
 

Multianalyte Quantifications by Means of 
Integration of Artificial Neural Networks, 
Genetic Algorithms and Chemometrics for 

Time-Resolved Analytical Data 
 
 

Multi-Analyt Quantifizierungen mit Hilfe der 
Integration von künstlichen neuronalen Netzen, 
genetischen Algorithmen und der Chemometrie 

für zeitaufgelöste analytische Daten  
 

 
 
 

DISSERTATION 
 
 
 

der Fakultät für Chemie und Pharmazie 
der Eberhard-Karls-Universität Tübingen 

 
zur Erlangung des Grades eines Doktors 

der Naturwissenschaften 
 
 
 

2003 
 
 
 

vorgelegt von 
 

Frank Jochen Dieterle 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tag der mündlichen Prüfung: 25. Juli 2003 
 
Dekan: Prof. Dr. H. Probst 
 
1. Berichterstatter:  Prof. Dr. G. Gauglitz 
 
2. Berichterstatter:  PD Dr. U. Weimar 
 
3. Berichterstatter:  Prof. Dr. J. Gasteiger



Table of Contents 3  

Table of Contents 
 

1. INTRODUCTION_______________________________________________ 6 

2. THEORY – FUNDAMENTALS OF THE MULTIVARIATE DATA ANALYSIS10 

2.1. Overview of the Multivariate Quantitative Data Analysis_________________________ 10 

2.2. Experimental Design ______________________________________________________ 11 

2.3. Data Preprocessing _______________________________________________________ 12 

2.4. Data Splitting and Validation _______________________________________________ 13 

2.5. Calibration of Linear Relationships __________________________________________ 16 

2.6. Calibration of Nonlinear Relationships _______________________________________ 19 

2.7. Neural Networks – Universal Calibration Tools ________________________________ 20 

2.8. Too Much Information Deteriorates Calibration ________________________________ 24 

2.9. Measures of Error and Validation ___________________________________________ 38 

3. THEORY – QUANTIFICATION OF THE REFRIGERANTS R22 AND 
R134A: PART I_______________________________________________ 39 

3.1. Experimental ____________________________________________________________ 39 

3.2. Single Analytes __________________________________________________________ 40 

3.3. Sensitivities _____________________________________________________________ 44 

3.4. Calibrations of the Mixtures ________________________________________________ 45 

3.5. Variable Selection by Brute Force ___________________________________________ 48 

3.6. Conclusions _____________________________________________________________ 48 

4. EXPERIMENTS, SETUPS AND DATA SETS _______________________ 50 

4.1. The Sensor Principle ______________________________________________________ 50 

4.2. SPR Setup ______________________________________________________________ 51 

4.3. RIfS Sensor Array ________________________________________________________ 52 

4.4. 4λ Miniaturized RIfS Sensor ________________________________________________ 53 

4.5. Data Sets _______________________________________________________________ 54 

5. RESULTS – KINETIC MEASUREMENTS __________________________ 60 

5.1. Static Sensor Measurements _______________________________________________ 60 

5.2. Time-resolved Sensor Measurements ________________________________________ 61 



4 Table of Contents 
 
5.3. Makrolon – A Polymer for Time-resolved Measurements ________________________ 63 

5.4. Conclusions _____________________________________________________________ 73 

6. RESULTS – MULTIVARIATE CALIBRATIONS______________________ 74 

6.1. PLS Calibration __________________________________________________________ 74 

6.2. Box-Cox Transformation + PLS _____________________________________________ 80 

6.3. INLR____________________________________________________________________ 82 

6.4. QPLS ___________________________________________________________________ 83 

6.5. CART ___________________________________________________________________ 84 

6.6. Model Trees _____________________________________________________________ 86 

6.7. MARS___________________________________________________________________ 88 

6.8. Neural Networks__________________________________________________________ 90 

6.9. PCA-NN _________________________________________________________________ 91 

6.10. Neural Networks and Pruning_______________________________________________ 92 

6.11. Conclusions _____________________________________________________________ 94 

7. RESULTS – GENETIC ALGORITHM FRAMEWORK _________________ 96 

7.1. Single Run Genetic Algorithm ______________________________________________ 96 

7.2. Genetic Algorithm Framework - Theory ______________________________________ 98 

7.3. Genetic Algorithm Framework - Results _____________________________________ 102 

7.4. Genetic Algorithm Framework – Conclusions ________________________________ 106 

8. RESULTS – GROWING NEURAL NETWORK FRAMEWORK_________ 107 

8.1. Modifications of the Growing Neural Network Algorithm _______________________ 108 

8.2. Application of the Growing Neural Networks _________________________________ 109 

8.3. Growing Neural Network Algorithm Frameworks______________________________ 112 

8.4. Applications of the Growing Neural Network Frameworks ______________________ 115 

8.5. Conclusions and Comparison of the Different Methods ________________________ 121 

9. RESULTS – ALL DATA SETS __________________________________ 123 

9.1. Methanol and Ethanol by SPR _____________________________________________ 123 

9.2. Methanol, Ethanol and 1-Propanol by SPR ___________________________________ 129 

9.3. Methanol, Ethanol and 1-Propanol by the RIfS Array and the 4λ Setup____________ 137 



Table of Contents 5  

9.4. Quaternary Mixtures by the SPR Setup and the RIfS Array _____________________ 144 

9.5. Quantification of the Refrigerants R22 and R134a in Mixtures: Part II_____________ 148 

10. RESULTS – VARIOUS ASPECTS OF THE FRAMEWORKS AND 
MEASUREMENTS ___________________________________________ 149 

10.1. Single or Multiple Analyte Rankings ________________________________________ 149 

10.2. Stopping Criteria for the Parallel Frameworks ________________________________ 150 

10.3. Optimization of the Measurements _________________________________________ 152 

10.4. Robustness and Comparison with Martens' Uncertainty Test ___________________ 155 

11. SUMMARY AND OUTLOOK ___________________________________ 156 

12. REFERENCES ______________________________________________ 161 

13. PUBLICATIONS _____________________________________________ 179 

14. ACKNOWLEDGEMENTS______________________________________ 181 

15. APPENDIX _________________________________________________ 183 



6  1. Introduction  
 

1. Introduction 

During the last century, the instrumentation of analytical chemistry has dramatically changed. 

Advances in classical analytical setups, developments of new devices and applications of new 

measurement principles allow the acquisition of more information about an analytical 

problem in a shorter time. Faster working equipments and the parallelizing of devices enable 

measurements of more samples making in depth examinations of complex systems possible. 

State of the art devices allow the acquisition of more detailed information about samples by 

utilizing more wavelengths or additional sensors. Finally yet importantly, new measurement 

principles such as time-resolved measurements render the access to new sources of 

information possible. 

This constantly increasing flood of information puts a new challenge to the field of data 

analysis, which can be considered as the link between the raw information provided by the 

instrumentation and the questions to be answered for the analyst. Being so universal the data 

analysis has many facets in the different areas of analytical chemistry such as qualitative 

analysis, quantitative analysis, optimization problems, identification of significant factors and 

many more. The diversity of data analysis for analytically relevant questions is also reflected 

in a number of different names for the same discipline like chemometrics, chem(o)-

informatics, bioinformatics, biometrics, environmetrics, and data mining. 

This work covers a wide variety of aspects of data analysis for chemical sensor systems 

ranging from the introduction and optimization of new measurement procedures to the 

preprocessing of the raw sensor signals and from the calibration of the sensors to the 

identification of important factors. Being interconnected and thus influencing each other, all 

these aspects have to be considered when setting up a sensor system for a certain analytical 

task. However, the main objectives of this work can be subsumed into two focuses.  

The first focus is the introduction and optimization of kinetic measurements in chemical 

sensing. Thereby the effect is exploited that different analytes show different kinetics of 

sorption into the sensor coatings. This allows access to a completely new domain of 

information compared with commonly used measurement procedures of chemical sensing. 

The new approach of time-resolved measurements uses the kinetic information of the sensor 

responses not for the investigation of the interaction kinetics of the analytes with the sensor 

coatings but for the quantitative determination of several analytes in mixtures. In contrast to 
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some rare reports found in literature, which use the kinetic information as a given 

phenomenological effect to improve the multi-analyte quantification, a systematic investi-

gation of the principles of time-resolved measurements is performed in this work. Thereby 

different aspects are investigated such as the interaction principles, the optimization of the 

measurement parameters, the relationships between the time-resolved sensor responses and 

the analytes, the transfer of the measurement principles to different setups and to different 

analytes and many more. This systematic investigation demonstrates that the principle of 

time-resolved measurements forms the basis for a simultaneous quantification of several 

analytes by single sensor systems. It is furthermore shown that sensor arrays also profit from 

this approach by the possibility of identifying and quantifying more analytes than before for a 

given sensor array setup. Consequently, this approach generally allows the reduction of the 

number of sensors resulting in smaller devices and less costs for the hardware. The systematic 

investigation also demonstrates that the principle is a very powerful and generic approach not 

limited to the setups, analytes, and interaction principles used in this study. 

The large amount and the complexity of the data generated by time-resolved measurements 

necessitate the second focus of this work, which is the application and optimization of natural 

computing methods for the data analysis of sensors. The expression "natural computing" 

primarily refers to two concepts of computing copied from nature. The concept of neural 

networks has been inspired by the highly interconnected neural structures in the brain and the 

nervous system of mammals, whereas the concept of genetic algorithms has been inspired by 

the evolution in biology. For the data analysis in this study, the neural networks are used for 

the calibration of the data.  It is demonstrated in this work that only the neural networks out of 

many multivariate calibration methods are capable of calibrating the nonlinear relationship 

between the sensor responses and the concentrations of the different analytes. Genetic 

algorithms are applied for the identification and selection of significant factors respectively 

variables and thus for the optimization of the calibration. Yet, it is shown that an often-

reported combination of both concepts is faced with several problems with respect to the 

limited number of measurements. Thus, several frameworks are developed, implemented and 

optimized in this work, which use data sets limited in size in a very efficient way. These 

frameworks contain neural networks for the calibration, genetic algorithms respectively 

growing neural networks for the selection of significant variables and additional procedures 

and approaches from statistics and chemometrics for significance test. These new frameworks 

are designed to fulfill the needs of analytical chemistry such as a high performance of data 

analysis, an easy application of the algorithms, a portability to a wide range of data sets and 
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devices, an insight into the models built, an identification of important factors, a high 

robustness to noise in the data and the ability to cope with data sets limited in size. The 

frameworks are applied to several data sets, which were recorded by different devices in our 

laboratory. Two data sets have an environmental background based on the recycling of old 

refrigerants of air-conditioners and refrigerators. Additionally, the homologous series of the 

lower alcohols was measured several times allowing a systematic investigation of the time-

resolved measurements. For all data sets under investigation, the frameworks show excellent 

results for calibration and variable selection. The frameworks also demonstrate that there are 

several possibilities to tweak the time-resolved measurements with respect to measurement 

time, properties of the sensitive layers, carrier gas and much more. The frameworks 

developed in this work are not limited to the calibration and optimization of sensor data, but 

can be used for virtually any multivariate calibration. 

The outline of this study can be described as follows. The work starts with an overview of the 

multivariate data analysis. Several up-to-date concepts, methods and algorithms are presented 

and the advantages and problems are discussed. Thereby the focus is on two concepts, 

multivariate calibration and selection of variables. In the next chapter, a multivariate data 

analysis is performed using a data set recorded in our lab as an example for a data analysis, 

which is accepted as the current state of research in literature. Starting with this state of 

research, the studies and innovations of this work enhance several concepts presented in this 

and the previous chapter. Additionally, the different concepts of sorption of analytes into 

sensitive layers are presented and discussed in this chapter. The next chapter briefly presents 

the different sensor setups used for recording several data sets, which are presented 

afterwards. 

In the following chapter, the principle of time-resolved measurements is introduced and 

explained. A systematic investigation of the time-resolved measurements is performed with 

respect to the theoretical background of this principle and with respect to the interaction 

principle between the sensitive layers and analytes used in this study. Thereby different 

properties of the sensitive layers, which are the basis for the time-resolved measurements, are 

investigated and modified allowing the optimization of the measurements.  

Starting with chapter 6, all methods and concepts, which are developed, are demonstrated 

using one single data set. This allows an easy comparison of the methods. Thus, the improve-

ments by the continually developed concepts can be monitored easily. First, common methods 

of multivariate calibration are applied resulting in rather poor calibrations. In the next chapter, 
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neural networks as the most promising method are further developed by the implementation 

of genetic algorithms, neural networks and statistical procedures into a framework, which is 

introduced in this work for the first time. The framework shows a superior calibration 

compared to the widespread methods for the multivariate calibration applied to the data in the 

previous chapter. 

After that, two similar frameworks are introduced for the implementation of a new type of 

neural networks, which are called growing neural networks, resulting in the best calibration of 

the data set. These frameworks are unique with respect to finding automatically optimal 

neural network topologies with practically no input needed by the analyst. In chapter 9, an 

overview of the results is given for all data sets using commonly applied multivariate data 

analysis methods and the superior new frameworks for data analysis introduced in this work. 

Miscellaneous minor issues of the frameworks are discussed afterwards. The work ends with 

a summary of the results and some suggestions for further research. 
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2. Theory – Fundamentals of the Multivariate Data 
Analysis 

2.1. Overview of the Multivariate Quantitative Data Analysis 
 

Multivariate quantitative data analysis is part of the scientific field of chemometrics. In a 

recent review [1] chemometrics was defined as a process, in which measurements are made, 

data are collected and information is obtained. The multivariate quantitative data analysis, 

which tries to describe relationships between two groups of variables, also is subject to this 

process. A practical implementation of the process could look like this: 

1. First, different factors like the analytes of interest and interfering substances have to 

be identified, which might influence the measurements.  

2. Then, an experimental design has to be setup, which defines how many samples have 

to be measured and how to vary the different analyte concentrations and other factors 

for theses samples.  

3. Afterwards, these samples are measured, the responses of the device are recorded, and 

the raw data are optionally preprocessed.  

4. After that, a calibration is performed, which tries to model a relationship between the 

factors such as the concentrations of the analytes, which are generally called 

independent variables, input variables or simply x-variables, and the responses of the 

device, which are called dependent variables, response variables or simply y-variables, 

ending up in a model. Usually, the quality of the calibration is judged by the prediction 

of additional validation data. Thereby the model does not know the true concentrations 

of the analytes but predicts these concentrations based on the input variables (device 

responses). These predictions are compared with the true concentrations in a 

mathematical manner by using a measure of error or in a graphical manner by using 

true-predicted plots.  

5. Often, an optimization of the calibration or an interpretation of the established model 

follows. Finally, the model can be applied to new measurements in routine analysis 

(but has to be validated and updated from time to time). 

In the next sections, several fundamental approaches and steps in multivariate calibration and 

their implementations in this work are explained in more detail. 
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2.2. Experimental Design 
Having defined the type and concentration range of the analytes of interest and of the 

additional factors like temperature or humidity (or generally the independent variables), a plan 

has to be setup, which determines the number and compositions of the samples to be 

measured. This plan is known as experimental design in chemometrics. The experimental 

design tries to cover optimally the space spanned by the independent variables with as few 

samples as possible to understand the effects of these variables and to model the relationships 

between the dependent and independent variables. Among the many existing types of 

experimental designs, several designs are specialized for optimization strategies like the 

Central Composite Designs, Doehlert Design or Box-Behnken Design [2,3], several designs 

are mixture designs when all components add up to 100% and several designs such as the D-

optimal designs [4-6] are specialized for a constrained variable space. In this study, the 

concentrations of the different analytes should be independently varied and the number of 

concentration levels and thus the number of samples should not be constrained rendering most 

of these designs useless. Thus, full factorial designs are used, which combine all levels of all 

independent variables (all defined concentration levels of all analytes). This results in a 

rapidly increasing number n of samples for an increasing number x of analytes and for an 

increasing number l of concentration levels per analyte:  

 xn l=  (1) 

In this work, full factorial designs with and without equidistant levels are used for the 

calibration data sets. For most validation data sets, also full factorial designs are used. 

Thereby, the meshes of the two designs are interleaved with a maximum distance of the 

meshes allowing the validation data to give a realistic estimation of the network performance 

in a real-world situation [7]. 
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2.3. Data Preprocessing 
Data preprocessing can be used for systematically modifying the raw signals of the device 

with the hope that the altered signals provide more useful input to the calibration method. 

Unfortunately, no general guidelines exist to determine the appropriate data preprocessing 

technique and thus the different preprocessing techniques are controversially discussed in 

literature [7,8].  

In this work, the input variables are preprocessed by autoscaling according to:  

 '
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With ijx  as response of the ith sample at the jth variable, jx as the mean of the jth variable and 

jxσ  as the standard deviation of the jth variable. Autoscaling involves a mean-centering of the 

data and a division by the standard deviation of all responses of a particular input variable 

resulting in a mean of zero and a unit standard deviation of each variable. For some 

calibration methods autoscaling can improve the calibration as autoscaling allows all variables 

to influence equally the calibration especially if different variables show different magnitudes 

of variation. 

The dependent variables were range-scaled between -0.9 to 0.9, which is essential for 

calibration by neural networks with hyperbolic tangent activation functions, according to: 
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For the calculation of the prediction errors and the true-predicted plots, the range-scaling was 

reversed. 
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2.4. Data Splitting and Validation 
A typical multivariate calibration procedure needs several separate data sets. The calibration 

or training data set is needed for setting up the model by estimating the parameters of an 

equation or for training a neural network. Often a second data set is needed to determine when 

to stop the training or to determine how many and which model components and variables to 

include. This second data set is usually called monitor data set. If several models are 

developed, a third data set called test set is required to select the most appropriate model. 

Finally, a validation data set is essential to estimate the quality of the final model. It has been 

shown that different data are needed for all these data sets, as otherwise the models and 

estimations are biased [9-12]. For example, if the same data set is used for the calibration and 

validation, the estimation of the prediction ability is overly optimistic. Additionally, each data 

set should be as large as possible. The larger the calibration data set the better the model and 

the larger the validation data set the better the estimation of the predictivity. If many data are 

available, representative large independent samples can be used for training, monitoring, 

testing and validating by simply partitioning the large pool of all samples. Typically in 

analytical chemistry, only data sets limited in size are available as measurements are 

expensive and work intensive. To solve the dilemma of partitioning a small pool of data into 

independent data subsets, which should be as large and as representative as possible, 

subsampling procedures, which are also known as resampling procedures, have become the 

quasi standard in chemometrics. There are many subsampling techniques, whereby the most 

important ones are described below. 

Crossvalidation 
The most popular subsampling technique is crossvalidation. For an n-fold crossvalidation, the 

data are partitioned into n equal parts. The first part is used as test data set; the rest is used as 

calibration data set. Then, the second part is used for the test data and the rest is used for a 

new calibration. This procedure is repeated n times and the predictions of the n test data are 

averaged. It is essential that no knowledge of the models is transferred from fold to fold. 

There exist no clear rules how many folds to use for the crossvalidation, whereby the simplest 

and clearest way of performing crossvalidation is to leave one sample out at a time. This 

special variant of crossvalidation is also called full crossvalidation, leave-one-out or 

jackknifing and gives a unique and therefore reproducible result. Yet, it has been shown that 

increasing the number of crossvalidation groups results in lower root mean square errors of 
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predictions giving overly optimistic estimations of predictivity [13-16]. This deficiency is 

known as asymptotically inconsistency in literature [17]. 

Bootstrapping 
Bootstrap resampling was originally developed to help analysts determine how much their 

results might have changed if another random sample had been used instead and how different 

the results might be when a model is applied to new data. Bootstrapping has also gained an 

increasing popularity in the field of resampling small data sets [18]. Bootstrapping is based on 

sampling with replacement to form a calibration set. For the most popular variant, the 0.632 

bootstrap, n times a sample is selected from n samples for the calibration set whereby the 

same sample can be selected several times. Then, the samples, which were not picked, are 

used for the test set. The chance that a particular sample is not picked for the calibration set is: 

 111 0.368
n

e
n

− − ≈ ≈ 
 

 (4) 

Consequently, the test set contains about 36.8% of the samples and the calibration set about 

63.2% with some samples replicated in the calibration set. Bootstrapping is not affected by 

asymptotic inconsistency and might be the best way of estimating the error for very small data 

sets whereby the complete procedure can be repeated arbitrarily often [9]. 

Random Subsampling 
Random subsampling, which is also known as Monte Carlo crossvalidation [19], as multiple 

holdout or as repeated evaluation set [20], is based on randomly splitting the data into subsets, 

whereby the size of the subsets is defined by the user [21]. The random partitioning of the 

data can be repeated arbitrarily often. In contrast to a full crossvalidation procedure, random 

subsampling has been shown to be asymptotically consistent [17] resulting in more 

pessimistic predictions of the test data compared with crossvalidation. The predictions of the 

test data give a realistic estimation of the predictions of external validation data [22].  

Kennard Stones 
The Kennard Stones algorithm [23-25] has gained an increasing popularity for splitting data 

sets into two subsets. The algorithm starts by finding 2 samples that are the farthest apart from 

each other on the basis of the input variables. These 2 samples are removed from the original 

data set and put into the calibration data set. This procedure is repeated until the desired 

number of samples has been reached in the calibration set. The advantages of this algorithm 
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are that the calibration samples map the measured region of the variable space completely and 

that the test samples all fall inside the measured region. Yet, this algorithm is only usable for 

a single subsampling run, as the partitioning of the data is unique rendering the algorithm for 

a resampling procedure unusable.  

Kohonen Neural Networks 
An interesting approach for splitting a data set into two subsets is the application of Kohonen 

neural networks [26,27,50]. These networks with two layers are unsupervised networks, 

which can be used as 2-dimensional mapping method. For the repartitioning, a Kohonen 

network is trained using the complete data set. Then, for each neuron a specific number of 

samples which excited this neuron during training, are selected for the first data set. The other 

samples are used for the second data set. This approach allows a very efficient distribution of 

the samples into subsets that cover the complete variable space. 

Yet, using Kohonen networks for several subsampling runs is difficult, as the creation of 

different selection rules for samples exciting a neuron is rather subjective for an arbitrary 

number of runs and needs user input from data set to data set. 

Conclusions 
When comparing the advantages and disadvantages of the different subsampling algorithms 

bootstrapping and random subsampling are most suited for splitting the data into calibration, 

test and validation subsets. As the user definable ratio between the sizes of the different subset 

allows a high flexibility, the random subsampling procedure was used to split the data into 

calibration, test and monitor data sets in this work, whereas for most data sets a static external 

validation set was recorded and used. The monitor set for the early-stopping procedure of the 

neural networks (see section 2.7.3) was generated by a modified full crossvalidation 

procedure, which speeds up learning and which is described in detail in [28].  

Besides of the averaging effect of the subsampling procedure, the comparison of the standard 

deviations between the predictions of the test data of the different subsets additionally allows 

an estimation of the robustness of the calibration method. A high standard deviation is an 

indication of the calibration being subject to the random partitioning of the data. If the quality 

of the calibration and prediction significantly depends on the perturbation of the data sub sets, 

the calibration method is not very robust. 
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2.5. Calibration of Linear Relationships 
For multivariate calibration of the concentrations of one or more analytes (variables y) and the 

device responses (independent variables x) the simplest and the most common approach is the 

assumption of a linear relationship. A model for this linear relationship can be setup by a 

multiple linear regression (MLR), which is also known as inverse least-squares regression 

(ILS). This calibration can be seen as an extension of the univariate linear regression. For 

each response variable, a linear equation is formulated: 

 

1 11 1 12 2 13 3 1 1

2 21 1 22 2 23 3 2 2

1 1 2 2 3 3

...
...

...

w w

w w

c c c c cw w c

y b x b x b x b x e
y b x b x b x b x e

y b x b x b x b x e

= + + + + +
= + + + + +

= + + + + +
#

 (5) 

with bij as regression coefficients and ej as residuals. Using matrix notation equation (5) can 

be expressed as: 

 Y BX E= +  (6) 

 The regression coefficients can be estimated by 

 ( ) 1T TB̂ X X X Y
−

=  (7) 

For the inversion of the variance-covariance matrix (7) at least as many samples as device 

responses have to be measured. This inversion (7) of the variance-covariance matrix of the 

independent variables, which is needed not only by MLR but also by most linear regression 

techniques to identify the model parameters, causes several problems. If the variables show a 

collinear behavior or if the variables are highly correlated, the resulting variance-covariance 

matrix will be ill-conditioned leading to unreliable model parameters und thus producing 

unstable calibration models.  

Several methods have been developed to overcome these problems like principal component 

regression (PCR), partial least squares regression (PLS or PLSR), ridge regression (RR) and 

many more. Among these methods, "PLSR is the de facto standard for constructing a 

multivariate model" [29]. 
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2.5.1. PLS 

PLS, which was originally developed for IR- and UV-spectroscopy owes its wide application 

to its speed, robustness and user-friendliness. PLS performs a linear regression in a new 

coordinate system with a lower dimensionality than the original space of the independent 

variables. The new coordinates are called PLS factors or principal components (the latter is 

less correct but widely used analogous to the principal components for the PCA). The 

principal components are determined by the maximum variance of the independent variables 

and by a maximum correlation with the dependent variable(s). There are as many principal 

components as variables to predict, but for the actual model only the primary, most important 

principal components are used. This makes PLS robust to noise, as in theory the noise should 

be encapsulated in the less important principal components and the information of interest 

should be represented by the primary principal components. The actual regression is 

performed in the space spanned by the new reduced coordinate system of the orthogonal 

principal components. Different criteria exist for the number of principal components to be 

used: One of the easiest methods compares the corresponding eigenvalue of the principal 

component with the eigenvalues of the higher components using an F-test [30,107]. Eastman 

et al. [31] used a crossvalidation method for the determination of the optimal number of 

principal components, which corresponds to the minimal predicted residual sum of squares. 

This criterion is more conservative in terms of the number of principal components and is 

widespread in literature. Recently, Martens et al. introduced the Martens' Uncertainty Test 

[32,33], which uses a jackknifing procedure with many sub-models to determine the 

significant variables and the optimal number of principal components, which are found in an 

iterative procedure with an elimination of instable variables. Compared with the 

crossvalidation criterion, the number of principal components is biased towards a lower 

number rendering this criterion very conservative for the selection of the principal 

components (see also section 6.1). Other methods use knowledge of the size of the 

measurement error for the estimation of the optimal number of principal components [34] or 

add artificial noise to the data and determine the optimal number of components by 

comparing with the original data in a bootstrapping procedure [35]. In this study, the Martens' 

Uncertainty Test and the minimum crossvalidation error criterion are used. 

In mathematical terms, PLS can be described as follows: The matrixes X and Y of the 

independent and dependent variables are decomposed according to 

 TX TP E= +  (8) 
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 TY UQ F= +  (9) 

with E and F as residual matrices, T and U as score matrixes and TP  and TQ  as loading 

matrixes. For the decomposition, either a singular value decomposition (SVD) or the non-

linear iterative partial least squares (NIPALS) algorithm can be used [36-41]. A linear model 

is assumed to relate the score matrixes T and U (with H as residual matrix and B as diagonal 

matrix):  

 U TB H= +  (10) 

The PLS1 algorithm models one variable y at a time, whereas the PLS2 algorithm can model 

several variables in one run. In this study, the PLS1 algorithm is used, as multiple PLS1 

models often perform better than a single PLS2 model [41,42]. Further details of the 

algorithms can be found in [39,41,43-45]. 
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2.6. Calibration of Nonlinear Relationships 
Linear modeling of relationships, which is the basis for the most common methods in 

chemometrics, is based on many laws of physics showing linear relationships in a first 

approach. For example, in the field of analytical chemistry, the relationship between the 

concentration of an analyte and the absorption of radiation by this analyte is linear if certain 

conditions are fulfilled, known as Beer's Law. In the same way, the relationship between the 

concentration of an analyte in the gaseous phase and the amount of analyte sorbed into an 

amorphous polymer can be linear, known as Henry's Law. Yet, both laws of physics are 

borderline cases and hardly fulfilled in many real world applications. For example, Beer's 

Law is not valid for high concentrations of analytes, interfering analytes and turbid solutions 

ending up in a nonlinear relationship. Similarly, Henry's Law is the borderline case for small 

concentrations of analyte in the gaseous phase in contrast to the nonlinear Langmuir sorption 

for a higher range of the concentration of analyte. If the relationships between the input 

variables and the response variables are nonlinear, widely used linear calibration methods 

show a systematical bias. Although it was shown in [39] that under certain circumstances a 

linear PLS model can be successfully used if some variables show a nonlinear relationship, 

linear models fail in most nonlinear real world applications. Especially if all independent vari-

ables show similar nonlinear relationships with the dependent variables [41] or if variables 

show interactions, which are often observed in mixtures of analytes, linear models often fail. 

Several approaches can be found in literature dealing with calibrations when nonlinearities in 

the data are present. Besides of the application of methods, which are in principle nonlinear 

like neural networks, there exist a couple of methods trying to remove the nonlinearities in the 

data or extending linear models to cope with the nonlinearities. The quadratic PLS (QPLS) 

belongs to the latter whereby a quadratic term for the inner relation is used instead of a linear 

term. By adding squared terms and interaction terms to the input variables, the implicit 

nonlinear PLS (INLR) tries to account for the nonlinear relationship. On the other hand, the 

Box-Cox transformation for the response variables tries to linearize the relationship of the 

data directly. The locally weighted regression (LWR) and the modeling trees use a piecewise 

linear approximation whereas the classification and regression trees (CART) and the GIFI-

PLS use discrete variables to approximate a nonlinear behavior. The methods, which are used 

in this study, are explained in detail in chapter 6 when applied to a nonlinear data set. As 

neural networks play a major part of this study, a detailed description of neural networks 

follows directly in the next section.  
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2.7. Neural Networks – Universal Calibration Tools 
During the last decade, artificial neural networks have gained an increasing popularity in 

several fields of chemistry [46-49] whereby the variety of applications in chemistry is best 

illustrated in a book written by Zupan and Gasteiger [50]. In the field of multivariate 

calibration, the class of the multilayer feedforward backpropagation networks is most popular 

as they allow calibrating relationships, which are linear and nonlinear, and as no assumption 

of a specific type of model is needed [51-55]. In this section, the basics of the multilayer 

feedforward backpropagation neural networks are briefly explained and then the issues, which 

are of interest for this study, are introduced. A very detailed discussion of neural networks in 

multivariate calibration can be found in an excellent tutorial by Despagne and Massart [8]. 

More information about the mathematical background and about other neural network 

topologies can be found in textbooks [56-58]. 

2.7.1. Principles of Neural Networks 

Neural networks (NN) are parallel information processing systems consisting of a number of 

simple neurons (also called nodes or units), which are organized in layers and which are 

connected by links. The artificial neural networks imitate the highly interconnected structures 

of the brain and the nervous system of animals and humans whereby the neurons correspond 

to the cell bodies and the links are equivalent to the axons in biology. There are a number of 

different types of NN, whereby only multilayer feedforward neural networks are used and 

discussed in this study. An example of a multilayer feedforward neural network for three 

input variables x1, x2, x3 and one response variable y is shown in figure 1.  
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figure 1: Network elements of a multilayer feedforward backpropagation network. 



