.

1.7.1 Acknowledgements

The database of 200 laser scans was collected by Niko Troje and Tordis
Philipps at Max-Planck-Institut für Biologische Kybernetik, Tübingen.

References

[BV99] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces.
In Computer Graphics Proceedings SIGGRAPH’99, pages 187–194, Los
Angeles, 1999.

[DHS01] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley
& Sons, New York, 2nd edition, 2001.

[Hay98] S.S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall, 1998.

[HBVL00] B. W. Hwang, V. Blanz, T. Vetter, and S. W. Lee. Face reconstruction from
a small number of feature points. In International Conference on Pattern
Recognition, ICPR2000, Barcelona, Spain, 2000.

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numer-
ical recipes in C : the art of scientific computing. Cambridge University
Press, Cambridge, 1992.

[Sto99] J. Stoer. Numerische Mathematik I. Springer, Berlin, 8 edition, 1999.

[Vap95] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
New York, 1995.

Chapter 2

Anatomic Object Extraction
from Medical Volume Data
with a Rule-Based Image
Analysis System

Hans-Heino Ehricke�

Due to low tissue contrasts, the exploration of medical volume data
often requires the extraction of anatomic objects of interest prior to 3D
visualization. This paper describes a PROLOG-based approach for this
highly complex computer vision task. An image analysis system is pro-
posed, which introduces knowledge from the fields of human anatomy,
medical physics and pattern recognition into the interpretation process. It
utilizes a rule-based control component to manage selection of appropriate
low-level operators, adaptation of their parameters, application to the im-
age data and verification of operator output. Results from the automatic

�Computer Graphics Lab, University of Applied Sciences Stralsund, Germany. E-Mail:
Hans.Ehricke@fh-stralsund.de

27

28 CHAPTER 2. OBJECT EXTRACTION FROM VOLUME DATA

interpretation of MRI head datasets illustrate, that by the introduction of
even little pieces of knowledge great advances towards the automation of
image analysis procedures are possible.

Figure 2.1: 3D visualization of brainstem, cerebellum and optic nerve after
segmentation from a MRI dataset.

2.1 Introduction

The last decade has seen tremendous advances in 3D image acquisition tech-
niques, especially in medical imaging. Ultrafast Magnetic Resonance Imag-
ing (MRI), Spiral and Multidetector Computed Tomography (CT) and 3D Ul-
trasound have proven their clinical value. The demand for intelligent image
processing tools to cope with the resulting data flood has become an urgent
problem. Computer Graphics researchers have proposed volume visualization
techniques, many of which contain great potential for medical visualization ap-
plications. Particularly by the availability of hardware-accelerators for volume
and surface rendering the practical value of these methods has been substan-
tially increased. Clinical applications of 3D image analysis include neurosurgi-
cal treatment planning, surgical training simulators, morphometric evaluation
(e.g. brain or cardiac volume) and multi-modality image fusion.

2.1. INTRODUCTION 29

Hardware-accelerated 3D visualization systems allow interactive investi-
gation of volume datasets by playing with rendering parameters, e.g. voxel
opacities [CCF95]. However, only a small number of high-contrast objects
and tissues, eg. bone in CT, may be visualized with sufficient quality by this
approach. This is due to the high complexity of medical volume data and the
usually low tissue contrast. Therefore, in most situations volume data have to
be preprocessed in order to enhance the contrast between different tissues or to
completely isolate objects of interest (Fig. 2.1).

Generations of researchers have dedicated their work to the extraction of
anatomic objects from medical images. The goal has always been to reduce
the amount of tedious manual interactions. In the early ninetees a variety of
authors reported good results with multispectral tissue classification strategies
[HZS+90, GMK+91]. They rely on the availability of multispectral image
data, i.e. multiple channels for each pixel/voxel, and apply classification tech-
niques, such as clustering or bayesian classifiers. It could be demonstrated,
that they work well e.g. with MRI data, acquired with multiple-echo pulse se-
quences.. Due to the fact, that multispectral image data can hardly be acquired
as 3D datasets, multispectral tissue classification approaches have not become
practical in volume visualization. Recently, a number of image analysis sys-
tems for medical volume data have been proposed, which require a minimum
of user interaction. These systems have in common, that they not only rely on
the application of a few low-level operators, but explicitly make use of a priori
knowledge. Pizer et al. [PFY+99], Lötjönen et al. [LMR+98], Kelemen et al.
[KSG99] and Buck et al. [BEST95] use shape models, which are elastically
deformed and matched to object surfaces within volume data. In this manner
anatomic objects are delineated and extracted. Jia et al. [JTL+98] and Dawant
et al. [DHT+99] use detailed digital anatomic atlasses as the knowledge base.
Atlas data are elastically deformed and matched to the image data, similar as
in the above approaches. Van Leemput et al. propose to use an atlas, consisting
of a priori probability maps for white matter, gray matter and cerebrospinal
fluid, in order to enhance the outcome of a maximum likelihood classification
operator. Haris et al. [HEM+99] describe a directed tree graph as an anatomy
model for the cardiac arteries. The graph is used for the segmentation and
labeling of coronary angiograms. Atkins and Mackiewich [AM98] demon-
strate, that with little anatomic knowledge the automatic segmentation of brain
structures from MRI data is possible. They use a spatial information map to
eliminate presegmented regions, which do not correspond to brain tissue.

In this paper we present an approach, integrating knowledge from differ-

30 CHAPTER 2. OBJECT EXTRACTION FROM VOLUME DATA

ent disciplines, i.e. image processing, anatomy, medical physics, in order to
control image analysis processes.

2.2 System architecture

A hierarchical system for the stepwise segmentation of 3D datasets has been
developed. In biological visual systems a top-down strategy in object recog-
nition can be observed. Starting with the subdivision of a scene into larger
objects and background, structures with growing level of detail are recognized
step by step. This strategy of gradual refinement has been used as a model
for the design of the analysis system. If we take the example of interpreting
a tomographic head dataset, the system typically would start with delineating
head-contours in the slice-images thus providing a subdivision into head and
background. The head outline is used as a spatial map to discriminate between
brain tissue and extracerebral regions, which would be achieved in step two.
Using brain contours, the ventricular system may be delineated. The anatomic
model, which can be used in this case, is demonstrated by Fig. 2.2.

image

background head

intracranial extracranial

brain cerebrospinal fluid

white matter gray matter ventricles subarachnoidal fluid

Figure 2.2: Anatomic model of the human head describing a hierarchical ob-
ject modularization.

Fig. 2.3 illustrates the structure of the analysis system. Basically we can
distinguish between three components:

1. Control system,

2. Methods pool,

2.2. SYSTEM ARCHITECTURE 31

3. Knowledge base.

Figure 2.3: Components of the rule-based analysis system and stepwise pro-
cess of subdividing a 3D head dataset into smaller and smaller anatomic re-
gions.

The analysis process is supervised by the control system. It is responsible
for the selection of operators from the methods pool, which seem to be suitable
in a certain situation during the analysis process. It adjusts the parameters,
initiates the application of the operator to the image data and checks the result.
If the result is not satisfactory, parameters are changed or another method is
selected. For this purpose the control system makes use of non-procedural
knowledge, which is stored as a list of rules and facts in a knowledge base.

32 CHAPTER 2. OBJECT EXTRACTION FROM VOLUME DATA

2.3 Low-level image processing

A pool of various low-level segmentation operators has been developed. The
available methods fall into the categories segmentation, verification and post-
processing. They have been implemented as C-routines. The segmentation op-
erators may be subdivided into region- and edge-based approaches including
classifiers, first- and second-order gradient operators and line-tracking tech-
niques. The objective of the verification methods is to check the results gen-
erated by the application of a segmentation operator. This allows the control
system to acquire knowledge about the status of the analysis process in order to
select actions which have to be initiated next. Postprocessing methods are used
to refine segmentation results, e.g. refine the location of object edges. Exam-
ples are standard morphologic operators (erosion, dilation, opening, closing)
and special purpose operators which have been adapted to certain objects and
situations.

2.4 Control system

Supervision of the analysis process is carried out by a control system, which
has been realized using a PROLOG interpreter. Based on the concepts of pred-
icative calculus and backward reasoning the system starts with a goal, e.g.
find_brain, and tries to meet all the conditions necessary to achieve it.
Within the chain of backward reasoning low-level segmentation operators are
selected, their parameters adapted, application to the image space initiated and
the results checked by verification operators. Examples of rules are:

find_brain:-
apply_marr_hildreth_operator,
divide_image_into_anatomically_meaningful_regions,
find_brain_starting_region,
aggregate_all_brain_regions,
verify_brain_result,
refine_brain_result.

verify_brain_result:-
no_connection_to_skincontour,
no_overlap_with_eye_region,
reasonable_contour_length,

2.5. RESULTS 33

comparable_to_adjacent_slices.

In order to accept the goal part of the clause as true, all the conditions in
the list must be found true. These conditions may be production rules them-
selves or direct calls of low-level procedures. If a rule cannot be set true, the
interpreter searches the database for an alternative rule with the same name and
examines its conditions.

Although the image dataset is analyzed in a slice-wise manner, many of the
segmentation operators work in 3D space. The 3D information is also used to
compare the segmentation results of adjacent slices and thus check them for
severe errors.

2.5 Results

In order to evaluate our image analysis strategy, we have developed a rule
database for the interpretation of MRI 3D head datasets. The system was tested
with 10 different MRI datasets acquired with standard pulse sequences. The
spatial resolution was about 1.0 mm isotropically. The primary goal of the test
was to perform an automatic segmentation of brain tissue. Very reliable re-
sults were achieved in all datasets for the upper part of the head down to the
level of the orbita (see Fig. 2.4). Advancing further downwards, the complex-
ity of anatomic structures increases and therefore segmentation errors are more
likely to occur. Nevertheless, by the introduction of verification operators good
results were achieved. An example of an automatically detected and resolved
segmentation error is illustrated by Fig. 2.5. In this case a Marr-Hildreth opera-
tor was applied for edge extraction and thus the image subdivided into anatom-
ically meaningful regions. The experienced viewer may observe a connection
between areas belonging to the brain and extracerebral parts. This error may
be easily detected, since a region which is supposed to be brain must have no
connection to the head outline and the image background. Application of the
Marr-Hildreth operator with a modified set of parameters or using a different
segmentation operator may resolve this problem. As an overview over the seg-
mentation results, Fig. 2.6 presents a 3D surface image of the brain. This was
generated on basis of the segmented dataset with surface rendering. It demon-
strates that the segmentation worked very well for the whole brain down to the
temporal lobe. Beyond this region errors - marked by an ellipse - which are
caused by insufficient anatomic knowledge in the knowledge base occured.

34 CHAPTER 2. OBJECT EXTRACTION FROM VOLUME DATA

Figure 2.4: Result of fully automatic interpretation of a MRI dataset. From
u.1. to I.r.: Original slice image, head contour mask, brain contour mask and
ventricular contour mask.

2.6 Summary and conclusion

An artificial intelligence approach for the analysis of medical 3D datasets was
presented. A rule-based system for supervision of low-level image process-
ing operators was developed according to the objective of subdividing head
datasets into smaller and smaller anatomic entities. Knowledge from the fields
of human anatomy, medical physics and image processing was incorporated as
a set of rules and facts.

The system allowed the reliability of the vision process to be considerably
enhanced. The results indicate, that by the introduction of even small pieces
of knowledge the amount of user interaction for the correction of errors may
substantially be reduced. On the other hand, the role of powerful low-level

REFERENCES 35

operators must not be underestimated. Only by the combined application of
low- and higher-level image processing techniques may the problem of med-
ical 3D data interpretation be satisfactorily solved. The presented system is
regarded as a step in this direction. We expect substantial improvements by
the combination of approaches for eleastic model matching with the presented
method. This could be achieved by the extension of the knowledge base with
an anatomic atlas and the introduction of matching operators to the operators
pool.

References

[AM98] M.S. Atkins and B.T. Mackiewich. Fully automatic segmentation of the
brain in mri. IEEE Transactions on Medical Imaging, 17(1):98–107, 1998.

[BEST95] T. Buck, H.-H. Ehricke, W. Strasser, and L. Thurfjell. 3-d segmentation of
medical structures by integration of raycasting with anatomic knowledge.
Computers & Graphics, 19(3):441–449, 1995.

[CCF95] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and to-
mographic reconstruction using texture mapping hardware. In S. Spencer,
A. Kaufman, and W. Krueger, editors, Proceedings 1994 Symposium on
Volume Visualization, pages 91–98. IEEE Computer Society Press, Los
Alamitos, 1995.

[DHT+99] B.M. Dawant, S.L. Hartmann, J.-P. Thirion, F. Maes, D. Vandermeulen,
and P. Demaerel. Automatic 3-d segmentation of internal structures of
the head in mr images using a combination of similarity and free-form
transformations: Part i, methodology and validation on normal subjects.
IEEE Transactions on Medical Imaging, 18(10):909–916, 1999.

[GMK+91] G. Gerig, J. Martin, R. Kikinis, , and O. Kübler. Segmentation of dual-
echo mr head data. In H.U. Lemke, M.L. Rhodes, C.C. Jaffe, and R. Felix,
editors, Computer Assisted Radiology, pages 606–608. Springer, Berlin,
Heidelberg, New York, 1991.

[HEM+99] K. Haris, S.N. Efstratiadis, N. Maglaveras, C. Pappas, J. Gourassas,
and G. Louridas. Model-based morphological segmentation and label-
ing of coronary angiograms. IEEE Transactions on Medical Imaging,
18(10):1003–1015, 1999.

[HZS+90] W. Härle, I. Zuna, L.R. Schad, R. Brix, W. Semmler, G. van Kaick, and
W.J. Lorenz. Mri tissue characterization and segmentation of human brain
tissues using a prolog-based expert system. In H.P. Higer and G. Bielke,
editors, Tissue Characterization in MR Imaging, pages 313–318. Springer,
Berlin, Heidelberg, 1990.

36 REFERENCES

[JTL+98] C. Jia, O. Tan, X. Lu, H. Duan, and W. Lu. Automatic registration and
segmentation of human brain with a computerized brain atlas. In H.U.
Lemke, M.W. Vannier, K. Inamura, and A. Forman, editors, Computer
Assisted Radiology, pages 153–158. Elsevier, Amsterdam, 1998.

[KSG99] A. Kelemen, G. Szekely, and G. Gerig. Elastic model-based segmentation
of 3-d neuroradiological data sets. IEEE Transactions on Medical Imag-
ing, 18(10):828–839, 1999.

[LMR+98] J. Lötjönen, I.E. Magnin, P.-J. Reissman, J. Nenonen, and T. Katila. Seg-
mentation of magnetic resonance images using 3d deformable models. In
W.M. Wells, A. Colchester, and S. Delp, editors, Medical Image Com-
puting and Computer-Assisted Intervention, pages 1213–1221. Springer,
Berlin, Heidelberg, New York, 1998.

[PFY+99] S.M. Pizer, D.S. Fritsch, P.A. Yushkevich, V.E. Johnson, and E.L. Chaney.
Segmentation, registration, and mesurement of shape variation via image
object shape. IEEE Transactions on Medical Imaging, 18(10):851–865,
1999.

REFERENCES 37

Figure 2.5: Automatic detection and orrection of segmentation errors, gener-
ated by the application of a Marr-Hildreth operator. Top: The brain region
is directly connected with the region of the right eye (arrow). Bottom: Cor-
rect result (brain mask) after application of the same operator with adjusted
parameters.

38 REFERENCES

Figure 2.6: 3D brain surface generated by surface rendering on the basis of
an automatically segmented MRI dataset. The eeliptical region marks segmen-
tation errors, due to the lack of detailed anatomic knowledge.

Chapter 3

History between the Realities
— Hi-Tech User Interfaces
for Exploring the Past

L. Miguel Encarnação, Oliver Bimber�, Mark
Billinghursty

The learning possibilities using artifacts on display in today’s muse-
ums are limited since they are removed from their original context, are
too fragile to handle and are often damaged. In recent years museums
have tried to overcome these limitations through the use of a variety of
multimedia technologies including audio and video guides – with moder-
ate success. This article outlines display and interaction technologies that
could transform the museum experience from passive viewing to interac-
tive learning.

�Fraunhofer Center for Research in Computer Graphics, Providence RI, USA. E-Mail:
fmencarnajobimberg@crcg.edu

yHuman Interface Technology Laboratory, University of Washington, Seattle, WA, USA. E-
Mail: grof@hitl.washington.edu

39

40 CHAPTER 3. HISTORY BETWEEN THE REALITIES

3.1 Introduction

In Lewis Carroll’s classic book “Alice in Wonderland” Alice is prevented from
exploring the magical Wonderland until she passes through the looking glass
and leaves the real world behind. In many ways, when people go to a museum
today they hope for a similar experience. Visitors can see amazing artifacts
of cultural heritage in front of them; the glass cases enclosing them are like
windows to the past.

However, unlike Alice’s looking glass it is impossible for a person to step
through these windows into a historic wonderland. The artifacts on display
are removed from their original context, are too fragile to handle and are
often damaged. The pieces are so rare that it is difficult to show them out
of the museum setting, and related pieces from the same historical site may
be scattered in museums across the world. All of these factors mean that
museums may not be achieving their potential as centers for historical learning.

3.2 Motivation

In recent years museums have tried to overcome the described limitations
through the use of a variety of technologies. Audio guides are commonplace
and visitors can often use multimedia kiosks to explore topics in more depth.
Many early approaches of modeling and animating historical artifact showed
promising successes in discovering invisible aspects of ancient art and inge-
nuity. The reconstruction and subsequent analysis of Raphael’s ’School of
Athens’ painting, for instance, discovered the artist’s intentions with respect
to perspectives within the image [HKM87]; the Castel del Monte architecture
[EHS96] exposes to the bird’s eye perspective interesting fractal base geome-
tries; the Stoeffler Globe’s [OG95] star maps give an insight into the function
of the delicate ancient mechanism. In continuation of this history of apply-
ing computer graphics approaches to the exploration of Cultural heritage at the
University of Tübingen3, more recently the reconstruction of the Schickard cal-
culator [HEN01] employs Java 3D to communicate the artifact’s functionality
to a broader audience.

However, in many ways such technologies just replace one glass case for
another; rotating an artifact on a computer screen is little more satisfying than

3An overview of international work in this area can be found in [enc98].

3.3. TECHNOLOGICAL APPROACHES 41

seeing it in a display case. In an ideal museum setting the interfaces to the
technology should be transparent to visitors, allowing them to interact with the
digital domain as easily as they can with the real world around them.
This article outlines three Mixed Reality (MR) technologies developed at
the CRCG and HIT Lab that could transform the museum experience from
passive viewing to interactive learning. The Virtual Showcase, MagicBook,
and HI-Space developments are explained in this paper. The potential for
these technologies is illustrated by the recent Virtual Dig installation at the
Seattle Art Museum in Seattle, Washington. In this case visitors were actively
involved in the discovery process and gained a great understanding of the
context of the original artifacts and the wonder of archaeology. Yet this
experience only hints at the future possibilities that could occur by combining
these three technologies.

3.3 Technological Approaches

In an ideal museum setting the technology should vanish so that visitors can in-
teract with the digital domain as easily as they can with the real world around
them. There are several ways to make computers invisible. In the area of
Tangible Interfaces [IU97] real objects are used as interface widgets, while
in immersive Virtual Reality (VR) the real world is replaced entirely with
a computer-generated environment. As Milgram points out [MK94], these
types of computer interfaces can be placed along a continuum according to
how much of the users environment is computer generated (Fig. 3.1). On this
Reality-Virtuality line, Tangible Interfaces lie far to the left, while immersive
Virtual Environments are placed at the rightmost extreme. However it is the
middle ground that is most interesting. It is here that Augmented Reality (AR)
techniques can be used to overlay virtual images onto real world objects, or
Augmented Virtuality (AV) methods used to add real world content to com-
pletely virtual scenes.

Following this analogy with respects to objects of cultural heritage, looking
from a different perspective one could argue that a museum exhibit presents a
historically virtual environment, since the context, function and purpose of the
artifact might not be easily accessible or understandable anymore. The physical
artifact could be considered the ‘ real’ component in this setting. Consequently,
the surroundings of the exhibit, the documentation on the walls, audio guides

42 CHAPTER 3. HISTORY BETWEEN THE REALITIES

Figure 3.1: Milgram’s Reality-Virtuality Continuum [MK94]

and video mock-ups would represent the augmentation.

The unique characteristics of AR and VR interfaces provide many oppor-
tunities for them to be used in a museum setting. For example, in an AR
experience, missing portions of a damaged artifact could be shown as a virtual
overlay, completing the artifact, or a real artifact could be shown in a virtual
surround enabling visitors to see the piece in context. Currently, on-the-side
illustrations aim at communicating such missing information to the observer,
yet burdening him the additional task of correlating the exhibited artifact with
the illustration. Fully immersive VR experiences, on the other hand, are much
more powerful ways of demonstrating how an object worked in its original
setting, allowing people to pick up and manipulate virtual artifacts, or even
immerse the visitors into the original historical setting, creating a kind of time-
travel interface.
Many researchers around the world have begun applying VR and specifi-
cally AR technologies to the interactive exploration of Cultural Heritage (e.g.,
[enc01b, enc01a, enc00]). However there are problems with VR and AR ex-
periences that may prevent them from being widely used. In immersive VR
interfaces users wear bulky head-mounted displays that isolate them from the
real world and reduce the sense of shared discover that is found in museums.
The equipment is expensive and hard to integrate into a museum setting, often
requiring specially trained staff to operate it. Cost considerations and the time
it takes to use the interface may also limit the number of people that can try
the experience. Finally, it is often difficult to switch between modes (the real
world, AR scene, VR scene) for different purposes.
One solution to these problems is to explore other interface types that lie along
the Reality-Virtuality Continuum, particularly those that support seamless tran-

3.3. TECHNOLOGICAL APPROACHES 43

sitions between real and virtual worlds. In our work we have developed a vari-
ety of Augmented Reality technologies that are ideally suited to a museum set-
ting. Generally, the involved interface technologies can be grouped into display
technologies and interaction tools. An innovative technology which supports
the smooth transition between VR and AR displays is the Virtual Showcase,
a projection table that allows multiple people to see three-dimensional virtual
content as if it was really on the tabletop [BFSEa01].

On the interaction side, the HI-Space represents projection table that al-
lows for free-hand and object-based interaction with digital content, whereas
the MagicBook depicts an application of AR technology that allows a user
to smoothly move between reality and virtuality in a collaborative setting
[BKP01, KB99].

3.3.1 Display technologies for Cultural Heritage Exhibits –
The Virtual Showcase

The Virtual Showcase [BFSEa01] has the same form factor as a real showcase
making it compatible with traditional museum displays. Physical scientific and
cultural artifacts can be placed inside the Virtual Showcase, thus additionally
allowing for their three-dimensional graphical augmentation. Inside the Virtual
Showcase, virtual representations and physical artifacts share the same space,
thus providing for new ways of merging and exploring real and virtual content.
The virtual part of the showcase can respond in various ways to a visitor’s input
enabling intuitive interaction with the displayed content. A Virtual Showcase
consists of two main parts(Fig. 3.2): a convex assembly of half-silvered mirrors
(1) and a graphics display (2). So far, we have built Virtual Showcases with
two different mirror configurations. Our first prototype consists of four half-
silvered mirrors assembled as a truncated pyramid. Our second prototype uses
a single mirror sheet to form a truncated cone.

These mirror assemblies are placed on top of a projection screen in both se-
tups. Multiple users can see real objects inside the mirror assembly through the
optics merged with the graphics displayed on the projection screen. The show-
cases’ contents are illuminated using a controllable light source while view-
dependent stereoscopic graphics are presented to the observer(s). For our cur-
rent prototypes, stereo separation and graphics synchronization are achieved
using active shutter glasses in combination with infrared emitters. Head track-
ing is achieved using an electro-magnetic tracking device. Particularly intrigu-
ing is our second, cone-shaped prototype, which additionally provides a seam-

44 CHAPTER 3. HISTORY BETWEEN THE REALITIES

Figure 3.2: Prototype Virtual Showcases

less surround view onto displayed artifacts.

The virtual part of the showcase can react in various ways to single or mul-
tiple users enabling intuitive interaction with the displayed content. These in-
teractive showcases are an important step in the direction of ambient intelligent
landscapes, where the computer acts as an intelligent server in the background,
and users can focus on their tasks rather than on operating computers.
The described features in support of Virtual or Augmented Reality environ-
ments make the Virtual Showcase a testbed platform for a variety of appli-
cations, currently developed in different projects, ranging from training and
rehearsal as well as scientific visualization (cf. Fig. 3.3) to entertainment and
education (i.e., edutainment) (cf. Fig. 3.4).

Fig. 3.5 gives a glimpse onto the future design of the Virtual Showcase,
based on a refinement of the system and integrating our “ lessons-learned” and
application experiences. The depicted inverted setup ensures even less obstruc-
tion by the setup and supports closer multi-user collaboration.

The Virtual Showcase is currently further developed in collaboration with
several European museums sponsored by the European Union under IST-2001-
28610.

3.3. TECHNOLOGICAL APPROACHES 45

Figure 3.3: Weather Visualization in the Virtual Showcase (conceptual image).

Figure 3.4: Edutainment application focusing on problem-solving skills (con-
ceptual image).

3.3.2 Interaction Technologies for Cultural Heritage Ex-
hibits

The Magic Book Interface

Young children often fantasize about being able to fly into the pages of a fairy
tale and becoming part of the story. The MagicBook makes this fantasy a re-

46 CHAPTER 3. HISTORY BETWEEN THE REALITIES

Figure 3.5: Future concept for the Virtual Showcase.

ality using a normal book as the main interface object. People can turn the
pages of the book, look at the pictures, and read the text without any additional
technology (Fig. 3.6a)). However, if a person looks at the pages through an
Augmented Reality display they see three-dimensional virtual models appear-
ing out of the pages (Fig. 3.6b)). The models appear attached to the real page
so users can see the AR scene from any perspective simply by moving them-
selves or the book. The models can be any size and are also animated, so the
AR view is an enhanced version of a three-dimensional “pop-up” book. Users
can change the virtual models simply by turning the book pages and when they
see a scene they particularly like, they can fly into the page and experience
the story as an immersive virtual environment (Fig. 3.6c)). In the VR view
they are free to move about the scene at will, so in the MagicBook people can
experience the full Reality-Virtuality continuum.

The current MagicBook interface has two components; a handheld display
(HHD) and the physical book. Each user has their own graphics computer with
a HHD attached and these computers are networked. The HHD is a handle with
a Sony Glasstron display mounted at the top, an InterSense InterTrax inertial
tracker at the bottom, a small camera on the front of the Glasstron display
and a switch and pressure pad (Fig. 3.7). The books used in the MagicBook

3.3. TECHNOLOGICAL APPROACHES 47

a) Reality

b) Augmented Reality

c) Immersive Virtual Reality

Figure 3.6: Using the MagicBook interface to move between Reality and Vir-
tual Reality.

48 CHAPTER 3. HISTORY BETWEEN THE REALITIES

interface are normal books with text and pictures on each page. Certain pictures
have thick black borders surrounding them. When the reader looks at these
pictures through the HHD, computer vision techniques are used to precisely
calculate the camera position and orientation relative to the picture [KB99].
Once this is known the graphics computer generates virtual images that appear
precisely registered with the real pages. Simply turning the pages will reveal
new pictures and virtual images.

Users each have their own displays, and if two or more users are looking
at the same page, they will see the same virtual image attached to the picture
from their individual viewpoints. Since they can see each other at the same time
they can use natural non-verbal and verbal communication cues to enhance the
collaboration. The HHD can also easily be shared, or taken away from the face
if the user wants to experience unmediated reality.

When the user sees an AR scene they wish to explore, flicking the switch
on the handle will fly them smoothly into the scene, and transition them into
an immersive VR environment. Head tracking is changed from the computer
vision module to the InterTrax inertial orientation tracker so readers can look
around the scene in any direction. By pushing the pressure pad on the handle
they can fly in the direction they’re looking. The harder they push the faster
they fly. To return to the real world users simply need to flick the switch again.

Figure 3.7: MagicBook Technology

When users are immersed in the virtual environment or are viewing the AR
scenes their position and orientation is broadcast to the other users. This is used

3.3. TECHNOLOGICAL APPROACHES 49

to place virtual avatars of users that are viewing the same scenes, so users can
collaboratively explore the virtual content. Thus the MagicBook supports col-
laboration on three levels: as a physical object (book), an AR object (overlays
on pages) and as an immersive virtual space (by ‘fl ying’ into the book.

The HI-Space Interface

The HI-SPACE system4 is a projective table that supports nature gesture-based
interaction with virtual data (Fig. 3.8). It utilizes knowledge from many ar-
eas of research, including Psychology, Human-Computer Interaction, Virtual
Reality, Kinesiology, and Computer Science, to create a workspace that blurs
the boundaries between physical and electronic information. The most desir-
able aspects of both the physical and electronic information spaces are used to
enhance the ability to interact with information, promote group dialog, and to
facilitate group interaction with information to solve complex tasks.

The HI-SPACE is being developed to support leading edge HCI features,
such as:

� taking advantage of the redundancy of multi-modal (gesture, speech) in-
put,

� direct interaction, which allows a more natural interface,

� supporting groups of people interacting with the same data at the same
time and in the same space,

� enabling users in different physical locations to interact with each other
and with the same data set,

� supporting the fluid transfer of information and interaction between the
physical and electronic spaces,

� maintaining an unencumbered work environment.

In the current HI-SPACE system, sensors (camera, radio frequency tagging
antenna, and microphone array) are placed over the table to capture user
interactions with a table display. The display itself is a rear-view projection
screen being fed by a standard LCD projector. The HI-SPACE places the

4Developed by the HITLab in collaboration with Battelle Pacific Northwest Labora-
tories, Richland, Washington.

50 CHAPTER 3. HISTORY BETWEEN THE REALITIES

Figure 3.8: The HI-Space Interface

Figure 3.9: The HI-Space Interaction Space

user interaction space between the sensor array and the 2D display surface,
as depicted in Fig. 3.9. This creates a 3D interaction volume that allows
the user a much greater degree of freedom. The system has the potential to
interpret gestures or actions anywhere in the interaction volume and respond
accordingly, giving the HI-SPACE much greater potential for advanced
interactions than technologies that only mimic touch screen type functionality.

3.4. DISCUSSION 51

Artifact Example type of ar-
tifact

Condition of artifact

Complete Incom-
plete

Docu-
mented
only

Aesthetical Impressionist
painting

AR anno-
tations

AR com-
pletion

VR

Conceptual/
Structural

Baroque architec-
ture

AV AR com-
pletion

AV

Functional Ancient calculator AR an-
notations
+ VR
context

AR com-
pletion
+ VR
context

AV/VR

Organic Evolution AR an-
notations
+ VR
behavior

AR com-
pletion
+ VR
behavior

AV/VR

AR = Augmented Reality, AV = Augmented Virtuality, VR = Virtual Reality

Table 3.1: Potential applicability of mixed reality technology by type and con-
dition of artifact.

3.4 Discussion

The Augmented Reality technologies described able can be applied in a num-
ber of ways to create powerful museum experiences. Depending on:

� the nature of the physical artifact

� the condition of the physical artifact

� the exhibition and learning objective associated with the artifact

� the expected audience

and a variety of other factors, different sets of technologies along the mixed
reality continuum might be applicable and should be supported in a seamlessly
exchangeable way. Table 3.1 shows how different types and conditions of arti-
facts might favor different types of technologies for display and interaction.

52 CHAPTER 3. HISTORY BETWEEN THE REALITIES

Learning by Sample art Potentially valuable technology

AR AV VR1

Description Raphael’s “School
of Athens” , Castel
del Monte

MB, VS MB,HS,VS HS,VS,MB

Experi-
mentation

Stoeffler Globe,
Schickard cal-
culator, Virtual
Archeological Dig

VS VS, HS HS, VS

Discussion/
Comparison

Virtual Archeologi-
cal Dig

VS, MB VS, HS HS, VS

MB = MagicBook, HS = HI-Space, VS = Virtual Showcase
1 (incl. non-stereo)

Table 3.2: Potential applicability of presented technologies by learning objec-
tives

Table 3.2 depicts some examples of how the currently developed technolo-
gies described above might be applicable to different learning objectives.

These assumptions are derived from experimental applications of these or
similar technologies to the interactive visualization of the mentioned classes
of artifacts.

3.5 Case Study: Treasures from a Lost Civiliza-
tion

From May 10th to August 12th, 2001, the Seattle Art Museum showed an
exhibit titled Treasures from a Lost Civilization: Ancient Chinese Art from
Sichuan. On display were more than 150 priceless bronze, clay and gold pieces
of art from the Sichuan region in China. Some of the pieces were more than
3,000 years old and they included the oldest life-sized bronze figure in the
world.

3.5. CASE STUDY: TREASURES FROM A LOST CIVILIZATION 53

3.5.1 The Experience

The Virtual Reality Dig combined the MagicBook and HI-Space technology
into an intuitive and engaging museum experience. When users entered the
room they saw three tables with projection screens in then. In front of each
table was an additional screen. Moving up to a table the visitors were invited to
pick up a real brush or shovel. Looking down the visitors could see a projected
image of a field of flowers on the table surface. When they brushed the surface
of the table, the flowers and dirt were cleared away to reveal buried artifacts
underneath.

Users could get a closer look at the artifacts by putting down their brushes,
picking up their shovels and scooping them over the table surface. As they did
this, on the front projection screen a life-sized three-dimensional virtual model
of an artifact appeared on their virtual shovel. They could turn and view it
from any viewpoint or compare it to the different artifacts being held by their
friends.
The final section of the experience involved discovery and assembly of a life-
sized bronze statue. The statue was in several pieces so users first had to find
the pieces by pointing at different locations on the table with their brushes.
When the pieces were been found they could be picked up using the shovels
and placed together. Once assembled a large virtual bronze figure was shown
attached to one of the user’s shovels. This figure had empty hands, and when
assembled a number of objects appeared on the table surface. Users could pick
these objects off the surface with their shovels and place them into the statues
hands to see which was the perfect fit.

3.5.2 The User Response

While the exhibit was open almost two thousand people a week tried the Virtual
Dig experience, for a total of more than 25,000 people. The experience was
designed to be able to handle up to 36 people simultaneously, each of whom
could walk up to a table and start interacting right away, ensuring a very high
throughput rate.

The user response was overwhelmingly positive. Combining table inter-
face elements (the brush and shovel) with augmented reality graphics meant
that people had no trouble operating the interface. The unencumbered nature
of the interface also meant that people could easily collaborate with each other
and experience the wonder of shared discovery. It was not uncommon to see

54 REFERENCES

parents and children working hand in hand to manipulate the virtual models, or
grandchildren showing their grandparents how to brush away the virtual dirt.
Perhaps the greatest success was the questions that the experience planted in
the visitors’ mind and the incentive it gave them to find out more. Most tried
the virtual dig experience before heading to view the real artifacts on show.
So by the time they are saw the bronze masks in the display cases they al-
ready had an appreciation for how they were discovered and the features they
should be looking for to solve the archaeological mystery. Thus the Virtual Dig
transformed the museum experience from one of passive observation to active
discovery and enquiry.

3.6 Conclusions

In this paper we have briefly outlined several Augmented Reality display and
interaction technologies that could transform the museum experience from pas-
sive viewing to interactive learning. The potential for these technologies is
illustrated by the Virtual Dig installation at the Seattle Art Museum. In this
case visitors were actively involved in the discovery process and gained a great
understanding of the context of the original artifacts and the wonder of archae-
ology. Yet this experience only hinted at the future possibilities that could
occur by combining technologies such as the Virtual Showcase, the Magic-
Book, and the HI-Space. The challenge remains to conduct cross-disciplinary
research and application development for the Cultural Heritage domain, in or-
der to invent, develop and deploy display and interaction technologies that are
robust enough to subsist the excessive daily use in exhibit environments yet
flexible enough to provide transparent interfaces towards museum applications
with ever-changing interface requirements.

References

[BFSEa01] O. Bimber, B. Fröhlich, D. Schmalstieg, and L.M. Encarnação. Vir-
tual showcase.s. IEEE Computer Graphics & Applications, 21(6):48–55,
November/December 2001. Presented in Conference Abstracts and Appli-
cations of SIGGRAPH 2001, Los Angeles, CA, USA, ACM Press, 2001.

[BKP01] M. Billinghurst, H. Kato, and I. Poupyrev. The magicbook: A transitional
ar interface. Computers and Graphics, November 2001.

[EHS96] B. Eberhardt, J. Hahn, and R. Sonntag. Castel del monte - eine virtuelle
welt friedrichs ii. unix/mail, pages 205–212, 1996.

REFERENCES 55

[enc98] On the net resources - museums and cultural heritage,
September 1998. HITLab, University of Washington, URL
http://www.hitl.washington.edu/kb/museum.html.

[enc00] Virtual heritage network, 2000. URL: http://www.virtualheritage.neti/. In-
ternational Society on Virtual Systems and MultiMedia.

[enc01a] Ucla cultural vr lab, 2001. URL http://www.cvrlab.org/. University of Cal-
ifornia, Los Angeles, CA.

[enc01b] Vis.i.t., 2001. URL: http://www.cineca.it/HPSystems/Vis.I.T/Researches/tecbec.html.
Italy.

[HEN01] Frank Hanisch, Bernhard Eberhardt, and Benjamin Nill. Reconstruction
and virtual model of the schickard calculator. Journal of Cultural Heritage,
1:335–340, January 2001.

[HKM87] G. R. Hofmann, D. Krömker, and G. Mazzola. Rasterbild - bil-
draster: Anwendungen der graphischen datenverarbeitung zur ge-
ometrischen analyse eines meisterwerks der renaissance: Raffaels “schule
von athen” . In Beiträge zur Graphischen Datenverarbeitung. Springer,
Berlin/Heidelberg, 1987.

