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Abstract

The contribution of muscle in-series compliance on the power generation of
the muscle tendon complex was investigated with a forward dynamic com-
puter simulation. The model of the human body contains eight Hill-type
muscles of the lower extremities. The force distribution problem among the
redundant muscle groups was solved for the simulated drop jumps by opti-
mization of the resultant jump height. It is shown that the muscle series
elastic energy stored in the downward phase provides a significant contri-
bution of 29 % to the muscle energy in the push-off phase. Further by the
return of the stored elastic energy all muscles contractile elements can reduce
their shortening velocity during push-off to develop a higher force thanks to
their force velocity properties. The additional stretch taken up by the series
element allows only m. rectus femoris to work closer to its optimal length
due to its force length properties. The function of the SEE in the muscle
power generation in drop jumping is beside the storage and return of energy
the support of the force producing ability of the contractile elements.
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Chapter 1

Introduction

When a rubber ball bounces its initial kinetic energy is stored as elastic strain
energy and is converted back to kinetic energy in the rebound.

A person jumping down from a chair can decide whether to land on the
ground or to jump up again. The latter movement is called a drop jump.
In drop jumping some of the bodies initial energy is stored as elastic strain
energy in the muscles and is recovered during the elastic recoil. The rest of
the jumping energy has to be produced through metabolic work.

Many sportive movements involve muscle actions in which the shortening of
the muscle (concentric phase) is immediately preceeded by a muscle stretch
(eccentric phase), ie. running, throwing and vertical jumping. These muscle
actions are called stretch-shortening cycles (SSC). The question whether elas-
tic strain energy stored in the eccentric phase can enhance the work output in
the concentric phase was a discussion topic in a whole issue from the Journal
of Applied Biomechanics [64]. This shows the importance of the question of
elastic energy in movement performance and basic muscle research.

It is well known that tendon and tendinous tissue of the muscles have elastic
properties which have been determined in different experiments [79], [63],
[25], [40], [29], [51]. From experiments on isolated frog muscles it is known
that shortening of muscle fibers is influenced by the muscle elasticity [43].
However, its exact role in different movements of daily life is still unclear.
Besides the enhancement of the work output in muscle stretch shortening
cycle, other possible functions of elastic tissue could be the prevention of
injury, metabolic efficiency and stability of movement control. This study
focuses on the performance of the muscles during drop jumping.



Measuring the elastic energy storage in human muscles during sportive move-
ments is difficult, nowadays the only noninvasive method is ultrasonography
[45]. In vivo fiber recording with ultrasound is limited to slow movements
due to the low recording frequency and scanner fixation problems.

A basic understanding of elastic function in fast movement such as drop
jumping can be obtained with the help of computer simulation. The elastic
behavior of all muscles implemented as well as mechanical parameters during
the movement can be obtained.

Bobbert et al. [8] were one of the first who quantified elastic energy storage
during jumping with the help of computer simulation. Bobbert estimated for
a vertical jump starting in a squatting position, that the elastic structures of
the ankle plantarflexors provide 40 % of the total energy delivered by these
muscles. For the same jumping condition Anderson and Pandy [2] calculated
the contribution of elastic energy to be 35 % of the muscle concentric energy
for all eight muscles included in the model. The similarity in the results of the
two simulation studies seems to indicate that there is a considerable amount
of energy stored which contributes to the muscle performance at take-off. It
is not only the amount of energy stored which is recovered at take-off, the
muscle elasticity and the reused energy can also influence the force producing
ability of the muscle fibers. The effect of tendon on muscle force in dynamic
isometric contractions was simulated by van Soest et al. [73]. They found out
that tendon removal has an influence on maximum fiber shortening velocity.
However these simulations were validated with animal experiments on single
muscles. The effect of muscle elasticity on the fiber performance in real life
human movement has not yet been investigated.

The acceptance of such simulation results is only as good as the determination
of the input parameters and the agreement with the measured kinetics and
kinematics. Therefore a database for the subjects as well as measurements
of the movement must be available and agree with the simulation results.
For model validation there is a database of drop jumps under different con-
ditions such as varying drop height and contact time available measured by
Arampatzis et al. [3]. Further there is access to some of the 15 subjects par-
ticipating in this study to determine additional parameters needed for the
simulation. Another reason for investigating the function of muscle elasticity
in drop jumping is that the muscles carry out an intense stretch-shortening
cycle and should give considerably high values for the elastic energy stored.
Looking at the take-off velocities in drop jumping measured by Arampatzis
et al. the athletes reach the same height in the rebound independent of
their dropping height (fig. 1.1). The higher potential energy at greater drop
heights could possibly be stored in the elastic elements of the muscles but
could not be reused to obtain a greater jump height such as the bouncing
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Figure 1.1: FEaxperimentally determined vertical take-off wvelocities in drop
qumping. The drop height as well as the ground contact time is varied. The

data points are averaged values from 15 subjects participating in the study of
Arampatzis et al. [3].

ball which reaches almost the same height from which it was dropped. A
valid simulation model should show the same behavior.

To give a more precise formulation of the jumping performance enhancement
caused by muscle elastic energy, the muscle tendon unit can be described
according to Hill [38] with a passive series elastic component associated with
the tendon and aponeurosis and an active contractile element associated with
the muscle fibers. The muscle fibers are the only force generating elements in
the muscle. The following three statements describe how the muscle elastic-
ity might alter the performance of the contractile element and lead to three
hypotheses which will be proven with the help of computer simulation.

A. V. Hill [39] : "The stored mechanical energy can be used in producing
a final velocity greater than that at which the contractile component itself

can shorten’.

W. Herzog [24] : "Tendons and aponeuroses influence the variable contractile
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element length and speed, and therefore its force producing ability’.

K. Roeleveld [60] : 'The tendon acts like a stiff force transducer without
significantly modifying the muscles performance’.

From the last statement the question arises whether there is any consid-
erable amount of strain energy stored. The statements from Herzog and Hill
are describing the effect of series elasticity on the velocity and the length of
the contractile element. From the three statements the following hypotheses
on the effect of series elasticity can be formulated:

1. A considerable amount of energy can be stored in the muscles series
elastic elements.

2. The contractile elements can reduce their shortening velocity to develop
a higher force.

3. The contractile elements can work closer to their optimal length.

The purpose of this study is to develop a computer simulation model to first
calculate the amount of energy stored in the series elastic element of the
muscles in drop jumping (hypothesis 1)and second to show how this stored
elastic energy influences the force producing ability of the muscle contractile
element (hypotheses 2 and 3).

The study consists of five different steps each associated with a chapter.
In chapter two the human body is modeled as an assembly of rigid bodies.
In chapter three the muscle model is formulated and the muscle series elas-
ticity used as model input is determined by ultrasonography. Chapter four
validates the model, comparing the simulated drop jumps to those measured
in the study of Arampatzis et al. [3]. At last step in chapter five the elastic
energy stored in the muscles is calculated and the effect of series elasticity
on the force producing ability of the contractile elements is investigated.



Chapter 2

Rigid body model

The human body is modeled with an assembly of rigid bodies. The bodies and
their constraints as well as the forces acting on the bodies will be described
in the following sections.

2.1 Model components

The model should contain enough rigid bodies to provide insight into the
force production of the muscles in the lower extremities during drop jump-
ing. The main muscles working against gravity in the movement of interest,
are pulling around the hip, knee and ankle joint. The exact modeling of the
upper body is not of interest, since drop jumps are a test exercise to quantify
jumping performance and the hands are fixed to the hip in the studies carried
out by Arampatzis [3]. A model with four segments: trunk with head and
arms, thigh, shank and foot linked together with hinge joints (fig. 2.1) is used.

The movement is supposed to be symmetric so that a two dimensional model
with half the upper body mass and one leg is modeled. This can be done
due to the linearity of the mass in the rigid body equations of motion.
Given the total body mass, the standing height and the sex of a person the
segment masses, moments of inertia and geometric dimensions are calculated
based on regression equations from a NASA database [53]. The values taken
correspond to the average persons participating in the drop jump study car-
ried out by Arampatzis et al. [3]. Modeled is a male subject with body
weight and standing height of 78 kg and 183 cm respectively.

12
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In reality the human body is not composed of a set of linked rigid bod-
ies. Each segment represents a composition of a rigid skeletal part and soft
components such as skin, muscles, ligaments, organs, fat and other soft tis-
sues. Gruber et al. [32] showed that these structures have a fundamental
effect on the impact phase during landing from a vertical jump. The skeletal
parts are highly accelerated whereas the soft parts of the body continue to
fall during the impact phase. Their function can be simulated using addi-
tional wobbling masses.

In the study of Gruber et al. a direct simulation was carried out with a
linked four segment model. The net joint moments around the ankle and
knee joints were given as time curves. The calculated ground reaction force
in the first 20 ms was of much larger magnitude and shape when no wobbling
mass was used.

In the simulated drop jumps in this study the net joint moments are not
available as constant time curves, they were calculated for a given muscle
activation. The muscle forces depend on the activation as well as on the
kinematics and the forces applied to the model. Using a rigid body model
without wobbling masses, the viscoelastic properties of the muscles would
compensate for the wobbling masses. The calculations of the muscle elastic
energy would lead to different results. Therefore wobbling masses were in-
cluded in the model.

The wobbling masses are implemented using an additional rigid body cou-
pled with a nonlinear force to three of the four linked segments of the model.
The wobbling masses of the upper body and the upper and the lower leg
are shown on the right side in fig. 2.1. The distribution of segment mass
to the skeletal part and the wobbling part of the body is done as follows:
The bony parts are modeled as a cylinder with the segment length from the
NASA database [53] and an assumed radius. The cylinder was filled with a
homogenous mass with the density for bone of 1.2 g/cm?. The mass, inertia
and center of mass (CM) of the cylinders are calculated. Together with the
wobbling mass the cylindrical bone must have the properties of the overall
segment mass obtained from the NASA database. From that condition, mass,
inertia and location of the CM for the wobbling mass can be calculated. The
masses and inertias used for the model are shown in tab. 2.1, the location of
the CM in fig. 2.1.
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Figure 2.1: Schematic representation of the musculoskeletal model used to
simulate maximum-height drop jumping. The human skeleton on the left side
was modeled with a planar four-segment system linked at the hip, ankle and
knee with frictionless revolute joints. A total of eight muscle groups transmit
forces to the skeleton. The right side shows the skeleton plus the wobbling
masses. The stars under the foot show the locations of the ground contact
points on the foot.

2.2 Forces acting on the rigid bodies

In a planar system consisting of rigid bodies each body originally has three
degrees of freedom. The four rigid bodies representing the bony parts are
constrained by three joints, the three wobbling masses keep their three de-
grees of freedom. This system of rigid bodies with their inertias, masses
and joint locations was implemented in a software package (DADS, LMS
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Table 2.1: Model segment masses and inertias. The segment masses sum up
to half of the overall body mass of 78 kg.

Segments Bony parts Wobbling parts
mass |kg| | inertia [kgm?] | mass [kg] | inertia [kgm?]
Upper body | 9.4 0.567 17.0 0.547
Upper leg 2.1 0.042 6.0 0.092
Lower leg 1.2 0.014 2.3 0.030
Foot 1.0 0.004

international) which automatically generates the equations of motion in a
gravitational field. In the case of a human model there is the ground re-
action force, the muscle force, the wobbling mass coupling forces and the
joint limiting forces which must be implemented by the user via user defined
fortran subroutines. In the direct dynamic simulation, at each integration
step the subroutines are called and these user defined forces are added up to
the equations of motion. A description of these forces can be found in the
following sections.

2.2.1 Wobbling mass coupling forces

The coupling forces and moments Quwj; acting between the rigid parts and
the wobbling masses are

A; is the area of the wobbling mass attached to body j. Ag, are the relative
distance transversal (Agq ), longitudinal (Agy) and the angle (Ags) between
wobbling mass and skeleton inertial system. The nonlinearity is a result of
the nonlinear force deformation curve from tendinous tissue which is mainly
responsible for the coupling between skeleton and wobbling mass. The cou-
pling parameters in tab. 2.2 are used in this study. These parameters were
chosen such that the maximum relative elongation and rotation is less than
two centimeters and three degrees respectively. Further the damping coeffi-
cients were varied until the wobbling mass was not oscillating more than two
times after touch-down. An additional torque was added to the rigid

Tcorr; = Aqy Quja — Age Quj (2.2)
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Table 2.2: Wobbling mass coupling parameters. The values for b, ¢ and d are
normalized to overall body mass used in the simulation. The coefficients A,
are taken from Gruber [32] and are scaled with the respective segment length
and mass to the model dimensions.

Parameter Value Units

Do 3.0

1,2 1.6 10° | kg/m*s?bodymass
dy 2 1.010° | kg/m3s bodymass
b3 2.0

cs 1.210* | kg/s*rad*bodymass
ds 1.010% | kg/s rad*bodymass
A; (upper body) | 5.6 1072 | m?

Ay (upper leg) 411072 | m?

As (lower leg) 231072 [ m?

bodies on which the wobbling mass is attached, to correct the violation of
the angular momentum. This violation is caused by the nonlinearity of the
coupling forces which do not act on the same line of action and therefore
generate an additional angular momentum on the rigid bodies.

