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Introduction

One of the most important features of the theory of finite soluble groups
is the existence of results generalizing the theorem of Sylow. A proto-
type is Hall’s theorem from 1928 that extends the scope of Sylow’s the-
orem for finite soluble groups from p-groups to mw-groups for a set m of
primes. More precisely, it states that in each finite soluble group G there
exists a unique conjugacy class of so-called Hall m-subgroups of G, sub-
groups that are maximal among all m-subgroups of G (and their order is
just the m-part of the order of ). Finite soluble groups are actually char-
acterized by the existence of Hall w-subgroups for every # C 1P, as Hall
showed in 1937. Let G denote a finite group and 7 a set of primes. Then
it is easily seen that a Hall m-subgroup H of G possesses the following
properties: (a) HN/N is a Hall m-subgroup of G/N for every normal sub-
group N of G; (b) H N N is a Hall m-subgroup of N for every subnormal
subgroup N of GG. Thus Hall m-subgroups are characterized by each of these
properties. It is natural to ask whether it is possible to obtain similar results
for other group theoretic properties than the property of being a m-group. To
this, collect all groups possessing a given group theoretic property in a class
§ (closed under isomorphisms), and call a subgroup U of a group G an §-
maximal subgroup of G if U is maximal among all subgroups of G belonging
to § (thus a Hall m-subgroup of a finite soluble group G is an & -maximal sub-
group of G where &, denotes the class of all finite soluble 7-groups). It is not
hard to see that there is no possibility to generalize all parts of the theorems of
Sylow and Hall to other classes of groups than the classes &, not even in the
universe of finite soluble groups. Trying to obtain weaker results of such type,
i.e. results about the existence and conjugacy of (F-maximal) subgroups of G
which possess either a property analogous to (a) or a property analogous to
(b) for each finite soluble group G, led to the concepts of projectors and in-
jectors, connected with Schunck and Fitting classes, respectively. This thesis



is concerned with the theory of Fitting classes, i.e. classes of groups closed
under both taking subnormal subgroups and forming products of normal
subgroups. (Fitting classes are named after H. Fitting, who first showed in
1938 that the class of all nilpotent groups is closed under forming products of
normal subgroups; evidently, this class is closed under taking subnormal sub-
groups.) In 1967, Fischer, Gaschiitz and Hartley proved that Fitting classes §
of finite and soluble groups are characterized by the existence of a unique con-
jugacy class of so-called §-injectors of G — subgroups U of GG such that UNN is
F-maximal in N for every subnormal subgroup N of G — in each finite and
soluble group G. Since such a result does not hold true — in general — in the
universe of finite groups, we confine ourselves in the sequel to the universe
of finite and soluble groups. Thus each group considered here is supposed to
be finite and soluble, and each class of groups is assumed to be contained in
the class G of all finite and soluble groups.

In the investigation of Fitting classes, it seems natural to restrict oneself first
to Fitting classes satisfying additional conditions related to the behaviour of
their injectors in each group G € & — as done for instance by Blessenohl and
Gaschiitz (1970), Lockett (1971), Doerk and Porta (1980) and Hauck and
Kienzle (1987). In the present work we generalize these investigations in the
following way: we consider non-trivial Fitting classes X and § such that X is
contained in § and an X-injector of G satisfies a given embedding property
e in G for every group G € § (in this case we call X an F.-class). Thus, we
study such embedding properties of X-injectors “locally “ in §, the global
case being § = 6.

We concentrate on the following embedding properties:

Normality
(Sub)Modularity
Normal embedding
System permutability

Our main interest concerning these relations is in the following questions:

Let e be among the embedding properties listed above.

(1) If X is a non-trivial Fitting class, does there always exist a unique
maximal Fitting class § such that X is an §.-class?



(2) And vice versa, what conditions must a Fitting class § satisfy to possess
a unique minimal §.-class?

In order to obtain an answer to the first question it seems reasonable to
consider the class Y.(X) of all groups G such that an X-injector of G satisfies
a given embedding property e in G. Unfortunately, in general this class is not
closed under forming normal products for any of the embedding properties
e listed above, and therefore can fail to be a Fitting class. So, in order to
decide whether there is a unique maximal Fitting class contained in Y.(X)
it would be helpful to have some detailed knowledge of Fit(S), the Fitting
class generated by a given set S of groups. Regrettably, this class is very
hard to deal with — for instance even the problem of finding an effective
description of the Fitting class generated by the symmetric group on three
elements is still unsolved. For this reason we will often confine ourselves
to subgroup-closed Fitting classes (in the following we will refer to these
classes as SFitting classes) and to the SFitting class generated by a given
set of groups. Since the subgroup-closure of a Fitting class enforces the
closure of the class under a number of further closure operations (Bryce and
Cossey, 1972, 1982), it is possible to use the theory of (local) formations
(see 1.3 for details) in dealing with SFitting classes. This leads to strong
results concerning the SFitting class generated by a given set of groups as
well as the lattice of SFitting classes. Thus in considering the above listed
relations between SFitting classes we might expect stronger results than in
the general case.

The basic material about classes of groups needed in the following is
presented in Chapter 1. There one will find — among others — the definition
of the class §*, the smallest Fitting class containing a given Fitting class
§ whose radicals respect direct products, and of the Lockett section of
§, the collection of all Fitting classes Q) satisfying 9* = F* (see 1.2).
(The X-radical Gx of a group G is defined as the unique maximal normal
subgroup of G which is contained in X where X denotes a Fitting class.) If
§ is a Fitting class such that § = §*, then § is called Lockett class.

The definition of local formations — classes of groups constructed via a
family of formations, a so-called local definition — is also contained in this
chapter (see 1.3). Among all possible local definitions of a local formation
there is exactly one that is full and integrated (see 1.3), the so-called
canonical local definition, and a number of properties of the class behaves



nicely with respect to it. We will see that the above relations — considered
between SFitting classes — too are mirrowed frequently in the corresponding
canonical local definitions (and vice versa).

In Chapter 2 we will study the SFitting class generated by a given set of
groups as well as the lattice of all SFitting classes. As mentioned before we
will need these results in investigating the above listed relations (considered
between SFitting classes), but they are of interest also in their own right.
Using the theory of (local) formations, we will prove that the SFitting class
generated by arbitrary many SFitting classes behaves nicely with respect
to intersections and certain extensions. A consequence of these results is
that the collection of all SFitting classes forms a distributive lattice — a fact
which has already been proved by Shemetkov and Skiba in 1989 ([20, 9.8]).
Furthermore, it turns out that this lattice is atomic and that its atoms can
be described explicitly.

Chapter 3 is devoted to locally normal Fitting classes, i.e. non-trivial Fitting
classes X and § such that X is contained in § and that an X-injector of
G is a normal subgroup of G for all G € §. (In this situation we refer to
X as being normal in § or being §-normal.) Obviously, in this case each
X-injector coincides with Gy for all G € §.

This chapter is subdivided in two sections. In the first part, we collect the
basic facts on locally normal Fitting classes — most of them proved by Hauck
(1977) —, and discuss the above mentioned questions for arbitrary Fitting
classes. It is a well-known fact that in this investigation we may assume
without loss of generality that both classes under consideration are Lockett
classes, and therefore classes that are easier to be handled than arbitrary
Fitting classes (we will give a further proof of this result which can be easily
transferred to other embedding properties). Nevertheless, question (1) is
almost intractable even for Lockett classes, since in general the Fitting (or
Lockett) class generated by a given set of groups is very hard to handle.
However, we will give some conditions on Fitting classes §; and §» contained
in Y, (X), the class of all groups G such that Gx is X¥-maximal in G, which
guarantee that the Fitting class generated by §; and &5 is still contained
in Y,(X) (where X denotes a non-trivial Fitting class). Question (2), too,
is open in general. It is clear that there are Fitting classes § such that a
smallest §-normal Fitting class does not exist (for instance the class of all
nilpotent groups), but it is far from clear what kind of conditions a Fitting



class must satisfy to possess such a class. However, we will prove that for a
number of important Fitting classes § a unique minimal §-normal Fitting
class exists and can be described explicitly.

In the second part of this chapter, we confine ourselves to the investigation
of locally normal SFitting classes (i.e. SFitting classes X and § such that X
is normal in §). As mentioned before, this enables us to use a much more
powerful theory and thus to obtain much stronger results concerning the
above questions. The key to almost all results proved here is the fact that
local normality between SFitting classes (satisfying some weak additional
conditions) is equivalent to local normality between their corresponding
canonical local definitions. From this it follows that for an arbitrary SFitting
class X there always exists a unique SFitting class that is maximal among
all SFitting classes contained in Y,(X), and that X is determined uniquely
by this class. Furthermore, we will see that in many cases — for instance
when X is of bounded nilpotent length — there is an algorithm to describe
this class. It turns out, too, that for each SFitting class X the collection of
all SFitting classes in which X is normal forms a complete, distributive and
atomic lattice, whose atoms can be described explicitly.

In investigating the dual class, it is possible as well to obtain satisfying
results, although question (2) remains open in general. However, we prove
that if § is an SFitting class such that a smallest §-normal SFitting class
exists, the collection of all F-normal SFitting classes forms a complete and
distributive lattice, too, which, in addition, is dual atomic if § is of bounded
nilpotent length.

In Chapter 4 we study the remaining embedding properties listed above.

We begin with the investigation of locally (sub)modular Fitting classes,
i.e. non-trivial Fitting classes X and § such that X is contained in § and
an X-injector of G is a (sub)modular subgroup of G for every G € § (see
4.1 for the definition). In this case X is said to be (sub)modular in § or
§-(sub)modular. One of the first results to emerge is that the class of all
groups GG such that an X-injector of GG is a modular subgroup of G is not
closed under forming direct products. This implies that the concept of
locally modular Fitting classes coincides with the concept of locally normal
Fitting classes — a fact which was proved already by Hauck and Kienzle
(1987) for the case § = &. So, in order to obtain a new relation between
Fitting classes, we have to weaken this embedding property; this leads us



to locally submodular Fitting classes. Although for § = & this concept
too coincides with local normality (Hauck and Kienzle, 1987), there exist
Fitting classes X and § such that X is submodular but not normal in §.
We will see that this relation as well is a relation of the corresponding
Lockett sections, hence we may confine ourselves to the case that both
classes are Lockett classes. Further, for a number of important Fitting
classes §, we prove the existence of a smallest Fitting class being submodular
in §. It turns out that in each class treated there, the smallest §-submodular
Fitting class coincides with the smallest §-normal Fitting class.

That the concept of local submodularity is very close to the concept of
local normality is also stressed by the fact that these concepts coincide for
SFitting classes, hence an SFitting class X is submodular in an SFitting
class § if and only if it is §-normal. This implies that all results shown
in the second part of the third chapter remain true for locally submodular
SFitting classes.

In the remaining sections of this chapter we take a look at locally normally
embedded and locally permutable Fitting classes (see 4.2 for the definition).
Those classes were considered by Lockett (1971) and Doerk and Porta (1987)
for § = &, and there it turned out that the concept of strong containment
(see 4.2) plays an important part in this investigation. This remains valid
in the general case, and therefore we obtain that those relations, too, are
relations of the corresponding Lockett sections.

Let X be a non-trivial Fitting class. As mentioned above, the class Y.(X)
in general fails to be closed under forming normal products for each of the
embedding properties e treated here. Nevertheless, in case of local normality
there are a number of Fitting classes X such that Y,(X) is a Fitting class
distinct from &. We will see that this is impossible for local permutability,
i.e., in this case the class Y.(X) is a Fitting class if and only if it coincides
with &. If this also holds for the property of normal embedding remains
an open problem. The special case of considering the above relations only
between SFitting classes X and § leads to the case that § = &, and therefore
to the investigation of Lockett, Doerk and Porta.
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Notation

All groups treated here are supposed to be finite and soluble. Further, we
adhere mainly to the notation used in [9]; all terms, that differ from this are
listed below.

G'H regular wreath product of G with H

G* base group of Gl H

[(G) nilpotent length of G

7(G) set of all prime divisors of |G|

U44G U is a subnormal subgroup of G

U (s)mod G U is a (sub)modular subgroup of G

%1039 class product of §; and F»

5152 Fitting class product of §; and §»

T+ 5o formation product of §; and §»

T1 X T direct product of §; and §»

[(F) nilpotent length of §

() {pelP|pen(G), Ge3}

(S)Fit(S) (S)Fitting class generated by a set S of groups
Sz (81, 32) (G| G/G5,G5, € 65)

51935 §1 is normal in Fo

$1 (s)mod F2  F1 is (sub)modular in Fs

§1 ne §o $1 is normally embedded in §»

Yo (X) (G | an X-injector of G is normal in G)

Y moa (%) (G | an X-injector of G is modular in G)
Yamoa(X) (G | an X-injector of G is submodular in G)

Y e (X) (G | an X-injector of G is normally embedded in G)
Y, (%) (G | an X-injector of G is system permutable in G)






Chapter 1

Examples and basic results

In this chapter we introduce the basic concepts and results about classes of
groups — in particular Fitting classes and local formations. For the proofs
and further information we refer to [9].

1.1 Classes of groups and closure operations

Groups with special properties — for instance the property of being abelian
or nilpotent — are collected in classes (see [9, I1]).

1.1.1 Definition

A class of groups is a collection X of groups with the property that if G € X
and if H 2 G, then H € X.

We will often use the term X-group to describe a group belonging to X.

Notation: If S is a set of groups, we use (S) to denote the smallest class of
groups containing S, and when S= {G}, we write (G) instead of ({G}).

Some examples:

the empty class.
the class of all (finite soluble) groups.

Q=

» the class of all (finite soluble) m-groups where 7 is a set of primes.
(When 7 = {p}, we write &, rather than &;.)
the class of all (finite) nilpotent groups.

3

13



14 EXAMPLES AND BASIC RESULTS

il the class of all (finite) supersoluble groups.
20 the class of all (finite) abelian groups.

If X is any class of groups and 7 a set of primes, we denote the class X, by
XNeG,.

1.1.2 Definition

(a) A map cis called a closure operation if ¢ assigns to each class X of groups
a class ¢X of groups such that the following conditions are satisfied:
(i) X CcXx.
(ii) o(cX)=Z%.
(iii) If X € 9, then cX C Q).

(b) A class X is said to be c-closed if cX = X.

According to (a) the class ¢X is the smallest c-closed class containing

X.

Convention: The empty class is c-closed for every closure operation
C.

(c) The product aB of two closure operations A and B is defined by
composition:

ABX = A(BX)
for all classes X.

The following list contains some of the most frequently used closure opera-

tions:

X = (G|3H € X with G4 H);

NX = (G|3IN; LG, N;eX (i=1,...,r) with G=(Ny,...,N,));
DX = (G|3G,eX(i=1,...,r) withG=G; x... xG,);

QX = (G |3JH € X and an epimorphism from H onto G);

RoX = (G|3IN; <G, G/N;eX (i=1,...,r)with Nyn...NN, =1);
B, X = (G|IN<IG, N <¢(G)and G/N € X );

seX = (G| 3H € X with G < H and G/Corey (G) € N);

sX = (G|3H e X with G < H).

S, &,, M, N, are c-closed for every c in the list. A and U are examples for
classes which are @- and Re-, but not Ny-closed.
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1.1.3 Definition
If X and ) are classes of groups, we define their class product X o Q) as
follows:

X 0% = (G | G has a normal subgroup N € X with G/N € Q) ).
We set X0 = (1) and X" = (X" ') oX forn € N, n > 1.

1.1.4 Definition
Let G be a group and X be a class of groups.

(a) We define

n(G)={p|peP, p||G]} and n(X) = H{r(X)| X €x}.

(b) The characteristic of X is defined as follows:

Char(X) ={p|pePand Z, € X }.

(c) We also define
1(X) = { min{r € IN | X CON" } if it exists,

00 otherwise

and call [(X) the nilpotent length of X.

1.2 Fitting classes

In this section we recall some basic definitions and facts about Fitting classes.
For the proofs and further information the reader is referred to [9, IX, X].

1.2.1 Definition
(a) A Fitting class is a class of groups which is both s,- and Ny-closed.

Obviously, the intersection of Fitting classes is again a Fitting class.
Therefore there exists a (unique) smallest Fitting class containing a
given set S of groups — the Fitting class generated by S. We will
denote this class by Fit(S).
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(b) Let X be a Fitting class and G be a group. Define the X-radical of G by
Gx=(N|N<S<G, NeXx).

Obviously, G belongs to X and Gy is the unique maximal normal
subgroup with this property.

Fitting classes are named after H. Fitting, who first showed in 1938 that
the class of nilpotent groups is closed under forming products of normal
subgroups. &, &,, M, N, are examples of Fitting classes. Examples of
X-radicals are O,(G) if X = &,, and F(G) if X = 9.

The following elementary fact will be useful.

1.2.2 Remark
Let X and § be Fitting classes and G' be a group of minimal order in X \ Q).
Then G has a unique maximal normal subgroup.

Fitting classes are distinguished by the existence of some special subgroups
in every group.

1.2.3 Definition
Let X be a class of groups and G be a group.

(a) A subgroup U of G is called X-maximal in G provided that

(i) U e X and
(i) f U<V <Gand V € X, then V ="U.

(b) An X-injector of G is a subgroup V' of G with the property that VN N
is an X-maximal subgroup of N for every subnormal subgroup N of G.

We denote the (possibly empty) set of X-injectors of G by Inj(G).

Let G be a group. Hall m-subgroups of GG are examples of X-injectors for
the special case X = S,. If X =M, then Injy(G) consists of all N-maximal
subgroups of G containing F(G) (cf. [9, IX, 4.12]).

According to Fischer, Gaschiitz and Hartley (cf. [9, IX, 1.4]), Fitting classes
X are characterized by the existence of X-injectors in every group:

1.2.4 Theorem

A class X is a Fitting class if and only if every group G possesses an X-
injector. Furthermore, the X-injectors of G then form a single conjugacy
class.
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Next we gather some important properties of radicals and injectors.

1.2.5 Theorem ([9], IX, 1.1, 1.3, 1.5, 1.6)
Let X be a Fitting class and G a group.

(a) If N is a normal subgroup of G and if V' € Injx(G), then Gx <V,
NNGx=Nxand NNV € Injx(N).

(c) IfV is an X-injector of G and if V. < U < G, then V is an X-injector of
U.

(d) (Frattini) If K <G and V' € Injy(G), then G = KNg(V N K).

(e) Let N <G and L be an X-subgroup of G such that LN N € Injy(N)
and LN = G. Then L € Inj¢(G).

1.2.6 Theorem ([9], IX, 1.7, 1.9)
Let X be a Fitting class.

(a) 7(X) = Char(X).
(b) Char(X)=m & N, CXCG,.

In particular: If p is a prime such that P € X for some non-trivial p-group
P, then G, C X.

1.2.7 Definition
Let §1, 32 be Fitting classes. We define

5182 = (G | G/G5, € 32)

and call §;§2 the Fitting class product of §; with §s.

1.2.8 Proposition ([9], IX, 1.11, 1.12)
Let §1, §2 be Fitting classes.

(a) §132 is a Fitting class.
(b) If F2 = @S2, then §182 = 1 0 So.

(c) For any group G, the Fo-radical of G/G3, is G3,5,/G3, -
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Lockett associated to each Fitting class § the Fitting class §* , the smallest
Fitting class containing § whose radicals respect direct products. It is defined
by

§ = (G| (G x G)gis subdirect in G x G)

and possesses — among others — the following properties (cf. [9, X, 1.3, 1.4,
1.5, 1.8, 1.13, 1.32)):

1.2.9 Theorem
Let § be a Fitting class and G be a group.

(a) §* is a Fitting class.

(b) FC3 =)

(c) 1€ 8 = 135

(d) Let {Si}icr be a family of Fitting classes. Then ((;c;8i)" = (i ;-
(e) (GxG)g=(GsxG3){(9.97") | g € Gg).

(f) G /Gy is abelian.

(g) If'V € Injz(G), then V; is an §-injector of G.

A Fitting class § is called a Lockett class if § = §*. For each Fit-
ting class § we define §, = ({X | X Fitting class and X* = §*} and call
{X|X*=F}={X]|F. CX CF"} the Lockett section of §.

By definition, each q-closed Fitting class is a Lockett class. In particular

G, 6., M, N, are Lockett classes. Furthermore, sp-closed Fitting classes
(so-called Fischer classes) are Lockett classes (cf. [9, X, 1.25]).

1.2.10 Theorem ([9], X, 1.9, 1.33)
Let G, Gy be groups and § be a Lockett class.

(@) (G1 x Ga)g = (G1)z X (Ga)s-

(b) LetV be an §-injector of G. Then'V = (VNGy) x (VNGs); in particular
V = Vi x Vy where V; € Inj(G;) for i = 1,2, and every subgroup of
this form is an §-injector of G1 X G.
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1.2.11 Proposition ([9], X, 1.18, 1.26)
Let §1, §2 be Fitting classes.

(a) If§1 C §2, then (F1)« C (F2)s

(b) (F15%) = (F182)*; in particular, the Fitting class product of Lockett
classes is again a Lockett class.

Lockett classes are characterized in various ways. In the following, we will
only need the sharpened form of the so-called quasi-re-lemma (cf. [9, X,
1.24]):

1.2.12 Lemma
Let § be a Fitting class. Then the following statements are equivalent:

(i) § is a Lockett class.

(ii) For all groups G with normal subgroups Ny and Ny such that NyNNy = 1
and G /NNy € M, the following holds:

GeF< G/N, €F and G/N, € §.

We mainly apply 1.2.12 to regular wreath products (G x G3)t H where G4
and G, are arbitrary groups and H € 9. Identifying G; with G; x 1 and G,
with 1 x G5, 1.2.12 implies

(GlXGQ)ZHES@GleGSandGﬂH

provided that § is a Lockett class.

The following Fitting class construction is also due to Lockett (cf [9, IX,
1.14)):

1.2.13 Definition
Let X be a Fitting class and 7 be a set of primes. Set

£.(X) = (G | the X-injectors of G have 7'-index in G).

Thus £,(X) consists of all groups whose injectors contain a Hall w-subgroup
of G.
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We have

1.2.14 Theorem ([9], IX, 1.15, 1.16, X, 1.37)
Let X be a Fitting class, m a set of primes, G a group and V' € Inj,(G).

(a) £,(X) is a Fitting class.
(b) The following statements are equivalent:

(i) X = X6,.
(i) £.(X) = 6.

(c) £x(X)" = £ (X).

(d) Let H € Hall/(G) and W = (V, H). Then W is an £,(X)-injector of G
if and only if HV =V H.

The £,-construction enables us to describe the X9)-injectors of a group.

1.2.15 Theorem ([9], IX, 1.22)

Let X and ) be Fitting classes and m = 7(Q)). Let G be a group and T an
X-injector of G¢_(x). By the Frattini argument and the definition of £,(X)
there exists G, € Hall,(G) normalizing T'. Then the following holds:

IfV/T € Injy(TGr/T), then V € Injxy(G).

In particular: Let G € &,. Then V is an X%)-injector of G if and only if

We will need this theorem especially for the description of the smallest
Sy, ... 6, -normal Fitting class (see Chapter 3).

Let (§;)icr be Fitting classes. In general, one knows very little about the class
Fit(§; | i € I) — the smallest Fitting class containing §; for all i € I. If]
however, the characteristics of the classes §; are coprime, an easy description
is possible.
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1.2.16 Definition
(a) Let (F:)ies be Fitting classes whose characteristics are pairwise disjoint.
Then define the direct product of §;, ¢ € I, as follows:

HSZ‘Z:(G|G:GZ‘IX...XGZ‘”Z_, Gie&j, ijG], nZG]N)

el

As usual [,y 8 = 1.

(b) A Fitting class § is called directly decomposable if there exist non-trivial
Fitting classes §;, i € I, |I| > 1, such that § = [[,.; S
Otherwise § is said to be directly indecomposable.

Some elementary facts:

1.2.17 Remark
Let §;, © € I, be non-trivial Fitting classes whose characteristics are pairwise
disjoint.

(a) The direct product of Fitting (Lockett) classes is again a Fitting
(Lockett) class.
If G is a group, then Gp_,5 = Gg, X ... X Gg, ~ for suitable
U, in, €1, n; € IN.

(b) If X is a Fitting class, then X([[,.;8:) is the smallest Fitting class
containing X§; for all i € I.
In particular, Hie ;8 Is the smallest Fitting class containing §; for all
1€ 1.

(c) Let §; be directly indecomposable for all i € I and § = [[,.;8i. Then
the direct factors are unique up to ordering.

(d) X9 is directly indecomposable whenever X and Q) are non-trivial Fitting
classes.

Let (m;)ier be pairwise disjoint sets of primes and § = [[,.; ©x,. Then it is

iel
possible to describe the §-injectors of a group.
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1.2.18 Theorem ([9], IX, 4.12, [15], 2.1.3)
Let m be a set of primes, (m;)ic; a partition of m and § = [[.c; ©»,. Then
the following statements are equivalent:

(i) V € Injx(G).
(ii) V =[L;e; V&, where V;, € Hall, (C(O,(F(G)))).
In particular, there is a description of the N-injectors of a group.

For arbitrary Fitting classes §1, §2 it is much harder to describe Fit(§1, §2).
However, there exists an upper bound for this class introduced by Hauck (cf.
9, IX, 2, A]).

1.2.19 Definition
Let §1, §2 be Fitting classes and let

m={pelP[p[|G/G]|, GeF}andm ={peP|p||G/Cs,|, G €Fi}.
Further let m be a set of primes containing 7m; N 5. Then define
Nx(81, §2) = (G| G/ G5, G, € Ne).
Obvious:
(1) Nz(31: $2) 2 31, o

(i) No(F1, §2) = (G| G = G5 Gy,).

1.2.20 Theorem ([9], IX, 2.1)
The class N (F1, §2) defined in 1.2.19 is a Fitting class.

In particular, Ny (z,)nr(3,) (81, 82) is a Fitting class.

Fitting classes and wreath products

Wreath products play an important part in the theory of Fitting classes (cf.
9, X, 2]). In this section we collect some facts needed frequently in the
sequel.

1.2.21 Notation
Let G and H be groups. Then G H denotes the regular wreath product of
G with H. The base group of G H is denoted by G*.



FITTING CLASSES 23

We recall the following well-known properties of regular wreath products:

1.2.22 Lemma ([9], A, 18.8)
Let G, H be non-trivial groups.

(a) If L < H, then G*L = G" ! L wheren = |G : H|.
(b) If N is a normal subgroup of G H such that G* NN =1, then N = 1.

In particular, if 1 # G € &, for some prime p, then O,(GUH) is trivial
for all primes q # p.

