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Introduction  1 

1 INTRODUCTION 

1.1 The immune system 
Vertebrates and, in particular, mammals are continually subjected to attack by patho-

gens. As a response to parasitic microorganism and viruses (pathogens), they have 

evolved an elaborate protective array known as immune system (Latin: immunis: ex-

empt). The immune response to pathogens relies on both innate and adaptive compo-

nents (Hoffmann et al., 1999). Whereas the innate immune response ensures (i) a 

broad recognition of shared pathogenic structures and (ii) an immediate response 

without previous antigen encounter, the adaptive immune response is characterized by 

(iii) the highly specific recognition of foreign antigens displayed by pathogens cou-

pled to potent mechanisms for their elimination, (iv) the ability to recognize a vast 

array of distinct antigenic specificities, (v) the capacity of the system to generate an 

immunological memory, and (vi) the tolerance towards self antigens. The identifica-

tion and characterization of novel molecular mechanisms responsible for the initiation 

of innate responses and the efficient elimination of pathogens is the subject of this 

thesis. 

1.1.1 The innate immune system 

The innate arm of the immune system is primarily responsible for the early recogni-

tion of pathogens that manage to breach the physiological barriers presented by the 

skin and mucous membranes. Recognition ultimately leads to the initiation of a gen-

eral immune alert, also known as inflammation. The inflammatory response includes 

a variety of molecular changes ensuring the immediate fight against the invasion, and 

influences the subsequent, adaptive responses. Thus, the innate immune system links 

pathogen recognition to efficient destruction.  

A key challenge to the innate immune system is the discrimination of a large number 

of potential pathogens from self, by means of a limited arsenal of receptors. This 

problem is compounded by the tendency of pathogens to mutate. In the ongoing battle 

against pathogens hosts have evolved a set of germ line encoded membrane-bound 

and soluble pathogen-detection receptors that recognize certain invariable pathogen-

associated molecular patterns (PAMPs), which are not found in higher eukaryotes. 

These receptors are therefore termed Pattern Recognition Receptors (PRRs) (Aderem 

and Ulevitch, 2000; Ezekowitz et al., 1990; Gordon, 1995; Janeway, 1989; Medzhitov 

and Janeway, 2000), which can be cell-bound or soluble. Cell-bound PRRs are mainly 

expressed on neutrophils, monocytes and macrophages, which upon pathogen 

recognition, phagocytose and kill them. This concurrently coordinates additional host 

responses by synthesizing a wide range of inflammatory mediators (Aderem and Un-



2  Introduction 

sponses by synthesizing a wide range of inflammatory mediators (Aderem and Un-

derhill, 1999). On top of killing and degradation of pathogens, macrophages have the 

ability to present components of the pathogen to T cells, resulting in the activation of 

the adaptive immune response and the establishment of protective immunity (Aderem 

and Underhill, 1999).  

In addition to PRRs, other mechanisms have evolved for the recognition and control 

of infection or oncogenically transformed cells. Of particular importance are soluble, 

antibiotic peptides such as defensins (Ganz and Lehrer, 1998) that perforate bacterial 

membranes, and lytic enzymes, such as lysozyme that digest the cell wall of bacteria 

(Wilmott et al., 2000). In addition, Natural killer (NK) cells monitor host cells for de-

regulated expression of certain surface molecules (MHC class I and MHC class I-like 

molecules), which can occur during viral infection or stress responses due to tu-

morgenesis, and kill abnormal target cells (Bauer et al., 1999; Colonna et al., 2000; 

Groh et al., 2001; Groh et al., 1998).  

The success of the innate immune system in controlling pathogens is highlighted by 

the fact that all organisms except for the vertebrates rely exclusively on innate im-

mune responses. Even vertebrates cope with most infections by exclusively using 

their innate immune system. Under some circumstances, however, the invading 

pathogen escapes innate immune surveillance. In which case, the adaptive immune 

response is launched in order to support the innate responses with increased specific-

ity and the ability to generate memory. 

1.1.2 The adaptive immune system 

Pathogen recognition in the adaptive immune response is based on antigen receptors 

of the immunoglobulin (Ig) superfamily (SF) that are generated by random specifici-

ties by somatic recombination of germ line encoded gene segments (Tonegawa, 1983; 

Tonegawa, 1988). Cells expressing an antigen-specific receptor are selected upon 

pathogen binding since receptor triggering induces clonal expansion by proliferation. 

In addition, the adaptive immune system, in contrast to the innate immune system, 

displays a receptor diversity that in principal allows for the recognition of every 

chemical structure. Furthermore, cell clones selected for a certain antigen are retained, 

thus constituting antigen specific memory.  

B and T cells constitute the adaptive immune system. B cells have the ability to ex-

press antigen specific antibodies in a soluble and membrane bound form. Secreted an-

tibodies are the main effectors of the humoral response. They recognize antigens in 

their native three-dimensional structure, thus every chemical structure can serve as an 

antigenic epitope for B cells. In addition to their antigen-binding sites, antibodies con-
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tain constant regions (Fc) responsible for the communication with immune cells via 

binding to Fc receptors (FcR). T cells utilize a surface T cell receptor (TCR) to recog-

nize cells that are infected by intracellular pathogens persisting in the cytosol, or cells 

that have internalized pathogens into membrane-enclosed intracellular compartments 

(Davis et al., 1998). For presentation to TCR, the antigens have to be processed into 

peptides, stabilized and transported to the cell surface. Presentation is mediated by a 

family of highly polymorphic molecules encoded in the Major Histocompatibility 

Complex (MHC). Processing and presentation differs between peptides derived from 

cytosolic and vesicular pathogens. Cytosol-derived peptides are processed to a length 

of 8-10 amino acids by the proteasome and delivered to native MHC class I molecules 

located in the endoplasmic reticulum (ER) by peptide transporters (Rammensee et al., 

1993). Peptide-loaded MHC class I molecules are delivered to the cell surface, where 

they are recognized by CD8+ T cells (Lehner and Cresswell, 1996). In contrast, ex-

tracellular antigens internalized in endosomal compartments are processed in the ly-

sosomes, giving rise to peptides of 12 – 24 amino acid in length (Rudensky et al., 

1991), which are loaded onto MHC class II molecules. These are delivered to the cell 

surface for recognition by CD4+ T cells (Abbas et al., 1996). CD8+ and CD4+ T cells 

are functionally distinct (Germain, 1994). CD8+ T cells are cytotoxic lymphocytes, 

which kill target cells upon recognition of viral- and tumor-derived peptides presented 

by MHC class I. This eliminates the persisting parasite or limits the progression of 

cellular transformation (Rammensee et al., 1993). In contrast, CD4+ T cells, also 

known as T helper (TH) cells, recognize bacteria taken up in the vesicular system and 

secrete Interferon (IFN)-γ upon stimulation, which in turn helps macrophages to kill 

the harbored parasites. Furthermore, activated TH cells induce B cells to differentiate 

into antibody secreting plasma cells or memory cells (Abbas et al., 1996).  

1.1.3 Dendritic cells: the central link between innate and adaptive 
immunity 

The adaptive and innate immune system communicate, interact with, and reley on 

each other on several levels and various time points during an immune response. An-

tigen-presenting cells (APCs) are activated during innate immune responses and trig-

ger adaptive immunity, which increases specificity and generates immunological 

memory. Over the last 25 years, DCs have emerged as the major APC involved in 

linking the two arms of immunity. DCs are a distinct population of bone marrow-

derived leukocytes that initiate primary and secondary immune responses 

(Banchereau et al., 2000). DCs can be differentiated from monocytes in vitro (Bender 

et al., 1996; Sallusto and Lanzavecchia, 1994) and in vivo (Randolph et al., 1999) 

(Figure 1.1). DCs migrate from the blood to peripheral tissues, where they reside in an 



4  Introduction 

immature state, awaiting antigen encounter. Upon antigen capture, DCs process them 

into peptides, which are loaded onto MHC molecules for presentation to T cells. As a 

result of pathogen invasion, inflammation and tissue damage, DCs receive additional 

activating signals, which induce a profound change in DC phenotype and functions. 

This process is known as maturation (Figure 1.1) (Banchereau et al., 2000). Mature 

DCs express the chemokine receptor CCR7, which interacts with the chemokines 

CCL19 (also known as EBI-1 ligand chemokine (ELC), or Macrophage inflammatory 

protein 3 β, (MIP-3β)) and 

CCL21 (also known as sec-

ondary lymphoid-tissue 

chemokine (SLC), or 6-C-

Kine) (Cyster, 2000; Zlotnik 

and Yoshie, 2000). These 

chemokines are crucial for 

guiding DCs from peripheral 

tissues to draining lymph 

nodes, as demonstrated in 

natural or targeted genetic 

deletions of CCL19, CCL21 

or CCR7 (Forster et al., 1999; Gunn et al., 1999; Nakano et al., 1998a; Ngo et al., 

1999; Saeki et al., 1999). In addition, mature DCs express high levels of stable MHC-

peptide complexes on the cell surface, upregulate costimulatory and adhesion mole-

cules and downregulate antigen-capturing molecules. Thus, mature DCs can effi-

ciently present antigens and stimulate naïve T cells located in the T cell-rich areas of 

lymph nodes (Banchereau et al., 2000; Lanzavecchia, 1998). Here, DCs receive fur-

ther activating signals from cognate TH cells, which express CD40 ligand (CD40L) 

(Armitage et al., 1992), OX40 (Chen et al., 1999; Kopf et al., 1999), and tumor necro-

sis factor (TNF)-related activation-induced cytokine (TRANCE) (Bachmann et al., 

1999; Josien et al., 2000; Kong et al., 1999). These stimuli trigger Interleukin (IL)-12 

secretion by antigen presenting DCs thus promoting TH1 type T cell responses (Cella 

et al., 1996; Heufler et al., 1996; Josien et al., 2000; Koch et al., 1996; Macatonia et 

al., 1995; Ohshima et al., 1997). 

Activating signals induce DC maturation through triggering of several distinct recep-

tors including Toll-like receptors (TLRs), IL-1R, IL-18R, TNF-R1, -R2, CD40, 

RANK, and FcR (1.3) (Aderem and Ulevitch, 2000; Bachmann et al., 1999; Baeuerle, 

1998; Baldwin, 2001; Banchereau et al., 2000; Chen et al., 1999; Josien et al., 2000; 

Karin and Ben-Neriah, 2000; Kong et al., 1999; Kopf et al., 1999; Medzhitov and 

Janeway, 2000; Ravetch and Bolland, 2001). 

 
Figure 1.1: Differentiation from monocytes to dendritc cells. 
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In addition, DC activation and maturation can trigger the production of cytokines such 

as IL-12, IL-18, or IL-10, which may in turn polarize emerging T cell responses (Reis 

e Sousa, 2001). Two major subclasses of CD4+ T cells exist according to their se-

creted cytokine pattern (Mosmann et al., 1986). TH1 cells secrete cytokines that dras-

tically augment the anti-microbial capacities from phagocytes, thus helping the innate 

immune system to target and destroy intracellular parasites. TH2 cells secrete cyto-

kines mainly modulating antibody responses, thus supporting humoral responses in 

the fight against extracellular pathogens (Asnagli and Murphy, 2001).  

TH1 cells play an essential role in helping phagocytes to destroy persistent intracellu-

lar pathogens. Macrophages process phagocytosed microbes and present pathogen-

derived peptides in the context of MHC class II to TH1 cells, which upon stimulation 

secrete IFN-γ and TNF-α. The combination of these two cytokines leads to macro-

phage activation, a complex process that includes the production of highly cytotoxic 

reactive oxygen species (ROS) and intermediates (ROI) at the site of microbial persis-

tence in the phagosomal membranes. These concerted anti-microbial mechanisms are 

responsible for the elimination of persisting pathogens from macrophages (Carroll and 

Prodeus, 1998; Le Page et al., 2000). 
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1.2 Inflammation 

1.2.1 The sequence of the inflammatory process 

The so-called ‘danger-model’ of an im-

mune response (Matzinger, 1998) predicts 

that all signals from invading pathogens 

and damaged or stressed cells initiate an 

immune response by triggering inflamma-

tion. During the inflammatory process, 

soluble and cellular components work to-

gether in the attempt to eliminate the 

agents causing physical damage or infec-

tion. While it is clear that inflammation is 

crucial to maintain the health of an indi-

vidual, inflammatory responses can result 

in massive tissue destruction with a poten-

tially fatal outcome for the host if poorly 

controlled (Figure 1.2). 

1.2.1.1 The inflammation causing 

agents 

During invasion, agents, such as patho-

gens, foreign bodies, or chemicals, harm 

or destroy epithelial and endothelial cells, 

which constitute the primary barriers of a 

multi-cellular organism. Chemical and 

physical agents are detected indirectly, as 

injured or dying cells release intracellular 

degradation products, which in turn acti-

vate the plasma protease cascades. In con-

trast, pathogens can be recognized directly 

by cell-bound PRRs on innate immune 

cells (Aderem and Ulevitch, 2000; Medz-

hitov and Janeway, 2000). 

Figure 1.2: The inflammatory process. 

The inflammatory process has three potential
outcomes: (i) Pathogen elimination and resolu-
tion of inflammation; (ii) chronic inflammation or
(iii) fatal inflammatory diseases due to an over-
whelming and uncontrolled immune response
(red arrows). 
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1.2.1.2 The acute inflammatory response 

1.2.1.2.1 Physical responses 

Regardless of the initiating agent, inflammation includes four cardinal signs (C Celsus 

100 n. Chr.): rubor (redness), dolor (pain), calor (heat), and tumor (swelling), which 

are caused by local vasodilation, increased vascular permeability, recruitment of neu-

trophils and systemic fever. These physiological reactions ensure proper recruitment 

of soluble and cellular effectors to the site of infection or injury and a systemic re-

sponse, which include fever and high serum levels of pentraxins (Paul, 1999).  

1.2.1.2.2 Soluble inflammatory mediators and cytotoxic agents 

Pro-inflammatory mediators are mainly produced at the site of inflammation and con-

stitute a heterogeneous group of lipid mediators and amines such as leukotriens, pros-

taglandins, histamine and serotonine, pro-inflammatory cytokines, and chemokines 

such as TNF-α, IL-1b, IL-6 and IL-8. All these molecules modulate the inflammatory 

response upon binding to their cognate cell surface receptors (1.3).  

In addition, several plasma proteases, in particular the complement proteases are cru-

cially involved in the regulation of inflammation. The complement system consists of 

~ 25 plasma proteins that interact in two related sets of reactions: the antibody-

dependent classical pathway and the antibody-independent alternative pathway. Both 

pathways largely consist of the sequential activation of a series of serine proteases 

leading to the elimination of the pathogen in three possible ways: (i) killing of foreign 

cells or microorganisms by binding to and lysing their cell membrane, a process 

known as complement fixation, (ii) stimulation of receptor-mediated phagocytosis of 

foreign particles via FcR or complement receptors (CRs), a process named opsoniza-

tion, and (iii) triggering a local acute inflammatory reaction that marks the area and 

attracts neutrophils (Carroll, 1998). 

At the site of inflammation, activated macrophages and neutrophils produce highly 

cytotoxic reactive oxygen species (ROS) and intermediates (ROI) to destroy invading 

pathogens. Activation-induced NADPH-Oxidase and Myeloperoxidase (MPO) are 

responsible for the production of a variety of ROS and ROI, such as superoxide-

radicals (O2-•), hydrogenperoxide (H2O2), hydroxylradicals (HO•), peroxidradicals 

(ROO•) and hypochlorite (HOCl) (Finkel, 1998; Johnson et al., 1996; Polyak et al., 

1998; Segal and Shatwell, 1997). To protect themselves from the self-destructive ef-

fects of the produced ROS, macrophages and neutrophils produce radical-scavengers 

and catabolic enzymes (Finkel, 1998). Interestingly, the production of ROS is also a 

secondary effect during the progression of necrotic cell death (1.3.4.1), thus leading to 
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a further increase of ROS production at the site of inflammation (Degli Esposti and 

McLennan, 1998).  

1.2.1.2.3 Cellular components 

1.2.1.2.3.1 Neutrophils 

Neutrophils are crucial to both immunity and inflammation. It is of note that in the 

absence of neutrophils (neutropenia) it is exceedingly difficult to clear invading 

pathogens, thus ultimately leading to inevitable demise as a result of overwhelming 

infection. Neutrophils represent 40-50 % of the circulating leukocyte population and 

are quiescent cells, with a short half-life of 6 – 8 hours and a wide range of inflamma-

tory activities upon stimulation (Bicknell et al., 1994; Dransfield et al., 1995; Reveille 

et al., 1989; Whyte et al., 1993a; Whyte et al., 1993b). The activation leads to the in-

duction of several cell-surface and intracellular proteins required for proper adhesion, 

phagocytosis, degranulation, oxidative burst and the production of proinflammatory 

mediators, thus ensuring the ideal and adequate elements for neutrophils to ingest and 

destroy pathogens.  

An intriguing aspect of neutrophil activation is the phenomenon of priming. Neutro-

phils primed by brief exposure to activating agents exhibit an enhanced response to 

subsequent stimuli. Both short-term (including changes in cell morphology, oxidative 

and phagocytic capacity) and long-term (prolonged cell survival) responses to priming 

agents have been observed. Overall, these observations suggest a two-step process 

leading first from the non-receptive to a receptive state followed by full neutrophil 

responsiveness (Downey et al., 1995; Williams and Solomkin, 1999). 

1.2.1.2.3.2 Monocytes and macrophages  

Monocytes and macrophages complement together with neutrophils the group of pro-

fessional phagocytes. Like neutrophils, they are attracted to sites of inflammation, in-

vade the tissue, and are capable of secreting antibacterial proteins and proinflamma-

tory mediators (Thepen et al., 1994). In contrast to neutrophils, monocytes and 

macrophage can act as APCs, which connect the innate to the adaptive immune sys-

tem (Abbas et al., 1996). Thus, macrophages are of particular importance during 

chronic inflammation. 

1.2.1.2.3.3 Eosinophils 

Eosinophils are tissue-localized granulocytes that are recruited to sites of inflamma-

tion particularly in response to respiratory, gastrointestinal, dematolgic allergens and 

helminthic parasites (Martin et al., 1996). In contrast to neutrophils, eosinophils are 

ineffective phagocytes and release their granules filled with oxidative and cationic 
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proteins in the extracellular milieu. Whereas the detrimental effects of eosinophils 

during lung diseases are well characterized, the beneficial effects during inflamma-

tions are rather poorly described (Broide, 2001).  

1.2.1.3 Resolution of acute inflammatory responses 

After the danger to the individual is passed, the inflammatory response must be re-

solved both to minimize collateral damage to host tissue and to reset the system for 

further attacks, thus keeping the system sensitive. 

1.2.1.3.1 Resolution by regulation of neutrophil apoptosis  

It has recently been recognized that extravasated neutrophils undergo apoptosis or 

programmed cell death if not stimulated by environmental inflammatory mediators 

(Savill and Haslett, 1995). In particular, bacterial products and proinflammatory cyto-

kines are involved in prolonging neutrophil survival (Colotta et al., 1992; Hachiya et 

al., 1995; Hiroi et al., 1998; Sheth et al., 2001; Sweeney et al., 1998; Watson et al., 

1996; Watson et al., 1998; Watson et al., 1997). An alternative fate for neutrophils 

during inflammatory responses in tissues is necrosis (1.3.3). In contrast to necrosis, 

during apoptosis the neutrophils membrane remains intact and potentially damaging 

granule contents are retained. The intact apoptotic cell is phagocytosed by macro-

phages. This process actively suppresses the production and secretion of pro-

inflammatory cytokines, thus supporting the resolution of inflammation as well 

(Fadok et al., 1998; Voll et al., 1997).  

1.2.1.3.2 Resolution by immune suppressive cytokines 

IL-4 is responsible for the downregulation of IL-6 and NADPH-Oxidase in neutro-

phils (Abramson and Gallin, 1990). 

T-cell-produced IL-10 mainly inhibits cytokine secretion from macrophages and anti-

gen-presentation (Moore et al., 1993; Mosmann, 1994). In addition, Keel and cowork-

ers recently reported (Keel et al., 1997) that IL-10 induces neutrophil apoptosis during 

the resolution of septic shock.  

TGFβ acts as the primary anti-inflammatory mediator promoting several anti-

inflammatory effects, such as production of proinflammatory cytokines and inhibition 

of leukocyte adhesion. The role of TGFβ as a central player during resolution of in-

flammation is strongly supported by the phenotype observed in TGFβ -deficient mice, 

which develop severe inflammations in multiple tissues (Kolodziejczyk and Hall, 

1996; Lawrence, 1996). 
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1.2.1.3.3 Hypothalamo-Pituitary-Adrenocortical Axis 

One of the more intriguing pathways of investigations is the connection between the 

central nervous system (CNS), the adrenal cortex, and the resolution of inflammation 

(Buckingham et al., 1996; Sternberg, 1995; Sternberg and Licinio, 1995). Glucocorti-

coids, which are produced by the adrenal cortex and mediate immunosuppression and 

neutrophil apoptosis, are main players in this concept. Numerous studies have sug-

gested that IL-1, IL-6, TNF-α, Macrophage Migration Inhibitory Factor (MIF), but 

even direct electric stimulation of the hypothalamus, lead to increased pituitary re-

lease of ACTH into the serum, which mediates increased corticosterone production in 

the adrenal cortex, ultimately decreasing inflammatory responses (Borovikova et al., 

2000; Buckingham et al., 1996; Petrovsky and Bucala, 2000; Rothwell and Luheshi, 

2000).  

1.2.1.4 Chronic inflammations 

When acute inflammation not resolves, inflammation becomes chronic to prevent the 

spreading of the infection throughout the body. In contrast to acute inflammation, 

which is characterized by a primarily neutrophil influx, the histologic hallmarks of 

chronic inflammations include the accumulation of macrophages, lymphocytes and 

the growth of fibroblast and vascular tissue. This formation is often referred to as 

granuloma (Boros, 1994; Wynn and Cheever, 1995). Several unusual cell types are 

characteristic of granulomata, including epithelioid cells, which are macrophage de-

rivatives, and multinuclear giant cells, which are fusions of epitheloid cells with 

macrophages. In particular intracellular mycobacteria (e.g. tuberculosis, leprosy) pre-

dispose individuals to granuloma formations (Paul, 1999). 

1.2.1.5 Fatal inflammatory diseases 

In several clinical conditions, including systemic bacterial infection, sepsis, systemic 

inflammatory response syndrome (SIRS), acute respiratory distress syndrome (ARDS) 

and reperfusion injuries following ischemic conditions, the inflammatory response is 

excessive and abnormally prolonged. This culminates not only in tissue damage, but 

also haemodynamic changes, multiple organ failure and ultimately death. Massive 

release of cytokines and chemokines (Baggiolini, 2001; Matsumoto et al., 1997; 

Moldawer, 1994; Morrison and Ryan, 1987; Mukaida et al., 1998; Tracey et al., 1986) 

and increased resistance of cells to apoptosis (Chitnis et al., 1996; Jimenez et al., 

1997) appear to be particularly important during the pathogenesis of these diseases.  

Under certain circumstances during bacterial infections the excessive inflammatory 

response can lead to septic shock (Bone, 1991; Glauser et al., 1991; Morrison and 
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Ryan, 1987; Tracey et al., 1986). This process is characterized by the massive release 

of proinflammatory cytokines, in particular TNF-α, IL-1β, macrophage migration in-

hibitory factor (MIF) and high mobility group-1 (HMG-1) protein (Alexander et al., 

1991; Bernhagen et al., 1993; Beutler et al., 1985; Ohlsson et al., 1990; Wang et al., 

1999). In general, bacteria do not directly cause lethal shock and tissue damage. 

Rather, bacterial products, such as lipopolysaccharide (LPS) stimulate the observed 

overwhelming acute inflammatory response (Moldawer, 1994; Morrison and Ryan, 

1987; Tracey et al., 1986).  

Bolus administration of LPS into mice causes lethal endotoxemia, which can be pro-

tected by therapeutic agents that selectively inhibit cytokine action or prevent cyto-

kine release, in particular neutralizing anti-TNF-α Ab (Beutler et al., 1985; Ech-

tenacher et al., 1990) and reduction of functional IL-1β (Alexander et al., 1991; Bian-

chi et al., 1996; Ohlsson et al., 1990; Wakabayashi et al., 1991). Although endotoxe-

mia reproduces some aspects of septic shock, it is substantially different from human 

sepsis, since it does not involve the replication and dissemination of bacteria. Thus, 

three well-characterized mouse models of microbial peritonitis, Escherichia coli-

induced peritonitis, cecal ligation and puncture (CLP) or colon ascendence stent peri-

tonitis (CASP) are used to mimic the leading cause of septic shock in surgical patients 

(Figure 1.3) (Cohen and Abraham, 1999; Friedman et al., 1998). Surprisingly, anti-

TNF-α treatment is rather deleterious in these models due to imparment of the capac-

ity of the immune system to fight infections (Echtenacher et al., 1990; Echtenacher et 

al., 1996; Eskandari et al., 1992; Malaviya et al., 1996; Peschon et al., 1998; Pfeffer et 

al., 1993; Rothe et al., 1993). Thus, the goal of anti-inflammatory therapy is to elimi-

nate the undesirable aspects of a double-edged sword – tissue destruction beyond 

what is absolutely necessary for eliminating a pathogenic agent. 

 

Figure1.3: The TNF-D/IL-1E paradox in mouse models of sepsis 
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1.3 The molecular mechanisms responsible for activating 
and resolving inflammatory responses 

Immune cells coordinate their activation and inhibition through complex biochemical 

signaling systems. Extracellular signals are transmitted via cell-surface bound recep-

tors into the cell. The receptors are linked to intracellular communication pathways, 

which are maintained by the synthesis or alteration of a great variety of different sub-

stances that are often integral components of the process they control. The importance 

and the complexity of inter- and intracellular signaling is highlighted by the fact that 

20 % of the ~32 000 human coding genes encode proteins involved in signal transduc-

tion (Blume-Jensen and Hunter, 2001). The following paragraphs will introduce the 

most important signal-sensing receptors and their connected intracellular signaling 

pathways that are responsible for activation, inhibition, survival and death of cells in-

volved in innate responses. 

1.3.1 Intracellular signaling pathways 

1.3.1.1 The activation of Phospholipase C 

Upon stimulation of G-protein-coupled receptors (GPCR), such as chemokines recep-

 

Figure 1.4: Activation of Phospholipase C (PLC) and calcium-dependent pathways 



Introduction  13 

tors (1.3.2.1), GTP induces the dissociation of the receptor-associated Gq- complex to 

Gqα•GTP, and Gqγ/Gqβ. Phospholipase C β (PLCβ) is activated and recruited to the 

plasma membrane by association with Gqα•GTP (Rebecchi and Pentyala, 2000) (Fig-

ure 1.4). Activated PLCβ hydrolyzes Phosphatidylinositol-4,5-bisphosphate (PIP2) to 

inositol-1,4,5-trisphosphate (IP3) and 1,2-sn-Diacylglycerol (DAG). Whereas IP3 in-

duces calcium-release from the endoplasmic reticulum (ER) to the cytosol by interact-

ing with IP3 receptors, DAG together with calcium induces the activation of Protein 

kinase C (PKC). In addition, calcium associates with the calcium-binding protein 

calmodulin subsequently leading to activation of calcium-calmodulin-dependent pro-

teins such as calcium-calmodulin-dependent kinases (CaM-K). These events activate 

directly transcription factors responsible for cell differentiation such as NF-AT and 

induce several downstream signaling pathways (Blume-Jensen and Hunter, 2001; Ku-

rosaki et al., 2000; Latour and Veillette, 2001).  

Hydrolysis of PIP2 can also be mediated by PLCγ . PLCγ is recruited via its SH2-

domain and is subsequently phosphorylated and activated by receptor protein tyrosine 

kinases (RPTK) or cytosolic PTKs (CPTKs) (1.3.2.6.1 and Figure 1.12) (Blume-

Jensen and Hunter, 2001). The enzymatic activity of PLCγ is similar to PLCβ result-

ing inPIP2 hydrolysis connnected downstream pathways. 

1.3.1.2 The Mitogen-activated protein kinase pathways 

Mitogen-activated protein kinases (MAPKs) are evolutionary conserved enzymes 

connecting cell surface receptors to critical regulatory targets within the cell. MAPKs 

respond to biological, chemical or physical stress controlling cell adaptation, survival, 

and death. MAPK activity is regulated through three-tiered cascades composed of a 

MAPK, MAPK kinase (MAPKK, MKK or MEK) and a MAPK kinase kinase 

(MAPKKK, MEKK) (Figure 1.5) (English et al., 1999). These modules may be acti-

vated by STE20 kinases or GTP-binding proteins (Chang and Karin, 2001). 

Mammals express at least four distinct regulated groups of MAPKs, extracellular-

signal-regulated kinases (ERK)-1/2, Jun-amino-terminal kinases (JNK)-1/2/3, Stress-

activated protein kinases (SAPKs) or p38 proteins (p38α/β/γ/δ) and ERK5. As indi-

cated in Figure 1.5, all these MAPKs are activated by specific MAPKK, which in 

turn, however, can be activated by several distinct MAPKKK increasing the complex-

ity and diversity of MAPK signaling. Once activated, MAPKs need to find their 

proper protein targets, which is ensured by anchor amino acid residues (X) flanking 

the MAPK-target sequence X-X-S/T-P-X-X and an additional docking interaction 

mediated by an other site on both the kinase and the substrate (Chang and Karin, 

2001). 
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MAPKs are fundamentally involved in transcriptional regulation in response to ex-

tracellular stimuli (Treisman, 1996). 

As shown in Figure 1.4, JNK phos-

phorylates Jun proteins thereby en-

hancing their ability to activate tran-

scription without affecting DNA bind-

ing (Kallunki et al., 1996). Most 

MAPKs, in particular ERKs and 

p38/SAPKs phosphorylate Ets tran-

scription factors (TFs) that are in-

volved in induction of fos genes, 

whose products heterodimerize with 

Jun proteins to form activation protein 

(AP)-1 complexes (Treisman, 1996). 

In addition, ERK activates Myc (Egan 

and Weinberg, 1993) and the 

p38s/SAPKs phosphorylate and enhance the activity of MEF2C and related family 

members (Han et al., 1997). In all these cases, MAPKs function inside the nucleus 

and target TF that are pre-bound to DNA. 

Besides acting directly on TFs, MAPKs regulate gene expression post-

transcriptionally by mRNA stabilization (Chen et al., 2000). In addition, MAPKs 

modulate cell proliferation, cell survival and death (Chang and Karin, 2001). Whereas 

ERK1/2 has been linked to cell survival, JNK and p38 are rather linked to induction 

of apoptotic cell death (Xia et al., 1995). Interestingly, cells deficient for Jun1 and 2 

are only impaired in UV-induced apoptosis, thus suggesting that JNK can directly ac-

tivate the apoptotic machinery (Tournier et al., 2000). The mechanism by which ERK 

protects against apoptosis is complex. Erk activation by growth and survival factors 

prevents apoptosis through ribosomal S6 kinase (RSK), which inactivates the pro-

apoptotic protein Bad (Bonni et al., 1999). It was shown recently that ERK may di-

rectly induce phosphorylation of Bad, thus leading to cell survival (Klein et al., 2000; 

Scheid and Duronio, 1998; Scheid et al., 1999). 

1.3.1.3 The I� kinase (IKK) pathway 

On other kinase cascade is responsible for the activation of Nuclear factor (NF)-κB 

(Malinin et al., 1997) (Figure 1.6). The NF-κB-inducing kinase (NIK) is capable of acti-

vating the IκB-kinases IKKα and IKKβ (Nakano et al., 1998b) thus leading to IκB 

phosphorylation, ubiquitinylation, and degradation by the proteasome (Karin and Ben-

 

Figure 1.5: The Mitogen-activated protein 
kinase (MAPK) pathways 
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Neriah, 2000). The removal of IκB subse-

quently activates NF-κB (DiDonato et al., 

1997; Mercurio et al., 1997; Regnier et al., 

1997; Woronicz et al., 1997; Zandi et al., 

1998). An additional possibility for IKK 

activation is guided by the MAPKKK 

MEKK1 (Belich et al., 1999; Lin et al., 

1999). MEKK1 is activated in part via pro-

teolytic cleavage by a caspase or by a re-

cently identified TRAF6-interacting protein 

called ECSIT (Kopp et al., 1999) 

(1.3.2.5.1). 

1.3.1.4 The Phosphoinositide 3-OH kinase (PI(3)K) pathways 

PI(3)Ks are a family of lipid kinases defined by their ability to phosphorylate the 3’-

OH group of the inositol ring in inositol-phospholipids. Class I PI(3)Ks are composed 

by a catalytic Ser/Thr-kinase domain and a regulatory domain responsible for phos-

phatidylinositol interaction. PI(3)K can be activated by association to RPTK or 

CPTK-activated receptors (PI(3)K IA) (Figure 1.7) and by GPCR (PI(3)K IB) (Blume-

Jensen and Hunter, 2001). Binding via its SH2 domains allosterically activates the 

catalytic domain of PI(3)K and leads to the production of Phosphatidylinositol-3,4-

bisphosphate (PI(3,4)P) or Phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P). The cel-

lular effects mediated by Phosphoinositides are mediated through the specific binding 

of PI(3)P to FYVE domains and PI(3,4)P or PI(3,4,5)P to Pleckstrin-homology (PH) do-

mains, respectively. PH domains are found in numerous proteins but particularly in 

the protein-serine/threonine kinases, 3’-phosphoinositide-dependent kinase-1 (PDK-1) 

and Akt, which are central players in the effects induced by phosphoinositides. As 

shown in Figure 1.7, PI(3)K-mediated production of PI(3,4,5)P and PI(3,4)P leads to the 

recruitment and co-localization of Akt and PDK-1 via their PH domains to the plasma 

membrane. The constitutive active PDK-1 phosporylates Akt at Thr308, which stabi-

lizes Akt in an active conformation. Although phosphorylation at Thr308 is a prerequi-

site for kinase activation, a further phosphorylation event targeting the C-terminal lo-

cated Ser467 is essential for full kinase activity. The kinase for this phosphorylation 

(‘PDK-2’) remains to be identified.  

Akt target proteins are phosphorylated within the same basic motif, R-X-R-X-X-S/T 

and are all involved in regulating apoptosis, cellular growth and cell-cycle regulation 

(Blume-Jensen and Hunter, 2001). The substrates involved in apoptosis regulation 

 

Figure 1.6: The pathways leading to the
activation of Nuclear Factor (NF)-N B 
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include Forkhead TFs, the pro-apoptotic protein Bad, and the cyclic AMP response 

element-binding protein (CREB) (Datta et al., 1999). In addition, several Akt-

substrates are involved in cell-cycle progression finally leading to hyper-

phosphorylation and inactivation of the Retinablastoma (Rb) protein (Blume-Jensen 

and Hunter, 2001; Evan and Vousden, 2001). 

1.3.2 Activating receptor systems 

1.3.2.1 G-protein-coupled receptors (GPCR) 

Chemokines such as IL-8, but also other proinflammatory attractants such as Platelet 

activating factor (PAF), leukotrienes, formyl-Met-Leu-Phe (fMLP) and Complement 

factor 5a (C5a) interact with a growing family of homologous seven-transmembrane 

(7T) G protein-coupled receptors (GPCR) (Ben-Baruch et al., 1995; Haribabu et al., 

2001; Murphy, 1996). The three intracellular loops of 7T-GPCR contain several ser-

ine and threonine residues that are subjected to intensive phosphorylation events 

modulating receptor sensitivity and signal transduction (Haribabu et al., 2001). Upon 

ligand binding, GPCRs-mediated intracellular signaling events are transduced by as-

sociated G-proteins (Figure 1.4). Depending on the cell type, stimulated GPCR-

 

Figure 1.7: The Phosphoinositide 3-OH kinase (PI(3)K)- and PDK-1/Akt-pathway 
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induced responses are manifold including chemotaxis, degranulation and induction of 

NADPH-Oxidase and adhesion molecules (Baggiolini, 1998; Baggiolini, 2001; Bag-

giolini et al., 1995; Haribabu et al., 2001; Murphy and Tiffany, 1991). Prostaglandins 

and leukotriens maintain and augment the inflammatory response by influencing pain, 

vasodilatiation and permeability, and neutrophil-endothelial cell interaction (Ashby, 

1994; Cazzola et al., 1995; Ford-Hutchinson, 1994; Goetzl et al., 1995; MacDonald, 

1996; Seibert et al., 1995; Vane and Botting, 1995). 

1.3.2.2 Receptors of the Tumor necrosis factor-Receptor superfamily 

The TNF-R-SF represents a 

growing family, with over 20 

members identified in mammal-

ian cells thus far (Baker and 

Reddy, 1998; Smith et al., 1994). 

These proteins share 2 – 6 highly 

homologues cysteine-rich ex-

tracellular domains, and similar 

intracellular effector domains. 

Upon ligand binding, these recep-

tors transmit their signals via pro-

tein-protein interactions, which 

convey several activating signals 

culminating in a broad-spectrum 

of cellular responses such as 

apoptosis, survival, proliferation, 

or differentiation (Baker and 

Reddy, 1998; Peter et al., 1999). 

Activation of the receptors is in-

duced upon binding of the cog-

nate ligands that – with the ex-

ception of Nerve growth factor (NGF) – constitute the TNF-SF. The members of the 

families with their interacting ligands are summarized in Figure 1.8. In the following 

sections, the most important members with their immunological and biochemical 

properties will be introduced. 

1.3.2.2.1 The Tumor necrosis factor (TNF) system 

TNF-α was originally described as a factor responsible for LPS-induced tumor necro-

sis and is related to Lymphotoxin (LTα/TNF-β). Although produced from different 

 

Figure 1.8: Interaction between TNF-R-SF (left) and TNF-
SF (right) members 

Blue boxes indicate death domains (DDs), diamonds indicate
cysteine-rich extracellular domains. 
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cell types, TNF-α (from activated macrophages) and LTα (from activated T cells) can 

interact with the same receptors, TNF-R1 and –R2. Thus TNF-α and LTα produce 

similar biological activities such as the induction of several proinflammatory re-

sponses, fever and the killing of susceptible cells (Lynch, 1996; Peter et al., 1999). 

Both TNF-Rs are widely expressed. TNF-R1 is mainly responsible for the induction 

of proinflammatory responses via NF-κB but can also induce apoptosis (Engelmann et 

al., 1990; Espevik et al., 1990; Tartaglia et al., 1993; Tartaglia et al., 1991; Wong et 

al., 1992). In contrast, TNF-R2 is less well defined and seems to be involved in sup-

porting TNF-R1-mediated functions (Baker and Reddy, 1998; Peter et al., 1999). In-

terestingly, TNF-R2 has an essential role during activation-induced cell death of 

CD8+ T cells (Zheng et al., 1995). 

1.3.2.2.2 The CD40/CD40L system 

CD40 was identified in immunochemical studies employing an mAb specific for a 

50 kDa protein (Koho et al., 1984; Paulie et al., 1985; Paulie et al., 1984; Stamenk-

ovic et al., 1989a; Stamenkovic et al., 1989b) expressed during all stages of B cell de-

velopment and differentiation (van Kooten and Banchereau, 2000), whereas its ligand, 

CD40L, was mainly expressed on activated CD4+ T cells (Armitage et al., 1992; Graf 

et al., 1992; Hollenbaugh et al., 1992; Lederman et al., 1992; Noelle et al., 1992). Pa-

tients suffering from X-linked hyper-IgM syndrome (HIGM) display a mutation in the 

CD40L gene, thus highlighting the pivotal role of the CD40/CD40L-system in T-cell 

dependent B cell responses (Callard et al., 1993). Similar deficiencies in mounting 

immune responses were observed in genetically modified mice with inactivation of 

either the CD40 or the CD40L gene (Kawabe et al., 1994; Renshaw et al., 1994; Xu et 

al., 1994). Following these findings, it was observed that CD40 and CD40L expres-

sion was much broader than initially thought. One major observation has been the ex-

pression of CD40 on monocytes and dendritic cells (Schonbeck and Libby, 2001; van 

Kooten and Banchereau, 2000). On DCs, CD40 expression seems to be a critical step 

in the final maturation to fully competent APCs. As a consequence HIGM patients 

and CD40- and CD40L-deficient mice show abnormalities in priming of CD4+ T 

cells. Recently, CD40-CD40L interactions was also shown to be necessary for cross-

priming of CTL responses by DCs. Moreover, CD40 is widely expressed on non-

hematopoietic cells, including endothelial cells, fibroblasts, and epithelial cells 

(Schonbeck and Libby, 2001; van Kooten and Banchereau, 2000). On these cells, 

CD40 is involved in the amplification and regulation of inflammatory responses. In 

line with these results, using either knock-out animals or neutralizing anti-CD40 or -

CD40L mAb, interference with CD40-CD40L-interaction was shown to be beneficial 
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in several disease models, including transplantation, autoimmunity, allergy, and infec-

tious diseases (Schonbeck and Libby, 2001; van Kooten and Banchereau, 2000). 

1.3.2.2.3 The RANK/RANKL-system 

CD40-deficient mice challenged with viruses are able to mount protective CD4+ T 

cell responses that produce normal levels of IFNγ (Oxenius et al., 1996). This sug-

gested the existence of CD40/CD40L independent mechanisms for T cell priming. 

Indeed, another receptor of the TNF-R-SF expressed on DCs that are critically in-

volved in APC-T cell interactions, was recently identified.  

The DC-bound Receptor activator for NF-κB (RANK) (Anderson et al., 1997), also 

called TRANCE-R, interacts with TRANCE/RANKL/OPGL/ODF on T cells leading 

to the upregulation of costimulatory signals and DC cell survival (Anderson et al., 

1997; Bachmann et al., 1999; Josien et al., 2000; Kong et al., 1999; Wong et al., 

1997). In addition, RANKL has been demonstrated to play an essential role in osteo-

clast differentiation and activation (Lacey et al., 1998; Yasuda et al., 1998). 

1.3.2.3 The signal transduction of TNF-R family members 

1.3.2.3.1 TNF-R associated factors and their downstream signals  

TNF-R-associated factors (TRAFs), in par-

ticular TRAF-1 and –2, were first identi-

fied as signal transducers from TNF-R2 

(Rothe et al., 1994). Since then, four addi-

tional members were identified in human 

and mouse (Inoue et al., 2000). TRAF1, 

TRAF2, TRAF3 and TRAF5 are highly 

homologues and bind to the consensus se-

quence PXQXT in several receptors, 

whereas TRAF4 and TRAF6 recognize 

QEPQEINF in the cytoplasmic tail of IL-

1R, IL-18R, the TLRs and in IL-1R-

associated protein kinase (IRAK)-1 and 

IRAK-2 (Inoue et al., 2000).  

As shown in Figure 1.9, signaling pathways triggered by TRAF2, TRAF5 and TRAF6 

link the associated receptors to transcription factors of the NF-κB- and the AP-1-

family by activating MAPKKKs and MAPKKs. Whereas the cascade leading to JNK 

activation is clearly defined by the activation of MMK7, the direct connection to the 

observed activation of p38/SAPKs remains to be identified (Inoue et al., 2000; Nishi-

Figure 1.9: TRAF-mediated connection 
from surface receptors to downstream 
signaling pathways 

The consensus sequence PVQET recruits 
TRAF-1, -2, -3, and –5, whereas the se-
quence QUPQEINF is responsible for the 
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toh et al., 1998; Sanchez et al., 1994; Tournier et al., 1997; van Kooten and 

Banchereau, 2000; Yan et al., 1994).  