2.2.2 Contact forces

The contact between the foot and the ground is modeled by two independent
contact elements, one at the heel and the other under the forefoot (fig. 2.1).
Each element represents the mechanical properties of the foot, the sole of
the shoe and the ground. In the measured drop jumps of Arampatzis et al.
[3] the athletes were jumping with sport shoes on force platform built out of
steel, so that all the deformation is taken up by the foot and the shoe. A
mathematical description of a viscoelastic force vertical and horizontal with
respect to the ground is formulated in the equations

Fey, = —Areli(cAx | Ax | —d | Az | &), (2.3)
Fe, maz(Arel; (c Ay* +d Ay 1), 0). (2.4)

The vertical force Fc, depends on the penetration Ay and the penetration
velocity 9 of the contact point i with the surface. In the vertical direction
the force is always positive because no sticking to the ground is allowed. The
horizontal force is defined for a non sliding foot and depends on Az and z.
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Ax is defined as the difference between the first horizontal contact point with
the ground and the respective contact point on the foot. Arel, ¢ and d are
parameters which are obtained simulating an experiment from Aerts et al.
[1]. In the study of Aerts et al. impact tests using a pendulum were carried
out on the shod heel region of 9 subjects. To get the parameters for the

60
— Simulation 15
— 50| — Aerts 93
(@)]
4
Z.40
° glO
I~ S
S 30 =
— >
Q <
@
£ 20 5
S
10
0 0
0 5 10 15 0 0.02 0.04

Ay [mm] Time [s]

Figure 2.2: Simulated pendulum experiment, force-penetration (Ay) and
penetration-time curve. In the experiment carried out by Aerts et al. [1]
mazimum penetration was reached at 22.4ms, on the right plot the simulated
penetration of the pendulum shows maximum peak at the same time.

contact forces the force deformation curve of a pendulum impacting on a soft
shoe was simulated and compared to the data measured by Aerts et al.. The
equation of motion formulated for the vertical contact force F'c, acting on a
pendulum (11.615kg) is integrated. The initial conditions are: y(0) = Om and
y = 0.96 m/sec. The integrator odel13 (Matlab 6.0, Mathworks) was used
to solve the equations of motion. Keeping Arel = 1 the parameters ¢ and d
were varied by trial and error to match the experimental curve determined.
The velocity term in eq. 2.4 determines the energy loss of the pendulum
as well as the time at which maximum pendulum penetration in the shoe
is reached. In the study of Aerts et al. the time in which maximum force
is reached is 22.4 ms. The best result obtained by trial and error is shown
in fig. 2.2. Applying the pendulum experiment to the drop jump impact of
the shod foot with the ground, Arel is the contact area of the foot with the
ground relative to the area of the pendulum. The parameters found for the
vertical contact force were also taken for the horizontal force. All parameters
used for the contact forces are shown in tab. 2.3.
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Table 2.3: Ground contact parameters.

Parameter Value
c 2.6 10° kgm/s*
d 3.010" kgm/s

Arel; (forefoot) | 2.65
Arely (rearfoot) | 1.29

2.2.3 Muscle forces

In chapter 3 it will be shown that the forces along the muscle line of action
Fm(act, Vyru, Lyry) can be calculated dependent on the activation, veloc-
ity and length of the muscle-tendon-unit. This muscle force described along
the line of action of the muscle has to be transformed into the generalized
coordinates of the rigid bodies of the model on which they are attached to.
The generalized force components along the generalized coordinates gy, of
body k are

OL Ty
0, '

Qmi, = F'm (2.5)
The coefficients of the Jakobi matrix Ly /0q for the transformation 2.5
are determined numerically. The muscle length Ly (¢) can be measured
from tendon travel and is obtained from the various literature sources sum-
marized in tab. 2.4. The muscle length Ly;7y (@) depends on the vector of
three joint angles:

=1

The parameters al and a2 describing the change in length of the muscles,
al and a2 vary with the joint i and the muscle considered. L7y (0) is the
muscle length at zero joint angle.

To calculate the partial derivatives of the Jakobi matrix, ¢ can be calculated
from the four generalized body angles g, ke{1,2,3,4}.

The muscle length for varying joint angles obtained from different subjects in
the literature are scaled to the respective segment length of the model. The
length at zero joint angle is subtracted and the parameters al and a2 fitted
with a second order polynomial. The length at zero joint angle L7y (0) to-
gether with the change in length given by parameters al and a2 determines
the absolute muscle length and so the length of the series elastic element.
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Table 2.4: Literature sources for muscle length changes with varying joint
angles.

Muscle Ankle | Knee Hip
Soleus [61]

Gastrocnemius [61] [75]

Tibialis anterior | [61]

Vasti [75]

Rectus femoris [75] [75]
Hamstrings [75] [68]
Iliopsoas estimated
Gluteus [54]

Table 2.5: Input parameters for scaling muscle origin and insertion points
according to Brand et al. [27].

Input parameter Length [cm]
Femoral epicondyle width 9.3
Tibial plateau width 8.6
Distance from lateral malleolus to tibial tubercle 38.5
Perpendicular distance from tibia long axis to tibial tubercle 4.5

Therefore Ly;7(0) is important for the amount of energy stored in the mus-
cle. To better match the model segment dimensions, Ly (0) is not directly
taken from the literature, it is calculated as the cable length wrapping around
a pulley with the radius of the moment arm from the muscle origin to the
insertion point. These points were given by Brand [27] based on anatomi-
cal landmarks and segment lengths. The segment lengths were derived from
the NASA database. The landmarks were taken on one representative male
subject (183 cm 78 kg) and are listed in tab. 2.5.

The coefficients of the Jakobi determinant OL 7y /0q; can be denoted as
the moment arm of the muscle with respect to the rigid body k. They give an
idea on how effective muscle force is transferred to the skeleton. The muscle
length and moment arms used in this study are plotted in fig. 2.3.

It has to be noted that the muscle is treated as massless, this can be done
because in drop jumping, each single muscle mass is a lot smaller than the
total body weight which is accelerated.
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Table 2.6: Joint range angles in flexion and extension, zero joint angle is
defined in an upright standing position shown in fig. 2.1.

Joint | Maximum flexion [deg] | Maximum extension [deg]
Ankle 20 -30

Knee 140 0

Hip 110 5

2.2.4 Joint range limiting forces

The human joints have a limited range of motion. In the simulated maximum
height drop jump (chapter 5), the movement generated by the muscles does
not exceed the joint range. In the simulation the muscle forces are not
known from the beginning, they are obtained by optimization. Therefore
the simulated joint angles could exceed their range of motion during the
optimization process when the jump height is not maximal. The muscle
lengths are defined for a limited joint range, calculations of muscle length out
of this defined joint range may lead to a change of the sign of the moment
arm. To avoid this problem a torque 7T'; on the two adjacent rigid bodies in
the joint j will be applied when it exceeds its range of motion

Tl; =400 Ap? + 40 Ag; ¢;. (2.7)

Ayp; is the angle exceeding the range of joint j relative to the maximal or
minimal joint angle given in tab. 2.6.
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Figure 2.3: Muscle-tendon length and moment arms versus joint angle. For
joint angle definition see tab. 2.6. Differences between the graphs and the
literature values can be caused by variation in parameters al and L0 varied
i the optimization process to obtain the resultant joint torques described in
chapter 3.2.1. The sign of the moment arm shows the direction of the torque
generated by the muscle.



Chapter 3

Muscle model

In this chapter an introduction to the muscle structure and force generation
is given and a mechanical equivalent, the Hill muscle model is presented.
The Hill muscle model consists of various elements whose properties are for-
mulated, so that the muscle force can be calculated in the simulation. The
mathematical formulation of the muscle elements is similar to those from
van Soest [73]. In addition the force enhancement due to stretch and the
activation dependence of the force-velocity relation are also modeled. The
parameters for the various elements except the maximal joint-torques and the
series elastic strain were taken from the literature. The series elastic strain
is essential for the determination of elastic energy storage and was therefore
measured with ultrasonography.

In the activation section 3.5 the optimal control problem of the muscles to
perform a maximal height drop jump is solved defining an active state func-
tion for each muscle. The last part of this chapter connects all muscle prop-
erties and gives an outline how muscle force is calculated in the simulation
program.

3.1 Introduction to muscle mechanics

In the human body there are muscles of different types depending on the
function they fulfill. In this context only skeletal muscles are considered.
Skeletal muscles are connecting two bones and can be controlled voluntarily.
The primary function of skeletal muscle is to produce force to accelerate body
segments.

A lot of different sizes and shapes of skeletal muscles exist depending on
their function. In general two basic shapes of muscles can be pointed out:

22
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parallel-fibred and pennate-fibred. In the parallel case the contracting fibers
are aligned with the line of action of the muscle. In the pennated case the
fibers are tilted at a distinct angle against it. This angle of pennation is
defined as the angle of the muscle fibers relative to the muscle line of action
as shown in the ultrasound image of m. gastrocnemius (fig. 3.1).

1cm

Fiber direction =

—

Muscle line of action

TR iy

V :

Figure 3.1: Ultrasound picture of m. gastrocnemius taken from dorsal in the
sagittal plane. The angle of pennation (Pa) is 26 degrees with the muscle line
of action.

The length of the muscle-tendon unit L7y is defined as the whole muscle
length from origin to insertion. When the muscle generates force, three
different situations depending on the muscle-tendon unit velocity Vyry are
defined. In isometric contractions V), or movements of segments is zero.
In concentric contractions the muscle is shortened and Vj;7y is negative.
In eccentric contractions the muscle is lengthened and V), is positive.
In the literature the sign of the velocity is reversed so that the shortening
of the muscle has a positive velocity. In muscle modeling the muscle length
gets smaller while shortening. The length change subtracted from the initial
muscle length, therefore for concentric contraction in this study the muscle
velocity is defined as negative.
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The maximal isometric force a muscle can generate, depends on the number,
size and orientation of its fibers. Muscles fibers with an angle of pennation
are not pulling along the muscle line of action. The muscle force is then the
projection of the fiber direction on the line of action.

Fo, = Fipers cos(Pa) (3.1)

This is however a simplification, eq. 3.1 underestimates the actual force for
two reasons: first, not all fibers belonging to the same muscle have the same
angle of pennation. This can be demonstrated in fig. 3.3 in which the fibers
located at the muscle belly have an angle of pennation of 26 degrees and the
fibers closer to the tendon insertion are almost horizontally aligned. Second,
force transmission perpendicular to the fiber line of action might be possible
[41].

As a measure of maximal isometric muscle force the physiological cross-
sectional area (PCSA) is used. The PCSA is defined as the muscle volume
divided by its optimal fiber length. According to that definition keeping the
muscle volume constant, muscles with long optimal fiber length have a smaller
isometric force. The isometric force is typically calculated from the known
PCSA using a proportional factor of k = 20 — 40N /cm? [24].

Fraw = k PCSA (3.2)

The formula 3.2 can be explained with a geometrical model shown in fig. 3.2.
The ratio in the maximal isometric force of the two muscles with the same

Muscle 1 Muscle 2

Pa

Figure 3.2: Two muscles having the same volume but different angles of
pennation.

I—fiber ml

A
v

volume and the same force along each fiber is calculated using eq. 3.2 which
yields

le . ]{PCSAml . VOZ-/Lfiberml
EF,o kPCSAn:  Vol./Liermo

= 0.65. (3.3)
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Determining this ratio with geometrical considerations, muscle one having
three fibers parallel aligned and muscle two having five fibers tilted with an
angle of 30 degrees result in

le - 3 Ffiber
Foo 5 Ffiper cos(Pa)

= 0.60. (3.4)

The ratio of the muscle forces determined is about the same so that the use
of eq. 3.2 to calculate the muscle force is acceptable. Muscle one, with the
parallel aligned fibers, has a 0.65 times lower maximal isometric force. This
can be explained due to a higher angle of pennation of muscle two. More
fibers are aligned in parallel in the same volume. Each fiber is generating the
same force so that although the force component along the line of action is
calculated with eq. 3.1, muscle two is stronger.

Another effect of the angle of pennation is that for muscles with greater pen-
nation angle a given change in muscle fiber length translates to less muscle
shortening along the line of action. This discrepancy can be partly com-
pensated by an increase in angle of pennation during the muscle contraction
shown in chapter 3.4.1.

In the previously described, geometrically simplified representation of a mus-
cle, the fibers are described as straight lines, so that analytical expressions
for their contractile behavior can be derived. In these geometric models
the force-producing-element (the fibers) will be called contractile element
(CE). The passive elastic elements which require no metabolic energy, may
be in series or parallel to the CE. The in series elastic elements (SEE)
represent the tendons and aponeuroses of the muscle (fig. 3.3).

For the purpose of this study the modeling of the muscle structure in micro-
scopic detail is not required. A phenomenological model is used to calculate
the muscle force when muscle length, velocity and active state are given as
input. This model consists of various arrangements of elements, each ele-
ment can be seen as a 'black box’ with a mathematical function describing
its mechanical behavior.

Such a muscle model was first presented by A. V. Hill in 1938 [38] to in-
terpret his experimental results. This classic two element model consists of
an undamped purely elastic element in series with a contractile element de-
scribed by the characteristic equation 3.6. The model qualitatively explained
several of the mechanical phenomena exhibited by muscle including the rise
of isometric tension and the redevelopment of tension after quick release.
Adding an extra elastic element in parallel (PEE) to the contractile el-
ement shown in fig. 3.3, this model has been proven to be very useful in
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Figure 3.3: Ultrasound picture of m. gastrocnemius. One fiber bundle marked
in white 1s associated with the force producing CE. This fiber bundle is at-
tached to the aponeurosis, the white structure surrounding the muscle fibers.
When the fiber is shortening it pulls at the aponeurosis which transfers the
force via the achilles tendon (left side of the picture) to the bones of the foot.

biomechanics [58], [73], [30], and will be used in this study. In the following
sections the mathematical formulations for the CE, PEE and SEE are given.



3.2. CONTRACTILE ELEMENT PROPERTIES 27

3.2 Contractile element properties

3.2.1 Force-length properties

The force-length property of a muscle is defined by the maximum isomet-
ric force a muscle can exert as a function of its length. When performing
isometric maximal knee extensions at different joint angles the maximum
measured torque is on average reached at about 60 degrees (fig. 3.5). Each
joint angle is associated with a certain muscle length. Even knowing this
muscle length and the elasticity of the SEE, the CE force-length properties
can still not be determined. It remains to quantify the force sharing be-
tween all muscles acting around one joint. For this reason it is difficult to
measure the torque-angle properties for intact human muscles. Under the
assumption that one and two joint muscles generate their force independent
of each other, Herzog et al. determined the torque-angle curve for the two
joint muscles m. rectus femoris and m. gastrocnemius at the knee and ankle
joint respectively [36], [37]. The authors varied one of the two joint angles
so that the length of the two joint muscle changed, while keeping the length
of the one joint muscle constant and so the force of the one joint muscle was
fixed. These measurements as well as measurements done on isolated ani-
mal muscles [35] and fibers [70] show an inverse parabolar force-length curve.

In the model the CE length (Lcg) is defined as the projection of the fiber
length on the line of action of the muscle (fig. 3.3), it is not the length of
the fiber itself. With this definition the length change due to a change in the
angle of pennation is included in the CE length change. This simplification is
done because we are interested in the behavior of the SEE attached to both
endpoints of the fascicle not in the behavior of the fascicles itself.
According to van Soest [73] the active force length relation in isometric con-
traction is approximated with the parabola

L L
Flon = ¢ (-2 )Q—QC(LCZEt)—i—c—i—l. (3.5)
op

The factor c is defined as ¢ = —1/width?, the parameter width is the max-
imum range of the active force in the CE with respect to optimum length
(Lopopt) (fig. 3.4). The force-length curve of the muscles generating the
same joint movement results in the isometric torque-angle relation. Given
the muscle parameters width of the force-length curve, optimal length of
the CE (Lcgopt), SEE slack-length (Lsggsiack), the maximum isometric force
(Frnaz ), the maximal isometric strain of the SEE and the muscle length change
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Figure 3.4: CF force-length curve for m. gastrocnemius described by eq. 3.5.

with varying joint angles, the resultant joint torque for each maximally acti-
vated muscle can be calculated for different joint angles (fig. 3.11). Adding
all muscle torques around the same joint the resultant joint torque can be
calculated. To test the validity of their musculoskeletal model other authors
(58], [21], [7], [30] compare their calculated isometric joint torques with ex-
perimental joint torques reported in the literature. Several parameters in the
model can be fitted to get a good agreement.