1.2.23 Theorem ([9], A, 18.9)
Let N be a normal subgroup of a group GG. Then there exists a monomor-
phism from G to N1G/N.

The following results — most of them are based on the work of Hauck (1977)
— show the significance of regular wreath products for the theory of Fitting
classes. Because the base group of a wreath product is a direct product,
it is hardly surprising that Lockett classes play an important part in this
investigation.

1.2.24 Lemma ([9], X, 2.1)
Let § be a Lockett class and G be a group such that G ¢ §. Then

(GUH)5 = (Gg)"
for each group H.

1.2.25 Theorem ([9], X, 2.7)
Let X be a Fitting class, G € X and p a prime. If there exists a non-trivial
p-group H such that Gt H € X, then G P € X* for all p-groups P.

1.2.26 Theorem ([9], X, 2.12)
Let X be a Fitting class, let G be an X-group and let H be a nilpotent group.
Then exactly one of the following cases holds:

(i) G"VH ¢ X* for alln € IN.

(i) G H € X and G* ' H ¢ X for all n € IN.
(ili) G*"1H € X for alln € IN.

In particular, if G*{ H ¢ X, then G*{ H ¢ X*.
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The following lemma will be used frequently.

1.2.27 Lemma

Let X be a Fitting class, G € X, and () a non-trivial g-group such that
G*1Q € X (q prime). Further let p be a prime satisfying H = G*1 Z, ¢ X.
Then (H1Q)x = (G*)* and (G*)*Q € Injx(H 1 Q).

Proof: By 1.2.26, we obtain G*1Z, ¢ X*, and consequently 1.2.24 and 1.2.10
yield (G?)* = (H1Q)x = (H1Q)x € Injx(H*). According to 1.2.26, the
group (G?P)*Q belongs to X, thus the assertion follows from 1.2.5(e). O

By construction of the regular wreath product, the next lemma is
easily proved, too.

1.2.28 Lemma
Let X be a Lockett class, G be a group and p be a prime. If F' € Inj+(GZ),)
such that F' £ G*, then F' is conjugate to V*Z, = V1 Z, where V € Inj(G).

1.2.29 Theorem ([9], X, 2.13)

Let X be a Fitting class contained in a Lockett class §, and let p be a prime.
Assume that for each G € X there exist a natural number n and a non-trivial
p-group P such that G" P € §. Then X*G, C §.

In particular: Let X be a Lockett class such that for each G € X there exists
a non-trivial p-group P with GV P € X. Then XG, = X.

1.3 Local formations

In this section we collect some basic facts about (local) formations. For the
proofs and further information we refer to [9, IV].

The closure operations s, and Ny, respectively, can be regarded as dual to
the closure operations Q and Ro, respectively. Thus, from this point of view,
the theory of formations is the dual of the theory of Fitting classes (and vice
versa).

1.3.1 Definition
(a) A formation is a class of groups which is both q- and Re-closed.
A formation § is called saturated if ,§ = § holds.
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(b) Let § be a formation and G be a group. We define the §-residual of G
by
GS=(|N| N<G, G/NeF }.

Obviously, G¥ is the (unique) smallest normal subgroup of G whose
factor group belongs to §.

(c) A class which is both Fitting class and formation is called a Fitting
formation.

Examples of saturated formations are all classes listed in 1.1 except for the
class 2, which is a formation but not saturated.
An example of an F-residual is O™ (G) for § = &,.

An elementary consequence of the definition of a saturated formation is the
following description of a minimal counterexample.

1.3.2 Remark

Let X and § be saturated formations and let G be a group of minimal order
in X\ §. Then G has a unique minimal normal subgroup and the Frattini
subgroup of G is trivial (that is, G is primitive).

1.3.3 Definition
Let §, and §» be formations. We define

§1%82= (G| G €31)
and call §; * §o the formation product of §F; with §F».

1.3.4 Proposition ([9], IV, 1.8, 1.9)
Let §1,382 be formations.

(a) §1*F2 is a formation, and §; * §o Is saturated provided that §; and Fo
are saturated.

(b) If §y is s.-closed, then §1 * Fo = F1 © Fa-

The well-known Gaschiitz-Lubeseder-Schmid-Theorem (see [9, IV, 4.6])
states that saturated formations are exactly the local formations, that is,
formations introduced in 1963 by Gaschiitz and constructed in the following
way (cf. [9, IV, 3.2]):
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1.3.5 Definition
Let f be a map which assigns to each prime p a (possibly empty) formation.
Then define

F=LF(f) =6, &, f(p) N &,

pem

where 7= {p| f(p) # 0}.
§ is called a local formation (the class locally defined by f) and f is a local

definition of §.
Obviously, if § = LF(f), then Char(§) = {p | f(p) # 0}.

1.3.6 Example
Let 7 be a set of primes. Then &, is a local formation. If f assigns to each
prime p the class &, if p € m and the empty class otherwise, then f is a local
definition of &.
Another example of a local formation is the class of all nilpotent groups. The
function which assigns to each prime p the class &, is a local definition of 1.

Let § be a local formation. Among all possible local definitions there exists
exactly one, denoted by F', such that F' is integrated (that is F'(p) C § for
all p € IP) and full (that is &, % F(p) = F(p) for all p € IP) (see [9, IV, 3.7]).
F' is called the canonical local definition of §.

We collect some basic properties of local formations in the following theorem
(see [9, VI, 3.5, 3.8, 3.13, 3.17]).

1.3.7 Theorem
Let § = LF(f) and & = LF(g) be non-trivial local formations with canonical
local definitions F' and G, respectively.

(a) If f(p) € S, xg(p) for all p € IP, then § C &.
(b) §N& =LF(fNg), where (f Ng)(p) = f(p) Ng(p).
(¢) F(p) = &, « (f(p)NF) for all p € P,

(d) If [(F) =r < oo, then FN"~!, defined by (FNN"~1)(p) = F(p)nN" 1,

is a local definition of §.

In particular: F(p) = &, x (F(p) N9"!) for all p € P.
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(e) The canonical local definition H of § * & is given by

[ F(p)*® ifp e Char(g),
Hp) = { G(p) otherwise.

(f) Let ¢ € {s, s, No}. Then the following statements are equivalent:

(i) § is c-closed.
(ii) F(p) is c-closed for all p € IP.

Some examples

In this thesis we will frequently refer to some special classes. Here we describe
these classes together with their canonical local definitions. Each of them is
closed under every closure operation listed in 1.1, thus the different class
products coincide for these classes (cf. 1.2.8 and 1.3.4). Since the present
work is concerned with the theory of Fitting classes we will use here — as well
as in similar situations in the following — the Fitting class product.

1.3.8 The classes G, --- G,
Set § = &,, -6, where m; # IP, () are sets of primes such that m; # 741
fori=1,...,r — 1. Then the canonical local definition F' of § is given by

;

G -6, ifpem,
671-2 "Gﬂ-r iprﬂ'Q\ﬂ'l,

F(p) = .
CHENC ifpem_1\(mU...Um_a),
S, ifpem \(mU...Um_1),
0 otherwise.

Proof: We only have to show that § = LF(F). This will be done by
induction on r.

r = 1 is clear. Thus assume that r > 1 and that the assertion holds for
E<r. If X=6,,- - 6,, then by inductive hypothesis X = LF(X) where
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Cr, 6, ifpem,
67T3 "671—T ifpe’ﬂ'g\ﬂ'g,
X(p) = .
S, 6, ifpem_1\(mU...Um_3),
S, iftpem \(mU...Um_1),
{ 0 otherwise.
§ = 6., X, thus the assertion follows from 1.3.7(e). O

1.3.9 Lattice formations
Let 7 be a set of primes and let (7;);c; be a partition of 7. Then

F=]]o~

iel

is called lattice formation belonging to (m;);c;. (This notation refers to the
fact that, if # = IP, these classes are exactly the subgroup closed saturated
formations § such that the set of all so-called §-subnormal subgroups of any
group forms a lattice; see [1].)

It is easily seen that the canonical local definition of § is given by

67r, if p € m;,
F — K
() { 0 otherwise.

Notice that 91, occurs as an important special case of this construction
(7 any set of primes).

1.3.10 A further example

In [2], the following classes are considered: to each prime p, let w(p) be a
set of primes containing p such that the following holds: if ¢ € m(p), then
7(p) = 7(q) or w(q) = IP or w(p) = IP. Further set 7 = {p € IP | n(p) # P}
and consider the following equivalence relation on 7

p~q<7(p) =7(q).

If 7 denotes a system of representatives and if f(p) = &4, for p € IP, then
§ = LF(f) has the following properties ([2, Prop. 3.2, Lemma 3.3, Prop.
3.3]):
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(a) § is an s-closed Fitting class and the canonical local definition is given
by

- 671'(17) if 71'(]?) 7£ IP7
Flp) = { S otherwise.

(b) 6.3 =3.
(€) §=pes(6x6o()Sri)) Where 0(p) = Uyes x(p)niq) T(1)-

Let p be a prime. Then the class 6,8, of all p-nilpotent groups occurs as
special case of this construction.






Chapter 2

Subgroup-closed Fitting classes

The subgroup-closure of a Fitting class is strong enough to guarantee the
closure of the class under a number of further closure operations; this was
proved in 1982 by Bryce and Cossey ([6], [8]). More precisely, they have
shown that s-closed Fitting classes are saturated formations and therefore
local formations. Thus, in dealing with s-closed Fitting classes, a much more
powerful theory can be used than in the general case. This makes it possible
to obtain strong results about the s-closed Fitting class generated by a given
set of groups as well as the lattice of s-closed Fitting classes.

2.1 Fundamental results

In this section we present some fundamental results about subgroup-closed
Fitting classes. For the proofs and further information we refer to [9, XI].

Recall:

2.1.1 Definition
A Fitting class § is called subgroup-closed if

§=s§=(G|3H € § with G < H).
If § =sg§, we call § an SFitting class.

S, 6., M, N, are examples of SFitting classes.

31



32 SUBGROUP-CLOSED FITTING CLASSES

2.1.2 Remark ([9], X, 1.2.5)
(a) If (8:)ier is a family of SFitting classes, then N;e;§; is again an SFitting
class.

In particular, there exists a (unique) smallest SFitting class containing
a given set S of groups, the SFitting class generated by S. We denote
this class by SFit(S).

(b) If§ is an SFitting class, then § = §*.

The following theorem, which was proved by Bryce and Cossey in 1982,
enables us to use the theory of local formations in the treatment of SFitting
classes.

2.1.3 Theorem ([6], Theorem 1, [8], Theorem 1.1)
A subgroup-closed Fitting class is a saturated formation.

Therefore, a subgroup-closed Fitting class § is also a local formation. Let
F be the corresponding canonical local definition. By 1.3.7, F(p) is again
an SFitting class for all p € IP, and if I(F) = r < oo, then f , defined by
f(p) = F(p) N9, is a local definition of § as well. In this case the class
f(p) is an SFitting class of nilpotent length r» — 1 for all p € IP. Thus in
the above situation it is frequently possible to argue by induction on the
nilpotent length of §.

Furthermore, we will see that it is often possible to deduce embedding prop-
erties of F'(p)-injectors from embedding properties of F-injectors (where p is
any prime).

2.1.4 Proposition

Let X and § be SFitting classes with corresponding canonical local definitions
X and F, respectively, and let p be a prime such that p € Char(X)NChar(g).
Then the following holds:

IfG € F(p) and W € Injx(Z,1 G), then W NG € Injx, (G).
Proof: G € F(p), thus H = Z, ! G is contained in &,F (p) = F(p) C §.

Cu(Z;)NG = 1 by construction of the regular wreath product, whence

O, (U) = 1 for all subgroups U of G containing Z;. In particular

O, (W) = 1 and thus the statement holds true (notice that X(p) C

X = Myer®, X () N &),
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(2)

W NG € Injx, (G):

X(p) is an SFitting class, thus W NG € X(p). Let N be a
normal subgroup of G and U an X (p)-subgroup of N such that
U>WnNnG) NN =WnNN. Then Z2U € 6,X(p) = X(p) and
22U < ZxN 423G Thus Z;U > Zx(W N N) = ZxN N W. This
contradicts (1). O

Observe that the q-closure of an SFitting class implies that the Fitting class

product of SFitting classes is again an SFitting class.
By Bryce and Cossey (cf. [6], [8]), SFitting classes are precisely the so-called

primitive saturated formations. In particular, the following statements hold

true.

2.1.5 Proposition ([9], VII, 3.8, [7], 2.6)

(a)

(b)

Let X be an SFitting class of bounded nilpotent length. Then there
exists a countable set of classes X; such that X; = G, - -+ GW(,-)M (for
suitable n; € IN and m(i); C IP) and

i=1

Furthermore, if p is a finite set of primes, then &, is contained in all
but a finite number of the classes X;.

Let X be an SFitting class contained in &, --- &, , where p1,...,Dp,
are primes satisfying p; # piy1 fori = 1,...,r — 1. If [(X) = r, then
X=6, 6,

In particular: Let G be a group contained in &,, --- &, . If (G) =1,
then the smallest SFitting class containing G coincides with &, - - - &, .
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2.2 On the lattice of SFitting classes

In this section we will obtain a number of results concerning the SFitting
class generated by arbitrary many SFitting classes §;, ¢ € [. It turns
out that this class behaves nicely with respect to intersections and certain
extensions. A consequence of these results is that the lattice of SFitting
classes is distributive — a fact which has already been proved by Shemetkov
and Skiba in 1989 ([20]). Moreover, this lattice is atomic and it is also
possible to describe the atoms explicitly.

For basic facts concerning lattice theory, the reader is referred to [12].

We recall:

2.2.1 Definition
Let S be a set of groups. Then

SFit(S) = [ {§ | § SFitting class , § 2 S}
denotes the SFitting class generated by S.
Obviously, SFit(S) = Ujen(sNo)!(S).

2.2.2 Proposition
Let §1, T2 be classes of groups and ) be a non-trivial SFitting class. Then

@SFlt(Sl,gz) = SFlt(QJ (¢] "Sl; QJ O 32)
Proof:

C: Let G be a group contained in YPSFit(F1, F2). Then there exist a normal
subgroup N of G, N € %), and a natural number i such that G/N €
(sNo)*(F1 U 2). Thus it remains to prove:

2 o (sN0)"(F1 U F2) C SFit(Y 0 F1,Y o Foa)

for all + € IN. This will be done by induction on .
1=1:

(a) PoNo(F1UT2) C SFit(YPoF1,PoFa): Let G be aQonNy(F1UFo)-
group. Then there exists a normal subgroup N of G such that
N €9 and G/N = (Ny,...,N;) where Ny, ..., N, are subnormal
subgroups of G/N such that Ny,..., Ny € §1 UFo. Ifﬁj = N;/N,
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then N; € DoFiUYoFy C SFit(Y 0 F1,Y 0 §2) for all j €
{1,...,k}, and consequently G € NoSFit(PoF1,YoFa) = SFit(YPo
§1.9 0 §2).

(b) Yosng(F1UF2) C SFit(YoF1,YoFo): Let G be a group contained
in 2 o sNo(§F1 U F2). By definition there exist a normal subgroup
N of G, N € ), and a monomorphism from G/N to W where
W € No(§1 UF2). By 1.2.23 there exists a monomorphism from G
to N1G/N and by 1.2.22(a) there exists a monomorphism from
N1G/N to N W. Thus we obtain G € s(2) o No(F1 UF2)). Now
the subgroup-closure of SFit() o §1,2 o F2) and (a) provide the
assertion.

The case ¢ > 1 is proved analogously.

D: PoF; and Y oF are classes of groups contained in YSFit(F1, §2), thus

this inclusion is trivial.

O

2.2.3 Proposition

Let §1, §2 be saturated Fitting formations with canonical local definitions
Fy, F,. Define I := SFit(F1, F,) by SFit(Fy, F»)(p) = SFit(Fi(p), F2(p)).

Then

LF(SFit(Fy, Fy)) = SFit(LF(Fy), LF(Fy)) = SFit(§1, §2)

and F' is the canonical local definition of SFit(§1, §2)-

Proof:
SFit(F1, §2)is locally defined by F: Set m; = 7(§:) (i = 1,2). If § = LF(F),
then it remains to prove that § = SFit(§1,§2)-

2

N

Let G be a group contained in SFit(§1, §2) = SFit(Nper, &,y &, F1(p) N
Grys Npemy©y Gy Fa(p) N Gy,). By 2.2.2 we conclude G € &qyur, N
S, 6,F(q) for all ¢ € m Uy and thus the assertion.

: Suppose not. Let G be a group of minimal order contained in

§ \ SFit(F1,32). Then G has a unique minimal normal subgroup,
hence there exists a prime ¢ such that O,(G) # 1 and Oy (G) =
1. By 222 we obtain G € G,F(q) = 6,SFit(Fi(q), Fa(q)) =
SFit(&,F1(q), 8,F5(q)) = SFit(Fi(q), F»(q)) C SFit(F1,82), a contra-
diction.
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F' is the canonical local definition: This is an immediate consequence of
2.2.2 and the hypothesis. a

2.2.4 Proposition
Let §1, §2 and X be SFitting classes and I(X) < oo. Then

SFit(F1,82) N X = SFit(F N X, 2 N X).
Proof: O: Obvious. C: By induction on r := [(X).

r=1: SFit(§1, §2)NX = Nag)um(s:) NIr(z) = Niw(s0)0m(@)U(r(52) (X)) =
SFit(§1 N X, 52 N X).

r>1: Let Fy, F5, F be the canonical local definitions belonging to
1, §2, and X, respectively, and set f = F NNt 137
yields F'(p) = &,f(p) for all p € IP and f is a local definition
of X. Furthermore, F; N F is the canonical local definition of
FiNX(i=1,2).
For each p € IP the class (F; N F)(p) is an s-closed Fitting class,
consequently we obtain by 1.3.7(b), inductive hypothesis and

2.2.3
SFit(F1,F2) N X = LF(SFit(Fy, F3))NLF(f) =
LF(SFit(Fy, Fy) N f) = LF(SFit(FiNnf,F,Nf)) C
LE(SFit(F N F,F,NF)) = SFit(§ N X, NX).

(Notice 1.3.7(a) and SFit(Fi(p) N f(p), Fa(p) N f(p)) C
SFit(Fi(p) N F(p), Fa(p) N F(p)) for all p € IP.)

2.2.5 Corollary
Let §1, §2 and X be SFitting classes. Then

SFit(§1, =) N X = SFit(§, N X, Fo N X).

Proof: O: Obvious. C: Let G be a group contained in SFit(§,§2) N X.
Then there exists a natural number r such that G € ". 2.2.4 yields

G € SFlt(%l,gz) N % N ‘ﬁ“ = SFlt(gl,Sg) N (% N ‘ﬁr) -
SFit(§ N (X NN, FN (XNN7)) < SFit(§:1 N X, T2 N X),
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and the proof is complete. O

2.2.6 Proposition
Let X1,...,%X,, D1,...,Ym be SFitting classes. Then

SFit(() %, [)9;) = )[ ) SFit(%:, ;).
=1 j=1 i=1j=1

Proof: Set 9 = N7.,;9;. We show

(a) SFit(N,%,,2) = N, SFit(X,;, ).

(b) SFit(X;, N7L,Y;) = NI, SFit(X;,Y);) for all i € {1,...,n}.
We prove the non-trivial inclusion of (a) by induction on n.
n = 2: By 2.2.5,

SFit(X1,9) N SFit(Xs,Q) = SFit(X; N SFit(X,,9),Y N SFit(X,,9))
= SFit(SFit(X; N X5, X1 NY), Q) C SFit(SFit(X1 N X%2,9)), D)
= SFit(X; N X5,9).
n > 2: By inductive hypothesis we obtain
SFit(N™,X;,9) = SFit(N='X; N X,,,9) = SFit(N'-X;,Y) N SFit(X,,,D)

— MISFit(X:, D) O SFit(X,, D) = N7, SFit(%,, D).

(b) can be proved analogously. 0

2.2.7 Proposition
Let X and Q) be SFitting classes of bounded nilpotent length, and let X; and
), respectively, be as in 2.1.5(a). Then

SFit(X,9) = ﬁ ﬁ SFit(X;,9),) N0

i=1j=1

where r = max{l(X),1(D)}.



38 SUBGROUP-CLOSED FITTING CLASSES

Proof:

C: Since 2.1.5(a) yields X = N2, X; and P = N52,9);, this inclusion is

trivial.

U

: Let G be a group contained in N2, M52, SFit(X;,Y;) NN". Set 7 :=
7(G). |7| < oo, thus 2.1.5(a) yields that &, C X;, 9); for all but a finite
number of X;, ;. Let X;,...,X;,, Dji,..., ;. be these exceptions.
By 2.2.6 and 2.2.4 we obtain

G e M N2 SFit(%5,,D,)NN"NG . = SFit(N_1 X4, N2 Y, ) NN NG,
= SFit(N{_, X, NN N&,, N, NN NGS,) C SFit(X,2).

O
Set X = 6,6, and Y = &, ---S,,, where my,...,7,,01,...,0; are
non-trivial sets of primes. Then SFit(X,%)) can be determined recursively.

2.2.8 Lemma
Let m,..., 7, 01,...,0, be non-trivial sets of primes where r,t > 1 are
natural numbers, and let ) be an SFitting class.

SFit(Gy, ... 6.9,6,,...6,9) =

&, SFit(S,, ... 6,9, 6,, ...65,D)NS,,SFit(Sr, ... 61,9, 6,, ...6,D).

Proof:
C: Obvious. D: By induction on r + t:

r+t = 2: Suppose not. Let G be a counterexample of minimal order. G has
a unique minimal normal subgroup M, and M € &, for a prime
p. Thus G € 6,SFit(6,,9),6,,9).
If p € myNoy, then 2.2.2 yields a contradiction to the choice of G.
If p € m \ o1, then O,,(G) = 1. Thus G belongs to &,,2); a
contradiction.
p € o1 \ my: analogously.

r 4+t > 2: Suppose not. Let GG be a counterexample of minimal order. Then
G € G,SFit(6,, ...6:.9,6,, ...6,,9) for a suitable prime p.
Arguing as above we obtain a contradiction to the choice of G.

O
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2.2.9 Remark
Let X4, ..., %, be Fitting classes and %) be a Fitting formation. Then

n n

(%09 =((xD)

=1 i=1

Proof: Notice that N Gx, = Gm;?:lxi and ) = Q%) = RoD). O

2.2.10 Lemma

Let m,...,m.,01,...,0, be non-trivial sets of primes, r,t > 1 be natural
numbers and let ) be an SFitting class. Further set §1 = &, ...6,, and
S2=6,,...6,,. Then

SFit($19), §29) = SFit(§1, §2)2.
Proof: The assertion follows by induction on r 4 ¢t and repeated application

of 2.2.9 and 2.2.8. O

2.2.11 Proposition
Let §1, §2 be SFitting classes of bounded nilpotent length and let %) be an
arbitrary SFitting class. Then

SFit(3:19), §29) = SFit(F1,52)D.

Proof:

N

: Obvious.

U

: Let G be a group contained in SFit(F,F2)2 and set r =
max{l(F1),[(F2)}. According to 2.1.5(a) there exists a countable set of
classes X;, 9); such that §; = N2 X;, §F2 = N52,Y; and Gy C X3, Y
for all but a finite number of X;, 2);. Denote these exceptions by
X X095, 2.2.7 yields

G e (mZ:l m?il SFitC{ik’ @jl) A mr)m’
and thus we obtain by 2.2.9 and 2.2.10

G € Mo NEZSFIt (X, D;,)PNN"Y € MM, SFIL(X, D, Y;, D)"Y
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By 2.2.6 and a further application of 2.2.9, we obtain
G S SFit(ﬂZ:lfikzl ﬂﬁl@jl@) N GW(G)

C SFit((Ny=1X:,)9, (N219;,)D) N G ).

By the choice of the classes X;,, J);,, we obtain using 2.2.2
G € SFit((Mi=1X:,)D N 66y, (N219D;,)D N Gr(c)

C SFit((N2%:)9), (N72,9,)9) = SFit(312), 322),

and the proof is complete.

2.2.12 Corollary
Let §1, §2 and Q) be SFitting classes. Then

SFit(§19, 522) = SFit(F1, 52)2.

Proof: C: Obvious. D: Let G be an SFit(§1,82)Y-group. Then G is
contained in M", where r is the nilpotent length of G. By 2.2.5 and 2.2.11
this provides the assertion. O

To generalize the above results to arbitrary many SFitting classes we need
the following lemma.

2.2.13 Lemma
Let X;, © € I, be classes of groups, X = U;cX;.

(a) If I = {1,...,n}, then SFit(Xy,...,%,) = SFit(Xy, SFit(X,, ..., X,)).

(b) Let I be an arbitrary set and n a natural number. If G € (sN,)"X, then
there exists a finite subset I,(G) of I such that G € SFit(Ucr, ) X:)-

Proof:
(a) Obvious.

(b) We argue by induction on n:
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n=1If G € NX, then there exist subnormal subgroups Ni,..., N
of G such that G = (Ny,...,Ng) and N; € X for j = 1,... k.
Thus there exist 4,...,9 € [ such that N; € X;,.
Hence G € No(U_,X;) C SFit(X;; | j € {1,...,k}) and
Iy(G) = {iy, ... ix}
Let G be a group contained in sNoX. Then there exist a group
W € NoX and a monomorphism from G to W. By hypothesis,
W is contained in SFit(X; | i € Io(W)) where Io(W) is a finite
subset of I. Hence in this case we have Iy(G) = Io(IV).

n > 1: Analogously.

2.2.14 Theorem
Let ) be an SFitting class.

(a) Let §;, i € I, be classes of groups, then
YSFit(F; | i € [) =SFit(PoFi | 1 € 1).
(b) Let F;, i € I, be SFitting classes, then
SFit(g; | i€ [)NY =SFit(F:NY | i € 1).
(c) Let §;, i € I, be SFitting classes, then
SFit(§, | i € )Y = SFit(§.2) | i € I).

Proof: The theorem follows by induction and 2.2.2, 2.2.5, 2.2.12 and 2.2.13.
O

Notice that by 2.2.14(b), the lattice of SFitting classes is distributive. Since
by Bryce and Cossey (cf. [6], [8]) SFitting classes are precisely the so-
called primitive saturated formations (or, in the terminology of Shemetkov
and Skiba, the totally local formations), this has been proved already by
Shemetkov and Skiba (cf. [20, 9.8]).

The following proposition enables us to obtain further information about this
lattice.
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2.2.15 Proposition
Let § be an SFitting class of bounded nilpotent length. Then

§ = SFlt(Gpl U ka | pi primes, p; 7& Pi+1 and 6p1 c ka - S)

Proof:

N

Obvious.

