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Introduction



6 1.1. EARLY HISTORY OF THE NEUTRINO

1.1 Early History of the Neutrino

The neutrino was first postulated to exist by Wolfgang Pauli in 1930 [139]. In
an attempt to explain the observed continous energy spectrum of the (-electron
in [-decay, he proposed the existence of new, light, chargeless, spin 1/2 particles
called neutrons, which exist in nuclei and are also emitted in the g-decay process.
In a legendary letter to a conference in Tiibingen,® Pauli wrote: “..Namlich die
Moglichkeit, es konnten elektrisch neutrale Teilchen, die ich Neutronen nennen will,
in den Kernen existieren...”

In February 1932, James Chadwick discovered the particle we presently call the
neutron. Neutrons, however, are heavy and could not correspond to the particle
imagined by Pauli. At the Solvay conference in Bruxelles in October 1933, Pauli
said, speaking about ’his’ particles: “...their mass can not be very much more than
the electron mass. In order to distinguish them from heavy neutrons, Mr. Fermi
has proposed to name them ’neutrinos’. It is possible that the proper mass of
neutrinos be zero... It seems to me plausible that neutrinos have spin 1/2. We know
nothing about the interaction of neutrinos with the other particles of matter and
with photons...”

Officially, the neutrino was christened by Enrico Fermi to their familiar name,
which means ’little neutrons’ in Italian. Fermi wrote [66]: “....nach dem Vorschlag
von W. Pauli kann man z.B. annehmen, dal beim (-Zerfall nicht nur ein Elektron,
sondern auch ein neues Teilchen, das sogenannte 'Neutrino’ emittiert wird...”

Carl Anderson, in 1933, discovered the positron. This was the first observed
particle of anti-matter. Also in that year, Frederic Joliot-Curie discovered 5+ ra-
dioactivity, which is characterized by the emission of a positron instead of an electron
as in (@ radioactivity.

The first calculations of the half-life of double beta decay were performed by
Maria Goeppert-Mayer in 1935 while she studied the stability of even-even nuclei
over geological time [120]. Applying the new Fermi theory of f-decay to two neutrino
double beta decay, a second order process of the weak interaction

(A, Z) — (A, Z +2) +2¢™ + 20, (1.1)

she obtained a lifetime on the order of 107 years.

In 1939, W.H. Furry, following a theory proposed by Majorana, showed that
another process, which had not yet been observed, might arise. This process, neu-
trinoless double beta decay,

(A, Z) — (A, Z+2)+2¢", (1.2)

!The entire letter can be found in the Appendix.
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would have a lifetime longer than that of two neutrino double beta decay "by a
factor which ranges from 10° to 10" or more” [73]. In this decay, the neutrino
would be a virtual particle. Also, the signature would differ in the 2e~ energy
spectrum by having a sharp peak, in contrast to the continuous spectrum of the
neutrino accompanied process.

On July 16, 1945, mankind detonated the first nuclear bomb at the Trinity
test range in New Mexico. For physicists, nuclear explosions represented a new
and remarkably powerful source of neutrinos. Frederick Reines, who worked at
Los Alamos, spoke to Fermi in 1951 about his project to place a neutrino detector
near a nuclear explosion. In 1952, Reines met with Clyde Cowan and they agreed
to use a more pacific source of neutrinos: the nuclear power plant in Hanford,
Washington. Their detector was quickly built. The experiment was proposed in
February 1953, realized in the spring, and their results came out during the summer
of 1953. However, the data they obtained were not convincing. They repeated their
experiment in 1956, this time more carefully, at the nuclear reactor in Savannah
River, South Carolina. Their improvements to reduce the background noise worked;
for the first time the neutrino was detected. Its signature was clearly visible in
the detector, well above the background. Reines and Cowan'’s experimental setup
consisted of using a target made from a mixture of roughly 400 liters of water and
80 kg of dissolved cadmium chloride. The anti-neutrino coming from the nuclear
reactor interacts with a proton in the target, producing a positron and a neutron:
p+ 7 — n+et. The positron then quickly annihilates with an electron of the
surrounding material, simultaneously producing two 511 keV photons. The neutron
slows down until it is eventually captured by a cadmium nucleus, which subsequently
decays releasing a gamma-ray. If this gamma-ray and the two photons from the
electron-positron annihilation were detected within a window of 15 microseconds,
this was the signature to identify the neutrino.

In 1957-58, near the same nuclear power plant, another physicist, Ray Davis,
tried to detect neutrinos using carbonate chloride solutions. In his experiment he
searched for the process 7z+3"Cl — e +3"Ar in which and the lepton number is
violated. This process is only possible if the neutrino is a Majorana particle (v = 7).
Since he did not find any reaction product 3" Ar, he concluded that the neutrino is
a Dirac particle (v # 7).

Furry realized that in neutrinoless double beta decay the neutrino did not nec-
essarily have to be real as in the reactor process, but could be virtual. The virtual
exchange in neutrinoless double beta decay has finally proved to be the more sensitive
test for Majorana neutrinos (v = 7) mainly because the phase space of the virtual
neutrino is much larger than for the real neutrino in the the Davis experiment. The
alternative to the Majorana neutrino is the Dirac neutrino. The formal description
of this process is done by introducing a ”leptonic charge” which is conserved in beta
decay and has a different sign for particle and antiparticle now known as leptonic
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number. Electrons and neutrinos are assigned L=1, positrons and antineutrinos
L=1.

A rumor that R. Davis observed 37Ar in his experiment, reached B. Pontecorvo
. He came to the conclusion that neutrino oscillations (v < 7) could be a possible
and natural explanation of the "observed events” and published the first paper on
neutrino oscillations [140]. B. Pontecorvo assumed that neutrino and antineutrino,
produced in usual weak processes, are different particles and there exists an addi-
tional interaction, which transfers neutrinos into antineutrinos. He concluded that
in this case "neutrino and antineutrino are mized particles, i.e., a symmetric and
antisymmetric combination of two truly neutral Majorana particles v; and 15 of
different combined parity” 2.

In 1956-57 the violation of parity in the (-decay was discovered by Wu et al.
[210]. In 1956 T.D.Lee and C.N.Yang proposed a peculiarity of the neutrinos emitted
in the beta-decay and weak interaction processes, namely the left handed chirality for
neutrinos and right handed chirality for antineutrinos. If they were Dirac particles
with absolutely no mass, neutrinos themselves would violate parity because their
spin vectors would always be aligned along their direction of motion, while the
spins of antineutrinos would point the opposite way. In the Wu experiment the (-
decay of the polarized °Co was studied and the helicity of neutrinos was observed
(1957). The helicity mismatch between the antineutrino emitted by one neutron and
the neutrino absorbed by another neutron now forbids this process for a Majorana
neutrino as long as the latter is massless, and as long as there are no right-handed
currents. The phenomenological theory of weak interactions by Feynman and Gell-
Mann [68] and Sudarshan and Marshak [181] in 1958 was based on the assumption
that only the left-handed components of all fields are involved in the Hamiltonian
of weak interactions. They showed that only a V-A interaction was compatible with
parity nonconservation.

1.2 Neutrinos in the Standard Model

The Standard Model proposed by Glashow [79], Weinberg [208] and Salam [152] is
the name given to the current theory of fundamental particles and how they interact.
This theory includes the strong interactions due to the color charges of quarks and
gluons and a combined theory of weak and electromagnetic interaction, known as
electroweak theory, that introduces W and Z bosons as the carrier particles of weak
processes, and photons as mediators to electromagnetic interactions (Figure 1.1).
The theory does not include the effects of gravitational interactions. These effects
are tiny under high-energy Physics situations, and can be neglected in describing
the experiments. The Standard Model is divided into three sections: quarks, leptons

2Tn the first papers on neutrino oscillations B.Pontecorvo considered maximum mixing
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and bosons. The quarks and leptons, which are fermions, possess non-integer spin,
and in turn are divided into three generations. Each of the fermion particles come in
pairs. Quarks are grouped up with down, charm with strange, and top with bottom.
The experimental evidence for the top quark was just recently found at Fermilab in
1995. In nature, the quarks always combine together in triplets, called baryons, or
in quark-antiquark pairs, called mesons. The two baryons found in nature are the
proton and the neutron. The proton is composed of two up and one down quark,
while the neutron has two down and one up quark.

The other type of fermions, the leptons, are paired such that the electron, muon
and tau particles each have an associated low mass and chargeless neutrino. The
electron, like the proton and the neutron (the neutron just in bounded nucleus)
is a stable particle and the three compose almost all matter. The muon and tau
particles, however, are unstable and are found primarily in decay processes.

The intermediate vector bosons, or force carriers, make up the third section of
the Standard Model. The exchange of bosons is the mechanism for three of the
four fundamental forces through which matter is known to interact. The gluon
is responsible for the most powerful force, the strong force, which binds together
quarks inside protons and neutrons, and holds protons and neutron together inside
an atomic nucleus. The photon is the electromagnetic force carrier which governs
electron orbits and is the dominant force in chemical processes. Lastly, the W and
7 bosons mediate the weak force, which plays a role in radioactive decay. The weak
force is the mechanism used in the study of neutrinos. Neutrinos are insensitive
to the electromagnetic force (due to their lack of charge) and unaffected by the
strong force (which governs nuclear interactions), leaving only the weak force to
characterize their properties.

One part of the Standard Model is not yet well established. It is not known what
causes the fundamental particles to have masses. A way around this deficiency is to
introduce another type of intermediate vector boson called, the Higgs particle, Higgs
boson, or Higgson. When W and 7 particles interact with the Higgs particle, they
acquire mass. The simplest idea is called the Higgs mechanism. The Higgs particle
has not yet been observed. Today we can only say that if it exists, it must have a
mass greater than about 80 GeV/c?. Searches for a more massive Higgs boson are
beyond the scope of the present facilities at SLAC or elsewhere. Future facilities,
such as the Large Hadron Collider at CERN, or upgrades of present facilities to
higher energies are intended to search for the Higgs particle and distinguish between
competing concepts.

In the Standard Model, neutrinos are postulated as massless and left-handed.
However, recent experimental observations indicate neutrinos oscillating between
different flavors. This strongly implies that neutrinos, though very light, are not
massless. In addition, some scientists suggested that the oscillations give a hint to
a possible existence of a fourth neutrino: the sterile neutrino, called so because it
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Figure 1.1: Elementary particles in the Standard Model.

does not appear to interact with any other particle.

The investigation of neutrino properties is a way to discover new physics beyond
the Standard Model. The problem of neutrino masses and mixing is still far from
being solved. The finite mass of neutrinos is related to the problem of lepton number
violation. The Standard Model strictly conserves the lepton flavor but the Grand
Unified Theories, which are extensions of the standard model, violate the lepton
flavor conservation at some levels.

1.3 Neutrinos in Grand Unified Theories

In spite of the fact that the Standard Model represents the simplest and most eco-
nomical fundamental theory which describes jointly weak and electromagnetic in-
teractions, and in spite of the fact that it has been very successful wherever it has
been tested, it can not answer many of the fundamental questions. For Example:
are neutrinos really massless? If neutrinos have mass, why is this mass much smaller
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than that of the corresponding charged leptons? What kind of particles are neu-
trinos: Dirac (v # 7) or Majorana (v = 7)? Does neutrino mixing take place?
Unable to answer these questions, the Standard Model cannot be considered as the
ultimate theory of nature. The theories which unify the electroweak and strong
interaction are called Grand Unified Theories. Expectations arising from Grand
Unified Theories (GUTSs) are that the conservation laws of the Standard Model may
be violated to some small degree. Embedding the Standard Model in Grand Unified
models, or in supersymmetric or even superstring models, reduces the number of
free parameters. In GUTSs, the electroweak and the strong interaction are described
by one single force with one coupling constant. Mostly , the neutrino has a finite
mass and a slight right handed interaction, if the model is right-left symmetric. The
non-zero neutrino masses and neutrino mixing appear naturally in many different
variants of GUTs like the simplest SO(10) left-right symmetric model [124], minimal
supersymmetric standard model (MSSM) and their extensions.

GUTs offer a variety of mechanisms which allow the neutrinoless double beta
(OvBB) decay. One possibility is via the exchange of a Majorana neutrino between
the two decaying neutrons [49, 93, 164, 198]. If the global symmetry associated
with lepton number conservation is broken spontaneously, the models imply the
existence of a physical Nambu-Goldstone boson, called a Majoron [37, 74, 76, 163],
which couples to neutrinos. The Majoron might occur in the Majoron mode of
the neutrinoless double beta decay [98]. There are also other possible mechanisms
of Ov33 decay induced by lepton-number violating quark-lepton interactions of R-
parity non-conserving extensions of the SM [123, 198]. A complete analysis of this
mechanism within the MSSM for the case where the initial d-quarks are put inside
the two initial neutrons (two-nucleon SUSY mode) was carried out in Ref. [98].
Recently, it has been found that a new contribution of the R-parity violating (I))
supersymmetry (SUSY) to the Ov(35-decay, via pion exchange, dominates over the
two-nucleon R, SUSY mode [63]. The R-parity conserving SUSY mechanisms of
Ov(B-decay have been proposed and investigated in Ref. [98]. GUTs also predict
a new type of gauge boson, called the leptoquark, which can transform quarks into
leptons or vice versa [27]. A new mechanism for Ovgg-decay based on leptoquark
exchange has been discussed in Ref. [99].

1.4 ((-decay — General Aspects and Experimen-
tal Status

Double beta decay is a rare spontaneous nuclear transition in which the nuclear
charge changes by two units while the mass number remains the same. For a long
time, this process has been recognized as a powerful tool to study lepton number
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conservation in general, and neutrino properties in particular. Because of the long
lifetimes involved in double beta decay, the experiments to detect their occurance
are very challenging and have led to the development of many new and broadly
valuable techniques to achieve extremely low backgrounds.

The first experiments on double beta decay were undertaken even before the
existence of the neutrino was proved directly in the reactor experiment of Reines
and Cowan. In 1949, E. L. Fireman searched for electrons from the transition ?4Sn
—124Te using coincidence counters and observed a signal which corresponds to a
half life between 4 x 10 and 9 x 10'® years. At the same time, M. G. Inghram and
J. H. Reynolds looked for the final nucleus and exploited the fact that measurable
amounts of the daughter nucleus might accumulate over geological time in ores which
are rich in the corresponding parent nucleus. They analyzed a tellurium ore sample
which was roughly 1.5 bilion years old and reported evidence for the transition 1*Te
— 139Xe with a half-life of 1.4 x 10?! years. They attributed their result to the
two-neutrino double beta decay of ¥Te.

For the B3-decay to proceed, the initial nucleus must be less bound than the final
one, but more bound than the intermediate nucleus. These conditions are realized
in nature for a number of even-even nuclei (but never for nuclei with an odd number
of protons or neutrons). Since the lifetime for §3-decays are always much longer
that the age of the universe, both the initial and final nuclei can be found in nature
(some of the actinides being the only exceptions). In many of the candidates, the
transition of two neutrons to two protons is energetically possible, with the largest
@ value just above 4 MeV. In a few cases, the opposite transition, which decreases
the nuclear charge, is possible but the ) values are typically smaller.

As was mentioned earlier, the double beta decay transition can proceed in several
ways. One of them, the 2v decay (equation 1.1) conserves lepton number, while the
other one, the Ov decay (equation 1.2) violates lepton number conservation and is
therefore forbidden in the standard electroweak theory (Figure 1.2). The prospect
of discovering the neutrinoless double beta decay mode is the driving force behind
much of the interest in this field. It provides a potential window into physics "beyond
the Standard Model .

Double beta decay, in all its modes, is a second order weak semileptonic pro-
cess. Hence its lifetime, which is proportional to (Gg cosfc)™, is very long. (Here
Gr = 1.166 x 107 °GeV 2 is the Fermi coupling constant, and ¢ is the Cabibbo
angle.) The neutrinoless decay can be mediated by a variety of virtual particles; in
particular by the exchange of light or heavy Majorana neutrinos. The decay ampli-
tude then depends on the masses and coupling constants of these virtual particles.
Independent of the actual mechanism of the Ov33 decay, its observation would im-
ply that neutrinos necessarily have a nonvanishing Majorana mass [163]. In fact, if
the Ov decay is actually observed, and its rate is measured, one can obtain, at least
in principle, a lower limit on that neutrino’s mass [107].
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2v3p decay : standard process OvpB decay : a hypothetical process

in nuclear physics
A-2 p p A-2 p p

A A ) b
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Figure 1.2: Diagrams for 2v35-decay (left) and Ov35-decay (right) with Majorana
neutrinos. By having two particles in the final states in the continuum, the phase
space increased by a factor of about 10° in the neutrinoless mode compared to the
two-neutrino mode.

So far no Ov33-decay has been observed. This means (barring artificial complete
cancellation of the amplitudes which we dismiss as unnatural) that the upper limit
of the decay rate can be interpreted as an independent limit for each of the possible
amplitudes of the decay. In particular, we can obtain the limit on the properties
of light and heavy virtual Majorana neutrinos. (Other possibilities, e.g., the decays
mediated by the new particles predicted by supersymmetry, are discussed in [109,
199].)

The 2v5[-decay with the Majoron (x) emission (Ovy mode),

(Z,A) = (Z+2,A) +ef +e7 +x . (1.3)

belongs to the category of lepton number violating decays, even though the lep-
ton number is formally conserved when Y is assigned the lepton number —2. The
hypothetical scalar particle y, which must in this case be light enough to be emit-
ted in the 2v(3-decay, is usually associated with a spontaneous breaking of B — L
symmetry [36, 74].

Empirically, it is easy to distinguish between the three decay modes listed above,
provided the electron energies are measured. The electron sum energy spectra are
determined by the phase space of the outgoing leptons and clearly characterize the
decay mode, as schematically illustrated in Figure 1.3. (Geochemical or milking
experiments, however, cannot distinguish between the different 2035 modes as they
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Figure 1.3: Schematic sum electron spectra of the three G3-decay modes. Each is
normalized arbitrarily and independently of the others. The abscissa is the ratio
K /Ty of the sum-electron kinetic energy divided by its maximum value.

determine only the total decay rate.)

Both, the 2vG3-decay and OvBGyx-decay modes have continuous electron energy
spectra which differ in the position of their maxima since different numbers of light
particles are present in the final state. The signal of Ov3(-decay will be a sharp peak
at the end of the electron-electron coincidence spectrum, whose centroid is the sum
of the energies of the two electrons, as long as they carry the full available kinetic
energy of this process.

There are two distinct groups of theoretical issues associated with the interpreta-
tion of the BG-decay experiments. The particle physics issues deal with the expres-
sion of the decay rate in terms of the fundamental parameters, such as the neutrino
masses and mixing angles, coupling constants in the weak interaction Hamiltonian,
etc. This group of problems also involves the relation of F3-decay to other pro-
cesses, such as neutrino oscillations, direct mass measurements, and searches for
other lepton number violating processes.

The other, essentially decoupled, set of problems involves the nuclear structure
issues associated with 33-decay. The decay rate is expressed in terms of nuclear
matrix elements (NME) which have to be evaluated. One would like to know, first
of all, their value and their uncertainty. This area of research has attracted much at-
tention, and there are many, often conflicting, evaluations available in the literature.
Unfortunately, there is no simple way of judging the correctness and the accuracy
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of the evaluations of the nuclear matrix elements for the neutrinoless decay. Com-
parison to the experimentally known rate of the 2v3(-decay rate is often invoked
in that context as a test of the ability of the nuclear model to describe the related
phenomena. It is not clear, however, if this is indeed a valid test. For example, if one
assumes that the Ov decay is mediated by the exchange of a heavy particle (whether
this exchanged particle is a heavy neutrino or not), then the corresponding internu-
cleon potential is of short range, and additional issues involving nucleon structure,
irrelevant for the 2v decay, play an important role. Another less fundamental but in
praxi perhaps more important example deals with the dependence of the NME on
the number of single nucleon subshells included in the calculation. For the 2v decay,
where only the Gamow-Teller operator (o7) plays a role, it is clearly sufficient to
include only the states within the valence oscillator shell. Tt is less clear, however,
that the same truncation is sufficient for the correct description of the Ov decay.

The experimental study of G3-decay presents a formidable challenge since the
goal is to detect a process with a half-life on the order of 10?° years (the present best
limit for the Ov decay). [B-decay must be detected in the presence of an inevitable
background of similar energy caused by trace radioisotopes with half-lives 15 or more
orders of magnitude shorter. Thus, the optimum separation of the signal from the
background, combined with the requirement of having kilogram quantities of the
source isotopes, characterizes the present day experiments.

It is beyond the scope of this dissertation to describe in detail the experimental
techniques developed to meet the challenge of background suppression and signal
recognition needed to determine the rate (or an interesting limit) of 55-decay. Thus,
only the briefest outline is given, and the most important experimental results are
summarized in tables.

Historically, the existence of 33-decay was first established using the geochem-
ical method. Here one takes advantage of geologic integration times by searching
for daughter products accumulated in ancient minerals that are rich in the parent
isotope. (The related radiochemical method is applicable if the daughter isotope is
radioactive.) Since the energy information is long lost, the mode of the 53 decay
responsible is not directly determined. Instead, the total decay rate is determined,
and thus an upper limit of each mode as well.

One distinguishes directly the mode of decay by measuring the energies of elec-
trons released in the decay in direct counting experiments. The 2v and Ovy decay
modes each result in a rather generic looking electron spectrum (see Figure 1.3),
and the observation of these decays requires either extremely efficient background
suppression or additional information, such as a tracking capability.

The measured half-lives of the 2v mode are collected in Table 1.1. Many of them
have been measured by several groups; only the results with the smallest claimed
errors are shown. (The case of 13Te where the two competing results have the same
error but exclude each other is the only exception.) Also, the numerous half-life
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Table 1.1: Recent (3, results.

(Only positive results are listed. The most accurate published values are given,
except for ¥°Te where two conflicting results with the same claimed errors are
quoted.)

Isotope T, (y) Reference
Ba —s BT (4.3721 £1.4) x 10" [10]
(e —s TS0 (1.77 4 0.01 1913y x 102 92]
82 G0 — 2Kr  (8.3+£1.0+0.7) x 10¥ 7]
9% 7r — Mo (3.9 4 0.9) x 1019 geoch [105]
100 Mo — 9Ru  (6.827038 4 0.68) x 108 [44]
16 0d — 11980 (3.7540.35 £ 0.21) x 10" (6]
128 Te — 18Xe (7.2 £0.4) x 1024 geoch [19]
130 To — 180Xe (2.7 40.1) x 10t 9eoch [19]
(7.9 £ 1.0) x 1020 geoch [187]
ONd — Sm (6.75%0% £ 0.68) x 108 [44]
B8 — 8Py (2.0 £ 0.6) x 10?1 radioch [194]

geoch geochemical determination; total decay rate.
radioch 1adiochemical determination; total decay rate.

limits have been omitted. The 2v mode is now well established; no doubt many
more accurate results will become available soon.

In fact, §3-decay is becoming a valuable tool of nuclear spectroscopy. The decay
of 1Mo into the excited 07 state at 1130 keV in '“Ru has been observed [13, 30].
The technique used, observation of the subsequent v decay cascade, can be readily
be applied to other nuclei as well. This development not only expands the scope
of the experimental study of B3-decay, but also allows more detailed comparisons
between theory and experiment (for an early attempt, see [89]).

The Orv mode can be approached quite differently from 2v and Ovy modes because
of the distinctive character of the Ov electron sum spectrum — a monoenergetic peak
at the full @—value (see Figure 1.3). Obviously, the narrow width of the peak in
Ov detection is a big advantage which will help to isolate the process from the
background. As in the case of the 2v decay, other capabilities, such as tracking, will
naturally help as well.

The best reported limits for the neutrinoless 33 decay modes are collected in
Tables 1.2 and 1.3. Again, only the most restrictive limits for the given transitions
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Table 1.2: Best reported limits on T/, and (m,).

The experimental result is listed first with its reference. This is followed by the limit
on (m,) followed by the reference to the employed nuclear matrix element (NME).
Whenever possible the choice of the authors of the experimental paper regarding the
NME is respected. See the text for the discussion of uncertainties associated with
the evaluation of NME’s.

Isotope T%, (102 y) (CL%) exp. Ref. (m,) (V) NME Ref.

BCa > 0.95 (76) [211] < 18.3 93]
Ge > 1600(5700) [16]  <04(02)  [179]
8250 > 2.7 (68) [59] <5 [03]
10Mo > 5.2 (68) [51] <6.6 [189]
16Cd > 2.9 (90) [75] < 4.6 [179]
’ggggg; (3524+0.11)x 107 [19] <1.1—15 [179, 55]
15Xe > 44 (90) [116] <23-28  [55]
ONd > 0.12 (90) [44] < 4.0 [179]

are shown. The longest half-life limit, reported for ®Ge by the Heidelberg-Moscow
collaboration [16], is based on 24.16 kg-yr of exposure and uses pulse shape discrim-
ination to suppress the background (in the relevant energy region the background
is a mere (0.06 £ 0.02) events/(kg-yr-keV)). In that experiment, 7 events were ob-
served in the 30 region around the Ov decay @ value, while from the background
extrapolation one expects 13 events. Using this lack of background events, an even
more stringent limit (the entry in parenthesis in Table 1.2) is obtained.

The limit based on the Te lifetime ratio in Table 1.2 is based on the different
value dependence of the Or and 2v modes. That this offers a valuable tool has been
recognized already in the prophetic early paper by Pontecorvo [141]. Although the
corresponding NME are not exactly equal, they are close enough to allow one to use
the geochemical lifetime determination in Table 1.3.

1.5 Motivation and goals

As mentioned earlier, the question concerning the mass of neutrinos is still open. The
recent experimental evidence that neutrinos are massive particles has considerable
impact on different domains of physics: in particle physics, where the description of



18 1.5. MOTIVATION AND GOALS

Table 1.3: The most restrictive Majoron limits.

Tsotope TV7X (v) and (CL %) {(gu.,) Reference
BCa > 7.2 x 102 (90) <5.3x 107 [12]
Ge > 1.66 x 10 (90) < 1.8 x107%, [20]
82Se > 2.4 x 10 (68) <23x 104 7]
10Mo > 5.4 x 102 (68) <73%x107° [51]
U6Cd > 1.2 x 102 (90) <21x10* [42]
28Te > 7.7 x 10% 9%°¢ (90) < 3 x 1075 [19]
BiXe > 7.2 x 10% (90) <1.6x 107 [116]
BONd > 2.8 x 102° (90) <1x107™ [44]

geoch gaochemical determination; from total decay rate

non-zero masses and mixing requires the extension of the Standard Model of fun-
damental interactions; in astrophysics, for the comprehension of various phenomena
such as nucleosynthesis; in cosmology with, for instance, the search for dark matter.
However, from a quantitative point of view, the neutrino mass is still a research topic
and so far the available theoretical and experimental techniques do not provide any
exact solution, only qualitative descriptions and limit calculations. The first aim of
this dissertation is to go one step further in the qualitative description of the double
beta decay from a nuclear structure point of view. To show, on simple grounds,
the applicability of commonly used approximations and to take into account new
parameters, in particular the nuclear deformation.

The results which are gained using a Woods-Saxon basis (spherical and de-
formed) within a model incorporating apart from the pairing interaction, the residual
particle-hole and particle-particle interaction in the charge-exchange channel. The
model is supposed to reproduce the main properties of the nuclei, thus justifying
phenomenological concepts. Although the model is simplified, it reveals valuable
information on many body systems treated at, and beyond, the mean-field level.
In particular, an interesting problem is the effect of the particle-hole and particle-
particle correlations in the calculations of the Gamow-Teller transitions (the energy
position of GT-giant resonance) and of the 2v35 matrix elements. Another inter-
esting problem, which has been examined and treated explicitly, is the effect of
deformation in those calculations. In the past, the nuclear structure community has
devoted considerable theoretical and experimental efforts to study the single and
double beta decay matrix elements. There are some theoretical indications that
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taking into account the nuclear deformation will cause the 2v(3(3 matrix elements
to be strongly suppressed. The nuclear overlap between the mother and daughter
nuclei is now very sensitive to the shape of the nuclei. In any case, in order to
fix the strengths involved in 266 calculation, better knowledge about simple beta
transitions is necessary. This study has been done, apart from mean field only, also
for effective interaction in order to understand which approximation brings more re-
liable results. A great body of experimental information is also available, therefore,
the second aim of this dissertation is to study and compare the theoretical results
with the relevant experimental data which have been accumulated in recent years.
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In the last few years positive oscillation signals have been found in a series of
experiments using neutrinos produced with various sources [115, 185|. In view of
the importance of this discovery and its implications, a number of projects are
running, planned in the near future, or under study in order to address many still
open questions about neutrinos. Among them are those concerning their Majorana
or Dirac nature, the mass hierarchy and absolute mass scale, the knowledge of the
mixing angle 6;3, the possible existence of sterile neutrinos and of C'P violation in
the leptonic sector.

2.1 Neutrino Mass -Theoretical Aspects

2.1.1 Majorana and Dirac neutrinos

Empirically, the neutrino masses are much smaller than the masses of the charged
leptons with which they form weak isodoublets. Even the mass of the lightest
charged lepton, the electron, is at least 10° times larger than the neutrino mass
constrained by the tritium beta decay experiments. The existence of such large
factors is difficult to explain, unless one invokes some symmetry principle. The
assumption that neutrinos are Majorana particles is often used in this context.
Moreover, many theoretical constructs invoked to explain neutrino masses lead to
this conclusion.