2. Theory – Fundamentals of the Multivariate Data Analysis 21  

The input variables are presented to the NN at the input units, which distribute the 

information by the connection links. Thereby the input variables are multiplied by the 

connection weights w'ij between the input and hidden layer. The hidden neurons sum the 

weighted signals from the input neurons and then project this sum on an activation function fh. 

The resulting activations of the hidden neurons are weighted by the connections w''j between 

the hidden and output neurons and sent to the output neuron(s). The output neuron also 

performs a summation and projection on its activation function fo. The output of this neuron is 

the estimated response ŷ . In the case of a single output neuron, the calculation of the 

estimated response can be summarized as: 

 o
1 1

ˆ
h vn n

j h ij i
j i

y f w f w xΘ Θ
= =
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Thereby nv and nh are the number of input neurons and hidden neurons and Θ′  and Θ′′  are 

the biases of the hidden and output neurons, which shift the transfer functions horizontally. 

The weights ijw′  and jw′′  and the biases Θ′  and Θ′′  are the adjustable parameters, which are 

determined by a learning algorithm during the calibration (often called training or learning) 

and which are assigned random values before the calibration. During the training, calibration 

samples with known response variables y (concentrations) are passed through the network. 

Then, the error between the predicted responses and the known experimental responses is 

calculated and used to adjust the parameters of the net in a backpropagation step to minimize 

the error. Theses two steps form an epoch (also called learn cycle or learn step) and are 

repeated until an acceptable low error is reached. The learning algorithm tries to find an 

acceptable minimum on the error surface, whereby in most cases the absolute minimum of the 

error surface is not found. 

2.7.2. Topology of Neural Networks 

All networks of this work are fully connected except of the non-uniform growing neural 

networks introduced in chapter 8. Fully connected means that a neuron is connected to all 

neurons of the proceeding layer. All networks except of the growing neural networks contain 

one layer of hidden neurons. If no special optimization technique is used, the number of 

hidden neurons is optimized by a gradient algorithm. Starting with 1 hidden neuron this 

algorithm adds fully connected neurons to the hidden layer until the error of prediction does 

not improve any more. For the hidden neurons, the hyperbolic tangent was used as activation 

function, which has some advantages referring to the convergence speed of learning in 
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contrast to other nonlinear functions [59]. The activation function of the output neurons is a 

linear function. The combination of linear and nonlinear activation functions allows an 

effective modeling of both, nonlinear and linear data sets. 

In principle, neural networks can model several responses simultaneously. Therefore, it is 

possible either to use a neural network with as many output neurons as responses to model or 

to use a separate neural model with one single output neuron for each response. In congruence 

with Despagne et al. [8] and Moore et al. [60] several tests showed that for the calibration and 

prediction single networks with one output are superior in terms of lower errors of prediction. 

Thus, for all calibrations networks with single outputs are used if not stated differently. For 

the optimization of networks, like a variable selection, the choice of network type signifi-

cantly influences the results as single output networks select variables, which are most 

predictive for one individual response whereas multi output networks select the variables, 

which model the ensemble of responses best. This issue is further discussed in section 10.1. 

2.7.3. Training of Neural Networks 

Many different learning algorithms exist for the training (calibration) of neural networks, 

which can be considered as an optimization problem. The first algorithm for the training of 

multilayer networks was proposed by Rumelhart and McClelland in 1986 [61]. This algorithm 

belongs to the gradient descent algorithms following the steepest descent of the error surface 

in the hyperspace of the adjustable parameters to find an acceptable minimum. To improve 

the excessively slow convergence of the algorithm for low gradients and to prevent trapping 

and oscillations in local minima a momentum term was introduced, which remembers the last 

change of the weights [62]. This algorithm, which smoothes the error surface, is also known 

as conjugate gradient descent. The introduction of individual learning rates and momentum 

terms for each weight significantly speeds up the algorithm and is known as delta bar 

algorithm [63] and SuperSAB algorithm [64]. One of the most modern algorithms of the 

gradient algorithms is the resilient propagation (Rprop) [65,66]. This algorithm combines the 

ideas of the algorithms described before. Yet, the weights are not adapted depending on the 

magnitude of the derivative but depending only on the sequence of the signs of the derivative. 

Consequently, the learning is spread equally over the complete network in contrast to all the 

other methods described before. Another advantage is the insensitivity of the algorithm to the 

different parameters [59], which can be all set to theses values proposed in [65,66] and 

implemented in [28,67]. The algorithm has been successfully used for several chemometric 

applications due to its speed [68,69]. 
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Many modern learning algorithms with an amazing convergence speed belong to the second-

order optimization methods, which utilize the Hessian matrix of partial second derivatives of 

the cost function, which describes how the error depends on the weights. The popular 

Levenberg-Marquardt algorithm [70] combines the gradient descent direction with the 

direction calculated from the estimated inverse Hessian matrix. The conjugate gradient 

algorithms also utilize the second-order information, but the estimation of the Hessian matrix 

is avoided. The scaled conjugate gradient algorithm (SCG) [71] makes use of the pseudo-

second derivative, is insensitive to its parameters, which can be used as suggested in [71] and 

implemented in [65,66], and has proven to be a very efficient algorithm with respect to 

convergence speed and optimization quality [101]. Recently, genetic algorithms have been 

suggested for training NN [72,73]. As genetic algorithms are global optimization algorithms, 

they are more likely to find the global minimum of the error surface than gradient algorithms 

(see section 2.8.5 for more information about genetic algorithms). Yet, genetic learning 

algorithms are faced with several problems like long computing times, several parameters to 

be adjusted and troubles in fine-tuning the weights and biases. Combining genetic algorithms 

for the rough optimization and gradient algorithms for the fine-tuning has created a hybrid 

algorithm to overcome the last problem. Yet, the extremely high computing times render 

genetic algorithms for the training of neural networks unusable in practice, especially when 

several neural nets have to be trained for some kind of optimization (see chapters 7 and 8). 

In this work, two learning algorithms are used. The Rprop algorithm is applied to the neural 

networks used in chapter 3. For all other networks SCG was used, as this algorithm shows a 

very fast initial convergence allowing the reduction in the number of training cycles during 

network optimization processes. All networks were trained with a maximum number of 2000 

learning steps, whereby a method called early stopping was applied. This technique helps to 

anticipate the so-called overtraining effect [74]. An overtrained neural network learns a small 

calibration data set by heart. Thereby the noise in the data is learnt instead of generalizing the 

functional relationship of the data. For more details of overtraining, see section 2.8. Early 

stopping was implemented by monitoring the calibration data by a crossvalidation procedure 

(see section 2.4). The training is stopped when the error of crossvalidation of the calibration 

data starts going up, as the net may start loosing its generalization ability at this moment. 

Early stopping is not an ultimate solution for preventing overtraining as a premature stopping 

of the training also stops the calibration of the functional relationship behind the data. Early 

stopping is only a tool, which should be used in combination with the network optimization 

procedures (see section 2.8.2) and becomes less important with more optimized networks. 
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2.8. Too Much Information Deteriorates Calibration 
In chapter 5, a feature extraction is presented which generates many variables. The increase of 

information puts new challenges to multivariate calibration methods and especially to the data 

analysis by neural networks. Section 2.8.1 describes the fundamental relationships between 

the model complexity and the generalization and prediction abilities of the models, which are 

directly influenced by the number of independent variables utilized by the models. In section 

2.8.2, the aspects, which influence the complexity of neural networks, are looked at. Then the 

different approaches for the optimization of the model complexity found in literature are 

discussed in the following sections. 

2.8.1. Overfitting, Underfitting and Model Complexity 

Neural networks are often referred to as universal function approximators since theoretically 

any continuous function can be approximated to a prescribed degree of accuracy by increasing 

the number of neurons in the hidden layer of a feedforward backpropagation network [75]. 

This can be proven by Kolmogrov's theorem stating that a neural network with linear 

combinations of (2 1)n n +  monotonically increasing nonlinear functions of only one variable 

is able to fit any continuous function of n variables [76]. Yet in reality, the objective of a 

multivariate calibration is not to approximate a calibration data set with an ultimate accuracy, 

but to find a calibration with the best possible generalizing ability [77]. The gap between the 

approximation of a calibration data set and the generalization ability of a calibration becomes 

the more problematic the higher the number of variables and the smaller the data set, which 

will be further explained in the following sections. 

The best measure for the generalizing ability is the error of prediction of as many independent 

separate validation data as possible. According to figure 2 the error of prediction is composed 

of two main contributions, the remaining interference error and the estimation error [39]. The 

interference error is the systematic error (bias) due to unmodeled interference in the data, as 

the calibration model is not complex enough to capture all the interferences of the relationship 

between sensor responses and analytes. The estimation error is caused by modeling measured 

random noise of various kinds. The optimal prediction is obtained, when the remaining 

interference error and the estimation error balance each other (arrow in figure 2). The effect of 

the prediction error increasing due to a too simple model is called underfitting whereas the 

effect of the increased prediction error due to a too complex model is called overfitting or 

overtraining. In figure 3 it is shown that the optimal complexity of the model highly depends 
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on the size and quality of the calibration data set. For data sets, which are noisy and limited in 

size, a simple calibration model is needed to prevent the overfitting. Neural networks, which 

are too complex (too big), are in danger of learning these data by heart and consequently 

model noise of the data. For big data sets, which contain only little noise, the best model is 

more complex resulting in an overall smaller prediction error for the same functional 

relationship. Consequently, for each data set an optimal model complexity has to be found 

[78] whereby the complexity of the models is directly related with the number of variables 

utilized by the model. The search of the optimal models is a very difficult task in the field of 

the multivariate calibration and is further discussed in section 2.8.2.  
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figure 2:  Scheme for the error of prediction as a function of the complexity of the 
calibration model. 

An overfitting can be detected, if the error of prediction of the independent validation data is 

significantly higher than the error of prediction of the calibration data whereby both data sets 

have to be within the same range of the response variables (for example within the same 

concentration range) to prevent additional biases due to extrapolation [79]. An underfitting 

manifests in high prediction errors for both data sets. Not only neural networks are affected by 

the effects of underfitting and overfitting, but also most modern multivariate calibration 

algorithms are subject to these effects [39]. In the following section, the discussion of the 

construction of optimal model complexities mainly refers to neural networks but can also be 

generalized for various multivariate calibration methods in many topics. 
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figure 3: Scheme for the error of prediction depending on the size and quality of the 
calibration data set, which influence the estimation error. 

2.8.2. Neural Networks and the Complexity Problem 

The complexity of neural networks can be mainly reduced to the number of adjustable 

parameters, namely the number of weights and the number of biases. Although the number of 

hidden layers also seems to influence the complexity of the neural networks on the first sight, 

the dimensionality of the optimization hyperspace and with it the complexity of the model is 

only defined by the number of adjustable parameters while the number of hidden layers 

influences only the direction of the optimization walk in the hyperspace. Consequently, the 

number of parameters can be ascribed to the sum of links, hidden neurons and output neurons. 

The number of adjustable parameters n can be calculated as: 

 h o ln n n n= + +  (12) 

Thereby nl is the number of all links in the network, nh is the number of hidden neurons and no 

is the number of output neurons. For uniform fully connected networks, the number of links 

can be replaced: 

 ( ) ( )1 1h v o hn n n n n= + + +  (13) 

with nv as the number of input variables (input neurons). Consequently, several strategies are 

possible for optimizing the model complexity and thus the neural networks [80]: 

1. Optimizing the number of input variables nv by a variable selection strategy. 
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2. Optimizing the number of hidden layers and the number of neurons in the hidden 

layers nh. 

3. Building networks with an arbitrary non-uniform structure optimized for the specific 

problem and thus directly optimizing the number of links nl and hidden neurons nh. 

The first strategy is known as feature selection or variable selection [81] and has been 

proposed and applied in numerous publications. Thereby an optimal subset of variables is 

selected, avoiding an overfitting and the inclusion of too noisy and redundant variables, which 

could hide meaningful variables [68,82]. Additionally, the danger of chance correlation, 

which is further discussed in chapter 7, decreases with fewer variables [83]. Many variable 

selection strategies have been proposed and compared [84] such as the two stepwise 

algorithms forward addition and backward elimination [85-89], such as orthogonal descriptors 

and successive projection algorithms for linear calibration models [90], and such as simulated 

annealing [91-96] and genetic algorithms [10,93-103], which contain random search steps. 

Especially the last two approaches have been demonstrated to be superior in the case of many 

variables [93-96,104]. A compression of the input variables by the use of a principal 

component analysis can also help to reduce the number of parameters [105-109]. The most 

important approaches are discussed in detail in the sections 2.8.3 to 2.8.10. 

The second strategy optimizes the inner topology of the neural networks by varying the 

number of hidden layers and number of neurons in the hidden layers, whereby the networks 

are fully connected. In most publications dealing with neural networks, this task is performed 

by a trial and error procedure and relies on the intuition of the user. Yet, there are two non-

manual approaches for finding an optimal inner topology of neural networks. The first 

approach is based on the use of genetic algorithms for finding the optimal number of hidden 

layers and hidden neurons whereby the number of neurons of each layer is directly coded into 

the genetic string [110]. This approach is usually combined with a variable selection based on 

genetic algorithms [111,112]. The second approach is based on neural networks with growing 

hidden layers. Thereby full-connected hidden neurons are added to a single hidden layer 

[96,113-116] or to a prespecified location (known as cascade correlation architecture [117]) 

until the error of prediction does not improve any more. All approaches based on the second 

strategy are faced by 2 major drawbacks: Only fully connected neurons are added to the 

network resulting in a simultaneous addition of many parameters per addition step and the 

place where to add the neurons is not optimized by any of the algorithms. 
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The third strategy, which is also known as topology optimization, should be superior to the 

first two strategies since both, the number of input variables and the number and location of 

the hidden neurons are simultaneously optimized resulting in a synergetic effect. Additionally, 

the presence of each single possible link and with it each single parameter is decided on when 

building non-uniform networks. Thus, the number of adjustable parameters is effectively 

reduced, allowing the iterative calibration procedure of neural networks to find a better 

solution [12] than fully connected networks. Three general approaches can be found in 

literature following this strategy. The first approach is based on a structure generation and 

evaluation by the use of genetic algorithms [118-121]. In the second approach unimportant 

links of a big network are removed by so-called pruning techniques [59,109,122-124]. The 

third approach is based on growing non-uniform neural networks proposed by Vinod et al. 

[125]. In the next sections, the different methods for selecting and compressing variables are 

discussed and then the three approaches for the optimization of the network topology are 

looked at in more detail. 

2.8.3. Brute Force Variable Selection 

The most obvious method of selecting a subset of variables is the examination of all 

combinations of variables. Thereby a subset of variables is selected, a neural network utilizing 

only these variables is calibrated, and the error of prediction of an independent test data set is 

calculated. Finally, the combination with the smallest error of prediction is chosen. Besides of 

some problems due to the random weight initialization of the networks and the limitation of 

the size of the data set, this so-called brute force variable selection is the most accurate 

approach.  However, this approach is only feasible for a very limited number of variables, as 

the number of variable subsets increases dramatically with the number of variables. 

For a fixed number nv of variables to be selected from ntot variables in total, the number n of 

different variable subsets can be calculated as [12,126,127]: 

 !
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In the common case, when an optimal solution is searched, the number of variables to select is 

not fixed resulting in even more possible combinations n of variable subsets: 
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For example 40 variables (refrigerant data introduced in section 4.5.1.1) result in 

1 099 511 627 775 different combinations to be examined. If a fast up-to-date computer needs 

1 minute for the training of a neural net (the time needed for the prediction can be neglected) 

the examination of all possible combinations needs 2 090 540 years computing time rendering 

the brute force variable selection useless for this work. 

2.8.4. Variable Selection by Stepwise Algorithms 

The two stepwise algorithms forward addition (forward selection) and backward elimination 

(backward selection) are also sometimes called gradient methods as the next addition or 

elimination step is performed on the basis of the steepest gradient of the error surface. The 

forward selection begins by selecting the variable, which results in the lowest error of 

prediction. In the next step, the variable out of the remaining variables is added, which 

minimizes the error in combination with the first variable. The stepwise addition of further 

variables is repeated until an optimal subset is found with a maximum of ntot steps. The 

backward elimination works in the opposite direction by starting with all variables and 

eliminating single variables. In addition, combinations of both methods are known as stepwise 

multiple regressions [12]. Yet, the stepwise algorithms fail to take the information into 

account that involves the combined effect of several variables. Thus, these algorithms hardly 

find an optimal solution, which requires several independent variables to be selected [25,128]. 

The stepwise algorithms walk during the minimum search in the valleys of the error surface 

and cannot find minima surrounded by high mountains. In figure 4, the error surface of the 

selection of 2 variables out of 40 is shown for the refrigerant data introduced in section 

4.5.1.1. Even in this figure, which represents only a highly constrained 2-dimensional lateral 

surface of the 40-dimensional error surface, it is visible that the error surface is too rough for 

the stepwise algorithms finding an optimal solution and not usable for high dimensional data 

sets with many correlated variables. 
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figure 4: Root mean square of prediction versus the index of the 2 variables selected. 

2.8.5. Variable Selection by Genetic Algorithms 

Genetic algorithms (GA) have become a popular optimization method as they often succeed 

in finding the best optimum in contrast to most common optimization algorithms. Genetic 

algorithms imitate the natural selection process in biological evolution with selection, mating 

reproduction and mutation. On the left-hand side of figure 5, the sequence of the different 

operations of a genetic algorithm is shown. 

The parameters to be optimized are represented by a chromosome whereby each parameter is 

encoded in a binary string called gene. Thus, a chromosome consists of as many genes as 

parameters to be optimized. A population, which consists of a given number of chromosomes, 

is initially created by randomly assigning "1" and "0" to all genes. On the top right part of 

figure 5, the different terms are graphically shown for a population of 4 chromosomes with 4 

genes (in the case of variable selection a gene contains only a single bit string for the presence 

and absence of a variable). The best chromosomes have the highest probability to survive 

evaluated by a so-called fitness function. The next generation is reproduced by selecting the 

best chromosomes, mating the chromosomes to produce an offspring population and by an 

occasional mutation. The evaluation and reproduction steps are repeated until a certain 

number of generations, until a defined fitness or until a convergence criterion of the 

population are reached. In the ideal case, all chromosomes of the last generation have the 

same genes representing the optimal solution. The theory and benefits of GA in variable 
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selection have been described several times in literature [98-103] and will not be repeated 

here, as there are uncountable variants of the different genetic operators. Instead, a description 

of the GA implementation, which has been used in this work and its special features like the 

implementation of the fitness function and the other genetic operators will be further 

discussed and are illustrated on the right side of figure 5. 
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figure 5: Flow chart of a genetic algorithm (left side) and explanations of the different 
operations by the application of the genetic algorithm to a variable selection 
problem with 3 variables and neural networks for the evaluation of the fitness. 

In this work, the initial population of the GA is randomly generated except of one 

chromosome, which was set to use all variables. The binary string of the chromosomes has 

the same size as variables to select from whereby the presence of a variable is coded as "1" 

and the absence of a variable as "0". Consequently, the binary string of a gene consists of only 

one single bit. After evolving the fitness of the population, the individuals are selected by 
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means of the roulette wheel. Thereby, the chromosomes are allocated space on a roulette 

wheel proportional to their fitness and thus the fittest individuals are more likely selected. In 

the following mating step, offspring chromosomes are created by a crossover technique. A so-

called one-point crossover technique is employed, which randomly selects a crossover point 

within the chromosome. Then two parent chromosomes are interchanged at this point to 

produce two new offspring. After that, the chromosomes are mutated with a probability of 

0.005 per gene by randomly changing genes from "0" to "1" and vice versa. The mutation 

prevents the GA from converging too quickly in a small area of the search space. 

A crucial point in using GA is the design of the fitness function, which determines what a GA 

should optimize. In the case of a variable selection for calibration, the goal is to find a small 

subset of variables, which are most significant for a regression. In this work, the calibration is 

based on neural networks for modeling the relationship between the input variables (many 

time-dependent sensor signals) and the responses (concentrations of the different analytes). 

Thus, the evaluation of the fitness starts with the encoding of the chromosomes into neural 

networks whereby "1" indicates that a specific variable is used and "0" that a variable is not 

used by the network. Then the networks are trained with a calibration data set and after that, a 

test data set is predicted. Finally, the fitness is calculated by a so-called fitness function f. In 

contrast to many GA for variable selection found in literature [99,101,129-131,243], the 

fitness function used for the GA variable selections in this work takes into account not only 

the prediction error of test data but also partially the calibration error and primarily the 

number of variables used to build the corresponding neural nets: 
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Thereby nv is the number of variables used by the neural networks, ntot is the total number of 

variables and MRMSE is the mean root mean square error of the calibration respectively test 

data. The MRMSE is defined in equation (17) with N as total number of samples predicted, M 

as total number of analytes, ,ˆi jy as predicted concentration of analyte j in sample i and ,i jy  as 

the corresponding known true concentration: 
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The fitness function (16) can be broken up into three parts. The first two parts correspond to 

the accuracy of the neural networks. Thereby MRMSEcal is based on the prediction of the 

calibration data used to build the neural nets, whereas MRMSEtest is based on the prediction 

of separate test data not used for training the neural networks. It was demonstrated in [11] that 

using the same data for the variable selection and for the model calibration introduces a bias. 

Thus, variables are selected based on data poorly representing the true relationship. On the 

other hand, it was also shown [11,132] that a variable selection based on a small data set is 

unlikely to find an optimal subset of variables. Therefore, a ratio of 1:4 between the influence 

of calibration and test data was chosen. Although being partly arbitrary this ratio should give 

as little influence to the calibration data as to bias the feature selection yet taking the samples 

of the larger calibration set partly into account. The third part of the fitness function rewards 

small networks using only few variables by an amount proportional to the parameter α. The 

choice of α influences the number of variables used by the evolved neural nets. A high value 

of α results in only few variables selected for each GA whereas a small value of α results in 

more variables being selected.  

As the initial weights of a neural network are randomly set, the network finds another local 

minimum of the error surface for each calibration run with a slightly different performance of 

prediction. In order to reduce the variance of the error of prediction due to random weight 

initialization the fitness is averaged in expression (17) over 20 training and prediction 

sessions per network topology (evaluation of 20 parallel neural networks with different initial 

weights). 

2.8.6. Variable Selection by Simulated Annealing 

Simulated Annealing (SA) is a method that simulates the thermodynamic process in which 

metal is heated to its melting temperature and then slowly cooled to its crystal configuration 

of lowest energy. The system is in thermal equilibrium when the probability of a certain state 

is governed by a Boltzmann distribution: 

 ( ) e
E

kTp E
−∆

∆ =  (18) 

with E as energy, T as temperature and k as Boltzmann's constant. Kirkpatrick et al. [133] 

applied SA to an optimization problem. During the minimization of a multivariate function, a 

candidate solution is generated by randomly perturbing the current configuration and the 

energy (similar to the fitness of GA) is calculated. If the new energy is lower than the current, 
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the displacement is accepted. If the energy is higher, the displacement is accepted with a 

probability given by the Boltzmann distribution (18). These uphill steps allow the algorithm 

to escape from local minima. The probability of accepting an uphill step is a function of the 

change of the energy and of the temperature, which is gradually lowered during the search 

process. Due to the similar approach with random steps in the search process, SA has several 

times been compared with GA for the selection of variables whereby SA achieved comparable 

or slightly worse results and consequently will not be used in this study [91-96]. 

2.8.7. Variable Compression by Principal Component Analysis 

The Principal Component Analysis (PCA), which originates from psychometrics, can be used 

as preprocessing tool for neural networks. Thereby the PCA compresses the independent 

variables into fewer principal components, which are then used as new input variables for the 

neural networks. The PCA finds the direction in space along which the variance of the data is 

the largest. This direction is called the first principal component. The second principal 

component is the direction in space orthogonal to the first principal component, which 

describes maximum variance not covered by the first principal component, and so on. The 

data matrix is decomposed by the PCA into a product of a loading matrix TP and of a sore 

matrix T and a matrix containing the residuals E: 

 TX TP E= +  (19) 

Similar to the PLS only the first few principal components are used with similar methods to 

determine the optimal number (see section 2.5).  

Yet, the variable compression by principal components is affected by some (at least 

theoretical) drawbacks. Using only few principal components does not ensure that the 

information preserved in these components is useful for the calibration of the relationship of 

interest. For example, if noise dominates the variations of the input variables, the variations 

caused by the sensor responses due to the analytes might not be included as the corresponding 

principal components with small singular values are discarded [107]. Additionally, nonlinear 

relationships are often spread over many principal components, which might not be included 

in the model (see also discussions in the sections 6.1 and 9.2.5). As in contrast to the PLS the 

principal components are determined only on the basis of the variances of the independent 

variables and not on the basis of an optimal regression, no synergetic effects of the combi-

nation of the PCA and the neural networks can be expected. 
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2.8.8. Topology Optimization by Pruning Algorithms 

The oldest and very popular approach to topology optimization of neural networks is based on 

destructive pruning algorithms [59,109,122-124]. These algorithms start with a trained fully 

connected neural network, remove certain network elements and then retrain the network. The 

steps of removing and retraining are repeated until a certain stopping criterion is fulfilled. 

Besides of the algorithm "Skeletonization" [134], only links are considered as candidates to 

be removed. Neurons are automatically removed, if all corresponding input or output links 

have been removed. In this work the two pruning algorithms "Optimal Brain Surgeon" and 

"Magnitude Based Pruning" are used, which were identified as most promising pruning 

methods for sensor data in a comparison [28]. A combination of both algorithms can be found 

in [153]. 

Magnitude Based Pruning 

The Magnitude Based Pruning (MP) is the simplest approach among the pruning algorithms, 

which removes the links with the smallest weights. This approach originates in the linear 

regression, as the variables with the smallest regression coefficients of a linear regression are 

least important. Yet, Despagne et al. demonstrated that for data sets with both, linear and 

nonlinear relationships, this assumption is not valid as primarily links of linear variables are 

removed [135]. On the other hand, it was shown in [28,136] that this simple and very fast 

algorithm performs as well as the other algorithms as long as not too many links are removed. 

Optimal Brain Surgeon 

The Optimal Brain Surgeon (OBS) algorithm [137] estimates the increase of the training error 

when a link is deleted. Then the links with the smallest increase, which is also called saliency, 

are deleted. To determine the saliencies, the changes of the cost function E∂  associated with a 

perturbation of the weight matrix W has to be evaluated. The term E∂  is approximated by a 

second-order Taylor series expansion: 
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As the training is stopped when the neural network has converged to a minimum, the first 

term can be considered as being zero. The second and third term are the so-called Hessian 

Matrix H, whereby the Optimal Brain Damage algorithm [138] neglects the third term 

resulting in faster yet less reliable pruning results [28]. The saliency of a weight k is then 

calculated as 
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Discussion 

Although the pruning algorithms have been applied in several fields of chemistry and 

analytics [55,109,139-141, 153] the general application of these algorithms is controversially 

discussed in literature. In congruence with the theory that pruned sparse neural networks 

should generalize better, improved predictions were found in references [28,142,143] whereas 

a deterioration of the prediction ability was found in references [136,144]. Another problem 

of the pruning algorithms is the need of a reference network for the removal of the network 

elements. This reference network has to be designed by the user and the final optimal network 

found by the algorithm cannot be more complex than this reference network. This means that 

the "solution" is biased by the choice of the user for the reference network as the pruning 

algorithms are highly sensitive to local minima of the error surface ending up in completely 

different network topologies and different variables selected for different reference networks.  

2.8.9. Topology Optimization by Genetic Algorithms 

The application of genetic algorithms for evolving neural networks is not only limited to the 

selection of input variables but can also be used for optimizing the complete topology of the 

neural networks [118-121]. The different approaches found in literature can be classified 

according to their encoding mechanism as direct and indirect methods. In the direct methods, 

all the information about the structure is directly represented in the chromosome. The most 

common way is the representation of the connections in a matrix (connectivity matrix) and 

then linking this matrix row by row into the chromosome. The indirect encoding methods are 

also called grammatically encoding methods as the chromosome contains development rules, 

which have to be interpreted to build the corresponding net. This allows a compression of the 

topology resulting in a smaller length of the chromosome and thus a better scalability. 

A promising approach of genetic algorithms for the optimization of neural network topologies 

was proposed by Boozarjohehry et al. [145] using a grammatically encoding procedure. This 

algorithm is also applied to real world data of a neutralization process besides of simple 

benchmark problems. Yet, a problem of this approach is that the solutions found by the 

algorithm are randomly depending on the initial weight initialization and on the parameters. 

Another very complex approach for evolving neural networks by genetic algorithms using a 

direct encoding was proposed by Braun et al. [146,147]. The corresponding software ENZO is 
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available for free [148] and has been applied to several real world problems [149-151]. The 

problem of this approach is its complexity with more than 100 parameters, which can be 

adjusted by the user. Although the default settings work well in many cases, the excellent 

results demonstrated in the references mentioned before need adjustments of these parameters 

rendering a general application of this approach with only little input by the analyst virtually 

impossible.  

In general all approaches of optimizing the topology of neural networks by genetic algorithms 

are faced by a poor scalability [152] and by complex genetic operations [147]. An example is 

the structural mapping causing problems to the crossover operator. For two networks with an 

identical topology, the contributions of the hidden neurons to the overall solution may be 

internally permuted (only visible by a permutation of the weights). If a crossover operator is 

applied to these networks, one offspring is created with partly doubled internal contributions 

and one offspring is created with partly missing internal contributions. In most cases, the 

optimization of the neural network topology has been used only for simple benchmarks like 

the XOR problem [152]. Another general problem is that similar to the pruning algorithms the 

networks cannot be bigger and more complex than a largest possible reference network 

predefined by the user (see also section 2.8.8). Due to these quite complex problems, the 

genetic algorithms are used only for a variable selection and not for the optimization of the 

topology in this work. 

2.8.10. Topology Optimization by Growing Neural Network Algorithms 

An interesting algorithm for building non-uniform optimized neural network topologies was 

initially proposed by Vinod et al. [125]. The algorithm starts with a feedforward 

backpropagation neural network, which has no hidden neurons and no links ("empty 

network"). The algorithm grows the network by adding one neuron at a time. The neuron is 

connected to one output neuron and to two other neurons whereby these links are selected on 

the basis of the maximum estimated error decrease for the calibration data. The insertion of 

the neurons is stopped when a prescribed error has been reached. It was demonstrated that 

each growing step does improve the calibration error. It was also shown that the algorithm is 

able to approximate complex continuous functions (like a sinus wave) using very small 

networks. 
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2.9.  Measures of Error and Validation 
Besides of the true-predicted plots, which will be introduced in section 3.4, the root mean 

square errors (RMSE) are used for the validation of the models in this work as it is one of the 

most common measures for the quality of calibrations and predictions in chemometrics: 
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Thereby ˆiy  is the predicted concentration of the sample, yi is the true concentration of the 

sample and N is the total number of samples. The RMSE, which has the dimension and units 

of the concentrations predicted, is a strict measure of the error as it penalizes poor predictions 

by a quadratic term. For a relative measure of the error, the relative RMSE, which is also 

sometimes misnamed standard error of prediction (SEP) [41,153,154], is used in this work: 

 

 
( )2

1 1
rel

ˆ
RMSE

n n

i i i
i i

y y y

n n
= =

−
=
∑ ∑

 (23) 

 

 

 



3. Theory – Quantification of the Refrigerants R22 and R134a: Part I  39  

3. Theory – Quantification of the Refrigerants R22 and 
R134a: Part I 

In this chapter, an example of a multivariate calibration in chemical sensing is shown whereby 

the focus of this example is the demonstration of the methods, which are widely accepted and 

which can be found in literature over and over again. This allows an easy comparison with the 

new approaches proposed in this study, which are going far beyond the widespread techniques 

in the areas of multivariate calibration and measurement principles. Furthermore, this data set 

will be examined later again (section 9.5) using the new approaches proposed in this work. 