: We argue by induction on 7 := [(§).

r =1 is obvious.

r > 1: First, we consider the case § = &,(F N MN"!) where p is a
prime.

Set X = SFit(&,, --- &, | p; primes, p; # piy1 and G, --- 6, C F).
Suppose § is not contained in X. § = 6,§, thus 2.2.2 gives X = G, X.
Let G be a group of minimal order contained in §\ X. Then O,(G) =1
and G € F(q) C 9" ! where F denotes the canonical local definition
of § and ¢ a prime distinct of p. By inductive hypothesis we obtain
F(q) = SFit(&,, ---6,, | pi primes, p; # piy1 and 6, ---6,, C
F(q) €3§) C X, a contradiction to the choice of G.

Now, let § be an arbitrary SFitting class of nilpotent
length . Let G be a group of minimal order contained in
§ \ SFit(&,, - -- 6,, | pi primes, p; # piy1 and S, --- 6, C §), thus
O, (G) = 1 for a suitable prime p. Hence G € F(p) where F' denotes
the canonical local definition of §. By 1.3.7 F(p) = &,(F(p) NN 1),
so the assertion holds for F'(p) and we obtain a contradiction to the
choice of G. a

2.2.16 Corollary
Let § be an SFitting class. Then

§ = SFit(&,, --- 6, | p; primes p; # piy1 and &, --- 6, C F).

Proof: 2.2.5 and 2.2.15. O

2.2.17 Definition
Let § be an SFitting class. We define

£z := ({X | X SFitting class, § C X}, Q).
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2.2.18 Proposition
Let § # & be an SFitting class and set m = w(§).

(a) If I(F) =r < oo, then the following statements are equivalent:

(i) X is an atom of £;.

(ii) X = § x &, for a suitable prime q¢ ¢ ™ or X = SFit(&,, --- 6,,,F)
where p; # piz1, K < r+ 1 and py,...,pr € w such that
S, 6, LFbut S, -G, NN CF.

(b) If () = oo, then the following statements are equivalent:

(i) X is an atom of £5.

(ii) X = § x 6, for a suitable prime q ¢ 7 or X = SFit(Xy, §) where
Xo is an atom of Lzgw such that Xo € § but Xo NN C F
(k € IN suitable).

(c) L3 is atomic, that is, for every element X € £z, X # §, there exists an
atom contained in X.

Proof:

(a), (c): It is obvious that classes as described in (a)(ii) always exist (for oth-
erwise, Mt = SFit(S,, --- S, ,, | pi € m) C §, a contradiction). Moreover
§ is strictly contained in these classes.

We now prove the assertion by induction on 7.

r =1, hence § = N,:

(1) If 9 € Ly, H DNy, then there exists a class X as described in (a)(i7)
such that X C $:
If 7(9) # 7, then &, C 9 for some prime ¢ € 7($) \ 7 and therefore
N x G, CH.
Hence assume that 7($)) = 7 and let G be a group of minimal order
contained in 9 \ M,. Then [(G) = 2 and G € G,,6,, for suitable
primes py, pa € 7. By 2.1.5(b), we obtain 6,,&,, C $ and the assertion
follows.

(2) The classes described in (a)(i7) are atoms and each atom is of this form:
Let X be a class as described in (a)(ii). If X = N, xS, ¢ ¢ 7, the asser-
tion evidently holds. Thus we may assume that X = SFit(M,, S,,6,,)
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for suitable primes py, ps. Let $ be a class contained in £g such that
M, C H C X. According to (1), there exist primes ¢, g, such that
N, C SFit(N,,6,6,,) € H C X. If 6,,6,, # 6,6,,, then we
obtain 6,,6,, N1 6,6, C N, and 2.2.5 yields SFit(N,, 5,6,,) =
SFit(M,, 6,,6,, N 6,6,,) C M., a contradiction. Consequently
$H = X and X is an atom of £y . Now the assertion follows from

(1).

r>1:

First, we prove the assertion for classes of the form § = &,(F NIN"1):

(3) If H € L5, H DO F, then there exists a class X as described in (a)(i?)

fulfilling X C H:

Without loss of generality we may assume that 7($) = 7. Let H and
F. respectively, be the canonical local definitions of $ and §, respec-
tively. Let G be a group of minimal order contained in $ \ §. Since G
has a unique minimal normal subgroup and &,§ = §, there exists a
prime g # p such that O,(G) # 1 = O, (G). Evidently, F'(q) C H(q).
By the choice of §, F(q) € M"~!; thus by inductive hypothesis there
exists an atom Xy of £p(y) as described in (a)(i7) such that Xy C H(q).
If Xp = F(q) x &; where t € 7\ n(F(q)), then 6,6, C H(q) C 9
and 6,6, is not contained in § (for otherwise Z,! Z; € F(q), a con-
tradiction); consequently, SFit(§,5,6;) C § is a class satisfying the
condition in (a)(i7) and we are finished.

Thus we may assume that Xy = SFit(&,, --- &, , F'(¢)) where k < r
and py,...,pr € T(F(q)) such that S, --- &, € F(q) but S, --- &,,N
N1 CF(q) . If S, - -6, ZF, the assertion follows. Thus we may
assume that G, ---§,, C§.

q # p1, for otherwise we obtain &, --- &, C 6,F(q) = F(q), a con-
tradiction.

6,6, ---6,, Z §: Suppose that Z, ¢ G is contained in § for an ar-
bitrary group G € &, ---&,,. Since Oy (Z, 1 G) = 1, this implies
Z, G € F(q), a contradiction.

6,6, -6, NIM* C F: Suppose not. Let G be a group of mini-
mal order contained in §,5,, - - &,, NNMF\ F. Then G has a unique
minimal normal subgroup. Since O,(G) = 1 implies the contradic-
tion G € 6,,---6,, C §, we obtain F(G) = O,(G) and G/O,(G) €
S,, -6, N1 C F(q). Consequently G € §,F(q) = F(q) CF, a
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final contradiction.
Thus X = SFit(§, 5,6, - - - 6,,) is a class as required in (a)(i7). Since
S,6,, -6, C6,H(q) = H(q), we have X C §.

The classes described in (a)(ii) are atoms and each atom is of this

form:
Let X be a class as described in (a)(ii). If X = § x &, for a
suitable prime ¢, the assertion evidently holds.  Consequently,

X = SFit(§, 6, - - - 6,,) for suitable primes py,...,p; € 7. Let $ € £;
such that § € $ C X. According to (3), there exist primes q,...,q
as described in (a)(i7) satisfying § C SFit(§, &, ---6,) € H C X.

By 2.2.5 and the choice of pi,....,px, @,-.-.,q, Wwe obtain
UGy 6y N Gy ---6,,) = k (for otherwise &, - -G, N
Sy -6, < F and consequently SFit(F, &, - -6,) =
SFit(§,84 ---6,) N H = §; a contradiction). Hence 2.1.5(b)
implies G, --- G, = &, --- G, and X is an atom.

Now, the assertion follows from (3).

Let § be an arbitrary SFitting class of nilpotent length r:

(5)

If 5 e L5 H DO F, then there exists a class X as described in (a)(i7)
satisfying X C §:

We may assume that 7($)) = n(F); let H and F, respectively, be the
canonical local definition of $ and §, respectively. If G is a group of
minimal order contained in $) \ §, then there exists a prime p € 7(§)
such that O, (G) = 1. Thus G is contained in H(p) \ F(p). F(p) =
S,(F(p) N9 1), hence by inductive hypothesis there exists an atom
Xy of £py) as required in (a)(i) fulfilling H(p) 2 Xy O F(p). We
obtain a final contradiction as above.

The classes described in (a)(ii) are atoms and each atom is of this form:
This follows as above.

(b), (c):

(1)

A class Xy as required in (b)(i7) always exists and X, € £35\ {F}:

It is sufficient to show the existence of such a class. Assume X,
does not exist. Then 7(§F) = IP and therefore 91 C §. Since
SFit(X | X is atom of £gv) = ™!, we conclude inductively M+ C F
for all + € IN. This implies § = &; a contradiction.
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If 5 e L5 H D F, then there exists a class X as described in (b)(ii)
satisfying X C $:

If 7($)) # 7(F), there is nothing to prove. Thus assume 7($) = 7(F).
As $ D §, there is a natural number k such that $§ N 9% > FNNF,
Let k& be minimal with this property. According to 2.2.18 (a), (c) there
exists an atom Xy of £zqgp fulfilling FNONF C Xy C HNNF. Xy C N,
thus X € §, and by the choice of k£ we obtain FNNF~1 C XoNNFL C
HOANFT = FNNF1 C F. Consequently, X, is a class as required in
(a)(7i) and we are finished.

The classes described in (b)(i7) are atoms, and each atom is of this
form:

Let X be a class as described in (b)(iz) and let $§ € L3 such that
§CHCX If X=7Fx G, there is nothing to show. Thus we may
assume that X = SFit(§, X,) and 7(X) = 7(§). According to (2), there
exists a class 9 = SFit(§, Qo) such that 9 is an atom of Lz-9u and
S$CYCHCX. Hence 2.2.5 yields P =P N X = SFit(F, Vo N Xo).-
We show that X and ) coincide: If £ > [, then Xy N Yo 2 FNN. Yo
is an atom of £znon and Xp MYy € §, thus we obtain Xy NYy = Do,
and therefore 9y C Xy. Since § N NF is a class strictly contained
in SFit(F N N*F,Po) C SFit(F N I*, X)) = Xy, and X, is an atom of
Lznow, we conclude that SFit(FN*,Y,) = Xo. Consequently, X C ).
If £ <[, we obtain analogously Xy, C ), and consequently X = ). Now
the assertion follows from (2).

2.2.19 Definition
Let § be an SFitting class. We define

£% = ({X | X SFitting class, X C §}, <).

2.2.20 Proposition

Let § be an SFitting class of bounded nilpotent length and et
{Si}icr denote the maximal elements of the set {S, ---6,, | pi #
piy1 primes , &, ---6,, C §}, thus §; C §, implies §; = §; for all i, j.

(a) The following statements are equivalent:

(i) X is a dual atom of £3.
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(ii) X = SFit(SFit(F; | i € I\ {io}), iy NOMF~L) where ko denotes the
nilpotent length of §;,.

(b) £3 is dual atomic (that is, for every element X € £5, X # § there exists

a dual atom containing X).

Proof: We prove (a) and (b) simultanously. Set r = I(§F).

(1)

The classes described in (a)(i7) are elements of £3 distinct from F:

§ = SFit(§; | ¢« € I) according to 2.2.15, thus the classes de-
scribed in (a)(ii) are elements of £5. Let X be such a class.
Then §;, € SFit(SFit(F; | i € I\ {io}), Fi, N ON*~1) and consequently
X#5:

Assume not. Then 2.2.5 gives §;, = SFit(SFit(§; NSy, | i € T\
{io}), Fi, N 9*0~1). By the choice of §; and 2.1.5(b) this leads to
$iNSi, C MFo—1 a contradiction.

If § € £5, § C T, then there exists a class X described as in (a)(i7)
such that X C $:

Let {$,};es be the maximal elements of the set {S,, ---&,, | p; #
pit1 primes , &, --- &, C H}. Then $H = SFit($; | j € J) according
to 2.2.15. Since $) is strictly contained in §, there exists an element
ip € I such that H N F;, = 1 or H;, C §,, (with jo € J suitable).
In the first case we obtain § = HNF = SFit(HNF; | i € I) C
SFit(SFit(H NF; | i € I\ {io}), i, N NBio)~1) and we are finished.

So assume $);, C §;, for suitable indices i, jo and set ky = I(Fy,)-
If 1(9;,) = ko, then 2.1.5(b) provides a contradiction. Consequently,
9, C Fi,NNM*o~L holds true. If j; € J\{jo} and 9, C Fiy, Hj, € N1,
then 2.1.5(b) gives 9, = i, 2 9;,; this contradicts the choice of the
9;. Hence, ; C SFit(SFit(F; | i € I\ {io}),Ti, N N*~1) for every
j € J and the assertion follows.

The classes described in (a)(ii) are dual atoms and each dual atom is
of this form:

Let X be a class as described in (a)(i7). Assume there is an element
9 € £5 such that X € § C F. According to (2) there is a class &
as described in (a)(i7) satisfying X C $ C &. If X # &, then we
obtain §; C SFit(X,®) = & for all i € I. But this implies § C &, a
contradiction. Hence the assertion follows. O
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2.2.21 Remark
For SFitting classes whose nilpotent length is not bounded, £5 need not be
dual atomic.

Proof: Let pi,ps,... be infinitely many pairwise distinct primes and set
§=U>16p, - 6p,.

We prove that, if X € £5 such that X C §, then there exists a class § € £5
satisfying X C § C §. In particular, there do not exist dual atoms in £5.

X C 3§, so there is a natural number r satisfying &, ---6, ¢ X.
Set 9 = SFit(X,6,,---6,,). Clearly, X is contained in §. Assume
that § = §. Then 2.2.5 yields G, --- 6, 6, ., = HNG, ---6,6, . =
SFit(XNG,, - - 6,,6,,.,,6,, -6, ). If(XNG,, --- 6,6, ,,) = r+1, then
it follows from 2.1.5(b) that XN G, --- 6, 6, ,, =6, ---6, 6, ., a con-
tradiction. Thus XNG,, ---6,.6,, ., €N and whence G, --- G, ,, €N,

a final contradiction. O

2.2.22 Definition
Let & and § be SFitting classes, & C §. We define

£3 = ({X | X SFitting class, ® C X C F }, Q).

By 2.2.18, 2.2.20 and 2.2.21 we obtain

2.2.23 Theorem
Let & and § be SFitting classes, ® C §.

(a) £% is a (complete) distributive and atomic lattice. The atoms are given
as described in 2.2.18.

(b) If additionally § is of bounded nilpotent length, then Sg is dual atomic
and the dual atoms are given as described in 2.2.20.

(c) £% need not be dual atomic.

Finally, we give an upper bound for the SFitting class generated by two SFit-
ting classes §1, §2, a result that will be needed in Chapter 3.

Evidently, §:182 N F281 is an SFitting class containing SFit(§, §2).
If 7(F1) N w(F2) = 0, then equality holds, but in general, F1F2 N FoF1 18
strictly larger than SFit(§,§2) and there is a better bound for SFit(§, F2).



ON THE LATTICE OF SFITTING CLASSES 49

2.2.24 Proposition

Let §1 and §o be SFitting classes and w be a set of primes as described in
1.2.19. Then S;(F1,82) = (G | G/G3 G5, € 6,) is a Fitting class and the
following statements hold:

(a) Sﬂ(&lagz)Gﬂ = Sﬂ(&l;gQ)-

(b) S:(&1,82) is subgroup-closed.

In particular, SFit(§1, §2) C S: (31, F2)-

Proof: That S, (§1,F2) is a Fitting class is proved analogously to [9, IX,2.1].

(a)

Obviously, S, (§1,82) is contained in S (F1,§2)Sx.

Suppose that Sy (F1, F2)Sr € Sx(F1,82). Let G be a group of minimal
order contained in S;(F1,82)6, \ Sx(F1,82). Then G has a unique
maximal normal subgroup, N, and G5, < N (i = 1,2). G/N € &,
thus we obtain G/G5 G, € 6,6, = &, a contradiction.

Suppose not. Let G € S,(F1,82) be a group of minimal order
possessing a subgroup U which is not contained in S,(§1,82). Let
U be maximal among all such subgroups.

G has a unique maximal normal subgroup N, and NU = G:

Assume not. Let N;, Ny be different maximal normal subgroups of
G. S;(F1,T2) is closed under taking subnormal subgroups, hence it fol-
lows G = N;U = NoU = (N1 N Ny)U by the choice of G. This implies
U= (UNN;)(UNNy) € NS (F1,82) = Sx(F1,82), a contradiction.
Since §; = sF; € S (F1,F2), we obtain Gz, < N (i = 1,2), and con-
sequently G/N =2 U/UNN € &,. NNU is a subgroup of N, so this
implies N N U € S;(F1,T2). Since U € S (F1,52)S,, (a) gives a final

contradiction.
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2.2.25 Corollary
Let §1 and §2 be SFitting classes and let m be minimal among all sets of
primes fulfilling the conditions of 1.2.19. Assume further that §;6, = §; for
1 =1,2. Then

SFit($1, §2) = Sx(S1, F2)-

In particular, if in addition |w| > 2, then Fit(F1,F2) C N(F1,52) C
SFit(F1, F2)-

Proof: C: 2.2.24. D: 2.2.12 yields S;(F1,82) C SFit(§1,82)6, =
SFit (16, §:6,) = SFit(§1,52). 0



Chapter 3

Locally normal Fitting classes

The concept of normal Fitting classes was introduced by Blessenohl and
Gaschiitz in 1970 ([5]). They considered non-trivial Fitting classes X such
that an X-injector of G is a normal subgroup of G (thus Gy is X-maximal
in G) for each group G. This concept is generalized in the following way:
let X and § be non-trivial Fitting classes, X C §. Then X is said to be
normal in § (F-normal) if Gx is an X-maximal subgroup of G for all G € §.
In this investigation, it seems natural to consider the class Y,(X) of all
groups GG such that Gy is X-maximal in G (for arbitrary Fitting classes X).
Unfortunately, this class is not, in general, closed under forming normal
products (Hauck, 1977), and therefore can fail to be a Fitting class. The
following questions arise: (1) Does there nevertheless exist a unique maximal
Fitting class in which X is normal? And vice versa, (2) what conditions
must a Fitting class § satisfy to possess a unique minimal §-normal Fitting
class? In this chapter, which is subdivided in two parts, we mainly discuss
these problems.

The first section deals with local normality between arbitrary Fitting classes.
Some basic facts — most of them proved by Hauck in 1977 (cf. [13]) — are
presented. In this general setting, question (1) is almost intractable. This is
caused mainly by the lack of knowledge of the Fitting class generated by two
given Fitting classes §1, §2. Hence, it seems to be hard to decide whether
or not this class is contained in Y, (X) provided that §;, 2 C Y, (X), and
thus to answer question (1). However, we will give some conditions which
guarantee that in this situation Fit(F1, §2) is still contained in Y, (X) (where
X denotes a non-trivial Fitting class).

o1
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Problem (2), too, remains open in general. Nevertheless, we will prove that
for some important classes § a unique minimal §-normal Fitting class exists
and can furthermore be described explicitly.

In the second part of this chapter we turn our attention to locally normal
SFitting classes (that is, X and § are SFitting classes and X is normal in
§). Using the theory of local formations, we obtain much stronger results
concerning the above questions (restricted to SFitting classes). The key to
almost all of these results is the fact that local normality between SFitting
classes (satisfying a weak additional condition) is equivalent to local normal-
ity between their corresponding canonical local definitions. It follows from
this that for an arbitrary SFitting class X there exists a unique maximal
SFitting class § such that X is normal in §, and moreover that this class
determines X uniquely. Furthermore, for many important cases we present
an algorithm to describe this class. Using the results obtained in Chapter 2,
we derive that the collection of all SFitting classes in which X is normal forms
a complete, distributive and atomic lattice, whose atoms can be described
explicitly.

The second question remains open, even if we confine ourselves to SFitting
classes. However, if § is an SFitting class such that a (unique) smallest §-
normal SFitting class exists, then the collection of all SFitting classes which
are normal in § also forms a complete and distributive lattice, which, in
addition, is dual atomic, provided that § is of bounded nilpotent length.

3.1 Local normality and arbitrary Fitting
classes
3.1.1 Definition

Let X and § be non-trivial Fitting classes, X C §. Then X is said to be
normal in § (X < §) if G is an X-maximal subgroup of G for all G € §.

If X is normal in §, we also refer to X as being §-normal.
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The following remark is obvious.

3.1.2 Remark
(a) Fach non-trivial Fitting class § is normal in §N. In particular, I is
normal in M.

(b) Let (F;)ier be non-trivial Fitting classes whose characteristics are pair-
wise disjoint. Then §; is normal in Hiel S for all j € 1.
In particular, &, is normal in I for each prime p.

(c) Let X, § and Q) be non-trivial Fitting classes such that w(X)Nw () = 0.
If X is normal in §, then X is normal in §%).
In particular, X is normal in X6 yy.

(d) Let X, § and ) be non-trivial Fitting classes such that X is normal in
$and Y CF. Then XNY is normal in ).

The relation of local normality is far from being transitive:
According to Hauck (cf. [13, 4.3]), a Fitting class X is normal in
XN? precisely when it is normal in & (observe that X < X9t < XM?).

Let m be a set of primes. There exist a number of characterizations of
S,-normal Fitting classes.

3.1.3 Theorem ([9], X, 3.7)
Let X be a Fitting class and m be a set of primes. Then the following
statements are equivalent:

(i) X is normal in &,.
(ii)) §* = 6,.

(iii) For each prime p € m and G € X, there exists a natural number n such
that G Z, € X.

In particular, a Fitting class X is normal in &, if and only if X is contained
in the Lockett section of &,. According to 3.1.2(a),(b), this fails to be true
for an arbitrary Fitting class §. Nevertheless, it is possible to confine oneself
to the case that both classes are Lockett classes — as proved independly by
Hauck and Laue (cf. [9, X, 3.3]) —, thus classes which are easier to handle
than arbitrary Fitting classes.
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We give a further proof of this result which can be easily transferred to every
embedding property e of injectors such that e is invariant under epimorphisms
and such that the following holds: if W € Injy.(G) satisfies the embedding
property e in G, then Wy, too, satisfies this property in G for all groups G.

3.1.4 Proposition
Let X and § be Fitting classes, X C §. Then the following statements are
equivalent:

(i) X is normal in §.

(ii) X is normal in §*.

(iii) X* is normal in §*.

Proof:

(i) = (wi) : Let G € §*, V € Injp(G). According to 1.2.10 and
1.2.9 the group (V x V)z is an X-injector of G x G and thus we obtain
(V xV)xN (G x G)g < (G x G)z by assumption. Normality is invariant

under epimorphisms, hence 1.2.9(e) yields that V' is a normal subgroup of G
and the assertion follows.

(13i) = (i1) : Let G € §* and V € Injx(G). According to 1.2.9, V' = Wy for
a suitable X*-injector W of G. By assumption, W is a normal subgroup of
G, and thus we obtain V = Gx.

(77) = (i) : Obvious. O

3.1.5 Definition
Let X be a Fitting class. We define

Y. (%) = (G| Gy is X-maximal in G).
If X =10, we set Yu(X) = 6.

It is obvious that Y,(X) is closed under taking subnormal subgroups
and — provided that X is a Lockett class — under forming direct
products.  For some special classes X, the class Y,(X) is No-closed
as well.  For instance Y,(X) = X6, if X = 6,66, --6,6,
where 7 is an arbitrary set of primes (cf. [13, 3.2]).  However,
in general, Y,(X) fails to be a Fitting class (an example for this
fact, concerning the class M, is presented by Hauck in [13, 3.2]).
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It is to be noted that if X is a Fitting class such that Y, (X) is No-closed, then
by 3.1.4 the class Y,(X) is a Lockett class and coincides with Y, (X*).

As mentioned above, it is an unsolved problem whether or not there always
exists a unique maximal Fitting class in which a given Fitting class X is nor-
mal. According to Zorn’s Lemma there always exists one which is maximal
among all Fitting classes contained in Y, (X). But in general, it seems to be
hard to obtain results about the uniqueness of such a class. Nevertheless,
we are able to give some conditions which guarantee that the Fitting class
generated by Fitting classes §1, F2 C Y, (X) is still contained in Y, (X) (cf.
3.1.8).

The following well-known lemma (see for instance [16, proof of the main re-
sult] and [3, 1.1]) will be useful in establishing the structure of a group of
minimal order contained in § \ Y,(X).

3.1.6 Lemma
Let X be a Fitting class and § be an s,-closed class such that § € Y,(X).
Let G be a group of minimal order contained in §\ Y,(X), and V' € Inj(G).

(a) G has a unique maximal normal subgroup N, VN = G, VNN = Gx
and V/Gx = Z, for a suitable prime p.

(b) Suppose that § is se-closed, and let K be a normal subgroup of G' such
that Gx < K < N. Then K < Ng(V), N/Gx = F(G/Gx%) is a q-group
(for a suitable prime q # p) and V = PGy (P € Syl,(G) suitable).

(c) Suppose that § is se- and @- closed, and that X is a Fitting formation.
Then G has a unique minimal normal subgroup M, and N/M belongs
to X.

In particular, all statements listed above hold provided that X and § are
SFitting classes.

Proof: Evidently, G # 1.

(a) Let N be a maximal normal subgroup of G. According to the choice
of G, NNV = Nx charN < G, and thus NV = G.
Let M be a maximal normal subgroup of G, M # N. Since G/N N M
is abelian, G = V(N N M) (for otherwise V I V(NN M) JG, a
contradiction), and therefore G = V(NNM) = VN = VM. According
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to [9, A, 1.2], this implies V =V N NM = (VN N)(VN M) <G, this
contradicts the choice of G. Hence G has a unique maximal normal
subgroup and the assertion follows.

(b) Gx < K < N implies KV < Gand VK/K =2 V/VNK =V/Gx = Z,.
Since § = sp§ and V' € Injo(V K), we obtain K < Ng(V) by the choice
of G.

Obviously, F(G/Gx) < G/Gx. Assume that M/Gx := F(G/Gx) <
N/Gx. Then V< MV and consequently V/Gx < Cga(M/Gx) <
N/Gyx; this contradicts the choice of G. Thus M = N.

Let {q1,...,qn} denote the set of primes dividing |N/Gx|, and let
Qi/Gx € Syl (N/Gx). Assume that m > 1; as before, we obtain
V/Gx < N2 Cqrae (Qi)Gx) < Caya(N/Gx) < N/Gx, a contradic-
tion.

Now the assertion follows.

(c) Let M be a minimal normal subgroup of G and set (G/M)x = W/M.
If W < N, then (b) implies W < Ng(V) and thus (W/M)(VM/M) =
VW/M € NnoX = X. By the choice of G, G/M € Y,(X) and conse-
quently V< W < N, a contradiction. Hence W is a normal subgroup
of G containing N and therefore N/M € X. Let M, be a minimal
normal subgroup of G, My # M. As before we obtain N/M, € X and
thus N € roX = X, a contradiction.

3.1.7 Lemma

Let X and § be Fitting classes, X = QX, and let p be a prime such that
G,X = X. Assume further that § C Y,(X). Then 6,§ is contained in
Ya(%).