The term “Majorana” is used for particles that are identical with their own
antiparticles while Dirac particles can be distinguished from their antiparticles. This
implies that the Majorana fermions are two-component objects while the Dirac
fermions are four-component. It is worthwhile to discuss, briefly, the formalism
needed to describe them. [49]

Massive fermions are usually described by the Dirac equation, where the chirality
eigenstates W and ¥, are coupled and form a four-component object of mass m,

i(6"0,) U —mUp =0, i(6"8,)V, —mV¥pg =0, (2.1)

where 6, = (0°,7), 0, = (0¥, =) and (0°, &) are the Pauli matrices. As written,
V(g are two-component spinors; the usual four-component bispinors are defined

T e () e (s) e

where W gy are just the chiral projections of W, i.e. the eigenstates of Prpy =

(1% 75)/2
However, Majorana’s suggestion [119] allows to use an alternative description of

those massive fermions which do not have any additive quantum numbers as either
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two-component ¥ (mass m), or 1y (mass m’), which obey independent equations
i(6"0,)r — meYy, = 05 i(c"d, )Y + m'e] =0, (2.3)

where € = i0,,. The Majorana fields can be also expressed in the four-component

form
—e () Vr(2)
U, (z) = L , and/or Wp(z) = v . 2.4
1(@) ( Yr(z) > / 7(7) < Vg (z) 24
Such a four-component notation is a convention useful to express the charged weak
current in a compact form. It is then clear that the Dirac field ¥, Equation 2.2, is
equivalent to a pair of Majorana fields with m = m’ and ¢, = e},. The Lorentz
invariant mass term in the neutrino Langrangian can appear in three forms:

Mplogyr, + (p)vs] , Mp[(71)ve + i), Mg[(Dr)ve + PRy , (2.5)

where v gy are the notation for the corresponding neutrino annihilation operators.
The first expression in Equation 2.5 is the Dirac mass term (with the mass pa-
rameter Mp) which requires the existence of both chirality eigenstates vy, and vy
and conserves the lepton quantum number. The second (and third) mass terms are
Majorana mass terms, which violate the lepton number and can be present even
without the existence of v (for the term with mass parameter Mp) or vy, (for the
term with mass parameter Mg). In general, all three terms might coexist, and then
the mass Langrangian must be diagonalized resulting in two generally nondegener-
ate mass eigenvalues for each flavor. (That is the situation with the generic see-saw
mass [212], where it is assumed that Mgz > Mp > M ~ 0, and the light neu-
trino acquires the mass m, ~ M3/Mpg.) In the general situation with N flavors
of the left-handed neutrinos v; and in addition an equal number N of the right
handed neutrinos v, the most general Lorentz invariant mass term of the neutrino
Langrangian has the form

_Lie s VL _( M Mp
[,M——§((VL) VR)M(V%) +h.c. M_<MD MR) , (2.6)

where v and vi are column vectors of dimension N. Here My and My are sym-
metric N X N matrices (Majorana masses for the left- and right-handed neutrinos)
and Mp is an arbitrary and generally complex N x N matrix. The mass matrix M,
with real positive eigenvalues my, ..., moy, is diagonalized by the 2N x 2N unitary

matrix
vy, - U
() (1) o

The general mixing matrices U and V have N rows and 2N columns and ¢ is a
column vector of dimension 2N of Majorana-like objects [111]. On the other hand, if
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none of the states vy exist, or if Mg is so large that the corresponding states need not
be considered, only My is relevant, and only the N x N mixing matrix U is needed
to diagonalize the mass term (and ®; has then only N components, naturally).
For My # 0, the N x N unitary mixing matrix U contains N? real parameters.
However, N of them correspond to unphysical phases; there are N(N — 1)/2 angles
and N (N — 1)/2 physically relevant phases describing possible CP violations. (For
a discussion of parameter counting, see [111].) In the oscillation experiments that
violate only the flavor lepton number, but conserve the total lepton number (such as
Ve — U, OT U, — V;), one can determine, in principle, all angles and (N —1)(N—2)/2
phases. These phases, common to the Dirac and Majorana neutrinos, describe
C'P violation responsible for the possible differences of the oscillation probabilities
vy — vy and Uy — Dp. The remaining N — 1 phases affect only neutrino oscillation-
like processes (in which neutrinos are created in the charged current weak processes
and absorbed again in charged current) that violate the total lepton number, such as
the Ov @3 decay. Such phases are physically significant only for Majorana neutrinos;
they are unphysical for Dirac neutrinos. This is so because for Majorana neutrinos
one cannot perform the transformation v; — v, = ey, which would violate the
selfconjugation property.

2.1.2 Lepton number violation

With the usual assignment of the lepton number, L(I7) = L(v) = —L(I*) =
—L(v) = 41, OvBS decay represents a change in the global lepton number by two
units, AL = 2. In that respect its observation would be related to the attempts to
detect v, from the sun, or of v, from nuclear reactors. Both of these latter processes
represent a kind of “v < v oscillations”, and also are possible only for massive
Majorana neutrinos.

For light Majorana neutrinos the lepton number conservation is irrelevant and
the Ov decay is hindered only by the helicity mismatch. However, the “antineutrino”
born in association with one of the e~ in the Or decay is not fully righthanded, but
has a lefthanded component of amplitude ~ m,/E,. This lefthanded piece can
be absorbed by another neutron which is converted into a proton and the second
e~ is emitted. Similar consideration would govern the above mentioned v < v
oscillations. The word “oscillations” in this context is a misnomer, however, since
the process (if it exists) would proceed without an oscillatory behavior [72].

The expected branching ratio for the “wrong” neutrinos at low energies, relevant
for the sun or nuclear reactors is [114]

2 _UN
R % 10714 (2.8)

~ 52 N
v
2E2 0

where the numerical factor was derived for m, ~ 1 eV, E, ~ 5 MeV, and the ratio
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of cross sections put to unity. Since the OvF(5 decay is presently sensitive to such
neutrino masses, one cannot expect a signal for this kind of v < © oscillations until
similar sensitivity is achieved.

However, it is also possible that 7, from the sun are produced in a more com-
plicated, but possibly more efficient way. Let us assume that a transition magnetic
moment ft.; connects the lefthanded v, ; with a righthanded 7,  of a different flavor,
which can subsequently oscillate (by the vacuum or matter enhanced oscillations)
into the righthanded and thus observable 7, g, i.e., when neutrinos propagate in a
transverse solar magnetic field B, one or both of the sequences v, — Uy p — Ver
Or Ve, — V), — Uer occurs. Such process requires that the magnetic conversion,
which is possible only for the massive Majorana neutrinos and which depends on
the product p.; By, and the flavor oscillation, which depends on Am? and sin?26,
are both present. There is no obvious relation between this process and the neutri-
noless (B0 decay, except that both require the existence of the neutrino Majorana
mass term. (This brief discussion of the magnetic conversion is highly simplified.
In reality, the transition magnetic moments ought to be written in terms of mass
eigenstates [25].)

Finally, tight experimental limits exist on the total lepton number violating
processes which involve both electrons and muons (see [29]), such as the muon
conversion

W+ (Z,A) = (2 —2,A) + e | (2.9)

and the muonium-antimuonium conversion
put e —pu et (2.10)

The relation of these processes to the 33 decay is, however, not well established.

2.2 Particle physics aspects

The rate of the neutrinoless G5 decay is related to the unknown parameters of
the neutrino mass matrix and to the phenomenological parameters describing a
generalized semileptonic charged current weak interactions Hyy:

G
Hy = 7; [JE(M{, + kM) + JpmMi, + AME)] + He., (2.11)

where Jigy and Mgy are the lepton and quark left(right)-handed current four-
vectors, respectively. The dimensionless parameters 7, A\, and x characterize devia-
tions from the standard model. (Since k gives a negligible contribution to double
beta decay, we will not consider it from now on.) The coupling parameters 1 and
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A, modified by the neutrino mixing, and denoted then usually as (n) and (\) are
unknown (and presumably small).

The lepton sector of the theory contains in general n generations of charged
leptons as well as n left- and n right-handed neutrinos. The neutrino mass matrix

is the 2n x 2n matrix M
[ Mg Mg
M = < My My ) , (2.12)

where Mp is the nxn lepton number conserving Dirac mass term, and the symmetric
n X n matrices My and My are the lepton number violating Majorana mass terms.
The matrix M has 2n real, but not necessarily positive, eigenvalues. Writing the
eigenvalues as mje;, one can impose the physically reasonable condition that m; > 0.
The sign of the eigenvalues of the mass matrix is contained in the phases ¢; = £1
which are the intrinsic C'P parities of the neutrinos j.

Neutrino oscillation phenomena arise because the “mass eigenstates” of M or,
more precisely their chiral projections NjL and NV JR, are not necessarily the familiar
weak interaction neutrinos that couple to the known intermediate vector boson Wp,
and to the hypothetical right-handed boson Wg. The physical “weak eigenstate” or
current neutrinos, the n left-handed neutrinos v;, and the n right-handed ones 1/;;5
(the prime has been added in order to stress that they are different particles), are
related to the neutrinos of definite mass by the n X 2n mixing matrices U and V

/

v, = UN* | vy = VNE. (2.13)

The mixing matrices U and V obey the normalization and orthogonality conditions

2n 2n 2n
Z U[;'Ul’j = 5[[’ s Z ‘/Z;V/] = 5”/ , Z Ulik]‘/ilj = 0. (214)
Jj=1 j=1 j=1

In the neutrinoless 36 decay the rate depends on the effective parameters which
are expressed in terms of the mixing matrices U and V:

<mu> = Zlﬁjm]Ui] s
J
N = AN GU, Ve (2.15)
J
() = ﬁzlﬁer,jVe,j )
J
1 y
(Gvy) = QZ (gi€ + gji€5) UeiUej .
2,]

Here the prime indicates that the summation is over only relatively light neutrinos.
Also, A and 7 are the dimensionless coupling constants for the right-handed current
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weak interaction, equation(2.11), and g; ; are the coupling constants of interaction
between the Majoron x and the Majorana neutrinos N; and ;. For the heavy
neutrino one obtains

(my Ve = 3 emy U2 (2.16)
J

where the double prime indicates that the summation, involving the inverse neutrino
masses mj_l, is over only the heavy neutrino mass eigenstates (m; >1 GeV).

It is now clear that, within the mechanism considered so far, there is no neutri-
noless double beta decay if all neutrinos are massless. Not only (m,) vanishes in
such a case but also (A) and () vanish due to the orthogonality condition equation
(2.14). Moreover, (A) and (n) vanish for the same reason even if some or all neutri-
nos are massive but light and therefore the summation in equation(2.15) contains
all neutrino mass eigenstates. In that case, however, there is a smaller next order
contribution from the mass dependence of the neutrino propagator, which for this
purpose can be written as

L 7 m2
STL AR %(1——J> . (2.17)
¢+mi g

The expression for e.g., () now contains 3°; ¢;U,,;Ve.;m? which clearly shows that
a nonvanishing neutrino mass is required.

The presence of the phases ¢; in the expression for (m,) means that cancellations
are possible. In particular, for every Dirac neutrino there is an exact cancellation,
since the Dirac neutrino is equivalent to a pair of Majorana neutrinos with the
opposite sign of the phases ¢; and degenerate masses.

In the general case the neutrinoless double beta decay rate is a quadratic poly-
nomial in the unknown parameters

[T (0F — 0%)]7 = 01@ + 02<A><;r7nl—”> cos Py + 03<77><77Z—"> cos Py
+ Cy{N)? + Cs(n)? + Co(A) (n) cos(py — 1) . (2.18)

Here 1, and vy are the phase angles between the generally complex numbers m,,,
A and 7. (However, when C'P invariance is assumed ;5 are either 0 or 7.) The
phase space integrals and the nuclear matrix elements are combined in the factors
C;. Assuming that we can calculate them, equation (2.18) represents an ellipsoid
which restricts the allowed range of the unknown parameters (m,), (\) and (n) for
a given value (or limit) of the Ov double beta decay lifetime.

The neutrino propagator is defined in order to evaluate the nuclear matrix el-
ements. Assuming that (m,)? is the only relevant quantity, one can perform the
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integration over the four-momentum of the exchanged particle and obtain the “neu-
trino potential”, which for m, < 10 MeV has the form

2R [~  sin(qr)
H(r,AE) = —/ dg——— 2.1
rap) = 28 [Tag (219)

where AE = (En) — 1/2(M; + M) is the average excitation energy of the inter-
mediate odd-odd nucleus and the factor R (the nuclear radius) has been added to
make the neutrino potential dimensionless.

When the Ov decay is mediated by the right-handed weak current interaction
the evaluation of the decay rate becomes more complicated, since many more terms
must be included (see [49, 93, 189]). If the four-momentum of the virtual neutrino
is g, = w, ¢, the neutrino propagator contains

wYo — ¢+ +my .

The part of the propagator proportional to m; is responsible for the neutrino po-
tential equation(2.19). The part containing ¢'leads to a new potential related to the
derivative of H(r, AFE), and the part with w leads to yet another potential, which is
a combination of H(r, AE) and its derivative.

Similarly, there are now also more nuclear matrix elements, which contain in
addition the nucleon momenta (i.e., the gradient operators), and depend on the nu-
cleon spins and radii in a more complicated way (e.g., they contain tensor operators).
The outgoing electrons are no longer just in the s/, states, because for some of the
operators one of the electrons will be in the p,/, state. The recoil matrix element,
which originates from the recoil term in the nuclear vector current is numerically
relatively large [189], resulting in more sensitivity to the parameter (n). The current
best limits on () and (\) are listed in [29].

2.2.1 The OvB(—decay and effective neutrino mass

Here only the simplest case of the left-handed V' — A weak currents and light massive
Majorana neutrinos is considered. This is the case of current interest provided
the neutrino mass revealed in the oscillation experiments is of Majorana character.
The more general expressions can be found e.g. in the reviews [49]. (For recent
formulation of the general problem, see [138].)

The differential decay rate of the Oy process is [49)]

dFOV =27 Z |R0V|25(61 + €9 + Ef — Ml) (220)

spin

where €12y and pj(9) are total energies and momenta of the electrons and E¢(M;)
is the energy of the final (mass of the initial) nuclear state. The quantity Ry, is
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the reaction amplitude to be evaluated in the second order pertubation theory with
respect to the weak interactions. The lepton part of Ry, , involving the emission and
reabsorption of the Majorana neutrino of mass m;, is

P gy gy +m; .
_Z/ (271')46 q( y)e(x)%PLﬁPL%,e (y) s (221)
j
where P, = (1 — v5)/2, e(z),e(y) are the electron creation operators, and ¢ is

the momentum transfer four-vector. Since 7, anticommute with 75, this amplitude
is proportional to m; and the term with ¢*v, vanishes. After integrating over the
2

energy of the virtual neutrino dq°, the denominator ¢ —m? is replaced by its residue

w;/m, where wj = /¢ ? +mj. The amplitude is therefore proportional to m;/w; < 1
for light neutrinos. The remaining integration over the virtual neutrino momentum
¢ leads to the appearance of the neutrino potentials

- .
Hy(r, Ay) = 2:% / dq% Ayay = B—(Mi4 M) /25 (c1—65)/2 . (2.22)
where 1 and 2 label the emitted electrons, FE,, is the excitation energy of the inter-
mediate nucleus, My is the mass of the final nucleus, and r is the distance between
the two neutrons that are changed into protons. The factor Ry, the nuclear radius,
is introduced in order to make the potential H dimensionless. In the case of the
Ov33 decay one can use the closure approximation, replacing F,, by an appropriate
mean value. (This is justified because we expect that the momentum of the virtual
neutrino is determined by the uncertainty relation ¢ ~ 1/r ~ 100 MeV, thus the
variation of F,, from state to state can be neglected.) The contributions of the two
electrons are then added coherently, and thus the neutrino potential to use is

H(r) = [Hi(r, Ay) + Holr, Ay)]/2 ~ H(r, A) , (2.23)

where A = E,, — (M; + M;)/2 and E,, is the average energy of the intermediate
nucleus. The potential H(r) only very weakly depends on m; as long as the neutrino
mass is less than ~ 10 MeV. For the ground state to ground state, ie., 07 — 07
transitions, it is enough to consider s-wave outgoing electrons, and the nonrelativistic
approximation for the nucleons. The nuclear part of the amplitude then turns into a
sum of the Gamow-Teller and Fermi nuclear matrix elements, where the superscript
Ov is used to signify the presence of the neutrino potential H(r):

2 2
v g v 1 P g .
|M01/| = MgT - g_‘g/Mzg = <f| ZH(levA)TﬁT;: (Ul O — g_‘g/) |Z> . (2-24)
A Ik A

The summation is over all nucleons, |f) (|¢)) are the final (initial) nuclear states,
and gy (ga) are the vector (axial vector) coupling constants. Such an expression is
now analogous to the allowed approximation of the ordinary beta decay.
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Thus, in the approximations described above, which are quite accurate, the tran-
sition amplitude for a Majorana neutrino of mass m; is simply a product of m; and
the above combination of the nuclear matrix elements. However, since in each of
the two vertices an electron is emitted, the mixing amplitude U,; apears in each of
them, and the physical reaction amplitude contains the factor U2 (not |U;[?) and
is proportional to the factor

, (2.25)

(m,) =

2
ijUej
j

where the sum is only over light neutrinos with m; < 10 MeV (for heavier ones one
cannot neglect the mass in the neutrino propagator, Equation 2.21). The quantity
m,, is the effective neutrino mass. Since Ufj and not |U,;|*> appear in m,, its value
depends on the Majorana phases discussed above. To obtain the decay rate, the
reaction amplitude has to be squared, and multiplied by the corresponding phase
space integral, which in this case, see Equation 2.20, is simply the two-electron phase
space integral proportional to

GOV ~ /F(Z, 61)F(Z, 62)p1p2€1625(E0 — €1 — 62)d€1d€2 s (226)

where Ej is the available energy (the sum electron kinetic energy peak is at
Q = Ey —2m,.). F(Z,¢€) is the usual Fermi function that describes the Coulomb
effect on the outgoing electron.

Summarizing, if the Ov33 decay is mediated by the exchange of a light massive
Majorana neutrino (the assumption that we wish to test), the half-life is

2

2
[TV(07 = 0)] 7" = G™(Ey, Z) ‘Mg’} - g—gMg" (m,)? (2.27)
A

where G% is the exactly calculable phase space integral, is the effective neutrino
mass and M2, MY are the nuclear matrix elements, defined in Equation 2.24. The
way these nuclear matrix elements are evaluated, and the associated uncertainty,
is discussed in the next Section. (As explained earlier, the neutrino mass appears
in the amplitude in the combination m;/w; < 1; the denominator w; has been
absorbed in the neutrino potential H(r).) Thus, if an upper limit on OvG3 rate
is experimentally established, and the nuclear matrix elements are known, one can
deduce the corresponding upper limit on m,,. On the other hand, if Ov3 is observed,
one can deduce the appropriate value of m,. That is a justified procedure, however,
only if the exchange of the light Majorana neutrino, discussed above, is indeed the
mechanism responsible for the decay. There is no way to decide on the mechanism
when only the decay rate is known. However, a general theorem [163] states that once
Ov(33 has been observed, in gauge theories the Majorana neutrino mass necessarily
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arises. But the magnitude of the corresponding neutrino mass is difficult to estimate

if the exchange of a virtual light Majorana neutrino is not the dominant mechanism
of the 53 decay.

2.2.2 Neutrino oscillations and the Ov33—decay

Let us assume that there are N massive Majorana neutrinos v;,7 = 1,..., N. In that
case the weak eigenstate neutrinos v., v, and v, can be expressed as superpositions
of v; using the 3 x N mixing matrix Uy;. In particular, electron neutrinos are then
superpositions,

N
Ve=Y_ Uv;, (2.28)

and the rate of the Ov3[ decay is proportional to (see Equation 2.27)

2 2

<m1/>2 =

(all m; >0) . (2.29)

N
Z Ufimi
i

This quantity depends, on the N — 1 Majorana phases «;/2 of the matrix U
which are irrelevant in neutrino oscillation experiments that do not change the total
lepton number. If CP is conserved, a; = km, but generally any values of «; are
possible. Thus, m,, could be complex and cancellations in the sum are possible. (For
example, a Dirac neutrino corresponds to a pair of degenerate Majorana neutrinos
with e® = £+1 whose contribution to m,, exactly cancel.)

While the quantity m, depends on the unknown phases «a;, the upper and lower
limits of m, , (M,)mar and (M, )min, depend only on the absolute values of the
mixing angles,

N
Z \Uei|Pe™m;
i

(M) maz = Z \Ueil®*mi 5 (M, Ymin = max|(2|Ue|*mi — (M) maz ), 0] - (2.30)

2

Thus, if the search for Ov3g is successful and the value of m, is determined, and
at the same time the mixing angles |U.|* and the mass square differences Am?j
are known from oscillation experiments, a range of absolute values of the neutrino
masses can be deduced. This is illustrated in Figure 2.1 for supposing that N = 3,
that the Large Mixing Angle (LMA) solution of the solar neutrinos is correct, and
that the atmospheric neutrino problem requires maximum mixing of the p and
7 neutrinos. There are two consider two possibilities, the normal and inverted
hierarchies (see the inserts in Figure 2.1) because given the information, we cannot
distinguish between them. (Note that the uncertainty in the mixing parameters is
not included in Figure 2.1.)
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Figure 2.1: Effective mass m, as a function of the smallest neutrino mass m,,;,.
The left panel is for the normal mass hierarchy, as indicated in the insert (not to
scale), and the right panel is for the inverted hierarchy. Both panels are evaluated
for the LMA solar solution with Am?, = 2.4 x 1072 eV?, Am2, = 4.5 x 107° eV?,
and |Ug|? = 0.3. The full lines show my ez and My, defined in Equation 2.30,
for U, = 0 and the dashed lines use the maximum value |U|? = 0.025 allowed by
the CHOOZ and PALO VERDE reactor experiments [?, ?].

Naturally, if another constraint exists, for example a successful determination of
the neutrino mass square Y; |U,;|*m? in the tritium § decay experiments, one can
use the knowledge of m,, to determine or constrain the phases a;.

Altogether, one cannot predict, in general, what the value of m,, ought to be using
the present knowledge. On the other hand, as shown in Figure 2.1 for the currently
most likely oscillation scenario, one can show that certain classes of solutions, such
as the inverted hierarchy, or the normal hierarchy with the smallest neutrino mass

> /Am?2, (degenerate neutrino spectrum) lead to potentially observable 2v303
decay.

2.3 Nuclear structure aspects

The rate of the 2v 35 decay is simply

/Ty = Gay(Eo, Z)| Moy |* (2.31)
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while for the O3 decay (assuming that it is mediated by a light Majorana neu-
trino and that there are no right-handed weak interactions), and for the decay with
Majoron emission, it is given by

Tty = Gou(Eo, Z)| Moy |*(m,)? (2.32)

1/T10/U27X = GOV,X(EOaZ)|M0V,x|2<gu,x>2 .
Here the phase space functions G(Fy, Z) are accurately calculable, and the nuclear
matrix elements M are the topic of this section. Obviously, the accuracy with which
the fundamental particle physics parameters (m,) and (g,,) can be determined is

limited by our ability to evaluate these nuclear matrix elements.
In that context there are three distinct set of problems:

e 2v decay: the physics of the Gamow-Teller amplitudes

e Qv decay with the exchange of light massive Majorana neutrinos: no selection
rules on multipoles, role of nucleon correlations, sensitivity to nuclear models.

e (v decay with the exchange of heavy neutrinos: physics of the nucleon-nucleon
states at short distances.

2.3.1 The 2v33—decay

Since the energies involved are modest, the allowed approximation should be appli-
cable, and the rate is governed by the double Gamow-Teller matrix element

2 {(flloTe||lm) x (mllor.||i) ,
M ; v — (Vi + M,) 2 (2.33)
where 7, f are the ground states in the initial and final nuclei, and m are the inter-
mediate 11 (virtual) states in the odd-odd nucleus. The first factor in the numerator
above represents the 5% (or (n,p)) amplitude for the final nucleus, while the second
one represents the 8~ (or (p,n)) amplitude for the initial nucleus. Thus, in order
to correctly evaluate the 2v decay rate, one has to know, at least in principle, all
GT amplitudes for both 3~ and 3% processes, including their signs. The difficulty
is that the 2v matrix element exhausts a very small fraction (107 — 1077) of the
double GT sum rule [62], and hence it is sensitive to details of nuclear structure.

Various approaches used in the evaluation of the 2v decay rate have been re-
viewed recently in Ref. [62, 182]. The Quasiparticle Random Phase Approximation
(QRPA) has been the most popular theoretical tool in the recent past. Its main
ingredients, the repulsive particle-hole spin-isospin interaction, and the attractive
particle-particle interaction, clearly play a decisive role in the concentration of the
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(3~ strength in the giant GT resonance, and the relative suppression of the §*
strength and its concentration at low excitation energies. Together, these two ingre-
dients are able to explain the suppression of the 2v matrix element when expressed
in terms of the corresponding sum rule.

Yet, the QRPA is often criticized. Two “undesirable”, and to some extent unre-
lated, features are usually quoted. One is the extreme sensitivity of the decay rate
to the strength of the particle-particle force (often denoted as g,,). This decreases
the predictive power of the method. The other one is the fact that for a realistic
value of g,, the QRPA solutions are close to their critical value (so called collapse).
This indicates a phase transition, i.e., a rearrangement of the nuclear ground state.
QRPA is meant to describe small deviations from the unperturbed ground state,
and thus is not fully applicable near the point of collapse. Numerous approaches
have been made to extend the range of validity of QRPA, see e.g. [182, 62]. Alto-
gether, QRPA and its various extensions, with their ability to adjust at least one
free parameter, are typically able to explain the observed 2v decay rates.

At the same time, detailed calculations show that the sum over the excited states
in equation(2.33) converges quite rapidly [60]. In fact, a few low lying states usually
exhaust the whole matrix element. Thus, it is not really necessary to describe all GT
amplitudes; it is enough to describe correctly the 87 and 8~ amplitudes of the low-
lying states, and include everything else in the overall renormalization (quenching)
of the GT strength.

Nuclear shell model methods are presently capable of handling much larger con-
figuration spaces than even a few years ago. Thus, for many nuclei the evaluation
of the 2v rates within the 0Ohw shell model space is feasible. (Heavy nuclei with per-
manent deformation, like **Nd and ?*®*U remain, however, beyond reach of the shell
model techniques.) Using the shell model avoids, naturally, the above difficulties of
QRPA. At the same time, the shell model can describe, using the same method and
the same residual interaction, a wealth of spectroscopic data, allowing much better
tests of its predictive power.

2.3.2 The light neutrino mechanism of the OvG5—decay

If one assumes that the Ov decay is caused by the exchange of a virtual light Ma-
jorana neutrino between the two nucleons, then several new features arise: a) the
exchanged neutrino has a momentum ¢ ~ 1/r,,, ~ 50 —100 MeV (7, is the distance
between the decaying nucleons). Hence, the dependence on the energy in the inter-
mediate state is weak and the closure approximation is applicable and one does not
have to sum explicitly over the nuclear intermediate states. Also, b) since ¢R > 1
(R is the nuclear radius), the expansion in multipoles is not convergent, unlike in
the 2v decay. In fact, all possible multipoles contribute by a comparable amount.
Finally, ¢) the neutrino propagator results in a neutrino potential of a relatively long
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range (see equation (15)).

Thus, in order to evaluate the rate of the Ov decay, is necessary to estimate only
the matrix element connecting the ground states 0 of the initial and final nuclei.
QRPA and the shell model are the appropriate methods. Both calculations show
that the features enumerated above are indeed present. In addition, the QRPA
typically shows less extreme dependence on the particle-particle coupling constant
gpp than for the 2v decay, since the contribution of the 1t multipole is relatively
small. The calculations also suggest that for quantitatively correct results one has
to treat the short range nucleon-nucleon repulsion carefully, despite the long range
of the neutrino potential.

Does that mean that the calculated matrix elements are insensitive to nuclear
structure? An answer to that question has obviously great importance, since unlike
the 2v decay, we cannot directly test whether the calculation is correct or not.

16

&
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10

Cumulative matrix element
(00}

0 1 2 3 4 5 6 7 8
Multipolarity |

Figure 2.2: The cumulative contribution, i.e., the summed contribution of all natural
parity multipoles up to I of the exchanged nn and pp pair, to the Or nuclear matrix
element combination M, — M%. The full line is for ®Ge and the dashed line for
BCa.

For simplicity, let us assume that the Ov B3 decay is mediated only by the
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exchange of a light Majorana neutrino. The relevant nuclear matrix element is then
the combination M2 — My, where the GT and F operators change two neutrons
into two protons, and contain the corresponding operator plus the neutrino potential.
One can express these matrix elements either in terms of the proton particle - neutron
hole multipoles (i.e., the usual beta decay operators) or in terms of the multipole
coupling of the exchanged pair, nn and pp.

When using the decomposition in the proton particle - neutron hole multipoles,
one finds that all possible multipoles (given the one-nucleon states near the Fermi
level) contribute, and the contributions have typically equal signs. Hence, there does
not seem to be much cancellation.