The role of the TRAFs during signal transduction in the immune system was high-

lighted by the generation of TRAF-deficient mice. Surprisingly, TRAF2-/- mice and 

transgenic mice bearing a dominant-negative TRAF2 (DN-TRAF2) showed a dra-

matic decrease of JNK activity whereas NF-κB activation was almost normal (Lee et 

al., 1997; Yeh et al., 1997). TRAF5 may compensate for the loss of TRAF2 in NF-κB 

activation. However, TRAF5-/- mice showed no impairment in signal transduction 

from receptors of the TNF-R family (Nakano et al., 1999). Although neither TRAF1 

nor TRAF3 activates any kinases tested in vitro so far, TRAF1 transgenic mice 

(Speiser et al., 1997) and TRAF3-/- mice (Xu et al., 1996) exhibit marked impairment 

in their immune systems. TRAF6-/- mice exhibit severe osteoporosis and are impaired 

in NF-κB activation upon stimulation with LPS, IL-1 and CD40 thus reflecting the 

involvement of TRAF-6 in the signal transduction from RANK, TLRs, IL-1R and 

CD40 (Inoue et al., 2000; Lomaga et al., 1999). In conclusion, the gathering of 

TRAFs at certain intracellular motifs of receptors of the TNF-R and TLR/IL-1R fam-

ily determines the pathways switched on upon receptor triggering thus leading to cel-

lular responses such as NF-κB-mediated survival or Jun-mediated differentiation 

(Inoue et al., 2000). 

1.3.2.3.2 Protein complexes recruited to receptors of the TNF-R-SF 

Stimulation of receptors of the TNF-R family leads to the recruitment of several pro-

teins to intracellular binding domains. The complexes formed upon stimulation of 

TNF-R1, -R2, CD40 and RANK are depicted in Figure 1.10. Whereas the signal 

transduction of TNF-R2 and RANK are completely dominated by TRAF-mediated 

signals (1.3.2.3.1), the intracellular motifs present in TNF-R1 and CD40 allow for the 

induction of additional pathways. 

TNF-R1 contains an intracellular ‘death domain’ (DD), which upon stimulation al-

lows for the formation of a death-inducing signaling complex (DISC), which contains 

FADD, Caspase-8, TRADD, RIP and TRAF-2 (Kischkel et al., 2000). It was previ-

ously shown that FADD-/- and Caspase-8-/- cells are resistant to TNF-induced apop-

tosis (Varfolomeev et al., 1998; Yeh et al., 1998; Zhang et al., 1998), thus providing 

evidence that FADD and Caspase-8 are responsible for TNF-R1-mediated apoptosis. 

In contrast, TRADD, RIP and TRAF-2 mediate survival signals via JNK- and NF-κB 

activation (Inoue et al., 2000). As described above, TRAF2-/- mice have a defect in 

JNK activation, whereas NF-κB activation is normal (Lee et al., 1997). In contrast, 

RIP-/- mice can activate JNK but not NF-κB (Kelliher et al., 1998), thus indicating 

that RIP is responsible for NF-κB activation, whereas TRAF-2 mediates JNK 
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phosphorylation during TNF-R1-

induced signaling. The regulation 

between survival and death sig-

nals induced at the TNF-R1 re-

mains unclear. However, it is 

known that induction of apop-

tosis via TNF-R1 requires the 

inhibition of transcription or 

translation, thus suggesting the 

presence of apoptosis inhibitors 

under normal conditions (Leist et 

al., 1994; Polunovsky et al., 

1994).  

Although CD40 does not contain a DD, it displays binding sites not only for TRAF2, 

TRAF3, TRAF5 and TRAF6 but also additional platforms for the binding of JAK3 

and Ras. Furthermore, one motif has been shown to be essential for the activation of 

the transcription factor NF-AT. Thus, in contrast to other receptors of the TNF-R fam-

ily, which allow for the activation of JNK and NIK/IKK, CD40 can activate ERK1/2 

in a Ras-dependent and independent fashion (Kashiwada et al., 1998), the Janus 

Kinase (JAK)-3 leading to STAT3 and STAT6 activation (Hanissian and Geha, 1997), 

and the CamK II resulting in the activation of the transcription factor NF-AT 

(Genestier et al., 1994; O’Garra et al., 1986; Valentine et al., 1995; Venkataraman et 

al., 1994).  

1.3.2.4 IL1R- and IL18R system 

IL-1 is a major inflammatory mediator produced primarily by monocytes and acti-

vated macrophages. IL-1 activity is mediated by two proteins, known as IL-1α and 

IL-1β. A high affinity activating receptor (IL-1RI) for IL-1 is expressed by lympho-

cytes and fibroblasts whereas a low affinity decoy receptor (IL-1RII) is expressed on 

several other cell types (Fitzgerald and O’Neill, 2000). An unique feature of IL-1 is 

the presence of a naturally occurring antagonist, IL-1RA, which is expressed in neu-

trophils and monocytes (Lennard, 1995). The recently identified cytokine IL-18 is 

structurally and functionally highly related to IL-1 and induces the same type of re-

sponses upon IL-18R stimulation (Dinarello, 2000). The intracellular domain of IL-

1R and IL-18R are structural homologues to the Toll-like receptors and therefore 

share identical signal transduction molecules and pathways (1.3.2.5.1). 

Figure 1.10: Stimulation-induced protein clusters of
TNF-R1, R2, CD40 and RANK 
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1.3.2.5 Pattern recognition receptors (PRRs) 

In contrast to the adaptive immune response, requiring induction and selection over a 

period of days, the innate immune systems insures immediate recognition of invading 

pathogens. As already described, PRRs recognize a broad spectrum of evolutionary 

conserved motifs (pathogen associated molecular patterns = PAMPs), which are ab-

sent in higher eukaryontes and are pertinent to microbial function (Janeway, 1989). 

Apparently, PRRs have evolved to recognize patterns in all biological polymers 

(polypeptides, polysaccharides, polynucleotides; see also Table) generating a detec-

tion system with a very broad specificity. The complement receptors, scavenger re-

ceptors, the mannose receptor, CD14 and the Toll-like receptors (TLRs) belong to the 

family of PRRs. In principle, there are two classes of PRRs: those that mediate phago-

cytosis and those that lead to activation of proinflammatory pathways. 

1.3.2.5.1 Toll-like receptors  

Toll was identified as an essential protein during embryonic development of Droso-

phila and was subsequently shown to be a key mediator during anti-fungal immunity 

in flies (Lemaitre et al., 1996). Subsequently, an evolutionary conserved receptor fam-

ily was identified in mammals (Medzhitov et al., 1997), which display homologies in 

their intracellular domains to IL-1 receptor (IL-1R) and IL-18 receptor (IL-18R), but 

have unique extracellular regions (Akira et al., 2001). Ten members of the TLR-

family have been reported so far and additional TLR sequences may be retained from 

several databases (Akira et al., 2001). The surface expression of TLRs seems to be 

very low, varies among immune cells and depends on certain stimuli (Visintin et al., 

2001). 

1.3.2.5.1.1 Specificity of TLRs 

LPS is an integral component of the outer membranes of Gram-negative bacteria and 

can provoke septic shock (Ulevitch and Tobias, 1995). A complex of LPS and the se-

rum protein LPS-binding protein (LBP) binds to CD14 on myeloid cells and induces 

signals through TLR4. TLR4 was identified by analysis of the LPS-hyporesponsive 

mouse stain C3H/HeJ, which contains a miss-sense point mutation in the cytoplasmic 

tail of the TLR4 gene leading to a non-functional TLR4 (Poltorak et al., 1998). The 

generation of TLR4-/- mice and the identification of individuals harboring a mutant 

form of TLR4 confirmed the central role for TLR4 in LPS-binding and LPS-mediated 

inflammatory responses (Arbour et al., 2000; Hoshino et al., 1999). However, LPS 

requires an accessory molecule, MD-2, for the binding of LPS (Shimazu et al., 1999).  

The ligand specificity of TLR2 is modulated by heterodimerization with TLR1, TLR6 

or another TLR. (Ozinsky et al., 2000). Whereas TLR2 is responsible for the recogni-
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tion of the triacetylated NH2-terminini of lipoproteins (Akira et al., 2001), TLR6 rec-

ognizes diacetylated NH2-termini, as expressed in macrophage-activating lipoprotein-

2 (MALP-2) (Akira et al., 2001; Takeuchi et al., 2001). Nevertheless, TLR2 seems to 

be essential for the signal transduction properties in all heterodimers containing 

TLR2. Thus, TLR2-/- cells are unresponsive to all lipoproteins whereas TLR6-/- mice 

are only resistant to MALP-2-induced responses (Akira et al., 2001; Takeuchi et al., 

2001).  

TLR5 recognizes bacterial flagellin from both Gram-negative and –positive bacteria 

(Hayashi et al., 2001). Flagellin constitutes bacterial flagella, a polymeric rod-like ap-

pendages, which extend from the outer membrane and was known for a long time to 

be a strong adjuvant readily inducing NF-κB and promoting inflammatory responses 

(Eaves-Pyles et al., 2001; Steiner et al., 2000). 

Bacterial DNA contains unmethylated CpG oligonucleotide motifs, which can stimu-

late immune responses in mammals whereas eukaryotic methylated CpG motifs can-

not (Krieg, 2000). Both TLR2-/- and TLR4-/- cells respond normally to CpG DNA 

(Hacker et al., 2000) whereas MyD88-/- cells do not (Kawai et al., 1999), indicating 

that CpG recognizes a distinct MyD88-associated receptor. Indeed, it was shown re-

Table 3.1: Pathogen-associated molecular patterns (PAMPs) and their receptors (PRRs)  

PRRs PAMPs or ligand Pathogens Locus Phenotype of k.o. 
mice 

TLR1 TLR2/TLR1 heterodimers: 
Ligands unkown 

 4q14 Not identified 

TLR2 TLR2/TLRX heterodimers: 
Lipotechoic acid (LTA) 
Lipoproteins (LP) 
Lipoarabinomannan (LAM) 
Peptidoglycan (PGN) 
Zymosan 
GPI anchor 

 
Gram-positive bacteria 
Eubacteria 
Mycobacteria 
Most bacteria 
Yeast 
Trypanosoma cruzi 

4q31.3-
q35 

Resistant to LPs 

TLR3 Not identified Not identified 4q31.3-
q35 

Not identified 

TLR4 TLR4/MD2 heterodimers: 
LPS 
Taxol 
F protein 
Hsp60 
Fibronectin 

 
Gram-negative bacteria 
Taxus brevifolia 
RSV 
Host 
Host 

9q32-q33 Resistant to LPS 

TLR5 Flagellin Gram-negative bacteria 
Gram-positive bacteria 

1q33.3-
q42 

Not identified 

TLR6 TLR2/TLR6 heterodimers: 
MALP-2 

Mycobacteria  
 

4q14 Resistant to MALP-2 

TLR7 Not identified Not identified Xp22 Not identified 
TLR8 Not identified Not identified Xp22 Not identified 
TLR9 CpG DNA All bacteria 3p21.3 Resistant to CpG 

DNA 
CD14/ 
LBP 

LPS 
Peptidoglycan (PGN) 

Gram-negative bacteria 
Most bacteria 

 Not identified 

Mannose 
Receptor 

Zymosan 
Mannans and Mannopro-
teins 

Yeast 
Yeast 

 Not identified 

N-formyl-Met 
receptor 1 + 2 

N-formyl Methionine Prokaryotes  Not identified 
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cently that TLR9-deficient mice and isolated TLR9-/- DCs and macrophages are com-

pletely unresponsive to CpG DNA (Hemmi et al., 2000).  

Interestingly, TLR1, TLR2, TLR6, and TLR9 are expressed in endosomes (Hemmi et 

al., 2000; Ozinsky et al., 2000) and it was previously observed that at least CpG-

mediated responses require phagosomal acidification prior to signal transduction. 

Thus, it is likely that specific TLRs, according to the nature of the phagocytosed 

pathogen, are recruited to the phagosomes where they are assembled to trigger proper 

inflammatory responses (Hacker et al., 2000; Hemmi et al., 2000). 

1.3.2.5.1.2 Signaltransduction of TLRs, IL-1R and IL-18R 

Sequences homologues to IL-1R type I in their cytoplasmic domains allow TLRs to 

use the same signaling molecules. This includes the adaptor protein MyD88, which 

upon TLR, IL-1R or IL-18R stimulation recruits the IL-1R-associated protein kinase 1 

(IRAK-1) to the receptor (Medzhitov et al., 1998; Muzio et al., 1997). As shown in 

Figure 1.11, phosphorylation of IRAK-1 results in dissociation from the receptor and 

association with TNF-R activated factor 6 (TRAF-6), which ultimately leads to the 

activation of IKKα/β/γ and the MAPKs p38/SAPK and JNK. Thus, triggering of TLRs 

by PAMPs guide the induction of proteins, which in turn arbitrate inflammatory and 

immune responses.  

Interestingly, TLR2- but not TLR4-mediated NF-

κB activation is completely abolished in MyD88-

/- mice, thus proposing MyD88-independent 

TLR4-pathways to NF-κB (Kawai et al., 1999; 

Takeuchi et al., 2000). Indeed, the recent discov-

ery of the MyD88-adapter-like (Mal) protein 

(Fitzgerald et al., 2001) and Toll-IL-1R (TIR) 

domain-containing adapter protein (TIRAP) 

(Horng et al., 2001) defines an additional path-

way from TLR4 to NF-κB via the recruitment of 

IRAK-2. In addition, LPS induces several IFNγ-

inducible genes most probably via IFN regula-

tory factor 3 (IRF3) (Akira et al., 2001). Surpris-

ingly, it was shown, that TLR4 can also induce 

apoptosis using a MyD88-independent pathway (Aliprantis et al., 1999) in THP-1 tu-

mor cells and recent studies have indicated that the anti-cancer drug TAXOL binds 

and stimulates TLR4 (Kawasaki et al., 2000) thus halting mitosis and inducing cell 

death (Yamazaki et al., 2000).  

Figure 1.10: TLR4/MD-2 as an ex-
ample for the signal transduction of 
the Toll-like receptors (TLRs) 
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1.3.2.5.2 CD14 and LPS-binding protein 

The TLR4-mediated response to LPS is enhanced by LPS-binding protein (LBP). 

LBP is a serum factor that upon binding to LPS allows for binding of the LPS/LBP 

complex to the GPI-linked surface receptor CD14. CD14 cannot signal by itself, thus 

it is believed that CD14 increases the local concentration of LPS at the cell surface for 

proper stimulation of TLR4 (Yang et al., 1998). 

1.3.2.5.3 Scavenger receptor 

The PRRs on macrophages and neutrophils with the broadest specificity are the scav-

enger receptors (SRs) (Gough and Gordon, 2000), which bind a broad range of poly-

anionic ligands including oxidized or modified low density lipoprotein (Brown and 

Goldstein, 1990). More recently, SRs have been implicated in the recognition of mi-

crobes and their products particularly in the binding and phagocytosis of LTA, LPS, 

Gram-positive and -negative as well as mycobacteria (Gough and Gordon, 2000). 

However, the signaling pathways induced by SF are not yet defined.  

1.3.2.5.4 Mannose receptor 

Macrophages, Neutrophils and DCs express a multitude of membrane-bound lectins 

for the binding and phagocytosis of endogenous and exogenous ligands. The Mannose 

receptor (MR) is critically involved in microbial recognition and uptake (Aderem and 

Underhill, 1999; Linehan et al., 2000). The MR binds and internalizes glycoproteins 

displaying α-linked high-mannose containing saccharide structures terminating in 

mannose, fucose or N-acetylglucosamine residues (Kery et al., 1992) thus leading to 

the uptake of all kinds of pathogens as well as endogenous proteins (Linehan et al., 

2000). Whether MR is transducing additional activating signals is yet unclear. 

1.3.2.5.5 Complement receptor 3 (CR3) 

CR3 is a heterodimer constituted by Integrin αM and Integrin β2 (also called 

CD11b/CD18 or Mac-1), which is expressed by macrophages, neutrophils and certain 

B cells. Apart from binding to the complement component iC3b, CR3 displays multi-

ple binding sites for several endogenous and pathogenic ligands and stimulates cell 

adhesion, transmigration, and phagocytosis (Linehan et al., 2000). It is of note, that 

CR3 can also bind to certain pathogen surfaces and to LPS even in the absence of 

complement factors (Ehlers and Daffe, 1998), thus it shares functions of proinflamma-

tory and phagocytic PRRs. Although CR3 seems to have the potential for signal 

transduction, full activation is dependent on additional signals by FcR, chemokine re-

ceptors or TLRs (Jones et al., 1998).  
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1.3.2.6 Fc receptors (FcR) 

The FcR, with the exception of FcεRII, comprise a still growing family of Ig-SF re-

ceptors, which interact with soluble Ig thus connecting the humoral immune response 

to cellular innate and adaptive responses. The binding of Ig to cells can target them 

for phagocytosis and antibody-dependent cell-mediated cytotoxicity (ADCC) or me-

diate activating (1.3.2.6.1)or inhibitory signals (1.3.3).  

1.3.2.6.1 Activation via the ITAM-containing FcR gamma chain (FcRγ) 

Similar to the BCR and the TCR, the FcR has a short cytoplasmic domain devoid of 

any signaling motifs, thus requiring accessory proteins for signal transduction. FcγRI, 

FcγRIIA, FcγRIIIA, FcεRI and FcαR are associated with FcRγ, which contains one 

immunoreceptor tyrosine-based activation motifs (ITAMs) (Ravetch and Bolland, 

2001; Reth, 1989). In general, upon receptor stimulation ITAMs are phosphorylated 

by PTKs of the Src family in particular Lck (Ravetch and Bolland, 2001; Sicheri and 

Kuriyan, 1997; Weil and Veillette, 1996). This leads to the recruitment and associa-

tion of Lck and Syk to the receptor paralleled by a strong increase of their kinase ac-

tivity. A central substrate of these kinases in T cells (Lin and Weiss, 2001) but also in 

myeloid cells (Bottino et al., 2000; Tridandapani et al., 2000) is the linker of activated 

T cells (LAT), which upon phorphorylation becomes a platform for PLCγ and Grb-2 

(Lin and Weiss, 2001). Grb-2 recruits Sos via two SH3 domains and leads to the acti-

Figure 1.12: Activation of Protein tyrosine kinases recruited to ITAM-containing receptors 
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vation of the Ras/c-Raf/MAPKK pathway (Figure 1.12) (Lin and Weiss, 2001). Inter-

estingly, genetic disruption of FcRγ caused animals to become resistant to anaphylaxis 

(due to impaired mast cell activation via FcεRI), concurrent with defects in ADCC 

and phagocytosis consistent with the participation of FcRγ in other receptor com-

plexes (Clynes and Ravetch, 1995; Takai et al., 1994). 

1.3.2.7 Other activating receptors associated with FcR� or DAP10 

1.3.2.7.1 ILT1/FcRγ 

Recently, a novel FcRγ-interacting receptor expressed on monocytes and macro-

phages called ILT1 was identified (Nakajima et al., 1999). Signal transduction of this 

receptor closely resembles FcγRI-mediated signaling, suggesting that FcRγ is exclu-

sively responsible for the signal transduction whereas the associated receptor mediates 

ligand recognition and binding. 

1.3.2.7.2 NKG2D/DAP10 

A novel signal transducing subunit called DAP10 was reported in association with a 

cell surface receptor termed NKG2D. The NKG2D/DAP10 complex is a receptor for 

the stress-inducible and tumor-associated MHC molecule MICA (Wu et al., 1999). In 

addition, DAP10 is expressed in T cells and monocytes (Chang et al., 1999). DAP10 

binds PI(3)K following phosphorylation of a cytoplasmic YINM motif, which results 

in activation of Akt (Chang et al., 1999; Wu et al., 1999). In addition, DAP10 binds 

adapter protein Grb2 subsequently leading to activation of the Ras/c-Raf/ERK path-

way (Chang et al., 1999; Egan et al., 1993). The role of NKG2D/DAP10 in innate re-

sponses is presently unknown. 

1.3.3 Inhibiting receptor systems 

ITAM-mediated activation signals can be counter-regulated by receptors containing a 

13 amino acid consensus sequence termed immunoreceptor tyrosine-based inhibitory 

motif (ITIM) (Amigorena et al., 1992; Muta et al., 1994; Scharenberg and Kinet, 

1996). ITIM-containing receptors are members of the FcR, Killer cell Ig-like receptor 

(KIRs) and Ig-like transcripts (ILTs) family of surface receptors (Colonna et al., 2000; 

Ravetch and Bolland, 2001). Clustering of ITIM-bearing inhibitory receptors with ac-

tivating receptors results in the phosphorylation of ITIMs by PRKs and subsequent 

recruitment of SH2-containing phosphatases, such as SHP-1, -2 or SHIP (Scharenberg 

and Kinet, 1996). These phosphatases can act on phosphorylated tyrosine residues 

thus terminating the required signals for the activation of downstream pathways (Fig-

ure 1.12). The important role for counter regulating phosphatases is underlined by the 
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phenotype of SHP-1-deficient motheaten mice displaying acute inflammations 

throughout the body as a consequence of uncontrolled immune activation (Zhang et 

al., 2000). 

1.3.4 The molecular basis for cell death and survival 

1.3.4.1 Necrosis and Apoptosis  

During development cell death and proliferation are equally important. In the early 

1970s Kerr, Wyllie and Currie recognized that there are in principle to types of cell 

death: necrosis and apoptosis (Kerr et al., 1972; Wyllie et al., 1981). 

Necrosis is mostly due to cell damage caused by toxic agents or injury. Due to the 

high cellular osmolarity, damage to the plasma membrane ultimately leads to strong 

water influx culminating in cell swelling (oncose) and finally cell burst with the re-

lease of lysosomal and cytosolic proteases into the intercellular space. These proteins 

induce massive tissue damage thus necrosis is often paralleled or followed by in-

flammatory responses (Trump et al., 1981). 

Apoptosis, or programmed cell death is the physiological form of cell death mediated 

by a tightly regulated set of receptors, intracellular proteins and proteases. Apoptosis 

is not only responsible for the removal of excessive cell populations and senescent 

cells, but also for the elimination of virus-infected and malignant cells (Thompson, 

 
Figure 1.13: Counter-regulation of ITAM-containing receptors by inhibitory receptors 
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1995). In contrast to necrosis, the highly specific proteins involved during apoptosis 

induce defined molecular modifications followed by characteristic morphological 

changes such as chromatin condensation, nucleus fragmentation, and the formation of 

membrane-encapsulated cell fragments, called apoptotic bodies (Kerr et al., 1972). 

The most significant biochemical changes include the fragmentation of nuclear DNA 

by activated endonucleases (Arends et al., 1990; Cohen and Duke, 1984; Enari et al., 

1998; Halenbeck et al., 1998; Liu et al., 1997; Sakahira et al., 1998; Wyllie et al., 

1981), the loss of plasma membrane polarity and integrity (Duvall et al., 1985; Fadok 

et al., 1992a; Fadok et al., 1992b; Savill et al., 1990), and the disruption of the mito-

chondrial membrane potential (∆Ψm) (Kroemer and Reed, 2000).  

1.3.4.2 Death receptor-induced apoptosis 

The discovery of CD95 (Fas/APO-1) revealed for the first time a surface receptor ca-

pable of inducing apoptosis (Itoh et al., 1991; Oehm et al., 1992; Trauth et al., 1989; 

Yonehara et al., 1989). CD95 together with TNF-R1, DR3, TRAIL-R1, TRAIL-R2 

and DR6 constitute the group of death receptors (DRs) (Peter et al., 1999; Schmitz et 

al., 2000), a subfamily of 

the TNF/NGF-SF (Baker 

and Reddy, 1998; Smith et 

al., 1994). DRs are 

characterized by an 80 

amino acid intracellular 

death domain (DD) 

essential for the induction 

of apoptosis (Itoh and 

Nagata, 1993; Tartaglia et 

al., 1993). Upon DR-

oligomerization by specific 

death-inducing ligands, a 

so-called ”death inducing 

signaling complex” (DISC) 

is assembled (Kischkel et 

al., 1995) (Figure 1.14). 

The DISC contains the 

adapter protein 

FADD/Mort1 and the pro-

form of a protease, Cas-pase-8 or –10 (Kischkel et al., 2001; Scaffidi et al., 1999). Caspase-8 activation oc-

curs via autoproteolysis and induces the cleavage and activation other caspases in-

Figure 1.14: Death receptor- and mitochondria-mediated
pathways to apoptosis 
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cluding Caspasen-3, -6 and -7. This cascade ultimately leads to the cleavage of target 

proteins and nuclear DNA essential for apoptosis and also responsible for the morpho-

logical changes observed (Scaffidi et al., 1999) (Figure 1.14). It is of note that Cas-

pase-8-/--cells are resistant to CD95-, TNF-RI-, DR3-, and TRAIL-R2-mediated apop-

tosis (Varfolomeev et al., 1998) indicating caspase-8 as the central player during DR-

induced apoptosis. 

1.3.4.3 The mitochondrial pathway to apoptosis  

Mitochondria play a crucial role during apoptosis (Kroemer and Reed, 2000). The loss 

of ∆Ψm is one of the earliest hallmarks of apoptosis and can be detected even before 

DNA-fragmentation (Petit et al., 1995; Zamzami et al., 1995). As shown in Figure 

1.14, early after induction of apoptosis, mitochondria permeability transition (PT) 

leads to the loss of mitochondrial membrane potential (∆Ψm). PT is induced by the 

permeability transition pore complex (PTPC), a channel in the inner mitochondrial 

membrane (Bernardi et al., 1994; Petit et al., 1995; Petronilli et al., 1994; Zamzami et 

al., 1995). The opening of the PTPC may be responsible for a massive water influx to 

the mitochondrial matrix culminating in the burst of the outer membrane and the re-

lease of mitochondrial proteins (Green, 2000), such as cytochrome c (Kluck et al., 

1997; Liu et al., 1996), pro-Caspase-2, -3, -9 (Mancini et al., 1998; Susin et al., 

1999a), apoptosis-inducing factor (Susin et al., 1999b) and SMAC/Diabolo (Du et al., 

2000; Verhagen et al., 2000) from the mitochondria to the cytosol can be observed. 

Together with the cytosolic factors Apaf-1 and dATP, cytochrome c and pro-Caspase-

9 form a protein complex called apoptosome (Green, 2000; Hengartner, 2000), which 

facilitates the autoproteolytic cleavage of pro-caspase-9 leading to subsequent activa-

tion of effector caspases and execution of apoptosis (Li et al., 1997; Srinivasula et al., 

1998; Yang et al., 1998; Zou et al., 1997). The integrity of mitochondria is regulated 

by members of the Bcl-2 family. Whereas anti-apoptotic familiy members including 

Bcl-2 and Bcl-xL are able to protect mitochondria against various apoptotic and cyto-

toxic stimuli, some pro-apoptotic members such as Bax, Bad, Bim or Bid are able to 

induce cytochrome c release, dissipation of ∆Ψm, and subsequent apoptosis (Adams 

and Cory, 1998; Green, 2000; Gross et al., 1999; Hengartner, 2000; Huang and 

Strasser, 2000; Kroemer and Reed, 2000). Bad, in particular, was demonstrated to be 

important for the balance between cell death and survival (Yang et al., 1995). Induc-

tion of Bad phosphorylation on multiple serine residues influences its subcellular dis-

tribution, from an association with Bcl-xL at the mitochondria, to a cytosolic location, 

associated with 14-3-3 (Zha et al., 1996). The association of Bad with Bcl-xL is medi-

ated through dimerization of conserved Bcl-2 homology domains (BH) (Kelekar et al., 

1997; Zha et al., 1997). Phosphorylation of residues in proximity to the BH3 domain 
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of Bad may alter the affinity of Bad for Bcl-xL, promoting dissociation. This relieves 

Bcl-xL, thus protecting cells from apoptosis by keeping mitochondrial integrity 

(Hengartner, 2000). Bad phosphorylation at two specific residues, serine 112 (Ser112) 

and serine 136 (Ser136) (Zha et al., 1996) and subsequent induction of cell survival can 

be induced by various cytokines and survival factors (Datta et al., 1997; del Peso et 

al., 1997; Scheid and Duronio, 1998; Zha et al., 1996). Recent work has illustrated the 

importance of PI3K-dependent activation of Akt (Burgering and Coffer, 1995; Franke 

et al., 1995), ERK (Scheid and Duronio, 1998; Scheid et al., 1999; Xia et al., 1995), 

Protein kinase A (PKA) and p90RSK (Bonni et al., 1999; Harada et al., 1999; Tan et 

al., 1999) in Bad phosphorylation and cell survival. Thus, the regulation of mitochon-

drial integrity is central in the mechanism to modulate cell death and survival. 

1.3.4.4 Regulation of neutrophil survival during resolution of inflammation 

How neutrophil survival and apoptosis during inflammation is regulated is poorly un-

derstood. Interestingly, mice carrying spontaneous mutations in the genes for fas 

ligand (B6/gld) or fas (B6/lpr) show no dysregulation of the lifespan of neutrophils 

during acute inflammatory responses. This indicates that Fas/FasL system is not in-

volved in the control of neutrophil apoptosis (Fecho et al., 1998; Fecho and Cohen, 

1998). The role of TNF-α during neutrophil homeostasis is controversial: some re-

ports suggest TNF-induced neutrophil survival (Dunican et al., 2000; Grey et al., 

1996), whereas others imply TNF-mediated apoptosis (Avdi et al., 2001). In an ele-

gant study Dippert and coworkers (Dibbert et al., 1999) show that neutrophils defi-

cient for Bax, a pro-apoptotic member of the Bcl-2 family (Adams and Cory, 1998), 

are more resistant to apoptosis during inflammation. Thus, it is more likely that the 

mitochondrial apoptosis pathway regulates neutrophil apoptosis during inflammation, 

rather than death receptor engagement. In conclusion, the balance between neutrophil 

survival, apoptosis and necrosis in inflamed tissues may be an important determinant 

of the degree of tissue injury and the resolution of inflammation. The molecular basis 

for this process has yet to be defined. 
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1.4 DAP12, a novel ITAM-bearing protein associated with 
activating NK cell receptors 

1.4.1 Identification and characterization of DAP12 

1.4.1.1 Characterization of DAP12 and its signal transduction properties 

MHC class I molecules are expressed on the surface of almost all cells in the body. 

Only upon viral infection or in tumor cells MHC class I can be downregulated to es-

cape the CD8+-mediated cellular cytotoxicity. However, the absence of MHC class I 

is detected by NK cells in a process known as recognition of “missing self” 

(Ljunggren and Karre, 1990). This is mediated by cell-surface receptors, which, on 

binding MHC class I molecules transduce inhibitory signals that block NK-cell-

mediated target cell lysis. When MHC class I expression is lost or reduced, NK cells 

are released from inhibition and thus, can rapidly identify and kill virally infected or 

transformed cells. 

NK cells monitor the expression of MHC class I molecules using various receptors. 

Cloning of the receptors revealed remarkable diversity (Lanier, 1997; Yokoyama, 

1995). Two receptor families have been identified so far: the C-type lectin-like mole-

cules and receptors belonging to the Ig-SF known as human killer-cell immunoglobu-

line receptors (KIRs). Intriguingly, some MHC class I-binding NK cell receptors 

promote rather than inhibit target cell lysis. This difference is paralleled by heteroge-

neity in the cytoplasmic domains of the receptors. Inhibitory receptors have a long 

cytoplasmic tail that contains ITIMs. In contrast, activating NK cell receptors have 

short cytoplasmic domains that lack either ITIMs or other signaling motifs. These 

truncated receptors transmit stimulatory signals to NK cells by activating PTKs and 

PLCγ, thus leading to NK-mediated cytotoxicity (Biassoni et al., 1996; Houchins et 

al., 1997; Mason et al., 1996; Moretta et al., 1995). The molecular basis for the signal 

transduction was unclear for a long time. However early biochemical studies revealed 

that the activating NK cell receptor KIR2DS receptor is noncovalently associated with 

a 12 kDa protein, that exists as a disulfide-linked dimer (Olcese et al., 1997). Finally, 

Lanier and coworkers identified DAP12, an ITAM-bearing transmembrane protein 

with a predicted molecular mass of 12 kDa that strikingly resembles the FcR-

associated FcRγ chain and the TCR-associated CD3ζ polypeptide (Lanier et al., 

1998b). The cytoplasmic tail of DAP12 contains a single ITAM, which couples the 

engagement of associated surface receptors to PTK-dependent pathways. Upon ITAM 

phosphorylation, DAP12 recruits the SH2-tandem PTKs Syk and/or ZAP70 (Lanier et 
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al., 1998b; McVicar 

et al., 1998) (Figure 

1.15). In vitro studies 

have shown that phos-

phorylation of both 

tyrosine residues 

present in the ITAM 

motif are mandatory 

for the recruitment 

and activation of Syk 

and ZAP-70. These 

results are supported 

by the low affinity of 

each SH2 domain for 

single tyrosine-

phosphorylated hemi-ITAM, as well as by the spatial arrangement of the N and C 

terminus SH-2 domain of ZAP70 that precisely fits the length of the spacer between 

each of the tyrosine residues in the ITAMs (Chu et al., 1998). Along this line it was 

shown that a single mutated tyrosine residue in DAP12’s ITAM prevents DAP12-

dependent cell activation (Tomasello et al., 1998). Syk appears to be the central 

kinase responsible for DAP12-mediated activation of NK cells (Brumbaugh et al., 

1997; McVicar et al., 1998; Tomasello et al., 1998). However, NK cells derived from 

Syk-/- or ZAP-/- mice as well as from ZAP-deficient patients have been reported to be 

fully competent for natural cytotoxicity (Colucci et al., 1999; Elder et al., 1994; Negi-

shi et al., 1995). Thus, in vivo Syk and ZAP-70 sub-serve redundant functions in NK 

cells. Syk and/or ZAP-70 further lead to the activation of several downstream signals 

such as intracellular calcium mobilization, the activation of PLCγ and the MAPK 

ERK1 and 2 (Campbell et al., 1998; Lanier et al., 1998a; Lanier et al., 1998b; McVi-

car et al., 1998). 

1.4.1.2 DAP12-associated receptors in NK cells and myeloid cells 

Very soon after the discovery of DAP12, it was shown that many NK cell receptors 

associate with DAP12. These include KIR2DS and NKp44 in humans, as well as 

Ly49D, Ly49H, and Ly49P in the mouse (Campbell et al., 1998; Makrigiannis et al., 

1999; Mason et al., 1996; Mason et al., 2000; Tomasello et al., 1998). In both humans 

and mice, DAP12 also associates with the CD94/NKG2C receptors for the HLA-E 

and Qa-1 MHC class Ib molecules, respectively (Lanier et al., 1998a; Vance et al., 

1998). 

 
Figure 1.15: DAP12-mediated signaling pathways in NK cells 
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Interestingly, DAP12 was not only detected in NK cells but also in myeloid cells, 

such as monoytes, macrophages, dendritic cells, and granulocytes (Lanier et al., 

1998b; Tomasello et al., 1998). This suggests that not yet identified DAP12-

associated receptors may also be involved in activation of these cell types. 

1.4.2 Phenotype of Knock-in mice bearing a nonfunctional DAP12 
and DAP12-deficient mice 

1.4.2.1 Defects in NK cells 

In mice, DAP12 was shown to be essential for the surface expression of Ly49D and 

Ly49H (Smith et al., 1998). Interestingly, surface expression of these receptors was 

not impaired in Knock-in mice bearing a nonfunctional mutation within the ITAM of 

DAP12 (DAP12loss-of-function (lof) knock-in mice) (Tomasello et al., 2000) but was 

clearly reduced in DAP-/- mice (Bakker et al., 2000), However, Ly49D- and Ly49H-

mediated NK cell cytotoxicity was eradicated from both genetically engineered mice 

(Bakker et al., 2000; Tomasello et al., 2000). These results indicate that DAP12 is in-

deed required for the surface expression of associated activating receptors (Smith et 

al., 1998) and that the ITAM is essential for NK cell mediated cytotoxicity. 

The mechanisms that govern the shaping of the NK cell repertoire of Ly49 molecules 

are unclear. It has been proposed that activating NK receptors may contribute to the 

regulation of inhibitory NK receptor expression on NK cells. Interestingly, no differ-

ence in total NK cell numbers and in the cell surface expression of the inhibitory re-

ceptors Ly49A, Ly49C, Ly49I, Ly49G2 and NKG2A/NKG2C could be observed in 

DAP12-/- and DAP12lof knock-in mice. Therefore, the DAP12-associated activating 

Ly49 receptors are not required for normal expression of inhibitory Ly49 isoforms 

(Bakker et al., 2000; Tomasello et al., 2000). 

1.4.2.2 Defects in myeloid cells 

Surprisingly, DAP12-/- and DAP12lof knock-in mice showed several defects in the 

myeloid cell compartment. DAP12lof knock-in mice showed a dramatic accumulation 

of DCs in muco-cutaneous epithelia and the skin. In addition, they were resistant to 

hapten-specific contact sensitivity (CS) (Tomasello et al., 2000) CS is a T cell medi-

ated inflammatory skin reaction in response to topical application of haptens, which 

are captured by dermal DCs and Langerhans cells. These cells migrate to the paracor-

tical area of the draining LN and prime hapten-specific T cells. Challenge of hapten-

sensitized mice with the same hapten at a remote skin site (e.g. ear) induces recruit-

ment of hapten-specific CD8+ T cells, which initiate skin inflammation (Kehren et al., 
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1999). In addition, DAP12-deficient mice were resistant to experimental autoimmune 

encephalomyelitis (EAE) induced by immunization with myelin oligodendrocyte gly-

coprotein (MOG) peptide (Bakker et al., 2000). These phenotypes suggested a role of 

DAP12 in either modulating inflammatory responses or regulating migration and an-

tigen presentation capacity of DCs or other APCs.  

1.4.3 Phenotype of humans bearing a loss-of-function mutation in 
DAP12 

Recently, Paloneva and coworkers have reported a cohort of patients in Finland and 

Japan that lacks functional DAP12 genes (Paloneva et al., 2000). These individuals 

suffer of Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalo-

pathy (PLOSL), also known as Nasu-Hakola disease (Verloes et al., 1997). PLOSL is 

a recessively inherited disease characterized by a combination of psychotic symptoms 

rapidly progressing to presenile frontal-lobe dementia resulting in death prior to 50 

years of age. In addition, these patients suffer from bone cysts restricted to wrists and 

ankles. PLOSL has a global distribution, although most of the patients have been di-

agnosed in Finland and Japan, with an estimated population prevalence of 2 10-6 

(Verloes et al., 1997) in the Finns. A shared 153-kb ancestor haplotype in all Finnish 

disease alleles between markers D19S1175 and D19S608 on chromosome 19q13.1 has 

been previously identified and the molecular defect of PLOSL was identified as one 

large deletion in all Finnish PLOSL alleles and another mutation in a Japanese patient, 

both representing loss-of-function mutations, in the DAP12 gene (Paloneva et al., 

2000). In the Finnish patients, the absence of DAP12 was confirmed by Northern and 

Western blot analysis (Paloneva et al., 2000). Consistent with results obtained in 

DAP12-deficient mice and DAP12lof knock-in mice, these patients have normal NK 

cells numbers and show no impairment in their lytic activity against certain NK sensi-

tive target cell lines such as K562 (Bakker et al., 2000; Paloneva et al., 2000; 

Tomasello et al., 2000). So far, no severe immunodeficiencies have been reported in 

these patients and the predominant pathologies that arise in the bones and CNS but are 

of late onset. It is likely that these defects result from the deficiency of DAP12 in os-

teoclasts and microglial cells, respectively, or in other myeloid cells patrolling these 

tissues and controlling tissue homeostasis. This might explain the late onset of disease 

in these patients. It is not currently known, whether PLOSL patients are more resistant 

to acute onset of inflammatory, allergic or autoimmune pathology, as in the case of 

EAE mice.  
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1.5 Aim of the thesis 
 

DAP12 is not only expressed on NK cells but also on myeloid cells (Lanier et al., 

1998b; Tomasello et al., 1998). Recent literature demonstrates that mice and humans 

functional-deficient for DAP12, show several defects in myeloid cell function in sev-

eral tissues (Bakker et al., 2000; Paloneva et al., 2000; Tomasello et al., 2000). These 

findings indicate that yet unknown DAP12-associated receptors exist in myeloid cells 

and most probably regulate their activation.  

Thus, the aim of this thesis is to identify, clone, and characterize novel DAP12-

associated receptors expressed on myeloid cells and to study their role in immune re-

sponses.  
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2 MATERIAL AND METHODS 

2.1 Biochemistry 

2.1.1 Basic biochemical methods 

2.1.1.1 Determination of Protein concentration 

2.1.1.1.1 Bradford assay 

Different volumes (1 – 10 µl) of the protein sample were placed in a 96-well plate 

(Costar) and 200 µl Bradford reagent (100 mg Coomassie G-250, 50 ml 95 % Etha-

nol, 100 ml conc. H3PO4, filled up to 200 ml with ddH2O, filter solution (0.22 µm fil-

ter, Millipore) was added. For the generation of the standard curves, aliquots of 1, 2, 

4, 8, and 16 µg of γ–Globulin and BSA were used. Spectrometric analysis was per-

formed with a Spectramax 250 (Molecular Devices) at 595 nm wavelength employing 

the Softmax software. 

2.1.1.1.2 Bicinchioninic acid protein assay 

In the presence of detergents like Nonidet P (NP)-40, Triton-x (Tx)-100 or Digitonin 

(DIG), the Bradford assay was substituted by the Bicinchioninic acid (BCA) protein 

assay (Pierce) to circumvent high background reactivity. 200 µl of BCA reagent was 

added to sample and standard samples and the reaction allowed to develop for 30 min 

at 37°C. Spectrometric analysis was performed at 562 nm. 

2.1.1.1.3 Spectrometric analysis at 280 nm wavelength 

For fast assessment of protein concentrations during protein purifications, protein 

samples were analyzed for absorbance at 280 nm compared to a blank containing the 

cognate buffer. For mAb and soluble IgG fusion proteins an OD280 of 1.4 corresponds 

to 1 mg/ml of protein. 

2.1.1.2 SDS-PAGE 

For SDS-PAGE the Protean III mini-gel system (Biorad) was used. Running gel com-

ponents were mixed at the percentage of acryl amide requested according to Table 

2.1, adding the TEMED last. The poured gels were overlaid with water-saturated Iso-

butanol, which was removed after gel polymerization by washing with ddH2O. Stack-

ing gel was poured and the comb inserted immediately without bubbles. Before load-

ing the sample, slots were rinsed with syringe and needle. Samples containing 1 x Re-
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ducing Sample Buffer (1 x RSB: 50 mM Tris-HCl pH 6.8, 2 % SDS, 0.01 % (w/v) 

Bromphenolblue, 30 % Glycerol) were boiled (10 min, 95°C), centrifuged briefly and 

applied to the slots. Empty slots were loaded with 1 x RSB. In case of reducing SDS-

PAGE, 10 µl 1 x RSB was added onto the molecular weight markers (Amersham). 