[IU97] H. Ishii and B. Ullmer. Tangible bits: Towards seamless interfaces between
people, bits and atoms. In Proceedings of CHI 97, Atlanta, Georgia, USA,
pages 234–241. ACM Press, 1997.

[KB99] H. Kato and M. Billinghurst. Marker tracking and hmd calibration for a
video-based ar conferencing system. In Proceedings of IWAR 99, San-
Francisco, USA, October 1999.

[MK94] P. Milgram and F. Kishino. A taxonomy of mixed reality visual displays.
IECE Trans. on Information and Systems, E77-D(12):1321–1329, 1994.
(Special Issue on Networked Reality).

[OG95] G. Oestmann and T. Grunert. Johannes stoeffler’s celestial
globe. Der Globusfreund, (43/44):59–76, December 1995. URL:
http://www.coronelli.org/.

56 REFERENCES

Chapter 4

Scientific Visualization of
Large Datasets

Thomas Ertl�

One of the main goals of scientific visualization is the development of
algorithms and appropriate data models which allow interactive visual
analysis and direct manipulation of the increasingly large data sets which
result from time-dependent 3D simulations running on massive parallel
computer systems or from measurements employing fast high-resolution
sensors. This task can only be achieved with the optimization of all steps
of the visualization pipeline: semantic compression and feature extrac-
tion based on the raw data sets, adaptive visualization mappings which
allow the user to choose between speed and accuracy, and exploiting new
graphics hardware features for fast and high-quality rendering. The paper
presents some of the recent advances in those areas of scientific visualiza-
tion showing examples from computer aided engineering in the automo-
tive industry like Lattice-Boltzmann based flow simulation and pre- and
postprocessing in crash-worthiness analysis, as well as volume visualiza-

�Abteilung Visualisierung und Interaktive Systeme (VIS), Universität Stuttgart, Germany. E-
Mail: Thomas.Ertl@informatik.uni-stuttgart.de

57

58 CHAPTER 4. SCIENTIFIC VISUALIZATION OF LARGE DATASETS

tion of chemical and medical datasets. It will be demonstrated that the
proliferation of 3D graphics adapters for the PC and increasing network
bandwidth will bring web-based visualization techniques to new applica-
tion domains while at the same time high-end graphics solutions continue
to be required for productive work in virtual reality installations.

4.1 Introduction

The ever growing size of data sets resulting from industrial and scientific sim-
ulations and measurements have created an enormous need for analysis tools
allowing interactive visualization. Although processing speed and graphics
hardware performance are still improving dramatically, additional very spe-
cialized algorithmic innovations and methodical developments are necessary in
order to yield the overall performance improvements end users are demanding.
Therefore, scientific visualization which started as an interdisplinary activity of
engineers, physicists, mathematicians and other computational scientists grew
into a research field of its own right during the last decade. Today, scientific
visualization is well established within the field of computer science bridging
the gap between simulation and computer graphics by means of dedicated con-
ferences, journals and reputable research groups.

Formally, we describe scientific visualization as the process of generating
a visual representation of the information contained in abstract data fields re-
sulting from computer simulations or sensoric measurements. The standard
model of this process comprises a pipeline of three stages (see Figure 4.1).
The filter stage is a preprocessing step converting the raw input data into vi-
sualization data which is usually reduced by operations like sampling, slicing,
cropping, etc. The mapper stage performs a mapping of the abstract data fields
into a visual representation consisting of geometric primitives like points, lines,
surfaces or voxels and associated graphical attributes like color, transparency,
texture, etc. The renderer, finally, uses this scene description to generate im-
ages by means of 3D graphics APIs such as OpenGL or OpenInventor, possibly
exploiting 3D graphics hardware to achieve interactive frame rates. Many dif-
ferent mapping algorithms have been developed for various scenarios. A crude
classification of these methods distinguishes between the dimensionality of the
data set, the underlying data type, such as scalar, vector, multivariate, and the
supported grid structure, such as regular, curvi-linear or unstructured. While
the generation of graphs and images from 1D and 2D data is usually well sup-

4.1. INTRODUCTION 59

ported by traditional plotting software, advanced visualization techniques focus
on data defined on 3D geometry (e.g. displacement values on the finite element
mesh of a car body) or volumetric data (e.g. scalar 3D data given on Cartesian
grids like from CT or MRI scanners or vectorial 3D data given on unstructured
grids like velocities from CFD simulations). Additional complexity arises from
time dependent data potentially given on grids with changing geometry (like in
crash simulations) or even changing topology (like in combustion simulation).

filtering
classification
segmentation

mapping rendering

st
ee
ri
ng

in
te
ra
ct
io
ns

CFD FE CT MR PET

adaptive mappings
polgon reduction

progressive rendering

hierarchical representations
grid optimization
 feature extraction

raw data
visualization

data
renderable

representation
visualization

sensorssimulation

images
videos

geometry:
 lines
 surfaces
 voxels

attributes:
 color
 texture
 transparency

too many cells too many polygonstoo much data

scence graph
optimization

hardware acceleration

Figure 4.1: The basics stages of the visualization pipeline and the problems
and approaches associated with visualizing large data sets.

Since those data sets are intrinsically huge, a lot of efforts have been under-
taken during the last years to come up with optimized visualization algorithms.
The goal is to develop algorithms which react to changes of mapping param-
eters (e.g. varying the iso-value of an iso-surface) by regenerating within sec-
onds the corresponding geometrical representation which can then be rendered
with several frames per second. Only with this type of real-time interaction
and navigation is it possible to analyze an unknown data set and to compen-
sate for the information lost during the projection of the 3D scene onto the
screen. However, despite all the sophistication incorporated into these meth-
ods, does it seem that the data sets are growing faster than algorithmic progress
is made. Therefore, all stages of the visualization pipeline have to be subject
to optimization in order to be able to match our goal. In the following, some
ideas and examples are described which demonstrate recent progess made in
accelerating filtering, mapping and rendering of the visualization pipeline.

60 CHAPTER 4. SCIENTIFIC VISUALIZATION OF LARGE DATASETS

4.2 Data compression and feature extraction by
multiresolution analysis

It is obvious that visualization methods which essentially have to access each
cell of a volumetric data set containing millions of cells in order to derive a
visual mapping might not catch up to the goal of interactive processing. Thus,
we have to reduce the number of cells which have to be visually mapped, which
means that we have to compress the data set in a preprocessing filtering step.
Since we strive to reduce the number of cells by at least an order of magnitude,
only lossy compression schemes will be employed. However, this does not
always have to lead to a significant loss of information. On the contrary, the
compression scheme will be chosen in such a way, that only redundant or irrel-
evant information (e.g. CT voxels containing air) is discarded, while important
features like high gradients, edges, etc. are retained or even emphasized. An
example for this is shown in Figure 4.2(b) where wavelet analysis was used to
automatically segment brain vessels from a CT angiography [WE97]. Trac-
ing wavelet maxima across various scales extracts the vessel walls and removes
noise at the same time. A similar idea was used to visualize relevant flow struc-
tures from an aerodynamics simulation of a car [WJE00]. Time surfaces are
integrated from the velocity field and their curvature is measured to separate
principal streams. Successive smoothing removes fine-scale fluctuations mak-
ing the prominent features visible in the semi-transparent rendering of a LIC
volume as shown in Figure 4.2(c).

In any compression scheme an error is introduced and the user has to be
given control over the threshold letting him choose between a fast visualization
of a very crude approximation of the data and an almost perfect representation
of the data which took perhaps minutes to compute. This requirement can
only be met, if not only one compressed version of the data, but a complete
hierarchy of representations of the data set at different levels of resolution is
available or can be generated on the fly. There are various ways to derive
such a hierarchy and they have all been applied in visualization ranging from
simple octrees to wavelets and multilevel finite elements [GE98]. Even more,
hierachical data structures are used in a variety of modern numerical methods.
In order to visualize these results they have to be interpolated to standard grids
before general purpose visualization packages can be applied. Examples where
this is hardly possible and completely new visualization algorithms have to be
developed are sparse grids [THGE99] or locally refined cartesian grids as they

4.3. ADAPTIVE AND PROGRESSIVE MAPPING ALGORITHMS 61

(a) Standard vol-
ume rendering of
CT angiography
data

(b) Edge enhance-
ment and noise
reduction through
wavelet analysis

(c) LIC volume rendering of principle
aerodynamic streams behind a car

Figure 4.2: Feature extraction from scalar and vector data sets based on mul-
tiresolution analysis

are used in industrial Lattice-Boltzmann CFD codes [SRBE99].

4.3 Adaptive and progressive mapping algorithms

Developing efficient algorithms for generating a multiresolution hierarchy of a
volumetric data set by compressing redundant information with respect to an
error measure is only one side of the visualization pipeline. On the mapping
side we need just as efficient algorithms which can take advantage of the hi-
erarchical data structures. It turns out that this is by no means a trivial task as
in general the traversal of a hierarchy is slow compared to full grid algorithms
which have been optimized over years. However, ideally, a mapping algorithm
exploiting the hierarchical representation of the data fields will automatically
generate geometrical representations at various levels of detail, thus allowing
incremental and progressive rendering.

Examples of this are shown in Figure 4.3. On the left hand side, an octree
hierarchy was built from a scalar cartesian volume resulting from cryo-electron
microscopy of a ribosom of Escheria Coli. An iso-surface was reconstructed
from various levels of the hierarchy depending on the distance of the octree
leaves from a momentarily defined focus point. Special attention has to be paid
to avoid holes in the iso-surface near level transitions. Real-time performance

62 CHAPTER 4. SCIENTIFIC VISUALIZATION OF LARGE DATASETS

(a) Adaptive refinement
of a ribosom iso-surface
around a focus point

(b) Progressive refinement of the iso-surface of a molecular elec-
tron density

Figure 4.3: Adaptive and progressive visualization from hierarchical data rep-
resentations

allows to interactively investigate details of the iso-surface which would have
not been possible for the full resolution surface [WKE99]. On the right hand
side, several levels of an adaptively refined tetrahedral mesh were generated
from a high resolution regular volume of the electron density of a molecule.
Due to the enormous reduction in the order of cells iso-surfaces can interac-
tively be extracted from the unstructured mesh and progressively refined while
descending the hierarchy [EGE98].

Besides the exploitation of hierarchical data structures for adaptive and
progressive visualizations research still concentrates on generating new visual
mappings for complex and derived quantities. Figure 4.4(b) shows an exam-
ple for the fruitful combination of various particle probes for the interactive
investigation of the air flow around a car body. While the rake of stream lines
gives the overall picture, the ribbons are helpful in understanding the A-frame
vortex and the glyphs carry additional information about the pressure mapped
to the color [REB01]. One important result of front crash simulations is the
information how much force is transmitted by the longitudinal strucures and
how much energy is absorbed by those car body parts. A new way to visualize
the temporal variation of the sectional forces at various positions is by using an
additional geometry called force tube and by mapping those values to its radius

4.4. EXPLOITING ADVANCED RASTERIZATION HARDWARE 63

(a) The force flux during a front impact is visualized
by means of an animated force tube with the radius
and the color representing the cross sectional forces

(b) The simulated air flow
around a car is investigated
by the interactive manipu-
lation of a combination of
stream lines, ribbons, and
glyphs

Figure 4.4: Additional geometry allows for efficient mapping of complex rela-
tionsships

and its color [KHSE98] (see Figure 4.4(a)).

4.4 Exploiting advanced rasterization hardware

Despite the advances in innovative algorithms for filtering data sets and map-
ping the relevant entities to geometry and to visual variables visualization still
requires hardware accelerated graphics to achieve interactive rates. Driven by
the mass market of computer games the performance of graphics adapters has
made fascinating progress during the last five years. Besides new peak rates for
geometry processing in the order of several millions of lit and shaded triangles
per second a drastic increase in rasterization functionality has to be noted. Es-
pecially texturing and blending of semi-transparent pixels is a commodity now
available in almost any workstation and PC. Exploiting rasterization hardware
for scientific visualization has brought interactivity to several well-known but
expensive methods like direct volume rendering and has laid foundation for
new approaches [WE98]. One example is shown in Figure 4.5(b) where the
pressure values of a CFD simulation are mapped to colored iso-contours on
several slice planes by means of a 1D texture map. Occlusion of the slice planes

64 CHAPTER 4. SCIENTIFIC VISUALIZATION OF LARGE DATASETS

(a) Visualizing potential flanges of the back compartment
of a car by rendering only nearby geometry opaque

(b) Stacked slice planes
showing contours of the
pressure, transparency
removes occlusion of
the vortex

Figure 4.5: Exploiting rasterization functionality like texturing and trans-
parency

is reduced by mapping uninteresting pressure values to transparent pixels. In
Figure 4.5(a) transparency is used in assisting the user to place spot welds on
flanges of a crash simulation finite element model. Distances between each of
the elements are efficiently computed by a bounding box hierarchy. Elements
which are closer than a certain distance are colored as potential flanges and the
rest of the geometry is finally made transparent [SE00].

4.5 Conclusions

As the size of data sets resulting from simulation or measurement will be con-
tinuously increasing so is the need for interactive visualization techniques and
tools. We have shown that multiresolution analysis is a promising approach
for compressing data sets in order to arrive at a concise visualization of the
relevant features. The hierachical data structures also form a basis for adap-
tive and progressive visualization algorithms to be used in web applications.
Exploiting the wealth of graphics hardware functionality for new visualization
methods is only at its beginning and will allow for the analysis of huge data sets
in virtual environments. Finally, optimal visualization performance will only
be achieved by a very tight adaption to the specific requirements of the simula-

REFERENCES 65

tion. This demands for an even closer collaboration between the computational
scientist and the visualization expert in the future.

References

[EGE98] K. Engel, R. Grosso, and T. Ertl. Progressive Iso-Surfaces on the Web. In
Late Breaking Hot Topics. IEEE Visualization, 1998.

[GE98] R. Grosso and T. Ertl. Progessive Isosurface Extraction from Hierarchical
3D Meshes. Computers Graphics Forum (EUROGRAPHICS ’98), 17(3),
September 1998.

[KHSE98] S. Kuschfeldt, M. Holzner, O. Sommer, and T. Ertl. Efficient Visualization
of Crash-Worthiness Simulations. IEEE Computer Graphics and Applica-
tions, 18:60–55, 1998.

[REB01] S. Röttger, T. Ertl, and W. Bartelheimer. Automotive Soiling Simulation
Based on Massive Particle Tracing. In Procceedings of EG/IEEE Sympo-
sium on Visualization VisSym ’01, 2001.

[SE00] O. Sommer and T. Ertl. Geometry and Rendering Optimization for the in-
teractive Visualization of Crash-Worthiness Simulations. In Proceedings of
the Visual Data Exploration and Analysis Conference in IT&T/SPIE Elec-
tronic Imaging, pages 124–134, 2000.

[SRBE99] M. Schulz, F. Reck, W. Bartelheimer, and T. Ertl. Interactive Visualiza-
tion of Fluid Dynamics Simulations in Locally Refined Cartesian Grids. In
Proc. Visualization ’99, pages 413–416. IEEE, 1999.

[THGE99] C. Teitzel, M. Hopf, R. Grosso, and T. Ertl. Volume Visualization on Sparse
Grids. Computing and Visualization in Science, 2:47–59, 1999.

[WE97] R. Westermann and T. Ertl. A Multiscale Approach to Integrated Vol-
ume Segmentation and R endering. Computers Graphics Forum (EURO-
GRAPHICS ’97), 16(3):96–107, 1997.

[WE98] R. Westermann and T. Ertl. Efficiently Using Graphics Hardware in
Volume Rendering Applications. Computer Graphics (SIGGRAPH ’98),
32(4):169–179, 1998.

[WJE00] R. Westermann, C. Johnson, and T. Ertl. A Level-Set Method for Flow
Visualization. In Proc. Visualization ’00, pages 147–152. IEEE, 2000.

[WKE99] R. Westermann, L. Kobbelt, and T. Ertl. Real-time exploration of regular
volume data by adaptive reconstruction of isosurfaces. The Visual Com-
puter, 15:100–111, 1999.

66 REFERENCES

Chapter 5

Connectivity Coding: New
Perspectives for Mesh
Compression

Stefan Gumhold�

Compact encodings of the connectivity of planar triangulations is a
very important subject not only in graph theory but also in computer
graphics. For triangle meshes used in computer graphics the planar re-
gions dominate by far. New results by Isenburg, Gumhold and Gots-
man [IGG01] even show that the connectivity is sufficient to describe
shape by itself. Most coding methods for planar triangulations can be ex-
tended to connectivities of manifold meshes with arbitrary topology. Up-
per and lower bounds on the bit rate are preserved if the maximum genus
of the mesh is limited.

In 1962 Tutte determined the number of different planar triangula-
tions. From his results follows that the encoding of the connectivity graph
of planar triangulations with three border edges and v vertices consumes
in the asymptotic limit for v ! 1 at least 3:245v + o(log(v)) bits. The

�WSI/GRIS, Universität Tübingen, Germany. E-Mail: sgumhold@gris.uni-tuebingen.de

67

68 CHAPTER 5. CONNECTIVITY CODING

so far best compression method [Gum00] with guaranteed upper bounds
for the bit rate is based on the encoding of CRLSE-Edge Breaker strings
and improves the bit rate of 3:67 bits per vertex established by King and
Rossignac [KR99]. In this article we elaborate on the coding technologies
indicated in [Gum00] and improve the bit rate to less than 3:525 bits per
vertex, while ensuring a linear run time for encoding and decoding.

5.1 Introduction

v1

v2

v3

Figure 5.1: Sample triangulation with the three external vertices v1; v2 and v3.

This article improves the lowest upper bound for the encoding of planar
triangulations with three border edges as defined by Tutte in [Tut62]. Fig. 5.1
shows an example of a planar triangulation with the three border vertices v 1; v2
and v3. Two planar triangulations are defined to be equal, if there exists a bi-
jection between their connectivity graphs that maps all border vertices of the
first triangulation to the border vertices with the same indices of the second tri-
angulation. Tutte enumerated all different planar triangulations and showed in
this way that an optimal encoding uses at least 3:245 bits per vertex for a suffi-
ciently large number of vertices. So far the best encoding schemes [CGHK98]
and [Ros99] consumed 4 bits. The latter – the Edge Breaker scheme – could
be improved to 3:67 bits per vertex [KR99].

Planar triangulations are a special case of closed manifold triangle meshes
where the genus of the triangle mesh is zero. As most encoding schemes for
planar triangulations can be extended to manifold triangle meshes with border,

5.2. EDGE BREAKER CODING 69

the schemes are also important in the representation of surface models and
have been studied extensively [Dee95, Hop96, Cho97, DS97, GS98, LK98a,
LK98b, MC98, TR98, TGHL98, TG98, BPZ99b, BPZ99a, COLR99, IS99a,
Ise00, PR00, AD01b, AD01a]. Latest work by Isenburg et al. [IGG01] shows
that the connectivity contains enough information to describe shape.

The algorithmic scheme of the Edge Breaker [Ros99] is very simple and
similar to the work of Itah [IR82] and to the Cut-Border Machine [GS98]. It
visits the triangles of an edge-connected component of a triangle mesh in an
order defined by the triangle connectivity itself. The same traversal is used for
encoding and decoding2 the connectivity – triangle by triangle – into one of the
five operation symbols CLRSE for each triangle. By the use of code books, the
Edge Breaker allows to encode the connectivity of typical triangle meshes to
an average of 2:2 bits per triangle, whereas the Cut-Border Machine achieves
with arithmetic coding and conditional probabilities an average of 1:9 bits per
vertex [Gum99]. These results are only valid for regular meshes. For an
arbitrary mesh the improved techniques cannot guarantee a good upper bound.

In the following we extend the techniques developed in [Gum00] and give
a linear runtime encoding and decoding scheme with an upper bound of 3.525
bits per vertex. Section 5.2 reviews the Edge Breaker encoding scheme with a
small modification on the split operation. If the reader is familiar with the Edge
Breaker coding it is sufficient to just review the descriptions of the split opera-
tions. In section 5.3 we describe constraints on the symbol stream produced by
the Edge Breaker encoding, that can be exploited to reduced the worst case bit
rate. The next two sections 5.4 and 5.5 describe techniques to exploit the con-
straints on the symbol stream. Numerical issues are discussed in section 5.6.
After the results in section 5.7 we give concluding remarks in section 5.8.

5.2 Edge Breaker Coding

The Edge Breaker translates the connectivity of a planar triangulation into a se-
quence of five different symbols. The encoding algorithm is a region growing
algorithm, which stores at any time all vertices and edges of the planar trian-
gulation, which divide the so far encoded triangles from the not yet encoded
triangles. These vertices and edges form a set of closed loops, which is called
the cut-border. Before encoding starts, the cut-border is initialised to one loop
containing the external edges and vertices.

2where decoding is done in reverse direction

70 CHAPTER 5. CONNECTIVITY CODING

a) ” center” : C b) ” left” : L c) ” right” : R

d) ” split” : S e) ” end” : E

Figure 5.2: The five different Edge Breaker operations needed for the encoding
of planar triangulations together with the corresponding symbols. The so far
encoded triangles are shaded in a light grey, the cut-border edges are bold
black as is the gate before the operation, the currently encoded triangle is dark
grey and the new gate(s) after the operation is/are white.

Triangles are encoded at a specific cut-border edge which is called the gate.
Each time a triangle has been encoded at the gate location, the gate is set to
another cut-border edge in a predetermined way such that all cut-border edges
will be visited in the end. In the beginning the gate is set to the external edge
v1v2. Fig. 5.2 shows the different operations and their symbols that we collect
in the Edge Breaker alphabet

A def
= fC;L;R; S;Eg

� ” centre” (C): The newly encoded triangle is formed upon the gate with
a new vertex. After the operation the gate is set to the right newly in-
troduced cut-border edge, such that the gate cycles around the vertex it
points to.

5.2. EDGE BREAKER CODING 71

� ” left” (L): The currently encoded triangle connects the gate to the previ-
ous edge on the cut-border. After the current triangle is encoded the gate
is set to the only newly added cut-border edge.

� ” right” (R): The mirror image of the left operation. The currently en-
coded triangle connects the gate to the next edge on the cut-border.

� ” split” (S): The currently encoded triangle splits the current loop of the
cut-border into two loops. For each loop the gate is chosen as the newly
introduced cut-border edge incident to the loop. The loop corresponding
to the left new edge is processed next, the other loop is pushed together
with its gate onto a loop stack. In the original scheme the loop incident
to the right edge is processed next as in the centre operation. Our modifi-
cation only exchanges the two parts of the symbol stream that encode the
two loops after the split operation. The modification will help us later on
to account for some of the constraints more easily.

� ” end” (E): The end operation eliminates the current cut-border loop,
pops a loop from the loop stack and activates its gate. If no more loop is
on the loop stack the current connected component is completely encod-
ing.

The encoding permutes the vertices. The sample triangulation in Fig. 5.1 is
encoded to the string

CCCRCCCRRRCSREE;

when the edge v1v2 is used as initial gate. The only operation which cannot be
decoded by simple repetition of the encoding operation is the split operation.
Due to Isenburg [IS99b] is the observation that the inverse operations of the
Edge Breaker operations can be done without any further knowledge. The
decompression is therefore done in reverse order. The symbol string is scanned
from back to front. The different operations are performed in reverse order. In
this way the different cut-border loops, which have been generated by split
operations, are re-built in reverse order and accumulated on a loop stack. Each
split operation merges two loops from the loop stack. In more detail the inverse
operations work as follows. For this have another look at Fig. 5.2, where the
white triangles are the so far decoded part, the dark grey triangle is decoded
next and the grey triangles have not been encoded yet. The white arrow(s)
is/are the gate(s) before the inverse operation and the black arrow is the gate
after the inverse operation.

72 CHAPTER 5. CONNECTIVITY CODING

� ” inverse centre” (C�1): The newly decoded triangle connects the gate
to the previous edge on the cut-border and is the mirror image of the
forward L operation.

� ” inverse left” (L�1): The gate is replaced by the newly decoded triangle
and the gate is set to the right newly introduced cut-border edge as in the
forward C operation.

� ” inverse right” (R�1): The gate is replaced by the newly decoded trian-
gle and the gate is set to the other newly introduced cut-border edge as
in the L�1 operation.

� ” inverse split” (S�1): The current loop is merged with the top loop on
the loop stack. The gate is set to the only newly introduced cut-border
edge. The inverse split operation unifies two vertices from the two differ-
ent loops into one vertex, where the two gates meet. This implies that the
final indices of the vertices are not known at their creation time during
decoding. When a vertex is created during decoding it receives a dummy
index that can be unified with another dummy index after an inverse split
operation. The index can be finalized whenever all triangles incident to
a vertex have been decoded. This happens after each inverse centre op-
eration. Thus the final vertex index 0 is given to the first vertex whose
neighbourhood is closed by an inverse centre operation. The index 1 to
the second vertex and so on. In this way the vertices are enumerated
during decoding in exactly the reverse order as they are introduced by
centre operations in the encoding process.

� ” inverse end” (E�1): The inverse end operation creates a new cut-border
loop consisting of three edges and three vertices with dummy indices.
For this the current loop is pushed onto a loop stack.

As all forward and inverse operations can be performed in constant time,
we can state the following theorem:

Theorem 5.2.1 The connectivity of a planar triangulation with v vertices and
3 external edges can be encoded with a unique string of length 2v over five
different symbols in linear time in v. The original connectivity can be decoded
also in linear time in v.

By encoding the C-symbol with one bit and all other symbols with three
bits, the Edge Breaker scheme allows to encode any planar triangulation with

5.3. CONSTRAINTS 73

no more than four bits per vertex3. In [KR99] the upper bound for the storage
space is improved to 3.67 bits per vertex. Gumhold [Gum00] improved upon
this result to an upper bound of 3:552. In the next chapters we show how to
achieve an even better bound of 3:525 bits.

5.3 Constraints

The upper bound of four bits per vertex can be improved as not all possible
symbol strings are allowed. In this section we gather the different constraints
on the symbol strings. During encoding we first produce the symbol string.
Then we reverse the order of the symbols and the vertex data as a prepara-
tion for decoding. The reversed symbol string is finally transformed into a bit
stream via arithmetic coding as described in the next section. The decoding al-
gorithm uses arithmetic decoding to get back the symbol string and builds the
connectivity in the given previously reversed order. To improve the arithmetic
coding stage we investigate the reversed symbol string and examine for each
inverse operation the necessary preconditions that will ensure the reconstruc-
tion of a planar triangulation and nothing else:

1. ” inverse centre” (C�1): The inverse centre operation removes the gate
and the previous edge from the cut-border and adds a new edge con-
necting their far apart end points. This operation can cause two invalid
configurations.

(a) The removal of one cut-border edge can reduce the length of the
current cut-border loop to less than the minimal number of three
edges.

(b) The newly added edge could have been part of the decoded con-
nectivity before the inverse centre operation. This is for example
always the case if the inverse centre operation is performed after an
inverse left operation. Then the inverse centre operation would add
a third triangle to the interior edge introduced by the left operation.
But in a planar triangulation an edge with more than two edges is
not allowed.

3Each symbol introduces one triangle. There are twice as many triangles as vertices. Each
vertex corresponds to exactly one C symbol. This sums up to v + 3v = 4v bits.

74 CHAPTER 5. CONNECTIVITY CODING

2. ” split” (S�1): An inverse split operation is only allowed if there is a
cut-border loop on the loop stack.

3. ” inverse left / right / end” (L�1 / R�1 / E�1): The inverse left, right and
end operations all introduce new cut-border edges. Therefore, they are
not allowed at the end of the decoding process when the remaining in-
verse split and centre operations cannot reduce the number of cut-border
edges to the number of external edges.

The next two sections describe how to account for the constraints 1a and 1b
on the inverse centre operations. We do not take into account the other two
constraints. The constraint 2 implies that during decoding the number of E
operations must be at anytime larger than the number of S operations. To
understand this constraint better, we virtually remove all C,L and R symbols
from the sequence of Edge Breaker symbols. Then we replace each S symbol
by an open parenthesis and each E symbol by a closed parenthesis. In the
setting with the parentheses constraint 2 is fulfilled, iff the parentheses are
balanced. As the number of balanced strings of parentheses is only half the
number of arbitrary strings over two symbols we can only save one bit for the
encoding of the planar triangulation. As this bit does not help anything in terms
of bits per vertex, we can safely neglect constraint 2.

The last constraint 3 can be neglected with a similar argument. Each in-
verse end operation is paired with an inverse split operation. The inverse end
operation introduces three cut-border edges and the inverse split operation re-
moves one. A pair of inverse end and split symbols introduces two cut-border
edges, i.e. one new cut-border edge per symbol. Thus each of the inverse op-
erations for the symbols LRSE introduces one cut-border edge and only the
inverse centre operation removes one cut-border edge. If we replace each of
the symbols LRSE with an open parenthesis and each C symbol with a closed
parenthesis and claim that the resulting string of parentheses must be balanced,
we restrict the symbol string even more than constraint 3 demands. But again
this restriction can only save one bit for the encoding of the planar triangulation
and we can also neglect constraint 3.

5.4 Conditional Unities

In order to achieve near optimal compression rates and to have at the same
time the flexibility to avoid the constraints on the inverse centre operations,

5.4. CONDITIONAL UNITIES 75

we use arithmetic coding to transform the symbol stream into a bit stream
(see [WNC87] for an introduction to arithmetic coding). To encode a sym-
bol, the arithmetic coder subdivides the unit interval into as many sub-intervals
as there are different symbols, in our case into five or four 4 sub-intervals. The
sizes of the sub-intervals are chosen equal to the probabilities of each of the
allowed symbols. A specific symbol from the set of possible symbols is en-
coded by selecting the corresponding interval. To encode the next symbol the
arithmetic coder uses the selected interval as basis and splits this again accord-
ing to the probabilities into sub-intervals and so on. For the encoding of each
symbol one can specify different probabilities for the symbols depending on
the history of the so far encoded or decoded symbol string. The symbol string
is transformed by the arithmetic coder through an interval subdivision into a
very tiny interval uniquely specifying the symbol string. This tiny interval is
then encoded with the shortest binary fraction that represents a number within
the sub-interval. The overhead for specifying the binary fraction is very small
and one can assume that the arithmetic coder does an optimal job.

Suppose we are given the Edge Breaker symbol string S = s1s2 : : : st in
reverse order, where t is the number of operation symbols which is equal to the
number of triangles. Then we can specify for each symbol s i five probabili-
ties pi;� for � 2 fC;L;R; S;Eg, that may depend on the previous symbols:
pi;�(s1 : : : si�1). Each symbol si shrinks the current interval by a factor of
pi;si . Thus the size of the final interval is

It =

tY
i=1

pi;si :

To specify this interval with a binary fraction we need no more than

B(S) def
= log2

1

It
+ 1

bits. If we split the logarithmic term into a sum, we see that each symbol
contributes exactly

B(si) def
= log2

1

pi;si

fractional bits. Thus it makes sense to say that a specific symbol consumes for
example 2.525 bits. In the simplest encoding of the Edge Breaker symbols the

4if no C symbol is allowed

76 CHAPTER 5. CONNECTIVITY CODING

probabilities of the symbols CLRSE are set to 1
2 for C and 1

8 for the other four
symbols, corresponding to one and three bits. From Euler’s equation we know
that the number of triangles t is equal to 2v�m� 1, where v is the number of
vertices and m the number of external edges. As each C operation introduces
one new vertex, the number of C symbols is equal to v �m. The number of
the remaining symbols is v � 1, such that the consumed storage space for the
simple coding sums up to v �m plus 3 � (v � 1) equals 4v �m� 3 bits, what
is less than four bits per vertex.

There is no way around the fact that the C symbols constitute about half of
the symbols. Thus we can fix the probability of the C symbols to 1

2 . For all the
remaining symbols we assume a fixed probability of � , which should be larger
than 1

8 in order to achieve a better bit rate per vertex. In order to keep � as the
constant that tells us the total bit rate via the formula

b(S)
def
=
B(S)
v

= 1 + log2
1

�
; (1)

we introduce the concept of the conditional unity. Without any knowledge of
the decoding process, we know that the probabilities of the different symbols
must sum up to one

1 = pC + pL + pR + pS + pE
?
=

1

2
+ 4�:

If the second equality would be true, we could compute � to 1
8 and would end

up with a bit rate of four bits per vertex. But here we neglected the fact, that
after we saw an E symbol in the reversed symbol string, no C symbol may
follow because it would reduce the number of cut-border edges to two, what
is not allowed. Thus the probabilities of the symbols that are allowed under
the precondition that the previous symbol has been an E do not sum up to one.
Instead they will sum up to a number smaller than one that we denote as the
conditional unity E1 under precondition that an E symbol preceded the current
symbol. The C symbol may neither follow a L symbol because it would destroy
the planarity of the triangulation. We can now revise our first equation on the
probabilities to three new ones:

1 =
1

2
+ �

�
L1+ 1+ 1+ E1

�
L1 = �

�
L1+ 1+ 1+ E1

�
E1 = �

�
L1+ 1+ 1+ E1

�
:

5.5. THE STATE MACHINE 77

We see at once that the conditional unities L1 and E1 are the same resulting in
only two equations:

1 =
1

2
+ 2�

�
L1+ 1

�
L1 = 2�

�
L1+ 1

�

We can easily solve for L1 = 1
2 and � = 1

6 . Thus the bit rate would be
1 + log2 6 < 3:585 bits per vertex. The corresponding arithmetic coder
has two different lists of probabilities

�
p1=2;�

�
– if no precondition holds�

1
2 ;

1
12 ;

1
6 ;

1
6 ;

1
12

�
and under precondition of an E or L

�
0; 1

12 ;
1
6 ;

1
6 ;

1
12

�
.

5.5 The State Machine

With the tool of conditional unities we can exploit the constraints 1a and 1b on
page 73.

Constraint 1a does not allow a C symbol if the length of the current cut-
border loop is three. Every time when an inverse end operation generates a
new loop, we know that the length of the current loop is three afterwards. To
remember this knowledge we introduce the conditional probabilities 1 l, where
l specifies the known length of the current loop. Each inverse left and right
operations increment the current cut-border loop by one, whereas the inverse
C operation decrements it by one. After the inverse split operation we don’ t
know anything about the length of the current loop as we didn’ t remember the
length of the loop on the stack. Considering only the length of the current loop,
the equations for the conditional unities are

1 =
1

2
+ � (3 � 1+ 13)

13 = � (2 � 14 + 1+ 13)

1l =
1

2
1l�1 + � (2 � 1l+1 + 1+ 13) 8l > 3:

We can extend this approach by also remembering the length p of the loop on
top of the loop stack by introducing the conditional unities 1 pl . This will allow
to determine the loop length after an inverse split operation. Then the current
loop will have the length l+ p� 1. The second new rule is that after an inverse

78 CHAPTER 5. CONNECTIVITY CODING

end operation the current loop length is stored in the length of the loop on top
of the stack resulting in the equations

1 =
1

2
+ � (3 � 1+ 13)

13 = �
�
2 � 14 + 1+ 133

�
1l =

1

2
1l�1 + �

�
2 � 1l+1 + 1+ 1l3

� 8l > 3

1
p
3 = �

�
2 � 1p4 + 12+p + 133

� 8p � 3

1
p
l =

1

2
1
p
l�1 + �

�
2 � 1pl+1 + 1l+p�1 + 1

l
3

� 8l > 38p � 3:

Finally, we introduce the conditional unities s1
p
l that can also remember the

length s of the loop on the second highest position on the loop stack. The
equations are extended in the same way.

Figure 5.3: Illustration of constraint 1b on page 73.

The second constraint 1b on page 73 says that the edge introduced by the
inverse centre operation is not allowed to be present in the so far decoded part.
Fig. 5.3 illustrates the second constraint on the C symbol. The so far decoded
part is shown in white, the not yet decoded part in grey. The gate before the
inverse centre operation is the white arrow, the gate after the operation the
black arrow. The dark grey shaded triangle with the bent edge is the currently
decoded triangle. The bent edge introduced by the inverse centre operation is
the same as the edge cutting the so far decoded part into a triangle on the right

5.5. THE STATE MACHINE 79

and an arbitrary part on the left. Thus the newly added edge would coincide
with the interior edge, which would be incident to the white triangle, the dark
grey triangle and another triangle of the unspecified so far decoded part. This
situation can arise after an inverse left operation. Suppose in Fig. 5.3 that the
gate has been the grey arrow before the inverse centre operation and then the
white triangle has been encoded by an inverse left operation. Thus every time
an inverse left operation has been performed an inverse centre operation is not
allowed to follow.

ESC ELSCC

ERCSC
ERSCC

ELLSCCC

3x 3x

ERRCSCC EESSCCC

6x

ERLSCCC

3x

ELRCCSC
ELRSCCC

ERCLSCC

ELRCSCC

ERCRSCC
ERRCCSC

ERRSCCC
ERCRCSC
EESCSCC

Figure 5.4: Different triangulations inside a triangle with one, two or three
interior vertices.

But that is just the simplest scenario for constraint 1b. Inside the white
triangle in Fig. 5.3 can be further vertices forming a more complicated trian-
gulation. Fig. 5.4 illustrates all different triangulations with up to three interior

80 CHAPTER 5. CONNECTIVITY CODING

vertices, together with the reversed sequence of operation symbols that will
produce this situation.

Let us check the simplest one in the top row on the left side of Fig. 5.4
by first encoding in forward direction. The white arrow gives the gate before
any of the white triangles are encoded. The cut-border consists of the outline
of the white area. A centre operation introduces the vertex in the middle of
the big white triangle and moves the gate to the dashed arrow in the newly
added triangle. Then a split operation follows that splits the cut-border into
two loops, the dashed one on the left and the single triangle on the bottom
right. Here comes into play why we modified the split operation such that the
left loop is encoded next. Because now we go on with the loop inside the big
white triangle first and encode the remaining triangle with an end operation.
The reversed symbol sub-string that encodes the connectivity inside the big
white triangle is ESC as written under the top left drawing in Fig. 5.4. The
modification of the split operation will work for any triangulation inside the
big white triangle, because the forward symbol sequence will always start with
centre operations followed by a split operation that splits of the loop outside
the big white triangle. One can easily check that no other split, no left, no right
and no end operations can arise in forward encoding direction before this split
operation.