However, perhaps more physical is the decomposition into the exchanged pair
multipoles. There one finds, first of all, that only natural parity multipoles (7 =
(—1)!) contribute noticeably. And there is a rather severe cancellation. The biggest
contribution comes from the 0™ multipole, i.e., the pairing part. All other multipoles,
related to higher seniority states, contribute with an opposite sign. The final matrix
element is then a difference of the pairing and higher multipole (or broken pair
= higher seniority) parts, and is considerably smaller than either of them. This
is illustrated in Fig. 2.2 where the cumulative effect is shown, i.e., the quantity
M(I) = X5 [M%.(J) — M (J)] is displayed for °Ge (from [130]) and **Ca (from
[32]). Thus, the final result depends sensitively on both the correct description of the
pairing and on the admixtures of higher seniority configurations in the corresponding
initial and final nuclei. It appears, moreover, that the final result might depend on
the size of the single particle space included. That important question requires
further study.

Since there is no objective way to judge which calculation is correct, one often
uses the spread between the calculated values as a measure of the theoretical uncer-
tainty. In Fig. 2.3 are chosen two representative QRPA sets of results, the highly
truncated “classical” shell model result of Haxton and Stephenson, and the result of
more recent shell model calculation which is convergent for the set of single particle
states chosen (essentially Ohw space).

For the most important case of Ge the calculated rates differ by a factor of
6-7. Since the effective neutrino mass (m,) is inversely proportional to the square
root of the lifetime, the experimental limit of 1.6 x 10% y translates into limits of
about 1 eV using the NME of [55, 33], and about 0.4 eV with the NME of [93, 130].
On the other hand, if one would accept the more stringent limit of 5.7 x 10% [16],
even the more pessimistic matrix elements restrict (m,) < 0.5 eV. Needless to say,
a more objective measure of the theoretical uncertainty would be highly desirable.

In Tables 1.2 and 1.3 are listed the deduced limits on the fundamental parame-
ters, the effective neutrino Majorana mass (m,), and the Majoron coupling constant
(Gv,y)- The references to the source of the corresponding nuclear matrix elements,
used to translate the experimental half-life limit into the listed limits on (m,) and
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Figure 2.3: Half-lives (in years) calculated for (m,) = 1 eV by various representa-
tive methods and different authors for the most popular double-beta decay candidate
nuclei. Solid lines are QRPA from [130], dashed lines are QRPA from [55] (recalcu-
lated for g4 = 1.25 and o/ = —390 MeV fm?), dotted lines are shell model [93], and
dot-and-dashed lines are shell model [33].

(gv,y) are also given. When using the tables one has to keep in mind the uncertainties
illustrated in Fig. 2.3.

2.3.3 The heavy neutrino mechanism of the Ov(5—decay

The neutrinoless 33 decay can be also mediated by the exchange of a heavy neutrino.
The decay rate is then inversely proportional to the square of the effective neutrino
mass [197]. In this context it is particularly interesting to consider the left-right
symmetric model proposed by Mohapatra [124]. In it, one can find a relation between
the mass of the heavy neutrino My and the mass of the right-handed vector boson
Wg. Thus, the limit on the 80 rate provides, within that specific model, a stringent
lower limit on the mass of Wp.

The process then involves the emission of the heavy W by the first neutron and
its virtual decay into an electron and the heavy Majorana neutrino, W — e~ +vx.
This is followed by the transition vy — e~ + W3 and the absorption of the W7 on
the second neutron, changing it into the second proton. Since all exchanged particles
between the two neutrons are very heavy, the corresponding “neutrino potential” is
of essentially zero range. Hence, when calculating the nuclear matrix element, one
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Figure 2.4: The Feynman graph description of the parity-violating nucleon-nucleon
force (left graph) and of the 53 decay with the exchange of a heavy neutrino medi-
ated by the pion exchange. The short range lepton number violating amplitude is
symbolically described by the filled blob in the right graph.

has to take into account carefully the short range nucleon-nucleon repulsion.

As long as we treat the nucleus as an ensemble of nucleons only, the only way
to have nonvanishing nuclear matrix elements for the above process is to treat the
nucleons as finite size particles. In fact, that is the standard way to approach the
problem [197]; the nucleon size is described by a dipole form factor with the cut-off
parameter A ~ 0.85 GeV. Using such a treatment of the nucleon size, and the half-
life limit for the "*Ge Ov decay listed in Table 1.2, one obtains a very interesting
limit on the mass of the vector boson Wx [98]

my,, > 1.6 TeV . (2.34)

However, another way of treating the problem is possible, and already mentioned
in [197]. The analogous situation is treated in the description of the parity-violating
nucleon-nucleon force [2]. There, instead of the weak (i.e., very short range) interac-
tion of two nucleons, one assumes that a meson (7, w, p) is emitted by one nucleon
and absorbed by another one. One of the vertices is the parity-violating one, and
the other one is the usual parity-conserving strong one. The corresponding range is
then just the meson exchange range, easily treated. The situation is schematically
depicted in the left-hand panel of Fig. 2.3.3. The analogy for 5 decay is shown in
the right-hand graph. It involves two pions, and the “elementary” lepton number
violating (G decay then involves a transformation of two pions into two electrons.
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Again, the range is just the pion exchange range. It would be interesting to see
if a detailed treatment of this graph would lead to more or less stringent limit on
the mass of the Wx than the treatment with form factors. The relation to the
claim in [166] that an analogous graph contributing to the lepton number violating
muon capture identically vanishes should be further investigated; in fact that claim
is probably not valid.
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The complexity of the calculation of the double beta decay matrix elements lies
in the fact that it is a second order process, i.e., in addition to the initial and final
nuclear states the knowledge of the complete set of the states of the intermediate nu-
cleus is required. In order to solve this problem different models as well as different
nuclear structure scenarios were applied [52, 62, 182]. Since the nuclei undergoing
double beta decay are open shell nuclei, the proton-neutron Quasiparticle Random
Phase Approximation (pn-QRPA) method has been mostly employed in the evalua-
tion of the double beta decay matrix elements [62, 182]. In addition, this approach
has succeeded in reproducing the experimentally observed suppression of the 2v33-
decay transitions. However, a strong sensitivity of the computed matrix elements
to an increase of the strength of the particle-particle residual interaction in the 17
channel leads to a problem of fixing this parameter [62]. Thus various refinements of
the original pn-QRPA have been proposed. One of them is to take into account the
nuclear deformation parameter in order to calculate the ground state properties of
the nuclei, the pairing correlations and the transition probabilities in the neutral or
charge-exchange channel. Another interesting effect of deformation might occur in
the double beta decay matrix elements. The deformed QRPA formalism [112, 157],
allows an unified description of the 2v33-decay in spherical and deformed nuclei.

The deformation degrees of freedom of nuclei undergoing the 2v3(-decay were
first considered within the Nilsson model with pairing [206]. Bogdan, Faessler,
Petrovici and Holan calculated the Ov@(-decay in the pairing model including de-
formation and rotation [24]. The first QRPA calculation of the 2v[33-decay matrix
elements in a deformed Nilsson-BCS basis were presented in Ref. [90]. The authors
did not take into account the particle-particle interaction of the nuclear Hamiltonian
and assumed the initial and final nuclei to be equally deformed. The effects of the
nuclear deformation were considered also within the SU(3) scheme [100] which has
been found successful in describing the heavy rotational nuclei. The SU(3) scheme
is a tractable shell model theory for deformed nuclei which requires a severe trunca-
tion of the single particle basis. This approach was used for calculation of the double
beta decay half-life of different heavy nuclear systems [101] and the predictions were
found to be in good agreement with available experimental data for **°Nd and 3*U
[193]. The effect of the deformation of the nuclear shape on the two-neutrino double
beta decay matrix element has been discussed in details within a method developed
by Raduta, Faessler and Delion [145]. The authors used the angular momentum pro-
jected single particle basis having the energies close to those of Nilsson levels. The
Gamow-Teller states were generated with the help of the spherical proton-neutron
QRPA with a good angular momentum quantum number within the considered ba-
sis. The results were presented for the 2v33-decay of 82Se. Tt was shown that the
deformation affects significantly the 2v(33-decay matrix element. The deformation
effect on the double Gamow-Teller matrix element of 1°° Mo were investigated in the
Hartree-Fock-Bogoliubov (HFB) framework in Ref. [45]. It was noticed that there
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is a necessity of an appropriate amount of deformation in the HFB intrinsic state to
reproduce the experimental 2v3(-decay half-life. The deformed pn—QRPA approach
has been successful in the description of the single 5-decay transitions of medium
and heavy nuclei a long time ago. In first applications only the particle-hole terms
of the Gamow-Teller force were taken into account [112, 157]. It was supposed that
the particle-particle terms have minor effect on the Gamow-Teller strength function.
However, from the spherical QRPA calculations it is known that the particle-particle
force plays an important role for describing the 8- and B5-processes [38, 130, 203].
Recently, the importance of the particle-particle interaction has been confirmed also
in the deformed QRPA treatment of the Gamow-Teller strength distributions [157].
A strong sensitivity of the single 5-decay characteristics to the nuclear shape, RPA
ground state correlations and pairing correlations was found.

3.1 Deformed single-particle mean field

In the present work, two different assumptions for the deformed mean field are con-
sidered, a deformed Woods-Saxon potential and a self-consistent mean field obtained
from a Hartree-Fock procedure with Skyrme forces. In the first approach a deformed
WS potential with axial symmetry is used to generate single particle energies and
wave functions. The parameters of this potential are taken from the work of Tanaka
et al. [186]. This parametrization was proposed originally for spherical nuclei rang-
ing from %0 to 2°*Pb but the derived isospin dependence of the parameters allows
an extension to deformed nuclei as well. Previous QRPA calculations have shown
that this parametrization provides realistic levels also for deformed nuclei and good
results on M1 excitations were obtained [155] for nuclei in various mass regions as
well. The quadrupole deformation (32) of the WS potential is usually determined
by fitting the microscopically calculated ground state quadrupole moment to the
corresponding experimental value. The hexadecapole deformation () is expected
to be small for these nuclei and we assume it is equal to zero.

The force Sk3 [17] and the force SG2 [78] that has been successfully tested
against spin and isospin excitations in spherical [78] and deformed nuclei [156, 157]
are considered. For the solution of the HF equations one follows the McMaster
procedure that is based on the formalism developed in Ref. [196] as described in
Ref. [195]. Time reversal and axial symmetry are also assumed here *.

In both schemes, WS and HF, the single-particle wave functions are expanded
in terms of the eigenstates of an axially symmetric harmonic oscillator in cylindri-
cal coordinates, which are written in terms of Laguerre and Hermite polynomials.
The single-particle states |¢) and their time reversed |i) are characterized by the
eigenvalues €1 of J,, parity 7;, and energy ¢;

1See Appendix B for more detailed calculations
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+ i i
= Z il Z Nnyrn,AX |NnTnZAZ> (31)
N

nrynz,A>0,5

with 2, = A+ X > %, and

+ T i 1_
- Z Z Nn, n,AX (_1)2 > |Nnrnz — A - E) y (32)
N

npnz,A>0,2

with ; = —Q;, = -A-¥ < —%. For each N the sum over n,,n., A > 0 is extended
to the quantum numbers satisfying 2n, + n, + A = N.

3.2 Deformed quasiparticle mean field

In order to define the proton—neutron gap, the 7' = 0 and 1" = 1 coupling, general
notions concerning the origin of the pairing gap have to be introduced. This section
is reserved to the theoretical considerations concerning this topic and it has a very
general character. The model space is defined by a finite, M-dimensional, set of or-
thonormal single nucleon wave functions |i >, |k >, .....,, being discrete eigenstates
of a spherically symmetric one body potential, e.g. the harmonic oscillator. The
creation and annihilation operators will be denoted by cg , 02 o and ¢, Cg....py TE-
spectively. They fulfill the usual anti-commutation relations for Fermion operators.
The corresponding particle vacuum |0 > is defined by ¢;|0 >= 0 for all i = 1, ...., M.
Each of the states:

|Z >= C“O >= |7’Li, li,ji;mi,n >, (33)

is characterized by a set of quantum numbers: the orbital angular momentum [; is
coupled with the nucleon spin s = 1/2 to the angular momentum j;, the different
magnetic substates which are denoted by m; = —j;, .....7;; the isospin projection 7;
distinguishes a neutron(r; = 1/2) from a proton (7; = —1/2) state. Under time
reversal the states (equation 3.3) transform as

i >= Ke™™v|i >= (=) Hmili —my, 7, >, (3.4)

where 5, denotes the y component of the spin operator and K stands for a complex
conjugation. Similarly for each state (equation 3.3), its charge conjugate partner
can be introduced by:

eli >= Koem™)i >= (=)Y>|iim; — 7y > . (3.5)
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The effective many body Hamiltonian appropriate for this model space is repre-
sented as a sum of one and two body terms

H= > t(ik)cle, + 1/4 > v(ikrs)clclese,. (3.6)
ik ikrs

In order to guarantee the real energy eigenvalues for the discrete nuclear excitation,
the Hamiltonian H , has, obviously, to be hermitian. It is a scalar in normal space
and commutes with the square j2 of the total angular momentum operator and its
3-components J,. In addition H conserves the total number of nucleons as well as
the charge of the considered system. If the weak interactions are neglected, the total
parity is conserved. The following relations are fulfilled by the matrix elements of
the hamiltonian. Here,

t(ik) =< i|T|k >= 6(r1, 1)L, 1e)8 (s i) (s, )L (ike), (3.7)

are the matrix elements of the one body part 7 (usually the kinetic energy operator)
and
v(ikrs) = <ik|V|rs—sr>
o(Mnlj; + Ju, Jr + Js] = Maz||j; — jil, |Jr — Jsl)v(ikrs), (3.8)

are the antisymmetrized matrix elements of the effective two body interaction V.

The matrix elements
t(ik) = t(ki) = t(ik)* = t(ik), (3.9)

as well as
v(ikrs) = —v(kirs) = —v(iksr) = v(kisr) = v(rsik) = v(ikrs)* = v(ikrs), (3.10)

are real numbers and time-reversal invariant.

3.2.1 The HFB transformation

The most general quasiparticle creation operator resulting from a linear transfor-
mation of the creation and annihilation operators of the chosen single particle basis
states, has the form:

af, = Z(Aiacl + Biaci), (3.11)

M
i=1

where o = 1, M. The matrix notation of the previous equation is:

()= 5 (9)=r() e
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with F being a unitary matrix (in order to fulfill the Fermion anti-commutation rela-
tion). The last equation defines a general HFB transformation. The corresponding
vacuum a,|F >= 0 for all @ = 1...M can be uniquely represented by:

M
|F >= (H aa> 0> . (3.13)
a=1
The vacuum properties are completely characterized by the density matrix
psk =< Flctes|F >= (B*B ), kys=1,.., M, (3.14)

and the pairing tensor

Kop =< Flese,|F >= (B*AT),q; r,s=1,..., M, (3.15)
where p is hermitian and positive definite (p = p™ > 0) and x is antisymmetric
(k = —xT). In this representation the pairing gap has the following form:

= . _ 1 T
A(ik) . = A(imm, k) = —5 > v(ik,r5) ks

1 _
—5 Z Z v(imT;, kmry; rm! 7., sm/T,) < cse, > . (3.16)

m/ I'Tr,8Ts

Assuming time-reversal and axial symmetry for the HFB transformation F and also
taking into account the symmetry relationship for the pairing tensor, the pairing
gap can be written as:

—_ 1 1
AGik): = A1 Z‘,E = —=
(7/ ) (lm']— mTk) 9 n;() U—Tén 1+ 5<£’ §)5(Tr, Ts)
v(ik; 78) Kys + v(ik; T8) ks + v(ik; ST)kgr + v(ik, 37) Kgy
1 1
22 2Ty 8(r, 5)8(,7s)

m/ >0 r7-<sTs

{[v(ik;78) — v(ik;Ts)|Rek,s + [v(ik;r5) — v(zE_, 7s)|ilme,s

+[U(zf; rs) — v(ik; Fs)]Re/fgr + [v(ik; 78) — v(ik; Ts)|ilmek,s}
T2 2 2 1+0(r,8)d(7,7)

m'>0 r7r<sTs

{[v(ik; r5) — v(ik;Ts)|Rek,s + [v(ik; r5) — v(ik;Ts)|ilmk,s} (3.17)

Coupling the two body matrix elements to angular momentum I and isospin T
one obtains the proton-proton, neutron-neutron and proton-neutron contribution.
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ATT(ik) 1 = A(img; kmT) = —22 115 Z I (ik; 8) (= 1) (g d [m — mO)
r<s
1
{22 ()P GegaI ! = M O)[5 1+ (= 1) Rex T (m') +
m’>0
1
11— (1)L (')}, (3.18)
and
ATT(ik) = A(img; km— 1) ZZ \/ 14+0(4,k)(1+0(r,s))

Zv (1k; s) 1)”‘“’c m(]ijkﬂm — m0)

1
{ Z Js+ls ]r]s[|m —m 0)[2[1 + (_l)lT+ls+I]ReI£;s_T(m’) +

m/>0

S = (=0 iTme 77 ()]} (3.19)

Equation (3.18) describes the pairing between two like nucleons and contains just
T = 1 components. Equation (3.19) gives the part of the pairing potential resulting
from proton-neutron pairing. Here obviously T = 1 as well as T" = 0 components
do occur. It is immediately seen from these two equations that the coupling of
the nucleon pairs to natural parity states gives rise to the real part of the pairing
potential while unnatural parity pairing is responsible for the imaginary parts. The
above equations are easy to interpret for a single j-shell. Then the like nucleon
pairing as well as the 7" = 1 component are purely real, while the T" = 0 components
of the proton-neutron pairing potential are purely imaginary.

3.2.2 Pairing hamiltonian

The ground state of even-even nuclei is determined by the deformed pairing Hamilto-
nian, which includes monopole (K = 0) proton, neutron and proton-neutron pairing
interactions:

H = Z Z psaCPSU + Z(Egs - )\n) Z CILSO'CHSU

_GT IZST 1TST 1 GT:lZST 1TST 1

spp s'pp snn s'nn

spn s'pn spn s'pn )

_GZHZIZST 1TST 1 ng:OZST OTST 0 (3.20)
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where the €, and ¢, are the unrenormalized proton and neutron single particle

energies, respectively. A, (A,) is the proton (neutron) Fermi energy and SSTTTT
creates isovector (T=1) or isoscalar (T=0) pairs in time reversed orbits

T T
S.g;opl = Z psa ps<77 S.g;ml ZCILSU'CTTLS&?
T
S.Z;onl - Z 75(025001185' + CILSUC;FJ.S&)?
1
sr=ot _ —=(cl el =l el ). (3.21)
spn ; \/g PST-NSG nso -psé

Here, ¢!, and c.,, stand for the creation and annihilation operators of a particle
(7 = p and 7 = n denote proton and neutron, respectively) in the axially-symmetric
harmonic oscillator potential. These states are completely determined by a principal
set of quantum numbers s = (N, n., A, 2). o is the sign of the angular momentum
projection € (o = £1). The intrinsic states are twofold degenerate. The states with
) and —(2 have the same energy as a consequence of the time reversal invariance.

~ indicates time reversed states.

The Hamiltonian in equation (3.20) is invariant under hermitian and time re-
versal operations. The four coupling strengths G}=', G1 =" GI=' and G} 70 are
real and characterize the associated isovector (pp, nn and pn) and isoscalar (pn)
monopole (K=0) pairing interactions The isospin symmetry of the Hamiltonian in
equation (3.20) is restored for €), =€) and G} ' = G~ = G} =1 = G} =°. For the

particular case, GT . GT 0

H = Z 7—50-07'80' Z G’T’T Z CTSO' T SU'C’T s'5'Crs'a’ (322)

SOT e sos'a’

It is assumed that G, = G,-,. In this limit one can not distinguish between T=0
and T=1 pairing. A similar Hamiltonian was discussed in Ref. [39], where the
representation of the single particle states with good angular momentum quantum
number was considered.

3.2.3 Generalized BCS transformation

If the proton-proton, neutron-neutron and proton-neutron pairing correlations are

considered for ax1ally—symmetrlc nuclei, the particle (cl,, and c,,,, 7 = p,n) and

the quasiparticle (af als, and a, ., p = 1,2) creation and annihilation operators for

the deformed shell model states are related each to other by the generalized BCS
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transformation [82]:

CZTSU Ustp Uszp  —Usip —Us2p Cli:(,

le_sg _ Usin Us2n —Usin —Usopn a;;a (3 23)
Cps& Uslp /Us2p uslp us2p Q156 ’ ‘
Cnse Usin  Us2n Usin Us2n, A2s5

where the occupation amplitudes wsip, Vsip, Uson, Vs2n are real and Usiy, Usin, Us2p,
Vsop are complex [81]. In the case when only the T=1 proton-neutron pairing is
considered all amplitudes are real [35, 81]. In the limit in which there is no proton-
neutron pairing ug, = Vg, = Ug, = Vg, = 0. Then the isospin generalized BCS
transformation in equation (3.23) reduces to two conventional BCS two-dimensional
transformations, first for protons (uy, = ug, v, = v,,) and second for neutrons
(us2n = Ugps Usop = Usn)'

The diagonalization of the Hamiltonian (3.20) is equivalent to the matrix diag-
onalization [82]

slp

€ps — /\P 0 APP AP” Uspp Uspp
0 €ns — A A A U u
ns n on nn spn — Es spn 324
App Ay —(€ps — Ap) 0 Uspp "1 vspw ( )
A;n Ann 0 _(Ens - )‘n) vspn Uspn

that yields the quasiparticle energies F,, and the occupation amplitudes. Here,
€,s (T = p,n) are the renormalized single particle energies which include terms
describing the coupling of the nuclear average field with the characteristics of the
pairing interactions [178]. The proton (4,,). neutron (A,,) and proton-neutron
(A,,) pairing gaps are given as

T=1 * T=1 *
ATT - GTT ZUSPTU’SPT - G’TT ZUSPTUSPT (T = b n)7
P

5P

Npn = ATHHIATO (3.25)
with

T=1 __ T=1 *
Apn - Gpn Re{ szppuspn }’

S,P

AT = G0 I Y vsppul,, b (3.26)
5P

The real and imaginary parts of the proton—neutron pairing gap A, are associated
with T=1 and T=0 pairing modes, respectively. This phenomenon was first pointed
out by Goodman [40, 82], permitting almost all subsequent treatments of pn pairing.
For G} =" equal to zero the occupation amplitudes of the isospin generalized BCS
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transformations are real. The Langrange multipliers A, and A, entering (3.24) are
adjusted so that the number-conservation relations

7 = Qszppv:pp, N = Qszpnv;‘pn, (3.27)
sp sp

are satisfied.
The ground state energy can be written as

Hy s = Ho+ Hpgir., (3.28)

where Hj is the BCS expectation value of the single-particle Hamiltonian
Hy=2 Z €rs Z Vspr Vs pr (3.29)
TS p

and Hp,;, represents the pairing energy

GG an e

Hpair =

The proton-proton, neutron-neutron and proton-neutron (T=0 and T=1) pairing
modes contribute coherently to the ground state energy H,, ;..

In Ref. [56] it has been suggested that the effect of different pairing modes can
be quantified by measuring pair numbers in the nuclear wave function [48]. For that
purpose the operators

=11 oT= =11 oT=
Ny = ZST Vel=1" N, = ng;ml SI=1,
s,s’

spp s'pp
s,s’
T—=1 T=11 oT=1 -0 T=0T oT'=0
N7t o= Y SEVSI N = SIS, (3.31)
s,8' 3,8’

which are rough measures of the numbers pp, nn, pn (T=1) and pn (T=0) pairs,
respectively, are defined. The BCS ground state expectation values of these oper-
ators are related with the corresponding pairing gaps. After subtracting the mean
field values we find

A? Az
< '/V;’p > = (GTI:)pl)Q’ < Nn” >~ (GT:l)Q’
pp nn
T=1\2 T=0\2
r=1 o Q) r=o . (Bp’)
<N, > = (G§=1)2’ <N, >~ (G]:Jr:())z' (3.32)
pn pn

The number of these pairs can not be observed directly.



CHAPTER 3. MANY-BODY APPROACHES FOR g AND g3 DECAY
MATRIX ELEMENTS ol

3.2.4 Empirical pairing gaps

The magnitudes of proton, neutron and proton neutron pairing gaps can be deter-
mined only indirectly from the experimental data. Usually they are deduced from
systematic studies of experimental odd-even mass differences:

M(Z,N)even—even = M(Z,N)

M(Z, N)odd—proton = M(Z,N)+ AT

M(Z, N)odd—neutron = M(Z,N)+ AT
M(Z,N)otg-ota = M(Z,N)+ AP 4 ACTP- _ gemp-, (3.33)

Here, M (Z, N) are the experimental nuclear masses and M(Z, N) denotes a smooth
mass surface formed by a set of even—even nuclei, i.e. for these nuclei the measured
mass is identical to the smooth mass. The mass of an odd-proton (odd-neutron)
nucleus is given by addition of the proton pairing gap A;™ (neutron pairing gap
AS™) to M(Z, N). The mass of an odd-odd nucleus is the sum of the smooth mass
M(Z, N) and the sum of the proton and neutron pairing gaps minus the attractive
residual proton—neutron interaction energy ;7.

Using the Taylor series expansion of the M(Z, N), the quantities AP AT
and 0,77 for even mass nuclei can be expressed as

emp. 1
Ay = 2 [M(Z+2.N) = AM(Z +1.N) + 6M(Z.N)
—4M(Z —1,N)+ M(Z —2,N)],
1
NS — —g[M(Z, N +2)—4M(Z,N +1) + 6M(Z, N)
—4AM(Z,N = 1)+ M(Z,N — 2)],
emp.- 1
o = {2AM(Z.N+1)+ M(ZN - 1)

+M(Z —-1,N)+ M(Z+1,N)| —4M(Z,N)]
~[M(Z+1,N+1)+M(Z—1,N +1)
+M(Z+1,N—-1)+M(Z—-1,N —1)]}.

(3.34)

The first systematic studies of nuclear masses have shown that the average pair-
ing gaps (A, T = p, n) decrease slowly with A'/? (traditional model) [26]. Vogel
et al. found evidence for a dependence of the average pairing gaps upon the relative
neutron excess (N — Z)/A [201]. The parameterizations of the average pairing gaps
and the average proton-neutron residual interaction within these two models are as
follows:

A, = 12 MeV/AY? 6, =20 MeV/A (traditional model)
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N—-Z7

2
A, = (7.2 —44%) MeV/AY3, 5, =31 MeV/A (Vogel et.al)(3.35)

Recently, Madland and Nix [118] presented a model for calculation of these average
quantities by fixing a larger set of parameters.

Table 3.1: The empirical [see equation (3.34)] and average [see equation (3.35)]
pairing gaps and proton—neutron residual energy for Ge isotopes with A=64-76.

Empirical values Average values
Traditional m. Vogel et al.
Nucleus = AZ™-  A7m™P- 50w Ay, Opn AV Opn

[MeV]| [MeV| [MeV] [MeV] [MeV] [MeV]| [MeV|
“Ge 1.807 2.141 1.498 1.500 0.313 1.800 0.484
er 1.586 1.859 0.816 1.477 0.303 1.770 0.470
BGe 1.609 1.882 0.630 1.455 0.294 1.727 0.455
0Ge 1.551 1.866 0.594 1.434 0.285 1.668 0.443
2CGe 1.614 1.836 0.583 1.414 0.278 1.600 0.430
[er 1.621 1.715 0.424 1350 0.270 1.523 0.419
6CGe 1.561 1.535 0.388 1.376 0.263 1.441 0.408

In Table 3.1, the experimental pairing gaps and proton—neutron excitation ener-
gies for Ge isotopes with A=64-76 are compared with the averaged ones. A better
agreement between empirical and average values is achieved for the model developed
by Vogel et al. [201]. The differences between empirical and average values are small
especially for isotopes close to the valley of 3 stability. It is worthwhile to notice that
the values of proton—neutron interaction energies are not negligible in comparison
with the values of pairing gaps even for isotopes with large neutron excess. This
fact is clearly illustrated in Fig. 3.1. Thus the proton—neutron pairing interaction is
expected to play a significant role in the construction of the quasiparticle mean field
even for these nuclei. It is supposed that the origin of this phenomenon is associated
with the effect of nuclear deformation, which is changing the distribution of proton
and neutron single particle levels inside the nucleus.