Running conditions: constant voltage (70 V: stacking gel and 80-90 V: running Gel). 

Table 2.1: Gel composition for 1 SDS-PAGE Mini gel.  

All volumes in ml 15 % 12 % 10 % 8 % 
ddH2O 1.1 1.6 1.9 2.3 
30% Acrylamid mix (Biorad) 2.5 2.0 1.7 1.3 
1.5 M Tris-HCl pH 8.8 1.3 1.3 1.3 1.3 
10 % SDS (in water) 0.05 0.05 0.05 0.05 
10 % Ammoniumpersulfate (in water) 0.05 0.05 0.05 0.05 
TEMED 0.002 0.02 0.02 0.02 

2.1.1.3 Coomassie staining 

After SDS-PAGE the gel was placed for 24 h in 50 ml NOVEX staining solution (In-

vitrogen/NOVEX) under agitation at RT, and then destained with ddH2O, that was 

exchanged several times. Gels were then dried by vacuum at 60°C. 

2.1.1.4 Silver staining 

After SDS-PAGE, the gel was fixed in MeOH/CH3COOH/H2O (v/v/v: 45:10:45) for 

20 min. After rinsing the gel with H2O for 60 min to remove acid, the gel was incu-

bated for 90 s in 0.02% (w/v) Na2S2O3 (sensitizing solution). The sensitizing solution 

was discarded and the gel rinsed with two changes of H2O (1 min each). After incu-

bating the gel for 20 min in 0.1 % (w/v) AgNO3 at 4°C the Gel was rinsed again as 

described above. For development, the gel was placed in 0.04% (v/v) Formalin, 2 % 

(w/v) Na2CO3. Development was quenched with 1 % CH3COOH when sufficient 

staining was obtained. Silver stained gel is stored in the fridge 

2.1.1.5 Autoradiography 

After SDS-PAGE, the gel was placed on a 3MM paper (Whatman), quickly covered 

with plastic foil (Alio), dried at 60°C under vacuum for 2 h and subjected to autora-

diography using exposure of KODAK MR films for 1 up to 21 days. 

2.1.1.6 Semi-dry Protein transfer 

Before transfer Hybond PVDF membrane (Amersham) (dimension 6 x 9 cm) was first 

washed 1 min in Methanol and 1 min in water, 5 min with fresh water and 15 min in 

1 x Transfer buffer (TB) (10 x TB: 390mM Glycine, 480mM Tris base (pHfinal: 8.5), 

0.375 % (w/v) SDS; 1 x TB: 10 % (v/v) 10x TB, 20 % (v/v) Methanol, 70% (v/v) wa-
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ter). After SDS-PAGE the gel was washed in TB for 15 min. For transfer a sandwich 

was built up on the anode containing 3 x 3MM paper (soaked in TB), PVDF mem-

brane, gel, 3 x 3MM paper (soaked in TB). The cathode was fitted and the transfer 

performed for 45 min at constant current (17 A/gel). 

2.1.1.7 Western Blot analysis 

After the transfer, the membrane was placed for ≥ 1 h in blocking solution (BS) 

(PBS/0.1 % (v/v) Tween-20/5 % (w/v) Skim milk (Biorad) and subsequently incu-

bated with the first mAb at a concentration of 10 µg/ml in BS for 2 h at RT. The 

membrane was washed 6 times with washing buffer (WB) (50 ml PBS/0.1 % (v/v) 

Tween-20) before a second horseradish peroxidase (HRP)-labeled Ab (dilution 

1:500 – 1:100000) in BS was added for 30 min at RT. The membrane was washed 

again before incubating it in Enhanced Chemoluminescence Solution (ECL, Amer-

sham) for 1 min. Excess fluid was removed from the membrane with a paper towel, 

the membrane placed in transparent foil (Kaliak) and exposed to ECL-film (Kodak), 

for different time periods. To detect, protein phosphorylation, phosphatases were 

blocked by adding Na2V2O5 at a concentration of 10 µg/ml to all solutions. 

2.1.2 Protein production, purification and modification  

2.1.2.1 Production, purification and modification of BirA-tagged proteins 

For expression of in vivo biotinylated TREM-1-BirAtag fusion protein, competent E. 

coli strain AVB101 (Avidity) was transformed with the respective plasmid TREM-

1/pAC-4, and grown in 5 x 400 ml of LB-Medium containing Ampicillin (100 µM) 

and Chloramphenicol (10 µg/ml) in a 2-litre flask at 37°C for 4h. AVB101 contain an 

isopropyl β-thiogalactoside (IPTG) inducible birA gene in a pACYC184 plasmid en-

coding a biotin ligase capable of biotinylating a particular Lysine residue in the BirA 

consensus sequence. After induction with 0.5 mM IPTG and addition of 50 µM D-

Biotin cells were incubated for additional 8 h, harvested and pelleted. The pellet was 

suspended in 40 ml of 10 mM HEPES, pH 7.4, 150 mM NaCl containing protease in-

hibitors (complete, Roche) and lysed with an EmulsiFlex high-pressure homogenizer 

(G. Heinemann Ultraschall- und Labortechnic). After centrifugation surplus of D-

Biotin was removed by dialyzing against 10 mM HEPES, pH 7.4, 150 mM NaCl. Pu-

rification of the biotinylated TREM-1-BirA fusion protein was attempted using 

Sepharose-4B-immobilized Avidine (Pierce). Lysates were pre-cleared using 1 ml 

Sepharose-4B (Pharmacia) for 2 h at 4°C, followed by 4 h incubation with 0.5 ml 

Sepharose-4B-immobilized Avidine. The resin was washed two times with 50 ml 
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10 mM HEPES, pH 7.4, 150 mM NaCl, two times with 50 ml 10mM HEPES, pH 7.4, 

2 M NaCl, two times with 10 mM HEPES, pH 7.4, 5 M NaCl, and finally once with 

10 mM HEPES, pH 7.4, 150 mM NaCl. The amount and purity of biotinylated 

TREM-1-BirA coupled to Sepharose-4B-immobilized Avidine was determined by 

elution of 10 µl of loaded beads with reducing sample buffer, subsequent SDS-PAGE 

and Coomassie Staining. The average loading was ~ 1mg TREM-1-BirA/1ml Sepha-

rose-4B-immobilized Avidine. Proper biotinylation of the purified TREM-1-BirA was 

measured by probing Western Blots with HRP-conjugated Streptavidine. For Immu-

nization 200 µl beads (≅ 200µg TREM-1-BirA) were mixed with 200 µl Freund com-

plete adjutants (FCA). To generate biotinylated TREM-1-BirA monomers, the resin 

was eluted with 500µM D-Biotin solution and recovered biotinylated TREM-1-BirA 

was dialyses against PBS. 

2.1.2.2 Production, purification and modification of huIgG fusion proteins 

cDNAs encoding TREM-1-huIgG1, TREM-2-huIgG1, TREM-4-huIgG1, TREM-5-

huIgG1, mTREM-1-huIgG1, mTREM-2-huIgG1, or control fusion protein (ILT3-

huIgG1 (Cella et al., 1997)), were transfected in mouse myeloma cell line J558L by 

electroporation at 240mV, 1050µF, and plated in Selectionmedium I (2.2.1.5) in 96-

well plates. Supernatants from transfectants were screened by ELISA using anti-

huIgG1 as capturing Ab and mouse-adsorbed HRP-labeled goat-anti-human IgG1 

(Southern Biotechnologies Associates (SBA)) as detecting antibody. Producing trans-

fectants were sub cloned and expanded. Purification of huIgG1 fusion proteins from 

culture supernatants (SNs) was performed by ultrafiltration over a (MWCO: 50 kDa) 

followed by affinity chromatography on Sepharose-coupled Protein A (Sigma) ac-

cording to manufacturer’s protocols. Purified fusion proteins were dialyzed against 

PBS and sterilized by 0.22 µm filtration (Millipore). Aliquots of purified fusion pro-

teins were either biotinylated (Roche) or labeled with Cy5 (Pharmacia) according to 

manufacturer’s protocols. 

2.1.2.3 Production, purification and modification of huIgM fusion proteins 

cDNAs encoding TREM-1-huIgM, TREM-2-huIgM, mTREM-1-huIgM, or mTREM-

2-huIgM were transfected in mouse myeloma cell line J558L by electroporation at 

250 mV, 960 µF, and plated in Selectionmedium I in 96-well plates. SNs from trans-

fectants were screened by ELISA using anti-huIgM as capturing Ab and mouse-

adsorbed HRP-labeled goat-anti-human IgM (SBA) as detecting antibody. Producing 

transfectants were subcloned and expanded. Purification of huIgM fusion proteins 

from culture supernatants was performed by ultrafiltration over a 300 kDa-MWCO 
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membrane (Skan AG) followed by affinity chromatography on Sepharose-coupled 

mouse anti-human IgM mAb (Sigma) according to manufacturer’s protocols. Purified 

fusion proteins were dialyzed against PBS and sterilized by 0.22 µm filtration (Milli-

pore). Aliquots of purified fusion protein were labeled with Cy5 (Pharmacia) accord-

ing to manufacturer’s protocols. 

2.1.2.4 Production and modification of mAb 

2.1.2.4.1 Purification of control and anti-TREM mAbs 

SN from hybridomas 21C7, 9E2, 37F8 (anti-TREM-1, IgG1, κ), 50D1, 100E1, 1A1 

(anti-mTREM-1), 29E3, 21E10, 10B11, 20G2 (anti-TREM-2, IgG1,κ), 64F5, 64A9 

(anti-TREM-4, IgG1, κ), 8H6, 11F6 (anti-TREM-5, IgG1, κ), 1B7.11 (control 

IgG1, κ, anti-2,4,6 TNP, American Type Culture Collection (ATCC), Manassas, VA), 

and (control IgG1, κ, anti-β2 Integrin, Pharmingen) were purified by affinity chroma-

tography using GammaBind-Sepharose (Pharmacia).  

2.1.2.4.2 Biotinylation or Cy5-labeling of mAbs 

Purified mAbs were either biotinylated (Roche) or labeled with Cy5 (Pharmacia) ac-

cording to manufacturer’s protocols. In brief, affinity purified mAb were concentrated 

to 2 mg/ml using Biomax concentrators (MWCO 10000; Millipore) and dialyzed 

against 100 mM Na3BO3 pH 8.8. For biotinylation 1 mg of protein was mixed with 

200µg (Roche) (10 mg/ml in DMSO) and the solution was incubated for 30 min at 

room temperature (RT). The reaction was stopped by adding 20 µl 1 M NH4Cl. For 

Cy5-labeling, 1 mg of Protein was mixed with Cy5 labeling reagent and incubated for 

30 min at RT. For buffer exchange and removal of free biotin or Cy5, a G50 Gelfiltra-

tion column (Pharmacia) was equilibrated with PBS. The protein solution was applied 

onto the column, eluted with PBS and the first two fractions collected. The amount, 

specificity and purity of biotinylated mAbs were determined by ELISA and SDS-

PAGE/Coomassie Staining. Finally, the protein solutions were sterilized by 0.22 µm 

ultrafiltration (Millipore) or preserved by adding NaN3 to a final concentration of 

0.05 % (w/v). 

2.1.2.4.3 Ficin digest for Production of F(ab’) and F(ab’)2 mAb fragments 

F(ab’) or F(ab’)2 fragments of mAb 29E3 and mAb 21C7 were prepared using the 

Fab’/F(ab’)2 Kit (Pierce). F(ab’) and F(ab’)2 were separated from the Fc portion by 

affinity chromatography on protein G-sepharose, followed by gel filtration on a Su-

perdex 75 HR10/30 (Pharmacia). F(ab’) and F(ab’)2 preparations were tested for the 

absence of Fc fragments by ELISA. F(ab’) and F(ab’)2 fragments were biotinylated 
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allowing for cross-linking by ExtrAvidine (Sigma) or flow cytometry by Strepta-

vidine-allophycocyanin (APC) or -phycoerythrin (PE) (Pharmingen). Alternatively, 

F(ab’)2 fragments were crosslinked using a F(ab’)2 goat anti-mouse IgG F(ab’)2 spe-

cific antibody (Jackson). 

2.1.2.5 Selection and Coupling of Peptides for the production of antisera in rab-

bits 

2.1.2.5.1 Peptides for the production of DAP12 antisera 

Table 2.2: Summary of peptides used for immunization of rabbits.  

Peptide #/rabbit # Sequence (NH2→COOH) Source of sequence Application 
#DAP12-A/#1370 NH2-RLVPRGRGAAEAATRKQRITETE-COOH DAP12 AA66-AA89 DAP12 antisera 
#DAP12-B/#1376 NH2-TRKQRITETESPYQELQGQRSD-COOH DAP12 AA79-AA101 DAP12 antisera 
#DAP12-C/#1378 NH2-ETESPYQELQGQRSDVYSDLNTQRPYYK-

COOH 
DAP12 AA77-AA113 DAP12 antisera 

2.1.2.5.2 Production and conjugation of immunogenic peptides 

Peptides were produced by David Avila using an ABM 430A synthesizer (Applied 

Biosystems), lyophilized and coupled to Keyhole limped hemocyanin (KLH; Pierce) 

by Glutaraldehyde (Sigma): 200 µl KLH (6 mg/ml in PBS) were mixed with 80 µl 

Peptide (10 mg/ml in water). Then Glutaraldehyde was added to a final concentration 

of 10 mM in 5 steps of 1.2 µl (5% solution in water). After each addition the pep-

tide/KLH mix was incubated at RT for 5 min and finally incubated on ice for addi-

tional 30 min. To stop the reaction 8 µl 1 M Glycine pH 8.5 was added. 7 aliquots of 

500 µg coupled peptides/1 ml PBS were used for immunization and further aliquots 

stored at –20°C. 

2.1.2.6 Purification and modification of DAP12 antisera from rabbits 

CNBr-Sepharose-4B with a capacity of 40 mg peptide/2 ml resin (Pharmacia) was 

washed 6 x with 50 ml 10 mM HCl and 3 x with 50 ml 500 mM Na3BO3 pH 7.8. 2 ml 

of the CNBr-Sepharose-4B was resuspended in 50 ml 100 mM Na3BO3 pH 7.8 and 

40 mg of peptide was added. After rotating for 2 h at RT, free CNBr was blocked by 

adding 3 ml of 1 M Tris-HCl pH 9 for additional 2 h. To remove unspecific binding, 

the resin was washed 5 x with 1 M Glycine pH 1.8 and 1 M Tris-HCl pH 9. Finally, 

the peptide/CNBr-Sepharose-4B was washed in RPMI/HEPES until neutralized. 

50 ml antiserum was applied on the peptide/CNBr-Sepharose-4B over night at 4°C. 

After washing the resin with 50 ml PBS and 50 ml 3 M NaCl, bound antibodies were 

eluted using 100 mM Glycine pH 1.8. Amount, specificity and purity of the antiserum 

was tested by Bradford assay, ELISA and SDS-PAGE/Coomassie staining. Biotinyla-

tion was performed as described in 2.1.2.4.2. 
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2.1.3 Determination of protein phosphorylation and activation 

2.1.3.1 Protein tyrosine phosphorylation, ERK-, JNK, and p38/SAPK activation 

2x106 cells (Monocytes, Neutrophils, or MDCs)/0.5ml were incubated at 37°C with 

F(ab’)2 21C7 (anti-TREM-1), F(ab’)2 29E3 (anti-TREM-2) or control F(ab’)2 (1F11 

(anti-β2-Integrin) or 1B7.11 anti-2,4,6 TNP) in the presence of F(ab´)2 goat anti-

mouse F(ab’)2-specific mAb (Jackson) for different time periods. After stimulation, 

cells were lysed in reducing sample buffer. Specific induction of tyrosine phosphory-

lation and phosphorylation of ERK, p38/SAPK and JNK was determined by reducing 

Western Blot analysis using HRP-labeled PY20 anti-phosphotyrosine mAb (Trans-

duction Laboratories), anti-Phospho-ERKThr202/Tyr204, anti-ERK, anti-Phospho-

p38/SAPK, anti-p38/SAPK, anti-Phospho-JNK and anti-JNK antibodies (all from 

New England Biolabs (NEB)).  

2.1.3.2 PLC� phosphorylation and activation 

For the determination of PLCγ phosphorylation, 2x107 cells were stimulated as de-

scribed above and lysed in 1% Tx-100, 100 mM Tris-HCl pH 7.4, 150 mM NaCl, pro-

tease inhibitors (Complete, Roche). Lysates were subjected to immunoprecipitation 

with PY20 mAb at 4°C for 3h. Immunocomplexes were precipitated by addition of 

protein-G-Sepharose 4B for 1h at 4°C. Precipitates were washed 4 times with lysis 

buffer, followed by a final wash with 0.5% Tx-100, 100 mM Tris-HCl p H7.4, 

150 mM NaCl, and resuspended in reducing sample buffer. Lysates were subjected to 

SDS-PAGE and Western blot analysis with an anti-PLCγ or anti-Hck mAbs (Trans-

duction Laboratories). 

2.1.3.3 I�B-phosphorylation and -degradation 

2 x 106 cells/0.5ml were incubated at 37°C with F(ab’)2 29E3 (anti-TREM-2) F(ab’)2 

21C7 (anti-TREM-1), or control F(ab’)2 mAbs (1F11 anti-β2-Integrin or 1B7.11 anti-

2,4,6 TNP) in the presence of F(ab´)2 goat anti-mouse F(ab’)2-specific mAb (Jackson) 

as a cross-linker for different time periods. After stimulation, cells were lysed in re-

ducing sample buffer. Specific induction of IκB-degradation and -phosphorylation 

was determined by reducing Western Blot analysis using anti-IκB (NEB) and anti-

phospho-IκB antibodies (NEB). To confirm equal loading blots were incubated for 

30 min in a buffer containing 62.5 mM Tris/HCl pH 6.8, 2% SDS and 100 mM β-

mercaptoethanol at 60°C. Then blots were washed six times for 10 min in 

PBS/Tween, blocked with PBS/Tween/ 5% Skim milk and analyzed with HRP-

labeled anti-Actin mAb (Sigma). 
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2.1.3.4 Phosphorylation of Bad, Akt and ERK 

2 x 106 neutrophils/0.5ml were incubated at 37°C with biotinylated F(ab’)2 mAb 21C7 

(anti-TREM-1) or control F(ab’)2 (29E3 anti-TREM-2, 1F11 anti-β2-Integrin or 

1B7.11 anti-2,4,6 TNP) in the presence of ExtrAvidine (Sigma) as a cross-linker for 

different time periods. After stimulation, cells were lysed in reducing sample buffer 

and subjected to Western Blot analysis using anti-Phospho-ERKThr202/Tyr204, anti-ERK, 

anti-AktThr208, anti-Akt, anti-BadSer112, anti-BadSer136, anti-BadSer155, and anti-Bad Abs 

(NEB).  

2.1.3.5 Detection and Monitoring of Bad-Bcl-xL heterodimers 

For the determination of Bcl-xL-Bad heterodimers, 10 x 107 neutrophils were stimu-

lated as described in 2.1.3.4 and lysed in 1.2% DIG, 100mM Tris-HCl pH 7.4, 

150mM NaCl, protease inhibitors (Complete, Roche). Lysates were subjected to im-

munoprecipitation with anti-Bcl-xL mAb (Pharmingen) at 4°C for 3h. Immunocom-

plexes were precipitated by addition of Protein G-Sepharose 4B (Pharmacia) for 1h at 

4°C. Precipitates were washed 4 times with lysis buffer, followed by a final wash with 

0.5% DIG, 100 mM Tris-HCl pH 7.4, 150 mM NaCl, and resuspended in reducing 

sample buffer. Lysates were subjected to SDS-PAGE and Western blot analysis with 

an anti-Bad Ab and anti-Bcl-x Ab (NEB). 

2.1.3.6 Detection of Cytochrome c release from mitochondria 

100 x 106 neutrophils/time point were incubated at 37°C on plastic-bound F(ab’)2 

mAb 21C7 (anti-TREM-1) or control F(ab’)2 (anti-TREM-2 mAb 29E3). After stimu-

lation for different time periods, cells were harvested by centrifugation at 600 x g for 

10 min at 4°C. The cell pellets were washed twice in PBS, resuspended in 160 µl iso-

tonic buffer (250 mM sucrose, 20 mM HEPES, 20 mM KCl, 1,5 mM MgCl2, 1 mM 

EDTA, 1 mM EGTA, 1 mM DTT) supplemented with protease inhibitors (17 µg/ml 

PMSF, 8 µg/ml Aprotinin, 2 µg/ml Leupeptin), and allowed to swell during a 20 min 

incubation period on ice. The cells were gently broken up using a Dounce homoge-

nizer (Kontes Glass company). Small aliquots of the lysate were taken and stained 

with trypan blue to determine the progression of cell lysis. Homogenization was con-

tinued until ≤ 80% of the cells were broken. The homogenate was centrifuged once at 

750 x g at 4°C to remove unbroken cells and nuclei. The supernatant was centrifuged 

at 10.000 x g for 25 min at 4°C to collect the mitochondria-enriched heavy membrane 

pellet (HM: marked as Mit in figure legends). This supernatant was centrifuged at 

100.000 x g for 60 min at 4°C to yield the light membrane pellet (LM) and the soluble 

cytosolic fraction (S100: marked as Cyt in figure legends). Protein concentrations of 
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S100 and HM fractions were determined and 5 µg total protein examined by Western 

Blot analysis for Cytochrome c using anti-Cytochrome c mAb (7H8.2C12: 1:500; 

Pharmingen). To confirm equal loading and purity of the cytosolic fraction, western 

blots were also developed either with an antibody directed against against mitochon-

drial cytochrome c oxidase (12C4-F12: 1:1000; Molecular Probes, Inc.).  

2.1.4 Determination of receptor size and receptor-associated mole-
cules  

2.1.4.1 [35S] metabolic labeling, biotinylation and pervanadate treatment 

Purified monocytes were incubated in cysteine- and methionine-free DMEM (Sigma) 

containing 2% dialyzed FCS for 1h. [35S]-labeled cysteine and methionine (Promix, 

Amersham) were then added at 1 µCi/ml and incubation was continued for 6 h. For 

surface biotinylation, monocyte-derived DCs were washed three times in PBS fol-

lowed by incubation with Sulfo-NHS-Biotin according to the manufacturer’s protocol 

(Pierce). For pervanadate treatment, cells were incubated with 200 µM pervanadate 

and 200 µM H2O2 at 37°C for 5 min. Biotinylation or pervanadate stimulation was 

stopped by washing the cells 3 x in PBS/10% FCS/200 µM pervanadate and 1 x with 

ice cold PBS/200 µM pervanadate. 

2.1.4.2 Immunoprecipitations and Coimmunopreciptiations 

Surface-biotinylated, metabolically labeled or pervanadate-treated cells were lysed in 

1% DIG, 100 mM Tris-HCl pH 7.4, 150 mM NaCl, protease inhibitors (Complete, 

Roche). After overnight preclearing with normal mouse serum coupled to Gam-

maBind-Sepharose 4B (Pharmacia), lysates were subjected to Immunoprecipitations 

(Ips) with 5 µg/ml of 21C7 (anti-TREM-1), 29E3 (anti-TREM-2), 1F11 (anti-MHC 

class I) or 1B7.11 (anti-2,4,6 TNP) at 4°C for 3 h. Immunocomplexes were precipi-

tated by addition of GammaBind-Sepharose 4B for 3h at 4°C. Precipitates were 

washed 4 times with lysis buffer, followed by a final wash with 0.5% DIG, 100 mM 

Tris-HCl pH7.4, 150 mM NaCl.  

Proteins bound to GammaBind-Sepharose were eluted using RSB and separated by 

SDS-PAGE. Co-Immunoprecipitates (Co-Ips) were analyzed by Western blot with 

anti-phosphotyrosine PY20-HRP (Transduction Laboratories) anti-DAP12, anti-

DAP10, or anti-FcRγ rabbit antiserum (kindly provided by Dr. H. Nakajima, National 

Institute for Longevity Science, Japan) for receptor-associated molecules.  
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2.1.4.3 Deglycosylation and Determination of receptor size 

In deglycosylation experiments Proteins bound to GammaBind-Sepharose were eluted 

with Deglycosylation buffer (20µl buffer for 20µl GammaBind-Sepharose: 8.5 M 

Urea, 0.7 % (w/v) SDS, 0.7 % (v/v) β-ME, 600 mM Tris-HCl pH 7.6) and boiled for 

5 min. After addition of 20 µl 7.5 % (v/v) NP-40 and 77.5 µl water IPs were incu-

bated with or without N-Glycanase F (3 U), O-Glycanase (0.5 U), Galactosaminidase 

(3 U) or Sialylase (1 U) (Roche) for 18 h at 37°C. For separation by SDS-PAGE, RSB 

was added (final concentration 1xRSB) and precipitates were analyzed by autoradio-

graphy (lysats from metabolically labeled cells), or by Western Blot with HRP-

conjugated streptavidine (lysates from surface biotinylated cells).  
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2.2 Cellular Biology 

2.2.1 Basic cell biological methods 

2.2.1.1 Determination of cell number 

An aliquot of cell suspension was diluted 1:1 with trypan blue solution (0.05 % w/v) 

and cells were counted with a Neubauer counting chamber (0.1 mm depth). The num-

ber of live cells in 16 small squares multiplied by 2 x 104 corresponds to the density in 

cell/ml. 

2.2.1.2 Freezing and thawing of cells 

For freezing, cell suspensions were prepared, centrifuged (200 x g, 5 min, 25°C) and 

the pellet resuspended in Freezing medium (2.2.1.5) at a minimal concentration of 

5 x 106 cells/ml. 1 ml aliquots in freezing tubes (Costar) were placed in ice-cooled 

freezing containers and placed for 48 h at –80°C, Tubes were then transferred to liq-

uid N2 tank. 

Cell thawing was performed quickly in a 60°C water bath until a ~ 10% of suspension 

remained frozen. The suspension was immediately diluted into 10 ml of pre-warmed 

appropriate medium and centrifuged. Pelletted cells were resuspended in medium and 

cultured at 37°C, 5 % CO2.  

2.2.1.3 Splitting of adherent cells 

The weakly adherent cell lines COS and 293 were resuspended for splitting or freez-

ing merely by pipetting. 

Monocyte-derived Dendritic cells (MDCs) or Macrophages (MMφs) were washed 

once with PBS, the cell layer covered with Trypsin/0.5 mM EDTA in HBBS (Gib-

coBRL) and incubated at 37°C for 5-10 min checking the progress of detachment with 

the microscope- After the appropriate time, trypsin was quenched with 2 volumes of 

R-Medium, either splitted into new cell culture plates, centrifuged (200 x g, 5 min, 

4°C) for freezing or analysed. 

In case, MDCs or MMφs were detached for flow cytometric analysis of surface mark-

ers or stimulation experiments, cells were washed once with PBS, the cell layer cov-

ered with PBS/0.5 mM EDTA and incubated at 37°C for up to 15 min checking the 

progress of detachment with the microscope. After appropriate time, cells were 
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washed 3 times to remove EDTA, centrifuged (200 x g, 5 min, 4°C) and used for 

analysis. 

2.2.1.4 Splitting of cell suspensions 

Cells in suspension reaching a density of 1 x 106 cell/ml were splitted in a ratio of 1:2 

up to 1:10 by adding the appropriate volume of Medium. 

2.2.1.5 Media for cell culture of eukaryotic cells 

Table 2.3: Summary of cell culture media.  

Name  Basic composition Supplements Application 
R-Medium RPMI 1640, L-Glutamin (2 mM), Kana-

mycin (50 µg/ml), 10 % low-endotoxin FCS  
 Culture of human cell lines, 

neutrophils and monocytes 
I-Medium IMDM, L-Glutamin (2 mM), Kanamycin 

(50 µg/ml), 10 % low-endotoxin FCS 
 Culture of SP2/0 for fusion 

I-Medium for 
mouse cells 

IMDM, L-Glutamin (2 mM), Kanamycin 
(50 µg/ml), 10 % low-endotoxin FCS 

2-Mercaptoethanol (50µM) Culture of mouse cell lines 

Selection 
medium I 

SF-IMDM, L-Glutamin (2 mM), Kanamycin 
(50 µg/ml), 10 % low-endotoxin FCS 

HAT supplement, Mouse 
IL-6 (2 % SN ≅ 50 ng/ml) 

Selection of Hybridomas up 
to 1 ml cell suspension 

Selection 
medium II 

SF-IMDM, L-Glutamin (2 mM), Kanamycin 
(50 µg/ml), 10 % low-endotoxin FCS  

HT supplement, Mouse IL-
6 (2 % SN ≅ 50 ng/ml) 

Selection of Hybridomas up 
to 5 ml cell suspension 

Selection 
medium III 

SF-IMDM, L-Glutamin (2 mM), Kanamycin 
(50 µg/ml), 5 % ultra-low IgG FCS 

HT supplement, Mouse IL-
6 (2 % SN ≅ 50 ng/ml) 

Selection of Hybridomas up 
to 30 ml cell suspension 

Selection 
medium IV 

RPMI 1640, L-Glutamin (2 mM), Kana-
mycin (50 µg/ml), 10 % low-endotoxin FCS 

G418 (1 mg/ml) Culture of cell lines carrying 
a neomycin-resistance gene 

Selection 
medium V 

SF-IMDM, L-Glutamin (2 mM), Kanamycin 
(50 µg/ml), 5 % ultra-low IgG FCS 

Xanthine (125 µg/ml); 
Myco-phenolic acid 
(4 µg/ml) 

Culture of cell lines carrying 
a gpt resistance gene 

Production 
medium I 

SF-IMDM, L-Glutamin (2 mM), Kanamycin 
(50 µg/ml), 5 % ultra-low IgG FCS 

 Culture of Hybridomas and 
IgG fusionprotein producing 
J558L 

Production 
medium II 

SF-IMDM, L-Glutamin (2 mM), Kanamycin 
(50 µg/ml), 2 % ultra-low IgG FCS 

 Culture of Hybridomas and 
IgG fusionprotein producing 
J558L 

Production 
medium III 

SF-IMDM, L-Glutamin (2 mM), Kanamycin 
(50 µg/ml), 2 % low-endotoxin FCS 

 Culture of IgM fusionprotein 
producing J558L 

MDC-
Medium  

RPMI 1640, L-Glutamin (2 mM), Kana-
mycin (50 µg/ml), 10 % low-endotoxin FCS 

IL-4 (2 % SN ≅ 50 ng/ml),  
GM-CSF (50 ng/ml) 

Differentiation of MDCs from 
human Monocytes 

MDM-
Medium  

RPMI 1640, L-Glutamin (2 mM), Kana-
mycin (50 µg/ml), 10 % low-endotoxin FCS 

M-CSF (50 ng/ml) Differentiation of MMφs from 
human Monocytes 

T-Medium RPMI 1640, L-Glutamin (2 mM), 
Kanamycin (50 µg/ml), 10 % human serum 

IL-2 (2 % SN ≅ 50 ng/ml), Culture of T cell clones 

Labeling 
medium 

RPMI 1640 w/o L-cystein and L-methionin, 
L-Glutamin (2 mM), Kanamycin (50 µg/ml), 
2 % FCS (dialyzed against PBS) 

Promix (1 µCi/ml) Labeling of cells with 35[S] 

Freezing 
medium 

90 % low-endotoxin FCS 10 %DMSO Storage of cells in liquid N2 

All media and supplements were obtained from GibcoBRL, with the exception of 

low-endotoxin FCS (Hyclone), GM-CSF and M-CSF (R&D Systems), Xanthine 

(Sigma), Mycophenolic acid (Calbiochem) and IL-2-, IL-4-, IL-6-containing SNs 

(produced in our laboratory). 
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2.2.2 Production of monoclonal antibodies (mAb) and antisera 

2.2.2.1 Production of mouse mAb 

2.2.2.1.1 Production of anti-human TREM-1 mAbs 

6-wk-old BALB/c mice (Iffa-Credo) were immunized with Streptavidine-coupled 

TREM-1-BirA-Biotin (1st immunization: day 0: 200µl TREM-1-BirA-

Biotin/Streptavidine-Sepharose (1:1 in FCA) (≅ 100 µg TREM-1-BirA-Biotin)) and 

TREM-1-huIgG1 (2nd immunization: day 7: 50 µg TREM-1-huIgG1 s.c. (in PBS); 

3rd immunization: day 14: 5 µg TREM-1-huIgG1 i.v. (in PBS, sterile)). Spleen cells 

were fused 3 days after the last immunization with SP2/0 myeloma cells and hybri-

domas plated in Selectionmedium I in 96-well plates. Hybridoma SNs were screened 

by ELISA using TREM-2-huIgG1 as capturing protein and human-adsorbed HRP-

labeled goat-anti-mouse IgG (PharMingen) as detecting antibody. ELISA-positive 

SNs were then tested by flow cytometry for staining 293 cells expressing FLAG-

tagged TREM-1. Hybridomas producing ELISA- and transfection-positive SNs were 

expanded up to 1 ml in Selectionmedium II. 500 µl cell suspension were frozen in 

Freezing medium (2.2.1.5), 10 µl cell suspension was used for subcloning in Selec-

tionmedium III and the remaining cells were adapted to either Selectionmedium III, 

R-Medium or Productionmedium I (2.2.1.5). 

2.2.2.1.2 Production of anti-human TREM-2 mAbs. 

6-wk-old BALB/c mice (Iffa-Credo) were immunized with purified TREM-2-huIgM 

(1st immunization: day 0: 50 µg TREM-2-huIgM s.c. (1:1 in FCA); 2nd immunization: 

day 10: 50 µg TREM-2-huIgM s.c. (1:1 in Freund incomplete adjutants (FIA)); 3rd 

immunization: day 17: 20 µg TREM-2-huIgM s.c. (in PBS); 4th immunization: day 

23: 5 µg TREM-2-huIgM i.v. (in PBS, sterile)). Spleen cells were fused 3 days after 

the last immunization with the SP2/0 myeloma cells and selected as described in 

2.2.2.1.1. Hybridoma SNs were screened by ELISA using TREM-2-HuIgG1 as cap-

turing protein and human-adsorbed HRP-labeled goat-anti-mouse IgG (PharMingen) 

as detecting antibody. ELISA-positive hybridoma supernatants were then tested by 

flow cytometry for staining 293 cells expressing FLAG-tagged TREM-2. Hybridomas 

producing ELISA- and transfection-positive SNs were treated as described in 

2.2.2.1.1. 

2.2.2.1.3 Production of anti-human TREM-4 and TREM-5 mAb 

6-wk-old BALB/c mice (Iffa-Credo) were immunized with purified TREM-4-huIgG1 

or TREM-5-huIgG1 (immunization schema: 2.2.2.1.2). Spleen cells were fused 3 days 
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after the last immunization with the SP2/0 myeloma cells and selected as described in 

2.2.2.1.1. Hybridoma SNs were screened by ELISA using TREM-2-HuIgG1 as cap-

turing protein and human-adsorbed HRP-labeled goat-anti-mouse IgG (PharMingen) 

as detecting antibody. ELISA-positive hybridoma SNs were then tested by flow cy-

tometry for staining 293 cells expressing FLAG-tagged TREM-5 or HA-tagged 

TREM-4. Hybridomas producing ELISA- and transfection-positive SNs were treated 

as described in 2.2.2.1.1. 

2.2.2.2 Production of rat anti-mouse TREM-1 mAb 

Rat anti-mouse mAb were produced using the Kearney’s subtractive immunization 

method (Kearney et al., 1986). 6-wk-old Wistar rats (Iffa-Credo) were immunized as 

follows: 

Day -3: 1st immunization right footpad: 50 µg huIgG1 s.c. (1:1 in FCA)  
Day 0: 2nd immunization right footpad: 50 µg huIgG1 s.c. (1:1 in FIA)  

1st immunization left footpad: 50 µg mTREM-1-huIgG1 s.c. (1:1 in FCA) 
Day 5: 3rd immunization right footpad: 50 µg huIgG1 s.c. (in PBS) 

2nd immunization left footpad: 50 µg mTREM-1-huIgG1 s.c. (1:1 in FIA) 
Day 10: 4th immunization right footpad: 50 µg huIgG1 s.c. (in PBS)  

3rd immunization left footpad: 50 µg mTREM-1-huIgG1 s.c. (in PBS) 
Day 15: 5th immunization right footpad: 50 µg huIgG1 s.c. (1:1 in PBS) 

4th immunization left footpad: 50 µg mTREM-1-huIgG1 s.c. (in PBS) 
Day 18: 6th immunization right footpad: 30 µg huIgG1 s.c. (in PBS)  

5th immunization left footpad: 30 µg mTREM-1-huIgG1 s.c. (in PBS) 
Day 21: 7th immunization right footpad: 10 µg huIgG1 s.c. (1:1 in PBS) 

6th immunization left footpad: 10 µg mTREM-1-huIgG1 s.c. (in PBS) 

Poplitary lymph node cells from the left leg were fused 2 days after the last immuni-

zation with the SP2/0 myeloma cells, hybridomas were selected as described under 

2.2.2.1.1 and hybridoma SNs were screened by ELISA using mTREM-1-HuIgG1 as 

capturing protein and multiple-adsorbed HRP-labeled goat-anti-rat Ig (PharMingen) 

as detecting antibody. ELISA-positive hybridoma supernatants were then tested by 

flow cytometry for staining 293 cells expressing FLAG-tagged mTREM-1. Hybrido-

mas producing ELISA- and transfection-positive SN were treated as described in 

2.2.2.1.1. 

2.2.2.3 Production of DAP12 rabbit antisera 

Prior to first immunization with 500 µg peptide/KLH-conjugate (s.c. 1:1 in FCA) rab-

bits were bled to obtain pre-immune serum. After two weeks the animals were given 6 

booster immunizations of 300 µg conjugate/KLH-conjugate (s.c. 1:1 in FIA) in 

weekly intervals. One weeks after the last immunization rabbits were bleed and antis-

era were tested in Western Blot analysis on lysates from 293 cells expressing FLAG-

tagged DAP12 (Dietrich et al., 2000). 
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2.2.2.4 Summary: monoclonal antibodies and antisera  

Table 2.4: Summary of all produced mAb and antisera.  

Clone Specificity Host Isotype Application Produced by 
Monoclonal Abs      
Anti-huTREM-1       
21C7 Human TREM-1 Mouse IgG1, κ FACS, WBA, IP, IHC, ELISA, 

Stimulation 
A. Bouchon 

9E2 Human TREM-1 Mouse IgG1, κ FACS, WBA, IP, IHC, ELISA A. Bouchon 
37F8 Human TREM-1 Mouse IgG1, κ FACS, ELISA (recognizes differ-

ent epitope than 21C7 and 9E2) 
A. Bouchon 

Anti-huTREM-2       
29E3 Human TREM-2 Mouse IgG1, κ FACS, WBA, IP, ELISA, Stimula-

tion 
A. Bouchon 

10B11 Human TREM-2 Mouse IgG1, κ FACS, WBA, IP, ELISA A. Bouchon 
25C10 Human TREM-2 Mouse IgG1, κ FACS, WBA, IP, ELISA A. Bouchon 
20G3 Human TREM-2 Mouse IgG1, κ FACS, WBA, IP, ELISA, IHC A. Bouchon 
21E10 Human TREM-2 

Mouse TREM-2 
Mouse IgG1, κ FACS, WBA, IP, ELISA A. Bouchon 

Anti-huTREM-4       
64A9 Human TREM-4 Mouse IgG1, κ FACS, WBA, IP, ELISA A. Bouchon 
64F5 Human TREM-4 Mouse IgG1, κ FACS, WBA, IP, ELISA, IHC A. Bouchon 
 Human TREM-4 Mouse IgG1, κ FACS, WBA, IP, ELISA A. Bouchon 
 Human TREM-4 Mouse IgG1, κ FACS, WBA, IP, ELISA A. Bouchon 
 Human TREM-4 Mouse IgM FACS, WBA, IP, ELISA A. Bouchon 
Anti-huTREM-5       
8H6 Human TREM-5 Mouse IgG1, κ FACS, WBA, ELISA, IHC A. Bouchon 
11F6 Human TREM-5 Mouse IgG1, κ FACS, WBA, ELISA A. Bouchon 
11A12 Human TREM-5 Mouse IgM, κ FACS, WBA, ELISA A. Bouchon 
Anti-mTREM-1       
50D1 Mouse TREM-1 Rat IgG2b, κ FACS, ELISA A. Bouchon 
1A1 Mouse TREM-1 Rat IgG2b, κ FACS, ELISA A. Bouchon 
100E1 Mouse TREM-1 Rat IgG2b, κ FACS, ELISA A. Bouchon 
Antisera      
DAP10 antiserum      
1178 Human DAP10 Rabbit IgG WBA, IP Dietrich/Bouchon 
DAP12 antiserum      
1370 Human DAP12 Rabbit IgG WBA, IP Dietrich/Bouchon 
1378 Human DAP12 

Mouse DAP12 
Rabbit IgG WBA, IP Dietrich/Bouchon 

Table 2.4 does not display all clones selected from every fusion. It summarizes all 

mAb and antisera frequently used in this thesis together with their Isotype and capa-

bility to work in flow cytometry (FACS), Western blot analysis (WBA), IPs, immu-

nohistochemistry (IHC), enzyme-linked immunosorbant assay (ELISA) and stimula-

tion assays without using a cross-linking antibody. 

2.2.3 Transfection of cell lines 

Jurkat cells engineered to express SV40 large T antigen (JurkatSV40) or J558L where 

washed in R-Medium, resuspended in 400 µl R-Medium at a concentration of 1 x 107 

cells/ml and mixed with 30 µg plasmid DNA. Electroporation occurred at 260 mV 

and 960/1050µF (JurkatSV40/J558L). After electroporation, cells were collected, 

placed in 30 ml R-Medium and analyzed after 10-12 h by flow cytometry or lysed for 

Western Blot analysis. For the generation of stable transfectants, cells where incu-

bated 24 h in R-Medium before they where plated in Selectionmedium IV or V, ac-

cording to the resistance gene introduced in the expression plasmid.  
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293 or COS cells were transiently transfected with 3-5 µg of plasmid DNA using Li-

pofectene (Stratagene) or Cytofectene (Biorad), according to the manufacturer’s pro-

tocols.  

2.2.4 Isolation and maintenance of different cell populations from 
blood 

2.2.4.1 Human neutrophils 

2.2.4.1.1 Isolation by Ficoll gradient 

Human blood was mixed with one volume of 3% Dextran T-500 (Pharmacia) in 0.9% 

NaCl to sediment red blood cells (RBC). Leukocytes in the supernatant were further 

separated by gradient density centrifugation on lymphocyte separation medium (LSM) 

(ICN Biomedicals) into Peripheral blood mononuclear cells (PBMC) and neutrophils. 

Any remaining RBC were removed by hypotonic lysis with 0.2% NaCl solution for 

30 s. Neutrophil preparations routinely contained > 91% neutrophils as determined by 

FACS analysis, and were > 99% viable. 

2.2.4.1.2 Isolation by Percoll gradient 

Neutrophils were isolated as previously described (Klein et al., 2000). Briefly, human 

blood was mixed with an equal volume of Dextran solution (3% Dextran T-500 

(Pharmacia) in 0.9% NaCl) and left for sedimentation (30 min) to remove RBC. 