In Fig. 5.4 we did not draw all 17 cases but wrote the number of similar case
to the left of one representative. For representatives with three cases, the other
two cases result from the representatives through rotation of the connectivity
inside the big triangle by an angle of 120Æ and 240Æ. In the representative
we drew the gate locations during forward encoding for the first symbol string
under the drawing. The representative with six different cases is drawn with
three quadrilaters each of which can be triangulated either with the dotted or
the dashed line. All different choices of triangulations would result in eight
cases but the cases with only dotted lines or only dashed lines are the same as
the case on the left side in the second row of Fig. 5.4. If we add the two one
symbol constraints E and L, we end up with 19 constraints. Let C be the set of
all constraints

C def
= f E;L;ESC;ELSCC;ERSCC;ERCSC;ELLSCCC;

ELRSCCC;ELRCCSC;ERRCSCC;EESSCCC;

ERCRSCC;ERRCCSC;ERRSCCC;ERCRCSC;

EESCSCC;ERCLSCC;ERLCSSS;ELRCSCC g:

5.5. THE STATE MACHINE 81

Next we define two predicates on Edge Breaker symbol strings

8S 2 A� : isConstraint(S) , S 2 C
8S 2 A� : isPrefix(S) , 9H 2 CjS = H1::jSj;

where H1::l denotes the string composed of the first l symbols of the string H .
To ensure constraint 1b we define conditional unities of the form H

s 1
p
l ,

where H is a string that specifies the history of symbols decoded before. For
example the conditional unities ESC

4 135 remembers the knowledge that the last
encoded symbol was a C, the one before a S and the one before an E. Further
more it remembers that the current loop length is 5, the length of the loop on
top of the loop stack is 3 and the length of the next lower loop on the stack is 4.
The knowledge that the previous symbols have been ESC allows us to discard
the C symbol from the allowed symbols for this conditional unity.

Only strings H , for which “ isPrefix(H)” holds, are useful to be remem-
bered in the conditional unities. But for the loop lengths there is no natural
limit such that we have to introduce artificial limits lmax, pmax and smax. With
these limits we can produce all the conditional unities with the following algo-
rithm

1. push 1 onto a stack of unities and add it to the set of unities

2. while the stack of unities is not empty

3. pop a unity H
s 1

p
l from the stack

4. the C symbol can follow, iff l 6= 3 ^ :isConstraint(H)

5. for all symbols � out of LRSE and C, if it can follow

6. find the unity H0

s0 1
p0

l0 that incorporates � into the preconditions

7. if H
0

s0 1
p0

l0 is not in the set of unities, add it and push it onto the stack

Only the line 6 needs further clarification. The conditional unity H0

s0 1
p0

l0 that
follows the conditional unity H

s 1
p
l , if the symbol � is encoded, can be found in

82 CHAPTER 5. CONNECTIVITY CODING

two stages. First we incorporate � into the fields via the “proceed” function

proceed(Hs 1
p
l ; C)

def
= correct(H:Cs 1

p
l�1)

proceed(Hs 1
p
l ; L)

def
= correct(H:Ls 1

p
l+1)

proceed(Hs 1
p
l ; R)

def
= correct(H:Rs 1

p
l+1)

proceed(Hs 1
p
l ; S)

def
= correct(H:S1sl+p�1)

proceed(Hs 1
p
l ; E)

def
= correct(H:Ep 1l3);

where the “ .” operator appends the symbol � to the history H . The second
stage is the function “correct” which makes sure that the new conditional unity
is useful. If any of the lengths l, p or s exceeds the corresponding maxi-
mum lmax, pmax or smax, “ correct” removes the length from the preconditions.
While isPrefix(H) does not hold for the history, “correct” removes the first
symbol of the history.

With the described algorithm we cannot only find all reachable conditional
unities but also their defining equations

H
s 1

p
l =

1

2
proceed(Hs 1

p
l ; C) + �

�
proceed(Hs 1

p
l ; L)+

proceed(Hs 1
p
l ; R) + proceed(Hs 1

p
l ; S) +

proceed(Hs 1
p
l ; E)

�
; if l 6= 3 ^ :isConstraint(H)

H
s 1

p
l = �

�
proceed(Hs 1

p
l ; L)+

proceed(Hs 1
p
l ; R) + proceed(Hs 1

p
l ; S) +

proceed(Hs 1
p
l ; E)

�
; if l = 3 _ isConstraint(H); (2)

which on the one hand define a set of equations that yield � and from � via
equation 1 the bit rate in bits per vertex. On the other hand it defines the
arithmetic coder in form of a state machine. Each conditional unity H

s 1
p
l is a

different state of the arithmetic coder. The corresponding defining equation 2
tells the coder how to split the current interval into pieces. The symbol proba-
bility of the symbol � under the preconditions remembered by the conditional
unity H

s 1
p
l is

p
�;
H
s 1

p
l

def
=

1
2proceed(Hs 1

p
l ; �)

H
s 1

p
l

if � = C

p
�;
H
s 1

p
l

def
=

�proceed(Hs 1
p
l ; �)

H
s 1

p
l

if � 6= C:

5.6. NUMERICAL SOLUTION 83

After the symbol � has been encoded, the arithmetic coder changes into the
new state “proceed(Hs 1

p
l ; �)” .

5.6 Numerical Solution

Let us collect for a given number of constraints and given maximum lengths
lmax, pmax and smax all the different conditional unities in the vector ~1, such
that the first component ~11 equals to 1. Let n be the dimension of ~1. Then the
defining equations 2 are of the form

~1 = M(�)~1 M(�) 2 IRn�n;

with a sparse square matrix M , that depends on � . This equation is of the form
of an eigenvalue problem. The difference is that the eigenvalue is known to
be one, but the matrix depends on the parameter � . We are looking for a �
within [�min; �max] corresponding to the bit rates 4 and 3:245. Once we have
found the correct �1, the matrix M(�1) has an eigenvalue of 1. Furthermore
all entries auf M(�1) are less or equal to 1, which implies that 1 is the largest
eigenvalue of M(�1). If we choose a �+ larger than �1, we underestimate the
bit rate and all entries of the matrix M(�+) either increase or stay the same,
such that also the largest eigenvalue has to increase or stay the same. Similarly,
for a �� smaller than �1 the eigenvalue is less or equal to 1. Thus the largest
eigenvalue of M(�) is a monotonous function of � . This enables us to apply a
simple interval subdivision to find �1 starting with the interval [�min; �max].

To compute the largest eigenvalue we exploit the fact that a multiplica-
tion of M(�) with a n-dimensional vector can be done in O(n) flops. We
use the standard method to compute the eigenvector ~vmax(M) corresponding
to the largest eigenvector of M . We initialise ~v to ones. Then we repeat to
set ~v

def
= M~v=(M~v)1 until only the component in direction of the eigenvector

corresponding to the largest eigenvalue remains in ~v and the iteration does not
change ~v anymore. The searched eigenvalue is (M~v)1. The method converges
after a number of iterations that depends linear in the precision of the used
floating point numbers and therefore is constant. Also the interval subdivision
finds �1 in machine precision in a constant number of iterations, such that the
overall runtime is linear in n.

After �1 is found, the conditional unities are given in the vector ~v(M(� 1)).
Before we use them to define the state machine of the arithmetic coder, we
want to throw away conditional unities that correspond to the same state. A

84 CHAPTER 5. CONNECTIVITY CODING

conditional unity can be is not necessary if there is another conditional unity of
the same value with the same defining equation. Thus we first sort the condi-
tional unities by their value and their entries in the defining equation. Then we
select for all successive conditional unities with the same value and defining
equation one representative and replace all others in the defining equations by
the representative. In this way we can define a state machine with a minimal
number of states.

5.7 Results

Figure 5.5: For given maximum number of variables the smallest bit rates
plotted together with the set of limit parameters

In order to analyse the effect of the constraints versus the different cut-
border loop lengths, we also restrict the number of exploited constraints to
cmax 2 f0; : : : ; 19g. We call the numbers lmax, pmax, smax and cmax the limit
parameters. To find the best values for the limit parameters we implemented
an optimisation method, that finds for a given maximum number of states the
limit parameters that produced the smallest bit rate. Figure 5.5 plots the best
bit rate and the limit parameters over the number of necessary states. The scale
of the best bit rate is shown on the right. The rate drops off in an exponential
manner converging to something below 3:525 bits per vertex.

5.7. RESULTS 85

unity value C L R S E

1 1 1
ERRSCCC

1 1 1
E
13

19 0.984983 18
ERRSCCC

1 1 1
E
13

18 0.969957 17
ERRSCCC

1 19 1
E
13

17 0.945118 16
L
18 18 1

E
13

ERLS
1 0.9375 ERS

1
ERRSCCC

1 1 1
E
13

16 0.901554 15
L
17 17 1

E
13

ERS
1 0.875 ERLSCC

1
ERRSCCC

1 1 1
E
13

15 0.824112 14
L
16 16 1

E
13

ERR
15 0.791576 ERCR

14
L
16 16

ERLS
1

E
13

ERLSCC
1 0.75 ERRSCCC

1
ERRSCCC

1 1 1
E
13

14 0.686027 13
L
15 15 1

E
13

ERCR
14 0.642645 ELRCC

13
L
15 15

ERS
1

E
13

ER
14 0.629472 ERC

13
ERL

15
ERR

15
ERS

1
E
13

ERRSCCC
1 0.5 ERRSCCC

1 1 1
E
13

L
18 0.497395 ERRSCCC

1 19 1
E
13

L
17 0.494337 L

18 18 1
E
13

L
16 0.489495 L

17 17 1
E
13

L
15 0.481096 L

16 16 1
E
13

ERL
15 0.470251 L

16 16
ERLS

1
E
13

L
14 0.466199 L

15 15 1
E
13

ERCL
14 0.444509 L

15 15
ERS

1
E
13

13 0.439653 L
14 14 1

E
13

EL
14 0.436981 ERL

15
ERR

15
ERS

1
E
13

ELRCC
13 0.396271 L

14 14
ERLSCC

1
E
13

ERC
13 0.38498 ERCL

14
ERCR

14
ERLSCC

1
E
13

E
13 0.381387 EL

14
ER

14
ERLSCC

1
E
13

Table 5.1: These are the 26 conditional unities produced with the limit param-
eters lmax = 9, pmax = :, smax = : and cmax = 19, which achieve a bit rate
of 3:527 bits per vertex.

More interesting is that the limit parameters for the loop lengths grow lin-
early, whereas the number of used constraints nearly instantly hits the maxi-
mum of 19. This result suggest that the highest potential for reducing the bit
rate further lays in the number of considered constraints. Table 5.1 and ta-
ble 5.2 show two sets of conditional unities and their transitions with ten and
thirty variables achieving bit rates of 3:525 and 3:555 bits per vertex. The first

86 CHAPTER 5. CONNECTIVITY CODING

unity value unity value unity value

1 1 ERCS
16 0.730321 ERRSCCC

14 0.46495
18 0.972951 ERRCCS

15 0.713541 ERL
1
3
5 0.460852

1
4
8 0.969924 14 0.683458 L

1
4
4 0.45092

1
3
8 0.965448 1

4
4 0.657366 ERCL

14 0.443238
17 0.945898 ELRC

14 0.640036 L
1
3
4 0.438188

1
4
7 0.939842 1

3
4 0.634757 13 0.437016

ERLS
1 0.9375 ELRC

1
4
4 0.627687 ERCL

1
4
4 0.436081

1
3
7 0.930883 ER

14 0.626838 EL
14 0.435696

ELLS
18 0.930233 ER

1
4
4 0.618666 EL

1
4
4 0.430926

ELLS
17 0.918584 ERCR

1
3
4 0.61578 ERCL

1
3
4 0.428699

16 0.901187 ER
1
3
4 0.610012 EL

1
3
4 0.425403

1
4
6 0.890117 L

1
3 0.5 1

4
3 0.412887

ELS
1 0.875 L

17 0.495302 ELRCC
13 0.393593

1
3
6 0.873755 L

1
4
7 0.494777 1

3
3 0.393132

ERLSC
17 0.860464 L

1
3
7 0.494 ERCRC

1
4
3 0.383208

ERLSC
16 0.846559 L

16 0.489788 ERC
13 0.38228

15 0.822796 L
1
4
6 0.488645 E

13 0.378678
1
4
5 0.802935 L

1
3
6 0.482258 ERC

1
4
3 0.375476

ELR
15 0.790229 ELLSCCC

15 0.481064 ERRCC
1
3
3 0.374155

1
3
5 0.78298 L

1
4
5 0.474247 E

1
4
3 0.373013

ERR
1
4
5 0.780676 ELL

15 0.470209 ERC
1
3
3 0.369211

ERR
1
3
5 0.768747 ELL

1
4
5 0.466827 E

1
3
3 0.367636

ERCLSC
1 0.75 L

1
3
5 0.465597

Table 5.2: These are the 68 conditional unities produced with the limit param-
eters lmax = 8, pmax = 4, smax = : and cmax = 19, which achieve a bit rate
of 3:5254 bits per vertex.

set of limit parameters that achieves a bit rate less than 3:525 bits per vertex
is lmax = 10, pmax = 6, smax = 3 and cmax = 19, which result in 236
conditional unities. We can refine our coding theorem to:

Theorem 5.7.1 The connectivity of a planar triangulation with v vertices and
3 external edges can be encoded with less than 3:525 bits per vertex in linear
time in v. The original connectivity can be decoded also in linear time in v.

5.8. CONCLUSION 87

5.8 Conclusion

In this article we showed how to encode a planar triangulation with no more
than 3:525 bits. This is currently the best known result. First we analyzed
the constraints on the Edge Breaker code strings. Then we introduced a new
coding technique – the conditional unities in combination with an arithmetic
coder based on a state machine – which allows to exploit the constraints. We
developed fast numerical methods to solve the resulting modified eigenvalue
problem in order to build these state machine based arithmetic coders for given
parameters that limit the extend in which the constraints are exploited. This
allows us to trade off between the number of states in the arithmetic coder and
the achieved bit rate. To exploit this flexibility in full depth we designed a
search function that finds the parameters, which achieve the smallest bit rates,
for a given maximum number of states. A plot of these parameters showed that
there is so far unexploited potential in the constraint that ensures that no more
than two triangles are incident to one edge. In future work we will design an
automatic method to fully exploit this constraint.

References

[AD01a] P. Alliez and M. Desbrun. Progressive compression for lossless transmis-
sion of triangle meshes. In Eugene Fiume, editor, SIGGRAPH 2001, Com-
puter Graphics Proceedings, Annual Conference Series, pages 195–202.
ACM Press / ACM SIGGRAPH, 2001.

[AD01b] P. Alliez and M. Desbrun. Valence-Driven connectivity encoding for 3D
meshes. In Proceedings of the Eurographics ’01 Conference, pages 480–
489, 2001.

[BPZ99a] C. Bajaj, V. Pascucci, and G. Zhuang. Progressive compression and trans-
mission of arbitrary triangular meshes. In B.Hamann D.Ebert, M.Gross,
editor, Proceedings of the Visualization ’99 Conference, pages 307–316,
San Francisco, CA, October 1999. IEEE Computer Society Press.

[BPZ99b] C. Bajaj, V. Pascucci, and G. Zhuang. Single resolution compression of
arbitrary triangular meshes with properties. In DCC: Data Compression
Conference. IEEE Computer Society TCC, 1999.

[CGHK98] R. C. Chuang, A. Garg, X. He, and M. Kao. Compact encodings of planar
graphs via canonical orderings and multiple parentheses. In Proceedings of
the 25th International Colloquium on Automata, Languages and Program-
ming, pages 118–129, 1998.

88 REFERENCES

[Cho97] M. Chow. Optimized geometry compression for real-time rendering. In
Roni Yagel and Hans Hagen, editors, IEEE Visualization 9́7, pages 346–
354. IEEE, November 1997.

[COLR99] D. Cohen-Or, D. Levin, and O. Remez. Progressive compression of ar-
bitrary triangular meshes. In David Ebert, Markus Gross, and Bernd
Hamann, editors, Proceedings of the 1999 IEEE Conference on Visual-
ization (VIS-99), pages 67–72, N.Y., October 25–29 1999. ACM Press.

[Dee95] M. Deering. Geometry compression. In Robert Cook, editor, SIG-
GRAPH 95 Conference Proceedings, Annual Conference Series, pages 13–
20. ACM SIGGRAPH, Addison Wesley, August 1995. held in Los Ange-
les, California, 06-11 August 1995.

[DS97] M. Denny and C. Sohler. Encoding a triangulation as a permutation of
its point set. In Proceedings of the 9th Canadian Conference on Compu-
tational Geometry, pages 39–43, August 1997. held in Ontario, August
11-14.

[GS98] S. Gumhold and W. Straßer. Real time compression of triangle mesh con-
nectivity. In Michael Cohen, editor, SIGGRAPH 98 Conference Proceed-
ings, Annual Conference Series, pages 133–140. ACM SIGGRAPH, Ad-
dison Wesley, July 1998.

[Gum99] S. Gumhold. Improved cut-border machine for triangle mesh compression.
In Erlangen Workshop ’99 on Vision, Modeling and Visualization, Erlan-
gen, Germany, November 1999. IEEE Signal Processing Society.

[Gum00] S. Gumhold. New bounds on the encoding of planar triangulations. Techni-
cal Report WSI–2000–1, Wilhelm-Schickard-Institut für Informatik, Uni-
versity of Tübingen, Germany, January 2000.

[Hop96] H. Hoppe. Progressive meshes. In Holly Rushmeier, editor, SIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 99–108.
ACM SIGGRAPH, Addison Wesley, August 1996. held in New Orleans,
Louisiana, 04-09 August 1996.

[IGG01] M. Isenburg, S. Gumhold, and C. Gotsman. Connectivity shapes. In Pro-
ceedings of the IEEE Visualization Conference, page to appear. IEEE Com-
puter Society, October 2001.

[IR82] A. Itai and M. Rodeh. Representation of graphs. Acta Informatica,
17(2):215–219, June 1982.

[IS99a] M. Isenburg and J. Snoeyink. Mesh collapse compression. In Proceedings
of the Conference on Computational Geometry (SCG ’99), pages 419–420,
New York, N.Y., June 13–16 1999. ACM Press.

REFERENCES 89

[IS99b] M. Isenburg and J. Snoeyink. Spirale reversi: Reverse decoding of the
edgebreaker encoding. Technical Report TR-99-08, Department of Com-
puter Science, University of British Columbia, October 4 1999. Mon, 04
Oct 1999 17:52:00 GMT.

[Ise00] M. Isenburg. Triangle strip compression. In Proceedings Graphics In-
terface 2000, pages 197–204. Morgan Kaufmann Publishers, May15–
17 2000.

[KR99] D. King and J. Rossignac. Guaranteed 3.67V bit encoding of planar trian-
gle graphs. Proceedings of 11th Canadian Conference on Computational
Geometry, pages 146–149, 1999.

[LK98a] J. Li and C.-C. Kuo. A dual graph approach to 3d triangle mesh compres-
sion. In IEEE International Conference on Image Processing, Chicago,
1998.

[LK98b] J. Li and C.-C. Kuo. Progressive coding of 3d graphics models. In Proceed-
ings of the IEEE, Special Issue on Multimedia Signal Processing, volume
86(6), pages 1052–1063, June 1998.

[MC98] T. Mitra and T. Chiueh. A breadth-first approach to efficient mesh traversal.
In Stephen N. Spencer, editor, Proceedings of the Eurographics / Siggraph
Workshop on Graphics Hardware (EUROGRAPHICS-98), pages 31–38,
New York, August 31–September 1 1998. ACM Press.

[PR00] R. Pajarola and J. Rossignac. Compressed progressive meshes. In Hans
Hagen, editor, IEEE Transactions on Visualization and Computer Graph-
ics, volume 6 (1), pages 79–93. IEEE Computer Society, 2000.

[Ros99] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes.
IEEE Transactions on Visualization and Computer Graphics, 5(1), 1999.

[TG98] C. Touma and C. Gotsman. Triangle mesh compression. In Wayne Davis,
Kellogg Booth, and Alain Fourier, editors, Proceedings of the 24th Confer-
ence on Graphics Interface (GI-98), pages 26–34, San Francisco, June18–
20 1998. Morgan Kaufmann Publishers.

[TGHL98] G. Taubin, A. Gueziec, W. Horn, and F. Lazarus. Progressive forest split
compression. In Michael Cohen, editor, SIGGRAPH 98 Conference Pro-
ceedings, Annual Conference Series, pages 123–132. ACM SIGGRAPH,
Addison Wesley, July 1998. ISBN 0-89791-999-8.

[TR98] G. Taubin and J. Rossignac. Geometric compression through topological
surgery. ACM Transactions on Graphics, 17(2):84–115, April 1998.

[Tut62] W. Tutte. A census of planar triangulations. Canadian Journal of Math-
emetics, 14:21–38, 1962.

90 REFERENCES

[WNC87] I. Witten, R. Neal, and J. Cleary. Arithmetic coding for data compression.
Communications of the ACM, 30(6):520–540, June 1987.

Chapter 6

Real-Time Fluid Animation
by Parallel and Stable
Solution Techniques

Reinhard Klein�, Thorsten Mayy, Sascha Schneiderz,
Andreas Weberx

We describe new techniques for the parallelization of an unconditional
stable solution scheme of the Navier-Stokes equation that has recently
been introduced for animation purposes. The parallel improvement over
existing schemes eleminates the sequential bottleneck. Additionally our
solution method makes use of time steps which are bigger than the frame-
rate for interpolation between them. We achieve real-time animation rates
for several examples on current multi-processor workstations and PC’s.

�Institut für Informatik II, Universität Bonn, Germany. E-mail rk@cs.uni-bonn.de
yFraunhofer-Institut für, Graphische Datenverarbeitung, Darmstadt, Germany. E-mail

tmay@igd.fhg.de
zFraunhofer-Institut für, Graphische Datenverarbeitung, Darmstadt, Germany. E-mail ss-

chneid@igd.fhg.de
xInstitut für Informatik II, Universität Bonn, Germany. E-mail weber@cs.uni-bonn.de

91

92 CHAPTER 6. WEBER ET AL., REAL-TIME FLUID ANIMATION

6.1 Introduction

Some of the most fascinating observations one can make in nature can be
explained as effects of turbulent fluids or gases. So simulating turbulent
fluids is not only a major topic in engineering but computational fluid dy-
namics (CFD) has also become a topic in computer graphics and anima-
tion [FSJ01, SF93, SF95, FM97, CFW99, WW99, Sta99, DKY+00, YOH00].
However, in an animation context the topic of real time simulations is much
more important than in a general engineering setting, whereas the accuracy
of the simulations can be much less in general: very often the result of the
simulation has to be just “visually right” . So the introduction of an uncondi-
tionally stable solution scheme of the Navier-Stokes equations into the area of
computer graphics [Sta99] was seen to be an important step by the graphics
community. The “almost sufficiency” of staying in the stability region of a so-
lution scheme for animation purposes has also been used in entirely different
contexts [BW98, DMB00], which nevertheless are quite similar in various as-
pects: The implicit schemes used in that work on cloth animation as well as
the implicit solution scheme proposed by Stam for fluid animation allow large
step-sizes on the prize of an over-damping of the solution. We refer to these
papers for a discussion why such a over-damping is not much of a problem in
an animation context (in contrast to an engineering context). Moreover, for the
case of the Euler equations, i.e. for systems without viscosity, Stam has shown
in recent work how this over-damping can be corrected [FSJ01].

For same relatively small but non-trivial 3D-examples the animation sys-
tem of Stam, which uses a sequential implementation, was a major step towards
the goal of real-time animation. So it is natural to ask to what extend the realm
of real-time animations can be extended to larger examples by parallelization
on multi-processor-systems. In previous work [BKM+00] we showed that
this stable solution scheme is in principle well suited for parallelization and
we described a parallel implementation that is portable on workstations and
PC’s running under the UNIX or the WIN32 operating systems. However, one
sequential bottleneck remained (in a parallel sub-task) which prohibited the
scaling of our parallelization on more than about 3 or 4 processors. Moreover,
we used the unconditional stable scheme only to the extend of using time-steps
of the size of the frame rate. We will show in this paper that by using time steps
higher than the frame-rate and interpolation our parallel environment is able to
achieve real-time fluid animations on examples that are by about a factor 2 to
5 larger than previous ones.

6.2. THE SEQUENTIAL ALGORITHM 93

We will briefly recapitulate the previous work of Stam [Sta99] and of our-
selves [BKM+00] as the basis of the description of our current work.

6.2 The Sequential Algorithm

There is a vast literature on computational fluid dynamics. For general infor-
mation we refer to recent textbooks [YMO97, Whi94, FP99, Abb89, CM90].
For the specifics of the sequential algorithm that is the basis of our work we
refer to the paper of Stam [Sta99].

6.2.1 Simulation program

The simulation program solves the Navier-Stokes equations

r � u = 0 (1)

@u

dt
= �(u � r)u� 1

�
rp+ �r2u+ f (2)

for an incompressible fluid, where u is the velocity vector field, v is the viscos-
ity, d the density, p the scalar pressure field and f the external forces acting on
the fluid, e. g. buoyancy.

In an incompressible fluid the role of the pressure is to allow continuity
to be satisfied. It is therefore possible to write eqn. 1 and eqn. 2 as just one
equation using an operator P , which orthogonaly projects a vector field on to
the set of divergence free fields. Using this operator the equations 1 and 2 can
be written as

@u

dt
= P(�(u � r)u� �r2u+ f) : (3)

It is this equation that is solved by the simulation program.
A fractional step method consisting of the following parts is used to solve

the equation. The method we use for the solution is the one described by
Stam [Sta99], to which we refer for more details and a theoretical base for this
method. We just sketch the main steps as a reference for the parallelization.

w0(x)
addforce! w1(x)

advect! w2(x)
di�use! w3(x)

project! w4(x)
(4)

94 CHAPTER 6. WEBER ET AL., REAL-TIME FLUID ANIMATION

Add force

The effect of the external forces is solved using an ordinary explicit Euler
scheme.

w1(x) = w0(x) + �tf(x; t) (5)

Transport

Using a technique based on the method of characteristics the nonlinear trans-
port (advection) part of the equation is solved. This method has several ad-
vantages. Two of them are ease of implementation and—as will be shown
later—ease of adaption to parallel computing. A point x is back-traced along a
streamline in the old vector field to time t = ��t. The velocity at x in the new
vector field is then set to the value at the back-traced point. Velocity vectors
not directly on a grid-point are defined using trilinear interpolation from the ad-
jacent grid-points. Using a function p(x; t) defined as the streamline passing
through point x at t = 0 the step can be written as

w2(x) = w1(p(x;��t)) : (6)

A particle tracer can easily be implemented using any standard ODE solver.
The choice for the program described in this paper is a Runge-Kutta solver of
the fourth-order.

Diffuse

The third step deals with the effect of viscosity. This step calculates the so-
lution of a standard diffusion equation for each Cartesian component of the
vector field. These equations are solved using an implicit Euler scheme, so the
resulting system is

(I� ��tr2)w3(x) = w2(x) ; (7)

where the r2 operator is approximated using finite differences. Several effi-
cient methods for solving such equations exist. Specifically in the implemen-
tation described in this paper the pois3d-solver from the FISHPAK library is
used. This library is available from http://www.netlib.org.

Although this routine has a complexity of about O(n logn) and this equa-
tion can be solved theoretically in O(n) using a multi-grid method [Hac85],
the practical performance of pois3d is much better on the currently used

6.2. THE SEQUENTIAL ALGORITHM 95

grids: For grids consisting of about 4000 cells the pois3d routine is about
10 times faster than the best of the multi-grid methods that we have tested, for
grids consisting of about 125000 cells it is still about a factor of 9 faster. The
given factors are the ones for “good” grid sizes; for “bad” grid sizes the factor
is about 5: The computation time of poisd3 strongly depends on the largest
prime factor of the grid dimension (plus one), e. g. the computation time on a
cube of (32 � 1)3-cells is much smaller than the one on a cube of (31 � 1)3

cells!
If the viscosity is 0, an approximation that might be made for air, the diffu-

sion step can be omitted.

Project

The vector field produced by the above steps are not ensured to satisfy the
continuity equation. The final step is therefore a projection step which makes
the field divergence free. The step can be written as

r2q = r �w3 (8)

w4 = w3 �rq : (9)

This Poisson equation is solved using the same subroutine that is used in the
diffuse step.

Computing scalar quantities

The evolution of a scalar quantity, e. g. temperature or smoke density in the
fluid is computed using a method very similar to the one for the vector field
described above. The equation that describes the behaviour of the scalar field
is

ds

dt
= �u � ra+ �r2s� �s+ S ; (10)

where � is the diffusion constant, � the dissipation rate and S a source term.
All terms are solved using the same steps that are used for the vector field
except of project, which is not needed. The dissipation term not present in the
Navier-Stokes equations is solved using the following equation

(1 +��)s(x; t +�t) = s(x; t) :

96 CHAPTER 6. WEBER ET AL., REAL-TIME FLUID ANIMATION

6.2.2 Volume renderer

The principal components of the used volume renderer have not changed sub-
stantially. We thus refer to our previous work [BKM+00] for the details of
the used splatting method and the method of using textures for optical refine-
ment of a flow. As this method has also been used by others [Sta99, MCW92],
we refer to this sources for a description of the underlying ideas of this very
important part of our fluid animation system.

6.3 Parallel Architecture

The sequential components described above can be split into various parallel
components. In the following we will give a “ top down” description of the par-
allelized components: First, we give the top-level parallel architecture between
the renderer and solver components giving then the details on the paralleliza-
tion of the solver components itself, starting again from the higher levels.

Since for real time animations a parallelization over a network has a too
high latency, we focus on shared-memory architectures, which are nowadays
available in the form of relatively low cost multi-processor PCs or worksta-
tions. The general programming paradigm that is available for these platforms
is the one of multi-threaded programming. Although quite similar from a pro-
gramming point of view the APIs that are offered by the WIN32 operating
systems and the various UNIX systems differ. However, it is possible to pro-
vide abstraction classes with little performance overhead that allow a platform
independent access to the thread systems. The Adaptive Communication Envi-
ronment (ACE) [Sch93] and the OMNI thread package [Tri97] are two such
packages. Currently, we use the OMNI thread package as an platform inde-
pendent abstraction for the threads of the WIN32 operating systems and for
POSIX threads, but switching to another one like ACE would be possible with
a moderate programming effort.

The windowing classes that we use are completely written in Qt [Tro99] in
order to allow a platform independent implementation. The graphical context
of the window is filled with rendered OpenGL graphics [WNDS99]. These two
together allow our program to run on all Operating Systems which support Qt
and OpenGL. Recently platform independent thread abstraction classes have
been added to Qt. Thus we might substitute the OMNI thread package by these
thread classes of Qt in the future.

6.3. PARALLEL ARCHITECTURE 97

Thus our system in particular runs under the WIN32 operating system and
most of the UNIX systems.

6.3.1 Communication and synchronization between ren-
derer and solver components

In our program the renderer (OpenGL/QT window) interacts with the CFD
solverthread using a cyclic n-fold buffer. This is an extension of our previous
architecture, where we used a double-buffer. When a simple linear interpola-
tion is used to refine the simulation steps in the animation performed by the
renderer, we have n = 3, i. e. a cyclic triple-buffer. Each buffer contains the
velocity field and the entities used for rendering, e. g. the current texture coor-
dinates. For interpolation, n � 1 parts of the buffer are used by the renderer.
After the solver thread has completed one calculation-step and has written its
results in the currently unused part of the buffer, the marker in the cyclic buffer,
which indicates the last entry to be used by the renderer, is advanced in one po-
sition. Thus only a “switch of pointers” has to be locked. A schematic view is
given in Fig. 6.1.

6.3.2 Parallelization of simulation program

We compute the vector field of velocities and the scalar quantities at discrete
time-steps. The simulation of a the scalar quantities at time tn requires the
knowledge of the vector field at this time step. However, in a simulation loop
the simulation of the vector field for time step tn+1 (using the values of the
vector field at time step tn) can be done in parallel to the simulation of the time
step of the scalar field at time step tn (using the value of the scalar field tn�1

and the vector field at time step tn).
Any simulation step of the vector field requires the computation of the se-

quence add force! transport! diffuse! project (and similarly for the scalar
quantities). These steps have to be taken sequentially.

Add force and transport

The add force step takes little time but the addition of any force to a cell can
be done in parallel. In the sequential program the transport step requires a
major part of the computation time of the vector field simulation (about 40 %

98 CHAPTER 6. WEBER ET AL., REAL-TIME FLUID ANIMATION

Figure 6.1: Communication and synchronization between renderer and solver
components

for the examples given below). This step can be well parallelized without syn-
chronization requirements: the computation for any grid cell is independent
of each other. Using n threads, where n is about four times the number of
available processors to reach saturation, we divide the cells in n parts and do
the transport computation in the n threads, each responsible for one part. As
the computation of transport step roughly takes the same time for any grid cell
these threads can be expected to have the same run-time.

6.3. PARALLEL ARCHITECTURE 99

Diffusion

The diffusion step requires a solution of the corresponding equations in 3 di-
mensions, which are independent of each other. So we can use 3 threads to
do these computations in parallel, which require no synchronization and which
have nearly the same run-time. Parallelizing the diffusion computation for each
dimension themselves is possible in principle with the technique described be-
low for the project step.

Projection

The project step requires the solution of one equation using pois3d and was
unparallelized previously. It will become a sequential bottleneck for a higher
number of processors; for a smaller number of processors (2 or 3) there is still
good parallelism due to the parallel execution of vector field computation, the
scalar field computations, interpolation, and renderer. The new parallelization
scheme that we have recently developed, which allows the splitting into 8 par-
allel sub-tasks, is described in Sec. 6.3.3.

Parallelization schemes for vector field and scalar field solvers

The corresponding parallelization scheme for the vector field solver is given
in Fig. 6.2, the one for the scalar field solver and the other quantities used for
visualization (particles, texture coordinates) are given in Fig. 6.3.

6.3.3 Parallelization of the projection step

The full details of the derivation of the parallelizable scheme are given in the
thesis of one of the authors [May00], which we refer to for further details. We
will only briefly sketch the main idea below.

We have to consider the discretization by finite differences of equations 8
and 9. For inner grid-points the differences to be considered are not the ones of
a grid-point with its neighbors, but with the neighbors of the neighbors, as we
have roughly speaking second-order differences. As there is no dependency on
the direct neighbors, we can partition the grid in 8 independent sub-grids, as is
shown in Fig. 6.4.

The projection operator of each of these 8 sub-grids can then be solved in
parallel by an invocation of pois3d. For the grid points at the boundary we
have to add a correction term.

100 CHAPTER 6. WEBER ET AL., REAL-TIME FLUID ANIMATION

Figure 6.2: Parallelization of vector field solver

Figure 6.3: Parallelization of scalar field solver

6.3. PARALLEL ARCHITECTURE 101

Dependency of grid points for finite difference discretization of projection op-
erator. There are 8 independent sub-grids (visualized by different symbols).
Only 3 levels of the grid are shown.

Figure 6.4: Splitting of grid in 8 sub-grids for projection operator

For smaller grids a potential problem is that the sub-grids might have a less
favorable dimension for the pois3d algorithm, cf. Sec. 6.2.1. However, as the
pois3d algorithm only has to be applied to the sub-grids only (and no longer
to the entire grid), it is possible to adjust the grid-sizes according to the rules
sketched in Sec. 6.2.1: Only the sub-grids should have a favorable dimension,
it is no longer necessary that the dimension of the entire grid itself has one.
Specifically, if a n1 � n2 � n3 grid is used, the integers ni should have the
properties that bni=2c+ 1 and dni=2e+ 1 (i = 1; 2; 3) have only small prime
divisors.

6.3.4 Using large step sizes and interpolation

The unconditionally stable solution scheme described by Stam was used by
him and in our previous work to obtain step-sizes in the simulation that are as
big as the frame time. This already gave a major gain in performance in com-
parison to explicit solution schemes, as these schemes typically can only take
much smaller step-sizes without loosing stability: using an explicit scheme
many simulation steps have to be taken to simulate the frame time. For engi-
neering purposes, explicit schemes are usually preferred as the accuracy of the
simulation is of importance, which is already limiting the possible step sizes.

102 CHAPTER 6. WEBER ET AL., REAL-TIME FLUID ANIMATION

Usually step-sizes are less than 0.001 sec with explicit solution schemes.
From the point of view of simulations, which do not require much accuracy

as the ones used for flow animations, the time steps taken by an uncondition-
ally stable scheme can be much larger than the frame time. However, for the
purposes of real-time animations “smooth” transitions between two consecu-
tive frames has to be ensured. But these smooth transitions can be obtained in
principle by interpolation, which are computationally much cheaper than full
simulation steps.

In our parallel environment, in which the renderer and solver are running
in parallel, it was relatively easy to add an interpolator and to decouple the
simulation from the animation accordingly. The simulation steps are multiples
of the frame time and the intermediate frames are obtained by interpolation.

We found on several examples that we could interpolate about 5 frames
without much loss of quality in the animation, but this number is certainly
dependent on the application. Given the rather short computation time needed
for interpolation between two vector fields in comparison to the time needed for
a simulation step—in our implementation this ratio is less than 5 %—examples
that are almost 5 times bigger can be animated in real-time than could be done
without using interpolation.