Although the recording of the data set was not optimized for these approaches, the new 

methods of data analysis show better results. Additionally some concepts and theories of 

chemical sensing of vapors by polymer-based sensors are introduced in this chapter. 

The objective of this example is the quantitative detection of the ozone depleting R22 

(chlorodifluoromethan) in the vapor of its harmless substitute R134a (1,1,1,2-

tetrafluoroethan) and in air for preliminary studies of on-line measurements in recycling 

stations. More details of the environmental background of these refrigerants can be found in 

section 4.5.1. First, the sorption characteristics of 6 different polymers, which are exposed to 

different concentrations of the refrigerants R22 and R134a, are investigated with a sensor 

array setup in respect to sensitivities, sensitivity patterns, and calibration curves. Based on 

these investigations two polymers are selected for the application in a miniaturized low-cost 

4λ sensor setup, which complies best with the conditions for on-site measurements at 

recycling stations. Finally, different binary mixtures of R22 and R134a are measured by both 

setups and a multivariate calibration is performed by the use of neural networks.  

 

3.1. Experimental 
Both setups, which are based on the reflectometric interference spectroscopy, are described in 

detail in section 4.3 (Array set-up) and in section 4.4 (4λ setup). For the sensor array setup, 6 

sensitive polymer layers were prepared using the polymers Polyetherurethane (PUT), 

Polydimethylsiloxane (PDMS), a hyperbranched polyester (HBP), Ultrason (UE 2010) and 

Makrolon (M 2400). Besides of measurements of single analyte vapors for a sensitivity 

analysis, two data sets of binary mixtures were measured based on an equidistant 6-level full 

factorial design [155]. Thereby the relative saturation pressures and thus the concentrations of 
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the analytes R22 and R134a were varied between 0 and 0.1 with synthetic air as ambient gas. 

The first data set was generated by measuring the experimental design 4 times with the sensor 

array RIfS setup and the second data set was produced by measuring the experimental design 

twice with the miniaturized 4λ RIfS setup. The sensor signals were recorded after 10 minutes 

of exposure to analyte and a recovery time of 2 hours was chosen.  

A 20-fold random subsampling procedure described in section 2.4 was used for splitting the 

data into a calibration data set (75%) and a test data set (25%) with the confinement that all 

repeated measurements of a concentration combination went into one subset to prevent 

overoptimistic predictions [156]. The neural networks implemented for this example had a 

topology of 1 output neuron, 4 neurons in 1 hidden layer and 6 respectively 2 input neurons 

with all features and parameters described in  section 2.7.3 in detail. 

 

3.2. Single Analytes 
The first step was the characterization of the polymers in respect to the sensor responses for 

the analytes. The responses of the 6 sensors coated with the different polymers were 

simultaneously measured by the array setup. The sensor responses of the polymers PUT, 

PDMS and HBP are shown on the left side of figure 6. These 3 polymers contain polar groups 

and should therefore show different response characteristics for analytes with different 

polarities or polarizabilities [157]. The sensor responses of the polymers UE 2010 and 

M 2400 are shown on the left side of figure 7. Both polymers are amorphous glassy polymers 

with a microporous structure whereby the mean size of the pores of M 2400 is 0.1 nm3 [158] 

and the mean size of the pores of UE 2010 is 0.08 nm3 [159]. These polymers can 

discriminate analytes due to different sizes of the analytes as only analytes with a smaller 

volume of the molecules than the volume of the pores sorb into the pores of the polymers. 

Further discussions regarding the pores can be found in chapter 5. 

According to both figures, all polymers show a fast and reversible swelling when exposed to 

R22 whereby the polar polymers PUT and PDMS are reaching an equilibrium state instantly. 

These two polymers were measured above their static glass transition temperature. The glass 

transition temperature is the temperature, above which the molecules in the polymer backbone 

can move relatively to one another resulting in a quasi-liquid state [160,161]. Thus, the 

interactions between vapor and coating can be described as dissolution of a solute vapor in a 

solvent coating resulting in a very fast sorption and desorption of the analytes, which can be 
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modeled by linear solvation energy relationships (LSERs) [162]-[164]. Consequently, these 

two polymers show also an immediate sorption and desorption of R134a. On the other hand, 

exposed to R134a the microporous polymers UE 2010 and M 2400 do not reach an equilib-

rium state within 30 minutes and the signals need 2 hours to return to the baseline. Due to the 

bigger volume of the molecules of R134a, the sorption process is kinetically inhibited and the 

molecules are less (and more slowly) sorbed into the polymers. 
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figure 6:  Sensor responses, calibration curves and standard deviations of 3 measurements 
of the polar polymers recorded with the array setup. 
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figure 7:  Sensor responses, calibration curves and standard deviations of 3 measurements 
of the microporous polymers recorded with the array setup. 

The right sides of figure 6 and figure 7 show the signals of the 6 sensors versus the concen-

trations of the 2 analytes. This type of plots is often referred to as calibration curve. The 

correlation of the polymer swellings (the sensor signals) with the analyte concentrations is 

often described as a Henry sorption [165], a Langmuir sorption [166] or a combination of 

both types [167]-[169]. For all polymers under investigation, the sorption of R134a is best 
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described as a linear Henry type sorption. This type of sorption process is an indication of an 

unspecific sorption process [170]. The molecules of R134a are too big for the micropores and 

therefore only an unspecific sorption process into the polymer matrix of the microporous 

polymer can be observed. The sorption causes a swelling of the polymer matrix, which can be 

observed as an increase of the thickness of the sensitive layer. The sorption of R134a and of 

R22 into the two polar polymers is also of the Henry type, since both analytes do not have 

distinctive polar groups and thus do not specifically interact with the polymers. 

On the other hand, the sorption of R22 into the microporous polymers UE 2010 and M 2400 

shows a calibration curve, which can be best described by the combination of the Henry and 

Langmuir sorption. The Langmuir type sorption can be found, if there is a specific interaction 

and if the amount of sorption and interaction sites is limited [170]. The combination of both 

sorption types can be best detected when examining the curve for high analyte concentrations, 

as the Henry sorption and the Langmuir sorption are identical for small concentrations. If the 

sorption is a pure Langmuir sorption, the calibration curve should pass into saturation for high 

concentrations whereas the combination of both types of sorption results in a curve with a 

positive slope for high concentrations. In figure 7, both polymers show for R22 this latter case 

of a Langmuir sorption with a small portion of a Henry sorption. Furthermore, the figures 

demonstrate that the microporous polymers show a much higher slope for R22 than for 

R134a. Both findings can be explained by a sorption of the small molecules of R22 into the 

micropores. This results in higher signals of the R22 sorption, as the unspecific Henry 

sorption into the polymer matrix (which is also present for R134a) is overlaid by a specific 

Langmuir sorption into the pores (which is not present for the bigger R134a molecules). The 

number of pores is limited and consequently the sorption of the molecules into the pores and 

with it the Langmuir part of the sorption reaches saturation for higher concentrations. 
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3.3. Sensitivities 
For this study, primarily the differences of the sensitivities of the polymers for the two 

analytes are of interest to select the two most suitable polymers for the low-cost 4λ setup. The 

sensitivities can be calculated as the slopes of the calibration curves. For the Henry sorption, a 

constant sensitivity can be easily specified for the examined concentration range, whereas the 

sensitivity for the Langmuir sorption is a function of the concentrations. Thus, the sensitivities 

for the sorption of R22 in the polymers UE 2010, Makrolon, and HBP were calculated using 

the derivative of the calibration function at zero concentration. 

In figure 8 the sensitivities for both analytes and all 6 sensors are shown. As already 

mentioned the microporous polymers show a very different swelling for the 2 analytes 

whereas the sorption process of both analytes into the polar polymers is very similar. 

Consequently, the sensitivities of M 2400 and UE 2010 for both analytes are very different 

whereas the sensitivities of PUT and PDMS for both analytes are similar. For a quantification 

of binary mixtures with only 2 sensors, 2 polymers should be chosen, which show the most 

possible different sensitivity patterns for the 2 analytes (with the extreme of 2 selective 

sensors). Consequently, for the quantification of the 2 analytes, 1 microporous polymer and 1 

polar polymer should be chosen. The polymers UE 2010 and PDMS, which show the most 

different sensitivity patterns, would be the best choice. Due to the technical limitation of the 

thickness and consistence of the layers [178], the combination UE 2010 / PUT was chosen for 

the 4λ setup. 
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figure 8: Sensitivities of the different polymers. 
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3.4. Calibrations of the Mixtures 
For the quantification of binary mixtures, neural networks were trained by the calibration data 

and subsequently predicted the independent test data. The root mean square errors (RMSE) of 

the test data and the crossvalidated calibration data measured with the 6-sensor array setup are 

listed in the first row of table 1. The RMSE of the prediction of the R134a concentrations is 

about three times higher than the RMSE of R22, whereby the relative RMSE of the test data 

are 3.5% for R22 and 13.0% for R134a. The RMSE of the test data of both analytes are only 

slightly higher than the RMSE of the crossvalidation of the calibration data indicating good 

calibration models [79]. The predictions of the test data are graphically shown in the true-

predicted plots in figure 9. Thereby the predicted concentrations of the test data are plotted 

versus the true known concentrations. Ideal predictions are consequently located on the 

diagonal. As the single predictions cannot be graphically resolved, the predictions of each 

concentration level are represented by the mean and the standard deviation. It is visible that 

the predictions of both analytes are not biased as the means of all concentration levels do not 

significantly deviate from the diagonal. The smaller standard deviations of the plot of R22 

show that the predictions of the concentrations of R22 are more precise than the predictions of 

R134a. Both, the RMSE and the true predicted plots allow the conclusion that both, R22 and 

R134a, can be quantitatively determined in binary mixtures using the RIfS array setup. 

Especially the more important detection of the harmful R22 has proven to be very accurate 

over the whole concentration range. 

0.00 0.02 0.04 0.06 0.08 0.10

0.00

0.02

0.04

0.06

0.08

0.10

 

 

R22

Pr
ed

ic
te

d 
C

on
ce

nt
ra

tio
n 

  [
p i / 

p io
]

True Concentration  [pi / pio]

0.00 0.02 0.04 0.06 0.08 0.10

0.00

0.02

0.04

0.06

0.08

0.10
 

 

R134a

Pr
ed

ic
te

d 
C

on
ce

nt
ra

tio
n 

  [
p i / 

p io
]

True Concentration  [pi / pio]  
figure 9: Predicted concentrations versus true concentrations of the test data measured by 

the array setup. 
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figure 10: Predicted concentrations versus true concentrations of the test data measured by 

the 4λ setup. 

The RMSE for the measurements performed by the 2-sensor 4λ setup are listed in the second 

row of table 1, whereby the relative RMSE of the test data are 7.4% for R22 and 21.4% for 

R134a. The RMSE of the calibration data and the test data are also not significantly different 

indicating again the absence of typical problems of calibrations by neural networks like 

overtraining effects. Yet, the RMSE of both analytes are nearly twice as high as the RMSE of 

the measurements performed by the array setup with 6 sensors. The true-predicted plots in 

figure 10 correspond with this higher RMSE. The high standard deviations of the true-

predicted plot of R134a show that the predictions are rather scattered. Additionally, the 

predictions of the low concentrations are a little biased with the absence of R134a being 

predicted as a relative saturation pressure of 0.0086 on average. On the other hand, the true-

predicted plot of R22 shows that the predictions of R22 are not biased and more precise than 

the predictions of R134a demonstrating that a quantification of R22 in the presence of R134a 

is possible by using the low-cost 4λ setup.  

The deterioration of the quantification of both analytes using the 4λ setup instead of the array 

setup raises the question, if this deterioration is caused by the reduction of the number of 

sensors or by the type of setup. Therefore, the data set recorded with the array setup was 

calibrated with neural networks again, but this time only the sensors PUT and UE2010 15% 

were used as input variables. For the comparison the UE 2010 15% layer is used instead of 

the 20% layer, as the UE 2010 layer used in the 4λ setup is more similar to the UE 2010 15% 

layer in respect to the thickness of the layer. The RMSE of this experiment are listed in row 3 
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of table 1. The RMSE of R22 is nearly equal for the 4λ setup and for the array setup with 2 

sensors. Thus, the deterioration of the prediction of R22 can be primarily ascribed to the 

limitation of the number of sensors. On the other side, the RMSE of R134a of the 2-sensor 

array lies in between the 4λ setup and the 6-sensor array. Hence, not only the limitation of the 

number of sensors, but also the type of setup plays a role for the quantification of R134a. 

Setup 
Crossv. 

R22 

Crossv. 

R134a 

Test 

R22 

Test 

R134a 

Test 

Mean 

Array: 6 Sensors 0.00162 0.00572 0.00183 0.00630 0.00406 

4λ: 2 Sensors 0.00325 0.01169 0.00317 0.01146 0.00732 

Array: PUT + UE 2010 15% 0.00283 0.00750 0.00334 0.00891 0.00612 

Array: PUT + UE 2010 20% 0.00182 0.00626 0.00203 0.00678 0.00440 

Array: PDMS + UE 2010 20% 0.00184 0.00596 0.00206 0.00667 0.00436 

Array: PDMS + M 2400 0.00238 0.00673 0.00268 0.00772 0.00520 

Array: PDMS + UE 2010 15% 0.00276 0.00656 0.00329 0.00810 0.00569 

Array: PUT + M 2400 0.00241 0.00776 0.00273 0.00881 0.00577 

Array: PUT + PDMS 0.00611 0.01156 0.00685 0.01259 0.00972 

Array: HBP + PDMS 0.0613 0.01122 0.00714 0.01257 0.00986 

Array: HBP + UE 2010 20% 0.00177 0.01902 0.00199 0.02139 0.01169 

Array: HBP + PUT 0.00657 0.01531 0.00773 0.01789 0.01281 

Array: M 2400 + UE 2010 20% 0.00182 0.02371 0.00211 0.02371 0.01291 

Array: HBP + UE 2010 15% 0.00316 0.02368 0.00384 0.02828 0.01606 

Array: M 2400 + HBP 0.00320 0.02447 0.00393 0.02930 0.01661 

Array: M 2400 + UE 2010 15% 0.00296 0.02774 0.00368 0.03436 0.01902 

Array: UE 2010 20% + 
 UE 2010 15% 0.00187 0.02962 0.00210 0.03431 0.01821 

table 1: Root mean square errors for the calibration and prediction of the data measured 
by the array setup using 6 polymer sensors (1st row) and using all combinations 
for 2 sensors out of 6 sensors (3rd row to 17th row) . The root mean square errors 
for the miniaturized 4λ setup, which uses 2 sensors, are listed in the 2nd row. 
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3.5. Variable Selection by Brute Force 
The problem of finding the best 2-sensor combination for the discrimination of the two 

analytes is a typical variable selection problem. The rather low number of 2 variables out of 6 

allows a brute force variable selection, as according to equation (15) only 15 combinations are 

possible. The RMSE of these 15 combinations, which are listed in row 3 to row 17 of table 1, 

confirm the conclusion drawn when analyzing the sensitivities of the sensors for the pure 

analytes. The best combination with the lowest mean RMSE of the test data is the PDMS + 

UE 2010 20% layer and the second best combination is the PUT + UE 2010 20% layer. The 

combinations with the 6 lowest mean RMSE of the test data in between 0.00440 and 0.00612 

consist all of one polar polymer and one microporous polymer, which showed the biggest 

differences of the sensitivity patterns in figure 8. The combination of two different interaction 

principles seems to be optimal for the discrimination of the two refrigerants as the 

combinations of 2 polar or 2 microporous polymers all showed significantly higher errors. 

 

3.6. Conclusions 
In this example, 6 polymers were investigated for application in a sensor system for the 

quantification of the refrigerants R22 and R134a in mixtures. By the use of all polymers an 

accurate quantification of both analytes could be performed. Additionally, 2 polymers were 

selected on the basis of the sensitivity patterns for the application in a small low-cost 4λ RIfS 

setup. By the use of these 2 polymers, the 4λ RIfS setup could quantify R22 in the presence of 

R134a quite well but not vice versa. 

It was shown that the best selection of 2 sensors is the combination of 1 microporous polymer 

with 1 polar polymer enabling a discrimination on the basis of two interaction principles. The 

two interaction principles show the most different sensitivity patterns for the two analytes, 

which is the common selection criterion of sensor coatings for an analytical problem.  

The polymers used in this example show two different types of sorption, the specific 

Langmuir sorption and the unspecific Henry sorption. For the classical feature extraction, 

which uses the height of the raw signal after a definite time of exposure to analyte, the 

unspecific Henry sorption is advantageous as the immediate sensor responses allow very fast 

measurements. Yet, a drawback of this common feature extraction is the extraction of only 

one single variable per sensor. This limits the number of analytes to be quantified to the 
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number of sensors in the ideal case. This means that a 2-sensor setup can be calibrated for 2 

analytes or contaminants and the 6 sensor array setup can be calibrated for up to 6 analytes 

and contaminants. Contaminants in the samples, which do not sorb into the sensitive layers, 

do not interfere the determination of the concentration of both analytes and can be ignored 

during the calibration. Yet, contaminants, which sorb into the polymer layers, bias the 

predictions of the analyte concentrations unless they can be considered during the calibration 

process as additional analytes in combination with additional sensors. 

In chapter 5, the principle of a time-resolved feature extraction will be introduced. Thereby 

the kinetics of sorption and desorption of analytes is exploited allowing the extraction of a 

virtually unlimited number of variables per sensor. Thus, the number of analytes, which can 

be quantified per sensor, is limited only by similarities of kinetics and is not fixed by the 

device. The time-resolved approach removes the limitation of the common sensor array 

approach of being able to quantify simultaneously only a maximal theoretical number of 

analytes. The time-resolved approach also changes dramatically the search and the rating of 

polymers, which might be suitable for a specific analytical problem. The static measurements 

with a single feature extraction need sensitivity patterns as different as possible, whereas the 

kinetic feature extraction needs different shapes of the sensor responses during sorption or 

desorption.  

The selection of the best combination of polymers based on the sensitivity pattern in this 

example could be verified by a brute force variable selection approach. Yet, the time-resolved 

measurements introduced in this work generate many variables putting new challenges to 

calibration methods and variable selection techniques, as a brute force variable selection is 

rendered impossible. Therefore, the introduction of new calibration techniques combined with 

variable selection methods are one of the focuses of this work. 
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4. Experiments, Setups and Data Sets 

4.1. The Sensor Principle 
For this work data sets were used, which were measured by several different setups to 

demonstrate that the principles of data analysis introduced in this study can be generally 

applied to a broad spectrum of devices. All setups belong to the category of the sensor 

devices, which transform chemical information into physically measurable quantities. Sensors 

allow establishing durable and economical devices for fast measurements without the need of 

sample pretreatments rendering these devices ideal for monitoring environmental pollutions, 

for process monitoring and for all kinds of continuous on-line and in-line measurements. 

Depending on the sensitive layer, which is responsible for the recognition of the chemical 

properties, the sensors are often divided into two groups: The sensors belonging to the first 

group have polymers, metals or metal oxides as sensitive layers. These sensors are called 

chemosensors. The sensitive layers of the second group of sensors use biochemical 

interactions like antigen – antibody or DNA – DNA interactions resulting in the name 

biosensor. In this work, data sets are analyzed for the detection of gases and vapors of volatile 

organic compounds. These data sets were measured by colleagues using 3 different devices, 

which are all based on polymer chemosensors. The polymer-based chemosensors recognize 

the presence of analyte by changes of the thickness and changes of the refractive index of the 

sensitive layer when analyte sorbs into the sensitive polymer layer.  Two devices are based on 

the Reflectometric Interference Spectroscopy (RIfS) as detection principle and one device is 

based on the Surface Plasmon Resonance Spectroscopy (SPR).  
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4.2. SPR Setup 
The SPR device used for the measurements of this work is a single sensor device, which is 

based on the resonance of surface plasmons as detection principle. The setup, which is shown 

in figure 11 and which was assembled by Dr. Birgit Kieser [171], was initially suggested by 

Kretschmann in 1968 [172]: 

At constant angle, parallel-polarized white light is focused through a glass prism onto a silver 

film on condition of total reflection. The surface plasmons are excited at the back surface of 

the silver layer, which is evaporated onto the glass prism. The reflected light is coupled into a 

multimode fiber and detected by a diode array spectrometer. A sensitive polymer layer is 

coated onto the top of the silver film. The resonance wavelength of the surface plasmons is 

influenced mainly by the refractive index n and partly by the thickness d of the sensitive layer 

(for all sensitive layers used in this work practically only changes of the refractive index n 

play a role [173]). Due to a high temperature dependency of the refractive index, the 

temperature was kept constant by a thermo-regulator. More details of the setup can be found 

in literature [174]. 
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figure 11: Schematic of the RIfS array setup. The yellow bubbles show the effects when 
analyte sorbs into the polymer layer (magenta). 
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4.3. RIfS Sensor Array 
The Reflectometric Interference Spectroscopy (RIfS), which was initially proposed by 

Gauglitz and Nahm [175], evaluates the interference pattern of light, which is reflected at thin 

transparent films. The interference is caused by different partial beams, which are reflected in 

a different way at the film interfaces depending on the wavelength. Changes of the optical 

thickness nd of the sensitive layer can be detected as shifts of the maxima and minima of the 

interference pattern [176].  

The RIfS sensor array shown in figure 12 contains 7 sensors allowing the application of 7 

sensitive layers. The configuration of the sensor array is based on a white light source. The 

light is transmitted through a lens and filter system via polymer fibers to the glass substrates 

with 7 different polymer layers. The reflected light is transmitted to an optical multiplexer, 

which is directly connected to a diode array spectrometer. More details can be found else-

where [177]. 
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figure 12: Schematic of the RIfS array setup. The yellow bubbles show the effects when 
analyte sorbs into the polymer layer (green before sorption of analyte, magenta 
after sorption of analyte). 
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4.4. 4λ Miniaturized RIfS Sensor 
The second setup, which is based on RIfS as detection principle, is shown in figure 13. This 

so-called 4λ system bases on a wavelength separation in the light source. Individual 

wavelengths are sequentially emitted by 4 light emitting diodes rendering a spectral recording 

of the reflected light unnecessary. Thus, the reflected light is detected by a simple photodiode 

enabling a miniaturization of the system and a reduction of the costs. The setup, which has 

been used for the detection of single analytes and sum parameters, is described elsewhere in 

detail [178,179]. As the parallelization of this setup is still in progress, the measurements 

using two different sensitive layers were performed in series.  
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figure 13: Schematic of the 4λ setup. The yellow bubble shows the reconstruction of the 
shifted interference pattern after the sorption of analyte into the polymer layer 
(green before sorption of analyte, magenta after sorption of analyte). 
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4.5. Data Sets 

4.5.1. Refrigerants R22 and R134a 

For more than four decades a chlorofluorocarbon known as R22 (chlorodifluoromethan) has 

been the refrigerant of choice for application in freezers, refrigerators and air-conditioners. 

Yet, in the early 70s, Rowland and Molina showed that the chlorine of chlorofluorocarbons 

and hydrochlorofluorocarbons is released when the molecules are exposed to ultraviolet 

radiation in the stratosphere. A free chlorine atom in the stratosphere can act as catalyst for 

breaking down many stratospheric ozone molecules [180-182]. Consequently, in 1987 the 

Montreal Protocol was signed by almost all industrial countries. The Montreal Protocol is an 

international agreement on the phase-out of refrigerants based on chlorofluorocarbons. The 

Montreal Protocol is carried out in national laws of all participating countries like the "Clean 

Air Act, Title VI" in the United States [183] or the "FCKW-Halon-Verbotsverordnung" in 

Germany [184].  

In consequence, national laws [185,186] regulated the substitution of the chlorofluorocarbons 

and hydrochlorofluorocarbons by hydrofluorocarbons, which do not deplete the ozone layer. 

Among these substitutes, the hydrofluorocarbon R134a (1,1,1,2-tetrafluoroethane) plays the 

most important role. According to the "Alternative Fluorocarbons Acceptability Study" [187] 

the portion of R134a among the worldwide sold refrigerants for air-conditioners and 

refrigerators increased from 0% to 31% in the period from 1990 to 2000. In the same time, the 

portion of the hydrochlorofluorocarbons decreased from 95% to 64% whereby in 2000 

practically no hydrochlorofluorocarbons except of R22 were sold for the use in refrigerants 

and air-conditioners. 

This gradual substitution process of the refrigerants and the resulting diversity of the 

refrigerants found in old freezers, refrigerators and in air-conditioners prevent a reuse of the 

refrigerants. At the moment, the recycling process is a downcycling process whereby the 

refrigerants are converted to hydrogen chloride and hydrogen fluoride. A high quality 

recycling is not possible since the refrigerants are sometimes returned with no labels or wrong 

labels and since the refrigerants are often mixtures originating from different refrigerators or 

even were used as blends like the so-called R400 and R500 series. On the other hand, an 

analysis of the refrigerants of each refrigerator by a laboratory is too expensive. This results in 

the need of a detection method, which enables a fast, durable and economical on-line 

quantification of different mixtures of refrigerants. As sensor setups can come up to these 
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requirements, data sets were recorded to examine how feasible an application of sensor setups 

for the quantification of R22 and R134a in mixtures in air is. Additionally several polymers 

were investigated to find an optimal polymer respectively an optimal combination of 

polymers for the discrimination of the refrigerants R22 and R134a (see chapter 3). 

 

figure 14: 3D ball and sticks molecular models of the refrigerants R22 and R134a. 

The gas mixtures of R22, R134a and air were generated using a gas mixing station with 

computer-driven mass-flow controllers (MKS, Munich, Germany). A 4-way valve before the 

cell ensured that the path length was the same for all analytes. Dry synthetic air was used as 

carrier gas. All measurements were performed at a constant flow rate. 

4.5.1.1. R22 and R134a by the SPR Setup  

The SPR setup, which is described in section 4.2 in detail, was used for measuring the two 

refrigerants in air. The polycarbonate Makrolon (Makrolon M2400, Bayer AG, Leverkusen 

Germany) was used as sensitive layer. Details of the preparation of the 60 nm thick sensitive 

layer can be found in [188]. 

In addition to single analyte measurements with the sensor responses shown in figure 20 and 

in figure 22, two multicomponent data sets were recorded [189], which are used for the 

systematic investigation and development of different multivariate data analysis methods. 

These data sets will be further referred to as "refrigerant data". The first data set is a 21-level 

full factorial design whereby the concentrations (relative saturation pressures) of the two 

analytes were varied between 0 and 0.1 pi/pi0 relative saturation pressure. This data set is used 

for the calibration and optimization of the different multivariate models and will be further 

referred to as calibration data set. The second data set is a 20-level full factorial design and 

will be referred to as validation data set. The concentrations of this independent external 

validation data set were varied between 0.0025 and 0.0975 pi/pi0 in 0.005 steps. Thus, all 

concentration levels of the two data sets are different and consequently the validation data set 

should give a realistic estimate of the network performance in a real world situation [7]. In 
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total, 841 different mixtures of the refrigerants R22 and R134a were measured by SPR. All 

measurements were performed in random order. The sensitive layer was exposed to the 

analyte-air mixtures for 60 seconds and afterwards to synthetic air for 300 seconds for 

recovery. During the sorption and desorption process the signal was recorded with a 

resolution of 45 data points (see figure 20). The signals at each time point were used as 

independent variables whereby only the 40 time points until 125 seconds of measurement 

time were used for the multivariate data evaluation (see chapter 5 for details of the time-

resolved measurement proceedings). 

4.5.1.2. R22 and R134a by the RIfS Array and the 4λ-Setup 

This data set was already introduced and described in chapter 3 and will be further 

investigated in section 9.5 as the sensor response of the Makrolon layer was also recorded in a 

time-resolved mode. The signal of the Makrolon sensor could be extracted from the raw 

measurements at 18 time points during sorption and desorption. Thus, 5 independent variables 

of the static measurements of 5 polymers and additionally 18 independent variables of the 

time-resolved measurements were available. 

4.5.2. Homologous Series of the Low Alcohols 

In a homologous series, the analytes differ from each other only by additional CH2 groups. 

This allows a systematic variation of the size of the analytes with other molecular properties 

like polarizability or polarity being nearly constant. In this study the alcohols methanol, 

ethanol, 1-propanol and 1-butanol are measured with the microporous polymer Makrolon as 

sensitive layer of different setups. The differences of the analyte sizes (0.068 nm3 to 

0.180 nm3) allow a systematic investigation of the quantification based on different kinetics of 

sorption into and desorption out off the micropores of Makrolon. The mixtures of the analytes 

were generated by thermo-controlled bubblers filled with pure liquid analytes sorbed in 

chromosorb and a subsequent gas mixing station with the same path length for all analytes. 

4.5.2.1. Methanol and Ethanol by the SPR Setup 
 
An about 300 nm thick Makrolon layer was coated on the glass prism of the SPR setup. 

Further details of the experimental setup can be found in [190]. In addition to several single 

analyte measurements, 2 datasets were recorded for a multicomponent analysis [191]. The 

calibration data set is a 9-level full factorial design whereby the relative saturation pressures 

(pi/pi0) of methanol and ethanol were varied between 0 and 0.045. The validation data set is an 
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8-level full factorial design with relative saturation pressures between 0.0025 and 0.0425. 24 

measurements were identified as outliers according to [192], whereby 20 measurements of the 

calibration set and 4 measurements of the test set were removed. These measurements showed 

outlying high signals and were recorded in series. During all measurements, the polycarbonate 

was exposed to the analyte mixtures for 120 s and after that to synthetic air during 300 s. 

During the exposure to analyte the data were recorded every 5 s and during the exposure to 

synthetic air with a time resolution of 10 s resulting in 53 time points (see also figure 15). 
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figure 15: Sensor responses of different concentrations of single analytes recorded during 

120 seconds of exposure to analyte and afterwards during exposure to synthetic 
air. The x-axis represents the exposure time, the y-axis represents different relative 
saturation pressures (concentrations) of the analytes and the z-axis represents the 
signal shifts during the SPR measurement. 