Blood leucocytes in the supernatant were separated by density centrifugation on a 

two-level Percoll (Pharmacia) gradient (50.5% and 42.0%). Neutrophils were aspi-

rated from the 42 to 50.5 interface and washed in RPMI/HEPES. Any remaining RBC 

were removed by hypotonic lysis with 0.2% NaCl solution for 30 s. Neutrophil prepa-

rations routinely contained > 97% neutrophils as determined by FACS analysis, and 

were > 99% viable. 

2.2.4.2 Human monocytes 

2.2.4.2.1 Isolation of human monocytes by magnetic cell sorting 

PBMC were purified from human blood by gradient density centrifugation on LSM 

(ICN Biomedicals). After three washes in RPMI/HEPES, PBMC were resuspended in 

MACS-buffer (PBS/10%FCS/500 µM EDTA) and incubated with CD14 Micro Beads 

(Miltenyi) for 30 min. After three washes with magnetic cell sorting (MACS)-buffer, 

CD14+ monocytes were purified from PBMCs by MACS (Miltenyi). After MACS, 

cells were washed 3 times in RPMI/HEPES and finally resuspended in R-Medium 
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(experiments with monocytes), MDC-Medium (Differentiation to MDCs), or MMφ-

Medium (Differentiation to MMφs) (2.2.1.5). 

2.2.4.2.2 Isolation of human monocytes by Percoll gradient 

In stimulation experiments with anti-TREM-1 antibodies, monocytes were prepared 

from PBMCs by Percoll gradient density centrifugation as previously described (Na-

kajima et al., 1999), to avoid potential interferences of cell surface-bound anti-CD14 

antibodies with TREM1-mediated signaling. 

2.2.4.3 Human monocyte-derived DCs and macrophages  

Monocyte-derived DCs (MDCs) and macrophages (MMφs) were prepared from 

CD14+-monocytes as described (Bender et al., 1996; Sallusto and Lanzavecchia, 

1994; Vincent et al., 1992). In brief, CD14+-monocytes were washed three times in 

RPMI/HEPES, counted and adjusted to a concentration of 300 000 cells/ml in MDC- 

or MMφ-Medium. After 4-6 days the cells cultured in MDC-medium display mor-

phology and phenotype of immature DCs. Cells kept in MMφ-medium appear as 

Macrophages after 10-14 days. 

2.2.4.4 Culturing of the human T-cell clone VIP13 

VIP13 was maintained in T-Medium (2.2.1.5) as previously described (Lanzavecchia 

et al., 1988). For induction of proliferation, PBMC were isolated, irradiated (3000 rad) 

and mixed with VIP13 cells at a relation of 1:10 (PBMCs:VIP13).  

2.2.5 Stimulation of cells and flow cytometry 

2.2.5.1 Stimulation of cells 

2.2.5.1.1 Stimulation of cells with mAb coated on plastic 

F(ab’)2 (21C7 anti-TREM-1 mAb), F(ab’)2 29E3 (anti-TREM-2 mAb), or control 

F(ab’)2 mAb (see) were coated for 6 h at 37°C on MAXISorp 96-well flat-bottom 

plates (Costar) (sterilized for 10 min by UV-irradiation) with a final concentration of 

20 µg/ml in PBS. Neutrophils, monocytes, or MDCs were plated at concentration of 

0.5 - 5 x 105 cells/well and simultaneous contact to the plate was induced by short 

centrifugation (100 g, 1 min, 25°C). Supernatants and cells were separated after 6, 12, 

24, 36, 48 or 72 h and tested by ELISA or flow cytometry, respectively.  
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2.2.5.1.2 Stimulation of cells with mAb in solution 

0.5 - 5 x 105 neutrophils, monocytes, or MDCs were stimulated with F(ab’)2 (21C7 

anti-TREM-1 mAb), F(ab’)2 29E3 (anti-TREM-2 mAb), or control F(ab’)2 mAb at a 

final concentration of 10 µg/ml. Cross-linking was induced by adding F(ab’)2 goat-

anti-mouse F(ab’)2-specific Ab (Jackson) at a concentration of 5 µg/ml. Supernatants 

and cells were separated after 6, 12, 24, 36, 48 or 72 h and tested by ELISA, Western 

Blot or flow cytometry.  

2.2.5.1.3 Stimulation of neutrophils and monocytes with bacterial products 

Purified monocytes and neutrophils were cultured in the absence or presence of heat-

inactivated Staphylococcus aureus, Pseudomonas aeruginosa, or Bacillus of Cal-

mette-Guerin (ratios of monocytes/neutrophils : bacteria were ~1:10 – 1:100), LPS 

(100ng/ml), LTA (100ng/ml), mycolic acid (10µg/ml) for different time points. Cells 

and SN were separated and analyzed by flow cytometry and ELISA. 

2.2.5.1.4 Differentiation of mature DCs from MDCs  

Maturation of MDC was induced by LPS (100 ng/ml), LTA (100 ng/ml), CpG oli-

gonucleotides (1 µg/ml), TNF-α (10 ng/ml), TNF-β (20 ng/ml) or plate-bound IgG 

(coated at a concentration of 20 µg/ml) for different time periods. Full maturation was 

observed after 24-48 h. Induction of maturation via CD40 was induced by co-culture 

MDCs with irradiated CD40L-transfected J558L cells (3000 rad) at a relation of 1 : 10 

(MDCs : J558L). 

2.2.5.1.5 Activation of MMφs  

MMφ were stimulated with LPS (100 ng/ml), LTA (100 ng/ml), CpG oligonucleotides 

(1 µg/ml), TNF-α (10 ng/ml), TNF-β (20 ng/ml) or plate-bound IgG (coating with 

20 µg/ml) for different time periods. Full activation could be observed after 12-24 h. 

Induction of maturation via CD40 was induced by co-culture MMφs with irradiated 

CD40L-transfected J558L cells (3000 rad) at a concentration of 1 : 10 

(MMφs : J558L). 

2.2.5.1.6 Pharmacological inhibition 

In blocking experiments, inhibitors (PD98059 [20 µM], LY294002 [10 µM], 

SB203580 [2 µM], PP2 [1 µM] (all from Calbiochem), TPCK [20 µM] (Sigma), 

SN50 [20 µM] (Biomol) were added 60 min before stimulation. 
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2.2.5.2 Flow cytometry of human cells 

Before staining, all cells were incubated with PBS/20% human serum for 1h on ice to 

block FcRs. Whole blood leukocytes were incubated with mAbs 21C7 (anti-TREM-1, 

IgG1), 3C10 (anti-CD14, IgG2b) and L243 (anti-HLA-DR, IgG2a) followed by iso-

type-specific FITC/PE/biotin-conjugated secondary antibodies. After a further incuba-

tion step with APC-labeled streptavidine, cells were analyzed on a FACSCalibur us-

ing CELLquest software (Beckton Dickinson). Dead cells were excluded by gating on 

PI-negative cells. In single-color-staining, cells stimulated as described in 2.4, were 

stained with mAb 21C7, 29E3, or control mAbs followed by human-adsorbed PE-

conjugated goat anti-mouse IgG (SBA).  

2.2.6 Detection of cellular activation markers 

2.2.6.1 Measurement of intracellular calcium mobilization  

Monocyte-derived DCs were loaded with Indo-1AM (Sigma) for 30 min at 37°C, 

washed 3 times and resuspended in RPMI 1640/10 mM HEPES/5% FCS. Cytoplas-

mic Ca2+ levels were monitored in individual cells by measuring 405/525 spectral 

emission ratio of loaded Indo-1AM dye by flow cytometry. After a baseline was ac-

quired for at least 30s, 29E3, 21C7, F(ab’) 29E3, F(ab’) 21C7, F(ab’)2 29E3, F(ab’)2 

21C7, control F(ab’), F(ab’)2,or mAb were added to a final concentration of 1µg/ml 

and analysis was continued up to 512 s. In some experiments, F(ab’)2 goat-anti-mouse 

F(ab’)2-specific Ab (Jackson) was used as a cross-linking antibody. In case antibodies 

and antibody fragments were biotinylated, ExtraAvidine (Sigma) was added as cross-

linker.  

2.2.6.2 Measurement of surface activation markers 

To measure stimulation-dependent changes in the expression of cell surface markers 

cells were stimulated as described in 2.4. Cells were harvested at different time points 

and stained with anti-TREM-1 (21C7) -TREM-2 (29E3, 21E10, 10B11, 25C10 or 

20G2), -TREM-4 (64A9 or 64F5), -TREM-5 (8H6 or 11F6), -MHC class I, -MHC 

class II, -CD1a, -CD11a, -CD11b, -CD11c, -CD14, -CD16, -CD18, -CD29, -CD32, -

CD35, -CD38, -CD40-, -CD41, -CD49a, -CD49b, -CD49c, -CD49d, -CD49e, -

CD49f, -CD54, -CD61, -CD64, -CD80, -CD83, -CD86, -CD89, -CD103, -CD115, -

CD116, -CCR5, -CCR6, -CXCR4, or -Mannose receptor conjugated with Cy5-, PE- 

or FITC (all from Immunotech, Pharmingen or self labeled). Anti-CCR7 mAb 

(PharMingen) was followed by F(ab’)2 PE-labeled goat anti-mouse IgM Ab (SBA). 
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Cells were analyzed on a FACSCalibur using CELLquest software (Beckton Dickin-

son). Dead cells were excluded by gating on PI-negative cells.  

2.2.6.3 Measurement of cell secreted cytokines and chemokines 

2.2.6.3.1 ELISA 

To measure stimulation-dependent changes in cytokine secretion, cells were stimu-

lated as described in 2.4. Supernatants were collected and tested for production of IL-

6, IL-8, IL-10, TGF-β, IL-12p40, IL-12p75, IL-13, IL-15, IL-18, IL-1α, IL-1β, TNF-

α, and MCP-1 by ELISA (PharMingen or R&D systems).  

2.2.6.3.2 Intracellular flow cytometry 

To measure stimulation-dependent changes in cytokine production on single-cell 

level, cells were stimulated as described in 2.4 in the presence of Brefeldine A 

(10 mg/ml; Sigma). Cells were harvested at different time points, fixed (3% Parafor-

maldehyde (PFA) in PBS) and permeabilized (PBS, 10 % low-endotoxin FCS, 0.5 % 

Saponin, 10 mM HEPES). Detection of cytokines was performed using PE-, FITC- or 

APC-labeled anti-IL-6, -IL-8, -IL-10, -TGF-β, −IL-12p40, -IL-12p75, -IL-13, -IL-15, 

IL-18, -IL-1α, -IL-1β, -TNF-α, and -MCP-1 (PharMingen) followed by flow cytome-

try. 

2.2.6.4 Neutrophil degranulation assay 

Purified neutrophils were stimulated in 96-well flat-bottom plates coated with 21C7 

(anti-TREM-1) or 1F11 (anti-MHC class I) mAbs at a concentration of 1x105 

cells/well. After 16 h or 36 h, the cell suspensions were centrifuged, and SNs analyzed 

by ELISA for myeloperoxidase (MPO) (R&D Systems). 

2.2.6.5 Detection of leukotriene production 

Purified neutrophils and monocytes were stimulated as described in 2.5.4. After dif-

ferent time points SNs were analyzed by ELISA for Leukotriene B4 (LTB4) (R&D 

Systems) according to the manufacturer´s instructions. 

2.2.6.6 Chemotaxis assay 

MDCs (1 x 107) were treated for 24 h with F(ab)’2 21C7, F(ab)’2 29E3 coated on 

plastic (20 µg/ml), or LPS (1 µg/ml). Cells (5 x 105 in 100 µl IMDM/0.5% BSA) were 

incubated for 1h at 37°C. Cell were subsequently loaded into collagen-coated tran-

swells (Costar, 3 µm pore filter), which were placed onto 24-well plates containing 
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450 µl medium supplement with 100 ng/ml CCL19 (ELC/MIP-3β) or CCL20 (6-C-

Kine/SLC) (both from Peprotec). After incubation period of 4 h at 37°C, cells that had 

migrated to the lower chamber were collected and counted on a cytofluorimeter 

(FACSCalibur, constant time acquisition). In blocking experiments cells were pre-

incubated with anti-CCR7 mAb (10 µg/ml) and added to the transwell. 

2.2.6.7 Antigen-uptake and presentation 

2.2.6.7.1 Receptor-internalization assay 

To determine internalization of TREM-1 and -2, cells were incubated in R-Medium at 

a cell density of 2 x105 cells/ml at 37°C or 4°C with Cy5-conjugated anti-TREM-1 

mAb 21C7, anti-TREM-2 29E3 or control mAb. At different time points after 

stimulation, aliquots of cell suspension were washed in ice-cold R-Medium and 

immediately treated with 300 µl 0.5 M NaCl, 0.5 M acetic acid, pH 2.2 for 10 s. The 

acid-resistant fluorescence of the cells (representing internalized anti-TREM-1, anti-

TREM-2 or control mAb) was measured by flow cytometry. The percentage of inter-

nalized mAb to cell surface-bound mAb was subsequently calculated using the equa-

tion: HAR - CAR/CT. In this equation, HAR is the mean fluorescence intensity (MFI) 

of acid-treated cells incubated at 37C; CAR is the MFI of acid-treated cells incubated 

at 4°C, and CT is the MFI of untreated cells incubated at 4°C. For each construct at 

least three different clones were analyzed.  

2.2.6.7.2 Antigen-presentation assay 

2.5 x 104 irradiate DCs (3000 rad) were co-cultured with 5 x 104 cells of the VIP13 T 

cell clone in 96-well flat-bottom microplates (Costar) in the presence of serial dilu-

tions of IgG1 mAbs or F(ab’)2 mAb fragments (Lanzavecchia et al., 1988). mAbs 

used in the assay were the following: ZM3.8 (anti-ILT3, IgG1,κ) (Cella et al., 1997), 

9E2 (anti-TREM-1, IgG1, κ), 29E3 (anti-TREM-1, IgG1, κ), and ICRF44 (anti-

CD11b/Mac-1, IgG1, κ, Pharmingen). F(ab’)2 mAb fragments used in the assay were 

F(ab’)2 9E2 and F(ab’)2 29E3. After 72 h, the cultures were pulsed with [3H]-

Thymidine (1µCi/well, specific activity 5 Ci/mmol), and the radioactivity incorpo-

rated was measured after additional 16 h. The data plotted against the concentration of 

mAbs determined by ELISA using a purified mouse IgG1, κ or F(ab’)2 IgG1, κ as a 

standard. 
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2.2.7 Methods for the detection of cell death and survival 

2.2.7.1 Detection of apoptosis and necrosis in vitro 

2.2.7.1.1 Determination of mitochondrial membrane potential 

Measurement of mitochondrial membrane potential (∆Ψm) was performed as de-

scribed previously (Bouchon et al., 2000; Metivier et al., 1998). Briefly, 5 x 104 cells 

were incubated in PBS containing 40 nM 3,3-Dihexyloxocarbo-cyanine iodide 

(DiOC6(3) or 10 nM JC-1 (Molecular Probes Inc.) for 15 min at 37°C in the dark fol-

lowed by analysis on a FACScalibur (Becton Dickinson) for reduced fluorescence 

525 nm. For simultaneous detection of dead cells and loss of (∆Ψm) 7-

Aminoactinomycin D (7-AAD, Molecular Probes) or PI (Sigma) were added as de-

scribed in 2.2.7.1.3. DiOC6(3)+/7-AAD- cells correspond to live cells, DiOC6(3)low/7-

AAD- cells to early apoptotic cells, DiOC6(3)+/7-AAD+ cells to necrotic cells, and 

DiOC6(3)low/7-AAD+ cells to late apoptotic cells. 

2.2.7.1.2 Determination of Reactive Oxygen Species (ROS) 

Measurement of generation of ROS was performed by incubating 5 x 104 cells in PBS 

containing 2 µM dihydroethidin (DHE, Molecular Probes Inc.) for 15 min at 37°C in 

the dark followed by analysis on a FACScalibur cytometer (Becton Dickinson) for 

increased fluorescence at 575 nm by ROS-mediated oxidation of DHE to Ethidine. 

DHE can be also used for the detection of oxidative burst in neutrophils, monocytes 

and macrophages. 

2.2.7.1.3 Measurement of cell viability 

To determine the integrity of the cell membrane, cells were incubated for 5 min in 

4 µg/ml 7- 7-AAD (Molecular Probes) or 2,5 µg/ml PI (Sigma) at 4°C in the dark fol-

lowed by analysis on a FACScan (Becton Dickinson) for increased fluorescence at 

625 nm and 575 nm after 7-AAD and PI-uptake, respectively. 

2.2.7.1.4 Determination of DNA fragmentation 

As a direct measurement of apoptotic cell death, DNA fragmentation was quantified 

essentially as described (Nicoletti et al., 1991). Briefly, 2.5 x 105 cells were incubated 

in 24-well plates (Costar) with or without apoptotic stimuli in 0.5 ml medium at 37°C. 

Cells were collected by centrifugation at 600 x g for 10 min at 4°C, washed twice 

with PBS and then resuspended in 100 µl lysis solution containing 0,1% (v/v) Tx100, 

0,1% (w/v) sodium citrate and 50 µg/ml PI. Apoptosis was quantitatively determined 

by flow cytometry after incubation at 4°C in the dark for at least 24 h as cells contain-

ing nuclei with subdiploid DNA content. 
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2.2.7.1.5 Determination of Phosphatidyl-serine 

1x105 cells were incubated in 96-well plates (Costar) with or without apoptotic stimuli 

in 200 µl medium at 37°C. Cells were collected by centrifugation at 600 x g for 

10 min at 25°C, washed twice in binding buffer (2,5 mM CaCl2, 140 mM NaCl, 

10 mM HEPES pH 7,4) and then resuspended in 50 µl staining solution (0,2 µg/ml 

Annexin-V-FITC (R&D Systems), 4 µg/ml 7-AAD (Molecular Probes), 2,5 mM 

CaCl2, 140 mM NaCl, 10 mM HEPES pH 7,4). After incubation for 15 min in the 

dark at 37°C, 150 µl cold binding buffer was added and the degree of single positive 

(FITCbright / 7-AADdull: early apoptotic cells) and double-positive cells (FITCbright / 7-

AADbright: late apoptotic and necrotic cells) determined by flow cytometry. 

2.2.7.2 Detection of cell proliferation by 3[H]-Thymidine incorporation 

To determine the proliferation capacities of cells after stimulation or co-culture, cells 

were plated at a concentration of 50 000/well in round-bottom 96-well plates and 

stimulated as described in 2.4 for 48 h. Cells were pulsed with 1 µCi 3[H]-Thymidine 

(Amersham) for 16 h before harvesting onto glass fiber filters (Wallac). Filters were 

dried and added to 5 ml scintillation fluid (FSA Laboratory Supplies). The number of 

counts per minute (cpm) was determined using a beta scintillation counter (Wallac) 

2.2.7.3 Detection of apoptosis and necrosis in vivo and ex vivo 

2.2.7.3.1 Detection of neutrophil apoptosis during endotoxemia in vivo. 

To detect apoptotic neutrophils during LPS-induced shock we modified and extended 

a previous report (Zamzami et al., 1995). C57BL/6 mice (female, 8-10 weeks, 19-

22 g) were randomly grouped (20 mice per group) and injected intravenously (i.v.) 

with 10µg DiOC6(3) (Molecular Probes) in sterile saline. 1 hour later, mice were in-

jected intraperioneally (i.p.) with 500 µg/mouse of purified huIgG1,κ (Sigma), 

mTREM-1-IgG1, or mTREM-1-IgG1 with a mutated Fc part to reduce FcR binding 

and complement fixation (mTREM-1-IgG1mutant). LPS (LPS from E. coli 055:B5 

(25 mg/kg; Sigma) was administred one hour later i.p. 10 of 20 mice were kept and 

viability of treated mice was monitored 4-6 times a day for at least 10 days whereas 

10 of 20 mice were sacrificed at different time points after LPS administration and 

peritoneal lavage cells (PLCs) were carefully isolated. To minimize adherence of ac-

tivated live phagocytes and progression of apoptosis ex vivo isolated PLCs were sur-

face stained with Cy5-labeled anti mTREM-1 mAb and PE-labeled anti-LY-6G mAb 

(Pharmingen) for 5 minutes on ice and immediately analysis on a FACSCalibur. Cells 

destroyed during the harvest were excluded by 7-AAD staining. mTREM-1+/Ly-
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6G+/DiOC6(3) cells correspond to early apoptotic neutrophils and were measured as 

indicated.  

2.2.7.3.2 Monitoring of neutrophil apoptosis ex vivo. 

C57BL/6 mice (female, 8-10 weeks, 19-22 g; 30 animals per group) were treated as 

described in 2.2.7.3.1. 10 of 30 mice were kept and viability of treated mice was 

monitored 4-6 times a day for at least 10 days whereas 20 of 30 mice were sacrificed 

6 hours after LPS administration and PLCs were carefully isolated. LY-6G+ were 

sorted on a MoFlo (Cytomation) and subsequently cultured at a concentration of 

5x105/ml in R-Medium. Determination of ∆Ψm the integrity of the cell membrane 

was performed 0, 2, 4, 6, 8, 12, and 24 hours after sorting by staining with Dioc6(3) 

and PI as described in 2.2.7.1.1. 
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2.3 Molecular Biology 

2.3.1 Primers 

Table 2.5: Summary: human TREM-1 primers.  

Number Sequence (5’ → 3’) Application; restriction sites 

Cloning of human TREM-1/pCR2.1-TOPO  

21107 GCTGGTGCACAGGAAGGATG forward oligo for cloning of full length TREM-
1 cDNA into pCR2.1 

21108 GGCTGGAAGTCAGAGGACATT reverse oligo for cloning of full length TREM-
1 cDNA into pCR2.1 

21134 AAGGGACGGAGAGATGCCC Sequencing 

21135 TGTTCGATCGCATCCGCTT Sequencing 

21332 CCTCCCCACTTGGACTGGA Sequencing 

Cloning of human TREM-1/pAC-4  

21313 ACCAAACATGGAACTCCGAGCTGCAACTAAAT Cloning of TREM-1 extracellular region in 
pAC-4; 5';NcoI 

21314 ACCAAAGGATCCCCTGATGATATCTGTCACATTTG Cloning of TREM-1 extracellular region in 
pAC-4;3';BamHI 

Cloning of human TREM-1/pCMV1FLAG  

21142 TAGTAGGCGGCCGCGGAACTCCGAGCTGCAACTAAA Cloning of TREM-1 in pCMV-1FLAG;5' NotI 

21143 TAGTAGTCTAGACTAGGGTACAAATGACCTCAG Cloning of TREM-1 in pCMV-1FLAG;3' XbaI 

Cloning of human TREM-1/pCD4huIgG1  

21281 TAGTAGGAGCTCACAGGAAGGATGAGGAAGACCAGG-
CTC 

Cloning of TREM-1 extracellular region in 
pCD4huIgG1;5' SstI 

21282 AAGCTTATACTTACCCCTGATGATATCTGTCACATTTGT Cloning of TREM-1 extracellular region in 
pCD4huIgG1;3' blunt 

 

Table 2.6: Summary: human TREM-2 primers.  

Number Sequence (5' → 3’)  Application 

Cloning of human TREM-2/pCR2.1-TOPO  

22067 TGATCCTCTCTTTTCTGCAG forward oligo for cloning of full length TREM-
2 cDNA into pCR2.1 

22068 TCAAGGGAAAGACGAGATC Nested forward oligo for cloning of full length 
TREM-2 cDNA into pCR2.1 

22070 GTGTTTAAAATGTCCAATATT reverse oligo for cloning of full length TREM-
2 cDNA into pCR2.1 

22071 CAGAAGTTGTCAGGTGTTCTT Nested reverse oligo for cloning of full length 
TREM-2 cDNA into pCR2.1 

22060 GGCAGTGAGGCTGACACCC Sequencing 

22061 GGGTGTCAGCCTCACTGCC Sequencing 

22075 GAGAAGGGCCCATGCCAGCGTGT Sequencing 

22076 GCAGAGTTTGGAGCTGATACCC Sequencing 

22505 CACTGGGGGAGGCGCAA Sequencing 

22629 GAGCCTCTTGGAAGGAGAAA Sequencing 

22630 GATCCAGGGGGTCTGCCA Sequencing 

Cloning of human TREM-2/pCMV1FLAG  

22084 TAGTAGAAGCTTCACAACACCACAGTGTTCCAGGG Cloning of TREM-2 in pCMV-1FLAG;5' Hin-
dIII 

22085 TAGTAGTCTAGATCACGTGTCTCTCAGCCCTGGCAG Cloning of TREM-2 in pCMV-1FLAG;3' XbaI 

Cloning of human TREM-2/pCD4huIgG1  

22072 TAGTAGAAGCTTATACTTACCGGGTGGGAAAGGGATT-
TCTCCTTCCAA 

Cloning of TREM-1 extracellular region in 
pCD4huIgG1;3' HinDIII 

22069 TAGTAGGAATTCACTCTGCTTCTGCCCTTGGCTGGG Cloning of TREM-1 extracellular region in 
pCD4huIgG1;5' EcoRI 

 



62  Material and methods 

Table 2.7: Summary: human TREM-4 primers.  

Number Sequence (5’ → 3’)  Application 

Cloning of TREM-4/pCR2.1  

22625 AGACGCTGGGGAGTACTGGT Trem-4 3’-end race forward 1 

22626 GTGGGGTCGAGAAACGGG Trem-4 3’-end race forward 2 

22627 CCCCCGATGAGTCTTTACTGAT Trem-4 3’-end race forward 3 

22751 GGTCCGCATACTGGCCCCA Trem-4 3’-end race forward 4 

22752 CTGCTGAGCCTTCTGTCAGCC Trem-4 3’-end race forward 5 

22719 AATGCGGCTTCTGGTCCTGCT forward oligo for cloning of partial TREM-4 
cDNA into pCR2.1 

22720 ATCAGTAAAGACTCATCGGGG reverse oligo for cloning of partial TREM-4 
cDNA into pCR2.1 

Cloning of TREM-4/pCD4huIgG1  

22769 TAGTAGGAATTCATGCGGCTTCTGGTCCTGCTATGG-
GGTT 

Cloning of TREM-4 extracellular region in 
pCD4huIgG1;5' EcoRI 

22770 TAGATGAAGCTTATACTTACCGGACACCCTGGGCT-
TAGAGCTG 

Cloning of TREM-4 extracellular region in 
pCD4huIgG1;3' HindIII 

Cloning of TREM-4/pDISPLAY  

23624 TAGTAGAGATCTTATGAAGCCCTGGAGGGGCCAGA Cloning of TREM-4 extracellular region in 
pDISPLAY;5' BglII 

23625 TAGTAGGTCGACGGACACCCTGGGCTTAGAGCT Cloning of TREM-4 extracellular region in 
pDISPLAY;3' SalI 

 

Table 2.8: Summary: human TREM-5 primers.  

Number Sequence (5' → 3’)  Application 

Cloning of TREM-5/pCR2.1  

23922 ACGAGGAGCCGGGAAGGCAGA forward oligo for cloning of full length TREM-
5 cDNA into pCR2.1 

23923 AGGCTCTGCAGATCCATCTC reverse oligo for cloning of full length TREM-
5 cDNA into pCR2.1 

Cloning of TREM-5/pCD4huIgG1  

23924 TAGATGGAATTCATGTGGCTGCCCCCTGCTCTGCT Cloning of TREM-5 extracellular region in 
pCD4huIgG1;5' EcoRI 

23925 TAGTAGAAGCTTATACTTACCGTAGTGGTTCCTCTTG-
TGGGAG 

Cloning of TREM-5 extracellular region in 
pCD4huIgG1;3' HinDIII 

Cloning of TREM-5/pCMV-1FLAG  

24256 TAGTAGAAGCTTGAGTCTGTGAGAGCCCCAGAGCAG-
GGG 

Cloning of TREM-5 extracellular region in 
pCMV-1FLAG;5' HinDIII 

24257 TAGTAGTCTAGACTCTGCAGATCCATCTCTCTAAGT Cloning of TREM-5 extracellular region in 
pCMV-1FLAG;3' XbaI 

 

Table 2.9: Summary: mouse TREM-1 primers.  

Number Sequence (5' → 3’)  Application 

Cloning of mTREM-1/pCR2.1 TOPO  

22005 ACTCTGGATTGTATCGTTGTGTGATT mTrem-1 3’-end race forward 1 

22006 ATCCTCCGAATGACCCTGTTGTG mTrem-1 3’-end race forward 2 

22007 CTTCGATCCTGTCCGCCTGGTGG mTrem-1 3’-end race forward 3 

22079 GAGCTTGAAGGATGAGGAAG forward oligo for cloning of full length TREM-
5 cDNA into pCR2.1 

22080 AAGCTCTGGAGTTTCTCTTTATTTC reverse oligo for cloning of full length TREM-
5 cDNA into pCR2.1 

Cloning of mTREM-1/pCD4huIgG1  

22209 TAGTAGAAGCTTATACTTACCGTCAGCATCTGTCC-
CATTTAT 

Cloning of mTREM-1 extracellular region 
into pCD4huIgG1;3'HindIII 

22208 TAGTAGGAATTCAGGATGAGGAAGGCTGGG Cloning of mTREM-1 extracellular region 
into pCD4huIgG1;5' EcoRI 

Cloning of mTREM-1/pCMV-1FLAG  

23135 TAGTAGAAGCTTGAAGTCAAAGCTGCCATTGTTCTA Cloning of mTREM-1 extracellular region in 
pCMV-1FLAG;5' HindIII 

23136 TAGTAGGAATTCTCATCCAAATGTCCTCTTTGTGACAA Cloning of mTREM-1 extracellular region in 
pCMV-1FLAG;3' XbaI 
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Table 2.10: Summary: mouse TREM-2 primers.  

Number Sequence (5’ → 3’)  Application 

Cloning mTREM-2/pCR2.1  

22017 CTTGCACAAGGTCCCCTCC forward oligo for cloning of full length 
mTREM-2 cDNA into pCR2.1 #1 

22018 GGCTGGCTGCTGGCAAAGG Nested forward oligo for cloning of full length 
mTREM-2 cDNA into pCR2.1 #2 

22019 AAAAGTAGCAGAAACAGAAGT reverse oligo for cloning of full length 
mTREM-2 cDNA into pCR2.1 #1 

22020 CATGCAGGCTGGATTGACTCC Nested reverse oligo for cloning of full length 
mTREM-2 cDNA into pCR2.1 #2 

22129 CCATGCCAGCGTGTGGTGAGCA Sequencing 

22130 AAACTTGCTCAGGAGAACGCA Sequencing 

Cloning mTREM-2/pCD4huIgG1  

22880 TAGTAGGAATTCGCCATGGGACCTCTCCACAGTTTC-
TCCTGC 

Cloning of mTREM-2 extracellular region in 
pCD4huIgG1;5' EcoRI 

22881 TAGTAGAAGCTTATACTTACCGGAGGTGGGTGG-
GAAGGAGGT 

Cloning of mTREM-2 extracellular region in 
pCD4huIgG1;3' blunt 

Cloning mTREM-2/pCD4huIgM  

22889 TAGTAGGTCGACATACTTACCGGAGGTGGGTGG-
GAAGGAGGT 

Cloning of mTREM-2 extracellular region in 
pCD4huIgM; 5' Sal I 

22881 TAGTAGAAGCTTATACTTACCGGAGGTGGGTGG-
GAAGGAGGT 

Cloning of mTREM-2 extracellular region in 
pCD4huIgM1;3' HindIII 

Cloning mTREM-2/pCMV-1FLAG  

M88 TAGTAGAAGCTTCTCAACACCACGGTGCTG Cloning of mTREM-2 extracellular region in 
pCMV-1FLAG;5' HindIII 

M89 TAGTAGGGATCCTCACGTACCTCCGGGTCCAG Cloning of mTREM-2 extracellular region in 
pCMV-1FLAG;3' BamHI 

 

Table 2.11: Summary: mouse TREM-3 primers.  

Number Sequence (5' → 3’)  Application Designed by 

Cloning of mTREM-3   

22123 CTCCAGAGACTCTGGTGCTC mTrem-3 3’-end race forward 1 Colonna/Bouchon 

22124 ACAAACACCAGAAAGGCAGA mTrem-3 3’-end race forward 2 Colonna/Bouchon 

22125 GCCAGGGCTGGGAAGTACTT mTrem-3 3’-end race forward 3 Colonna/Bouchon 

22203 TTATCAGAAGAGAGATAGGT reverse oligo for cloning of full length mTREM-
3 cDNA into pCR2.1 #1 

Colonna/Bouchon 

22204 TACATCATATAGGTTTTACC Nested reverse oligo for cloning of full length 
mTREM-3 cDNA into pCR2.1 #2 

Colonna/Bouchon 

22205 CACCAGGAAGGAGCTTCATA forward oligo for cloning of full length mTREM-
3 cDNA into pCR2.1 #1 Colonna/Bouchon 

22206 CAGAGGAGG-
CAGGGACCTGGGGGATG 

Nested forward oligo for cloning of full length 
mTREM-3 cDNA into pCR2.1 #2 

Colonna/Bouchon 

22207 CACAGCTCTCCTCAGAGCTG Sequencing  Colonna/Bouchon 
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2.3.2 Vectors and constructs 

Table 2.12: Summary of used vectors 

Name Reference Application 
pCR2.1 TOPO Invitrogen Cloning vector, direct cloning of PCR products using the TOPO cloning 

kit (Invitrogen);  
Template cDNA for subcloning 

pCMV-1FLAG Sigma Eukaryotic expression vector, containing a N-terminal FLAG-tag for 
detection of expression, CMV promoter for high expression 

pDISPLAYHA Invitrogen. Eukaryotic expression vector. The extracellular domain of the target 
receptor is fused to transmembrane region of platelet derived growth 
factor receptor to ensure surface expression. In addition, it contains a 
N-terminal Hemaglutinin (HA)-tag for detection of expression 

pAC-4 Avidity Prokaryotic expression vector for the production of monomeric, bioti-
nylated proteins, extracellular receptor domain(s) are fused to a BirA-
tag that is in vivo biotinylated by 
AVB101 bacteria expressing BirA enzyme 

pCD4huIgG1 K. Karijalainen, BII Eukaryotic expression vector for the production of dimeric receptor-
huIgG1 fusion proteins secreted from the myeloma cell line J558L 

pCD4huIgM K. Karijalainen, BII Eukaryotic expression vector for the production of decameric receptor-
huIgM fusion proteins secreted from the myeloma cell line J558L 

pCD4huIgG1mutant K. Karijalainen, BII Insect expression vector for the production of dimeric receptor-huIgG1 
fusion proteins secreted from Drosophila Schneider S2 cells, the Fc 
part is mutated to diminish FcR binding 

 

Table 2.13: Summary of cloned constructs 

Name Vector Insert (cloning sites) 
huTREM-1/pCR2.1 PCR2.1-TOPO TREM-1 (-) 
huTREM-1/pAC-4 pAC-4 TREM-1 (NcoI, BamHI) 
huTREM-1/pCD4huIgG1 pCD4huIgG1 TREM-1 (SstI, blunt) 
huTREM-1/pCD4huIgM pCD4huIgM  TREM-1 (SalI, HindIII) 
huTREM-1/pCMV-1FLAG pCMV-1FLAG TREM-1 (HindIII and XbaI) 
huTREM-2/pCR2.1 PCR2.1-TOPO TREM-2 (-) 
huTREM-2/pCD4huIgG1 pCD4huIgG1 TREM-2 (EcoRI and HindIII) 
huTREM-2/pCD4huIgM pCD4huIgM  TREM-2 (SalI, HindIII) 
huTREM-2/pCMV-1FLAG pCMV-1FLAG TREM-2 (HindIII and XbaI) 
huTREM-4/pCR2.1 PCR2.1-TOPO TREM-4 (-) 
huTREM-4/pCD4huIgG1 pCD4huIgG1  TREM-4 (EcoRI and HindIII) 
huTREM-4/pDISPLAYHA pDISPLAYHA TREM-4 (BglI and SalI) 
huTREM-5/pCR2.1 PCR2.1-TOPO TREM-5 (-) 
huTREM-5/pCD4huIgG1 pCD4huIgG1  TREM-5 (EcoRI and HindIII) 
huTREM-5/pCMV-1FLAG pCMV-1FLAG  TREM-5 (HindIII and XbaI) 
mTREM-1/pCR2.1 PCR2.1-TOPO  mTREM-1 (-) 
mTREM-1/pCD4huIgG1mutant pCD4huIgG1mutant  mTREM-1 
mTREM-1/pCD4huIgG1 pCD4huIgG1  mTREM-1 (EcoRI and HindIII) 
mTREM-1/pCMV-1FLAG pCMV-1FLAG  mTREM-1 (HindIII and XbaI) 
mTREM-2/pCR2.1 PCR2.1-TOPO  mTREM-2 (-) 
mTREM-2/pCD4huIgG1 pCD4huIgG1  mTREM-2 (EcoRI and HindIII) 
mTREM-2/pCD4huIgM pCD4huIgM  mTREM-2 (SalI, HindIII) 
mTREM-2/pCMV-1FLAG pCMV-1FLAG  mTREM-2 (HindIII and XbaI) 
mTREM-3pCR2.1 PCR2.1-TOPO  mTREM-3 (-) 

2.3.3 Basic molecular biological methods 

2.3.3.1 Determination of nucleic acid concentrations 

The concentration of dsDNA, ssDNA and RNA was determined at 260 nm wave-

length (Spectramax 250 (Molecular Devices)). Concentrations were calculated as fol-

lows 
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  OD260 (dsDNA) x 50 x dilution = c(dsDNA) [µg/ml]  

  OD260 (ssDNA) x 33 x dilution = c(ssDNA) [µg/ml] 

  OD260 (RNA) x 40 x dilution     = c(RNA) [µg/ml] 

2.3.3.2 Agarose gel electrophoresis 

Gel electrophoretic separation of DNA for analytical or preparative purposes was per-

formed if not otherwise stated, using 1 % gels of low-endotoxin agarose (Roche) in 

TAE buffer (2M Tris-HCl pH 8.0, 1 mM EDTA) already containing 10 µg/ml 

ethidium bromide (EtBr) (Sigma). 6 x sample buffer (Promega) was added to the 

sample. Electrophoresis was performed at 3 – 5 V/cm corresponding to 50 - 85 V us-

ing Horizon 58 gel electrophoresis chambers (BRL). 

2.3.3.3 Preparation of transformation competent bacteria 

2.3.3.3.1 Electrocompetent cells 

2 x 5 ml Luria broth (LB) medium (Tryptone (Difco) 10 g/l, Yeast extract (Difco) 

5 g/l, NaCl (Sigma) 10 g/l) were inoculated with a single colony and grown until tur-

bidity was just visible (3-4 h). 4 x 2.5 ml were transferred to 4 x 250 ml LB in 2 l Er-

lenmeyer flasks and shaken at 37°C until OD600 reached 0.4 (3-4 h). The bacterial 

suspension was chilled for 10 min on ice, and cells were harvested by centrifugation 

(8000 g, 10 min, 4°C). The following manipulations were performed on ice and with 

pre-cold materials. The bacterial pellet was resuspended in 2 x 10 ml 1 mM HEPES 

pH 7.0 (sterile), diluted to 2 x 500 ml with 1 mM HEPES pH 7.0 (sterile), and centri-

fuged as before. After resuspension in 2 x 200 ml 1 mM HEPES pH 7.0 (50 ml 

BLUEMAX tubes (Falcon)) and centrifugation (1800 g, 15 min, 4°C), the pellet was 

resuspended once more in 2 x 1 ml 10 % Glycerol in H2O (sterile), cells were ali-

quoted in 40 µl portions and frozen in liquid nitrogen. Storage occurred at – 80°C. 

2.3.3.3.2 Chemical competent cells (E. coli AVB101) 

A single colony of AVB101 was grown over night (ON) in 100 ml LB/0.4% Maltose. 

100 ml LB/0.4% Maltose was inoculated with 1.4 ml ON culture and grown until 

OD600 reached 0.8. The bacterial suspension was chilled for 10 min on ice, and cells 

were harvested by centrifugation in 50 ml BLUEMAX tubes (Falcon) (4000 g, 

10 min, 4°C). The following manipulations were performed on ice and with pre-cold 

materials. The bacterial pellet was resuspended in 40 ml 50 mM CaCl2 and kept on ice 

for 20 min. After centrifugation (4000 g, 10 min, 4°C) cells were resuspended in 1.5-

2.5 ml 50 mM CaCl2. After adding an equal amount of 15 % (v/v) ice-cold Glycerol, 
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cells were aliquoted in 40 µl portions and frozen in liquid nitrogen. Storage occurred 

at – 80°C. 

2.3.3.4 EST-search and full length cDNA assembly 

GenBank expressed sequence tagged database (dbEST) was initally searched with the 

amino acid sequences of NKp44 (Cantoni et al., 1999) and CMRF35 (Jackson et al., 

1992) using the tblastn algorithm. One sequence (accession n. D78812) with no 

matches in the GenBank non-redundant database (nr) was selected and re-analyzed 

against the dbEST database to detect overlapping cDNAs. Seventeen distinct cDNAs 

were assembled in a single contig using the gel-assemble function of Wisconsin Pack-

age Version 9.1, Genetics Computer Group (GCG), Madison, WI. This contig con-

tained an open reading frame encoding TREM-1 putative polypeptide. This open 

reading frame was used to search the databases for TREM-1 homologues, leading to 

the identification of contigs encoding TREM-2, -3, -4 and –5. 

2.3.3.5 Reverse Transcriptase-Polymerase chain reaction (RT-PCR) 

2.3.3.5.1 Isolation of total RNA 

The method used is modified from the single-step RNA isolation method developed 

by Chomcynski and Sacchi (Chomczynski and Sacchi, 1987) using 1 ml TRIzol Re-

agent (Gibco, BRL)/1 x 106 cells. Total RNA was prepared according to the manufac-

turer’s protocol.  

2.3.3.5.2 Reverse Transcription (RT) 

The reverse transcription (RT) of eukaryotic mRNA was performed using the ”SU-

PERSCRIPT Preamplification System for First Strand cDNA Synthesis” (Gib-

coBRL) according to the manufacturer’s protocol. 
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2.3.3.5.3 Polymerase chain reaction (PCR) 

The annealing temperature of primers was determined considering template-matching 

nucleotides (Σ {[(A+T) x 2°C ]+ [(G+C) x 4°C ]}). When RT-PCR yielded low or 

undecteable amount of DNA, the amplified product was subjected to a further ampli-

fication using nested oligonucleotides. For long-range PCR (product size > 2 kb) the 

“Expand long PCR template System“ (Roche) was used according to manufac-

turer’s protocol. For normal-range PCR (product size < 2 kb) 10 x PCR buffer was 

used (500 mM KCl, 100 mM Tris-HCl pH 8.4, 15 mM MgCl2, 1 mg/ml gelatin). 

High-fidelity PCR (constructs for fusion proteins) was performed using Pfu poly-

merase with the appropriate buffers (Promega) according to the manufacturer’s proto-

col. PCR reaction solutions and programs are summarized in Table 2.15. 