6.4 Results

6.4.1 Performance measurements

We measured the speed-up of our parallelization by determining the wall clock
times for the sequential and parallel versions as the averages of 10 runs. When
determining the speed-ups of the different steps in the vector field computations
we disabled the render components in order to avoid disturbances.

On a 4 processor SGI Onyx 2 workstation we obtained speed-ups of 2.8–3.1
on grids of sizes 313 and 643 for our new parallelization scheme of the project
step. The parallelization of the transport and diffuse step has not changed in
a essential way in comparison to our previous work [BKM+00]: On grids
of size 313 cells the speed-up for the transport step has been 3.1 and the one
for the diffuse step has been 1.7. On larger grids (with 49 3 cells or more) the
speed-up of the transport step reached the theoretically possible value of 4 up
to 5 %.

As the speed-ups scale to faster processors, animations on grids of these

6.5. CONCLUSION 103

sizes are possible in real-time using our programming techniques on new multi-
processor systems that consist of GHz-processors. As such a system has not
been available to us right now we have provided somewhat smaller examples
as accompanying material.

6.4.2 Animations

Some snapshots from real-time animations of our system are given
in the appendix, cf. Fig. 6.5. Movies showing the animations are
provided as accompanying material and can also by found in the
Web: http://www.igd.fhg.de/igd-a3/projects/physically-

based-simulation-and-animation/cfd/

The animations were generated on a dual processor 500 MHz Pentium III
PC with GeForce DDR graphics card. The example of a smoking chimney
was computed on a grid of size 31� 15 � 15 without interpolation. The sec-
ond animation, steam from three nozzles, was computed on a grid of size 24 3

interpolating 4 frames between two simulation steps.

6.5 Conclusion

We have shown that the unconditionally stable solution scheme of the Navier-
Stokes equation that has recently been used for animation purposes can be
parallelized with good speed-ups on current multi-processor workstations. We
could close a previously existing sequential bottleneck, the project step, by an
analysis of the underlying scheme, allowing to split the task into 8 parallel sub-
tasks. We also take the idea of using an unconditionally stable scheme allowing
large step-sizes further than previously done by using step-sizes larger than the
frame rate and using interpolation for smooth animation. The speed-ups that
we obtain by combining these techniques close the gap that existed towards
real time animation for several 3D-examples.

Our parallelization is portable on workstations and PC’s running under the
UNIX or the WIN32 operating systems. Because of the improving perfor-
mance of relatively low cost multiprocessor PC’s our system will also allow
real time fluid animations on this rapidly growing hardware segment.

104 REFERENCES

Acknowledgments

We are grateful to P. Borodin and F. Birra for their help in implementing parts
of the system, and to M. Bryborn for his achievements at the beginning of this
project.

References

[Abb89] M. B. Abbott. Computational Fluid Dynamics : An Introduction for Engi-
neers. Wiley, 1989.

[ACM99] ACM SIGGRAPH. SIGGRAPH 99 Conference Proceedings, Annual Con-
ference Series, Los Angeles, CA, USA, August 1999.

[ACM00] ACM SIGGRAPH. SIGGRAPH 2000 Conference Proceedings, Annual
Conference Series, New Orleans, LA, USA, July 2000.

[BKM+00] Mattias Bryborn, Reinhard Klein, Thorsten May, Sascha Schneider, and
Andreas Weber. A portable, parallel, real-time animation-system for tur-
bulent fluids. In M. Guizani and X. Shen, editors, Parallel and Distributed
Computing and Systems (PDCS 2000), pages 394–400, Las Vegas, USA,
November 2000. International Association of Science and Technology for
Development.

[BW98] David Baraff and Andrew Witkin. Large steps in cloth simulation. In
Michael Cohen, editor, SIGGRAPH 98 Conference Proceedings, Annual
Conference Series, pages 43–54, Orlando, FL, USA, July 1998. ACM SIG-
GRAPH.

[Cam99] AT&T Laboratories Cambridge. omniORB, 1999. http://www.uk.
research.att.com/omniORB/.

[CFW99] Jim X. Chen, Xiaodong Fu, and Edward J. Wegman. Real-time simulation
of dust bahavior generated by a fast traveling vehicle. ACM Transactions
on Modeling and Computer Simulation, 9(2):81–104, 1999.

[CM90] A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid
Mechanics, volume 4 of Texts in Applied Mathematics. Springer-Verlag,
2nd edition, 1990.

[DKY+00] Yoshinori Dobashi, Kazufumi Kaneda, Hideo Yamashita, Tsuyoshi Okita,
and Tomoyuki Nishita. A simple, efficient method for realistic animation
of clouds. In SIGGRAPH 2000 Conference Proceedings [ACM00], pages
19–28.

[DMB00] Mathieu Desbrun, Mark Meyer, and Alan H. Barr. Interactive animation
of cloth-like objects for virtual reality. In Donald H. House and David E.

REFERENCES 105

Some snapshots from a simulation sequence of a smoking chimney. The first
snapshot shows the smoke simulation together with a background scene. In the
second snapshot the vector field of wind velocities is visualized with arrows.
In the third snapshot the used grid of size 31 � 15 � 15 is shown. The forth
snapshot shows the vector field at another stage of the simulation.

Figure 6.5: Simulation sequence of smoking chimney

Breen, editors, Cloth Modeling and Animation, chapter 9, pages 219–239.
A. K. Peters, 2000.

[FM97] Nick Foster and Dimitris Metaxas. Modeling the motion of a hot, turbu-
lent gas. In SIGGRAPH 97 Conference Proceedings, Annual Conference

106 REFERENCES

Series, pages 181–188, Los Angeles, CA, USA, August 1997. ACM SIG-
GRAPH.

[FP99] Joel H. Ferziger and Milovan Peric. Computational Methods for Fluid
Dynamics. Springer Verlag, 2nd edition, 1999.

[FSJ01] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of
smoke. In SIGGRAPH 2001 Conference Proceedings, Annual Conference
Series, Los Angeles, CA, USA, August 2001. ACM SIGGRAPH.

[Hac85] W. Hackbusch. Multi-grid Methods and Applications. Springer-Verlag,
1985.

[May00] Thorsten May. Schnelle Visualisierung von Strömungseffekten. Diplomar-
beit, Technische Universität Darmstadt, Darmstadt, Germany, December
2000.

[MCW92] N. Max, R. Crawfis, and D. Williams. Visualizing wind velocities by ad-
vecting cloud textures. In Proceedings of Visualization 92, pages 179–183,
Los Alamitos, CA, USA, 1992. IEEE.

[Sch93] Douglas C. Schmidt. The ADAPTIVE Communication Environment: An
object-oriented network programming toolkit for developing communi-
cation software., 1993. http://www.cs.wustl.edu/˜schmidt/
ACE-papers.html.

[SF93] J. Stam and E. Fiume. Turbulent wind fields for gaseous phenomena. In
SIGGRAPH 93 Conference Proceedings, Annual Conference Series, pages
369–376, Anaheim, CA, USA, August 1993. ACM SIGGRAPH.

[SF95] J. Stam and E. Fiume. Depicting fire and other gaseous phenomena using
diffusion processes. In SIGGRAPH 95 Conference Proceedings, Annual
Conference Series, pages 129–136, Los Angeles, CA, USA, August 1995.
ACM SIGGRAPH.

[Sta99] Jos Stam. Stable fluids. In SIGGRAPH 99 Conference Proceedings
[ACM99], pages 121–128.

[Tri97] Tristan Richardson. The OMNI Thread abstraction. http:
//www.lfpt.rwth-aachen.de/Links/GNU/gnu/omniorb/
omnithread/omnithr%ead.html, 1997. Available as part of
omniORB [Cam99].

[Tro99] Trolltech. Qt. http://www.trolltech.com/, 1999.

[Whi94] Frank M. White. Fluid Dynamics. McGraw-Hill, 3rd edition, 1994.

[WNDS99] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Pro-
gramming Guide. Addison-Wesley, third edition, 1999.

REFERENCES 107

[WW99] Henrik Weimer and Joe Warren. Subdivision schemes for fluid flow. In
SIGGRAPH 99 Conference Proceedings [ACM99].

[YMO97] Donald F. Young, Bruce R. Munson, and Theodore H. Okiishi. A Brief
Introduction to Fluid Dynamics. John Wiley & Sons, 1997.

[YOH00] Gary D. Yngve, James F. O’Brien, and Jessica K. Hodgins. Animating ex-
plosions. In SIGGRAPH 2000 Conference Proceedings [ACM00], pages
29–36.

108 REFERENCES

Chapter 7

Efficient Multiresolution
Models for progressive
Terrain Rendering

Reinhard Klein�, Andreas Schillingy

This paper deals with the problem of simplifying, transmitting and
rendering large textured terrain models. The terrain is rendered from a
hierarchy of quadratic tiles of geometry. Each of these tiles has a corre-
sponding texture with a constant number of texels, e.g. 64x64, in each
resolution level. Therefore, the ratio between the needed geometric accu-
racy within a tile and the texel size is a constant, independent of the level
of detail, e.g. one texel (1/64 of the width of the tile). This observation
allows us to create an efficient new multiresolution model for terrain data
where not only the number of vertices is adapted to the level of detail but
also the relative accuracy of the coordinates. Although we do not use a
pure quadtree data structure due to its known problems with the repre-
sentation of not axis aligned geometric features, our data structure is very

�Institut für Informatik II, Universität Bonn, Germany. E-mail rk@cs.uni-bonn.de
yWSI/GRIS, Universität Tübingen, Germany. E-Mail: schilling@uni-tuebingen.de

109

110 CHAPTER 7. EFFICIENT MULTIRESOLUTION MODELS

compact and avoids redundant transmission of coordinates.

7.1 Introduction and previous work

Figure 7.1: Clipmaps: Instead of holding the entire texture pyramid in texture
memory the finer levels (where the images are huge) are clipped to a fixed size
texels around a center point called clip center. In this way the finest loaded
texture covers the smallest part of the geometric model. Coarser levels cover
correspondingly larger parts.

Figure 7.2: The really needed parts of the texture are shown. This is only a
fraction of the textures loaded with Clip-Mapping.

Rendering of textured terrain models has become a wide used technique in
the field of GIS applications. Possible textures are aerial or satellite images,
data derived from such images like pollution maps or arbitrary kinds of other

7.1. INTRODUCTION AND PREVIOUS WORK 111

maps. All these texture images share the common property that they can be
very large e.g. 4; 000; 000� 4; 000; 000 texels for an aerial image of a region
of 1000� 1000km2 (25cm resolution).

7.1.1 Handling huge textures

To deal with the large textures there are two main approaches. An elegant
way is the use of Clipmaps [TMJ98]. Instead of holding the entire texture
pyramid in texture memory the finer levels (where the images are huge) are
clipped to a fixed size, e.g. 2048 � 2048 texels around a center point called
clip center. In this way the finest loaded texture covers the smallest part of the
geometric model. Coarser levels cover correspondingly larger parts. In prin-
ciple this is the behaviour needed for rendering, see Figure 7.1. One problem
of the Clipmap is the selection of the center-point. In flat terrain the simplest
way would be to project the observer position onto the terrain and use the tex-
ture coordinates as clip center. The drawback of this approach is that in this
situation the clipmap contains texture behind the observer and outside of the
view frustum, compare Figure 7.1 with 7.2. It is difficult to improve the situ-
ation by choosing a clip center in some distance in front of the observer, as it
would be necessary to choose different clip centers for the different resolution
levels. Even if the clip center can be optimally chosen in the different levels
the quadratic clip map would still not optimally fit the triangular view frustum.
Choosing the clip center is even more complicated in the presence of moun-
tains. In addition it has to mentioned that in this case occlusion culling tech-
niques can be employed but the nature of the clipmap does not allow to take
advantage of the occlusion culling as it is not possible to reduce the amount
of loaded texture. A further problem of clip maps is that they are still only
available on high performance graphics hardware. Another technique is the
MP-Grid [Hüt98]. The idea of the MP-Grid is to split the texture into a reg-
ular grid of standard Mipmaps. This approach gives the possibility to handle
textures of arbitrary size. Secondly only textures for visible grid cells must be
loaded. The loading can be restricted to the necessary levels of detail which
are precomputed and stored. Furthermore, this approach fits directly to the
available OpenGL API. To guarantee that the texture for a single triangle be-
longs to only a single grid cell the borders of the texture grid are inserted into
the triangulation before rendering. The problem is that the regular grid can-
not be adapted to the camera. This has the consequence that the grid cell can
become arbitrarily small on the screen. Besides the problem that it is imprac-

112 CHAPTER 7. EFFICIENT MULTIRESOLUTION MODELS

tical to load a very large number of Mipmaps in this case, the filtering of the
textures when the footprint of a pixel covers several grid cells can not be per-
formed as the lowest available level is reached when one texel corresponds to
one grid cell. Furthermore, insertion of the cell boundaries into the triangula-
tion means that simplification of the original model with triangles larger than
the cell size is cancelled out. Assume for example a viewer looking down from
space on the above mentioned 1000� 1000km2 textured area which is divided
in 4000�4000 cells containing each a 10242. If the viewer is far away it would
be enough to represent the whole area with a simplified model consisting of
just two triangles. Using the MP-Grid 16,000,000 cells (32,000,000) triangles
must be rendered. In this case the grid cells are smaller than a screen pixel.
Therefore, the corresponding Mipmap level is not available. To overcome the
problem of the cell boundaries in the paper a new hardware architecture that
supports the MP-Grid is proposed. An important feature of this architecture is
that the insertion of cell boundaries can be avoided as the hardware generates
on the fly the cell numbers. Furthermore, the hardware allows to merge small
grid cells into a larger one.

7.1.2 Dealing with geometry

As for textures the problem of the large size also exists for the geometric data,
normally given as a Digital Elevation Model (DEM). A DEM is defined as a set
of points (xi; yi; h(xi; yi)); 1 � i � N , and interpolation rules to derive height
values in between. An interpolation rule usually incorporates information how
(e.g. polynomial degree) and from where (e.g. a local mesh topology) data is
interpolated. The height values h(xi; yi) are always fixed given data and have
to be stored for every DEM.

To deal with the huge amount of data a number of different elaborated
multiresolution DEMs were developed [LKR+96a, KH96, Pup96, DWS+97,
KCOH98, Hop98, Paj98, LP01]. All these approaches concentrate on the prob-
lem of geometry but not on texturing. Doellner et al. [DBH00] address the
issue of external memory handling of large textures for terrain visualization.

There is a great variety of methods to generate multiresolution DEMs, usu-
ally classified as top-down (refinement) and bottom-up (decimation) methods,
see e.g. [HG97] for a survey. The top-down method starts with a coarse ap-
proximate DEM and inserts single elements such as points, edges or triangles
until the original DEM is reached. The bottom-up approach begins with the
input DEM and removes elements successively.

7.1. INTRODUCTION AND PREVIOUS WORK 113

In order to allow accurate view-dependent visualization the approximation
error between the different Level of Detail (LOD) approximations and the orig-
inal DEM must be known [KS96, KCOH98]. Unfortunately, many of the
simplification methods need the entire original data within main memory to
calculate the approximation error. Therefore, this methods are limited to small
or medium size DEMs or they must run on super computers. For real DEMs
new algorithmic techniques are needed to deal with this problem.

The resulting multiresolution DEMs can roughly be classified according
to how much additional storage is required for the interpolation rules and the
coordinates of the points (xi; yi). If the additional storage requirement is of
order O(N), the respective set of data is called explicit. If the order is lower,
it is called implicit since the additional memory has no practical influence on
the total size. Current hierarchical DEMs can be divided into the following
classes:

� coordinates implicit, interpolation explicit: quadtrees, adaptive hierar-
chical triangulations and adaptive tensor product grids,

� coordinates explicit, interpolation implicit: Delaunay triangulations, re-
located regular grids,

� coordinates and interpolation explicit: data-dependent triangulations,
general tessellations.

Clearly, more explicit schemes allow greater flexibility than less explicit ones.
But typically also the complexity of corresponding algorithms and supporting
data structures grow.

In addressing the problems of texturing and efficient DEM management,
this paper makes two major contributions. First, it introduces the texture tile
representation. The main idea of this representation is to subdivide the texture
into equal sized blocks called texture tiles. The block size is the same in all
levels of the texture pyramid. In the geometric model this structure corresponds
to a quadtree subdivision: Texture tiles from coarse levels correspond to large
areas, those from finer levels to small areas, see Figure 7.2. Note the similarity
to the Clipmap approach. The difference is that in such a way only the needed
textures are loaded. In contrast to the MP-grid the size of a single cell on the
screen is of constant order.

The other contribution of this paper is a new simple geometric multiresolu-
tion model adapted to the texture tiles. The geometric accuracy of the (x i; yi)

114 CHAPTER 7. EFFICIENT MULTIRESOLUTION MODELS

coordinates as well as the height-values h(xi; yi) on each tile are limited to the
needed texture resolution. Therefore, in our model in addition to the texture
also the position and elevation data are hierarchically organized and incremen-
tally transmitted. In the light of the above classification it is a hybrid scheme
that combines the advantages of the implicit representation of quadtrees with
the flexibility of data-dependent triangulations. During its constructions the
measurements of the approximation error are kept local and therefore even
huge DEMs can be processed on a standard PC.

7.2 The multiresolution model

As we suppose that only standard Mipmapping hardware is available, the ge-
ometric multiresoltuion model must contain the borders of the texture tiles.
Therefore, the different levels of detail must contain the borders of the quadtree
structure defined by the texture tiles.

Figure 7.3: Structures not aligned to the rectangular basic structure of the
quadtree are difficult to represent and in general they lead to unwanted refine-
ment. The cliff in the example (indicated by dark slopes) could be represented
by only eight triangles. With a quadtree hundreds or even thousands of trian-
gles will be produced.

Quadtree tiles are not a new idea in the context of view dependent rendering
[HB87, LKR+96b] to cite only two early ones. In all of these approaches we
have the problem that geometric structures not aligned to the quadtree lead to
highly refined quadtree cells. This could be avoided if inside a tile an arbitrary
triangulation would be used, see Figure 7.3. Hoppe [Hop98] addresses the
problem of constructing a progressive mesh of a large terrain using a bottom
up scheme, by decomposing the terrain into square tiles that are merged after
independent decimation, and which are then further simplified. The new repre-

7.2. THE MULTIRESOLUTION MODEL 115

sentation we describe here has the same advantage. Furthermore, for each tile
in our model a guaranteed error bound is available. A new very compact rep-
resentation for connecting tiles at different levels without gaps allows to store
the whole multiresolution model in an efficient way. In contrast to previous
approaches no constraints are put on the triangulation to achieve this goal.

View-dependent rendering of the model requires a coarse approximation
in the distance and finer approximation close to the observer. In contrast to
common MRMs that start with the coarsest triangulation and decide for each
triangle if further refinement is needed we restrict ourselves to one decision per
quadtree cell. This means for each quadtree cell we have in principle only one
triangulation that is totally precomputed and stored in form of efficient triangle
strips. Note that triangle strips automatically deliver a very good compres-
sion for the connectivity of the triangle meshes. Of course transitions between
different levels of detail cannot be handled without gaps using these fixed tri-
angulations. Fortunately, as the limit for the acceptable approximation error
grows with the reciprocal of the distance to the viewer, it is sufficient that ad-
jacent quadtree cells differ in only one level. Now we use a simple approach.
We have to deal with the situation that at each of the four edges the LOD may
change. In the case of a change in the LOD another precomputed triangulation
for the quadtree cell is used that avoids the gaps. Instead of storing triangula-
tions for all possible combination of transitions it is sufficient to consider only
transitions to a higher level of detail. The opposite case is handled by chang-
ing the triangulation in the cell on the other side of the border. We store the
different triangulations in an efficient new way by combining them in a single
representation.

7.2.1 The simplification algorithm

An important question is which approximation error can be allowed for a cer-
tain cell. The property of the cells to have similar size on the screen after
rendering leads directly to the conclusion that the allowed approximation error
is a certain fraction of the size of the cell itself. If we assume for example that
the maximum length of a grid cell on the screen is about 64 pixels, an approxi-
mation error on cell of the cell size divided by 64 corresponds to a screen space
error of 1 pixel at most. Therefore, during the simplification algorithm the tri-
angulation in each cell is reduced until the geometric approximation error is
larger than such a user defined fraction of the cell size.

For simplicity we assume that the finest triangulation contains the edges of

116 CHAPTER 7. EFFICIENT MULTIRESOLUTION MODELS

a regular grid. If this is not the case additional edges can be inserted. Further-
more, the grid dimensions are assumed to be powers of two. In the following
we describe the simplification of the mesh by one LOD. This simplification is
applied recursively to get coarser and coarser levels.

Coarse cells with coarse neighbors

Figure 7.4: The dark red cell is the current cell. This cell is adjacent to two
already simplified cells shown in green (the upper and the left one). Further-
more, the cell to the right like the current cell itself have already been partially
simplified. The cell to bottom is not yet simplified. During the simplification
of the current cell only the three reddish cells are considered. Edges on the
border to the left and to the upper are not allowed to be collapsed. Half-edge
collapses that would move a vertex away from the dashed cell boundary (and
therefore would destroy the cell boundary) are forbidden.

In the first step the whole mesh is reduced to the next LOD. This means,
that after the simplification, neighboring cells have the same LOD. To avoid
loading the whole original mesh we scan the cells of the next level (consist-
ing of four cells of the current level) line by line. The triangulations of the
current cell as well as the triangulations of their neighbors together with the
corresponding original triangulation are loaded, see Figure 7.4. Now simple
half-edge collapses (a vertex is unified with an existing one) are performed, see
Figure 7.5. Inside the current cell and inside its neighbors to the right and to the
bottom all half-edge collapses are allowed. On the borders of the current cell
(the black dashed ones in Figure 7.4) only that half-edge collapses are allowed
that move vertices along the edge itself. This means the edge is preserved. On

7.2. THE MULTIRESOLUTION MODEL 117

Figure 7.5: The figure shows an enlargement of the center part of figure 7.4.
The simplification is performed by half edge collapses where one vertex is
moved into the other vertex of an edge which destroys the edge and the two
adjacent triangles. The vertices inside the current cell may move along each
adjacent edge, the vertices on the dashed line only along the borders. Never-
theless, together with the current cell the neighbor cells on the other side of the
dashed line are also influenced and partially simplified.

the other edges (the solid black ones in Figure 7.4) all half-edge collapses are
forbidden. To select the next half-edge collapse a priority queue of possible
half-edge collapses is build. This queue is sorted by the approximation error
that would occur if the operation was performed [KS96].

Measuring the error - the reference mesh

In principle the approximation error of the current triangulation should be mea-
sured against the original triangulation. But then for coarser levels larger and
larger parts of the original triangulation must be loaded. For huge databases
the needed main memory is a serious problem. But since the approximation
error of consecutive levels shrinks by a factor of 2 in each level accumulation
of the errors does not lead to an unacceptable overestimation of the error. If al-
ways measure against the previous LOD the accumulated error can be at most
two times the real error (1 + 1

2 + 1
4 + � � � � 2). If we measure against the

level before the previous one the overestimation is at most 1 1
3 of the real error.

Therefore, we measure the approximation error of the current triangulation al-
ways against the level before the previous one. We called the triangulation on
the level before the previous one reference triangulation. As for fractal surfaces
the number of triangles per cell remains approximately constant (zooming does
not change the characteristics of the surface) the needed memory to load this
triangulations is approximately independent of the level. Therefore, this algo-
rithm can be performed even for huge data sets on an average PC.

118 CHAPTER 7. EFFICIENT MULTIRESOLUTION MODELS

Coarse cells with fine neighbors

Figure 7.6: To generate the transition triangulations between cells at a coarse
level and neighboring cells at finer levels the cell itself, the part of the reference
mesh corresponding to the cell and the borders of the neighboring cells at a
finer level are loaded into memory. The dark black lines indicate that in the
current step the cell is refined along the borders to the top and to the right.

After the simplification of all cells to the next LOD the coarse to fine con-
nections between the cells and their neighbors of the next finer level are com-
puted. As in the case of the simplification with coarse neighbors we scan the
cells line by line. The triangulation of the cell itself is loaded at the coarse
level, the triangulations of the neighboring cells at the fine level, see Figure
7.6. As the cell itself is triangulated at the coarse level and the neighboring
cells at the fine level, gaps may occur at the borders of the cell. Therefore,
along the edges of the cell vertex splits are performed to close the gaps. Note
that although the vertex splits normally decrease the approximation error in
the coarse cell in rare cases the approximation error of the coarse triangulation
may grow, see Figure 7.8. In such cases the vertex of the reference triangu-
lation causing the maximum approximation error is inserted into the current
coarse triangulation. As the maximum approximation error always occurs in-
side the cell this operation would not influence the triangulation at the border.
In some cases this procedure must be repeated until the approximation error is

7.2. THE MULTIRESOLUTION MODEL 119

Figure 7.7: To close the gaps along the border vertex splits are performed until
all vertices that are contained in the border of the adjacent cell are inserted
into the triangulation. Sometimes it may be necessary to insert a vertex of the
reference mesh inside the cell to guarantee the desired approximation error. In
this example an inner vertex is inserted after closing the gap at the top.

below the corresponding threshold.

7.2.2 Storing the model

As described above together with the coarse level triangulation different trian-
gulations are needed for each tile in order to provide a transition to neighboring
tiles with finer levels of detail. Of course, parts of these triangulations may re-
main identical, when one or more borders are refined. We do not try do decom-
pose the triangulation of the tiles into permanent parts in the center of the tile
and changing parts along the borders. Instead of this we begin with generating
generalized triangle strips for each geometry tile. A discussion of generalized
triangle strips and an efficient algorithms to generate and render them using
OpenGL can be found in [ESV96, Dyn01]. The triangulation defined by a
triangle strip depends on the sequential ordering of the vertices. Therefore,
for each tile all the vertices are transmitted in the order defined by the triangle
strips.

All triangulations needed for a transition to neighboring cells with finer

120 CHAPTER 7. EFFICIENT MULTIRESOLUTION MODELS

Figure 7.8: This example shows that the approximation error may increase
if a vertex split along the border is performed. The blue bars indicate the
height values at the vertices of the original mesh. The approximation errors
are indicated by red arrowed lines. In this case the vertex of the reference
mesh causing that error is simply inserted into the current triangulation. This
procedure is repeated until the desired approximation error can be guaranteed.

level of detail can be derived from generalized triangle strips using a small
modification. This is based on the following observations:

� To get the triangulation needed for a transition to a finer level of detail
edges are only inserted, no edges are removed.

� If edges are inserted, one triangle is replaced by several triangles that can
always be represented as a strip.

� This strip of newly created triangles can always be inserted into the ex-
isting strip, replacing the old triangle. For this it is sufficient to insert
the new vertices and operations into the existing sequence. The reason is
that only special retriangulations of triangles are needed, see Figure 7.9.
No vertices have to be removed.

The modification of the generalized triangle strips is done in a pre-
processing step: starting with the strips of the coarse triangulation the algo-
rithm considers all new triangles that are created by inserting vertices in all

7.2. THE MULTIRESOLUTION MODEL 121

1 3 9 11

12

10

2 4

5

6

7

8

1,2,3,4,5,6,7,SWP,8

1,2,3,4, 5,
6, 7,SWP, 8

9,SWP,10,SWP,
11,SWP, 12,SWP,

Figure 7.9: This example shows how a strip of the coarse triangulation can be
modified to include the triangles needed to close the gaps along an edge to a
adjacent cell at a finer level. The original strip is drawn in black. The sequence
describing the inserted triangles are drawn in red.

configurations of neighbors with different levels of detail. The triangles are
inserted into the existing strips as shown in Figure 7.9.

To generate the triangulation during rendering from the triangle strips, we
must know which of the inserted operations are needed and which ones have
to be skipped, depending on the level of detail of the neighbor tiles. For this
purpose for each operation a transition-flag is stored which tells if the operation
belongs to the original coarse triangulation (and is thus needed in any case) or
if the operation is a refinement operation for the border. In this case two addi-
tional border-bits indicate on which border the newly inserted vertex is located.
With this information it is straightforward to decide for each configuration, if
the current operation is needed. In addition to the standard case described so
far there are two special cases discussed in 7.A where also examples for the
bit-coding are shown.

The great advantage of this approach is that during rendering after loading
the tile (coded as efficient triangle strips) all possible transition triangulations
are available without further loading.

122 CHAPTER 7. EFFICIENT MULTIRESOLUTION MODELS

1000

1000

1000

1000 1000

0000

0000

0000

0000 0000

0100

0100

0100

0100 0100

1100

1100

1100

1100 1100

1010

1010

1010

1010 1010

0010

0010

0010

0010 0010

0110

0110

0110

0110 0110

1110

1110

1110

1110 1110

1001

1001

1001

1001 1001

0001

0001

0001

0001 0001

0101

0101

0101

0101 0101

1101

1101

1101

1101 1101

1011

1011

1011

1011 1011

0011

0011

0011

0011 0011

0111

0111

0111

0111 0111

1111

1111

1111

1111 1111

Figure 7.10: This example shows how the relative x; y/coordinates of points
inside the quadtree cells are rounded. In this example the x� and y� direc-
tions are coded by 2 bits each. The dark point indicate the finest level, the
empty circles and the rectangles the next coarser levels, respectively. During
the rounding step the (x; y) position of four points are rounded into the same
one. This new relative position within the coarser cell is easily computed by
dropping the last two bits (one in each direction) and adding the 2 bits for the
relative position of the cell in the finer level at the beginning.

7.2.3 Storing and transmitting the geometry data

The advantages of free triangulations generally are paid with the disadvantage
that in addition to the height values, the (x; y)-coordinates of the points must
be explicitly stored and cannot be calculated from the location in the hierar-
chy. However, a nice property in our approach is that a part of the (x; y)-
coordinates is already implicitly given by the quadtree cell that contains the
point. Furthermore, the accuracy needed for the coordinates in the cell is de-
fined by the texture resolution of the cell. For example, if the texture consists
of 64� 64 texels and we assume that the size of a texel is not larger than one
pixel in the image plane the accuracy must be 1=64 of the side-length of a cell
in order to guarantee an error of about one pixel. Therefore, the (x i; yi) coor-
dinates of points within a given cell are always stored and transmitted with a
fixed number of bits only, e.g. 6 bits (64 positions) for each direction. During
simplification the rounding that is necessary from level to level can easily be

7.2. THE MULTIRESOLUTION MODEL 123

?

X,y

X,y

Z

Z

Figure 7.11: The upper figure shows that if the (x; y)-positions of neighboring
vertices with different height values are rounded, the vertices can not be merged
without introducing approximation errors. In the lower figure our solution is
shown, where the same (x; y)-positions are shared by the two vertices.

done by dropping two bits and adding bits, see Figure 7.10. Although, this re-
stricted accuracy leads to a high compression of the (x i; yi)-coordinates there
is one problem to be solved. Consider two three or four neighboring points
with (xi; yi)-positions that are rounded to the same (x; y)-coordinate, see e.g.
Figure 7.10. If the height values of these points differ more than the distance
between the points itself, the vertices and their height values are kept. In such
a way it is ensured, that the accuracy of the approximation of the height values
remains valid after the rounding step, see Figure 7.11.

The accuracy needed for the height values in a cell is also limited by the
resolution of the texture. In contrast to the (x; y)-coordinates the relative po-
sition of the quadtree cell does not deliver additional information about the
relative height of a vertex. But for the height values the situation is even better
as for the (x; y)-positions: the triangulation of a cell approximates all height
values of the (xi; yi)-vertices up to a certain error � which is for example the
distance between two texels. In the next finer level an approximation error of
half a texel, i.e. �=2 is needed. Therefore, within triangles parallel to the x-y-

124 CHAPTER 7. EFFICIENT MULTIRESOLUTION MODELS

plane, one additional bit is sufficient to correct the interpolated height value. If
the triangle is not horizontal, it depends on the slope, how many additional bits
are actually needed. Triangles perpendicular to the x-y-plane cannot be used
for interpolation (see Fig. 7.11). In these rare cases, all bits of the height value
up to the current precision level are needed for the new vertex.

7.3 Rendering the model

For fast rendering it is important to process the data needed to generate an
accurate image of the object and, to process only that data. Processing the
data consists of two parts, loading the data into main memory and real time
rendering of that data. To minimize the processed data, view-frustum culling
and choosing the correct level of detail are the two main tasks.

7.3.1 The geometric and the screen space errors

To select the correct level of detail the precomputed geometric error between
the original and the simplified model must be converted into a screen space
error. Several elaborate techniques that not only consider the distance between
the observer and the objects but also the viewing direction and the directions of
precomputed errors are proposed in the literature [KCOH98, LKR+96a], but
in our case the situation is much simpler. The only parameter to be considered
is the distance to the observer. The reason is that we not only consider the
geometric deviation to choose the level of detail but also the needed textures.
For choosing the needed texture level the only criterion we use is the distance
to the observer. This means that even if we look straight down on the terrain
(and therefore could neglect height deviations) we want to choose the level of
detail that contains the borders of the texture tiles.

7.3.2 The extraction algorithm

After loading the geometry data of the coarsest tile of the terrain its bounding
box is calculated and tested against intersections with the view-frustum. This
can easily be done by projecting the bounding box onto the screen and clipping
the result with the view window. If the bounding box is visible it is checked if
the current level of detail is sufficient. Else the tile must be subdivided. The
algorithm so far is described by the following pseudo code.

7.3. RENDERING THE MODEL 125

process(tile)
{

load_geometry_data(tile);
calc_bounding_box(bbox, tile);
if (bbox intersects viewfrustum)
{
if (level_of_detail sufficient)

{
load_texture_data(tile);
Render(tile);
}

else
{
subdivide(tile);

process(subtile1); process(subtile2);
process(subtile3); process(subtile4);

}
}

}

main()
{

process(coarsest_tile);
}

Of course, the real algorithm is more complicated. Before rendering the
tile, we must ensure that the level of detail of adjacent cells differs by no more
than one from the lod of the current cell and that the correct transition trian-
gulations for the cell are used. Therefore, instead of rendering the tiles im-
mediately, they are inserted into a quadtree data-structure. At the end of the
recursive process we have a standard quadtree containing the absolutely nec-
essary levels of detail. Some of its cells must be further subdivided to ensure
that the level of details of adjacent cells do not differ by more than one level.
We call this closing the quadtree. Note, that no additional textures are loaded
for such cells as the closing is only required to ensure correct transitions of the
geometry of adjacent cells. As texture the already loaded coarser texture tiles
are sufficient3. In addition for each of the resulting cells the information which

3Of course, in this case the texture coordinates are adjusted accordingly.

126 CHAPTER 7. EFFICIENT MULTIRESOLUTION MODELS

of the neighbor cells is at a finer level is generated and then used to extract the
correct triangulation for the cell including the transitions to the neighbors.

7.3.3 Frame to frame coherency

An important method to achieve the performance necessary for real-time fly-
throughs is to exploit frame-to-frame coherency. For this purpose the quadtree
of rendered tiles described in the previous section is used. In addition to the
pointers to the data each cell holds the bounding box (maximum height value).
When rendering a new frame, the quadtree is processed in the same way as
described above. The only difference is that data already present can now be
taken from main memory and the bounding boxes are already available.

Caching and preloading is supported by supplementing the quadtree with
additional cells that are marked as present but inactive. Such cells are not
considered for closing the quadtree.

The principle that is used to decide, which cells are loaded and which ones
can be discarded is, that in every level around the visible cells a surrounding
one cell wide circle of invisible cells is kept in the buffer as inactive cells.

In this way smaller changes of the camera position often do not result in
any new data to be loaded and the frame to frame coherency is exploited to a
very wide extend.

7.A Coding the transitions

In our data format the strips consist of a sequence of vertices. Each vertex
can be preceded or followed by a swap operation. Each vertex defines a new
triangle together with the two previous vertices stored in a FIFO. The swap
operation allows to change the order of the two vertices in the FIFO. While
in the generalized triangle strips it is sufficient to allow swap operations either
before or after a new vertex is given, in our case both must be possible. In this
way our simple coding technique also works in the case where a triangle of the
coarse triangulation belongs to two edges of the tile, see Figure 7.14. Note, that
this technique is not necessary in a case where due to the error an additional
inner vertex is inserted. In this case the inner vertex can be inserted first and
connected to the corner.

REFERENCES 127

1 3 9 11

12

10

2 4

5

6

7

8

01, 2, 3, 4, 5, 6, 7,SWP, 80 0 0 0 0 0 0

0 0 0 0 1 1

0 0 1

0 1 0

1, 2, 3, 4,
5, 6,
7,SWP, 8

00 00

00

01

9,SWP 10,SWP,
11,SWP,

12,SWP,

00

01

10

11

Figure 7.12: The bit-coding for the example of figure 7.9. The transition-flags
drawn in green indicate if the following operation belongs to the coarse trian-
gulation (0) or to a transition triangulation(1). If the flag is 1 two additional
border-bits drawn in magenta show to which border the operation belongs.

References

[DBH00] Jürgen Döllner, Konstantin Baumann, and Klaus Hinrichs. Texturing tech-
niques for terrain visualization. In T. Ertl, B. Hamann, and A. Varshney,
editors, Proceedings Visualization 2000, pages 227–234. IEEE Computer
Society Technical Committee on Computer Graphics, 2000.

[DWS+97] Mark A. Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller,
Charles Aldrich, and Mark B. Mineev-Weinstein. ROAMing terrain:
Real-time optimally adapting meshes. In IEEE Visualization ’97, 1997.

[Dyn01] James Stewart Dynamic. Tunneling for triangle strips in continuous level–
of–detail meshes, 2001.

[ESV96] Francine Evans, Steven S. Skiena, and Amitabh Varshney. Optimizing
triangle strips for fast rendering. In Roni Yagel and Gregory M. Nielson,
editors, IEEE Visualization ’96, pages 319–326, 1996.

[HB87] Brian Von Herzen and Alan H. Barr. Accurate triangulations of deformed,
intersecting surfaces. volume 21, pages 103–110, July 1987.