4.5.2.2. Methanol, Ethanol and Propanol by the SPR Setup 

For the multicomponent analysis of ternary alcohol mixtures, 2 data sets were recorded [193] 

using the SPR setup with a 300 nm Makrolon layer (more details in [194]). The calibration 

data set is a 6-level equidistant full factorial design whereby the relative saturation pressures 

of methanol, ethanol and 1-propanol were varied between 0 and 0.035. 18 concentration 

combinations were measured two more times for an estimation of the experimental signal 

inaccuracies. The validation data set is a 5-level equidistant full factorial design with relative 

saturation pressures between 0.0035 and 0.0315. Additional 15 measurements were performed 

with the pure analytes at the five concentration levels. 9 measurements were identified as 

outliers according to [192] whereby 7 measurements of the calibration data set and 2 

measurements of the validation data set were removed. During all measurements the 

polycarbonate was exposed to the analyte mixtures for 600 seconds and afterwards to dry 

synthetic air during 4760 seconds with 28 time points recorded during exposure to analyte and 

22 time points recorded during exposure to air resulting in 50 input variables in total. The 

sensor responses are shown in figure 16 for different concentrations of the single analytes. All 

measurements were performed in random order within the two data sets. The validation data 
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set was recorded one month after the calibration data set and the signals of this data set were 

averaged using two measurements. 
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figure 16: Signals of the SPR device during exposure to analyte and then to synthetic air for 

different concentrations of methanol ethanol and 1-propanol. 

4.5.2.3. Methanol, Ethanol and Propanol by the RIfS Array and the 4λ Setup 

Ternary mixtures of methanol, ethanol and 1-propanol were measured by the RIfS Array 

setup and the 4λ setup to compare the performance of these setups [195]. Additionally the 

effect of smoothing the sensor responses is investigated, as the sensor signals of the RIfS 

setups are noisier than the sensor signals of the SPR setup using Makrolon as sensitive layer. 

For both setups, a 6-level equidistant full factorial design with relative saturation pressures 

between 0 and 0.1 was measured twice for the calibration data set. The validation data set is a 

5-level equidistant full factorial design with relative saturation pressures between 0.01 and 

0.09 also measured twice. The data of the 4λ setup, which was equipped with a 310 nm 

Makrolon layer, were recorded during 180 seconds of exposure to analyte (44 time points 

recorded) and afterwards 575 seconds during exposure to synthetic air (149 time points 

recorded). The data set of the array setup, which was equipped with a 80 nm, a 120 nm, and a 

160 nm Makrolon layer and additionally with a PUT layer, were recorded during 240 seconds 

exposure to analyte and afterwards during 210 seconds of exposure to synthetic air with a 
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time resolution of 50 data points per sensor. Due to a bug in the program for the gas mixing 

station, 15 measurements of the calibration set and 18 measurements of the validation sets had 

to be removed. 

4.5.2.4. Quaternary Mixtures of Alcohols by the RIfS Array and the SPR 
Setup 

Finally, quaternary mixtures of methanol, ethanol 1-propanol and 1-butanol were measured by 

the RIfS array setup and by the SPR setup to compare the performance of both setups [196]. 

A 4-level equidistant full factorial design with relative saturation pressures between 0 and 

0.09 was measured for the calibration data set. The validation data set is a 3-level equidistant 

full factorial design with relative saturation pressures between 0.015 and 0.075. The data of 

the SPR setup, which was equipped with a 100 nm Makrolon layer, were recorded during 124 

seconds of exposure analyte (40 time points) and afterwards for 806 seconds during exposure 

to synthetic air (116 time points). The sensor responses for different concentrations of the 

single analytes are shown in figure 24. The data of the array setup, which was equipped with a 

95 nm and a 165 nm Makrolon layer and additionally with a PUT layer, were recorded during 

236 seconds exposure to analyte (16 time points recorded per Makrolon layer) and afterwards 

during 3240 seconds of exposure to synthetic air (34 time points recorded per Makrolon 

layer).  The sensor signals of the PUT layer were recorded only once at 236 seconds as the 

swelling kinetics of this polymer cannot be differentiated at the chosen time resolution of the 

measurements.  
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5. Results – Kinetic Measurements 

In this chapter, the principle of the time-resolved measurements is introduced. In contrast to 

the common principles of static measurements and static feature extractions, this approach 

allows the simultaneous quantification of a virtually unlimited number of analytes. Although 

some sporadic reports of time-resolved measurements in chemical sensing can be found in 

literature, no systematic investigations of time-resolved measurements, no systematic exploi-

tations of the time domain and no transfers to different setups and measurement principles 

have been reported for chemical sensing up to now. Although the approach of the time-

resolved measurements can be used for many different transduction and interaction principles, 

this study focuses on the application of one specific polymer for the time-resolved measure-

ments. Thus, after an explanation of the static and the time-resolved sensor measurements this 

polymer is introduced. Then different properties of the polymer and different interactions of 

the polymer with analyte molecules are investigated as the understanding of these properties 

and interactions allows tweaking the sensors for different analytical tasks. This tuning is 

demonstrated in the last sections of this chapter. 

 

5.1. Static Sensor Measurements 
The quantification of multiple analytes in mixtures by sensors is faced by several problems. 

For the determination of the regression parameters of the MLR (expression (7)) and of all 

other multivariate calibration methods as many sensor signals as analytes to be quantified are 

needed since otherwise the set of equations would be statistically underdetermined [197]. In 

real world measurements, even more signals are needed as noise, drifts, interfering unknown 

analytes and other non-ideal influences "consume" additional degrees of freedom. Typically, 

the sensors used are not selective for a single analyte also known as crossreactivity. The 

resulting covariance of the sensor signals causes additional problems for the calibration 

resulting in the need of as many sensors as possible, which show different sensitivity patterns 

for the analytes of interest. Thus, the common approach to quantify several analytes 

simultaneously is the combination of many sensors on a sensor array with the sensors 

showing different sensitivity patterns for the different analytes and a subsequent multivariate 

data analysis [198-202]. An advantage of this unspecific multisensor approach is the 

possibility of using the same array setup for many different analytes without the need of 

finding specific sensor materials [203]. Usually only one single feature of the sensor response 
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(value of the sensor signal) is extracted, such as the height of the sensor response at 

equilibrium or the slope of the sensor response resulting in the need of more sensors in the 

sensor array than the number of analytes to be quantified. 

 

5.2. Time-resolved Sensor Measurements 
Recently a new approach has been proposed by several groups for reducing the number of 

required sensors [204-214]. This approach is based on the exploitation of the time specific 

information of sensor responses. If various analytes show different kinetics for the sorption 

into the sensitive layer, the resulting sensor response recorded versus time features a different 

shape for these analytes. This additional temporal information can render the parallel 

information of different sensors in an array redundant allowing reducing the number of the 

sensors. For that purpose the shape of the sensor responses has to be digitized by recording 

the sensor responses over time (further referred to as time points) and by performing a 

multivariate analysis of these time points. These time-resolved measurements were performed 

in various areas of sensor research. For example, Yan et al. [204] quantified binary mixtures 

of solvents in water by a single reflectometric interference spectroscopic sensor whereby the 

time shift of the highest signal after analyte exposure depended on the composition of the 

mixture similar to gas or liquid chromatography. The components of binary and ternary 

mixtures of organic analytes in water could also be determined by the use of a single 

amperometric sensor [207,214]. Thereby, the consumption of oxygen by the metabolism of 

microorganisms with different time constants for the analytes was detected. In the gaseous 

phase, time-resolved measurements were used in combination with sensor arrays to obtain 

additional variables. Using time-resolved measurements with an array of quartz 

microbalances coated with three different polymer films the classification of six solvent 

vapors was improved compared with the classification using only the saturation mass [215]. 

Johnson et al. [210] classified 20 different analytes with only 4 fiber optic sensors and also 

classified these analytes semi-quantitatively into low, medium and high analyte 

concentrations using ten fiber optic sensors with 90 % of the test data being assigned to the 

correct concentration class. Podgorsek et al. [216] used a glassy polyimide for the detection of 

methanol and ethanol and showed the difference of the response times, which could be used 

for the discrimination of both analytes. However, a detection of both analytes in mixtures was 

not performed.  
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Yet, all these publications used the time-resolved measurements as phenomenological tool 

and no systematic research was performed concerning the optimization of the different 

mechanisms and components like the time delaying effects, the time-resolution of the 

recorded sensor response, the feature extraction, the data preparation and the multivariate data 

analysis, which was rather basic in most of the publications cited. For example in most of the 

approaches the sensor responses were recorded using a rather coarse time resolution [205, 

206,212] or even a coarse resolution combined with other more or less arbitrary features 

[210,211,217]. Although a coarse time-resolution grants an easily manageable quantity of 

information, the risk of losing important information can be high, especially if several 

analytes show similar or very fast sensor responses. Thus, a fine time grid should be generally 

preferred, which nevertheless needs a more sophisticated data analysis. Additionally, all 

approaches cited above were isolated applications and no transfer to other systems was 

performed. 

In this work, an extensive and systematic research on time-resolved measurements is 

performed from the investigation of the effects causing the time delays to an optimization of 

the data analysis. The principle of time-resolved measurements is applied to several analytical 

problems and to several different sensor devices. In this work, the time-delaying effects are 

based on a microporous polymer. For the data analysis several methods are developed, which 

allow a highly efficient evaluation of a fine time grid of the sensor responses. These methods 

are embedded in frameworks, which allow a simultaneous variable selection and calibration 

of nonlinear data and which can be applied to any linear and nonlinear multivariate 

relationship.  
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5.3. Makrolon – A Polymer for Time-resolved Measurements 

5.3.1. General Properties of Makrolon 

The time-resolved measurements of the SPR and RIfS setups are based on sensitive layers, 

which were prepared using a polycarbonate polymer. This polymer is commercially available 

as Makrolon M2400 from Bayer AG, Leverkusen, and will be further referred to as Makrolon. 

The structure of the monomer unit is shown in figure 17. The interesting property of 

Makrolon is the microporous structure of the glassy polymer. According to [218], the size of 

these pores follows a distribution with a mean pore size of 0.1 nm3 determined by the use of 

the positron annihilation lifetime spectroscopy (PALS). The PALS detects the decay of 

positrons and exploits the effect that the positrons are more probably present in the pores than 

in the polymer matrix due to the lower electron density in the pores [218,219]. 
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figure 17: Structure of the monomer unit of the polymer Makrolon M2400. 

In figure 18, the shift of the SPR wavelength is shown while the device was exposed to an 

alternating sequence of synthetic air and relative saturation pressures of methanol of 0.31, 

0.62 and 0.80. At these high concentration levels, the sensor signal increases rapidly at the 

beginning of the analyte exposure meaning that the refractive index of the sensitive layer 

increases. This increase of the refractive index can only be explained by methanol 

(nD20=1.329) sorbing into the micropores of the polymer and replacing air (nD20=1) in these 

polymers as the sorption of methanol into the polycarbonate matrix (nD20=1.58) would 

decrease the refractive index of the sensitive layer. The molecules of methanol have less 

volume (0.068 nm3) than the mean size of the pores of Makrolon and therefore can easily sorb 

into the micropores.  
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figure 18: SPR sensor response of the SPR device when exposed to different relative 
saturation pressures of methanol of 0.31, 0.62 and 0.80 and alternating to 
synthetic air. 

During a long-term exposure of Makrolon to methanol (see figure 18), the refractive index 

decreases. This decrease reinforces with higher concentrations of methanol and can be 

explained by two effects. The first effect is based on an expansion of the micropores of the 

polycarbonate matrix when these micropores are occupied by analyte molecules resulting in a 

decrease of the refractive index of the sensitive layer. When the exposure to methanol stops 

the refractive index decreases rapidly as the methanol molecules quickly desorb. After the 

exposure to high concentrations of methanol, the refractive index decreases below the initial 

value, as the pores and with it the Makrolon matrix are still expanded. The initial refractive 

index is gradually reached while the Makrolon layer is shrinking to the initial thickness. The 

expansion of the Makrolon matrix can only be detected when exposed to analyte for a long 

time. This effect allows the modification of the kinetics of sorption and desorption for bigger 

molecules and is exploited in section 5.3.4. The second effect is an unspecific sorption of the 

analyte into the polymer matrix besides of the specific sorption into the pores resulting in a 

swelling of the matrix. As the analyte has a lower refractive index than the polymer matrix, 

the shift of the SPR wavelength decreases. This unspecific sorption is a Henry type sorption 

(see section 3.2) whereas the sorption into the micropores can be considered as a Langmuir 

sorption (see section 3.2). In figure 19 the isothermal calibration curve for the sorption of 

methanol into Makrolon is shown. The curve shows the typical shape of the Langmuir 

sorption and hardly any portion of Henry sorption can be detected whereas the isothermal 

calibration curves of R22 and R134a show a significant Henry sorption (see figure 7 in 

section 3.2 and additionally the discussion in section 3.2). At the moment, further research is 

done by combining measurements of an ellispometric device, an SPR device and a RIfS 

device for distinguishing the sorption into the pores from the sorption into the matrix and for 
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distinguishing the long-term expansion of the matrix from the swelling due to analyte 

sorption. First experiments allow following preliminary conclusions: 

• The Henry sorption plays only a role if the analyte molecules are so big that a specific 

Langmuir sorption into the pores is not possible or very slow, whereby the total 

amount of the Henry sorption is always very low due to the high glass temperature of 

Makrolon. 

• For exposure times less than 30 minutes, the expansion of the polymer matrix can be 

neglected. 

• The sorption of analyte is reversible and the layer is highly stable. For example, the 

measurements, which are partly shown in figure 18, had a mean drift of 5.3*10-4 nm/h, 

which corresponds to only 0.01 % of the maximum sensor response.   
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figure 19: Isothermal calibration curve after 30 minutes of exposure to different concen-
trations of methanol. The standard deviations of 3 measurements are represented 
by the error bars. 

 

5.3.2. Time-resolved Measurements 

The interesting property of Makrolon is the microporous structure, which allows a discrimi-

nation of analytes due to different sizes of the analyte molecules [220-222]. Small analytes 

show a very fast sorption (of the Langmuir type) into the pores, medium sized analytes slower 

kinetics and bigger molecules hardly sorb into the pores of the polymer. For the two analytes 

R22 and R134a, the sensor responses of the SPR device are plotted in figure 20 during 60 

seconds of exposure to analyte with a relative saturation pressure pi/pi0 of 0.1 and afterwards 

during exposure to synthetic air. The smaller molecules of R22 immediately sorb into the 
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pores of the polymer and desorb very fast resulting in a rectangular shape of the sensor 

response. The bigger molecules of R134a show a slower kinetics resulting in a curvature of 

the sensor response. A quantitative correlation of the different interaction kinetics with the 

absolute volume of the analyte molecules is difficult, as different mechanisms play a role. For 

the diffusion of the molecules within a microporous polymer, often the kinetic volumes of the 

molecules are used. These kinetic volumes can be calculated with the help of the Van-der-

Waals parameters, the critical pressure, the critical temperature, the Lennard-Jones potential  

and the Stockmayer potential [223-225]. The kinetic volume is 0.120 nm3 for R22 and 0.140 

nm3 for R134a. On the other hand, for the inclusion of the molecules into the pores, the 

easiest description is the Van-der-Waals volume, which is 0.048 nm3 for R22 and 0.056 nm3 

for R134a. For the sorption process into the pores, which can be regarded as a combination of 

both volumes, the effective volume of the molecules consequently depends on the thickness 

of the layer as the path length of diffusion increases with the thickness of the layer. This effect 

is exploited for tailoring the kinetics of a specified analyte by changing the thickness of the 

sensitive layer (see section 5.3.3).  
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figure 20: SPR sensor responses for 60 seconds of exposure to analyte with a relative 
saturation pressure of 0.1 and after that for exposure to air.  

For a quantitative determination of analytes in mixtures, which is based only on the different 

kinetics of the analytes, the kinetics has to differ for the complete concentration range of 

interest. In figure 21, the sensor responses of the sorption of two analytes are plotted versus 

the time of sorption (x-axis) and versus the concentration of the analytes (y-axis). Both 

analytes show a linear relationship between the sensor response and the concentration. In 
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addition, the relationship between the sensor responses and the time of sorption are also linear 

for both analytes. The similar shape of the sensor responses along the time axis means that 

both analytes cannot be discriminated by the kinetics although analyte 2 has twice the 

sensitivity of analyte 1. For example, the sensor response recorded over time is similar if 

analyte 1 is present with a concentration of 0.8 or analyte 2 is present with a concentration of 

0.4 rendering a simultaneous quantification of both analytes impossible. For a successful 

discrimination, the sensor responses of the analytes have to show a different shape along the 

time axis and not a different slope. In mathematical terms, the analytes have to show different 

partial derivates of the second order (twice derived by time) over the complete concentration 

range for at least as many time points as analytes to be quantified: 
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With zi as sensor response of the analyte i and tj as time point j. 
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figure 21: Linear sensor response of two analytes for a sorption process versus the 
concentration and the time. 

To test the feasibility of the quantification of R22 and R134a in mixtures by the use of only 1 

sensor, the sensor responses of the SPR device were time-resolved recorded for 20 single 

analyte measurements with relative saturation pressures between 0 and 0.1. The sensor 

responses of these measurements are shown in figure 22. It is obvious that the kinetics of 

sorption and desorption differs for both analytes over the complete concentration range 

enabling the quantitative determination of both analytes in binary mixtures on the basis of the 

kinetics recorded with only 1 single SPR sensor. Thereby the sensor responses at definite time 

points are used as input variables for a multivariate calibration. These time points, which are 

for example displayed as dots and boxes in figure 20, have also been referred to as "virtual 

sensor array" in literature. In contrast to typical setups for chemical sensing, many variables 
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can be generated by one single sensor and not only 1 variable per sensor. The number of 

variables generated depends on the scanning speed (digitization speed) for the recorded sensor 

response and on how long the sensor responses are recorded. In contrast to some approaches, 

which try to fit a model to the sensor response and which use the model parameters as input 

variables, the scanning of the sensor response allows an accuracy only limited by the sensor 

recording system, whereas the model approach often has to deal with lacks of fit or instable 

parameters. 

The time-resolved approach does not need to wait until an equilibrium state between the 

analyte and the analyte sorbed in the polymer has been reached (R22 in contrast to R134a in 

figure 22) proposed in static approaches [226]. This allows shorter measurements and the 

application of a broader variety of polymers and analytes. 

In figure 22 it is also visible that the sensor responses of many time points are very similar. 

This means that the variables are highly correlated rendering the application of simple 

calibration methods like the MLR useless (see section 2.5). 
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figure 22: SPR sensor response during 60 seconds of exposure to analyte and afterwards 
during exposure to synthetic air. The x-axis represents the time and the y-axis 
represents different relative saturation pressures of the analyte. 



5. Results – Kinetic Measurements 69  

The experimental design of multivariate calibrations highly depends on the interactions of the 

analytes in mixtures with the sensitive layer compared to the interactions of the single 

analytes with the sensitive layer. A first approach is the assumption that the sensor responses 

of the analytes in mixtures are additive of the sensor responses of the single analytes. In this 

case, the experimental design only needs few levels of concentrations for a successful 

calibration. In figure 23, the sensor responses of the measured binary mixtures of the 

refrigerants (both of equal concentrations) minus the sensor responses of the single analytes of 

the corresponding concentrations are plotted versus the time and versus the total concentration 

of both analytes. It is visible that the plot strongly deviates from the ideal case of additive 

signals, which would result in a plane. The signal during exposure to analyte is lower than 

expected. This effect reinforces with higher concentrations of the analytes and can be ascribed 

to a saturation of the sensitive layer with analyte. Additionally a faster kinetics directly after 

the beginning and after the end of exposure to analyte is visible for higher concentrations of 

the analytes. The deviations from the signals being additive make an extensive calibration like 

a several-level full factorial design of the mixtures necessary. 

 

figure 23: Deviations from additive signals of both analytes when measured in mixtures of 
equal concentrations of both analytes. 

A systematic variation of the size of the molecules with other molecular properties like 

polarity being similar can be found when a homologous series of analytes is investigated. In 

figure 24, the sensor responses of the SPR device are shown for 120 seconds of exposure to 

analyte of the homologous series of low alcohols and after that for exposure to air. Similar to 

the refrigerants, the shape of the sensor response changes from a rectangular to a wave with 

an increasing size of the alcohol molecules. The differences of the sorption and desorption 

kinetics should allow the quantification of quaternary mixtures using only the time resolved 

measurements of this single SPR sensor. 
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figure 24: SPR sensor response during 120 seconds of exposure to analyte and afterwards 
during exposure to synthetic air. The x-axis represents the time and the y-axis 
represents different relative saturation pressures of the analyte. 

 

5.3.3. Thickness of the Sensitive Layer 

In figure 25, the sorption and desorption of ethanol is shown for two Makrolon layers with a 

thickness of 100 nm and 300 nm. It is obvious that the thinner layer shows a significantly 

faster kinetics than the thicker layer. This effect can be explained by the different mechanisms 

of sorption proposed in section 5.3.2. A thicker layer means a longer diffusion path resulting 

in a higher proportion of the kinetic volume in the effective volume, which is consequently 

bigger. This effect allows tailoring the sensitive layer to a specific analytical problem. For 

example, the thicker layer allows an efficient discrimination of ethanol from the smaller and 

consequently "faster" methanol (see figure 15) whereas the thinner layer allows discrimi-

nating ethanol from the bigger and consequently slower 1-propanol and 1-butanol (see figure 

24). The ability of tailoring the layers is only limited for very thick layers by the consumption 

of time needed for a measurement and for thin layers by a poor signal to noise ratio as only 
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few molecules can sorb into very thin layers. Further investigations of the influences of the 

thickness of the sensitive Makrolon layer can be found in [227]. 
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figure 25: Kinetics of sorption and desorption of ethanol for a thin and a thick sensitive 
layer. 

 

5.3.4. Influence of the Carrier Gas 

In section 5.3.1, it was shown that the Makrolon matrix expands when exposed to analyte for 

a long time. This effect can also be used for adapting the sensitive layer to a specific 

analytical problem by modifying the composition of the carrier gas. In figure 26, the kinetics 

of R134a is shown if pure air and air mixed with R22 is used as carrier gas. It is visible that 

even the quite low amount of adding 1% R22 to air as carrier gas significantly reduces the 

time needed for the desorption of R134a. In figure 27 the autoscaled signal of the R134a 

kinetics with pure air as carrier gas minus the autoscaled signal of the R134a kinetics in an 

air-R22 mixture is plotted. The positive difference in the plot demonstrates that the faster 

kinetics caused by the modified carrier gas plays a role for the desorption of highly 

concentrated R134a. Consequently, the addition of bigger analytes to air as carrier gas can be 

used to modify the desorption kinetics and to accelerate measurements. At the moment the 

accelerated kinetics of sorption and desorption can be best explained by the expansion of the 

micropores during the occupation of the pores by rather big molecules of the carrier gas and 

its additives (see also section 5.3.1). During the following exposure to analyte, the analyte 

molecules can sorb faster into the expanded micropores replacing the molecules of the carrier 

gas. Yet, further research on the exact mechanisms of the expansion of the polymer matrix 

and on the influence of different carrier gas mixtures has to be done. Up to now, it is only 



72 5. Results – Kinetic Measurements 

certain that the concentrations and the sizes of the molecules of the additives to the carrier gas 

play a role.  
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figure 26: Autoscaled signal of the sorption and desorption of R134a in pure air as carrier 
gas and in an air – R22 mixture as carrier gas. 
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figure 27: The difference of the autoscaled signals of the sorption and desorption of R134a in 
pure air and in an air - R22 mixture is plotted versus the concentrations of R134a 
and the time (60 seconds of sorption and 290 seconds of desorption). 
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5.4. Conclusions 
In this chapter, the principle of time-resolved measurements has been introduced as a new 

approach in chemical sensing. Thereby the time-resolved measurements performed in this 

work are based on Makrolon as sensitive polymer layer. The microporous structure of this 

polymer allows the discrimination of different analytes based on the size of the molecules. 

The combination of the polymer and a time-resolved recording of the sensor responses during 

sorption and desorption of the analytes allows a simultaneous quantification of a virtually 

unlimited number of analytes. The analytes to be quantified are only limited by too similar 

kinetics and by too slow kinetics whereby the kinetics can be modified by the type of carrier 

gas and by the thickness of the sensitive layer. The new time-resolved approach allows 

reducing the number of sensors to be used for an analytical problem. In this work, several 

analytical tasks are solved by the use of a single sensor setup rendering sensor arrays 

unnecessary, which would have been used for these analytical problems in the common 

approaches. 

Additional research on other microporous polymers should allow the application of this 

approach to a broader spectrum of analytes. Yet, the time-resolved measurements are not 

limited to a size sensitive detection but can also be applied to other interaction principles. The 

time-resolved approach with a discrimination of the analytes based on exploiting the different 

shapes of the time-resolved sensor responses also dramatically changes the search for suitable 

sensitive layers for an analytical problem. Optimal sensitive layers of the common static 

sensor evaluation show most different sensitivity patterns for the analytes (like in section 3.3) 

whereas an optimal sensitive layer for the time-resolved sensor evaluation shows different 

shapes of the sensor responses for the different analytes.  

In contrast to the sparse reports of time-resolved measurements in chemical sensing found in 

literature, the properties and interactions of the sensitive layer with the analytes is 

systematically investigated in this study allowing the tweaking of the kinetics described 

above. In the next chapters additional systematic investigations follow, which concern the 

exposure time, the recording speed of the of the sensor responses, the parallelization of the 

sensors and last but not least the multivariate data analysis rendering this work unique in 

respect to time-resolved measurements in chemical sensing. 
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6. Results – Multivariate Calibrations 

In this chapter, the data sets of the refrigerants R22 and R134a, which were introduced in 

section 4.5.1.1, are investigated by the use of the most common methods of multivariate 

calibration starting with the PLS. Thereby models for the relationship between the 40 time-

resolved sensor responses and the concentrations of both analytes are established. As the 

linear PLS calibration cannot deal with the nonlinearities present in the data sets, several 

methods, which are known to be capable of dealing with nonlinearities, are applied to this 

data set afterwards. These methods originate from different fields of scientific research such 

as multivariate spectroscopic calibration, quantitative structure activity relationship, machine 

learning, medical decision support systems, psychometrics, economic research and artificial 

intelligence whereby all these methods are able to calibrate multivariate relationships. An 

overview of the prediction errors for the calibration data and the validation data is shown in 

table 2 in section 6.11 for all methods used in this chapter. It is obvious that the calibration 

quality of the different methods shows a very broad variety ranging from unacceptable results 

for the widely used PLS calibration to promising results for neural network based calibrations. 

 

6.1. PLS Calibration 
PLS1 models were built for the calibration data set of the refrigerants (see section 4.5.1.1) 

with Martens' Uncertainty Test [32,33] for the determination of the insignificant variables and 

with the recommended determination of the number of principal components (factors) 

according to: 

 0Min[ 0.01 ]PC PC aVytot a Vytot+i i  (25) 

with a as the current dimensionality (principal component number), Vytot as the total residual 

y-variance validated with a principal components respectively 0 principal components (total 

y-variance). This means that for each principal component 1% of the total y-variance is added 

to the variance at principal component number a. This ensures that only principal components 

are added, which significantly improve the model. 

For R22 a model was calibrated with 2 principal components and for R134a a model with 3 

principal components. Martens' Uncertainty Test removed no variable for R22 and only the 

time points 15 s and 67 s for R134a. In figure 28, the x and y loadings are shown for R134a. It 
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is visible that nearly all variables are highly correlated whereby the time points during 

desorption form a cluster (top right) and the time points during sorption form a second cluster 

(bottom left). The three dots near the origin of coordinates are the first 3 time points during 

sorption and the remaining 2 dots are the fist 2 time-points during desorption. The 

corresponding loadings plot for R22 is analogous with only the location of the two clusters 

exchanged.  
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figure 28: Loadings plot of the x and y variables for the calibration of R134a. 

The relative root mean square errors of the predictions of the calibration data are very high 

with 11.89% for R22 and 11.40% for R134a. The prediction of the independent validation set 

also showed disappointing high relative errors of 10.27% for R22 and 9.94% for R134a. In 

figure 29 the predictions of the validation data are shown as true-predicted plots. It is visible 

that the plots show a curvature and consequently the predictions are highly biased. The curved 

true-predicted plots are a typical sign of nonlinearities in the data, which are not successfully 

calibrated by a linear model. In figure 30, the T scores are plotted versus the U scores of the 

model of R134a for the first principal component, which explains 92.5% of the y-variance and 

54.2% of the x-variance. The different concentration levels of R134a are visible along the axis 

of the U scores and the different concentrations of the interfering analyte R22 are visible as 

scattering along the axis of the T scores. As this type of plot shows the inner relationship of 

the PLS model (see expression (10)), the nonlinearities, which are visible in figure 30 and 

which are also visible in the less scattered T scores versus U scores plots for the higher 

principal components, demonstrate that the linear PLS model cannot deal with a nonlinear 

relationship present in the data. The corresponding plots for R22 are analogous and will not 

be discussed here. 
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figure 29: True-predicted plots of the PLS calibration for the validation data. The optimal 
number of principal components was determined by Martens' Uncertainty. The 
predictions are poor due to systematic biases. 
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figure 30: T scores versus U scores for the first principal component of the model for the 
calibration of R134a. 

It is known [39, 228-230] that the linear PLS sometimes can be successfully applied to 

nonlinear problems when minor important higher principal components are included into the 

model. These principal components may encapsulate not only noise but also significant 

information about the nonlinear relationship. Thus, the minimum crossvalidation error was 

used as selection criterion for the optimal number of principal components, as this criterion is 

less conservative in terms of the number of principal components compared to expression 

(25). The optimal models contain 5 components for R22 and 6 components for R134a, which 

were selected using the minima in figure 31. The calibration data were predicted with relative 

RMSE of 10.47% for R22 and 8.51% for R134a. The predictions of the validation data are 



6. Results – Multivariate Calibrations 77  

visualized in figure 32 with relative RMSE of 8.69% for R22 and 7.63% for R134a. Although 

the increasing number of principal components improved the errors of prediction, the plots 

show that the improvement can be put down to less scattered predictions but not to an 

improved calibration of the nonlinearities. The true-predicted plots can also explain why the 

predictions of the calibration data are worse than the predictions of the validation data. At 

both ends of the concentration range, the predictions are most biased. As the concentration 

range of the calibration data is wider (pi/pio=0-0.1) than the concentration range of the 

validation data (pi/pio=0.05-0.095) the high bias at the lower and upper concentration limit 

significantly increases the RMSE of the prediction of the complete calibration data set. 
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figure 31: Crossvalidated root mean square errors for the first 20 principal components for 
the calibration of R22 and R134a. 
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figure 32: True-predicted plots of the PLS for the validation data. The optimal number of 
principal components was determined by a full crossvalidation of the calibration 
data. The predictions are still rather poor visible as systematic biases. 
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In order to find a statistical basis to evaluate the ability of a method to calibrate nonlinearities, 

statistical methods can be used, which investigate the randomness of residuals of sequential 

observations. Theses tests like the Durbin-Watson statistics were originally developed for 

sequential observations equidistant in space or time. Centner et al. [231] showed that the 

Durbin-Watson Statistics can be used to test the residuals of purity data without a space or 

time component while implementing the test into a SIMPLISIMA algorithm for a mixture 

analysis. In this study, the mean residuals in figure 29 and figure 32 are treated with these 

statistics by using the increasing concentration levels as "virtual equidistant space 

component". The Durbin-Watson statistics is used to investigate the correlation of the 

residuals and additionally the Wald-Wolfowitz Runs test is used to test if the signs of the 

residuals occur in a random sequence. 