Proof: Let G be a group contained in &,%. By assumption,
Ge,x/0p(G) = (G/O,(G))x is an X-maximal subgroup of G/O,(G).
The q-closure of X implies that G'g,x = Gx is an X-maximal subgroup of G,
and the proof is complete. a

As mentioned before, the Fitting class generated by Fitting classes
S1, 32 is difficult to handle. An upper bound for this class is the class
N (&1, o) cited in 1.2.19. The next result gives a condition, which



LOCAL NORMALITY AND ARBITRARY FITTING CLASSES 57

guarantees that N, (F1, Fz2), and therefore Fit(§,§2), is still contained in
Y, (X) provided that §i, F2 C Yu(X).

3.1.8 Proposition

Let §1, T2 and X be Fitting classes such that X is normal in §; fori =1, 2.
Furthermore, let ™ be a set of primes that satisfies the conditions in 1.2.19
and such that §;6, =§; for allp € m (i=1, 2). Then

Flt(gl, ',SQ) g N’]T(%l? 32) g Yn(%)

Proof: Assume not. Let G be a group of minimal order contained in
N (F1, §2) \ Yu(X). According to 3.1.6, G’ has a unique maximal normal
subgroup N, and G/N = Z,, VN =G, VNN = Gx and V = PGx (where
V € Injx(G) and P € Syl (V) suitable, p prime). G ¢ §;, whence G, < G
for ¢ = 1, 2, and therefore p € .

(1) PG31G32 =G:
Assume not. PGz G5, belongs to N;(F1,82) and Gx < Gjg,, hence, by
the choice of G, we obtain V' = PGx < PGz Gz, < <G (1 = 1,2), a
contradiction.

(2) PGz = G or PGz, = G, and consequently G € §1 UF2 C Yo (X):
Obviously, PGz, € §:6, C N.(§1,82) and V < PGg, (i = 1,2).
Suppose that PGy, is a proper subgroup of G for ¢ = 1,2. Then each
of the subgroups Gz, Gz, and P is contained in Ng(V'). By (1), this

contradicts the choice of (.

3.1.9 Remark

In particular, it follows from 3.1.8 that Fit(§1,82) € Y.(X) provided that
§1, §2 and X are Fitting classes such that X is normal in §; and a minimal
set of primes as required in 1.2.19 is empty. But in this case, the result can

be concluded more easily from 3.1.6.

The dual problem — which classes § do possess a unique minimal §-normal
Fitting class? — is open as well. (Obviously, there are Fitting classes not
possessing such a class, for instance the Fitting class 91 of all nilpotent
groups.) However, for some important classes we show that such a class
exists, and furthermore give an explicit description of it.
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We need

3.1.10 Remark ([13], 4.12, cf. [18], 2.1)
Let § be a Flischer class, and let (X;);c; be a family of Fitting classes such
that X; is normal in § for all i € I. Then

icl

It is an open question, whether or not this statement holds for arbitrary
Lockett classes.

We defined local normality only for non-trivial Fitting classes. So, in order
to solve the above problem for Fischer classes §, it suffices to determine when
the intersection of all §-normal Lockett classes is non-trivial. For some types
of Fitting classes this can be done:

3.1.11 Remark
Let § be a Lockett class, and let (X;);c; be the family of all §- normal Lockett
classes.

(a) Suppose there exists a prime p such that S,§ = §. Then p € n(X;) for
all i € I; in particular N;e;X; # 1.

(b) Let § be a q-closed Fischer class such that |m(§)| < oo. Then the
following statements are equivalent:

(1) MierX; # 1, that is, there exists a unique minimal §-normal Fitting
class.

(ii) There exist no sets of primes 7y, my such that mNmy = 0, FNS,, #
1 7& Sm GTr27 and S g (6771 X Gﬂz)G(mLﬁrg)/‘

Proof:

(a) Let X; be an §-normal Lockett class. If p ¢ w(X;), 1.2.24 implies
Z,1 G € 6,8\ Yu(X;) for an arbitrary G € X,;. But by assumption,
this class is empty; a contradiction.

(b) (i) = (i7) : Suppose not. Then there exist sets of primes 7y, m
as required above. G, is normal in (& X &4,)&6;,y,y, hence
1#§NG,, is normal in § (i = 1,2), a contradiction.
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(17) = (i) : Let X;, be an F-normal Lockett class of minimal
characteristic (note that m(§) is finite). Set m(X;,) = m. We show
that m C 7(X;) for all j € I, proving the assertion:

Assume, there exists X;, such that X;, is §-normal and m Z 7(%;,) =:
7. According to 3.1.10, § is contained in Y, (X;, N X;,). By the mini-
mality of 7(%;,), this implies X;, N X;, = 1, and therefore m N my = 0.
g g (67r1 X 6#2)6(
Assume not. Let G be a group of minimal order contained in

7r1U7r2)/ :

F\ (6r, X 65,)8,,ur,y- Then G has a unique maximal normal
subgroup N, |G/N| = ¢, and a unique minimal normal subgroup
M, M € &, (where p and ¢ are primes, ¢ € m U m). We as-
sume without loss of generality that ¢ € m;. Since G/M belongs to
(G X 61,)6 1,y » it follows that G € &,6,,. Now, F-normality of
X,;, implies that p € m;. Consequently, G' belongs to &,,; a contradic-
tion.

Thus 71 and 7 are sets of primes violating condition (i1).

3.1.12 Remark
The hypothesis of finite characteristic in 3.1.11(b) is necessary.

Proof: Let {p1, p2,...} be the set of all primes, and set § = U;enS,, - - - 6,,.

Then X; = Uien,i>kSp, - -6, 1s §-normal for every £ € IN and
NkenXr = 1. But evidently, there are no sets of primes fulfilling the
conditions in 3.1.11(b)(ii). O

The following lemma is particularly useful in investigating locally normal
Fitting classes.

3.1.13 Lemma

Let X and § be Lockett classes such that X is normal in §. Further, let G
be a group contained in X and p,q (p # q) be primes such that G1Z, € X
and G1Z41 Z, € §. Then

GlZ, € X.

In particular, if & is a Lockett class such that &, C X and $6,5,6, C 3,
then 66,5, C X.
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Proof:
Suppose that G Z, ¢ X. By 1.2.24 and repeated application of 1.2.12 we
obtain

(G121 Z)x = (G7) < (G')' 2,2 (G Z, € X,

contradicting the F-normality of X. Now, the final assertion follows from
1.2.29. O

3.1.14 Corollary
Let &, X and § be Lockett classes such that & C X and X is normal in §.
Further, let m,m be sets of primes.

(a) If &6, =6 and 66,,6,, C 3§, then 66,, C X.
(b) If my C w(X) and &,, C §, then S,, C X.
Proof:
(a): Let G be a group contained in &S,,. Then G € &G, ---6,, for

suitable primes pi,...,p, € m. According to 3.1.13, 65, C X, and
repeating this argument we obtain G' € 6, --- 5, C X.

(b): Let G be a group contained in &,,. Then there exist primes py,...,p, €
m such that G € G, ---6,,. Since 6,, C X and &,, C §F, repeated
application of (a) yields the assertion.

The following theorem has already been proved in [18, 1.3, 2.3].

3.1.15 Theorem
(a) Let § be a non-trivial Fitting class, n € IN. Then the following state-
ments are equivalent:

(i) § is normal in M+,

In particular, there exists a (unique) smallest M""'-normal Fitting
class, namely (M"),..

(b) Let m # (), P be a set of primes. Set §1 = &., F» = 16 and
Sn = 8n—26,6_/ if n > 3, where 0 = 7 if n is even and 0 = 7 ifn is
odd.

If n > 2, then (F,—1)« Is the smallest §,-normal Fitting class.
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(c) Let 8 be an s,-closed class of groups such that Gl Z, € R for all G € &
and for all p € m(R). Set § = Fit(R)*. Then a Fitting class X is normal
in § if and only if X* = §.

In particular, there exists a (unique) smallest §-normal Fitting class,
namely §,.

Let § be a lattice formation belonging to (7;);c;. Analogously to 3.1.15(a)
it can be proved that (§"), is the smallest Fitting class which is normal in
§""! (n € IN). In general, the converse does not hold true, as the Lockett
class "6, is not normal in F*** provided that p € 7; and |m;| > 1.

Let p1,...,p, be primes, and set § = &, ---6,, . According to 3.1.10 and
3.1.11, there exists a unique minimal F-normal Fitting class. In [18, 2.7] we
presented an explicit description of this class. In the following we deal with
the more general case of Fitting classes &, - -- &, where 7y,...,m, are sets
of primes.

We need the following lemma:

3.1.16 Lemma

(a) Let 7 be a set of primes, and let )1, and § be Fitting classes such that
7(F) = 7(D1) Un(D2), D1 = @Y1 and 7(6,Y1) N7 (Y2) = 0. Further-
more, let G be a group of minimal order contained in §\ Y,(6,91x92)2)
and assume that O,(G) = 1.
Then 6,91 x Po-injectors and ), X Ys-injectors of G coincide.

(b) Let D1,...,YDm, m > 1, be non-trivial Fitting classes of pairwise co-
prime characteristic and set 9 = [\, ;. Let § be a Fitting class and
suppose that G is a group of minimal order contained in § \ Y,(2).
If Gy, is a Py-maximal subgroup of G, then C(Gy,) = G.

(c) Let my,...,m, be pairwise disjoint sets of primes, and let ) and § be
Fitting classes such that ) is normal in § or Q) = 1, and m; N7 (F) =0
(i=1,...,n). Then

Sr X ... x 6, x9isnormal in G, ...6, F

In particular, H:.Lzl S, is normal in G, ... &,

n*
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Proof:

(a)

Let V be an 6,9); xs-injector of G. According to 3.1.6, G = NV and
VNN = Ge,9,x9, = Gy, xp, where N denotes the unique maximal
normal subgroup of G. 9); x Yo C &;Y1 x o, thus it suffices to
show that V € Y1 x Y,. If Vs =1, we are finished. Otherwise, since
(VN N)N Vs, is a subnormal subgroup of G, and therefore trivial by
assumption, we obtain (N NV) x Vs, = V. Consequently Vs, = Z,

for some suitable prime p € 7 N 7(§) and the assertion follows.

Let V =V; x ... x V,, be a P-injector of G. (Thus V; € ;, and by
assumption V; = Gy),.) According to 3.1.6 G = VN and VNN = Gy,
where N denotes the unique maximal normal subgroup of G. Since
Cc(Gy,) < G implies Va x ... x V,, < Cs(Gy,) < N and consequently
V' < N, a contradiction, the assertion follows.

Suppose not. Let G be a group of minimal order contained in
G 6,5\ Yu(6yy X ... x 6, x9). According to 3.1.6, G = VN
where V =V; x ... xV, XY denotes an G, X ... x G, x Q-injector
and N the unique maximal normal subgroup of G (V; € &,,, Y € ).

Ge = Hle O, (G) forallk < n; in particular,

w1 Gy

Vi=0.,(G) € Hall,(G) fori=1,...n:
Proof by induction on k:

The case k = 1 is obvious. Thus we assume that & > 1. As in (b), it
follows that C(O,(G)) = G for all i = 1,..., k — 1. This implies

where H,, € Hall,, (G).

Set # = m(9). By assumption, (G/Ge,, s,, )y is a P-maximal
subgroup of G/Gem,.,gm and Ggﬂlmgﬁn@ = Hng.,,GM where H €
Hallﬂ(Ggﬂlmgmg)). Using (b), we obtain Cg(G@ﬂlmgﬁn) = (. Conse-
quently H is a normal subgroup of G. By assumption, V/Ge, s, €9
and G/Ge,, .., €T C Yu(D). It follows that [T\, O, (G) x H is an
[T, 6 xY-maximal subgroup of G; this contradicts the choice of G.

O
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We now return to the class § = &, ... &,, where my,...,m # 0, P are sets
of primes such that m; # m;.1. According to 3.1.10 and 3.1.11, there exists
a unique minimal §-normal Lockett class, which we will describe explicitly.
It is obvious that, if m N (me U ... Um,) = ), this class coincides with &,,.

Otherwise we need the following construction:
Set

ro = min{i|(Uj_ym;) N (Uj_;1m;) = 0}
Without loss of generality we may assume that r = rq :
Let Qo be the smallest &, ... &,, -normal Lockett class. We show that 9o
coincides with the smallest §-normal Lockett class. By definition of r¢, it is
obvious that ) is §-normal. Let 1 # X be an arbitrary §-normal Lockett
class and ¢ € n(X). If p € m we conclude Z,! Z, € § and consequently

p € m(X). In particular, X N &, ... &, is a non-trivial Lockett class being
normal in &, ...&,, . By definition of 9o, this yields the assertion.

So, we may assume that 7 = ro > 2; in particular, (U5_7;) N (Uj_,,,7;) # 0
for k<.

We define
l; == max {i | mNm; # 0}

for j e {1,...,r}.
Further set

o := max {i¢ < r | there exists j > i such that m; Nm; # 0}
and
[0 = {ILLO + 1, . 7lﬂ0}‘

Now, we define

Vo = 6r, (][ &x)

i€ly

otice that )y is a directly indecomposable Lockett class.
Notice that is a directly ind ble Lockett cl
If 1 < r, we set
u(i) := max {j <1 | there exists k > j such that m; N 7w # 0}.
Set

p = plpo — 1) and Iy o= {i |y <i <1y, mNw(Yo) = 0},
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and define
S, (1T &x) x Do if 1,,, < po,
@ . i€l
1: 67%(1; S, x o)  otherwise.
1€l

In the first case set d(1,1) = 1 and $401,1) = &, ([] &x,), and d(1,2) =0

el
and 94¢1,2) = Yo-
In the second case set d(1,1) = 1 and 9401,1) = G, ( 165 xDo) =9

i€y

Suppose that n > 2 and ),,_; is defined. We set

= p(pn—1 — 1) and I, := {i | p, <@ <, mN7(Yp-1) = 0}.

Let $am-1,1),- -+ Ndn—1,0(n-1)) be the (non-trivial) directly indecomposable
factors of 9,1 — thus 9,1 = H”(n b (1. for some suitable vin—1) €
IN —, ordered in the following way: set

mo(n—2)

d(n — 1, 1) =n—1and f)d(n—l,l) - Tan 1 H 671'Z X H f)dn 2m

ic€l, 1

where mo(n —2) := max{k € {0,1,...,v(n—2} | ., , > Hdm—2 }, and for
m > 2

din—1,m) =d(n —2,k(m)) and Hap—1,m) = HDdn—2,k(m))

for some suitable k(m) € {1,...,v(n — 2)}. Moreover, we assume that
dn—1,1) > ... >d(n—1,y(n—1)).

Now, we define

Gﬂ’un( H 6771') X Q‘Jnfl if lun < Hn-1,

i€l
D = mo(n—1) v(n—1) '
67&%( H 6% X H ﬁd(nfl,m)) X H ﬁd(nfl,m) otherwise.
i€ly m=1 m=mgo(n—1)+1

In the second case set
mo(n —1) = max {k € {1,....,v(n =1} | [, > ftam-1k}-

Let a be the (unique) index such that p, = 1. Then g, is our candidate for
the smallest §-normal Lockett class.

First some observations:
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3.1.17 Remarks
Let the notations be as above.

(1) Dns1 O Y, provided that )1 is defined.

In the following we assume that @n is directly decomposable, thus n > 1

mo(n— v(n—1)
and D, = &x, ([ier, Sr X TS ™ Banrm) X TLo o 1y41 H—1m):
where mo(n — 1) < v(n — 1) (set mo(n —1)=0ifl,, < pn-1).

(ii) 1., < Md(n—1,mo(n—1)+1) for all k such thatn > k > d(n—1,me(n—1)+1) :
By construction Hmnmlo)n 41 Ddn-1m) = Dy for some suitable

k’l <n.
]i]l = d(n — 1,m0(n - 1) + 1)
<: Nam-1.mo(n-1)+1) = Nd(kr,1) = G, Ny 1) and d(n —1,me(n —

1)+1) = max{k € N| k <n—1and &4, Ham-1mon-1)+1) =
Nd(n—1,me(n—1)+1) }, thus we have d(n — 1, mo(n — 1) + 1) > k.

v

If k > ki, then [, < pg,, for otherwise l,, > i, and conse-
quently 941y D HNaki,)) = NDd(n—1,mo(n—1)+1)- By construction,
$Nd(k,1) is contained in $gin,m,) where $qmm,) denotes some suit-
able directly indecomposable factor of q),,. This implies $4n,2) =

Ddn—1,mo(n—1)+1) = Nd(k1,1) C Ndn,my); @ contradiction.
Hence 1, < p, for all k > k.
SInce Ly, s o monyeny = Py, this yields ky > d(n—1,mo(n—1)+1).

Hence, we obtain k; = d(n—1,mg(n—1)+1) and the assertion follows.

(iii) Set a(n) = max {l, | n >k > d(n —1,mo(n — 1)+ 1)}. Then (ii)
implies &, ...G,, ., NG G, =1

a(n) Ta(n)+1

(iv) By the choice of d(n — 1,mg(n — 1)), assertions (i)-(iii) give:

I = $am,1) N Ddn—1,mo(n—1)+1)
= ﬁd(nJ) ﬂ Gﬂ-a(n)-l»l . e 671-7‘.
In particular, ), is well-defined and $)q(n,1) N Gx,,, ... Gx

(v) Ifn>1, weset J,={i | pp <i<r, m;Nm(Y,) =0}

{i € J,—1 such that i < a(n)} = {i € I, such that i > fi,—1}:
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Set A :={i € J,_; such that i < a(n)} and B := {i € I,, such that 7 >
Mn—l}-

C: Let i be an element of A. Then m; N 7(Y,—1) =0 and p,, 1 <@ <
a(n). If a(n) =1,,, the proof is complete. Otherwise, there exists
ko # n such that a(n) = [, . Assume, i does not belong to B.
Then I,, < ¢ < a(n) < max{l, |n—1>k > 0 }. Then,
by construction, we obtain m; C U, | <j< max {lyy | n—12k>0 }Tj =
7(n_1), a contradiction.

D : Obvious.

3.1.18 Theorem
Let the notation be as above, and § = G, ...G&,,.

(a) Ifro =1, then (S, ). is the smallest F-normal Fitting class.

(b) Ifrg > 2, then 9 =9, is the smallest F-normal Lockett class.

In particular, (). is the smallest §-normal Fitting class.

Proof:

(a): 3.1.14(b).

(b): As mentioned before, we may assume without loss of generality that
r = 1o. BEvidently, ) is a non-trivial Lockett class.

Now we shall prove the assertion in two stages. First, we show that each
$-normal Lockett class contains ). Then, we prove that ) is normal in §.

(I) Let X be an §-normal Lockett class.

e ) is directly indecomposable, for otherwise by construction

v(a)
gja = ﬁd(a,l) X H ﬁd(a,m)'
m=2
In particular, a(a) = max {l,, | a« >k > d(a—1,me(a — 1)) + 1} <
ro = r, and 3.1.17(iii) yields a contradiction to the choice of .

o 7,1 Z, € § for primes p and ¢ such that p € m and ¢ € 7(X); thus
§-normality of X implies m C 7(X). 3.1.14(b) yields &,, C X, and
hence 3.1.14(a) provides &,, &, C X for all 7 € I,. Consequently,
&r,., (ITics, ©x,) is contained in X.
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If a = 0, the proof is complete. Since ), is directly indecomposable,
all we have to prove otherwise is that &, Y1 C X.
(Notice that 9 = Fit(&x, (I;c;. 6x)s GrpoDa-1)-)

By construction
v(a—1)

Q.Ja—l == H ﬁd(afl,mﬂ?

mi1=1
thus, using the same argument as before, we conclude that it suffices
to prove

S, Dia—1,m) € X for my € {1,...,v(a —1)}.

Clearly either
f_)d(oa— 1,m1) —

V(a_l)ml)

Gﬂﬂd(aﬂ,ml)( H 67"%’ X H ﬁd(afl,ml,mﬂ)a

i€la(a—1,my) m2=1

(where  Hgia—1,m;,ms) 7# 1 directly indecomposable for m, €
{1,...,v(a=1,m1)}, v(a—1,my) € IN suitable and d(a—1,my,my) €
IN likewise defined as in the construction),

or
Aata-1m) = Gmp H Sr,)
i€l4(a—1,my)
holds.
Choose an arbitrary m; € {1,...,v(a—1)}. Since 9, is directly inde-
composable and consequently (by construction) [, > flgia—1,m,), we ob-
tain &, 6”#4(0_1,777,1)6“% C 3. 3.1.14(a) yields &,, & C X,

7r‘u‘d(a—l,ml) -
and analogously we conclude
671"“‘0‘ 671—'Ltul(a—l,m1)< H 67‘—1) g %
Z‘Eld(oz—l,n%l)
In the second case, the statement now is proved. In the first case it
remains to show that

S

Tha Tr”d(afl,ml)

ﬁd(a—l,mhmg) g X

formy=1,...,v(a—1), my=1,...,v(a—1,my).
By iterating this process, we obtain the assertion.
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(Notice that by construction, for each sequence (my)r>o there exists a
natural number kg such that

mg = a — 1.
The usual argument yields

&, 6 .6 I[I 6&-.)cx
Tpa 71-'u‘d(m,o,m,l) ﬂ-“d(mo,ml ..... mk0)< ﬂll) -

and the proof is complete.)

(II) 2 is normal in §:
Recall that J, = {i | p, <i <r, m;N7w(Y,) =0} forn=0,...,a. Now, by

induction on n we prove 9),, X [|

ics, O isnormal in &, ... &, . Since, by

construction, m(2)) = 7(F), the assertion follows.

n =20:

(a) Yo is normal in &, ...Gx,:

It suffices to prove that )y is normal in 67% "‘67%0' Let G be a
group contained in &, ... 67%0. According to the choice of gy and
to 3.1.16(c), (G/Gs,,, )Hielo 6., 18 an [[;c; &x,-maximal subgroup of
G/Ge,,,- 1215 yields that Gs,, (1, &) 15 an &x, (ILer, 6x,)-
injector of GG, and the assertion follows.

(b) Yo X [licy, Gx, is normal in &, ... &y,

Assume not. Let G be a group of minimal order contained in

Grpp -+ - G \ Yu(o X [1icy, &)
Or,, (G) = 1:
Suppose not. Then

(G/Onr,s (G))poxTTic sy ©r = (G/Omy (G))py X (G/Or, (G))11,, &5,
is a Do x  Ilicy, Gr,-maximal subgroup of
G/Ox,, (G). By 3.1.16(b) we obtain G = Cg(Gy,)
< C6(Or,, (G)). Consequently, a Hall m;-subgroup H; of GGWO &, 18
normalized by G (i € Jp). In particular,

GfDo X H HZ' < G%OXHieJO G,

i€Jp
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Since &1, Do = Yo and G/Gs,, € Yu(Do X [lics Sr), we finally
obtain that

Gy, % H H;is a 9y x H S,,-maximal subgroup of G.

i€Jo i€Jo

This contradicts the choice of G.
Using 3.1.16(a) and (c) we obtain a final contradiction.

n > 0:

ly, < pin—1 : thus

V=G, (][ &) ¥ Doy and Iy = {pn + 1, 1, }-

i€l,

Analogously to (a), we obtain

&n,, (][ 6x) <6x,, - Gn, -

i€ln

Iy, < pn—1, hence in particular

Sr,p - Gy NG

Typ *° Wl#n“’l”'

and therefore

&., (][ &) <6s,, .- 6x,.

i€l
Assume that &,, ...&, is not contained in Y,(9), x HieJn S,,). Let
G be a minimal counterexample. If O, (G) = 1, then, by 3.1.16(a), a

D X [ ;e Gr,-injector V of G is an [[;c; G X Vo1 X [[ic), Grim
injector of G as well. Now, inductive hypothesis and 3.1.16(c) yield

[[6- xVus x [[ 6 260, - G-,

iel, i€Jp

Thus we conclude that V' is a normal subgroup of GG, a contradiction.
Hence, it remains to show that O, (G) = 1. Suppose that O,, (G) >
1. Then, by the choice of G,

<G/G6‘”Hn )67‘#71, (HiEIn 6771) X (G/GGT"HH )an—l X (G/GGT"HH >HiEJn 67ri

is a PYn X [[;c;, G, -maximal subgroup of G/Ge,, -
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Let m = 71'(2)”_1), H e Hallﬂ(GGMLn@nil) and H; € Hallm(Gg%L 67"1’)
(i € Jn). Since Cg(Ge,, ) = G, we obtain that H, H, are nor-
mal subgroups of G for all i € J,. (Notice that &5, ([[,c; &)
is normal in &, ...8,, thus, using 3.1.16(b), we obtain G =

CG(GGWM“ (Hie[n 67@)) S CG(G@WM” ))
H=Ge,, 9../Gs,, €Yn-1,and consequently
6""1’) x H x H Hz S G@"XHieJn S, -

1€Jn

Since G/Gse,, belongs to Yu(Yy X [[ic;, Gx,), we finally obtain

Gs,,, 11

i€ln

Ggmn (ies, &r,) x H % H H;is a %, x H S,,-maximal subgroup of G.

i€Jn i1€Jn

This contradicts the choice of G; hence O, (G) = 1 and the proof is
complete.

ly, = pn—1 : thus

mo(n—1) v(n—1)

mn = 67%”(1_‘[ 67ri X H ﬁd(nfl,m)) X H fjd(nfl,m)-
m=1

i€ln m=mg(n—1)+1
Using 3.1.17(iii), we obtain

S S ne&

Tpn * Ta(n)

.G, =1

Ta(n)+1 *° k

If m > mo(n — 1)+ 1, by construction $ag,—1,m) C Grpiyir -+ O If
m < my(n — 1), the class $qmn—1,m) is contained in &, G (by
construction as well, cf. 3.1.17(iv)). We conclude

Qo1 x [ G-)NnGs, ... 6n,

1€Jn_1
mo(n—1)
= H ~6d(n—1,m) X H 671'1-
m=1 1€J,_1 such that
i<a(n)
mo(n—1)

= H f.)d(n—l,m) X H 6Tri-
m=1

1€l such that
1>pn—1
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(Notice that {i € J,_; such that i < a(n)} = {i € I, such that i >
fn—1} according to 3.1.17(v).)

This and the inductive hypothesis yield

mo(n—1)
I 9uw-1myx ]| ©x<6., .- 6
m=1 1€l such that
1> pn—1
Using 3.1.16(c), we conclude
mo(n—1)
HGTI'z X H g)dn 1,m) X 7run+1'--67ra(n);
i€ly,
thus 1.2.15 finally yields
mo(n—1)
TI'Mn H 67rz X H g)d(n 1,m)) = 7"un < 67ra(n>-

’LGI’n

(Observe that m(][,c, &, x Hmo n-l) ﬁd(nfl,m)) =7m(&xr,, - Gny))

Since &;, ... 6 NG &, = 1, it follows

Ta(n) Ta(n)+1 ° *°
mo(n—1)
71'”” H Gm X H 57.)(1 (n— lm) Wun .. va-
lGIn

Assume that &, ...6. & Yu(Yn X Hiejn S,,). Let G be a minimal
counterexample.