For TREM-2, TREM-4, mTREM-1, and mTREM-3, blast search of NCBI databases 

yielded cDNA sequences lacking a 3’ end. In these cases, 3’end was cloned by 3’ 

Rapid Amplification of cDNA Ends (RACE) using the marathon kit (Clonetech) ac-

cording to the manufacturer’s protocol. 

2.3.3.6 General procedure for cloning PCR products 

2.3.3.6.1 Preparation of plasmid DNA from E.coli cultures 

All plasmid DNAs were prepared with QIAGEN Maxi-prep and Mini-prep Kits ac-

cording to the manufacturer’s protocols and dissolved in TE buffer (10 mM Tris-HCl, 

1 mM EDTA pH 8). 

Table 2.14: Set up and programs for PCR 

 Normal PCR Long-range PCR High fidelity PCR 
MIX I: 
 
 
 
MIX II: 

5 µl 10 x buffer 
19 µl H2O 
1 µl Taq (2.5 U) 
 
10 µl dNTPs (stock: 
4 x 2.5 mM) 
5 µl Primer 1 (cFinal: 250 nM) 
5 µl Primer 2 (cFinal: 250 nM) 
1 µl Template DNA (50-100 ng) 
4 µl H2O 

5 µl 10 x buffer 3 
17 µl H2O 
3 µl Pfu/Taq mix (10 U; Roche) 
 
10 µl dNTPs (stock: 
4 x 2.5 mM) 
5 µl Primer 1 (cFinal: 500 nM) 
5 µl Primer 2 (cFinal: 500 nM) 
1 µl Template DNA (500 ng) 
4 µl H2O 

5 µl 10 x Pfu buffer 
19 µl H2O 
1 µl Pfu (5 U; Roche) 
 
10 µl dNTPs (stock: 
4 x 2.5 mM) 
5 µl Primer 1 (cFinal: 250 nM) 
5 µl Primer 2 (cFinal: 250 nM) 
1 µl Template DNA (50-100 ng) 
4 µl H2O 

Program 1) Hot start 
    94°C for 5 min 
2) 94°C for 45 s 
    50-62°C for 15°s 
    72°C for 60 s 
    25-35 cycles 
3) 72°C 10 min 
4) hold at 4°C 

1) Hot start 
    95°C for 5 min 
2) 95°C for 60 s 
    50-62°C for 60°s 
    72°C for up to 13 min 
    35 cycles 
3) 72°C 10 min 
4) hold at 4°C 

1) Hot start 
    95°C for 5 min 
2) 95°C for 45 s 
    50-62°C for 15°s 
    72°C for 60 s 
    25-35 cycles 
3) 72°C 10 min 
4) hold at 4°C 
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2.3.3.6.2 Restriction enzyme digest of plasmid DNA 

To prepare the DNA fragments for ligation or to analyze the products of ligation after 

transformation, restriction digests at 37°C were performed. 0.1 – 5 µg of fragment or 

plasmid DNA were digested in the appropriate restriction enzyme buffer in a volume 

of 5 – 20 µl per µg DNA. For analytic purposes, 0.5 µg were digested for 60 min with 

an enzyme activity of 5 U/µg DNA. Preparative digests were performed for at least 

2 h using 10-20 U/µg DNA. All restriction enzymes were obtained from NEB or 

Promega together with the provided buffers. After digestion the enzymes were inacti-

vated at 60°C or 80°C according to manufacturer’s protocols. 

2.3.3.6.3 Phosphatase treatment of DNA 

For removal of 5’-phosphate groups from digested vectors to prevent religation, 1 U 

of calf intestine alkaline phosphatase (AP, Roche) was added after the digest to the 

reaction mixture and incubated for another 30 min at 37°C. AP was inactivated by 

adding EDTA to a final concentration of 5 mM and heating for 10 min at 75°C. To 

remove the AP, agarose gel electrophoresis was performed and the dephosphorylated 

DNA fragments were purified from the gel. 

2.3.3.6.4 Ethanol precipitation of DNA 

1/10 volume of 3 M Na+CH3COO- pH 5.3 and 2 volumes of ethanol were added to the 

DNA containing solution and thoroughly mixed. After incubation at – 80°C for 

15 min, the DNA was pelleted by centrifugation (20 000 x g, 30 min, 4°C), washed 

2 x with 70 % Ethanol and air-dried. DNA was dissolved in water or TE buffer, incu-

bated for 10 min at 65°C and then resuspended. 

2.3.3.6.5 Purification of DNA from agarose gels 

Agarose gels were examined under UV light at 366 nm wavelength and the bands of 

interest excised. Purification of DNA fragments was performed using the QIAquick 

gel extraction kit (QIAGEN) according to the manufacturer’s protocol. 

2.3.3.6.6 Ligation of DNA fragments into vectors 

Direct cloning of PCR products into pCR2.1-TOPO was performed using the TOPO 

TA cloning system (Invitrogen) according to the manufacturer’s protocol. Ligation of 

fragments with cohesive ends were performed at a molar ratio between vector (up to 

0.5 µg) and insert of 1 : 4 in a volume of 10 µl using the T4 ligase and ligase buffer 

from NEB. 
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2.3.3.6.7 Transformation of E.coli 

Ligations performed with the TOPO TA cloning system (Invitrogen) were directly 

transformed in One Shot TOP10 chemically competent E. coli (Invitrogen) according 

to the manufacturer’s protocol.  

Electro competent E.coli XL-1 blue were transformed as follows: 50 µl aliquots were 

thaw on ice, 2 µl ligation mix added and the suspension transferred to a pre-cooled 

electroporation cuvette (0.1 or 0.2 cm electrode distance, Biorad); the bacteria were 

pulsed with 2.5 kV, 3 µF (0.2 cm cuvettes) or 1.8kV, 3 µM (0.1 cm cuvettes) and im-

mediately taken up in 1 ^ml of pre-warmed SOC-medium (Tryptone (Difco) 20 g/l, 

Yeast-extract (Difco) 5 g/l, NaCl (Sigma) 10 mM, KCl (Sigma) 4 mM, MgCl2 

(Sigma) 20 mM, Glucose (Fluka) 20 mM); after shaking (250 rpm, 60 min, 37°C) 

bacteria were centrifuged (500 x g, 10 min, RT), resuspended in 100 µl SOC-Medium 

and plated onto selecting agar plates; after incubation ON at 37°C, colonies were ex-

panded in selectionmedium, mini-preps performed and isolated DNA analyzed for 

correct ligation by restriction digest. 

2.3.3.7 Sequencing of Plasmid, �-phage and BAC-DNA 

DNA sequencing was performed by capillary electrophoresis (ABI PRISM, Genetic 

Analyzer 310) using fluorescent terminator di-desoxynucleotides supplied in a ready 

to go solution (Big Dye, Perkin Elmer). The sequencing reaction was performed on a 

GeneAmp PCR System 9600 (Perkin Elemer) (Table 2.15). DNA products were pre-

cipitated adding 3 volumes of isopropanol and incubated at RT for 15 min. After cen-

trifugation, the pellet was washed in Ethanol and 70 % Ethanol. The SN was removed 

completely and the sample dried in a vacuum centrifuge for 10 – 15 min. The pellet 

was resuspended in 30 µl Template Suppression reagent (Perkin Elmer), vortexed, 

boiled for 2 min and chilled on ice. Sequence analysis was performed using the ABI 

PRISM Autoassembler software (version 1.4.0). 

Table 2.15: Set up and programs for Cycle sequencing 

 Plasmid DNA λ-Phage DNA BAC DNA 
Mix:  DNA 
          Primer  
          Big Dye 

11.8 µl (1 µg DNA) 
0.2 µl (40 ng) 
8 µl 

23.6 µl (2 µg DNA) 
0.4 µl (40 ng) 
16 µl 

59 µl (2 µg DNA) 
1 µl (60 ng) 
40 µl 

Program: Hot start 
96°C for 30 s 
50°C for 15°s 
60°C for 60 s 
25 cycles 
hold at 4°C 

Hot start 
96°C for 30 s 
50°C for 20°s 
60°C for 4 min 
50 cycles 
hold at 4°C 

Hot start 
96°C for 30 s 
50°C for 20°s 
60°C for 4 min 
75 cycles 
hold at 4°C 
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2.3.4 Electrophoretic mobility shift assay (EMSA) 

Nuclear extracts were prepared according to the method of Schreiber et al. (Schreiber 

et al., 1989) with some modifications. Stimulation of monocyte-derived human DCs 

(107) with control or anti-TREM-2 antibody or with LPS was carried out for 0.5 or 4 h 

at 37°C as described above (2.2.5). Cells were washed in PBS, resuspended in 10 ml 

of ice-cold buffer A (10 mM Tris-HCl pH 7.9, 60 mM KCl, 1 mM EDTA, 0.75 mM 

spermidine, 0.15 mM spermine, 1 mM DTT, 0.5 mM PMSF, 1 µg/ml aprotinin, 

1 µg/ml leupeptin and 1 µg/ml pepstatin), and incubated for 15 min on ice. NP-40 was 

added from a 10% stock solution to a final concentration of 0.6%, and samples were 

vortexed for 10 s. After incubation for 3 min on ice, samples were centrifuged at 

3000 rpm for 10 min at 4°C. Nuclei were washed in 10 ml of ice-cold buffer A and 

resuspended in 30 ml of ice-cold buffer C (20 mM Tris-HCl pH 8, 0.4 M NaCl, 

1.5 mM MgCl2, 1 mM EDTA, 1 mM DTT, 0.5 mM PMSF, 1 µg/ml aprotinin, 

1 µg/ml leupeptin, 1 µg/ml pepstatin and 25% glycerol). Nuclei were incubated for 

30 min at 4°C, and nuclear extracts were separated from debris by centrifugation at 

15.000 x g for 15 min at 4°C. Protein concentrations were determined by Bradford 

assay. NF-κB consensus and mutant binding sites were 5’-

AGTTGAGGGGACTTTCCCAGGC and 5’-AGTTGAGGCGACTT-TCCCAGGC, 

respectively. Annealed binding sites were radiolabeled using polynucleotide T4 

kinase and γ[32P]-ATP. Radiolabeled oligonucleotides were purified by electrophore-

sis through an 8% polyacrylamide gel containing 22.5 mM Tris-borate and 0.5 mM 

EDTA, overnight elution from gel slices at 37°C, concentration using Elutip-d col-

umns (Schleider & Schuell), and ethanol precipitation. EMSAs were performed as 

described previously (Hernandez-Munain et al., 1994) with some modifications. Nu-

clear extracts (2µg) were incubated with 1µg of poly(dI-dC) carrier and 1 µg of BSA 

in a 25 µl of reaction mix containing 10 mM Tris-HCl pH 7.5, 50 mM NaCl, 1 mM 

DTT, 1 mM EDTA, and 5% glycerol for 10 min at 4°C in the presence or absence of 

25-fold excess of unlabeled oligonucleotide competitors. Labeled binding-site probes 

(15 fmols, ~ 5 x 104 cpm) were then added for an additional 20 min of incubation at 

4°C. Samples were electrophoresed through a 4% polyacrylamide gel containing 

22.5 mM Tris-borate and 0.5 mM EDTA at 4°C. 
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2.4 Animal models 

2.4.1 Disease models 

2.4.1.1 Models for Septic Shock 

2.4.1.1.1 High dose LPS-induced Endotoxemia.  

C57BL/6 mice (female, 8-10 weeks, 19-22 g) were randomly grouped (5-10 mice per 

group) and injected intraperitoneally (i.p.) with different concentrations of LPS from 

E. coli 055:B5 (Sigma), in a blinded fashion. 500 µg/mouse of purified huIgG1,κ 

(Sigma), mTREM-1-IgG1, huILT3-IgG1 (Cella et al., 1997), or heat-inactivated 

mTREM-1-IgG1 (30 min, 95°C) was administrated i.p. at 1, 2, 4, 6 h after or 1 h prior 

to LPS administration. Viability of treated mice was monitored 4-6 times a day for at 

least 10 days. To monitor the inflammatory process blood and peritoneal lavage was 

isolated and tested as described in 2.4.2. 

2.4.1.1.2 E. coli peritonitis model.  

E coli peritonitis was induced in mice as described previously (Appelmelk et al., 

1986). Briefly, C57BL/6 mice (female, 8-10 weeks, 19-22 g) were weighed and ran-

domly distributed into groups of 5-15 animals of equal body weight. Mice were in-

jected i.p. with 500 µg of mTREM-1-IgG1 or control huIgG1 prior to i.p. administra-

tion of 500 µl of a suspension of E. coli O111:B4 (1.6-2.1 x 106 CFU per mouse). 

2.4.1.2 Experimental autoimmune Encephalomyelitis 

2.4.1.2.1 Myelin oligodendrocyte glycoprotein (MOG) peptids 

MOG35-55 (MEVGWYRSPFSRVVHLYRNGK) and MOG92-106 (DEGGYTCFFRD-

HSYQ) were synthesized by David Avila at a BII peptide facility on a ABM 430A 

synthesizer (Applied Biosystems) using fluorenylmethoxycarbonyl (F-MOC) chemis-

try. The peptides were >92 % pure, as determined by HPLC. 

2.4.1.2.2 Induction and Evaluation of EAE 

C57BL/6 mice (female, 10 weeks, 19-21 g) were randomly grouped (5-10 mice per 

group) and injected with an emulsion of 100 µg MOG25-55 in FCA H37Ra (Difco 

# 231131) s.c. in all four flanks (50 µl emulsion/25 µg peptide per flank) together 

with an i.p. injection of 200 ng pertussis toxin in 200 µl PBS (Fluka # 77339). 

400 µg/mouse of purified huIgG1,κ (Sigma), purified huIgM (Sigma), mTREM-1-

huIgG1, or mTREM-2-huIgM was administrated in 400 µl PBS i.p. one day before, 3 
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and 6 days after EAE induction. Animals were monitored daily for onset of disease, 

clinical symptoms and weight for up to 50 days after EAE induction. 

For the clinical evaluation of EAE, the following scale was used: 0, no clinical dis-

ease; 0.5, partial tail weakness; 1, tail weakness; 1.5, paraparesis type I (incomplete 

paralysis of the hip); 2, paraparesis type II (incomplete paralysis of one ore two hind 

limbs); 3, paraplegia (complete paralysis of one or two hind limbs); 4, paraplegia with 

forelimb weakness or paralysis; 5, moribund or dead animals. 

2.4.2 Investigations of Inflammatory parameters 

2.4.2.1 Isolation of organs and lavage fluids 

2.4.2.1.1 Blood 

Blood (250 µl) was collected from the tail vein of treated and control mice. In some 

experiments, blood was obtained from the vena cava. In these cases, 20 µl Heparin 

solution was injected i.p. before opening the peritoneal cavity. Blood was withdrawn 

from the peritoneal cavity after cutting the vena cava. For flow cytometry total blood 

cells were used. For detection of cytokines in the serum, blood was collected into a 

Serum Separator Tube (Becton Dickinson) and the obtained serum was analyzed by 

ELISA.  

2.4.2.1.2 Peritoneal lavage cells (PLCs) 

The peritoneal cavity of individual mice were cannulated with a 22-G needle, 3 – 5 ml 

ice-cold PBS was injected and withdrawn repeatedly with a syringe. This procedure 

was repeated three times until a final volume of 10 ml PL was collected. PLCs were 

harvested and used for determination of total cell numbers per PLCs within a Coulter 

Counter (IG Instrumenten Gesellschaft) for preparation of differential cell counts and 

flow cytometry analysis. PL Fluid (PLF) was concentrated over a Biomax 5K mem-

brane (MWCO 5000Da, Millipore) and used to determine TNF-α and IL-1β levels by 

ELISA. 

2.4.2.1.3 Bronchoalveolar lavage (BAL) cells 

The tracheae of individual mice were cannulated with a 22-G needle surrounded by a 

plastic tubing (Polyethylene [PE] Intramedic Tubing; Becton Dickinson). 0.3 ml PBS 

was injected and withdrawn repeatedly with a syringe. This procedure was repeated 

three times until a final volume of 1.2 ml BAL was collected. BAL cells were har-

vested and used for determination of total cell numbers per BAL within a Coulter 

Counter (IG Instrumenten Gesellschaft) for preparation of differential cell counts and 
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flow cytometry analysis. Bronchoalveolar lavage fluid (BALF) was concentrated over 

a Biomax 5K membrane (MWCO 5000Da, Millipore) and used to determine TNF-α 

and IL-1β levels by ELISA. 

2.4.2.1.4 Bone marrow (BM) cells 

Animals were sacrificed using CO2; hind legs were isolated and freed from all feer 

and muscle tissue using sterile forceps and scissors. The most upper part of the femur 

(1 mm) was cut off and the leg placed in a P-200 yellow pipette Tipp with femur 

pointing downwards. The loaded pipette Tipp was put in a 15 ml Bluemax tube (Fal-

con) containing 500 µl I-Medium and centrifuged at 4°C, 800 x g, for 8 min. the cell 

pellet was resuspended and kept on ice until use 

2.4.2.1.5 Spleen and lymph node (LN) cells 

Animals were sacrificed; LN or Spleen was excised using sterile forceps and scissors 

and kept in ice-cold I-Medium. Organs were teased to single-cell suspension using 

70 µm cell strainers (Falcon, New Jersey, USA) and a 2 ml syringe plunger (Falcon). 

Cells were sedimented (10 min, 180 x g, 4°C), resuspended in I-Medium and kept on 

ice until use 

2.4.2.1.6 Mononuclear cells from Brain 

Brain was isolated using steril forzeps and sicors and kept in a 6 well plate containing 

I-Medium. The brain was further cut in to smaller pieces using a scalpel. Brain parts 

were teased to single-cell suspension using 70 µm cell strainers (Falcon, New Jersey, 

USA) and a 2 ml syringe plunger (Falcon). Cells were sedimented (10 min, 180 x g, 

4°C) and RBC were lysed by adding 3 ml ddH2O for 15 s followed by 3 ml 2 x PBS. 

Cells were washed 2 x in I-Medium and resuspended in 7 ml 70 % Percoll solution 

(100%: 90% Percoll + 10% 10 x PBS) (7 ml/brain). 7 ml of 40% Percoll solution and 

7 ml PBS were added on top of the 70% Percoll solution layer and the resulting gradi-

ent was centrifuged for 40 min, 400 x g, w/o brakes. After removal of the top layers 

(fat and debris), mononuclear cells were isolated from the 40%-70% interface of the 

gradient. Cells were washed 3 times with PBS counted (brain from naïve or en-

dotoxemia mice: 0.3 x 106/mouse; brain from EAE mice: 0.8 x 106/mouse) and used 

for flow cytometry. 

2.4.2.2 Cell counting 

For cell counting using a Coulter Counter (IG Instrumenten Gesellschaft AG), cells 

were diluted into a coulter isoton II (10 ml, Coultronics) containing 20 µl ZAP-

OGLOBIN (Coulter Electonics) to lyse RBC. The number of particles in 0.5 ml was 
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determined with the appropriate lower and upper threshold settings, excluding aggre-

gates, dead cells and debris. 

2.4.2.3 Morphological differentiation  

5 x 104 isolated cells from individual mice were fixed onto glass slides in PBS sup-

plemented with 20% BSA by cytospins (600 x g, 10 minutes). Cells were differenti-

ated by May-Grünwald/Giemsa staining: After fixation with methanol (2.30 minutes) 

cells were stained with undiluted May-Grünwald solution (Fluka) for 3 minutes. 

Thereafter the staining was performed in a 50% May-Grünwald solution for further 3 

minutes. In a last step cells were stained in 7% Giemsa solution (Fluka) for 12 min-

utes. Slides were rinsed with tap water and air-dried over night. The following day 

cells were embedded within Optiprep solution. The number of morphological differ-

entiated cells in 200 total cells was counted (x%) and the total cell number of each 

individual cell type in the isolated fluid or organ was calculated.  

2.4.2.4 Flow cytometry of mouse cells 

2.4.2.4.1 Flow cytometry of PLCs 

Four-color analysis of peritoneal leukocytes was performed after blocking FcR (FcR 

blocking agent, Pharmingen) for 30 min, using anti-mTREM-1, anti-Ly-6G (Pharm-

ingen), anti-Mac-1 (Pharmingen) mAbs conjugated with APC, PE and FITC, respec-

tively, and biotinylated anti-F4/80 followed by streptavidine-CyChrome (Pharmin-

gen). 

2.4.2.4.2 Flow cytometry of BAL cells 

BAL cells were incubated with anti-CD32/CD16 mAb in PBS/0.1%BSA for 30 min-

utes at 4°C to block unspecific binding to FcR. After blocking cells were washed with 

PBS/0.1%BSA followed by surface staining with Cy5-labeled anti-mTREM-1 mAb 

50D1, FITC-labeled anti-Mac-1 (BD PharMingen) and Pe-labeled anti-Ly-6G (BD 

PharMingen). Subsequently, cells were washed with PBS/2% FCS and resuspended in 

PBS/ 2% FCS to analyze cells by flow cytometry. To analyze intracellular cytokine 

expression in mTREM-1-positive cells, BAL cells were incubated four hours prior 

harvesting with Brefeldin A (10 mg/ml; Sigma) to retain cytokines in the cytoplasm. 

Thereafter cells were washed with PBS/2% FCS and incubated with anti-CD32/CD16 

mAb for 30 minutes at 4°C to block Fc-binding. After staining of surface mTREM-1 

with Cy5-labeled anti-TREM-1 mAb, cells were washed with PBS/ 0.1%BSA, fixed 

with 2% PFA for further 30 minutes at room temperature followed by intracellular 

staining in permeabilization buffer containing 0.5% saponin, PBS/ 1% BSA, Biotin-
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labeled anti-IL-1β and PE-labeled anti-TNF-α (BD PharMingen). After a final stain-

ing step using Streptavidine-FITC, cells were resuspended in PBS/1%BSA for analy-

sis by three-color flow cytometry. Data were analyzed using CellQUESTTM software 

(Becton Dickinson). 

2.4.2.4.3 Flow cytometry of brain, LN, BM and spleen cells 

Four-color analysis of leukocytes was performed after blocking FcR (FcR blocking 

agent, Pharmingen) for 30 min, using anti-mTREM-1, anti-Ly-6G (Pharmingen), anti-

Mac-1 (Pharmingen) mAbs conjugated with Cy5, PE and FITC, respectively. In some 

experiments cells were stained using anti-TREM-1, anti-Ly-6C (Pharmingen), and 

anti-PECAM mAb (Pharmingen) conjugated with Cy5, PE and FITC, respectively. 

Dead cells were excluded by gating on PI-negative cells.  
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3 RESULTS 

3.1 Cloning of a novel group of receptors: Triggering re-
ceptors-expressed on myeloid cells (TREMs) 

3.1.1 Molecular characterization of the TREM family 

3.1.1.1 Identification and cloning of a novel family of transmembrane proteins 

of the Ig SF by EST database search 

The GenBank EST database was searched with NKp44 (Cantoni et al., 1999) and 

CMRF35 polypeptides (Jackson et al., 1992) and several overlapping cDNAs were 

found (Table 3.1). These were assembled in a contig which contained an open reading 

frame encoding a protein of 234 amino acids with a predicted molecular mass of 

~26 kDa (Figure 3.1). A cDNA containing the entire open reading frame was ampli-

fied by RT-PCR from monocytes and granulocytes, exclusively (data not shown). 

Therefore, this molecule was designated "Triggering Receptor Expressed on Myeloid 

cells-1" (TREM-1). The GenBank EST database was then searched with TREM-1 

polypeptide and several novel cDNAs encoding TREM-1-homologs in mouse (m) and 

man were identified. Accordingly, these molecules were named TREM–2, –3, –4a, –

4b, –5 and mTREM–1, –2, –3, –4 and –5, respectively (Figure 3.1). Full-length cDNA 

clones from TREM–1, –2, –5, mTREM–1, –2, and –3 were obtained from different 

sources of myeloid cells but not from others cell types such as lymphocytes (Table 

3.1). Interestingly, TREM-3 seems to be a pseudo-gene in humans, since the cDNA 

displays a nucleotide substitution, which results in a premature in-frame STOP codon 

(Figure 3.1). With the exception of the intracellular domain of TREM-4, everything 

Table 3.1 : EST cloning of the Triggering receptors expressed on myeloid cells (TREMs) 

Name Bait for 
search 

ESTs Accesion no. Full length 
(AA/bp) 

Cloning source Accession 
no. of cDNA 

TREM-1 NKp44, 
CMRF35 

D78812, AI337247, AW139572, 
AW274906,AW139573,AI394041, 
AI621023, AI186456, AI968134, 
AI394092, AI681036, AI962750, 
AA494171,AA099288,AW139363, 
AW135801, AA101983 

234/702 Human Monocytes NM018643 

TREM-2 TREM-1 N41388 230/690 Human MDCs NM018965 
TREM-3 TREM-2 AL391903 (genomic sequence)  No cDNA cloned Not released 
TREM-4a CMRF-35 U70073 233/699 Human MDCs Not released 
TREM-4b CMRF-35 U70073 222/666 Human MDCs Not released 
TREM-5 CMRF-35 BI908345 201/603 Human BM Not released 
mTREM-1 TREM-1 AA895986 230/690 Mouse neutrophils NM021406 
mTREM-2b TREM-2 AA030138 227/681 Mouse BM NM021410 
mTREM-3 TREM-1 AA896129, AA052136 183/549 Mouse Liver NM021407 
mTREM-4 TREM-4 AK009375 222/666 Mouse tongue Not released 
mTREM-5 TREM-5 BG245629 196/588 Mouse mammary tumor Not released 
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could be cloned from monocytes-derived DCs. Database searches revealed two poten-

tial intracellular regions for TREM-4, thus the according sequences were termed 

TREM-4a and –4b. Recently, Daws and coworkers identified an additional gene 

highly homologues to mTREM-2, called mTREM-2a. mTREM-2 was henceforth re-

ferred to as mTREM-2b (Daws et al., 2001). 

3.1.1.2 Sequence comparison between TREMs 

As shown in Figures 3.1, all TREM amino acid sequences start with a hydrophobic 

signal peptide followed by an extracellular region composed of a single Ig-SF domain 

containing three (TREM-1), one (TREM-2, TREM-4a, TREM-4b, mTREM-1, 

mTREM-3, mTREM-4, mTREM-5,) or no (TREM-5, mTREM-2a, -2b, mTREM-5) 

potential N-glycosylation sites. The length of the Ig-fold and the characteristic motifs 

flanking the cysteins (L/VxL/VxCxY and D/NxGxYxC) indicate that the Ig-fold is 

of the V-type (Barclay Leukocyte Facts book, second edition, Academic Press). It is 

of note that TREM-1, mTREM-1 and mTREM-3 contain a longer connective peptide 

than the other TREMs (Figure 3.1). In contrast to the extracellular domain, the cyto-

plasmic tails are variable in length (2 amino acids (mTREM-3) to 44 amino acids 

(TREM-4a)), however they do not contain any evident signaling motifs. The homolo-

gies and phylogenetic connections between the human TREMs and mouse TREMs are 

indicated in Figure 3.2 and 3.3.  
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MA WRA L H P L L L L L - - - L L - - F P G S Q A Q SK A Q V L QS V A GQ T LL T VV RCC QYY P P T G SL Y E KK GWCK -1 NKp44
M- - RK T R L W- G L L WML F V S E L RA AT K L T - E E K Y E L K E GQ T LL DVV K CC DYY T L E K F A S S QK AWQ I I1 huTREM-1
M- - RK A G L W- G L L CV F F V S E V K A A I V L E - E E RY DL V E GQ T LL T VV K CC P F N I MK YA NS QK AWQR L1 mTREM-1
M- - E P L R L L I - - - - L L F V T E L S G A- - H N- T T V F QG V A GQ S LL QVV S CC P YY DS MK HWGR RK AWCR Q1 huTREM-2
M- - GP L H QF L - - - - L L L I T A L S Q A- - L N- T T V L QG MA GQ S LL RVV S CC T YY DA L K HWGR RK AWCR Q1 mTREM-2a
M- - GP L H QF L - - - - L L L I T A L S Q A- - L N- T T V L QG MA GQ S LL RVV S CC T YY DA L K HWGR RK AWCR Q1 mTREM-2b
M- - S P L L L WL G L M- - L C V S GL QA GD - - E - E E HK CF L E GE NLL T LL T CC P YY N I ML YS L S L K AWQR V1 mTREM-3
M- - - - - - RL L V L L WGWL L - - L P G Y E A L EG P E E I S G F E GD T VV S LL QCC T YY RE E L RG HR KY - WCR K1 huTREM-4
M- - - - - - RL L V L L WGWL L - - L P G Y E A L EG P E E I S G F E GD T VV S LL QCC T YY RE E L RG HR KY - WCR K1 mTREM-4
M- W- - L P P A L L L L - - - S - - - L S G CF S I QG P E S V RA P E QG S LL T VV QCC HYY K Q GWET Y I KW- WCR -1 huTREM-5
M- R - - L C A G L L L L - - - C - - - F QG CL S L T G P G S V S G Y V GG S LL RVV QCC QYY S P S Y KG Y MKY - WCR -1 mTREM-5
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- E A S A L V CI RL V T S S K- - - - P RT MA WT SR F T I WDD P D A G F F T V T MT D L R E E DDSS GGH YY WWCCR I57 NKp44
RDGE - MP K T L A CT E R PS - - K N S H P V QV GR I I L E DY HD HG L L RV RMV N L Q V E DDSS GGL YY QQ CCV I59 huTREM-1
P DGK - E P L T L V V T QR PF - - T R P S E V HMGK F T L K HD P S E A ML QV QMT D L Q V T DDSS GGL YY RR CCV I59 mTREM-1
L GE K - GP CQ RV V S T H NL WL L S F L RR WN GS T A I T DD T L GG T L T I T L RN L Q P H DDAA GGL YY QQ CCQ S54 huTREM-2
L GE E - GP CQ RV V S T H GVWL L A F L K K RN GS T V I A DD T L A G T V T I T L K N L Q A G DDSS GGL YY QQ CCQ S54 mTREM-2a
L GE E - GP CQ RV V S T H GVWL L A F L K K RN GS T V I A DD T L A G T V T I T L K N L Q A G DDAA GGL YY QQ CCQ S54 mTREM-2b
RS H G- S P E T L V L T NT RK - - A D F N V A RA GK Y L L E DY P T E S VV K V T V T G L Q RQ DDV GGL YY QQ CCV V56 mTREM-3
GG I L F S R CS GH I Y A E E- - - - E GQ E T MK GR L S I R DS RQ E L SL I V T L WN L T L Q DDAA GGE YY WWCCG V54 huTREM-4
GG I L F S R CS GH I Y A E E- - - - E GQ E T MK GR L S I R DS RQ E L SL I V T L WN L T L Q DDAA GGE YY WWCCG V54 mTREM-4
- GV RWDT CK I L I E T R G- - - - S E Q GE KS DR V S I K DN QK DR T F T V T ME G L R RD DDAA DDV YY WWCCG I52 huTREM-5
- GP HD T T CK T I V E T D G- - - - S E K E K RS GP V S I R DH A S NS T I T V I ME D L S E D NNAA GGSS YY WWCCK I52 mTREM-5

10 20 30 40 50 60

MA WRA L H P L L L L L - - - L L - - F P G S Q A Q SK A Q V L QS V A GQ T LL T VV RCC QYY P P T G SL Y E KK GWCK -1 NKp44
M- - RK T R L W- G L L WML F V S E L RA AT K L T - E E K Y E L K E GQ T LL DVV K CC DYY T L E K F A S S QK AWQ I I1 huTREM-1
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M- - - - - - RL L V L L WGWL L - - L P G Y E A L EG P E E I S G F E GD T VV S LL QCC T YY RE E L RG HR KY - WCR K1 mTREM-4
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- E A S A L V CI RL V T S S K- - - - P RT MA WT SR F T I WDD P D A G F F T V T MT D L R E E DDSS GGH YY WWCCR I57 NKp44
RDGE - MP K T L A CT E R PS - - K N S H P V QV GR I I L E DY HD HG L L RV RMV N L Q V E DDSS GGL YY QQ CCV I59 huTREM-1
P DGK - E P L T L V V T QR PF - - T R P S E V HMGK F T L K HD P S E A ML QV QMT D L Q V T DDSS GGL YY RR CCV I59 mTREM-1
L GE K - GP CQ RV V S T H NL WL L S F L RR WN GS T A I T DD T L GG T L T I T L RN L Q P H DDAA GGL YY QQ CCQ S54 huTREM-2
L GE E - GP CQ RV V S T H GVWL L A F L K K RN GS T V I A DD T L A G T V T I T L K N L Q A G DDSS GGL YY QQ CCQ S54 mTREM-2a
L GE E - GP CQ RV V S T H GVWL L A F L K K RN GS T V I A DD T L A G T V T I T L K N L Q A G DDAA GGL YY QQ CCQ S54 mTREM-2b
RS H G- S P E T L V L T NT RK - - A D F N V A RA GK Y L L E DY P T E S VV K V T V T G L Q RQ DDV GGL YY QQ CCV V56 mTREM-3
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GG I L F S R CS GH I Y A E E- - - - E GQ E T MK GR L S I R DS RQ E L SL I V T L WN L T L Q DDAA GGE YY WWCCG V54 mTREM-4
- GV RWDT CK I L I E T R G- - - - S E Q GE KS DR V S I K DN QK DR T F T V T ME G L R RD DDAA DDV YY WWCCG I52 huTREM-5
- GP HD T T CK T I V E T D G- - - - S E K E K RS GP V S I R DH A S NS T I T V I ME D L S E D NNAA GGSS YY WWCCK I52 mTREM-5  

Figure 3.1: Signal sequences and V-type domain of human and mouse TREMs aligned with NKp44. 

Alignment of the V-type domain from human and mouse TREMs (TREM-1 (red), TREM-2 (blue), TREM-3 
(grey), TREM-4 (light blue), TREM-5 (green) and NKp44 (black). The signal peptide is indicated in italic
letters. The cysteines potentially involved in generating the intra-chain disulfide bridge of the Ig-SF V-type 
fold are boxed in yellow and their flanking consensus sequences are shown in bold. TREM-1, -2, and –3 
sequences have been submitted to GenBank database under accession no. indicated in Table 3.1. Amino 
acids identical in at least four out of 11 sequences are bold. The alignment was generated by Clustal 
method. Gaps (dashes) were introduced to maximize homologies. 
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The transmembrane domain of all TREMs contains a charged amino acid residue, ei-

ther a lysine (human and mouse TREM-1, -2, -3 and -5) or an arginine residue (human 

and mouse TREM-4). 

Similar transmem-

brane and cytoplasmic 

domains are present in 

activating NK cell re-

ceptors, which pair 

with the transmem-

brane adapter protein 

DAP12 (Lanier and 

Bakker, 2000; Moretta 

et al., 2001), DAP10 

(Chang et al., 1999; Wu et al., 1999) or FcRγ (Ravetch and Bolland, 2001). Alignment 

of the transmembrane regions revealed that TREM-1, -2, mTREM-1, -2a, -2b, and –3 

and the known DAP12-associated receptors KIR2DS4 (Olcese et al., 1997), NKp44 

(Cantoni et al., 1999), NKp44 like gene 1 and 2 (Accesion no. AJ010099 and 

AJ010100) have a highly homologues transmembrane domain containing the consen-

sus sequence CxxLxKxLxxSxL (Figure 3.4). Surprisingly, human and mouse 

TREM-5, although containing a lysine residue in the transmembrane domain, do not 

have this motif (Figure 3.4). Similar to NKG2D, CD64, CD16 and ILT1, mouse and 

human TREM-4 display an Arginine residue instead of a lysine. DAP10 or FcRγ were 

previously described to pair with such receptors (Chang et al., 1999; Wu et al., 1999) 

(Ravetch and Bolland, 2001). 

Alignment revealed that TREM-

4 transmembrane domains have 

little in common with NKG2D, 

CD64 and CD16, but are highly 

identical to the transmembrane 

domain of ILT1 (Figure 3.4). In-

terestingly, these receptors share 

a RxxAxxLVLxxL motif. Bio-

chemical methods will be re-

quired to determine whether any 

of these motifs are indeed re-

sponsible for the specific association with DAP12/KARAP (Lanier and Bakker, 2000; 

Moretta et al., 2001), DAP10 (Chang et al., 1999; Wu et al., 1999) or FcRγ (Ravetch 

and Bolland, 2001).  

Percent Identity
1 2 3 4 5 6 7 8 9 10 11

1 18.7 14.2 12.4 44.8 18.5 17.6 29.5 15.3 14.3 20.5 1 huTREM-1
2 201.0 17.0 13.4 17.4 67.8 67.8 19.1 17.6 18.9 18.3 2 huTREM-2
3 209.0 187.4 21.9 13.5 15.4 15.9 16.9 95.5 21.4 18.0 3 huTREM-4
4 273.0 271.0 194.9 11.9 14.4 14.9 14.2 21.9 31.1 20.9 4 huTREM-5
5 90.9 214.0 249.0 271.0 15.4 15.0 28.4 14.0 12.2 20.9 5 mTREM-1
6 218.0 39.7 192.6 250.0 239.0 98.7 18.6 15.8 17.3 18.5 6 mTREM-2a
7 223.0 39.7 188.3 243.0 246.0 1.3 18.6 16.2 17.9 18.9 7 mTREM-2b
8 112.9 171.5 226.0 262.0 114.3 171.5 176.3 16.9 14.8 21.9 8 mTREM-3
9 209.0 203.0 4.2 187.9 249.0 193.5 188.8 217.0 21.9 18.0 9 mTREM-4

10 264.0 199.0 191.1 109.3 271.0 182.9 178.2 206.0 191.1 20.9 10 mTREM-5
11 194.1 232.0 250.0 207.0 182.0 205.0 205.0 195.0 249.0 220.0 11 NKp44
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1 18.7 14.2 12.4 44.8 18.5 17.6 29.5 15.3 14.3 20.5 1 huTREM-1
2 201.0 17.0 13.4 17.4 67.8 67.8 19.1 17.6 18.9 18.3 2 huTREM-2
3 209.0 187.4 21.9 13.5 15.4 15.9 16.9 95.5 21.4 18.0 3 huTREM-4
4 273.0 271.0 194.9 11.9 14.4 14.9 14.2 21.9 31.1 20.9 4 huTREM-5
5 90.9 214.0 249.0 271.0 15.4 15.0 28.4 14.0 12.2 20.9 5 mTREM-1
6 218.0 39.7 192.6 250.0 239.0 98.7 18.6 15.8 17.3 18.5 6 mTREM-2a
7 223.0 39.7 188.3 243.0 246.0 1.3 18.6 16.2 17.9 18.9 7 mTREM-2b
8 112.9 171.5 226.0 262.0 114.3 171.5 176.3 16.9 14.8 21.9 8 mTREM-3
9 209.0 203.0 4.2 187.9 249.0 193.5 188.8 217.0 21.9 18.0 9 mTREM-4

10 264.0 199.0 191.1 109.3 271.0 182.9 178.2 206.0 191.1 20.9 10 mTREM-5
11 194.1 232.0 250.0 207.0 182.0 205.0 205.0 195.0 249.0 220.0 11 NKp44
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Figure 3.2: Identity (%) and diversity of the complete amino acid
sequences of TREM family members and NKp44. 
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Figure 3.3: Phylogenetic tree of TREM family members. 

Three groups can be clearly identified. One includes NK44,
TREM-1, -2, and –3, whereas TREM-4 and –5 constitutes
seperate groups. The scale represents million of years. 
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The analysis of somatic cell hybrids containing different human chromosomes dem-

onstrated that the genes encoding TREM-1, -2, and 3 map on human chromosome 6, 

like the NKp44 gene (data not shown), whereas TREM-4 and –5 map to chromosome 

17, respectively. This location was confirmed by the recent release of human chromo-

some 6 (NT_010672.6Hs17_10829) and 17 (NT_010755.6Hs17_10912) genomic 

sequences. 

mTREM-1     VTISVICGLLSKSLVFIILFIVT 
mTREM-2a    ILLLLACVLLSKFLAASILWAVA 
mTREM-2b    ILLLLACVLLSKFLAASILWAVA 
mTREM-3   VMVIVLTCGFILNKGLVFSVLFVFL 

 
huTREM-1    IVILLAGGFLSKSLVFSVLFAVTL 
huTREM-2    ILLLLACIFLIKILAASALWAAAW 

 
NKp44     IALVPVFCGLLVAKSLVLSALLVWWGDI 
NKp44lg1  IALVPVFCGLLVAKSLVLSALLVWWVL 
NKp44lg2  IALVPVFCGLLVAKSLVLSALLVWWVL 
KIR2DS4     HLHVLIGTSVVKILFTILLFFLLH 

 
mTREM-5       IQFQVLVFLKLPLFLSMLCAIFWV 
huTREM-5      NHYMLLVFVKVPILLILVTAILWL 

 
potential DAP12 consensus:  C/GxxLxKxLxxSxL 
 
 

mTREM-4          VSIPMVRILAPVLVLLSLLSAAGLIAFCSHLLLW 
huTREM-4a        VSIPMVRILAPVLVLLSLLSAAGLIAFCSHLLLW 
huTREM-4b        VSIPMVRILAPVLVLLSLLSAAGLIAFCSHLLLW 

 
ILT1            YTVENLIRMGAVGLVLVVLGILLFEAQHS 
huNKG2D    FVASWIAVMIIFRIGMAVAIFCCFFF 

 
potential FcRγ consensus:          RxxAxxLVLxxL 
 
Figure 3.4: Sequence comparison of transmembrane domains from TREMs and other activating recep-
tors 

embrane regions compared to NKp44, NKp44lg1, NKp44lg2, KIR2DS4, ILT1, NKG2D. Charged residues are 
shown in red, identical anchor residues are shown in blue. Consensus sequences predicted to be responsible
for interaction with DAP12 and FcRγ are indicated. 
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3.2 Characterization of human and mouse TREM-1 

3.2.1 Characterization of human TREM-1 in vitro  

3.2.1.1 TREM-1 is selectively expressed on blood neutrophils, monocytes and 

alveolar macrophages 

To investigate the cellular distribution of TREM-1, anti-TREM-1 mAbs were pro-

duced. As shown in Figure 3.5A, the mAb 21C7 stained TREM-1-transfected COS7 

cells, as compared to control transfectants. In addition, expression of TREM-1 was 

partially increased by co-transfection of DAP12 cDNA, suggesting that cell surface 

expression of TREM-1 may require association with either DAP12 or a related signal-

ing molecule. In peripheral blood of different donors, 21C7 stained neutrophils and, to 

a lesser extent, CD14high monocytes. CD14dim monocytes, DCs, or lymphocytes were 

TREM-1 negative (Figure 3.5B). To investigate the expression of TREM-1 during 

 

Figure 3.5: TREM-1 is selec-
tively expressed on neutro-
phils, CD14high monocytes and
alveolar macrophages 

A. mAb 21C7 recognizes selec-
tively TREM-1. FLAG-tagged
TREM-1 (TREM-1FLAG) was ex-
pressed in COS7 cells without
(left panel) or with HA-tagged
DAP12 (DAP12HA) (middle
panel). Cells were analyzed by
FACS with mAb 21C7, as com-
pared to NKp44FLAG/DAP12HA co-
transfected cells (right panel).
The percentage of TREM-1-
positive cells (upper right quad-
rant) is indicated. Expression of
TREM-1FLAG, NKp44FLAG and
DAP12HA was confirmed using
anti-FLAG and anti-HA mAbs
(data not shown). Cells stained
with a control antibody were
contained within the lower right
quadrant. 
B. Three color FACS analysis of
whole blood leukocytes. High
side scatter cells correspond to
TREM-1+ neutrophils. Low side
scatter cells include
CD14high/HLA-DR+ cells (mono-
cytes), CD14high/HLA-DR+

(monocytes), CD14-/HLA-DR+

cells (which include B cells and
DCs), and CD14-/HLA-DR- cells
(mostly lymphocytes).  
C. TREM-1 is strongly expressed
on alveolar macrophages in situ.
TREM-1 was detected in lung
sections from normal individuals
using mAb 21C7 (right panel). A
staining with an isotype-matched
control mAb are shown in the left
panel. 
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differentiation of CD14+ monocytes into either MDCs or MMφ, surface TREM-1 lev-

els were monitored over time in the presence of GM-CSF/IL-4 or M-CSF, respec-

tively. TREM-1 was completely downregulated on these cells after three days of cul-

ture (data not shown). Stimulation of DCs with LPS, heat-inactivated gram-positive 

bacteria, gram-negative bacteria, or fungi did not induce TREM-1 expression (data 

not shown). Interestingly, immunohistochemical analysis of tissue sections revealed 

that alveolar macrophages were expressing TREM-1 at very high levels (Figure 3.5C) 

while macrophages in other tissues did not (data not shown). This selective expression 

of TREM-1 on some of the major initiators of innate responses suggested that it plays 

a role in acute inflammatory responses. 