Wald-Wolfowitz Runs Test 

A good calibration of a relationship results in a random sequence of the positive and negative 

residuals of prediction. Calibrations with systematic errors show longer sequences of positive 

and negative residuals. For example, in figure 29 the mean residuals of R22 show only 3 

sequences, first with negative signs, then with positive signs and finally with negative signs 

again. These sequences are also known as runs. The Wald-Wolfowitz method tests whether 

the number of runs is small enough or big enough for the null hypothesis of a random 

distribution of the signs to be rejected [232]. Thereby the number of positive and negative 

runs is compared with the tabulated value for the number of observations and for a given error 

level [233]. 

Durbin-Watson Statistics 

The Durbin-Watson statistics can be used to test for a correlation (non-randomness) of the 

residuals [231,234,235]. The null hypothesis that there is no correlation between the 

successive residuals is evaluated by: 
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Thereby ei is the residual corresponding to the observation i and ei-1 is the residual of the 

preceding observation. The d value is compared to the lower and upper critical values dL and 

dU proposed by Durbin and Watson [236]. If the calculated d is smaller than the tabulated 

lower critical value dL, the null hypothesis is rejected meaning that the residuals are 
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correlated. If the calculated d is bigger than the tabulated upper critical value dU, the 

correlation of the residuals is negligible and if the calculated d is between both tabulated 

critical values, the test is inconclusive. 

For the residuals of the predictions of both analytes by all PLS models (Martens' Uncertainty 

Test and minimum crossvalidation criterion), the Wald-Wolfowitz Runs test (p=0.000) shows 

that the sequence of the residuals is highly non-random. The null hypotheses of the Durbin-

Watson Statistics have to be rejected at the 5% error level for both analytes and both models 

indicating a correlation of the residuals. The combination of both statistics and the true-

predicted plots indicate that the PLS cannot deal with nonlinearities, which are present in the 

relationship between the concentrations of the analytes and the signals of the device.  

The nonlinearities, which are somehow visible in figure 22, can be made more prominent by 

plotting the first and second partial derivatives of the signals with respect to the relative 

saturation pressure versus the relative saturation pressure of the analyte R22 and versus time 

in figure 33. It is obvious that during exposure to R22 the first partial derivative is not 

constant along the concentration axis (y-axis) confirming that the relationship between the 

sensor signals and the relative saturation pressures of R22 is not linear. The partial derivative 

of the second order is neither zero nor constant. This means that the relationship also cannot 

be exactly described by polynomials with quadratic terms. The same nonlinear relationship 

between the signal and the relative saturation pressure can also be observed for R134a, but is 

not shown here. The nonlinearity can be ascribed to a saturation effect, as the number of 

micropores is limited (see discussion in section 3.2). For the high-concentrated mixtures, the 

nonlinearity is even worse since the total concentrations add up to 0.2 pi/pio. As for both 

analytes this nonlinearity can be observed and as a model for the nonlinear relationship 

between the concentrations and the signals is not known, several extensions to the linear 

models and several variable transformations are used for the calibration of this data set in the 

next sections. Additionally, "true nonlinear" methods, the neural networks, are applied to the 

data set in the last sections of this chapter. 
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figure 33: First and second partial derivatives of the LOESS plot of figure 22 for R22 with 
respect to the relative saturation pressure. 

 

6.2. Box-Cox Transformation + PLS 
The Box-Cox transformation or power transformation is a general and widely used 

linearization procedure when no theory exists, which indicates that a certain transformation of 

the input and/or response variables will result in a more linear model [39]. The idea is to 

model a power of the response variable y as a linear function of x: 

 0
1y b xb

λ

λ
− = +  (27) 

The value of λ, which fits the linear function of x best, is estimated using the available data of 

the pure analytes. After the estimation of l and of the regression coefficients b and b0, the 

response variable can be transformed according to: 

 ( )( )
1

0 1y b xb λλ= + +  (28) 

If λ=0, it is common to transform y according to: 

 ( )lny y=  (29) 

The Box-Cox transformation (27) was determined for the measurements of the single 

refrigerants of the calibration data set. For R22 λ=0.68 and for R134a λ=0.74 were estimated. 

Then the relative saturation pressures of the refrigerants of the calibration and the validation 

data were transformed according to expression (28). Similar to section 6.1 PLS models were 
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built for the transformed calibration data and then the validation data were predicted whereby 

the optimal number of principal components was determined by the minimum error of 

crossvalidation of the calibration data. The optimal model for R22 contained 11 principal 

components and the model for R134a used 10 principal components. The calibration data 

were predicted with a relative RMSE of 2.97% for R22 and 4.50% for R134a. The prediction 

of the validation data, which is also shown in figure 34 was performed with rel. RMSE of 

3.09% for R22 and 5.04% for R134a. Both, the Durbin-Watson Statistics and the Wald-

Wolfowitz Runs test are significant at the 5% error level. In figure 34 it is visible that the 

prediction of both analytes shows slightly a wave. Compared with the standard PLS the Box-

Cox Transformation allows a highly improved calibration while a few nonlinearities remain 

uncalibrated. Although a rather high number of principal components are needed, only a slight 

overfitting can be observed, as the errors of the validation data are only moderately higher 

than the errors of the calibration data.  
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figure 34: True-predicted plots of the PLS for the validation data. The data were linearized 
by a Box-Cox transformation.  
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6.3. INLR 
The Implicit Nonlinear PLS Regression (INLR) [237,238] is also called Nonlinear PLS in 

many publications. The INLR introduces nonlinearities into the regression model by adding 

squared terms ( 2 2 2
1 2 3, , ...x x x ) and optionally the cross-product terms ( 1 2 1 3 2 3, , ...x x x x x x ) to the 

set of "original" independent variables ( 1 2 3, , ...x x x ) [239]. For this study, only the squared 

terms were added as the addition of the cross-product terms would increase the number of 

independent variables to an unmanageable number of about 462 10i . PLS models were built for 

the increased number of 100 independent variables with the optimal number of principal 

components selected by the minimum crossvalidation criterion. 

The prediction of R22 by the optimal model with 16 principal components showed a relative 

error of 2.25% for the calibration data and 2.81% for the validation data. For R134a the 

optimal model with 17 principal components predicted the calibration data with a rel. RMSE 

of 3.47% and the validation data with a rel. RMSE of 4.02%. The addition of the squared 

variables can be also seen as a polynomial approach, which might explain why a rather many 

principal components are needed. This high number of principal components increases the 

relative gap between the error for the calibration data and the validation data compared with 

the Box-Cox Transformation and PLS due to the increased number of parameters (see also 

section 2.8.1). Yet, the INLR compensates the nonlinearities better than these two methods, as 

only for R22 the Wald-Wolfowitz Runs test and the Durbin-Watson Statistics are significant.   
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figure 35: True-predicted plots of the INLR for the validation data. 
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6.4. QPLS 
In the field of QSAR research, a polynomial expansion of the inner relationship, which is 

linear in the original PLS, has become popular to model nonlinear relationships [38,228,240-

247]. If the polynomial terms are of the second order, this approach is also known as QPLS 

(quadratic PLS). Instead of the linear relationship (10) between the score matrixes U and T, 

following polynomial expression is used: 

 2
0 1 2U C C T C T H= + + +  (30) 

The coefficients C0, C1 and C2 are determined by the least squares method in an iterative 

procedure similar to the PLS. For the calibration data, QPLS models were built with an 

optimal number of principal components determined by a minimum crossvalidation error of 

the calibration data. For R22 the optimal model with 2 principal components predicted the 

calibration data with a rel. RMSE of 2.31% and the validation data with a rel. RMSE of 

2.41%. For R134a the optimal model with 4 principal components predicted the calibration 

data with a rel. RMSE of 3.87% and the validation data with a rel. RMSE of 3.92%. The 

sensibly low number of principal components is "rewarded" by practically identical validation 

errors and calibration errors. Both, the Wald-Wolfowitz Runs test and the Durbin-Watson 

Statistic cannot find a significant non-randomness in the prediction of the validation data. In 

combination with the true-predicted plots (figure 36) and the low errors of prediction, it is 

obvious that among the different PLS approaches the QPLS can deal best with the nonlinear 

data set. In the next sections, several non-PLS methods, which are also know to be able to 

account for nonlinearities, are applied to the calibration and validation data set. 
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figure 36: True-predicted plots of the QPLS for the validation data. 
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6.5. CART 
The classification and regression trees (CART) belong to the family of the decision trees, 

which are very common in the field of machine learning and medical decision support 

systems [248,249]. Thereby a classification or regression problem is split into sub-problems 

by a binary recursive partitioning procedure. In doing so, a tree is built, which consists of 

nodes that assign a subpart of the tree being responsible for a specific sample and of leaves 

that finally assign classes or regression values to specific samples. The CART principle is an 

automatic machine learning method, which can deal with nonlinear classification and 

regression problems. The tree building process is a two-step algorithm. In the first step, the 

tree is built by recursively partitioning the nodes into two child nodes starting with the root 

node. When trying to find the maximum average "purity" of the two child nodes during a 

partitioning process, the CART algorithm looks for the best input variable and the corre-

sponding decision criterion by a brute force approach. For the regression, the average purity is 

calculated by the least squares of the response variables. In easier words, the CART algorithm 

tries to put similar samples into the same sub-trees. This first step stops when the tree cannot 

grow any more resulting in an overfitting. In the second step, child nodes are pruned away, 

which increase the error of the calibration data less than a "size corrected" value determined 

in a crossvalidation procedure. Finally, for the regression the mean of the calibration samples, 

which are passed through the tree to a specific terminal node (leaf), is assigned to the 

corresponding terminal node. The prediction of a new sample is performed by passing the 

sample through the tree and assigning the value of the corresponding leaf. 

For the calibration data set of the refrigerants, trees were built, which are shown in figure 37. 

For both trees, there are more leaves than concentration levels (21) of each analyte in the 

calibration data. This is caused by the interference of the second analyte in the mixtures. 

Although the CART principle is quite simple, the predictions of the calibration data are quite 

good with relative RMSE of 3.81% for R22 and 4.85% for R134a (see table 2). Yet, the 

predictions of the external validation data show the major drawback of the CART principle 

for the application in regressions instead of classifications with relative RMSE of 8.79% for 

R22 and 11.20% for R134a. The gap between the prediction of the calibration data and the 

validation data is enormous and dwells in the transformation of the continuous response 

variables into discrete variables. The experimental design used for the calibration data 

contains 21 different concentrations for each analyte, which are learnt as discrete values by 

the regression trees. The concentrations of the validation data are exactly in the middle of two 

neighboring concentrations of the calibration data. Consequently, the trees assign one of these 
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two adjacent concentrations to the validation sample, which corresponds to a systematic 

quantization error of 5%. Thus, the gap between the validation error and the calibration error 

should be at least 5% for a 21-level experimental design. The rather high prediction errors of 

the validation data are visible in the true-predicted plots (figure 38) as rather high standard 

deviations. The absence of a bias in the true-predicted plots and the statistical tests for the 

residuals being not significant demonstrate that in principle CART is capable of accounting 

for the nonlinearities in the data although the quantization error renders CART impractical for 

this type of data. 

R22

 

R134a

 

figure 37: Decision trees built by the CART for the calibration data with green nodes and 
read leaves. 
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figure 38: True-predicted plots of the CART for the validation data. 
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figure 39: Relative importance of the variables for the CART predictions measured by the 
frequency of being used for the prediction. 

In figure 39 the relative importance of the variables for the decision tree is shown. The 

importance reflects how often the variables are used when all samples are passed through the 

decision tree. The two plots show that the 2 decision trees for the 2 analytes use complemen-

tary variables for the regression. The decision tree for R22 only uses variables during the 

sorption of analyte whereas the decision tree for R134a only uses variables during the 

desorption of analyte. When looking at figure 22, it is clear that the variables used for the 

prediction of R22 represent time points when mainly R22 has sorbed into the polymer 

whereas the variables used for the prediction of R134a reflect time points when all R22 has 

already desorbed and when practically pure R134a is left in the polymer.  

The GIFI-PLS, which was proposed by Berglund et al. [250] for the calibration of nonlinear 

data, also uses a transformation of continuous response variables into discrete variables. 

Consequently, the GIFI-PLS approach is subject to the same quantization error and will not 

be investigated here any further.  

 

6.6. Model Trees 
The model trees are very similar to the CART principle and are often applied in the field of 

economic research [9,251]. Yet, each leaf contains a local linear regression model instead of a 

single discrete value for the samples passed to this leaf. Similar to CART an oversized tree is 

built in a first step. Thereby the optimal criterion for the splitting of a node is the minimi-

zation of the 2 standard deviations of the response variables of the samples assigned to the 2 

child nodes. In the second step, a pruning of the subtrees is performed. Similar to the CART 
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procedure, the nodes and leaves are pruned, which increase the error of the calibration data 

less than a specified "size corrected" value. For the calibration data of the refrigerant data set, 

a tree with 33 nodes and 35 leaves was built for R22 and a tree with 29 nodes and 32 leaves 

was built for R134a. Both, the predictions of the validation data with relative RMSE of 7.19% 

for R22 and 7.59 % for R134a and the predictions of the validation data with relative RMSE 

for R22 of 10.29% and 11.20% for R134a were disappointing. In principle, the model trees 

should be superior to the regression trees as many local regression models are used instead of 

single discrete values. The true-predicted plots in figure 40 show that the predictions of the 

different concentration levels are rather inconsistent indicating differences of the quality of 

the various local linear regression models. This means that among the more than 30 local 

regression models per analyte not all models are calibrated well. The data set might be too 

limited in size to calibrate 30 linear regression models successfully with single local models 

spoilt by noise and outliers. Therefore, some local models are overfitted resulting in the 

significant increase of the prediction error of the validation data. In figure 40, no significant 

bias of the residuals can be detected in agreement with the statistical tests. The locally 

weighted regression (LWR) also uses the principle of many local linear regression models. In 

contrast to the model trees, which separate the sample space by a tree into local regions, the 

LWR generates local models at prediction time by weighting samples in the neighborhood 

more. As the principle of local regression models seems not to work for this highly correlated 

nonlinear refrigerant data set, LWR and other methods based on local model are not 

investigated any further. 
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figure 40: True-predicted plots of the model trees for the validation data. 
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6.7. MARS 
The multivariate adaptive regression splines (MARS) were introduced by Friedman [252,253] 

as a multivariate nonparametric regression procedure. The MARS procedure fits separate 

splines, which are also called basis functions, to distinct intervals of the input variables. The 

basis functions have the general form: 

 BF1 max(0, )x a= −  (31) 

with BF1 as basis function, x as input variable and a as so-called knot. The transformation of 

the input variable is nonlinear, although the basis functions are piecewise linear. A regression 

using two basis functions can be described by: 

 0 1 2BF1 BF2y b b b= + +i i  (32) 

with y as response variable and b0, b1 and b1 as regression coefficients. Additionally, 

interactions up to a prescribed degree are also possible by the multiplication of two basis 

functions. The variables, the interactions and the locations of the knots are all found by a 

brute force approach and the regression coefficients are determined by a least squares 

procedure. The optimal model is found by a two-step algorithm similar to the CART 

principle. First, a model is grown by adding basis functions until an overfitting occurs. In the 

second phase, basis functions are deleted (pruned) until an optimal balance between 

overfitting and underfitting measured by the generalized crossvalidation error (GCV) has been 

reached for N samples and M basis functions: 
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DOF (M) represents the degrees of freedom used by the basis functions. For linear 

regressions, DOF (M) is usually set to M. Increasing DOF prefers smaller models. 

The MARS principle was applied to the data set of the refrigerants. The models for R22 and 

R134a were built by the use of the calibration data. Thereby the optimal DOF was determined 

by a 10-fold crossvalidation implemented in the MARS package [253]. The degree of allowed 

interaction was systematically varied whereby the optimum for the crossvalidated calibration 

data was found allowing second order interactions.  
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For R22, the optimal MARS model contained 43 basis functions forming 3 additive and 27 

interaction effects. In total 20 variables were used whereby the importance of the variables is 

shown in figure 41 measured by the relative amount of the reduction of the GCV by the 

corresponding variable. For R134a, the optimal model contained 43 basis functions forming 7 

additive and 24 interaction effects. The relative importance of the 21 variables used by the 

model is also shown in figure 41. It is obvious that for both models the relative importance of 

the variables is very similar with the important variables forming two blocks after the 

beginning of exposure to analyte and after the end of exposure to analyte (>60 s). These 

blocks are similar to the blocks built by the CART, but in contrast to the CART both blocks 

are used for both analytes.  
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figure 41: Relative importance of the variables for the 2 MARS models measured by the 
reduction of the GCV. 

According to table 2 the predictions of the calibration data are very promising with relative 

RMSE of 1.46% for R22 and 2.27% for R134a. The prediction errors of the validation data 

are significantly worse with 2.96% for R22 and 3.71% for R134a. The rather high numbers of 

basis functions used for models seem to overfit the calibration data. The true-predicted plots 

of the validation data in figure 42 demonstrate that the MARS deal well with the 

nonlinearities in the data and no significant bias of the predictions can be observed in 

agreement with the Wald-Wolfowitz Runs test and the Durbin-Watson statistics. 
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figure 42: True-predicted plots of the MARS for the validation data. 

 

6.8. Neural Networks 
In this section, uniform fully connected feedforward neural networks are used for the 

calibration of the refrigerant data set with the calibration data set used for the training of the 

neural networks and the validation data set predicted by the trained networks. Separate 

networks were used for both analytes. For the training, the SCG algorithm with early stopping 

was used (see section 2.7.3). More details of the implementation of the networks and the 

learning algorithms are described in the sections 2.7.2 and 2.7.3. Different network topologies 

were systematically investigated by varying the number of hidden layers and the number of 

neurons in the hidden layer. The best topology for both analytes evaluated by the lowest 

crossvalidation error of the calibration data set are fully connected networks with 6 hidden 

neurons organized in 1 hidden layer. Twenty networks of this topology were trained using 

different random initial weights and the network with the lowest crossvalidation error was 

used for the prediction of the validation data. According to table 2, the validation data were 

predicted with relative RMSE of 2.18% (R22) respectively 3.26% (R134a). The predictions of 

the validation data (see figure 43) do not show any type of nonlinearity in conformity with the 

Wald-Wolfowitz Runs test and the Durbin-Watson statistics. Among the different calibration 

methods used for the refrigerant data set so far, the neural networks can model the nonlinear 

relationships between the concentrations of the analytes and the time-resolved sensor signals 

best resulting in the lowest errors of prediction of the validation data. Yet, the calibration data 

were predicted with significantly lower relative RMSE of 1.47% (R22) respectively 2.62% 
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(R134a) indicating an overfitting. According to equation (13), the amount of 247 adjustable 

parameters of this network topology seems to be quite high for the calibration problem with 

many redundant or unused links resulting in overoptimistic low calibration errors but a 

decreased generalization ability. Thus, different methods like a variable selection and an 

optimization of the network topology are used in the next sections expecting that the 

reduction of the number of parameters further improves the generalization ability.  
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figure 43: Predictions of the validation data by fully connected neural networks.  

 

6.9. PCA-NN 
The combination of a principal component analysis with neural networks is a fast and 

efficient way of compressing the information fed to the neural networks. Yet, the decision 

how many principal components to use for the neural networks remains a problem as this 

determines the extent of compression and the extent of information loss similar to the PLS 

(see section 2.5). Thus, neural networks with 6 hidden neurons in 1 hidden layer were trained 

with a systematically increasing number of principal components from 1 to 40 and the cross-

validation error of the calibration data was determined. The optimal models in terms of lowest 

crossvalidation errors were obtained by networks using 25 principal components for R22 and 

16 principal components for R134a. According to table 2, the prediction errors of the external 

validation data (2.16% for R22 and 3.24% for R134a) are practical identical with the fully 

connected neural networks. In addition, the true-predicted plots and the statistical tests are 

practically identical and will not be discussed any further here. The negligible gap between 
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the calibration errors (1.98% for R22 and 3.08%) and the validation errors indicates that the 

reduction of the number of parameters (157 for R22 and 103 for R134a) successfully prevents 

an overfitting of the calibration data. Yet, the predictions of the validation data and with it the 

generalization ability are not significantly improved, which might be ascribed to some general 

drawbacks of the variable compression by the PCA already discussed in section 2.8.7. 

 

6.10. Neural Networks and Pruning  
For the pruning of neural networks, which is described in section 2.8.8 in detail, separate 

neural networks for both analytes were trained using the calibration data set. The networks 

were fully connected with 8 hidden neurons serving as reference networks for the pruning 

algorithms. Then, the two pruning algorithms Magnitude Based Pruning and Optimal Brain 

Surgeon were used to remove network links until the estimated increase of the error for the 

calibration data reached 2%. After that, the networks were retrained. This procedure was 

repeated 3 times in total. Finally, the calibration data and the external validation data were 

predicted. For both pruning algorithms, 50 networks were trained and optimized by this 

procedure using different initial random weights. 

Magnitude Based Pruning 

For R22, the network with the smallest crossvalidated calibration error consisted of 20 input 

neurons, 2 hidden neurons and 25 links. This network predicted the calibration data with a rel. 

RMSE of 2.34% and the validation data with a rel. RMSE of 2.48% (see table 2). For R134a 

the network with the smallest crossvalidated calibration error consisted of 33 input neurons, 3 

hidden neurons and 64 links. The predictions by this network showed relative errors of 3.16% 

for the calibration data and 3.34% for the validation data. Compared with the fully connected 

neural networks, the number of adjustable parameters (27 respectively 67) were dramatically 

reduced resulting in a smaller gap between the prediction errors of the calibration data and the 

prediction errors of the validation error. Yet, the predictions of the validation data are worse 

than the predictions of the fully connected neural networks rendering this approach to 

improve the generalization ability of neural networks useless. 

Optimal Brain Surgeon 

For R22, the network with the smallest crossvalidated calibration error consisted of 25 input 

neurons, 3 hidden units and 37 links. This network predicted the calibration data with a rel. 

RMSE 2.10% and the validation data with a rel. RMSE of 2.12% (see table 2). For R134a the 
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network with the smallest crossvalidated calibration error consisted of 17 input neurons, 4 

hidden neurons and 24 links. The predictions by this network showed relative errors of 3.22% 

for the calibration data and 3.32% for the validation data. The low number of adjustable 

parameters (40 respectively 26) successfully helped to prevent an overfitting with practically 

no gap between the predictions of the calibration and validation data visible. Compared with 

the fully connected neural networks the predictions of the validation data are slightly better 

for R22 and slightly worse for R134a. This demonstrates the possibility of modeling the 

relationship between the concentrations of the analytes and the time-resolved sensor responses 

using by far less adjustable parameters. It is also visible that the sophisticated OBS algorithm 

performs better than the simple MP approach.  

Summary 

The predictions of both pruning algorithms did not show unmodeled nonlinearities and the 

true-predicted plots were similar to the true-predicted plots of the fully connected networks 

(see figure 43). The most severe drawback of both pruning algorithms is the instability of the 

algorithms resulting in a totally different network topology for each run with different initial 

weights. For example, the 50 networks created by OBS for R22 used 7 to 27 input neurons, 1 

to 4 hidden neurons and 8 to 40 links and showed prediction errors of the external validation 

data between 2.12% and 3.38%. The 50 networks for R134a used 8 to 36 input neurons, 2 to 6 

hidden neurons and 12 to 49 links with no repeated topology. The predictions of the 

validation data varied between 3.32% and 5.48%. The variation of the networks created by the 

MP algorithm was even worse. Although the pruning algorithms demonstrated that signifi-

cantly sparser network topologies are enough for modeling the relationships between the 

time-resolved sensor responses and the concentrations of the analytes, the high variations of 

the network topologies and of the qualities of prediction render the pruning approach useless 

for an easy reproducible application.  
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6.11. Conclusions  
In this chapter, several multivariate calibration methods were used for the quantification of 

the refrigerants R22 and R134a in mixtures measured by a single sensor SPR setup. It was 

demonstrated that the combination of the time-resolved measurement approach with a multi-

variate data analysis allows the quantification of 2 analytes using only 1 single sensor. 

Yet, the most common multivariate calibration method, PLS, was not capable of dealing with 

the nonlinear relationship between the sensor signals and the concentrations of the analytes 

resulting in unacceptably high prediction errors and systematical biases. Thus, different well-

known methods for linearizing the data or for introducing nonlinearities into linear models 

were used. In principle, these methods successfully compensated the nonlinearities in the data 

structure. Yet, compared with the standard deviations of the sensor signals with 0.2% for R22 

and 1.3% for R134a, which were calculated for 60 seconds exposure to analyte of different 

concentrations using reproduced measurements, the overall quality of predictions seems to be 

improvable. 

The application of uniform fully connected neural networks showed the best results with 

respect to generalization ability. In contrast to the methods mentioned before, the neural 

networks make no assumption of the type of relationship between the input and the response 

variables (linear, quadratic...) and thus can approximate the relationship between the time-

resolved sensor responses and the concentrations of the analytes quite well, for which no 

model exists at the moment. A significant drawback, which can also be seen in table 2, is the 

overfitting of the neural networks, which is observable as gap between the prediction errors of 

the calibration data and of the validation data. In contrast to all other methods mentioned 

before, the neural networks perform no variable selection or compression of the input 

information resulting in a high number of adjustable parameters and consequently running 

into the danger of overfitting. Therefore, neural networks combined with a principal 

component analysis were used for the compression of the input variables and two pruning 

algorithms were applied for thinning out the network structure. Whereas the pruning 

algorithms showed unstable and worse results, the combination of the PCA with neural 

networks demonstrated that in principle smaller neural network could calibrate the 

relationships at least as well as the non-optimized networks. As the PCA-NN is a very simple 

method to reduce the neural network size, a more sophisticated variable selection method is 

expected to show even better results. Thus, in the next chapter genetic algorithms are 
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combined with neural networks to perform a variable selection and thus to reduce the network 

size.  

 

Calibration  
Data Set 

Validation  
Data Set Method 

R22 R134a R22 R134a 

Non-
linearity 

Over-
fitting 

PLS (Martens' Uncertainty) 11.89 11.40 10.27 9.94 High No 

PLS (Min. Crossvalidation) 10.47 8.51 8.69 7.63 High No 

Box-Cox Transformation 2.97 4.50 3.09 5.04 Low Medium

INLR 2.25 2.81 3.47 4.02 No Medium

QPLS 2.31 3.87 2.41 3.92 No No 

CART 3.81 4.85 8.79 11.20 No High 

Model Trees 7.19 7.59 10.29 11.20 No Medium

MARS 1.46 2.27 2.96 3.71 No Medium

Neural Networks 1.47 2.62 2.18 3.26 No Medium

PCA - NN 1.98 3.08 2.16 3.24 No No 

MAG-Pruning - NN 2.34 3.16 2.48 3.34 No No 

OBS-Pruning - NN 2.10 3.22 2.12 3.32 No No 

table 2: Comparison of the rel. RMSE of the calibration and validation data in %. 
Additionally the degrees of nonlinearity and overfitting of the predictions are 
listed. 
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7. Results – Genetic Algorithm Framework 

In the previous chapter, it was demonstrated that neural networks show the best calibration for 

the refrigerant data set due to the nonlinearities present in the data. It was also shown that a 

compression of the input variables by a simple combination of a PCA and neural networks 

shows results comparable with the neural networks using all variables. Therefore, it is 

expected that a more sophisticated selection of the input variables can improve the generaliza-

tion ability and thus the calibration quality. Hence, a genetic algorithm for the variable 

selection is combined with neural networks for the calibration in this chapter. As single 

applications of this combination neither show superior calibrations nor reproducible variable 

selections, a framework is setup, which uses many parallel runs of the genetic algorithm for 

different data subsets resulting in improved calibrations and a high reproducibility.   

 

7.1. Single Run Genetic Algorithm 
For the variable selection, a combination of a genetic algorithm and neural networks 

described in section 2.8.5 was used. For the evaluation of the fitness function (16), the 

calibration data set of the refrigerant measurements (see section 4.5.1.1) was randomly split 

into a calibration (75%) and a test data subset (25%). The neural networks were fully 

connected with 4 hidden neurons and 2 output neurons (1 network for both analytes together). 

The genetic algorithm evaluated 50 populations during 76 generations whereas the stopping 

criterion was set to a convergence of the standard deviation of the genes below 0.04. The 

parameter α of the fitness function was set to 0.9, which resulted in the selection of 8 time 

points (0, 12, 15, 51, 67, 93, 122 and 125 seconds) as most dominant solution in the last 

generation. The corresponding neural network (8 hidden neurons, fully connected and 1 

output neuron) predicted the test data subset with excellent low rel. RMSE of 1.87% for R22 

and 2.50% for R134a. Yet, the prediction of the external validation data by this network, 

which had been trained using the complete calibration data set, shows RMSE of 2.32% for 

R22 and 2.93% for R134a  comparable with the non-optimized neural networks using all time 

points (see table 3 in section 7.4). A second run of the genetic algorithm using a different 

partitioning of the calibration data into calibration and test data subsets showed even worse 

results. After 86 generations 8 time points (0, 3, 6, 51, 74, 90, 115 and 125 seconds) were 

selected with rel. RMSE of 1.84% (R22) and 2.62% (R134a) for the prediction of the test 

subsets. The prediction of the external validation data showed disappointing high errors of 
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2.63% for R22 and 3.35% R134a (see table 3). For both runs, the predictions of the external 

validation data are significantly worse compared with the test data subset used for the 

evaluation of the fitness for the genetic optimization. Additionally, the selection of the time 

points is not reproducible. This instability of the variable selection can also be seen in figure 

46, which shows the frequency of the time points being selected during 100 runs of the GA. 

Although some time points are more often selected than other time points, there is no time 

point, which was never selected. Both findings, the instability of the variable selection and the 

deterioration of the prediction ability for external validation data can be ascribed to a general 

problem of single run genetic algorithms. The variables are selected on the basis of a fitness 

function with a static test and calibration data set. Consequently, the optimal solution is only 

valid for one individual partitioning of the data into calibration and test data subsets and is not 

representative for the complete data set. Although the fitness function (16) tries to compensate 

for the overestimation of the test data by partly considering the calibration data (in contrast to 

most GA found in literature), the drawbacks of a static partitioning cannot be completely 

compensated. Apart from these problems known in literature (approximately 99% of all GA 

are based on static data sets), the single run algorithms are faced by additional problems:  

1. Both, the chromosomes of the initial population and the weights of the neural 

networks are randomly generated. As there is no guarantee that the walk of the genetic 

algorithm in the search space, which also contains random steps, can always find the 

best subset of variables before converging, different runs (even with identical test and 

calibration data subsets) often find similar but not exactly identical subsets of 

variables [254].  