The question arises why it is necessary to compare simulation models used in
dynamic situations with static measurements. The reason for it is that the
defined parameters in the Hill model are based on the isometric force-length
properties of the muscles. The parameter width of the force-length curve
can not be determined in dynamical situations where the stimulation and
velocity are changing over time.

Three main problems that appear when the calculated joint torques are fitted
to the measured joint torques from the literature.

1. Joint torques taken from the literature are measured from different
research groups using different methods on a number of different pop-
ulations.

2. A whole group of muscles usually generates the torque around one joint
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so we have to solve the force distribution problem among these muscles.

3. The decision must be made which parameter in the model should be op-
timized to match the experimentally determined resultant joint torques

The first problem is solved best by measuring the resultant joint torque with
one method, for a group of comparable subjects used in the simulation study.
In this study the maximal isometric force at the ankle, knee and hip joint
in the optimal position were measured on four athletes who participated in
the drop jump study from Arampatzis et al. [3]. The values measured with
(Multi-joint system 3, Biodex, NY) were considerably higher than most of
those found in the literature [65], [55], [76] [62], [72], [46]. An exception was
the measured isometric plantar flexions by Bobbert et al. [10]. The joint
torques measured in their study, also on trained athletes was about 230 Nm
which is close to the average of 248 Nm obtained from the four athletes mea-
sured in this study. The whole torque-angle relation was not experimentally
determined, the torque-angle curves from the literature were normalized on
the maximal isometric force and multiplied with the mean maximal isomet-
ric force measured on the four athletes. For optimization purposes the data
points of the isometric torques were interpolated so that for each joint 10
data points were given in the measured angle range (fig. 3.5 and 3.6).

The force distribution problem among many muscles acting around the same
joint, is solved by neglecting the co-contraction and grouping the muscles
into one and two joint muscles. For example m. soleus in the model in-
cludes the function of all single ankle joint plantar flexors. This reduces the
distribution problem on two muscles, m. soleus acting only around the an-
kle joint and m. gastrocnemius around the ankle and knee joint. The force
sharing between those two muscles were according to the ratio of their PCSA.

The procedure of changing muscle parameters to get an agreement with the
experimental measured isometric joint torques has been investigated by Bob-
bert et al. [7]. The sensitivity of the output depends mostly on the parameter
Lsggsiacr followed by the linear coefficient of the moment arm al, F},,, and
Lcgopt- The parameter width of the force length curve was not investigated.
The parameters optimized in this study are al, Logop, PCSA, Lsggsiack,
width. The parameters al, Logop, PCSA are varied within their standard
deviation found in the literature. The parameters width and Lgggsacr are
not taken from the literature. Lsggsacr 1S calculated with a pulley model
(chapter 2.2.3) whose standard deviation can not be estimated, the variation
is set to 10 %. An initial guess for the parameter width can be found in [30],
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it is allowed to vary within 20 % to better match the shape of the resultant
joint torques.

The parameters were optimized by minimizing the sum of squared errors us-
ing (Matlab 6.0, Mathworks). The best curves for ankle knee and hip joint
were shown in fig. 3.5 and fig. 3.6. For the hip joint no flexion data was
found, therefore only hip extension was optimized. In the cases two joint
muscles were involved and resultant joint torque data was also available for
another configuration of the neighboring joint, the parameters were optimized
to agree best with both configurations.
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Figure 3.5: Comparison between measured and optimized ankle plantar flexion
and knee extension torque-angle curves. FExperimental values for the ankle
joint were taken from Sale et al. [62], for the knee joint from Eijden et al.
[72] and Lindahl et al. [46]. The experimental data are modified with the
method described in the text. The joint angle range is drawn within its limits
used in the model. The skeletons below the graph show the joint configuration
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Figure 3.6: Ankle dorsal flexion, knee flexion and hip extension torque-angle
curves. Experimental values were taken from Gerritsen [30] for the ankle,
from Smidt [65] for the knee and from Nemeth et al. [55] and Waters et al.
[76] for the hip joint.
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3.2.2 Force-velocity properties

When pulling a rubber band apart with maximal effort, the pulling velocity
that can be achieved decreases when the stiffness of the rubber band in-
creases. This fundamental property of muscle is known as the force-velocity
property. For a given muscle or muscle group and a constant level of activa-
tion, the maximal velocity of shortening that can be achieved decreases for
contractions against greater resistance. The hyperbolic equation

Fmaz b +a VCE
Fou = , 3.6
: Vop +b (3:6)

that appropriately describes the general shape of the force-velocity properties
for concentric contractions is known as the Hill equation. This function has
the asymptotes limp, , ..o = —b and limy,,, .. = —a. At zero CE velocity
(Vo) the force is equal the maximal isometric force F,,, of the muscle
measured. The parameters a and b must be chosen so that the function fits
experimental data. Ideally measurements of the CE force-velocity properties
should be made at a specified muscle fiber length and activation while the
maa INStead
of b can be found. By settlng F,e in eq. 3.6 equal to 0O, Vmax can be obtained
by the following equation

Fmax
a .

Vmax =b

(3.7)

The maximum velocity V,,., often exceeds the capabilities of the measuring
device [69], [26], [71]. Therefore V,,4, is not measured directly, it is extrapo-
lated determining a and b at lower velocities.

Actual values for the parameters in the Hill equation are affected by various
physiological conditions, such as angle of pennation, fiber length and fiber
type composition.

An important, but not well understood aspect of the force velocity properties
deals with the circumstance when the load imposed on the muscle exceeds the
maximum isometric force that the muscle is capable of generating. Under this
circumstance the muscle is stretched while activated. This is called eccentric
contraction. There is no standard equation such as the hyperbolic Hill equa-
tion (3.6) to describe the force-velocity properties in eccentric contraction.
Qualitatively it can be said that when the muscle is forcibly stretched with a
given velocity, the muscle generates a braking force, which becomes greater
at greater stretch velocities, up to a limit velocity, beyond which no further
increase in resisting force is observed. The absolute value of this limit velocity
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is lower than the maximal velocity of shortening [42], [47]. The asymptotic
value of the force reached is 1.8 and 2 times F),,, according to [42] and [47]
respectively. There appears to be a discontinuity force-velocity curve across
the isometric point. The rise in force in slow stretching is six times larger
[42] than the fall in force associated with the corresponding velocity of short-
ening. In the muscle model the Hill equation 3.6 formulated for concentric
contraction is extended to eccentric contraction using another parameter set.
The parameters used for eccentric and for concentric contraction are given
further on.

Concentric contraction

The relationship between force and velocity for concentric contraction is given
by the Hill equation 3.6. In the literature various values can be found for
the parameters a and b describing the Hill equation, but only in the study
of Chow et al. [15] values of a and b were measured with variation of the
activation level. The values were fitted with the parabolas

alact) = —0.0089(act — 94.2)* 4+ 59.3 (3.8)
blact) = —0.0147(act — 70.3)* + 72.0. (3.9)

The active state (act) is given in % (0 < act < 100). The force can be
calculated knowing a and b with

act b(act) — a(act) Vep 1

Foe = .
: Vor + blact) 100

(3.10)

Ver  : CE velocity in % of Vies, Vor < 0.
Vinaz : Maximum CE velocity when act = 100%.
Fo : CE force at optimal length normalized to F,,,.,.

The eq. 3.10 is used to control the model with the help of an active state
function (act(t)), it is plotted for varying activation levels in fig. 3.7.

The eq. 3.10 describes the concentric velocity normalized to the maximum
shortening velocity V... To compute absolute velocities V,,.. needs to be
determined. V,,,, varies with muscle architecture, it depends on the fiber
length, angle of pennation and fiber type distribution, which is explained in
the following three paragraphs.
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Figure 3.7: M. gastrocnemius force-velocity property described by eq. 3.10
and eq. 3.12, for activation levels ranging from 0.2 to 1.0.

Effect of fiber length: Muscle fiber length results from multiplying the
number of sarcomeres by the average sarcomere length. The sarcomeres in
series are expected to have an average maximum shortening velocity. The
velocity of the whole muscle is proportional to the number of sarcomeres
shortening and therefore to fiber length.

Effect of pennation angle: The previously described effect that a given
muscle fiber length change translates to less muscle shortening for muscles
with a greater pennation angle leads also to a slower shortening velocity along
the muscle line of action.

Effect of fiber-type distribution: Through muscle biopsy fibers can be
classified into slow and fast fibers. Muscles with a high percentage of fast
fibers found in the biopsy have a higher maximum shortening velocity [26],
[49]. Muscles with a low percentage of fast fibers are better for endurance.
Compared to the knee muscles, the ankle muscles m. soleus and m. tibialis
anterior have a low percentage of 30 % and 28 % fast fibers respectively (tab.
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3.2). Therefore the m. soleus and m. tibialis anterior are well suited for
balancing the body during standing for long periods of time.

The maximum shortening velocity has been determined in various experi-
ments described in the literature [15], [69], [71], [26]. Some authors reporting
Vinaz 10 units of rad/s, others in optimal fiber lengths per second. With
an assumption of moment arm, optimal fiber length (Lcpey) and angle of
pennation (Pa) for the muscles (tab. 3.2), the maximum shortening velocity
Vinae can be calculated along the muscle fiber direction in fiber length per
second. A comparison of the various sources is shown in tab. 3.1. Although

Table 3.1: Mazimum shortening velocities and fiber type composition of var-
ious muscles and muscle fibers. In Chow et al. [15] the fiber type was not
measured 55 % fast type fibers was assumed according to [67]. Angle of pen-
nation and optimal fiber length were taken from tab. 3.2. In the case of the
quadriceps the mean values from m. vasti and m. rectus were taken. Moment
arm is assumed to be 5.8 cm for wrist and 5 cm for quadriceps muscles.

Muscle, reference Vinaz [rad/s] | Fast fibers [%] | Viwaz [Legopt/S]
Wrist flexors, [15] 8 55 9
Quadriceps, [69] 23 60 15
Quadriceps, [71] 18 61 12
Isolated fiber bundles, [26] - 100 6

there is a higher amount of slow type fibers in the intact muscles, the V..
values are higher than those from Faulkner [26] measured for isolated bun-
dles of only fast twitch fibers. Due to the limitation of only one measurement
on isolated human fibers, it can not be distinguished whether the methods
used in the single fiber experiments, or the lacking elastic energy storage and
release in the intact muscle tendon unit experiments, is the reason for this
discrepancy. The fiber velocities in various isolated animal fiber experiments
on mouse and rats slow and fast fibers range from 7-13 and 9-24 fiber lengths
per second, respectively [16], [17], [48] and [59] and are higher than those
measured by Faulkner. The decision was made to use the normalized values
from Chow et al. [15] described by eq. 3.8 and eq. 3.9. The absolute fiber
velocities of 14 optimal fiber length/s were taken as estimated by Herzog [24]
for the knee extensors. This considerably high value accounts for the well
trained persons participating in the model validation study.

The fiber type dependency is accounted for in the model by scaling the max-
imal velocity of the CE with the percentage of fast type fibers (F'TFyuscie)
compared to the average amount of the knee muscle m. vasti and m. rectus
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(FT Finee). The higher maximum velocity in muscles of longer fiber length
is considered by scaling to the optimal length Lcoge, of the muscle to be
simulated. The effect of pennation angle on the CE shortening velocity is
taken into account by the projection of fiber length with cos(Pa).

FTquscle Lopt,muscle COS(Pamuscle)

Vma:p muscle — 14
’ FTFknee Lopt,knee COS(Paknee)

(3.11)

Table 3.2: Mazimum CE velocity (Via.) determined by eq. 3.11 using the
parameters Pa and Logoy: and FTF. The parameters Fia., Pa and Logept
are originally from Winters [78], they are further optimized, to match resul-
tant joint torques described in section 3.2.1. The parameters for the wrist
muscles are not optimized.

Muscle FinazIN] | Legoptiem] | FTF[%)] | Paldeg] | Vinaz|LoEopt/s]
Gastroc. 1408 5.2 50 14 12.9
Soleus 4045 4.7 30 24 7.3
Tibialis ant. 1343 8.2 28 7 7.4
Rectus 1917 7.6 55 12 13.7
Vasti 6925 7.7 52 9 14.3
Hamstrings 1680 11.2 50 9 13.2
Gluteus 3683 13.6 50 5 13.3
[liopsoas 1879 11.0 50 7 13.1
Wrist flexors 168 5.3 55 9 9.1

Eccentric contraction

The Hill equation 3.6 for concentric contraction was also used with a reversed
slope 3.12 to describe the force velocity relation in eccentric contraction

cl—c2Vegp 1
Fo = -"¢F - 3.12
YT Vg +e3 100 (3.12)

Ver @ CE velocity in % of Vies, Vor > 0.
Fo : CE force at optimal length normalized to F),,q..

The new parameters cl, ¢2 and c¢3 were determined under the following three
conditions for equations 3.10 and 3.12 spanning the whole contractile element
velocity range:
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1. Both functions are continuous at Vog = 0.

2. The slope at Vogp = 0 increases from positive to negative velocities
about a slope factor of 2 (sf = 2). This moderate value compared to
slope factor 6 measured from [42] is taken because the force enhance-
ment due to muscle stretch, described in section 3.2.3, also starts to
increase CE force when the muscle is stretched while its activated.

3. The asymptote of the force at eccentric velocities is 1.6 times F,,, (af
= 1.6). This factor is lower than the values of about 1.8 to 2 F,,, from
[47] and [42] respectively. Considering an additional force enhancement
due to muscle stretch the eccentric force can be higher than 1.6 times
the maximum isometric force.

From these three conditions, parameters cl, ¢2 and ¢3 can be determined as
follows.

2 = —afact (3.13)
b act+ c2

3 = — — 3.14

¢ sf act+a ( )

cl = actc3. (3.15)

and were used to calculate the force-velocity properties for positive velocities
in fig. 3.7.
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3.2.3 Force enhancement following stretch

It is experimentally proven that there is force enhancement following stretch
and force depression following shortening of the human skeletal muscle [18],
[33], [13]. Depending on the previous situation the actual isometric force is
different if the CE was previously stretched or shortened.