3.2.1.2 TREM-1 triggers the release of pro-inflammatory chemokines and cyto-

kines, and increases surface expression of activation markers. 

To examine whether 

TREM-1 can trigger 

acute inflammatory 

responses, neutro-

phils and monocytes 

were plated on a 

plastic surface coated 

with F(ab’)2 goat 

anti-mouse IgG and 

the mAb 21C7 and 

tested for secretion 

of chemokines, cyto-

kines and for release 

of granule compo-

nents. In neutrophils, cross-linking of TREM-1 induced the secretion of IL-8 and the 

release of myeloperoxidase (MPO) (Figure 3.6A, B). In monocytes, cross-linking of 

TREM-1 triggered the release of large amounts of IL-8 as well as MCP-1 and TNF-α 

(Figure 3.6C-E). In control experiments, neutrophils and monocytes were stimulated 

with isotype-matched antibodies which either bind (such as anti-MHC class I mAbs) 

or do not bind (such as an anti-2,4,6 TNP mAb) cells. In both cases, secretion of cyto-

kines, chemokines and MPO was 5- to 50-fold lower than that induced via TREM-1 

(Figure 3.6 and data not shown). Thus, the activation of neutrophils and monocytes 

induced by anti-TREM-1 mAb is not due to engagement of Fc receptors. Similar re-

sults were obtained in further experiments using F(ab’)2 fragments of the mAb 21C7, 

confirming the independence of TREM-1-induced effects from FcR binding of stimu-

Figure 3.6: TREM-1-mediated cytokine production and degranulation. 

TREM-1 triggers release of IL-8 (A) and MPO (B) in neutrophils and secretion
of MCP-1 (C), IL-8 (D), and TNF-α (E) in monocytes. Monocytes or neutro-
phils were stimulated for 24 h with either anti-TREM-1 or control IgG1 mAbs
(anti-MHC class I mAb) coated on plastic and supernatants were analyzed by
ELISA. All data points correspond to the mean and the standard deviation of
four independent experiments. 
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lating mAb (data not shown). Secretion of IL-6, IL-10, IL-12 or type I IFN, were not 

increased by the engagement of TREM-1 (data not shown).  

The rapid migration of 

neutrophils and mono-

cytes from the blood to the 

inflammatory site requires 

their adhesion to the endo-

thelium and to extracellu-

lar matrix proteins 

(Springer, 1994). There-

fore it was tested whether 

engagement of TREM-1 

stimulated up-regulation 

of adhesion molecules. As 

shown in Table 3.3, cell 

surface expression of 

CD29, CD11c, CD49e, 

and to a lesser extent CD11b, CD49d and CD18, were increased on both neutrophils 

and monocytes. Thus, TREM-1 may increase cellular adhesion to fibronectin, fibrino-

gen and VCAM by upregulating CD11b/CD18 (Mac-1), CD29/CD49d and 

CD29/CD49e heterodimers, respectively. In addition, TREM-1 stimulation led to a 

strong upregulation of the co-stimulatory molecules CD40, CD86 (B7.2) and CD54 

(ICAM-1), as well as of CD83 and CD32 (FcRII) on monocytes. Interestingly, CD83 

upregulation could not be observed using F(ab’)2 21C7 for stimulation (data not 

shown). Thus, TREM-1 is not only capable of increasing adhesion of myeloid cells to 

endothelium and extracellular matrix molecules but can also prepare monocytes for 

co-stimulation of other cells recruited to the inflammatory lesions. 

3.2.1.3 Stimulation of TREM-1 induces calcium mobilization and tyrosine 

phosphorylation 

Activation of neutrophils and monocytes is often accompanied by a number of intra-

cellular changes. Indeed, ligation of TREM-1 with the mAb 21C7 elicited a rapid rise 

in intracellular Ca2+ concentration (Figure 3.7A). In addition, cross-linking of TREM-

1 stimulated tyrosine phosphorylation of several proteins with apparent molecular 

masses of  ~40, ~60, ~70, and ~100 kDa (Figure 3.7B). The observed ~40 kDa tyro-

sine phosphorylated proteins correspond to mitogen activated protein (MAP) kinases, 

as demonstrated by anti-phospho-ERK1/2 immunoblotting (Figure 3.7B). Precipita-

Table 3.3: TREM-1-dependent regulation of surface markers.  

Monocytes or neutrophils were stimulated as in Figure 3.6 and analyzed by 
flow cytometry. Numerical values indicate specific Mean fluorescence in-
tensity (MFI) after subtraction of the fluorescence detected with an isotype-
matched control. The shown data are representative for seven experi-
ments.  
 Stimulation for 24h 
 Neutrophils Monocytes 
 anti-MHC 

class I 
Anti-

TREM-1 
anti-MHC 

class I 
anti-

TREM-1 
CD40 - - 23.9 254.1 
CD80/B7.1 - - 0.6 0.1 
CD86/B7.2 - - 32.6 521.5 
     
CD54/ICAM1 10.9 35.6 27.0 97.5 
CD11b 0.4 27.9 234.9 256.8 
CD11c 75.3 85.7 175.6 385.5 
CD18 54.8 76.9 198.8 211.9 
CD49d 21.8 30.2 0.1 4.8 
CD49e 76.1 91.9 14.9 46.5 
CD29 2.7 14.7 23.2 76.9 
     
CD32/FcRII 86.2 100.2 72.1 114.0 
CD83 - - 0.9 44.6 
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tion of tyrosine phosphorylated proteins and immunoblotting with an anti-PLCγ mAb, 

revealed that the observed ~100 kDa phosphoprotein corresponds to PLCγ (Figure 

3.7D), thus explaining the observed Ca2+ influx.  

3.2.1.4 TREM-1 is a ~30 kDa glycoprotein associated with DAP12. 

Biochemical analysis of TREM-1 immunoprecipitated from surface-biotinylated 

monocytes revealed that TREM-1 is a glycoprotein of ~30 kDa, that is reduced to 

26 kDa after N-deglycosylation, in agreement with the predicted molecular mass of 

TREM-1 (Figure 3.8A). Since TREM-1 lacks known signaling motifs in the cyto-

plasmic domain, it should associate with a separate signal transduction subunit to me-

diate activating signals. Adapter molecules, such as DAP12, DAP10 or FcRγ, are ty-

rosine phosphorylated upon cell treatment with the phosphatase-inhibitor pervanadate 

(Chang et al., 1999; Lanier et al., 1998b; Nakajima et al., 1999; Wu et al., 1999). In-

deed, anti-phosphotyrosine blotting of TREM-1 immunoprecipitates from perva-

nadate-stimulated monocytes revealed a phosphorylated protein of ~12 kDa and 

~24 kDa under reducing and non-reducing conditions, respectively (Figure 3.8B). An 

identical pattern was observed following the immunoprecipitation of SIRPβ1, which 

is associated with DAP12 (Dietrich et al., 2000). Indeed, immunoblotting of TREM-1 

 

Figure 3.7: TREM-1 triggers intracel-
lular Ca2+ mobilization and tyrosine
phosphorylation of ERK1, ERK2 and,
PLC-J.  

A. anti-TREM-1 mAb induces intracellu-
lar Ca2+ mobilization in monocytes as
compared to a control IgG1 mAb (anti-
MHC class I). Ca2+ mobilization oc-
curred even in the absence of a cross-
linking Ab. Addition of antibodies is
indicated by an arrow.  
B. Anti-phosphotyrosine blot of cell
lysates from monocytes stimulated with
anti-TREM-1 or control IgG1 mAbs in
the presence of a cross-linking Ab for
the indicated time periods.  
C. Monocytes were stimulated as indi-
cated in (B) and examined by western
blot analysis using anti-phospho-
ERK 1/2 (upper panel) and anti-
ERK 1/2 (lower panel) mAbs.  
D. Tyrosine phosphorylated proteins
were precipitated from monocytes
stimulated as indicated in (B) and im-
munoblotted with anti-PLC-γ (upper
panel) or anti-Hck (lower panel) anti-
bodies. Anti-Hck blotting was performed
as a loading control, since phosphoryla-
tion of Hck is similar in both stimulated
and unstimulated monocytes. Phos-
phorylated proteins are indicated by
arrows in all panels. Molecular weight
markers are shown. 
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immunoprecipitates with DAP12, DAP10 or FcRγ antiserum demonstrated that 

TREM-1 associates with DAP12 (Figure 3.8C and data not shown). 

3.2.1.5 TREM-1 expression and function is potentiated by bacterial stimuli. 

The ability of TREM-1 to trigger secretion of pro-inflammatory mediators, prompted 

the investigation of its role in inflammations caused by bacteria. TREM-1 expression 

was determined by flow cytometry on neutrophils and monocytes incubated in vitro 

with heat-inactivated gram-positive bacteria, gram-negative bacteria, mycobacteria, or 

with bacterial cell wall components. As shown in Figure 3.9, TREM-1 expression was 

strongly upregulated by extracellular bacteria, including Pseudomonas aeruginosa 

and Staphylococcus aureus, as well as lipoteichoic acid (LTA) and LPS. In contrast, 

intracellular bacteria, such as Bacillus of Calmette-Guerin (BCG), and mycolic acid 

had no effect. These results suggested that TREM-1 is upregulated under inflamma-

tory conditions caused by extracellular bacteria. Importantly, LPS-mediated TREM-1 

upregulation was paralleled by an increased ability of TREM-1 to trigger the secretion 

of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and inter-

leukin-1 beta (IL-1β) (Figure 3.9B). In contrast, TREM-1 was rapidly downregulated 

upon stimulation with immune suppressive cytokines such as IL-10 or TGF-β whereas 

other proinflammatory cytokines including TNF-α, IL-1β, and IL-18 but not others 

(TNF-β and IL-1α) induced TREM-1 upregulation (Figure 3.9C and data not shown).  

 

Figure 3.8: TREM-1 is a ~30kDa 
glycoprotein associated with 
the adaptor protein DAP12. 

A. anti-TREM-1 mAb or control 
IgG1 (anti-MHC class I mAb) 
immunoprecipitates from surface 
biotinylated monocytes were left 
untreated or treated with N-
Glycanase F, and analyzed by 
Western Blot analysis with Strep-
tavidine-HRP.  
B. Pervanadate-treated mono-
cytes were subjected to immuno-
precipitation with anti-TREM-1 
mAb, anti-SIRP mAb as a posi-
tive control, or control IgG1. The 
precipitates were analyzed by 
anti-phosphotyrosine blot under 
reducing and non-reducing condi-
tions.  
C. Anti-DAP12 blot analysis of a 
TREM-1 immunoprecipitate from 
monocytes (reducing conditions). 
Control IgG1 (anti-MHC class I 
mAb) and anti-SIRP mAb im-
munoprecipitates were included 
as negative and positive control, 
respectively. TREM-1 and DAP12 
are indicated by arrows. Molecu-
lar weight markers are shown. 
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3.2.2 The role of TREM-1 in microbial infections  

3.2.2.1 Human TREM-1 is strongly expressed in acute inflammatory lesions 

caused by bacteria and fungi but not in chronic inflammations.  

In vivo TREM-1 expression was determined in tissue specimens derived from acute or 

granulomatous inflammatory lesions caused by bacterial, fungal or non-microbial 

agents. TREM-1 was highly expressed in neutrophils associated with skin lesions 

caused by Staphylococcus aureus, such as folliculitis and impetigo (Figure 3.10A-D). 

In addition, increased TREM-1 expression was observed in neutrophils associated 

with granulomatous lymphadenitides caused by Bartonella henselae and Aspergillus 

fumigatus (Figure 3.10E-H). In the latter, TREM-1 was also expressed in epithelioid 

and multinucleated giant cells surrounding the granulomas (Figure 3.10D). In con-

trast, TREM-1 expression was either weak or absent in granulomatous lymphadeniti-

des caused by Mycobacterium tuberculosis as well as in sarcoid and foreign body 

Figure 3.9: Regulation of human TREM-1 surface expression and function in vitro. 

A. TREM-1 is strongly upregulated after incubation of neutrophils and monocytes with heat-inactivated 
Staphylococcus aureus, Pseudomonas aeruginosa, LTA and LPS (left and middle panels) but not by Bacillus 
of Calmette-Guerin and mycolic acid (right panels). Stimulated cells (solid bold line) were analysed for cell
surface expression of TREM-1, as compared to non-stimulated cells (solid line). Dashed profiles indicate 
background staining of stimulated cells with a control IgG1 mAb.  
B. Ligation of TREM-1 potentiates LPS-mediated cytokine release. Monocytes were challenged for 16 hours
as indicated. Supernatants were analysed for TNF-α (left panel) and IL-1β (right panel). All data points corre-
spond to the mean and the standard deviation of four independent experiments. 
C. TREM-1 is differentially regulated by pro- and anti-inflammatory cytokines. Monocytes were incubated with
TNF-α, IL-1β (top panels) or IL-10 and TGFβ (bottom panels) Stimulated cells (solid bold line) were analysed
for cell surface expression of TREM-1, as compared to non-stimulated cells (solid line). Dashed profiles indi-
cate background staining of stimulated cells with a control IgG1 mAb. 
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granulomas (data not shown). In addi-

tion, TREM-1 was hardly detectable 

in non-microbial inflammations, such 

as psoriasis, ulcerative colitis and 

vasculitis caused by immune com-

plexes, despite a considerable infiltra-

tion of neutrophils and monocytes 

(Figure 3.11A-F and data not shown). 

Together, these results are consistent 

with a predominant role of TREM-1 

in acute and granulomatous inflam-

mations caused by microbial products. 

3.2.2.2 Human TREM-1 is 

strongly upregulated in in-

filtrating neutrophils of 

septic patients  

Under certain circumstances the ex-

cessive inflammatory response to in-

fectious agents can lead to septic 

shock (Beutler et al., 1985; Bone, 

1991; Glauser et al., 1991; Morrison 

and Ryan, 1987; Tracey et al., 1986). 

This process is characterized by the 

massive release of proinflammatory 

cytokines, such as TNF-α, IL-1β, 

macrophage migration inhibitory factor (MIF) and high mobility group-1 (HMG-1) 

protein, which mediate not only tissue damage, but also haemodynamic changes, mul-

tiple organ failure and ultimately death (Alexander et al., 1991; Bernhagen et al., 

1993; Beutler et al., 1985; Ohlsson et al., 1990; Wang et al., 1999). Consistent with 

the role of TREM-1 in bacterial infections, TREM-1 surface expression was increased 

considerably on neutrophils infiltrating the peritoneal cavity of patients with septic 

shock due to bacterial peritonitis (Figure 3.12B). In contrast, peritoneal lavage cells of 

patients with a systemic inflammatory response syndrome (SIRS) caused by non-

microbial peritoneal inflammation showed normal levels of TREM-1 (Figure 3.12A).  

 
Figure 3.10: Human TREM-1 is strongly ex-
pressed in acute inflammatory lesions caused by
bacteria and fungi. 

TREM-1 expression was detected using mAb 21C7
in acute cutaneous folliculitis (A) and impetigo (C)
due to Staphylococcus aureus, in cat scratch granu-
loma induced by Bartonella henselae (E) and granu-
loma due to Aspergillus fumigatus (G). It is of note
that within the latter, TREM-1 is expressed not only
on infiltrating neutrophils but also on the multinucle-
ated giant cells (arrow) surrounding the granuloma.
Staining with control mAb is shown in B, D, F, H,
respectively.  
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3.2.2.3 Mouse TREM-1 is expressed on mouse neutrophils, alveolar macro-

phages and is strongly upregulated during experimental LPS-induced 

shock  

If TREM-1 were involved in inflam-

matory responses to microbial prod-

ucts, inhibition of TREM-1 using 

soluble TREM-1 as a receptor decoy 

would be expected to reduce inflam-

mation, eventually preventing lethal 

shock. To test this hypothesis in mur-

ine models of sepsis, we cloned the 

murine homologue of human TREM-1 

(mTREM-1) and generated the 

mTREM-1-specific mAb 50D1. Simi-

lar to human TREM-1, mTREM-1 is 

weakly expressed on blood neutro-

phils, alveolar macrophages and neu-

trophil precursers in the BM (data not 

shown). Surprisingly, Mac-1high/Ly-

6G- blood monocytes did not express 

mTREM-1. Using 50D1, we observed 

that mTREM-1 expression was 

upregulated in peritoneal neutrophils 

during experimental LPS-induced shock (Figure 3.12C,D) similar to microbial septic 

shock in humans (Figure 3.12A,B).  

Figure 3.11: Human TREM-1 is only weakly ex-
pressed in neutrophils and monocytes accumu-
lating in non-pathogenic inflammations.  

Psoriasis (A, B), Ulcerative Colitis (C, D), and Vas-
culitis caused by immune complexes (E, F) are
characterised by inflammatory infiltrates of neutro-
phils, as detected by anti-CD15 mAb (left panels).
However, TREM-1 expression is weak or absent
(right panels) in consecutive/serial sections. 

Figure 3.12: TREM-1 is strongly
upregulated on peritoneal neu-
trophils during septic shock in
humans and mice.  

Flow cytometric analysis of perito-
neal lavage cells from patients
with aseptic SIRS due to aseptic
cholecystitis (A) or polymicrobial
gram-positive sepsis caused by
bowel perforation (B). CD15high

cells correspond to neutrophils.
Four-colour analysis of peritoneal
leucocytes from LPS-treated
C57BL/6 mice (D) compared to
control animals (C). Ly-6Ghigh

/TREM-1high cells correspond to
murine neutrophils. The Ly-6Glow-

negative/TREM-1high cells are
CD11b/Mac-1+(data not shown)
and therefore correspond to peri-
toneal macrophages. Staining with
isotype-matched control mAbs
were set to the indicated lower
quadrants. 
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3.2.2.4 Inhibition of mTREM-1 signaling blocks endotoxic shock and inflamma-

tory responses in vivo.  
Figure 3.13: Inhibition of 
mTREM-1 signaling blocks 
endotoxic shock and inflam-
matory responses in vivo.  

A. C57BL/6 mice were treated 
with control huIgG1 (closed 
circles) or mTREM-1-IgG1 
(open circles) 1 hour prior to 
administration of LPS. Data 
points are from seven inde-
pendent experiments, each of 
which included 5-10 animals 
per group. Survival was 76% 
(37 of 49) in mice treated with 
mTREM-1-IgG1 and 6% (3 of 
49) in mice treated with huIgG1 
(P = 0.0002, two-tailed Fisher’s 
exact test). In additional con-
trols, mice received injections 
with purified human ILT3-IgG1 
(closed squares, n = 25) or 
heat-inactivated mTREM-1-
IgG1 (closed triangles; n = 10) 
before induction of endotoxe-
mia.  
B. Estimation of the LPS LD50 in 
mice treated with mTREM-1-
IgG1 or huIgG1. Mice were 
randomly assigned to 20 groups 
each containing 10 animals. 
Ten groups received intraperi-
toneal injections of mTREM-1-
IgG1, whereas 10 groups were 
injected with huIgG1. One hour 
later, endotoxemia was induced 
by application of various quanti-
ties of LPS as indicated. Calcu-
lation of LD50 was accomplished 
as previously described 
(LD50

mTREM-1-IgG1 = 621 µg, 
LD50

IgG1= 467 µg; P < 0.0001)6. 
C. mTREM-1-IgG1 protects 
against LPS-induced lethal 
peritonitis when given after 
challenge. Mice were injected 
with LPS one (white circles), 
two (light grey circles), four 
(dark grey circles) and six hours 
(black circles) prior to admini-
stration of mTREM-1-IgG1. 
Data points are from two inde-
pendent experiments, which 
included 3-7 animals per group. 

Survival was 80% (P = 0.0007, two-tailed Fisher’s exact test), 60% (P = 0.0108, two-tailed Fisher’s exact test), 40% 
and 0%, respectively.  
D.-G. Analysis of inflammatory parameters during fatal endotoxemia. Mice were treated as described in (A). Serum 
levels of TNF-α (D) and IL-1β (E) and numbers of peritoneal neutrophils (F) and macrophages (G) were determined 
at the indicated time points. Data points correspond to the mean and the standard deviation of two independent ex-
periments, each of which included 4-6 mice per treatment group. 

 

A chimeric protein containing mTREM-1 extracellular domain and human-IgG1 Fc 

portion (mTREM-1-IgG1) was produced and injected into the peritoneal cavity 1 hour 

before the induction of endotoxemia. Lethality was monitored over time as compared 

to animals, which had received control injections of human IgG1 (huIgG1), control-

IgG1 fusion protein (ILT3-IgG1) (Cella et al., 1997) or heat-inactivated mTREM-1-
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IgG1 prior to LPS administration. As shown in Figure 3.13A, 76% of the mice treated 

with mTREM-IgG1 survived endotoxemia as compared to 7% of control mice. To 

precisely quantify the protection provided by mTREM-1-IgG1, groups of mice pre-

treated with mTREM-1-IgG1 or huIgG1 were challenged with various doses of LPS. 

The LD50 of LPS in animals treated with mTREM-1-IgG1 (LD50 = 621 µg) was sig-

nificantly higher than the LD50 in control animals (LD50 = 467 µg) (Figure 3.13B). 

Furthermore, it was monitored whether mTREM-1-IgG1 is still protective when ad-

ministered 1 hour, 2 hours, 4 hours and 6 hours after LPS injection. Remarkably, 

mTREM-1-IgG1 conferred 80% protection against endotoxic shock when applied 1 

hour after LPS injection. 

Partial protection was 

also observed two and 

four hours later (Figure 

3.13C). Thus, soluble 

TREM-1 is effective even 

when injected subsequent 

to the outbreak of en-

dotoxemia. 

Analysis of blood sam-

ples taken from mice pre-

treated with TREM-1-

IgG1 and control animals 

at different time points 

following LPS admini-

stration revealed a sig-

nificant reduction of the 

plasma concentrations of both TNF-α and IL-1β (Figure 3.13D,E). Furthermore, dif-

ferential count analysis revealed a significant reduction in the total cell number of 

neutrophils and monocytes/macrophages infiltrating the peritoneum 6-8 hours after 

LPS injection in mTREM-1-IgG1-pre-treated animals as compared to controls (Figure 

3.13F,G). The reduced accumulation of leukocytes at the inflammatory site was not 

caused by a putative capacity of mTREM-1-IgG1 to target leukocytes for sequestra-

tion or destruction. In fact, injection of TREM-1-IgG in normal mice did not affect the 

levels of circulating leukocytes (data not shown). Thus, inhibition of TREM-1-

mediated responses is sufficient to lower serum concentrations of TNF-α and IL-1β 

and cellular infiltrates below levels that are lethal for the host under conditions of 

LPS-mediated shock, without causing leukopenia. 

 
Figure 3.14: mTREM-1 is protective in bacterial peritonitis. 

A. C57BL/6 mice were injected intraperitoneally with mTREM-1-IgG1
(open circles) or huIgG1 (closed circles) one hour before intraperito-
neal administration of E. coli. Data points are from two independent
experiments, which included 5-15 animals per group. Survival was
55% (11 of 20) in mice treated with mTREM-1-IgG1 and 15% (3 of
20) in mice treated with control huIgG1 (P = 0.0187, two-tailed
Fisher’s exact test).  
B. mTREM-1-IgG1 protects against fatal septic shock induced by
CLP. Mice were injected intraperitoneally with mTREM-1-IgG1 (open
circles), huIgG1 (closed circles) or TNF-R1-IgG1 (closed squares)
immediately after CLP. Data points are from four independent ex-
periments, which included 5-10 animals per group. Survival was 45%
(18 of 40) in mice treated with mTREM-1-IgG1, 17.5% (7 of 40) in
mice treated with control huIgG1 (P = 0.015, two-tailed Fisher’s exact
test) and 0% (0 of 20) in mice treated with TNF-R1-IgG1. 
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3.2.2.5 mTREM-1-IgG1 is protective in bacterial peritonitis  

Endotoxic shock imitates human sepsis only in part, as it does not involve the replica-

tion and dissemination of bacteria. In these conditions a complete block of TREM-1 

signalling could be deleterious by impairing the capacity of the immune system to 

fight infections, as previously observed for anti-TNF-α treatments (Echtenacher et al., 

1990; Echtenacher et al., 1996; 

Eskandari et al., 1992; Malaviya et 

al., 1996; Peschon et al., 1998; 

Pfeffer et al., 1993; Rothe et al., 

1993). It was therefore investigated 

whether mTREM-1-IgG1 protects 

against septic shock in two models 

of microbial peritonitis and sepsis 

caused by intraperitoneal admini-

stration of Escherichia coli or by 

cecal ligation and puncture (CLP) 

(Appelmelk et al., 1986; Bone, 

1991; Calandra et al., 2000; Ech-

tenacher et al., 1990; Glauser et al., 

1991). As shown in Figure 3.14, 

injection of mTREM-1-IgG1 con-

ferred significant protection against 

lethal E. coli peritonitis and CLP-induced septic shock (the CLP model was per-

formed by Dr. M. Weigand, University of Heidelberg, Germany) compared to control 

huIgG1, whereas treatment with TNF-R1-IgG1 caused accelerated and complete 

death of all animals (Figure 3.14B). Thus, mTREM-1-IgG1 reduces inflammatory re-

sponses but still allows sufficient control of the bacterial infection. 

3.2.2.6 TREM-1 mediates neutrophil survival in vivo  

3.2.2.6.1 Detection of apoptosis during endotoxemia in vivo 

mTREM-1-IgG1-pretreated animals showed a significant reduction in the number of 

peritoneum infiltrating neutrophils compared to controls. Interestingly, this reduction 

was paralleled by a much higher degree of dead neutrophils observed during differen-

tial count analysis. In particular, morphological changes such as chromatin condensa-

tion, nucleus fragmentation and cell fragmentation into apoptotic bodies (Kerr et al., 

1972) indicated neutrophil apoptosis and suggested that mTREM-1-IgG1 may influ-

ence neutrophil homeostasis. Therefore, it was assessed whether blockade of TREM-1 

 
Figure 3.15: Schematic view of apoptotic cells in
vitro and in vivo. 

Predicted flow cytometric analysis of apoptotic cells 
kept in vitro (top panel) or isolated from mice (bottom 
panel) using Propidium iodide (detection of late apop-
totic cells) and Dioc6(3) (detection of early apoptotic 
cells). 
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signaling inhibits neutrophil survival during LPS-induced shock. Unfortunately, iden-

tification and quantification of apoptotic cell death in vivo is limited by the action of 

macrophages, which recognize and subsequently phagocytose cells displaying cell 

surface signals of onset and progression of apoptosis (Savill and Fadok, 2000). Thus, 

methods detecting late morphological changes during apoptosis (such as PI-uptake 

detecting the loss of plasma membrane integrity) cannot be used in vivo (for a sche-

matic view see Figure 3.15). However, it was previously shown that, even in vivo, 

early changes in mitochondrial membrane potential can be detected (Metivier et al., 

1998) (for a schematic view see Figure 15). Despite the biological limitations, a sys-

tem was established that allows the identification of apoptotic neutrophils during LPS-

induced peritonitis (Figure 3.16A,B). Before induction of endotoxemia, total blood 

leucocytes were labeled by injecting the fluorescent dye DiOC6(3) intravenously. 

DiOC6(3) is known as an indicator for intact mitochondrial membrane potential, thus 

allowing the detection of early mitochondrial defects as reduction of fluorescence at 

525 nm (Metivier et al., 1998). One hour after DiOC6(3) administration, mice were 

treated with control huIgG1, soluble decoy TREM-1 receptor (mTREM-1-IgG1) or 

Figure 3.16: Inhibition of TREM-1 signaling accelerates onset of neutrophil apoptosis in vivo. 

A. Experimental set up: female C56BL/6 mice were randomly grouped (20 mice per group) and injected with 10 µg
DiOC6(3) i.v. One hour later, 500 µg of mTREM-1-IgG1, mTREM-1-IgGmutant or control huIgG1 were administered i.p. in a
blinded fashion. Endotoxemia was induced by injecting 25 g/kg LPS (LD100) i.p. one hour later. Mice of each treatment
group were randomly separated in two subgroups of 10 mice each. 10 mice were kept for 10 days and viability was moni-
tored 4-6 times a day. The residual 10 mice/group were sacrificed after 6 hours, peritoneal lavage cells (PLC) were iso-
lated and placed on ice immediately.  
B. Detection of early apoptotic neutrophils by FACS analysis. Freshly isolated PLC were kept on ice during staining for 10
min with anti-mTREM-1-Cy5, anti-Ly-6G-PE and 7-AAD and subsequently analyzed on a FACScalibur. mTREM-1+/Ly-6G+

neutrophils were gated and the percentages of DiOC6(3)low/7-AAD- neutrophil cells, corresponding to early apoptotic neu-
trophils, was determined and indicated in the corresponding quadrant. 7-AAD+ cells were excluded. 
C. mTREM-1-IgG1 reduces neutrophil survival in vivo. Mice were treated as indicated in (A) and (B) and percentages of
mTREM-1+/Ly-6G+/DiOC6(3)low/7-AAD- were determined. Data points are representative for three independent experiments
(10 animals per treatment group). The amount of early apoptotic cells was 48.1% in neutrophils from mice treated with
mTREM-1-IgG1, 45.7% in neutrophils from mice treated with mTREM-1-IgG1mutant, and 24.7% in neutrophils from mice
treated with huIgG1 (*P < 0.05, Student t test). 
D. mTREM-1-IgG1 and mTREM-1-IgG1mutant protect mice against endotoxemia. Mice were treated as indicated in (A) and
(B) and survival kinetics was determined over a 10 day-period. Data points are representative for three independent ex-
periments (10 animals per treatment group). Survival was 70% in mice treated with mTREM-1-IgG1, 60% in mice treated
with mTREM-1-IgG1mutant, 10% in mice treated with huIgG1 (P < 0.02, Student t test). 
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TREM-1-IgG1 fusion protein with a mutated Fc portion (TREM-1-IgG1mutant). En-

dotoxemia was induced one hour later, peritoneal lavage cells were isolated at differ-

ent time points after LPS administration, surface stained with anti Ly-6G and anti-

mTREM-1 and analyzed by FACS for mTREM-1+/Ly-6G+/DiOC6(3)low/7-AAD- early 

apoptotic neutrophils (Figure 3.16B).  

3.2.2.6.2 mTREM-IgG1 reduces neutrophil survival during endotoxemia in vivo 

Using the described system the progression of neutrophil apoptosis during LPS-

induced shock was investigated. To confirm protection against septic death, half of 

the treated mice were kept and monitored for mortality over time (Figure 3.16D) 

whereas the other half of the mice was investigated for neutrophil apoptosis (Figure 

3.16C). Strikingly, in mice protected against septic death by mTREM-1-IgG1 or 

mTREM-1-IgG1mutant, the amount of early apoptotic neutrophils 6 hours after LPS 

administration were significantly increased (48.1 and 45.7%, respectively) compared 

to control animals (24.7%) (Figure 3.16C). Interestingly, a difference in apoptotic cell 

death in mice treated with mTREM-1-IgG1 could already be observed 2 hours after 

LPS administration (data not shown), thus indicating that TREM-1-mediated survival 

signals seem to be essential from early on during LPS-induced shock.  

We also isolated Ly-6G+ neutrophils from the peritoneal cavity 6 hours after LPS in-

jection and we monitored in vitro loss of ∆Ψm and integrity of the plasma membrane 

over time (Figure 3.17A). Neutrophils derived from mTREM-1-IgG1 mutant-treated 

Figure 3.17: Inhibition of TREM-1 blocks initiation but not progression of apoptosis. 

A. Experimental set up: mice (30 mice per group) were treated as indicated in Fig. 3A. 6 hours after LPS administration PLC
were isolated, Ly-6G+ cells were purified by flow cytometry and cultured at 37°C.  
B. Loss of ∆Ψm [reduced fluorescence with DiOC6(3)] and cell death (increased fluorescence at 575 nm/PI uptake) was deter-
mined after LPS administration and FACSorting at the indicated time points (in brackets). Percentages displayed in the quad-
rants correspond to late apoptotic cells (PI+/Dioc6(3)low), early apoptotic cells (PI-/Dioc6(3)low) and live cells (PI-/Dioc6(3)high). Data
points are representative for two independent experiments (30 animals per treatment group). 
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animals revealed an accelerated apoptosis as compared to neutrophils isolated from 

control animals (Figure 3.17B). However, the rate of transition from early 

(Dioc6(3)low/Propidium iodine (PI)-) to late (Dioc6(3)low/PI+) apoptosis was not signifi-

cantly altered in the presence of mTREM-1-IgG1 mutant, thus indicating that TREM-

1-signaling prevents initiation but not progression of neutrophil apoptosis. 

3.2.2.7 The molecular mechanism of TREM-1-mediated neutrophil survival 

3.2.2.7.1 TREM-1 promotes neutrophil survival through cytokine secretion and direct 

intracellular signaling 

To investigate the mo-

lecular mechanisms of 

TREM-1-anti-apoptotic 

effect, we analyzed in 

vitro survival of human 

neutrophils stimulated 

with plastic bound 

F(ab’)2 anti-TREM-1 

mAb. As shown in 

Figure 3.18A, the vast 

majority of TREM-1-

stimulated neutrophils 

remain viable up to 

48 h as compared to 

neutrophils stimulated 

by control F(ab’)2 

mAb, which underwent 

apoptosis just after 8 h 

in culture. Similar ef-

fects were obtained 

with isolated mouse 

neutrophils stimulated 

with anti-mTREM-1 

mAb 50D1 (data not 

shown). These data 

confirm that triggering 

of TREM-1 leads to 

resistance to apoptosis in neutrophils and show that this effect can be achieved in the 

 
Figure 3.18: Stimulation of TREM-1 mediates survival of neutrophils in vitro  

A. Freshly isolated neutrophils were stimulated with plastic-bound control F(ab’)2

(black diamonds), F(ab’)2 anti-TREM-1 mAb 9E2 (black circles). DNA fragmenta-
tion was determined at the indicated time points. All data are the mean and stan-
dard deviation of three independent experiments. 
B. Freshly isolated neutrophils were stimulated with plastic-bound control F(ab’)2

(black diamonds) or F(ab’)2 anti-TREM-1 mAb 9E2 (black circles) in the presence 
of neutralizing anti-TNF-α (white squares), anti-IL-8 (black squares), anti-IL-1β
(black triangles squares). DNA fragmentation was determined at the indicated 
time points. All data are the mean and standard deviation of three independent 
experiments. 
C. TREM-1-conditioned Medium (TCM) was produced by stimulating or neutro-
phils (TCM) for 24 hours with plastic bound F(ab’)2 anti-TREM-1 mAb 9E2. TCM 
were then transfered to unstimulated neutrophils in the presence or absence of 
biotinylated F(ab’)2 anti-TREM-1 mAb 9E2/Streptavidine (9E2/SA), neutralizing 
Ab against IL-8 as indicated. DNA fragmentation was determined 36 hours after 
stimulation. All data are the mean and standard deviation of four independent 
experiments.  
D. (C) Freshly isolated neutrophils were stimulated with plastic-bound control 
F(ab’)2, F(ab’)2 anti-TREM-1 mAb 9E2, F(ab’)2 anti-TREM-1 mAb 9E2 together 
with neutralizing anti-IL-8 mAbs, or IL-8 alone, in the absence (black bars) or 
presence of PD98059 (Erk-inhibitor, light grey bars) and LY94002 (PI(3)K-
inhibitor, dark grey bars). Cell death (increased fluorescence at 575 nm after PI 
uptake) was determined after 36 hours. 
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absence of LPS stimulation. Since TREM-1 triggers the release of cytokines, such as 

IL-8, TNF-α and IL-1β in vitro, it was unclear whether the observed survival effect of 

TREM-1 was mediated by these cytokines in an autocrine fashion or rather by TREM-

1-induced intracellular signaling pathways. Therefore, neutrophils were stimulated 

through TREM-1 in the presence of neutralizing antibodies against TNF-α, IL-8, and 

IL-1β. As shown in Figure 3.18B, no effect of anti-TNF-α or IL-1β could be docu-

mented in this assay. In the presence of anti-IL-8 mAb, a reduction of neutrophil sur-

vival was detected, but a considerable number of cells were still protected from apop-

tosis. IL-8-neutralized supernatant from TREM-1 stimulated neutrophils (TREM-1 

conditioned medium: TCM) did not induce any survival on unstimulated neutrophils 

thus ruling out other soluble survival factors secreted after TREM-1 stimulation (Fig-

ure 3.18C). Thus, TREM-1 protects against spontaneous apoptosis by inducing the 

secretion of IL-8 as well as by direct activation of intracellular pathways. 

TREM-1 stimulation induces activation and phosphorylation of the ERK1/2 in mono-

cytes (Figure 3.7) and neutrophils (Figure 3.19A). ERK, together with other kinases, 

Akt, protein kinase A (PKA) and 90-kDa ribosomal S6 kinases (p90RSK) are impli-

cated in transmitting survival signals (Bonni et al., 1999; Burgering and Coffer, 1995; 

Franke et al., 1995; Scheid and Duronio, 1998; Scheid et al., 1999; Tan et al., 1999; 

Xia et al., 1995). In particular, it has been shown that IL-8 inhibits apoptosis by induc-

ing PI(3)K-mediated activation of Akt (Klein et al., 2000). To assess the role of these 

kinases, we tested the effect of the ERK inhibitor PD98059 and the PI(3)K inhibitor 

LY294002 on TREM-1-mediated survival. As shown in Figure 3.18D, both PD98059 

and LY294002 reduced TREM-1-mediated neutrophil survival. In the presence of 

neutralizing anti-IL-8 mAb, only PD98059 retained its inhibitory ability. In contrast, 

IL-8-mediated survival was highly sensitive to the PI(3)K inhibitor LY294002. Thus, 

TREM-1 stimulation induces neutrophil survival through an IL-8/PI(3)K/Akt-

dependent pathway and through a receptor-proximal ERK-dependent survival signal.  

3.2.2.7.2 TREM-1 triggers the phosphorylation of Bad and the release of Bcl-xL in 

neutrophils 

Neutrophils are characterized by a high rate of constitutive apoptosis that can be ex-

plained by the constitutive expression of pro-apoptotic members of the Bcl-2 family 

(Bad, Bax, Bid and Bak), as well as by low levels of anti-apoptotic Bcl-2 and Bcl-xL 

(Adams and Cory, 1998; Akgul et al., 2001). Despite the limited number of mito-

chondria in neutrophils, several studies suggest that integrity of mitochondria con-

trolled by Bcl-2 family members play an important role in the apoptotic pathways in 

these cells (Adams and Cory, 1998; Akgul et al., 2001; Green, 2000; Gross et al., 

1999; Hengartner, 2000; Huang and Strasser, 2000; Kroemer and Reed, 2000). Recent 
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work showed that phosphorylation of Bad by Akt at Ser136 (Blume-Jensen et al., 1998; 

Brunet et al., 1999; Datta et al., 1997; del Peso et al., 1997; Klein et al., 2000; Lizcano 

et al., 2000; Scheid and Duronio, 1998; Scheid et al., 1999; Zhou et al., 2000) or ERK 

at Ser112 (Klein et al., 2000; Scheid and Duronio, 1998; Scheid et al., 1999) is crucial 

to cell survival in particular for neutrophils (Klein et al., 2000). Therefore it was in-

vestigated whether TREM-1 stimulation induces ERK- and/or Akt -dependent phos-

phorylation of Bad. As shown in Figure 3.19A, TREM-1 stimulation led to the phos-

phorylation of ERK but not of Akt/PKB, at least during early time points. Consistent 

with this observation, TREM-1 induced phosphorylation of Bad at Ser112 (Figure 

3.19A). Treatment of neutrophils with the ERK inhibitor PD98059 blocked TREM-1-

induced Bad phosphorylation entirely, while a PI(3)K inhibitor had no effect (Figure 

3.19B). Stimulation of cells with IL-8 induced activation of both ERK and Akt (Fig-

ure 3.19A). Although both IL-8 and TREM-1 induced similar ERK activation, IL-8 

induced a predominant phosphorylation of Bad at Ser136, whereas phosphorylation of 

Bad at Ser112 was hardly detectable (Figure 3.19A). PKA has been shown to induce 

survival by phosphorylating Bad at Serine 155 (Ser155) (Harada et al., 1999; Lizcano 

et al., 2000). However, neither IL-8 nor anti-TREM-1 mAb stimulation led to the 

phosphorylation of Bad at Ser155 (Figure 3.19A), excluding involvement of PKA dur-

ing TREM-1-induced neutrophil survival. 