2. Jouan-Rimbaud et al. [255] recently demonstrated that by chance correlation of 

variables often irrelevant variables are selected by GA or have at least a significant 

influence on the final model, even if validation procedures are used.  
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7.2. Genetic Algorithm Framework - Theory 
In recent literature, several approaches are reported to solve the different problems of single 

runs of GA: 

1. Massart and Leardi [98,256] use a very refined algorithm for the variable selection, 

which is based on parallel runs of many GA with different combinations of test and 

calibration data. Then a validation step is performed to find the best variable subset. 

The GA is a hybrid algorithm using a stepwise backward elimination of variables to 

find the smallest possible subset of variables. Although this approach is very 

promising, Jouan-Rimbau et al. [255] showed that this algorithm is still partly subject 

to chance correlation.  

2. In [99] Leardi et al. use 100 runs of GA with the same calibration and test data sets. 

The final model is obtained by adding systematically the variables, which are ranked 

according to the frequency of selection of the GA runs and by using the combination 

with the smallest error of prediction. In [97] this algorithm is modified by the different 

GA runs learning from each other. 

3. In [126] the predictions are averaged by several models found by different GA runs. 

Yet, the average prediction was not better than the prediction by a single model. 

4. In [254] 10 runs of GA are performed by using different calibration and test data 

subsets. The final model uses all variables, which were selected at least 5 times, 

whereby this limit is rather arbitrary.  

The genetic algorithm framework proposed in this work picks several elements of the studies 

mentioned above and is presented in the flow diagram in figure 44. The framework can be 

divided into three steps. The first step consists of multiple parallel runs of the GA presented in 

section 2.8.9 and in section 7.1 using different calibration and test data subsets (yellow boxes 

in the flow diagram). Variables, which are represented higher than average in the final 

population of each GA run, are collected over all GA runs and are ranked according to the 

frequency of appearance in the final populations. The second step of the framework finally 

selects the variables in an iterative procedure by adding the variables to the neural network 

model according to their rank in a stepwise procedure. The neural network is evaluated by the 

use of different calibration and test data subsets (green boxes in figure 44). The RMSE of 

prediction of all test data sets is compared with the RMSE of the previous model. If the 
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RMSE is lower (see section 10.2), the last variable is accepted and the procedure is repeated 

adding the next important variable until the predictions are not improved any more.  

In the third step, the final neural network topology is determined. First, the number of hidden 

neurons of a single hidden layer is optimized in an iterative procedure, which is shown in 

figure 45. Starting with fully connected neural networks with 1 hidden neuron additional fully 

connected neurons are added until the error of prediction of the test data doesn't improve any 

more, whereby the l different test data subsets are generated by a data subsampling procedure. 

Finally, this neural network topology is trained with the complete data set several times, and 

the neural net with the smallest error of crossvalidation should be used as final optimized 

model and should be validated by an external data set not used during the complete variable 

selection algorithm. 

In all three major steps of the framework, the complete data set is split several times into a 

calibration (75 %) and a test (25 %) subset, which was done by a random subsampling 

procedure (see section 2.4) resulting in rather pessimistic predictions of the test data. Conse-

quently, according to expression (16) models are preferred, which are more predictive and 

which yield a better interpolation. 

As already stated in section 2.8.5, the choice of α in the fitness function (16) influences the 

numbers of variables being selected during each run of a GA. A too high value of α ignores 

partly the accuracy of the neural nets and ends in only few variables being selected. 

Consequently, there might be too few variables selected in the first step to be added to the 

neural net in the second step. This problem can be recognized by all variables with a ranking 

higher than "0" being used for the neural net in the second step. On the other side, a too low 

value of α results in too many variables being selected. This can be detected by the absence of 

a differentiation of the variables in the ranking. An empirical way to select an optimal α is 

based on running a single GA with different values of α and on choosing that α, which results 

in the selection of the number of variables expected to be needed for the calibration. A good 

choice to start with is setting α to "1" for these single runs of the GA. Yet, preliminary studies 

showed that the parallel runs of the GA make the framework quite robust towards the choice 

of α and to the population size, which is suggested to be set to the number of variables to 

select from. Although the framework seems to be complex on the first sight, this robustness 

renders the algorithm quite user-friendly. 
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figure 44: Flow chart of the genetic algorithm framework. 
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figure 45: Optimization of the number of hidden neurons. This figure is a detailed flow chart 
of the blue box of the genetic algorithm framework shown in figure 44. 
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7.3. Genetic Algorithm Framework - Results 
The genetic algorithm framework was applied to the calibration data of the refrigerant data 

set. Thereby 100 parallel runs of the GA were used with the same settings of the parameters 

as described in section 7.1. The results of the first step of the global algorithm are shown in 

figure 46. Thereby the ranking of the variables is shown as frequency of the variables being 

present in the last population of the genetic algorithms. In the second step, these variables 

enter the model according to their rank until the prediction of the test data of a 20-fold random 

subsampling does not improve any more. The iterative procedure stopped after the addition of 

10 time points, which are labeled in figure 46. As the labels are rounded seconds of the time 

points, the most important time point "0" does not represent the absolute beginning of the 

measurement, but 0.3 seconds after the beginning of exposure to analyte. 
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figure 46: Frequency of the selection of the time points for 100 parallel runs of the genetic 
algorithms. The 10 time points selected by the algorithm are labeled additionally. 

The optimized networks (10 input neurons, 8 hidden neurons, 1 output neuron, fully 

connected) predicted the test data of the 20-fold random subsampling procedure (figure 45) 

with rather low rel. RMSE of 1.94% (R22) and 3.05% (R134a). The predictions of the 

external validation data by these networks, which had been trained by the complete 

calibration data set, were best of all methods used so far with 2.04% for R22 and 2.89% for 

R134a (see table 3 in section 7.4). Practically no gap between the prediction of the calibration 

and validation data is noticeable indicating much more stable models compared with the non-
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optimized networks. The predictions of the validation data, which are shown in the true-

predicted plots in figure 47, are not biased and hardly scattered. 

-1 0 1 2 3 4 5 6 7 8 9 10
-1
0
1
2
3
4
5
6
7
8
9

10
 Validation Data

 

 R22 GA-NN

pr
ed

ic
te

d 
p i /p

i0
 [1

0-2
]

true pi /pi0 [10-2]

-1 0 1 2 3 4 5 6 7 8 9 10
-1
0
1
2
3
4
5
6
7
8
9

10
 Validation Data

 

 R134a GA-NN

pr
ed

ic
te

d 
p i /p

i0
 [1

0-2
]

true pi /pi0 [10-2]
 

figure 47: Predictions of the validation data by neural networks optimized by the genetic 
algorithm framework. 

The residuals of the predictions of the neural networks were further examined in respect to the 

compositions of the predicted analyte concentrations. In figure 48, the absolute residuals of 

the predictions of the analyte concentrations are plotted versus the corresponding analyte 

concentrations of the predicted sample. The plot for R22 demonstrates that the absolute 

residual for the prediction of R22 increases with an increasing concentration of R22, but is 

practically randomly distributed along the axis representing the concentration of R134a. For 

R134a the plot shows that the residuals of the predictions of R134 show a higher dependency 

on the concentration of R134a than on the concentration of R22. This means that the 

concentration of the interfering analyte does practically not influence the prediction quality of 

the analyte of interest. Thus, it should be possible that the system of the time-resolved 

measurements, the variable selection and the calibration by neural networks can be extended 

to parallel quantifications of even more analytes.  
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R22

 

R134a

 

figure 48: Absolute residuals of the predictions of the concentrations of R22 (top) and R134a 
(bottom) versus the compositions of the corresponding samples. 

An unattended use of many genetic algorithms is often limited by chance correlations of 

variables. This can happen if variables are noisy, if the number of samples is limited and if 

there are many variables to select. In that case, it can happen that the GA models noise instead 

of information and consequently selects randomly correlated variables. Therefore, a test 

similar to [126,255] was performed to investigate the robustness of the variable selection 

algorithm proposed in this study. In this test, the number of variables is increased by adding 

meaningless artificial variables, which contain only random numbers, to the meaningful 

original variables. Then, the algorithm for the variable selection is run using the increased 

amount of variables. A well performing algorithm should not select any of the artificial 

random variables, which contain no meaningful information. For this study, 40 random 

variables were added to the set of 40 original time points. The random variables were created 



7. Results – Genetic Algorithm Framework 105  

by uniformly distributed random numbers with the same variation as the original time points. 

The genetic algorithm framework was used for this extended data set same way as described 

before except of two parameters adapted for the increased data set: The population size was 

increased to 100 resulting in about 120 generations until the convergence criterion was 

reached and the parameter α was set to 1, which resulted in approximately 6 variables being 

selected in single runs of the GA.  

The variable ranking after the first step of the algorithm is shown in figure 49. It is obvious 

that all random time points are ranked very low and no random variable can be found among 

the most important 18 time points. The parallel runs of multiple GA with different combina-

tions of test and calibration data seem to prevent the selection of randomly correlated 

variables whereas single runs of the GA selected random variables evident by non-zero 

frequencies of random variables in figure 49. Additionally, the left side of figure 49 looks 

very similar to figure 46 demonstrating the reproducibility of the ranking of meaningful 

variables when running the global algorithm repeatedly.  The top 11 time-points are ranked 

the same way as for the algorithm applied to the original data (figure 46). Consequently, the 

same 10 variables are selected in the second step of the algorithm demonstrating the 

reproducibility of the selection of the variables by the genetic algorithm framework.  
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figure 49: Frequency of selection for 40 time points and 40 additional random variables (R1 
– R45) after the first step of the genetic algorithm framework. 
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7.4. Genetic Algorithm Framework – Conclusions 
In this chapter, a genetic algorithm was used for the optimization of neural networks by 

variable selection. It was shown that single runs of the GA are faced with irreproducible 

variable selections and with unstable predictions of the external validation data, which were 

even worse than the predictions by non-optimized neural networks. A genetic algorithm 

framework was suggested, which uses repeated runs of the GA. The predictions of the neural 

networks optimized by this framework were superior to the commonly used non-optimized 

neural networks and to all other calibration methods used before. It was also shown that the 

variable selection is reproducible and not subject to noise. Additionally, it was demonstrated 

that the predictions are hardly influenced by interfering analytes rendering the combination of 

time-resolved measurements, the genetic algorithm framework for the variable selection and 

for the calibration open to the parallel quantification of more analytes using only one single 

sensor. The unique framework introduced in this works is not restricted to the calibration and 

variable selection of sensor signals, but can be used for the variable selection and multivariate 

calibration of virtually any data set as long as a sensible number of data is available. 

 

Calibration  
Data Set 

Validation  
Data Set Method 

R22 R134a R22 R134a 

Non-optimized Neural Networks 1.47 2.62 2.18 3.26 

GA-NN (1st run) 2.13 2.75 2.32 2.93 

GA-NN (2nd run) 2.19 2.87 2.63 3.35 

GA-NN Framework 1.89 2.69 2.04 2.89 

table 3: Comparison of the rel. RMSE of the calibration and validation data in % for the 
genetic algorithm approaches and the non-optimized neural networks used in 
section 6.8.  
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8. Results – Growing Neural Network Framework 

The genetic algorithms for a variable selection, which were proposed and applied in section 

2.8.5 and in chapter 7, successfully improved the calibration of the refrigerant data set by 

selecting the most predictive variables and by optimizing the number of hidden neurons in a 

single hidden layer using a simple gradient method. As already stated in section 2.8.2, a total 

non-uniform optimization of the topology of the neural networks should be superior to a pure 

variable selection and to a simple optimization of the number of hidden neurons. The 

algorithms for a structure optimization decide on the need of each single network element 

resulting in sparse yet effective non-uniform networks. In addition, these algorithms can be 

used for networks with several hidden layers. The oldest and most popular methods of 

structure optimization are the pruning algorithms, which were introduced in section 2.8.8 and 

applied in section 6.10. Yet, as already seen and discussed in both sections the pruning 

algorithms are faced by several drawbacks rendering the application of these algorithms in 

practice doubtful. The sophisticated approach of optimizing the network topology by the use 

of genetic algorithms is also faced by several problems and limits discussed in section 2.8.9 

rendering the application of these algorithms nearly impossible for analytical data sets. 

The growing neural network algorithm, which was initially proposed by Vinod et al. [125] 

and which was introduced in section 2.8.10, has already been successfully applied to the 

calibration of sensor data sets [28].  In this chapter, several modifications of the algorithm are 

introduced. The application of this algorithm to the refrigerant data set shows an improved 

calibration with similar prediction errors like the genetic algorithm framework. In order to 

improve the reproducibility of the algorithm, two frameworks for the growing neural 

networks similar to the genetic algorithm framework are introduced. Both frameworks show 

an extraordinary calibration and generalization ability and a good reproducibility.  
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8.1. Modifications of the Growing Neural Network Algorithm 
The original algorithm was modified in several points, which were partly introduced and 

described in [28] and which are partly introduced in this work, to fit better to the needs of the 

calibration of sensor data sets and to improve the generalization ability of the networks built:  

1. Not only neurons with two input links and one output link but also neurons with one 

input link and one output link can be added to the network. In addition, links can be 

added between any neuron and a neuron of a proceeding layer ensuring that practically 

any feedforward network topology can be built. In contrast to the stepwise algorithms, 

the addition of neurons with two input links takes interactions of 2 variables during the 

addition step into account. Higher interactions can be modeled later by the addition of 

additional links. 

2. The estimation of the reduction of the calibration error was replaced by temporarily 

inserting a network element then training the network and subsequently predicting a 

monitor data set. This procedure is repeated for all possible locations and all possible 

elements. The type and the location where to insert the new element are decided by the 

maximum reduction of the prediction error of the monitor data not used for training. 

This ensures that the neural network not only approximates the calibration data well, 

but also primarily generalizes well. Using different data subsets for the calibration of 

the model (training data) and for the building of the model (monitor data) prevents the 

introduction of a bias demonstrated by Kupinsky et al. [11]. The change of the 

network topology by adding a network element between two training steps helps to 

escape local training minima similar to a random mutation of genetic algorithms. 

3. The stopping criterion of an absolute error limit for the algorithm was replaced by a 

stopping criterion of a relative minimal error decrease, which is independent from the 

scaling of the data sets. Thereby the insertion of the network elements is repeated until 

the insertion of a new network element improves the error of prediction less than this 

prescribed relative limit. 

4. The algorithm can start with nearly any arbitrary network topology, not only with an 

empty network. As the current implementation of the algorithm only supports 

networks with 1 output neuron, a separate network has to be used for each analyte.  
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8.2. Application of the Growing Neural Networks 
For the application of the growing neural net algorithm, the calibration data set was split into 

a training (80 %) and a monitor (20%) subset by a random subsampling procedure (see 

section 2.4). Using the stopping criterion of 0.1% minimal error decrease the growing 

network algorithm built the network for R22 shown in figure 50 with 11 input neurons, 22 

links and 7 hidden neurons organized in 2 hidden layers. For R134a the network consisted of 

13 input neurons, 23 links and 7 hidden neurons organized in 2 hidden layers shown in figure 

51.  

 
 

figure 50: Neural network built by the first run of the growing neural network algorithm for 
R22. 

  
 

figure 51: Neural network built by the first run of the growing neural network algorithm for 
R134a. 
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These network topologies were trained using the complete calibration data set and then 

predicted the concentrations of the external validation data. According to table 4 in section 

8.5, the grown neural networks predicted the external validation data not used for the network 

growing process significantly better than non-optimized static neural networks and no 

significant gap between the predictions of the calibration and validation data is visible.  

Yet, similar to the application of single run genetic algorithms for the optimization of neural 

networks (see section 2.8.9), the topology of the grown networks depends highly on the 

partitioning of the data set. A second run of the algorithm with differently subsampled 

training and monitor data subsets resulted in other network topologies for both analytes. The 

network for R 22 of this second run is shown in figure 52. Although several substructures, 

which are printed in green, are equal to the network shown in figure 50, both networks also 

show significant differences, which are printed in blue in figure 52. In principle, these 

differences of the network topology are not necessarily bad as for a given set of input 

variables the approximation of a functional relationship between the input and the response 

variables can be performed by a neural network on nearly uncountable ways. Yet, the 

selection of different variables during different runs is by far more problematic. For example, 

the second network uses the time points 13 s, 22 s and 29 s instead of 16 s and 116 s as input 

variables, which are printed in red in figure 52. The selection of different variables 

irreversibly changes the possibilities of the functional mapping and significantly influences 

the quality of calibration. As can be seen in table 4, the predictions of the validation and 

calibration data differ for the nets built during the different runs whereby the growing neural 

nets performed generally better for the validation data than the static neural nets during 

several runs. Also, the network of the second run for R134a with 10 input neurons, 18 links 

and 5 hidden neurons organized in 1 hidden layer differs significantly from the network of the 

first run for R134a in respect to the topology and even worse in respect to the selected 

variables.  

Similar to the single runs of genetic algorithms the topology and more important the selection 

of the variables are representative for only one partitioning of the data set into calibration and 

monitor data set and not for the complete data set. Analogous to the framework of the genetic 

algorithms (section 7.2), two frameworks are proposed in the next section to make the 

variable selection of the growing neural networks less sensitive to the partitioning of the data 

into different subsets and to different random initial weights. In section 8.4, these two 

frameworks are applied to the refrigerant data sets resulting in improved calibrations. 
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figure 52: Neural network built by the second run of the growing neural network algorithm 
for R22. Elements equal to the network of the first run are printed in green. 
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8.3. Growing Neural Network Algorithm Frameworks 
The first framework for the growing neural networks is similar to the genetic algorithm 

framework, which was proposed in section 7.2 and will be further referred to as parallel 

growing neural network framework. The framework, which is presented in figure 53, can be 

divided into three steps. The first step consists of multiple parallel runs of the growing neural 

network algorithm with different training and monitor data subsets. When all networks have 

finished growing, the variables are ranked according to the frequency of being used in the 

different networks. In the second step, the algorithm builds the final neural network in an 

iterative procedure by adding the variables according to their rank step by step to a fully 

connected neural network. During each step, the performance of the neural network is 

evaluated by the use of different training and test data subsets. The iterative algorithm stops 

when the addition of the next variable does not improve the predictions of the test data subsets 

any more. As the number of hidden variables (organized in 1 hidden layer) is determined by 

the mean number of hidden variables of the networks built during the first step, the third step 

of the growing neural net framework, which only trains the final network with the complete 

calibration data set, is less complicated than the third step of the genetic algorithm framework.  

The second framework is based on loops using the knowledge of previous runs of the growing 

algorithm and will be further referred to as loop-based framework. The concept is illustrated 

in figure 54. Several parallel runs of the growing neural network algorithm are performed 

using different random initial weights but the same data subsets for training, monitoring and 

selection. The network showing the best prediction of the data subset for selection is used as 

initial network for the growing algorithm of the next loop cycle. Thereby the algorithm starts 

not with an empty neural network but with the selected built network and new subsets of the 

data for training, monitoring and selection. This procedure is repeated, until the selected 

network has the same topology than the network selected in the previous loop cycle. 

In both frameworks, the complete calibration data set has to be split several times into subsets 

for training, monitoring, testing and selection. Similar to the genetic algorithm framework, 

this was performed by a random subsampling procedure. 
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figure 53: Flow chart of the parallel growing neural network framework. 
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figure 54: Flow chart of the loop-based growing neural network framework. 

According to the introduction to the network optimization in section 2.8.2, both frameworks 

follow different strategies. The parallel framework only uses the variable selection property of 

the growing neural networks ignoring the information of the inner topology of the grown 

networks. This framework is suitable for the implementation on massive parallel computer 

systems as there are only few nodes for information exchange. A high number of parallel runs 

of the algorithm allows a variable selection practically independent from the partitioning of 

the data set. The second framework uses the possibility of the algorithm to build non-uniform 

neural networks with an optimized internal topology adapted for a specific problem. In 

contrast to the first framework, this framework is less suitable for parallel computer systems 

and less partitions of the data set are used, since the algorithm typically stops after several 

loop cycles. 
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8.4. Applications of the Growing Neural Network Frameworks 

8.4.1. Parallel Framework 

For the parallel approach, 100 runs of the growing neural network algorithm were performed 

simultaneously for each analyte. The ranking of the variables after the first step of the 

frameworks is shown in figure 55. In contrast to the genetic algorithm framework, the 

variables are ranked separately for each analyte, as for each analyte separate networks were 

grown. The final topology resulted in fully connected networks for R22 with 5 input neurons 

and 6 hidden neurons and for R134a with 6 input neurons and 7 hidden neurons. The input 

variables, which were used by these networks, are labeled in figure 55. These networks were 

subsequently trained with the complete calibration data set and then used for the prediction of 

the validation data whereby the errors are shown in table 4. The predictions of the validation 

data not used during the network building process are the best out of all methods used up to 

now with 2.04% for R22 and 2.61% for R134a. The small size of the networks with only 43 

respectively 57 adjustable parameters is rewarded by an excellent generalization ability. The 

true-predicted plots look pretty much like the true-predicted plots of the genetic algorithm 

framework (figure 47) with low standard deviations and no bias present and are not shown 

here. For both analytes, all variables used by the networks were recorded within the first 16 

seconds of exposure to analyte and within the first 30 seconds after the end of exposure to 

analyte (60 seconds to 90 seconds). The selected time points are located within the same time 

intervals as the time points selected by the genetic algorithm framework (except of the time-

point 125 s). Yet, the parallel growing neural network framework achieves better predictions 

using fewer variables and smaller networks. Additionally, the variable selection of the parallel 

framework suggests to reduce the exposure time to 20 seconds and to record the signal of the 

sensor for 90 seconds. The reduced time of exposure to analyte would also reduce the time 

needed for the recovery of the sensor signal resulting in a significantly shorter repetition 

times. 
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figure 55: Ranking of the time-points represented as frequency of being present in the grown 
neural networks of the first step of the parallel framework. 

The same test for chance correlation and reproducibility was performed as for the genetic 

algorithm framework before. The parallel framework was used for the increased data set with 

40 additional autoscaled random variables the same way as described for the original data set. 

In the ranking of the variables after the first step, no random variable was found in the top 34 

variables for R22 and in the top 25 variables for R134a. This means that the growing neural 

network algorithm and especially the parallel framework are very robust to selecting 
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randomly correlated variables. In figure 56, it is shown that for R22 the first 8 variables and 

for R134a the first 7 variables in the ranking were exactly the same as in the previous run of 

the parallel algorithm resulting in exactly the same neural network topologies and predictions. 

Thus, the parallel framework shows a high reproducibility not sensitive to the partitioning of 

the calibration data set.  
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figure 56: Ranking of the time-points and of the random variables after the first step of the 
parallel framework for the increased data set. 
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8.4.2. Loop-based Framework 

The loop-based approach was performed according to the flow chart shown in figure 54, 

whereby 10 neural networks were grown in each loop cycle. The complete calibration data set 

was split into training (60 %), monitor (20 %) and selection (20 %) subsets for each loop 

cycle. For R22 the framework stopped after 8 loop cycles with a network topology consisting 

of 16 input neurons, 56 links and 15 hidden neurons organized in 4 hidden layers shown in 

figure 57. For R134a the framework stopped after 7 loop cycles with a network topology 

consisting of 13 input neurons, 35 links and 8 hidden neurons organized in 3 hidden layers 

shown in figure 58. The predictions of the validation data by these network topologies show 

the best results of all multivariate calibration methods used for this data set with relative 

errors of 1.50% for R22 and 2.37% for R134a (see table 4). The true-predicted plots show no 

bias and very low standard deviations for all concentration levels (see figure 59). Compared 

with the parallel approach the loop-based network topologies use rather many input variables. 

It is also remarkable that the number of 3 respectively 4 layers of hidden neurons is unusually 

high. Yet, the non-uniform network design helps to keep the number of adjustable parameters 

low by building a sparse network topology with only few links. The topologies of the grown 

neural networks show that the common recommendation [8,257-259] to use only 1 or at the 

furthest 2 hidden layers for fully connected networks is only a vague rule, as the growing 

neural network algorithm automatically decides, how many hidden layers are optimal. The 

good generalization ability demonstrates that the non-uniform topology efficiently uses small 

networks and is superior to fully connected networks. 

The same test for chance correlation and reproducibility was performed for the loop-based 

approach as already described for the genetic algorithm framework. Thereby the network 

topologies are by far more reproducible than using single runs of the growing neural network 

algorithm. The network for R22 of the second run uses the same variables than the network of 

the first run except of one variable being not used. The network for R134a uses the same 

variables of the first run except of one variable, which was exchanged by another one. Both 

networks did not use a random variable, whereby inside a loop cycle some networks used a 

random variable but these networks were not selected for the next loop cycle due to worse 

predictions of the selection data sets. 



8. Results – Growing Neural Network Framework 119  

 

figure 57: Neural network with 4 hidden layers built by the loop-based framework for R22. 

 

figure 58: Neural network with 3 hidden layers built by the loop-based framework for R134a. 
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figure 59: Predictions of the validation data by neural networks optimized by the loop-based 
growing network framework. 
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8.5. Conclusions and Comparison of the Different Methods 
In this chapter, a growing neural network algorithm for building non-uniform neural networks 

was applied to the refrigerant data set. The algorithms showed improved calibrations 

compared with the common non-optimized neural network. Yet, the variable selection and the 

topology of the networks were only partly reproducible. Thus, similar to the genetic 

algorithms a parallel framework and additionally a loop-based framework were introduced to 

improve the reproducibility and to improve the calibration quality further.  

The loop-based framework showed the best generalization ability of all multivariate data 

analysis methods introduced and applied in this work as it allows building non-uniform neural 

networks of any arbitrary size and topology exploiting a data set limited in size to a maximum 

extent. The predictions of the external validation data showed impressively low rel. RMSE of 

1.50% for R22 and 2.37% for R134a, which are only slightly higher than the standard 

deviations of the sensor signals of reproduced measurements. The loop-based framework 

needs a lot computing power (2 weeks for each analyte of the refrigerant data set using an up-

to-date personal computer) and is hardly suited for parallel computing hardware as it is a loop 

based approach and not a parallel approach.  

If a reproducible variable selection is important, both, the parallel growing network 

framework introduced in this chapter and the genetic algorithm framework introduced in the 

previous chapter are a good choice, whereby the latter scales better with an increasing number 

of variables, but shows a slightly worse generalization ability. Both parallel frameworks 

showed improved calibrations compared with the common neural networks. Both frameworks 

are well suited for parallel computer hardware rendering both methods ideally suited for 

computer pools.  

The single run growing neural network algorithm is a good choice for data sets with not too 

many variables to find an optimized non-uniform network topology without the danger of 

overfitting (about 3 hours computing time for each analyte of the refrigerant data set). 

Different single runs of the growing neural network all showed better calibrations than the 

non-optimized neural networks.  

Although single runs of genetic algorithms are frequently reported in literature, this method 

has been proven to be inferior compared with the different new algorithms and frameworks 

introduced in this work. Though being the fastest methods for a successful variable selection 

(about 1 hour for refrigerant data set), the instability of the variable selection and the resulting 
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diversity of the quality of calibration and of prediction render single runs genetic algorithms 

rather useless for most applications. 

In summary it may be said, that the growing neural networks and all three frameworks 

introduced in this work performed better than the common non-optimized neural networks. 

Among these new methods introduced in this work, no general recommendation for a specific 

method can be given as the method of choice for the optimization of neural networks depends 

on the needs of the user and on the data set.  

Adjustable  
Parameters 

Calibration  
Data Set 

Validation  
Data Set Method 

R22 R134a R22 R134a R22 R134a

Non-optimized  
Neural Networks 

247 247 1.47 2.62 2.18 3.26 

Growing Neural Networks 
(1st run) 30 31 1.84 2.73 1.99 2.63 

Growing Neural Networks 
(2nd run) 

31 24 2.14 2.73 2.12 2.87 

Parallel Framework 
Growing Neural Networks 

43 57 1.89 2.71 2.04 2.61 

Loop-based Framework 
Growing Neural Networks 

72 44 1.39 2.41 1.50 2.37 

table 4: Comparison of the rel. RMSE of the calibration and validation data in % for the 
growing neural network approaches and the non-optimized neural networks. 
Addtionally the number of adjustable parameters used by the networks are listed.   
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9. Results – All Data Sets  

In this chapter, the principle of the time-resolved measurements introduced in chapter 5 and 

the different new data analysis methods introduced in chapter 7 and chapter 8 are applied to 

several data sets. Thereby the methods are compared with the commonly used methods of 

data analysis and with static measurements to demonstrate the superiority of the new 

approaches. Different data sets of mixtures of the homologous series of the low alcohols were 

recorded by different setups. The application of the new approaches to these data sets 

demonstrates that the methods proposed in this study can be easily transferred to different 

setups and to different analytical task, such as a varying number of analytes in mixtures and 

varying types of analytes. In the last part of this chapter, the principle of the time-resolved 

measurements is applied to the data set introduced in chapter3 also resulting in an improved 

calibration.  

 

9.1. Methanol and Ethanol by SPR 
Measurements of the two homologues Methanol and Ethanol allow investigations of the 

difference of the kinetics of sorption and desorption, which is mainly based on the different 

sizes of the two analytes. Therefore several measurements of single analytes and 

measurements of mixtures were performed, which are described in section 4.5.2.1 and in 

[190] in detail. Besides of non-optimized neural networks, the parallel growing neural 

network framework is applied to the data resulting in a very small number of variables being 

selected. This small number of variables allows the insight into the "black box" of the 

calibration by neural networks by the use of a sensitivity analysis. Additionally, the selection 

of the variables is confirmed by a brute-force variable selection.  

9.1.1. Single Analytes 

The changes of the resonance wavelength when the device was exposed to alternating 

sequences of different concentrations of analyte and to synthetic air are shown in figure 15 in 

section 4.5.2.1 with the shift of the SPR resonance wavelength plotted versus the time and 

versus the relative saturation pressure of analyte (0 to 0.045). It is visible that 10 seconds of 

exposure to methanol vapor are enough to reach equilibrium between the methanol vapor and 

the methanol, which is sorbed into the polycarbonate layer, and thus the resonance 

wavelength does not change any more. In contrast, even after 120 s of exposure of the 
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polycarbonate layer to ethanol vapor equilibrium has not been reached. However, after 120 s 

the signals of ethanol are higher than the signals of methanol for the same relative saturation 

pressure as ethanol has a higher refractive index (nD20 =1.362) than methanol (nD20 =1.329). 

Since the diffusion of ethanol is slower, the signals at short exposure times are lower 

compared to methanol.  