Oxr,, (G) = 1: Suppose O, (G) > 1, then
(G/Or,.,(G)).xI1,cy, 6 =
(G/Ow,m( )) "un (Hzeln GWZXHMO(TL l)ﬁd(n 1m>)><

(G/Omm( ))H;Z(:";L;il BDi(n—1.m (G/Omm( ))HiEJn S,

is a YPn X [[;c) Gr-maximal subgroup of G/Ox, (G). Now, analo-
gously to the preceding case, we conclude

G mqo(n—1 X H X H H
Sy, ([icr, Gwixnmg(l )f)d(n—l,m)) v

1€Jn
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is a nmormal and a (Y, x [, & )-maximal subgroup of G

(where 7 = W(Hfii;lo)(n_l)ﬂ Na(n—1,m)); H =
HallW(GGmn (Hfrfifnlo)(n_l)ﬂ5d<n—1,m))) and H; € Hall,(Ge,, s.,))
This contradicts the choice of G, and consequently O, (G) = 1.
Using 3.1.16(a), we obtain that a 9, x [[,c; &x,- injector V of G is
an [, Gn X H:é:l) Ndtm-1,m) X [lics, Gr- injector of G as well.
So finally, inductive hypothesis and 3.1.16(c) yield

(n—1)
18- x I $aw-1m x ][] &= 26, ., 6x.
m=1

i€ln 1€Jn

Consequently, V' is a normal subgroup of G this contradicts the choice
of G. Thus 9, X [[;c; Gx, is an &, ...&, -normal Lockett class
and the proof is complete.

Hence, 9) is normal in § and therefore the unique minimal §-normal Lockett
class. O

We obtain as a special case of 3.1.18

3.1.19 Corollary
Let 7y, ..., m. be sets of primes such that m; # m; 11 and Ni_,;m; # (), and set
§ =6, ...6,.. Then (F). is the unique minimal F-normal Fitting class.

Note that for all SFitting classes treated above the smallest §-normal Lockett
class coincides with the smallest §-normal SFitting class. Is this true in
general? We will see in the next section that a positive answer would yield
an explicit description of this class in many cases.

3.2 Local normality and SFitting classes

As mentioned before, the subgroup-closure of a Fitting class enables us to use
the theory of local formations. Furthermore, local normality behaves nicely
with respect to the corresponding canonical local definitions.
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3.2.1 Proposition
Let X and § be SFitting classes with corresponding canonical local definitions
X and F. Assume further that m := 7(§) C n(X). Then the following

statements are equivalent:

(i) § < Yau(X).

(ii) F(p) C Yo(X(p)) for all p € .
Proof:

(i) = (it): Let G be a group contained in F(p) and set H = Z, 1 G
where p denotes an arbitrary element of 7. H € 6,F(p) = F(p) C 5,
thus by assumption, an X-injector W of H is a normal subgroup of H.
On the other hand, 2.1.4 yields W N G € Injy, (G), and the assertion
follows.

(74) = (i) : Suppose not and choose a group G of minimal order con-
tained in § \ Y,(X). According to 3.1.6, G has a unique maximal
and a unique minimal normal subgroup. In particular, Oq/(G) =1
for some suitable prime ¢ € m. Consequently, G € F(q) C Y,(X(q))
and Gx = Gx(g). Let V be an X-injector of G. Then O (V) # 1,
for otherwise, Gx() < V € X(q); a contradiction. Let p be a prime
such that O,(V) # 1. Since O,(V) N Gx is a subnormal subgroup of
G (and therefore trivial), we obtain V' = O,(V) x Gx. This implies
0,(V) < Cs(Gx), and consequently Ce(Gx) = G (for otherwise V' is
contained in the unique maximal normal subgroup of G; a contradic-
tion). Since m C 7(X), and therefore F(G) < Gy, this implies a final
contradiction.

O
(A similar result holds for so-called strictly normal Fitting -classes,
cf. [4, 7.1]; I thank Prof. B. Brewster for pointing this out to me.)

3.2.2 Remark
3.2.1 need not be true for arbitrary SFitting classes X and §.

Proof: Let p be a prime, X = &, and § = 6,6,5,. The canonical local
definition X of X is defined by
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| 6, iftg=p,
Xa) = { 0 otherwise,

and, according to 1.3.8, the canonical local definition F' of § is given by

6,6,/ ifg=0p
Flg)=1{ —r°p
(@) { 6,6,6, otherwise.
Thus, F(q) C Yu(X(g)) for all primes ¢, but § Z Y,(X).
(Notice that Z,1 Z, € §\ Yo (X), for an arbitrary prime ¢ # p.) O

3.2.3 Lemma
Let X and § be non-trivial Fitting classes such that § = @§ C Y,(X). Set
7(X)=m. Then § C (6,NF)S .

Proof: We show that § C 6,6_,. Suppose the contrary and choose a group
G of minimal order contained in § \ 6,6,,. Then G has a unique maximal
normal subgroup /N, and a unique minimal normal subgroup M, and N and
G/M belong to 6,6 _,. Since O,(G) = 1 and O”/(G) = G, we conclude
N = M € &_; this contradicts the assumption that § C Y, (X). a

3.2.1 and 3.2.3 enable us to prove the existence of a unique maximal SFitting
class contained in Y, (X) for any SFitting class X.

3.2.4 Proposition

Let X be an SFitting class, and let §; and §y be SFitting classes of bounded
nilpotent length.

Then SFit(F1,$2) C Y. (X), provided that F1, §2 C Y, (X).

Proof: By induction on r := max(l(§1), [(§2))-

The cases r = 0, 1 are trivial. Thus we assume that » > 1 and that the
assertion holds for r — 1. Set 7 = 7(X%).

According to 3.2.3 and 2.2.12, we may assume without loss of gener-
ality that §; C &,. Let F|, F; and X, respectively, be the canonical
local definitions belonging to §i, §2 and X, respectively. 3.2.1 yields
Fi(p) n ™1 C Y, (X(p)) for i = 1,2 and p € m. By inductive hypothesis
this implies SFit((Fy(p) N MY, (Fy(p) N 1)) C Y. (X(p)). Thus,
using 2.2.2 and 3.1.7 we obtain &,SFit(Fi(p) N N Fa(p) N N =
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SFit(&,(Fi(p) N MN1), S,(Fa(p) N N 1) C Y,(X(p)) . The proof is
completed by 3.2.1. O

3.2.5 Corollary
Let X, §1 and §o be SFitting classes. Then SFit(F1,F2) C Y, (X) provided
that Sl, 32 g Yn(}:)

Proof: Using 2.2.5, we obtain the result by 3.2.4. O

3.2.6 Corollary

Let §;, i € I, and X be SFitting classes such that §; C Y, (X). Then
SFit(F; |1 € I) C Y, (X).

In particular, there exists a unique maximal SFitting class contained in
Yo (%).

Proof: 3.2.5 and 2.2.13. O

3.2.7 Definition
Let X be an SFitting class. We define

Lnx) = ({§ | § SFitting class, X is normal in §}, C).

3.2.8 Theorem
Let X be an SFitting class.

(a) £n,x) forms a complete, distributive and atomic lattice.

b) An SFitting class $) is an atom of £, x) if and only if it is an atom of
(n,X)
Lx.

Proof: According to 3.2.6, 2.2.5 and 2.2.18, it suffices to prove statement
(b). Since an atom of £y is contained in X9 C Y, (X), this assertion clearly
holds. O

We will see later that, in general, £, x) fails to be dual atomic (cf. 3.2.21).
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3.2.9 Definition
Let X be an SFitting class, and set 7 = 7(X). We define

D0 = SFit(F | § C Ya(X) N S,, F SFitting class).
9" .= SFit(3 | § C Ya(X), § SFitting class).

3.2.10 Remark
Let X be an SFitting class.

_(nv:{)

(a) I"V =9V,

(b) If&,X =X, then &,9"Y = Pr¥ and g, =",

(c) m(X)=m(Q").

Proof: The assertion follows from the definition and 3.2.3, 2.2.5 and 3.1.7. O

3.2.11 Proposition
Let § and X be non-trivial SFitting classes such that ™% C PrS) or

@(n’%) C @(n,g). Then
X C3.

Proof: According to 2.2.16, X = SFit(X,; | ¢ € I) where each X; is a product
of &,’s (for some primes p). Let ¢ be an element of I, and X; = &, --- 6,
for suitable primes pq,...,p,. By induction on k, £ < r we prove that
X;C3§.

k=1:1If 9% C P the definition of P™¥ implies that 7(X) C 7(F),
and consequently that &, is contained in §. Thus, we assume that
@(n,ao - ﬁ(n’@. Since Z,, ! Z, belongs to X;6, C XG, C @(n,%) - @(n,g) for
each prime ¢ € 7(§), we conclude p; € 7(§) and thus &, C § in this case
as well.

Thus suppose that £ > 1 and that &, --- &, ,
Gy 6,6, C X6, , C X6, € 99 c 9" Hence 3.1.13
yields the assertion, and the proof is complete. O

C §. By assumption,

It follows from the previous proposition that a non-trivial SFitting
class X is uniquely determined by 2™ respectively @(n,f{):
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3.2.12 Corollary
Let § and X be non-trivial SFitting classes. Then the following statements
are equivalent:

(i) P = P,
(ii) @(n,ﬁ) _ @(",x).
(iii) § = X.

Proof: (i) = (i1), (#9i) = (4): trivial.
(i) = (idi): 3.2.11. 0

3.2.13 Remark

(a) The converse of 3.2.11 does not hold true: Let py, ps, ps be pairwise
distinct primes. Set X = G, x 6, X §,, and § = 6,,6,,65,,. Then
X C §. Evidently, Zp, ! Zp 1 Zp, € D™D\ Y,(F), hence neither
A (X) C @(n,ﬁ) nor X C P,

)

(b) We will see later that a corresponding result to 3.2.12 concerning the
dual class does not hold true (cf. 3.2.29).

3.2.14 Proposition

Let X be an SFitting class and let X be the canonical local definition
belonging to X.  Further, set 7 = n(X), w(p) = =n(X(p)) and
t={pen|X(p) #x}

(2) DY =, (6,96, ()N 6y).

(b) D9 =, (6,9 E ) 1 65).

In particular, ™% is known provided that ™*®) is known for all p €x.
Proof:

(a) C: Let H be the canonical local definition belonging to 2%,
3.2.1 yields H(p) C Ya(X(p)) and hence H(p) € 9™¥PNG&_ . for
all p € . Consequently

Y0 = Myer®, H(p) N 6r C Myen((6,9XPS )N S).
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D: Suppose not. Let G be a group of minimal order contained in
ﬂp@((Gp@)(”’X(p))Gw(mr) NG&,:) \ Yu(X). According to 3.1.6, G has a
unique maximal normal subgroup N, and a unique minimal normal sub-
group M, and G/N = Z,, NV =G, NNV = Gx, and M € S, (where
V € Injx(G) and ¢, r € P suitable). In particular, O, (G) = 1 and
consequently G € LD(”’X(T))GW(T)/ NS C Yu(X(r)) and Gx = Gx(».
Thus we obtain O,/ (V) # 1 and therefore V' = Oy(V) x Gx where
t € IP\ {r} suitable. As usual, this implies C¢(Gx) = G, a contradic-
tion.

Consequently, ﬂpeﬁ((Gp/@(”’X(p))Gﬂ(p)/) NG&,) C Yu(X), and the asser-
tion follows.

Without loss of generality, we assume that = D 7.

C: (a).

D: Assume the contrary and let G be a group of minimal order
contained in ﬂpeg((Gp/@("’X(”))Gﬂ(p)/) NG,)\ ™Y, Evidently, G has
a unique maximal normal subgroup N, and a unique minimal normal
subgroup M, and N/M € X, G/N = Z, and M € &, for suitable
primes ¢, r. In particular, G belongs to &, ™%,

Let ¢ be a prime such that ¢ € 7\ 7. We prove that G belongs to
Gq/@(”’X(Q))GW(q)/ (this implying G' € ¥ a contradiction):

If ¢ = r, then 6,X(r) = 6,X = X, and consequently
6,90 = 9rd = YPnX@). in particular, G belongs to
(X)) C GQIQJ(”’X(Q))GW(Q)/.

If ¢ # r, then r € IP\ {¢} and therefore G € Gq/@(”’x) = Gq/@(”’X(Q)) -
Gq/@(”’X(Q))GW(q)/.

3.2.15 Corollary

Let § and X be SFitting classes such that § = &,X where T # 0, IP denotes
a set of primes. Let X be the canonical local definition belonging to X.

If 1(X) = m and P™X®) is known for all p € w \ 7, then Y™ is known.

Proof: 1.3.7 and 3.2.14. O
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3.2.16 Examples

(1) Set § =35, = S,, - 6S,, where my,...,m, are sets of primes. By 1.3.8
the canonical local definition is known, and thus )% can be determined
recursively: Set 7 = 7 U...Um,. If r = 1, then P& = P = &,,.
Assume that r > 1 and 9% is known for k < r. Then the assertion
follows from 3.2.14(b).

(2) Let m be a set of primes and (7;);c; a partition of . Let § be the
corresponding lattice formation. By 1.3.9 and 3.2.14(b) we obtain

V) =Me,6.6,,6 NG,
In particular, ™™ = Nper®,, 6,6,
(3) Let § be an SFitting class as described in 1.3.10. Then 3.2.14(b) yields

(n,®) — (1,67 (p)) —
2) - mpEﬂ'(Gp/QJ () 67r(p)/) - mpG;G(ﬂ'ﬁﬂ'(p))/67"(1’)671'(])),'

where 7 and 7 are as described in 1.3.10.

3.2.17 Remark
Let § be an SFitting class of bounded nilpotent length. Then there exists an

algorithm to describe )™ (and consequently @(n’s))_

Proof: Set m = w(§) and r = [(F). § is known, thus by [9, IV, 3.7] the
corresponding canonical local definition F' is known, too. By 1.3.7, F(p) =
S, (F(p) NN 1). Furthermore, 3.2.14(b) implies

m(n,&) -nN ~((6p/@(”’F(p))67r(p)’) NG,),

pem

where m(p) = 7(F(p)) and = {pen|F(p) #3}
If F(p; ) denotes the canonical local definition belonging to (F'(p) NN ~1)

and m(p;p1) = 7w(F(p;p1)) for all p; € P, then, by 3.2.14(b),

) FE) — mpleﬂ(p)\{p}((GP’IQF(p;pI)6W(p§pl)l) NSrp))-

Observe that [(F(p;p1)) < I(F). Iterating this process, we obtain a
natural number k < r —1 such that F(p,p1,...,pr_1;pc) € N for all p, € P.
In this case, F(p,p1,---,Pk-1:Pk) = Mappr,pe_1ipe) and consequently
QFPp1Pe-1Pk) is known. O

Let § be a lattice formation. For this case we give a further description of
)8 which is frequently easier to handle than the one above.
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3.2.18 Definition
Let 7 be a set of primes, let (7;);es be a partition of 7, and let ji, jo,... be
an ordering of J. We define

FUm 17890 .= SFit(3, | o € Sym(J)),
where § = Ujies6xr, ;) - Gnyp -

If |7r;| = 1 for all j € J, we write " rather than U™ | 7€/},

Note that X2 C g™ 177} C &, where X denotes the lattice formation
belonging to (), e

3.2.19 Lemma
Let w, o, T be sets of primes, m # ), and let (7;);es be a partition of 7.
Further, assume that o N7 = (.

(a) IfT;=m; N7, then T 13€ID) C Fm | 5eT)),

(b) Fm | €7D ¢ Flim | senion.

(c) If Jo C J and m), = Uegym;, then U 1€MW 0@, = Fllm | ieh)),
(d) &,3m | € ¢ glim | jenuie)).

(e) gUm liehg, C glm | 7€/ uioh),

Proof: (a),(b) follow from the definition. (c) is a consequence of 2.2.14(b),

(d) follows from 2.2.14(a), and 2.2.14(c) implies (e). O

3.2.20 Proposition
Let X be a lattice formation belonging to (7;);es. Then

3;({7rj \ jGJ})Gﬂz _ @(n,%)‘

Furthermore, if § is a q-closed Fitting class contained in Y,(X), then
g cgim liehg, .

In particular, ¥ is the unique maximal q-closed Fitting class contained in
YL (M).
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Proof:

(1)

g liemg,, — ™.

Evidently, it is sufficient to prove that )% = gUm 7€/} —. ¢

C: Suppose not. Let G be a group of minimal order contained in
9™ \ §. Then there exists jo € J such that O_ (G) =1 and Gz =
J0

Or, (G) # 1. G € Yu(3), thus 3.2.19(a) yields

Ge6,, 6 NG, H= 6%(6 ' NH) C Gﬂjog({?j | j€J})

ﬂ'jo
(7;:=m; N 71';-0). Using 3.2.19(c),(a), we obtain G € §), a contradiction.

D: According t0 3.2.16(2), 9% = N;,6 6,6 NG, and obviously
$ is contained in &,. Let j be an arbitirary element, of J , then by
construction §, € &/ &,,6 s for all o € Sym(.J). This yields $ C
GW; GWjGﬂ; and the pri)of is C(J)mplete.

Let § be a q-closed Fitting class contained in Y,(X). Then
g cglm liehg .

According to 3.2.3, it is sufficient to show that F N
S, C gUmlieh, Suppose that there is a group G of
minimal order contained in (F N &,) \ U™ 1N G has
a unique minimal normal subgroup, thus Gx = O (G) for
a suitable j € J.  Since G belongs to Y,(X), this implies
G € 6,,(6, ngim €Ny Applying 3.2.19 we obtain a final
contradiction.

O

3.2.20 enables us to prove that, in general, there are no dual atoms in £, g
(cf. 3.2.8).

3.2.21 Remark
L,z need not be dual atomic, not even if § is of bounded nilpotent length.

Proof: Set § = 9 and let p;, ps,... be the set of all primes. According to
3.2.20, P8 = FP = SFit(F, | o € Sym(IN)). Let X # D™ be a class
belonging to £, . We show that there exists an element § of £, 3 such
that X ¢ § c Pr9:
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X # ™I thus there exists an element ¢ € Sym(IN) such that
S, £ X. In particular, Gpa(l) e Gpa@ ¢ X for some suitable ¢ € IN. Set
9 =SFit(X,6,,,, - ;) By 3.2.5, we obtain X C 9 € £, 3.

Po(1)

$ C . Suppose not. Then Spoiry OGpyisy © 9, and by 2.2.5 it
follows that &, -+ &, .. = SFit(X N GPU({) “6p, iy Opoy GPU(Z.)).
EXNGS,, ., 6y, £ N then 2.1.5(b) yields X N Spy Gpoinny =
6%(1) . --6pa<i+1), which is a contradiction to the choice of 7. Hence we
obtain &, -+ 6, .., C SFit(X N R = C 61)0@)) c
a final contradiction. O

Using 3.2.20, it is possible to obtain results about 2% in dependence on
2 for a lattice formation X and an SFitting class $ such that 7(§) C
m(X).

We need:

3.2.22 Lemma
Let X be a lattice formation belonging to (mj);cs, and let G € Y,(X) be a
group satisfying the following two properties:

(i) G has a unique maximal normal subgroup N, and N € 7 17€/h)
(ii) There exists an element j € J such that m; N\w(G/N) # 0 # m; N7 (N).

Then G belongs to F{m 1 1€/}

Proof:

Assume not. Let G denote a group of minimal order satisfying (i) and (ii)
and belonging to & \ ™ [7€/) . Further, let j, be an element of .J such
that ;, N 7(G/N) # 0 # 7j, N7(N).

Gx = Oy, (G) for a suitable j, € J:

Obviously, there exists jo € J such that O (G) = M # 1. If
7, N T(N/M) # 0, it follows that G/M € F{m 1€/} by the minimality
of G. If m, Na(N/M) = 0, we obtain G/M € FUm liEN NG,
and by 3.2.19(e) G/M € FUmi 177D as well. Assume that there ex-
ists another element j, € J such that O, (G) # 1. Then we obtain
G € re§Um 17€7) = glm 1 €7D 3 contradiction to the choice of G.
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Since G' € Y,(X), we conclude

m | e},

TI'J0

Geb

7Tj0

(S N gim | jEJ})) CcCS
TI'jO —

Thus, 3.2.19(d) yields a final contradiction. O

3.2.23 Proposition

Let m # 0 be a set of primes, let (;);e; be a partition of m and let X be
the corresponding lattice formation. Further, let $) denote an SFitting class
such that w($) C 7, and n > 1 a natural number.

Then $"F{m | i€Mg, = @(”’ﬁnx)
class contained in Y,($H"X).

is the unique maximal Q-closed Fitting

In particular, M"FY is the unique maximal q-closed Fitting class contained
in Y, (91" ).

Proof:

(1) s | jEJ})wa is a Q-closed Fitting class contained in Y,($"X):
Obviously, H"FU™ 17€/D& ., is a q-closed Fitting class. Evidently, it
is sufficient to prove that $"X is normal in $H"F1™ [7€D . Let G be
an element of H"F{™ 7€) and V/Ggn € Injx(G/Gen). By 1.2.15 we
obtain V' € Injg.+(G), and by 3.2.20 we are finished.

(2) Let § # 1 denote a q-closed Fitting class contained in Y,($H"X).
§ C orglim lieha .
By 3.2.3 the assertion follows from § N &, C $H"FUm 1 7€/D  Thus,
we assume that §N &, ¢ $H"FUm 177D and choose a minimal
counterexample G. Then G has a unique maximal normal subgroup
N = Gﬁng({ﬁj | jesp and G/N € 6%’1 for some suitable j; € J. Suppose
that m;, N 7(N/Ggn) = 0. Then 3.2.19(e) yields G/Ggn € Fm 177D,
a contradiction to the choice of G. Thus 3.2.22 is applicable, and we
obtain a final contradiction.
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3.2.24 Remark
3.2.23 need not be true for SFitting classes $) of arbitrary characteristic.

Proof: Let p, q, r be pairwise distinct primes. Then 3.2.14(b) implies
PSS = 61,16, ) N 615} 6, S -

Consequently, Zyl Zy U Zy ! Z, is a group belonging to 9) (85 (S4x &) \
(n GQXGT
pz) (I

Whether or not 3.2.23 holds for arbitrary SFitting classes X is an open ques-
tion. As a weaker statement we obtain

3.2.25 Proposition
Let X be an SFitting class of characteristic 7, let (m;);e; be a partition of 7
and let § denote the corresponding lattice formation. Then

_(nvx)
$9 =9
In particular, ‘ﬂ;@ =9 (9% %)
Proof: As usual, it suffices to prove % = 5%

C: Let G be a group belonging to §2™%. Then (G/G3)x is an X-maximal
subgroup of G/Gj, and 1.2.15 implies the assertion.

U

. Suppose the contrary and choose a group G of minimal order contained
in P35\ FP™@X | Since G has a unique minimal normal subgroup,
there exists a prime ¢ such that O, (G) = 1. Let i € I such that t € 7.
Let F' and X, respectively, denote the canonical local definitions of §
and X, respectively. Then 3.2.14(b) implies

@(n,S%) — ﬂqEWGq&J("’F(q)%) NG, =

r_1q€7r6q( rem\m;(q 6 2) 7T(T‘)/) 0671-,

where 7(r) = (X (r)) and 7;(q) = m; such that g € =;.
Consequently, we obtain G € 9™En¥*) = ﬂreﬂ\mGT/QJ(”’X(T))GW(T)/ N
Gr.

We prove that G belongs to S(Gp/@("’X(p))Gw(p)/) for all p € m; (then
3.2.14 provides a final contradiction):
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Put {7(i)1,...,7(i)n} = {m; | mj; N7(G) # 0} and assume that 7(i); =
i N7(G). Noting that O, ((G/O.,(G))) = 1, 3.2.14 implies

G/Ox,(G) € (Sriiyy X - - X G, )(Mger®yY"X DS N &),

Thus, we conclude 7(i), U ... U (i), C {p} where p € m; C 7. Conse-
quently G € 6,,6,9" W6 . C F(S,9" P& ).

Whether or not a corresponding result is valid for arbitrary SFitting classes
or for lattice formations § such that 7(§) C =, is an open question.

Concluding the investigation on @(n,X) we show that, in general, @(n,aq is

not maximal among all Fitting classes contained in Y, (X).

3.2.26 Example
Let p1, p2, ps be pairwise distinct primes, and set m = {p1, p2, ps}. Further,
set X =N, and § = (G | G/Cs(0,,(Q)) € 6,,)N6,,6,,6,,65,,. Then

PN Fit(P™, §) C Ya(X).

m

In particular, 7 = PrIGS ., ¢ Fit(P™Y, §)S, C Ya(X).

Proof:

(1) § is a Fitting class such that X is normal in §, but § ¢ 9™:

According to [9, IX, 2.5 (b)] and [9, IX, 3.6 (a)], § is a Fischer class.
Assume that § € Y,(X) and let G be a counterexample of minimal
order. According to 3.1.6, G has a unique maximal normal subgroup
N, and G/N = Z,, N = QGx, NV = G and V = PGx (where
V € Injx(G), P € Syl,(V), Q € Syl (G) for suitable primes p and ).
If p # p1, then G € 6,,6,,6,,, contradicting the choice of G. Thus
p = pi1. Using 1.2.18, we obtain P < Cg(0,,(G) x O, (G)) and
consequently Cg(Op,(G) x O,,(G)) = G (for otherwise P < N, a
contradiction). Observe that () < Cg(O,(G)) by definition of §,
whence @ < Cq(F(G)) < F(G) = Gy, a final contradiction.
According to 3.2.20, Q¥ = 3" C M3, Since
Zopy 0y 02y 0 2y, € T\ M2, this implies § P,
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(2) Put § = SFit(6,,6,,6,,,6,,5,,5,,). Then N, (§1,5) is a Fitting
class contained in Y, (%), and consequently Fit(§,§1) C Y, (X):

§1 € 6,,6,,6,,6,, and 6,,6,, C §, thus G/G; € &y, ) provided
that G € §.

Since § € 6,,6,,6,,6,, and 6,,6,, C §, we further obtain G/Gj, €
Sipi oy for G € 5.

Using 1.2.20, we conclude that N,, (F1,§) is a Fitting class containing
Fit (31, 3).