For performing a realistic calculation within the deformed BCS approach it is
necessary to fix the parameters of the nuclear Hamiltonian in equation (3.20). Fol-
lowing the procedure of Ref. [35] this is done in two steps:

i) The proton (neutron) pairing interaction strength G7=' (G} =") is adjusted by
requiring that the lowest proton (neutron) quasiparticle energy to be equal to the
empirical proton (neutron) pairing gap AS™ (A77P).
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Figure 3.1: The experimental proton (As™) and neutron (A;"") pairing gaps and
proton-neutron interaction energy (d,"7) for even—even Ge isotopes with A=64-76
[see equation (3.34)] .

ii) With already fixed G7}=" and G} the proton neutron pairing interaction
strengths ngz I and ng:o are adjusted to the empirical proton neutron interaction
energy 0,7 using the formula

giheor = —[(H2) + By + By) — (HPY + E, + E,)]. (3.36)

Here, H{!? (H{®") is the total deformed BCS ground state energy with (without)
proton-neutron pairing and £y + Es (£, + E,) is the sum of the lowest two quasipar-
ticle energies with (without) proton—neutron pairing gap A,,. The calculation of the
ground state energies of odd-odd nuclei within macroscopic pairing models is based
on the assumption that there is one unpaired proton and neutron close to the Fermi
surface [125, 127, 201]. The resulting expectation value of an attractive short-range
residual interaction between them, which can be approximated by a delta force, is
considered to be the origin of the proton-neutron interaction energy. Unfortunately,
this simplified approach can not be exploited in a microscopic treatment of nuclear
properties of open shell nuclei, as the construction of the many-body wave function
is required. In the deformed BCS approach the ground state of the odd-odd nucleus
is described as the lowest two quasiparticle excitation of the even-even nucleus. This
procedure of fixing the pairing strengths was exploited already in Refs. [35, 126).
However, some questions arise about the ambiguity of equating the microscopic
pairing gap expressions, used to determine the strengths of the pairing matrix ele-
ments. Thus, one has to study the importance of the proton-neutron pairing effect
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for N > Z nuclei also by assuming a different scenario, namely the commonly used
pairing strengths,

G-t =GISt =16/A MeV,  GL=0=20/A MeV, (3.37)

which decrease with increasing neutron excess.

3.3 Deformed QRPA

The theoretical approach, used in this work to derive the single and double beta tran-
sition probabilities, is based on the deformed proton-neutron Quasiparticle Random
Phase Approximation ? with a separable proton-neutron residual interaction, which
is relevant for the allowed Gamow-Teller transitions [112, 157].

3.3.1 Residual interaction for charge-exchange channel

The total nuclear Hamiltonian takes the form
H = Hy+ Hjp. (3.38)

Hy denotes the Hamiltonian for the quasiparticle mean field described by a deformed
axially-symmetric Woods-Saxon potential [186]

Hyo=> E.dl, a., (r=p,n), (3.39)
™

where F, are the quasiparticle energies. al o, (@rp,) is the quasiparticle creation (an-
nihilation) operator. The p (n) index denotes proton (neutron) quasiparticle states
with projection €2, (€2,,) of the full angular momentum on the nuclear symmetry axis
and parity m, (7,). The index p (p = £1) represents the sign of the angular mo-
mentum projection ). The intrinsic states are twofold degenerate. The states with
), and —€2, have the same energy as a consequence of the time reversal invariance.
(), is taken to be positive for states and negative for time reversed states.

The method includes pairing between like nucleons in the BCS approximation
with fixed gap parameters for protons, A,, and neutrons, A,,.

The residual interaction part H;,; of nuclear Hamiltonian in equation (3.38)
contains two terms associated with particle-hole (ph) and particle-particle (pp)
interaction:

Hiw = x Y (=DFBixB x + B kbik)

K=0,%1

—k Y (—1)" (PP + P Prye). (3.40)
K

2See Appendix C and D
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The operators 5~ and P~ are particle-hole (ph) and particle-particle (pp) compo-
nents of the spin-isospin 710, namely,

B = > <pplrToxlnpn > cl cnp B =(B5)"
PppnpPn

Pg = > <pplrtoklnp, >, &, . PE=(Pg)l. (3.41)
PppTpPn

The ph and pp forces in equation (3.25) are defined to be repulsive and attrac-
tive (x,x > 0), respectively, reflecting the general feature of the nucleon-nucleon
interaction in the J™ = 17 channel. The explicit form of the matrix element
< ppp|TtoK|np, > is presented in Appendix F.

After neglecting the scattering terms a;ppanpn and af ondpp, the quasiparticle rep-
resentation of H;,; takes the form

Hime = X Z > lox(D)ox (i) + ox (Dox (1)) (AT, K)A'(G, K) + A(j, K)A(, K))

+(<7K(@) x(j) +@ () k()AL KA, K) + A5, K) AT, K))]
—t > D (rr(O7k () + Tr ()mr () (AT @ K) AN, K) + A(G, K)A(G, K))

K=0,£1 ij
(e (O)7r (5) + T ()T () (AT (0 K)AG, K) + A(j, K) AT (@, K)], (3.42)
with
ox(i) = <ppplmToK|NPn > upvn, Tk (i) =< ppy|T oK|nPL > Vyuy,
k(i) = < ppplTToKR|NPn > Uptn, T (i) =< ppp|TToK|NPL > VyU,. (3.43)
AZ and A; are the two-quasiparticle creation and annihilation operators
Al(i,K)=al af . A'(i,K)=al al . A(i,K)= (A", K)). (3.44)

Ppp “MpPn’ Ppp “NpPn’

The quasiparticle pairs i and i are defined by the selection rules Q, — Q,, = K and
2, — Q, = K, respectively, and 7,7, = 1.

3.3.2 Phonon operator

The above considered model Hamiltonian includes terms with KX = 0,41 and de-
scribes JTK = 171,170 excitations. In the laboratory frame the proton-neutron
QRPA phonon wave functions for Gamow-Teller excitations in even-even nuclei have
the form

3
[IM(K),m > = \/@[D}\JK(¢’9a¢)Q%T+

(=) EDY ke (6,0.0)Q", Irpa > (K = 1),

M) m > = | 3 Dh(0,0.0)@R rpa > (K =0), (3.45)
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where |rpa > denotes the QRPA ground state. The intrinsic states are generated
by the phonon creation operator
Q' = DIXIcAT L K) = VI A(, K. (3.46)

)

In the case K = £1 (K = 0) the sum in equation (3.46) includes all bound and
quasibound two-quasiparticle spin—projection—flip (non—spin—projection—flip) config-
urations. The K = —1 and K = 1 modes are related to each other through time
reversal and are degenerate.

3.3.3 Secular equation

The excitation energy wy and the amplitudes X["; and Y} of the phonon Q' are
obtained by solving the RPA matrix equation

) () - (0 () o
where

Aij(K) = &bij + 2x[ok(1)ok (J) + 0k (1)0k (5)] — 26[mk (1) 7k () + Tr (1) Tk (4)];
By(K) = 2xlox(1)ox()) + 0k (1)ox(5)] + 267k ()Tx (§) + Tx ()7 (5)]  (3.48)

with & = E, + £, the two-quasiparticle excitation energy.

An advantage of using the separable forces is that the RPA matrix equation re-
duces to a homogeneous system of only four equations for the four unknown norms
N,, N5, N, and Nz, which is much easier to solve in comparison with the full diag-
onalization of RPA matrix of large dimension. The corresponding secular equation
is given by

L+ X(=Pf + B5)  X(=Pg + Ry,) K(Ey + Riz) K(Pyz + Riy)
X(=Ppo + Rys) L+ x(=Pi+Ry,) (P + R K(Pgs + Rey)
X(= Py, — RE;) X(=Ppy = Rr,)  1+w(Ph—RE) k(PR —REY)
X(—Pse — R55) X(—Pse — R5,) K(Pry — Riz) 1+ k(Pr — Ryy)

(3.49)
with
a(i)a(i) K a(i)d(i) ) o
pPE _9 RE —9 = . 3.50
The forward and backward amplitudes are written as
2N, V- . Ns "Ne . Ns
Xixk = o — &[ X(or (i) + UK(Z)E) - K(WK(Z)E + WK(Z)E) I,
_2N0' . . N& _ . N7r . NEr
Vi = g X0 okl ) + k() F o+ ) ) | (351
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where for the norms N,, N5, N, and N; one gets

Ny = Y lox() Xk +ox(@)Y]k], No =) [0x(i) X5 +or(i)YK],

Ne = Y [mc()Xfg — 7x(D)Yjil,  Ne= > [rx (i) X — mxe (i) Y]k]. (3.52)

The normalization factor N, is determined from the condition

< rpal[ Q3. Qpllirpa >= 3 (X Xig — ViY) = 1. (3.53)

i

The QRPA equations are calculated separately for different values of K and the
solutions for K = +1 and K = —1 coincide each to other due to the assumed axial
symmetry.

3.4 Single and double beta transition in deformed
nuclei

3.4.1 Single beta transitions

The $~ and 7 transition amplitudes from an 0% even-even initial nuclear state to
an one-phonon state in the odd-odd final nucleus are expressed by

<IM(K),mlByl0;. > = D[o(0) X[k + o (i)Yl
<IM(K),m|B|05, > = ][0(0) Xk + o (i) Vig]. (3.54)
Here, |07 > denotes the correlated RPA ground state in the laboratory frame. The

(* transition operators in equation (3.54) are related to the intrinsic 8% operators
in equation (3.40) as follows:

/BM - Z DJMM st 07 w)ﬂj: (355>

The g strength function is given by

Ba(w) = 3 S [<1()m | 5[ 0f, > Po(w - w),
K=0,£1 m
Big(w) = 3 S| <1UK)ml| B[ 0f, > Pow—wk).  (3.56)

K=0,+1 m
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From the % amplitudes one obtains, straightforwardly, the total 3% strengths:
Sor = > Y I<UK)m|B |0}, >

K=0,£1 m

Sér = Y DI<UK)m| BT 0f, > (3.57)

K=0,£1 m

3.4.2 Tkeda sum rule (ISR)
The Ikeda sum rule is given by

Sor = Ser = KZi (0x(4))* = (ok())7]

= 3 3 | <pplrolnp. > P02 —v2) = 3(N — Z)(3.58)

K=0,%+1 pppnpn

The factor 3 comes from the sum over K, i.e., the contribution from each component
K is equal to (N-Z). In deriving the above expression the closure condition for QRPA
states and the assumed completeness relation for single particle states

> lro, ><7p, =1 (3.59)
TPt
has been used. If a truncated single particle basis is considered instead of the full
single particle basis of the Woods-Saxon potential, the condition in equation (3.59)
is violated and in consequence the Ikeda sum rule as well.

3.4.3 2vp3p -matrix elements

The inverse half-life of the 2v(3-decay can be expressed as a product of an accurately
known phase-space factor G* and the Gamow-Teller transition matrix element M2,
in second order:

[T575(05 — 05 )17 = G* (g9a)" |Mz [ (3.60)

The contribution from the two successive Fermi transitions is safely neglected as
they come from isospin mixing effects [93]. Within the deformed QRPA approach
the double Gamow-Teller matrix element Mg/, for ground state to ground state
2v((-decay transitions takes the form

MZ = Y Y <07 [ 8| I(K)’mfn> ) <.1(K)>mi | 8~ | 0F >7
mim s K=0,41 (wr" +wi')/2
O — < 1(K),m1(K),m;> . (3.61)

The sum extends over all 17 states of the intermediate nucleus. The index i (f)
indicates that the quasiparticles and the excited states of the nucleus are defined
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with respect to the initial (final) nuclear ground state |0 > (|0} >). The overlap
is necessary since these intermediate states are not orthogonal to each other. The
two sets of intermediate nuclear states generated from the initial and final ground
states are not identical within the considered approximation scheme. Therefore the
overlap factor of these states is introduced in the theory as follows [170, 171]:

< 1) g V(K mi = SIXPRXT YRV < Gsli > (3.62)

Jijf
with
< Jfldi >=< pspp; Pipp; >< ppn,|nipn, >< BCS(™°Se)|BCS("Ge) > . (3.63)

The overlap factor of the single particle wave functions of the initial and final nucleus
is given explicitly in the Appendix F and the overlap factor of the initial and final
BCS vacuum is given by [90]

< BCS("Se)|BCS("Ge) > = M,(ufu? + v{vl)

I, (u (3.64)
Here, p (n) denotes a pair of the proton (neutron) single particle states of the initial
and final nucleus with maximal overlap. For spherical nuclei this factor is given in
[104]. In the spherical limit the value of the BCS overlap factor is about 0.8 and it
was commonly neglected in the double beta decay calculations [38, 89, 130, 184].
The overlap matrix elements between the intermediate states generated from
initial and final nuclei with different K, are very small due to the different struc-
ture of the corresponding RPA configurations. They have been neglected in this
calculations. Thus the spin—projection—flip (K = £1) and non-spin—projection—flip
(K = 0) excitations contribute coherently to the 2v33-decay matrix element MZ..

3.5 The fully-renormalized QRPA (FR-QRPA)

Unfortunately the limitations of the QRPA formalism (for both spherical and de-
formed nuclei) cannot be overcame in the previous described formalism. The collapse
due to the overestimated ground state correlations is present (in the next chapter
the numerical calculations will show this fact), Ikeda sum rule is not totaly ful-
filled and implicit the 2066 matrix elements cannot be rigourously evaluated. The
main questions, what mechanism can avoid the collapse of QRPA, still doesn’t have
an answer. But one step further is done by formulating another QRPA extension,
namely FR-QRPA and to present the differences between this present method and
the previous QRPA extensions.
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Renormalized QRPA (RQRPA) was formulated in Refs. [95] to restore (Pauli
Exclusion Principle) PEP in an approximate way. The method uses a self-consistent
iteration of the QRPA equation, taking into account quasiparticle occupation num-
bers in the QRPA ground state. This assumption leads to a modification of the
commutation relations for the bifermionic operators as compared to the ordinary
quasiboson approximation (QBA). At the same time so-called scattering terms (de-
scribing transitions of the quasiparticles) are neglected in the Hamiltonian and in
the phonon operators. The RQRPA does not collapse for physical values of the
particle-particle interaction strength and it is extensively used to calculate the in-
tensities of the double beta decay [62, 65, 146, 168, 172, 173, 190, 191]. Moreover,
RQRPA provides better agreement with the exact solution of the many-body prob-
lem within schematic models, even beyond the critical point of the standard QRPA
(see, e.g. [174] and references therein).

The self-consistent RQRPA (SCQRPA) is a more complex version of RQRPA
to describe the strongly correlated Fermi systems. In the SCQRPA, at the same
time, the quasiparticle mean field is changed by minimizing the energy and fixing
the number of particles in the correlated ground state of the RQRPA instead of the
uncorrelated one of BCS as is done in the other versions of the RQRPA. In this
way SCQRPA partially overcomes the inconsistency between RQRPA and the BCS
approach and is closer to a fully variational theory. Nevertheless, the main drawback
of the modern versions of RQRPA is the violation of the model-independent Ikeda
sum rule (ISR) [23, 180, 191]. A modification of the phonon operator by including
scattering terms is needed in order to restore the ISR within RQRPA.

The fully-renormalized QRPA (FR-QRPA) was formulated in Ref. [149] for even-
even nuclei in such a way that it complies the restrictions imposed by the commu-
tativity of the phonon creation operator with the total particle number operator. It
was shown analytically that the Ikeda sum rule is fulfilled within the FR-QRPA [149].
Also FR-QRPA is free from the spurious low-energy solutions which would be gen-
erated by the scattering terms considered as additional degrees of freedom.

3.5.1 The FR-QRPA matrices

Within RPA an excited nuclear state, with angular momentum J and projection M,
is created by applying the phonon operator Q' to the vacuum state [0fp5,) of the
initial, even-even, nucleus: with the same nucleon number A:

|JM) = QTJM|0J15PA> with Qm|0%pa) = 0. (3.65)

As was shown in Ref. [149], the most appropriate way is to write down the phonon
structure in terms of the particle creation and annihilation operators. That allows
to fulfill the important principle of the commutativity of QT, o With the total particle
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number operator A= N+ Z. The phonon operator has the following structure:

Qar = X 2w CT (T, TM) = yiorr ) C (77, IM)] (3.66)
with CT(rr', JM) = [ciéT/]JM and C(rr',JM) = (=)""MC(rr',J — M), where
cl, (¢;,.) denotes the particle creation (annihilation) operator.

Going into the quasiparticle representation, the quasiparticle creation and anni-
hilation operators af,, and a,,, can be defined by the Bogolyubov transformation

+ +
() = (2 ) (), 367)
a/qu— —Vr Ur CTm-r

that leads to the following expression for the phonon operator QT, M-

QT]]\/[ = ETT’ {X(TT’,J)AT(TTla JM) - Y'(TT/,J)‘Z1 (TT/7 JM)} ) (368)

At = AT + (uT/vT/BT - UTUTB) /(2 —v?),
Al(rr', M) = [aia” . Bi(rr/,JM) = [aldﬂ}

JM JM’

where X = w, v — vumy, Y = w0y — vyupx. The bifermionic operators Af, A
being the basic building blocks of the FR-QRPA automatically contain the quasi-
particle scattering terms which, however, are not associated with any additional
degrees of freedom. That means that there are no spurious low-lying solutions in
the present theoretical scheme which would be generated by the scattering terms
considered as independent degrees of freedom.

From this point one can follow the usual way to formulate the RQRPA [95],
substituting A by A everywhere. The forward- and backward-going free variational
amplitudes X and Y satisfy the equation:

<éﬁ)<§:>:5m<%{ 34)(?1:) (3.60)

where m marks different roots of the QRPA equations for a given J™,

A = <0J15PA| [A [HFMZUH |01+2PA>7
B = —(0fpal |A [Hr, A]] 0f5.4), (3.70)

and the renormalization matrix U, is

Urpr = (0fipal [A(r7', M), AT(00", IM)] |0fip4) = 676011 Drpr. (3.71)
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3.5.2 The FR-QRPA equations

A rather simple, but realistic, Hamiltonian H consisting of the quasiparticle mean
field Hy and the residual separable particle-hole (ph) and particle-particle (pp)
interactions is used,

H = Hy+ H" + 0", (3.72)
Hy= Y E.dla,, (3.73)
T=p,n
HfrZ = X %(_1)M(ﬂfMﬂl+—M + 51+—MﬁfM)> (3-74)
Hjy, = —k %(‘DM(PfMﬂtM + P 3P, (3.75)

with 55y = —J ' S(pllolin) )], o Pir = T Sloln) [dd]

Taking into account the exact (fermionic) expressions for the commutators in
the equations (3.70), (3.71), one gets the following expressions for the FR-QRPA
matrices A and B:

.A = |:(ET + ET/)DTT/ — Q(ET — ET/)(UE’U?_ + UE/’UE/)RTT/] 57057/01
+2X<UTUT’UUUU’ + UTUT’UUUU’)DTT’DUU’

—2K(UrUr Ug Uy Drrt Dyt — VrVr1Vg Ve Dyt Dggr), (3.76)

B = 2(ET — ET/)UTUTUT/UT/RTT/(;TUéT/UI
+2X<UTUT’UUUU’ + UTUT’UUUU’)DTT’DUU’
+25(u7u7’vava’ﬁ7‘r’lf)ao’ + UTUT’UUUU’@TT’ﬁUG’)- (377)

The renormalization matrices D, D, D entering the equations (3.71), (3.76), (3.77)
can be represented in terms of the relative quasiparticle occupation numbers N for
the level 7 in the RQRPA vacuum:

Dy = 1=Ny =N+ (1=02=02) Rorr, (3.78)
D = 1=Ny =N, — (uf - ufl) Rer,
Dry = 1=Ny—N,+ (vf + vf,) Rorr,

with R, = N EfNT’. In turn, the quasiparticle occupation numbers

_2
v, —v7

Ny = 5720 pal 2 ab v, 05p.4) (3.79)

mr
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can be calculated in terms of the backgoing amplitudes Y of the RQRPA solution
(3.69) [95]:

NT - 22(2 2J+1|Ym’]|2> 77!y

N - 22(2 2J+1|1¢“:/J|2> (3.80)

where j = /2 + 1. Along with the modified FR-QRPA equations for the chemical
potential

OkealN05pa) = 3250 (00 + (w5 = v)AG) = N,

(0fpalZ108pa) = zyp( (up = v))N;) = Z, (3.81)

a rather complicated set of equations (3.69)-(3.81) has to be solved.

It is noteworthy that the renormalization matrices (3.78) become the same,
D, = D..s = D, in the limit R, = 0 and coincide with the renormalization
matrix of the usual RQRPA (see.e.g., [191]). Thus, one can argue that the stan-
dard versions of RQRPA neglect effectively the differences between the quasiparticle
occupation numbers whereas FR-QRPA takes the differences into account.

From now on one follows the usual way of solving RQPA equations [95]. It is
useful to introduce the notation:

X=Uu’x, Y=uvr, (3.82)

A=UYPAU 2 B=Uu Y?Bu /2 (3.83)
Then the amplitudes X and Y satisfy the equation of usual QRPA:

(5 55 )=e (0 %) () (3.84)

Solving the FR-QRPA equations, one gets the fully renormalized amplitudes X, Y
with the usual normalization and closure relations:

vV m vk m k .
ZX(TT/,J)X(TT/,.])_}/(TT/,J)}/(TT/,J) - 6km7

77!

2 XX = YT Yy = Oer Oy,

2 XGe Y ~ Ve X = 0, (3.85)
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It was shown analytically that the Ikeda sum rule is fulfilled within the FR-
QRPA [149], in contrast to the earlier versions of the RQRPA [95]. The Ikeda sum
rule states that the difference between the total Gamow-Teller strengths S(=) and
S™) in the 8~ and B channels, respectively, is 3(N — Z) [103]:

ISR=8C) — S = 3(N - 2), (3.86)

2 2

SO = S (U Mm|Bi|0fps)| - ST = S [(1FM. |6y, 0kpa)|
(3.87)

With the use of the closure conditions (3.85), the expressions for D,, (3.78) and the
chemical potentials (3.81), one can show [149] that

1SR =3 [(pllasIn)? (47 — v2) Dy = B(N — Z). (3.88)

The inverse half-life of the 2v33-decay can be expressed as a product of an accu-
rately known phase-space factor G? and the second order Gamow-Teller transition
matrix element M2y

[1772(05.. — 03 )17 = G* (ga)* [ME7I*. (3.89)

The contribution from the two successive Fermi transitions is safely neglected as
they arise from isospin mixing effect [93]. The double Gamow-Teller matrix element
M2, for ground state to ground state 2v33-decay transitions acquires the form

(OF 1187 11155 )5, R ), 187 1107

M2V _
Gr = 2 (W™ + wmi) /2

mymg

. (3.90)

The sum extends over all 11 states of the intermediate nucleus. The index i(f)
indicates that the quasiparticles and the excited states of the nucleus are defined
with respect to the initial (final) nuclear ground state [0f) (|07)).

The overlap is necessary since these intermediate states are not orthogonal to
each other. The two sets of intermediate nuclear states generated from the initial and
final ground states are not identical within the considered approximation scheme.
Therefore the overlap factor of these states is introduced in the theory as follows:

(L L) = DX (TFma) X (T ) = Yoo (15my) Yo (1 myp )] (3.91)

77!
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4.1 The proton-neutron pairing for N>Z nuclei

The starting point of the numerical calculations is the eigenstates of a deformed
axially-symmetric Woods-Saxon potential with the parameterization of Ref. [186] !,
i.e., spherical symmetry is broken already from the beginning. For the description
of the ground states of the Ge isotopes, the values of the quadrupole (32) and the
hexadecapole ((4) nuclear deformation parameters are from Ref. [113], which are in
good agreement with the predictions of the macroscopic-microscopic model of Moller,
Nix, Myers and Swiatecki [126]. In the BCS calculation the single particle states
are identified with the asymptotic quantum numbers (N,n,, A, Q). The intrinsic
states are twofold degenerate. The states with €2 and —¢2 have the same energy as
consequence of the time reversal invariance. A truncated model space with N < 5 is
considered in this case. The coupling of nucleon states in time-reversed components
of the same orbitals are taken into account.
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Figure 4.1: The proton (A,,), neutron (A,,) and proton-neutron (A,,) pairing
gaps as a function of the ratio G, /G, for the g%Ge. GG, represents the proton and
neutron pairing strengths (G, = G} =" = G 7"). Gpn stands for the larger of T=0
(G},7°) and T=1 (G}") proton-neutron pairing strengths. G, were taken to be
0.250 MeV.

The calculation of the gap parameters is performed within the generalized BCS
formalism associated with the nuclear Hamiltonian in equation (3.20). The solutions
obtained can be classified as follows:

!See also Appendix B
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i) The BCS solution without pn-pairing. In this case A,, and A,,, are real and
Ay =0.

ii) The BCS solution with T=1 pn-pairing. It corresponds to the case the A,
A, and A, are real (Ag;oz()), i.e., all the occupation amplitudes are real.

iii) The BCS solution with T=0 pn-pairing, which is characterized by real A,
and A, and purely imaginary A,, (AZTTl:O). In this case the occupation ampli-
tudes associated with pn-pairing (wsin, Vsin, Us2p and vg,) are imaginary.

No coexistence of T' = 0 and T = 1 proton—neutron pairing modes was found. There
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Figure 4.2: The proton (4,), neutron (A,) and proton-neutron (A,,) pairing gaps
as a function of the ratio G, /G, for the 13Ge. Conventions are the same as in Fig.
4.1 and G, were equal to 0.229 MeV.

is a very simple competition between the two kinds of pn-pairing. For G771 > GL=0
and GT=1 < G770 scenarios ii) and iii) are realized, respectively. In a particular case
ng: = GZn: Y hoth T=0 and T=1 pairing modes are indistinguishable. The abso-
lute values of the occupation amplitudes associated with the solutions ii) and iii) are
equal one to another if the T=1 pn—pairing strength used in generating solution ii)
is equal to the T=0 pn—pairing strength considered in the calculation of iii) solution
(proton and neutron pairing strengths are the same). In the case of N = Z (%4Ge),
for sufficiently large pn-pairing strength, G} =0 or G} =!, a BCS solution without
like particle pairing modes can be observed.

In Figs. 4.1 and 4.2 the BCS gap parameters are plotted as a function of the ratio

Gpn/Gr for Ge and ™Ge, respectively. The G, stands for the larger of the T=1
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(G},7') and T=0 (G =°) proton—neutron pairing strengths and G, = G ~' = G-
There is no coexistence of T = 0 and T' = 1 proton—neutron pairing modes and
the absolute value of the pn-pairing gap A, is the same in the case of T = 1
(Gpn = GL7H > GL=0) and T = 0 (G, = GLZ° > GI=') pairing solutions. In the
case of %Ge ("Ge), the G,, was assumed to be 0.250 MeV (0.229 MeV). Below
some critical value of the ratio G, /G, there are only proton and neutron pairing
modes. For %4Ge there is only a narrow region above this critical point in which
like—particle and proton-neutron pairs coexist. With an additional increase of the
ratio G, /G-, the system prefers to form only proton—neutron pairs. For nuclei
with non-zero neutron excess (N # Z), like "’Ge, there is a different situation. In
Fig. 4.2 there is a less sharp phase transition to the proton-neutron pairing mode
in comparison with that in Fig. 4.1. In addition, the proton-neutron pairing mode
does exist only in coexistence with the like particle pairing modes.

The binding energy gains between a system with no proton-neutron interaction
and a system where the proton—neutron pairs do exist. The ground state energy
decreases monotonically with increasing ngzo’l. Although the energy gain due to
the pairing correlations is rather modest, it is expected that the pn correlations
influence many properties of the atomic nuclei. In order to perform corresponding
studies the problem of fixing the pairing strength parameters has to be understood.
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Figure 4.3: The proton (G =), neutron (G -") and proton-neutron (G,~°) pairing
strengths as function of the neutron excess N —Z. For the curves f.e.g. (fitted to the
experimental gaps) the strength is adjusted to the experimental pairing gap (A"
or Ay™) or proton—neutron interaction energy (d;,"").
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There is very little known about the T=0 and T=1 strengths of the pn-pairing.
The T=0, 3S pairing force is expected to be stronger in than the T=1, 1S pairing
forces. A strong evidence of this is that the deuteron and many other even-even
N=Z nuclei prefer this type of coupling due to the strong tensor force contribution.
This fact favors solution iii) over ii). In Fig. 4.3 the values of the pairing strength,
adjusted to the experimental pairing gaps and proton-neutron interaction energy,
are presented. By comparing the G} =' and G} -' strengths one can see that the
isospin invariance is significantly violated especially for isotopes with large neutron
excess (N-Z). The T=0 proton—neutron force ng:o is larger than the T=1 pp and
nn (G} and GI7Y) forces for all considered Ge isotopes. The N=Z *Ge seems to
be a special case. For other Ge isotopes Gg’p:1 is more or less stable with respect to
the N-Z difference and G =! slightly decreases with increasing N-Z. The T=0 pn-
force offers different behavior, namely, G~ is growing significantly with increasing
neutron excess N-Z. The largest differences among G} =°, GI=" and G forces are
visible for the maximal value of N — Z = 12. For Ge isotopes with N — Z < 0
and N — Z > 12 the pairing strengths can not be fixed following the procedure
presented in the previous section due to the lack of experimental information on
nuclear masses and/or proton and neutron separation energies.

It is interesting to compare the behavior of the adjusted pairing strengths with
the commonly used prescriptions

G-l =Gl =16/A, G)7°=20/A. (4.1)

From the Fig. 4.3 it is evident that these expressions do not work well for Ge
isotopes, probably due to the absent of (N-Z) degree of freedom.

It is an open issue whether the value of the pairing strength ng:o depends on
the deformation of the considered isotope. In Fig. 4.4 this point is analyzed for
%Ge, ®Ge and Ge assuming different deformations. The G=° is displayed as a
function of the deformation parameter , within the range —0.4 < (5, < 0.4. The
T=0 pairing strength ( ngzo) is sensitive to the change of the quadrupole parameter
(o especially if the shape of the considered nucleus is oblate. From the considered
Ge isotopes ®*Ge exhibits the strongest sensitivity of GT=" to 8, parameter.