The presence of Bcl-xL proteins in neutrophils is debated (Akgul et al., 2001; Chuang 

et al., 1998; Moulding et al., 1998; Ohta et al., 1995; Santos-Beneit and Mollinedo, 

2000; Weinmann et al., 1999). Here, however, low levels of the 28 kDa Bcl-xL protein 

could be detected in neutrophil lysates by immunoblotting of anti-Bcl-x immunopre-

cipitates using an anti-Bcl-x antibody (Figure 3.19B). To demonstrate that TREM-1-

mediated phosphorylation of Bad at Ser112 influences Bad-Bcl-xL-heterodimerization 

and Bcl-xL-mediated protection of mitochondrial integrity, we quantified Bcl-xL-Bad 

heterocomplexes in anti-Bcl-x immunoprecipitates. As shown in Figure 3.19C, Bad is 

rapidly released from Bcl-xL upon stimulation with TREM-1 mAb, indicating that 

phosphorylation of Bad at Ser112 is sufficient to the release of Bcl-xL from Bad-Bcl-

xL-heterodimers. Interestingly, IL-8 also induces dissociation of Bad from Bcl-xL 

(Figure 3.19C), however this effect could be reversed entirely with the addition of 

PI(3)K inhibitors suggesting that the IL-8-mediated activation of Bad is dependent on 

the PI(3)K/Akt pathway (data not shown).  
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To demonstrate that the disruption of Bad-Bcl-xL heterodimers protects mitochondrial 

integrity, we monitored the distribution of cytochrome c between mitochondria and 

cytosol during TREM-1 stimulation. Cytochrome c is normally found within mito-

chondria. When cytochrome c is released in the cytosol, it cooperates with Apaf-1 and 

dATP cofactors in inducing autocatalytic cleavage of caspase-9 and subsequent apop-

tosis (Kluck et al., 1997; Li et al., 1997; Liu et al., 1996; Srinivasula et al., 1998; 

Yang et al., 1998; Zhou et al., 2000). In neutrophils stimulated through TREM-1 cy-

tochome c was primarily found inside the mitochondria (Figure 3.19D). In contrast, 

unstimulated cells displayed rapid release of cytochrome c from the mitochondria to 

the cytosol, allowing for caspase-9 cleavage and induction of apoptosis (Figure 

 
Figure 3.19: Stimulation of TREM-1 leads to Erk-induced phosphorylation of Bad at Ser112

and subsequent disruption of Bad-Bcl-xL interaction and protection of mitochondrial in-
tegrity 

A. Neutrophils were stimulated with F(ab’)2 control, F(ab’)2 anti-TREM-1 mAb 9E2 or IL-8 for the 
indicated time periods, lysed, subjected to reduced SDS-PAGE on 12% polyacrylamide gels and
analyzed by immunoblot for phosphorylation of Erk, Akt, and Bad at Thr202/Tyr204, Thr308, Ser112, 
Ser135, and Ser155, respectively. The blots were stripped and subsequently reprobed with anti-
Bad Ab. 
B. Neutrophils were stimulated as indicated in (A) and subjected to immunoprecipitation with
anti-Bcl-x Ab. The precipitates were analyzed by anti-Bad (upper panel) and anti-Bcl-x (lower 
panel) immunoblot under reducing conditions. 
C. Neutrophils were stimulated with F(ab’)2 anti-TREM-1 mAb 9E2 in the absence or presence of
PD98059 and LY294002 for 10 min. Whole cell lysates were prepared and subjected to SDS-
PAGE and subsequent immunoblot analysis for phospho-ERKThr202/Tyr204 and phospho-BadSer112. 
The blots were stripped and subsequently reprobed with anti-Bad Ab.  
D. Freshly isolated human neutrophils were treated with F(ab’)2 anti-TREM-1 mAb (lower panels) 
or control F(ab’)2 mAb (top panels) for the indicated time periods. Subcellular fractions were
prepared and analyzed by immunoblot. Cytosolic (Cyt) and mitochondrial fractions (Mit) were
first analyzed with 7H8.2C12 anti-cytochrome c mAb (1st and 3rd panel), subsequently stripped 
and developed with 12C4-F12 anti-cytochrome c oxidase/subunit II mAb to control equal loading 
and purity of mitochondrial fractions (2nd and 4th panel). 
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3.19E). Thus, upon TREM-1 stimulation, Bcl-xL is released from the inhibitory func-

tion of Bad and can protect the integrity of mitochondria. 

3.2.3 The hunt for TREM-1 ligand (TREM-1L)  

TREM-1 is engaged on neutro-

phils during LPS-induced shock. 

The observation that mTREM-1-

IgG1 is actively blocking en-

dotoxemia (Figure 3.13C) suggests 

that the unknown TREM-1L is 

induced early after LPS stimula-

tion (0 – 4 hours after LPS ad-

ministration). TREM-1L can be a 

cell surface molecule expressed 

on immune cell infiltrating the 

peritoneum or on endothelial cell. 

In addition, it would be possible 

that TREM-1L is secreted thus 

acting as a proinflammatory cyto-

kine. To address this first possi-

bility, soluble TREM-1-huIgG1 

was modified by biotinylation or with the fluorescent dye Cy5 and used for the stain-

ing of different cell types, including cells extracted from the peritoneum of LPS-

treated mice after 2 – 12  hours. Flow cytometry analysis revealed that Ly-6G+/Mac-

1+ neutrophils infiltrating the peritoneum already 2 – 4 hours after LPS administration 

are TREM-1L+ (Figure 3.20). Interestingly Mac-1+/IgM+/CD19+ B cells and 

F4/80+/Mac-1+ macrophages are TREM-1L- (Figure 3.20). Neutrophils isolated from 

blood, spleen or PL from normal mice did not bind to TREM-1-IgG1 (data not 

shown). In addition, isolated blood neutrophils from human and mouse stimulated in 

vitro with LPS did not bind to TREM-1-IgG1 (data not shown). This set of data 

clearly indicates that TREM-1L is, in particular, induced during endotoxemia but not 

with LPS alone.  Further experiments using either expression cloning or a biochemical 

approach will be attempted to clone TREM-1L from neutrophils. 

Figure 3.20: TREM-1L is expressed on neutrophils infiltrat-
ing the peritoneum during LPS-induced shock 
Four-colour flow cytometric analysis of peritoneal leuco-
cytes from LPS-treated C57BL/6 mice. Gating on Ly-6Ghigh

/Mac-1high murine neutrophils, Ly-6Glow-negative/Mac-
1high/F4/80+ activated, peritoneal macrophages, and Ly-6G-
/Mac-1+/IgM+ B cells shows strong binding of mTREM-1-
IgG1-Cy5 (solid, grey profiles) exclusively to neutrophils
compared to control huIgG1-Cy5 (solid, white profiles).
Staining with isotype-matched control mAbs were set to the
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3.3 Characterization of human and mouse TREM-2 

3.3.1 Characterization of human TREM-2 in vitro and in situ 

3.3.1.1 Human immature monocyte-derived DCs express TREM-2, a ~40 kDa 

glycoprotein which is associated with DAP12. 

In initial studies, TREM-2 transcript was selectively detected in monocyte-derived 

DCs by reverse-transcriptase polymerase chain reaction (data not shown). To pre-

cisely investigate the cellular distribution of TREM-2 as well as its biochemical char-

acteristics and functions, anti-TREM-2 mAb were produced. The mAb 29E3 stained 

TREM-2-transfected 293 cells specifically, as compared to control transfectants (Fig-

ure 3.21A). In agreement with RT-PCR data, TREM-2 was highly expressed on DCs 

 

Figure 3.21: TREM-2 is selec-
tively expressed on immature
DCs 

A. mAb 29E3 recognizes selectively 
TREM-2. 293 cells transfected with 
a cDNA encoding FLAG-tagged 
TREM-2 (TREM-2FLAG) (right pan-
els) were stained with mAb 29E3
(upper panel), as compared to cells
transfected with a control cDNA
(controlFLAG) (left panels). The per-
centages of positive cells (upper 
right quadrants) are indicated. Ex-
pression of TREM-2FLAG and con-
trolFLAG was confirmed using an 
anti-FLAG mAb (lower panels). 
Cells stained with an isotype-
matched control mAbs were com-
prised within the indicated lower
quadrant. 
B. TREM-2 is strongly unregulated 
after stimulation of monocytes with
GM-CSF and IL-4. Monocytes 
treated with GM-CSF/IL-4 (left 
panel) or M-CSF (right panel) were 
analyzed by flow cytometry for cell 
surface expression of TREM-2 
(solid bold line) after 36 h or up to 
14 days, respectively. Dashed pro-
files indicate background staining
with a control IgG1 mAb. 
C. TREM-2 is rapidly downregu-
lated upon maturation of DCs. LPS-
(top right panel), CD40L- (lower left 
panel), TNF-α-stimulated (lower 
right panel), or unstimulated mono-
cyte-derived DCs (top left panel) 
were analyzed by flow cytometry for
cell surface expression of TREM-2 
and CD83 after 36h. Cells stained
with an isotype-matched control 
mAbs were comprised within the
indicated lower quadrants. 
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derived from peripheral blood mono-

cytes upon in vitro culture with GM-

CSF and IL-4 (Figure 3.21B). DC 

maturation induced by lipopolysac-

caride (LPS), TNF-α, CD40L-

expressing cells (Figure 3.21C), IL-

1β, CpG oligonucleotides, or aggre-

gated IgG (data not shown) led to 

complete downregulation of TREM-2. 

TREM-2 was undetectable on macro-

phages obtained by culturing mono-

cytes up to 14 days with M-CSF (Fig-

ure 3.21B), on primary DCs of pe-

ripheral blood, and on immature DCs 

in tissues or Langerhans cells in the 

skin (data not shown). Thus, TREM-2 

is preferentially expressed on imma-

ture monocyte-derived DCs.  

Immunoprecipitation of TREM-2 

from surface-biotinylated monocyte-

derived DCs revealed that TREM-2 is 

a glycoprotein of ~40 kDa, that is re-

duced to 26 kDa after N-

deglycosylation (Figure 3.22A). This 

result is in agreement with the pre-

dicted molecular mass of TREM-2. 

Since TREM-2 lacks known signaling 

motifs in the cytoplasmic domain and 

displays a charged lysine residue in 

the transmembrane domain, it was 

likely to be associated with a separate 

adapter molecule to transduce signals. 

Adapter molecules, such as DAP12, 

DAP10 and FcRγ are tyrosine phos-

phorylated upon cell treatment with 

the phosphatase-inhibitor pervanadate 

(Lanier et al., 1998b; Nakajima et al., 

1999; Wu et al., 1999). Indeed, anti-

 
Figure 3.22: TREM-1 is a 40 kDa glycoprotein associ-
ated with the adaptor protein DAP12 

A. Surface-biotinylated monocyte-derived DCs were lysed
and subjected to immunoprecipitation with 29E3 anti-
TREM-2 mAb (right lanes) or control IgG1 mAbs (21C7
anti-TREM-1 mAb). Immunoprecipitates were left un-
treated or treated with N-Glycanase F and analyzed by
Western Blot analysis with Streptavidine-HRP. Molecular
weight markers and specific protein bands are indicated. 
B. Pervanadate-treated monocyte-derived DCs were
subjected to immunoprecipitation with 29E3 anti-TREM-2
mAb or control IgG1 mAb (21C7 anti-TREM-1 mAb). The
precipitates were analyzed by anti-phosphotyrosine blot
under reducing (left lanes) and non-reducing (right lanes)
conditions. Tyrosine phosphorylated proteins are marked
by arrows. Molecular weight markers are indicated. 
C. Anti-DAP12 blot analysis of TREM-2 immunoprecipi-
tate from monocyte-derived DCs (left lanes) and mono-
cytes (right lanes) after pervanadate-stimulation (reducing
conditions). TREM-1 immunoprecipitates from monocytes
and monocyte-derived DCs were included as positive and
negative controls, respectively. Molecular weight markers
and specific protein bands are indicated. 



100  Results 

phosphotyrosine blotting of TREM-2 immunoprecipitates from pervanadate-

stimulated monocyte-derived DCs revealed a phosphorylated protein of ~14 kDa and 

~28 kDa under reducing and non-reducing conditions, respectively (Figure 3.22B). 

This pattern was consistent with the association of TREM-2 with a tyrosine-

phosphorylated protein that forms a disulfide-linked homodimer. Immunoblotting of 

TREM-2 immunoprecipitates with anti-DAP12, -DAP10 and -FcRγ antiserum dem-

onstrated that TREM-2, like TREM-1, associates with only DAP12 (Figure 3.22C and 

data not shown). Thus, TREM-2 is capable of stimulating DAP12-linked signaling 

pathways in DCs. 

3.3.1.2 TREM-2 induces ERK activation and survival of dendritic cells.  

To see whether the TREM-2/DAP12 complex transduces activating signals in DCs as 

other DAP12-associated receptors do in NK cells, monocytes and neutrophils (Lanier 

and Bakker, 2000), TREM-2 was stimulated with 29E3 mAb or with its F(ab’)2 frag-

ment. In both cases, ligation of TREM-2 elicited a rapid rise in intracellular Ca2+ con-

centration of DCs (Figure 23B). However, monovalent engagement of TREM-2 using 

F(ab’) 29E3 did not induce calcium mobilization, indicating that TREM-2-mediated 

activation requires at least two cross-linked receptors (data not shown). Cross-linking 

of TREM-2 with F(ab’)2 29E3 stimulated tyrosine phosphorylation of several proteins 

with approximate molecular masses of ~110, ~90, ~60-70, and ~30-40 kDa (Figure 

3.23C). The observed ~40 kDa tyrosine phosphorylated proteins corresponded to the 

ERK1/2, as demonstrated by anti-phospho-ERK1/2 immunoblotting (Figure 3.23D). 

It was previously shown that survival of LPS-stimulated DCs is dependent on ERK 

(Rescigno et al., 1998) and PI(3)K (Ardeshna et al., 2000), while maturation is mainly 

mediated through NF-κB. Therefore, it was tested whether stimulation of TREM-2 

leads to prolonged survival of DCs kept in culture in the absence of GM-CSF or IL-4. 

As shown in Figure 3.23E, cross-linking of TREM-2 with F(ab’)2 29E3 prolonged DC 

survival for almost 8 days. Treatment of TREM-2-stimulated DC with the ERK in-

hibitor PD98059 blocked this survival effect. Inhibitors of PI-3K, IκB-

phosphorylation, or IκB-degradation had no effect (Figure 3.23F and data not shown). 

These observations indicate the TREM-2 induces survival of DCs through activation 

of the ERK pathway.  
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3.3.1.3 TREM-2 triggers rapid upregulation of CCR7 and increased expression 

of MHC class II, CD86 and CD40.  

To examine whether TREM-2 can trigger migration of DCs and/or their maturation 

into efficient antigen-presenting cells, immature DCs were stimulated with F(ab’)2 

29E3 mAb coated on a plastic surface. These cells were tested for the expression of 

cell surface molecules involved in migration, antigen-presentation, costimulation and  

 
Figure 3.23: Stimulation of monocyte-derived DCs via TREM-2 induces Calcium mobilization, tyrosine
phosphorylation and prolongs DC survival by an Erk-dependent pathway. 

A. Functional characterization of F(ab’) and F(ab’)2 29E3. Monocyte-derived DCs were analyzed by flow
cytometry for cell surface expression of TREM-2 using either biotinylated F(ab’)2 29E3 (solid bold profile), F(ab’) 
29E3 (grey profile), control F(ab’) (dashed profile) or F(ab’)2 (solid profile) followed by Streptavidine-PE.  
B. Stimulation of TREM-2 induces intracellular Ca2+ mobilization. Bivalent crosslinking of TREM-2 using IgG1,κ
29E3, or Fc-free F(ab’)2 29E3 induces intracellular Ca2+-mobilization in contrast to control mAbs (21C7 anti-
TREM-1 mAb; left panels; 1A11 anti-MHC class I mAb; data not shown).  
C. Anti-phosphotyrosine blot of cell lysats from monocyte-derived DCs stimulated with F(ab’)2 29E3 (anti-TREM-
2) or control F(ab’)2 (anti-TREM-1 mAb) for the indicated time periods. 
D. Monocyte-derived DCs were stimulated as indicated in (C) and examined by Western blot analysis for anti-
phospho-Erk1/2 (upper panel) compared to anti-Erk 1/2 (lower panel). Arrows indicate phosphorylated proteins
in all panels. Molecular weight markers are shown. 
E. Monocyte-derived DCs were washed five times to remove GM-CSF / IL-4 before stimulation with plastic-
bound F(ab’)2 29E3, control F(ab’)2 (21C7 anti-TREM-1 mAb) or GM-CSF for the indicated time periods. Apop-
totic cell death was determined by measurement of DNA fragmentation. 
F. Monocyte-derived DCs were stimulated plastic-bound F(ab’)2 29E3 in the presence or absence of PD98059
Erk-Inhibition (PD98059 [20µM]), PI3K-Inhibition (LY294002 [10µM]) or Inhibition of IκB-degradation (TPCK 
[20µM]). Apoptotic cell death was determined after 8 days as compared to DCs stimulated with control 
F(ab’)2.by measuring subdiploid DNA content. 
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adhesion, as well as for the produc-

tion of cytokines. Upon TREM-2 

ligation, CCR7 surface expression 

was rapidly increased (Figure 

3.24A). CCR7 was functionally 

competent, as TREM-2-stimulated 

DCs showed a specific chemotactic 

response towards the CCL19 and 

CCL21, which could be inhibited 

by anti-CCR7 mAb (Figure 3.24B). 

The amplitude and kinetics of 

CCR7 upregulation induced via 

TREM-2 were different as com-

pared to those induced by LPS 

stimulation (Figure 3.24A). While 

expression of CCR7 was detectable 

by 6 hours after TREM-2 stimula-

tion, LPS-induced upregulation of 

CCR7 was weaker and occurred 

only after 24 hours of cell stimula-

tion. Regardless of CCR7 surface 

levels, however, LPS-stimulated 

DCs displayed a stronger chemotactic response towards CCL19 and CCL21 than 

TREM-2-stimulated DCs.  

Therefore, DC mobility and chemotaxis to CCL19 and CCL21 is not solely related to 

CCR7 expression levels. Indeed, it has been shown that other receptors, such as the 

Multidrug Resistance-associated Protein 1 (MRP-1), can contribute to optimal mobili-

zation of DCs from skin to secondary lymphoid organs (Robbiani et al., 2000).  

Ligation of TREM-2 also induced increased cell surface expression of several mole-

cules involved in T cell stimulation, such as MHC-class II, CD40 and CD86 (Table 

3.4). In contrast to LPS-activated DCs, CD83 and ICAM-1 were not upregulated. Fur-

thermore, antigen-capturing molecules, such as CD32, CD64, CD89, and the mannose 

receptor, were not downregulated (Table 3.4). DCs activated through TREM-2 did not 

secrete either IL-12, or other cytokines (data not shown). Thus, TREM-2 mediates a 

unique pattern of DC activation, characterized by strong upregulation of CCR7, ex-

pression of some T cell stimulatory molecules and lack of cytokine secretion. 

Table 3.4: TREM-2-dependent regulation of cell surface 
activation markers. 

DCs were cultured for 48 h in plates coated with control 
F(ab’)2, F(ab’)2 anti-TREM-2 mAb or LPS as indicated in Figure 
3.26. Cells were subsequently analyzed by flow cytometry for 
the indicated cell surface molecules. Numerical values indicate 
specific mean fluorescence intensity after subtraction of the 
fluorescence detected with an isotype-matched control. The 
data shown are representative for 4 independent experiments.  
 F(ab’)2 anti- 

TREM-1 
F(ab’)2 anti- 

TREM-2 
LPS 

TREM-2 112.23 3.45 7.1 
MHC class I 67.8 65.3 107.1 
MHC class II 119.12 278.65 454.67 
CD40 171.35 598.6 635.89 
CD80 32.1 39.4 104.6 
CD86/B7.2 14.04 387.91 683.56 
CCR5 12.95 13.56 3.12 
CCR6 3.68 3.45 4.01 
CCR7 6.82 21.98 12.45 
CXCR4 5.13 4.56 17.8 
CD11a 10.92 6.78 13.72 
CD11b 53.9 65.7 23.1 
CD11c 91.1 65.7 123.5 
CD29 38.22 37.56 37.5 
CD41 4.54 4.67 4.39 
CD54/ICAM-1 56.87 54.78 271.45 
CD61 4.95 5.03 4.21 
CD103 3.63 3.96 3.26 
Mannose-R 81.8 82.9 30.9 
CD64/FcγR I 9.8 10.1 2.3 
CD32/FcγR II 17.21 16.78 2.34 
CD89/FcγR 4.54 4.75 4.96 
CD35/CR 1 3.94 4.23 3.67 
M-CSF-R 14.6 4.23 5.21 
GM-CSF-R 15.6 13.7 13.5 
CD38 2.5 2.2 43.5 
CD83 3.34 3.23 26.7 
CD1a 106.76 134.9 87.54 
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3.3.1.4 TREM-2 does not activate I�B�/NF-�B or p38/SAPK signaling path-

ways. 

LPS-induced maturation of DCs requires the activity of NF-κB transcription factor 

(Doi et al., 1997; Kontgen et al., 1995; Sha et al., 1995). Prior to activation, NF-κB is 

retained in the cytoplasm through binding to the inhibitory IκB protein. Stimulation of 

cells with LPS leads to IκB kinase (IKK)-mediated phosphorylation of IκB. This is 

followed by rapid ubiquitination and proteolytic degradation of IκB, allowing nuclear 

translocation of NF-κB and binding to κB-promoter elements (Baeuerle, 1998; Bald-

win, 2001; Karin and Ben-Neriah, 2000). To study whether TREM-2 activates the 

IκBα/NF-κB pathway, DCs were stimulated through TREM-2 followed by the analy-

sis of phosphorylation of IκBα and the assessment of nuclear translocation of NF-κB 

by searching for NF-κB-containing complexes in electrophoretic mobility shift assays 

(EMSA). In striking contrast to LPS (Ardeshna et al., 2000), antibody-mediated liga-

tion of TREM-2 did not lead to phosphorylation and degradation of IκBα (Figure 

3.25A) or nuclear translocation of NF-κB (Figure 3.25B). It was previously shown 

that LPS-induced maturation of DCs is also mediated by activation of p38/SAPK 

(Ardeshna et al., 2000; Arrighi et al., 2001). To see whether TREM-2 activates 

p38/SAPK, TREM-2 was crosslinked on DCs with F(ab’)2 29E3 and lysats were ana-

lyzed for tyrosine phosphorylation of p38/SAPK by western blot analysis. In contrast 

to LPS, TREM-2 did not induce p38/SAPK tyrosine phosphorylation (Figure 3.25C). 

Thus, TREM-2-induced activation pathway is NF-κB- and p38/SAPK-independent. 

 
Figure 3.24: Stimulation of TREM-2 induces CCR7 expression and chemotactic re-
sponse towards CCL19 and CCL21. 

A. CCR7 is rapidly upregulated after stimulation of TREM-2 on DCs. DCs were stimulated 
with F(ab’)2 anti-TREM-2 mAb (grey profils), control F(ab’)2 (21C7; anti-TREM-1; solid line 
profils), or LPS (solid bold profils). After the indicated time periods cells were harvested
and analyzed by flow cytometry for cell surface expression of CCR7 by anti-CCR7 mAb 
(mouse IgM) followed by PE-labeled goat anti-mouse IgM. Dashed profiles indicate back-
ground staining with a control IgM mAb. 
B. TREM-2 stimulation directs migration of DCs towards CCL19 and CCL21 by a CCR7-
dependent pathway. DCs stimulated for 24 h with plastic-coated control F(ab’)2 (21C7, 
anti-TREM-1; black bars), F(ab’)2 anti-TREM-2 mAb (light-grey bars), or LPS (dark-grey 
bars) were tested in transwell chemotaxis assays for the ability to migrate towards medium
alone, medium supplemented with 100 ng/ml CCL19 or CCL21 (BOTTOM well). In control
experiments, DCs were preincubated for 15 min with anti-CCR7 mAb before placing them 
in the TOP well for assessment of chemotaxis towards medium alone, medium supple-
mented with CCL19 or CCL21 placed in the BOTTOM well.  
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3.3.1.5 TREM-2 induces DC maturation through an ERK- and PTK-dependent, 

NF-�B and p38/SAPK-independent pathway.  

To further characterize the signaling molecules involved in TREM-2-mediated DCs 

maturation, DCs were incubated with inhibitors of ERK (PD98049), NF-κB (TPCK), 

p38/SAPK (SB203580) and PTKs (PP2). Treated cells were stimulated with either 

F(ab’)2 anti-TREM-2 mAb, LPS or immobilized IgG and subsequently analyzed for 

cell surface expression of maturation markers, such as CCR7, MHC class II, ICAM-1 

 

Figure 3.25: TREM-2 does not
initiate INBD/NFNB- and
p38/SAPK-dependent pathways. 

A. Lack of IκBα phosphorylation
and degradation upon TREM-2 
stimulation of monocyte-derived 
DCs. Monocyte-derived DCs were
stimulated by LPS or plastic-bound 
F(ab’)2 anti-TREM-2 mAb or control
F(ab’)2 for the indicated times. Pro-
tein lysates were tested for IκBα
phosphorylation and degradation by
Western Blot analysis. The same 
blot was sequentially stripped and 
reprobed with anti-phospho-IκBα, 
anti IκBα, and anti-Actin (loading
control) antibodies. 
B. Lack of NFκB translocation upon
TREM-2 triggering. Monocyte-
derived DCs were stimulated for the 
indicated time points as described 
in (A) and nuclear extracts were 
obtained. Radiolabeled NFκB con-
sensus double-stranded oligonu-
cleotides were incubated with the
indicated nuclear extracts in the
absence of competing oligonucleo-
tides or in the presence of a 25-fold 
molar excess of wild-type (NFκB) or 
mutant (NFκBmut) competing oli-
gonucleotides. DNA-protein com-
plexes were resolved by electropho-
resis. The NFκB-containing com-
plex is marked.  
C. Absence of p38/SAPK phos-
phorylation upon TREM-2 stimula-
tion of monocyte-derived DCs.
Monocyte-derived DCs were stimu-
lated for the indicated times as de-
scribed in (A) Protein lysates were
tested for p38/SAPK phosphoryla-
tion (upper panel) by Western Blot 
analysis. The same blot was se-
quentially stripped and reprobed 
with anti p38/SAPK antibodies
(lower panel). Arrows indicate pro-
teins in all panels. Molecular weight
markers are shown. 
To confirm proper stimulation of 
TREM-2/DAP12 in all experimental 
settings an aliquot of stimulated 
DCs was kept and tested after 48 
hours for upregulation of MHC class
II and CD86 (data not shown). 
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CD83, CD40 and CD86. TREM-2 induced upregulation of CCR7, CD86, class II and 

CD40, while cell surface expression of ICAM-1 and CD83 was not increased (Figure 

3.26, red bars). Remarkably, TREM-2-induced expression of CCR7, CD86, class II 

and CD40 was completely blocked by a PTK inhibitor and partially blocked by an 

ERK inhibitor. This differential inhibitory capacity suggests that PTK may activate 

downstream signaling molecules other than ERK, which concur to TREM-2-mediated 

DC maturation. Incubation of DCs with NF-κB and p38/SAPK inhibitors had 

virtually no effect (Figure 3.26, red bars).  

LPS-induced maturation pathway was totally distinct from that mediated by TREM-2. 

LPS induced upregulation of CCR7, MHC class II, ICAM-1 CD83, CD40 and CD86 

(Figure 3.26, green bars) (Banchereau et al., 1998). Incubation of DCs with NF-κB 

and p38/SAPK inhibitors prevented LPS-induced maturation, whereas ERK inhibitor 

had a modest effect, as previously described (Figure 3.26, green bars) (Ardeshna et 

al., 2000; Arrighi et al., 2001). Finally, engagement of FcR by immobilized IgG in-

duced a maturation pattern, which was similar to that induced by TREM-2, with the 

exception of an upregulation of ICAM-1 (Figure 3.26, blue bars). Incubation of DCs 

with PTK and ERK inhibitors resulted in total and partial inhibition of FcR-induced 

maturation, respectively. These observations provide evidence that TREM-2 mediates 

DC maturation by PTK/ERK-dependent pathways. These pathways overlap with 

 

Figure 3.26: Compari-
son of TREM-2-, TLR-
and FcR-mediated
maturation pathways. 

Monocyte-derived DCs
were stimulated with plas-
tic-bound control F(ab’)2

(black bars), F(ab’)2 anti-
TREM-2 (red bars), hu-
man IgG (blue bars), or
LPS (green bars) in the
presence of inhibitors for
Erk (PD98059), p38/
SAPK (SB203580), PTK
(PP2), inhibition of IκBα
degradation (TPCK) or an
equal volume of DMSO as
a control. After 48 hours,
cell surface expression of
CD86 (top left panel),
MHC class II (middle left
panel), CD40 (bottom left
panel), CD83 (top right
panel), ICAM-1 (middle
right panel) or CCR7 (bot-
tom right panel) was de-
termined by flow cytome-
try. Data shown are rep-
resentative for four inde-
pendent experiments and
display the mean and
standard deviation of 3
independent samples. 
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those initiated by FcRs, but are distinct from the IκBα/NF-κB and p38/SAPK-

dependent pathways triggered by LPS. 

3.3.1.6 Crosslinking of TREM-2 on MDCs results in receptor internalization 

and delivery into the antigen-processing compartment  

TREM-2 is selectively expressed 

on professional antigen capturing 

and processing cells. In addition, 

the signaling subunit of TREM-2, 

DAP12 displays cytoplasmic Y-x-

x-V/L motifs, which have been re-

ported to mediate internalization . 

Therefore, the ability of TREM-2 

to endocytose and deliver its 

ligand(s) to an antigen-processing 

and loading compartment was ana-

lyzed. Strikingly, TREM-2 was 

internalized almost completely 

from the cell surface of monocyte- 

derived DCs already after 10-

30 min compared to control stimulation (data not shown). Rapid internalization of sur-

face receptors upon binding to their ligands is a common feature of antigen-capturing 

receptors, such as FcR, Mannose-Receptor 

or Scavanger-Receptor. Upon internaliza-

tion, all of these receptors with their bound 

ligands are delivered to the antigen-

processing machinery, which subsequently 

leads to presentation of ligand-peptides in 

the context of MHC-class II molecules. To 

further investigate a similar role for 

TREM-2 in antigen capture, we used the 

29E3 anti-TREM-2 mAb as a ligand for 

TREM-2 and evaluated the ability of DCs 

to present peptides derived from 29E3 to a 

CD4+-class II-restricted T cell clone spe-

cific for a mouse IgG1 peptide epitope 

(Lanzavecchia et al., 1988). The presentation of the 29E3 mAb was compared to that 

of mAbs that bind either to a known antigen-capturing receptor (anti ILT-3 mAb 

Figure 3.27: TREM-2 can act as a antigen-capturing
surface receptor 

Presentation of anti-TREM-2 mAb to a T cell clone spe-
cific for mouse IgG1 (VIP13) by irradiated DCs. (A) DCs
were stimulated with the indicated concentrations of anti-
ILT3 mAb (white diamonds), anti-TREM-2 mAb (red
circles), anti-TREM-1 mAb (white squares), anti-CD11b
mAb (white circles), (B) F(ab’) 2 anti-TREM-2 (red cir-
cles)or F(ab’)2 anti-TREM-1 mAb (white circles). F(ab’) 2

anti-TREM-2 is presented ~ 100-fold more efficiently
than F(ab’)2 anti-TREM-1. The shown data are represen-
tative for 3 independent experiments 

 
Figure 3.28: TREM-2 is strongly upregu-
lated after stimulation of monocytes with
IL-4. 

IL-4- (right panel), or GM-CSF- (left panel)
treated monocytes were analyzed by FACS for
cell surface expression of TREM-2 (solid bold
line) after 36 h. Dashed profiles correspond to
background staining with a control IgG1 mAb.
The dotted inset in the left panel indicates the
upregulation using GM-CSF/IL-4 for a stimula-
tion of 36 hours. 
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ZM3.8; (Cella et al., 1997)), to cell surface-expressed CD11b, or do not bind to sur-

face molecules and thus are taken up in the fluid phase (anti-TREM-1 mAb 9E2). As 

shown in Figure 3.27, DCs presented 29E3 mAb to T cells 50-100 fold more effi-

ciently than anti-CD11b or control mAb. The presentation is comparable to the en-

gagement of ILT3 with mAb ZM3.8 (Cella et al., 1997). To reduce the unspecific 

contribution of FcR to the observed degree of T cell stimulation, we further investi-

gated the potential of DCs to present peptides from F(ab’)2 anti-TREM-2 mAb. Simi-

lar to results observed with IgG1,κ mAb, the F(ab)2 anti-TREM-2 mAb is presented 

with 100fold higher efficiency presented than control F(ab’)2 mAb. Together, these 

experiments indicate that TREM-2 can efficiently deliver its ligand(s) to an intracellu-

lar compartment where MHC class II loading can occur. This is in line with the ob-

served strong upregulation of MHC class II. Since TREM-2-stimulation leads in par-

allel to increased expression of CD40 or CD86, the sum of these events generate the 

optimal environment for the stimulation of antigen-specific T cells in the lymph node. 

3.3.1.7 Regulation of human TREM-2 and characterization of human TREM-2 

in situ  

As shown in Figure 3.28, the observed TREM-2 upregulation in monocyte-derived 

DCs after 1 – 2 days was due to IL-4 rather than GM-CSF, since IL-4 alone induced a 

strong TREM-2 upregulation just after 

24 – 36 hours in isolated monocytes 

and human blood monocytes (data not 

shown). This observation opens the 

possibility that TREM-2 may play its 

particular role in conditions such as 

parasitic infections or allergic diseases, 

which are predominantly controlled by 

IL-4. In addition, it suggests that 

TREM-2 might not only be expressed 

by DCs but also by other myeloid cells 

responsive to IL-4, such as mast cells 

(Hassuneh et al., 1997). This conclu-

sion is further supported by the charac-

terization of human TREM-2 in situ. 

Indeed, TREM-2 expression was de-

tected not only on tonsillar DCs (data 

not shown) but also on tissue mast cells 

 
Figure 3.29: Human TREM-2 is expressed on mast
cells in situ 

TREM-2 expression was detected using mAb 20G2
in mastocytoma (A, B), spleen (C) and lymph node
(D) from normal individuals. Staining with control
mAb is shown in B. 
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from normal individuals in the lymphnode and spleen (Figure 3.29C,D) and in masto-

cytomas (Figure 3.29B) using the TREM-2 mAb 20G2.  

3.3.2 The role of mTREM-2 in experimental autoimmune encepha-
lomyelitis 

In preliminary experiments, anti-human TREM-2 mAb 21E10 stained mouse BM-

derived DCs cultured in IL-3/GM-CSF/IL-4, suggesting a strong structural and func-

tional homology between mouse and human TREM-2. Thus, mTREM-2 appears to be 

expressed on DCs, just like human TREM-2Whether the mAb 21E10 is capable of 

recognizing mouse mast cells is currently under investigation. 

DAP12-/- mice are resistant to experimental autoimmune encephalomyelitis (EAE) 

and it was shown that this effect was paralleled by improper T cell stimulation by 

APCs. TREM-2 was shown to play a central role in APC maturation, migration and T 

cell priming in human MDCs. It was therefore tested, whether blocking of mTREM-2 

signaling by mTREM-2-IgM influences EAE compared to animals injected with con-

trol human IgM. 400 µg mTREM-2-IgM fusion protein or control huIgG1 was in-

jected intraperitoneally in C57BL/6 mice 6 h before,and 3 and 9 days after EAE in-

duction. Animal weight and clinical symptoms were monitored every day for 60 days. 

As shown in Figure 3.30 and Table 3.6, control animals were highly responsive to 

immunization with MOG35-55 peptide showing an early onset of disease (day 6 - 15), a 

high mean maximal disease score (3.1 ± 1.4) and a milder relapsing course of disease 

after 33 – 39 days. In striking contrast to the high susceptibility of control mice, ani-

 
Figure 3.30: MOG-induced EAE in C57BL/6 treated with mTREM-2-IgM or huIgM. 

Development of clinical EAE in four mice treated with mTREM-2-IgM (bottom) and four mice injected with control huIgM after 
immunization with peptide MOG35-55 in CFA. The clinical score (red curves) and weight (black curves) were monitored daily 
over a period of 60 days (x-axis) after injection. Day of injections with 400 µg of protein/animal are depicted as green arows. 
The shown data are representative of a larger group of immunized animals summarized in Table 3.5. 
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mals treated with mTREM-2-IgM are resistant to immunization with MOG35-55. In 

treated animals the incidence of MOG35-55-induced disease was 30 %, whereas in con-

trol mice, the incidence was 90 %. In addition, the maximal disease score was only 

0.2 ± 0.4 and disease onset was delayed up to 25 days as compared to control animals. 

Whether TREM-2 plays a role in the direct co-stimulation beween T cells and APCs 

or is rather involved in the recruitment of APC to the T cell area remains unknown.  

Table 3.5 : MOG-induced EAE in C57BL/6 treated with mTREM-2-IgM or huIgM. 

C57BL/6 (two independent experiments containing 5 mice per group) were challenged with MOG35-55 peptide un-
der treatment with mTREM-2-IgM or control IgM. The disease incident, the mean maximal disease score, mean 
day of onset and relapse of clinical EAE were calculated for each group of immunized mice. 
Antigen Treatment 

(3 x 400 µg/animal) 
Disease inci-

dent (%) 
Mean maximal disease 

score ±SE 
Mean day of 
onset (range) 

Mean day of 
relapse (range) 

MOG35-55 huIgM 9/10 (90) 3.1 ± 1.4 9.2 (6 – 15) 37.4 (33 – 39) 
MOG35-55 mTREM-2-IgM 3/10 (30) 0.2 ± 0.3 27.1 (25 – 31) No relapse 
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3.4 Characterization of TREM-3, -4, -5 

3.4.1 Characterization of TREM-3  

3.4.1.1 First characterization of mTREM-3 by Northern blot analysis 

As human TREM-3 is a pseudogene, efforts concentrated on the characterizations of 

mouse TREM-3. Northern Blot analysis revealed that mTREM-3 mRNA is mainly 

expressed in the liver, and not in other tissues or organs of the immune system. The 

production of anti-mTREM-3 mAb is in progress.  

3.4.2 Characterization of TREM-4  

3.4.2.1 Northern blot analysis 

In initial studies, TREM-4 transcript was selectively detected in MDCs by reverse-

transcriptase polymerase chain reaction (data not shown) suggesting the expression of 

TREM-4 in immature DCs. Using Northern blot analysis TREM-4 mRNA could be 

detected in the testis, lung and heart (data not shown).  

3.4.2.2 Production and characterization of anti-TREM-4 mAb in vitro and in 

situ 

To determine the cellular distribution of TREM-4, anti-TREM-4 mAb were produced. 

The mAb 64F5 stained TREM-4-transfected Jurkat cells specifically, as compared to 

control transfectants (Figure 3.31A). In disagreement with RT-PCR data, TREM-4 

could be detected neither on immature MDCs nor on mature DCs (Figure 3.31B). Inter-

estingly, immunohistochemistry revealed that TREM-4 is strongly expressed on ser-

toli cells in testis and on endothelial cells in particular in the heart. Since TREM-4 

contains an Arginine residue in the transmembrane region it might interact with FcRγ 

or DAP10 rather than with DAP12. Identification of cell lines expressing TREM-4 

will pave the way to further biochemical insights about the signal transduction proper-

ties of TREM-4.  
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3.4.3 Characterization of TREM-5  

3.4.3.1 Northern blot analysis 

TREM-5 transcript was initally detected in PBL by Northern Blot analysis (data not 

shown) and cloned from human BM indicating expression of TREM-5 in immune 

cells. 

3.4.3.2 Production and chracterization of anti-TREM-5 mAb in vitro and in situ 

To accurately investigate the cellular distribution of TREM-5 as well as its biochemi-

cal characteristics and functions, anti-TREM-5 mAb were produced. In transfected 

Jurkat cells TREM-5 was expressed intracellularly and was not delivered to the cell 

surface. Nevertheless, the mAb 8H6 specifically stained TREM-5-transfected Jurkat 

cells intracellularly, as compared to control transfectants (Figure 3.31A). Flow cy-

Figure 3.31: Characterization of anti-
TREM-4 and anti-TREM-5 mAbs.  

A. mAb 64F5 and 8H6 recognize TREM-
4 and TREM-5, respectively. Jurkat cells
transfected with a cDNA encoding FLAG-
tagged TREM-5 (TREM-5FLAG) (right pan-
els) or HA-tagged TREM-4 (TREM-4HA)
were stained with anti-TREM-4 mAb
64F5 (upper panel) and anti-TREM-5
mAb 8H6 (lower panels). TREM-5FLAG

transfectants were stained for intracellu-
lar expression. The percentages of posi-
tive cells (upper right quadrants) are
indicated. Expression of TREM-4HA and
TREM-5FLAG was confirmed using an anti-
HA and an anti-FLAG mAb, respectively
(Percentages obtained with the tag-
specific mAb are shown in brakets (upper
right quadrants)). Cells stained with an
isotype-matched control mAbs were
comprised within the indicated lower
quadrant. 
B. Top panels: TREM-5 is strongly un-
regulated after stimulation of monocytes
with GM-CSF and IL-4. Monocytes un-
treated (left panel) or treated with GM-
CSF/IL-4 (middle panel) or M-CSF (right
panel) were analyzed by flow cytometry
for cell surface expression of TREM-1
(red profiles), -2 (blue profiles), -4 (green
profiles), and -5 (black bold profiles) after
3 d or up to 14 days, respectively.
Dashed profiles indicate background
staining with a control IgG1 mAb. 
Bottom panels: TREM-5 is downregu-
lated upon maturation of DCs. LPS- (right
panel), CD40L- (middle panel), or TNF-α-
stimulated MDCs (right panel) were ana-
lyzed by flow cytometry as described in
(B).  
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tometry analysis from PBL revealed a yet undefined population of TREM-5+ cells, 

which has the cell size of monocytes and blood DCs according to FSC-analysis (data 

not shown). Interestingly, TREM-5 was not expressed on isolated CD14+ monocytes, 

thus strongly suggesting that blood DCs are TREM-5+. Indeed, TREM-5 was ex-

pressed even stronger on MDCs than TREM-2, whereas it could not be detected on 

MMφs (Figure 3.31B). In contrast to the regulation of TREM-2, TREM-5 is induced 

by GM-CSF + IL-4, but not by culturing monocytes in either GM-CSF or IL-4 alone 

(data not shown). DC maturation induced by lipopolysaccaride (LPS), CD40L-

expressing cells, but not by TNF-α, IL-1β, or aggregated IgG led to complete down-

regulation of TREM-5 (Figure 3.31B data not shown).  

Interestingly, the downregulation of TREM-5 seems to occur with different kinetics 

and upon different stimuli compared to TREM-2 (Figure 3.31B) thus suggesting that 

these molecules are differentially regulated. In addition, the transmembrane region 

important for interaction with a signaling subunit is different between the two proteins 

(Figure 3.4). It is therefore possible, that in contrast to TREM-2, TREM-5 might not 

interact with DAP12. Whether TREM-5 interacts with DAP12 and whether stimula-

tion of TREM-2 and –5 leads to identical biochemical and cellular changes remains to 

be determined.  
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4 DISCUSSION 

4.1 Amplification of neutrophil and monocyte responses  

4.1.1 The TREM-1 amplification system 

Biological amplification systems require a tightly controlled initiation, a rapid and – if 

possible - exponential amplification of the desired responses, and a reliable mecha-

nism to terminate the responses once the biological effect is achieved (Voet and Voet, 

1998).  

In the immune system, amplification systems are switched on during potentially dan-

gerous situations such as pathogen invasion (Matzinger, 1998). Under conditions of 

microbial or viral infection the immune system faces a toxin-producing, rapidly divid-

ing intruder that can potentially overwhelm immune surveillance. A control is there-

fore only possible if the immune response acts with the highest possible efficiency 

right from the beginning. The results presented here strongly suggest a role of TREM-

1 as an amplifier of inflammatory responses triggered by bacterial and fungal infec-

tions.  