5, §1 are Fitting classes contained in Y,(X) (cf. (1) and 3.2.20), and
from the definition and 2.2.12 it follows that §6, = § and § =
SFit(6,,6,,, 6,,6,,)6,,. Hence 3.1.8 yields the assertion.

(3) Fit(Q™Y,F) C Fit(Y"Y, N, (§,51)) C Yu(X):
Put § = N,, (3, 31).
(i) 3.2.20 and 2.2.12 yield

2 (%) C SFit (6173 sz 6p1 6{p2 p3}s 61)2 6103 6?1 6{1)2 ,ps})

= SFit(GPs 6?2 Gpu 6172 61)3 6?1)6{p2,p3} = %16{172,173}-
Consequently, G/Gg € @By, ps} = Sy sy for G € YD,

(ii) Note that §; C " =9™% and § C 6,,6,,6,,5,, C PG,
Consequently, $ C Fit(§1,3)6,, € 9™Y&,,. Hence G /Gagynx)
is contained in &,, provided that G € .

Hence, by 1.2.20 and 3.1.8 we conclude that Fit(9)™% §) C
Fit(Q"™9, 9) = No(9™P, 9) C Ya(X).

O

We bring this section to a close by studying the dual situation, namely the
smallest SFitting class which is normal in § (provided that it exists), and the
family of all F-normal SFitting classes (where § denotes an SFitting class).

3.2.27 Definition
Let § be an SFitting class. We define

Dng) = ﬂ{.’f | X SFitting class, X is normal in §}.
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According to 3.1.10, this class is the smallest §-normal SFitting class pro-
vided that it is non-trivial.

3.2.28 Remark
Let § be an SFitting class, ) = D)

(a) Assume %) is non-trivial. Then the following statements are equivalent:

(i) =) = 7(3).
(ii) There exists no set of primes 7 such that () # « C =«(gF) and
S - 67r67l'/‘

(b) Let Y be non-trivial and set 7 = 7(Q)). Then Y = Y zne.)-
(c) If 8,8 = § for some prime p, then 6,9, 3) is normal in §.
Proof:

(a) (i) = (¢i) : Assume to the contrary that there exists a non-empty set of
primes 7 C w(§) such that § C 6,6,,. Then 1 # FN S, is normal in
§ (since §N G, is normal in (§NS,)S,). Consequently, §NS, 2 9,
a contradiction.
(17) = (i) : Suppose that 7(2)) C 7(F). Since 3.2.3 implies §F C
@(n’@) = @("’@)GW(@)/, the set 7(9) fulfills the above conditions; a
contradiction.

() Vg = Dnz N Gx is normal in §FN &, and therefore Y, z3ns,) €
D (nz)- Since § C (§NG;)6 and (F N 6,)6+ C Yu(Dmzns.)), the

converse 1s valid as well.

(c) If 7(Y(nz) = 7(F), then 1.2.15 yields the assertion.
Thus assume that 7(Q5) C 7(F). According to 3.1.11, Y5 #
1, hence 3.2.28(b) yields Dz = Dmsns,) and p € m (where 7 =
T(D(n)))- Since G,(F N S5) = F N &, the assertion follows.

We will see later (cf. 3.2.32) that Y5 = 6D,z provided that &,§ = F.
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3.2.29 Remark
Let § be an SFitting class. Then, in general, ), 3) fails to define § uniquely.

Proof: Let p1, ps, ps3 be pairwise distinct primes, and set m = {p1, p2,ps3}-
Further, put

51 = SFit (6p1 sz 6;03 ’ 6273 6?2 6pl ) and 32 = SFit(Gm 6p1 6?3 ) 6;03 6}71 6102 )

According to 3.2.20, the class M, is normal in §; (i = 1,2). Moreover, it is
easily seen that each §;-normal Fitting class is of characteristic 7 (i = 1, 2),

and consequently 9 n.z) = Din,z) = N
But 2.2.24 yields §2 € 5p,(6,,6p,6p;,65,6,,6y,), hence 2,2 Zy, 1 Z), €

51\ Be. g

3.2.30 Remark
Let § be an SFitting class.

(a) If@(n,fp("ﬁ)) 7é 1, then @(n7@(n73)) = 3'

(b) A corresponding statement concerning the dual class does not hold true
in general.

Proof:

(a): Evidently, 9, 9.5y € F. The converse is given by 3.2.11.

(b): Let the notation be as in 3.2.29 and set § = §1. Then Y, 3 = M=, and
F is a proper subclass of V), O

3.2.31 Proposition
Let § be an SFitting class such that Y.z # 1 and 7(F) = 71(Dm,z) = 7.
Let F denote the canonical local definition belonging to §.

(@) D = MNyer GV (n.r(p)) N G
(b) If 7= {p | F(p) # 3}, then Dinz) = N, S, S Dn.r() N G-
Proof:

(a) Set X = ﬂp@er/ Gpgj(n,F(p)) NG,.
C: X # 1, thus it is sufficient to show that X is normal in §. As-
sume the contrary and let G be a group of minimal order contained in
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§\ Yu(X). According to 3.1.6, there exists a prime ¢ € 7 such that
Oy(G) = 1 and N/Oy(G) € X, where N denotes the unique
maximal normal subgroup of G. In particular, N belongs to

Mpem\ia} S SpD () N Ex N GGy G, (q))-

Gx: Oy(G) = 1, hence Gx is contained in
GeVmrw St M = Ge9,pu NN We conclude that M €
Mper\{}6, SpDn.rp) N Gx N G mrg) S X, and consequently
M = Ge,9,,r,) = Cx-

3.2.28(c) implies that &, (n,r(q) is an F'(¢)-normal SFitting class. Let
V' be an X-injector of G. Since O,(G) = 1, we obtain G € F(q)
whence V' = O,(V) x Gx for some suitable prime r # ¢. This implies

Cs(Gx) = G, a contradiction.

O: Let H denote the canonical local definition belonging to ), z)-
According to 3.2.1, H(p) is F(p)-normal, and consequently H(p) 2
D n,F(p)) for all p € w. This yields the assertion.

C: (a).

D: We prove that ﬂp@wer/ GPQJ(MF(IJ)) NG, C ﬂpeﬂ6p/6p@(nvp(p)) N
S, = @(n,%)-

Let G be a group of minimal order contained in N, 76,6, D (n,Fp) N
S:\Dn,3- Then G has a unique minimal normal subgroup M, M € &,
for some suitable prime ¢, and G/M € Y, 3)-

If ¢ €, then G € 6,6 Y (n,rp) for all p € m\ 7 and we obtain a
contradiction.

Thus, we assume that ¢ € 7\ 7. Since in this case D rg) = Dmz)
this implies G € Mper\(}6 GV 1) N EDnr@) N Er & Ding), 2
final contradiction.

3.2.32 Corollary
Let § be an SFitting class and p be a prime such that &,§ = §. Then

m(n,%') = 6])@(71,3’)'
Proof: According to 3.1.11(a), the class 9,z is non-trivial. Therefore, we

may assume without loss of generality that 7(§) = 7(Y(nz) = 7. From
1.3.7(e), we conclude that F(p) = 6,8 = §, where F' denotes the canonical
local definition of §. 3.2.31(b) yields Ding = mqew\{p}Gq’Gq@(n,F(q)) NG, =
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G, (Nger\ (1S 6D n.r(g)) N Gx) = 6, (n,3), and the proof is complete. O

3.2.33 Corollary

Let § be an SFitting class such that m(Q.3) = m(F) = w. Further, let
F' be the canonical local definition belonging to §. Then Y, defined by
Y (p) = Dn,r(p)), is the canonical local definition of ), 3.

Proof: According to 3.2.31(a), Y,z is locally defined by Y. 1 # F(p)NY .3
is normal in F(p) C §, hence Y(n,rp)) € Dng), and Y is integrated. 3.2.32
implies that Y is full, and the proof is complete. a

3.2.34 Remark

(a) Using 3.2.31(b), we obtain an explicit description of 9, g for all classes
§=6, -6, (wherem,..., m are sets of primes). The same holds
for those classes described in 1.3.10.

(b) Let § be an SFitting class of bounded nilpotent length. If it is possible
to determine the characteristic of 9, 3 (thus, in particular, to decide
whether or not 9, 3) is trivial), then by 3.2.31 there exists an algorithm
to give an explicit description of Y, 3.

3.2.35 Remark
Let § be an SFitting class such that 7(§) = (Y, ). According to 2.2.16,

§ = SFit(&,, --- &, | p1,...p, primes, G, --- 6, CF).

Hence, Y3 2 SFit(Ym,s,, -6,,) | p1,...pr primes, 6, -6, CF) =9
according to 2.2.5. In general, 5 D 9.

Proof: Let py, p2, ps be pairwise distinct primes, and set § = SFit(F1, F2)
where §1 = 6,,6,,6, and F = 6,,6,6,,6,,. By 3.1.18,
Dz = 65,6, and Yng) = 6,,(6, x &p,).  Consequently
SFit(D5): Dns)) = (G | G = Gy,;,Go.5,) Now, it is easily
seen that Zp, 1 Zp, 1 Zp, is a group belonging to §\ Y. (SFit(Dm.z.): Dn5.)))-
O

Let § be an SFitting class such that 9,3 # 1. We finally prove that the
family of all SFitting classes which are normal in § forms a complete and
distributive lattice (in analogy to the dual situation).
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3.2.36 Proposition
Let § be an SFitting class of bounded nilpotent length, and let X, and X,

be SFitting c]asses Set X = SFit(%;,X,). Then § C @(mx) provided that
.’S C gj(n ,X1) @ (n }:2)

In particular, SFit(X,, Xs) is normal in § provided that X; and X, are §-
normal SFitting classes.

Proof: By induction on 7 := [(§): The cases r = 0, 1 are obvious. Thus we
assume that r > 1. Set m; = 7(X;) (i = 1,2) and 7 = m; U my. Further let
§ = LF(F), X = LF(X) and X; = LF(X;) where F, X and X, are full and
integrated (i = 1, 2).

(1) Assume that § C & nr,-
2.2.3 yields X = SFit(X, X5), and using 3.2.1 we obtain F(p)n9" ! C
Y.(X;(p)) for all p € w. Consequently, by inductive hypothesis,
F(p) n 9! C Y,(X(p)). Since 6,X(p) = X(p), 3.1.7 implies
F(p) = 6,(F(p) n9"™1) C Y, (X(p)), and the assertion follows from
3.2.1.

(2) Assume that § C &,.

3" "M ne,, ths § YOS L NYERIS L
and consequently § C (G | G = G@m,xl)G@(n,xg)).lLet G be be a g;oup
of minimal order contained in § \ Y,(X). According to 3.1.6, G has
a unique maximal normal subgroup, thus in particular G € Q%) U
) (%2)  Without loss of generality we assume that G € Q%) Let N
denote the unique maximal normal subgroup of G and let V' € Inj,(G).
By 3.1.6, G/N = Z, for a prime p and V' = PGx (where P € Syl (G)
suitable).

3.1.10 implies § C 2]361Q3€26 (minmy - Hence G € § N &x g, provided
that p € m N . Now, the preceding case provides a contradiction.
Thus we assume that p € (7, N 7,) and consequently &, is contained
in 6, (notice that G € Px) C &,)).

According to 2.2.24, X is contained in Sy, (X1, X2). This implies
P < Vi, Vx, and hence P < Vy, = Gy, (observe that p ¢ my and
that Gy, is an X;-maximal subgroup of ). Consequently, V' < N, a

contradiction. So, also in this case § is contained in Q)(R ),
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(3) § of arbitrary characteristic.
By assumption and 3.2.3, § C (§ N 6,)S,». Now it follows from (2)

that §N G, C @(n,}l). The assertion follows.

3.2.37 Corollary
Let §, X; and X5 be SFitting classes and set X = SFit(Xy,Xs). Then

5 C @(n’ provided that § C Q) (%) nyY (n %),

In particular, SFit(X;,Xs) is normal in § provided that X; and X, are §-
normal SFitting classes.

Proof: 2.2.5 and 3.2.36. O

3.2.38 Corollary
Let § and (X;);e; be SFitting classes such that § C Y,(X;) for alli € I, and

set X = SFit(X; | i € I). Then § <P

In particular: SFit(X; | @ € I) is normal in § provided that X; is §-normal
for each i € 1.

Proof: 2.2.13(b) and 3.2.37. O

3.2.39 Definition
Let § be an SFitting class. We define

£ — ({% | § SFitting class, X is normal in §}, C).

3.2.40 Theorem

Let § be an SFitting class such that ), 3 # 1. Then £3) js a complete and
distributive lattice, which is dual atomic, too, provided that § is of bounded
nilpotent length.

Proof: This follows from 3.2.38, 3.1.10, 2.2.14(b) and 2.2.20(b); observe that
() < coleads to F € HN C Y, ($H) where § denotes a dual atom of £, O
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3.2.41 Remark
Let § be an SFitting class such that Y,z # 1.

(a) In general, £% fails to be atomic.
(b) In general, £™%) fails to be dual atomic.
Proof:

(a) Let § be as described in 3.1.12. Then it is easily seen that £™% does
not possess any atoms.

(b) Let § =™ = FT. It is easily seen, too, that £ does not possess
any dual atoms.

3.2.42 Remark

Let § be an SFitting class such that 9,3 # 1 and such that there exist
atoms in £™% . Then, in general, the atoms of £™% do not coincide with
the atoms of L)

Proof: Let m = {p1, pa2, p3} be a set of pairwise distinct primes. Then
(M%) = SFit(&,, ., & Sy, | 0 € S3), and N, is the smallest SFitting

Po(1) ¥ Po(2)
class which is normal in ™) It is easily seen that there exists atoms

in £%) Byt if § is an atom of Ly, such that § C @(”’m"), then
evidently, $ is not normal in ") (note that, according to 2.2.18,

H=6,,, %X6p,,6 for a suitable permutation o € S3). O

Ps(3)






Chapter 4

Further embedding properties

We now turn our attention to further embedding properties of injectors, all
of them weakening normality.

4.1 Local (Sub)Modularity

In this section we study locally (sub)modular Fitting classes, that is, non-
trivial Fitting classes X and §, X C §, such that for each G € § an X-injector
of G is a (sub)modular subgroup of G. In this investigation, one of the first
results to emerge is that the class of all groups G such that an X-injector of GG
is a modular subgroup of G is not closed under forming direct products. As
an immediate consequence of this fact we obtain that the concepts of local
modularity and local normality coincide. (In the global case § = &, this has
been proved already by Hauck and Kienzle, cf. [14].)

Weakening modularity in so far that transitivity holds leads to the concept
of locally submodular Fitting classes. Although this, in general, defines a
new relation between Fitting classes, it turns out that for Fitting classes
possessing strong additional properties — for instance SFitting classes — the
concept of local submodularity coincides with that of local normality, too.

Local modularity

The concept of a modular subgroup stems from the theory of lattices: the
modular subgroups of a group G are precisely the modular elements in the
lattice of all subgroups of G.

95
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4.1.1 Definition
Let G be a group. A subgroup U of G is called modular (U mod G) if the
following conditions are satisfied:

(1) W, U)NV =W, UnNV) for all W,V < G such that W < V.
(i) W, U)NnV =(U,WNV) for all W,V < G such that U < V.

The reader is referred to the book of Schmidt [19] for further information on
subgroup lattices and its modular elements.

Evidently, each normal subgroup is a modular subgroup of GG, but in general,
the converse does not hold true: for instance, a Sylow 2-subgroup of S5 is
modular but not normal in S3. However, the following characterization of
maximal modular subgroups — i.e. subgroups of G being maximal among
all modular subgroups of G — indicates that these concepts are very close to
each other.

4.1.2 Lemma ([19], 5.1.2)

A subgroup U of a group G is a maximal modular subgroup of G if and only
if U is a maximal normal subgroup or G /Coreg(U) is a non-abelian group of
order pq (for suitable primes p and q).

It is also possible to characterize arbitrary modular subgroups of a group
G by the structure of the corresponding quotient group G/Coreq(U)
(cf. [19, 5.1.14]). We will need only a weak form of this statement.

4.1.3 Theorem ([19], 5.1.14)
Let G be a group, and let U be a modular subgroup of G. Then

G/Coreg(U) = S1/Coreg(U) x ... x S, /Coreq(U) x T/Coreq(U),
r € NU{0}, and where for all i, j € {1,...,r}

(a) S;/Corec(U) € 6,6, is a group of order p}qg, and
Z(S;/Coreg(U)) =1 (where q;, p; are (distinct) primes, n; € IN).

(b) (15i/ Coreg(U))], |S;/Corea(U)]) = 1 = (|Si/Coreq(U)|, |T/Corea(U)|)
for i # j.

(c) U/Coreqg(U) = Q1/Coreg(U) x ...x Q,/Coreq(U) x (TNU)/Coreg(U),
where Q);/ Coreg(U) is a non-normal Sylow g;-subgroup of S; / Coreg(U).

(d) UNT is modular and subnormal in G.
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4.1.4 Definition

(a) Let X and § be non-trivial Fitting classes such that X C §. Then X is
said to be modular in § (F-modular) if for all G € § an X-injector of
G is a modular subgroup of G.

(b) Let X be a Fitting class. We define
Ymod(X) = (G | If V € Injx(G), then V is a modular subgroup of G).

In [14, Theorem 1] it is proved that the concepts of G-modularity and &-
normality coincide. Using 4.1.3, we obtain that this is valid in general.
First notice:

4.1.5 Remark
Let X be a Fitting class. Assume that G is a group such that an X-injector

U of G is a modular subgroup of G. Further let T' be a subgroup of G as
described in 4.1.3.

(a) Coreq(U) = Gx is the unique maximal subnormal X-subgroup of G; in
particular, T NU = Gx.

(b) 4.1.3 implies that U/Gx is of square free order and
(GG : UJGal, [U/Gre]) = 1.

4.1.6 Proposition
Let X be a non-trivial Fitting class and G € Ypea(X) \ Yu(X). Then

G xG Q_f Ymod(x)-

In particular: Let X and § be non-trivial Fitting classes. Then X is modular
in § if and only if X is normal in §.

Proof: Assume to the contrary that G X G € Ypea(X), and let
V e Injx(G x G). Then V > F| x F; > Gx x Gy for suitable
Fi, F, € Injx(G). Using 4.1.3, we obtain |G/Gx| = [[;_,p/*¢:m and
|F1/Gx| = |F5/Gx| = ¢1+-q- where r € IN, p1,....pr, @1, -, Q- pairwise
distinct primes, n; > 1, (p;,m) =1 = (¢;,m) for all ¢, and |Z(G/Gx)| | m.

1.2.5 yields |(G x G)x/(Gx x Gx)| | |Z((G x G)/(Gx x Gx))| | m?; hence,
from 4.1.3 it follows that ¢? | |(G x G)/(G x G)x| for every i € {1,...,r}.
Consequently, ¢; 1 |V/(G x G)x|. Since F; x F, < V, this implies
Fi x Fy < (G x G)x, a contradiction to (¢;, m) = 1. O
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Submodular subgroups

In view of 4.1.6, we turn our attention to a weaker concept than modularity.

4.1.7 Definition
Let G be a group. A subgroup U of G is called submodular in G
(U smod @) if there exists a series

U=U;<Uy<...<U,=G@G

of subgroups U; of G such that U; is modular in U;yq for i = 1,...,n — 1.
Obviously, this series can be choosen in such a way that U; is a maximal
modular subgroup of U,y for every i =1,...,n — 1.

Let G be a group. Evidently, each modular subgroup of G is submodular
in G. The converse does not hold true in general, so for instance a Sylow
2-subgroup of S5 x S5 is submodular but not modular in S5 x 5.

Detailed analysis of submodular subgroups has been carried out by
Zimmermann (cf. [21]), and almost all results needed here are taken from
this work.

4.1.8 Lemma ([21], Lemma 1, Prop 1)
Let G be a group, U, V < (G, and let N be a normal subgroup of G.

(a) If U smod G, then U NV smod V.
(b) IfU smod G, then UN/N smod G/N.
(c) IfU/N smod G/N, then U smod G.
(d) IfU, V smod G, then U NV smod G.

Observe that the join (U, V) of submodular subgroups U, V of a group G
is, in general, not submodular in G, not even when U and V are Sylow-
subgroups of G (cf. [21, p. 547]): Let G = (a,b | a” = 1° =1, ab = ba®) be
the holomorph of the cyclic group A = {(a) of order 7. Set U; = (b?) and
Uy = (b*). Then U; mod AU; < G, and consequently U; smod G (i = 1,2).
The join (Uy, Us) = (b) is the maximal subgroup (b) of order 6, which is not
(sub)modular in G.
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The concepts of submodularity and (sub)normality, too, are very close to
each other.

4.1.9 Lemma ([21], Lemma 4)

Let U be a submodular subgroup of a group G. If K denotes the unique
minimal normal subgroup of U such that U/ K is abelian of squarefree expo-
nent, then K is subnormal in G.

In particular, if U € Injy(G) for a Fitting class X, then U/Gx is abelian of
squarefree exponent.

Groups in which all Sylow subgroups are submodular can be characterized
as follows:

4.1.10 Theorem ([21], Theorem 4)
Let G be a group, and let ©(G) = {p1,...,p,}. Assume that p; > ... > p,.
Then the following statements are equivalent:

(i) The Sylow subgroups of G are submodular subgroups of G.
(ii) The following conditions are satisfied:
(a) G possesses a Sylow tower 1 < P, < PP, < ... < P---P,
(P; € Syl,,(G) suitable).

(b) If P; € Syl, (G) such that [Py--- P, Pj] £ Py Py for j > 4,
then p; | p; — 1.

(c) G/F(G) has elementary abelian Sylow subgroups.

Locally submodular Fitting classes

Submodular Fitting classes, i.e. non-trivial Fitting classes X such that for
each group G an X-injector of G is a submodular subgroup of G, were intro-
duced by Hauck and Kienzle in 1987 (cf. [14]). We generalize this concept:

4.1.11 Definition

Let X and § be non-trivial Fitting classes such that X C §. Then X is said
to be submodular in § (X smod §) if for all G € § an X-injector of G is a
submodular subgroup of G.

If X is submodular in §, we also refer to X as being §-submodular.
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Obviously, the relation of local normality implies that of local submodularity.

The converse does not hold true in general. To prove this, we need a Fitting
class constructed by Menth in [17], which we denote by M(p, 3) (where p is a
prime such that p = 1 mod 3). We will not present the (complex) definition
of this class, but only the following statements needed here (cf. [17, 4.2, 4.3]):

4.1.12 Theorem
Let M(p, 3) be as described in [17].

(a) M(p,3) is a Fitting class such that S, x S3 C M(p,3) € 6,63 N4 .

(b) If G € M(p,3), then G/F(G) is an elementary abelian 3-group.

4.1.13 Remark
Let 9M(p, 3) be as described in [17]. Then NSy is submodular, but not normal
in MM (p, 3).

Proof:

(1)

Let G be a group contained in MM (p,3). Then F(G)P; is an NS;-
injector of G (where P3 € Syl;(G)):

Let T be an 9-injector of G g, (o). According to 1.2.15, T'Ps € Injye, (G)
for a suitable Sylow 3-subgroup P3 of G. Set N = Gg,@. By 1.2.18
T = [T, where T, € Syl (Cn(O,(F(N)))). In particular, T}, is a
normal subgroup of F(G)T,, and consequently T, = O,(G). Obviously,
0,(G) =T, for g # p, 3. Hence we obtain T P; = F(G)Ps, and the proof
is complete.

MGS; is submodular in MM (p, 3):

Let the notation be as in (1). It follows from 4.1.12 and 4.1.10 that
F(G)P3/F(G) is a submodular subgroup of G/F(G); thus (1) yields
the assertion.

NM(p, 3) Z Yo (NGSs):

Suppose that MN(p,3) C Y,(MNS3). By 4.1.12 there exists a group
G € M(p,3)\ 6, x G3. Let ¢ be a prime # p,3. Then (1) implies
G=2Z2G/F(Z,1G) € 636,N 6,83, a contradiction to the choice of
G.

The following remark is obvious.
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4.1.14 Remark

(a) Let§, X and ) be non-trivial Fitting classes such that 7(X)Nw () = 0.
If X is submodular in §, then X is submodular in §%9).
In particular, X is submodular in X6 .

(b) Let X, § and Q) be non-trivial Fitting classes such that X is submodular
ing§ and X C %) C§. Then X is submodular in ¥).

(c) Let § and X be non-trivial Fitting classes such that X is submodular in
§. Further, let Y be an SFitting class contained in §. Then X N9 is
submodular in %).

Like normality, the relation of submodularity between Fitting classes is far
from being transitive:

4.1.15 Proposition
Let X be a Fitting class such that X is submodular in X0M?. Then X* = G.

In particular, a Fitting class X is submodular in G if and only if X is normal

in G.

Proof: According to 3.1.3, it is sufficient to prove that for every G € X and
every prime p the group G?{ Z, belongs to X. Assume not. We choose a
group G € X of minimal order such that there exists a prime p satisfying
G Z, ¢ X.

p € m(X), in particular G # 1: Let ¢ be a prime contained in 7(X) and let
() denote a non-abelian g-group. If p ¢ 7(X), then @ € Injx(Z, Q) and
(Z,1Q)x = 1. This contradicts 4.1.9.

Let N denote a maximal normal subgroup of G, thus G/N = Z, for a
suitable r € 7w(X).

G*1Z, € X : Assume not. Then (G* Z,)x = (G**. Since N? Z,
is a subnormal subgroup of G?1 Z,, which is contained in X, this is a
contradiction.

Let R denote a non-abelian r-group. According to 1.2.25 and 1.2.26, the
group G* ! R belongs to X. By 1.2.27, (G*)P ! R € Injx(G*1 Z,  R) and
(G*1Z, R)x = (G*)*; hence 4.1.9 implies a final contradiction. O

(That G&-submodularity coincides with &-normality has been proven
already by Hauck and Kienzle in 1987, cf. [14, Theorem 2].)
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Submodularity is invariant under epimorphisms, and moreover, a normal
subgroup of a submodular subgroup of a group G is submodular in G. The
proof of the following proposition is therefore analogous to the proof of 3.1.4.

4.1.16 Proposition
Let X and § be Fitting classes, X C §. Then the following statements are
equivalent:

(i) X is submodular in §.
(ii) X is submodular in §*.
(iii) X* is submodular in §*.

Consequently, when considering submodularity between Fitting classes we
may assume that both classes are Lockett classes. In this case the following
lemma is particulary useful (compare with 3.1.13).