The enhancement following a stretch could be up to 1.6 times higher than in a
maximum isometric contraction without any previous stretch or shortening
[18]. For the simulation of drop jumps all the important muscles acting
against gravity are being stretched, in the following isometric and shortening
phase the force will be enhanced. Therefore the stretch is an important issue
for the simulation and should be included in the model. Simulating drop
jumps without force enhancement of the CE, the model can not reach the
jump height of the athletes in the study of Arampatzis et al. [3], provided
that muscle model parameters V., and F,,,, are not unrealistic high.

The mechanisms underlying force enhancement are not well described in
the literature, from experimental observations the following four properties
should be contained in a simulation of force enhancement following stretch:

1. Linear increase with the stretch amplitude up to maximal enhancement
of 1.6 times the isometric force without stretch [18].

2. Exponential decay of the enhancement (pot), in the isometric hold
phase following stretch [18], which can be described by the differential

equation
dpot
—— = 1.9 pot 3.16
7 p (3.16)
3. Having a certain amount of potentiation after stretch, a following short-
ening should reduce the enhancement rapidly because there exists force
depression after shortening [24].

4. Herzog suggest in [24] that enhancement is accomplished through an
increase in the the average force of a force producing site (cross-bridge)
rather than through an increase in the number of force producing sites.
This implicitly follows that it is proportional to the number of force
producing sites and therefore to the active state of the muscle.

In the following algorithm all of the four properties are included to obtain
force enhancement after stretch.
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Eccentric contraction (VCE > 0) :

Leog(i)
LCEopt
Concentric contraction (VCE < 0) :

pot(i) = pot(i — 1) +cf ( ) act(t) — df pot(i — 1) At. (3.17)

pot (i) = maz( pot(i — 1) — cf (2B g por(i— 1) ALL0).  (3.18)

LCEopt
pot : Enhancement factor in eq. 3.20 to calculate the CE force.
cf : Enhancement factor chosen such that in drop jumping (1+4pot)
is not higher than (1.6).
df : Decay factor 1.9 representing data from Cook [18].
1 : Computing time steps ¢ € N. The simulated time is t = ¢ At.
At : Time difference between steps i.

The force enhancement due to stretch during drop jumping is highest in
m. vasti and is demonstrated in dependence of the active state and the CE
length in fig. 3.8
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Figure 3.8: Force enhancement of m. wvasti during a drop jump with a contact
time of 200 ms. The enhancement factor (1+pot) increases with stretch and
decreases with shortening.
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3.2.4 Force-length-velocity properties

Ideally, measurements of the force-velocity properties are done at the same
fiber length. On the other hand the force-length curve is determined in
isometrical condition with a fiber velocity equal to zero. A combination of
both effects as it happen in real life movement, can be described according
to Bahler et al. [5] by multiplying the force-length function 3.5 with the
force-velocity functions 3.10 and 3.12

FCE/Fmam = —Flen(LC’E) Fvel(VC’E)- (319)

This yields an area in three dimensions (fig. 3.9).

FCE/Fmax

Velocity [m/s] -1 0 Length/Lopt

Figure 3.9: Force-length-velocity property of m. gastrocnemius.

In the model, the force generated by the CE (Frg) is calculated multiplying
the force-length function (0 < Fj,,, < 1) with the force-velocity function (0 <
Fyer < 1.6) which results in eq. 3.20. The force enhancement due to previous
stretch is taken into account with the factor (1 + pot) with (0 < pot < 0.6)

FCE/Fma:c = (1 —l—pot(t, LCE)) Een(LCE) Fvel<VCE7 CLCt(t)). (320)

The maximum isometric force F,,,,, is calculated using the physiological cross
sectional area (PCSA) values from Winters [78] and an average value of force
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per unit area of 43N/cm?. The PCSA is scaled from the subjects used in
Winters to the segment dimensions of the computer model as follows. The
PCSA is defined as the muscle volume divided by the muscle optimal fiber
length. The muscle volume is assumed to be proportional to the segment
mass (Ms), the fiber length is assumed to be proportional to the segment
length (Ls). The scaling formula is therefore

Msmodel LSWinters

Fmax,muscle =43 PCSAWinters (321)

MSWinters Lsmodel

For individual muscles the optimal fiber length could be determined by ultra-
sonography. With the construction presented in section 3.4.1 this can only be
done for m. gastrocnemius, so for model consistency all muscle fiber lengths
were taken from Winters [78].
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3.3 Parallel elastic element properties

The parallel elastic elements (PEE) are associated with the connective tissue
structures surrounding the muscle fibers, fascicles and the entire muscle. For
rat skeletal muscle the force development is insignificant except for length
exceeding 110 % of the optimal length (Bahler [5]). The author mentioned
that the length at which PEE force occurs are often beyond the physiological
range. This can be confirmed by the drop jump simulation, the muscles
mainly work at the ascending limb of the force length curve and not over
110 % of their optimal lengths (fig. 5.11). Calculating the muscles force-
length curves in maximum isometric contractions in their defined joint range
which is not completely used in drop jumping, the muscle forces are mainly
located at the ascending limb of the force-length curve (fig. 3.11). Another
study from Wilkie [77] found the theoretical predicted length at which PEE
contributes to the muscle force varies for different frog muscles between 80
and 160 % of Lopey so that the passive elastic element properties must be
determined for each muscle individually.

Due to the force-length relation the muscle force would drop to zero when
the muscle is lengthened at the descending limb of the force length curve.
This is not true for muscle fiber bundles. The parallel elastic element avoids
this instability at the descending limb. From the CE length during drop
jumping modelling of the PEE according the measurements from Bahler [5]
would not be required. To avoid computational problems at long CE lengths
the PEE is modelled the same way as described in van Soest [73]. When
the relative CE length increases above 140 % of its optimal length the force
increases in a parabola shape so that at 50 % strain the maximum isometric
force is reached (fig. 3.10). This is calculated using the following equation

Fppr = Kpgg (maf(LPEE — LpEEsiacks 0))2 (3-22)

with the constant factor

StT‘CLi?’LPEE Fmax
L%Eopt('lUidth +1-— LPEEslack:)27

Kppp = (3.23)

with straianE =05 and LPEEslack =14 LCEopt-
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Figure 3.10: Force-length property, explicitly showing the contribution of the
parallel elastic element at the descending limb of the force-length curve.
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Figure 3.11: Mazimum isometric force-length property for all muscles in the
model. The length range is according to the defined joint range of motion.
In isometric contractions at these angles the muscles mainly operates at the

ascending limb of the force-length curve.
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3.4 Series elastic element properties

The passive SEE transmit the forces from the muscle CE and PEE to the
bones with the viscoelastic aponeuroses and tendon. The aponeuroses refers
to the tendinous sheets that usually extend along and deep into the belly of
a muscle.

The series elasticity of the muscle fiber itself, in the cross-bridges and my-
ofilaments, is assumed to be accounted for in the active properties of the
contractile element. Which are validated in experiments for single fibers,
which of course include the fiber elasticity.

The compliance of the SEE can be quantified with its static force-length
characteristic. Here we are interested in the tendon and aponeurosis compli-
ance not in the elasticity of the muscle fiber itself. The tendon is anatomically
easy identifiable. Tendons can be isolated from the muscle-tendon complex
and their mechanical properties have been measured in vitro [79], [63]. The
ultimate stress at which failure occurs was determined to be 9 to 13 % strain
[79]. The mechanical properties of tendons change with sterilization and
preservation [66] so that in vivo experiments would lead to more accurate
results.

In most of the computer models of the muscle-tendon unit the same strain
value is used for tendon and aponeurosis. However there is experimental
evidence [25] that the aponeurosis is more compliant than the tendon.
With the method of quick release or the ultrasonography it is possible to
quantify in vivo the passive muscle-tendon compliance. Both methods will
be explained in the following.

In the quick release experiment done by Hof et al. [40], the decline in torque
during the release is measured as a function of joint rotation. Correcting
these data for inertia and shortening of the fibers, the muscle elasticity can
be described with a torque-angle curve. Those releases must be rather fast
so that the force producing fibers do not change their active state during
the contraction. Assuming an average plantar flexor series elastic element
length of 43 cm and a moment arm of 4.2 cm, 4.3 percent strain at 116 Nm
maximum isometric ankle joint torque can be estimated from Hof [40]. This
torque-angle curve contains the whole muscle-tendon compliance namely the
tendon, aponeurosis and fiber compliance.

In the ultrasonography method the SEE elongation is measured during max-
imum isometric contractions, by tracking the fiber insertion points into the



3.4. SERIES ELASTIC ELEMENT PROPERTIES 47

aponeurosis [29]. This procedure will be described in detail in section 3.4.1.
With ultrasonography the tendon and aponeurosis compliance at different
locations on the muscle belly can be measured.

In both, the quick release and the ultrasonography method the SEE compli-
ance can be measured in vivo. The advantage of the ultrasonography method
is that for the modelling of SEE only the aponeurosis and tendon compli-
ance are required not the fiber compliance. For both methods measuring a
force-length curve for a single muscle is difficult when there is more than one
muscle acting around the same joint. Assuming that one of the muscles is
activated maximally at its optimal length, maximal isometric SEE elonga-
tion for this muscle can be determined. Knowing maximum SEE elongation,
the force length curve can be approximated with a second order polynomial
(fig. 3.15) which approximates well the shape of the SEE force length curve
in isolated animal muscle experiments [25].

In the muscle model the passive SEE force-length curve is described by a
second order polynomial

Fspp = Kspp max(Lspe — Lsprsiack, 0)? (3.24)
with the factor P
max
K = 3.25
SEE T (straingpe Lsposiack)’ (3.25)

The SEE force Fsgp is defined such that at maximum isometric force (Fjq4z)
the strain in the SEE is 4.0 % (strainggr = 0.04). This value of 4.0 % is
measured in section 3.4.1. Compared to the measurements of Magnusson et
al. [51] it seems to be low. Whether this is due to overestimation in the
study of Magnusson or underestimations in our own study is not sure. To
account for both values the simulation was carried out as well with 4.5 %
maximum strain.

The slack-length Lspgpsac depends on the muscle and is obtained simu-
lating a maximal isometric contraction at optimal muscle length with the
optimal joint configuration for the muscle. The length Lcgey: from Winters
[78] and 4 % strain are subtracted from the muscle-tendon length to obtain
Lsggsiack- The optimal joint configuration for each muscle is chosen so that
the calculated resultant joint torques are already in good agreement with
the measured joint torques before Lgpgsiqer and Logop: are involved in the
optimization process described in section 3.2.1.
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3.4.1 Measuring muscle series elasticity using ultra-
sonography

Before introducing the methodology of the measurement, the spatial as well
as the time resolution of the ultrasound scanner used in this study are ex-
plained. This demonstrates the abilities of ultrasonography in muscle imag-
ing.

Ultrasound scanner resolution

A linear ultrasound scanner consists of 200 or more separate arrays (fig.
3.12). These arrays are closely spaced piezoelectric elements, each with its
own electrical connection to the ultrasound instrument. This enables ele-
ments to be excited individually or in groups to produce focussed ultrasound
beams. Echo signals detected by individual elements are amplified separately
before being combined to reconstruct the image.

The images are actually built up from a tissue volume which depends on the
slice thickness and the beam width defined in fig. 3.12. Interference from
different arrays is focussing the width of the resultant beam. This reduces
the slice thickness from 4.3 mm close to the scanner to 1.7 mm in the focus
zone (Shimadzu, SDU 350XL 5-7.5 MHz, Jpn.). The beam width is about
1 mm in the focus zone.

Two reflectors in the axial direction can be distinguished if the time-gap
between the arrive of the two echo signals is longer than ultrasound pulse
duration. Considering a pulse with 5 cycles and a wave frequency of 7.5 MHz
the pulse time would be 0.6 us. With the transmission speed in muscle tissue
of 1600 m/s [81] the axial resolution is 1 mm. Spatial resolution improves as
the frequency is increased. On the other hand sound beam attenuation also
increases when the frequency is increased, so beam penetration decreases.
The choice of ultrasound frequency for any examination is the result of a
compromise between resolution requirements and the beam penetration to
show all the tissue of interest.

When examining m. gastrocnemius which is close to the surface, it is better
to use the higher 7.5 MHz frequency instead of 5 MHz.

In conclusion the resolution in the image plane with the setup used in this
study is about 1 mm, with the information coming from a depth of 1.7 up to
4.3 mm perpendicular to the image plane.

With the given resolution the question arises what muscle structure can be
seen on the ultrasound image of gastrocnemius muscle. The skeletal muscle
may be thought of in structural units of decreasing size. The entire muscle is
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Figure 3.12: Ultrasound scanner with description of the different resolution
directions.

surrounded by a connective tissue sheath called the epimysium. Fascias are
the outermost layer of epimysium around the outside of a whole muscle. Very
thick and heavy fasciae are called aponeurosis. The next smaller structure
is the muscle bundle or fascicle which consists of a number of muscle fibers
surrounded by a connective tissue sheath called the perimysium. The muscle
fiber is next, which is an individual muscle cell surrounded by the endomy-
sium, a thin sheath of connective tissue which binds the individual fibers
together within a fascicle. The diameter of a fiber is about 10 to 100 um,
the diameter of a fascicle 0.5 to 2 mm [26]. With an resolution of about
1 mm the fascicle structure can be seen. The single fiber surrounded by the
endomysium can not be resolved.

Imaging dynamic muscular contractions the time resolution of the scanner
used in this study is limited to 20.9 Hz with two focus zones used. Every 40
ms one picture is taken. Filming muscular contraction during drop jumping
contact of 160 ms 4 picture can be obtained, this is not enough to discussing
the fascicle length change in this situation. In isometric contractions where
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the force is built up in about one second 20 pictures are available in which
the fiber length change can be determined over time.

Methods

The goal is to perform maximum isometric contractions at m. gastrocnemius
optimal length. During the isometric contraction the fiber insertion point P
shown in fig. 3.16 is tracked over the ultrasound images obtained from zero
force till the force reaches maximum. The strain of the series elastic tissue
can be determined when the distance from the muscle origin at the heel up
to the fiber insertion point is known.

Four trained male subjects 26-32 years of age participated in the study. The
subjects had to perform isometric plantar flexions against a plate lying on
the table shown in fig. 3.13.