9.1.2. Parallel Growing Neural Network Framework 

For the multivariate calibration, neural networks using all time points of the calibration data 

were trained set and subsequently predicted the validation data set. The root mean square 

errors of the crossvalidation and of the prediction of the independent validation data set are 

listed in the first row of table 5. The concentrations of the test samples were predicted with a 

relative RMSE of 3.32% for methanol and of 4.11% for ethanol. The fully connected 

networks used for the calibration consisted of 53 input neurons, 4 hidden neurons and 1 

output neuron. In order to improve the calibration, the parallel growing neural network 

framework introduced in chapter 8 was applied to the calibration data.  Thereby the growing 

network algorithm was repeated 200 times for each analyte. In contrast to chapter 8, the 

frequencies of the variables being selected after the first step of the algorithm are combined 

for both analytes by summing up the individual frequencies of each analyte. The 

corresponding plot (figure 60) shows that the variables in three time intervals are prominent: 

The beginning of exposure to analyte (10-45 s), when exposure to analyte has ended and 

exposure to synthetic air starts again (130-140 s), and additionally hundred seconds after the 

start of exposure to synthetic air (220-230 s). The first two intervals are easily interpretable as 

in accordance with figure 15 the sensor responses for both analytes differ most during these 

time intervals. The time interval around 220 s might be considered as reference signal with 

practically no analyte remaining to compensate possible drifts of the baseline. 

Calibration Data Validation Data  Number of 
Time Points  

Methanol Ethanol Methanol Ethanol 

53 4.77 3.14 3.32 4.11 

3 2.01 1.91 1.97 2.37 

2 2.28 2.36 2.22 2.70 

table 5: Relative RMSE in % for the prediction by the neural networks using different time 
points. 
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figure 60: Ranking of the time points after the first step of the parallel framework for both 
analytes together. 

The final model obtained by a stepwise addition of time points (step 2 in figure 53) uses only 

the 3 time points 10 s, 30 s and 130 s (topology 3-4-1). According to table 5 the prediction 

errors are significantly lower compared with the fully connected networks for both, the 

crossvalidated calibration data and for the validation data with excellent low errors of 1.97% 

for methanol and 2.37 % for ethanol. The third time interval is not used by this network and 

consequently seems not to contain significant additional information not covered by the 3 

other sensor signals. Using reproduced measurements of the single analytes in the same 

concentration range, a standard deviation of the signals was calculated with 0.62% for 

methanol and 0.98 % for ethanol. These errors are caused by the noise of the spectrometer, 

inaccuracies of the gas mixing station and fluctuations of the temperature and thus also exist 

for the measurements of the mixtures. The only moderate increase of the errors for the 

calibration and prediction shows the potential of the calibration and variable selection by the 

growing neural network framework. In figure 61 the true-predicted plots of the validation data 

and the calibration data are shown. The predictions of all concentrations are characterized by 

very small standard deviations and by the absence of systematic errors.  
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figure 61: Predictions of the calibration and validation data by the optimized neural 

networks using only three time points. 

9.1.3. Sensitivity Analysis 

The small number of 3 variables allows an efficient sensitivity analysis [95,101] to give a 

little insight into the "black box" of neural networks. Thereby the values of two time points 

were systematically varied between the measured minimum and maximum sensor responses 

of these time points with the third time point kept constantly in the middle of the 

corresponding range of the measured sensor responses. The trained neural nets described 

above were fed with the values of the 3 time points. The concentrations calculated by the 

neural nets are plotted versus the two varying time points in figure 62. 

The top row of this figure shows the prediction of the concentrations of methanol (left) and 

ethanol (right) depending on the sensor responses of the time points 10 s (x-axis) and 30 s (y-

axis). The prediction of methanol is determined by the ensemble of both time points. This is 

in accordance with figure 15, which demonstrates that the sorption process of methanol has 

come to a steady state after 10 s. Hence, a high sensor response after 10 s caused by a high 

concentration of methanol automatically induces a high sensor response after 30 s. The top 

right plot of figure 62 shows that the prediction of ethanol is practically not influenced by the 

time point 10 s explainable by the variance of this time point being mainly caused by the 

sorption of methanol (see figure 15). Nevertheless, the prediction of ethanol is nearly linearly 

correlated with the sensor response of the time point 30 s. The bottom row of figure 8 shows 

the prediction of the concentration depending on the signal of the time points 10 s (x-axis) and 

130 s (y-axis). The plane parallel to the y-axis demonstrates that the prediction of methanol is 

practically independent from the time point 130 s. However, the prediction of ethanol highly 
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depends on the sensor response of the time point 130 s. The plots of figure 62 top right and 

bottom right are nearly identical except of the higher dynamics of time point 130 s. 

Methanol Ethanol

Methanol
Ethanol

figure 62: Predicted concentrations of the sensitivity analysis versus the sensor responses of 
the two time points varied. 

In summary, it may be said that the prediction of methanol depends on the combination of the 

time points 10 s and 30 s whereas the prediction of ethanol depends on the time points 30 s 

and on the time points 130 s. The similar dependencies of the predictions of ethanol on the 

time points 30 s and 130 s indicate that the time point 130 s could be rendered unnecessary by 

calculating the concentrations of methanol using the sensor response of the time point 10 s 

and by calculating the concentration of ethanol by the ratio of the sensor responses after 10 s 

and 30 s. Thus, neural networks of the topology 2-4-1 were trained using only the time points 

10 s and 30 s. These small networks perform quite well predicting both analytes with relative 

errors of only 2.22% and 2.70% (see table 1). The only small deterioration of the predictive 

ability is overcompensated by the fact that the measurement time can be reduced from 130 s 

to 30 s. In addition, the shortening of the time with the polymer being exposed to the analyte 

results in the sorption of less ethanol into the polymers. Therefore, the desorption of ethanol 

needs less time to be completed additionally shortening the time needed between 2 

measurements. 
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9.1.4. Brute Force Variable Selection 

The low number of 3 variables selected by the growing neural network framework for an 

optimal model also allows a comparison with the variable selection by a brute force method. 

According to expression (14), there are 140556 different realizations for selecting 3 variables 

out of 53. For all these realizations neural networks (fully connected with 4 hidden and 1 

output neuron) were trained using the calibration data set and then the mean error of the 

prediction of the validation data set for both analytes was calculated (similar to the prediction 

error shown in figure 4 for 2 variables of the refrigerant data set). This procedure was 

repeated 25 times using different initial weights for the neural networks (a higher number of 

runs is desirable but limited by the computing time). Among the 25 best networks in respect 

to the lowest mean prediction error of the validation set, only 1 combination of 3 variables 

was selected more than once. This selection was the same than the 3 time points selected by 

the growing networks, whereas the 23 other best selections all were different. Thus, the best 

combination of the variables highly depends on the initial weights of the training, which is an 

indication of a high correlation of the variables rendering many realizations of 3 variables 

very similar. Nevertheless, the 3 variables selected by the parallel growing network 

framework were the most frequently individually selected variables among the 25 selections 

by the brute force method confirming the variable selection quality of the parallel growing 

network framework.  

9.1.5. Conclusions 

It has been shown that mixtures of methanol and ethanol vapors can be quantified by the use 

of a single SPR sensor coated with Makrolon and a subsequent data analysis by neural 

networks. Compared with fully connected neural networks the variable selection and 

calibration by the parallel growing neural network framework again showed several benefits. 

First, the calibration was significantly better with impressive low prediction errors, which 

were only slightly higher than the standard deviations of the signals of reproduced 

measurements. Secondly, the small number of variables of the optimized networks allowed an 

insight into the calibration model using a visual interpretation, whereby each variable could 

be assigned a chemical sense. Finally, the comparison with a brute force variable selection 

demonstrated that the parallel growing neural network framework selected the probably most 

predictive combination of 3 variables.  
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9.2. Methanol, Ethanol and 1-Propanol by SPR 
Although the measurements of methanol, ethanol and 1-propanol by a single sensor SPR 

device can be seen as an extension of the previous sections with 1 more analyte to be 

quantified, this data set was recorded as the first data set of the series. Thereby the 

measurement parameters like the thickness of the sensitive layers, the number of recorded 

time points and the measurement time had been less optimized. Details of the measurements 

and data sets are explained in section 4.5.2.2 and in [194]. An interesting point with 

consequences for some data analysis methods is the fact that the validation data set in contrast 

to the calibration data set was measured by averaging 2 repeated measurements. Several 

common data analysis method, like PLS, INLR, NN, PCA-NN and the new methods like the 

genetic algorithm framework and the parallel growing neural network framework are applied 

to the data set. This allows a comparison of the performance of the different methods on the 

basis of a second data set in addition to the refrigerant data. 

9.2.1. Single Analytes 

The sensor responses for the measurements of different concentrations of the 3 analytes are 

plotted in figure 16 (section 4.5.2.2) during 600 seconds of sorption and a subsequent 

desorption. The sensor reacts spontaneously to the presence and absence of methanol vapors 

resulting in a rectangular shape along the time axis. The sensor response for ethanol is slower 

resulting in shapes, which are more curved, whereas the sorption of 1-propanol into the 

sensitive polymer layer is very slow not reaching equilibrium between the vapors of 1-

propanol and the 1-propanol sorbed into the polymer layer. Therefore, the shape of the sensor 

response for 1-propanol does not reach a plateau during sorption and the signals need a long 

time to come down to the baseline during desorption. 

9.2.2. Multivariate Calibrations of the Mixtures 

Using different data analysis methods introduced in chapter 6, models were built using the 

calibration data set. Then the validation data were predicted with the relative RMSE listed in 

table 6. 
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Calibration Data Validation Data  
Method 

Meth. Eth. Prop. Meth. Eth. Prop. 

PLS 8.82 12.68 16.99 6.95 11.01 16.12 

INLR 9.02 12.57 13.21 8.67 12.39 17.57 

Neural Networks 2.83 6.25 7.41 4.33 8.65 12.58 

GA Framework 3.24 6.91 7.84 3.58 6.20 7.60 

Growing NN Framework 2.62 6.26 7.16 3.31 6.05 7.33 

PCA-NN 2.42 6.39 7.31 3.63 8.68 13.36 

table 6: Relative RMSE in % for different calibration methods. 

For the calibration by the PLS, the optimum number of principal components was determined 

by the minimum crossvalidation error with 4 principal components for methanol, 8 principal 

components for ethanol and 3 principal components for propanol. The predictions of both, the 

calibration and the validation data are unacceptably high. Similar to section 6.1, the 

calibration by the PLS cannot deal with the nonlinearities of the data with systematic 

deviations of the predictions. The INLR (see section 6.3) also showed disappointing 

predictions of both data sets. Compared with the PLS, the systematic deviations of the 

predictions were lower but the scattering was higher. In contrast, the calibration by fully 

connected neural networks (6 hidden neurons and 3 output neurons) was significantly better. 

Yet, the gap between the calibration and validation data shows that there is still room for an 

optimization of the neural networks to prevent an overfitting.  

9.2.3. Genetic Algorithm Framework 

The genetic algorithm framework introduced in chapter 7 was applied to the calibration data 

set with 100 parallel runs of the GA. Each GA run evaluated 50 populations using about 60 

generations whereas the stopping criterion was set to a convergence of the standard deviation 

of the genes below 0.04. The parameter α of the fitness function was set to 0.9 resulting in the 

selection of approximately 6 variables per single GA. 

The ranking of the variables after the first step is shown in figure 63. In the second step, these 

variables entered the model according to their rank until the prediction of the test data did not 
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improve significantly. In contrast to chapter 7, a Kruskal-Wallis non-parametric test (p<0.05) 

was used to test the significance of improvement for the 20-fold random subsampling 

procedure (see section 10.2 for a detailed discussion). The iterative procedure stopped after 

the addition of 5 variables with the selection of the time points 5 s, 15 s, 25 s, 55 s and 615 s, 

which are labeled in figure 63. 
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figure 63: Frequency of the variables selected in the first step of the genetic algorithm 
framework. 

The optimized networks using only these 5 variables instead of all 50 variables show the best 

predictions of the external validation data (see table 6). Additionally no gap is visible between 

the predictions of the calibration data and the validation data. The corresponding true-

predicted plots are shown in figure 64. The signals of 3 times 18 reproduced measurements, 

which were spread over the complete concentration range of the samples of the mixtures, 

show a relative standard deviation of 4.6 %. These inaccuracies of the signals are caused by 

the noise of the spectrometer, inaccuracies of the gas mixing station and fluctuations of the 

measuring temperature. The rather small increase of the mean relative RMSE in the 

concentration domain (5.8% versus 4.6%) after the data analysis demonstrates the calibration 

power of the genetic algorithm framework. 



132 9. Results - All Data Sets 

0 1 2 3
0

1

2

3

 Validation Data
 Calibration Data

 

 Methanol
pr

ed
ic

te
d 

p i /p
i0
 [1

0-2
]

true pi /pi0 [10-2]

0 1 2 3
0

1

2

3

 Validation Data
 Calibration Data

 

 Ethanol

pr
ed

ic
te

d 
p i /p

i0
 [1

0-2
]

true pi /pi0 [10-2]

0 1 2 3
0

1

2

3

 Validation Data
 Calibration Data

 

 Propanol

pr
ed

ic
te

d 
p i /p

i0
 [1

0-2
]

true pi /pi0 [10-2]  

figure 64: Predictions of the calibration and validation data by the neural networks 
optimized by the genetic algorithm framework. 

The 5 time points selected by the framework (5 s, 15 s, 25 s, 55 s and 615 s) can be analyzed 

in more detail when looking at the sensor response plots (figure 16). The response surface of 

methanol shows that after 5 seconds the response has practically reached the plateau of the 

highest sensor signals whereas ethanol and 1-propanol hardly show any sensor signal. The 

same applies to the 615 s signal, which is situated 15 seconds after the end of exposure to 

analyte: Methanol has already desorbed whereas the sensor response of ethanol is still very 

high and 1-propanol shows practically no decrease of the sensor signal. Thus, the 5 s signal 

represents the concentration of methanol, whereas the 615 s signal represents the sum of the 

concentrations of ethanol and propanol. Large parts of the variance of the sensor signals after 

15 and 25 seconds can be identified with ethanol since the signal of methanol has already 

reached the plateau and 1-propanol attributes negligibly to the total signal. On the other hand, 
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the variance of the sensor signal at 55 seconds can be mainly ascribed to 1-propanol whereby 

the sensor response of methanol has completely and the sensor response of ethanol has nearly 

reached equilibrium. In summary, it may be said that all 5 time points selected by the 

algorithm can be associated with the characteristic sensor responses of the pure analytes and 

consequently make sense in a chemical respect. Another benefit from the variable selection 

results from the direct relation of the variables with the time needed for the analysis. Only 

information during 55 seconds of exposure to analyte and 15 seconds after the end of 

exposure is evaluated. Thus, it should be enough to reduce the time of exposure to analyte to 

55 seconds and to record the sensor responses during 70 seconds. This would dramatically 

reduce the analysis time.  

Similar to section 7.3, a randomization test was performed to test the reproducibility and 

robustness of the variable selection and of the calibration. For this test, 50 uniformly 

distributed autoscaled random variables were added to the set of 50 original time points. The 

genetic algorithm framework was used for this extended data set the same way as described 

before except of increasing the population size to 100 resulting in about 110 generations until 

the convergence criterion was reached and except of setting the parameter α to "1", which 

resulted in approximately 6 variables being selected in single runs of the GA. The ranking of 

the variables after the first step of the algorithm is shown in figure 65.  
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figure 65: Ranking of variables for 50 time points and for 50 additional random variables. 

It is obvious that all random time points are ranked very low and no random variables can be 

found among the most important 27 time points. Similar to section 7.3 the parallel runs of 

multiple GA prevented the selection of randomly correlated variables whereas single runs of 

the GA selected random variables. The left side of figure 65 looks very similar to figure 63 

demonstrating the reproducibility of the ranking of meaningful variables. The top 5 time 
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points are ranked similarly to the algorithm applied to the original data. Consequently, the 

same 5 variables are selected in the second step of the algorithm demonstrating the 

reproducibility of the selection of the variables by the genetic algorithm framework.  

9.2.4. Parallel Growing Neural Network Framework 

Also, the parallel growing neural network framework introduced in chapter 8 was applied to 

the data with 500 parallel runs of the growing neural networks for each analyte. The ranking 

of the variables, which is combined for all analytes similar to section 9.1.2, is shown in figure 

66. The second step of the algorithm (20-fold random subsampling sets) stopped after the 

addition of 5 variables, which are labeled in figure 66. Compared with the variable selection 

by the GA framework, the selection by the parallel growing network framework looks similar, 

but not identical. Instead of the signal at 20 s the time point 35 s is used (variation of ethanol 

and 1-propanol) and instead of the time point 55 s the signal at 650 s is used (main variation 

of 1-propanol). According to table 6, the corresponding optimized neural networks (4 hidden 

neurons and 1 output neuron) showed the best predictions of all methods used for this data 

set. 
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figure 66: Frequency of the variables selected in the first step of the parallel growing neural 
network framework 

The randomization test (200 parallel runs of the growing nets) demonstrates that the parallel 

growing neural network framework is highly reproducible with the selection of the same 5 

variables (see figure 67). When comparing figure 67 with figure 65, it is obvious that the 
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growing neural nets are less subject to selecting random variables due to chance correlation 

than the genetic algorithm. 
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figure 67: Ranking of the variables for 50 time points and for 50 additional random 
variables. 

9.2.5. PCA-NN 

Similar to section 6.9, a compression of the input space for the data analysis by neural 

networks was performed by a principal component analysis. The optimal number of 19 

principal components was determined by the minimum crossvalidation error of the calibration 

data. The predictions of the calibration data are promising whereas the predictions of the 

validation data are significantly worse (see table 6). The true-predicted plots (figure 68) 

demonstrate that the predictions of the validation data are biased towards too high predictions.  

The bias can be explained by the different amount of noise of the validation and calibration 

data sets in combination with the nonlinearities in the data sets (see discussion in section 6.9): 

The linear PCA projection spreads the nonlinearities over many principal components 

resulting in the selection of the high number of 19 components by the minimum 

crossvalidation error criterion. On the other hand, the typical noise of the calibration data set 

is included in theses components. Thus, most of these components contain a combination of 

important information about the model and information about noise. As the validation data set 

was recorded by averaging two measurements, the noise is significantly reduced resulting in a 

changed data structure and thus a changed projection by the PCA causing the significant bias 

of prediction. 
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figure 68: Predictions of the calibration and validation data by PCA-NN. 

 

9.2.6. Conclusions 

Similar to the previous chapters, it has been demonstrated that both, the genetic algorithm 

framework and the parallel growing neural network framework are superior to the common 

methods of multivariate calibration in terms of calibration quality. Both frameworks allow a 

reproducible variable selection resulting in smaller optimized neural network models with a 

better generalization ability compared with common neural networks. Both frameworks show 

reproducible and robust results whereby the parallel growing neural network framework 

seems to be more robust and shows a slightly better generalization ability, which has also 

been observed for the binary mixtures of the refrigerants. The classical chemometric methods 

like the PLS and INLR once more have problems to model the nonlinear relationships of the 

data similar to chapter 6. It was also shown that the PCA-NN could not deal with changes of 

the noise in the data resulting in significant biases of the predictions. 
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9.3. Methanol, Ethanol and 1-Propanol by the RIfS Array and the 4λ 
Setup 

The data sets of ternary mixtures of methanol, ethanol and 1-propanol in air, which are 

described in section 4.5.2.3 in more detail, were recorded for transferring the principle of 

time-resolved measurements to other setups and to other detection principles. The 

measurements were performed by the two RIfS devices, the sensor array setup and the low-

cost 4λ setup. As the signal to noise ratio is rather poor for the measurement by the RIfS array 

setup (3 Makrolon layers and 1 PUT layer), it is investigated if a smoothing of the sensor 

responses can improve the calibration. Additionally single-sensor RIfS setups are simulated 

by evaluating only single sensors of the array setup. Finally, the low-cost 4λ setup is 

compared with the array setup. 

9.3.1. Signals and Data Preparation 

The RIfS principle detects changes of the optical thickness nd of the sensitive layer whereby 

in most cases the changes of the thickness d are dominant [260]. As Makrolon is a hard 

polycarbonate with a high glass transition temperature, mainly the refractive index n and not 

the thickness d changes during exposure to analyte resulting in bad signal to noise ratios for 

the measurements using the 2 RIfS setups (see figure 69). Although the signal to noise ratio 

can be improved by the use of thicker sensitive layers and longer times of exposure to analyte 

(for the bigger molecules), both approaches drastically increase the time needed for 

measurements and between measurements (see figure 25), which is not desired for sensor 

applications. Additionally, the thickness of the sensitive layer of the 4λ setup can be varied 

only within certain limits [261]. Therefore, it is investigated if the reduction of noise by the 

use of a smoothing technique is beneficial for the calibration. In figure 69, the sensor signals 

of the 80 nm Makrolon layer are shown for 1-propanol and for methanol before and after the 

application of an FFT filter for smoothing. It is visible that 1-propanol has the poorest signal 

to noise ratio, as not all micropores are occupied by the analyte in contrast to methanol. Thus, 

the sensor signals for propanol benefit most from smoothing. On the other hand, the sensor 

response of methanol shows a counterproductive effect of smoothing. The rectangular sensor 

signal of methanol before smoothing changes into a rounder sensor profile after smoothing 

whereas the shape of the wave-like sensor signal of 1-propanol is practically not affected by 

smoothing. This means that the shapes of the sensor responses of the different analytes are 

made more similar by smoothing. Thus, the quantification of the analytes is rendered more 

difficult as the quantification is based on the differences of the shapes. To investigate the 
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effects of smoothing the data are evaluated separately with and without smoothing. 

Additionally, the effect of smoothing for sensitive layers with a different thickness is 

investigated as the thickness influences the signal to noise ratio. 
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figure 69: Sensor responses before and after filtering with an FFT-Filter for the 80 nm layer. 

9.3.2. Mixtures by the RIfS Array 

First, a multivariate calibration was performed using the sensor responses of all time points of 

all 4 sensors resulting in 200 independent variables. For the unsmoothed data, prediction 

errors of the validation data between 22.18% and 23.96% were achieved (see row 1 of table 

7). The prediction errors of the validation data for the smoothed sensor signals are between 

14.61% and 34.85% (see row 2 of table 7). When using the sensor signals of all 4 sensors no 

clear decision can be made if smoothing is beneficial for the calibration. As the 200 input 

variables contain too much redundant information for an optimal calibration, the parallel 

growing network framework (50 networks per analyte) was applied to the calibration data of 

the smoothed and the raw sensor signals. The importance of the different variables is shown 

in figure 70 as frequency of selection. For the raw signals the 2 Makrolon sensors of 160 nm 

and 80 nm dominate, whereas the PUT sensor and the 120 nm Makrolon are by far less 

important. The variable ranking of the smoothed signals looks similar with two differences: 

Although the 160 nm and 80 nm sensors still dominate, the importance of the other two 

sensors increased and the important time points of the 80 nm sensor shifted from the end to 

the beginning of desorption. Compared with the 160 nm layer, the 80 nm layer has gained 

importance after smoothing.  
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figure 70: Frequency of selection of the different variables after the first step of the parallel 
growing network framework. 

The second step of the growing network framework stopped after the addition of 7 variables 

for the raw sensor signals and after the addition of 10 variables for the smoothed data. The 

variable selections for both data sets are similar and very astonishing. For both data sets, only 

time points of the 80 nm and of the 160 nm Makrolon layer are used. Additionally, only time 

points within the first 90 seconds of sorption and within the first 75 seconds of desorption are 

used (instead of 240 seconds of sorption and 210 seconds of desorption) suggesting that faster 

measurements are possible (see also discussion in section 10.3). Both, the predictions of the 

validation data and the predictions of the calibration data are significantly better for the raw 

and the smoothed data when compared with the calibrations using all time points of all 

sensors (see row 3 and row 4 of table 7). The quantification of methanol is better for the raw 

data, whereas the quantification of ethanol and 1-propanol is better for the smoothed data 

whereby for this combination of a thick and a thin layer no method can be generally preferred. 

The true-predicted plots for the raw data are shown in figure 71. 
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figure 71: True-predicted plots for the raw sensor signals of the array setup whereby only the 

sensor responses of 2 sensors are evaluated. 

In order to see the interactions of the thickness of layers and of smoothing, the sensor 

responses of the single sensors are calibrated using unoptimized networks (50 input neurons, 

5 hidden neurons and 1 output neuron). The predictions of these single sensor calibrations for 

the raw and for the smoothed data are listed in row 5 to row 12 of table 7. First of all, the 

single sensor calibrations confirm the variable selection of the framework. The 160 nm layer 

shows the best calibrations whereas the PUT sensor and the 120 nm Makrolon sensor show 

poor calibrations. From the chemical point of view, the poor single sensor performance of the 

PUT sensor can be ascribed to the immediate sensor response without any time-resolution 

possible whereas the poor performance of the 120 nm Makrolon sensor cannot be explained. 

The effect of smoothing is quite interesting for the 3 Makrolon layers with a different 

thickness. The 80 nm layer clearly benefits from the smoothing while the 160 nm layer shows 
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worse calibration results if the smoothed sensor signals are used instead of the raw sensor 

signals. The 120 nm layer with the medium thickness shows no clear preference. The benefits 

of smoothing for thin layers can be explained by the improvement of the signal to noise ratio 

overcompensating the changes of the shapes of the sensor responses. On the other hand, the 

thick layers with a rather good signal to noise ratio are mainly affected by the 

disadvantageous changes of the shapes of the sensor signals without any real improvement of 

the signal to noise ratio. 

Calibration Data Validation Data  
Method 

Meth. Eth. Prop. Meth. Eth. Prop. 

4 Sensors Raw Data 16.21 22.38 21.98 22.77 23.96 22.18 

4 Sensors Smoothed Data 14.65 15.11 16.21 34.85 14.61 19.23 

Framework Raw  7.86 12.48 8.32 9.17 13.27 7.99 

Framework Smoothed 8.81 9.22 6.94 10.32 11.56 7.23 

Raw (80 nm M2400) 25.36 24.87 19.26 28.05 31.24 19.65 

Smoothed (80 nm M2400)  22.68 20.69 10.78 25.86 22.09 10.58 

Raw (120 nm M2400) 21.29 24.27 27.38 24.47 36.61 38.53 

Smoothed (120 nm M2400) 23.67 25.27 24.35 26.46 40.99 36.22 

Raw (160 nm M2400) 10.54 14.15 12.00 9.81 13.77 11.79 

Smoothed (160 nm M2400) 12.57 15.07 13.56 9.91 14.44 14.45 

Raw (PUT) 33.72 47.98 14.91 34.49 43.55 12.53 

Smoothed (PUT)  35.06 43.36 16.07 45.67 42.39 23.89 

4 Sensors Static Eval. 36.61 40.66 37.38 38.73 42.20 37.96 

4λ Setup Framework 22.43 24.77 20.87 17.15 25.20 21.32 

table 7: Relative RMSE for different data analysis methods and for different setups. 
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9.3.3. Mixtures by the 4λ Setup 

For the quantification of the ternary mixtures measured by the 4λ setup, the data were 

evaluated with the growing neural network framework. The optimized networks (13 input 

variables, 5 hidden neurons and 1 output neuron) predicted the validation data with relative 

errors between 17.15% and 25.2%. The corresponding true-predicted plots are shown in 

figure 72. The results of the 4λ setup can be best compared with the 80 nm (smoothed) single 

sensor calibration of the array setup. Yet, the thick layer of the 4λ setup needs significantly 

more time for the desorption of the analytes (nearly 600 seconds), whereas the 80 nm layer 

recovers in less than 60 seconds. The 160 nm layer of the array, which needs about 200 

seconds for recovery, shows significantly better predictions than the 4λ setup. This means that 

although the 4λ setup can be successfully used for the multicomponent analysis, the price of 

miniaturization and simplification has to be paid in terms of longer measurement times or 

worse calibrations. 
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figure 72: True-predicted plots for the 4λ-setup. 
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9.3.4. Conclusions 

Ternary mixtures of methanol, ethanol and 1-propanol measured by the RIfS array setup and 

by the 4λ setup could be successfully quantified. The application of the growing neural 

network framework instead of the non-optimized neural networks resulted in significantly 

improved calibrations again. The variable selection of the framework for the array setup is 

quite astonishing, since only the sensor signals of 2 sensors out of 4 sensors are used. As the 

framework selects the most predictive variables, it can be concluded that the time domain of 2 

sensors contains more information than the parallel (static) information of all 4 sensors 

together. This is an impressive demonstration, how the time-resolved measurements of few 

sensors can render the application of many parallel sensors with different sensitivities 

redundant. The static evaluation of the 4 sensors, which corresponds to the sensor signals at 

the end of exposure to analytes, shows that the time-resolved evaluation of the sensor signals 

is highly superior even though the static sensor evaluation is not a mathematically 

underdetermined system. It was demonstrated that smoothing improves the calibration of 

measurements performed by thin sensitive layers whereas the calibration deteriorates for 

measurements performed by thick sensitive layers when smoothing the sensor signals. 

Furthermore, the 4λ setup can be used as single sensor device for a multicomponent 

quantification. Compared with the array setup, the price of miniaturization and cost reduction 

has to be paid in terms of extended measurement times respectively higher prediction errors. 
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9.4. Quaternary Mixtures by the SPR Setup and the RIfS Array 

9.4.1. Introduction 

In this chapter, the quaternary mixtures of methanol, ethanol, 1-propanol and 1-butanol 

measured by the RIfS array and the SPR setup are investigated. This allows a comparison of 

the two setups. The RIfS array shows a significantly worse signal to noise ratio than the SPR 

setup using Makrolon as sensitive layer. Thus, more time of exposure to analyte was 

necessary for the RIfS array setup than for the SPR setup. Additionally, it is investigated if the 

smoothing of the data of the RIfS array can improve the calibration (similar to the last 

section). More details of the data sets can be found in section 4.5.2.4. 

9.4.2. Results 

For all data sets, several calibrations using the corresponding calibration data set were 

performed, whereby the predictions of the external validation data are summarized in table 8. 

First of all, calibrations were performed using all time channels of the SPR setup and all 

smoothed time channels of the 3 sensors of the RIfS array setup (1st and 5th row of table 8). 

Then the same data sets were used for the parallel growing neural network framework (2nd 

and 6th row). It is obvious that for both setups the framework significantly improves the 

calibration of all analytes. The SPR setup performs better on the calibration of methanol and 

ethanol and the RIfS array with 3 sensors performs better on the calibration of 1-propanol and 

1-butanol whereby the overall mean predictions of the RIfS array with 3 sensors are better. 

The predictions of the calibration and the validation data are shown in figure 73 for the SPR 

setup (the neural networks had been optimized by the framework). For both setups, the 

framework selected time points spread over all sensors and over the complete process of 

sorption and desorption. An interesting point is the restriction of the available time points to a 

certain shorter time interval, which would correspond to faster measurements. The restriction 

of the data analysis for the SPR measurements to 240 seconds (120 seconds of sorption and 

120 seconds of desorption) instead of 930 seconds hardly had a negative impact on the 

calibration, whereas the restriction to 120 seconds of sorption significantly decreased the 

calibration performance. Decreasing the analysis time of the RIfS array from 3470 seconds to 

640 seconds deteriorated the prediction performance less than decreasing the analysis time 

from 640 seconds to 236 seconds, which corresponds to the sorption process only. This means 

that for both setups the measurement time can be drastically reduced without too high an 

impact on the prediction performance. Yet, it is important to consider not only the sorption 
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process but also the beginning of the desorption process. This is consistent with most variable 

selections by the frameworks in the previous sections (8.4.1, 9.1.2, 9.2.3, 9.2.4 and 9.3.2) with 

only variables selected directly after the beginning of exposure to analyte and directly after 

the end of exposure to analyte (see also discussion in section 10.3). 
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figure 73: True-predicted plots of the SPR setup using the optimized networks and the time 
points of the complete measurement time. 