[HG97] Paul S. Heckbert and Michael Garland. Survey of polygonal surface sim-
plification algorithms. Technical report, 1997. draft, to appear.

128 REFERENCES

Figure 7.13: In addition to a vertex of the border also a vertex inside a triangle
is inserted. The example shows how the newly created sequence is inserted into
the original strip.

[Hop98] Hugues Hoppe. Smooth view-dependent level-of-detail control and its
application to terrain rendering. In Proceedings IEEE Visualization’98,
pages 35–42. IEEE, 1998.

[Hüt98] T. Hüttner. High resolution textures. Visualization’98 - Late Breaking Hot
Topics Papers, pages 13–17, November 1998.

[KCOH98] R. Klein, D. Cohen-Or, and T. Hüttner. Incremental view-dependent mul-
tiresolution triangulation of terrain. The Journal of Visualization and
Computer Animation, 9:129–143, August 1998.

[KH96] R. Klein and T. Hüttner. Simple camera-dependent approximation of ter-
rain surfaces for fast visualization and animation. In R. Yagel, editor,
Visualization 96. ACM, November 1996.

[KS96] R. Klein and W. Straßer. Generation of multiresolution models from cad-
data for real time rendering. In W. Straßer, R. Klein, and R. Rau, editors,
Theory and Practice of Geometric Modeling. Springer-Verlag, 1996.

[LKR+96a] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, and G. Turner.
Real-time continuous level of detail rendering of height fields. Proceed-
ings of SIGGRAPH’96, pages 109–118, 1996.

[LKR+96b] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hodges, Nick
Faust, and Gregory A. Turner. Real-time, continuous level of detail ren-
dering of height fields. In SIGGRAPH ’96, pages 109–118, Aug. 1996.

REFERENCES 129

1

1

3

3

6

7

2

2

5

5

4

4

0 0 0 0 01, 2, 3, 4, 5

0 0 0 0 01, 2, 3, 4, 5

0 0 0 0 1 01, 2, 3, 4, 5006,SWP,

0 0 0 0 1 01, 2, 3, 4, 501SWP, 7,

1

1

3

3

6

6

7

7
2

2

5

5

4

4

0 0 0 0 01, 2, 3, 4, 5

0 0 0 0 01, 2, 3, 4, 5

0 0 0 0 1 01, 2, 3, 4, 5006,SWP,101SWP, 7,

0 0 0 0 1 01, 2, 3, 4, 501SWP, 7,1006,SWP,

Figure 7.14: On the left hand the original triangulation containing a corner
triangle is modified by inserting a vertex on the right edge or on the bottom
edge, respectively. To ensure that vertex 5 together with the edge (3,7) form a
triangle a swap operation is necessary before vertex seven. To merge two trian-
gulations it is necessary to preserve the orientation of the last edge. Therefore,
a swap is inserted after vertex 6. In this way it is possible to insert both opera-
tions in arbitrary order to get one of the two possible merged triangulations on
the right hand figure. Of course, this works also in the more complicated case,
where more than one vertex on an edge is inserted.

[LP01] P. Lindstrom and V. Pascucci. Visualization of large terrains made easy.
In In IEEE Visualization 2001 Proceedings, 2001.

130 REFERENCES

[Paj98] Renato B. Pajarola. Large scale terrain visualization using the restricted
quadtree triangulation. In David Ebert, Hans Hagen, and Holly Rush-
meier, editors, IEEE Visualization ’98, pages 19–26, 1998.

[Pup96] E. Puppo. Variable reolution of terrain surfaces. In Proceedings Eight
Canadian Conference on Computational Geometry, August 1996.

[TMJ98] Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. The
clipmap: A virtual mipmap. In Michael Cohen, editor, SIGGRAPH
98 Conference Proceedings, Annual Conference Series, pages 151–158.
ACM SIGGRAPH, Addison Wesley, July 1998. ISBN 0-89791-999-8.

Chapter 8

A Framework for the
Acquisition, Processing and
Interactive Display of
High Quality 3D Models

Hendrik P. A. Lensch, Michael Goesele,
Hans-Peter Seidel�

This article highlights some recent results on the acquisition and in-
teractive display of high quality 3D models. For further use in photore-
alistic rendering or object recognition, a high quality representation must
capture two different things: the shape of the model represented as a geo-
metric description of its surface and on the other hand the appearance of
the material or materials it is made of, e.g. the object’s color, texture, or
reflection properties.

The article shows how computer vision and computer graphics tech-

�Max-Planck-Institut für Informatik, Arbeitsgruppe Computergraphik, Saarbrücken, Germany.
E-Mail: flenschjgoeselejhpseidelg@mpi-sb.mpg.de

131

132 CHAPTER 8. HIGH QUALITY 3D MODELS

niques can be seamlessly integrated into a single framework for the acqui-
sition, processing, and interactive display of high quality 3D models.

8.1 Introduction

The rapid advances of consumer level graphics hardware make it possible to
render increasingly complex and accurate models in real time. Computer-
generated movies are getting more and more realistic and users will soon de-
mand a similar level of realism in a wide range of every day applications such
as computer games, digital libraries and encyclopedias, or e-commerce appli-
cations. Being able to efficiently generate, process and display the necessary
models will become a more and more important part of computer vision and
computer graphics.

To fulfill these requirements a high quality representation must capture two
different things: the shape of the model represented as a geometric description
of its surface and the appearance of the material or materials it is made of,
e.g. the object’s color, texture, or reflection properties. Subsequently, geome-
try and surface appearance data must be integrated into a single digital model
which must then be stored, processed, and displayed, trying to meet several
conflicting requirements (such as realism versus interactive speed).

As more and more visual complexity is demanded, it is often infeasible to
generate these models manually. Automatic and semi-automatic methods for
model acquisition are therefore becoming increasingly important.

A system built to acquire and to process the necessary data relies on com-
puter vision techniques as well as on computer graphics techniques. To obtain
the geometry of an object, a 3D scanner is used. The output is transformed into
a mesh representation and further processed to reduce noise and complexity.
The surface properties of the object are acquired by taking a number of images
with constrained lighting. These images have to be registered to the 3D ge-
ometry by use of camera calibration techniques. By inspecting the images, the
object’s texture, the spatially varying reflection properties and microstructure
(normal maps) can be extracted.

Combining all the data, a compact representation of the object can be ob-
tained that allows for accurately shaded, photorealistic rendering from new
viewpoints under arbitrary lighting conditions. In addition, the high quality 3D
model may be used for object recognition and material investigation.

This article highlights some recent results on the acquisition and interactive

8.2. 3D OBJECT ACQUISITION PIPELINE 133

display of high quality 3D models. It shows how computer vision and computer
graphics techniques can be seamlessly integrated into a single framework for
the acquisition, processing, and interactive display of high quality 3D mod-
els. Some examples will illustrate the approach. Finally, we point out some
remaining questions and important areas for future research concerning both
computer graphics and computer vision.

8.2 3D Object Acquisition Pipeline

In this paper we focus on the generation of high quality 3D models contain-
ing the object’s geometry and the surface appearance Such a model contains
information needed for many computer graphics or computer vision applica-
tions. However, there are also other types of high quality models such as vol-
umetric or image-based models (e.g., computer tomography data sets, light
fields [LH96]) that are suitable for different applications.

In our case, the generation of a high quality 3D model for a real world ob-
ject includes several, partially independent steps. Figure 8.1 shows an overview
of these steps.

model generation
registration and

interactive display

appearance and
3D geometry acquisition texture acquisition

acquisition
object

additional processing

Figure 8.1: The 3D object pipeline. Depending on the applied techniques ge-
ometry acquisition, texture and appearance acquisition, and registration depend
on each other in different configurations.

134 CHAPTER 8. HIGH QUALITY 3D MODELS

First, the geometry and the texture of the object are acquired. Typically,
different techniques and acquisition devices for the geometry and the texture
are applied which makes it necessary to align both data sets in a separate regis-
tration step. However, it is also possible to derive geometry information from
texture data and vice versa. Various subsequent processing steps are necessary
to extract information such as reflection properties or normal maps from the
input data.

Once a complete model is created it can be resampled, converted to a dif-
ferent data representation, or compressed to make it suitable for a particular
application scenario. Finally, the target application should be able to display
the model interactively without omitting any important information.

In the following sections we give a detailed description of all the steps
of the 3D object pipeline. In Section 8.3 we start with image-based acquisi-
tion techniques followed by acquisition techniques for appearance properties
in Section 8.4. We give an overview over the acquisition of 3D geometry in
Section 8.5 and describe a technique to register texture and image data in Sec-
tion 8.6. Section 8.7 introduces several methods to display the acquired models
interactively. We present some examples of acquired models in Section 8.8 be-
fore we conclude with Section 8.9.

8.3 Image-Based Acquisition Techniques

Today, image-based techniques become more and more popular to acquire
models of real world objects (see Section 8.4). A key element of these methods
is a digital camera to capture images of the object from which various prop-
erties of the object can be derived. The large number of measurements that
can be made in parallel (i.e. one per pixel for a digital camera) lead to effi-
cient methods to sample complex functions such as four-dimensional BRDFs.
However, these measurements can only be meaningful if the equipment used is
appropriate for the measurements, if the properties of the devices are known,
and if the relevant parts are calibrated.

8.3.1 Photographic Equipment

Both analog and digital cameras can be used for measurement purposes. The
advantages of analog photography include the high resolution of analog film
(especially in combination with commercial high quality digitization services

8.3. IMAGE-BASED ACQUISITION TECHNIQUES 135

as the Kodak Photo CD), its comparably large dynamic range, and the huge
selection of available cameras, lenses and film types. However, the develop-
ment and scanning of film can take quite long and the resulting images are not
naturally registered against the camera lens system.

In contrast to that, the position of the imaging sensor in a digital camera
remains fixed with respect to the lens system which makes it easy to capture
several aligned images from the same position under different lighting condi-
tions. If the digital camera is capable of returning the raw image sensor data it
is possible to calibrate the individual sensor elements to account for variations
on the sensor [Abb95, GHS01b].

Most consumer quality digital cameras use the lossy JPEG compression
format to store their images although more recent cameras are often also ca-
pable of producing images in a lossless compressed format. The lossy JPEG
compression introduces compression artifacts which makes them rather unsuit-
able for measurement purposes. Additional artifacts can occur due to various
steps in the image processing chain of digital cameras such as sharpening op-
erations or the color reconstruction in single chip cameras. The imaging com-
munity developed a large number of methods to characterize various aspects
of a digital camera such as the modulation transfer function (MTF) [WB01].
These methods are not only helpful to choose an appropriate camera but can
also be used to debug a measurement setup when an error occurs.

8.3.2 Lighting Equipment

For most algorithms that reconstruct the appearance properties of an object
from images, it is important to control the lighting conditions exactly. Although
this is also true for images taken by a regular photographer, the requirements
differ strongly. A point light source, i.e. a light source where all light is emitted
from a single point is ideal for many of the techniques mentioned above but is
rarely used in photography as it casts very hard shadows. A perfectly constant
and diffuse lighting is ideal to capture the color of an object but leads from a
photographers point of view to very flat looking images due to the absence of
shadows.

The surrounding of an object has also a huge influence on the lighting sit-
uation, especially if the object has a specular reflecting surface. In order to
minimize this influence the measurement region should be surrounded with
dark material that absorbs as much light as possible. Furthermore, the light
that is not absorbed should be reflected in a very diffuse way. Figure 8.2 shows

136 CHAPTER 8. HIGH QUALITY 3D MODELS

Figure 8.2: A view of our photo studio with black, diffuse reflecting mate-
rial on the floor, walls, and ceiling. This image was generated from a High
Dynamic Range image to which a tone-mapper has been applied.

a view of our photo studio whose floor, walls, and ceiling are covered with
black, diffuse reflecting material to reduce the influence of the environment on
the measurements as much as possible.

A more technical and in-depth discussion of camera and lighting issues can
be found in [GHLS00].

8.3.3 Camera Calibration

When using a camera as a measurement device various aspects should be cal-
ibrated in order to guarantee high-quality results and the repeatability of the
measurements.

Geometric Calibration

The properties of the camera transformation which describes how an object
is projected onto the camera’s image plane should be recovered e.g. us-
ing [Tsa87, Zha99, HS97]. These methods generally use an image or a set
of images of a calibration target (e.g. a checkerboard pattern) to determine
camera parameters such as the focal length of the lens, the location of the opti-
cal axis relative to the imaging sensor (principal point), and various distortion

8.3. IMAGE-BASED ACQUISITION TECHNIQUES 137

coefficients. Once this information is known, a ray in space can be assigned to
each pixel in an image.

High Dynamic Range Imaging

The dynamic range of a camera, i.e. the ratio between the brightest and the
darkest luminance sample that can be captured in a single image, is for most
cameras quite small (on the order of 102 � 103). As the dynamic range of
a scene can be much higher (e.g., about 106 between highlight and shadow
regions), some techniques have to be used to capture the full dynamic range of
a scene.

Several manufacturers have developed CMOS cameras that are capable of
capturing a sufficiently large dynamic range by either combining multiple ex-
posures or by the use of special imaging sensors. These cameras are typically
video cameras and provide only a limited resolution. Furthermore, the mea-
sured values are quantized to 8–12 bits per pixel and color channel leading to
a rather low precision.

In the computer graphics community, several authors proposed methods to
extend the dynamic range of digital images by combining multiple images of
the same scene that differ only in exposure time. Madden [Mad93] assumes
linear response of the imaging sensor and selects for each pixel an intensity
value from the brightest non-saturated image. Debevec and Malik [DM97]
and Robertson et al. [RBS99] recover the response curve of the imaging sys-
tem and linearize the input data before combining them into a single high dy-
namic range image. In [GHS01a], Goesele et al. proposed a technique to
combine high dynamic range imaging with color management techniques (see
Section 8.3.3).

Color Issues

Accurately recording the continuous spectrum of the visible light is difficult –
especially if the spectrum is not smooth but contains sharp peeks such as the
spectrum of a discharge lamp or even a laser. Likewise, the spectral response
curve that describes the way light is reflected by an object is not always smooth.
Measurement devices such as a spectrophotometer perform therefore a very
dense sampling of the spectrum and output large data sets.

In contrast to that, most analog and digital cameras record only three color
values per pixel (tristimulus values). Each sensor in a digital camera integrates

138 CHAPTER 8. HIGH QUALITY 3D MODELS

the amount of incoming light weighted by its response curve over the whole
visible spectrum. This is inspired by the human visual system that also contains
three types of sensors behaving in a similar way [Hun95]. A camera can record
the colors of objects as perceived by a human observer most accurately if the
corresponding response curves are identical [Lut27], but the true spectrum of
the light hitting the sensor can never be reconstructed and different spectra can
result in the same tristimulus values (metamerism). Color measurements done
with a tristimulus device are therefore always an incomplete representation of
the actual spectrum.

White Balance

The human visual system can adapt to a wide range of illumination conditions.
Within this range, colored objects look roughly the same even if the spectrum
of the light source changes and therefore the spectrum of the reflected light
hitting the retina is different. A digital camera can mimic this behavior with a
white balancing step: the tristimulus values are multiplied with constant factors
so that the color of the light source is recorded as white. The influence of the
light source on the recorded color of an object is hereby minimized.

Color Management Systems

For a digital camera, the recorded color of an object depends not only on the
light source but also on several other factors including the properties of the op-
tical system, the sensor, and the image processing steps applied by the camera
itself or other software.

In order to relate the recorded color to well defined standards, color man-
agement systems have become a standard tool. An image of a well known test
target such as the IT8.7/2 target (see Figure 8.3) is taken and processed in the
same way all later images are processed. The relation between the color values
of the test target patches and the color values reported by the camera is ana-
lyzed and used as calibration data. The International Color Consortium (ICC)
introduced the so called ICC profiles [ICC98, Wal] as a standard way to store
this information.

The basic mechanism behind ICC based color management systems is to
use a well defined color space as profile connection space (PCS). All input data
is converted into the PCS using an ICC input profile associated with the input

8.4. APPEARANCE ACQUISITION 139

Figure 8.3: IT8.7/2 target used to capture the color properties of an imaging
system in order to generate an ICC profile.

device. Other profiles are used to convert data from the PCS into the color
space of display or output devices such as monitors and printers.

One of the color spaces used as PCS is the linear CIEXYZ space [CIE86].
In [GHS01a], Goesele et al. have shown that this color space can be used
to generate color calibrated high dynamic range images which are a tool to
improve the color fidelity of appearance acquisition methods.

8.4 Appearance Acquisition

The appearance of an object consists of several surface properties including
color, texture, reflection properties, and normal directions or the local tangent
frame in the case of anisotropic materials. Due to their large number they are
difficult to acquire but nevertheless necessary to generate a convincing looking
representation of an object. It is therefore justifiable to put a lot of effort into
this acquisition step.

Traditionally the appearance of an object is captured using a variety of spe-
cial devices [HH87]. But many surface properties can be acquired by the use
of a photographic camera – preferably a digital camera – in a controlled light-
ing setup. Captured images can for example be used to color the 3D geometry
model during rendering. The digital pictures are simply projected onto the

140 CHAPTER 8. HIGH QUALITY 3D MODELS

Figure 8.4: A teapot with complex reflection properties illuminated from two
different directions.

model as image textures using texture mapping [HS93]. To ensure that each
part of the object is colored, a sufficient number of images must be taken from
different view points [MK99, Stu99]. During the projection a perspective cor-
rection must be performed to gain a seamless transition between textures of
different images (see also Section 8.6). To obtain more precise surface proper-
ties than just a single color value, further processing is needed.

8.4.1 Reflection Properties

Constant, diffuse lighting during the acquisition phase would reproduce only
the object’s color. More realistic models can be obtained by considering further
aspects of a material’s appearance, for example the reflection properties. The
intensity and color of any material typically varies if viewed from different
directions or under different illumination (see Figure 8.4).

When light interacts with a perfectly reflective surface, i.e. a mirror, the
reflected light leaves the surface at the same angle it hits the surface. How-
ever, perfect mirrors do not exist in reality. In contrast, most surface have a
very complex micro-structure. This micro-structure makes different materials
appear differently.

When light hits such a surface, it is not reflected toward a single direction,
but rather to a cone of directions. If the surface is perfectly diffuse (e.g. for a
piece of chalk), light even scatters equally in all directions.

In computer graphics the bidirectional reflectance distribution function
(BRDF or also reflectance model) is used to describe the way a surface re-

8.4. APPEARANCE ACQUISITION 141

Figure 8.5: Here you can see the values of a BRDF (depicted as a lobe) for one
incident light direction !̂i and every possible outgoing direction !̂o.

flects light. The BRDF yields the fraction of light arriving at a point from one
direction to the light that is reflected off the surface at the same point into an
exitant direction.

Hence a BRDF is a four-dimensional function fr(!̂o; !̂i) that depends on
the incident light direction !̂i and the viewing direction !̂o (see Figure 8.5).
It should be noted, that it also depends on the wavelength, which is usually
represented by three samples (RGB) only. In the following, the wavelength
dependency is not stated explicitly.

A number of analytical BRDF models have been developed to approxi-
mate the reflection properties of real materials (e.g. [TS67, War92, LFTG97,
Ban94]).

8.4.2 Measuring Reflection Properties

In addition to these analytical models, it is possible to measure real-world
BRDFs directly. There are special devices available to accomplish this task:
The most general approach is to use a gonioreflectometer which measures the
light that is emitted in every direction when the object is illuminated from a
given direction. However, this measurement procedure can be very time con-
suming and captures only the properties of a single point on the surface of an
object. If the surface is not uniform, this is not very helpful.

One way to overcome the ”single point” constraint for appearance measure-
ments is the use of a digital camera. When an image is taken with such a camera
it corresponds to millions of parallel measurements of radiance samples hitting
the sensor. The main challenge is to recover the appearance information from

142 CHAPTER 8. HIGH QUALITY 3D MODELS

images taken from different positions under controlled lighting conditions.
Marschner [Mar98] used this approach to determine a single BRDF for

an object by combining all the pixel data. Compared to a gonioreflectometer
this technique is considerably faster, but it still assumes that the entire object
consists of a single material, represented by a large number of tabulated BRDF
samples. A specific BRDF model can be fitted to these BRDF samples by
optimizing for the parameters of the BRDF model as it is for example done in
[SHR+99]. The set of BRDF samples is then replaced by a few parameters
resulting in a more compact representation.

To allow for variations of the reflectance properties over the object’s sur-
face Marschner et al. [MGR00] extracted the purely diffuse part (albedo map)
of the object’s texture for each visible point using a similar technique. The re-
sulting texture includes only view-independent color information and no spec-
ular reflection. Albedo maps plus one reflection model per surface patch have
been acquired for indoor scenes by Yu et al. [YDMH99] which assumed that
material properties only change from patch to patch.

An approach to acquire distinct reflection properties for every surface point
has been published by Debevec et al. [DHT+00]. A set of images of an
object, e.g. a person’s face, is taken from one viewpoint while the position
of a point light source is changed. Hereby, the set of incident light directions
is densely sampled. The collected data allows for realistic relighting of the
object illuminated by arbitrary virtual environments. Unfortunately, a very
large amount of data is needed both during the acquisition and for display.

8.4.3 Measuring Spatially Varying BRDFs

Based on Marschner’s approach, Lensch et al. [LKG+01] developed a tech-
nique that is able to reconstruct spatially varying reflection properties by just
a very few images (around 25). The key idea here is that most objects typi-
cally consist of a small number of materials only, i.e. many points on the ob-
ject’s surface have approximately the same reflection properties. By clustering
points with different normals but consisting of the same materials, a large num-
ber of BRDF samples of that material can be collected by just a few images.
After measuring the BRDF for clusters of points, separate reflection proper-
ties for each single point are determined to account for subtle details and small
changes. The BRDF for each point is determined as a weighted sum of the
clusters’ BRDFs.

8.4. APPEARANCE ACQUISITION 143

Thus, a high quality and very compact representation of the original object
can be obtained with moderate acquisition effort.

Data Acquisition

The entire procedure is as follows: The geometry of the object is obtained by
use of a 3D scanner, e.g. a structured light or computer tomography scanner,
yielding a triangle mesh. In order to capture the reflection properties a small
number of high dynamic range (HDR) images of the object are taken showing
the object lit by a single point light source. In a next step the camera position
(see Section 8.6) as well as the light source position relative to the geometric
model are recovered for all images.

For every point on the object’s surface all available data (geometric and
photometric) is collected from the different views in a data structure called
lumitexel. It contains the position of the surface point and its normal derived
from the triangular mesh. Additionally, a lumitexel stores a list of radiance
samples together with the corresponding viewing and lighting directions, one
radiance sample for every HDR image where the point is visible and lit. The
radiance sample is obtained by resampling the color value at the position of the
surface point projected into the image.

Clustering of Materials

Because only a limited number of different views and lighting directions is ac-
quired a single lumitexel does not carry enough information to reliably fit a
BRDF model to the radiance samples. To provide more data from which the
parameters can be derived, the lumitexels are grouped into clusters of similar
materials. Starting with a single cluster containing all lumitexels, the parame-
ters of an average BRDF are fitted using the Levenberg-Marquardt algorithm
to perform a non-linear least square optimization.

In order to separate the distinct materials the initial cluster has to be split.
Given the average BRDF, two new sets of parameters are generated by varying
the fitted parameters along the direction of maximum variance, yielding two
slightly distinct BRDFs.

The lumitexels of the original cluster are then assigned to the nearest of
these BRDFs, forming two new clusters. A stable separation of the materials
in the clusters is obtained by repeatedly fitting BRDFs to the two clusters and
redistributing the original lumitexels. Further splitting isolates the different

144 CHAPTER 8. HIGH QUALITY 3D MODELS

materials until the number of clusters matches the number of materials of the
object as illustrated in Figure 8.6.

Figure 8.6: The clustering process at work. In every image a new cluster was
created.The object was reshaded using only the single BRDFs fitted to each
cluster before the projection into a basis of multiple BRDFs.

Spatially Varying Behavior

After the clustering the same reflection behavior is assigned to all lumitex-
els/points in one cluster. However, small features on the surface and smooth
transition between adjacent materials can only be represented if every lumitexel
is assigned its own BRDF.

In the algorithm, this BRDF is a weighted sum of the BRDFs recovered
by the clustering procedure. The spatially varying reflection properties can be
represented by a set of basis BRDFs for the entire model plus a set of weighting
coefficients for each lumitexel.

The weighting coefficients are found by projecting the lumitexel’s data into
the basis of per cluster BRDFs. An optimal set of weighting coefficients min-
imizes the error between the measured radiance and the weighted sum of ra-
diance values obtained by evaluating the basis BRDFs for the viewing and
lighting direction of the measured sample. To recover the coefficients the least
square solution of the corresponding system of equations is computed using
singular value decomposition (see [LKG+01] for more details).

In Figure 8.7 the result of projecting the collected data for every point into
a basis of BRDF is shown. The method allows for accurately shaded, photore-
alistic rendering of complex solid objects from new viewpoints under arbitrary
lighting conditions with relatively small acquisition effort. The reconstructed
BRDFs can further be used to classify the objects based on their materials.

8.4. APPEARANCE ACQUISITION 145

Figure 8.7: Left: Last result of the clustering step. Right: Bird with the spa-
tially varying BRDF determined by projecting each lumitexel into a basis of
BRDFs. Note the subtle changes of the materials making the object look real-
istic.

8.4.4 Normal Maps

The resolution of the acquired geometry of an object is typically limited by
the used 3D scanning device (see Section 8.5). Additional processing of the
3D data like combining multiple scans, smoothing the surface to remove noise,
and mesh simplification to reduce the complexity of the model further erases
fine scale geometric detail.

When reconstructing the object using a coarse geometric model, smaller
features in the surface’s structure like bumps, cracks or wrinkles can be simu-
lated by the use of normal maps or bump maps [Bli78] (see Figure 8.14). These
textures store a perturbation of the surface normal for each surface point. After
applying the perturbation, the modified normals are used for the lighting calcu-
lations. This results in a change of the angle between the viewing direction and
the surface at that point as well as between the light direction and the surface.
This step approximates the correct lighting of a fine scale geometry model.

Normal maps recording small imperfections of the surface can be acquired

146 CHAPTER 8. HIGH QUALITY 3D MODELS

for real world objects: Rushmeier et al. calculated normal directions from
a set of images showing the same view of the object illuminated by a point
light source placed at different but known positions for each image [RTG97].
The surface is assumed to be perfectly diffuse (Lambertian), reflecting incident
light equally in all directions, and thus its color can again be represented by an
albedo map [RBMT98].

The restriction of a purely diffuse surfaces can be removed if techniques
like [LKG+01] (see Section 8.4.3) are used to first measure the approximate
reflection properties at each surface point and then use this data to measure the
normal directions.

Since the BRDF at one point is defined for viewing and lighting directions
with respect to the local tangent frame at that point, all directions have to be
transformed based on the point’s surface normal. To measure the exact normal
at a point, an initial normal is obtained from the triangular mesh. Given the
viewing and lighting directions for the radiance samples in world coordinates,
the current estimate of the normal is used to transform them into the local
coordinate frame. Then, the error between the measured radiance values and
the reconstructed radiance values is computed where the reconstructed radiance
values are obtained by evaluating the measured BRDF using the transformed
directions. If enough radiance samples are provided for each point the actual
normal direction at the point can be found by minimizing this error using a
non-linear least square optimization technique. Figure 8.8 shows the quality of
the reconstructed normals compared to the normals of the original mesh.

8.5 Acquisition of 3D Geometry

In most cases there exists no high quality 3D geometry model of real world
objects like pieces of art. But even if it would exist (e.g. because the object
was manufactured using computer based manufacturing methods) it is often
only available to a very limited number of persons. Therefore, it is most often
necessary to acquire the geometry of objects using a 3D scanner.

Several research groups including [LPC+00, BMR99] have built their own
3D scanner – some of them tailored to specific requirements. Furthermore,
there is a broad range of commercial products made by companies like Cyber-
ware, Minolta, or Steinbichler.

There are several different approaches to acquire the 3D geometry of an ob-
ject (for an overview see [CS00]) but most of the systems for small or medium

8.5. ACQUISITION OF 3D GEOMETRY 147

Figure 8.8: Left: Normals of the original mesh. Right: Normals optimized
using spatially varying BRDFs

sized objects are based on an active stereo structured light approach. One or
several patterns are projected onto the object with a computer controlled pro-
jection system (e.g. a video projector, a color coded flash stripe projector, or a
laser beam). The projected light patterns on the object are observed by a digital
camera which is rigidly connected to the projection system. The 3D location
of a point on the surface of an object is then defined by the intersection of a ray
from the projected pattern with the viewing ray that corresponds to the pixel in
the digital image that observed this ray (see Figure 8.9).

The position of these rays in space is determined in a separate calibration
step: The patterns are projected onto a calibration target – typically a flat board
or a three-dimensional structure with a regular pattern whose geometric prop-
erties are exactly known. The acquired images are analyzed to recover the
intrinsic parameters (e.g. focal length, lens distortion) and extrinsic parameters
(the relative position and orientation) of the projection system and the camera
using standard camera calibration techniques (e.g. [Tsa87, Zha99, HS97]).

Using the active stereo approach most objects cannot be acquired with a
single scan either because front and back part of the object cannot be scanned
with a single scan or because for a given configuration not all parts of the object

148 CHAPTER 8. HIGH QUALITY 3D MODELS

digital camera

baseline b

β

α

projection system

Figure 8.9: Schematic drawing of an active stereo 3D scanner. Given the in-
trinsic parameters of the projection system and the camera, the baseline b and
the angles � and �, the position of a surface point can be recovered using tri-
angulation.

are visible from both the position of the projection system and the digital cam-
era. Therefore several scans have to be registered against each other in order to
combine them into a single set of surface points. This is commonly done using
a variant of the iterative closest point method (ICP) [BM92, PDH+97]. The
resulting point cloud is triangulated leading to a single triangular mesh using
one of a large variety of methods (for an overview see [CS00]). Further pro-
cessing steps include smoothing to reduce noise (e.g. using [Tau95, Kob96])
and editing of the resulting mesh for which a huge selection of tools is available
including [KCVS98].

Kobbelt et al. [KBB+00] give a detailed description of the techniques
used for the acquisition and processing of 3D geometry data.

8.6 Registration of Geometry and Texture Data

Since texture and geometry are typically acquired by two different processes
the collected data has to be merged afterwards. This requires the alignment
of the geometry data and the captured images. Only for scanning devices that

8.6. REGISTRATION OF GEOMETRY AND TEXTURE DATA 149

capture geometry and texture data with the same sensor, the alignment or regis-
tration is already given. But in such a case the user is limited to the texture data
provided by the scanner and the lighting setup cannot be changed to perform
appearance measurements. Because of this, we further consider the case of two
different sensors, a 3D scanner and a digital camera.

8.6.1 Manual Registration

In order to align or register the 3D model to the texture data one has to recover
the parameters of the camera transformation that maps points in 3-space (the
3D geometry) onto the 2D image. These parameters describe the camera posi-
tion, its orientation and the focal length (see Section 8.3.3). Further parameters
are the aspect ratio, the principle point and the lens distortion, which are in the
following assumed to be already known.

A simple approach to recover the camera position and orientation is to man-
ually select corresponding points on the geometric model and in the picture
[RCM99]. If enough correspondences are established the transformation can
be directly determined using one of various kinds of camera calibration meth-
ods (e.g [Tsa87, Zha99, HS97]). But selecting corresponding points for a set
of images is a time-consuming and tedious task. Additionally, the precision is
limited by the user, although accuracy could be improved by selecting more
points.

8.6.2 Automatic Registration

In order simplify the registration process some semi-automatic approaches
have been published [MK99, NK99]. The user is asked to roughly align the
3D model to the image. The algorithm then tries to optimize for the camera
parameters by minimizing the distance between the outline of the 3D model
rendered with the current set of camera parameters and the outline of the ob-
ject found in the image. For each tested set of camera parameters the distance
between the outlines has to be computed. This is a time-consuming step since
the 3D model has to be rendered, its outline must be traced and for some points
on it the minimum distance to the other outline must be computed.

In [LHS00], Lensch et al. proposed a method to compute the distance
between a view of the 3D model and the 2D image in a different way. Here,
silhouettes are compared directly instead of using their outlines. At first the
silhouette of the object in the images is extracted by classification of the image

150 CHAPTER 8. HIGH QUALITY 3D MODELS

Figure 8.10: Measuring the difference between photo (right) and one view of
the model (left) by the area occupied by the XOR-ed foreground pixels.

8.6. REGISTRATION OF GEOMETRY AND TEXTURE DATA 151

in foreground and background pixels, which can be done by any segmentation
algorithm. Then, the geometry is rendered in front of a black background us-
ing a monochrome color. It is combined with the segmented image using the
XOR-operation as is visualized in Figure 8.10. The resulting image will be
black except for those pixels which are covered by just one silhouette but not
by the other, that is to say exactly those pixels where the silhouettes differ. The
number of remaining pixels is a measure for the distance between the silhou-
ettes. These pixels can be counted by evaluating the histogram. The optimal
set of camera parameters can be found by minimizing the number of remaining
pixels.

Note that all three steps, rendering, combining, and histogram evaluation
can be performed using graphics hardware and thus can be computed very fast,
speeding up the optimization.

Additionally, it is also possible to automatically find a rough initial guess
for the camera parameters. The effective focal length is first approximated by
the focal length of the applied lens system. Depending on the focal length and
the size of the object, the distance to the object can be approximated. It is as-
sumed that the object is centered in the image. What remains to be estimated
is the orientation of the camera. The optimization is simply started for a num-
ber of equally distributed sample orientation allowing just a few optimization
steps per sample. The best result is then taken as a starting point for further
optimization.

8.6.3 Texture Preparation

Knowing all camera parameters or the entire camera transformation for one im-
age, it can be stitched onto the surface of the 3D model. The image is projected
onto the the 3D model using projective texture mapping. Given a triangular
mesh the stitching is done by computing texture coordinates for each vertex
of the model that is visible in the image. Texture coordinates are calculated
by projecting the 3D coordinates of the vertices into the image plane using the
recovered camera transformation. All visible triangles can then be textured by
the image as shown in Figure 8.11.

Further, the exact transformation for projecting surface points into the im-
ages is known. This information is required when collecting all radiance
samples for one point on the objects surface into a lumitexel (compare Sec-
tion 8.4.3).

152 CHAPTER 8. HIGH QUALITY 3D MODELS

Figure 8.11: The 3D model is aligned to a captured picture which then can be
mapped as a texture onto the geometry.

A task that is still left is to determine the set of surface points for which a lu-
mitexel should be generated. In order to obtain the highest quality with respect
to the input images, the sampling density of the surface points must match that
of the images. To achieve this, every triangle of the 3D model is projected into
each image using the previously determined camera parameters. The area of
the projected triangle is measured in pixels and the triangle is assigned to the
image in which its projected area is largest. For every pixel within the pro-
jected triangle a lumitexel is generated. The position of the surface point for
the lumitexel is given by the intersection of the ray from the camera through
the pixel with the mesh (see Figure 8.12).

n

x

Figure 8.12: The correspondence between pixel position and point position on
the object is computed by tracing a ray through the image onto the object.

Since every lumitexel is assigned to a triangular region within one of the
HDR images it is possible to construct a 2D texture of lumitexels. This tex-
ture will unfortunately consist of a large number of separate triangles. Larger

8.7. INTERACTIVE DISPLAY 153

patches can be obtained by grouping adjacent triangles of the same input im-
age. However, a significant number of isolated regions will remain. Instead
of treating these regions as independent textures, it is more convenient to pack
the regions into a single image, e.g. using the technique proposed by Rocchini
et al. [RCM99]. A result of this packing is shown in Figure 8.13 where the
original color values of the input images are used to show the regions for which
lumitexels are constructed.

During texture generation all parts of the original images where only the
background is visible are discarded. Combined with dense packing of the re-
maining parts into one image, this reduces the size of the texture compared
to the overall volume of the original images. A single image has the further
advantage that it can be compressed and transformed into a streamable repre-
sentation with less effort.

Figure 8.13: Packing of the constructed texture regions for the elk model. Only
three pictures were considered in this case to better visualize the layout .

8.7 Interactive Display

After measuring the reflection properties of the object and transforming the
images into a single texture, we explain in this section how the combined data
can be displayed interactively.

154 CHAPTER 8. HIGH QUALITY 3D MODELS

8.7.1 Rendering with Arbitrary BRDFs

At first we will investigate the case of one homogeneous material, i.e. one
BRDF per object. Standard OpenGL only supports the empirical and physi-
cally implausible Phong model, which makes surfaces always look “plastic” -
like.

In order to render surfaces with other BRDFs two similar ap-
proaches [HS99, KM99] can be used. Both approaches decompose the four-
dimensional BRDF fr(!̂o; !̂i) into a product of two two-dimensional func-
tions g(!̂o) and h(!̂i). These two functions are stored in two texture maps and
re-multiplied using blending. The approach by Heidrich and Seidel [HS99]
decomposes the analytical Cook-Torrance model [CT81]. The approach by
Kautz and McCool [KM99] numerically decomposes (almost) any BRDF by
choosing a better parameterization for the BRDF.

Rendering is very simple. For every vertex of every polygon you have to
compute !̂o and !̂i and use it as texture coordinates. Then the polygon has
to be texture mapped with the textures containing g(!̂o) and h(!̂i) and the
computed texture coordinates. Blending has to be set to modulate, so that
g(!̂o) and h(!̂i) are multiplied together.

For an example of this technique, see Figure 8.4.

8.7.2 Rendering with Normal Maps

Blinn [Bli78] has shown how wrinkled surfaces can be simulated by only
perturbing the normal vector, without changing the underlying surface itself.
The perturbed normal is then used for the lighting calculations instead of the
original surface normal. This technique is generally called bump mapping.