In Fig. 4.5 the competition among pp, nn and pn pairs in the ground state of
even-even Ge isotopes is studied, as a function of N — Z. The displayed quantities
< Npp >, < Npn > and < NJ=0 > correspond roughly to the number of pp, nn
and T=0 pn pairs [see equation (3.32)], respectively. These quantities, as it was
already stressed above, are closely related to the different contributions to the total
pairing energy (3.30). The number of pairs were measured both for the system
with only like particle pairs [phase i] and for the system where like particle and
proton neutron pairs coexist [phase iii]. In Fig 4.5 a) the results obtained with
the pairing strengths adjusted to the experimental pairing gaps (A;™ and Ap™)
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Figure 4.4: The T=0 proton-neutron pairing strength G}~ as function of the de-
formation parameter £, for %Ge, ®Ge and "5CGe.

and proton neutron interaction energy (d577) are presented. In phase i) there is
a rough constancy of the number of pp-pairs for Ge isotopes and that the number
of nn-pairs is slightly larger and exhibits some fluctuations. There is a different
behavior if the system of nucleons prefers the phase iii). The < N, > and < N, >
are equal to zero for %*Ge and grow up to maximum values about 7.6 and 4.8,
respectively, for ™Ge. The behavior of < N, =° > is different. The effect of the
proton-neutron pairing decreases with increasing N-Z. For large N-Z the value of
< NJL=0 > is significantly smaller as < N, > and < N, >, but not negligible.
If pairing strengths given in (3.37) are used in the BCS calculation, the effect of
proton-neutron pairing disappears at N — Z > 8 in real nuclei as it is shown in
Fig. 4.5 b). Then, for these isotopes one fails to explain the non-zero value of the
proton-neutron interaction energy o, (see Table 3.1). The values of d," for all
0727476 (e jsotopes are of the same order. Thus, it is expected that the role of the
pn-pairing for all these isotopes is of comparable importance and not negligible.

From the above discussion it follows that the T=0 proton—neutron pairing corre-
lations should be considered also for medium-heavy nuclei with large neutron excess.
Usually, the correlations between protons and neutrons in medium and heavy nuclei
were neglected on the ground that two Fermi levels are apart. Here, it is shown that
the proton-neutron pairing effect is not negligible for such nuclear systems. The
competition between the different kinds of pairs can affect measurable properties of
nuclei, in particular 5% strengths. The previous 8- and S8-decay studies [35] per-
formed within the spherical QRPA with T=1 proton-neutron pairing support this
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Figure 4.5: The quantities < N, >, < Npp > and < ./\flffo > [representing number
of pp,nn and pn pairs; see Egs. (3.32) for definition| for Ge isotopes, as a function of
N — Z. The results are presented for a pure like particle pairing phase (phase i) and
for a phase where like-particle and T=0 proton-neutron pairs coexist (phase iii). The
figure a) refers to the calculation with pairing strengths adjusted to experimental
pairing gaps and proton-neutron interaction energy. The figure b) refers to the
calculation with pairing strengths is taken from equation (3.37).

conclusion as well.

4.2 Ground state properties of the double beta
decay emitters

In this section the results for the bulk properties of the nuclei studied in the WS and
HF descriptions, are presented. First, the energy surfaces are analyzed as a function
of deformation (Fig. 4.6). In the case of WS, this is simply done by varying the
quadrupole deformation of the potential (35, which is an input parameter. In the
case of HF, this is achieved by minimizing the HF energy while keeping the nuclear
deformation fixed [71]. The HF calculations predict the existence of two energy
minima close in energy, giving rise to shape isomers, while the WS potential shows
a single energy minimum, which is in agreement with the absolute prolate minimum
in the case of Ge and close to the prolate HF solution in the case of "®Se. In Table
7.5.12 the experimental and the microscopically calculated charge root mean square
radii r. with the forces Sk3 and SG2 are given. Both, oblate-prolate, results are
quoted when the energies for the two shapes are very close are quoted. The values
obtained for the charge radii are in good agreement with the experimental values

2See Appendix E
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Figure 4.6: Total energy as a function of the mass quadrupole moment obtained
from deformed Hartree-Fock calculations with the Skyrme forces SG2 (solid line)
and Sk3 (dashed lines), and from deformed Woods-Saxon potentials (dotted line).
The origin of the energy axis is different in each case but the distance between ticks
corresponds always to 1 MeV.

from Ref. [205]. They are also in good agreement with the results obtained from
relativistic mean field. calculations [113].

In Table 7.5.2% the theoretical and experimental quadrupole deformations are
shown. Experimental values have been extracted from the measured quadrupole
moments with two different methods. In the first one the quadrupole deformation
is obtained analytically, using the empirical intrinsic moments derived from the
laboratory moments of Ref. [147] assuming a well defined deformation. In the
second case the quadrupole deformations are taken from Ref. [148], where they
were derived from experimental values of B(F2) strengths. With this approach the
sign cannot be extracted. The theoretical values have been derived microscopically
from the forces Sk3 and SG2, using the intrinsic quadrupole moments obtained as
ground state expectations of the Qoo operator and the microscopic charge radii. For
WS calculations using the mean square radii 7. and quadrupole moments (), one
gets the quadrupole deformations 8 (5 = gg—r’;)

There is still another important experimental information relevant for the purpose
of this work. Since the final goal is to establish the ingredients to perform reliable
calculations of the double beta decay, the Qg3 energy of the decay is of relevance.

The energy released in a double beta process in a transition from ground-state to

3See Appendix E
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ground-state is given by

Qﬁ,@ = Mparent - Mdaughter - 2me]
— [2(mn —m, —m.) + BE(Z,N) = BE(Z+2,N —2)|,  (4.2)

in terms of the nuclear masses M’s, or similarly, in terms of the binding energies
BE’s of parent (7, N) and daughter (7 + 2, N — 2) nuclei. In Table 4.1 the ex-

Table 4.1: Differences of binding energies (6 = BE; — BE¢) (MeV) in double beta
partner nuclei. Experimental Qgs (MeV) values are within parenthesis. In the last
column we show the deformations that reproduce the experimental ()3s. Only those
marked with an asterisk are considered in GT calculations.

| Double beta transition | dex, (Qgs) | Osis | Brew |
BCa — BT 2.708 (4.272) | 1.38 8BCa: 0.0 — 0.087
T6Ge — T0Se 0.474 (2.039) | -0.21 | ™Ge : 0.161 — 0.107 (*)
82Se — 82Kr 1.430 (2.995) | 1.01 82Se : 0.126 — 0.130
907y — Mo 1.786 (3.350) | 4.03 | %Mo : 0.147 — 0.027 (*)
00Mo — Ru 1.470 (3.034) | 2.01 | *Ru: 0.175 — 0.147 (*)
160 — 1168 1.240 (2.805) | 0.31 | '6Cd : 0.206 — 0.149 (¥)
1286 _, 128X 20.698 (0.867) | -1.67 | 125Te : -0.088 — -0.005
180, 130X 0.964 (2.529) | -0.37 | 130Te : -0.076 — 0.128
130X — 1361, 0.903 (2.468) | -0.77 | 9Xe : 0.001 — 0.102
15%ONd — 1%°Sm 1.803 (3.367) | 2.03 150Sm : 0.207 — 0.201

perimental values of )z are shown as well as and the corresponding experimental
difference of nuclear binding energies between parent and daughter nuclei. They
are compared with the values calculated with the force Sk3. The agreement with
experiment is reasonable taking into account that we are dealing with differences of
energies ranging from 400 MeV in A=48 systems to 1200 MeV in A=150. From Ta-
ble 4.1 it can be seen that to match the experimental energies, one needs to slightly
increase the energy difference in A=48,76,82,116,128,130,136 and to decrease it in
A=96,100,150. In view of these results, and taking into account that, at the same
time, one has to consider the selfconsistent deformation, the deformation that re-
produces the (g3 value and the various values of the experimental deformation, the
[—values are adopted to yield the best global agreement. These are the §— values
given for force Sk3 in Table 7.5.2, except for the cases 9Ge, %Mo, '“°Ru and 6Cd.
For the except cases, modified values are given in Table 4.1: 0.107, 0.027, 0.147 and
0.149, respectively.

For the calculation using Woods-Saxon potential, the values from both Refs.
[147] and [148] are taken. For each nucleus, the two references give two different
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values of the f—parameter. In the next section the GT distributions obtained with
the two values are discussed.

Summarizing , the choice of deformation is still a very difficult task. First, because
the experimental values are rather different, the uncertainties involved depending
on the method. Second because the model has to be selfconsistent.

It has to be kept in mind, the Gammov-Teller strength is different for HF and
WS for the same deformation. An explicit presentation of this difference is given in
Table 7.5.2%

4.3 Gamow-Teller strength for double beta emit-
ters

This Section is reserved to discuss the Gamow-Teller strength distributions obtained
from different choices of the deformed mean fields and residual interactions.

As a general rule, the following figures show the GT strength distributions plot-

ted versus the excitation energy of the daughter nucleus. The distributions of the
GT strength have been folded with Breit-Wigner functions of 1 MeV width and the
comparison among the various calculations is facilitated, so that the original discrete
spectrum is transformed into a continuous profile. These distributions are given in
units of g4 /47 and one should keep in mind that a quenching of the g factor, typ-
ically gaesr = (0.7 — 0.8) ga free, is expected because of the observed quenching in
charge exchange reactions. In Fig. 4.7 the dependence of the G'T strength distribu-
tions on the deformed quasiparticle mean field of "*Ge and "°Se is shown. To make
the comparison meaningful the results are obtained at the two-quasiparticle level
without including the spin-isospin residual interactions. In figure the B(G7-) and
B(GTy,) strength distributions are plotted in the upper and lower panels, respec-
tively.
It has to be noticed that the relevant strength distributions for the double S-decay
of ™Ge are the B(GT-) distribution of the parent ("°Ge) nucleus and the B(GT )
distribution of the daughter ("Se) nucleus, but for completeness both distributions
for each nucleus are shown in Fig. 4.7. Solid lines correspond to the results ob-
tained with the Skyrme force SG2 within a HF scheme, dashed lines correspond
to the results obtained with the WS potential. Pairing correlations are included
in both cases in a similar way, using the gap parameters for neutrons and protons
mentioned earlier. Then, the only source of discrepancy between HF and WS comes
from the different single particle wave functions and energies.

In general, one can observe that WS and HF produce a similar structure of three

4See Appendix E
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Figure 4.7: Gamow-Teller B(GT-) and B(GT,) strength distributions [¢% /47 in
6Ge and €76 plotted as a function of the excitation energy of the daughter nu-
cleus. We compare results of HF(SG2)4+BCS (solid line) and WS+BCS (dashed
line) approximations for the prolate minima.

peaks in the B(GT_) profiles of "“Ge and "Se, although the WS results are somewhat
displaced to lower energies with respect to the HF peaks. The strengths contained
in the peaks are also comparable. In the case of the B(GT}) distributions, there
is a different scale, which is about one order of magnitude lower than the B(GT.)
scale. This is a consequence of the Pauli blocking. While the occupation amplitudes
u and v (see equation3.43) favor M_ strengths, they are very small factors in M,
strengths when connecting similar proton and neutron states. As seen in Fig. 4.7,
the difference between total B(GT_) and B(GT, ) strengths (the ISR is exhausted in
this nuclei up to 95+), is a large number 3(N — Z) = 36 in %Ge and 3(N — Z) = 24
in "°Se.

The profiles of the B(GT;) distributions with WS and HF present some discrep-
ancies that are amplified by the different scale. It is remarkable the large strength
produced by WS in the region of high excitation energies in "®Ge. This aspect is
discussed later in terms of the single particle wave functions.

In order to clarify the origin of the various peaks in the strength distributions,
in Fig. 4.8 labels are added to show some of the leading transitions generating
the strength. The labels stand for pK™ — nK'™ of the orbitals connected by the
spin operator and a number that identifies the transition. In both cases, B(G1.)
and B(GT,), the same type of transitions are connected by the GT operator but
the occupation probabilities, weighting the matrix elements, enhance or reduce them
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accordingly. Basically, the structure of the profiles in both WS and HF are generated
by the same type of GT transitions.
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Figure 4.8: Hartree-Fock and Woods-Saxon single particle energies for protons and
neutrons in “Ge.

This can be further illustrated by looking at Fig. 4.8, where the single particle
energies for protons and neutrons obtained in HF(SG2) and WS in Ge are shown.
In the left part of the figure are plotted the occupation probabilities v? and v2 and
the Fermi energies A\, and A\, corresponding to the HF. Here v stands for neutrons
and 7 for protons. For completeness the spherical levels are labelled by their /;
values. Indicated by arrows are the most relevant Gamow-Teller transitions in the
3~ and (7T directions and are labelled by the same numbers used to identify the
peaks in Fig. 4.7. To be more precise, one can see the correspondence between
these labels and the transitions connecting the proton and neutron states Table 4.2.

Now, looking at Fig. 4.7, one can understand that the two first peaks in B(GT_)
are generated mainly by transitions between neutrons and protons dominated by
contributions within the N = 3 shell and that the third peak is generated by transi-
tions between neutrons and protons with main contributions coming from the N = 4
shell. The different energies of the peaks are due to the different concentration of
energy levels in HF and WS.

In the case of B(GTY,), the strength below 8 MeV is mainly generated by tran-
sitions within the N = 3 shells. Beyond 8 MeV the strength, which is negligible in
HF, is generated by transitions between the proton shell N = 2 and the neutron
shell N =4 as well as between the proton shell N = 3 and the neutron shell N = 5,
always understood as the main components of the wave functions. Then, very deep
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Table 4.2: Correspondence of the labels used in Fig. 4.8 with the asymptotic quan-
tum numbers notation [Nn,A]K™.

5~ Bt

1) | v[301]1/2- — #[301]3/2~ | n[303]7/2~ — v[303]5/2"
(2) | ¥[301]3/2 — =[301]1/2~ | x[312]5/2~ — v[303]5/2"
(3) | ¥[303]7/2~ — x[303]5/2" | #[312]5/2" — v[312]3/2"
(4) | v[312]5/2~ — x[312]3/2" | ®[202]3/2+ — v[413]5/2+
(5) | v[420] [440] [330] [530]

(6) [303] [523]

V[420]1/2+ — 7[440]1/2% | 7[330]1/2~ — v[530]1/2"
7[303]7/2- — v[523]5/2~

inside protons (v, = 1) are connected with very unoccupied neutron states (u, = 1),
giving rise to maximum occupation factors. The different behavior in this high en-
ergy region between HF and WS is therefore, due to the structure of the deformed
orbitals.

To illustrate the role of the different single particle wave functions in the devel-
opment of the peak structure, the case of the last peak observed in the B(GT})
distribution of the WS potential is considered in detail. As one can see it is mainly
due to a transition between the proton state [303] in the N = 3 shell with K™ = 7/2~
and the neutron state [523] in the N = 5 shell with K™ = 5/27. The structure of
the single particle wave functions, according to the expansion in equation (3.1) , of
these two states can be seen in Table 4.3. With these coefficients one can construct
the matrix elements in equation (3.59). The resulting strength is almost two orders
of magnitude, which explains the huge discrepancy observed between WS and HF
in the higher energy domain. Nevertheless, these discrepancies are smaller in the
case of the B(GTy) of Se, which is the relevant branch for the double S-decay of
the parent nucleus “°Ge.

The role of the residual interactions in the GT strengths was already studied in
Ref. [157], where it was shown that the repulsive particle-hole (ph) force introduces
two types of effects: A shift of the GT strength to higher excitation energies with
the corresponding displacement of the position of the GT resonance and a reduction
of the total GT strength. The residual particle-particle force (pp), being an attrac-
tive force, shifts the strength to lower excitation energies, reducing the total GT
strength as well. Also shown in Ref. [157] was the effect of the BCS correlations on
the GT strength distribution. The main effect of pairing correlations is to create new
transitions that are forbidden otherwise. The main effect of increasing the Fermi
diffuseness is to smooth out the profile of the GT strength distribution, increasing
the strength at high energies and decreasing the strength at low energies. The role of
deformation was also studied in Ref. [157], showing that the GT strength distribu-
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Table 4.3: Main coefficients C in the expansion of equation (3.1) for the proton
state [303] with K™ = 7/27 and the neutron state [523] with K™ = 5/2~. This is
the main contribution to the peak at 15 MeV in the B(GT}, ) strength distribution
of ™Ge with the Woods-Saxon potential. The basis states are labelled by |[Nn,A)
quantum numbers. The table contains also the contributions from these basis states
to the spin matrix elements.

303) | [503) | [523) | [703) | [723) | |903)

7/2- proton | HF(SG2) | -0.9742 | 0.2204 | -0.0061 | 0.0219 | -0.0272 | 0.0122
WS | 0.9876 | -0.1400 | 0.0563 | -0.0233 | 0.0107 | -0.0295

5/2~ neutron | HF(SG2) | 0.1369 | 0.5933 | -0.5031 | -0.3928 | 0.2349 | 0.2385
WS | -0.2397 | -0.5173 | 0.5049 | 0.3794 | -0.2596 | -0.2056

contr. to X477 | HF(SG2) | -0.1333 | 0.1308 | 0.0031 | -0.0107 | -0.0064 | 0.0029
WS | -0.2367 | 0.0724 | 0.0284 | -0.0088 | -0.0028 | 0.0061

tions in deformed nuclear shapes are much more fragmented than the corresponding
spherical ones. This is expected because deformation breaks down the degeneracy
of the spherical shells. It was also shown that the crossing of deformed energy lev-
els depending on the magnitude of the quadrupole deformation as well as on the
oblate or prolate character, may lead to sizable differences between the GT strength
distributions corresponding to different shapes. In Fig. 4.9 the dependence of the
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0.2

Figure 4.9: Gamow-Teller strength distributions [¢g3/4n] in 'Nd and %“Sm for
various values of the coupling strength x2y. [MeV].

GT strength distributions on the coupling strength of the particle-hole residual in-
teraction XZ(’;hT is plotted for a fixed value of the particle-particle coupling constant
kewp = 0. The results correspond to the force Sk3 in the A=150 case. In the left
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panel, the B(GT_) strength distribution of the parent nucleus *°Nd is shown and in
the right panel the B(GT,) the strength distribution of the daughter nucleus **°Sm
is presented. The pairing gap parameters are given in Table 7.5.1 and the deforma-
tions are given in Table 7.5.2. It can be seen in Fig. 4.9 how the most important
effect of X2 on the B(GT_) strength distribution is a shift of the strength toward
higher excitation energies. This displacement of the G'T strength is accompanied by
a reduction of the strength. This reduction can be more clearly seen in the B(GTY)
strength distribution because its scale is about one order of magnitude smaller, as is
expected from the Tkeda sum rule >[B(GT_)— B(GTy)] = 3(N —Z) = 90, 78 for Nd
and Sm, respectively. Therefore, the coupling constant yf plays an important role
to reproduce the position of the GT_ resonance. On the other hand, the sensitivity
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Figure 4.10: Gamow-Teller strength distributions [¢%/47] in Nd and '*°Sm for
various values of the coupling strength kv, [MeV].

of the GT strength distribution on the particle-particle coupling constant s is
not so important. This is shown in Fig. 4.10 where the GT strength distributions
for a fixed value of X%, = 0.156 MeV [102] and for several values of k2%, are plot-
ted. The position of the resonance does not change appreciably. Therefore, other
methods, such as fitting the half-lives of unstable nuclei in the same mass region,
have to be used to phenomenologically determined their values. Fig. 4.11 shows the
dependence on the deformation for fixed values of the residual interaction constants
X’éhT = 0.207 MeV and k%, = 0.023 MeV for two examples with A=100. The results
correspond to values of the deformation parameter 5 = —0.2, 0 and 0.2. The role
of the deformation was also studied in Ref. [157]. The results here confirm the gen-
eral conclusion drawn in this work. The GT strength distributions from different
deformed nuclear shapes can differ from the corresponding spherical ones because
of the larger fragmentation produced by the breaking of degeneracy of the spherical
shells. Tt was also shown that the crossing of deformed energy levels, depending on
the magnitude of the quadrupole deformation as well as on the oblate or prolate
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Figure 4.11: Gamow-Teller strength distributions [g%/47] in '“Mo and '“Ru for
various values of the quadrupole deformation parameter (.

character, may lead to sizeable differences between the GT strength distributions
corresponding to different shapes.

For each of pair of beta decay partners, the calculated B(GT-) and B(GT})
strength distributions are shown in Figs. 4.12, 4.13. The B(GT-) distribution
of the parent nucleus is always is shown in the top panel whereas the B(GT})
distribution of the daughter nucleus is found in the lower panel for each pair. Also,
the experimental data, whenever they are available, are included. In each figure the
left panels correspond to HF+BCS+QRPA calculations with the force Sk3 and the
right panels to WS+BCS+QRPA calculations.

The 2qp results for HF4+BCS calculations where the residual interaction is not
considered are plotted with dotted lines. This serves as a reference and can be used to
see the necessity of the residual force to be into agreement with experiment. Dashed
lines correspond to the use of the residual interactions given by the parametrization
of Ref. [102]. Finally, solid lines are the results obtained with x% = 0.1 MeV and
k% = 0.03 MeV, which produce a good fit to all the measured GT resonances of
the double beta emitters. The small value of the X’éhT coupling constant needed to
reproduce the experimental G'T resonances within a selfconsistent approach with
Skyrme forces is in agreement with a similar value reported in Refs. [158] it reflects
the fact that one needs less residual interaction when using realistic effective density-
dependent forces instead of using phenomenological potentials to generate the single-
particle energies and wave functions.
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Figure 4.12: Gamow-Teller B(GT-) and B(GT,) strength distributions [¢% /4]
2v 30 plotted as function of the excitation energies of the corresponding daughter
nuclei. Left panels show results from HF(Sk3) calculations a) without residual in-
teraction (dotted lines); b) with residual interaction from Ref. [102] (dashed lines);
and ¢) with x%. = 0.10 MeV; 2%, = 0.03 MeV (solid lines). Right panels show
results using WS potentials with %, from Ref.[102] and with two different values
for the quadrupole deformation § and residual interaction xfp,: i) Solid lines are
obtained using § from [147] and kg, from [102]; ii) dashed lines are for § from [148]
and k2, from [102]; iii) dotted lines are for § from [147] and the kgy, from set 2
in Table 4.4; iv) dash-dotted lines are for 3 from [148] and the same kg as in the
previous case. Experimental data are from Ref.[5] for Ti, for "Se from [96]. Vertical
lines in Ge and 32Se are experimental data from [117]. Vertical lines in 1Mo and
16Cd are experimental data from [4]
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Figure 4.13: Same as in Fig. 4.12.

In the case of calculations with the WS potentials shown on the right hand
panels, the results are for the two different experimental deformations as obtained
from Refs. [147] and [148], which are given in Table 7.5.2.

The results for two different values of the k7% coupling constant, the values
obtained from Ref.[102] (set 1 in Table 4.4) and the values that reproduce the
double beta-decay half-lives within a spherical formalism (set 2 in Table 4.4) are
shown. The calculations are done for a fixed value of the y% constant as obtained
from Ref. [102]. Table 4.4 shows the parameters used for these calculations. The
meaning of the curves is as follows: Solid lines correspond to the deformation from
[147] and to the k. from [102]. Dotted lines are for the same deformation with the
new k7. as obtained from the double beta-decay fitting procedure (set 2). Dashed
lines are for the deformation of Ref.[148] and k(% from [102] and finally dash-dotted
lines are for the deformation of Ref.[148] and 7. from set 2 in Table 4.4.

Some common features to all figures can be established first. For the HF cal-
culations, there is a noticeable effect of % on the GT distribution for fixed 2.
and deformation. In general, the value of Xg’} given by the parametrization of Ref.
[102] is an overestimation when dealing with selfconsistent Skyrme HF calculations.
Actually, a small value of XI(’;hT = 0.1 MeV is already able to reproduce the experi-
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Table 4.4: Parameters x4y and «%. used in Figs. 4.12, 4.13

X](J;LT Ky Ky

Ref.[102] | set 1 [102] | set 2

A=48 0.346 0.039 0.097
A=T76 0.251 0.028 0.060
A=82 0.238 0.027 0.057
A=96 0.213 0.024 0.081
A=100 0.207 0.023 0.074
A=116 0.187 0.021 0.060
A=128 0.174 0.019 0.049
A=130 0.172 0.019 0.050
A=136 0.167 0.019 0.050
A=150 0.156 0.017 0.050

mental position of the GT resonance. This is a consequence of the structure of the
two-body density-dependent Skyrme force that contains terms like spin exchange
operators leading to a spin-spin interaction in the selfconsistent mean field, which
is absent in the WS potential.

The agreement with the experimental energy of the GT resonance is very good
in this calculation, as it can be seen in the cases A=76,82,100,116,128,130, where
this information is available. Indeed, the experimental giant GT resonance shown
in these figures represent the centroids of broad bumps. The resonance in **Ca
reported at 10 MeV in Ref.[3] and used in the fitting procedure of Ref. [102], is also
in good agreement with this results. In Table 4.5 the total GT strength measured
and calculated is presented, taking into account a quenching factor of 0.6.

Regarding the calculations performed with the WS potential, comparing the
results obtained from different deformations but using the same k., it can be seen
that larger deformations produce peaks in the GT distributions displaced to higher
energies. This is a consequence of the larger separation of the single particle energies
when the deformation increases. Thus, since the deformation derived from Ref. [148]
is larger than that of Ref. [147], the solid lines appear on the left of the dashed ones
as well as the dotted lines appear at lower energies than dash-dotted lines.

On the other hand, when the curves with the same deformation but different
kP, are compared, one expects that larger k. produce peaks slightly shifted to
lower energies and containing less strength. Again, since in general the 7. from
set 2 in Table 4.4 are larger than the k7. from Ref. [102], it can be observed that
dotted peaks appear at lower energies than solid peaks and are smaller. Similarly,
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dash-dotted peaks are smaller than dashed peaks and displaced to the left. It is also

Table 4.5: Experimental and calculated (HF-Sk3 and WS) summed GT strength.
A standard quenching factor 0.6 has been included in the theoretical results.

exp HF-Sk3 | WS
S B(GT,) | ®Ti | 1.42+0.2 2.44 1.79
Qe | 1.454+0.07 | 1.29 2.06
Y B(GT.) | ™Ge 19.89 22.30 | 22.65
82Ge 21.91 25.68 | 26.09
1000\[o 26.69 29.67 | 29.93
16Cq 32.70 36.42 | 36.41
128 40.08 43.33 | 43.44
130 45.90 47.21 | 46.66

remarkable to see the good agreement with experiment obtained in this case. This
agreement is mainly caused by the fixed value of X%hT from Ref. [102]. Contrary
to the situation in the HF case, it is still valid when describing the mean field
with a WS potential. One should keep in mind that the parametrization of Ref.
[102] was obtained using a Nilsson potential. The summed B(GT) strengths are
compared with experiment in Table 4.5. Comparing the results obtained at different
deformations with the selfconsistent mean fields (HF with Sk3) in Figs. 4.12, 4.13
and Table 4.4, one can see that there is a strong dependence on deformation of the
strength distributions. However, the total strength does not depend so much on
deformation. There is an increase of a few percent in going from the spherical to
the oblate and prolate shapes. The latter observation is in contradiction with SU(3)
and shell model calculations by previous authors [9] studying the dependence of the
GT strengths on deformation in 2°Ne and *4Ti. This is due to the much larger and
richer single particle basis used in the present calculations. In the present case each
single particle state contains mixtures from many harmonic oscillator shells (up to
N = 10), while in the above mentioned calculations [9], the single particle basis is
restricted to a single harmonic oscillator major shell (the sd shell in 2Ne and the fp
shell in “4Ti). On the other hand, one may question whether in the deformed cases
the total strengths calculated here may contain spurious contributions from higher
angular momentum components in the initial and final nuclear wave functions. Since
the matrix elements of the transition operator, which is a dipole tensor operator, are
taken between the states considered in the laboratory frame (see eqs. 3.45, 3.46),
the effect of angular momentum projection taken into account to a large extent.
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4.4 The 2v((—decay matrix elements

The formalism described in the previous sections and the values of deformations
and strengths are used for the calculation of the 2v33-decay ground state transition
Ge — "Se. The results are obtained with a deformed, axially symmetric Woods-
Saxon potential [41]. The deformation independent Woods-Saxon parameters (well
depth, skin thickness, radius and spin—orbit constants) are taken from [186]. This
parametrization of the Woods-Saxon potential were used previously in different RPA
calculations, where a good agreement was achieved with experimental data, in par-
ticular for single M1 transitions at low energy, which are observed in (e, ¢e’) and
(7,7') experiments [155, 156]. More details are given in Appendix F. As it has been
shown in the previous chapter, the deformation parameter G5 can be deduced from
the nuclear electric quadrupole laboratory moment (Q, = —(7/2)Q, @ and @, are
laboratory and intrinsic quadrupole moments, respectively) or extracted from values

based on the measured E2 probability (Q, = \/ 16w B(£2)/5€2, the sign can not be

extracted) via the intrinsic quadrupole moments Q,: B2 = \/T/BQP [(Z7%) (r. is
the charge root mean square radius). However, the available experimental ° data
[11, 147, 148] lead to a ambiguous quadrupole deformations both for ®Ge and "®Se.
In particular, the quadrupole moments measured by Coulomb excitation reorienta-
tion [147] imply B2 = 0.1 ("5Ge) and £, = 0.16 ("*Se) [158], but from the measured
values of B(E2) strengths [148] one finds |35 = 0.26 ("°Ge) and |G| = 0.29 (76Se)
[158]. A lack of accurate experimental information on the deformation of ®Ge and
"6Se suggests that it is necessary to study the associated 2v33-decay matrix ele-
ment as a function of deformation parameters of both initial and final nucleus. In
the deformed QRPA calculation, a truncated model space is used by considering
only single particle states with maximal allowed value of the asymptotic quantum
number N=5. This truncation works just for light nuclei with A<100. For heavier
nuclei, the model space has to be enlarged. Unfortunately this enlargement brings
difficulties about numerical, namely in the size of the matrices and the resulting
increase of CPU time and storage allocation.