The ultrasound scanner was positioned on m. gastrocnemius medialis mus-
cle belly at the most distal point where both aponeurosis were still parallel
aligned. The scanner was then rigidly fixed to the table. Increasing mus-
cle volume at maximum contraction was compensated with a gel pad of 2
cm thickness between the scanner and the skin (Sonokit soft, Sonogel, Ger-
many). The plantar flexion force was measured with a pressure distribution
insole (Pedar, Novel, Germany). Feedback of the plantar pressure was given
to the subject, so that for each trial the same maximum force was obtained.
M. gastrocnemius is a two joint muscle crossing the ankle as well as the knee
joint. To measure the maximum isometric strain at m. gastrocnemius op-
timal length, the plate under the foot is allowed to change its angle with
the center of rotation located at the knee joint. The knee angle was varied
and so the length of m. gastrocnemius until the isometric force reached was
maximal and so m. gastrocnemius has its optimal length. With this config-
uration the subjects were asked to build up to a maximal contraction within
2 seconds and maintain that contraction for at least one second. Within the
first 2.5 seconds 52 ultrasound pictures were taken. The trials were repeated
10 times for each subject and the five trials in which the fascicles could be
best tracked and the plantar pressure was highest were used for the deter-
mination of maximum SEE strain. Maximum SEE strain was determined
tracking the fascicle insertion point P for all 52 pictures so that the same
fascicle can be observed at zero and at maximum isometric force. Due to
the fact that m. gastrocnemius is not the only muscle generating the plantar
flexion force and force may vary between the muscles during isometric con-
tractions, maximum strain and not the strain at maximum force was taken.
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Figure 3.13: Construction to measure mazimum series elastic compliance.

The length change resulting from heel lift was recorded with a camera and
subtracted from the length change of the insertion point P. The strain was
then calculated knowing the length LO (fig. 3.14) from the insertion point
at the heel to the scanner at zero force. The resultant force-strain curve is
plotted in fig. 3.15.

Results and discussion

The average maximum strain measured in the SEE was 3.97 %. The individ-
ual data are shown in tab. 3.3. The correction for the heel lift is essential, it
was up to 10mm so that over 10 % strain would be obtained if this correction
was not carried out.

The maximum strain values found in this study are slightly lower than those
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Figure 3.14: Reference distance L0 from Tendon insertion point at the heel
to scanner left image window shown in fig. 3.16.

Table 3.3: Subject properties and measured results.

Subject Maximum isom. torque [Nm| | Maximum strain [%]
1. (180 cm 78 kg) 221 4.31£0.38
2. (180 cm 70 kg) 192 3.64 £ 0.35
3. (184 cm 82 kg) 232 4.04 £0.31
4. (165 cm 65 kg) 210 3.87 £ 0.43
| (177 cm 74 kg) | 214 | 3.97 £ 0.18 |

measured with ultrasonography by Magnusson et al. [51]. They reported 4.4
and 5.6 % strain on the most distal and most proximal location on m. gas-
trocnemius muscle belly respectively. Comparing both methods with each
other there are two main differences. First our scanner was positioned in
between the two locations measured in their study. Second, their scanner
was taped to the skin and relative scanner movement to the skin was ne-
glected. Therefore heel lifting must not be corrected, because the scanner is
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Figure 3.15: On the left side experimentally determined SEE force-length
curve during isometric contraction compared to a second order polynomial.
On the right side, the experimentally determined length change along the
muscle line of action, compared to projection of the fiber, keeping its initial
angle of pennation constant.

moving when the heel is lifted. Instead a correction for ankle joint rotation
was carried out. Ankle joint flexion additionally shortens the muscle length
from origin to insertion. The first difference would result in an average strain
value of about 5 % between the most distal and the most proximal location
on the muscle belly and would be 1 % higher than those found in our study.
Their method correcting the joint angle change at high forces could lead to
underestimation of the foot deformation and therefore to overestimation of
the strain measured. The error from scanner movement can not be system-
atically analyzed and is dependent on the subjects muscles as well as on the
location on the muscle. From our own measurements on trained athletes
with a big m. gastrocnemius the scanner was tilted during contraction when
it was taped to the skin.

For subject one and three, maximal plantar flexions were also performed
in a seated position on a commercial available torque measurement device
(Multi-joint system 3, Biodex, NY). Up to 10 % higher torque at the same
knee and ankle joint angle is obtained there. The higher joint torques in a
seating position is assumed to be caused by a higher comfortability of the
subjects having a resistance against the back compared to a resistance at
the shoulders. This behavior could lead to underestimation of the maximal
isometric strain measured in this study.
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Other strain measurements with ultrasonography on m. tibialis anterior were
performed by Maganaris et al. [50], they reported 2.5 % strain. This is quite
low compared to those on m. gastrocnemius. The lower strain value might
be quite reasonable considering the different tasks of both muscles. M. gas-
trocnemius has to work against gravity and accelerate the body, m. tibialis
anterior has to stabilize the ankle joint before and at touch-down, but does
not require a lot of energy saving or power generating capacities such as m.
gastrocnemius. Comparing the strain measured to the quick release experi-
ments [40], 4.3 % strain estimated in section 3.4 is in good agreement.

With the method chosen it was possible to determine the SEE maximum
strain at m. gastrocnemius. Another outcome of the measurements is that
the fiber shortening as well as the a change in the angle of pennation is re-
sposible for the shortening of the muscle along its line of action. Calculating
the muscle shortening assuming a constant angle of pennation, 80 % of the
length change would be due to fiber shortening alone. The remaining 20 %
is due to a change in the angle of pennation. Comparing the CE behavior of
the computer model to the behavior of isolated muscle fibers measured, an
under determination of the length change might be possible.
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Figure 3.16: Series elastic strain measured from 40 ultrasound images, shown
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3.5 Activation

The muscle activation is described by an active state function depending on
parameters which have to go through an optimization process to make the
model jump as high as possible.

3.5.1 Active state function

At a given length of a muscle fiber, the isometric tension developed is pro-
portional to the active state (act) [34]. This state is characterized for a single
muscle fiber by the relative amount of Ca®* ions bound to troponin [22]. In
the resting muscle fiber act is equal to acty. When the maximal number of
interactive sites in the filaments are exposed by the action of calcium then
act = 1. The the relative amount of C'a®>" ions bound to troponin increases
with increasing frequency of stimulation.

During voluntary contractions it is not possible to activate a single muscle
fiber. A muscle is organized in so called motor units. A motor unit describes
a motor neuron and all the the muscle fibers that are activated by this single
neuron. The magnitude of muscle force can be controlled with the number
of motor units that are activated and the frequency of stimulation. The rise
of muscle force in isometric contraction is first increased by additionally ac-
tivating more motor units. All the motor units are probably recruited when
the force reaches about 50 to 85 % of maximum [23]. The increase of muscle
force beyond that is caused by an increase of the stimulation frequency. The
shape of the increase in force resembles a sinusoid function shown in fig. 3.17.

In this simulation study an exact knowledge of the chemical processes in-
volved is not required. The active state is the sum of motor recruitment and
frequency of stimulation.

The simulation approach from van Soest [74] for vertical jumps from a squat-
ted position uses one parameter for each muscle to control the model. This
parameter is the on set of the muscle. When the muscle is switched on the
active state is one and remains one till take-off. This approach is successful
for jumping from a squatted position. Pandy [2] uses an active state function
linearly interpolating between control nodes to account for a more complex
activation pattern in a countermovement before jumping. Both approaches
did not integrate the equations of motion till maximal height was reached, the
simulation was terminated when the body leaves the ground. The authors
calculated jump height from the vertical center of mass velocity at take-off.
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Figure 3.17: Force at the Achilles tendon, performing an isometric plantar
flexion. The experimentally determined increase in force can be fitted well
with a sinusoidal function.

In a first approach drop jumps were simulated until take-off with three pa-
rameters per muscle the on off and average stimulation frequency with an
activation dynamic described by Hatze [34]. Calculation leads to high rota-
tional accelerations of the segments at time of take-off. Integrating until the
maximum height was reached, the high accelerations achieved do not lead
to an upright flight position. The control model with three parameters for
each muscle was not able to regulate an upright body position, additionally
unrealistic high joint limiter torques were the consequence.

The decision was made to use a set of control nodes to account for the more
complex control problem during drop jumping. The active state between
the control nodes was interpolated with sinusoidal functions (Appendix B)
representing the increase of muscle tension. The nodes were equally spaced
between the first and last node. The first and last control nodes are set to
acty = 0.005 according to Hatze [34] and are allowed to vary their time in
certain boundaries. All other nodes in between the first and last node have
an amplitude between a lower and upper boundary within the range zero and
one (fig. 3.18). This implementation of the active state implicitly leads to
the fact that muscle activation can not increase immediately.
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Figure 3.18: Active state function with &5 control nodes used for m. soleus.
The ”T7” bars indicate the boundaries used in the optimization process.

The amount of nodes were kept minimal to reduce the optimization param-
eters and so the computing time. For each muscle the number of nodes and
their boundaries were chosen based on EMG on and off times found in the
literature and their obvious functional need in the drop jump simulation for
each muscle.

3.5.2 Cost function and optimization process

Beside the goal to reach maximum height, the cost function for the opti-
mization of muscle control in drop jumping consists of other aspects such
as receptor information for injury prevention and metabolic energy require-
ments. The latter two influences are not well known and therefore difficult
to describe. In this study the cost function is the resultant jump height of
the upper body CM to be maximized. This can be done because during a
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maximum height drop jump which is repeated only a few times metabolic
energy saving processes or fatigue are not important. The injury prevention
is first, inhibition of muscle activation at very high force rates, second co-
contraction or inhibition preventing the joint going to its limits. The first
one is not taken into account, the second one is considered giving a penalty
to the cost function when the joint limiter torque reaches more than 4 Nm
for each joint separately. The optimization process is shown in fig. 3.19.

Starting position at 20 cm height,
Initial guess for control nodes.

v

, Calculate Fhe drop jump motion
and jumping height.

v

Optimizer changes the muscles
control nodes to get maximum height.

Stop when maximum height is
reached.

v

Calculate muscle energy (Starting position)

Figure 3.19: Optimization Process.

First the optimizing process was carried out so that the total Body CM
achieved maximum height. This leads to a backward rotation of the upper
body and not to an upright movement as it is in vertical drop jumping. Tak-
ing the upper rigid body CM (not the wobbling mass CM) for the height
calculation an upright position after take off can be simulated.

This leads to the speculation that it is advantageous to jump backwards to
reach a maximum total body CM jump height. This is in agreement with
the observation that a summersault can performed easier backwards than for-
wards because of the greater height of the body CM reached. This behavior
confirms the validity of the simulation model.
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Plotting the resultant jump height with two varying control nodes for m.
vasti keeping all other control nodes fixed, local maxima can be seen. The

local maxima cause a gradient based optimizer to detect them as the maxi-
mum.

==
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Figure 3.20: Jump height dependent on the time of the first and last control
node of vasti muscle. All other nodes are kept at their fized values. Dropping
height is 20 ¢cm, so ground contact starts at about (.2 seconds.

The method of simulated annealing [19] guarantees to find the global op-
timum. Simulated annealing was applied by other authors to solve their
muscle optimization problem [80], [56]. The method of simulated annealing
with about 41 design variables would requires 1.6 million function calls to
reach the global optimum, for a problem with only 10 design parameters [19].
With an average time of one second to integrate the rigid body equations of
motions using (DADS, LMS international) on a computer (PC, Pentium III
, 800 MHz), 1.6 million calls would require 18 days and is computational too
inefficient.

The optimization was performed using a constrained gradient based method
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(Matlab 6.0, Mathworks). To avoid local minima the gradient based method
was used with 100 calls randomly disturbing the initial node configuration.
This method takes about 12 hours to obtain an optimal solution. There is
no guarantee that it is the optimal one. From fig. 3.20, if we can conclude
from one muscle to all others, there is a broad range for the first and last
control node for the two absolute maxima, so they should be found varying
100 times the initial node configuration.
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3.6 Computation of muscle force

So far the properties of CE, PEE and SEE components of the Hill muscle
model are formulated. For the arrangement of the CE and PEE in series
with the elastic element the state equation, a relation between Vpog, Log
and Ly is derived in symbolic form. This state equation has to be solved
to calculate the muscle force used as input for the rigid body model in eq. 2.5.

Neglecting the muscle mass, the sum of PEE and CE forces connected in
parallel equals the SEE force

FSEE = FCE+FPEE- (326)

Due to the arrangement of the CE and the SEE in series the length of the
muscle L,y is the sum of the CE length and the SEE length

LMTU = LCE + LSEE- (327)

The SEE force from eq. 3.24 depends on Log and Ly

Fspre = fi(Lee(t), Luru(t)) (3.28)

Since the SEE has no elements parallel to it, Fsgg is the the force exerted
by the muscle on the rigid bodies which needs to be determined.

To calculate Fsggr an equation relating Vogp to Log and Lyrp has to be
derived. From eq. 3.20 Fgg is a function of Veog(t), Leg(t) and act(t),

For = f2o(Vor(t), Ler(t), act(t)), (3.29)

and Fprp depends only on Log(t)

Fpre = f3(Leg(t)), (3.30)

so that equation 3.26 can be expressed as

fl(VCE(t), LCE(t), act(t)) = fg(VCE(t), LCE(t), act(t)) + fg(LCE(t)) (331)

due to the formulation of all functions involved, eq. 3.31 can be solved for
Vor (Appendix C) yielding the state equation
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VCE(t) = f4(LCE(t), LMTU(t), act(t)). (332)

This state equation can be integrated numerically, given starting values for
L¢g for a given act and Ly as a function of time.



Chapter 4

Model validation

Model validation is important to document the accuracy of the simulation
results. In this chapter it will be shown that the simplified human model is
able to reproduce the measured parameters within a certain range of drop
jump heights and ground contact times.

4.1 Inverse versus direct dynamics method

The question arises whether it would be more appropriate to use inverse dy-
namics rather than direct dynamics to calculate the effect of SEE energy in
drop jumping. In the inverse dynamics method all the external forces are
measured and the segment accelerations are calculated from video data. In
the next step from the equations of motion internal forces and resultant joint
torques can be calculated.