A new algorithm has been proposed to render bump maps [Kil00] (as
shown in Figure 8.14) at interactive rates using texture maps containing per-
pixel normals, which are used to perform the lighting calculations instead of
per-vertex normals.

This algorithm relies on features now supported by many graphics cards.
These features include per-pixel dot-products, multiplication, addition, sub-
traction, so lighting models/BRDFs using only these operations can be used to
do bump mapping.

Usually the Blinn-Phong model [Bli77] is used to perform bump map-
ping, because this model mainly uses dot-products. For more details, please
see [Kil00].

8.8. EXAMPLES 155

Figure 8.14: A normal map applied to a sphere

Heidrich et al. [HDKS00] also computed consistent illumination on bump
maps in fractions of a second exploiting regular graphics hardware.

8.7.3 Spatially Varying BRDFs

One reflection model per surface can be evaluated very fast using the approach
presented in [HS99, KM99]. If the reflection properties vary across the surface
spatially varying BRDFs must be considered which have been interactively
rendered by Kautz et al. [JS00], see Figure 8.15.

Some of these algorithms take advantage of new features of current graph-
ics hardware, e.g. multi texturing and texture combiners [NVI99]. Although
they are currently not available on all client machines they will become more
and more widespread. In the future there should be a standardized way of
transmitting and rendering more complex appearance models including color,
BRDFs and bump maps.

8.8 Examples

In this section we describe some examples for high quality 3D object acqui-
sition. Geometry and reflection data have been acquired for a bronze bust of

156 CHAPTER 8. HIGH QUALITY 3D MODELS

Figure 8.15: A spatially varying BRDF applied to a sphere

Max Planck, a clay bird, and a painted models of two angles. Some statistics
about the meshes and the number of acquired views are listed in Table 8.1.

The model of the angels was generated by extracting an isosurface of a
computer tomography scan. The 3D geometry model of the bust and the bird
were acquired using a Steinbichler Tricolite structured light 3D scanner. More
than 20 scans per object were necessary to cover most of the surface. After
a manual approximate alignment the scans were pairwise registered against
each other. Finally, an optimization procedure reduced the global error. The
resulting point clouds were triangulated to form triangle meshes.

Because a structured light scanner can only acquire surface points that are
visible from the camera and projector position at the same time the bust mesh
contained several holes – mainly around the ears. They were filled manu-
ally. Afterwards, a filtering step was applied to improve the smoothness of
the meshes. In order to accelerate further processing the triangle count of the
initial models was reduced by simplifying the meshes.

The images for the textures and reflection properties were taken with a Ko-
dak DCS 560 professional digital camera, which outputs images consisting of 6
million pixels. To acquire data for the entire surface several views with varying
light source positions were captured per model (see Table 8.1). For each view
around 15 photographs were necessary: two for recovering the light source po-

8.8. EXAMPLES 157

model triangles views lumitexels rad. clusters basis
samples BRDFs

angels 47000 27 1606223 7.6 9 6
bird 14000 25 1917043 6.3 5 4
bust 50000 16 3627404 4.2 3 4

Table 8.1: This table lists the number of triangles of each model, the number
of views we used to reconstruct the spatially varying BRDFs, the number of
acquired lumitexels and the average number of radiance samples per lumitexel,
the number of partitioned material clusters, and the number of basis BRDFs
per cluster.

sition, one to extract the silhouette of the object for the 2D–3D registration,
and the rest to provide the necessary high dynamic range.

The acquisition takes about 2.5h. The high dynamic range conversion, reg-
istration with the 3D model, and the resampling into lumitexels takes about 5h
but is a completely automated task. The clustering and the final projection to
recover the BRDFs takes about 1.5h2.

Figure 8.6 shows how five successive split operations partition the lumi-
texels (the surface points) for the bird into its five basic materials. Only the
per-cluster BRDFs determined by the clustering process are used for shading.
Because of this the object looks rather flat. After performing the projection
step every lumitexel is represented as a linear combination in a basis of four
BRDFs, now resulting in a much more detailed and realistic appearance, see
Figure 8.7.

The bust in Figure 8.16 shows another reconstructed object with very dif-
ferent reflection properties. The bronze look is very well captured.

A comparison between an object rendered with an acquired BRDF (using
the presented method) and a photograph of the object is shown in Figure 8.17.
They are very similar, but differences can be seen in highlights and in places
where not enough radiance samples were captured. Capturing more samples
will increase the quality. The difference in the hair region is due to missing
detail in the triangle mesh. Those would be resolved by recovering the normal
map for the object as described in Section 8.4.4.

Generally it can be said that for all the models only a few clusters were
needed to accurately represent all the materials since the projection takes care

2All timings were measured on a single processor SGI Octane 300 MHz.

158 CHAPTER 8. HIGH QUALITY 3D MODELS

Figure 8.16: A bronze bust rendered with a spatially varying BRDF, which was
acquired with the presented reconstruction method.

of material changes. In our experiments even Lafortune BRDFs [LFTG97]
consisting of a single lobe were sufficient to form good basis for the clustering
and projection.

8.9 Conclusion

We presented a framework for acquiring high quality 3D models of real world
objects. The resulting models include both geometry and appearance informa-
tion such as textures, normal maps or spatially varying BRDFs. Each of these
is captured with a different setup. Afterwards all data is merged into a single

8.9. CONCLUSION 159

Figure 8.17: Left side: Photograph of model. Right side: Model with acquired
BRDF rendered from the same view with similar lighting direction. The dif-
ference in the hair region is due to missing detail in the triangle mesh.

model which is a fairly complete representation of the geometry and surface
properties of a large class of real world objects. In order to achieve the highest
possible quality, state-of-the-art computer vision and computer graphics tech-
niques need to be combined in the acquisition and model generation stage of
the framework.

Given such a detailed model, many computer vision algorithms such as
the reconstruction of surface normals [RTG97] or the detection of different
materials can be improved or extended to other types of objects. Common
assumptions about the characteristics of the object (e.g., pure diffuse reflection)
are no longer necessary.

The demand for high quality 3D models will further increase in appli-
cations such as computer games, digital libraries and encyclopedias, or e-
commerce applications. In order to satisfy these demands the presented meth-
ods need to be further improved with respect to acquisition speed, automation
and quality. Currently, the class of materials that can be acquired and dis-
played are limited to isotropic materials. Future algorithms should also take
effects like anisotropy and subsurface scattering into account.

160 REFERENCES

8.10 Acknowledgements

We would like to thank Thomas Neumann, Kolja Kähler, Christian Rössl,
Mario Botsch and the IMP Erlangen for their help in acquiring some of the
presented data sets. Thanks also to Jan Kautz for providing Section 8.7, and to
Philippe Bekaert for proofreading this paper.

References

[Abb95] T. M. C. Abbott. In situ CCD testing. Available at
http://www.cfht.hawaii.edu/˜tmca/cookbook/top.html, 1995.

[Ban94] D. Banks. Illumination in Diverse Codimensions. In Proceedings of SIG-
GRAPH 1994, pages 327–334, July 1994.

[BG01] Samuel Boivin and André Gagalowicz. Image-based rendering of dif-
fuse, specular and glossy surfaces from a single image. In Eugene Fi-
ume, editor, Proceedings of SIGGRAPH 2001, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 107–116. ACM Press / ACM
SIGGRAPH, August 2001. ISBN 1-58113-292-1.

[Bli77] J. Blinn. Models of Light Reflection For Computer Synthesized Pictures.
In Proceedings SIGGRAPH, pages 192–198, July 1977.

[Bli78] J. Blinn. Simulation of Wrinkled Surfaces. In Proceedings of SIGGRAPH
1978, pages 286–292, August 1978.

[BM92] P.J. Besl and N.D. McKay. A method for the registration of 3-d
shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(2):239–258, 1992.

[BMR99] F. Bernardini, J. Mittleman, and H. Rushmeier. Case study: Scanning
michelangelo’s florentine pietà. In Course Notes for SIGGRAPH 1999,
August 1999.

[CIE86] Colorimetry. Publication CIE No. 15.2, 1986.

[CS00] Brian Curless and Steven Seitz. 3D Photography. In Course Notes for
SIGGRAPH 2000, July 2000.

[CT81] Robert L. Cook and Kenneth E. Torrance. A reflectance model for com-
puter graphics. In Computer Graphics (Proceedings of SIGGRAPH 81),
pages 307–316, August 1981.

[DHT+00] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley
Sarokin, and Mark Sagar. Acquiring the reflectance field of a human face.
Proceedings of SIGGRAPH 2000, pages 145–156, July 2000.

REFERENCES 161

[DM97] P. Debevec and J. Malik. Recovering High Dynamic Range Radiance
Maps from Photographs. In Proceedings of SIGGRAPH 97, pages 369–
378, August 1997.

[GHH01] Simon Gibson, Toby Howard, and Roger Hubbold. Flexible image-based
photometric reconstruction using virtual light sources. Computer Graph-
ics Forum, 20(3), 2001. ISSN 1067-7055.

[GHLS00] Michael Goesele, Wolfgang Heidrich, Hendrik P.A. Lensch, and Hans-
Peter Seidel. Building a Photo Studio for Measurement Purposes. In
Proceedings of the 5th Conference on Vision, Modeling, and Visualization
(VMV-00), November 2000.

[GHS01a] Michael Goesele, Wolfgang Heidrich, and Hans-Peter Seidel. Color cali-
brated high dynamic range imaging with ICC profiles. In Proceedings of
the 9th Color Imaging Conference, Scottsdale, USA, 2001.

[GHS01b] Michael Goesele, Wolfgang Heidrich, and Hans-Peter Seidel. Entropy-
based dark frame subtraction. In Proceedings of PICS 2001: Image Pro-
cessing, Image Quality, Image Capture, Systems Conference, Montreal,
Canada, April 2001. The Society for Imaging Science and Technology
(IS&T).

[HDKS00] W. Heidrich, K. Daubert, J. Kautz, and H.-P. Seidel. Illuminating micro
geometry based on precomputed visibility. In Proc. of SIGGRAPH 2000,
pages 455–464, July 2000.

[HH87] Richard S. Hunter and Richard W. Harold. The measurement of appear-
ance. Wiley, 2. ed., 5. print. edition, 1987.

[HS93] P. Haeberli and M. Segal. Texture Mapping As A Fundamental Drawing
Primitive. In Fourth Eurographics Workshop on Rendering, pages 259–
266, June 1993.

[HS97] J. Heikkila and O. Silven. A Four-Step Camera Calibration Procedure
With Implicit Image Correction. In CVPR97, 1997.

[HS99] Wolfgang Heidrich and Hans-Peter Seidel. Realistic, hardware-
accelerated shading and lighting. In Proceedings of SIGGRAPH 99, Com-
puter Graphics Proceedings, Annual Conference Series, pages 171–178,
August 1999.

[Hun95] Robert W. G. Hunt. The reproduction of colour. Fountain Press, 5. ed.
edition, 1995.

[ICC98] Specification ICC.1:1998-09, File Format for Color Profiles. available
from http://www.color.org, 1998.

162 REFERENCES

[JMLH01] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Han-
rahan. A practical model for subsurface light transport. In Eugene Fi-
ume, editor, Proceedings of SIGGRAPH 2001, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 511–518. ACM Press / ACM
SIGGRAPH, August 2001. ISBN 1-58113-292-1.

[JS00] J.Kautz and H.-P. Seidel. Towards interactive bump mapping with
anisotropic shift-variant brdfs. In Proceedings of the Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware 2000, pages 51–58,
August 2000.

[KBB+00] Leif P. Kobbelt, Stephan Bischoff, Mario Botsch, Kolja Kähler, Christian
Rössl, Robert Schneider, and Jens Vorsatz. Geometric modeling based
on polygonal meshes. Technical Report MPI-I-2000-4-002, Max-Planck-
Institut für Informatik, July 2000.

[KCVS98] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. In-
teractive multi-resolution modeling on arbitrary meshes. Proceedings of
SIGGRAPH 98, pages 105–114, July 1998.

[Kil00] M. Kilgard. A Practical and Robust Bump-mapping Technique for
Today’s GPUs. NVIDIA Corporation, April 2000. Available from
http://www.nvidia.com.

[KM99] J. Kautz and M. McCool. Interactive Rendering with Arbitrary BRDFs
using Separable Approximations. In 10th Eurographics Rendering Work-
shop 1999, pages 281–292, June 1999.

[Kob96] Leif Kobbelt. Discrete fairing. In Proceedings of the Seventh IMA Con-
ference on the Mathematics of Surfaces, pages 101–131, 1996.

[LFTG97] E. Lafortune, S.-C. Foo, K. Torrance, and D. Greenberg. Non-Linear
Approximation of Reflectance Functions. In Proceedings of SIGGRAPH
1997, pages 117–126, August 1997.

[LH96] Marc Levoy and Pat Hanrahan. Light field rendering. In Computer
Graphics (SIGGRAPH ’96 Proceedings), pages 31–42, August 1996.

[LHS00] Hendrik P. A. Lensch, Wolfgang Heidrich, and Hans-Peter Seidel. Auto-
mated texture registration and stitching for real world models. In Pacific
Graphics ’00, pages 317–326, October 2000.

[LKG+01] Hendrik Lensch, Jan Kautz, Michael Goesele, Wolfgang Heidrich, and
Hans-Peter Seidel. Image-based reconstruction of spatially varying ma-
terials. In Steven Gortler and Karol Myszkowski, editors, Proceedings of
the 12th Eurographics Workshop on Rendering, pages 104–115, London,
Great Britain, 2001. Springer.

REFERENCES 163

[LPC+00] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David
Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis,
Jeremy, Ginsberg, Jonathan Shade, and Duane Fulk. The digital
michelangelo project: 3D scanning of large statues. In Proceedings of
SIGGRAPH 2000, pages 131–144, July 2000.

[Lut27] R. Luther. Aus dem Gebiet der Farbreizmetrik. Zeitschrift für technische
Physik, 8(12):540–558, 1927.

[Mad93] Brian C. Madden. Extended Intensity Range Imaging. Technical report,
University of Pennsylvania, GRASP Laboratory, 1993.

[Mar98] S. R. Marschner. Inverse rendering for computer graphics. PhD thesis,
Cornell University, 1998.

[MGR00] S. R. Marschner, B. Guenter, and S. Raghupathy. Modeling and rendering
for realistic facial animation. In Eurographics Rendering Workshop 2000,
pages 231–242, June 2000.

[MK99] Kenji Matsushita and Toyohisa Kaneko. Efficient and handy texture map-
ping on 3d surfaces. Computer Graphics Forum, 18(3):349–358, Septem-
ber 1999.

[MWL+99] S. Marschner, S. Westin, E. Lafortune, K. Torrance, and D. Greenberg.
Image-based BRDF Measurement Including Human Skin. In 10th Euro-
graphics Workshop on Rendering, pages 131–144, June 1999.

[NK99] Peter J. Neugebauer and Konrad Klein. Texturing 3d models of real world
objects from multiple unregistered photographic views. Computer Graph-
ics Forum, 18(3):245–256, September 1999.

[NVI99] NVIDIA Corporation. NVIDIA OpenGL Extension Specifications, Octo-
ber 1999. Available from http://www.nvidia.com.

[PDH+97] K. Pulli, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiro, and W. Stuet-
zle. Robust meshes from multiple range maps. In Proceedings of IEEE
International Conference on Recent Advances in 3-D Digital Imaging and
Modeling, 1997.

[PvdDJ+01] Dinesh K. Pai, Kees van den Doel, Doug L. James, Jochen Lang, John E.
Lloyd, Joshua L. Richmond, and Som H. Yau. Scanning physical inter-
action behavior of 3d objects. In Eugene Fiume, editor, Proceedings of
SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference
Series, pages 87–96. ACM Press / ACM SIGGRAPH, August 2001. ISBN
1-58113-292-1.

[RBMT98] Holly Rushmeier, Fausto Bernardini, Joshua Mittleman, and Gabriel
Taubin. Acquiring input for rendering at appropriate levels of detail: Dig-
itizing a pietà. Eurographics Rendering Workshop 1998, pages 81–92,
June 1998.

164 REFERENCES

[RBS99] Mark A. Robertson, Sean Borman, and Robert L. Stevenson. Dynamic
Range Improvement Through Multiple Exposures. In Proceedings of
the 1999 International Conference on Image Processing (ICIP-99), pages
159–163. IEEE, oct. 1999.

[RCM99] C. Rocchini, P. Cignoni, and C. Montani. Multiple textures stitching and
blending on 3D objects. In Eurographics Rendering Workshop 1999. Eu-
rographics, June 1999.

[RH01] Ravi Ramamoorthi and Pat Hanrahan. A signal-processing framework for
inverse rendering. In Eugene Fiume, editor, Proceedings of SIGGRAPH
2001, Computer Graphics Proceedings, Annual Conference Series, pages
117–128. ACM Press / ACM SIGGRAPH, August 2001. ISBN 1-58113-
292-1.

[RTG97] Holly Rushmeier, Gabriel Taubin, and André Guéziec. Applying shape
from lighting variation to bump map capture. Eurographics Rendering
Workshop 1997, pages 35–44, June 1997.

[SHR+99] Hartmut Schirmacher, Wolfgang Heidrich, Martin Rubick, Detlef Schi-
ron, and Hans-Peter Seidel. Image-based BRDF reconstruction. In Bernd
Girod, Heinrich Niemann, and Hans-Peter Seidel, editors, Proceedings
of the 4th Conference on Vision, Modeling, and Visualization (VMV-99),
pages 285–292, nov 1999.

[Stu99] Wolfgang Stuerzlinger. Imaging all visible surfaces. In Graphics Inter-
face ’99, pages 115–122, June 1999.

[Tau95] G. Taubin. A signal processing approach to fair surface design. Proceed-
ings of SIGGRAPH 1995, pages 351–358, 1995.

[TS67] K. E. Torrance and E. M. Sparrow. Theory for off-specular reflection
from roughened surfaces. Journal of the Optical Society of America,
57(9):1105–1114, September 1967.

[Tsa87] R. Tsai. A versatile camera calibration technique for high accuracy 3d
machine vision metrology using off-the-shelf tv cameras and lenses. IEEE
Journal of Robotics and Automation, 3(4), August 1987.

[Wal] Dawn Wallner. Building ICC profiles – the mechanics and engineering.
available at http://www.color.org/iccprofiles.html.

[War92] G. Ward. Measuring and modeling anisotropic reflection. In Proceedings
of SIGGRAPH 1992, pages 265–272, July 1992.

[WB01] Don Williams and Peter D. Burns. Diagnostics for digital capture using
MTF. In Proceedings of PICS 2001: Image Processing, Image Quality,
Image Capture, Systems Conference, pages 227–232, Montreal, Canada,
April 2001. The Society for Imaging Science and Technology (IS&T).

REFERENCES 165

[YDMH99] Yizhou Yu, Paul Debevec, Jitendra Malik, and Tim Hawkins. Inverse
global illumination: Recovering reflectance models of real scenes from
photographs. Proceedings of SIGGRAPH 99, pages 215–224, August
1999.

[Zha99] Zhengyou Zhang. A Flexible New Technique for Camera Calibration.
Technical Report MSR-TR-98-71, Microsoft Research, 1999. Updated
version of March 25, 1999.

166 REFERENCES

Chapter 9

Fast and Accurate
Integration of Vector Fields
in Unstructured Grids

Frank Reck, Günther Greiner�

Particle tracing is a widely used method to analyze and interpret re-
sults of a flow simulation. In addition, it is a preliminary step for more
advanced techniques of flow visualization, e.g. line integral convolution.

For interactive exploration of large data sets, a very efficient and re-
liable particle tracing method is needed. For data on unstructured grids
and data sizes, as they appear in the simulation of wind channel exper-
iments (e.g. automative industry) flight simulation (e.g. aircraft indus-
try), the traditional approach, based on numerical integration methods of
ordinary differential equations does not allow sufficiently accurate path
calculation at the speed required for interactive use.

Traditional integration techniques require small stepsizes in order to
achieve sufficient accuracy. This results in many cell search operations,

�Universität Erlangen-Nürnberg, Lehrstuhl für Graphische Datenverarbeitung, Erlangen, Ger-
many. E-Mail: fkreck@immd9.informatik.uni-erlangen.de,greiner@informatik.uni-erlangen.de

167

168 CHAPTER 9. FAST ACCURATE INTEGRATION

which means especially for unstructured grids a bottleneck of the whole
procedure.

In [NJ99] Nielson and Jung have proposed a new method, called fur-
ther on locally exact method, which gives sufficient accuracy and traverses
each cell in a single step. In this note we extend the approach of Nielson
and Jung in such a way that it can be performed in real time. This will
be achieved by a sophisticated preprocessing, which allows a fast execu-
tion of the locally exact integration method, interactive particle tracing in
large data sets can be done. We describe the procedure, compare it with
Nielson’s original approach, as well as with the traditional method based
on numerical integration and report on the performance of the different
methods.

9.1 Introduction

In many scientific areas as well as in technical applications, Computational
Fluid Dynamics (CFD) is of central importance. The result of a fluid dy-
namics simulation are data sets which usually describe the flow behavior in
a 3D-environment. To understand the characteristics of the simulated process,
a meaningful visualization of the data is necessary. The raw data are defined
on a discrete structure, a grid, which s build up out of many cells. In the nodes
or vertices of the grid the velocity (a vector field) and other simulation data,
e.g. pressure, density, energy (scalar values) are stored.

One of the most common methods of acquiring knowledge of flows is the
use of particle tracing [SvWHP94, USM96, NJS+97, NJ99, KL95, Frü94].
It is also the basis of many other visualization techniques such as Streak-
lines, Streakribbons, Time-Surfaces or Line Integral Convolution (LIC) (see
[CL93]). This visualization method shows the trajectory of one mass-less par-
ticle in the flow. The trajectory is obtained by the integration of the ordinary
differential equation corresponding to the vector field.

The integration is usually done numerically. In this paper we describe an-
other approach for vector fields defined on a tetrahedral mesh, i.e. an unstruc-
tured grid in which all cells are tetrahedrons. It is a modification of the exact
integration method introduced in [NJ99]. This method traverses every cell in
a single step. Our modification comprises a sophisticated pre-processing of the
data, which results in a classification of the cells and provides for each cell suf-
ficient information to perform the exact integration very fast. We determine the

9.2. PARTICLE TRACING IN TETRAHEDRAL GRIDS 169

exact exit points of the particle for every cell that is traversed by the particle.
The particle trace is the polyline of the particle or any interpolating curve. In
contrast to all the numerical integration schemes, this approach guarantees that
the local errors will not accumulate. Hence it is globally rather accurate.

The paper is organized as follows: In the next section we review the ex-
isting methods for particle tracing in unstructured grids. At first we briefly
describe the method based on numerical integration of ordinary differential
equations and then in a more detailed way the exact method due to Nielson
et al [NJ99]. In Section 3 we outline our modification of the exact method,
in particular, we explain the data structures used, describe the preprocessing
step in detail and give pseudocode for the algorithm. Section 4 is the result
section. We compare the accuracy of the different methods as well as the time
performance.

9.2 Particle Tracing in Tetrahedral Grids

Particle tracing in a vector field ~v(x) (considered as the velocity field) amounts
solving the initial value problem for an ordinary differential equation (ODE)

dx(t)

dt
= ~v(x(t)) x(t0) = x0: (1)

Whereas x(t) represents the position of the particle at the time t, starting at
time t0 at position x0.

The vector field ~v is usually not given as an analytic function, only at cer-
tain samples, usually in the vertices of a grid. In this paper we will only discuss
unstructured grids, more precisely, in Euclidean 3D-space we consider tetrahe-
dral meshes or, when we consider the 2D-analogue, we have got triangular
meshes in the plane. In most cases these data result from a numerical simula-
tion and the mesh is the grid from the numerical simulation (e.g. finite volumes
or finite elements).

9.2.1 Numerical Integration Methods

The standard way to solve the ODE is numerical integration. This topic is
well investigated and there are many different methods [TGE97] [DH96]:
single-step or multi-step methods, explicit or implicit methods, constant or

170 CHAPTER 9. FAST ACCURATE INTEGRATION

variable step-size. We only outline the steps needed to apply such an inte-
gration scheme. The basic steps are:

// point location:
find cell containing initial position

while particle in grid
// interpolation:
determine velocity at current position
// integration:
calculate new position:
// point location
find cell containing new position

endwhile

By this procedure we get a sequence of sample points x(tn) of the path
line, approximating the position of the particle at time tn, i.e. xn x(tn). The
polyline connecting these points will then be an approximation to the path line
of the particle.

The step “calculation of the new position” is the integration step, the sim-
plest method is the Euler’s method

xn+1 = xn + (tn+1 � tn) � ~v(xn)
more accurate are Runge-Kutta methods (RKp) of order p, e.g. RK2 also
known as Heun’s method:

k1 = xn + (tn+1 � tn) � ~v(xn)
xn+1 = xn + (tn+1 � tn) � 1=2(~v(xn) + ~v(k1))

RK4 which is the classical Runge-Kutta-Method.

k1 = xn + (tn+1 � tn)1=2 � (tn+1 � tn) � ~v(xn)
k2 = k1 + (tn+1 � tn)1=2 � (tn+1 � tn) � ~v(k1)
k3 = xn + (tn+1 � tn)(tn+1 � tn) � ~v(k2)

xn+1 = xn + (tn+1 � tn) � 1=6(~v(xn) + 2 � ~v(k1)
+2 � ~v(k2) + ~v(k3))

The order p of a Runge Kutta method denotes the order of the local ap-
proximation error. For p = 1 it is identical with Eulers’s method, if it is 2, with

9.2. PARTICLE TRACING IN TETRAHEDRAL GRIDS 171

Heun’s method. Higher order means greater exactness, but also more time
for the calculation. Another factor which influences the correctness and time
behavior is the step size. The shorter the step size in a particle trajectory cal-
culation, the higher is the number of steps to be executed and the longer is the
duration of the process. At the same time error will be smaller. An approach
to overcome this is the use of adaptive methods, which influence their step size
according to a user given error. These methods aren’ t deprived of problems:
Who can the error be measured? What is a large or a small error for a specified
data set? What is the maximum still meaningful step size?

Another problem and time consuming factor in this approach is the point
location, which is necessary after each integration step. This can be done easily
in rectilinear grids, but in irregular grids a time consuming cell search is needed
for every evaluation.

The method described in the next section does not suffer from these prob-
lems.

9.2.2 Local Exact Integration

This method has been introduced by Nielson and Jung [NJ99]. The basic
observation is the following. We know the vector field only in the vertices
of the tetrahedral mesh. For the values in between all we have to do is to
interpolate. The simplest and most efficient way is linear interpolation. That
is we consider the vector field as piecewise linear mapping. Since for linear
mappings ~v the ODE (1) can be solved analytically, in each tetrahedral cell we
can determine the exact path-line, for the linearly interpolated vector field.

In fact, for the “ linear vector field”

~v(x) = Ax+ b

with a square matrix A and a translation vector b the analytic solution of 1 is

x(t) = e(t�t0)Ax0 + (e(t�t0)A � Id)A�1b (2)

where the exponentials of the matrices are given by the usual series expansion,
e.g.,

e(t�t0)A =

1X
k=0

(t� t0)
k

k!
Ak (3)

This can be calculated much faster can this be if the “normal form” of the ma-
trices are known, e.g. whenA has three (different) real eigenvalues � 1; �2; �3,

172 CHAPTER 9. FAST ACCURATE INTEGRATION

then, with the transformation matrix formed by the eigenvectors ~b1; ~b2; ~b3; we
have

A =

0
@ j j j

~b1 ~b2 ~b3
j j j

1
A
0
@ �1 0 0

0 �2 0
0 0 �3

1
A
0
@ j j j

~b1 ~b2 ~b3
j j j

1
A

�1

: (4)

In case of complex eigenvalues, this representation is also valid. However,
since calculations with real numbers are simpler we rather consider a “ real nor-
mal form” in this case. Assuming that the real matrix A has complex eigenval-
ues, then these appear as a conjugate pair: �1 = �+ i�; �2 = �� i�; (� > 0)
and a real eigenvalue �3. The transformation to the “ real normal form” of A is
given by

A =

0
@ j j j

~b1 ~b2 ~b3
j j j

1
A
0
@ � � 0

�� � 0
0 0 �3

1
A
0
@ j j j

~b1 ~b2 ~b3
j j j

1
A

�1

(5)

In this case ~b1 and ~b2 are the real and the imaginary part of the eigenvector
corresponding to �1 = � + i� , and~b3 is the eigenvector corresponding to �3.

Using the normal forms (4) and (5) respectively, the expontionals of A can
be determined as follows,

e
~tA = S

0
@e�1(

~t) 0 0

0 e�2(~t) 0

0 0 e�3(~t)

1
AS�1

and

e
~tA = S

0
@ e�~t cos(�~t) e�~t sin(�~t) 0

�e�~t sin(�~t) e�~t cos(�~t) 0

0 0 e�3(~t)

1
AS�1

whereas ~t stands for t� t0. Then the analytic solution from 2 is in the real
case

x(t) = S�(t)S�1x0 + S�(t)S�1b (6)

9.2. PARTICLE TRACING IN TETRAHEDRAL GRIDS 173

with the diagonal matrices �(t) and �(t) given in the real case by

�(t) =

0
@e�1

~t 0 0

0 e�2
~t 0

0 0 e�3~t

1
A (7)

�(t) =

0
BB@

e�1
~t�1
�1

0 0

0 e�2
~t�1
�2

0

0 0 e�3
~t�1
�3

1
CCA (8)

and in the complex case by a slightly more complicated form.
So far we have tacitly assumed that all eigenvalues are different from each

other and different from zero (otherwise A�1 does not exist). Concerning
the first restriction, we point out that this is the generic case, i.e. choosing
randomly any tetrahedron and assigning randomly vectors to its vertices, the
probability of obtaining identically eigenvalues will be zero. And our examples
coming from a simulation also show, that this situation rarely occurs. Actually,
the second restriction (non-zero eigenvalues) was only needed to derive the re-
sult more easily. The final formulas make sense and are also correct for zero
eigenvalues. In this case in �(t) the term e�(t�t0)�1

� has to be replaced by
t� t0.

Due to these remarks, in contrast to [NJ99], we do not pay much attention
to all the other possible cases: zero eigenvalues, identical eigenvalues, multiple
eigenvectors, and identical eigenvalues single eigenvector. If one of these cases
occurs, we cross the cell by standard numerical integration methods (details see
below).

9.2.3 Comparison

The differences of the two methods can be briefly summarized:

� The locally exact method gives the exact solution, provided that (1) the
numerical errors are neglected, and (2) one assumes that the underlying
vector field is obtained by linear interpolation.

� for the LEM no point location is necessary. In fact, knowing the neigh-
bors of a tetrahedron (one for each face), the next tetrahedron to be pro-
cessed is given by the location of the exit point.

174 CHAPTER 9. FAST ACCURATE INTEGRATION

� Using the LEM one does not have to specify the stepsize, nor does one
have to take care of (adaptively) modifying it. In fact, somehow the
adaptation is build in. For simulation, typically in (numerically) critical
areas, or areas of special importance one has a fine mesh of tetrahedrons.
In these areas, the path segments produced by the LEM are then small as
well.

9.3 Modification of Nielson’s Approach

At first we give an overview of our modification of the method due to Nielson
and Jung. We continue to denote this method LEM.

9.3.1 Overview of the local exact method

We classify the tetrahedron as normal cells, parallel cells and extraordinary
cells. Parallel cells are cells whose vector field does not change its direction (all
four velocity vectors point in the same direction), for the linearly interpolated.

A cell is normal when the linearl when the linear part of the (the linearly
interpolated) vector field has three different eigenvalues, and in addition the
critical point of the vector field is located outside the tetrahedron.

All the remaining cells are declared to be extraordinary cells.
When the path line enters a parallel cell, the intersection of the ray starting

at the entering point in direction of the vector field with the tetrahedron is
computed. This is the exit point and the next entrance point for the neighboring
cell.

When the path line enters a normal cell we determine the intersection point
of the exact solution (given by formula (2)) and the exit face of the tetrahedron.
This is the exit point and the next entrance point for the neighboring cell.

When entering an extraordinary cell we switch to a Runge-Kutta integration
scheme, till the cell search routine detects a new cell. Finally we display the
polyline connecting all entrance/exit points.

9.3.2 Data structure

The basic data structure of simulation data over an unstructured grid consists
of a list of all vertices of the space partition and a list of all cells (tetrahedron
in our case). One entry in the vertex list contains:

9.3. MODIFICATION OF NIELSON’S APPROACH 175

V1) x�, y� and z� coordinate of the vertex
V2) the simulation data at this point, most important for our consideration the
vector field ~v (x�, y� and z� component) describing the flow and possibly
additional simulation data, e.g. pressure, internal energy, temperature.

An entry in the cell list contains
C1) Four references to the vertex list, representing the vertices of the tetrahe-
dron. The sequence determines the internal enumeration V 0, V1, V2, V3 and it
is always chosen such that the four vertices are positively orientated.
C2) Four references to the neighboring cells (tetrahedra): The first one, T 0 is
opposite to the vertex V0, T1 to V1 and so on.
C3) flag indicating the type of the cell.
C4) information concerning the internal enumeration of the neighboring cells.
C5) Information of the linearly interpolated vector field ~v(x) = Ax+ b :
e.g. the translation vector b (or S�1b) and eigenvalues and eigenvectors of A.

The flag for the type of the cell indicates whether we have a parallel cell,
a normal cell with real eigenvalues, a normal cell with complex eigenvalues or
an extraordinary cell. This information is needed because any cell type will be
treated differently when the path line is calculated.

The data described in C4) are needed when exiting a cell and entering the
neighboring cell. Then it is advantageous to know which is the entrance face,
and which is the correspondence of the common vertices: Since all tetrahedra
are required to be positively orientated, this can be coded in 4 bits (for one
neighboring tetrahedron). In fact, the internal index of the opposite vertex has
to be known (2 bits) and the internal index of one additional vertex (2 bits), e.g.
the one whose internal index is obtained by bit flip must be known.

T0
vertex opposite to V0 (2 bits)
vertex coincide with V3 (2 bits)

T1
vertex opposite to V1 (2 bits)
vertex coincide with V2 (2 bits)

T2
vertex opposite to V2 (2 bits)
vertex coincide with V1 (2 bits)

T3
vertex opposite to V3 (2 bits)
vertex coincide with V0 (2 bits)

176 CHAPTER 9. FAST ACCURATE INTEGRATION

9.3.3 Preprocessing

In the preprocessing step, we first determine the type of the cell (parallel, nor-
mal or extraordinary); for the normal cells an eigenvalue/-vector analysis must
be performed in order to supply the information listed in C5 of Sec. 9.3.2

To determine the cell type we first check the velocity vectors ~v0, ~v1, ~v2
and ~v3. If they all point in the same direction, the cell gets the label parallel
and we store this direction. In the implementation we specify a threshold �P
which somehow measures the deviation of the directions given by the vector
field in the four vertices. A detailed description will be given below.

For the non-parallel cells we determine the linear interpolation ~v(x) =
Ax + b of the vector field. The 3� 3 matrix A and the translation vector b are
uniquely determined by the four vector equationsAV i+b = ~vi, (i = 0; 1; 2; 3).

Now we perform an eigenvalue/-vector analysis of A. First the eigenvalues
have to be found. This is done with the formula of Cardano, which allows
the analytical calculation of the zeros of the third order polynomial. First we
check whether the three eigenvalues are different (i.e. differ at least by some
threshold), all real or whether two of them are complex conjugates. Then we
label the cells to be either normal & real or normal & complex and otherwise
extraordinary. As already pointed out the latter case rarely occurs. Finally we
check whether the critical point xcrit of the linearly interpolated vector field
lies in the tetrahedral cell: (Axcrit +~b = 0 or xcrit = �A�1~b). If so, we also
label this cell to be extraordinary.

If the cell is normal & real we determine the eigenvectors ~b1, ~b2 and
~b3 corresponding to the three eigenvalues �1, �2 and �3. By changing the
length of the eigenvectors we can achieve that det(~b1;~b2;~b3) = 1. With
the eigenvalues the transformation matrix S = (~b1;~b2;~b3) and its inverse
S�1 = (~b2 �~b3;~b3 �~b1;~b1 �~b2)

t can be determined. Finally we store S�1~b.
If the cell is normal & complex we have eigenvectors � + i� , � � i� and

�3, with �, � , �3 being real numbers and � > 0. b1 and b2 will be the real and
the complex part of the complex eigenvector corresponding to � + i� . b 3 is as
before the eigenvector to �3. As before, by appropriate scaling we can achieve
that det(~b1;~b2;~b3) = 1.

A =

0
@

j j j
~b1

~b2
~b3

j j j

1
A
0
@

� � 0
�� � 0
0 0 �3

1
A
0
B@

�~b2 �~b3 �

�~b3 �~b1 �

�~b1 �~b2 �

1
CA (9)

9.3. MODIFICATION OF NIELSON’S APPROACH 177

9.3.4 Calculation of path lines in world coordinates

Given an initial point in a tetrahedron, we determine successively the exit
points of the exact path line. The exit point is the entrance point to neighboring
tetrahedron.

To start the process, we first have to identify the cell containing the ini-
tial point by a standard cell searching procedure. Further on no cell search
operation are necessary.

For the cell we know the eigenvalues and the transformation matrix S =
(~b1;~b2;~b3), S�1b and can thus compute the inverse S�1. Then the pathline
x(t) is given by Equ. (6). We determine the intersection of x(t) with the four
planes spanned by the faces of the tetrahedron and use as exit point the one
which has the smallest positive t-value.