In contrast to many other microscopic calculations, energies of single particle
levels are not shifted but taken exactly as provided by the deformed Woods-Saxon
potential.

The BCS equations are solved for protons and neutrons. The proton and neu-
tron pairing gaps are determined phenomenologically to reproduce the odd-even
mass differences through a symmetric five-term formula [8]. For both spherical and
deformed shapes of the studied A=76 nuclei, the values of the gap parameters are
given in Table 7.5.1

In Fig. 4.14 the calculated proton and neutron occupation probabilities close

5See appendix E
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Figure 4.14: The proton (a) and neutron (b) occupation probabilities close to the
Fermi level for Se. The spherical (sph, triangle up) and deformed (def, closed
circle) BCS results correspond to pairing gaps. The vertical lines denote Fermi
energy for protons (\,) and neutrons (\,,)

to the Fermi level are presented for Se. One can see that both for protons and
neutrons the BCS solutions associated with spherical and deformed nuclear shapes
differ significantly each from other. This deformation dependence of the BCS results
is expected to have strong impact on the QRPA solution. The calculation of the
QRPA energies and wave functions requires the knowledge of the particle-hole y and
particle—particle k strengths of the residual interaction. The optimal value of x is
determined by reproducing the systematics of the empirical position of the Gamow-
Teller giant resonance in the odd-odd intermediate nucleus as obtained from the
(p,n) reactions [102, 183]. The parameter k£ can be determined by exploiting the
systematics of single §-decay feeding the initial and final nucleus. In Ref. [102] the
strengths of the particle-hole and particle-particle terms of the separable Gamow-
Teller force were fixed as smooth functions of mass number A by reproducing the
[B-decay properties of nuclei up to A=150 within the spherical pn-QRPA model. The
recommended values of y and « of Ref. [102], used in the numerical calculations are
presented in Table 4.4

The QRPA calculations for the K = 0,41 states are performed by following
the procedure described in the previous section. The number of zeros of the non-
linear RPA secular equation in equation (3.83) is equal to the number of the two-
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Figure 4.15: The Lh.s. of equation (3.83) D(w) is plotted as function of the energy
w for "Ge. The calculation has been performed within spherical (a) and deformed
(b) QRPA for y = 0.25 and x = 0. In case (b) the K=0 results are presented.

quasiparticle configurations included in the microscopic sums (3.50). In the case
of K = 0 (K = #£1) the dimension of the configuration space is of the order of
450 (900) quasiparticle pairs excitation. To each zero of the RPA secular equation
corresponds one RPA energy wi?. It is worthwhile to notice that by introducing the
deformation degrees of freedom the zeros are not found in each subinterval of energy
w determined by the two subsequent two-quasiparticle excitation energies and that
in some subintervals two or more zeros are found. This situation is illustrated in
Fig. 4.15. The vertical axis is the left-hand side (L.h.s.) of equation(3.83) and the
horizontal one is the energy wx—; in the range 6 MeV < wp—; < 8 MeV. The upper
(a) and lower (b) subfigures show results for A=76 obtained within the spherical
and deformed QRPA, respectively. A similar phenomenon was found also in Ref.
[143] in a different context.

The main drawback of the QRPA is the overestimation of the ground state
correlations leading to a collapse of the QRPA ground state, which may lead to an
ambiguity in the 8 and (3-decay matrix elements. The QRPA collapses, because it
generates too many correlations with increasing strength of the attractive proton-
neutron interaction as a result of the quasiboson approximation used. An interesting
issue is the dependence of the appearance of the collapse of the QRPA solution on
the deformation degrees of freedom.

In Fig. 4.16 the energies of the lowest K = 0 and |K| = 1 states in "®As calcu-
lated within the deformed QRPA are plotted as a function of particle-particle inter-
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I
0.10

Figure 4.16: The energy of the lowest QRPA state as function of particle particle
interaction strength k. The K=0 and K=1 deformed QRPA results for "®Se are
presented in subfigures (a) and (b), respectively.

action strength x. The calculations were performed for different values of quadrupole
deformation f5, namely fy = —0.25, —0.10, B> = 0.0 and (5 = 0.10, 0.25 represent-
ing oblate, spherical and prolate shapes of "*Se, respectively. In the spherical limit
the energies of K = 0 and |K| = 1 states of the intermediate nucleus coincide with
each other. Fig. 4.16 shows that for a deformed nucleus the collapse of the QRPA
solution appears for a slightly smaller value of k. For the strongly deformed 76Se
this effect is more pronounced than for the less deformed one. Thus the deformation
degrees of freedom do not improve the stability of the QRPA solution. The violation
of the Pauli exclusion principle affects the QRPA results strongly in the range of
particle-particle interaction x above 0.7 MeV.

The half-life of the 2v33-decay of °Ge is known with high accuracy from the
Heidelberg-Moscow experiment, in particular 777, = [1.55 & 0.01(stat) ) 12syst.)] x
10! years [110]. All existing positive results on the 2v33-decay were analyzed by
Barabash [14], who suggested to consider the average value Tf/”2 = 1.43%557 x 10%
years for the ground state transition °Ge — "Se. Using equation (3.60) and the
knowing the kinematical factor G* [G**("8Ge) = 1.49 x 1072° year—' MeV?] one

can deduce the absolute value of the nuclear matrix element |Mgy | from the

2v33-decay half-life of CGle.
This yields to a value of 0.138 MeV ~! when assuming g4 = 1.25. If the value of
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the axial coupling constant g, is considered to be unity, the approximately value of
| M2 | deduced from the average half-life for A=76 is larger 0.216 MeV !
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Figure 4.17: 2vf33-decay matrix element of "®Ge as function of particle-particle
interaction strength x. In the subfigures (a), (b) and (¢) [(d), (e) and (f)] the results
corresponding to oblate [prolate] deformation of both initial and final nucleus are
presented. Please note that if the deformation of the initial and final nucleus is
comparable, there is only minimal difference between the calculated values of Mg
With increasing difference in the deformations of parent and daughter nuclei the
suppression of MCQ;’T is increased in the range 0 MeV < k < 0.6 MeV. The two
dashed horizontal lines correspond to Mg “? = 0.216 MeV ! (g4 = 1.0) and
MZ%% = 0.138 MeV~" (g4 = 1.25).
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In Fig. 4.17 the effect of the deformation on the 2v(33-decay matrix element
M2, is analyzed. The results for the 2v33-decay matrix element are displayed as
function of the particle particle strength k. The curves drawn in subfigures a),
b) and ¢) [subfigures d), e) and f)| correspond to the case with both initial and
final nuclei being oblate [prolate]. The two horizontal lines represent Mg “* =
0.138 MeV ! (g4 = 1.25) and MZ7“" = 0.216 MeV ' (g4 = 1.0) respectively.
Fig. 4.17 shows that within the whole range of x there is only a small difference
between values of M2, corresponding to the same value of A3, which is defined as

ABs = |Ba(0Ge) — Bo(0Se)]. (4.3)

In addition, one finds that by increasing the value of AfBy the suppression of M.
becomes stronger within the range 0 MeV < k <0.06 MeV. This a new suppres-
sion mechanism of the 2v33-decay matrix element namely, M2} depends strongly
on the difference in the deformations of parent and daughter nucleus.

One might wander about is the origin of this suppression. In Fig. 4.18 this
point is clarified by presenting the overlap factor of two BCS vacua for different
values of 35("Ge). The approximate calculation of < BOS("Ge)|BCS("Se) > is
slightly sensitive to the used approximations in case one of the nuclei is oblate and
the second prolate. Therefore, the smoothed curves corresponding to a polynomial
function are presented.’

For a given (2("Ge) the curve has a maximum for 8(7%Se) = 3,("°Ge) and with
increasing difference in deformations of initial and final nuclei, i.e., Af3,, the value
of the BCS overlap factor decreases rapidly.

From Fig. 4.18 it follows that oblate-prolate (or prolate-oblate) 2v33-decay
transitions are disfavored in comparison with prolate-prolate or oblate-oblate ones.
In particular, by assuming the [, and (; parameters of Ref. [113] one obtains
< BCS(™Ge)|BCS("Se) >= 0.034. This suppression is too strong to achieve
agreement with experimental data for the calculated MZ;.. However, by changing
the deformation of Se from oblate to prolate (8,("Se) = 0.244) the value of the
BCS overlap factor: < BCS("Ge)|BCS("Se) >= 0.69 is significantly large. The
presented suppression mechanism is expecting to work also for other 2v(33-decay
transitions.

In Fig. 4.19 different values of the BCS overlap factor for the 2v33-decay of "Ge,
000 0, 9T e and 13 Xe are plotted. The quadrupole deformation of the initial nu-
cleus was taken to be G5 = 0.1 and (35 of the the final nucleus was considered to be a
free parameter within the range —0.4 < (5 < 0.4. The pairing gaps, which entered
the BCS equations, are given by in Table 7.5.1 for A=76 and for A=100, 130 and 136.

5The analytical expression of the overlap is presented in Appendix F.
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Figure 4.18: The overlap factor of the initial and final BCS vacuum as function
of the quadrupole deformation parameter (3, of Se. The results are presented
for spherical (8 = 0.0), oblate (G2 = —0.25,—0.10) and prolate (£; = 0.10,0.25)
deformations of %Gle.

One can see that the behavior of the overlap factor is qualitatively the same
for all considered nuclear systems. The maximum of this factor appears for equal
quadrupole deformation of the initial and final nucleus. This fact implies that the
deformation of the nuclei plays an important role in the calculation of the 2v33-
decay transitions and should be known with high reliability.

There are two suppression mechanisms of the 2v((-decay matrix element. Al-
ready long ago Vogel and Zirnbauer showed that M2 is strongly suppressed when
a reasonable amount of particle-particle interaction is taken into account [202], es-
tablished close to the collapse of the QRPA solution. This is one suppression mech-
anism. Here the second suppression mechanism that M2 depends strongly on the
difference in deformations of the initial and final nucleus has been found. A criteria
on to decide which of the mechanism dominates, is necessary for a common descrip-
tion of both single 8 and 2v(33-decay within the same nuclear Hamiltonian. Three
different cases are considered:

i) Sphericity of both initial and final nucleus, i.e., 32("*Ge) = 0 and B5("Se) = 0.
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Figure 4.19: The overlap factor of the initial and final BCS vacuum as function of
the quadrupole deformation parameter (> of the final nucleus for double beta decay
of Ge, 1Mo, 13Te, and 3 Xe. The deformation parameter of the initial nucleus
is chosen to be [y (initial) = 0.1.

ii) Deformations of parent and daughter nuclei are as follows: B»("Ge) = 0.09
and (,("Se) = 0.23.

iii) Deformations of Ge and ®Se are: [G2("Ge) = 0.09 and [B5("0Se) = 0.28.

In Fig. 4.20 the 2v33-decay of "*Ge is presented as function of particle-particle
interaction strength x for the above three cases. In case i) (spherical nuclei) Mgy “?
equal to 0.138 MeV ™! (g4 = 1.25) is reproduced for k = 0.06 MeV. The corre-
sponding set, of nuclear structure input parameters in this calculation is denoted by
capital letter A (see Table 7.6 Appendix F). This value of k is significantly larger
than the average value kg = 0.028 MeV deduced from the systematic study of the
single 3"-decays [102]. One can hardly suppose that it is because ®Ge and "®Se
are peculiar nuclear systems. They are no other indications to support this. In
fact this seems to be a general problem within the spherical QRPA: the calculated
nuclear matrix elements reproduce the experimental 2v(G3-decay half-life only for a

particle-particle strength close to the critical value for the QRPA collapse.
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In case ii) the situation is different. M2 “?" is reproduced for a considerable
smaller value of particle-particle strength k = 0.025 MeV, which is very close to
that of Homa et al. [102] and assuming g4 = 1.25 . The letter B denotes the
corresponding set of nuclear parameters, listed in Table 7.6. Since the effective axial
coupling constant has not been determined uniquely g4 = 1 is also considered.

Then Mz “" becomes larger, namely 0.216 MeV . With this, a smaller dif-
ference in parent daughter deformation is needed to reproduce this value for k ~ kg.
This is done in case iii) yielding £ = 0.019 MeV (nuclear parameter set C). Nev-
ertheless, one should keep in mind that the coupling strength of [102] has been
adjusted by using a deformed Nilsson single-particle model and g4 = 1.25. Thus it
is not necessarily the best possible choice. Tt is supposed that this prediction for k
is more accurate for nuclei with shorter 5-decay half-lifes. The curves corresponding
to cases ii) and iii) change only weakly in the range 0 < k < kg. It means that the
role of the particle-particle interaction is negligible within this interval.
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Figure 4.20: 2v33-decay matrix element of "°Ge as function of particle particle
interaction strength . The solid (sph.) line corresponds to spherical shape of initial
and final nuclei. The dashed (def. 1) and dot-dashed (def. 1I) are asociated with a
set of deformation parameters (3o("Ge) = 0.1, B35("Se) = 0.266) and (52("Ge) =
0.1, B2(7Se) = 0.216), respectively. The points indicated by letters A, B and C
determine x for which the value of Mgy “? deduced from the 2v(33-decay half-life
of Ge is obtained. For g4 = 1.25 (g4 = 1.0) one finds Mz, “™® = 0.138 MeV !
(M2 = 0.216 MeV 1) by assuming TP (" Ge) = 1.43 x 10%! years [14].
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It is worthwhile to notice that for a large value of x of about 0.07 MeV the
agreement with | Mg “"| deduced from the 2vf3-decay half-life is also achieved
and that in this case the sign of M2/ is negative. However, for negative values of
M2, a correspondence with g from systematic studies of the single beta decay [102]
is not achieved. Thus negative values of M2, are ruled out. There is a longstanding
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Figure 4.21: Running sum of the 2v33-decay matrix element M2 as a function of
the excitation energy E., in As. In the upper figure (a) results corresponding to
input parameter sets A (solid line) and B (dashed line) are presented. In the lower
figure (b) results obtained with input parameter set C (dot-dashed line) are drawn.
The dotted horizontal line in subfigure (a) [subfigure (b)] denotes the value of the
matrix element Mz “? = 0.138 MeV ! (MZ7%? = 0.216 MeV ') deduced from
the experimental 2v33-decay half-life of "*Ge by assuming g4 = 1.25 (g4 = 1.0).

question whether in the calculation of the 2v(33-decay matrix element M2 the
transitions to higher lying states of the intermediate nucleus play an important
role. The is so called “Single State Dominance Hypothesis” (SSDH), assumes that
only the lowest 1% state of the intermediate nucleus is of major importance in the
evaluation of MZ.. The SSDH can be realized, e.g., through cancellation among the
higher lying 17 states of the intermediate nucleus. Ref. [175] discussed a possibility
to experimentally study the validity of the SSDH by measuring the single electron
spectra and the angular distribution of the emitted electrons. The SSDH is suitable
for the 2v(3(-decay transitions with low-lying 17 ground state of the intermediate
nucleus. But this is not the case in 2v88-decay of Ge. In Fig. 4.21 the QRPA
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model dependent study of this problem is presented by drawing the running sum
of the matrix element MZ}.(F) as a function of the 17 excitation energy E., of the
intermediate nucleus. It can be seen that for the spherical calculation the main
contribution to M#, comes from states in the intermediate nucleus lying below 5
MeV scale and that there is a partial cancellation among contributions to M.
from higher lying states. In the case of deformed QRPA calculations there is a
different situation. Important contributions to MZ7.(E) arise even from relatively
high energies of the intermediate states around the position of the Gamow-Teller
resonance (about 12 MeV), which can not be described in the framework of the shell
model. These results contradict the SSDH and indicate that a strong truncation of
the complete set the states in the intermediate nucleus is not appropriate.

4.5 The 2v(5—decay within the FR-QRPA

In this section, the results obtained within the FR-QRPA in comparison with the
QRPA and SCQRPA ones are presented for 6 nuclei, "*Ge, 82Se, 1Mo, 16Cd, 128Te
and %Xe. Rather small model bases, listed in the Table 4.6, are used in order to
get a full convergence in the FR-QRPA.

Table 4.6: The proton and neutron pairing gaps determined phenomenologically to
reproduce the odd-even mass difference and the particle-hole strength g, chosen to
reproduce the experimental position of Gamov-Teller resonance. The single particle
basis for all nuclei under consideration is also shown.

(e 7636 829, 2Ky 000\ [ 0 Ry
Basis 1p, Of, Og 1p, Of, Og 1p, 2s, 1d, Og
A, MeV 1.561 1.751 1.401 1.734 1.612 1.548
A, MeV 1.535 1.710 1.544 1.644 1.358 1.296
X, MeV 0.21 0.18 0.17
6 (1 116G, 28T, 8o T30 e 0 Ye
Basis 1p, 2s, 1d, Og, Oh 2s, 1d, Og, Oh 2s, 1d, Og, Oh
A, MeV 1.493 1.763 1.127 1.177 1.299 1.043
A, MeV 1.377 1.204 1.307 1.266 1.243 1.180
X, MeV 0.14 0.14 0.12

The levels are considered in the vicinity of the Fermi levels and spin-orbit part-
ners are always taken into account. The FR-QRPA method is rather sensitive to
the differences between occupation probabilities for protons and neutrons, entering
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the denominator in the expression of the bifermionic operators Af, A and in the
expression for the R, factor of the renormalization matrices.
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Figure 4.22: The energy of the first excited Gamov-Teller state as function of
particle-particle interaction strength g,, for all nuclei

It can be noticed from (3.78) that for levels far from the Fermi, the values
of the occupation probabilities for protons and neutrons become small as well as
their difference. Nevertheless the dominator in the expression of R,.,» goes to zero
providing a finite result for R,. It is clear that in such situation the quantity
N y7 M has to be calculated very accurately while the approximation (3.80) may

be not good enough to guarantee that. This is why using the equation (3.80) the
full convergence cannot be achieved.

This causes numerical problems, in particular concerning convergence for large
values of particle-particle strength. Therefore, the bases are chosen in order to obtain
convergence for a larger interval of the particle-particle strength, in particular up to
the point of the collapse of the 2v(4 matrix elements. The single-particle basis for
each nucleus is shown in Table 4.6.

The single particle energies are obtained by using a Coulomb-corrected Woods-
Saxon potential with Bertsch parametrization. The proton and neutron pairing
gaps are determined phenomenologically to reproduce the odd-even mass differences
through a symmetric five-term formula [8]. Then the equations for the chemical
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potentials (3.81) are solved for proton and neutron subsystems. The pairing gaps
entering the BCS equations are given in the Table 4.6

The calculation of the QRPA energies and wave functions requires the knowledge
of the particle-hole y and particle-particle x strengths of the residual interaction.
The value of particle-hole strength y parameter for each nucleus is chosen in order
to reproduce the experimental position of the Gamow-Teller giant resonance in the
odd-odd intermediate nucleus [52, 117]. Those values are also given in the Table
4.6. The particle-particle strength k is considered as a free parameter.

The main drawback of the QRPA is the overestimation of the ground state
correlations leading to the collapse of the QRPA ground state near a certain critical
interaction strength. Around this point the backward-going RPA amplitudes Y, of
the first 17 states become overrated and too many correlations in the ground state
are generated with increasing strength of the particle-particle interaction. This
phenomenon, a result of the quasiboson approximation, leads to QRPA collapse
and implies an ambiguous determination of the 8 and 2v(G3-decay matrix elements.
In Fig. 4.22 the dependence of the energy of the first excited Gamow-Teller state
in daughter nuclei is plotted versus the x parameter. Hereafter, the dashed line
corresponds to the QRPA case, the dotted line represents the SCQRPA case and
the solid line describes the FR-QRPA case. For all studied nuclei the collapse of the
first excited state is shifted to higher values of x for each method and the stability
increases in the FR-QRPA.

In Fig. 4.23 the 2v@(-decay matrix elements are shown as function of the
particle-particle strength k. The calculations are done for all nuclei within the
three methods. The horizontal dashed line indicates the experimental values taken
from [122].

For all nuclei there is a similar behaviour in the sense that QRPA and SCQRPA
collapse a bit earlier than the FR-QRPA does. Although the chosen bases are rather
small, the new differences between QRPA extensions are evident. The FR-QRPA
method offers considerably less sensitive dependence of MZ. on k and shifts the
collapse to larger values of particle- particle strength.

In the following the conservation of the lkeda sum rule /ISR = S_ — S, =
3(N — Z) is discussed in the FR-QRPA framework and compared with the previous
calculations for QRPA and SCQRPA. According with the definition (3.86) S~ (S™)
is the total summed Gammov-Teller 37(87) transition strength from the ground
state of an even-even nucleus. In Fig. 4.24 the relative §~ strength S=/3(N — Z)
is shown for the mother nucleus (left side) and relative 8* strength, S*/3(N — Z)
for the daugther (right side). The total strength is plotted as a function of particle-
particle interaction parameter in order to show the magnitude and the nature of the
ISR violation.

Finally the ratio of SCQRPA and FRQRPA sum ISR/3(N — Z) is shown as
a function of k in Fig 4.25. In QRPA the Ikeda sum rule is exactly conserved as
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Figure 4.23: 2v3(-decay matrix elements as a function of particle-particle strength
gpp for all nuclei

long as all spin-orbit partners of the single-particle orbitals are included. In the
other extended versions of QRPA the sum rule is violated with a degree of deviation
lying between 17% (RQRPA) and 3% [180]. In summary, following the analytical
calculation of [149], it has been numerically shown that Ikeda sum rule is exactly
fulfilled within FR-QRPA formalism. In this part the new results obtain within a
selfconsistent formalism have been shown. The numerical applications were done
for 6 double beta decay partners ("°Ge, ¥2Se, %Mo, "°Cd, ?%Te and *°Xe). The
method is interesting from qualitative point of view and in spite of the use of rather
small model space, the effect of the restoration of the Ikeda sum rule on the decay
amplitudes within FR-QRPA has been analyzed in comparison with the correspond-
ing results in both QRPA and the self-consistent QRPA. Within the present work
the following important conclusions are drown:

i) The SCQRPA violates the Ikeda sum rule. This phenomenon has been indi-
cated in the previous studies [180], but the degree of violation we obtained is less
than in the other calculations because we did not include all multipolarities.

ii) In the limit when the difference between proton and neutron quasiparticle
occupation numbers is neglected the FR-QRPA coincides with SCQRPA.

iii) From a comparison of FR-QRPA with SCQRPA results we conclude that the
effect of the restoration of the Ikeda sum rule is important in the range of large value
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Figure 4.24: The dependence of the total = and 5 strength on the g,, parameter
for mother and daughter nuclei respectively. The total strength is normalized to
3(N-Z)

of particle-particle strength beyond the point of collapse of the standard QRPA.

It is worth to mention that the FR-QRPA approach is sensitive to the precise
evaluation of the proton and neutron quasiparticle occupation numbers. Due to the
limitation of the approximate expression given in ([149]) (motivated by a similarity
to the SQRPA approach) the convergence of the FR-QRPA is achieved only for
relatively small model space. However, even for such a model space the differences
among the standard QRPA, SCQRPA, FR-QRPA approach are evident for x close
to the point the standard QRPA breaks up. Also the question of the 2v343 collapse
was open, unfortunately the actual calculations don’t bring a satisfactory solution.
There is a new attempt to solve this problem, namely the idea to use the concept of
softly broken SU(4) symmetry as a basis for describing the decay-amplitudes within
a realistic a realistic nuclear model ([150, 151]).



100 4.5. THE 2v33-DECAY WITHIN THE FR-QRPA

7 1.0l T T T

1.01——— 1.01”7‘6“”””””” 1.0Lr
Se

— R B
. Ge 4 L i [ 116(:d | B 1lﬁsn ]
1...___.,_T - 1-&-.—.*___~% 1 — — 1 — —
: ] I AN 1™ ‘
N k \ 7 k 7
F \\a F - = \\ - = \\\ -
\ \
= - F 1 F \ - F \ 1
099+ 0.99HHHHHHHHHHHHHHHHHHAH 0,991 HHHHHHHHHHHA-HHH-H 0,99 b HH-HHHHHS
r ste b BZKI’ r 128Te b r 128xe b
g I g [ Il |
z7 12 z [ l1z.[ ]
QI Q1 — El Ts~~ AEJ‘ == N
o T~ o RN o | AN 1l L RN i
ot 14 @ >~ @ >

S N = AN - - AN B

[ AN F AN N N
0 \\\A N I N i I \ i
A, B \\‘ [ ‘\ 7
L.0AHH-HHHHHHHHH] 101 0,99 HHHHHHHHHHHHH 0,99
r 100M0 1 100Ru r 13D.|_e — r 130)(e 1
1— =4 1 — 1 — -4 1 — -
L \\\\ | \\\\ | \\\ ] L \\\ |

N L N 4 AN AN
. % B AN F AN - F \\ -

\, \ A \
099kl il N v ggluni b N i ] ggglei bev i benn bl ggglun e bnn b iy
0 005 01 015 02 0 005 01 015 02 ~©0 005 01 015 02 0 005 01 015 02

K[MeV] K[MeV] K[MeV] K[MeV]

Figure 4.25: Tkeda sum rule as function of particle-particle interaction strength
gpp- The dashed line coresponds to SCQRPA and the continuous one coresponds to
FRQRPA.



Chapter 5

Summary and Conclusions

101



102

The question whether the neutrino is a Majorana or a Dirac particle is still a
major focus in particle physics research. Double beta decay is one of the most pop-
ular methods which try to answer this question. There are different possible modes
of BfB—-decay which differ from each other by the light particles accompanying the
emission of two electrons. We distinguish the $8-decay modes with and without
lepton-number violation. The 2v33—-decay conserves the lepton number and is fully
consistent with the Standard Model (SM). This process involves the emission of two
electrons and two antineutrinos. The half-lives, already well established experimen-
tally for a couple of isotopes, range from 10' up to 10** years. The other decay
mode, Ov3[-decay, involves the emission of two electrons and no neutrinos. This
process violates lepton number conservation and therefore is forbidden in the SM
of the electroweak interaction. So far the neutrinoless double beta decay has not
been experimentally observed. Nowadays there are many experiments running and
the experimental evidences of this process will prove that neutrinos are Majorana
particles.

Also closely connected to the above is the question concerning the amount
of mass to be assigned to the neutrinos. Although the neutrinoless double beta
decay has not been seen yet, it is possible to extract from the lower limits of the
lifetime upper limits for the effective electron-neutrino mass and for the effective
mixing angle of the right-handed and the left-handed vector bosons mediating the
weak interaction. Omne can also obtain an effective upper limit for the mass ratio
of the light and the heavy vector bosons. A condition to obtain reliable limits for
these fundamental quantities from the measured lower limits of the half-lives of the
OvB[—decay is that the nuclear matrix elements are correctly estimated. The nuclear
structure calculations can be tested by calculating the 2vG3—-decay for which there
are experimental data and not just lower limits like in Ov3G3—decay.

The 2v(33-decay rate is governed by the Gamow-Teller matrix elements con-
necting the final and initial nucleus. The difficulty therein is that all intermediate
1T states have to be taken into account. The Quasiparticle Random Phase Approx-
imation (QRPA) has been the most popular theoretical tool to theoretically study
the 2v(G—decay in the recent past. Its main ingredients, the repulsive particle-hole
spin-isospin interaction and the attractive particle-particle interaction, clearly play a
decisive role in describing the concentration of the 3~ strength in the giant GT reso-
nance, as well as in the relative suppression of the 31 strength and its concentration
at low excitation energies. Together, these two ingredients are able to explain the
suppression of the 266 matrix element when expressed in terms of the correspond-
ing sum rule. Previous calculations suggested that the nuclear deformation might be
the reason for the suppression mechanism, beside the particle-particle interaction.
In order to clarify this aspect, the study of the behavior of the double beta decay
transition amplitudes with respect to the deformation constitute the main goal of
this thesis.
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In order to perform QRPA calculations for the deformed nuclei, the main
effects of the deformation on the ground state properties of the double beta de-
cay emitters have to be clarified. The pairing interactions between proton proton,
neutron—neutron and proton—neutron (pn) smear out the nuclear Fermi surface over
a relatively large number of orbitals. The occupation probabilities for protons and
neutrons enter the single and double beta decay matrix elements. One question is
whether the effect of pn pairing becomes significant for deformed neutron-rich nu-
clei. Another one is, if due to the deformation a coexistence between T=0 and T=1
pn pairing might occur. Therefore, generalized BCS calculations were performed
assuming an axially symmetric mean field and a Hamiltonian with schematic T=1
and T=0 pairing forces [176]. The competition between like-particle and pn pairing
was studied in even-even Ge isotopes'. The system of BCS equations allows three
different solutions. There is one solution with only like particle pairs, and two solu-
tions in which like and unlike particle pairs coexist, first with T=1 and second with
T=0 pn—pairs. None of the observed pairing modes allows simultaneous presence
of both T=0 and T=1 pn—correlations. The effect of pn pairing becomes important
for isotopes with large neutron excess N-Z, in particular for °Gee which undergoes
double beta decay. This result contrasts with the general belief that pn pairing
correlations are restricted only to the vicinity of N=Z line.