In the direct dynamics method the rigid bodies are started in an initial po-
sition and dependent on the muscle and contact forces implemented in the
simulation program, the rigid bodies change their trajectories at each inte-
gration step. In the direct dynamics method the muscles need an activation
function to let the model jump as high as possible. In the case of a maximum
height drop jump the muscles activation functions are optimized so that the
model jumps as high as possible. In the direct dynamics approach all muscle
forces are known. In the case of inverse dynamics only the resultant joint
torques are known, the force sharing between muscles to give the resultant
joint torques needs still to be solved. Having additional information such as
EMG data gives an estimation of the force sharing of certain muscle groups,
but no direct relationship between EMG and muscle force production has
been documented yet [31], [57]. Another solution to solve the force sharing
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problem in inverse dynamics would be to apply an optimization criteria such
as minimizing the joint forces [20]. Inverse dynamic calculation of resultant
joint torques itself has its difficulties when the model setup does not match
the kinematic data measured, ie. when the model joint axes are fixed but the
real joint axes such as the knee joint are allowed to move, high forces occur
[11]. A very elegant method to solve this problem and the problem of muscle
force sharing together was carried out by Wright et al. [80]. The rigid body
model with muscles was forward simulated, optimizing the muscles active
state by minimizing the difference between the forward simulated and the
measured kinematic data. This method is very elegant because it also solves
the problem of applying real life kinematic data to a rigid body model.

The aim of this study is to investigate the function of series elasticity in drop
jumping performance. Having the jump height already given in the inverse
dynamics method, the effect of varying series elasticity on jump height can
not be investigated. Therefore the direct dynamics method was chosen.

4.2 Validation strategy

For model validation the vertical sinking of the body CM from touch-down
to its lowest height As and the vertical CM take-off velocity are chosen. CM
take-off velocity is closely related to jump height and represents the perfor-
mance of the jump. The joint kinetics and muscle energetics in the downward
movement are represented by As. Both parameters are calculated for vary-
ing ground contact times and drop heights.

The model is considered to be valid when the calculated jump height and
As are in the range of the standard deviation found in the measurements of
Arampatzis et al. [3].

No direct relationship has yet been documented between measured EMG and
active state of the muscle [31], [57]. On the other hand the electrical signal
causes the muscle to be in an active state. Good agreement between the
calculated active state and the EMG amplitudes underly the validity of the
activation model.

The sensitivity of the model to varying initial conditions and muscle param-
eters was tested to show the model stability, in other words to what extent
small changes in the initial conditions or muscle parameters leads to com-
pletely different model behavior.

In addition to the model and model parameter validation, errors in the formu-
lation of the equation of motion and the numerical accuracy of the integrator
to solve the equations of motion can be tested when Newton’s second law is
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maintained within numerical tolerances during the whole simulation time.

4.3 Jumping performance

In the study from Arampatzis et al. [3] drop jumps from 20, 40 and 60 cm
height were measured. The athlete was given the command to jump as high
as possible. Additionally for each jump height the subjects performed jumps
with varying contact times. The drop jumps for each person were grouped
into five groups according to their ground contact times. The ground contact
times for the five groups averaged over 15 subjects jumping from 20 ¢m can
be seen in fig. 4.1. The CM take-off velocity has almost the same value of
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Figure 4.1: Comparison between simulation results and measured drop jumps
from Arampatzis et al. [3]. with different contact times. The CM take-off
velocity and the maximum vertical sinking of the CM As are shown for five
different ground contact times.

2.5 m/s for contact times from 210 down to 162 ms, and gets smaller with a
further reduced contact time. Five drop jumps from 20 cm height were simu-
lated. The model was forced to choose a certain ground contact time, giving
a penalty to the cost function when the contact time was not in the range
specified. The ranges for the five simulations were 120-140 ms, 140-160 ms,
160-180 ms, 180-200 ms, 200-220 ms. Except for the longer contact times the
optimizing process results in a contact time as long as possible in the given
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interval. This is reasonable for the contact times slower than 180 ms because
in these cases take-off velocity increases considerably with increasing contact
time. Comparing the simulated CM take-off velocities with the measured
ones in fig. 4.1 the same behavior can be seen. The three longer contact
times have almost the same CM take-off velocity and it decreases for the two
shorter contact times. However the decrease of the shortest contact time was
not as big as in the measurements.

All simulated CM take-off velocities are in the range of the standard devia-
tion measured. Taking into account the general behaviour of the measured
mean values, the shortest simulated contact time should yield a smaller take-
off velocity compared to the longer contact times. Considering the high force
rate in all muscles which goes along with a short contact time there must be
some receptory inhibition preventing the muscle from being damaged [23].
No receptory inhibition was included in the model. Although the take-off
velocity is within the standard deviation, for the shortest contact time the
model was found to be not valid. The drop jump with the shortest contact
time is therefore excluded in the result chapter, discussing the SEE energy
of the muscles.

With increasing contact time the body CM sinks lower after touch-down (fig.
4.1). The simulated vertical sinking of the CM is within the standard devi-
ation measured.

Jumping from 20, 40 and 60 cm height, with a contact time about 180 ms,
the vertical take-off velocity measured by Arampatzis et al. [3] remained
constant (fig. 4.2). Bobbert et al. [9] also reported no variation of jumping
performance with moderate drop heights up to 60 cm. Other studies inves-
tigated drop heights over 60 em [4], [12], [44]. They found that jump height
varies with drop height and that an optimum exists. The decrease of jump
height above optimal drop height is assumed by Komi and Bosco [44] to be
caused by inhibitory reflexes, because muscle-tendon receptors are triggered
by excessively high muscle forces.

The simulated take-off velocities and As are within the standard deviation
measured by Arampatzis et al. The CM take-off velocities increase and As
decrease with greater drop heights. The reason for the increase in take-off
velocities is the lower vertical sinking (As), which manifest in a greater mus-
cle stretch and therefore in a higher force enhancement explained in section
3.2.3. The increase in drop height up to 60 ¢m is in accordance with the
observation made by [4], [12], [44] that an optimal height exists, however the
simulated jump height would increase with increasing drop heights above
60 c¢m, since there is no muscle inhibition included in the model.
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Figure 4.2: Comparison between simulation results and measured drop jumps
from Arampatzis et al. [3]. CM take-off velocity and maximum vertical sink-
ing As of the CM are shown for different drop heights, with ground contact
times of about 180 ms.

In conclusion all the simulation results are in the standard deviation mea-
sured. The general behavior of the model compared to the measurement in-
dicates that for drop jumping at the shortest contact time and from greater
heights the inhibition of muscle activation due to injury prevention mecha-
nisms are missing in the model. Therefore in chapter 5 the effect of muscle
elasticity on four drop jumps from a drop height of 20 em with ground con-
tact times ranging from 160 up to 212 ms is discussed. The model is found
to be valid for these four jumping conditions.

4.4 Active state compared with measured elec-
tromyogram

In the drop jump study of Arampatzis et al. [3] the EMG signals of five
muscles (m. gastrocnemius medialis, m. gastrocnemius lateralis, m. tibialis
anterior m. vastus lateralis and hamstrings muscles) were available. The
recorded EMG signals were rectified and smoothed and the filtered data were
normalized using the maximum EMG data from the trial with the highest
leg stiffness as the reference value. Compared are the filtered EMG data
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with the calculated active state predicted by the model (fig. 4.3). Shown
are two drop jumps with 160 and 212 ms simulated contact times which
are compared with 153 and 210 ms measured contact times. The muscles
m. gastrocnemius medialis as well as m. vasti medialis are compared to
the muscles m. gastrocnemius and m. vasti in the model containing the
medial as well as the lateral part. Shifting the active state time curves
shown in fig. 4.3 about 50 ms to the left, the measured muscle activity agree
qualitatively well with the active state calculated. Remembering that the
active state is proportional to muscle force, where as the EMG signal has
to travel along the muscle and causes chemical reactions to happen so that
the muscle force increases. This electromechanical delay from EMG to force
takes about 30 to 100 ms [14] and agrees well with the delay between active
state and measured EMG observed for the m. gastrocnemius m. vasti and
the hamstrings muscles. For m. tibialis anterior no delay can be seen but in
the shorter 160 ms jump the activation in the beginning as well as in the end
of the shorter jump is in good agreement.

In conclusion the optimized active state agrees qualitatively well with the
measured EMG and indicates that the modeled active state function, as well
as the optimization process leads to realistic muscle activation patterns.

4.5 Sensitivity of muscle parameters

There are too many muscle input parameters involved, to test all of them
systematically with regard to their influence on jumping performance. It is
obvious that higher maximum isometric muscle force (F,,,;) and maximum
shortening velocity (V. increase jump height. Important for the validity of
the simulation results is, that small changes in some of the muscle parameters
ie. SEE slack length or moment arms would lead to a completely different
model behavior. To test the sensitivity, the series elastic compliance was
changed from 4.0 to 4.5 % strain at maximum isometric force. The model
was re-assembled and the muscle parameters were re-optimized to match the
resultant joint torques. This procedure causes small changes in all muscle
parameters involved in the optimization process described in section 3.2.1.

The jumping performance increases slightly for the more compliant tendon
(fig. 4.4) where as the general characteristic, a decrease with shorter contact
times remained the same.
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4.6 Sensitivity of initial ankle joint angle

The same person performing a variety of drop jumps at their preferred con-
tact time must be able to compensate for small differences in their joint
configuration during the flight phase before touch-down. The sensitivity of
varying joint angles has been investigated by van Soest and Bobbert [74].
The authors compared a rigid body simulation including Hill type muscles
with a model driven by joint actuator torques. They found that the Hill
muscles are able to compensate perturbations in the joint angle so that the
movement can still be performed. In the case of the torque driven model the
movement could not be performed successfully.

Drop jumps from 20 cm with contact times ranging from 180ms up to 200ms
were simulated, increasing the plantar flexion angle about 5 and 10 degrees.
Without changing the stimulation pattern the drop jump could still reach
90 % of its height at original joint angle (tab. 4.1).

Table 4.1: Variation of initial ankle angle and jump height reached with the
same active state function as with unchanged ankle angle and with a re-
optimized active state function.

A¢ | Jump height [%], Jump height [%)],
same active state | re-optimized active state

+0 100 100

+5 98 100

+10 90 99

This leads to the conclusion that the viscoelastic properties of the Hill mus-
cles itself can well compensate for perturbations in the ankle angle without
changing the active state. This finding agrees well with the results from van
Soest and Bobbert. Re-optimization of the active state with the criteria to
jump as high as possible leads to almost the same jump height. Therefore
the model is not sensitive to small variations in the initial ankle joint angle.

4.7 Validity of the model calculations

Newton’s second law, that the CM acted upon by a force moves so that
the external force vector is equal to the time rate of change of the linear
momentum vector is tested. It can be formulated for the linear as well as for
the angular momentum P and L, respectively
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P = S F* (4.1)
L = Y1 (4.2)
F* . external force.
T Z(-ex) : external angular momentum.

The linear momentum P is defined as the overall body mass (M) times the sec-
ond derivative of the CM vector (R ). For the practical application equation
4.1 and 4.2 are integrated which is demonstrated for the linear momentum

t .. t
/ MR = / SR (4.3)
0 0 i

MR(t) — MR(0) — /OtZFE”). (4.4)

The definition and integration of angular momentum can be found in [11].
To demonstrate that eq. 4.1 and 4.2 are true during the simulation process
the left side of eq. 4.4, the momentum difference, is compared with the right
side, the integrated external forces (fig. 4.5).

The differences between the integrated forces and torques and the momen-

tum change are maximally 0.04. The maximum differences are found at the
time of ground contact or take-off where numerical difficulties occur. The
reason for those errors are first in the integration of the equations of motion
with the simulation program (DADS, LMS international), and second in the
integration of the external forces and torques. The errors were found to de-
crease with increasing accuracy specified in the simulation program. The
errors of the simulation program can be reduced by lowering the maximum
integration step size and the solution and integration tolerance. Changing
this values is going along with high computational cost so the errors observed
here are accepted.
The results indicate that Newton’s second law is maintained within numer-
ical accuracy and no systematic errors violating the equations 4.1 and 4.2
by programming the model and its muscle, wobbling mass, joint limiter and
contact forces were observed.
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Figure 4.3: Comparison between measured EMG from Arampatzis et al. [3]
and optimized active state. Measured data of four different muscles were
available: Gastrocnemius medialis, vastus medialis hamstrings and tibialis
anterior. The simulated jumps with 160 and 212 ms contact time were com-
pared with those measured at 153 and 210 ms contact time. The drop height
for both jumps was 20 cm.
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Figure 4.5: On the left side the integrated external forces in horizontal (Fx)
and wvertical direction(Fy) and the integrated external torques acting on the
rigid bodies in drop jumping are shown. The basic equations 4.1 and 4.2 are
true when the linear and angular momentum difference is equal to the inte-
grated external forces and torques respectively. Errors during the simulation
are demonstrated by subtracting the linear and angular momentum difference
from the integrated external forces and torques which is shown on the right
side. The contact time for the drop jump shown is 200 ms.



Chapter 5

Simulation results and
discussion

In this chapter the three hypotheses about the function of series elasticity
formulated in the introduction are investigated. The three hypotheses are
demonstrated on four drop jumps from 20 cm drop height with contact times
ranging from 212 ms (jump 1) down to 160 ms (jump 4). In the first sec-
tion drop jump energetics for the rigid bodies as well as for the muscles are
explained in general. In the next section the energetics for different muscles
are compared, and the sum of the SEE energy of all muscles is calculated
and set into relation to the overall muscle energy as well as to the energy of
the rigid bodies. The energy values are given as mean values over the four
drop jumps considered. The four jumps were simulated with different tendon
compliance as well, which lead to different muscle energies. The sections 5.3
and 5.4 show the effect of SEE on the CE force generating ability.