4.1.17 Lemma
Let X and § be Lockett classes such that X is submodular in §. Further let
G be a group contained in X and p,q (p # q) be primes such that G1Z, € X
and G174, Z, € §. Then

Gi1Z, € X.

In particular, if & is a Lockett class such that &, C X and $6,5,65, C §,
then 66,5, C X.

Proof: Let P denote a non-abelian p-group. According to 1.2.25, G1Z, € X
implies that G ¢ P belongs to X. Assume that G1Z, ¢ X. Then 1.2.24 yields
(GU1Z,V P)x = (G*)*. Thus by 1.2.5 we obtain (G*)*P € Injx(G 1 Z, P),
what is a contradiction to 4.1.9.

O

4.1.18 Definition
Let X be a Fitting class. We define
Yomod(X) = (G | If V € Injx(G), then V smod G).

It is obvious that Ygnea(X) is closed under taking subnormal subgroups. But
in general, Ygnoa(X) is not closed under forming normal products, and thus
fails to be a Fitting class.
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4.1.19 Remark
Let X be a Fitting class. Then Yguoq(X) need not be closed under forming
normal products.

Proof: Let p and ¢ be prime numbers such that p | ¢ — 1.  Set
H = Z,1Z, = H Hy where H; = Z; and Hy = Z,. Consider the
group G = Z, ! H. Then G = <Z;‘H1, Z;I"Hg), and Z;H, and Z;H, are
subnormal Ygy04(&,)-subgroups of G according to 4.1.10. But evidently,
O,(G) = 1 and an S,-injector of G is a non-abelian subgroup of G. By
4.1.9, this implies G € Yemoa(S,). O

4.1.20 Remark
Let X be a Fitting class.

(a) If Ysmod(%> — No YSmOd(%)7 then Ysmod(%) — Ysmod(%)* — Ysmod(%*)-
(b) Ysmod(x*) = DOYsmod<%*).

Proof: (a) follows from 4.1.16. (b): Evidently, it is sufficient to prove
that G1 X G2 € Yamod(X*) provided that Gi, Go €  Ygmoa(X¥).
Thus, let G, Gz be groups belonging to Yguoa(X*) and set G =
Gy x Gbs. 1.2.10 states that Vi x Vo € Inju(G) where V, €

Inj,.(G;), and that each X*-injector of G is of this form (i = 1,2).
V; smod G, consequently there exists a series V; = Dj < D} < ... <
D;. = G; such that D} is a maximal modular subgroup of D}, for all
j=1,...,n;—1;i=1,2. We assume that n; < ny and consider the series
Vi xVo = DyxDi<DyxDi<DxD;i<..<D) xD? <
D, xD. . < D, xD. ,<..<D} xD. =G xG.
Now, repeated application of 4.1.2 yields the assertion. O

Thus, in investigating locally submodular Fitting classes, we are in a
similar situation as in the case of local normality. Therefore the question
about the existence of a unique maximal Fitting class contained in Ygpoa(X)
seems to be hard to attack as well. However, we will see later that for this
relation, too, the special case that both classes are subgroup-closed is easier
to handle (cf. 4.1.32).
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For some types of Fitting classes X it is possible to obtain an upper bound
of Ygmoa(X) (compare with a result of Hauck, cf. [13, 3.3]).

4.1.21 Proposition
Let X be a Fitting class and let m # () denote a set of primes such that
X6, =X

(a) Ysmod<%) g -%GW’ o) QLW e} GW/.
In particular, if ]77/\ =1, then Yymoq(X) C X9,

(b) Assume further that ¢ { p — 1 for all ¢ € m, p € w. Then
Ysmod(:{) g %67T/'

In particular, if ™= 2", then Yanea(X) = Yu(%X) = X6,.
Proof:

(a): Let G € Ygmoa(X) and V' € Injy(G). Tt follows from 1.2.14 that
pt |G :V]forall perm. By4.1.9, V/Gx is abelian. Consequently,
G /G x has abelian Hall 7-subgroups. Put G = G/Gx. Then
O0(G/0x(G)) = F(G/0O.(G)) =
C’6/07# (@) (F(G/Oﬂ/(G))) 2 HOTI'/ (G)/OWI(G>7
where H € Hall,(G).
Thus, we conclude that G € S, oA, 0 S,/, and the assertion follows.

(b): Assume not. Let G be a group of minimal order contained in Ygmoa(¥X)\
XG&,s. Then G has a unique maximal normal subgroup N = Gxe ,,
and |G/N| = q € m. If V € Injx(G), then ¢ 1 |G : V| according to
1.2.14, whence VN = G. By assumption, V' is a submodular subgroup
of G. Hence there exists a maximal modular subgroup K of G such
that V < K. Since K £ N, it follows from 4.1.2 that K = V Coreq(K)
and K/Coreq(K) = Z,.

Coreg(K) = NN K = Coreg(K)(V N N) > G, thus in particular
|N/Coreq(K)| = p € m. Since G/Coreg(K) is non-abelian, Sylow’s
theorem yields ¢ | p — 1, a contradiction.
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We have already seen that Yemea(S,) fails to be a Fitting class (in contrast
to the case of local normality). Nevertheless, there is an easy description of
this class.

4.1.22 Corollary
Let p be a prime. Set w(p) = {¢ € P | p | ¢— 1} and
9(p) = (G | P/O,(G) is elementary abelian, P € Syl (G)). Then

Ysmod(6p> = ﬁ(p) N Gpgﬂ(p)6p6p/ .
Proof:

D: Assume not. Let G be a counterexample of minimal order and let P €

Syl,(G). Then obviously P # 1. Since G//O,(G) is contained in $(p) N
6,6:»)6,6,/, we conclude that O,(G) = 1 (for otherwise P/O,(G)
smod G/O,(G), and consequently P smod G; a contradiction). In
particular, P is an elementary abelian subgroup of G.
Let M denote a minimal normal subgroup of G. The choice of GG implies
that PM is submodular in G. Consequently PM = G (for otherwise
P smod PM smod G a contradiction). Hence G belongs to &) S,.
Applying 4.1.10, we obtain a final contradiction.

N

: Assume not. According to 4.1.9, G belongs to $(p). Thus we
may choose a group G of minimal order contained in Ygmea(S,) \
6,6,,)6,6,. By 4.1.21(a), Yimed(6,) € 6,6,6,6,. The choice
of G implies G € 6,6,. Set M = 0,(G), ¢ # p prime, and
let P € Syl,(G). The minimality of G implies O,/ (G) = 1. Since
G/M € 6,6,,6,N 6,6, C &,,)S,, to obtain a contradiction it
is sufficient to show that ¢ € 7(p). By assumption, P smod PM, and
thus PM is a group in which all Sylow subgroups are submodular. If
[P,M] = 1, then P < Cg(M) < M, a contradiction. Consequently
4.1.10 implies p | ¢ — 1, and the proof is complete.
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Assume that X is a Lockett class and that p is a prime such that X&, = X.
In this situation the No-closure of Ygnea(X) forces the class X to be “large®:

4.1.23 Proposition

Let X be a Lockett class such that X&, = X for some prime p, and assume
that Ysmea(X) is a Fitting class.

Further define 7, recursively by mo = {p} and w,, = {q € P | there exists t €
Tp—1 such that t | ¢ — 1}, and set T = Upewu{o}Tn-

Then

X6, =X
In particular, if p =2, then X = &.

Proof: Let G be a group contained in X&,. Then there exists a natural
number m such that G € X&yp r,. Since X&,, = X, it is sufficient to show
that X&,, = X provided that X&,, , =X (n € IN).

Suppose not. Let G be a group of minimal order contained in XS, \ X. Then
Gx € Injx(G) and G/Gx = Z,, for a prime ¢; € m,. By definition of 7,
there exists a prime ¢ € m,_1 such that ¢» | 1 —1. Put H = Z,,1Z,, = H 1 H,
where H; denotes the base group of Z,, ! Z,, and Hy a complement to H; in
Zyy 0 Zyy. Then 4.1.10 implies that G H € NoYgmod(X) = Yamoa(X). Since
(Gx)*H € Injx(G ! H) according to 1.2.5, and (Gt H)x = (Gx)* by 1.2.24,
this contradicts 4.1.9. a

Let § be a non-trivial Fitting class, and let X;, ¢ € I, denote §-submodular
Fitting classes. Whether or not § is contained in Ygpoq(NiesX;) — and thus
in particular whether or not there exists a unique minimal §-submodular
Fitting class — is an open question. It is open even in case when § is a
Fischer class (or, stronger, when § is an SFitting class). Compared to local
normality, in this situation it seems to be harder to describe the structure
of a minimal counterexample for two reasons: on the one hand submodular
subgroups do not — in general — form a lattice; on the other hand, there is
nothing known — in general — about the relation between X;-injectors and
N;erX;-injectors of a group G.

Nevertheless, in some important cases it is possible to obtain a positive
answer to the above mentioned question. Since 3.1.13 is valid as well for
local submodularity (cf. 4.1.17), the following results can be proved essen-
tially as for the case of local normality.
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4.1.24 Theorem
Let X and § be non-trivial Fitting classes, n € IN.

(a) Let § be a lattice formation. Then (§"). is the unique minimal Fitting
class which is submodular in F".

(b) Let § be as described in 3.1.15(c). Then §. is the unique minimal Fitting
class which is submodular in §.

(c) Let § = &g, --- S, and Y be as described in 3.1.18. Then ). is the
unique minimal Fitting class which is submodular in §.

In particular: Let § = M"*! or § be as described in (b), and let X be a
Fitting class. Then X is submodular in § if and only if X is normal in §.

Note that for each Fitting class § treated above, the smallest §-normal Fit-
ting class coincides with the smallest §-submodular Fitting class. But there
are Fitting classes § — for instance the class M(p, 3) (cf. 4.1.10 and 4.1.12)
— such that a smallest §F-normal Fitting class exists, but not a smallest §-
submodular Fitting class.

Local submodularity and local normality

We have already seen that the concepts of local normality and local submod-
ularity are very close to each other. Moreover, in a special case of 4.1.21(b)
we gave sufficient conditions for Ygnea(X) = Yu(X) to hold. In this section
we will extent reflections of this kind.

4.1.25 Remark
In general, the hypothesis of 4.1.21(b) is not sufficient to conclude that
Yo (%) = Yamoa(X).

Proof: Set m = P\ {2,3}. Then 7 is a set of primes as required in
4.1.21(b), thus in particular Ygnea(X) € XS, where X = NG,,. However,
Yo(X) C Yamod(X), since Z3 0 Z30 Zs € Yamoa(X) \ Yu(X). O
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The condition of 4.1.21(b) is sufficient provided that X = &,:

4.1.26 Remark
Let X = &,, m # (. Then the following statements are equivalent:

(1) Yu(X) = Yimoa(X).

(i) Yomod(X) = NoYimoa(X) -

(iii)  is a set of primes satisfying ¢{p—1 forallg € m, pe .

Proof: 4.1.23 and 4.1.21. Notice that Y,(S,) = 6,6,. O

4.1.27 Proposition
Let X be a Lockett class and w be a set of primes such that Ygpeq(X) = XG,.
IF Y, (X) = No Yu(X), then Ygnoa(X) = Yu(X).

Proof: Obviously, Y,(%X) C Ygmoa(X). To prove the converse, according to
1.2.29 it is sufficient to show that G Z, € Y,(X) for every G € Y,(X) and
every p € 7. Assume the contrary and choose a group G € Y, (%) and a
prime p € 7 such that G Z, ¢ Y,(X); in particular G ¢ X. By 1.2.28,
Gx1Z, € Injx(G 1 Z,), and 1.2.25 yields Gx ! P € X where P denotes a
non-abelian p-group. Since by assumption G P belongs to Ygmea(X), 4.1.9
yields a final contradiction. a

It is an open question what conditions a Fitting class must satisfy to fulfill
Yamod(X) = X&,. It is open, too, whether or not these Fitting classes are
precisely the Fitting classes such that Y,(X) = XS, holds (at least for m
as described in 4.1.21). However, it is easily seen that the condition that
X6, = X is not a sufficient one: Choose m and X as described in 4.1.25.
Then Z 0 Z32 (Z2 0 Z3) € X6\ Yamoa(X).

4.1.28 Proposition
Let X be a Lockett class such that Y,(X) = Yanoa(X).

(a) Suppose that there exists a prime p such that X6, = X. Then X6, =X
where 7 is a set of primes defined as in 4.1.23 corresponding to p.

In particular, if p = 2, then X = .
(b) Assume further that Y,(X) = NoYu(X). Then Y,(X)Gy = Y,u(X).
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Proof:

(a): By induction and 1.2.29 it is sufficient to show that G Z, € X for all
q € m, and all G € X, provided that XS, , = X (n € IN). Assume
to the contrary that there exist a group G € X and a prime q € 7,
such that G1Z, ¢ X. By definition of 7, there exists a prime ¢ € 7,4
satisfying ¢ | ¢ — 1. By assumption and 1.2.5, G*1Z; € Injx(GU1Z,1 Z}).
But 4.1.10 implies that G Z, ! Z; belongs to Yemea(X) = Yau(X), a
contradiction.

(b): Suppose not. Let G € Y,(X) be minimal with respect to G Z, ¢
Y, (X). By 1.2.28 we obtain V := Gx 1 2y € Injx(G 1 Z;). Let N > G
denote a maximal normal subgroup of G. If N > G, then we conclude
that N1 Zy ¢ Yo(X), a contradiction. Thus Gx is a maximal normal
subgroup of G, and consequently G/Gx = Z, for some prime p # 2.
Now 4.1.10 yields G Z2 € Ygmoa(X) = Yu(X), a final contradiction.

We close this section by listing a number of open questions.

4.1.29 Remark
(a) What conditions must a Fitting class X satisfy to fulfill Yimea(X) =
Ya(%)?

(b) Let X be a Lockett class such that Ygmed(X) = NoYsmoa(X). Does this
imply Yu(X) = N Yu(X)?7
Note that the converse does not hold: Y,(6,) = NY,(6,) but
Yimod(Sp) # NoYsmod(S,) where p denotes an arbitrary prime num-
ber.

(c) Let X be a Lockett class such that Ygneqa(X) C XS, for a suitable set
of primes m. Assume further that Y,(X) = No Y, (X).
Does this imply Y, (X) = Ysmoa(X)?

(d) Let X be a Lockett class such that Ygnuoq(X) = XS, for some set of
primes .
Does this imply Yemoa(X) = Y,(X)?
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(e) Is there a Fitting class X such that Ysuea(X) = No Ysmoea(X) and Y,(X) C
Ysmoa(X) holds?

Local submodularity and SFitting classes

Our aim in this section is to prove that the concepts of local submodular-
ity and local normality between Fitting classes coincide provided that both
classes are SFitting classes. Whether or not it is sufficient for this fact to
require the subgroup closure of the larger class, remains an open question.

4.1.30 Lemma
Let X be a Fitting class and set 7(X) = 7. If § is an SFitting class contained
in Yemod(X), then § C 6,6 .

Proof: Assume not. Let G be a group of minimal order contained in
§\ 6,6,. Then G has a unique maximal normal subgroup N, and a
unique minimal normal subgroup M, and N and G/M belong to 6,6 .
Moreover, O,(G) = 1 and O”/(G) = @, thus we obtain G € 6,6, and
I(G) = 2 (where ¢ € 7" and p € 7 are primes). Consequently, 2.1.5(b)
implies 6,6, = SFit(G) € § C Yimoda(X), a contradiction to 4.1.9. O

4.1.31 Theorem
Let § be an SFitting class of bounded nilpotent length. Assume further that
§ is contained in Ygyoq(X) for some SFitting class X. Then

F C Yu(X).

Proof: By induction on r := [(§). The cases r = 0, 1 are obvious.

r > 1: According to 4.1.30, we may assume that 7(§) C w(X). Let
X and F, respectively, denote the canonical local definitions belonging
to X and §, respectively. Then analogously to the proof of 3.2.1, we
obtain F(p) N Nt C F(p) € Yamoa(X(p)) for every p € 7. By induc-
tive hypothesis this implies F(p) N M"~! C Y,(X(p)), and consequently
F(p) =6,(F(p) 9" 1) CY,(X(p)). 3.2.1 completes the proof. O

4.1.32 Corollary
Let § be an SFitting class. Assume further that § is contained in Ygpoq(X)
for some SFitting class X. Then

§ C Yu(X).
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In particular: Let X and § be SFitting classes. Then X is submodular in §

if and only if X is normal in §. Furthermore, there exists a unique maximal

SFitting class contained in Ygmoq(X), and this class coincides with @(n,X).

Proof: 2.2.5 and 4.1.31. O

4.2 Local normal embedding and local
permutability

In this section we turn our attention to two further embedding proper-
ties of injectors — both of them being considerably weaker than normal-
ity /submodularity. These embedding properties — with respect to all (finite
soluble) groups — were introduced by Lockett (cf. [15]), and studied in detail
by Doerk and Porta (cf. [10]).

In the following, we will need a number of further concepts and results taken
mainly from [9, [, 4, 5, 7] and [9, IX, 3].

Fundamental facts and auxiliary results

In investigating locally normally embedded and locally permutable Fitting
classes the concept of a Hall system plays an important role.

4.2.1 Definition
Let G be a group, U a subgroup of G and K a normal subgroup of G.

(a) A Hall system of G is a set ¥ of Hall subgroups of G satisfying the
following properties:

(i) For each m C IP, the set ¥ contains exactly one m-subgroup.

(i) If H, K € ¥, then HK = KH (i.e. H and K permute).

For a Hall system ¥ we set YK/K := {HK/K | H € X} and ¥NU :=
{HNU | H e X}

(b) Let X be a Hall system of G, and let U be a subgroup of G. We say
that ¥ reduces into U (X N\, U) if U N X is a Hall system of U.

Using Hall’s theorem we obtain
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4.2.2 Proposition ([9], I, 4.4, 4.16)
Let G be a group.

(a) There exist Hall systems of G.

(b) Let U be a subgroup of G. Then there exists a Hall system ¥ of G such
that X\, U.

In many cases, it is sufficient to consider a suitable “basis* of a Hall system:

4.2.3 Definition

Let G be a group. A set B consisting of pairwise permutable Sylow p-
subgroups of G, exactly one for each p € 7(G), together with the identity
subgroup, is called a Sylow basis of G.

4.2.4 Lemma ([9], I, 4.8)

FEach Hall system Y. of a group G contains a unique Sylow basis By, and each
Sylow basis B can be extended to a unique Hall system Y. (In this case we
say that B generates ¥p.)

We will further need the concept of a system normalizer, a subgroup N
of a group G, that — under certain circumstances — can be regarded as
“controlling” an X-injector of G (where X denotes a suitable Fitting class).
In the context of (locally) permutable Fitting classes, system normalizers
play an important role.

4.2.5 Definition
Let G be a group. A subgroup U of G is called system normalizer if there
exists a Hall system ¥ of G such that

U= Ng(X):={9g€ G| H=HY for each H € ¥}.

In this case we also refer to U as the normalizer of X.

4.2.6 Theorem ([9], IX, 3.16)

Let X be a Fitting class, and let K be a normal subgroup of a group G
such that K € Y,(X) and G/K € M. Further, let V denote an X-maximal
subgroup of G with V' > Kx =: W. If ¥ is a Hall system of G reducing into
V and if D = Ng(%), then V = (DW)x.
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Locally normally embedded Fitting classes

In this section we consider non-trivial Fitting classes X and § such that X C §
and that for each group G € § an X-injector of GG is a normally embedded
subgroup of G. We will see that local normal embedding is a property con-
siderably weaker than local normality /submodularity. Nevertheless, it turns
out that this relation, too, is a relation between the corresponding Lockett
sections.

4.2.7 Definition

Let G be a group and U be a subgroup of G.

(a) If p is a prime, we say that U is p-normally embedded in G (U p-ne G)
if a Sylow p-subgroup U, of U is a Sylow p-subgroup of some normal
subgroup of G, that is, U, € Syl,((US)).

(b) U is called normally embedded in G (U ne G) if U is p-normally embed-
ded in G for all primes p.

Typical examples of normally embedded subgroups of a group G are Hall
subgroups of a normal subgroup of G.

4.2.8 Proposition ([9], I, 7.3, 7.8)
Let G be a group.

(a) If K <G and U ne G, then UK/K ne G/K.

(b) Let U and V' be normally embedded subgroups of G into which a given
Hall system 3 reduces. Then UV = VU, and U NV and UV are
normally embedded subgroups of G into which ¥ reduces.

4.2.9 Definition
Let X and § be non-trivial Fitting classes such that X C §. Then X is said

to be normally embedded in § (X ne §) if an X-injector of G is a normally
embedded subgroup of G for all G € §F.

If X is normally embedded in §, we also refer to X as §-normally embedded.

G-normally embedded Fitting classes have been studied in detail by
Lockett [15] and Doerk and Porta [10] (cf. [9, IX, 3]). By [9, IX, 3.4(a)],
each Fischer class — thus in particular each SFitting class — is an G-
normally embedded Fitting class, and according to [9, IX, 2.9, 3.7], the class

3 = (G | Soc3(@) < Z(G)) is a Lockett class which is not normally embed-
ded in &.
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4.2.10 Remark
(a) Let X, § and 2 be non-trivial Fitting classes such that X ne § and
XCYCSE. Then X ne Q.

(b) Let X and § be non-trivial Fitting classes such that X ne §. Further,
let ) be an SFitting class contained in §. Then X N'%Q) ne 9).

Evidently, this relation, too, fails to be transitive: since any Fitting class X
is normally embedded in X9, transitivity of local normal embedding would
imply that all Fitting classes are normally embedded in G, a contradiction.
However, local normal embedding is a relation considerably weaker than local
normality /submodularity, since, evidently, neither does X ne XM? imply that
X* = G, nor does a corresponding statement to 4.1.17 hold true in general.
Moreover, let n be an arbitrary natural number. Then there exist a Fitting
class X and a group G such that I(V/Gx) = n where V denotes an X-injector
of G: Let 7 # ) be a set of primes, and p a prime contained in /. Choose a
group H € 6, =: X with I[(H) = n. Then G = Z, H is a group as required.

Nevertheless, the property of normal embedding is another invariant of
Lockett sections. To prove this we need

4.2.11 Definition

Let X and § be Fitting classes, and let $ be an arbitrary class of groups.
Then X is said to be H-strongly contained in § (X 9-<< §) if an §-injector
of G contains an X-injector of G for all G € §.

If X is G-strongly contained in § we write X<<§ rather than X &-<§ and
say that X is strongly contained in §.

4.2.12 Lemma ([15], proof of 3.3.1, 3.3.6)
Let X, Q) and § be Fitting classes, and let G be a group.

(a) If NG and VNN p-ne N, then VNN p-ne G where V' € Inj(V') and
p e lP.

(b) If V € Injy(G) and W € Injx(V') such that V p-ne G and W p-ne V,
then W p-ne G.
In particular, if X <)) and X ne ) ne §, then X ne §.
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Consequently,

4.2.13 Remark
(a) A Fitting class X is normally embedded in & provided that it is nor-
mally embedded in Gy (x).

(b) Let §, X and ) be non-trivial Fitting classes such that 7(X)N~7(Y) =
(). If X is normally embedded in §, then X is normally embedded in

9.
In particular, X is normally embedded in %GW(x)’-

Using 4.2.12, we now obtain analogously to 3.1.4

4.2.14 Proposition
Let X and § be Fitting classes, X C §. Then the following statements are
equivalent:

(i) X is normally embedded in §.
(ii) X is normally embedded in §*.
(iii) X* is normally embedded in §*.
(In case § = & this has already been proved by Doerk and Porta,
cf. [9, X, 1.38].)
4.2.15 Definition
Let X be a Fitting class. We define
Yne(X) = (G | If V € Injo(G), then V ne G).

Obviously, the class Yye(X) is closed under taking subnormal subgroups, and
— provided that X = X* — under forming direct products as well.
In general, Y,.(X) is not closed under forming normal products.

4.2.16 Remark
X = 3 = (G | Socs(G) < Z(Q)) is a Fitting class such that
Yie(X) # No Yoe(X).

Proof: Assume to the contrary that Y,e(X) = NoYye(X); then 4.2.14 yields
Yie(X) = Yye(X)*. We prove that this implies G Z, € Yp(X) for every
G € Y,o(X) and every prime p, and, consequently, by 1.2.29, Y,.(X) =&, a
contradiction.
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By a result proved independly by Lockett and Frantz (cf. [9, IX, 4.19]), the
radicals and injectors of X are known: Gx = Cg(Socs(G)) and Injx(G) =
{C6(Csocy(c2)(G3)) | G3 € Syl3(G)} for every group G.

Let G be a group contained in Y,(¥X), and let p be a prime; then G Z, €

Yo (X):

p =3

p#3

Let V be an X-injector of G Z,. If V. < G*, there is noth-
ing to prove. Thus we may assume that V &£ G*. Then
1.2.28 yields V = F*Z, for a suitable F' € Injy(G). If
q # p, then evidently V ¢ne G Z,  Since according to
the above mentioned description of V', a Sylow 3-subgroup of
V is a Sylow 3-subgroup of G Z, as well, we obtain that
V 3-ne G Z,.

Put H := G Z, and assume that H ¢ Y,,.(X). Let V' € Inj(H).
Since p # 3, G5 = H; € Syly(H) (where G35 € Syl;(G)).
Since G ¢ X, it follows from 1.2.24 that Hy = G% < G*,
and consequently that G* > Soc3(Hxz) > (Socs(Gx))*. If
V' = Cp(Csocy(ry)(G3)) £ G*, then there exists an element
(@1, 2p; 2) € CH(Csocs(mr)(G3)) < C(Clsocs () (G3)) =
CH((Csocs(Gr)(G3))*) such that z # 1. By construction of the
regular wreath product this implies Csoey(a,)(G3) = 1, a contra-
diction.

Hence we obtain V' < G*, and consequently V' ne H; this final
contradiction completes the proof.

O

It is an open question, whether or not Yye(X) = NoYpe(X) implies that X is
normally embedded in & in case that X is an arbitrary Lockett class.

4.2.17 Remark
(a) For this relation, too, it is an open problem whether or not there exists

a unique maximal Fitting class contained in Ype(X).

The special case of considering local normal embedding between SFit-

ting classes only, leads to G-normally embedded Fitting classes, and

consequently to the investigations of Lockett and Doerk and Porta.
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(b) Whether or not the intersection of §-normally embedded Fitting classes
is still §-normally embedded — provided that it is non-trivial — is an
open question as well; it is open even for the case § = 6.

Locally permutable Fitting classes

Like normal embedding, local permutability is a property considerably
weaker than local normality /submodularity. However, we will see that this
property, too, is an invariant of Lockett sections.