The intersection point of x(t) with the plane corresponding to face F 0 =
�(V1; V2; V3) is obtained by solving det(x(t) � V3; V1 � V3; V2 � V3) or

hx(t)j(V1 � V3)� (V2 � V3)i = hV3j(V1 � V3)� (V2 � V3)i
and using (6)

h�(t)S�1x0jStransp((V1 � V3)� (V2 � V3))i
+ h�(t)S�1bjStransp((V1 � V3)� (V2 � V3))i

= hV3j(V1 � V3)� (V2 � V3)i
We use the Newton method to solve this equation, starting with the initial value
t0 = 0

Inizalization:
A = S�1x0
B = Stransp((V1 � V3)� (V2 � V3))
(C = S�1b is precalculated)
a = hV3j(V1 � V3)� (V2 � V3)i
t = 0
f = AxBx +AyBy +AzBz

f 0 = �1AxBx + �2AyBy + �3AzBz + CxBx + CyBy + CzBz

do until convergence

t = t+
a� f

f 0
(10)

178 CHAPTER 9. FAST ACCURATE INTEGRATION

f = e�1tAxBx + e�2tAyBy + e�1tAzBz +
e�1t�1
�1

CxBx + e�2t�1
�2

CyBy +
e�3t�1
�3

CzBz

f 0 = �1e
�1tAxBx+�2e

�2tAyBy+�3e
�1tAzBz+ e�1tCxBx+ e�2tCyBy+

e�3tCzBz

enddo
These are the formulas for the case of real eigenvalues.

9.4 Results

The program was tested on an Octane from SGI, with a single MIPS R12000
300 MHz processor.

We tested our modified method on three different data sets; all of them
are results of air-flow simulations. They were obtained by simulating the flow
around a sphere (8193 tetrahedrons and 1550 points), a car model (457874
tetrahedrons and 89881 points) (see Figure 9.2) and the model of a space shuttle
(1058775 tetrahedrons and 190584 points) (see Figure 9.1) respectively.

9.4.1 Regular vs. non-regular cells

As explained above, in the pre-processing we label the cells as regular, paral-
lel and extraordinary. Tracing a particle through a parallel cell is simple and
fast, even faster than for regular cells. Extraordinary cells are traversed by
traditional numerical integration (Runge Kutta method) until the necessary cell
searching routine indicates that a new cell has been reached. This is rather time
consuming. However, this case hardly ever occurs. In fact, Table 9.1 shows,
that less than 0.5 % of the cells are of the extraordinary type.

Table 9.1: Number of extraordinary cells.

of cells sphere data car data shuttle data
total 8,193 457,874 1,058,785
extraord. 15 1,247 3,232

As to the number of parallel cells (which can be traversed very fast) the
actual condition under which the cells are singled out are decisive. One way

9.4. RESULTS 179

Figure 9.1: Space Shuttle model.

would be to restrict the maximal angular deviation of the vectors at the four
vertices. We have chosen a different approach. A cell is parallel provided
that two of the three eigenvalues are zero. In the implementation we specify a
threshold �P and label a cell as parallel if the absolute value of two eigenvalues
is smaller than �P . Of course, the number of parallel cells then depends on the
threshold �P . In Table 9.2 we list the numbers of parallel cells for different
threshold values.

The threshold value we used in our method is 0.0001, the one marked in
Table 9.2 by the asterisk. Thus approximately 10 % of the cells were parallel.
By using �P = 0:001 one can speed up the method without loosing much
accuracy.

9.4.2 Precision

The precision of this method was already investigated by Nielson in [NJ99].
Screenshot 9.3 and 9.4 show a sphere within a circular flow. The correct parti-

180 CHAPTER 9. FAST ACCURATE INTEGRATION

Figure 9.2: Car model in the wind tunnel.

Table 9.2: Influence of the threshold �P to the number of cells who are parallel.

Number of parallel cells for different �P
threshold �P car data shuttle data
0.0000001 43,886 2,071
0.000001 44,074 18,910
0.00001 45,309 33,773
0.0001 52,670 86,232 �
0.001 144,288 366,028
0.01 446,722 851,158
0.1 457,869 1,052,720

cle path would stay on a circle. The Runge-Kutta method of order two fails to
hold the distance, whereas the local exact method finds the correct path.

Our modification allows a scaling of the precision, the number of Newton
iterations has got an influence on the accuracy.

More iterations will achieve a more accurate solution. Table 9.3 shows how
many iterations are required to reach a given accuracy. If the increment of the
parameter t in (10) is below a given threshold �N then the iteration stops. Since

9.4. RESULTS 181

Figure 9.3: The Runge-Kutta method
of order 2 does not manage to stay on
the circle.

Figure 9.4: This trajectory was com-
puted with the locally exact method.

the converge order of the Newton method is quadratic, the costs for a much bet-
ter result are comparatively small. The visual effect of such an improvement,
e.g. the change of the threshold from 0.1 to 0.01 is not observable. Experi-
ments have shown that it is normally sufficient to execute only four Newton
iterations.

Table 9.3: Influence of the threshold �N on the average number of the Newton
iterations.

Sphere data set
threshold �N Iterations time

1.0e-1 3.76 1.17
1.0e-2 4.94 1.21
1.0e-4 6.29 1.26
1.0e-8 8.00 1.28

1.0e-16 8.29 1.40

182 CHAPTER 9. FAST ACCURATE INTEGRATION

9.4.3 Memory Requirement

In a preprocessing step, the cells undergo a transformation. The information
is stored in order to speed up the calculation. A data set consists of two large
structures, one for the vertices and one for the cells. A vertex holds at least
the information about one position-vector and one flow-vector. One cell, in our
case a tetrahedron, knows its four edge-vertices and for visualization purposes
its four neighbors. This will cause a memory need of 8 pointers or 32 Byte.
The storage requirement for our variation of the method is higher, it also stores
the three eigenvalues (3*double), three eigenvectors (3*3*doubles, the critical
point (3*double) and the flag for the type information (1*int). We stored these
things as doubles, so our cell needs 156 bytes of memory. If we look at a single
cell, we need 4.85 times more memory. In practice this factor is approximately
3.85, if all cells can be used for the method. It decreases because the memory
size for the vertex structure remains the same for both ways.

9.4.4 Time behavior

Table 9.4 shows the overall time, for all methods. The calculated paths consist
always of the same number of steps and the same length, so the average step
size is the same. The path itself can differ, because the accuracy is not the same
in every case. We have measured our method with and without preprocessing,
in the latter case the transformation is made when a curve enters a tetrahedron
(on the fly) and not in a preprocessing step.

Table 9.4: Timetable for all methods.

Sphere data set
method time
Euler 4.92
Heun 6.63

Runge-Kutta 3 10.13
Runge-Kutta 4 10.34
Exact on the fly 15.5

Exact with memory 3.93

9.5. ACKNOWLEDGEMENTS 183

9.4.5 Advantages

The obvious disadvantage of our method is that it needs more memory. On the
other hand, however, the particle tracing method we have presented is faster
than the ordinary Euler method and even more accurate than the Runge-Kutta
integration schemes of order 4, so you trade memory usage for accuracy and
speed. Furthermore, with our tracing method we overcome the most important
disadvantage of normal and even adaptive methods: The correct choice of the
step size. For the user it is hard to estimate the error which results from a partic-
ular, chosen step size in particular, when the pathline traverses cell boundaries.
An adaptive method tries to calculate this error. In order to do this reliable,
assumptions about the smoothness of the flow have to be made. If this assump-
tion with regard to the smoothness is not valid, a small vortex can be missed
altogether using traditional methods. The new method presented here cannot
miss such a vortex because it visits all the cells which are crossed by the trace,
taking advantage of the grid structure.

9.5 Acknowledgements

The investigations were supported by the German Science Foundation DFG,
which funds the Sonderforschungsbereiches 603

”
Modellbasierte Analyse und

Visualisierung komplexer Szenen und Sensordaten,“ , Teilprojekt C7
”
Adaptive

Verfahren zur Berechnung und Visualisierung von mechatronischen Sensoren
und Aktoren“

References

[CL93] B. Cabral and L. Leedom. Imaging Vector Fields Using Line Integral
Convolution. In J. T. Kajiya, editor, Computer Graphics Proceedings,
volume 27 of Annual Conference Series, pages 263–270, Los Angeles,
California, August 1993. ACM SIGGRAPH, Addison-Wesley Publishing
Company, Inc.

[DH96] D. Darmofal and R. Haimes. An analysis of 3d particle path integration
algorithms. Journal of Computational Physics, 123:182–195, 1996.

[Frü94] Thomas Frühauf. Interactive visualization of vector data in unstructured
volumes. Computers and Graphics, 18:73–80, 1994.

[KL95] David Kenwright and David Lane. Optimization of time-dependent parti-
cle tracing using tetrahedral decomposition. In G. M. Nielson and D. Sil-

184 REFERENCES

ver, editors, IEEE Visualization ’95, Los Alamitos, CA, 1995. IEEE Com-
puter Society Press.

[NJ99] Gregory M. Nielson and II-Hong Jung. Tools for computing tangent
curves for lineary varying vector fields over tetrahedral domains. IEEE
Transactions on Visualization and Computer Graphics, pages 360–372,
1999.

[NJS+97] G. M. Nielson, I.-H. Jung, N. Srinivasan, J. Sung, and J.-B. Yoon. Tools
for Computing Tangent Curves and Topological Graphs for Visualizing
Piecewise Linearly Varying Vector Fields over Triangulated Domains. In
G. M. Nielson, H. Hagen, and H. Müller, editors, Scientific Visualization:
Overviews, Methodologies, and Techniques, chapter 21, pages 527–562.
IEEE Computer Society Press, Los Alamitos, California, 1997.

[SvWHP94] Ari Sadarjoen, Theo van Walsum, Andrea J. S. Hin, and Frits H. Post.
Particle tracing algorithms for 3D curvilinear grids. Technical Report
DUT-TWI-94-80, Delft University of Technology, 1994.

[TGE97] C. Teitzel, R. Grosso, and T. Ertl. Efficient and Reliable Integration
Methods for Particle Tracing in Unsteady Flows on Discrete Meshes.
In W. Lefer and M. Grave, editors, Eighth Eurographics Workshop on
Visualization in Scientific Computing, pages 49–56, Boulogne sur Mer,
France, April 1997. EG, The EuroGraphics Association.

[USM96] S. Ueng, K. Sikorski, and K. Ma. Efficient streamline, streamribbon, and
streamtube constructions on unstructured grids. IEEE Transactions on
Visualization and Computer Graphics, 2:100–110, 1996.

Chapter 10

Some Notes on Sampling in
Computer Graphics

Andreas Schilling�

”Nobody will ever figure out how to do antialiasing” said Jim Blinn
in his keynote address at Siggraph ’98. Already 21 years earlier, in 1977,
he had included antialiasing in a list of unsolved problems in computer
graphics which he had compiled together with Martin Newell. And al-
though the quote from 1998 was not meant to be taken totally serious, he
included the same problem again in his 1998 list of unsolved problems.

Antialiasing deals with artifacts that are a consequence of sampling,
the process of forcing the quasi continuous world into discrete representa-
tions for digital processing. Since the 1970ies, when raster displays started
to replace the vector displays, uniform sampling and reconstruction have
always been performed in computer graphics, sometimes without know-
ing it or analyzing the problems in depth. The removal of the aliasing
artifacts has been undertaken in many different ways, and some very in-
teresting solutions have been developed, probably sometimes also without
deeper analysis of the sampling process.

�WSI/GRIS, Universität Tübingen, Germany. E-Mail: schilling@uni-tuebingen.de

185

186 CHAPTER 10. NOTES ON SAMPLING

In this paper we will give a short introduction into sampling problems
in image related research. In contrast to other work on this subject we put
special emphasis on the analysis of the whole chain of filtering - sampling
- reconstruction, which leads to a better understanding of what ”ideal an-
tialiasing” should mean. We will conclude with some notes on practical
antialiasing techniques.

10.1 Introduction

Sampling problems are problems that arise when a continuous function has to
be represented by a limited number of sample values. Well known examples
are moiré effects in images or staircase artifacts in computer generated lines.
But sampling problems do not only arise, when pixelated images are displayed:
The representation of a surface by the vertices of a triangle-mesh or by control
points in the case of a freeform surface represents a process of sampling and
reconstruction, which leads to similar problems. In the last years many efforts
have gone into solving problems related directly or indirectly to discrete sam-
pling. In this context not only antialiasing techniques have to be mentioned,
but also mesh simplification, multiresolution techniques and even methods for
lighting scenes.

First we will give a short introduction into the problem of discretization.
Then we will address some application areas in the image related sciences,
where discretization problems play an important role.

The third section discusses solutions for the problems in the context of
sampling and reconstruction.

Finally we will conclude with a note on mip-mapping and formulate a prin-
ciple that must be considered when creating multiresolution meshes.

10.2 Discretizing Continuous Signals

The way digital computers work requires, that information represented by the
computer is of discrete nature. Therefore, continuous signals can normally
only be represented in the form of an approximation. The conversion of con-
tinuous functions (e.g. images or sounds) from the continuous form to a digital
representation has two aspects: first, the values (scalar or vector) need to be
represented by digital numbers. This discretization of the range is called quan-

10.2. DISCRETIZING CONTINUOUS SIGNALS 187

tization and is not covered here in more detail, although it is in no way trivial,
especially for vectors.

The second aspect, the topic of these notes, is the representation of a func-
tion with continuous domain by a finite number of such numbers. Often, the
term discretization is used in this more narrow sense of discretization in the
domain of a continuous function. One possibility for discretization (that even
preserves a continuous domain) is to represent the function by a finite set of
suitable basis functions.

10.2.1 Sampling and Reconstruction

In practice, functions are often discretized by sampling them at selected points
within their domain. If the function fulfils certain conditions, it can be shown
that this sampling corresponds to a representation of the original function by
basis functions. These conditions are specified in the so called sampling the-
oremes (see below). If they are not met, special problems emerge, that have
been extensively studied in the context of signal processing.

In computer graphics, the problem of sampling is most obvious in the con-
text of image sampling. Images are stored and displayed in the form of raster
images; therefore synthetic images as well as natural images have to be decom-
posed into lines and pixels.

The opposite process, the generation of a continuous function from dis-
crete values, is called reconstruction. For images, this reconstruction is accom-
plished e.g. by outputting the sample values to a screen. Basically, reconstruc-
tion can be deemed to be a filtering step.

Fig. 10.1 gives an overview over the standard process of sampling and re-
construction of continuous functions. It suggests itself to perform the sampling
on a regular grid, as not only the sampling but also the reconstruction is espe-
cially simple in this case. However, regular sampling is in no way imperative.

It can be seen that sampling is preceded by a filtering step which enforces
the aforementioned conditions, under which reconstruction can be performed
by multiplying the sample values with the corresponding basis functions.

Usually the filter that precedes sampling as well as the reconstruction filter
are linear, shift invariant filters. However, this too is not imperative; some kinds
of functions can only be reconstructed from sample values, if nonlinear filters
are used. An example is shown in Fig. 10.2.

Fig. 10.3 shows different types of reconstruction filter kernels (basis func-
tions) and for each of them an example of a function, that can be represented

188 CHAPTER 10. NOTES ON SAMPLING

sampling

prefiltering

reconstruction

A: original function

B: prefiltered function

C: sample values

D: reconstructed function

Figure 10.1: Standard process of sampling and reconstruction of continuous
image signals

with these basis functions without error.
If the original function is not such a superposition of the basis functions,

deviations or errors can not be avoided. In the context of sampling and re-
construction, we observe however not only such unavoidable approximation
errors, but often the approximation is not performed in an optimal way, so that
additional avoidable errors occur. A special type of error arises as a conse-
quence of sampling the function without optimal prefiltering. High frequency
components of the original function lead to bogus low frequency structures in
the reconstructed function. This is called aliasing, see Fig. 10.4. Reducing
aliasing errors is an active area of research in computer graphics and image
processing.

10.3 Application Areas

10.3.1 Image Synthesis

Sampling problems in computer graphics arise in different contexts. Image
synthesis, which has already been mentioned, is among the most important

10.3. APPLICATION AREAS 189

binarization

postfilter: tent

sampling

prefilter: box

Figure 10.2: Imaginary output device with nonlinear reconstruction filter for
exact recovery of an arbitrarily located unit step. The prefilter is a boxfilter
of width 2, the reconstruction filter is a tent filter of width 2, followed by a
nonlinear binarization step with threshold 0:5. It can easily be shown, that the
reconstruction only works correctly, if two edges don’t get too close. If their
distance is less than 2 pixels, the reconstructed edges may be displaced.

ones. Geometrical descriptions of objects are used to calculate pixels for dis-
play on a screen. By nature the image functions cannot be represented without
error by the basis functions of the output device. The image functions contain
e.g. edges (discontinuities) or very small structures that manifest themselves as
high frequency components. In contrast to digital sound processing, where as a
consequence of physics no arbitrarily high frequencies can be present, here fre-
quency is not bound on principle. With a suitable modeling language it is e.g.
possible to describe easily and compactly a chequerboard pattern of any size.
This is the reason that aliasing problems are particularly severe and apparent
in rendering, and solutions are especially important in this area.

190 CHAPTER 10. NOTES ON SAMPLING

2,3,1,4,3,0,1,2

2,3,1,4,3,0,1,2

2,3,1,4,3,0,1,2

…

…

…

Figure 10.3: Reconstruction using different basis functions: a) box, b) tent, c)
sinc

Figure 10.4: Formation of low frequency aliasing signals because of under-
sampling

10.3.2 Natural Images

However, aliasing can also be a problem, when recorded pictures are repro-
duced. Although the recording is performed in such a way that the image data
contains little or no aliasing errors, this only ensures a correct reproduction if
the image is not downsized, i.e. each recorded pixel corresponds to one re-
produced pixel. Downsizing increases the frequencies contained in the image
function and it is not possible to correctly display the image, if the display res-
olution is not increased correspondingly. In practice, this is often the case, if
scenes with textures are rendered.

10.3. APPLICATION AREAS 191

10.3.3 Image Sequences

Recording or generation of image sequences yields three dimensional data sets,
that are discrete in each of the three dimensions. Changes in time, especially
periodic events, can — like changes in space — only be reconstructed cor-
rectly, if the necessary conditions are met. If high temporal frequencies are
undersampled, temporal aliasing is the consequence. An example is the seem-
ingly reverse rotation of spoke wheels in movies.

10.3.4 Voxel Data

Recording and presentation of voxel data is another area where sampling prob-
lems play an important role. In many respects the results gained with two
dimensional images and image sequences can be carried forward to the three
dimensional case. Often, voxel data is the result of numerical simulations,
but one of the most important applications is the processing of voxels that are
the result of medical imaging techniques like CT and NMR. In the context of
sampling there is a special problem with NMR voxel data sets: because of the
involved physics, it is not possible to acquire the data very fast. Therefore,
the scanned objects are normally sampled anisotropically: The voxel data set
consists of individual image slices, and e.g. 9 out of 10 slices are left out.
This corresponds to heavy undersampling in the direction perpendicular to the
slices. Various algorithms have been developed to perform 3d-reconstruction
from slice data. All of them depend on additional assumptions that are used to
create hypotheses about the missing data.

10.3.5 Geometry

Representing geometrical models in computer graphics is another area where
sampling problems play an important role. Surfaces in three dimensional space
can be represented in very different ways:

1. Isosurface of a scalar function in 3d — implicit surface representation.

2. 3d-vector function with two dimensional domain.

3. Heightfield — distance function on a 2d plane.

4. Unparameterized set of vertices and neighborhood relations — polygon
meshes.

192 CHAPTER 10. NOTES ON SAMPLING

The first three representations are based on functions that may be given
analytically, or are represented in a discrete way. The fourth representation is
already discrete in nature. The application of insights from signal processing
is not obvious, yet the least complicated case is the first representation. Param-
eterized surfaces have the problem, that by the mapping from the parameter
domain into the three dimensional space regular sampling grids are distorted.
Considerations that assume regular sampling grids, can therefore not always be
applied directly. In addition, many surfaces can not be mapped to a rectangular
parameter domain. For this reason, the domain has to be split into disjoint parts
(patches). The borders between these patches require special treatment. Unpa-
rameterized polygon meshes are very common in computer graphics. In most
cases they are triangle meshes. Such meshes are generated manually by model-
ing but also as a result of different simplification methods from parameterized
meshes. 3d-scanners output parameterized meshes with very high resolution
that are often too large to handle. In order to deal with such meshes, simpli-
fication algorithms have been developed, that are based on omitting vertices
and retriangulating the resulting holes. These algorithms work independent of
the parameterization, a fact, that makes them suitable for models that are com-
posed of several parameterized meshes. The resulting simplified meshes have
lost their parameterization and the neighborhood relations are not regular any-
more. An important task is the calculation of good parameterizations for such
surfaces.

10.4 Errors

This section discusses errors, that arise as a consequence of discretization and
reconstruction.

10.4.1 Aliasing Errors — Sampling Theorems

What we normally think of as the sampling theorem is the theorem named
after E. T. Whittaker, J. M. Whittaker, V. A. Kotelnikov or C. E. Shannon
[Whi15, Whi29, Whi35], [Kot33], [Sha49], cited here after [Jer77].

It states, that a band limited function can be reconstructed exactly from
regular samples of the function, if these samples are close enough (at least two
samples per smallest involved wavelength). It is less known however, that gen-
eralizations of this WKS sampling theorem exist for more general, finite limit

10.4. ERRORS 193

(truncated) integral transforms besides the usual Fourier transform [Jer77]. In
addition to those sampling theorems there exist theorems that make statements
about reconstruction from irregular samples [FG92].

The sampling theorems contain statements about the conditions under
which functions can be reconstructed from samples, some also about the kind
of errors that occur, if these conditions are not met. This means that at the point
marked D in Fig. 10.1, we can get a reconstructed function that is identical to
the function that was present at point B, if the conditions of the sampling the-
oreme is fulfilled. There are good reasons for the popularity of the Fourier re-
lated WKS sampling theorem. The Fourier transform is unique in the sense that
the basis functions (ej!t) are eigenfunctions of arbitrary convolution operators.
As a shift operation can be regarded as a convolution operation, it is possible
to shift band limited functions by an arbitrary distance without changing their
Fourier spectrum. The consequence is that, if a function can be reconstructed
from its samples, arbitrarily shifted versions of this function can also be recon-
structed from their samples. This is very important, as the sampling grid with
its actual positioning is a structure that is artificially imposed on reality. It is
therefore desirable to be able to reconstruct independent of the position rela-
tive to the sampling grid. This is especially important, to ensure that moving
objects are always reconstructed in the same way.

Which are the errors that occur if the sampling theorem is violated? Reg-
ular sampling corresponds to multiplying the function with a series of Dirac
pulses. The Fourier transform of this comb function is again a comb func-
tion. Multiplication in the spatial domain corresponds to convolution in the
frequency domain: this means that the spectrum of the sampled function in ad-
dition to the spectrum of the original function contains infinitely many copies
of this original spectrum, each of them shifted by multiples of the sampling
frequency, see Fig. 10.5 b).

If the original signal is band limited, it can be reconstructed from the sam-
pled signal by low pass filtering (Fig. 10.5 c)).

If, however, the original spectrum overlaps its copies, this means that by the
sampling process some frequency components of the original spectrum were
mapped to other frequencies, frequencies that are too in the interesting part of
the spectrum. In this case, it is no longer possible to separate the copy and the
original. By subtracting a multiple of the sampling frequency, arbitrarily high
frequencies of the original signal can lead to low-frequency aliasing errors.
Aliasing errors can be totally avoided, if the original spectrum does not contain
any components with frequencies higher than the so called Nyquist frequency,

194 CHAPTER 10. NOTES ON SAMPLING

a)

b)

c)

d)

e)

Figure 10.5: Reconstruction of sufficiently sampled signal and of undersam-
pled signal.

which corresponds to half the sampling frequency. However, this is not a nec-
essary condition [BD98], as it is possible to admit a frequency fh above the
Nyquist frequency instead of a frequency f b below the Nyquist frequency, if
the difference between fb or �fb and fh is an arbitrary multiple of the sam-
pling frequency. Fig. 10.6 shows an example, where exact reconstruction of
the green original spectrum is theoretically possible.

10.4.2 Errors Resulting from Filtering

The deviations from the original function that result from prefiltering are made
intentionally and are necessary to avoid aliasing errors in the sampling pro-
cess. An example for such errors is the so called ringing, that occurs as a
consequence of low pass filtering (see Fig. 10.7). Low pass filtering is con-

10.4. ERRORS 195

Figure 10.6: Sampling and reconstruction with a combination of low pass and
band pass filters.

sidered to be the optimum prefiltering by many authors. We will see in more
detail in section 10.5 below that this is not true in general.

Fig. 10.7 shows a low pass filtered image of a single point (Dirac pulse).
The squared error is infinite in this case. As the Dirac pulse contains all fre-
quencies with the same amplitude, the portion of the original signal contained
in the filtered one remains the same if the low pass filter used as prefilter and
reconstruction filter is replaced with a suitable band pass filter of the same
width. When choosing a prefilter, not only the used reconstruction filter has to
be considered, but also which frequencies are contained in the original image.
If e.g. the original image does not contain low frequencies, a band pass filter
— like the one shown in Fig. 10.7, right — gives better results than a low pass
filter2.

10.4.3 Errors due to Reconstruction

Reconstruction of the sampled signals has often been neglected. Mostly, it is
performed by the output device, the properties of which are determined by the
manufacturer. The most widely-used output device for images is still the CRT,
followed by liquid crystal displays. In Fig. 10.8 it is shown, how the filtering

2Note that images always contain a DC component, as negative brightness values are not per-
mitted. This component with frequency 0 should therefore not be suppressed.

196 CHAPTER 10. NOTES ON SAMPLING

Figure 10.7: Left: Low pass filtered, magnified image of a single point on gray
background. This is how, according to many authors, the image of a star on a
display had to look like, if prefiltering as well as reconstruction are performed
in an ideal way. Right: band pass filtered image of the same point. The portion
of the original signal contained in this image is exactly the same as in the low
pass filtered image.

properties of a CRT are formed: the samples are output line by line. A latch
in front of the A/D converter holds the pixel values until the next one arrives.
This corresponds to filtering with a box filter and is often called sample-and-
hold circuit (although it should rather only be called hold circuit). The analog
signal cannot contain arbitrary high frequencies for physical reasons, and in
the process of conveying the signal to the CRT high frequencies are even more
damped. The image signal is used to modulate an electron beam in the CRT,
while the beam is deflected, to scan the screen line by line. This beam gen-
erates a bright spot on the screen, of which the brightness distribution can be
approximated by a Gauss function. Because of this mechanism, the resulting
point answer is not rotationally symmetric but spreads more in horizontal than
in vertical direction (s. Fig. 10.9).

LCD displays are more simple to treat: every pixel shows up as a uniformly
bright rectangle or square on the screen, so the reconstruction filter is a simple
box filter. Although images displayed on such a screen still contain arbitrarily
high frequencies, an observer is not bothered by these frequencies, as long as
the pixels are sufficiently small. Spatial frequencies that cannot be resolved by
the human visual system need not be suppressed by the output device; this part

10.4. ERRORS 197

Memory

Latch

CRT

A/D + Analog

Line

Horiz.

Vert.

Figure 10.8: Output of an image on a CRT

Figure 10.9: Point answer of a CRT-display

of the filtering is dealt with by the eye.

10.4.4 Errors Resulting from Non-Linearities

Nonlinearities in the process of image capture and output are an additional
source of errors, that can lead to aliasing effects. As the range of the employed
number representations is limited, dynamics are limited by principle, i.e. the
recording system has a characteristic with not only linear, but also quadratic
and higher order components. The application of such a characteristic to sig-
nals with different frequency components results in the generation of product
terms and powers of the original signals. These products and powers contain
the sums and differences of the original frequencies. As the difference of two
desired signal frequencies i.e. frequencies below the Nyquist frequency is all
the more below the Nyquist frequency, this difference signal is always in the
utilizable range and appears as disturb signal. The sums of two frequencies

198 CHAPTER 10. NOTES ON SAMPLING

on the other hand can, if they are high enough, produce aliasing artifacts when
interfering with the sampling frequency, even if the original signal was suf-
ficiently band limited. Similar problems occur on the output side. Here, the
most important cause is missing or insufficient gamma correction. In partic-
ular, the difference frequency of two close frequency components can appear
as a clearly visible structure, even if the two involved original frequencies are
suppressed completely by the eye of the observer, e.g. if the viewing distance
is large enough.

10.4.5 Errors Caused by Perception

Human perception is the fundamental measure for rating sampling errors in
computer graphics. Significant parameters are here the resolution limit of the
eye (temporal and spatial) but also special detection mechanisms, that cause
a special sensitivity of the eye for particular spatial or temporal patterns. The
sensitivity of the eye for different spatial frequencies can be described by a
band pass. Processing of time dependent signals in the human perception is
especially important for antialiasing. On one hand the human eye is able to de-
tect movement. This makes seeming movements caused by aliasing especially
bothersome. On the other hand we have the ability to compensate uniform
motion which allows us to analyze objects in detail even if they are moving.
In the context of the aliasing problem the consequence of this ability is that
position dependent changes of the appearance of moving objects which cannot
be avoided when using certain antialiasing filters are particularly recognized.
The human perception from the early processing in the sensors to the later pro-
cessing in the brain is very complex and not totally understood. Therefore a
quantitative consideration of cognition e.g. when developing antialiasing algo-
rithms is not yet feasible.

10.5 Antialiasing — Optimal Approximation

For a long time researchers have tried to minimize or even get rid of errors
caused by discretization. Coming from electrical signal processing, the focus
was laid mostly on avoiding aliasing in the sense of the low frequency result of
mixing high frequency signals and sampling signal. Many authors concluded
from the WKS sampling theorem that the ideal way to avoid sampling errors
is to filter the original signal with an ideal low pass filter. This conclusion can

10.5. ANTIALIASING — OPTIMAL APPROXIMATION 199

even be found in the otherwise very nice and didactically well written presen-
tation of Blinn [Bli89]. However, this approach only makes sense if a good
approximation of the original signal is not necessary because high frequency
components in the reconstructed signal are irrelevant e.g. if they are not re-
ceived or analyzed by the receptor. Sound is an example, where this is the
case. Sound signals are decomposed into their frequency components in the
inner ear and then the amplitude is evaluated. Frequency components above a
critical frequency (conditioned by age) cannot be perceived due to the physi-
ology of the ear. While in the past discretization errors were generally called
aliasing errors, and their analysis was restricted to the application of the WKS
sampling theorem, recent treatises often discern between actual aliasing arti-
facts and reconstruction errors (e.g. [Gla95, Lev00]). This is, however, not
sufficient to minimize errors caused by discretization. It is rather necessary to
look at the whole signal chain from the original function up to the reconstructed
function. In Fig. 10.1 this corresponds to the processing between points A and
D. As deviations cannot be avoided, for optimizing the chain we need an error
measure to rate the deviations. Unfortunately it is difficult to establish such
a measure that takes into account the sensitivity of the human observer for
particular errors in a quantitative way. Although knowledge about the (non-
linear) response of the eye would help, it would not be sufficient to establish
an error measure as further processing of visual sensations in the brain is not
predictable; this processing is affected among other factors by attention and
memory. A straightforward choice for an error measure is the often employed
mean squared error. Of course, frequencies above the resolution limit of the
eye have to be omitted. However, for the time being, this limit is well above
the Nyquist frequency for standard displays with normal viewing distance.

With the error measure given, it has to be evaluated, which parameters can
be changed, i.e. with regard to which parameters we can optimize. In many
cases the reconstruction filter is given and cannot be changed. When using
e.g. a liquid crystal display, the reconstruction filter is a boxfilter. For this
case it can easily be shown, that the prefilter has to be a boxfilter as well, if
the output function shall approximate the original function optimally in a least
squares sense. If we look at this situation in the frequency range we see that
with this prefilter we get aliasing errors, but that avoiding these aliasing er-
rors by blocking all frequencies above the Nyquist frequency would lead to
an even larger contribution to the approximation error. As an example, we
choose a signal with a frequency of fsignal = 2:75fN = 1:375fS, where fN

and fS denote the Nyquist frequency and the sampling frequency resp., see

200 CHAPTER 10. NOTES ON SAMPLING

Fig. 10.10. If we would prefilter with an ideal low pass filter, we would to-
tally eliminate the signal. In contrast, prefiltering with the box filter leaves
a signal with amplitude asignal,prefiltered = sinc (1:375�) � �0:21 for sam-
pling. In the sampling process, alias signals are produced having the fre-
quencies: fk = (�1:375+ k) fS ; k = �1;�2; :::. The amplitude of the
original signal as well as the amplitudes of the newly created alias signals
have still a value of � �0:21, see Fig. 10.10 b). Reconstruction with a one
pixel wide box filter results in a multiplication of these signals with a factor
of rk = sinc (�fk/fS). The low frequency alias signals thus have an am-
plitude of about �0:17 and �0:10 respectively, the signal with original fre-
quency has an amplitude of � (�0:21)2 � 0:046, and the higher frequency
alias signals have accordingly smaller amplitudes. If we calculate an average
aliasing amplitude as the square root of the sum of the squared amplitudes of

all individual aliasing signals, we get: aaliasing = jasignal, prefilteredj
s

1P
k=1

r2k =

jsinc (1:375�)j
s

1P
k=1

sinc (� (�1:375+ k))
2 � �0:209

It may seem not obvious that it makes sense that 4.6% of the original signal
are paid for with more than 20% of aliasing — instead of no original signal but
also no aliasing. But if we look at the squared error we see that we are able to
decrease the error at the frequency of the original signal from 100% 2 (original
signal totally suppressed) to (100�4:6)%2 � 91:1%, a reduction of more than
8%, whereas the error caused by the alias signal only increases from 0% to
20:9%2 � 4:4%. In a similar way we can determine an optimal prefilter for
the case of reconstruction by Gauss filtering. For the calculation of such dual
filters that normally would require inversion of infinite dimensional matrices
see [Str00].

In conclusion we can say that ideal low pass filtering cannot be considered
to be always the optimal way to perform antialiasing since optimal approxima-
tion has to take into account the whole signal processing chain starting from the
original function down to the reconstructed function. In addition, it should be
noted that the measure for the approximation error also affects the optimization
of the prefilter.

10.6. A NOTE ON MIP-MAPPING 201

Sampling frequency fS

Sampling frequency fS

Signal frequency 2.75 fx
N

Signal frequency 2.75 fx
N

Nyquist frequency fN

Nyquist frequency fN

original spectrum

sinc(f/f)
 S

-0.214sinc(f/f)
 S

alias signals

reconstructed
original signal

spectrum after
prefiltering

1

-0.214

-0.214

-0.214

-0.17

-0.10

0.046

0.046

0.039

-0.026
-0.024

a)

b)

c)

Figure 10.10: Prefiltering and reconstruction with a one pixel wide box filter:
a) Spectra before and after prefiltering. b) Spectrum after sampling. Note that
the y-scale has changed. c) Spectrum after reconstruction. Scale same as in
b). For detailed explanation see text.

10.6 A Note on Mip-Mapping

Mip-mapping is the most commonly used technique for the antialiasing of tex-
tures. In spite of this fact, misconceptions about mip-mapping are common. In
[MPFJ99] e.g., mip-mapping is mistaken as space invariant linear filtering. We
will therefore briefly analyze mip-mapping.

A mip-map is created by space invariant linear filtering with subsequent

202 CHAPTER 10. NOTES ON SAMPLING

sampling. A box filter is frequently used for this purpose. Before using the
mip-map to render an image, a further filtering step is needed which can be
regarded to be a reconstruction filter to reconstruct the texture from the dis-
crete samples in the mip-map combined with a prefilter before sampling the
texture at the pixel locations. This filtering is normally performed by bilinear
interpolation which corresponds to space invariant linear filtering with a tent
function

l (x; y) =

�
(1� jxj) (1� jyj) for max (jxj ; jyj) � 1

0 otherwise

as the filter kernel.

Figure 10.11: Bilinear interpolation corresponds to filtering with a tent func-
tion.

Fig. 10.11 shows a tent function, the kernel of a filter that performs bilinear
interpolation. This filter is space invariant, in contrast to the filter, that results
from the whole mip-mapping process of prefiltering, downsampling and bi-
linear interpolation. Fig. 10.12 shows this resulting space variant filter. Two
different functions for two sample locations are shown. If the resulting filter
would be space invariant, it should be possible to transform the red function
into the green one only by shifting it. This is obviously not the case. Al-
though the shown example was produced using a box filter the principle does
not change, if other filters are employed for creating the mip-map. Fig. 10.13
shows what changes, if the mip-map is produced with a Gauss filter. The filter
function is again a weighted sum of two functions that are scaled with scal-
ing factors dependent of the sampling location. The only characteristic that
changes is the shape of the two functions.

10.7. A NOTE ON CREATING GEOMETRICAL MULTIRESOLUTION MODELS203

Figure 10.12: Filter functions for two different pixel locations. The function de-
termines how the original texels contribute to the final pixel when mip-mapping
is employed. The level in this example is level 3 (8 original texels correspond
to one sample in level 3)

Figure 10.13: If a Gauss filter instead of a box filter is used to create the mip-
map, the two stationary box functions that contribute to the final filter function
(see Fig. 10.12) are replaced by a sum of Gauss functions.

10.7 A Note on Creating Geometrical Multireso-
lution Models

In this note, we present a fundamental principle that has to be applied when
creating multi resolution models:

When reducing the resolution of a geometrical model, detail infor-
mation cannot just be discarded. Instead, its implications on the
appearance must be analyzed and preserved in the model.

A multi resolution model contains representations of a model in different
resolution levels. It can be generated from the high resolution representation.
For this purpose, resolution is reduced step by step. By their nature, these sim-
plification steps imply discarding information. Many simplification algorithms
have been developed with the goal of discarding irrelevant information while
preserving relevant information. The simplification of geometrical models is
often performed by leaving out vertices (sampling). The choice of the vertices
that are still needed is controlled by the error that occurs, if points are left out.
This approach cannot avoid aliasing errors by undersampling, but these errors

204 CHAPTER 10. NOTES ON SAMPLING

are limited as well as all other kinds of errors by keeping the overall error below
a given threshold.