It is also interesting to see the effect of deformation in single S+ and 3~
transitions. The S~ transition amplitudes from initial to intermediate nucleus and
B% amplitudes from the intermediate to the final nucleus enter the final formula
of the double beta decay matrix elements. The ST amplitudes are strongly sup-
pressed due to the Pauli principle and thus implicitly also the 2v35—-decay matrix
elements. The GT strength distribution was studied for the two decay branches
B~ and % in all double beta decay emitters [158, 159]. This was done within a
deformed QRPA formalism which includes particle-hole (ph) and particle-particle
(pp) separable residual interactions. The quasiparticle mean field includes pairing
correlations in the BCS approximation and it is generated, for comparison, by two
different methods, a deformed Hartree-Fock (HF) approach with Skyrme interac-
tions and a phenomenological deformed Woods-Saxon (WS) potential. Among the
similarities between the HF and WS results, one can mention the structure of peaks
found in the strength distributions and among the differences the displacement in
the excitation energies found between HF and WS results. A significant part of the
total B1 strength is concentrated in the energy region above 10 MeV for the WS
calculations. This discrepancy has its origin in the structure of the single—particle
wave functions and energies generated by the deformed mean fields. This also im-
plies that different mean fields require different residual interactions to reproduce
the experimental GT resonances. Therefore, in order to obtain reliable GT strength

IThe "Ge nucleus is a double beta decay emitter.
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distributions and consequently reliable estimates for double G—decay half-lives, it
is important to have not only the proper residual interactions but also a good de-
formed single-particle basis as a starting point. In the case of HF the standard
Skyrme forces, such as SG2 or Sk3, give a good description of the GT strength
distributions when the proper residual interactions are included. Even though the
selfconsistent HEF approach is a more sophisticated type of calculation, the deformed
WS potential produces comparable results when the parameters of the potential and
the residual interactions for a given mass region are chosen properly. Then the in-
put parameters are adjusted so that the experimental data (position of GT giant
resonance) are reproduced. The systematics of deformations, ph and pp strengths
for all double beta decay emitters is shown in this thesis. These results are useful
for the calculations of the 2v33 matrix elements in deformed "*Ge described in the
following.

The double beta decay matrix elements were calculated for both spherical and
deformed Ge nuclei within the deformed QRPA with separable spin—isospin interac-
tions in the ph and pp channels [177, 134]. It is shown that the suppression of the
2v([3-decay matrix elements is large for a significant difference in the deformations
of the parent and daughter nucleus and is not related to the increasing amount of
the ground state correlations close to the collapse of the QRPA solution. A new
mechanism of the suppression of the double beta decay nuclear matrix elements due
to deformation is found. The origin of this new mechanism is a strong sensitivity of
the overlap of the initial and final BCS vacuum to the deformations of the initial and
final nucleus. This enters directly into the overlap of the intermediate nuclear states
generated from the initial and final nuclei via the QRPA diagonalization. A study
of other double beta decay transitions as a function of this deformation dependent
overlap indicates the general importance of the new suppression mechanism for the
2v(3-decay and Ov(3-decay matrix elements. It is also shown that by assuming
spherical nuclei there is a strong disagreement between the pp strength x needed to
reproduce the 2v33-decay half-life of ®Ge and the k deduced in Ref. [102] from a
systematic study of the single 3-decay transitions. With the new suppression mech-
anism of the 2v33-decay matrix element, a simultaneous description of both single
B and 2v33-decay is possible.

The detailed study of contributions to 2v33—matrix elements from different
1" intermediate nuclear states shows that for the A=76 nuclei it is necessary to
consider all 1% states of "®As up to an energy of 15 — 20 MeV. This fact disfavors
theoretical studies of the 2v((-decay of medium and heavy nuclei in models with a
strongly truncated basis, like the shell model. The investigation of the deformation
dependence yielded insight into a new suppression mechanism but still did not help
to overcome the main problem in the QRPA approximations, as it was hoped ini-
tially. The collapse of the QRPA solutions, and thus of the 2v(4 matrix elements,
cannot be avoided for deformed nuclei and also cannot be much shifted to larger
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values of pp strength. The origin of this behavior is in the Quasiboson Approxi-
mation violating the Pauli principle. Furthermore, in calculations using separable
forces and the secular dispersion equation, the Tkeda sum rule (ISR) is fulfilled only
on the level of 90-95%.

In this thesis, the new extension of the QRPA [135, 149], the Fully Renormalized-
QRPA, which can overcome the inconvenient aspects of the QRPA, has been applied.
The Pauli principle violation and the collapse of matrix elements are particulary
studied. It is shown analytically that the phonon operator includes the scattering
terms restoring the ISR. Moreover, the collapse of the FR-QRPA solutions and dou-
ble beta decay matrix elements occurs for large values of pp strength. It has to be
mentioned that the FR-QRPA approach is sensitive to the precise evaluation of the
proton and neutron quasiparticle occupation numbers. Due to numerical problems,
convergence of the FR-QRPA is achieved only for a relatively small model space.
Nevertheless, it is shown numerically that the ISR is fulfilled also in a limited space.
Already for such a model space the differences between the standard QRPA, its ex-
tensions, and the FR-QRPA are evident when the pp strength is close to the point
where the standard QRPA collapses. There is hope that for a proper ansatz of the
RPA ground state the FR-QRPA approach can work also for large model spaces.

The Gamow-Teller 87 strengths and double beta decay matrix elements in
medium and heavy nuclei continue to be a challenge for nuclear structure models.
Further theoretical studies are needed to clarify the role of deformation in the cal-
culation of other double beta decay transitions, especially those including heavier
nuclear systems which are known to be strongly deformed. Future work should in-
vestigate the 2v(33-decay matrix elements also within different possible extensions
of the deformed QRPA, e.g., those including proton-neutron pairing [176]. In this
way one expects to develop a reliable many-body approach with well-defined nuclear
structure parameters for the calculation of the Ov(G-decay matrix elements. Their
accurate values are highly required to determine the neutrino mixing pattern and
to answer the question of the dominant mechanism in the Ov35-decay [21, 64].
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Diese Arbeit beschéftigt sich mit neuen Aspekten der Berechnung von 2v603
Matrixelementen im Rahmen der deformierten QRPA. Dabei wurde ein neuer Mech-
anismus gefunden, der die 53 Matrixelemente in Abhéangigkeit von der Deformation
unterdriickt.

Das Studium des doppelten (-Zerfalls kann neues Licht auf eine der wichtig-
sten Fragen der Teilchenphysik werfen, namlich, ob das Neutrino ein Majorana
oder Dirac Teilchen ist. Beim [3-Zerfall kann man einen Zerfallsmodus mit und
einen ohne Verletzung der Leptonenzahl definieren. Der die Leptonenzahl erhal-
tende 2v(3(-Zerfall (Aussendung zweier Elektronen und zweier Antineutrinos) ist
mit dem Standardmodell der Teilchenphysik vertraglich. Die fiir einige Kerne bere-
its experimentell bestimmten Halbwertszeiten liegen im Bereich zwischen 10 und
10%* Jahren fiir diese Art von Zerfalls. Beim anderen Modus, dem Ov33-Zerfall oder
neutrinolosen [(-Zerfall, werden nur zwei Elektronen, aber keine Neutrinos emit-
tiert. Dieser Prozess verletzt den Erhaltungssatz der Leptonenzahl und ist deshalb
im Standardmodell der schwachen Wechselwirkung verboten. Bis heute gibt es keine
experimentelle Bestatigung dieser Zerfallsart. Es sind jedoch eine Reihe von Experi-
menten im Gange, da durch den Nachweis des neutrinolosen (-Zerfalls das Neutrino
als Majorana Teilchen festgelegt werden konnte.

Eng verkniipft mit obiger Frage ist auch die Bestimmung der Neutrinomassen.
Obwohl noch kein doppelter 3-Zerfall direkt beobachtet werden konnte, ist es doch
mglich, Untergrenzen der fiir diesen Zerfall relevanten Lebensdauern anzugeben.
Aus diesen wiederum konnen Obergrenzen der effektiven Neutrinomasse und Gren-
zwerte fiir den effektiven Mischungswinkel der rechts- und links-héandigen Vektor-
bosonen, welche die schwache Wechselwirkung vermitteln, abgeleitet werden. Es ist
auch moglich, eine effektive Obergrenze des Massenverhéltnisses der leichten und
schweren Vektorbosonen anzugeben. Verlassliche Grenzwerte dieser fundamentalen
Groflen konnen jedoch nur bestimmt werden, wenn die Matrixelemente des Ov(35-
Zerfalls prazise berechnet werden konnen. Die dazu notigen Kernstrukturrechnun-
gen konnen in Rechnungen zum 2v36-Zerfall durch Vergleich mit dem Experiment
direkt getestet werden, im Gegensatz zum Ov(33-Zerfall fiir den es nur Untergrenzen
der Halbwertszeiten gibt.

Die 2vp3p3-Zerfallsrate wird durch die Gamow-Teller Matrixelemente bes-
timmt, die Zustande im zerfallenden Kern mit jenen im Endkern verkniipfen. Die
Schwierigkeit hierbei liegt darin, dass alle 17 Zwischenzustande beriicksichtigt wer-
den miissen. In der theoretischen Behandlung des 2v33-Zerfalls war bislang iiblicherweise
QRPA die Methode der Wahl. Deren Hauptbestandteile, die abstoBlende Teilchen-
Loch, Spin-Isospin Wechselwirkung und die anziehende Teilchen-Teilchen Wechsel-
wirkung, spielen eindeutig eine entscheidende Rolle in der Beschreibung der Konzen-
tration der §~ Starke in der GT Riesenresonanz und bei relativen Unterdriickung
der 81 Starke, die hauptsichlich bei niedrigen Anregungsenergien liegt. Zusammen
koénnen diese beiden Wechselwirkungen die Unterdriickung der 2v34 Matrixelemente
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in der dazugehorigen Summenregel erklaren. Frithere Rechnungen deuteten darauf
hin, dass die Kerndeformation neben der Teilchen-Teilchen Wechselwirkung eben-
falls eine Rolle in der Unterdriickung der Matrixelemente spielt. Aus diesem Grund
ist der Hauptaspekt der vorliegenden Arbeit die Untersuchung des Verhaltens der
Ubergangsamplituden des doppelten (-Zerfalls in Abhéingigkeit von der Deforma-
tion.

Um tberhaupt QRPA Rechnungen fiir deformierte Kerne machen zu konnen,
miissen zunachst die Haupteinfliisse der Deformation auf die Grundzustandseigen-
schaften der Mutterkerne verstanden werden. Die Paarungskrifte zwischen Pro-
tonen unter sich, Neutronen unter sich und zwischen Proton-Neutron (pn) ver-
schmieren die Fermioberflache iiber eine relativ groie Anzahl von Orbitalen. Die
Besetzungswahrscheinlichkeiten der Protonen und Neutronen gehen in die Matrix-
elemente fiir einfachen und doppelten (-Zerfall ein. Eine der bedeutsamen Fragen
ist, ob der pn Paarungseffekt fiir neutronenreiche, deformierte Kerne von Bedeu-
tung ist. Eine andere Frage ist, ob T=0 und T=1 pn Paarung wegen der Deforma-
tionseffekte koexistieren kann. Um diese Fragen zu untersuchen wurden in dieser
Arbeit Rechnungen im verallgemeinerten BCS Modell durchgefiihrt, wobei ein axi-
alsymmetrisches gemitteltes Potenzial und ein Hamiltonoperator mit vereinfachten
T=1 und T=0 Paarungskréften verwendet wurde [176]. Der Wettbewerb zwischen
Paarung gleicher Teilchen und pn Paarung wurde in geraden Ge-Isotopen studiert
("Ge kann doppelten (-Zerfall machen). Das BCS Gleichungssystem hat drei ver-
schiedene Losungen. Eine davon enthalt nur Paare gleicher Teilchen, in den beiden
anderen koexistieren Paare gleicher und ungleicher (pn) Teilchen, in einer mit T=1
und in der anderen mit T=0 pn-Paaren. Keine der beobachteten Paarungsmoden
erlaubt die gleichzeitige Realisierung von T=0 und T=1 pn-Korrelationen. Der Ef-
fekt der pn-Paarung ist wichtig in Isotopen mit groflem Neutroniiberschuss (N-Z
groB), besonders auch im Falle des ®Ge. Dieses Ergebnis steht im Gegensatz zur
verbreiteten Annahme, pn-Paarungseffekte waren nur auf die Umgebung der N=7
Linie beschrankt.

Es ist auch interessant, den Einfluss der Deformation auf einzelne 3% und
5~ Ubergénge zu betrachten. Die Formel fiir die Matrixelemente des doppelten
(-Zerfalls enthalt die 8~ Ubergangsamplituden vom Anfangs— zum Zwischenkern
und die 8t Amplituden vom Zwischen— zum Endkern. Wegen des Pauliprinzips
sind die 87 Amplituden stark unterdriickt und deshalb implizit die Matrixelemente
des 2v@3p3-Zerfalls. In dieser Arbeit wurde die Verteilung der GT Starke in den
B~ und Bt Zerfallszweigen aller Kerne, die doppelten (3-Zerfall machen konnen,
untersucht. [158, 159]. Dazu wurde eine Formulierung der deformierten QRPA
benutzt, welche separable Teilchen-Loch (TL) und Teilchen-Teilchen (TT) Rest-
wechselwirkungen enthélt. Paarungskorrelationen werden darin im BCS Modell
beschrieben. Das "mean field” der Quasiteilchen wurde zu Vergleichszwecken auf
zwei verschiedene Arten erzeugt, einmal tiber die deformierte Hartree-Fock Methode
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(HF) mit Skyrme Wechselwirkungen, und einmal mittels eines phanomenologischen,
deformierten Woods-Saxon (WS) Potenzials. Den Ergebnissen beider Rechnungen
ist gemeinsam, dass sie die gleiche Struktur der peaks in den Stiarkeverteilungen
aufweisen. Unterschiede ergeben sich in der Anregungsenergie, bei der die peaks
liegen. Der Grofiteil der totalen G+ Starke ist in der WS Rechnung im Energiebereich
oberhalb von 10 MeV konzentriert. Dieser Unterschied in den HF und WS Rechnun-
gen liegt in der Struktur der Einteilchenwellenfunktionen und -energien begrindet,
die durch die unterschiedlichen ”mean fields” erzeugt werden. Daraus folgt, dass mit
verschiedenen "mean fields” auch unterschiedliche Restwechselwirkungen benotigt
werden, um die gleichen experimentellen GT Resonanzen zu beschreiben. Daher ist
es fiir eine verlassliche Beschreibung der Verteilung der GT Starke und somit der (3
Halbwertszeiten nicht nur wichtig adaquate Restwechselwirkungen zu benutzen, son-
dern auch eine gute Einteilchen-Basis als Startpunkt zu haben. In der HF Rechnung
ergeben die Standard-Skyrme Krafte, wie SG2 oder Sk3, eine gute Beschreibung der
GT Starkeverteilung, wenn man passende Restwechselwirkungen hat. Obwohl die
selbstkonsistente HE' Methode grundlegender erscheint, ergeben sich mit dem de-
formierten WS Potenzial vergleichbar gute Ergebnisse wenn die Potenzialparameter
und die Restwechselwirkungen fiir den gegebenen Massenbereich verniinftig gewahlt
werden. Das heisst, die Parameter werden so angepasst, dass experimentelle Daten
(Position der GT Riesenresonanz) reproduziert werden. Systematiken der sich da-
raus ergebenden Deformationen, sowie TL- und TT-Starken aller im doppelten (-
Zerfall wichtigen Kerne sind in der vorliegenden Arbeit angegeben. Diese Ergebnisse
sind fiir die unten beschriebene Berechnung der 2v(3(6 Matrixelemente fiir das de-
formierte "Ge niitzlich.

Im weiteren Verlauf wurden die Matrixelemente des doppelten (-Zerfalls fiir
spharische und deformierte Ge-Kerne mittels QRPA und mit separablen Spin-Isospin
Wechselwirkungen in den TL- und TT-Kanélen berechnet [177, 134]. Es stellt sich
heraus, dass die Unterdriickung der 2v33 Matrixelemente stark ist, wenn ein sig-
nifikanter Unterschied in der Deformation des Mutter- und des Tochterkerns besteht.
Es zeigt sich auch, dass diese Unterdriickung nichts mit dem wachsenden Anteil von
Grundzustandskorrelationen nahe des Kollapses der QRPA Losung zu tun hat. Es
wurde also ein neuer Mechanismus zur Unterdrickung der Matrixelemente des dop-
pelten [-Zerfalls gefunden. Dieser neue Mechanismus griindet sich auf die starke
Empfindlichkeit des Uberlapps zwischen den BCS Vakua des Anfangs- und Endzu-
stands auf die Deformation des Anfangs- bzw. Endkerns. Diese setzt sich auch fort
bis in den Uberlapp der Zwischenzustinde, die aus den Anfangs- und Endkernen
mittels Diagonalisierung der QRPA erzeugt werden. Die Ergebnisse einer weiterge-
henden Untersuchung anderer Ubergénge im doppelten 5-Zerfall als Funktion dieses
deformationsabhingigen Uberlapps deuten auf eine Allgemeingiiltigkeit dieses Un-
terdriickungsmechanismus und unterstreichen seine Bedeutung in der Berechnung
von Matrixelementen des 2v33- und Ov3(-Zerfalls. Es wird auch deutlich, dass die
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Annahme von Spherizitat aller Kerne zu einem groflen Widerspruch zwischen der
TT-Starke & fithrt, die benotigt wird, die Halbwertszeit von "°Ge im 2v33-Zerfall zu
reproduzieren, und jener Stirke x, die in Ref. [102] aus einer systematischen Studie
von einzelnenS-Ubergéingen abgeleitet wurde. Mit dem neuen Mechanismus zur
Unterdriickung der 2v35 Matrixelemente ist hingegen eine gleichzeitige, konsistente
Beschreibung sowohl von - als auch von 2v33-Zerfall moglich.

Untersucht man detailliert die Beitrage verschiedener 11 Zwischenzustiande
zu den 2v 33 Matrixelementen, so zeigt sich, dass man in den A=76 Kernen alle 17
Zustande in " As bis zu einer Energie von 15 — 20 MeV beriicksichtigen muss. Diese
Tatsache verbietet theoretische Studien des 2v33-Zerfalls von mittelschweren und
schweren Kernen in Modellen mit stark verkleinerter Basis, wie etwa im Schalen-
modell. Mit der oben beschriebenen Untersuchung der Abhangigkeit von der De-
formation erhélt man Einsicht in den neuen Unterdriickungsmechanismus, aber das
hilft trotzdem noch nicht, die Schiache der QRPA zu iiberwinden, wie es urspriinglich
erhofft wurde. Der Kollaps der QRPA Losungen, und somit auch der 2vG5 Matrix-
elemente kann auch in deformierten Kernen nicht vermieden werden und kann auch
nicht viel zu grosseren Werten der T'T-Starke hin verschoben werden. Der Grund fiir
dieses Verhalten liegt in der quasibosonischen Naherung, die das Pauliprinzip ver-
letzt. Ausserdem wird die Summenregel von Ikeda (ISR) in Modellen, die separable
Kréfte und die sakulare Dispersionsgleichung benutzen, nur zu 90 — 95% erfiillt.

Deshalb wurde im Rahmen der vorliegenden Arbeit schlieSlich eine neue
Erweiterung der QRPA entwickelt [135, 149]. In der ”Fully Renormalized-QRPA”
(FR-QRPA) sind die unhandlichen Aspekte der QRPA eliminiert. Die Verletzung
der Pauliprinzips und der Kollaps der Matrixelemente bei kleiner TT-Starke wird
vermieden. Analytisch wurde hier gezeigt, dass der Phononoperator Streuterme
enthalt, sodass die ISR wieder erfiillt ist. Somit erfolgt der Kollaps der FR-QRPA
Losungen and Matrixelemente des doppelten (-Zerfalls erst fiir grole Werte der
TT-Starke. Man muss jedoch anmerken, dass die FR-QRPA Methode empfind-
lich auf die genaue Berechnung der Besetzungszahlen der Proton- und Neutron-
Quasiteilchen ist. Wegen numerischer Probleme erhélt man Konvergenz nur in einem
vergleichsweise kleinen Modellraum. Trotzdem konnte numerisch gezeigt werden,
dass die ISR auch im beschrankten Modellraum erfiillt wird. Selbst im limitierten
Modellraum werden grofle Unterschiede zwischen der Standard-QRPA, ihren Fr-
weiterungen und der FR-QRPA deutlich, wenn die T'T-Starke nahe dem Wert ist,
an dem die Standard-QRPA zusammenbricht. Es besteht die Hoffnung, dass die
FR-QRPA Methode mit einem geschickten Ansatz des RPA Grundzustands auch in
groffen Modellraumen funktionieren wird.

Die Berechnung der Gamow-Teller 3+ Starken und der Matrixelemente des
doppelten [-Zerfalls in mittelschweren und schweren Kernen bleibt auch weiterhin
eine Herausforderung fiir Kernstrukturmodelle. Es sind noch weitere theoretische
Arbeiten nétig, um die Rolle der Deformation in anderen Ubergéngen im doppel-
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ten [-Zerfall zu klaren, insbesonders in jenen schwereren kernphysikalischen Sys-
temen, von denen man weiss, dass sie deformiert sind. Zukiinftige Studien soll-
ten die 2v((3 Matrixelemente auch mit weiteren, unterschiedlichen Erweiterungen
der deformierten QRPA untersuchen, zum Beispiel solche, die auch Proton-Neutron
Paarung enthalten [176]. Auf diese Weise kann man erwarten, eine verléssliche
Vielteilchen-Methode mit wohldefinierten Kernstrukturparametern fir die Berech-
nung der Matrixelemente des Ov[((3-Zerfalls zu erhalten. Genaue Werte dieser Ma-
trixelemente werden zur Bestimmung der Neutrinomischungsverhaltnisse und zur
Beantwortung der Frage benotigt, welches der dominante Mechanismus im Ov3(-
Zerfall ist [21], [64].
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7.1 Appendix A

7.1.1 History of the 2v33—decay

”Liebe Radioaktive Damnen und Herren,

wie der Uberbringer dieser Zeilen, den ich huldvollst anzuhoren bitte, IThnen des
naheren auseinandersetzen wird, bin ich angesichts der ”falschen” Statistik der N
und Li 6 Kerne, sowie des kontinuierlichen g-Spektrums auf einen verzweifelten
Ausweg verfallen, um den ”Wechselsatz” der Statistik und den Energiesatz zu ret-
ten. Namlich die Moglichkeit, es konnten elektrisch neutrale Teilchen, die ich Neu-
tronen nennen will, in den Kernen existieren, welche den Spin 1/2 haben und das
Ausschlieungsprinzip befolgen und sich von Lichquanten auflerdem noch dadurch
unterscheiden, dafl sie nicht mit Lichtgeschwindigkeit laufen. Die Masse der Neu-
tronen miufl te von derselben Grofi enordnung wie die Elektronenmasse sein und
jedenfalls nicht grofler als 0.01 Protonenmasse. Das kontinuierliche B-Spektrum
wéire dann verstandlich unter der Annahme, dafl beim (-Zerfall mit dem Elektron
jeweils noch ein Neutron emittiert wird, derart, daf§ die Summe der Energien von
Neutron und Elektron konstant ist.

Nun handelt es sich weiter darum, welche Krafte auf die Neutronen wirken.
Das wahrscheinlischstes Modell fiir das Neutron scheint mir aus wellenmechanischen
Griinden (néheres weif} der Uberbringer dieser Zeilen) dieses zu sein, daf das ruhende
Neutron ein magnetischer Dipol von einem gewissen Moment g ist. Die Experimente
verlangen wohl, dafl die ionisierende Wirkung eines solchen Neutrons nicht grofier
sein kann als die eines «y -Strahls, und dann darf ;2 wohl nicht grof er sein als e1013
cm.

Ich traue mich vorldufig aber nicht, etwas iiber diese Idee zu publizieren, und
wende mich erst vertrauensvoll an Euch, liebe Radioaktive, mit der Frage, wie es
um den experimentellen Nachweis eines solchen Neutrons stande, wen dieses ein
ebensolches oder etwas 10 mal grofferes Durchdringungsvermégen besitzen wiirde
wie ein « -Strahl.

Ich gebe zu, dafl mein Ausweg vielleicht von vornherein wenig wahrscheinlich
erscheinen mag, weil man die Neutronen, wenn sie existierten wohl langst gesen
hatte. Aber nur wer wagt, gewinnt und der Enst der Situation beim kontinuierlichen
B Spektrum wird durch einen Ausspruch meines verehrten Vorgangers im Amte,
Herrn Debye, bleuchtet, der mir kiirzlich in Briissel gesagt hat: 7O, daran soll man
am besten nicht denken, so wie an die neuen Steuern.” Darum soll man jeden Weg
zur Rettung ernstlich diskutieren. Also liebe Radioactive, priifet, und richtet. -
Leider kann ich nicht in Tiiebingen erscheinen, da ich infolgeines in der Nacht von
6. zum 7. Dez. in Ziirich stattfindenden Balles hier unabkémmlich bin. -Mit vielen

grifl en an Fuch, sowie auch Herrn Back, Eurer untertanigster Diener
W. Pauli”
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7.2 Appendix B

The single particle wave functions of the deformed axially-symmetric Woods-Saxon
potential are expanded in a basis of the deformed harmonic oscillator. Two types
of Skyrme forces SG2 and Sk3 are described.

7.2.1 Deformed Woods-Saxon potential

The average field potential (deformed Woods-Saxon potential) is defined on a ba-
sis of implicit equation, which determines the shape of the nuclear surface. The
hamiltonian used includes also a spin-orbit coupling and for charged particles, the
coulomb potential. The starting point is the general definition of the nuclear surface
which is given by an implicit equation in cylindrical coordinates

H(u,v) = 0. (7.1)

For the radial part of the potential it is assumed that this can be expressed by a
single variable 1, which in turn is a function of the spatial variables u and v. With 1
defined as a spatial distance, the Woods-Saxon potential has the following form

Vv

R —— 2
Vi) 1+ exp(l/a) (7.2)
Here a is the thickness of the nuclear surface.
Cs(u,v)
= — 7 7.3
Vet 0)] 3)
with:
S(U, U) = (H(U,U) - Hmin)1/2 - (_Hmin)l/Qa
M(u,v) = v*+u*— R*(u,v),
I, = absolute minimum for Il(u,v), (7.4)

where C and R,, are normalization constants as a function of (,, 84 and Ry and
respectively Ry = ryAl/?
z=Cu, (=Cuv. (7.5)

The spin-orbit coupling field is assumed to be of the form

K

Vo — _?