4.2.18 Definition
Let G be a group and U a subgroup of G.
Let ¥ denote a Hall system of G. Then U is called ¥-permutable if

UH =HU

for all H € X.
We say that U is system permutable if there exists a Hall system X of G such
that U is ¥-permutable.

To obtain ¥-permutability of a subgroup U of a group G, it is sufficient to
require that U permutes with the corresponding Sylow basis.

4.2.19 Proposition ([9], I, 4.26)
Let ¥ be a Hall system of a group G with corresponding Sylow basis B. Then
a subgroup U is Y-permutable if and only if UH = HU for every H € B.

Obviously, each normal subgroup of a group G is system permutable in G.
According to [9, I, 7.10], each normally embedded subgroup, too, is a system
permutable subgroup of G.

4.2.20 Proposition ([9], I, 4.25, 4.29)
Let ¥ be a Hall system of a group G, and let U and V be X-permutable
subgroups of G.

(a) X reduces into U.

(b) For all K 4G, the quotient group UK /K is a XK /K-permutable sub-
group of G/K.

(c) If N denotes a normal subgroup of G containing U, then U is a ¥ N N-
permutable subgroup of N.



118 FURTHER EMBEDDING PROPERTIES

(d) UNV and (U,V) are ¥-permutable subgroups of G.

In particular, if K < G, then U N K and UK are ¥-permutable sub-
groups of GG.

4.2.21 Definition
(a) Let X and § be non-trivial Fitting classes such that X C §. Then X is

said to be permutable in § if an X-injector of G is a system permutable
subgroup of G for all G € §.

If X is permutable in §, we also refer to X as being F-permutable.
(b) Let X be a Fitting class. We define
Y, (%) = (G |If V € Injx(G), then V is system permutable in G).

According to [9, I, 7.10], a normally embedded subgroup of a group G is
system permutable in GG. In particular, every Fischer class — and conse-
quently every SFitting class — is an G-permutable Fitting class. In 1972,
Dark published an example of a Fitting class which is not permutable in &

(cf. 9, IX, 5.19)).
Evidently,

4.2.22 Remark
(a) Let X, § and %) be non-trivial Fitting classes such that X is permutable
in§ and X €Y C §. Then X is permutable in 9).

(b) Let X and § be non-trivial Fitting classes such that X is permutable in
§. Further, let ) be an SFitting class contained in §. Then X N%Y) is
permutable in 9).

The following lemma is due to Lockett.

4.2.23 Lemma ([9], IX, 3.18)

Let X be a Fitting class, and X be a Hall system of a group G which reduces
into an X-injector V' of GG. Further, let K be a normal subgroup of G with
G/K € &, (where 7 is a set of primes), and let H € ¥ N Hall,(G). Then the
following statements are equivalent:

(i) VH = HV.

() (VNK)HNK)=(HNK)(VNK).
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In particular, 4.2.23 yields

4.2.24 Corollary

Let X be a Fitting class, and ¥ be a Hall system of a group G which reduces
into an X-injector V of G. Further, let K be a normal subgroup of G' with
G/K € &, (where p is a prime).

Then V N K is X-permutable in G provided that V N K is YX-permutable in
K.

Proof: It is sufficient to show that Q(V N K) = (V N K)Q where
Q € Syl,(G) "X and ¢ is a prime. If ¢ # p, there is nothing to prove.
If ¢ = p, then 4.2.23 implies that VQ = QV. Since V = V, (V N K) and
¥\ V, this completes the proof (V; € Syl (V)). O

Let § be a Fitting class. Analogously to a result of Lockett (cf. [9, IX,
3.19]) it can be proved that F-permutable Fitting classes are precisely those
Fitting classes X C § such that for each group G € § an X-injector V of G
is “controlled” by a system normalizer, i.e. V < Ng(X)(V NG") (where X
denotes a Hall system of G such that X\, V).

As mentioned for locally normal embedded Fitting classes, the fact that a
Fitting class X is permutable in X912 does not imply the G-normality of X.
To the contrary:

4.2.25 Remark
Each non-trivial Fitting class X is permutable in X2,

Proof: Let G be a group contained in X0M?, let V € Inj,(G), and set
N = Gxn. Then VN N = Nx and 4.2.6 is applicable. Consequently,
V < DINNV) and hence V.= (NN V)(DNV) (where D = Ng(X)
and ¥ denotes a Hall system of G which reduces into V). This implies
the assertion, since D < Ng(H) for every H € ¥ and N NV is a normal
subgroup of G. O

An elementary but useful consequence of 1.2.14 is

4.2.26 Lemma
Let X be a Fitting class and let $) be an arbitrary class of groups. Then $)
is contained in Y,(X) if and only if X is $)-<<£,(X) for every m C IP.
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Our next aim is to prove that also this relation is a relation of the
corresponding Lockett sections. Keeping 4.2.26 in mind, we obtain analo-
gously to a result of Doerk and Porta (cf. [9, X, 1.39]):

4.2.27 Proposition
Y, (X*) C Y,(X) where X denotes an arbitrary Fitting class.

Since system permutability is an invariant of epimorphisms, we now obtain
that local permutability, too, is a property of the corresponding Lockett
sections (compare with 3.1.4).

4.2.28 Proposition
Let X and § be Fitting classes, X C §. Then the following statements are
equivalent:

(i) X is permutable in §.

(ii) X is permutable in §*.

(iii) X* is permutable in §*.

In particular: If Y, (X) = NoYp(X), then Y,(X) = Y, (X)" = Y, (X¥).

According to 4.2.20, the class Y,(X) is closed under taking subnormal sub-
groups, and, evidently, Y,(X) is closed under forming direct products pro-
vided that X = X*. In general, Y, (X) fails to be No-closed:

4.2.29 Proposition
Let X be a Lockett class, let G € Y,(X) and let p be a prime. Then

G1Z, € Yy(%).

In particular, Y, (%) = NoY,(X) if and only if Y, (%) = &.

Proof: Suppose that the first assertion holds true. Then, by 4.2.28,
Yo (%) = Y (X)* = Y, (X*). Hence we may assume that X = X*. 1.2.29
implies that Y,(¥) = &, and the additional remark is valid as well.

To prove the first assertion we put H = G Z,. Let F' be an X-injector
of H. If FF < G*, then it follows from 4.2.24 that F' is system permutable
in H, and we are finished. Thus F' £ G*, and according to 1.2.28 we may
assume that F' = V*Z, (where V' € Inj,(G)). By assumption, V* is a
system permutable subgroup of G*. Let ¥ = {G%L | 7@ C 7(G)} denote
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a corresponding Hall system of G*. Then by construction of the regular
wreath product, Z, < Ny (U*) for every subgroup U of G. Consequently,
F permutes with G%Z, € Hall,(H) where 7 is a set of primes containing p.
If # C P\ {p}, then G € Hall,(H), and F permutes with G%. Observe
further that o :={GLZ, | n CIP, pen} U{GL | 7 C P, p ¢ n} forms a
Hall system of H; hence the proof is complete. O

4.2.30 Remark
Let X and § be non-trivial Fitting classes.

(a) Also for local permutability, it is an open question whether or not there
exists a unique maximal Fitting class contained in Y,(X).

(b) The intersection of §-permutable Fitting classes is, in general, not per-
mutable in §, not even in case that § = &, cf. [9, IX, 3.14].
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Zusammenfassung in deutscher
Sprache

Einer der wichtigsten Sétze in der Theorie der endlichen Gruppen ist der
Satz von Sylow (1872), der im Universum der endlichen auflésbaren Gruppen
auf verschiedene Weisen verallgemeinert wurde. FEin Prototyp dafir ist
Halls Satz von 1928, der die Aussagen des Satzes von Sylow fiir endliche
auflosbare Gruppen von p-Gruppen auf m-Gruppen erweitert, wobei 7 eine
beliebige Primzahlmenge sei. In jeder endlichen auflosbaren Gruppe G
existiert also genau eine Konjugiertenklasse sogenannter mw-Hallgruppen
von (G, maximaler w-Untergruppen von G, deren Ordnung gerade der
m-Teil der Ordnung von G ist. Wie 1937 von Hall gezeigt wurde, sind
endliche auflosbare Gruppen durch die Existenz von m-Hallgruppen fiir jede
Primzahlmenge 7 bereits ausgezeichnet. Ist G eine endliche Gruppe und 7
eine Primzahlmenge, so ist leicht zu sehen, daf§ eine w-Hallgruppe H von G
folgende Eigenschaften besitzt: (a) HN/N ist eine m-Hallgruppe von G/N
fir jeden Normalteiler N von G; (b) H N N ist eine w-Hallgruppe von N
fiir jeden Subnormalteiler N von G. Insbesondere sind m-Hallgruppen von
G durch jede dieser Eigenschaften charakterisiert. Es ist nun naheliegend,
zu fragen, ob entsprechende Aussagen auch fiir andere gruppentheoretische
Eigenschaften gelten, und falls ja, wodurch sich diese auszeichnen. Wir
fassen dazu zunachst alle endlichen Gruppen mit einer gegebenen gruppen-
theoretischen Eigenschaft in einer (unter Isomorphismen abgeschlossenen)
Klasse § zusammen, und nennen eine Untergruppe U einer Gruppe G eine
$-maximale Untergruppe von G, falls U unter allen in § liegenden Unter-
gruppen von GG maximal ist (eine m-Hallgruppe einer endlichen auflésbaren
Gruppe G ist also eine &,-maximale Untergruppe von (G, wobei &, die
Klasse aller endlichen auflésbaren m-Gruppen bezeichne). Es ist nicht schwer
zu sehen, dafl es nicht moglich ist, den Satz von Sylow in voller Starke auf
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andere als die Gruppenklassen &, zu verallgemeinern. Versuche, schwachere
Aussagen von dieser Form im Universum der endlichen auflésbaren
Gruppen zu erhalten, also Fragen nach der Existenz und Konjugiertheit
von §-maximalen Untergruppen in jeder endlichen auflésbaren Gruppe, die
entweder eine (a) entsprechende oder eine (b) entsprechende Eigenschaft
besitzen, fiihrten zur Theorie der Schunck- und Fittingklassen. In der
vorliegenden Arbeit beschéiftigen wir uns mit Fittingklassen, also mit
Gruppenklassen, die beziiglich der Bildung von Normalteilern und normaler
Produkte abgeschlossen sind. (Fittingklassen sind nach H. Fitting benannt,
der 1938 zeigte, dafl die Klasse aller endlichen nilpotenten Gruppen beztiglich
der Bildung normaler Produkte abgeschlossen ist; offensichtlich ist diese
Klasse auch bzgl. der Bildung von Subnormalteilern abgeschlossen.) Wie
1967 von Fischer, Gaschiitz und Hartley bewiesen wurde, sind Fitting-
klassen § endlicher auflosbarer Gruppen dadurch ausgezeichnet, daff in jeder
endlichen auflosbaren Gruppe G genau eine Konjugiertenklasse sogenannter
S-Injektoren existiert, Untergruppen U von G derart, dafl fiir jeden Subnor-
malteiler N von G die Untergruppe F' N N eine F-maximale Untergruppe
von N ist. Da eine solche Aussage fiir beliebige endliche Gruppen im
allgemeinen falsch ist, werden wir uns im folgenden auf das Universum der
endlichen auflosbaren Gruppen beschrinken; jede hier betrachtete Gruppe
sei also endlich und auflosbar und jede Gruppenklasse in der Klasse & aller
endlichen und auflosbaren Gruppen enthalten.

Bei der Untersuchung von Fittingklassen liegt es mnahe, sich zunéachst
auf solche mit gewissen Zusatzeigenschaften zu beschrianken, was unter
anderem von Blessenohl und Gaschiitz (1970), Lockett (1971), Doerk und
Porta (1980) und Hauck und Kienzle (1987) getan wurde, die Fitting-
klassen untersuchten, deren Injektoren in jeder Gruppe G € & gewissen
Einbettungskriterien gentigen. In der vorliegenden Arbeit werden diese
Untersuchungen verallgemeinert. ~ Wir betrachten nicht-triviale Fitting-
klassen X und §, so daff X in § enthalten ist und daf§ fiir jede Gruppe
G € § die X-Injektoren von G einem gegebenen Einbettungskriterium e
geniigen. In diesem Fall nennen wir X eine §.-Klasse. Wir untersuchen also
Einbettungseigenschaften von X-Injektoren “lokal® in §, wobei der globale
Fall § = G sei.

Wir werden dabei Fragen zu folgenden Einbettungseigenschaften behandeln:
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Normalitat
(Sub)Modularitét
Normale Einbettung

Systemvertauschbarkeit

Bei der Untersuchung obiger Relationen konzentrieren wir uns auf folgende
Fragestellungen:

(1) Existiert fiir jede nicht-triviale Fittingklasse X eine (eindeutig
bestimmte) grofite Fittingklasse §, so dafl X eine §.-Klasse ist?

(2) Fiir welche Fittingklassen § existiert umgekehrt eine (eindeutig
bestimmte) kleinste §.-Klasse?

Bei der Untersuchung der ersten Fragestellung ist es dabei naheliegend,
die Klasse Y.(X) all derjenigen Gruppen G zu betrachten, in denen die X-
Injektoren von G dem Einbettungskriterium e geniigen. Bedauerlicherweise
bildet diese Klasse bei allen oben aufgezahlten Einbettungseigenschaften
im allgemeinen keine Fittingklasse. Um dennoch zu Aussagen iiber die
Existenz einer grofiten in Y. (X) enthaltenen Fittingklasse zu gelangen, wére
es hilfreich, mehr iiber das Fittingklassenerzeugnis beliebiger Klassen — die
kleinste Fittingklasse, die eine gegebene Gruppenklasse enthalt — zu wissen.
Leider ist dieses im allgemeinen nur sehr schwer zuganglich, so ist z.B. die
Fittingklasse, die von der symmetrischen Gruppe auf drei Elementen — der
kleinsten in diesem Zusammenhang nicht-trivialen Gruppe — erzeugt wird,
trotz intensiver Bemiihungen noch nicht explizit beschreibbar. Beschrankt
man sich auf die Untersuchung untergruppenabgeschlossener Fittingklassen
(im folgenden SFittingklassen genannt), so sind jedoch starke Aussagen
moglich. Dies liegt im wesentlichen daran, daf§ der Untergruppenabschluss
einer Fittingklasse bereits eine Reihe von weiteren Abschliissen erzwingt
(Bryce und Cossey, 1972, 1982), und es folglich bei der Untersuchung von
SFittingklassen moglich ist, neben der Theorie der Fittingklassen auch die der
(lokal erklarten) Formationen zu verwenden (zu Definition und Eigenschaften
derselben vgl. 1.3). Aus diesem Grund sind bei der Betrachtung obiger
Relationen zwischen SFittingklassen auch deutlich stérkere Aussagen zu
erwarten als flir beliebige Fittingklassen.
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Wir beginnen diese Arbeit mit einem in die Theorie der Fittingklassen und
(lokal erklérten) Formationen einfiihrenden Kapitel, in dem Definitionen
und grundlegende Resultate zur Verfiigung gestellt werden. Hier findet
sich auch die Definition der zu einer Fittingklasse § assoziierten Klasse §*,
der kleinsten § enthaltenden Fittingklasse, deren Radikale sich direkten
Produkten anpassen, und des Lockettabschnittes zu §, der Gesamtheit aller
Fittingklassen ) mit )* = §*. (Dabei ist das X-Radikal einer Gruppe G der
eindeutig bestimmte grofite in einer gegebenen Fittingklasse X enthaltene
Normalteiler von G; dieser existiert nach der Definition von Fittingklassen.)
Fallt § mit §* zusammen, so wird § Lockettklasse genannt.

In diesem Kapitel findet sich auch die Definition von lokal erklarten
Formationen, das heifit von Gruppenklassen, die durch eine sogenannte
lokale Erklarung gegeben sind (vgl. 1.3). Ist § eine lokal erklarte Formation,
so ist eine lokale Erklarung von § im allgemeinen nicht eindeutig bestimmt,
es existiert jedoch genau eine, die voll und inklusiv ist (vgl. 1.3), die
sogenannte kanonische lokale Erklarung von §. Kanonisch deshalb, da
sich viele Eigenschaften der Klasse auf sie iibertragen lassen. Es wird sich
herausstellen, dal auch obige Relationen zwischen SFittingklassen haufig
bereits in den zugehorigen kanonischen lokalen Erklarungen widergespiegelt
werden (und umgekehrt).

Das zweite Kapitel ist der Untersuchung des SFittingklassenerzeugnisses —
der kleinsten SFittingklasse, die eine gegebene Klasse enthélt — sowie des
Verbandes der SFittingklassen gewidmet. Wie bereits geschildert, sind die
hier erzielten Resultate hilfreich bei der Untersuchung obiger Relationen
zwischen SFittingklassen. Sie beanspruchen aber auch fiir sich allein
genommen ein gewisses Interesse. Mit Hilfe der Theorie der lokal erklarten
Formationen werden wir hier unter anderem zeigen, dafl das SFittingklassen-
erzeugnis beliebig vieler SFittingklassen vertréglich ist beziiglich gewissen
Erweiterungen sowie beziiglich der Schnittbildung. Letzteres bedeutet
insbesondere, dafl die Gesamtheit aller zwischen SFittingklassen X und §,
X C 3, liegenden SFittingklassen einen distributiven Verband bilden — ein
Faktum, das bereits von Shemetkov und Skiba (1989) gezeigt wurde. Es
wird sich weiter herausstellen, dafl dieser Verband auch atomar ist, also stets
minimale Elemente existieren, und die Atome insofern explizit beschreibbar
sind, als dafi sie erzeugende SFittingklassen angegeben werden konnen.
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Im dritten Kapitel werden wir uns mit lokal normalen Fittingklassen
beschaftigen, also mit nicht-trivialen Fittingklassen X und § derart, daf§ X
in § enthalten ist und die X-Injektoren in jeder Gruppe G € § normal liegen,
also mit dem X-Radikal von G zusammenfallen. Wir unterteilen dieses Kapi-
tel in zwei Abschnitte. Im ersten Teil werden wir zunachst Grundlagen tiber
lokal normale Fittingklassen auffithren (ein wesentlicher Teil davon geht auf
Hauck (1977) zuriick), und anschlieend oben aufgefiihrte Fragen (1) und (2)
fiir beliebige Fittingklassen diskutieren. Wie aus der Literatur bekannt ist,
kann man sich bei der Betrachtung dieser Relation auf den Fall zuriickziehen,
daB beide Klassen Lockettklassen sind (wir werden einen weiteren Beweis fiir
diese Aussage angeben, der sich leicht auch auf andere Einbettungseigen-
schaften tibertragen 148t). Dieses Resultat ist insofern erfreulich als dafl
sich Lockettklassen im allgemeinen wesentlich leichter behandeln lassen als
beliebige Fittingklassen. Dennoch ist Problem (1) in diesem allgemeinen
Rahmen kaum zu bearbeiten, da das Fittingklassenerzeugnis nur sehr schwer
greifbar ist und damit auch die Frage, ob mit in Y,(X) enthaltenen Fitting-
klassen §1, §2 auch die von diesen erzeugte Fittingklasse in Y, (X) liegt, nur
sehr schwer zu beantworten ist. (Hierbei bezeichne Y, (X) fiir eine Fitting-
klasse X die Klasse all derjenigen Gruppen G, in denen das X-Radikal bereits
X-maximal in G ist.) Wir werden jedoch Bedingungen angeben, unter denen
die von §; und F» erzeugte Fittingklasse wieder in Y, (X) liegt.

Auch die dazu duale Frage (2) ist i.a. weiter offen. Es ist offensichtlich,
dafl es Fittingklassen § gibt, fiir die keine kleinste in § normale Fitting-
klasse existiert (dies ist z.B. bei der Klasse aller nilpotenten Gruppen
der Fall). Es scheint aber schwieriger zu sein, diejenigen Klassen zu
charakterisieren, die eine solche besitzen. Wir werden obige Frage jedoch
fiir eine Reihe wichtiger Fittingklassen § positiv beantworten und dabei die
kleinste §-normale Fittingklasse auch explizit beschreiben.

Im zweiten Abschnitt wird lokale Normalitat zwischen SFittingklassen
untersucht. Wie bereits erwahnt, ist hier eine wesentlich starkere Theorie
einsetzbar als bei beliebigen Fittingklassen, was zu deutlich befriedigenderen
Antworten auf obige Fragen fithrt. Das liegt i.w. daran, dafl sich — unter
einer weiteren schwachen Voraussetzung an die Charakteristiken von X und
§ (also an die Menge aller Primzahlen p, fiir die die zyklische Gruppe der
Ordnung p in der jeweiligen Klasse liegt) — zeigen 148t, dal X genau dann
normal in § liegt, wenn die zugehorigen kanonischen lokalen Erklarungen in-
einander normal liegen fiir jede Primzahl p.
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So werden wir sehen, daf fiir jede SFittingklasse X eine grofite in Y, (X)
enthaltene SFittingklasse existiert, welche X zudem eindeutig bestimmt.
In vielen Fallen 1a8t sich diese Klasse auch explizit beschreiben.
Weiter bildet auch die Gesamtheit aller SFittingklassen, in denen eine
gegebene SFittingklasse normal liegt, einen vollstandigen, distributiven und
atomaren Verband. Auch hier sind die Atome insoweit beschreibbar, als daf3
sie erzeugende Fittingklassen explizit angegeben werden konnen.

Bei dem dazu dualen Problem, der Frage nach der Existenz einer kleinsten in
einer SFittingklasse § normalen SFittingklasse, sind ebenfalls befriedigende
Aussagen moglich, auch wenn Frage (2) i.a. offen bleibt. Existiert jedoch fiir
eine SFittingklasse § eine eindeutig bestimmte minimale in § normale F'it-
tingklasse, so bildet auch die Gesamtheit aller SFittingklassen, die in § nor-
mal liegen, einen vollstandigen distributiven und unter gewissen Umstanden
auch dual atomaren Verband.

Die verbleibenden oben angegebenen Einbettungseigenschaften werden im
vierten und letzten Kapitel behandelt.

Wir beginnen mit der Untersuchung lokal (sub)modularer Fittingklassen,
also nicht-trivialer Fittingklassen X und §, derart da X in § enthal-
ten ist und dafl fir alle Gruppen G € § die X-Injektoren von G
(sub)modulare Untergruppen von G sind (zur Definition von (sub)modularen
Untergruppen siehe 4.1). Als eines der ersten Ergebnisse zeigt sich bei der
Betrachtung lokal modularer Fittingklassen, dafl die Klasse all derjenigen
Gruppen, in denen die X-Injektoren modular liegen, nicht abgeschlossen
ist beztiglich der Bildung direkter Produkte. Als unmittelbare Folgerung
daraus erhalten wir, dafl der Begriff der lokal modularen Fittingklassen
bereits mit dem der lokal normalen Fittingklassen iibereinstimmt, ein Fak-
tum, das fiir § = & bereits von Hauck und Kienzle (1987) gezeigt wurde.
Um zu einer neuen Relation zwischen Fittingklassen zu gelangen, muf
also eine etwas schwachere Einbettungseigenschaft gefordert werden — die
der Submodularitat. Hier laBt sich zeigen, dafl Fittingklassen X und §
existieren, so dafl X submodular, aber nicht normal in § ist. Wir werden
sehen, dafl auch lokale Submodularitat eine Eigenschaft der zugehorigen
Lockettabschnitte ist , dafi man sich also bei der Untersuchung dieser
Relation ebenso auf den Fall zuriickziehen kann, dafl beide Klassen
Lockettklassen sind. Auch hier stehen die Fragen nach der Existenz einer
grofiten in Ygmod(X) enthaltenen Fittingklasse und nach der Existenz einer
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kleinsten in § submodularen Fittingklasse im Mittelpunkt, wobei ahnliche
Probleme wie bei lokaler Normalitdat auftreten. Dennoch werden wir fiir
einige spezielle Fittingklassen § letztere Frage positiv beantworten und die
entsprechende Klasse auch explizit beschreiben. Es stellt sich dabei heraus,
daf sie in allen diesen Fallen mit der kleinsten §-normalen Fittingklasse
zusammenfallt.

Dafl das Konzept lokal submodularer Fittingklassen sehr eng mit dem lokaler
Normalitat zusammenhangt, zeigt sich sowohl darin, dal beide Konzepte
fir § = & ibereinstimmen (Hauck, Kienzle, 1987), als auch in der Tat-
sache, daf} diese Relationen fiir SFittingklassen zusammenfallen, daf3 also eine
SFittingklasse X genau dann submodular in einer SFittingklasse § ist, wenn
X bereits normal in § liegt. Dies hat zur Folge, daf} alle im dritten Kapitel
fiir lokal normale SFittingklassen gezeigten Resultate ihre Giiltigkeit behal-
ten.

In den folgenden beiden Abschnitten dieses Kapitels werden wir abschlieend
lokal normal eingebettete und lokal vertauschbare Fittingklassen betrachten
(zur Definition vgl. 4.2). Diese Relationen wurden fiir § = & bereits von
Lockett (1971) und Doerk und Porta (1980) untersucht. Dabei hat sich her-
ausgestellt, dafl der Begriff des starken Enthaltenseins (vgl. 4.2) in diesem
Zusammenhang eine wichtige Rolle spielt. Wir werden sehen, dafl das unter
gewissen Umstanden im lokalen Fall ebenfalls richtig ist, womit sich insbeson-
dere zeigen 1af3t, dafl man sich auch bei diesen Einbettungseigenschaften auf
die Untersuchung der jeweiligen Lockettklassen zuriickziehen kann.

Wie oben erwéhnt, ist die Klasse Y.(X) im allgemeinen fiir keine der in
der vorliegenden Arbeit untersuchten Einbettungseigenschaften eine Fitting-
klasse. Im lokal normalen Fall existieren jedoch eine Reihe von Fitting-
klassen, fir die diese Klasse eine von & verschiedene Fittingklasse ist. Wie
sich herausstellen wird, ist dies fiir lokal vertauschbare Fittingklassen aus-
geschlossen, das heiflit die Klasse all derjenigen Gruppen, in denen die Injek-
toren systemvertauschbar sind, ist genau dann eine Fittingklasse, wenn sie
bereits mit der Klasse aller (endlichen auflésbaren) Gruppen tibereinstimmt.
Ob dies fiir lokal normal eingebettete Fittingklassen ebenfalls gilt, ist offen.
Die gesonderte Untersuchung obiger Relationen fiir SFittingklassen ertibrigt
sich hier insofern, als dafl SFittingklassen bereits normal eingebettet (und
damit vertauschbar) in & sind, und diese Untersuchung damit mit der von
Lockett, Doerk und Porta zusammenfallt.
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