By performing a kind of frequency analysis, wavelet based methods allow
to omit selectively the high frequency components. This avoids aliasing errors,
however sharp edges in the model are being unnecessarily smoothed.

It is common to all simplification methods that details which are not needed
in the lower resolution level are left out. A representative value replaces many
individual values. This practice is regularly used in other areas as well, e.g.
the results of an examination of a whole class of students can be characterized
by an average grade instead of listing the results for every single student. For
some purposes this representation is even better suited than the list of individual
grades. But other questions cannot be answered knowing only the average
grade, e.g. the question how many have passed the exam.

If images are scaled down (e.g. when moving away from it), it is normally
sufficient to reduce resolution in the standard way, i.e. by replacing a number
of brightness values by one representative brightness value. In principle the
same is true for transparency information.

However, the situation is different, if geometrical models are to be simpli-
fied for subsequent rendering. Up to now, it has been ignored in literature, that
details that individually can well be neglected in a coarser model, collectively
can be important for the macroscopic properties of the model, even on a coarse
level. A coarse model of a water surface can serve as an example. Although,
if we choose an appropriate level, the surface can be modeled by a (smooth)
plane, the reflection properties depend strongly on small waves present on the
water. A grid (fence, comb, etc.) can be represented as a plane face — if seen
from enough distance. However, somehow we must make sure, that the object
represented in this way does not occlude totally other objects behind it, but lets
pass a certain fraction of the light.

From these observations it becomes clear, that detail information cannot
just be omitted, if a geometrical model is being simplified. Instead we have to
determine, which information is relevant for the rendering of the coarse model.
We can then summarize this information and transform it to a suitable compact
representation that can later be used to render the coarse model.

This important principle is illustrated in Fig. 10.14. In the bottom right
pyramid, we store the relevant information from the high resolution model,
that otherwise would have been lost. This information can be represented in
different ways. It is, for example, possible to use images for this representa-
tion, images that have been rendered using the detailed geometrical model and

REFERENCES 205

geometrical information optical Information

re
d

u
c

tio
n

re
d

u
c

tio
n

transformation

geometry -> image

geometrical information

re
d

u
c

tio
n

a)

b)

Figure 10.14: Generating a multi resolution model. a) Standard scheme: step-
by-step reduction of resolution. b) Preserving important information from
higher resolution model by transforming it and storing it in a separate res-
olution pyramid.

then have been reduced to an appropriate resolution. In the general case, how-
ever, we need informations about the direction dependent reflection properties
(BRDF) or, in addition, about the transmission or transparency properties. The
function that describes these combined informations could be called BRDTF
(bidirectional reflectance and transmittance distribution function). The BRDTF
should, like a texture, be defined for each point of a surface. Also like a texture,
this BRDTF lends itself for generating multi-resolution models in a pyramid
like scheme. From image based rendering suitable representations for image
informations are known, location dependent BRDFs are also a topic of recent
research [DvGNK99]. An alternative is to extract and store those geometrical
informations that are relevant for rendering. In [Sch97] we have proposed to
represent the geometrical information that is relevant for reflections by a matrix
that characterizes the distribution of normal vectors in a region of the surface,
or in other words the roughness of the surface in said region.

References

[BD98] M. G. Beaty and M. M. Dodson. An application of a general sampling
theorem. Result. Math., 34(3/4):241–254, 1998.

[Bli89] James F. Blinn. Return of the jaggy. IEEE Computer Graphics & Appli-
cations, pages 82–89, March 1989.

206 REFERENCES

[DvGNK99] Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J. Koen-
derink. Reflectance and texture of real-world surfaces. ACM Transactions
on Graphics, 18(1):1–34, January 1999. ISSN 0730-0301.

[FG92] H. G. Feichtinger and K. Gröchenig. Irregular sampling theorems and se-
ries expansions of band-limited functions. J. Math. Anal. Appl., 167:530–
556, 1992.

[Gla95] Andrew S. Glassner. Principles of Digital Image Synthesis. The Mor-
gan Kaufmann Series in Computer Graphics and Geometric Modeling.
Morgan Kaufmann, 1995.

[Jer77] Abdul J. Jerri. The shannon sampling theorem - its various extensions and
applications: a tutorial review. Proc. IEEE, 65(11):1565–1596, Novem-
ber 1977.

[Kot33] Vladimir Alexandrowitsch Kotel’nikov. On the transmission capacity of
”ether” and wire in electrocommunications. In Izd. Red. Upr. Svyazi
RKKA (Moscow), 1933. material for the first all-union conference on
questions of communications.

[Lev00] Marc Levoy. Introduction to computer graphics. Lecture Notes,
http://graphics. stanford. edu/courses/cs248-00/, 2000. Handout #6, Stan-
ford University, Computer Graphics Lab.

[MPFJ99] Joel McCormack, Ronald Perry, Keith I. Farkas, and Norman P. Jouppi.
Feline: Fast elliptical lines for anisotropic texture mapping. In Alyn
Rockwood, editor, Computer Graphics (SIGGRAPH ’99 Proceedings),
volume 33, pages 243–250, August 1999.

[Sch97] Andreas G. Schilling. Towards real-time photorealistic render-
ing: Challenges and solutions. In Proceedings of the 1997 SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware, Los An-
geles, California, August 3–4, 1997, pages 7–15, August 1997. Invited
Paper.

[Sha49] C. E. Shannon. Communications in the presence of noise. Proc. IRE,
37:10–21, January 1949.

[Str00] Thomas Strohmer. Rates of convergence for the approximation of dual
shift-invariant systems in l

2(z). J. Four. Anal. Appl., 5(6):599–615, 2000.

[Whi15] E. T. Whittaker. On functions which are represented by the expansion of
the interpolation theory. Proceedings of the Royal Society of Edinburgh,
35:181–194, 1915.

[Whi29] John M. Whittaker. The fourier theory of the cardinal functions. Proc.
Math. Soc. Edinburgh, 1:169–176, 1929.

REFERENCES 207

[Whi35] John M. Whittaker. Interpolatory Function Theory. Cambridge tracts in
mathematics and mathematical physics ; 33. Cambridge University Press,
Cambridge, UK, 1935.

208 REFERENCES

Chapter 11

Physically-based techniques
for creating animations

Friedrich Wagner, Dietmar Jackèl�

In this paper, we discuss various control techniques for creating
physically-based animations. For the incorporation of constraints, which
is a key problem for both modeling and motion control, we describe dif-
ferent dynamics formulations and perform an evaluation for their use in
the context of computer animation. We suggest new arguments for the
advantages of the Lagrange multiplier formulation (LMF) and present an
easy-to-use, modular, interactive animation system, based on the LMF.

11.1 Introduction

The development of tools for the generation of physically-based animations is
an important application in the field of computer graphics. A decisive advan-
tage of the dynamic approach, compared to kinematic methods, is the simple
generation of very realistic motions of complicated objects. Also, because the

�Lehrstuhl Interaktive Graphische Systeme, Universität Rostock, Germany. E-Mail:
fdjjwagnerg@informatik.uni-rostock.de

209

210 CHAPTER 11. PHYSICALLY-BASED TECHNIQUES

dynamic behavior of such a system can be changed easily and the motions are
generated automatically, this approach provides a high degree of reusability.

An important but difficult task is the flexible and interactive motion control
of complex mechanical systems according to the imagination of an animation
operator. The imbedding of dynamics into an interactive and “easy-to-use“ an-
imation system, which also has to meet requirements such as modularity and
generality, is therefore an important aim of current research activities. How-
ever, the problems to be solved in order to reach this aim are very complex. The
physically based approach requires an animation operator to carry out very
complicated tasks such as the specification and solution of the equations of
motion as well as the use of dedicated control techniques, which often require
extensive mathematical and physical background knowledge.

The following section gives an overview of the three different approaches
for physically based motion control techniques that are used in computer ani-
mation systems: controller techniques, optimization-techniques and constraint-
based methods. Because of the importance of constraints we discuss in section
11.3 dynamics formulations for constraint-based mechanical systems and in
this context the Lagrange multiplier formulation (LMF) in more detail. It can
be shown that the LMF is especially suited for realizing a physically based
animation system that fulfils the demands mentioned above. Finally, an imple-
mentation of an animation system based on the LMF will be presented in brief.
This easy-to-use system enables the flexible and fully interactive creation of
physically based animations.

11.2 Motion control

The different approaches to motion control, shown in figure 11.1, are based on
a classification by Zeltzer [Zel91] which was used for a taxonomy of control
techniques of bio-mechanical animation systems.

The bottommost layer represents the dynamic scene description. Above
this structural layer we find the procedural layer, which contains dynamics and
kinematics methods that can be concretely realized by means of controller, op-
timization and constraint techniques. On the uppermost layer we find the au-
tonomously acting agents, which are rule-based controlled by means of other
techniques such as natural-language commands. These high-level control tech-
niques, discussed in an overview in [C+99], are used for the generation of
complex motion sequences. They are based on controllers, constraints and op-

11.2. MOTION CONTROL 211

timization methods, which will be considered in the following subsections in
more detail.

Figure 11.1: Hierarchy of control techniques.

11.2.1 Controller

Controllers provoke explicit time-dependent or state-dependent forces. In ro-
botics, controllers represent the standard technique for the control of articulated
figures. By means of an error-function, e.g. xE(t) := xgoal � x(t), where x
denotes the current state of a dynamic system and xgoal the goal state vector, a
force F is defined, which acts contrary to the deviation of the wanted motion.
For a more robust simulation the often used “PID-controller“ incorporates also

212 CHAPTER 11. PHYSICALLY-BASED TECHNIQUES

an integral term (I) and a differential term (D):

F = �KX x
E +KV _xE �KI

Z
_xE dt : (1)

The parametersKV , KX andKI represent hereby diagonal matrices with pos-
itive elements, which must be assigned concrete values before the simulation
is executed. This assignment can be very difficult and application-dependent.
A serious drawback to control motion with the technique of controllers is their
locally bounded impact. It is therefore often very difficult or even impossible
to achieve certain motion goals with this technique.

The controller technique has often been used for the modeling of joint lim-
its and ground contacts in the first attempts at physically based animations of
articulated figures (e.g. [AG85], [WB85], [A+87], [Wil87]). It has also
been applied for jump motions of a one-legged robot [RH91], walking be-
havior [BC89], [MZ90], [RH91], [P+92a], [SC92], diving [WH96] or
other natural-looking motion forms [IC87], [P+92b], [H+92], [P+93]. In
[L+95] and [LG96] a particularly adapted controller enables the specification
of kinematic trajectories as motion goals for rigid bodies, without neglecting
their dynamic behavior.

11.2.2 Optimization techniques

Optimization techniques are particularly suitable for the generation of a num-
ber of special motions such as the creeping of a worm or the swimming motions
of a fish. The goal of the optimization techniques is the minimization of phys-
ical parameters, such as the sum of energy or force, which are formulated as a
cost function. The idea behind this approach is that a minimized cost function
precisely corresponds with the motion behavior of many natural systems. For
a system depending of the state and velocity variables x and v, a frequently
stated optimization problem consists e.g. of minimizing the following term
with regard to Newton’s equation of motion:

J = f(x(t1);v(t1)) +

Z t1

t0

g(x(t);v(t); t) dt

where t0 and t1 denotes the start and termination times of the simulation pro-
cess, g stands for the cost function (e.g. the total sum of the applied forces) and
f denotes a functional, which is evaluated at the end of the simulation period

11.2. MOTION CONTROL 213

(e.g. the difference to a given goal state x(t1)�xgoal). Generally, this problem
can be solved by using iterative algorithms.

These algorithms can be very time-consuming because the cost function
has to be minimized over the entire simulation period. Moreover, the optimiza-
tion approach permits no interactive intervention into the process of motion
generation. This method therefore belongs to the offline techniques, in con-
trast to online techniques such as controller- or constraint-based control. Also,
the selection of the parameters of the cost function often turns out to be very
difficult and application-dependent.

Optimization techniques were used in [Gir91], [P+92b], [P+92a],
[P+93] for the reproduction of human or animal motions. A special use of
optimization techniques, which was introduced in [WK88] and further devel-
oped in [Coh92] and [NM93], is the so-called “space time constraint“ concept.
The equations of motion are treated in this approach as secondary conditions,
which have to be fulfilled at each place and each time. Taking these conditions
into account, the amount of computing time can be extremely large. In the past
few years however, this approach was successfully applied for modification
and combination of motion fragments ([Gle97], [PW99], [Pop00]).

11.2.3 Constraints

In the framework of physically based animation, constraints play the role of
kinematic conditions, which must be fulfilled during the simulation. They are
an essential tool for the modeling of complex systems, but also for the flexible
control of the generated motion. An example of a constraint is the presence of
an impenetrable obstacle that limits the motion space of an articulated figure.
Also, kinematic relations between individual rigid bodies can be formulated
with constraints to which in particular all joints such as ball, hinge or slid-
ing joints belong. Additional examples of constraints are predefined start and
termination points for certain motions, impassable motion boundaries or kine-
matic motion paths. Constraints are also the basis for many control techniques
with a higher degree of abstraction. The use of constraints as a modeling tool,
in particular for the description of articulated figures, can be found in nearly
in all work on physically based animations of mechanical systems. In [IC87]
and [IC88] constraints were introduced as a general motion control technique;
in [BC89] they were applied for the animation of the human gait. The purely
kinematic control of articulated figures by constraints was described e.g. in
[B+87], [P+90], [PB91].

214 CHAPTER 11. PHYSICALLY-BASED TECHNIQUES

Due to the importance of constraints for physically-based animation the
difficult problem of their solution will be discussed in the next section. We
show that the choice of the dynamics formulation plays an important role for
the application of constraint-based techniques in the framework of computer
animation.

11.3 Dynamics formulations for constraint-based
mechanical systems

A free mechanical system can be described by a k-dimensional time-dependent
state vector x and the equation of motionM(x; t) �x(t) = F(x; _x; t), where the
k-dimensional square matrix M represents the mass distribution of the bod-
ies and the k-dimensional vector F denotes the influence of the external and
internal forces. To control such a system, constraints are needed, which rep-
resent mathematical relations between the state variables. An important class
are holonomic constraints, which are functions of the state variables and time:
C(x; t) = 0. Another class, named velocity-constraints, is characterized by
the equation C(x; _x; t) = 0. Both classes are acceleration-linear constraints,
defined by the equation

J(x; _x; t) � �x+ c(x; _x; t) = 0 ; (2)

where J denotes an (m�n)-matrix and c an n-dimensional vector in the
case of an n-dimensional system with m scalar constraints. In the following,
some common formulations (described in more detail for example in [Sha98])
to incorporate these constraints are discussed.

11.3.1 Lagrange multiplier formulation (LMF)

From a physical viewpoint, constraints are satisfied by force effects. These
forces are explicitly determined by the LMF. Because of the principle of vir-
tual work, they obey the equation F C = JT �, where the components of the
vector � are denoted Lagrange multipliers. The constraint equation (2) and the
equation of motion, to which we add the constraint forces, form the following
system of differential-algebraic equations (DAE):

M �x�F� JT � = 0 (3)

J �x+ c = 0

11.3. DYNAMICS FORMULATIONS 215

In order to solve this DAE, the Lagrange multipliers can be explicitly com-
puted. We rewrite these equations in the form:

(JM�1JT)� = �(JM�1F+ c) : (4)

This linear equation system can be solved by numerical methods to determine
the Lagrange multipliers. After placing these values in the equation

�x =M�1(F+ JT �) (5)

we are able to solve this system of ordinary differential equations (ODE) by
means of standard numerical methods.

All approaches based on acceleration-linear constraints in terms of equa-
tion (2) have a fundamental difficulty, which is called the drifting problem. For
holonomic constraints, this equation corresponds to the vanishing of the sec-
ond derivative �C = 0, which is not only compatible with C = 0, but also with
a linear time-dependent constraint function C = a t + b, which denotes an
increasing violation of the constraint condition.

This problem can be solved by constraint stabilization techniques. One
appropriate method, used in [BB88] and [Pla92], is given by the so-called
Baumgart-stabilization. By this approach the term c in equation (2) is substi-
tuted:

J �x+ ch = 0 ; ch := c+ 2� _C+ �2C ; (6)

where � and � are constant parameters. In an alternative approach [W+90] the
multipliers are at first computed as usual. After this step, the term JT (2� _C+
�2C) is introduced into the system as an additional force.

The LMF was already used in [IC88], [A+89] for the generation of
physically-based animations. In [BB88] the properties of the LMF were ex-
ploited to support the interactive modeling process. An extension of this ap-
proach for general constraints was presented in [W+90] and [Pla92]. The
excellent usability of the LMF for animating deformable bodies and heteroge-
neous systems was proved by [PB88], [WW90], and [H+95]. The interactive
specification of constraints was described in [P+00].

For a long time, the efficient use of the LMF was regarded as very compli-
cated. LMF-algorithms very often had square-law or cubical-time-complexity
with regard to the number of d.o.f.’s. Significant progress for using this method
was presented by David Baraff in [Bar96]. This approach, which serves as the
central part of the simulation environment of our animation system described

216 CHAPTER 11. PHYSICALLY-BASED TECHNIQUES

in section 11.4, allows the simple and efficient implementation of the LMF and
is characterized by a linear time-complexity for constraints that affect only two
bodies.

11.3.2 Other approaches

Penalty approach. The penalty approach is the most simple method to in-
tegrate constraints into the equations of motion and was for example applied
in [MW88] for the handling of rest contacts. It is based on the reformulation
of constraints as spring forces. In the case of holonomic constraints, the spring
forces are defined by F Penalty := ��JT (
2C + 2
� _C), where J is the
Jacobian of C, while �,
 and � denote constant parameters. By adding the
spring forces as additional external forces to the dynamic system, an approxi-
mate satisfaction of the constraints can be obtained. Only if the penalty-term �
tends to infinite, are the constraints exactly satisfied. As a major disadvantage,
we obtain so-called stiff ODE’s, which can only be solved by time-consuming
computation.

Reduced coordinate approach. This method exploits the property of
holonomic constraints to reduce the number of d.o.f.’s of the system. A set
of n�m independent coordinates clearly describes an n-dimensional system,
controlled by m (scalar) holonomic constraints. The selection of the indepen-
dent, generalized coordinates and the transformation of the state variables into
the generalized coordinate system is the first step of the reduced coordinate ap-
proach. Based on this specification an (n�m)-dimensional system of ODE’s
can be formulated (e.g. with the Lagrange formulation), which is solvable by
standard numerical methods. Nonholonomic constraints are excluded by us-
ing this method. Another disadvantage is that for the explicit parameterization
in terms of the independent coordinates a nonlinear equation-system must be
solved. Moreover, singularities, which can appear during the simulation pro-
cess, often force a change in the set of generalized coordinates.

The reduced coordinate approach has been used in a number of previous
works for the animation of articulated figures (e.g. [AG85], [A+87], [IC87],
[BC89]). A recursive variant for hierarchical models, that is time-linear with
respect to the number of d.o.f.’s, was introduced in [Fea83]. An extension for
nonhierarchical systems was presented in [Lat86] and applied in [SZ90] and
[VC91].

11.3. DYNAMICS FORMULATIONS 217

LMF Penalty Reduction Partition. Direct

Efficiency and robustness high poor high reasonably poor

Velocity constraints yes yes no add. yes

Explicit constraint forces yes (yes)1 add. add. add.

Gradual constraint fulfillment yes yes (no)2 (no)2 (no)2

Unreduced equations of motion yes yes no yes yes

Unseparated state variables yes yes no no yes

Closed kinematic loops yes yes add. yes yes

add.: only with additional effort
1 Spring forces instead of exact constraint forces.
2 Only realizable with substantial extension of the formulation.

Figure 11.2: Fulfillment of the demands with regard to the dynamics formula-
tions.

Coordinate partitioning approach. The coordinate partitioning ap-
proach, which is based like the LMF on the algebraic equation system (3), is
mainly found in the area of technical simulation. In contrast to the LMF, this
method separates the coordinates into n�m independent coordinates q u and
m dependent coordinates qv during the simulation. For this task numerical
methods such as LU- or QR-factorization can be used. After the coordinate
partitioning, qu is evaluated by integrating the equation of motion only in re-
spect to the independent coordinates. Finally, the computation of the dependent
variables follows, by means of the constraint equations.

This method can also be extended for velocity constraints and allows the
formulation of the equations of motion in arbitrary (nonreduced) coordinates.
On the other hand, this approach is confronted with the same problem as in
the case of the reduced coordinate approach, the automatic determination of
independent coordinates. Moreover, the efficiency of the LMF or the reduced
coordinate method cannot be reached by the coordinate partitioning approach.

Direct numerical approach. The differential-algebraic system of equa-
tions (3) can be solved directly with dedicated numerical methods, without bee-
ing transformed into a set of ordinary differential equations. But this method
is less efficient and less robust than the other approaches that were discussed
above.

218 CHAPTER 11. PHYSICALLY-BASED TECHNIQUES

11.3.3 Comparison and valuation of the LMF

In this section a comparison and valuation of the LMF in respect to the other
formulations follows. In this context some application aspects will be espe-
cially emphasized, which are very important for the interactive creation of an-
imations. The fulfilment of these demands with regard to the dynamics formu-
lations is summarized in table 11.2. This investigation, discussed in more detail
in [Wag01], is a first attempt at a systematic method analysis in the context of
the interactive generation of physically based animations.

The analysis shows that the problems of achieving a time-efficient simula-
tion, the flexible and easy-to-use motion control and the design of an interactive
animation system are connected in a very complicated way.

In the past, these problems have been insufficiently investigated, because
they were mainly considered as problems of technical mechanics instead of
computer graphics. This estimation does not seem appropriate. In particu-
lar we want to show, that the Lagrange multiplier formulation (LMF) is more
suitable for the development of physically-based animation systems than other
formulations. The practical impact of these aspects is discussed in section 11.4
by means of a modular animation system based on the LMF.

Efficiency and robustness. Efficiency and robustness are two basic re-
quirements for the interactive generation of physically-based animations. The
LMF and the reduced coordinate approach fulfill these requirements slightly
better than the coordinate partitioning and much better than the penalty- and
the direct numerical approach. Detailed investigations of this subject can be
found in [GB94], [Sha98].

Velocity constraints. If the reduced coordinate approach is used, one
property of the LMF and other methods, the integration of velocity constraints,
is missing. This type of constraint plays an important role for flexible motion
control.

Explicit determination of constraint forces. The explicit determination
of constraint forces is an integrated part of the LMF and requires in contrast
to the other formulations no additional time expenditure. These forces can be
considered as additional dynamical features, which are useful for the design
of special control techniques. Another possible application is their feedback
to an input device, in order to give the animation operator an intuitive system
response to his actions.

11.4. AN ANIMATION SYSTEM BASED ON THE LMF 219

Gradual satisfaction of constraints. A special feature of the LMF and
the penalty approach is the gradual satisfaction of the specified constraints.
Constraints are not satisfied instantly but by the influence of forces. In the
context of the flexible and intuitive creation of animations, this feature is very
useful, because:

� the system modeling process by means of the constraints can be easily
observed and intuitively controlled in this way ([BB88], [Gle94]).

� the integration of flexible bodies can be simplified as well as the imbed-
ding of numerical integration routines [Pla92].

� the creation of animations can be simplified, since the constraints used
for system modeling and for system control are the same.

� the constraints can be activated or deactivated during a running simula-
tion, without the appearance of motion discontinuities.

Modularity and generality. The LMF is especially suited for designing
an animation system with a modular and general architecture. This peculiarity
is based firstly in the system definition by means of non-reduced coordinates.
Because of this, bodies and constraints can be formulated independently of
each other. Another advantage is the schematic conversion from the geometri-
cal and physical system description into its mathematical formalism. The LMF
requires no determination of independent coordinates and no transformation to
appropriated generalized coordinates. Moreover, the LMF can be applied in-
dependently of the initial state of the system and of the topology of the body
connections, which is very important with regard to a general animation sys-
tem. In particular, a special treatment of kinematic loops is not necessary.

11.4 An animation system based on the LMF

In this section the modular animation system EMPHAS (Easy-to-use, Modular,
PHysically-based Animation System) developed by us is discussed, its concep-
tion beeing based on the LMF. EMPHAS is designed to produce animations
interactively by means of a set of pre-defined constraints and pre-defined rigid
bodies in an easy-to-use way. Modularity is a key feature of EMPHAS. The
system allows the interactive modeling and animation by a “ tool box“ of mod-
ular control techniques, consisting of a set of holonomic constraints, velocity

220 CHAPTER 11. PHYSICALLY-BASED TECHNIQUES

constraints, controller, force fields and event-based procedures. Moreover, an
automatic treatment of collisions and rest contacts of colliding bodies has been
integrated, as well as the support of the animation operator by means of a num-
ber of interaction methods. The modular design of the system is shown in
picture 11.3.

CSolver 1

CSolver N

Constraint Controller

Connector

FField N

ForceField

Body

FField 1 ContDetProcedure

ContHdl

CSolver

ODE 1

ODE N

ODESolver

Constr 1 Contr 1Constr N Contr N

Conn 1 Conn N Point Rigid

Solver

Stab 1

Stab N

Proc N

ICOLLIDEControl

StabSolver

Proc 1

ICollide

Figure 11.3: Architecture of the simulation environment of EMPHAS.

For the determination of the Lagrange multipliers the algorithm described
in [Bar96] is used, which has been extended by us for a robust handling of
over-determined systems. For this task the special property of Baraff’s method
of treating the so-called primary and auxiliary constraints separately has been
exploited. Primary constraints have an effect on only two bodies and are not
allowed to form kinematic loops, so they cannot form an over-determined sys-
tem. Therefore we apply a singular value decomposition method (see for exam-
ple [Mac90]) only for the solution of the auxiliary constraints, the number of
which is normally much less than the number of primary constraints. By means
of this new approach the LMF can be applied to simulate ill-conditioned and
over-determined systems robustly and efficiently.

For the stabilization of the LMF (see section 11.3.1) the techniques in
[BB88] and [W+90] can both be applied. The resulting ODE’s are solved
by a number of standard numerical methods, that can be selected during run
time.

In EMPHAS mechanical systems consist of point particles, predefined
rigid bodies and arbitrary polyhedrons, which can be imported via a VRLM-

11.4. AN ANIMATION SYSTEM BASED ON THE LMF 221

Figure 11.4: Examples of EMPHAS-scenes.

interface. For rendering in further process stages an export of the animation
data to other animation systems (e.g. 3D Studio Max) has been realized. Two
examples of scenes in EMPHAS are shown in figure 11.4.

In the following the most important aspects for the interactive animation
generation with EMPHAS are given, which exploit the special properties of
the LMF. Details of these aspects are given in [Wag01].

“Tool box“ concept. Based on the connector concept introduced
in [W+90], which has been extended by us for the treatment of velocity-
constraints and explicitly time-dependent connectors, constraints and bodies
could be enclosed as independent “black box“ modules. It was also possible
to realize a very modular and easy-to-use means of applying the control com-
ponents. Rigid bodies and mass points, curves and three-dimensional fixed
points, as well as time-dependent 3D motion trajectories, serve as connection
points for constraints in a consistent manner.

Combinability. An important feature of EMPHAS is the arbitrary com-
binability of all control elements including the processes for the collision sim-
ulation and the treatment of rest contacts. As is shown in [Wag01], the special
properties of the LMF to satisfy constraints gradually by a physically-based
process were very helpful in the handling of this problem.

222 REFERENCES

Interaction techniques. In EMPHAS, selections and editing of param-
eters and state values as well as generation or deletion of single bodies and
control elements can be executed during the simulation in run time. These in-
teractions can cause violations of the constraints, but because of their gradual
satisfaction by means of the LMF no motion discontinuities appear.

Integration of event-based procedures. By exploiting the special prop-
erties of the LMF a generalized concept for the application of event-based pro-
cedures has been realized. This concept allows a procedural modification of
the system state and all parameters of bodies, controller, and constraints.

11.5 Conclusion

In creating physically-based animation different techniques for motion control
can be used, of which constraints play the most important role. We have shown
that the selection of the dynamics formulation for simulation of constraint-
based mechanical systems has a significant but not sufficiently investigated
impact for the interactive motion creation. It was proved that the LMF is more
suitable for this purpose than other common approaches. The practical im-
pact of this investigations is demonstrated with the modular animation system
EMPHAS, which enables the easy-to-use and effective creation of physically-
based animations.

References

[A+87] W. Armstrong et al. Near-real-time control of human figure models. IEEE
Computer Graphics and Applications, 7(6):52–61, 1987.

[A+89] B. Arnaldi et al. Dynamics and unification of animation control. Visual
Computer, 5(1/2):22–31, 1989.

[AG85] W. Armstrong and M. Green. The dynamics of articulated rigid bodies for
purposes of animation. Visual Computer, 1(4):231–240, 1985.

[B+87] N.I. Badler et al. Articulated figure positioning by multiple constraints. IEEE
Computer Graphics and Applications, 7(6):28–38, June 1987.

[Bar96] D. Baraff. Linear-time dynamics using lagrange multipliers. Computer
Graphics (Proc. SIGGRAPH94), 30:137–146, 1996.

[BB88] R. Barzel and A. Barr. A modeling system based on dynamic constraints.
Computer Graphics (Proc. SIGGRAPH88), 22(4):179–188, 1988.

REFERENCES 223

[BC89] A. Bruderlin and T. Calvert. Goal-directed, dynamic animation of human
walking. Computer Graphics (Proc. SIGGRAPH89), 23(3):233–242, 1989.

[C+99] E. Cerezo et al. Motion and behavior modelling: State of art and new trends.
Visual Computer, 15:124–146, 1999.

[Coh92] M. Cohen. Interactive spacetime control for animation. Computer Graphics
(Proc. SIGGRAPH92), 26(2):293–302, 1992.

[Fea83] R. Featherstone. The calculation of robot dynamics using articulated-body
inertias. International Journal of Robotics Research, 2(1):13, 1983.

[GB94] J. Garcia de Jalon and E. Bayo. Kinematic and dynamic simulation of multi-
body systems. Springer-Verlag, New York, 1994.

[Gir91] M. Girard. Constrained optimization of articulated animal movement in com-
puter animation. In Norman I. Badler et al., editors, Making them Move,
pages 209–232. Morgan Kaufmann, 1991.

[Gle94] M. Gleicher. A Differential Approach to Graphical Manipulation. Phd thesis,
Carnegie Mellon University, 1994.

[Gle97] M. Gleicher. Motion editing with spacetime constraints. In Michael Co-
hen and David Zeltzer, editors, 1997 Symposium on Interactive 3D Graphics,
pages 139–148. ACM SIGGRAPH, April 1997.

[H+92] J. Hodgins et al. Generating natural-looking motion for computer animation.
In Proceedings of Graphics Interface ’92, pages 265–272, May 1992.

[H+95] M. Harada et al. Interactive physically-based manipulation of discrete/
continuous models. Computer Graphics (Proc. SIGGRAPH95), 29:199–208,
1995.

[IC87] P. Isaacs and M. Cohen. Controlling dynamic simulation with kinematic con-
straints, behavior functions and inverse dynamics. Computer Graphics (Proc.
SIGGRAPH87), 21(4):215–224, 1987.

[IC88] P. Isaacs and M. Cohen. Mixed methods for complex kinematic constraints
in dynamic figure animation. Visual Computer, 4(6):296–305, 1988.

[L+95] A. Lamouret et al. Combining physically-based simulation of colliding ob-
jects with trajectory control. Journal of Visualization and Computer Anima-
tion, 6(2):71–90, 1995.

[Lat86] R.H. Lathrop. Constrained (closed-loop) robot simulation by local constraint
propagation. In Robotics and Automation, pages 689–694. IEEE Council on
Robotics and Automation, 1986.

[LG96] A. Lamouret and M. Gascuel. Scripting interactive physically-based mo-
tions with relative paths and synchronization. Computer Graphics Forum,
15(1):25–34, 1996.

224 REFERENCES

[Mac90] A.A. Maciejewski. Dealing with the ill-conditioned equations of motion for
articulated figures. IEEE Computer Graphics and Applications, 10(3):63–71,
1990.

[MW88] M. Moore and J. Wilhelms. Collision detection and response for computer
animation. Computer Graphics (Proc. SIGGRAPH88), 22(4):289–298, 1988.

[MZ90] M. McKenna and D. Zeltzer. Dynamic simulation of autonomous legged
locomotion. Computer Graphics (Proc. SIGGRAPH90), 24(4):29–38, 1990.

[NM93] J. Ngo and J. Marks. Spacetime constraints revisited. Computer Graphics
(Proc. SIGGRAPH ’93), 27:343–350, August 1993.

[P+90] C.B. Phillips et al. Interactive real-time articulated figure manipulation using
multiple kinematic constraints. Computer Graphics (Proc. SIGGRAPH90),
24(2):245–250, March 1990.

[P+92a] M. van de Panne et al. Control techniques for physically-based animation. In
G. Hegron and D. Thalmann, editors, Computer Animation and Simulation
1992, Eurographics, pages 1–15, Cambridge, 1992.

[P+92b] J. Park et al. Realistic animation using musculotendon skeletal dynamics
and suboptimal control. In G. Hegron and D. Thalmann, editors, Computer
Animation and Simulation ’92, Eurographics, 1992.

[P+93] M. van de Panne et al. Physically-based modeling and control of turning.
CVGIP - Graphical Models and Image Processing, 55(6):507–521, 1993.

[P+00] J. Popovic et al. Interactive manipulation of rigid body simulations. Com-
puter Graphics (Proc. SIGGRAPH 2000), pages 209–218, 2000.

[PB88] J.C. Platt and A.H. Barr. Constraint methods for flexible models. Computer
Graphics (Proc. SIGGRAPH88), 22(4):279–287, 1988.

[PB91] C.B. Phillips and N.I. Badler. Interactive behaviors for bipedal articulated fig-
ures. Computer Graphics (Proc. SIGGRAPH91), 25(4):359–362, July 1991.

[Pla92] J. Platt. A generalization of dynamic constraints. CVGIP - Graphical Models
and Image Processing, 54(6):516–525, 1992.

[Pop00] Z. Popović. Controlling physics in realistic character animation. Communi-
cations of the ACM, 43(7):50–58, July 2000.

[PW99] Z. Popović and A. Witkin. Physically based motion transformation. Com-
puter Graphics (Proc. SIGGRAPH99), 33:11–20, 1999.

[RH91] M. Raibert and J. Hodgins. Animation of dynamic legged locomotion. Com-
puter Graphics (Proc. SIGGRAPH91), 25(4):349–358, 1991.

[SC92] J. Stewart and F. Cremer. Beyond keyframing: An algorithmic approach to
animation. Proc. Graphics Interface 1992, pages 273–281, 1992.

REFERENCES 225

[Sha98] A. Shabana. Dynamics of Multibody Systems, 2nd Edition. Wiley, New York,
1998.

[SZ90] P. Schröder and D. Zeltzer. The virtual erector set: Dynamic simulation with
linear recursive constraint propagation. Computer Graphics (Proc. 1990 Sym-
posium on Interactive 3D Graphics), 24(2):23–31, 1990.

[VC91] N. Vasilonikolidakis and G.J. Clapworthy. Inverse Lagrangian dynamics for
animating articulated models. Journal of Visualization and Computer Anima-
tion, 2(3):106–113, 1991.

[W+90] A. Witkin et al. Interactive dynamics. Computer Graphics (Proc. SIG-
GRAPH90), 24(2):11–21, 1990.

[Wag01] F. Wagner. Konzepte und Methoden zu allgemeinen, physikalisch basierten
Animationssystemen auf der Grundlage der Lagrange-Faktoren-Methode.
Phd, University of Rostock, 2001.

[WB85] J. Wilhelms and B. Barsky. Using dynamic analysis to animate articulated
bodies such as humans and robots. In Proc. Graphics Interface 1985, pages
97–104, 1985.

[WH96] W. Wooten and J. Hodgins. Animation of human diving. Computer Graphics
Forum, 15(1):3–13, 1996.

[Wil87] J. Wilhelms. Using dynamic analysis for realistic animation of articulated
bodies. IEEE Computer Graphics and Applications, 7(6):12–27, 1987.

[WK88] A. Witkin and M. Kass. Spacetime constraints. Computer Graphics (Proc.
SIGGRAPH88), 22(4):159–168, 1988.

[WW90] A. Witkin and W. Welsh. Fast animation and control of nonrigid structures.
Computer Graphics (Proc. SIGGRAPH90), 24(4):243–252, 1990.

[Zel91] D. Zeltzer. Task-level graphical simulation: Abstraction, representation, and
control. In Norman I. Badler et al., editors, Making them Move, pages 3–33.
Morgan Kaufmann, 1991.

	Contents
	Vorwort
	Blanz, Vetter: Reconstructing the Complete 3D Shape of Faces from Partial Information
	Ehricke: Anatomic Object Extraction
 from Medical Volume Data with a Rule-Based Image Analysis System
	Encarnação, Bimber, Billinghurst: History between the Realities — Hi-Tech User Interfaces for Exploring the Past
	Ertl: Scientific Visualization of Large Datasets
	Gumhold: Connectivity Coding: New Perspectives for Mesh Compression
	Klein, May, Schneider, Weber: Real-Time Fluid Animation by Parallel and Stable Solution Techniques
	Klein, Schilling: Efficient Multiresolution Models for progressive Terrain Rendering
	Lensch, Michael Goesele, Seidel: A Framework for the Acquisition, Processing and Interactive Display of High Quality 3D Model
	Reck, Greiner: Fast and Accurate Integration of Vector Fields in Unstructured Grids
	Schilling: Some Notes on Sampling in Computer Graphics
	Wagner, Jackèl: Physically-based techniques for creating animations