VVao(D)[6 X 7, (7.6)
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with
Vo
Veoll) = ————, 7.7
0 1+emp(ffs‘;) (77)
and the Coulomb potential
1
v, = / © 1 gy (7.8)
1+ exp(a—cc) |7 — 7’|

where k is the coupling parameter and (y is a charge distribution inside of the
nucleus.
In order to solve the Schrodinger equation:

HU; = [T+ V5 £ V5 4 o]l = 6, (7.9)

where V%*=V"5(0,, B), the single-particle wave function is expanded in terms
of the eigenstates of an axially symmetric harmonic oscillator. The single particle
states |i > and their time reversed |i > are characterized by the eingenvalues K of
J., parity m; and energy ¢;

—1\V ; )
i >= Z()% S Cln s o 0, AT >, (7.10)
N nrynz, A2
with K = A + Y and
— —1)\N i .
i > = ZHZH S Chmman(=1D) N e, —A, = > (7.11)
N NNy, A5

The radius and potential parameters are taken from the literature. Here, is used
the parametrization of Tanaka et al. [186]:

o o — r(l)A_l/3, ap = ay + ag(N — Z) /A,
Vor™ v) + (N — Z) /A,
reo = To—TRAT ay, =g
Vio = U3y + V(N = Z) /A,
Te To a. = ao, (7.12)

with n = 1.6, a) = 0.60, aj = 0.47, KV = V;O(mi,,c)Q = 1.998063 V,, fm? and the
parameters from Table 7.1
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Table 7.1: Radius and potentials parametrization for deformed Woods-Saxon po-

tential
v)[MeV] | vi[MeV] | v [MeV] | vl [MeV]
Protons 74,74 50.32 6.315 -3.501
Neutrons 75.91 -53.43 6.829 2.287
rolfm] | rolfm] | rlfm] | rg[fm]
Protons 1.412 0.621 1.185 0.946
Neutrons 1.501 0.636 1.510 1.006

7.2.2 Deformed harmonic oscillator

Hamilton operator for a deformed axially symmetric harmonic oscillator in cylin-
drical coordinates (p, z, ¢), p being the azimuth radius, with a quadrupole and
hexadecapole parametrization

2?). (7.13)

The basic wave functions are the eigenstates of an anisotropic harmonic oscillator
and they are described by the quantum numbers n,, n., and A. For a deformed
harmonic oscillator single particle energy is given by

1
€ = hwi(2n, + A+ 1) + hw,(n, + 5), (7.14)
where A and ¥ are the projections of the orbital and spin angular momentum on
the symmetry axis z. The axially symmetric deformed harmonic oscillator can be

also describe using the Nilsson quantum numbers

[Nn, A|K™, (7.15)
with the folowing quantum numbers:
N = n,+2n,+[A],
K = A+3X,
r = (=) (7.16)

Basis functions are a superposition of Hermite and associated Laguerre polynomials

U(n, n,, A, X)) = \Ilﬁp(p)\llnz(z)\llA(go)X(E) =|N,n,, A\,X, K >, (7.17)
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1 .
1\ = —e“\“",
A(SO) m
Mu)z 1¢2
\Ilnz(z) = an[ h ] € E Hﬂz(&)’
2Mwy 1 1) 1
Vo (p) = No[=——=]nzte 271y (), (7.18)
where: %:\/ i 5 ,/M“’Zz n, =2n,+A
N, =—L__  NA = [ 2ol

Vi Ve = Vet

As it has been mentioned before H, (£) and L! (n) are associated polynomials.
The frequencies w; and w, characterizing the deformed harmonic oscillator are two
free parameters which are found from fitting the shape and size of the deformed

harmonic oscillator potential to the average field. The time revers wave function is
defined like

INn,, A, K >=T|N,n., A\, S, K >= (—1)/*>|N,n,, A, -3, —-K > . (7.19)
7.2.3 Skyrme forces

The density-dependent HF approximation gives a very good description of ground-
state properties for both spherical and deformed nuclei [70] and it is at present the
most reliable mean field description. Two different Skyrme forces were used for the
numerical applications: on one hand the Skyrme force Sk3 [17] because it is the
most extensively used Skyrme force and it is considered as a reference, on the other
hand the SG2 force [78] of Van Giai and Sagawa. The two forces were designed
to fit ground state properties of spherical nuclei and nuclear matter properties but,
in addition, the force SG2 gives a good description of Gamow Teller excitations in
spherical nuclei [78]. Recently [156], these two forces and were applied to make
a rather extensive study of isoscalar and isovector spin M1 excitations in deformed
nuclei obtaining a good description of the available data, particularly with SG2. The
parameters of these two interactions are given in Table 7.2.3. The corresponding
HF energy density functional for an even-even nucleus has the form

Z Pst Z { tOps’t’ - 555’51%’ + Zo (653’ - 5tt’)]
/t/

1
+Zt2 (Ts’t’ + ngps't') [1 + 0550t + 2 (055 + Oprr)]

1
+1_6t1 <47—s’t’ 3V2,05’t’> [1 - 535’5&’ + x1 (555’ - 5tt’)}

1
Et?,P psitr [ — 550 + 3 (055r — Opr)]
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FEWOV-Tyw (14 5”,)} L& (r), (7.20)

with & the Coulomb energy density
1 pp () pp(r) 3 3 a
Ec(r) = 625 /dr'ﬁ - 162/% (r) [;Pp (r)} : (7.21)

The spin-isospin (st) components of the nucleon, kinetic energy, and magnetization
densities are

pst (r) = E;v? s (r,5,8)], (7.22)
Tt (1) = D07 Vi (x,5,1), (7.23)
Jy(r) = va@* (r,s',t) (=iV X o) ¢; (r, s, 1), (7.24)
with
pr = Zs:pst , (7.25)
p= Ep:n Pt (7.26)

and similarly for 7 and J. The single-particle energies ¢; and wave functions are
obtained from the HF equations

o0&
007
The HF theory gives a single solution which is the Slater determinant of the lowest
energy. To allow for shape coexistence one has to extend the theory to a constrained
HF theory [71]. Minimization of the HF energy under the constraint of holding the
nuclear deformation fixed is carried out over a range of deformations. When more
than one local minimum occurs for the total energy as a function of deformation,
shape coexistence results. The energy surfaces as a function of deformation are
obtained by this procedure including a quadratic quadrupole constraint [71].
Following Bertsch and Tsai [18] the particle-hole interaction consistent with the
HF mean field can be obtained as

Vo= o 3 L4 () o1 00] [L+ (1) om0 (7.28)

sts't! 6p8t (rl) (Sps’t’ (r2> .
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This gives a local interaction that can be put in the Landau-Migdal form [121]. For
the study of § decay the relevant residual interactions are the isospin contact forces
generating the allowed Fermi transitions (AL = 0,AS = 0, AI"™ =07)

Ve (12) = xr (tt; +1115) (7.29)

and the spin-isospin contact forces generating the allowed Gamow Teller transitions
(AL =0,AS =1,AI" =17)

VGT (12) = XGT 01 - 02 (tf—t; -+ tl_t;_) s (730)

where the used convention is ¢t* |p) = |n), ¢~ |n) = |p). The latter (Vgr) is the
charge changing component of the spin-spin interaction Hggs

Hgs = % (14 q)si-s2+ (1 —q)sisy 71 -T2, (7.31)
considered in Refs. [155, 156] for the study of spin M1 excitations. Not allowed
transitions (AL > 0) produce strengths which are orders of magnitude smaller than
the allowed ones (AL = 0) and will not be considered.

The coupling strengths result after the functional differentiation of Eqs. (7.20)
and (7.28-7.30), assuming symmetric uniform nuclear matter and averaging over the
nuclear volume V/

3 1 1 1
XF — 47TR3 (—§> {to (1 + 21‘0) — §k§;’ [tg (1 + 2(132) — tl (1 + Q.Tl)] + étgpa (1 —2—72;‘23))} ,

3 1 1, Lo,
XGT = R (7) {to ke (=) + Glap } ’ (7.33)

where R is the nuclear radius and kz the Fermi momentum kr = (37%p/ 2)1/ °. These
coupling strengths are related to the familiar Landau-Migdal parameters Ffj and G|,
(see for instance [78]) by

2F 26,

— = _—— 7.34
VN() y XGT VN()’ ( )

XF =

where V' = 47R3/3 and N, = <2m*k‘p/h27r2), with m* the effective mass. For
completeness the values of yr and ygr are also given in Tables.
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Table 7.2: Parameters of the Skyrme forces SG2 and Sk3: to[MeVim?], t;[MeVim?®],
to[MeVim?], t3[MeV fmf], W[MeVfm?], xq, x1, X9, X3, and a.

to tl tg tg W X0 X1 X9 X3 é
SG2 | -2645.0 | 340.0 | -41.9 | 15595.0 | 105.0 | 0.09 | -0.0588 | 1.425 | 0.06044 | 6.0
Sk3 | -1128.75 | 395.0 | -95.0 | 14000.0 | 120.0 | 0.45 0.0 0.0 1.0 1.0

Table 7.3: Strengths of the separable isospin xr[MeV] and spin-isospin xgr [MeV]
residual interactions obtained from Eqs.(7.32) and (7.33) , respectively.

XF | XGer
SG2 | 0.69 | 0.48
Sk3 | 0.88 | 0.46

7.3 Appendix C

In deformed nuclei the short range pairing correlations play a very important role,
namely the smooth behavior of the occupation probabilities close to the Fermi level
involve non-zero amplitudes for the beta transitions. This pairing correlation are
described within the BCS theory starting from the variational principle.

7.3.1 The BCS Hamiltonian

The BCS wave function for even-even nuclei:

|BC'S >= [] (uy, + weafal)|— > (7.35)

k>0

where u; and vy represent variational parameters. The product runs only over half
of the configuration space as indicated by k > 0. For each state k > 0 there exists
another ”conjugate” state k < 0 and the states k, k generate the whole single-particle
space. The product can be written more suggestive as:

v V1Vt
|BOS >=|—>+> —kaza%— >4+1/2 ) bl aLa%aL,aH— > (7.36)
k>0 Uk k>0 Uk UE!
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The v? and u? represent the probability that a certain pair state is (k, k) is occupied
or not occupied.

7.3.2 The BCS equations

The BCS Hamiltonian has the following form:
=Y elala,+ a%a,;) -G aLa%a,;/ak/. (7.37)

k>0 kK’

The Bogoliubov-Valatin transformation:

OZJIL = ukaz—vkag
oz£ = uw%—vkak. (7.38)

As long as the number of particles is not conserved and the hamiltonian doesn’t
commute with the particle number operator N it is necessary to add a new term:

H' = H — AN, (7.39)

where A is a Lagrange multiplier (in realistical calculations its value gives the value
of the Fermi level). The expectation value of H’:

1 A
< BCS|H'|BCS >=2> (&v; + =Guvp) — =, (7.40)
k>0 2 G
with the gap parameter o
and
& =€, — XA — Gui. (7.42)

Here Gvj and G} are renormalization terms. The BCS equations are obtained by
the variation of Eq. 7.40 with respect with the occupation probabilities

26 upvy + Alvy —ui) =0, k> 0. (7.43)
The parameters u; and vy are given by the following relations
1 € — A
U’z - _[1 + i ]7
k 2 \/(Ek . )\)2 — A2
1 —A
i} = Sll-—— . (7.44)

Vi — A2 — A2
(7.45)
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and the gap parameter

(7.46)

7.4 Appendix D

The independent particle models (shell model and more elaborated methods like
Hartree-Fock or Hartree-Fock-Bogoliubov) can explain very adequately a series of
excited states in the nuclear spectrum by models like p-h and pp excitations but
their applicability fails to explain the high-energy 17 expiations like giant dipole
resonances. This excitations can be explained as a coherent participation of many
nucleons together. This excitations fulfill the following criteria.

e Their electromagnetic transition probabilities have a collective strength such
that they one or two orders of magnitude larger than the single particle tran-
sitions

e They show up in the entire spectra of the different nuclei over the whole
periodic table

7.4.1 The TDA formalism

The first approximation where one can build correlations in the excited states in
Tamm-Dancoff, the ground state remanding however unchanged. This complete
neglect of the residual interaction in the ground state certainly influence the results.
To remove this draw-back of TDA method one could think of retaining also the (2p-
2h) components. This is not practicable since the matrices will became prohibitory
large. Omne way out is the generalization of TDA which one takes instead of HF
ground state another ground state where certain correlations are considered. In the
shell model representation the ground state of the nuclei is given by:

0 >=Cf + Z iahai|HE > +1/4 3" C eal ala;a|HF > +.. (7.47)

ap,ay,
mnij

and the excited state is given by

v >=C§ + Z v a|HF > +1/4 3" Ch al alaia;|HF > +.. (7.48)

mnij
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In the shell model framework the coefficients C7;, C,. i are close to zero. Also as

long as there are no correlations in the ground state is sufficient for the excited state
to be reduced to

v >=> Clal a|HF > (7.49)
The starting point is s is a set of eigenvalues of a given hamiltonian H.
Hlv >=E,|v > (7.50)
It is possible to define operators Qf and @, in such a way that:
v >= QY and Q|0 >=0 (7.51)
From the Schrodinger equation we get the equation of motion:
[H.Q1)|0 >= (B, — Eo)Q},[0 > (7.52)
Multiplying from left and right with an arbitrary state of the form < 0|6Q one gets:
< 0[[6Q, [H, Q][0 >= (Enu — Eo) < 0][0Q, Q1,10 > (7.53)

In the TDA case one can define the collective ph-operator @), by the following
formula:

QL= Criahai (7.54)

mi
By this approximation one restricts to the space of 1p-1h excitation and the excita-
tion energy is given by:

3" < HF|[alay, [H,d}a,]||HF > cro=EPACy, (7.55)

nj

7.4.2 The RPA formalism

In the space of 2p-2h correlations, one can not only create a ph pair but also destroy
one. In this case the most straight forward generalization of the operator has the
following form:

Qh =Y Xxm™al a; — > Y™ala,, (7.56)

It is obvious in this case that apart of correlations on the level of excitations, the
ground state correlations are also taken into account, as they can be destroyed. But
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in this case the ground state is not the |HF > state anymore and this is a very
important point in this approximation. The ground state |RPA > is defined in
correlation with the RPA operator

Q,|RPA >=0 (7.57)

and it has a an explicit expression. The matrix elements X,,;, Y,,; are called forwards
and backwards amplitudes. The set of equations (7.55) gives:

< RPA|[a}a, [H,QI]]|RPA > = hQ, < |[alan, Q}]|RPA >
< RPA|[al a;,[H,QV]]|RPA > = hQ, < |[al a;, QT)|RPA > (7.58)
where RS2, is the excitation energy of the state | >. Unfortunately the expectation
values of fermi operators are not so easy to calculate as long as the RPA ground state
is not known. Therefore the main approximation in the RPA formalism consists in
assuming that the correlated ground state doesn’t differ so much from the HF ground
state (so called “quasi-boson approximation”).

< RPA|[a}apy, ala;]|RPA> = 6,0mm — 6mn < RPA|ajal|RPA >
—0;; < RPA|ala,,|RPA >
~< HF|[alay,, ala;]|HF >= §;;0,, (7.59)

It is obvious that in the relation (7.59) the ph creation and annihilation operators
obey the commutation relations for boson field operators. Equation (7.59), however,
violates the Pauli principle because the terms coming from the commutator are
neglected. This is another drawback of RPA equation. Within the quasi-boson
approximation, the amplitudes have a very direct meaning, their absolute squares
gives the probability of finding the states af ;|0 > and a}a,,|0 > in the excited state

m
|v >, that is the ph and hp matrix elements of the transition density.

Pl = <O0lalay|lv >~< HF|[dla,,, Q1||HF >= X"

mi

Pl = <O0|al a|lv >~< HF|[a! a;, Q1| HF >=Y", (7.60)

The matriceal form of the last equation is:

(fsi j*) <§f) = h{Y ((1) _01) (é) (7.61)

with (X)) = X2, and (Y"),,; = Y. and:

Ammj = < [a;ram[H, CLILCLJ'HHF >= (Em — 61)5mn52] + Emjin
Bminj = —< [agam[Ha a;ran“HF >= Unmpnij - (762)
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In the last representation the matrix A is Hermitian and the matrix B is symmet-
rical. Equation (7.61) together with (7.62) is called the RPA equation. For Y. =0
the results of TDA approximation are obtained. Concluding the backwards ampli-
tudes Y. = 0 are the measure of the correlations in the ground state. To solve the
RPA equation mean to get the energy of the excited states and, the RPA ampli-
tudes. Technically speaking this can be done either by diagonalizing the matrices
using a different numerical procedures (LU decomposition), for rather small basis
(Lanchotz formalism...) for larger basis but with a cut-off in excitation energies.
For larger bases (for example in deformed nuclei) the best solution is to treat the
residual interaction as a separable interaction (it works pretty good for quadrupole-
quadrupole interactions and for spin-isospin interaction as well) and to solve the
dispersion equation. As a conclusion, in general the main problem in RPA is the
quasibosonic-approximation which violates the Pauli principle and also the ground
state correlations which are pretty often overestimate. But the limits of applicability
can be fixed just numerically. It has been proved that it works for very collective
states, where basically each single particle component has a rather small probabil-
ity to be excited alone, the violation of the Pauli principle can be neglected and
the forwards amplitudes have the same order of magnitude.On the other hand, the
amplitudes Y, shall be small compared with X}, because they describe the ground
state correlations. If their values will be large the replacement of the RPA ground
state with the HF one is not justified.
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7.5 Appendix E

7.5.1

Pairing gaps and charge radii

Table 7.4: Pairing gaps for protons and neutrons A, A,, (MeV) and charge radii r.

(fm).
| Nucleus | A, | A, Jexpr.[205] | 7.Sk3 | r.SG2 [r.[113]]
BCa | 2.18]1.68 | 3.4736(8) 3.586 3.549 3.471
BT | 1.90 | 1.56 3.592 3.628 3.597 3.571
©Ge | 1.56 | 1.54 | 4.127(8) 4.130 4.083 4.057
©Se | 1.75 | 1.71 | 4.152(9) | 4.170-4.180 | 4.113-4.143 | 4.119
82Ge | 1.41 | 1.54 | 4.122(8) 4.204 4.159 4.131
8Kr | 1.72 | 1.64 | 4.1921(11) 4.196 4.196 4.173
%7Zr | 1.53 | 0.84 | 4.3508(12) | 4.433-4.443 | 4.342-4.389 | 4.376
%Mo | 1.53 | 1.03 | 4.377(10) | 4.448-4.457 | 4.369-4.388 | 4.381
10Mo | 1.60 | 1.36 | 4.447(10) 4.516 4.439-4.466 | 4.448
10Ru | 1.55 | 1.30 4.453 4.516 4.457 4.449
16Cd | 1.47 | 1.37 4.625 4.703-4.715 4.653 4.643
1168y | 1.77 | 1.20 4.625 4.709-4.753 4.702 4.609
128Te | 1.13 | 1.28 4.735 4.803-4.805 4.746 4.732
128Xe | 1.32 | 1.27 4.776 4.836-4.839 | 4.782-4.786 | 4.778
180Te | 1.06 | 1.18 4.742 4.812-4.816 4.750 4.739
B0Xe | 1.31 | 1.25 4.783 4.845-4.846 | 4.796-4.801 | 4.784
16Xe | 0.98 | 1.44 4.799 4.878 4.815 4.804
B6Ba | 1.27 | 1.03 4.833 4.902 4.847 4.837
ONd | 1.23 | 1.05 5.047 5.114 5.055 5.046
150Sm | 1.44 | 1.19 5.047 5.108 5.046 5.047
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7.5.2 Theoretical and experimental nuclear deformations

Table 7.5: Theoretical and experimental § values

Exp Theory
Nucl. | Ref.[147] | Ref[148] | (Sk3) | (SG2) | Ref.[113] | Ref.[126] |
BCa 0.000 0.101(17) -0.002 -0.001 0.000 0.000
BTi | +0.17(10) | 0.269(7) -0.002 -0.003 -0.009 0.000
Ge | +0.095(30) | 0.2623(39) 0.161 0.157 0.157 0.143
Se | +0.163(33) | 0.3090(37) | -0.181 [+0.157] | -0.191[+0.049] | -0.244 | -0.241
82Se | +0.104(32) | 0.1944(26) 0.126 0.150 0.133 0.154
82Kr 0.2022(45) 0.106 0.103 0.119 0.071
957 r 0.081(16) | 0.207 [-0.167] | 0.016 [+0.147] | 0.223 0.217
%Mo | +0.068(27) | 0.1720(16) | 0.147 [-0.164] | -0.006 [+0.119] | 0.167 0.080
100Mo | +0.139(30) | 0.2309(22) 0.236 0.167 [-0.191] 0.253 0.244
100Ru | 4+0.136(22) | 0.2172(22) 0.175 0.157 0.194 0.161
U6Cd | +0.113(11) | 0.1907(34) | 0.206 [-0.207] 0.209 -0.258 -0.241
1680 | +0.043(10) | 0.1118(16) | 0.264 [-0.134] | 0.251 [-0.034] 0.003 0.000
128Te | 40.011(10) | 0.1363(11) | -0.088 [+0.102] | 0.094 [-0.091] | -0.002 0.000
128Xe 0.1837(49) | 0.148 [-0.122] | 0.150 [-0.133] 0.160 0.143
B0Te | +0.035(23) | 0.1184(14) | -0.076 [+0.051] | -0.039 [+0.066] | 0.032 0.000
130Xe 0.169(6) | 0.108 [-0.098] | 0.161 [-0.132] 0.128 -0.113
136X e 0.086(19) 0.001 0.016 -0.001 0.000
13634 0.1242(8) 0.009 0.070 -0.002 0.000
1ONd | 4+0.367(86) | 0.2848(21) 0.266 0.271 0.221 0.243
1%0Sm | 40.230(30) | 0.1931(22) 0.207 0.203 0.176 0.206
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7.6 Appendix F

The single-particle states are calculated by solving the Schrodinger equation with
the deformed axially symmetric Woods-Saxon potential, which parameterization is
given in Ref. [186]. They are characterized by their energy e, parity m, and by the
projection €2, (7 = p,n) of the full angular momentum on the nuclear symmetry
axis. The notation |pp, > and |np, > is for protons and neutrons, respectively.
|7p, > represents proton (7 = p) or neutron (7 = n) state with quantum numbers
Q. and 7. p, is the sign of the angular momentum projection € (p, = +1). The
intrinsic states are twofold degenerate. The states with {2, and —(2, have the same
energy as consequence of the time reversal invariance. p, is taken to be positive for
states and negative for time reversal states.

7.6.1 The single-particle matrix elements of the 7" ox oper-
ator

In order to solve the Schrodinger equation the eigenfunctions of a deformed symmet-
ric harmonic oscillator are used as a basis for the diagonalization of the mean-field
Hamiltonian [41]. These states are completely determined by a principal set of quan-
tum numbers (N, n,, A, ), where N = n, +n,, n, = 2n, + |A| and Q = A + X.
n, — 1 and n, — 1 are number of nodes of the basis functions in the z-direction and
r-direction, respectively. A and ¥ are the projections of the orbital and spin angular
momentum on the symmetry axis z. The explicit form of single-particle harmonic
oscillator wave functions in cylindrical coordinates (r, z,¢) can be found, e.g., in
Ref. [133]. For a given shape of the nuclear surface, the shape of the deformed
harmonic oscillator is automatically chosen in a way suitable for obtaining good ac-
curacy with a smallest number of basis functions [41]. The deformation dependent
cutt-off is chosen in such way as to assure numerical stability of the results. In our
calculation we use 11 major shells.

In cylindrical coordinates the eigenfunctions of states and time-reversed states
in deformed Woods-Saxon potential are expressed as follows:

T = +1> = SN0 N7z A Q= A+ 172> +
Nn,

) o N A+ 1,0, = A, +1—1/25]  (7.63)
and

|7~—p‘r =+1> = |TpT =-1>= Z[bS\—fi_TBZQJN; Ny —Ar, Q= —A; — 1/2 > =

Nn
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) o N A — 1,0, = —A, —1+1/2>]  (7.64)

with A > 0. ~ indicates time reversal states.
The single-particle matrix elements of the 770 operator are given by

< ppplT oK =0l > = 5ﬂpﬂnpp];[anZQpr\229n bgVanprann] (7.65)
< ppp|Ttok—silnp. > = —V20q Qn+1NZ: bg\?rzzﬂp Svrzzgn for pp=pn=+1,

= +V200,0,11 szg\?n)ﬂpbg\ﬁaﬂn for pp=pn=-1,

= _\/5591,%59 :Z bg\JfrrzzQpr\jferan for pp=+1, p, £7:66)

Nn

< ppplTioR=1lnpn > = V20,0, 1NZanZQP Sho. for py=pa=+1

= Vi S W, Jor ==

= \/5(5%7;(59 1 i:anz anan for p,=+1, p, = (7167)

Nn;

The overlap of the proton and neutron single particle states of the initial (A, Z)
and final (A, Z + 2) nuclei are calculated by assuming that the corresponding sets
of basis wave functions do not differ significantly each from other. Then

+ + - -
<Py |Dipp > = dq, W, Z[bngzﬂp ; bgvn)zgpi - berzzQp ; bngzﬂpi]:
Nn,
< NpPny|Nipn, > = 6anﬂni Z[bﬁizgnfbﬁizgn bg;rzznnfbgv_gzﬂni]- (7.68)
Nny

The index i (f) denotes that proton and neutron single particle states are defined
with respect to the initial (final) nucleus.

7.6.2 Analytical expression for the overlap factor

As a consequence of considered many-body approximations the two sets of inter-
mediate nuclear states generated from the initial and final ground states are not
identical within the QRPA theory. Thus it is necessary to introduce the overlap
factor of these states, which can be expressed with the help of intrinsic phonon
operators as follows:

< U(K),mg|1(K),m; >=< rpas| Q%" QW' |rpa; > . (7.69)

Here, the index i (f) indicates that the excited states of the nucleus are defined with
respect to the initial (final) nuclear ground state |rpa; > (|rpay >).



CHAPTER 7. APPENDIX 131

In order to evaluate < 1(K),mg|1(K), m; > the phonon creation operator Q!
is expressed in terms of creation and anninhilation phonon operators associated with
the final nucleus.

W= (i QR+ b, Q). (7.70)

mg

The coefficients of expansion ., and by, will be determined below. By inserting
Eq. (7.70) into Eq. (7.69) one gets

< WK),mg|L(K),m; > = Y [< rpag Q% Qi Irpa; > apm,

m'y

+ < Tpaf|QTIr(lf QTIQTpaZ > bmim’f}

Qmsm! ¢ < BCSHBCSZ > . (771)

Q

Here, the overlap matrix element between the final ground state is neglected and
also the two-phonon state generated from the initial nucleus, which is considered
to be small and should be not related with the studied quantity. In addition, the
overlap of initial and final RPA ground state is approximated with the BCS ones.
Thus the overlap factor of the intermediate nuclear states generated from the initial
and final ground states is proportional to the overlap of initial and final BCS vacua.
The next step is the calculation of a,,, s and by, s coefficients. The quasi-
particle creation and anninhilation operators (a®f, a®) [(a(Pt,a))] of the initial
[final] nucleus are connected with the particle creation and annihilation operators
(Dt @) [(cDF )] by the BCS transformation. In addition there is a unitary
transformation between particle operators associated with initial and final nuclei

A = 3 <rplrpn > )
T/

&)= 3 <o > ) (7.72)
T/ pt

The overlap factors of the single particle wave functions of the initial and final
nuclei < 7p,|7'p’, > is given explicitely in the Appendix A. The above mentioned
transformations allow us, by using the quasiboson approximation, to rewrite the
boson operators of the initial nucleus with the help of the boson operators of the
final nucleus:

ANLEK) = S RwAY( K) + Sp AV, K)),
l/
AVLE) = Y[RuAD( K) = Sy AV K)). (7.73)

l/
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Assuming the definition of the quasiparticle pairs operator in Eq. (3.44) the factors
Ry and Sy can be expressed as

R = <pplp'py > (uz(f)ul(f) + vf,%;,)) < npa|n p > (WU 4 oDy,
Sw = <polr'oy > (W) —uPoi) < npa|n’pw > (vaf) v 7.74)

It is worthwhile to notice that in the limit initial and final states are indentical
Rll’ =1 and 8”/ = 0.

By inserting Eq. (7.73) into the expression for the phonon operator of the initial
nucleus [see Eq. (3.46)] and by exploiting the relations

ANMLK) = SIXTHQE + YikQRl.

mg

ADILK) = SIXMGY + v Q). (7.75)

mg
we find [170]

Umgm; = STIXVIRn X = Y RnY
124

By neglecting the terms proportional to Sy due to their smallness we end up with
the overlap factor of the intermediate nuclear states given in Eq. (3.62).

The overlap factor of the initial and final BCS vacua can be written as product
of proton and neutron BCS overlap factors for a given anular momentum projection
quantum number §2:

< BCS§|BCS; > = < BCS{(p)|BCS;(p) >< BCSf(n)|BCS;(n) >
=[] < BCS;(%,)|BCS;(Q,) > [[ < BCS;(£,)|BCS;(247.%7)

Q Qn

where

Nq
< BCS4(Q)|BCS;(Q) > <| H( D oDl ) H(u + oDt (Z)T)|>

(7.78)
Nqg is the number of single particle states with the same value of quantum number 2.
The same model space for protons and neutrons is assumed. By a direct calculation
of the above matrix element one finds

< BCS§(Q)|BCS;(Q2) >= Hu Hu
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Ng ) 5 Na(mi) Na(ni)
+ > o) ol (D(l)(ml;nl)) 11 ul(cf) 11 “z(z)
mi,n1=1 k=1 =1
Na o o Na(mima) No(nimnz)
D S LR TN CCIET ) iy | Y i |
m1,ma,ny,nz=1 k=1 =1
, No Ng
+ o 4 (DY(1,2,, Noi 1,2, No)) T T o TTut (7.79)
k=1 =1

Here, H,Cle(ml’mQ) means that index & runs the values from 1 to Ng except the values

k=myandk =my (1 <my < Ngand1 < my < Ng). D"(my, mg, ..., my; Ny, Mg, ..oy Ny

denotes the determinant of matrix of rank r constructed of elements of the unitary
matrix of the transformation between the initial and final single particle states with
row indices mq,mo, ..., m, and column indices nq,no,...,n,. It is worthwhile to no-
tice that by replacing all determinants in Eq. (7.79) with unity, i.e. the matrix of
the transformation between the single particles associated with both nuclei is just
unity matrix, we obtain a compact expression [90]

< BCSH()|BCS;(Q) >= [ (uuf? + vV v). (7.80)
k=1

However, this approximation is not justified and can lead to a significant inaccuracy
in the calculation of MZ,. especially if there is a strong difference in deformations of
the intial and final nuclei.

7.6.3 The BCS and RPA overlap factors

Table 7.6: Three sets of nuclear structure input parameters (A, B, and C) for which
the calculated nuclear matrix elements M2 reproduces the experimental 2v33-
decay half-life of ®Ge. v.o.f. denotes overlap factor of the initial and final BCS
vacua.

mean field of Ge mean field of ®Se
Def. Pairing Def. Pairing H;,;
par. [ A, A, B2 A, A, vt X K ga MZ;,
set MeV MeV MeV MeV MeV MeV MeV—!
A 0.0 1.561 1.535 0.0 1.751 1.710 0.842 0.25 0.060 1.25 0.138
B 0.10 1.561 1.535 0.266 1.751 1.710 0.403 0.25 0.028 1.25 0.138
C 0.10 1.561 1.535 0.216 1.751 1.710 0.587 0.25 0.028 1.00 0.216
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