5.1 Simulated drop jumping

The drop jump is separated in two phases, the downward movement until the
potential energy of the body reaches its minimum and the upward movement
where the potential energy increases until it is greater than the initial po-
tential energy (fig. 5.1). During ground contact the muscles generate forces
to decelerate the body CM during the downward movement and to acceler-
ate the body CM during the upward movement. The muscles acting against
gravity in the model are m. soleus and m. gastrocnemius at the ankle joint,
m. vasti and m. rectus at the knee joint, m. gluteus and the hamstrings
muscles at the hip joint. All these muscles acting against gravity perform

75



76 CHAPTER 5. SIMULATION RESULTS AND DISCUSSION

§

-139% 0% 50% 100% 245%
60
/ z
. 8 \/ ' 8 40
< — Kinetic o
= 6 Rotational | £ 30
> . o
o = Potential |3 _
S 4 Total S 20 Horizontal |
L = - \/ertical
2 N\ £ 10
G o
0
-100 0 100 200 -100 0 100 200
Time [%] Time [%]

Figure 5.1: Pictures, energies and ground reaction forces in simulated drop
Jumping. The model starts from 20 cm foot height. The maximum jump
height is reached at 145 % ground contact time after take-off. The absolute
ground contact time for this jump is 160 ms

a so called stretch-shortening cycle. First during the downward movement
the muscle-tendon-unit (MTU) is stretched and then shortened during the
upward movement, the MTU and CE length for m. vasti are shown in fig.
5.2. In the eccentric phase, when the MTU or the CE is stretched, its power
output is positive. In the concentric phase when the MTU or the CE is
shortened its power output is negative. In fig. 5.2 the CE elements do not
follow the same stretch as the MTU, part of it is taken up by the SEE. When
the muscle is not activated the change in length of the CE and the MTU
is the same. With increasing activation the CE tries to shorten, the SEE is
stretched and elastic energy is stored. When the CE is stretched while its
activated mechanical energy is dissipated. When the MTU is shortened, the
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Figure 5.2: Muscle length, power and energy of m. vasti during drop jumping
from 20 cm with 160 ms contact time.

elastic strain energy is returned and contributes to the overall muscle power
output in the concentric phase (fig. 5.2). The SEE is ideally elastic there-
fore no energy is dissipated, most of its energy is returned at the end of the
stretch shortening cycle. A small amount of about 6 % strain energy remains
at the end of ground contact (fig. 5.8), because the muscle force does not
drop to zero at take-off. In the drop jump shown in fig. 5.2 in which the
jump height is higher than the drop height, the mechanical energy of the CE
and the MTU is lower than in the beginning of the jump. That means that
during the drop jump the CE generated more energy than it dissipated.
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5.2 Muscles mechanical energies

In the following sections only the six muscles acting against gravity m. soleus,
m. gastrocnemius, m. vasti, m. rectus m. hamstrings and m. gluteus are
considered. These six muscles are performing a stretch-shortening cycle dur-
ing ground contact. Even though m. tibialis anterior and m. iliopsoas are
not considered during the contact phase they can not be removed from the
model, they are important in the flight phase after ground contact. The
muscles acting against gravity produce high body segment accelerations at
take-off, which would cause the joints to reach their range of motion limits.
The consequences of excluding tibialis anterior and m. iliopsoas would be
unrealistic high joint limiter forces. Co-contraction of m. tibialis anterior
and m. iliopsoas prevent that from happening at the ankle and hip joint
respectively. Additionally m. tibialis anterior is also activated before ground
contact (fig. 4.3) to make the ankle stiffer without changing its touch-down
angle too much. To demonstrate the function of tibialis anterior all muscle
torques acting around the ankle joint during drop jumping are shown in fig.
5.3.
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Figure 5.3: Muscle torques around the ankle joint for a drop jump from 20
cm with 160 ms ground contact time. M. tibialis anterior generates torque
against the plantarflezor muscles m. soleus and m. gastrocnemius before and
at the end of ground contact to stabilize the ankle angle.

Regarding the CE and SEE energies during ground contact for different mus-
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cles, a difference can be distinguished between the muscles crossing one and
the muscles crossing two joints. According to the data from Winters [78] the
one joint muscles are able to produce a higher maximum isometric force than
the two joint muscles crossing the same joint (fig. 5.4 B). On the other hand
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Figure 5.4: (A.): Muscle component lengths at maximum isometric contrac-
tion at optimal joint angles for each muscle. LCFE is the CE length A LSEE
is the stretch of the SEE due to the isometric force. L0 is the SEE length
when no force is produced by the muscles. (B.): Maximum isometric muscle
forces. (C.): Muscles abilities for SEE energy storage. (D.): Mazimum en-
erqy stored in the muscles averaged over four drop jumps with contact times
from 160 up to 212 ms.

the two joint muscles have a longer series elastic element (fig. 5.4 A). Since
the series elastic energy is defined as force times stretch, a high maximum
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force as well as a long SEE length together result in a high potential for en-
ergy storage shown in fig. 5.4 C. The amount of energy stored shown in fig.
5.4 D. results from averaging the maximum stored energy for each muscle
over four drop jumps with contact times ranging from 160 to 210 ms. Com-
paring the potential of energy storage in fig. 5.4 C with the actual amount
of energy stored in fig. 5.4 D, both graphs are closely related. Adding up
the one and two joint muscles acting around the same joint the most energy
is stored in the muscles acting around the knee joint and least in the hip joint.

At the ankle joint m. soleus and m. gastrocnemius together store 0.38 J/kg
elastic energy. The amount of energy for one muscle is normalized to half of
the total body weight of 78 kg. Measurements of Fukashiro et al. [28] at the
achilles tendon determined 0.47 J/kg and 0.21 J/kg SEE storage in hopping
and squat jumping respectively. The amount of energy calculated in this
study for drop jumping is within the values for squat jumping and hopping,
normalized also to half of the bodyweight of the subject participating in the
study of Fukashiro et al.. The higher value found in hopping compared to
drop jumping is reasonable because in hopping the knees do not contribute
much to the overall movement, the plantarflexors are mainly responsible for
moving the body CM. The lower values in squat jump are due to the lower
muscle stretch because the body starts from a squatting position and has no
potential energy to decelerate it compared to a 20 ¢m drop jump.

Regarding the CE and SEE energies over time for a maximum height drop
jump with a contact time of 160 ms, the one and two joint muscles show a
different behavior (fig. 5.5).

In the two joint muscles the energy is returned later during ground contact
and the amount of dissipated CE energy is less. For m. rectus there is even
no CE stretch seen during ground contact and therefore no energy is dissi-
pated.
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Figure 5.5: Muscle energies for a 20 c¢m drop jump with 160 ms contact
time. The energy s obtained by integrating the negative and the positive
muscle power over time.
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Having discussed the energetics of individual muscles in drop jumping the
hypotheses to prove is, whether or not the stored SEE energy contributes
considerably to the muscle energy during drop jumping. To show the con-
tribution of the SEE energy, the CE, SEE and MTU energy for all muscles
acting against gravity is calculated from the start of the jump to take-off.
The following flight phase is not considered. The sum of the stored SEE
energy for all muscles is compared to the energy generated by the CE. The
energy is calculated by integrating the power over time. The integration was
completed for the positive and negative power separately which is equivalent
with the eccentric and the concentric phase respectively. In the eccentric
phase shown in fig. 5.6, the energy dissipated in the CE’s is about the same
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Figure 5.6: Muscle energies of four drop jumps with contact times from 212
ms (drop jump 1) down to 160 ms (drop jump /). The energy is obtained by
integrating the negative and the positive muscle power over time. Negative
power means that the muscle is shortened during force production. This is
mostly the case for the upward movement.

as the energy stored in the muscles SEE’s. In the concentric phase the aver-
age stored SEE energy of 1.8 J/kg contributes to 29 % of the MTU average
concentric energy of 6.4 J/kg. Anderson and Pandy [2] calculated the con-
tribution of SEE for countermovement and squat jumps. The contribution
of SEE energy determined by these authors was 35 % of the MTU concentric
energy. Counter movement and squat jumps did not show big differences in
the amount of series elastic energy stored. The contribution of SEE energy
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is 6 % higher than those found in this drop jump study. The reason for the
higher contribution of the strain energy in the study of Anderson and Pandy
might be the higher maximal strain value in their model, which is up to 6 %
depending on the muscles, compared to a strain of 4 % in the drop jump
model.

Summarized there is a considerable amount of 29 % series elastic energy con-
tributing to the concentric muscle energy in drop jumping.

In the next paragraph the muscle energy is compared to the potential energy
of the body CM and the wobbling mass coupling energy. In fig. 5.7, 151 %
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Figure 5.7: Muscle energies (MTU) and wobbling mass energies (Wobbl)
compared to the energy used to decelerate and to raise the body CM potential
energy (CM Epot). Four drop jumps with different contact times ranging
from 212 ms (drop jump 1) down to 160 ms (drop jump 4) are shown.

of the energy to decelerate the CM from its initial drop height to the lowest
position is generated by the muscles, 31 % is done by the wobbling masses.
In the concentric phase even 209 % of the potential energy to lift the body
CM is generated by the muscles. Only 6 % is contributed by the wobbling
masses. It is mechanically quite ineffective to raise the CM potential energy
with double the amount of muscle energy. Part of the high energy waste
can be explained from the muscle coordination to generate mechanical work
during the upward movement. This is demonstrated for the knee extension
in the following. M. gastrocnemius is on the one hand a plantar flexor muscle
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extending the ankle joint. On the other hand it is attached to the knee and
acts there against knee extension. The hamstring muscles are hip extensors
but work as well as knee flexors and therefore against the muscles extending
the knee at push off. Having these muscles working against each other in-
creases the overall muscle mechanical work to raise the body CM.

The calculations done here are purely mechanical and do not consider metabolic
energy. The SEE energy return does not require any metabolic energy, but
the metabolic energy needed for the CE is higher than the mechanical work
calculated. This is because in isometric contraction the mechanical energy
generated by the CE is zero when the muscle length is kept constant, whilst
in reality the muscle needs a lot of metabolic energy to keep the muscle ten-
sion.

The maximum metabolic efficiency with which a muscle may transfer chem-
ical energy from the oxidation of food into mechanical work is about 25 %
[52]. The muscles need 209 % of the rigid body energy to lift the CM. The
contribution of elastic energy to the muscle energy is 29% so that the CE has
still to generate 149 % of the CM potential energy to lift the body. Together
with the metabolic efficiency of maximal 25 % the muscle is found to be very
inefficient in maximal height drop jumping.

By increasing the SEE compliance from 4.0 to 4.5 % on average 10 % more
energy was stored in the SEE in all four drop jumps considered (fig. 5.8).
The eccentric energy of the CE is reduced about 13% so that less energy was
dissipated in the CE element during downward movement. With the higher
amount of elastic energy returned the CE does not produce less power in
the concentric phase of all four drop jumps. For the slowest and the fastest
drop jump number 1 and 4 respectively the concentric energy of the CE was
almost the same as those with 4.0 % strain. For the other contact times,
jump number 2 and 3, the energy was lower. On average 2 % less energy was
generated by the CE with the 4.5 % maximum strain compared to the 4.0 %
maximum strain.

As shown in section 4.5, the CM take-off velocities were higher for the more
compliant SEE. This is a result of the higher amount of energy released from
the SEE. The amount of concentric CE work remains almost the same for
jump 1 and 4 and is reduced for jump 2 and 3.

So far the energy values of the muscles were averaged over four drop jumps
with different contact times ranging from 212 (jump 1) to 160 ms (jump
4). Now the behavior with different contact times is discussed. It has to be
remembered that the jumps 1,2 and 3 resulted in almost the same take-off
velocity whereas jump 4 showed a considerable decrease (fig. 4.4). The over-
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all muscle energy shown in fig. 5.6 shows the same behavior. It decreases for
jump 4. For both simulations, the one with 4.0 % and the other with 4.5 %
maximum strain, the CE energy in the concentric as well as in the eccentric
phase shows a decrease with shorter contact times (fig. 5.8). The decrease
of the CE energy can be explained by the smaller muscle length change due
to smaller joint motion in the faster jumps. To obtain the same amount of
muscle energy in the jumps 2 and 3 more series elastic energy has to be used
in the concentric phase. The higher amount of series elastic energy storage
in jumps 2 and 3 can be explained by higher maximum knee extensor forces
in the jumps 2 and 3 of 4 % and 8 % respectively. Drop jumps 1 and 4 show
nearly the same maximum force in the knee extensor muscles. This higher
knee extensor force in jump 2 and 3 results from of a complex connection
between the activation functions, the force-length properties, force-velocity
properties and force enhancement following stretch for the muscles acting
around the knee joint.
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Figure 5.8: Energy for drop jumps with different contact times ranging from
212 ms (drop jump 1) down to 160 ms (drop jump 4). The simulation was
carried out with 4.0% and 4.5% mazximum strain for all muscles. The energy
15 obtained by integrating the negative and the positive muscle power over
time.
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5.3 Muscles force-velocity potentials

The calculations show that a considerable amount of series elastic energy is
stored and released afterwards. In the following it is investigated how the
recoil of the stored elastic energy influences the velocity of the CE in the
concentric phase.

The MTU and CE velocities of four drop jumps from 20 cm with contact
times between 160 and 212 ms are shown in fig. 5.9. All drop jumps show a
similar characteristic, first after touch-down the MTU works eccentrical and
then at take-off it has a high concentric shortening velocity. The velocity of
the CE is smaller than that of the MTU in both the eccentric and the concen-
tric phases. This behavior can bee seen for all muscles acting against gravity
for all jumps shown. To demonstrate the force producing ability according
to the CE force-velocity properties, the MTU and CE velocities are averaged
over all four jumps and the force-velocity potential for the CE velocity is
calculated. To discuss the function of series elasticity the elasticity of the
SEE is neglected, which means it acts like a stiff cable. The CE velocity is
then assumed to have the same velocity as the MTU. Both force potentials
during ground contact are shown in fig. 5.10. Regarding the last 50 % of
the ground contact, for all muscles the force potential of the CE velocity
is higher than the force potential for the MTU velocity. The difference is
high for the muscles at the ankle and knee joint and low for m. gluteus
and m. hamstrings acting around the hip joint. The one joint muscles m.
soleus, m. vasti and m. gluteus start to shorten earlier than the two joint
muscles. According to the joint kinematics in drop jumping the two joint
muscles remain longer at low shortening velocities which is advantageous for
their force-velocity potential.

In conclusion for all muscles part of the MTU shortening distance is taken up
by the shortening of the previously stretched SEE. Therefore the shortening
velocity of the CE is lower than that of the MTU. A low shortening velocity is
advantageous for the force-velocity properties, especially at high shortening
velocities at the end of the ground contact the CE can still produce force.
In contrast with a stiff SEE, when the CE velocity would follow the MTU
velocity, the force would drop to zero. When the force is zero no segment
accelerations can be obtained in the last phase and the body take-off velocity
would be lower.