As schematically shown in 

Figure 4.1, during the early 

phase of infection, neutrophils 

and monocytes initiate the in-

flammatory response follow-

ing the engagement of PRRs 

such as the TLRs by microbial 

products (Akira et al., 2001; 

Medzhitov and Janeway, 

2000). Bacterial products in-

duce TREM-1 and investiga-

tions of the TREM-1 promoter 

revealed several NF-κB 

responsive elements (data not 

shown). This indicates TREM-

1 as a target gene for NF-κB, 

which can be induced by TLRs, TNF-R1 or CD40 (Inoue et al., 2000). The cross-talk 

between the signaling pathways induced by microbial challenge and DAP12-

dependent pathways is also exemplified by the upregulation of DAP12 expression 

Figure 4.1: Induction of the TREM-1 system 
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upon LPS treatment (Aoki et al., 2000). It is of particular interest, however, that re-

ceptor and ligand of the TREM-1 system appear to be differentially regulated. 

Whereas TREM-1 upregulation is clearly NF-κB-dependent, TREM-1L is not in-

duced solely by LPS stimulation of neutrophils in vitro (data not shown), thus indicat-

ing that TLR-triggering is not sufficient for the upregulation of TREM-1L. Since 

TREM-1L expression could be detected on neutrophils during endotoxemia in vivo, it 

is likely that distinct or additional signals to TLRs are need for the induction of 

TREM-1L. Thus, the activation of the TREM-1 amplification system requires the 

concerted induction of different switches and proofreading mechanisms further ensur-

ing a tight control for the induction. 

TREM-1 induces amplifica-

tion of inflammatory re-

sponses in two ways: pro-

longed survival of effector 

cells (4.1.2) and cooperation 

with other signaling pathways 

(Figure 4.2). It has been 

shown that TLRs initiate host 

responses to pathogens 

through NF-κB as well as by 

activating JNK- and 

p38/SAPK-dependent tran-

scription factors (TFs) such as 

Jun and MEF2C (Aderem and 

Ulevitch, 2000; Akira et al., 

2001; Medzhitov and Jane-

way, 2000; Medzhitov et al., 

1997). In contrast, TREM-

1/DAP12 initiate PLCγ-, 

PTK-, calcium- and ERK1/2-

dependent pathways finally 

culminating in the activation 

of distinct TFs such NF-AT, Myc, Ets-1, and Egr-1. TFs of the Ets-1 family are re-

sponsible for the transcription of Fos, which together with Jun form the TF AP-1 

(Blume-Jensen and Hunter, 2001). Therefore, by complementation TREM-1/DAP12- 

and TLR-dependent pathways act synergistically by activating a broad set of MAPK 

and TFs such as NF-κB, AP-1 (Fos/Jun heterodimers), Myc, and NF-AT that cooper-

ate for the induction of an optimal pro-inflammatory responses (Figure 4.2). Taken 

 
Figure 4.2: Signal amplification by the TREM-1 system 
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together, the data presented here indicate that TREM-1 amplifies inflammation by in-

tensifying the quality and prolonging the duration of the response (Figure 4.2).  

After the invading pathogens are cleared, all systems including TREM-1 must be reset 

to ensure the resolution of inflammation and the sensitivity of the system. Potential 

mechanisms can either act intracellularly on DAP12-induced signals (Figure 1.13) or 

directly interfere with the TREM-1/TREM-1L interaction on the cell surface (Figure 

4.3). In NK cells, stimulation via DAP12-associated receptors is counterregulated by 

inhibitory receptors con-

taining ITIM-motifs capa-

ble of binding phosphata-

ses such as SHP-1, SHP-2 

or SHIP (Scharenberg and 

Kinet, 1996). Receptor-

proximal activation of 

phosphatases results in 

dephosphorylation of 

ITAMs, thus interfering 

with activating signals 

(Amigorena et al., 1992; 

Muta et al., 1994). So far 

only few inhibitory recep-

tors expressed on myeloid 

cells are known. ILT3, an 

inhibitory receptor ex-

pressed on monocytes and 

DCs, is indeed capable of 

recruiting SHP-1 and sub-

sequently counteracting activating receptor signals (Cella et al., 1997). Thus, it is 

likely that phosphatases are responsible for the down regulation of TREM/DAP12-

mediated activation signals (Figure 1.13). Similar to TREM-2, TREM-1 is rapidly in-

ternalized after triggering with specific mAb (data not shown). This is most probably 

due to the putative Y-x-x-V/L motif of TREM-1-associated DAP12, which resembles 

an internalization sequence. Thus, the duration of TREM-1 signaling may be regu-

lated by stimulation-induced receptor internalization (Figure 4.3). Further investiga-

tions using the cognate TREM-1L are necessary to determine whether receptor inter-

nalization is indeed a mechanism to terminate TREM-1-mediated signaling. The re-

cent identification of a splice variant of TREM-1 that lacks the transmembrane region 

offers an additional possibility for the modulation of TREM-1 signals (sequence and 

 
Figure 4.3: Downregulation of the TREM-1 system 

TREM-1 signaling can be counterregulated by inhibitory receptors
(not shown), receptor internalization (2) or the secretion of a TREM-
1 DcR (1). 
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data not shown). This transcript would lead to a soluble TREM-1 (sTREM-1) that 

could be secreted and might act as a receptor decoy (DcR). Using an ELISA system 

with two TREM-1 specific mAbs, it was in fact possible to detect sTREM-1 in the 

serum of normal individuals at concentrations of 50 - 400 pg/ml (data not shown). 

Most strikingly, sTREM-1 could not be detected in the serum of several septic pa-

tients (data not shown). It would be important to assess whether TREM-1, in particu-

lar, is absent in patients with abnormally prolonged inflammatory responses. Further 

investigations focusing on the regulation of sTREM-1 in vitro and in vivo will provide 

evidence to whether sTREM-1 is a DcR and can act as an endogenous brake for the 

immune system (Figure 4.3).  

Induction of TREM-1 and TREM-1L by microbial stimuli initially leads to the protec-

tion of neutrophil against apoptosis and amplification of inflammatory responses 

(Figure 4.2). Under normal conditions this leads to the clearance of the pathogen, fol-

lowed by the disruption of the TREM-1 amplification loop by either receptor inter-

nalization, secretion of soluble TREM-1 or intracellular activation of phosphatases 

(Figure 1.13 and 4.3). Under certain circumstances the immune system is not capable 

of clearing the invading microorganisms. Further pathogen spreading is then termi-

nated by granuloma formation (Figure 3.10 and 3.11). An effective control of the en-

capsulated pathogens requires immune cells highly resistant to cytotoxic effects of 

microbial toxins and self-secreted ROS, which are produced to destroy the pathogen. 

Indeed, the highest TREM-1 expression of all systems tested was observed on neutro-

phils and giant cells forming granulomas (Figure 3.10 and 3.11). This strongly sup-

ports the idea that TREM-1 and TREM-1L are expressed on the same cell type thus 

self-amplifying their own survival and anti-microbial responses. In addition, it is of 

note that signaling through DAP12 in vitro induces a marked morphological change 

of mouse myeloblastic leukemic cell transfectants into multinucleated giant cells 

(Aoki et al., 2000) suggesting that TREM-1 may be also involved in the formation of 

giant cells from monocytic precursors.  

Finally, the observation that TREM-1 and –2 are located on chromosome 6, which 

was implicated in several inflammatory and autoimmune disorders, suggests that in-

deed these genes may be centrally involved during regulation of inflammation. It will 

therefore be important to see if TREM-1 is polymorphic and if the polymorphism is 

linked to disease. 

4.1.2 The function of TREM-1 in disease and neutrophil homeostasis 

Recently, mice overexpressing a DAP12 transgene (Tg-DAP12) were generated 

(Bouchon et al., submitted for publication, data not shown). Interestingly, these mice 
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show several defects in the homeostasis of neutrophils, such as the development of 

neutrophilia, which is associated with a fatal inflammatory syndrome in the lungs and 

an increased sensitivity to LPS-induced shock.  

The hyperresponsiveness of Tg-DAP12 mice to LPS injection further supports the 

model presented here, in which DAP12-mediated pathways, particulary TREM-

1/DAP12, act as amplification signals for innate responses to microbial challenge. In-

terestingly, the regulation of TREM-1 during septic shock in humans parallels the 

situation in mice (Figure 3.12). Remarkably, inhibition of TREM-1 in LPS-induced 

shock in mice is sufficient to reduce serum TNF-α and IL-1β to sublethal levels, pre-

venting shock and death. However, TNF-α and IL-1β are not removed entirely by 

mTREM-1-IgG1, allowing for clearance of bacterial infections (Echtenacher et al., 

1990; Echtenacher et al., 1996; Eskandari et al., 1992; Malaviya et al., 1996; Peschon 

et al., 1998; Pfeffer et al., 1993; Rothe et al., 1993). Therefore mTREM-1-IgG1 also 

protects against bacterial peritonitis, in contrast to prophylactic treatment with anti-

TNF-α antibodies (Beutler et al., 1985) or IL-1R antagonists, which increase lethality 

(Alexander et al., 1991; McNamara et al., 1993; Ohlsson et al., 1990) (Figure 1.14). 

mTREM-1-IgG1 provided protection even after the injection of LPS, an effect that 

was previously only reported for inhibition of MIF and HMG-1 (Calandra et al., 2000; 

Wang et al., 1999). Thus, post-infection administration of soluble TREM-1 might be a 

suitable therapeutic tool to treat septic shock as well as other microbial-mediated dis-

eases. In addition, the identification of sTREM-1 in human serum suggests the possi-

bility that humans may use an endogenous TREM-1 to shut off the TREM-1 system 

that is misbalanced only under certain conditions such as septic shock. Thus, admini-

stration of sTREM-1 to septic patients should rerely reset the system thus being highly 

beneficial and having few side effects. 

It is interesting to note that TREM-1/DAP12 oligomeric complexes may initiate in-

flammatory reactions in the absence of microbial challenge. This proinflammatory 

role of TREM-1/DAP12-dependent pathways is suggested by the progressive devel-

opment of a fatal inflammatory syndrome in Tg-DAP12 mice, which spontaneously 

occurs after 4 weeks of age and causes premature death within 1-2 months. Cells and 

DAP12-associated cell surface receptors, which cause the onset of this syndrome, 

need to be elucidated. However, neutrophilia and lung infiltration of macrophage-like 

cells strongly suggest that TREM-1-expressing neutrophils and alveolar macrophages 

concur to pathogenesis of the wasting syndrome. Interestingly, neutrophilia is also 

observed in G-CSF-transgenic mice, but is relatively benign (Serizawa et al., 2000). 

Thus, the development of wasting syndrome requires not only the expansion of but 

also activation of myeloid cells. Two additional observations are along this line: (i) 

cross-linking of TREM-1 triggers secretion of inflammatory cytokines (TNF-α, IL-
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1β) and chemokines (IL-8, MCP-1), and up-regulation of costimulatory and adhesion 

molecules, and (ii) TREM-1 can be up regulated by TNF-α and IL-1β, indicating that 

TREM-1 might act as a self-amplifying system. In conclusion, all these results dem-

onstrate that DAP12-associated receptors, in particular TREM-1, are involved in all 

kinds of inflammatory process and that an abnormal function of DAP12-associated 

receptors may be sufficient in itself to cause inflammation. 

Finally, the presence of neutrophilia in Tg-DAP-12 mice indicates a role of 

DAP12 pathways in neutrophil homeostasis. Regulation of neutrophil homeostasis is 

essential for effective host responses against pathogens (Haslett et al., 1994). Under 

normal conditions, circulating neutrophils have a short lifespan, as they undergo apop-

tosis. During bacterial infections, apoptosis is delayed, preserving the inflammatory 

function of neutrophils at the sites of infection. However, excessive neutrophil sur-

vival may block the resolution of inflammation, leading to tissue damage and sys-

temic inflammatory syndromes, such as sepsis. LPS and bacterial products delay neu-

trophil apoptosis by activating the TLRs/NF-κB pathway and by promoting the re-

lease of anti-apoptotic inflammatory mediators and cytokines, such as LTB4, IL-8 and 

GM-CSF (Brach et al., 1992; Chitnis et al., 1996; Colotta et al., 1992; Jimenez et al., 

1997; Matsumoto et al., 1997). In Tg-DAP12 mice neutrophilia may partly be the 

consequence of high serum levels of G-CSF and TNF-α� ���������� �	�
����
���� �	��
activation of DAP12 signaling pathways influences neutrophil survival by a more di-

rect mechanism, as exemplified by TREM-1 engagement. At early time points, 

TREM-1 promotes survival of neutrophils by ERK-dependent Bad-phosphorylation at 

Ser112. This leads to subsequent disruption of Bad-Bcl-xL-heterodimers followed by 

Bcl-xL-mediated protection of mitochondrial integrity. Only at later time points, 

TREM-1 mediates secretion of IL-8, which promotes Bad-phosphorylation at Ser136 

by a PI(3)K/Akt-dependent pathway. The expression of Bcl-2-family members in hu-

man neutrophils has been controversial (Klein et al., 2000; Moulding et al., 1998; 

Ohta et al., 1995; Santos-Beneit and Mollinedo, 2000). Although Bcl-xL was hardly 

detectable in neutrophils by western blot analysis, we were able to precipitate Bad-

Bcl-xL heterodimers with an anti-Bcl-x antibody. These results support previous re-

ports describing a very low expression of Bcl-xL (Moulding et al., 1998; Ohta et al., 

1995). However, it is possible that, in addition to Bcl-xL, other anti-apoptotic Bcl-2 

family members, such as A1 or Mcl-1, are expressed in neutrophils and interact with 

Bad (Santos-Beneit and Mollinedo, 2000; Weinmann et al., 1999). Interestingly, 

TREM-1 stimulated neutrophils are also more resistant to apoptosis induced via death 

receptors such as CD95 and TRAIL-Rs (data not shown). Thus, TREM-1 may not 

only induce protection of mitochondria against cytopathic agents but also other 

mechanisms that provide resistance against death inducing ligands. Apparently, 
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TREM-1-mediated signals ensure protection against mitochondria-induced and death-

receptor-induced apoptosis. Thus, TREM-1 may have the ability to promote neutro-

phil survival, not only during acute inflammation but also during normal homeostasis, 

which explains the observed neutrophilia and spontaneous onset of wasting syndrome 

in DAP12 transgenic mice. Most likely, the protective effect of mTREM-1-IgG1 dur-

ing septic shock is due not only to reduction of TREM-1-induced secretion of in-

flammatory cytokines but also to accelerated apoptosis of neutrophils. In several 

clinical conditions, including burns, acute respiratory distress syndrome and reperfu-

sion injuries following ischemic conditions, the inflammatory response to the insult-

ing agent is excessive and abnormally prolonged, culminating in tissue damage. Mas-

sive release of chemokines, specifically IL-8, and increased resistance of neutrophils 

to apoptosis appear to be especially important in the pathogenesis of these diseases 

(Baggiolini, 1998; Chitnis et al., 1996; Jimenez et al., 1997; Matsumoto et al., 1997). 

Inhibition of KARAP/DAP12 and of TREM-1 signaling in vivo may thus contribute 

to the resolution of inflammation and to an improved outcome of these pathological 

conditions.  

4.1.3 The ligand(s) for TREM-1 (TREM-1L) 

The production of a functional TREM-1 fusion protein provided insight into the regu-

latory mechanisms steering the TREM-1 system in vivo. In particular the identifica-

tion of TREM-1L on neutrophils infiltrating the site of inflammation completed the 

model of TREM-1/TREM-1L as a system to ensure neutrophil survival and full 

responsiveness during inflammation. 

Several cytokines such as TNF-α, IL-1β in monocytes (Mangan et al., 1991), IL-2 in 

T cells (Van Parijs et al., 1999) and GM-CSF in neutrophils (Klein et al., 2000), are 

known to induce survival in an autocrine fashion. In contrast, TREM-1 and TREM-1L 

are both membrane bound proteins. The observations made in granulomas strongly 

support the concept that TREM-1L stimulates TREM-1 function on neighboring cells. 

It is not yet known whether TREM-1L can stimulate TREM-1-mediated responses on 

the same cell as it was reported for other receptor-ligand pairs (Dhein et al., 1995). In 

addition, it would be possible that TREM-1L is produced in a membrane-bound and a 

soluble isoform as reported for several other ligands (Kapsogeorgou et al., 2001; Or-

linick and Chao, 1998; Peter et al., 1999). 

Expression cloning using a cDNA library prepared from peritoneal neutrophils of en-

dotoxemic mice did not lead to the identification of TREM-1L. Perhaps, this tech-

nique is limited by intracellular modifications or the association of cofactors to 

TREM-1L thus altering the affinity for TREM-1. It will be necessary to establish bio-
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chemical approaches, which are currently limited by the small cell numbers available 

from peritoneal lavages of endotoxemic mice. Further investigation on the regulation 

and expression pattern of TREM-1L is necessary to identify the potential stimuli that 

are responsible for TREM-1L induction. By means of this crucial information it will 

be possible to induce TREM-1L on cell lines in amounts sufficient to set up a bio-

chemical system to identify TREM-1L.  
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4.2 Amplification of DC responses 

4.2.1 Homeostasis or amplification? Two potential roles for TREM-2 

We have shown that TREM-2 is an activating receptor expressed on monocyte-

derived DCs, which activates PTK and ERK signaling through the association with 

DAP12, an ITAM-containing adapter molecule (Lanier and Bakker, 2000). TREM-

2/DAP12-mediated signaling promotes survival of DCs and up regulation of CCR7, 

MHC class II, CD86 and CD40. As compared to the classical DC activation, triggered 

by LPS, the TREM2/DAP12 pathway does not lead to the up-regulation of ICAM-1 

and CD83 or secretion of IL-12, and is entirely independent of NF-κB and p38/SAPK 

signaling. TREM2/DAP12-induced DC maturation is more similar to that initiated by 

the FcRs, through the association FcRγ, another ITAM-containing adapter molecule 

[Amigorena, 1999 #67]. Indeed, it is shown here that FcR-mediated maturation is de-

pendent on PTK and ERK signaling. 

This study is the first to show that a DAP12-

mediated pathway can activate human DCs. 

What could be the physiological signifi-

cance of this maturation pathway? On one 

hand, DAP12-mediated DC activation could 

be important in the normal homeostasis of 

DCs (Figure 4.4). After the triggering of 

TREM-2, by a yet unknown ligand, it in-

duces up-regulation of CCR7, which plays a 

pivotal role in directing DCs from the pe-

riphery to the T cell rich areas of draining 

lymph nodes (Forster et al., 1999; Gunn et 

al., 1999; Ngo et al., 1999; Saeki et al., 

1999). Thus, in the absence of pathogens, 

DAP12-associated receptors could regulate 

the homeostatic circulation of DCs from the 

periphery to the lymph nodes, allowing for 

the renewal of lymph node DCs. In addition, 

TREM-2 induces upregulation of some T 

cell stimulatory molecules, such as MHC 

class II, CD40 and CD86. Thus, DAP12-

mediated maturation of DCs may promote partial activation of T cells in the absence 

of exogenous antigens. Presumably, this activation is critical for the survival of T cells 

 
Figure 4.4: The role of TREM-2 during 
DC homeostasis 

Under normal conditions immature DC
patrol from the blood into the tissue where 
they become TREM-2+ (1). In the tissue 
triggering of TREM-2 induces CCR7 (2) 
thus redirecting the DC to the lymph node
(3). During their travel, DCs partially ma-
ture, particularly upregulate costimulatory
molecules, which are necessary to trigger 
T cells (4). In the absence of cytokines,
TREM-2 signaling transmits survival sig-
nals to the T cells thus ensuring T cell
homeostasis and tolerance. 



122  Discussion 

and the homeostasis of T cell populations (Tanchot et al., 1997). The physiological 

functions of DAP12-mediated DC activation are consistent with the reported pheno-

type of knock-in mice bearing a nonfunctional DAP12, which showed an accumula-

tion of DCs in muco-cutaneous epithelia, associated with an impaired hapten-specific 

contact sensitivity [Tomasello, 2000 #44]. Our data suggest that this phenotype may 

be explained in part by a reduced ability of DCs to up regulate CCR7 expression and 

to respond to CCL19 and CCL21, affecting the migration of DCs to the T-cell zone of 

draining lymph nodes. In addition, cross-linking of TREM-2 promotes DC survival 

essential for the migration from the periphery to the draining LN. This observation is 

consistent with the previous demonstration that ERK signaling prevents apoptosis of 

LPS-stimulated DCs (Rescigno et al., 1998) and the results obtained from TREM-

1/DAP12. Therefore, it is likely that DAP12-mediated ERK-activation in DCs induces 

phosphorylation of Bad or other Bcl-2 inhibitors (Klein et al., 2000; Scheid and Du-

ronio, 1998; Scheid et al., 1999). Once released from inhibition, Bcl-2 could translo-

cate into the mitochondria and inhibit DC apoptosis (Adams and Cory, 1998; Green, 

2000; Yang et al., 1995). In conclusion, TREM-2 may act on DC homeostasis by pro-

viding fuel and protection (survival signals), and the proper navigation systems 

(CCRs) so that DCs can travel between blood, tissue and LN.  

On the other hand, TREM-2 or other DAP12-associated receptors could synergize 

with cell surface receptors, which activate DCs through NF-κB (Figure 4.5). DAP12-

deficient mice were resistant to EAE and resistance was associated with a severely 

diminished production of IFN-γ by myelin-reactive CD4+ T cells [Bakker, 2000 #45]. 

Since T cells from normal DAP12+/+ mice do not express DAP12, the resistance to 

EAE probably results from improper APC function at different stages during induc-

tion of the immune response. This ultimately results in the failure to induce autoreac-

tive T cells in DAP12-/- mice. The results obtained on TREM-2 function in vitro, 

strongly support the idea that DAP12-associated DC receptors could amplify matura-

tion signals transduced by other receptors allowing for optimal antigen-presentation 

and subsequent T cell function. Most interestingly, administration of mTREM-2-IgM 

leads to complete resistance against EAE in mice. Whether this resistance is indeed 

associated with diminished APC function and subsequent T cell priming is yet un-

clear. Protection against EAE was retained in these mice even after mTREM-2-IgM 

was cleared from the blood (data not shown), thus indicating that TREM-2/DAP12 

acts during the initiation of EAE and is most likely required for complete APC matu-

ration or proper migration of APCs to the areas of T cell priming in the LN. The role 

of TREM-2/DAP12-dependent pathways during APC maturation is further empha-

sized by the observation that mTREM-2-IgM reduces T cell priming and differentia-

tion to IL-4-secreting effector CD4+ T cells during Ovalbumine (OVA)-induced 
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asthma (pers. communication Nicole 

Schmitz, BII). Consistent with previ-

ous publications, the reduced levels of 

IL-4 lead to the improper induction of 

IL-5 followed by reduced lung eosino-

philia, and impaired B cell functions 

such as inhibition of isotype switch 

resulting in decreased serum levels of 

IgE (Kopf et al., 1995). Thus, com-

plete DC maturation during both TH1 

and TH2-mediated responses is medi-

ated by a synergistic involvement of 

several DC receptors including 

DAP12-associated receptors.  

Up to now, resistance to EAE has also 

been observed in CD40 ligand 

(CD40L)-deficient mice that express a 

transgenic T cell receptor specific for 

myelin basic protein (MBP) due to 

impaired CD80 and CD86 expression 

on the APC (Grewal et al., 1996). Immunization of these mice with MBP peptide, 

along with the simultaneous co-administration of CD80-overexpressing APC, primed 

the myelin-reactive T cells for IFNγ production and induced EAE. Their results dem-

onstrated that restoration of costimulatory activity on APC in vivo could restore EAE 

induction. The cross-linking of CD40 on DCs up regulates MHC class II, the costimu-

latory molecules CD80 and CD86 and OX40L, and the chemokine receptor CCR7, 

and induces IL-12 secretion (Grewal and Flavell, 1998; van Kooten and Banchereau, 

2000; Yanagihara et al., 1998). Therefore the CD40/CD40L interaction has been im-

plicated as a key mediator of DC maturation. Although CD40-/- mice fail to mount 

proper TH1 responses to a number of pathogens, CD40-deficient mice challenged with 

viruses are able to mount protective CD4+ T cell responses that produce normal levels 

of IFN-γ (Oxenius et al., 1996). This suggests the existence of CD40/CD40L inde-

pendent mechanisms for T cell priming. In addition to the CD40/CD40L pathways, 

other pathways, such as TRANCE-R/TRANCE and OX40/OX40L have been impli-

cated in APC-T-cell interaction. Stimulation of TLR4 or TLR9 by bacterial products 

induces IL-12 production and enhances surface expression of costimulatory molecules 

on DCs. MyD88 seems to be essential for the cytokine production, however it was 

shown that MyD88-/- DCs can still mount allogeneic T cell activation paralleled with 

 
Figure 4.5: The role of TREM-2 during inflam-
mation 

Infections lead to the recruitment of DCs into the
tissue (1,2). Triggering of PRRs together with
TREM-2 are responsible for the induction of full DC
maturation (3) and migration to the draining lymph
node (LN) (4). In the LN, stimulation of T cells by
costimulatory molecules and DC-secreted cyto-
kines (5) induces effector T cells (6), which travel
via the blood stream (/) to the site of infection (8). 
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up-regulation of co-stimulatory molecules (Akira et al., 2001; Kaisho et al., 2001). 

This implies that stimulation by LPS or CpG DNA can engage other pathways that are 

either started form TLRs in a MyD88-independent way or that further receptors 

cooperate with TLRs to mediate the completion of DC maturation. Our results show 

that DAP12-mediated pathways constitute an additional pathway leading to APC 

maturation. Remarkably, these pathways are independent of IKKα,β,γ/NFκB and 

p38/SAPK in contrast to TLRs and receptors of the TNF-R family. Thus, DAP12-

associated DC complement signals from TLRs and TNF-R family members ultimately 

leading to full DC maturation.  

4.2.2 The regulation and cellular distribution of TREM-2 and 
TREM-2L 

Human TREM-2 was the first DAP12-associated receptor identified on DCs. TREM-2 

is rapidly up regulated by IL-4 on human monocytes, on MDCs and even on MMφs 

but is not expressed on mature DCs. In addition, mTREM-2 mRNA was detected in 

mouse macrophage cell lines [Daws, 2001 #116]. Thus, it is likely that TREM-2 can 

be induced also on distinct myeloid cell types by stimulation with IL-4 or additional 

unknown stimuli. Interestingly, TREM-2 could be detected on tonsillar DCs but also 

on normal and transformed mast cells in malignant mastocytomas. Mast cells are a 

main source of IL-4 under these (Hassuneh et al., 1997) and other conditions (Broide, 

2001), thus supporting the idea that TREM-2 can be upregulated by IL-4 on distinct 

types of myeloid cells.  

Obviously, the cellular response induced by TREM-2/DAP12 is dependent on the 

properties of the cell type stimulated. Biochemical characterization of TREM-2 on 

DCs revealed its main function in inducing cell survival and generating the phenotype 

of mature APC. mTREM-2a and 2b were found to be expressed on a macrophage cell 

line. While antibody-mediated ligation of TREM-2a in this cell line leads to oxidative 

burst, measured by the release of nitric oxide (Daws et al., 2001) it is not yet clear 

whether it also induces cell survival or CCR7 upregulation. Whether stimulation of 

TREM-2/DAP12 on mast cells leads to degranulation, induction of costimulatory 

molecules and MHC class II or cell survival is currently under investigation. It is of 

note, that mast-cell deficient WBB6/F1-KitW/KitWv(W/Wv) mice exhibit a signifi-

cantly reduced EAE disease incidence, delayed EAE disease onset, and decreased 

mean clinical scores when compared with their wild-type congenic littermates 

(WBB6/F1-Kit+/Kit+) (Secor et al., 2000). The idea that mast cells contribute to the 

pathogenesis of EAE in mice and multiple sclerosis (MS) in humans is not new. Over 

100 years ago, mast cells were observed in the CNS plaques of MS patients (Neuman 
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et al., 1890). Subsequent studies reported a correlation between the number and/or 

distribution of mast cells in MS or EAE pathology (Lafaille et al., 1997; Olsson, 

1974; Toms et al., 1990). Sites of inflammatory demyelination are also sites of mast 

cell accumulation in the brain and spinal cord, and the percentage of degranulated 

mast cells in the CNS correlates with the clinical onset of disease symptoms in acute 

EAE (Brenner et al., 1994). Mast cells also produce cytokines, particularly IL-4, that 

have been implicated in either EAE disease pathology or protection from diseases 

(Begolka et al., 1998; Gordon and Galli, 1990; Khoury et al., 1992; Renno et al., 

1995; Selmaj et al., 1991). Furthermore, levels of tryptase, a mast cell specific prote-

olytic enzyme, are elevated in the cerebrospinal fluid in MS patients (Rozniecki et al., 

1995) and mast cell-derived proteases are capable of degrading myelin (Dietsch and 

Hinrichs, 1989; Johnson et al., 1988; Watson et al., 1994). It is therefore likely that 

impaired mast cell function contributes to the observed phenotype during EAE in 

mice treated with mTREM-2-IgM and DAP12-/- mice. Thus, to fully understand 

TREM-2 function in vivo, it is essential to determine all cell types expressing TREM-

2 and its regulation.  

Taking the traveling route of APCs from the periphery to the LN into consideration, 

the putative TREM-2L has to be strategically placed in the periphery to redirect the 

APCs to the draining LN. Thus the ligand can be an extracellular matrix protein, 

sugar, or a secreted or membrane-bound protein expressed on tissues or pathogens. In 

addition, it is possible TREM-2 is directly involved in APC-T-cell contact, in which 

case it would be expressed on T cells. Using TREM-2-IgM or mTREM-2-IgM fusion 

protein, binding was tested on several distinct cell lines and primary T cells stimulated 

in different ways, however so far no binding has been observed. The results obtained 

from mice with EAE and OVA-induced asthma strongly suggests that TREM-2L 

could be an endogenous ligand. Thus future investigations will concentrate on isolated 

cell populations from these mice. 
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4.3 Conclusions 
TREMs constitute a novel family of receptors that are involved in the control of in-

flammation and the connection between innate and adaptive immune responses. While 

PRRs are mainly involved in the recognition of pathogens and the initiation of innate 

responses, TREMs build a second front line, ready to be activated by endogenous fac-

tors, which are produced during the initial phase of inflammation. Therefore, TREMs 

construct an amplification loop that is tightly controlled and supports innate responses 

by prolonging effector cell survival and increasing the quality of the required re-

sponse. In addition, TREMs are able to initiate innate responses autonomously, thus 

providing an additional receptor network for the activation of innate responses, which 

complement TLRs, receptors of the TNF-R-SF and GPCR. Observations obtained 

from neutrophils and DCs suggest further that, in the absence of pathogenic stimuli 

TREMs are used for the regulation of myeloid cell homeostasis. Thus, while inverte-

brates, use the Toll-system for initiation and amplification of innate responses 

(Dushay and Eldon, 1998; Meister et al., 1997), in vertebrates a separation of initia-

tion of inflammation (TLRs) from amplification (TREMs) has evolved. Such a sepa-

ration allows for the control of a higher maximum power to use against pathogens 

combined with a mechanism for the fine tuning of immune responses according to the 

microorganism encountered. Immunological amplification systems such as the 

TREMs are appealing targets for therapeutic intervention in situations of excessive 

systemic inflammatory responses. As demonstrated here, exogenous modulations of 

TREM-1 signaling is sufficient to block septic shock in mice and may be sufficient to 

restore correct innate responses during certain pathological conditions in humans. 
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5 SUMMARY 

In the work presented here, a new group of activating receptors expressed on myeloid 

cells was identified, cloned and characterized. Due to selective expression on myeloid 

cells, the receptors were designated Triggering Receptors Expressed on Myeloid cells 

(TREMs). Five TREMs were identified. All of them are characterized by an extracel-

lular Immunoglobulin (Ig) domain of the V-type, a charged lysine or arginine residue 

in the transmembrane domain, and no intracellular signaling motifs. At least three 

members of this family associate with a transmembrane adapter molecule called 

DAP12. DAP12 recruits protein tyrosine kinases, which initiate a cascade of phos-

phorylation events leading to cell activation.  

Functional studies focused on TREM-1 and TREM-2. TREM-1 is selectively ex-

pressed on blood neutrophils, monocytes and alveolar macrophages and associates 

with DAP12. Engagement of TREM-1 in vitro triggers secretion of proinflammatory 

cytokines and chemokines and promotes survival of neutrophils. Resistance to apop-

tosis is mediated by phosphorylation and inactivation of a proapoptotic member of the 

Bcl family, called Bad, which regulates mitochondrial integrity. In vivo, TREM-1 is 

expressed at very high levels on neutrophils and monocytes that accumulate in human 

tissues infected with bacteria. In addition, it is upregulated on peritoneal neutrophils 

of patients with microbial sepsis and mice with experimental sepsis. Strikingly, block-

ade of TREM-1 during experimental sepsis reduces inflammation, increases neutro-

phil apoptosis and protects mice against sepsis. Thus, TREM-1-driven signals play a 

central role in neutrophil function and in acute inflammatory responses to bacteria. 

TREM-2 is a cell surface receptor on dendritic cells (DCs), which is associated with 

DAP12, like TREM-1. In vitro, TREM-2/DAP12 induces upregulation of CC 

chemokine receptor 7, which promotes homing of DCs to lymph nodes, where they 

encounter naïve T cells. In addition, TREM-2 promotes DC survival and induces par-

tial DC maturation, increasing the T cell stimulatory activity of DCs. In vivo, block-

ade of TREM-2 signaling in mice reduces the ability of DCs to stimulate autoimmune 

T cells, which cause experimental autoimmune encephalomyelitis (EAE). Thus, 

TREM-2/DAP12 enhances the antigen presenting capability of DCs. 

In conclusion, TREMs constitute a novel group of receptors involved in the control of 

neutrophil inflammatory responses and DC antigen presenting function. They provide 

and effective pathway to amplify innate as well as adaptive responses to pathogenic 

invasion and represent a new therapeutic target for the control of diseases with immu-

nological pathogenesis. 
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7 ABBREVIATIONS 

β-ME beta-Mercaptoethanol 
∆Ψm  Mitochondrial membrane potential 
λ Wavelength 
µg microgram 
µl microliter 
µM micromolar 
2n diploid 
[3H] Tritium 
A Alanine 
7-AAD 7-Aminoactinomycin 
Ab Antibody 
ADCC Ab-dependent cell cytotoxicity 
AP Alkaline phosphatases 
APC allophycocyanin 
APCs Antigen-presenting cells 
APS Ammonium persulfate 
ARDS Acute respiratory distress syndrome 
ATCC American Type Culture Collection 
ATP Adenosine triphosphate 
BAL Bronchoalveolar lavage 
BALF Bronchoalveolar lavages fluid 
BCA Bicinchioninic acid 
BCG Bacillus of Calmette-Guerin 
bcl-2 B cell lymphoma gene 2 
BCR B-cell receptor 
BH Bcl-2 homology domain 
BM Bone marrow 
Bp Base pair 
BS Blocking solution 
BSA Bovine serum albumin 
C Cysteine 
°C Degrees centigrade  
C5a Complement factor 5a 
CaM-K Calcium-calmodulin-dependent 

kinases 
CASP Colon ascendens stent peritonitis 
CD Cluster of differentiation 
cDNA Complementary DNA 
CCR CC Chemokine receptor 
CCL CC Chemokine ligand 
CLP Cecal ligation and puncture 
CNS Central nervous system 
Co-IP Co-immunoprecipitations 
cpm counts per minute  
CR Complement-receptor 
CREB cyclic AMP response element-binding 

protein 
CS Contact sensitivity 
CXCR CXC chemokines receptor 
D Aspartic acid 
DAG 1,2-sn-Diacylglycerol 
DAP10 DNAX activating protein 10 
DAP12 DNAX activating protein 12 
DC Dendritic cell 
DD Death domain 
ddH2O double-distilled water 

DcR Decoy receptor 
DED Death effector domain 
DHE Dihydroethidine 
DIG Digitonin 
DiOC6(3) 3,3´-Dihexyloxacarbozy-aniniodide 
DISC Death-inducing-signaling complex 
DMSO Dimethylsulfoxide 
DN dominant negative 
DNA Desoxyribonucleic acid 
DR Death receptor 
ds double stranded  
E Glutamic acid 
EAE Experimental autoimmune encepha-

lomyelitis 
ECL Enhanced chemoluminescence  
E. coli Escherichia coli 
EDTA Ethylenediamine tetraacetate 
ELC EBI-1 ligand chemokine 
ELISA Enzyme-linked immunosorbant assay 
ER Endoplasmatic reticulum 
ERK Extracellular-signal regulated kinase 
EST Expressed sequence tagged 
et al. et alii 
Eth Ethidin 
EthBr Ethidium bromide 
F Phenylalanine 
F(ab´)2 Antigen binding fragment 
Fc Crystallizing fragment 
FACS Fluorescence-assisted cell sorting 
FADD Fas-associated death domain protein 
FCA Freund complete adjuvant 
FCS Fetal calf serum 
FcR Fc receptor 
FcRγ Fc receptor γ chain 
FIA Freund incomplete adjuvans 
FITC Fluorescein-isothiocyanate 
FMLP formyl-Met-Leu-Phe 
f-MOC fluorenylmethoxycarbonyl 
FSC Forward scatter 
G Glycine 
GC Germinal center 
GPCR G-protein-coupled receptor 
H Histidine 
h hora (hour) 
HMG-1 High mobility group-1 
HRP Horseradish peroxidase 
hu human 
I Isoleucine 
Ig Immunoglobulin 
IHC Immunohistochemistry 
IKK Iκ kinase 
IL Interleukin 
ILT Ig-like transcript 
IFN Interferon 
IP Immunoprecipitations 
i.p. intraperitoneally 



Abbreviations  145 

IP3 Inositol-1,4,5-trisphosphate 
IPTG Isopropyl β-thiogalactoside 
JAK Janus Kinase 
JNK c-Jun N-terminal Kinase 
IRAK IL-1R-associated protein kinase 
IRF IFN regulatory factor 
ITAM Immunoreceptor tyrosine-based acti-

vation motifs 
ITIM Immunoreceptor tyrosine-based in-

hibitory motif 
i.v. intravenously 
K Lysine 
kDa kilo Dalton 
KIR Killer cell Ig-like receptor 
KLH Keyhole limped hemocyanin 
L Leucine 
LAT linker of activated T cells 
LB Luria broth 
LN Lymph node 
LPS lipopolysaccharide 
LSM Lymphocyte separation medium 
LT Lymphotoxin 
LT Leukotriene 
LTA Lipotechoic acid 
M Methionine 
M molar (mol/l) 
m monoclonal 
mA milliampere 
MACS Magnetic cell sorting 
Mal MyD88-adapter-like 
MALP2 Macrophage-activating lipoprotein-2 
MAPK Mitogen-activated protein kinase 
MBP Myelin basic protein 
MDC Monocyte-derived DC 
MMφ Monocyte-derived macrophage 
MFI Mean fluorescence intensity 
mg milligram 
MHC Major Histocompatibility Complex 
MIF Macrophage migration inhibitory fac-

tor 
min minutes 
ml milliliter 
mM millimolar 
MOG Myelin oligodendrocyte glycoprotein 
MPO Myeloperoxidase 
MR Mannose receptor 
mRNA Messenger RNA 
MRP-1 Multidrug Resistance-associated Pro-

tein-1 
MS Multiple sclerosis 
mu murine 
MW Molecular weight 
MWCO Molecular weight cut off 
N Asparagine 
N2 Nitrogen 
NC Nitrocellulose 
NF-AT Nuclear Factor of activated T-cells 
NF-κB Nuclear Factor κ B 
ng nanogram 
NGF Nerve growth factor 

NIK NF-κB-inducing kinase 
NK Natural killer 
nM nanomolar 
NO Nitric oxide 
NP Nonidet 
ON over night 
OPG Osteoprotegerin 
OVA Ovalbumine 
Q Glutamine 
P Proline 
p polyclonal 
p90RSK 90-kDa ribosomal S6 kinases 
PAF Platelet activating factor 
PAGE Polyacrylamide gel electrophoresis 
PAMP Pathogen-associated molecular pat-

terns 
PBS Phosphate buffered saline 
PBL Peripheral blood leukocytes 
PBMC Peripheral blood mononuclear cells 
PCR Polymerase chain reaction  
PDK-1 3’-phosphoinositide-dependent 

kinase-1 
PE β-Phycoerythrin 
PFA Paraformaldehyde 
PH Pleckstrin-homology 
pH potentia hydrogeni 
PI Propidium iodide 
PI(3)K Phosphoinositide 3-OH kinase 
PI(4)P Phosphatidylinositol-4-phosphate 
PI(4,5)P Phosphatidylinositol-4,5-bisphosphate 
PI(3,4)P Phosphatidylinositol-3,4-bisphosphate 
PI(3,4,5)P Phosphatidylinositol-3,4,5-tri-

phosphate 
PIP2 Phosphatidylinositol-4,5-bisphosphate 
PL Peritoneal lavage 
PLOSL Polycystic lipomembranous osteo-

dysplasia with sclerosing leukoen-
cephalopathy 

PKA Protein Kinase A 
PKB Protein Kinase B 
PKC Protein Kinase C 
PLC Phospholipase C 
PLCs Peritoneal lavage cells 
PLF Peritoneal lavage fluid 
PRR Pattern recognition receptor 
PS Phosphatidyl-serine 
PTB Protein-tyrosine binding 
PTK Protein tyrosine kinase 
PTPC Permeability transition pore complex 
R Arginine 
RA Receptor antagonist 
RACE 3’ Rapid amplification of cDNA ends 
RANK Receptor activator for NF-�� 
Rb Retinablastoma 
RBC Red blood cells 
RIP „Receptor interacting protein“ 
RNA Ribonucleic acid 
rpm Rotations per minute 
RSB Reducing sample buffer  
ROI Reactive oxygen intermediates 
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ROS Reactive oxygen species  
RT Reverse transcription  
RT Room temperature (20-25°C) 
< 2n subdiploid 
S Serine 
SAPK Stress-activated protein kinase 
s.c. subcutaneously 
SDS Sodiumdodecylsulfate 
SF Superfamily 
SH2 Src-homology 2 
SHP SH2-containing phosphatase 
SIRS Systemic inflammatory response syn-

drome 
SLC secondary lymphoid-tissue chemo-

kine 
SN supernatant 
Sos Son of sevenless 
SR Scavanger receptor 
ss single stranded  
SSC Side scatter 
t tempus (time) 
T Threonine 
TB Transfer buffer 
TCR T cell receptor 
TEMED Tetraetylmethylendiamine 
TF Transcription factor 
Tg transgenic 

TH T helper 
TIR Toll/IL-1R 
TIRAP Toll-IL-1R (TIR) domain-containing 

adapter protein 
TLR Toll-like receptor 
TNF Tumor necrosis factor 
TNP Tri-nitrophenol 
TRADD TNF-receptor associated death do-

main 
TRAF TNF-receptor associated factor 
TRAIL TNF-related apoptosis-inducing li-

gand 
TRANCE TNF-related activation-induced  
                 cytokine 
TREM Triggering receptor expressed on 

myeloid cells 
Tris Tris(hydroxymethyl)-methylamine 
Tx Triton x 
UV ultraviolet 
V Valine 
v/v Volume per volume 
v/w Volume per weight 
WB Washing buffer 
WBA Western blot analysis 
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