The effect of smoothing the sensor signals of the RIfS array was investigated for the singles 

sensor responses of the two Makrolon layers. Similar to section 9.3.2, the thinner 95 nm layer 

benefited from the smoothing whereas the thicker 165 nm layer was adversely affected by 

smoothing. The single sensor predictions of the RIfS array are all worse than the single sensor 

predictions of the SPR setup even with nearly 4 times longer measurement times of the RIfS 

setup. As already discussed in section 9.3.1, the RIfS setup, which primarily detects changes 
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of the thickness d of the sensitive layer [260], is more affected by Makrolon mainly changing 

the refractive index n when exposed to analyte, than the SPR setup, which mainly detects 

changes of the refractive index n. Nevertheless, the comparison with the static sensor 

evaluation (only the highest sensor signals of each sensor), which is an undetermined system 

with 3 sensors for 4 analytes and which consequently shows very high prediction errors, 

demonstrates the potential of the time-resolved measurements also for the RIfS principle with 

many possibilities for further developments (last row of table 8). 

Method Meth. Eth. Prop. But. Mean

SPR, unoptimized 9.6 11.0 16.4 19.0 14.0 

SPR, optimized 5.8 6.5 10.2 16.0 9.6 

SPR, optimized, <240 s 5.4 4.5 12.7 20.4 10.7 

SPR, optimized, <120 s 13.5 12.2 15.8 20.9 15.6 

RIfS, 95 + 165 + PUT, unopt., smoothed 15.1 13.6 12.9 12.1 13.4 

RIfS, 95 + 165 + PUT, opt., smoothed 10.1 10.0 8.2 6.5 7.3 

RIfS, 95 + 165 + PUT, opt., sm., < 640 s 9.9 10.0 9.7 7.2 9.2 

RIfS, 95 + 165 + PUT, opt., sm., < 236 s 14.1 12.8 12.2 9.1 12.1 

RIfS, 95 optimized, raw 12.6 11.7 14.2 20.3 14.7 

RIfS, 95 optimized, smoothed 12.5 10.5 12.6 18.1 13.4 

RIfS, 165 optimized, raw 19.6 17.6 13.9 15.5 16.7 

RIfS, 165 optimized, smoothed 22.1 19.6 15.8 18.1 18.9 

RIfS, 95 + 165 + PUT, 1 static time point 43.8 43.9 41.1 22.5 37.8 

table 8: Relative RMSE of the validation data in %  for the 4 analytes and the mean using 
different data analysis methods, different setups and different constraints of time 
points (95 = 95 nm Makrolon layer, 165 = 165 nm Makrolon layer, PUT = PUT 
layer; optimized = growing neural network framework, unoptimized = all time 
channels, smoothed  / raw sensor signals). 
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9.4.3. Conclusions 

It was demonstrated that by the use of time-resolved measurements quaternary mixtures can 

be quantified, which were measured by sensor setups employing less sensors than analytes to 

be quantified. Thereby the 1-sensor SPR setup practically achieves the same results than the 

RIfS array using 3 sensors, whereas the evaluation of single RIfS sensors showed worse 

results than the SPR setup. The evaluation of single time points of the 3-sensor RIfS setup, 

which corresponds to the common static sensor evaluation, showed unacceptably bad results, 

as the data analysis was mathematically underdetermined (3 sensor responses for 4 analytes). 

This demonstrates how the principle of time-resolved measurements can help to reduce the 

number of sensors and thus the hardware costs. The principle allows the quantitative 

determination of systems, which would never have been quantified using static measurements. 

Similar to section 9.3, it was demonstrated that the influence of smoothing the time-resolved 

sensor responses is two-sided. Smoothing of very noisy sensor responses of thin sensitive 

layers improves the calibration whereas smoothing of sensor responses with a high signal to 

noise ratio adversely influences the calibration. Additionally, it was demonstrated once more 

that the frameworks introduced in this work help to improve the multivariate calibration of the 

sensor signals of all data sets investigated.  
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9.5. Quantification of the Refrigerants R22 and R134a in 
Mixtures: Part II 

This section is an example how the calibration of old data sets can be improved by a time-

resolved data analysis. The data set, which was recorded by the RIfS array with different 

polymers, was already introduced and investigated in chapter 3. During the development of 

the time-resolved measurements, this data set was investigated once more, since the sensor 

response of the Makrolon layer had also been recorded in a time-resolved mode (see section 

4.5.1.2). 

The parallel growing neural network framework (250 parallel runs for each analyte) was 

applied to the data set with all 23 variables. The framework selected 6 variables for an optimal 

prediction. Among these variables the 3 static sensor responses of HBP, PDMS and UE 2010 

15% and additionally 3 time-resolved variables of Makrolon were selected. Using these 

variables instead of the 6 static sensor responses the test data were significantly better 

predicted with an improvement of 33% for the RMSE of R22 and 9% for the RMSE of R134a 

(see table 9). The parallel framework was also applied to the calibration data using only the 

time-resolved sensor signals of Makrolon. The predictions of the optimized neural nets with 

18 variables are shown in table 9. Compared with the static sensor signals of 6 sensors, the 

predictions using the time-resolved sensor signals of the Makrolon sensor were by 12% better 

for R22 and by 68% worse for R134a. When comparing the mean error of the test data of this 

single sensor approach with the 15 combinations of the 2-sensor approach (see table 1 in 

section 3.4) it is astonishing that the time-resolved single sensor approach is better than most 

of the 2-sensor approaches (6th position). 

Variables Test R22 Test R134a Test Mean 

6 Static 0.00183 0.00630 0.00406 

3 Static + 3 Time-resolved  0.00141 0.00575 0.00358 

18 Time-resolved 0.00161 0.01061 0.00611 

table 9: RMSE of the time-resolved data analysis compared with the static data analysis 
performed in chapter 3, see also table 1. 

As a conclusion of this section it might be said that even for data sets, which were recorded 

without the intention of a time-resolved data analysis and without any optimization of the 

measurement parameters, the time-resolved data analysis can improve the calibration. 
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10. Results – Various Aspects of the Frameworks and 
Measurements 

In this chapter, several minor issues concerning the frameworks and the time-resolved 

measurements are dealt with using the data of the previous chapter. 

10.1. Single or Multiple Analyte Rankings 
In principle, the variable selection of the frameworks can be performed for each analyte 

(response variable) separately or for all analytes together. For example, the variable selection 

by the parallel growing neural network was performed for each analyte separately in section 

8.4.1 by using a separate ranking for both analytes, whereas the variable selection in the 

sections 9.1.2, 9.2.4, 9.3.2 and 9.3.3 was performed for all analytes together by using a 

combined ranking for all analytes together (addition of the individual rankings). In the second 

step of the iterative variable addition procedure, the combined ranking saves about n times the 

computing time for n analytes. Yet the question is, if a separate variable selection performs 

significantly better. 

Thus, the ternary mixtures of methanol, ethanol and 1-propanol measured by SPR and 

evaluated by the parallel growing network framework (see section 9.2.4) were evaluated again 

using a separate ranking for each analyte and separate iterative addition steps (step 2 of the 

framework). The RMSE of the validation data, which are shown in table 10, are very similar 

and do not allow a clear decision which method to prefer.  

Variable Selection Meth. Eth. Prop. 

Together 3.31 6.05 7.33 

Separate 3.30 6.15 7.25 

table 10: Relative RMSE in % for the prediction of the validation data measured by SPR 
and evaluated by the parallel growing neural network framework. 

Evaluating the parallel growing network framework of the refrigerant data together instead of 

separately (compare with 4th row of table 4 in chapter 8) resulted in slightly worse predictions 

of 2.08% for the validation data of R22 instead of 2.04% and slightly better predictions for 

R134a with 2.53% instead of 2.61%. For other data sets, also no clear preference can be seen 

rendering the more computing intensive separate variable selection superfluous.  
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10.2. Stopping Criteria for the Parallel Frameworks 
In the second step of the genetic algorithm framework and of the parallel growing neural 

network framework, variables are added to the model until the prediction errors evaluated by 

a subsampling procedure does not improve any more. A difficult question is, how the 

significance of this improvement should be judged (stopping criterion for the addition of 

variables). Many different approaches can be found in literature, which can be classified into 

several categories like significance tests or numerical comparisons, robust or non-robust tests, 

paired or non-paired tests and local or global error minima.  

In this study, 6 different methods were used to determine the optimal number of variables. 

First of all, the simple numerical mean prediction errors of the subsampled test data were 

compared before and after the addition of a variable. Thereby the addition of variables was 

stopped when the first local minimum of the mean prediction error was found. A second 

approach calculates all mean prediction errors and uses the number of variables, which 

corresponds to the global minimum of the prediction errors. Commonly used methods to 

judge the improvement of predictions are based on statistical significance tests. An overview 

of the different tests can be found in [232]. The significance tests were implemented in the 

frameworks for stopping the addition of variables when the test determines the improvement 

of the predictions after the addition being not significant (see also figure 44 and figure 53). 

The most popular statistical test to compare the predictions of the subsampled test data before 

and after the addition of a variable is the Student T-test [254]. The T-test needs a normal 

distribution of the prediction errors (this can be checked by a Kolmogorov Smirnov test [38]) 

and thus is sensitive to outliers. A robust option for comparing the predictions of the test data 

subsets is the Kruskal Wallis Anova [262,263], which corresponds to the Man-Whitney U-

test, as only two groups are compared. If the partitioning of the subsampling procedure is 

reproducible for each addition of a variable (this means that the same test subsets are 

predicted during each loop of the variable addition) paired significance tests can be used like 

the paired T-test for normally distributed prediction errors and the Wilcoxon signed rank test 

as its robust counterpart [103,264,265]. The different categories of the significance tests have 

different requirements, which can be summarized as follows. In contrast to robust tests, T-

tests need a normal distribution of the prediction errors and thus are sensitive to biases and 

outliers whereas robust tests are less powerful in terms of detecting differences of the 

prediction abilities. The paired tests need the same partitioning of the data into calibration and 

test subsets for each loop of the variable addition step. In contrast to finding the global 
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minimum of the prediction errors, the implementation of the significance tests needs only as 

many loops as improvements of the prediction errors are observed.  

The number of variables selected depends not only on the method, but also on the significance 

level of the statistical test, which was set to 5 % error probability for all tests. In principle, the 

different methods can be divided into 4 groups according to the number of variables selected. 

The T-test, the Kruskal Wallis Anova and the Wilcoxon signed rank test were most conserva-

tive in terms of selecting variables. These three tests selected the same small number of 

variables for all data sets under investigation in this work. The paired T-test selected in most 

cases some more variables followed by the criterion of the first local minimum of the 

prediction errors whereas the method of the global minimum of the prediction errors generally 

corresponded to more variables. All these methods are based on the prediction errors of the 

subsampled test data and not on an external data set. The question is how the prediction errors 

of the subsampled data correspond with the prediction errors of external validation data. The 

answer can be found in the so-called biasing [11], which means that when the same data are 

used for a model building process and for the variable selection process, the variable selection 

is biased towards selecting too many variables whereby the bias increases with a decreasing 

number of samples. As the subsampled data are used several times for both processes, the 

optimal method depends on the sample size. For large data sets, the global minimum of the 

prediction errors of the subsampled test data corresponds with the smallest prediction errors of 

external validation data whereas for smaller data sets methods that are more conservative 

correspond with the best errors of the validation data. This effect could be observed for all 

data sets under investigation. For the rather large refrigerant data set (441 samples for the 

calibration of only 2 analytes), the optimal method was the first local minimum criterion, 

whereas for the small quaternary mixtures (256 samples for the calibration of 4 analytes) and 

the ternary mixtures (245 samples for 3 analytes) the optimal method was the Kruskal Wallis 

Anova.  

Although the selection of the stopping criterion influences the prediction ability of the 

frameworks, an investigation using all data sets of this work showed that the selection is less 

critical than supposed at first glance. Among all data sets, the highest difference of the 

prediction errors of external validation data was 0.4% when using different stopping criteria 

for the calibration data. The general recommendation of measuring as many samples as 

possible renders a sophisticated recommendation for a stopping criterion rather unnecessary, 

as in the case of not too small data sets, the local or global minimum criteria are adequate. 
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10.3. Optimization of the Measurements 
Among the many parameters to be decided on and to be adjusted, the scanning speed of the 

time-resolved sensor responses has been an often-discussed subject during the measurements 

for this work. A slow scanning of the sensor responses over time results in a low number of 

time points allowing a calibration without a variable selection or at least allows significantly 

speeding up the variable selection procedures. On the other hand, a slow scanning of the 

sensor responses might miss the differences between the sensor responses of analytes, which 

show a very similar kinetics. To investigate this topic a little bit more in detail, fully 

connected neural networks were trained using the refrigerant data set whereby the number of 

time points was systematically reduced by using only each 2nd, each 3rd... time point. In table 

11, the prediction errors are shown, which decrease with an increasing number of time points 

corresponding with an increasing scanning speed. This table also demonstrates that only a 

sophisticated variable selection procedure improves the performance of calibration and 

prediction (compared with table 3 and table 4). 

 

Calibration  
Data Set 

Validation  
Data Set Method 

R22 R134a R22 R134a 

Each Time Point 1.5 2.6 2.2 3.3 

Each 2nd Time Point 2.0 3.0 2.4 3.3 

Each 3rd Time Point 2.2 3.1 2.7 3.4 

Each 4th Time Point 2.4 3.2 2.8 3.5 

Each 5th Time Point 2.9 3.5 3.2 3.8 

Each 10th Time Point 4.5 3.7 4.9 4.1 

Each 20th Time Point 21.9 55.2 21.6 52.1 

table 11: Relative RMSE in % for the prediction of the refrigerant data set by fully 
connected neural networks, which use each nth time point simulating a slower 
scanning of the time-resolved sensor response. 
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Also the variable selection by the frameworks gives an indication of an optimal scanning 

speed for the time-resolved sensor responses. Practically for all variable selections by the 

frameworks of the previous chapters, many of the variables selected were adjacent in time. 

For example it is shown in figure 46 that 9 out of 12 time points within the time interval 67 s 

to 93 s are selected demonstrating that nearly all information of the selected interval is 

evaluated and that a further increase of the scanning speed might yield even more useful 

information.  

The fact that variables are selected and used only within few intervals is also known in PLS 

and has been subject to some further developments of the PLS known as Interval Partial Least 

Squares (IPLS) [266]. It has often been stated that the collinearity of a certain number of 

variables stabilizes the predictions [41] whereby too high a number of collinear variables 

negatively affects the predictions (see also section 2.8). 

For practically all selections of the variables by the frameworks (for example in the sections 

8.4.1, 9.1.2, 9.2.3, 9.2.4 and 9.3.2), the variables are located directly after the beginning of 

exposure to analyte and directly after the end of exposure to analyte. This implies that not the 

complete measurement time is needed for the determination of the sample composition, but 

only a short interval of exposure and after that a short interval of analyte desorption. It also 

implies that the time of exposure to analyte can be reduced, which also results in a faster 

desorption of the analyte (like a synergetic effect) and consequently reduces the time needed 

between measurements. For this work, the time used for exposure to analyte and a subsequent 

recovery had been determined by visually inspecting the sensor responses of single analytes 

(like figure 24) and then by choosing the time interval, for which the shape of sensor 

responses significantly differ. For the routine analysis, the calibration should be repeated 

measuring only during the time intervals proposed by the frameworks, which will save time 

and money. 

The number of measurements which have to be performed for a calibration is also a 

significant point, which has to be decided on when planning an experimental design. As the 

number of measurements for a full factorial design strongly increases with the number of 

analytes and the number of concentration levels (see equation (1)), the number of concentra-

tion levels for the calibration of ternary and quaternary mixtures was rather low compared 

with the binary mixtures of the refrigerants. The price to be paid for calibrating with a 4-level 

design (used for the calibration of the quaternary mixtures) instead of a 21-level design can be 

estimated by using only 16 calibration samples instead of 441 samples for the refrigerant data. 
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The mean relative RMSE of the validation for the non-optimized neural networks increases 

thereby from 2.7% for the 21-level design to 6.7% for the 4-level design. Thus, it is expected 

that the calibrations of the ternary and especially of the quaternary mixtures can be 

significantly improved by measuring more calibration samples. 

The choice of the optimal thickness of the sensitive layer depends on several parameters, 

which are partly discussed in chapter 5 and in the results in more detail and which will be 

only summarized here. A thick layer means a slow kinetics of the analytes allowing the 

discrimination of very small and similar analytes. On the other side, big analytes need a very 

long time until a sensible sensor response can be observed resulting in long measurement 

times. Thin layers, which allow fast measurements can only be used in some setups due to a 

low signal to noise ratio, whereby a smoothing of noisy signals can improve the calibration 

(in contrast to smoothing the nearly noise-free signals of thick layers). Among the different 

devices, the SPR setup is most appropriate for time-resolved measurements using Makrolon, 

but needs the most complex equipment (like an exact constancy of the temperature). The 4λ 

setup is the smallest and cheapest device but is only fairly appropriate for Makrolon as 

sensitive layer, whereas the RIfS array setup can be found between the former two setups in 

respect to all concerns.  

Thus, no general recommendation except of a highest possible scanning speed of the sensor 

responses in combination with a variable selection and a highest possible number of 

calibration samples can be given for most parameters, as the optimal solution is determined by 

the analytes under investigation, by external conditions like the allowed time for each 

measurement, the demanded robustness of the devices and much more. 
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10.4. Robustness and Comparison with Martens' Uncertainty Test 
In the field of calibration by the PLS, a method called Martens' Uncertainty Test [32,33,41] 

has gained increasing popularity during the last two years. This test uses a jackknifing 

procedure with many submodels to identify non-significant variables. Thereby a statistics is 

setup for the regression coefficients of all variables and then those variables are eliminated, 

which are identified as being non-significant according to this statistics. The genetic algorithm 

framework and the parallel growing network framework introduced in this work use a similar 

method of selecting only significant variables but work the other way round. Instead of 

eliminating variables, the frameworks add variables according to a ranking, which was 

established by many submodels in a previous step, until the prediction does not significantly 

improve determined by a subsampling process. The frameworks are generally more 

conservative in terms of selecting variables compared with Martens' Uncertainty Test. The 

significance determined by the subsampling process in the second step of the frameworks can 

also be used to access the uncertainties respectively the robustness of the predictions. Thereby 

the standard deviations for the predictions of the subsampled test data by the different 

submodels are calculated during the subsampling process [267]. For example, the 

uncertainties of the predictions of the refrigerant data for the parallel growing neural networks 

framework (4th row of table 4) were estimated as 0.17% for R22 and 0.14% for R134a in 

terms of subsampled standard deviations. For the evaluation of the same data by the genetic 

algorithm framework, the standard deviations are also low with 0.11% for R22 and 0.18% for 

R134a. The ternary mixtures of the alcohols measured by SPR showed uncertainties of 0.27% 

for methanol, 0.32% for ethanol and 0.34% for 1-propanol evaluated by the parallel growing 

neural network framework respectively 0.21% for ethanol, 0.25% for ethanol and 0.30% for 

1-propanol evaluated by the genetic algorithm framework. Thus, the calibrations by the 

frameworks can be considered as generally being quite robust. 
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11. Summary and Outlook 

In this work, time-resolved measurements and time-resolved data analyses of sensor re-

sponses have been introduced in the field of chemical sensing. The time-resolved measure-

ments, which were systematically investigated for several sensor setups and for several 

analytes, can be regarded as a second major step in the field of sensor development for 

multianalyte determinations. The first step from selective sensors to cross-reactive sensor 

arrays had allowed the parallel quantifications of different analytes by the use of the signal 

patterns of one single array of sensors without the need of finding selective sensor materials 

for each analyte. This first step became very popular in the field of electronic noses during the 

80s and 90s. The second step, the time-resolved evaluations of sensor signals in combination 

with suitable sensor coatings, combines the sensory principle with the chromatographic 

principle of separating analytes in space or time. This opens the door to a completely new 

dimension of information in chemical sensing. This work is the first extensive and systematic 

investigation of this second step for an improved and advanced quantitative determination of 

analytes in the field of chemical sensing. 

The time-resolved measurements of this work are all based on the microporous polymer 

Makrolon as sensitive layer. This polycarbonate allows a kinetic separation of the analytes 

during the sorption and desorption on the basis of the size of analytes. It was shown using up 

to quaternary mixtures of the low molecular weight alcohols as analytes that small molecules 

can sorb very fast into the pores whereas the larger molecules sorb only slowly into the 

polymer. It was demonstrated that this specific sorption into the pores is a Langmuir type 

sorption, which is by far more important than the unspecific Henry type sorption of the 

analytes into the polymer matrix. An additional effect of an expansion of the pores during 

long-term exposure to analyte was observed. It was demonstrated that this effect could be 

exploited to measure bigger analytes by expanding the pores using other carrier gases than air. 

It was also shown that the variation of the thickness of the sensitive layer allows the tailoring 

of the sensitive layer to specific analytical questions.  

The time-resolved measurements have been successfully used for three different sensor setups 

and for many multicomponent mixtures of the low alcohols and the refrigerants R22 and 

R134a. It was demonstrated that the time-resolved measurement principle can be applied to 

single sensor setups allowing the simultaneous quantification of several analytes and 

consequently rendering arrays of sensors unnecessary. It was furthermore shown that the 
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time-resolved measurement principle can also be applied to sensor arrays with the results of 

an improved calibration, a higher robustness, an increased flexibility to the number and 

properties of different analytes and a reduced number of sensors.  

Generally speaking, the time-resolved measurement principle allows the reduction of the 

expenses for hardware at the cost of a more extensive and a more complicated data analysis. 

This leads over to the second objective of the work, the data analysis. It was shown that the 

best results for multianalyte quantifications are obtained when the measurements are 

performed with the highest possible scanning rate of the sensor responses and the highest 

possible number of measurements for calibration. The resulting increased number of input 

variables (the time points generated by the scanning of the sensor responses) and the 

nonlinear relationship between the sensor responses and the concentrations of the analytes put 

new challenges to the data analysis. It was demonstrated that most common methods for a 

multivariate data analysis like PLS, QPLS, INLR, CART, MARS and neural networks 

showed rather poor calibration results. Among these methods, the neural networks were most 

promising but had to struggle with the high number of correlated and redundant input 

variables resulting in improvable calibrations. The combination of variable selection methods 

and of neural networks, which is widely used in literature to solve the issue of too many 

redundant and correlated input variables, could not help due to the limited number of samples 

measured.  

In order to find a calibration with the highest possible calibration and generalization ability 

three frameworks were innovated, implemented and optimized in this work. These 

frameworks use repeated runs of a combined variable selection and calibration with different 

subsets of the available data resulting in a very effective exploitation of the limited number of 

data. One framework is based on many parallel runs of genetic algorithms combined with 

neural networks, one framework bases on many parallel runs of growing neural networks and 

the third framework uses several runs of the growing neural networks in a loop. All three 

frameworks showed by far better calibrations than all common methods of multivariate 

calibration and than simple non-optimized neural networks for all data sets investigated. 

Additionally, the variable selection of these frameworks allowed an insight into the 

relationship between the time-resolved sensor responses and the concentrations of the 

analytes. The variable selection also suggested optimizations in terms of shorter 

measurements for several data sets. The variable selection quality of the parallel growing 

network framework could be confirmed by a brute force variable selection. The calibrations 
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and variable selections of all three frameworks were reproducible and were not disturbed by 

noise in the data. All three frameworks successfully solved the problems of too many 

variables for too few samples and the problems caused by the nonlinearites present in the data 

with practically no input needed by the analyst. Thus, all three frameworks showed excellent 

calibration and variable selection qualities whereby each framework has its own benefits. The 

genetic algorithm framework is the fastest framework whereas the parallel growing neural 

network framework shows a slightly better calibration. The loop-based growing neural 

network framework shows the best calibration performance as it allows building complicated 

yet sparse non-uniform neural networks. All three frameworks are not limited to time-

resolved sensor data, but can be used for nearly any data when a powerful variable selection 

and calibration are needed and when the number of samples is limited. In the area of data-

mining and pattern recognition, the application of these framework has also shown excellent 

results for data sets from medicinal chemistry [268]. 

Together, both main focuses of this work impressively demonstrate how the combination of 

an advanced measurement principle and of an intelligent data analysis can improve the results 

of measurements at reduced hardware costs. To prevent misunderstandings, an intelligent data 

analysis and an advanced measurement principle cannot help if a device provides bad or 

senseless data. However, the amount of information provided by a device can often be 

dramatically increased by using advanced measurement principles (like the time-resolved 

measurements of this work). Yet, it was also demonstrated in this work that additionally new 

intelligent methods of data analysis are needed, which are able to extract and use the valuable 

information out of the large pool of information provided by the advanced measurement 

principles (such as the frameworks introduced in this work). It was also shown that the results 

of the data analysis give feedback how the measurement principles, the measurement 

parameters and the devices can be optimized and improved. This demonstrates how the 

interconnection of the different parts of an analysis can improve the complete analysis in a 

synergetic effect. 

Starting with this work further research can be performed in many fields of scientific research. 

Beginning with the sensitive layer, the principle of different-sized pores as size-sensitive 

recognition elements can be further investigated. For example it was shown in [269] that there 

are many other polymers with pores of different sizes like the Compimide 183 with a mean 

pore size of 0.038 nm3, the Polyimide PI2611 with a mean pore size of 0.058nm3 and the 

Polyimide PI2566 AL with a mean pore size of 0.13 nm3 and many more. These polymers 
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allow extending the range of analytes to bigger and smaller molecules. The combination of 

these polymers in an array should result in a powerful setup for a size-selective discrimination 

of a broad range of analytes. Especially the extension of the SPR-device to an array setup 

seems to be very promising as the SPR setup demonstrated to be the most suited device for 

measurements using microporous polymers as sensitive layers. Furthermore, the principle of 

the time-resolved measurements is not limited to optical sensor devices but can be used for 

practically any arbitrary (sensor)-device like electronic noses, biosensors and many more as 

long as the sensor responses differ in the time domain. Thereby the recognition principle is 

not limited to size-selective recognitions but can be of any specific type that allows time-

resolved discriminations. For example in the area of biosensing, different DNA with a 

different number of mismatches might be quantified simultaneously by differences of the 

DNA-DNA binding kinetics. Also, different antibodies might be discriminated on the basis of 

the kinetics, if the different antibodies show different adsorption kinetics due to different sizes 

of the FAB fragments. This allows single sensor applications for several selective and even 

cross-reactive analytes [270,271]. 

The combination of several sensors with different sensitive polymers for time-resolved 

measurements on a sensor array opens the door to second-order calibrations similar to GC-

MS setups. Thereby the sensor signals represent the first order and the time represents the 

second order. Second-order calibrations allow the quantification of an analyte in the presence 

of unknown interferences, which is also known as second-order advantage. For example, the 

generalized rank annihilation method (GRAM) [272,273] can already work with a single 

standard addition to the prediction sample. Consequently, the extensive calibrations with 

experimental designs can be completely avoided resulting in dramatically reduced expenses 

for the calibration of specific analytes. Yet, further research has to be done concerning two 

topics. Fist of all, more polymers are needed, which allow time-resolved measurements and 

which show different chemical properties, as the second order advantage requires sufficient 

selectivity in both orders. Additionally, the second-order methods have to be further studied 

in respect to dealing with nonlinear relationships, as most of the up-to-date algorithms assume 

linear relationships in both orders. 

An interesting approach similar to time-resolved measurements is the application of 

temperature-resolved measurements. Kato et al. [274] demonstrated that different analytes 

show different dynamic sensor responses if the sensor signal is recorded during a variation of 

the sensor temperature of tin oxide sensors. Mielle et al. [275] used a single tin oxide sensor 



160 11. Summary and Outlook 

to discriminate 9 analytes measured at 6 different temperatures. These approaches are not 

limited to metal-oxide sensors but can also be used for polymer-based sensors. As long as the 

sorption kinetics of the various analytes depends in different ways on the temperature, the 

temperature-resolved measurements allow exploiting an additional information domain. A 

very interesting point is also the glass transition temperature of a polymer. Measurements 

below the glass transition temperature should show a more specific sorption behavior whereas 

measurements above the glass transition temperature should show a more unspecific sorption 

doubling the information provided by a sensor. 

In summary, it may be said that this work once more demonstrates that not the lack of 

information is the limit for chemical sensing but the frontier of scientific research, which 

makes this information available and understandable for the analyst and this frontier is 

moving from day to day opening the doors to new possibilities in scientific research.  
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The following software was used for the analyses and implementations performed in this 

work:  

• Borland Delphi 6.0 Enterprise, Borland Software Corporation, Scotts Valley CA, 
USA. 

• CART 4.0, Salford Systems, San Diego CA, USA. 

• Enzo 1.0, Heinrich Braun, Institute for Logic, Complexity and Deduction Systems, 
University of Karlsruhe, Karlsruhe, Germany. 

• Excel XP, Microsoft Corporation, Redmond WA, USA. 

• Genetic Server 1.1, Neurodimension Inc., Gainesville FL, USA. 

• JNNS 1.0, Prof. Dr. Andreas Zell, Wilhelm-Schickard Institute, University of 
Tübingen, Tübingen, Germany. 

• MARS 2.0, Salford Systems, San Diego CA, USA. 

• Mathematica 4.2, Wolfram Research Inc., Champaign IL, USA. 

• Nemo 1.23, Prof. Dr. Andreas Zell, Wilhelm-Schickard Institute, University of 
Tübingen, Tübingen, Germany. 

• Neurosolutions Custom Developer 4.1, Neurodimension Inc., Gainesville FL, USA. 

• SNNS 4.2, Prof. Dr. Andreas Zell, Wilhelm-Schickard Institute, University of 
Tübingen, Tübingen, Germany. 

• Solves 2002/08, Prof. Dr. Andreas Zell, Wilhelm-Schickard Institute, University of 
Tübingen, Tübingen, Germany. 

• S-Plus 6.0 Pro, Insightful Corporation, Seattle WA, Germany. 

• Systat 10.0, Systat Software Inc., Richmond CA, USA. 

• Tablecurve 4.01, Systat Software Inc., Richmond CA, USA. 

• The Unscrambler 7.6, Camo ASA, Oslo, Norway. 

• Weka 3.36, Ian H Witten and Eibe Frank, University of Waikato, New Zeeland.  
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Häfelinger, H. P. Hagenmaier, M. Hanak, V. Hoffmann, W. Jäger, G. Jung, S. Kemmler-Sack, 

B. Koppenhöfer, K.-A. Kovar, D. Krug, N. Kuhn, E. Lindner, M. E. Maier, H. A. Mayer, H.-

J. Meyer, U. Nagel, H. Oberhammer, D. Oelkrug, H. Pauschmann, H. Pommer, G. Reinhardt, 

V. Schurig, E. Schweda, F. F. Seelig, B. Speiser, H. Stegmann, J. Strähle, W. Voelter, K.-P. 

Zeller, C. Ziegler 
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