The second hypothesis stating that the stored mechanical energy can be used
in producing a final velocity greater than that at which the contractile com-
ponent itself can shorten is true for all muscles acting against gravity and
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for all four drop jumps. The other important finding is that in drop jumping
the CE of the two joint muscles m. gastrocnemius and m. rectus are in an
advantageous situation according to their force velocity potential compared
to the stronger one joint muscles m. soleus. and m. vasti.
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Figure 5.9: Simulated CE and MTU velocity over time for drop jumps with
different contact times ranging from 160 to 212 ms.
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Figure 5.10: Force potential according to the Hill force-velocity properties.
The velocity for the different contact times shown in 5.9 are averaged
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5.4 Muscles force-length potentials

Along the same line as for the force-velocity properties, the effect of SEE
elastic compliance on the length of the CE is discussed. The force-length
potential according to the parabola described by equation 3.5 is calculated.
The force-length potential is best when the length is close to the optimal
length Legepy. In fig. 5.11 it can be seen that the only muscle which reaches
optimal length of the CE is m. rectus, which start at a length longer than op-
timal. All other muscles acting against gravity starts at a CE length shorter
than optimal. The CE length of m. soleus, m. gastrocnemius , m. vasti
and m. gluteus are stretched up to 20 % from the beginning of ground con-
tact and their force potential increases. At take-off all these muscles have a
length shorter than optimal. In case of m. vasti the shortening from maxi-
mum stretch is about 40 %. It has to be remembered that in the simulation
the CE length is not the fiber length, but the projection of the fibers with
a certain angle of pennation on the muscle line of action. The change in
length due to the increase in pennation angle is about 20 % of the overall
length change measured in section 3.4.1. The CE length change in dynamic
situations is difficult to measure on humans. Biewener et al. [6] measured
the length change in pigeon’s m. pectoralis and found a lengthening of 10-15
% in the beginning and then 30-40 % shortening in the end of the force pro-
ducing phase. This behavior agrees well with those found for the one joint
muscles in fig. 5.11. The CE length of the four different drop jumps vary
because the overall muscle length change is greater in the longer jump where
the vertical sinking of the body CM is lowest. This leads to greater joint
angles, and therefore to longer MTU length and hence the CE length change
is dependent on the movement performed.

Regarding the average force potential of the CE in four different drop jumps,
its general behaviour is different for the one and two joint muscles. As already
seen in the force-velocity potential the shortening velocity of the two joint
muscles is lower than that in the one joint muscles. This leads to less length
change for the two joint muscles. Especially m. rectus, the knee extensor,
remained at about 100 % during the whole movement. With a stiffer tendon
the CE stretch would be higher and would be more advantageous for all mus-
cles except m. rectus. Therefore the third hypotheses that series elasticity
leads to a higher force-length potential is only true for one muscle in the four
drop jumps simulated. For all other muscles the opposite is true, a less com-
pliant or stiff tendon would lead to a length closer to optimal and this leads
to a higher force-length potential. Taking into account that the most impor-
tant muscles which generate the highest energy in drop jumping are the knee
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muscles and m. rectus being one of them, its force-length potential is essen-
tial for drop jumping performance and therefore tendon compliance serves
its purpose in the drop jump excecution for the force-velocity properties as
well as for the force-length potential.
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Chapter 6

Summary and future directions

The purpose of this thesis was to develop a computer simulation model to
prove the following three hypotheses of the function of series elastic strain
energy in drop jumping.

1. A considerable amount of energy can be stored in the muscles SEE’s.

2. The SEE’s strain energy allows the CE’s to reduce their shortening
velocity to develop a higher force thanks to the force-velocity property.

3. The SEE’s strain allows the CE’s to work closer to their optimal length.

The rigid body model developed in this study is able to reproduce the mea-
sured drop jump characteristics within the standard deviation measured.
This justifies the modelling of the rigid bodies and muscles. Compared to
other authors simulating vertical jumping [73], [2], the flight phase after
ground contact is also integrated. This requires a more complex muscle ac-
tive state function, allowing muscles to be activated more than once and
change their level of activation. This active state function agrees qualita-
tively well with the EMG measured in drop jumping.

The following answers to the three hypotheses about the function of SEE in
drop jumping were proven with four drop jumps from 20 ¢m drop height and
ground contact times ranging from 160 to 212 ms.

1. A considerable amount (29 %) of the concentric muscle energy is con-
tributed by the SEE energy stored in the eccentric phase. The remain-
ing amount (71 %) is produced by the contractile elements and requires
metabolic energy.

95
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The overall concentric muscle energy is about twice as much as the in-
crease of potential energy when the body’s CM is lifted from its lowest
position. Therefore the amount of SEE energy expressed in percent of
the potential energy is 63 %.

2. The SEE’s strain energy allows the CE’s to reduce their shortening
velocity to develop a higher force. This is true for all muscles and all
jumps calculated.

3. The SEFE’s strain allows only the CE of m. rectus to work closer to its
optimum length. So that hypothesis 3 is not true for all muscles.

Investigating these hypotheses, differences between one and two joint mus-
cles were found. Due to the joint kinematics in drop jumping all two joint
muscles are favored because of their force-velocity potential, especially in the
last 50 % of ground contact. According to data from Winters [78], the two
joint muscles have smaller PCSA than the one joint muscles. If this ratio
between one and two joint muscles measured in vitro is also true for trained
athletes has not yet been studied. From the outcome of this study a greater
PCSA for the two joint muscles would be advantageous. The second factor
found which is important for muscle performance, is that increasing SEE
compliance from 4.0 to 4.5 % maximal strain leads to increasing take-off ve-
locities.

Summarized, the athletes abilities of muscle force generation can be be quan-
tified by tendon compliance and by the ratio of the PCSA between the two
joint compared to the one joint muscles.

The model is assembled together from different literature sources, not al-
ways matching the average trained athlete. The trained athletes themselves
show quite different individual jumping techniques which can be seen in the
high standard deviations in fig. 1.1. Individual parameters can be obtained
and related with the help of the simulation model to the athletes jumping
abilities and techniques. This can be done in a standard training situation
such as drop jumping. The model can also be extended to competing move-
ments such high or long jump.
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List of muscle parameters

Fmaz
FTquscle
Fvel

KpEeg
Ksge
Lcg
LcEgopt
Lfiber

: Parameter describing the shape of

the hyperbolic force-velocity function.

: Coefficients to calculate MTU length .

. Active state function.

: Asymptote factor for the eccentric force-velocity curve.
: Parameter describing the shape of

the concentric hyperbolic force-velocity function.

: Parameter describing the shape of

the parabolic force-length function ¢ = 1/width?.

: Parameters describing the shape of

the eccentric force-velocity function .

: Contractile element.

: Parameters describing force enhancement after stretch.
: Muscle force measured or simulated, specified

in the text.

: Force of the CE.

: Force along one muscle fiber.

: Force-length property of the CE.

: Muscle force equals Fsgg.

: Maximal isometric force of the muscle.

: Amount of fast type fibers in the muscle.

. Force-velocity property of the CE.

: Factor describing passive PEE compliance.

: Factor describing passive SEE compliance.

: Length of the CE.

: Optimal length of the CE where the isometric force is maximal.
: Length of the muscle fiber.
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Lyrry
Lper
LpEeEsiack
Lsgr

LSE'Eslack
MTU

Pa

PCSA
PEE

pot

SEE

sf
strainpgg
strainsgg
Vee

Vmaw

Vivrru
width

APPENDIX A. LIST OF MUSCLE PARAMETERS

: Length of the muscle-tendon-unit.

: Length of the PEE.

: PEE slack-length.

: Length of the SEE.

: SEE slack-length.

: Muscle-tendon-unit.

: Angle of pennation.

: Physiological crossectional area.

: Parallel elastic element.

: Force enhancement function after stretch.

: Series elastic element.

: Slope factor for eccentric force-velocity curve.
: Strain in the PEE at maximal isometric force.
: Strain in the SEE at maximal isometric force.
: Velocity of the CE.

: Maximal shortening velocity of the CE.

: Velocity of the muscle tendon unit.

: Width of the force-length curve.
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Active state function

The active state function is given by control nodes j equally spaced in time,
with the first and last control node of muscle i having the amplitude anodes;; =
acty = 0.005. The other amplitudes are ranging between acty and one. These
nodes are connected with sinus functions on the interval %pz’ to %pz’. defined
by

act; = as;j * sin(omega;; (t — tnodes;;) + phase;;) + bs;; (B.1)

To make the active state function smother when there are three or more
nodes following in time with increasing or decreasing amplitude, the interval
of the sinus functions is decreased. The overall active state function with
the decreased interval is calculated so that it is still continuous and differ-
entiable. The fortran subroutine ’interpsin’ having the time of the nodes as
well as the amplitudes stored in the arrays tnodes(i,j) and anodes(i,j) respec-
tively, calculates the parameters as, bs omega and the phase. The function
fzero(startval,vv) used is a standard program for finding zeros for a given
function (fun(x,vv)) using parameter vv when the starting point (startval)
is given. The function fzero is not listed here.

subroutine interpsin(i)
C 3k 3Kk ok sk ok ok ok ok ok o sk ok ok o o o o ok ok sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sk s o o o ok ok ok sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok
c* interpolates active state control nodes with sinus functions
C 3k 3Kk ok ok ok ok ok ok ok ok ok ok ok o o o o ok ok ok sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok
INTEGER i, j,maxsinp
DOUBLE PRECISION tges,yd,vv,slope,ydpl,startval,crmin,
& ast,omegat,phaset,cr(maxsinp) ,pl(maxsinp)

PARAMETER (crmin = pi/200, startval = pi/4, crconst = 0.2, maxsinp=10)

c set cr and pl to zero
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DO j = 1,maxsinp
cr(j) = 0.0d0
pl(j) = 0.0d0
END DO
tges = tnodes(i,2)-tnodes(i,1)

C build cr so that there is a solution for pl in the range [0..pi]

DO j = 1,(np(i)-2)
if ((anodes(i,j) .LT. anodes(i,j+1))
& .AND. (anodes(i,j+1) .LT. anodes(i,j+2)) ) then
cr(j) = crconst
elseif ((anodes(i,j).GT.anodes(i,j+1))

& .AND. (anodes(i,j+1).GT.anodes(i,j+2)) ) then
cr(j) = crconst
else
cr(j) = 0.0d0
endif

if (cr(j).NE. 0.0d0) then
c slope next section

ydpl =(anodes(i,j+2)-anodes(i,j+1))/tges
DO
omegat = pi/(tges*(1.0d0+cr(j)))
phaset = halfpi
ast = (anodes(i,j)-anodes(i,j+1))/
& (1.0d0-dcos (omegat*tges))
yd = ast * dcos(omegat*tges + phaset) * omegat
if (dabs(yd).LT.dabs(ydpl)) exit
cr(j) = cr(j) - crmin
if (cr(j) .LT. crmin) then
cr(j) = 0.0d0
exit

endif
END DO
endif
END DO

C as,bs,omega,phase:
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phase(i,1) = halfpi

omega(i,1) = pi/(tges*(1.0d0+cr(1)))
as(i,1) = (anodes(i,1)-anodes(i,2))/
& (1.0d0- dcos(omega(i,1)*tges))
bs(i,1) = anodes(i,1) - as(i,1)

DO j = 2,np(i)-1
if (cr(j-1).EQ.0.0d0) then

p1(j)= 0.0dO
else
slope = as(i,j-1) * dcos( omega(i,j-1)*tges + phase(i,j-1) )
& * omega(i,j-1)

vv = (anodes(i,j)-anodes(i,j+1))/(slopextges)
pl(j) = fzero(startval,vv)

if (cr(j).NE. 0.0d0) then
¢ slope next section
ydpl = (anodes(i, j+2)-anodes(i,j+1))/tges

DO
omegat = (pi-pl(j))/(tges*(1.0d0+cr(j)))
phaset = halfpi + pl(j)
ast = (anodes(i,j)-anodes(i,j+1))/( dsin(phaset)
& - dsin(omegat*tges + phaset) )
yd = ast * dcos(omegat*tges + phaset) * omegat

if (dabs(yd).LT.dabs(ydpl)) exit
cr(j) = cr(j) - crmin

if (cr(j) .LT. crmin) then
cr(j) = 0.0d0
exit
endif
END DO
endif
endif

C calculate curve parameters

omega(i,j) = (pi-pl(j))/(tges*(1.0d0+cr(j)))
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phase(i,j) = halfpi + pl(j)

as(i,j) = (anodes(i,j)-anodes(i,j+1))/( dsin(phase(i,j))
& - dsin(omega(i,j)*tges + phase(i,j)))

bs(i,j) = anodes(i,j) - as(i,j)*dsin(phase(i,j))

END DO
return
end
C ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok s ok ok s ok s ok 3 ok 3 ok 3 ok 3 ok 3 ok 3 ok 3 ok 3 ok 3 ok 3 ok o ok ok ok 3k ok ok ok ok ok ok ok ok ok sk ok ok

DOUBLE PRECISION function fun(x,vv)
(C ok sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok o o o ks sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok sk ok ok ok ok o o o ok ok sk sk ok ok sk ok ok ok ok ok ok ok oK

c* PURPOSE: defines function used in fzero
3%k ok sk ok ok sk ok ok sk ok sk ok sk sk ok sk sk ok sk sk ok s sk ok sk sk ok s ok ok s ok ok s sk ok sk ok ok s ok sk sk ok ok sk ok ok sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok

DOUBLE PRECISION x,vs
fun= vv * (pi-x) * dcos(halfpi+x) - dcos(x)- 1.0d0
return

end
C 3% ok sk sk ok ok ok ok sk ok sk ok ok sk sk ok sk ok ok sk sk ok s sk ok s sk ok s sk ok s sk ok s ok ok s ok ok s ok sk sk sk ok sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok ok sk ok ok sk ok
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State equation

To actually calculate the muscle force the state equation 3.32 has to be
solved. To obtain the state equation eq. 3.20 has to be resolved for Vog. The
state function is then not continuous at high eccentric velocities. To avoid
numerical difficulties, the eccentric function 3.12 increases linearly with the
slope (slopelin = —10) for eccentric forces Fogrey = Fop/Fmae higher than
-Flin

Fiin = Fien (—\/((—cl — ¢2 % 3)/(slopeiin Fien) — c2). (C.1)

The threshold Fj;, is defined so that the state function is continuous and
differentiable. The state equation is then defined for different situations de-
pending on the contractile velocity of the muscle associated with a certain
muscle force.

Concentric hyperbolic part (Fopre, < Flen act):

act — FCErel/Een

Veg =0 i
or FCET@I/E@H +a

(C.2)

Eccentric hyperbolic part (Fogre > Flen act) and (Fopre < Fin):

cl —c3* FCE'rel/Een
Vi — . C.3
oF FCErel/Een + c2 ( )

Eccentric linear part (Foprer > Flen act) and (Foprer > Flin):

Ein/ﬂen

V. =gl mF re_Fm )
cr = slopein (Fopre 1in) + (c ¢ Fiin/ Flen + 2

). (C.4)
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F., is given by eq. 3.5 and Fgp is calculated from

Fep = Fspp — Frer (C.5)

with Fsgpg and Fpgg defined by eq. 3.24 and 3.22 respectively. Due to
simplicity force enhancement due to stretch is not considered in the state
equation but can be included by replacing Fie, by Fe,(1 + pot).
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